
��������	
�����	

� � �
� 	 � 	 � � � 	 � � �
 � � � � 	

DSPWO000161A

ii PAW Developer's Guide

DSPWO000161A

1st Edition (July 1997)

This edition applies to the following licensed program:

� VisualAge Pacbase Versions 2.0 and 2.5

Comments on publications (including document reference number) should be sent electronically through the Support Center Web site at:
http://www.software.ibm.com/ad/vapacbase/support.htm
or to the following postal address:
IBM Paris Laboratory
VisualAge Pacbase Support
30, rue du Château des Rentiers
75640 PARIS Cedex 13
FRANCE

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate without
incurring any obligation to you.

�� Copyright International Business Machines Corporation 1983, 1999. All rights reserved.
Note to U.S. Government Users – Documentation related to restricted rights – Use, duplication or disclosure is subject to restrictions set forth in GSA ADP
Schedule Contract with IBM Corp.

Before using this document, read the general information under "Notices" on the next page.

According to your license agreement, you may consult or download the complete up-to-date collection of the VisualAge Pacbase
documentation from the VisualAge Pacbase Support Center at:

http://www.software.ibm.com/ad/vapacbase/support.htm

Consult the Catalog section in the Documentation home page to make sure you have the most recent edition of this document.

Note

http://www.software.ibm.com/ad/vapacbase/support.htm
http://www.software.ibm.com/ad/vapacbase/support.htm

iii

DSPWO000161A

NOTICES

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product,
program, or service is not intended to state or imply that only that IBM product, program, or service
may be used. Subject to IBM's valid intellectual property or other legally protectable rights, any
functionally equivalent product, program, or service may be used instead of the IBM product,
program, or service. The evaluation and verification of operation in conjunction with other products,
except those expressly designated by IBM, are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The
furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:

Intellectual Property and Licensing
International Business Machines Corporation
North Castle Drive, Armonk, New-York 10504-1785
USA

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of information which has been exchanged, should contact:

IBM Paris Laboratory
SMC Department
30, rue du Château des Rentiers
75640 PARIS Cedex 13
FRANCE

Such information may be available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

IBM may change this publication, the product described herein, or both.

TRADEMARKS

IBM is a trademark of International Business Machines Corporation, Inc.
AIX, AS/400, CICS, CICS/MVS, CICS/VSE, COBOL/2, DB2, IMS, MQSeries, OS/2, PACBASE,
RACF, RS/6000, SQL/DS, TeamConnection, and VisualAge are trademarks of International Business
Machines Corporation, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems, Inc. in the
United States and/or other countries.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States and/or other countries.
UNIX is a registered trademark in the United States and/or other countries licensed exclusively
through X/Open Company Limited.

All other company, product, and service names may be trademarks of their respective owners.

iv PAW Developer's Guide

DSPWO000161A

Table of Contents v

DSPWO000161A

Table of Contents

1. Presentation of the Developer's and User's Workstations ... 9
1.1. Developer's Workstation ...9
1.2. User's Workstation ..10

2. Installation... 13
2.1. Installation Procedure..13

2.1.1. Common Characteristics of Dialogue Boxes... 13
2.1.2. 'Installation Language' Box.. 13
2.1.3. 'PAW user language' box ..13
2.1.4. 'ENVIRON.PRM Directory' Box.. 14
2.1.5. 'PAW Installation Parameters' Box.. 14

2.1.5.1. 'Workstation Type' 14
2.1.5.2. 'Learning Mode' 14
2.1.5.3. 'Root Directory' 15
2.1.5.4. 'Unit' 16
2.1.5.5. 'Disk Space' 16

2.1.6. 'PAW Component Directories' Box.. 16
2.1.7. 'Windows Directory' Box.. 17
2.1.8. 'Communication Protocol' Box... 17
2.1.9. 'Protocol Variant' Box .. 17
2.1.10. 'Reinstalling PAW on a Previous Version' Box.. 17
2.1.11. End of Installation.. 17

2.1.11.1. Developer's Workstation 18
2.1.11.2. User's Workstation 18

2.2. Customization of the Workstation ...18
2.2.1. ENVIRON.PRM file.. 18
2.2.2. PAWLIB.PRM file .. 21
2.2.3. PAWMAK.PRM file .. 22

3. Revamping an Application .. 25
3.1. Extraction from the Server...26
3.2. Transferring the Extraction File to a PC ..26
3.3. Generating the Screen Source Files ...26
3.4. Compilation..27
3.5. Tests on the Generation and Compilation Steps...28
3.6. Implementation..30

4. Error Management ... 31
4.1. Installation Errors...31
4.2. Generation Errors ..31
4.3. Compilation Errors...33
4.4. Operation Errors ..33

5. Advanced Functions.. 37
5.1. External Value Lists...37

5.1.1. Structure of External Value Source Files... 38
5.1.2. Local Generation of the External Value Lists .. 39
5.1.3. Compiling and Checking the Resulting Files... 39
5.1.4. To put the Characteristics of a Data Element into Contact and to Enrich them. 40
5.1.5. Generation of Revamping Files by PAWGEN ... 42

5.2. Customizing the On-Line Help...43
5.2.1. Modifying an Existing Text... 43
5.2.2. Adding One or Several Divisions to a Help Text ... 44
5.2.3. Regenerating the On-Line Help... 44

5.3. Automating the Tasks: .BAT..45
5.4. Keyboard Configuration...47

5.4.1. Generalities ... 47
5.4.2. Local Functions ... 49
5.4.3. Values of Keys (to be inserted in PAW_KBRD.PRM) ... 50

5.5. ClickPad ..50

vi PAW Developer's Guide

DSPWO000161A

5.5.1. Characteristics... 50
5.5.2. Changing the Standard Icons.. 51

5.5.2.1. Adding New Icons in the ICOPAW.RC File 51
5.5.2.2. Changing the Icon of a Standard Button 52
5.5.2.3. Associating an Icon with an Action or Screen Branching Button 52
5.5.2.4. Associating an Icon with a Script 52

6. Examples of PAW revamping ... 53
6.1. Porting a MICROFOCUS Application onto a Revamped Application....................................53

6.1.1. Architecture of a DOS MICROFOCUS Dialogue Application .. 53
6.1.2. Architecture of the Revamped Application under WINDOWS 3.. 54
6.1.3. Notes and Recommendations ... 54
6.1.4. Examples of Compilation Command Files .. 56

6.2. Revamping an IBM Product: DSMS ..57
6.2.1. DSMS Revamping: Introduction .. 57
6.2.2. Installation ... 58
6.2.3. Building the External Value Lists... 59
6.2.4. Keyboard Configuration... 60
6.2.5. If problems arise.. 60

7. PAW DDE Server.. 61
7.1. Characteristics of a DDE Dialogue..61
7.2. Characteristics of DDE Connections ...62
7.3. Syntax of the Items..63
7.4. Syntax of the Commands ..64
7.5. VisualBasic Example of PAW used as a DDE Server...65

8. Script Language... 6 7
8.1. Introduction..67
8.2. Types of Scripts...68
8.3. Implementation of Scripts..69

8.3.1. Parameters.. 69
8.3.1.1. Line Structure of the Scripts 69
8.3.1.2. List of Logon Scripts 69
8.3.1.3. List of Application and Screen Scripts 70

8.3.2. Scripts and DDE.. 70
8.4. Script Structure..70
8.5. Reserved Words..71
8.6. Declarations...71

8.6.1. Variable Types .. 71
8.6.2. Variable Names... 72
8.6.3. Variable Values ... 72

8.6.3.1. Test Syntax of a Boolean 73
8.6.4. Labels.. 74
8.6.5. Comments ... 74
8.6.6. Blanks and Returns ... 74

8.7. The Body of the Program ..75
8.8. Instructions ..75
8.9. Assignments..75
8.10. Expressions and Operators...76

8.10.1. Priority of Operators .. 76
8.10.2. Processing of Associative Operators .. 77

8.11. The Unconditional Branching ..77
8.12. Control Structures..77
8.13. Expressions...78
8.14. Functions ...79

8.14.1. Function Call ... 79
8.14.2. Function Parameters ... 80

8.15. Errors...95
8.15.1. Source Code Errors... 95
8.15.2. Syntax Errors... 95
8.15.3. Errors during Execution... 96

Table of Contents vii

DSPWO000161A

Presentation of PAW
PAW (Pacbench Automatic Windowing) is an application designed to provide
PC-revamping for your mainframe applications and to help you use them with
greater comfort.

It is based on a MS-WINDOWS-type graphical interface, offering typical
facilities such as: mouse-support, pop-up menus, and on-line help).

The terms "user" and "developer" are used in this manual with the following
meanings:

� the user is the person who uses the application. He/she works on a personal
computer on which PAW has been installed, i.e. on which the developer has
set up the revamping parameters. The module used by the user is called
PAW.

� the developer is the person in charge of installing the program, realizing the
application revamping, i.e. generating the revamping parameter files, and
installing them on the users' Pcs. The modules used by the developer to
generate the revamping parameter files are called PAWGEN and PAWLIS.

Note concerning this manual
This manual is designed for two types of customers: those who want to revamp
applications that they have developed, and those who want to revamp an
application originally designed for a dumb terminal, such as DSMS.

The former need to generate all the files required by the revamping of their
applications, before installing them on the user workstations. They should
therefore read the first five chapters.

The latter are supplied with the revamping files and therefore do not need to go
through the generation process. They should read chapter "Examples of PAW
revamping", subchapter "Revamping an IBM product: DSMS" which gives
them specific information and, when necessary, specifies which parts of the
other chapters they should read.

Presentation of the Developer's and User's Workstation 9

DSPWO000161A

1. Presentation of the Developer's and User's Workstations

1.1. Developer's Workstation
The PAWGEN module generates the revamping parameters files for
applications developed with the PACBASE DIALOGUE module on the basis
of information extracted from the Database. This generation step is automated
and requires very little intervention from the developer.

For hardware and software requirements, see the Product Brief or your
technical support.

10 PAW Developer's Guide

DSPWO000161A

1.2. User's Workstation

Presentation of the Developer's and User's Workstation 11

DSPWO000161A

The user's workstation is a personal computer on which the developer has
installed PAW and transferred the revamping parameter files compiled on
his/her workstation.

Existing applications are not in any way modified: only the user interface is
new.

PAW works in "mixed" mode: the workstation uses the emulation mode
whenever it receives a screen that has been modified since the revamping was
done, or for which there is no local revamping.

Installation 13

DSPWO000161A

2. Installation

The first step includes installing the developer's workstation as it is from this
that you can revamp the screen before transferring them to the user's
workstation.

After installing the developer's workstation, you can install the user's
workstation and then proceed to revamp the application or vice versa.

2.1. Installation Procedure

To install a developer's or user's workstation, run WINDOWS and select the
File menu, then 'Run'. You can choose to install PAW:

� from the diskettes. For this, insert the first diskette in the disk drive (A
or B), select this drive (by typing A: or B:) followed by typing
INSTALL.

� from the server where the contents of the two installation diskettes are in
two sub-directories. Activate the INSTALL program by indicating it's
access path: e.g.: X:\disk_path\DSK01\INSTALL, where X = server unit
where the disk contents were copied, DSK01 = first sub-directory.

The procedure displays a series of dialogue boxes through which you can
define your work environment.

2.1.1. Common Characteristics of Dialogue Boxes

All the dialogue boxes contain two push buttons:

� an OK button which passes to the next dialogue box recording your
choices,

� a Cancel button which interrupts the installation. If you click on 'Yes' in
the message box displayed you quit the installation procedure, and all the
choices selected to that point are lost. If you click on 'No' you go back to
the point where you originally clicked on Cancel.

To the right of the message and dialogue boxes is the EXIT icon, used to exit
the installation procedure; it cancels all the choices selected to that point. This
icon has the same function as the Cancel button, but unlike the Cancel button it
is always available.

2.1.2. 'Installation Language' Box

You must choose between French (default language) and English, for the
language used in the installation procedure's dialogue boxes and in the
PAWGEN execution report.

2.1.3. 'PAW user language' box

You must choose between French (default language), English and Spanish for
the language used in the error messages displayed in the revamped application.

14 PAW Developer's Guide

DSPWO000161A

2.1.4. 'ENVIRON.PRM Directory' Box

You must type the executables complete path. The 'c:\paw\exe' default is
modifiable.

If the directory already exists (if you have re-installed PAW), the procedure
will search it for a possible ENVIRON.PRM file which contains the
environment parameters. If the file is there the installation procedure proposes,
by default, choices corresponding to the existing ENVIRON.PRM file. You
only have to validate these choices.

The start of the path will be the default root directory proposed in the following
dialogue box.

2.1.5. 'PAW Installation Parameters' Box

2.1.5.1. 'Workstation Type'

For 'Workstation type', indicate whether you are installing a developer or user
workstation.

2.1.5.2. 'Learning Mode'

The learning and recognition of screens are based on algorithms which aim to
associate a DLL with a message from the server.

By default, the recognition is based on the following criteria:

� protection or no protection of certain fields,

� values of certain fields,

� number of input fields, and the sum of their lengths,

� identity of the contents of the fixed labels of the message received by the
server, and of the DLL fixed labels.

With these criteria, the revamping of an application dynamically modifying the
protected/inputted argument of one or more fields is successful for a non-
recognition of the modified screen. To get around this problem there are several
learning modes available to the developer.

By default, this parameter is positioned at '1: standard', corresponding to the
case outlined above.

Positioned at '2: by labels', this parameter is solely based on the learning and
recognition of the screens on the identity of the contents of the fixed labels of
the server, and of the DLL fixed labels.

Positioned at '3: customized', this parameter takes the default recognition
criteria, modulating the protection criteria by taking a parameter (VARPRO)
into account. This parameter indicates which fields can go from being
modifiable to protected, also allowing the recognition of dynamically modified
screens. For the details on this parameter, refer to chapter "Advanced
Functions", sub-chapter "External Value Lists", section "To put the
characteristics of a data element into contact and to enrich them".

Here is some advice allowing you to choose between the mode 1, 2 and 3:

Installation 15

DSPWO000161A

� if the application server does not dynamically modify the attributes or if it
only modifies a few fields, the standard learning mode is advised. In the
second case, all the screen variables concerned by the dynamic modification
of attributes should be described in the server database.

� if the application server dynamically modifies the attributes or several fields
and if the screens concerned contain fixed labels, mode 2 is advised.

� if the server application dynamically modifies the attributes of several fields
and if the screens concerned contain few or no fixed labels, mode 3 is
advised. In this last case, do not forget to correctly update the
correspondence file to indicate which fields are likely to be modified.

Positioned at '4: without learning', this parameter indicates that no previous
learning is required. The recognition and the revamping of screens is done
thanks to the location of a fixed label in this screen, previously seen by the user
in PACBASE, and whose coordinates are memorized in line 037 of the
ENVIRON.PRM file. This label, made up of a maximum of 8 characters, gives
the name of the screen DLL to be revamped. Here is an example of the location
of such a label:

[,L01,C001,N8,]

Here its location is given as being in line 1 (L01), column 1 (C001), and it is 8
characters long (N8).

If the label found in the screen is, for example, PB16001O, PAW will look for
a DLL called PB16001O.DLL.

It is possible that the user has several DLL games, of different names, for the
same screens to be revamped. In this case, it will define (in the
ENVIRON.PRM file) character strings to concatenate at the beginning and end
of the string in these screens. This last string must therefore be less than 8
characters long.

Example :

[PB,L02,C072,N4,MA]

Here, the string to identify is located in line 2 (L02), column 72 (C072), and is
4 characters long (N4).

If the label found in the screen is LO10, PAW will search for a DLL called
PBLO10MA.DLL . If, in the following screen of the application, the string read
is LO20, PAW will search for the DLL called PBLO20MA.DLL .

The set string_before+string_read+string_after should never be more than 8
characters long.

2.1.5.3. 'Root Directory'

This information is not compulsory. It represents a data entry facility. If you
are entering a root directory, indicating the absolute path (C:\PAW for
example), it will automatically make up the start of the path of other directories.
However, if you do not want all the directories to be dependant on this root
directory you can modify the path of certain directories.

If you do not enter a root directory, you must state the complete path for each
directory.

16 PAW Developer's Guide

DSPWO000161A

The default value proposed for the root directory is the first part of the
executables' path indicated in the 'ENVIRON.PRM Directory' box.

2.1.5.4. 'Unit'

You must choose, from all the values proposed, the disk on which PAW will be
installed.

2.1.5.5. 'Disk Space'

The information contained here is not keyable. It changes according to the unit
chosen.

The total disk space, and the total disk space available before PAW installation
are indicated, in bytes. The total disk space (same as the first line) and the disk
space available after PAW installation are indicated.

PAW 1.6 requires approximately 1.4 Mb. The revamped DSMS takes
approximately 8 Mb.

You must make sure that there is enough disk space available for all of the files
already on the disk and for those you are going to install. If this is not the case,
quit the installation and click on the Cancel push-button or the EXIT icon and
free some disk space.

2.1.6. 'PAW Component Directories' Box

All the files necessary to run PAW are installed in these directories.

The root directory is not keyable. The value displayed (if there is one), comes
from the previous dialog box.

By default all the proposed directories start by the root directory. But, you can
indicate a completely different path for certain directories..

All the values proposed in the input fields are default values which you can
modify.

The seven directories are:

� Executables: directory of .EXE files, parameter files for the generation,
ENVIRON.PRM file and PAWTEST1.DAT test file. It will be called
PATH-EXE.

� Communication: directory of .PRM and .TAB files necessary for
different communication protocols.

� Customization: issued from installation, this directory contains the
keyboard software icons' DLL. Issued from the first installation, it also
contains the preference files (color, etc.) and the keyboard
parameterization.

� Revamping DLL: issued from installation this directory contains the
help in French, English and Spanish (Refer to the section "End of
installation", paragraph "User's workstation" for an explication on the
protection of these files). Once the revamping application is installed, it
contains also contains the compiled parameterization files necessary to
run the application on the user's workstation.

� External lists DLL : issued from installation, this directory is empty. It
will be called PATH-LIST hereafter.

Installation 17

DSPWO000161A

� Developer's base: issued from installation, this directory contains the
description of the ClickPad's icons and a utility to regenerate the
ClickPad. Once the revamped application is installed, this directory is
the root of the tree is which the application DLL and HLP files are
produced. It will be called PATH-BASE hereafter. This directory
remains empty on a user's workstation.

� Scripts: only on WINDOWS. Scripts files directory and the associated
files (CONNEX.PRM...).

The << button on the bottom left allows the user to return to the previous
dialogue box to correct, for example, the root directory name.

2.1.7. 'Windows Directory' Box

At the end of installation a PAW icon is created in the folder of the same name.
It is therefore necessary that the user gives the installer the name of the
Windows directory where PAW must figure.

The directory presented ‘c:\windows’ by default, but it is possible to change it
to the name that you have chosen on your workstation.

2.1.8. 'Communication Protocol' Box

Here you choose the communication protocol under which the server works
(e.g.: IBM/BULL 3270).

2.1.9. 'Protocol Variant' Box

Here you choose a type of communication, in the case where the protocol
authorizes several.

The << button at the bottom left allows you to go back to the previous dialog
box, to correct the communication protocol.

2.1.10. 'Reinstalling PAW on a Previous Version' Box

If the root directory defined at the start of installation already exists on the
workstation, and only in this case, will you be asked to choose between three
options:

- either recreate the directory (and its sub-directories): the previous version of
PAW will therefore be deleted;

- or install the new versions above the previous one: the pre-existing tree is kept
where the PAW components are installed, preserving the other possible files
which are also there;

- or return to the installation steps to change the directory.

2.1.11. End of Installation

The installation procedure starts to install the sub-directories, you will be asked
to insert the second diskette and to give a name for the PAW window in
WINDOWS. This name will appear in the group which will include the PAW
icon.

Once the installation is done, an 'End of installation' box is displayed.

18 PAW Developer's Guide

DSPWO000161A

2.1.11.1. Developer's Workstation

The installation procedure installs on the developer's workstation the different
elements necessary for revamping the application. These elements are:

� a directory (designated by PATH-EXE) containing the PAWGEN
modules (which generate the sources of the screens for revamping) and
PAWLIS (optionally used to generate the lists of external values) and
their parameters files, as well as the PAW module for the tests.

� a directory (designated by PATH-BASE) which is used as the root to sets
of products by PAWGEN and PAWLIS.

2.1.11.2. User's Workstation

At the time of PAW installation on the user's workstation, three help files are
automatically copied in the directory linked to the PATH-SCREENS parameter.
These files are: PW_HLPEN.HLP (help in English), PW_HLPES.HLP (help in
Spanish) and PW_HLPFR.HLP (help in French). As the revamping files used
on the developer's workstation are also in this directory and as these files must
be updated from time to time, these three help files must be protected (deletion
of old versions and copy of the new ones). It is necessary to be able to protect
these three help files (or one of them if you have only kept one language) from
any accidental deletion.

For example, to protect the French help file from being deleted or altered, use
the command:

ATTRIB +R PW_HLPFR.HLP

To cancel the protection, use the command:

ATTRIB -R PW_HLPFR.HLP

2.2. Customization of the Workstation

2.2.1. ENVIRON.PRM file

The ENVIRON.PRM file is created by the installation procedure in a directory
whose access path is PATH-EXE. The developer can modify this file as
necessary, using a text editor. However, the following rules must be respected:

ENVIRON.PRM lines have the following structure:

xxx comments [parameter]

where

� xxx is the number occupying the first 3 characters of the line.

� comments is optional comments.

� parameter is the parameter value entered between brackets.

Since lines which do not respect this structure are ignored, it is possible to
introduce comment lines in the file.

The lines with numbers less than 20 are compulsory. The other lines (except
line 27) correspond to an optional parameterization whose absence will not
hinder the correct working of PAW.

Installation 19

DSPWO000161A

001 Release and Language codes [1.6 FR FR]
002 Communication Boards [GSDLL32 GSPC32W]
003 Path of EXE files [c:\paw160\exe]
004 User Path [c:\paw160\ecr]
005 Path of external value lists [c:\paw160\lis]
006 Developer path [c:\paw160\dev]
007 Target system environment [DOS]
020 Polling rate [700]
021 DIALOGUE Tolerances [0]
022 DLLs with external names [0]
023 Learning Mode [1]
024 User Type [d]
027 GSCOM utilities path [c:\paw160\com]
028 Parameters files [c:\paw160\per]
029 Icons DLL [ICOPAW]
030 Scripts paths [c:\paw160\scr]
031 Display scripts window [0]
032 DDE application name [PAW]
033 Revamped application name [PAW]
037 DLL identification [,L01,C001,N8,]

� Release and Language codes (001): this code is made up of a release
number, followed by two 2-character language codes. The first language
code represents the user language and the second that of the installation.
Both have been selected in the first two dialogue boxes in the installation
procedure. The possible values are FR for French, EN for English and ES
for Spanish.

� Communication boards (002): this is the name of the communication
manager (the .EXE extension is implied), followed by the name of its
associated parameter file (the .PRM extension is implied).

� Path of EXE files (003): this is the directory in which the PAW specific
programs (PAW.EXE, PAWGEN.EXE, and PAWLIS.EXE) are copied. The
developer needs these three programs to revamp the screens. However, only
the PAW.EXE file is on the user's workstation. This parameter is the PATH-
EXE of the installation procedure.

� User path (004): this is the compiled parameter file directory path. It
corresponds to the SCREEN-PATH of the installation procedure.

� Path of value lists (005): this is the directory path of the compiled files
containing the external value lists. It corresponds to the LIST-PATH of the
installation procedure, which MUST be different from SCREEN-PATH..

� Developer path (006): this is the beginning of the directory for the files
produced during the generation and compilation steps. The complete path
contains the SESS (session number) and LIB (library containing the
processed screens). This parameter is the BASE-PATH of the installation
procedure.

� Target system (007): DOS system on which the revamped application will
work. It conditions the PAWGEN generation of revamping files in MS-
WINDOWS format. It is the system parameter of the installation procedure.

20 PAW Developer's Guide

DSPWO000161A

� Polling rate (020): this optional parameter specifies, in milliseconds, the
time necessary to check the transmission between two calls of the
communication board. This value should be higher than 20 milliseconds. If
the value is 0, the board is not checked.

� DIALOGUE Tolerances (021): 0 or 1 (optional parameter). The value 0
generates a parameterization which conforms to the PACBASE description
lines of the screens.
With the value 1, PAWGEN carries out the same adjustments as
PACBASE's Dialogue function.
When a screen has a field starting on line 1, column 1, PACBASE's
Dialogue function moves this field to line 1, column 2 in order to be able to
insert an attribute. When a screen has a field finishing on the last column of
the last line while the first field of the next line starts in column 1,
PACBASE's Dialogue automatically moves the second to insert an attribute.
With the value 0, there are risks of a break in contact between the local
description and the grill generated by the server. In case of display
problems refer the chapter "Error Management", sub-chapter "Operation
Errors".

� DLLs with external names (022): 0 or 1. The value 0 (default) provokes
the generation of parameters files with their corresponding screens as the
root.
With the value 1, the external code (MAP) is used as the root, which allows
to put all the parameters files in several languages corresponding to the
same screen server into the same directory (the MAPS do not have the same
name from one language to the next). This parameter is compulsory and
must be positioned at 1 when porting a MICROFOCUS application onto a
PAW-revamped application.

� Learning mode (023): 1, 2, 3 4. This parameter specifies the type of
criteria used by the Screen Recognition Algorithm. Selecting a learning
mode is useful when the input field attributes have been dynamically
modified by certain programs and the modified screens are no longer
recognized. For more details on the use of this parameter, see sub-chapter
"Installation procedure", section "PAW installation parameters", paragraph
"Learning mode".

� User type (024): D or U. This line indicates whether the workstation works
as a developer's workstation or a user's workstation.

� Utilities path GSCOM (027): this directory stores the communication files.

� Parameters files (028): this directory stores the preferences and parameters
for the keyboard carried out during customization.

� Icons' DLL (029): this code is the name of the DLL containing the icons
used in the logical keyboard.

� Scripts' path (030): this line corresponds to the path of the directory where
the scripts files necessary for a program's execution are stored.

� Display scripts window (031): 0 or 1. This line displays the execution steps
of the script. .

Installation 21

DSPWO000161A

� DDE application name (032): by default, the value is ‘PAW’. It is possible
to modify it if needs be.

� Revamped application name (033) : by default, the value is ‘PAW’. It is
possible to modify it if needs be.

� Revamped application release (036): memorized in SCREENS.LRN. It is
displayed in the PAW help.

� DLL identification DLL (037): a string of characters determining the name
of the revamping DLL (learning mode 4).

2.2.2. PAWLIB.PRM file

The installation procedure creates the PAWLIB.PRM file in the directory
whose access path is PATH-EXE. This file's contents are used to translate in
the user's own language some of the labels that will be displayed in his/her
station's ACTION and SCREEN BRANCHING menus, as well as some general
labels related to the Help function.

The following table describes the installation version of the PAWLIB.PRM
file.

PAWLIB.PRM lines have the following structure:

xxx comments [label]

where

� xxx is a number occupying the first three characters of the line.

� comments is an optional comment.

� label contains the label that will be used. It must be entered between
brackets and its length must not exceed 36 characters.

Since the lines which do not respect this structure are ignored, it is possible to
introduce comment lines in the file.

010 CMVT-- [No update]
011 CMVT--C [Create]
012 CMVT--M [Modify]
013 CMVT--A [Delete]
014 CMVT--X [Create or Modify]
015 CMVT--Y [Transaction Code 5]
016 CMVT--Z [Transaction Code 6]
020 OPER--P [Redisplay]
021 OPER--A [Inquiry]
022 OPER--S [Next Screen]
023 OPER--M [Update]
024 OPER--O [New Screen]
025 OPER--E [End]
040 [No extended help available for this screen]
041 [Help for screen:]

� 10 to 16:
descriptive labels for the authorized values of a transaction code. These
labels update the Action menu.

22 PAW Developer's Guide

DSPWO000161A

� 20 to 25:
descriptive labels for the authorized values of an operation code. These
labels update the Screen Branching menu.

� 40 and 4: help

� 40: label displayed whenever there is no extended help on a particular
screen (i.e. the on-line help for the revamped server screen has not been
defined).

� 41: help prefix displayed at the beginning of help panels titles on the
revamped screen.

2.2.3. PAWMAK.PRM file

The installation procedure creates the PAWMAK.PRM file in the directory
whose access path is PATH-EXE. This file is used to specify the link edit and
compile options for files produced by PAWGEN in the BASE-
PATH\SESSION\LIBR directory and/or by PAWLIS in the BASE-PATH\LIST
directory. This file's records are similar to this example:

The PAWMAK.MC6, PAWMAK.MC7, PAWMAK.MC8 and PAWMAK.BL4
files used to parameterize the link editing and compiling for MICROSOFT C6,
C7, C8 and BORLAND C4, are copied at the installation of the developer
workstation in the executable directory. PAWMAK.PRM is not installed if it
already exists in the directory so that the developer may keep his options.
Otherwise, PAWMAK.PRM is the same as PAWMAK.MC8.

The structure of the PAWMAK.PRM file follows the example below:

**** PAWMAK DOS Microsoft C 8.00 English

[COMP]

FORMAT=cl -c/ALw -Gsw -Ot -Zpe -W2 -FPa -Tc <SRCPAW>.C

[LINK]

FORMAT=link <OBJPAW>, <DLLPAW>.DLL /align:16, NUL, LIBW.LIB
LDLLCEW.LIB /nod /NOE, <DLLPAW>.DEF

FORMAT=rc <DLLPAW>.DLL

[HELP]

FORMAT=HC31<DLLPAW>.HPJ

[UTIL]

COMMAND=NMAKE

Each of the three steps of compilation, link edit and generation is associated
with a section whose name is written in brackets ([COMP]). In each section,
one or several lines describe the command syntax.

Installation 23

DSPWO000161A

There are three reserved words:

� <DLLPAW>: code of the DLL and help files.

� <SCRPAW>: code of the source files and the .OBJ files (temporary
files),

� <OBJPAW>: code of the .OBJ files in the order of the link edit.

They are replaced by the appropriate codes at generation.

Revamping an Application 25

DSPWO000161A

3. Revamping an Application

The PAWGEN module, which processes the data extracted from the PACBASE
Dictionary, generates parameter files for the revamping of applications
designed with the PACBASE DIALOGUE function. This stage is automated
and requires very little intervention from the developer. For each screen, the
revamping step produces a set of files to be compiled.

The compilation produces:

� a file containing a screen map, with the .DLL extension.

� a Help file, with the .HLP extension, containing documentary
information on the screen (context sensitive Help) and its related data
elements.

These files are then installed on the user's workstation.

The developer's work consists of five tasks:

� extraction, from the server, of all the data related to the dialogue whose
screens are to be revamped,

� transfer of the resulting file to the developer's workstation,

� tests on the generation and compilation steps,

� generation of source files for the screens to be revamped, with the .C and
.RTF (DOS MS-WINDOWS) or .IPF(OS/2-PM) extensions,

� compilation of these files,

� implementation on the user's workstation.

26 PAW Developer's Guide

DSPWO000161A

3.1. Extraction from the Server
The screens that will be revamped are described in a file produced on the server
by the PACBASE GPRT (GEO option C4) procedure. The procedure output is
a user file: PAC7GT (or GT for the GCOS8 system) whose records are each
180-characters long (maximum).

For more information on the GPRT procedure, see the PACBASE Reference
Manual and User's Manual.

3.2. Transferring the Extraction File to a PC
The downloading of the PAC7GT or GT file on a P.C. is performed by the
developer. The transfer utility must be parameterized so as to keep all the
special characters. The local resulting file of the transfer is FILENAME.EXT.

3.3. Generating the Screen Source Files

PAWGEN

File reading

Generat ion of .C fi les of Gene ration of source
com piled screen s tructures f iles fo r the On-Line Help
in o rder to p roduc e the
.DLL file s

FILENAM E.EXT

PAW MAK.PRM
(com pilation param eter s)

EN VIR O N.PRM
(PAW GEN param eters :
language, acc ess path
and system)

PAW LIB.PRM
(PAW GEN param eters :
definit ion o f user labels)

XXXXXX.C (2 per sc reen)
XXXXXX.D EF
PAW G EN.MAK

XXXXXX.R T F and XXXXXX.HPJ
 or
 XXXXXX.IPF (1 per s creen)

XXXXXX i s the code of the screen to be revam ped

From FILENAME.EXT, PAWGEN obtains a set of source files to compile for
each screen.

To execute this procedure, type the following command:

PAWGEN FILENAME.EXT

where FILENAME.EXT is the complete name of the file produced by the
GPRT procedure and downloaded locally. This name must include sufficient
indication to the access path.

PAWGEN produces .C source files and help source files .RTF for MS-
WINDOWS).

These files are written in a directory whose name contains DEVELOPER-
PATH\SESSION\LIBRARY where:

� DEVELOPER-PATH (line 006 in the ENVIRON.PRM file),

Revamping an Application 27

DSPWO000161A

� SESSION is the code of the extraction session,

� LIBRARY is the code of the library from where the transaction were
extracted.

In the case of the current session, the SESSION directory is always the 9999H
directory. The SESSION and LIBRARY directories are created automatically
from the PATH-BASE directory. Parameterization is introduced by the
ENVIRON.PRM, PAWLIB.PRM and PAWMAK.PRM files studied in the
chapter "Installation".

A report of the generation procedure is displayed on the screen. The developer
can write it in a consultable text file and verify that it does not contain an error
message. It contains:

� statistics on the running of PAWGEN;

� warning messages (warning ***).

� error messages (error *1* and error *2*).

Error 2 signals a serious problem (system error, a parameter file
missing...) which will halt processing.

A list of the errors is given in the chapter "Error Management", subchapter
"Generation Errors".

3.4. Compilation
Compilations are initiated by the PAWPROC command.

The following compilations are then performed:

� compilation of .C files, followed by links to produce .DLL files;

� compilation of the Help file (.RTF) by IPF compiler or Help Compiler.
The final files are written in a directory whose name is made up of the
DEVELOPER PATH (line 006 in the ENVIRON.PRM file) and of the
session and library names.

An execution report is displayed on the screen. Look for the "error" string to
check error messages.

28 PAW Developer's Guide

DSPWO000161A

3.5. Tests on the Generation and Compilation Steps

PAW T EST 1.DAT
(contenant la description des
écrans DDE000 et DDE010)

PAWG EN

PAW G EN.MAK

CO M PILATIO N
PAWPRO C

DDE000.DLL
DDE000.HLP
DDE010.DLL
DDE010.HLP

C H E M IN-B A S E \99 99H \B IB _ TS T

CO PIE DAN S LE
R EPER TO IR E DE TEST

C HE M IN -E X E

C HE M IN -E X E

C H E M IN -TE S T

CO MPLINK.LIS
(com pte-rendu)

C HE M IN -E X E

PAW T EST 1.LIS
(com pte-rendu)

C HE M IN -E X E

The PAWTEST1.DAT file is automatically copied into the directory
corresponding to the PATH-EXE parameter so that the developer can carry out
tests. This file contains the descriptive of two screens: DDE000 and DDE010,

which should be able to be obtained by the developer by an extraction from the
central site. At the time of the test the PAWTEST1.DAT file will undergo the
different phases of the revamping procedure detecting any PAW installation or
parameterization error.

� Generation of parameterization

Go to the directory linked to the PATH-EXE installation parameter via the CD
command.

Then execute PAWGEN.EXE using the command:

PAWGEN PAWTEST1.DAT > PAWTEST1.LIS

The generation report is written in the PAWTEST1.LIS file and can be
consulted using any standard editor.

� Generation check

Print the PAWTEST1.LIS report file. Error lines begin with **error* 1* or
**error* 2*. The report must not contain any of these.

� Compiling and link editing.

Enter the PAWPROC command.

Revamping an Application 29

DSPWO000161A

If the command fails and the error message "Executable not found" (SYS1041)
is displayed then the system could not find the program.

In this case, verify that:

� the program called is correctly installed on the developer's machine or on
the machine's server.

� the program is either in the current directory, or in one of the directories
mentioned or in the PATH environment variable.

Use the PATH command to find out the content of this variable.

To modify the PATH, update the environment initialization file
(AUTOEXEC.BAT for DOS) and then reboot the machine.

� the names of the programs called (CL.EXE and LINK.EXE by default)
are those of the compiler being used. If this is not the case, the
PAWMAK.PRM files must be modified.

� Compilation and link editing check.

The PATH-BASE\9999H\LIB_TST directory must contain 2 .DLL files and 2
.HLP files. If this is not the case then there are:

� compilation errors:

Refer to chapter "Error Management".

� link editing errors:

There are modules libraries missing. Verify that they are installed and
that they are mentioned in the environment LIBPATH variable. Use the
SET command for this.

If the environment is incorrect, update the environment files and then
reboot the machine.

� Copy of the result in the test directory

The copy is done using the COPY command.

If the developer wants to first delete the old files in the directory using the
DEL*.* command, he must protect the PW_HLPEN.HLP (help in English),
PW_HLPES.HLP (help in Spanish) and PW_HLPFR.HLP (help in French)
files depending on his choice, which are also in this directory (automatically
copied during installation).

For example to protect the help file in French from being deleted or altered, use
the following command:

ATTRIB +R PW_HLPFR.HLP

To remove the protection, use the command:

ATTRIB -R PW_HLPFR.HLP

30 PAW Developer's Guide

DSPWO000161A

3.6. Implementation

The result of the previous steps is a set of compiled files for each group of
screens belonging to the SESSION\LIB directory. The exact directory name is:
BASE-PATH\SESSION\LIB.

If the initial session is the current session, the SESSION directory is always
9999H.

In order to test the resulting parameters, the developer must copy the set of files
in her/his test directory (SCREEN-PATH), by the XFERPROD command,
produced by the generator.

To transfer the files to the user's workstation, the resulting parameters must be copied in the SCREEN-
PATH directory on the user's workstation.

Error Management 31

DSPWO000161A

4. Error Management

4.1. Installation Errors
The installation procedure detects and points out errors resulting from the
parameterization of PAW. It also detects errors resulting from a faulty
parameterization of the system environment. Such errors may cause the
installation process to stop.

If the system environment happens to be saturated, modify the CONFIG.SYS to
allow more memory to PAW, or to deactivate resident programs that require a
lot of memory. Then reboot your computer.

4.2. Generation Errors
The error messages that might be displayed following the execution of
PAWGEN or PAWLIS are listed in this subchapter. Sentences in bold are the
actual messages; they are followed by explanatory comments.

NUMBER ERROR MESSAGE

DETECTED IN ENVIRON.PRM (**error* 2*):

10001 Missing file

10002 Incorrect line

10003 Missing line

10004 Line in twice

10005 Incorrect length of parameter

10006 Incorrect path

10007 This parameter value should be 0 or 1

10008 This parameter must be a number

10009 Non-numerical version

10010 Unknown language code

10011 Unknown system code

10012 Incorrect code (ASCII or ANSI)

10013 The user path and lists' paths are the same

10014 Unknown parameter value

32 PAW Developer's Guide

DSPWO000161A

10043 PAWLIB .PRM file not found or not valid
**error* 2* The parameter file is not in the same directory as the PAWGEN program.

10045 PAWMAK .PRM file not found or not valid
**error* 2* The parameter file is not in the same directory as the PAWGEN program. .

10047 Value list file not found or not valid
**error* 2* The correspondence file (RUB-LIST.DAT in this manual) does not exist or is

inconsistent with the filename specified when generating the revamping files.

10050 File was not processed
The file was not processed. No parameters were produced for the revamping
as a consequence of an error 10045, 10055, 10105, 10300 or 10310.

10055 File cannot be found
The file extracted from the PACBASE Dictionary could not be read, either
because it is missing, or because the specified path is wrong.

10100 Code not recognized
**error* 2* System error when revamping. Contact your technical support.

10105 File not sorted
**error* 2* The file has not been sorted in ASCII. Revamping is not possible.

10110 Sequence error
warning The record whose key is specified is not processed by PAWGEN. This message

can be ignored if the revamping goes on without any serious error.

10180 Cannot insert zone

10185 Cannot insert hyper

10190 Cannot complete paragraph
**error* 2* System errors when building a Help file. Contact the technical support.

10200 Zone length = 0 in record:
warning A data element was described with a length = 0. The corresponding field will

not be written in the .DLL file.

10210 Screen is empty
**error* 1* The screen contains no logical or physical areas. No revamping file will be

provided for this screen.

10300 Cannot access ENVIRON.PRM file
**error* 2* The ENVIRON.PRM file could not be read. Check that it is not being used by

another application.

20070 Format error in file
**error* 1* System error when processing the screen. Related files will not be produced.

20080 Failure while opening (mode..) File...
**error* 1* System error while processing the screen. Related files will not be produced.

Check the file.

20400 Field overriding another field:
**error* 1* Two data elements have been assigned the same field. Related files will not

be produced. Make the correction in the PACBASE Dictionary.

20430 Length of logical data element = 0. Deletion of the corresponding field. Li
=.. Col =..

warning The field is deleted from the screen. The revamping files are written. To know
what field is deleted, see the corresponding .C file: the logical data elements
are specified with their numbers.

20440 Field out of line. Field.. : Col =.. Len =.. Max =..

20450 Field out of screen. Field.. : Li =.. (Max =..) Col =.. (Max =..)
**error* 1* A data element is described in such a way that it extends beyond the line or

screen. The screen revamping files will not be produced.

Error Management 33

DSPWO000161A

20460 The screen's first field starts in line 1, column 1
warning If line 021 of the ENVIRON.PRM file is set to 1, message 20462 linked to

message 20460, indicates an update on the screen description for consistency
with the PACBASE Dialog function. Otherwise, message 20474 is linked to
message 20460 and indicates a possible problem.

20462 Line 1 column 2 out-of-synch

20470 No interval between 2 screen fields placed on 2 consecutive lines
warning If line 021 of the ENVIRON.PRM file is set to 1, message 20472, linked to

message 20470, indicates an update on the screen description for consistency
with the PACBASE Dialog function. Otherwise, message 20474 is linked to
message 20470 and indicates a possible problem.

20472 First line shortened

20474 The screen may not be recognized

4.3. Compilation Errors
A shortage of memory may cause the compilation and link edit procedure to
abend; the system then displays a message such as "Out of heap space" or "Out
of far heap space".

Depending on the system and compiler (see its documentation), some options
may be available for a better use of the memory (for example: /B1 C1LEXE
etc...).

If problems continue, reduce the number of resident programs working during
the procedure execution (modification of the CONFIG.SYS file).

Caution: some programs can be deactivated for the generation and compilation
steps but must be active for the test step. Therefore do not forget to reactivate
such programs when the revamping parameters are completed.

4.4. Operation Errors
It may happen that the developer expects a revamped screen and actually gets
an emulated screen. On the other hand it may also happen that PAW displays a
server screen using the revamping file of another, very similar, screen.

Here is a list of possible reasons, as well as some appropriate solutions.

� Screen not recognized

Check the following:

� has extraction from the host been performed?

� has it been performed with the current version of the application (the one
you access via PAW)?

� has transfer to the developer's workstation been correctly made?

� is the program used for the transfer parameterized so as to keep all
special characters? (very important)

� has local generation (PAWGEN) been run?

� has local generation been run on the correct file (that which has been
transferred)?

� has the generation run smoothly?

34 PAW Developer's Guide

DSPWO000161A

� has the compilation been run?

� did it run smoothly?

� has local implementation (copy of the files in the SCREEN_PATH
directory) been performed?

� are the size and date of the unrecognized screen's .DLL file found in the
test directory the same as those of the original produced and compiled in
the BASE\SESSION\LIB?

� are several .DLL with the same name generated? Each specific .DLL
must have a specific name and can only revamp one screen. A .DLL file
having the same name than another .DLL will overwrite this file which
will therefore not revamp its associated screen anymore.

� the unrecognized screen contains a field that starts on line 1, column 1.

In this case, PACBASE moves this field in line 1, column 2 to include an
attribute. The generated map is therefore not in synch with its On-Line
Screen Description. To solve this problem adapt the screen with the field
in line 1, column 2. This has no impact on the screens for the user since
the maps produced by PACBASE remain unchanged. It is also possible
to introduce line 021 in the ENVIRON.PRM file so that the screen
description is updated automatically.

� the unrecognized screen contains a field that ends on the last column of a
line while the first field of the following line starts in column 1.

PACBASE automatically moves the second field to include an attribute.
The generated map is therefore not in synch with its On-Line Screen
Description. Here also the problem may be resolved by adapting the
screen description to the map produced by PACBASE, i.e. move the
second field over one character.

This has no impact at the application level as the maps produced by
PACBASE remain unchanged. It is also possible to introduce line 021 in
the ENVIRON.PRM file so that the screen description is updated
automatically.

� the application to be revamped dynamically modifies the field attributes.
In this case, check that the recognition mode is adapted to this
application. See chapter "Installation", subchapter "Installation
Procedure", section "PAW Installation parameters' box.

If all these issues have been checked and, if necessary, corrected, you must
use the PAW diagnosis tools:

� run PAW on a developer workstation (D) on line 024 on the
ENVIRON.PRM file and access the "unrecognized" screen.

� open the Developer menu and activate the Recognition choice. The
recognition process is then activated, and a "diagnosis" displayed. The
recognition is made up of three phases. Verify that the DLL
corresponding to the screen is checked in phase 3. If it is the case, the
message indicates the reason why it is not recognized: a gap (different
label character, field gap) between the contents of the received screen
(Message) and the local description of this screen (DLL). If there is a
difference of characters or attributes, the check of a GSCOM trace allows
you to know if the character transcoding performed at the communication
is concerned or not.

Error Management 35

DSPWO000161A

Otherwise, redo the test by isolating the DLL associated with the screen in a
directory in order to reduce the recognition work on phase 3. Note that a
screen whose DLL is thus isolated may be recognized even though it was
not during normal operation. In this case, contact your technical support.

The Recognition in File choice writes the diagnosis in the PAW.LOG file
located in the customization directory.

The Decision Tree choice writes the decision tree in the executable
directory. These two files and the GSCOM trace must be given to the
technical support if the problem persists.

� Confusion between two screens

 The system may have difficulty in differentiating DLLs whose fields have
the same positions, lengths and types (input fields or protected fields). PAW
cannot distinguish between fixed labels and protected fields; therefore, if a
fixed label and a protected field happen to have the same contents, the
screens will be mixed up. In this case you should modify the fixed label or
protected field.

� Problem of DLL loading

 If the DLL cannot be loaded, PAW sends a message with the type of error:

� DLL not found; it does not exist in the directory. .

� System error with system code (refer to the System's technical
documentation).

� The type of the DLL does not correspond to what was expected. PAW
tried to load a DLL found in the SCREEN-PATH directory but the DLL
is not what was expected. This comes from either the presence of DLL
corresponding to another type (external value lists, etc.) or from the
homonymy of a screen DLL with a system DLL. Therefore check
homonyms. One of the DLLs used by PAW may have the same name as
a system DLL (e.g. USER.DLL in WINDOWS).

Advanced Functions 37

DSPWO000161A

5. Advanced Functions

5.1. External Value Lists
The external value lists increases the Help on the values choice available in
either the Help menu of a data element or the Linking menu of a data element
declared operation code (refer to section "To put the characteristics of a data
element into contact and to enrich them") with values that have not come from
the data elements' descriptions (-D) at the dialog level on the server (internal
values), as is the default case.

If the dialogue uses external values instead of the information contained in the
data elements descriptions, you can then generate - thanks to PAWGEN and
PAWLIS - a version of revamping files taking these external values into
account.

On the same principle, the external value lists also allow you to associate
values, which are not directly described in the dialogue, to a function key.
PAWGEN generates a PFKEY_ code (where _ is a blank) "function keys" field
in the local description of each screen. These external values will be displayed
in the Linking menu.

Two operations must be done in order for the external values to be taken into
account. These operations can be done in any order but they must be finished
before any testing is done:

� first operation:

� obtaining a formatted source file, on the local drive, containing the
external values. The retrieval of this values file or its creation, as well as
its formatting must be done by the developer,

� generation by PAWLIS of the external values on the local drive.

� second operation:

� creating a parameters file to connect the data elements or the function
keys with their own external values list and to indicate, for the data
elements, if they are the operation codes or is they can become protected
by modifying their attributes,

� generation by PAWGEN of revamping files.

38 PAW Developer's Guide

DSPWO000161A

5.1.1. Structure of External Value Source Files

Records of the local source file containing the external values, called
LISTVAL.DAT hereafter, must all have the following structure:

[LIST-NAME][VALUE-LENGTH][VALUE][VALUE-LABEL]

where

� LIST-NAME is the name of the external value list (this file takes the .DLL
extension) in which the record must be stored. This name's length must be 8
characters (if it is shorter, completed by adding blank characters). The same
LIST-NAME will appear at the beginning of all the records associated to
one data element. Records having the same LIST-VALUE as a heading
must be consecutive in the external value source file.

� VALUE-LENGTH specifies, with two characters, the length of the value
defined in the record. This length can be any integer value between 01 and
99.

� VALUE is the value that will be displayed in the Help for Values dialog
box. Its length must be that specified in the VALUE-LENGTH described
above.

� VALUE-LABEL is the label associated with the external value. This label
also appears in the Help for Values dialog box. Its length is free, with the
restriction that the total record length must not exceed 255 characters.

Note The number of external value source files is not restricted as long as they are
built according to the structure described in this paragraph.

An example of a file which supplies the external values displayed in the Help
for Values dialog box:

RUBREGIO0201AIN

RUBREGIO0240LANDES

RUBCOUNTRY01FFRANCE

RUBCOUNTRY02GBGREATBRITAIN

Exemple d'un fichier qui fournira, dans le menu Enchaînement, les valeurs
externes associées à la touche fonction F1 :

PFKEY1 0201Same Screen

PFKEY1 0200End of Converstation

PFKEY1 02A1Test

PFKEY1 0202Next

Advanced Functions 39

DSPWO000161A

5.1.2. Local Generation of the External Value Lists

Using PAWLIS, the developer generates, from the LISTVAL.DAT file, a set of
external value lists that will automatically be written in the \LIST sub-directory
linked to the directory specified by the base-path parameter. The generated
files have .C and .DEF extensions; they are used as entry files for the
compilation.

To generate the external value lists, the developer must use PAWLIS, and
specify the LISTVAL.DAT file name as a parameter, as follows:

PAWLIS LISTVAL.DAT

Once processed by PAWLIS and compiled, the above example file will produce
the RUBREGIO.DLL, COUNTRY.DLL and PFKEY1.DLL files.

5.1.3. Compiling and Checking the Resulting Files

The compilation of the resulting files is triggered by a batch procedure
generated by PAWLIS.EXE.

Compilations are initiated by the PAWPROC command.

The compilation of the .C files, and the link edit that follows, produce the .DLL
files. These files must be copied by the developer in the directory which
corresponds to the LIST-PATH of the installation procedure.

The execution report is displayed on the screen. The developer can include it
in a text file for reference, after checking that it does not contain any error
message (look for the "error" screen). If it contains error messages, follow the
instructions contained in chapter "Error Management".

40 PAW Developer's Guide

DSPWO000161A

5.1.4. To put the Characteristics of a Data Element into Contact
and to Enrich them.

This procedure must be done by the developer and is carried out via a file
which we call here RUB-LIST.DAT. This file puts the data element or function
key in contact with it's external value list and indicates if the data element is an
operation code or if it can be protected when it is first inputted.

This file will also be used by PAWGEN to generate the screen's DLL, taking
the external values into account. The RUB-LIST.DAT file comprises a series
of recordings which must have the following structure:

[L IB][SESSI][DI][SCRE][DATAEL][LISTNAME][VAL1][VALU2]

where

� LIB is the 3-character code of the library for whose screens the external
value list will be called by the Help for Values option of the Help Menu.

� SESSI is the 5-character code of the session for whose screens the external
value list will be used.

� DI is the 2-character code of the dialogue for whose screens the external
value list will be used.

� SCRE is the 4-character code of the screen for which the external value list
will be used.

� DATAEL is the 6-character code of the data element for which the external
value list will be used.

� LISTNAME is the 8-character name of the list (.DLL file) containing the
external values.

� VAL1 (4 characters: OPER or blanks):

� OPER specifies that the data element is used as operation code.
Associated values are "uploaded" in the Branching Menu. The presence
of more than one operation code is signaled by a message.

�Blanks specify that the data element is not used as operation code.

� VALU2 (6 characters: VARPRO or blanks) :

� VARPRO specifies that the data element is initially an input field but
that it may be protected through a dynamic modification of its attributes.
If VARPRO is specified here, value 3 should be used for the learning
mode. For more details, see chapter "Installation", sub-chapter "PAW
Installation Parameters", section "Learning Mode".

� Blanks invalidate the dynamic modification of attributes.

Note For each of the elements described above, use blanks to reach the length
indicated.

It is possible to replace CODE-LIB, CODE-SESS, CODE-DIAL and CODE-
ECR respectively with *** , ***** , ** and **** . The use of this generic
character allows to respectively associate the list of external values to all the
libraries, sessions, dialogues or screens.

Advanced Functions 41

DSPWO000161A

For example, the record presented below means that the values of the
RUBREGIO list will be called by the REGION data element in all the D1
dialogues in any session of the L01 library. In all other cases the values
described at the dialogue level will be used if they exist (see following chart).

L01***** D1**** REGIONRUBREGIO

The diagram below shows in which case the external values will be taken into
account following a call of the help for values option for a data element.

5.1.5. Generation of Revamping Files by PAWGEN

42 PAW Developer's Guide

DSPWO000161A

Once the LIST-DAL.DAT file has been finalized, the revamping process can be
initiated, using the procedure described in Chapter "Revamping an application".
The only difference lies in the execution command for PAWGEN: instead of
typing PAWGEN FILENAME.EXT as specified in sub-chapter "Generation of
Screen Source Files", type the following command:

PAWGEN FILENAME.EXE LIST-DAL.DAT

Adding LIST-DAL.DAT to the execution command affects the .DLL files of
the resulting screens: instead of writing data element values in these files,
PAWGEN writes references to external value lists based on information
contained in LIST-DAL.DAT.

Since the files generated by PAWGEN contain only the names of the external
value lists, the latter can be updated without executing PAWGEN again.
Nevertheless, it is necessary to re-generate them via PAWLIS after modifying
their contents.

Advanced Functions 43

DSPWO000161A

5.2. Customizing the On-Line Help
The Help called by the Keys Help option of the Help menu is customizable and
the corresponding PACBASE transactions are supplied with PAW.

When the installation is performed, the transactions associated with the Keys
Help option are automatically copied in the directory corresponding to the
EXE-PATH installation parameter. They are found in the 033MVT.PAC file
for French release, in the 001MVT.PAC file for the English release and in the
034MVT.PAC file for the Spanish release.

The transactions supplied correspond to:

� the dialogue definition screen,

� the definition screen, the data element list (-CE) and the general
documentation (-G) of the screen,

� the data element definition screens, the data element clear names being
used for updating the Help index,

� the definition screen and the description of a text which contains the
information of the User's Manual, split into divisions. Each division is
linked to a screen data element at the general documentation level.

By default all the transactions are prefixed by "PW". This prefix can be
changed using a Search/Replace function. You can also modify the Help
contents by modifying the transactions themselves. The procedure described
hereafter is more user-friendly: it is the modification of the transactions after
their integration in the PACBASE dictionary.

The uploading of transactions to the server, and their integration to the
PACBASE dictionary via the UPDT procedure are the developer's task. The
developer can integrate the transactions to whichever library he/she wishes.

Note The asterisk line is not supplied; it must be inserted at the beginning of the
transaction file before executing UPDT. Should it be omitted, the procedure
would fail.

5.2.1. Modifying an Existing Text

Select the text you wish to modify from the clear names of the screen's data
elements and general documentation, and then make your changes
(modifications, translation, deletion, additions).

44 PAW Developer's Guide

DSPWO000161A

5.2.2. Adding One or Several Divisions to a Help Text

Creating a new Help text consists of:

� updating the screen resulting from the integration of the transactions
supplied on the installation diskette, by adding to it a new data element
whose clear name will be used as a Help Index input.
The code of this new data element must have a value greater than the
standard ASCII sequence codes. Furthermore, the codes ranging from
PW0010 to PW0900 are reserved for IBM for possible changes. To avoid
any mistake, it is strongly recommended to use a prefix with a higher ASCII
value than the standard prefix (PW);

� creation of a new text division and insertion of the information to be added
to the Keys Help;

� cross-reference the new text and the data element through the screen's
general documentation screen.

5.2.3. Regenerating the On-Line Help

Once you have finalized the text (creation or modification), apply the
revamping procedure described in chapter "Revamping an Application", to the
screen resulting from the integration of Help transactions. Then perform the
extraction from the server, and the transfer of the extraction file to the PC. The
use or PAWGEN to generate the on-line help is slightly different to that
described in chapter "Revamping an Application", subchapter "Generating the
Screen Source Files". Use the following command:

PAWGEN FILENAME.EXT *

where the "*" specifies that the help is generated on the application keys.
PAWGEN therefore does not supply C source but just a .IPF or .RTF extension
file which must be compiled with the help compiler. The resulting file is a
.HLP extension file. For more details refer to the section "Compilation and
Verification of obtained files" in the subchapter "External value lists".

To test the resulting version, the developer must copy the group of files in
his/her test directory (SCREEN-PATH), using the following command:

COPY PATH-BASE\SESSION\LIB\PAW_HELP.HLP SCREEN-PATH

It is necessary to rename PAW_HELP.HLP as PW_HLPEN for the English
version, as PW_HLPES for the Spanish version or as PW_HLPFR for the
French version.

To transfer the new version to the user's workstation, copy it in the directory
corresponding to the SCREEN-PATH installation parameter of the user's
workstation.

Advanced Functions 45

DSPWO000161A

5.3. Automating the Tasks: .BAT
Most tasks in the revamping process can be automated with batch files, .BAT
extension in the DOS environment. The examples shown hereafter are valid for
both environments, but they should be adapted to the type of configuration in
use. To adapt them to the developer's workstation, modify the directory names,
the names of files to be processed, and so on. Phases preceded by "(COM)" are
information that help understanding the files but are not actually part of them.

Automating tasks requires a certain knowledge of the syntax of the .BAT files,
which this manual is not meant to provide. For all information on this subject,
see your OS/2 or DOS documentation.

� automating the generation

(COM) This procedure uses 1 to 3 parameters, which are:
(COM) 2 parameters for PAWGEN.EXE.
(COM) 1 : Name of the file extracted from the host
(COM) 2 : Name of the file associating lists to data elements
(COM) or * to generate the help on keys.
(COM) 1 parameter for PAWLIS.EXE.
(COM) 3 : Name of the external list file.

@echo off (COM) Deletion of echo and
cls (COM) clear screen.
echo +--+
echo ¦ ¦
echo ¦ PAWG (DLL) logical screen and help file ¦
echo ¦ generation procedure ¦
echo ¦ ¦
echo ¦ 3 parameters can be used:. ¦
echo ¦ 1 : Name of the file extracted from the host. ¦
echo ¦ COMPULSORY. ¦
echo ¦ 2 : Name of file association between data elements and ¦
echo ¦ external value lists. ¦
echo ¦ or * character specifying that generation of the ¦
echo ¦ Key Help is required. ¦
echo ¦ OPTIONAL. ¦
echo ¦ 3 : or name of the file containing the values in ¦
echo ¦ case of generation of value lists. ¦
echo ¦ OPTIONAL. ¦
echo ¦ ¦
echo +--+

:PARAM (COM) Test on parameters:
if p%1 == p goto FIN (COM) No parameters: FIN

:PGEN (COM) Execution of PAWGEN.
echo .
cd REPEXE (COM) Current directory is that of the .EXE files
if NOT p%2 == p goto PGEN_2

PGEN_1
echo *** Execution of PAWGEN with ONE parameter
PAWGEN %1 > PAWGEN.lis (COM) Report is written in PAWGEN.LIS
if errorlevel 1 goto STOP_GEN (COM) If the return code of PAWGEN.EXE is
 (COM) other than zero the procedure is stopped.
goto COMPIL (COM) If not, compilation follows.

PGEN_2
echo *** Execution of PAWGEN with TWO parameters
PAWGEN %1 %2 > PAWGEN.lis (COM) Report is written in PAWGEN.LIS
if errorlevel 1 goto STOP_GEN

:COMPIL
echo .
echo *** Construction of the .DLL and .HLP files
echo ..
call PAWPROC >> PAWGEN.lis (COM) Report is added to the generation report

echo .
echo *** List processing ***
if p%3% == p goto CPT_RENDU (COM) No list to be processed
cd REPEXE (COM) Current directory may have been changed.
PAWLIS %3
if errorlevel 1 goto STOP_LIS (COM) In case of error, processing is stopped.

echo *** Building the external list .DLL files ..
call PAWPROC >> PAWGEN.lis (COM) Reprot is added to global report
goto CPT_RENDU

:STOP_GEN
echo Error while executing PAWGEN
echo Stop processing

46 PAW Developer's Guide

DSPWO000161A

goto CPT_RENDU

:STOP_LIS
echo Error while executing PAWLIS
echo Stop processing
goto CPT_RENDU

:CPT_RENDU
echo Report print
EDIT %1.lis (COM) Replace EDIT by name of editor
goto FIN

:FIN

� automating the implementation
)
(COM) This procedure uses 2 parameters, which are:
(COM) Library code and session number (9999H
(COM) for the current session).

@echo off (COM) Deletion of echo and
cls (COM) clear screen.

rem No parameter -> no implementation...
if p%1 == p goto KO
if p%2 == p goto KO
goto OK

:KO
echo ...
echo Skip 2 parameters: LIBRARY and SESSION codes!
echo ...
pause
goto FIN

:OK
echo .
echo ---» Implementating %2\BIB_%1...
echo .
c:
cd PAWBAS\%2\bib_%1 (COM) Move to the directory that contains the files.
copy *.dll PAWTST (COM) Copy of the DLL and HLP files in the test
copy *.hlp PAWTST (COM) directory of the developer's workstation or in
 (COM) the server directory containing the operations files.

echo .
echo *** End of implementation!!! ***
echo .

pause
goto FIN

:FIN

� automating the external value lists generation

@echo off (COM) Deletion of echo and
cls (COM) clear screen.
echo +--+
echo ¦ ¦
echo ¦ PAWL procedure for generating the external value lists ¦
echo ¦ ¦
echo ¦ Parameter: ¦
echo ¦ Name of the file containing the COMPULSORY ¦
echo ¦ values ¦
echo ¦ ¦
echo +--+

:PARAM (COM) Test on parameters:
if p%1 == p goto FIN (COM) No parameter: END

echo *** Processing the external lists ***
cd REPEXE (COM) Current directory is that of the .EXE files
PAWLIS %3
if errorlevel 1 goto STOP_LIS (COM) In case of error, processing is stopped
echo *** Building the external list .DLL files ..
call PAWPROC >> PAWGEN.lis
goto CPT_RENDU

:STOP_LIS
echo Error while executing PAWLIS
echo Stop processing
goto CPT_RENDU

:CPT_RENDU
echo Report printing
EDIT %1.lis (COM) Replace EDIT with the name of the editor
goto FIN

:FIN

Advanced Functions 47

DSPWO000161A

5.4. Keyboard Configuration

5.4.1. Generalities

When first running PAW, the system automatically creates a keyboard
configuration file in the .EXE directory. The file's name is
PAW_KBRD.PRM. It determines which key(s) will be assigned to the data
transmission function. This file can be edited, and the procedure for changing
this assignment or adding another data transmission keys is shown hereafter. In
case of error, you can delete the file since the system will automatically re-
create it in the following session.

The PAW_KBRD.PRM file contains the description of the correspondences
between a key on the server and a combination of keys on the PC.

Each correspondence is coded on a line comprising:

� the coding on 18 characters. The first character indicates whether the
combination is active (S) or inactive (U). Only these 180 characters are
significant.

� documentary fields:
� Server: action on the server (ex: transmit = ENT),
� PC: PC key, sometimes with the Shift, Ctrl or Alt key.

The default transmission key is the Enter key.

Its assignment originates from the following line in the PAW_KBRD.PRM file:
coding Server PC Shift Ctrl Alt
S002580D0000000191 ENT NEWLINE

To be able to transmit with the Ctrl key, you must activate the following line by
replacing the U in the first position with an S:

Coding Server PC Shift Ctrl Alt
U00258110000000191 ENT CONTROL

Coding Server PC Shift Ctrl Alt

S00258700000105081 F01 1
S00258720000105051 F03 1
S00258740000105061 F05 1
S002588C0000000191 ENT ENTER
S002580D0000000191 ENT NEWLINE
S002582C0000000171 PA1 PRINTSCRN
S00258910000000181 PA2 SCRLLOCK
S00258130000000131 CLS PAUSE
S00258001010100491 FLC e (0x65) 1
S00258700000000201 PF01 F01
S00258710000000211 PF02 F02
S00258720000000221 PF03 F03
S00258730000000231 PF04 F04
S00258740000000241 PF05 F05
S00258750000000251 PF06 F06
S00258760000000261 PF07 F07
S00258770000000271 PF08 F08
S00258780000000281 PF09 F09
S00258790000000291 PF10 F10
S002587A0000000301 PF11 F11
S002587B0000000311 PF12 F12
S002587C0000000321 PF13 F13
S00258700001000321 PF13 F01 1
S002587D0000000331 PF14 F14
S00258710001000331 PF14 F02 1
S002587E0000000341 PF15 F15
S00258720001000341 PF15 F03 1

48 PAW Developer's Guide

DSPWO000161A

S002587F0000000351 PF16 F16
S00258730001000351 PF16 F04 1
S002587F0000000361 PF17 F16
S00258740001000361 PF17 F05 1
S002587F0000000371 PF18 F16
S00258750001000371 PF18 F06 1
S002587F0000000381 PF19 F16
S00258760001000381 PF19 F07 1
S002587F0000000391 PF20 F16
S00258770001000391 PF20 F08 1
S002587F0000000401 PF21 F16
S00258780001000401 PF21 F09 1
S002587F0000000411 PF22 F16
S00258790001000411 PF22 F10 1
S002587F0000000421 PF23 F16
S002587A0001000421 PF23 F11 1
S002587F0000000431 PF24 F16
S002587B0001000431 PF24 F12 1
S002581B0000000471 REST ESCAPE
S00258240000000012 HAUT HOME
S00258230000000022 BAS END
S00258090001000032 GCHE TAB 1
S00258090000000042 DRTE TAB
S00258240000100052 TAV HOME 1
S00258230000100062 TAR END 1
S00258080000100072 HOME BACKSPACE 1
S002582E0000100082 EEOF DELETE 1
S00258080000000092 ZLIGS BACKSPACE
S002580D0000000102 ATTR NEWLINE
S00258250000000112 SYST LEFT
S00258270000000122 ATTN RIGHT
S00258250001000132 CLS LEFT 1
S00258270001000142 ERA RIGHT 1
S00258900000000002 NUMLOCK
S002586F0000000002 DIVIDE
S002586A0000000002 MULTIPLY
S002586D0000000002 SUBTRACT
S002586B0000000002 ADD
S002586E0000000002 DECIMAL
S00258600000000002 NUM00
S00258610000000002 NUM01
S00258620000000002 NUM02
S00258630000000002 NUM03
S00258640000000002 NUM04
S00258650000000002 NUM05
S00258660000000002 NUM06
S00258670000000002 NUM07
S00258680000000002 NUM08
S00258690000000002 NUM09
U00258110000000191 ENT CONTROL
U00258220000002551 PAGEDOWN
U00258210000002551 PAGEUP
U00258240000002551 HOME
U00258230000002551 END
U00258260000002551 UP

col. length meaning

1 1 : S if key is active
: U if key is inactive

2 5 : value of message
7 2 : virtual key (hexa)
9 3 : key code (numeric)
12 3 : booleans for Ctrl - Alt - Shift
15 3 : function identification

 ex: for internal functions, values from 001 to 014
18 1 : 1 if transmission to host

: 2 if internal function

CTRL + F1 -> CTRL + F12 F1 … F12
CTRL + SHIFT + F1 -> CTRL + SHIFT + F12 F13 … F24

Advanced Functions 49

DSPWO000161A

5.4.2. Local Functions

The local functions are preprogrammed functions that are activated by certain
keys. The user defines these keys in the PAW_KBRD.PRM file, associating
them with the desired internal function number (columns 15 to 17).

These functions are as follows:

no. functions

0 does nothing
1 start of the field
2 end of the field
3 start of the previous field
4 start of the next field
5 start of the first field on the screen
6 start of the last field on the screen
7 deletion of the start of the field
8 deletion of the end of the field
9 deletion of the previous character
10 start of the first field of the next line
11 move a character to the left
12 move a character to the right
13 deselect the previous character
14 deselect the next character
15 print the screen
16 move a character to the right with automatic tabulation in the

previous field
17 move a character to the right with automatic tabulation in the

next field
18 recall the last local function used
19 start of the last field of the previous line
20 start of the last field of the next line

(The fields mentioned above must be understood as being keyable fields).

50 PAW Developer's Guide

DSPWO000161A

5.4.3. Values of Keys (to be inserted in PAW_KBRD.PRM)

These values must be inserted in columns 7-8 (virtual key).

Hex value key name

1b Escape

2d Inser
24 Home
2e Del
23 End
21 PageUp
22 PageDown

25 Left arrow
26 Up arrow
27 Right arrow
28 Down arrow

6d Subtract
6f Divide
6a Multiply
6b Add
6e Decimal
60 num.0
61 num.1
62 num.2
63 num.3
64 num.4
65 num.5
66 num.6
67 num.7
68 num.8
69 num.9

5.5. ClickPad

5.5.1. Characteristics

The ClickPad is a window which allows the user to perform four types of
actions via the mouse: standard transmit actions (simple transmit, screen
clearing, restoration, print request), and actions found in the Action, Screen
Branching and Scripts menus.

Each action type corresponds to a button type (standard, action, screen
branching and scripts) whose display is parameterized by the user in the
'Options, Preferences' menu.

By default, these buttons are push-buttons. However you may change them into
icons. Icons are stored in a DLL-type file which is found in the user parameter
file directory (line 028 of the environment file) and whose name (filename
without extension) is indicated on line 029 of the environment file.

Advanced Functions 51

DSPWO000161A

When PAW is installed on a developer's workstation, the program copies onto
the user directory the files which contain the icons of the standard transmit
buttons, as well as a C source file of the DLL and an example procedure file
(DOICOPAW.BAT) for the compiling and link editing of the icon DLLs. This
file can be modified or adapted to a compiler different from the one in use
(MICROSOFT C 8.00). In the link edit, use the following files:
LIBENTRY.OBJ, MDLLCEW.LIB (or LDLLCEW.LIB) and LIBW.LIB.

5.5.2. Changing the Standard Icons

You can customize the icons associated with the ClickPad. These icons are
stored in a DLL file (for example ICOPAW.DLL in the directory of
customization files) resulting from the compiling and link editing of the
following files:

ICOPAW.C: C source

ICOPAW.RC: WINDOWS resources

The ICOPAW.C file must not be modified.

The ICOPAW.RC file is made up of:

� an INCLUDE <WINDOWS.H> line which must not be modified.

� definition lines for the standard buttons which must not be modified.

� lines for the association of icons (files with ICW extension) with integers
(represented by a character string, ICO_ENT for example).

5.5.2.1. Adding New Icons in the ICOPAW.RC File

� Step 1: Introduce a new line for the association of each icon, according to
the following syntax:

1000 ICON NEWICON.ICW

where:

� 1000 is the integer, between 1000 and 9999, which identifies the icon.

� ICON is a keyword.

� NEWICON.ICW is the code of the icon description file. This file can be
created with the help of PAINTBRUSH or SDKPAINT for example and
copied in the developer's root directory: BASE-PATH.

� Step 2: Execute the DOICOPAW.BAT procedure (the name of the DLL
must be input as the parameter).

Note: to be used, the DLL file must have its initial name, that is the one given at its
creation by DOICOPAW.

� Step 3: Copy the created DLL file in the customization files directory:

If you do not want to overwrite the previous DLL file with the created one and
if you want to use the new icon parameterization, you can choose one of the
following two solutions:

� rename the previous DLL file,

� modify line 029 of the ENVIRON.PRM file with the name of the new
file.

52 PAW Developer's Guide

DSPWO000161A

Note: You cannot associate the same number (or character string) to two different
ICW files.

5.5.2.2. Changing the Icon of a Standard Button

Each standard button is referenced in the ICOPAW.RC file and associated with
an integer. To associate a new icon to this button, you must:

1 Copy the icon file (ICW extension) into the developer's root directory
BASE-PATH (work directory),

2 In the ICOPAW.RC file, associate the icon file to the integer which
represents the specific button,

3 Run the DOICOPAW.BAT procedure file which creates the DLL;
indicate the DLL filename as parameter (for example
NEWICOPAW.DLL);

4 Copy the created DLL file in the directory of customization files.

5.5.2.3. Associating an Icon with an Action or Screen Branching Button

The non-standard buttons come from either the PACBASE database or from a
list of external values. To associate one of these buttons with an icon, give it a
numeric identifier. This identifier is a four-digit integer included between 1000
and 9999 and written between brackets at the beginning of the label of the
value taken into account in the Action or Screen Branching menus. Then run
the procedure which creates the DLLs (DOICOPAW.BAT) and copy the DLL
in the adequate directory.

5.5.2.4. Associating an Icon with a Script

To associate an icon with a script, you have to write the four-digit integer
which identifies the icon at the beginning of the script label (in the
corresponding PRM extension file). Then run the procedure which creates the
DLLs (DOCICOPAW.BAT) and copy the DLL in the adequate directory.

If the loading of the DLL files, or if the program cannot display the icon, the
button will be displayed as a push-button with the label text.

Examples of PAW Revamping 53

DSPWO000161A

6. Examples of PAW revamping

6.1. Porting a MICROFOCUS Application onto a Revamped
Application

6.1.1. Architecture of a DOS MICROFOCUS Dialogue Application

A DOS MICROFOCUS Dialogue application is made up of the following
programs (see the diagram below):

� MONITOR.EXE is the Dialogue monitor. It controls the Dialogue's
screen flows. It is the first program to be executed when the application
is started. The SCREEN1.EXE, SCREEN2.EXE, ... programs are
specific to the Dialogue's screens.

� ZAR980.EXE is used as an interface between the screen programs and
the Input/Output programs.

� SCRSAISI.EXE is the Input/Output programs which controls video
display and keyboard input.

The ZAR980 and SCRSAISI Cobol source programs are supplied.

To generate these programs, your compilation command file should resemble
that presented in paragraph "Examples of compilation command files".

SCREEN 2.EXEM ONITOR .EXE ZAR980.EXE SCR SAISI.EXE

SCR EEN1.EXE

SCR EEN3.EXE

Figure 1: Structure of a DOS MICROFOCUS O.L.S.D. application

54 PAW Developer's Guide

DSPWO000161A

6.1.2. Architecture of the Revamped Application under WINDOWS 3

The Dialogue screen flow (Figure 2) of a MICROFOCUS application revamped
under WINDOWS is similar to that of a MICROFOCUS application under
DOS, with the difference that the monitor is not run directly, but through PAW
and via the GSCOM.EXE and STARTMON.EXE programs.

The ZAR980.EXE and SCRSAISI.EXE programs are replaced with a unique
program called ZAR980.DLL. This program uses GSCOM.EXE to control
input and output (display and keyboard input) exchanges between the
MICROFOCUS application and PAW.

The Cobol source code will not produce .EXE files but .DLL files (refer to the
WINDOWS Software Development Kit for a complete description of the
dynamic libraries concepts). The advantage of the .DLL files is that they
extend the size limitations of the executables code (under DOS, the maximum
size of a program is 500 Kb, whereas it may be two or three times larger in
WINDOWS). Moreover, WINDOWS can load several programs of this size
simultaneously.

You will find an example of production of .DLL files for the monitor and
screen programs in paragraph "Examples of compilation command files". This
generation is obtained from the .OBJ files generated during the COBOL
compilation of the application under DOS.

The PAW, GSCOM, STARTMON and ZAR980 programs are supplied.

GSCOM .EXE ZAR980.DLL SCREEN2.DLL

SCREEN1.DLL

SCREE N3.DLL

M ONITOR.DLL STARM ON.EXE

P AW.EXE

2. Structure of the same application revamped in WINDOWS 3

6.1.3. Notes and Recommendations

� The revamping of MICROFOCUS applications can only be done when the
applications have been generated from PACBASE.

� Make sure that the monitors' source codes do not contain any "STOP-RUN"
Cobol instructions. If they do, replace these instructions by the "GOBACK"
instruction, using a text editor. With recent versions of PACBASE this
generation is performed automatically.

� Do not use any "DISPLAY" instructions.

� In order to avoid WINDOWS conflicts between the .DLL files of the
screens and monitor programs and those of the revamping application, make
sure that the MAP names entered on the screens' definition screens are
different from the program names.

Example program name: DO0002
MAP name: DO0002M

Examples of PAW Revamping 55

DSPWO000161A

� The DLL called ZAR980.DLL is the installation DLL. Do not create a DLL
of this name from the COBOL source used to produce the ZAR980 of the
full screen version. Insert a line 022 in the ENVIRON.PRM parameter file
(in PAW's directory), as shown hereafter:

--- ENVIRON.PRM ---
001 ...
...
022 external DLL file names [1]

� The MICROFOCUS application's DLL directory should be included in the
PATH and COBDIR environment variables.

� In a WINDOWS MICROFOCUS application, the relation between internal
file names and external ones is identical to what is under DOS, i.e. it is
determined by the environment variables set. Therefore, if you want to run
several PAW sessions on different monitors (it is not possible to run several
PAW sessions on the same monitor), you must assign a specific internal file
name to each application.

Example :
APPLI1 application internal name of the APP1LE error message file
APPLI2 application internal name of the APP2LE error message file.

External files, however, may have identical names.

Example :
C:\APPLI1\LE for the error message file of application 1
C:\APPLI2\LE for the error message file of application 2

with the following settings for the environment variables:
SET APP1LE=C:\APPL1\LE
SET APP2LE=C:\APPL2\LE

� Note that in the examples of compilation command files shown hereafter,
only the MONITOR program is linked with the EXTFH.OBJ and
EXTERNL.OBJ modules (which contain the COBOL routines for
accessing the files provided with the MICROFOCUS WORKBENCH).
The size of each screen program is therefore reduced by around 70 Kb.

� Check that the directory containing the ZAR980.DLL program (supplied
with the PAW environment) is included in the PATH variable of the
AUTOEXEC.BAT file.

� Although WINDOWS uses the ANSI format, the format of the external files
processed by the PAWLIS and PAWGEN generators should be ASCII.

56 PAW Developer's Guide

DSPWO000161A

6.1.4. Examples of Compilation Command Files

� Example of the compilation command file of a MICROFOCUS O.L.S.D.
application in DOS:

rem --- COBOL COMPILATION ---
cobol ZAR980.CBL ;
cobol SCRSAISI.CBL ;
cobol MONITOR.CBL ;
cobol SCREEN1.CBL ;
cobol SCREEN2.CBL ;
cobol ... other screens...

rem --- LINK EDITING ---
link SCRSAISI.OBJ, SCRSAISI.EXE, NUL,

 /nod LCOBOL.LIB COBAPI.LIB, NUL
link ZAR980.OBJ, ZAR980.EXE, NUL,

 /nod LCOBOL.LIB COBAPI.LIB, NUL
link MONITOR.OBJ EXTFH.OBJ EXTERNL.OBJ XFHNAME.OBJ,

 MONITOR.EXE, NUL, /nod LCOBOL.LIB COBAPI.LIB, nul
link SCREEN1.OBJ , SCREEN1.EXE, NUL,

 /nod LCOBOL.LIB COBAPI.LIB, NUL
link SCREEN2.OBJ , SCREEN2.EXE, NUL,

 /nod LCOBOL.LIB COBAPI.LIB, NUL
link ... other screens...

� Example of compilation command file for revamped MICROFOCUS
O.L.S.D. application in WINDOWS:

rem --- COBOL COMPILATION ---
COBOL MONITOR.CBL ;
COBOL SCREEN1.CBL ;
COBOL SCREEN2.CBL ;
COBOL other screens ...

rem --- LINK EDITING ---
LINK @MONITOR.LNK
LINK @SCREEN1.LNK
LINK @SCREEN2.LNK
LINK other screens ...

where @MONITOR .LNK contains the following lines:
MONITOR+CBLWINL+LIBINIT+EXTFH+EXTERNL+XFHNAME, MONITOR.DLL,,
LCOBOLW+LCOBOL+COBW, MONITOR.DEF /nod /noe;

where MONITOR .DEF contains the following lines:
LIBRARY MONITOR
DESCRIPTION 'Monitor PAW and WINDOWS'
EXETYPE WINDOWS 3.0
CODE PRELOAD MOVABLE DISCARDABLE
DATA PRELOAD SINGLE NOT SHARED
HEAPSIZE 0
EXPORTS MONITOR @1

where @SCREEN1.LNK contains the following lines:
SCREEN1+CBLWINL+LIBINIT,SCREEN1.DLL,,
LCOBOLW+LCOBOL+COBW,SCREEN1.DEF /nod /noe;

where SCREEN1.DEF contains the following lines:

LIBRARY SCREEN1
DESCRITPION 'Screen PAW and WINDOWS'
EXETYPE WINDOWS 3.0
CODE PRELOAD MOVEABLE DISCARDABLE
DATA PRELOAD SINGLE NOT SHARED
HEAPSIZE 0
EXPORTS SCREEN1 @1

The same will apply to all the screens of the dialogue.

Note The compilation commands and the libraries to be used at link edit time may
vary according to the COBOL releases. You must then refer to the
MICROFOCUS documentation. On the other hand, the .DEF files only depend
on the WINDOWS release.

Examples of PAW Revamping 57

DSPWO000161A

6.2. Revamping an IBM Product: DSMS

6.2.1. DSMS Revamping: Introduction

IBM has developed a complete revamping of the DSMS screens. DSMS users
may thus benefit from the advantages of a PC graphic environment when using
their mainframe application.

The developer's task is limited here to the installation of PAW and the
revamping and help files, provided on installation, on the users' workstations.

The developer also needs to build external lists which will contain the values
entered in the DSMS tables and will be called by the Help for Values option of
the Help menu. To build these external lists, the developer needs to install the
revamped version of DSMS on his/her own workstation. The resulting value
lists should then be installed on the users' workstations, together with the
revamping and help files supplied on installation. For details on the external
value lists refer to Chapter "Advanced Functions", Sub-chapter "External Value
Lists".

The installation of the revamped DSMS version comprises the installation of
the local word processor. The .DLL files referring to the Language, Product
and Subsidiary tables are automatically copied in the directory of external value
lists (see below). If you modify the access paths to these files after the
installation, you must update these access paths in the Advanced Preferences
dialog box which you access through Menu Options, choice Preferences of the
word processor.

For a complete description of the local word processor of the revamped version
of DSMS, refer to the corresponding chapter in the User's Manual.

58 PAW Developer's Guide

DSPWO000161A

6.2.2. Installation

The installation of the revamped DSMS is the same as for PAW, if only the
'PAW component directories' dialog bix appears, as well as the directories
present in the PAW installation, a DSMS word processor program directory
and a Windows directory which will receive the TT.INI file (general word
processor parameterization).

For a detailed description of the installation procedure, refer to the chapter
"Installation", subchapter "Installation procedure".

To finish off the installation of the developer's workstation, refer to the chapter
"Installation", subchapter "Customization of the installed workstation". There
you will find explanations for the following three files:

� the ENVIRON.PRM file.
The 001, 021 and 022 parameters do not concern the developer revamping
DSMS.

� the PAWMAK.PRM file.
As regards revamping DSMS, this file indicates the compilation and link
editing options for the files produced by PAWLIS.EXE in the PATH-
BASE\LIST directory. The HELP value of OPER and the examples do not
concern the developer revamping DSMS.

� the PAWLIB.PRM. file.
Translation in the user language of certain labels displayed in the Action and
Linking menus.

Also, a certain number of Script files of examples are in the
<root\scripts\SAMPLES> directory.

Examples of PAW Revamping 59

DSPWO000161A

6.2.3. Building the External Value Lists

In order for the values entered in the DSMS tables to appear when the user
selects the Help for Values option of the Help menu (see the PAW User's
Guide), the developer must create external lists containing these values.

The operation involves producing, on the workstation, a formatted source file
containing the external values.

To extract the contents of the DSMS tables, run the DEXH procedure from the
DSMS database (host). For details on this procedure, see the DSMS
Operations Manual. Downloading the generated file is the developer's task.
The developer may also produce the source file "manually" on the workstation,
but the particular structure of the file should be repeated.

To complete the operation, refer to:

� paragraph "Structure of external value source files" in sub-chapter "External
value lists", chapter "Advanced functions". For DSMS, the LIST-NAME
parameter will take the following values:

VALUES IN THE DSMS TABLE : DSMS ACCESS TO THE

TABLE

CORRESPONDING

LIST-NAME

Contact attributes: functions TATF ID99TATF

Contact attributes: special
responsibilities

TATR ID99TATR

Gravity: change TGRC ID99TGRC

Gravity: event TGRE ID99TGRE

Languages TLA ID99TLA

Options TOP ID99TOP

Phases TPH ID99TPH

Products TPR ID99TPR

Regions TRE ID99TRE

Status: change TSTC ID99TSTC

Status: event TSTE ID99TSTE

Status: site TSTS ID99TSTS

Subsidiaries TSU ID99TSU

Types TTY ID99TTY

User definitions TUD ID99TUD

If you used the DEXH procedure, the file will automatically have the right
structure and you may proceed to the local generation step.

� paragraphs "Local generation of the external value lists" and "Compiling
and checking the results files, in chapter "Advanced Functions". The files
resulting from the compilation and found in the BASE-PATH\LIST
directory must be copied manually in the LIST-PATH directory.

60 PAW Developer's Guide

DSPWO000161A

6.2.4. Keyboard Configuration

When you first use the revamping DSMS, a keyboard configuration file is
automatically created. Its name is PAW_KBRD.PRM, and it is detailed in
paragraph "Keyboard configuration" in chapter "Advanced Functions".

6.2.5. If problems arise

If problems arise, refer to chapter "Error Management".

PAW DDE Server 61

DSPWO000161A

7. PAW DDE Server

You can use PAW as a DDE (Dynamic Data Exchange) server of a client
WINDOWS application. With PAW as a DDE server, a client WINDOWS
application asks WINDOWS to open a DDE Dialogue with PAW. From the
opening to the closing of the dialogue between the two programs, the client
application can either ask (REQUEST) or send (POKE) data to PAW or ask for
the execution of commands. In all cases, the information traveling between the
applications are character strings.

You will find a short description of the principles and operation of DDE in the
following pages. A good knowledge of these principles and operation is useful
to get the most out of it.

7.1. Characteristics of a DDE Dialogue
To open a DDE dialogue, you have to define the application and the topic the
client application will talk to. The object of the dialogue can then be either an
item or a command. These four terms are described below:

� the application corresponds to the name of the server (default value: PAW);
this name is defined by the user and saved in the ENVIRON.PRM file on
line 032;

� the topic is the radical of the used connection script filename and thus
corresponds to the server application which the client application will talk
to; PAW authorizes also as topic the use of the character string SYSTEM
(DDE standard), which allows you to open DDE dialogues independently
from the current server application;

� an item corresponds to the data asked or sent by the client application to the
server application; this data can either be a display field of the screen or the
entire screen. A field is identified either by its coordinates, or logically as in
the script language. This identification can be completed by the screen code
(optional);

� a command corresponds to a character string sent by the client application to
the server application; this character string initiates an action: for example
the display of a window, a screen branching or a transmission.

To open a dialogue with the DDE server, the client application uses the
message WM_DDE_INITIATE associated to the character strings which
correspond to the application and to the topic. The subject of the dialogue can
be either the request or the sending of an item (see subchapter "Syntax of the
items"), or the sending of a command (see subchapter "Syntax of the
commands").

For more details on the sending of a message and on the opening of DDE
dialogues, refer to your WINDOWS technical documentation.

62 PAW Developer's Guide

DSPWO000161A

7.2. Characteristics of DDE Connections
There are three types of DDE connections: passive, automatic and active
connections. In the current version of PAW, only the passive connections are
operational. In a passive connection, the client application asks the server for
data by sending a WM_DDE_REQUEST message. The server answers with a
WM_DDE_DATA. Unlike the automatic and active connections, when the data
is updated on the server, it is not returned to the client which has therefore to
ask explicitly for it.

SEQUENCES OF A PASSIVE CONNECTION

The three main sequences of a DDE passive connection are the opening of the
dialogue, the request and receipt of the value and the closing of the dialogue.
The conversation is made up of the following steps:

Openin g of the dialo g ue
Client
Asks fo r the opening

Messa g e Server
W M _DD E_ IN IT IA TE

W M _DD E _A CK A ccepts

Request and recei p t of a data
Client
R equests a data

Messa g e Server
W M _D DE _R E Q U E S T

W M _D DE _DA TA Sends the data

W M _D D E_ AC Kreceives the da ta (opt ional)

Closin g of the dialo gue
Client
C loses the dia logue

Messa ge Server
W M _DD E _T ER M IN A TE

W M _D D E _TER M IN A TE C loses the d ia logue

PAW DDE Server 63

DSPWO000161A

7.3. Syntax of the Items
An item is designated by an expression made up of two groups of elements:

� in the first group, the elements (separated by full-stops) indicate the type
and, if necessary, the screen and the code of the corresponding data,

� in the second group, the elements (separated by commas and put between
brackets) indicate the position of the data.

Here are the available items:

szScreen.FIELD [iLine ,iColumn ,iLength] Field belonging to the szScreen and beginning
at position iLine-iColumn.

szScreen.DE.szCodRub.szType [iPosition] Data element (DE) belonging to the szScreen, of code
szDeCode, of type szType (cf. types of data elements
in the scripts) and of position iPosition.

szScreen.ACTIONCODE [iPosition] Action code data element with iPosition different than
0 or 1 if necessary.

szEcran.OPERCODE Operation code data element.

szEcran.ERRORCODE [iPosition] Error code data element with iPosition different than
0 or 1 if necessary. This data element can not be

used used with the WM_DDE_POKE message.

szEcran.SCREEN Returns the whole screen.

szEcran.SCREENID Screen code.

szEcran.GETCURPOS Returns the coordinates of the cursor's position:
[iLine, iColumn].

In all the examples above, szScreen is optional. It allows to add an additional
control on the screen code.

64 PAW Developer's Guide

DSPWO000161A

7.4. Syntax of the Commands
A command is made up of a verb, which can be associated with a screen code
and an operand.

For example, szScreen.SEND ("PF01") asks for the transmission, on the given
screen, of the function key.

The available commands are:

szScreen.SCREENBRANCH(szOper) Request of screen branching. szScreen is the code of
source screen. szOper is the value of the operation
code.

szScreen.SEND(szKey) Transmission with the mnemonic code of the key
(cf. the scripts) in szKey.

szScreen.SCRIPT(szCodFic) Script execution request.

szScreen.SHOW(szShow) Displays PAW window. The szShow parameter has
the same values than the parameter corresponding to
the SCRSHOW scripts.

szScreen.STATE(szState) Activation or deactivation command of the PAW
window. The values of szState are NORMAL or
SILENT. In SILENT mode, PAW executes all the
tasks of the NORMAL mode but either sends
error codes nor execute automatic screen scripts.
These scripts can be initiated at any time with the
script order.

szScreen.HELP(szHelp) Displays the WINDOWS help window. Depending on
the value of szHelp, you get:
H_ONPAW: Help on PAW;
H_INDEX: Help index;
H_ONHELP: Help on help;
DeCode: Help on the Data element DeCode;
Blank: Current screen help (extended help).

szScreen.SETCURPOS (iLine ,iColumn) Positions the cursor at the defined coordinates
(iLine , Column).

PAW DDE Server 65

DSPWO000161A

7.5. VisualBasic Example of PAW used as a DDE Server
Examples of VisualBasic code are shown in italics. Text1 is the name of the
"edit" window of the VisualBasic application which is the DDE communication
support.

1. Opening of a DDE dialogue

ConstMANUAL = 2
Dim String, Item, Screen

Text1.LinkTimeout = 1000
If (Text1.LinkMode = 0) Then

Text1.LinkTimeout = 200
Text1.LinkTopic = "PAW\NPSF" Opening of a dialogue with the PAW

application on the NPSF topic
(root of the connection script

name)

Text1.LinkMode = MANUAL
End if

2. Repetitive field reading of the current screen (no screen code)

Screen = ""

For I = 1 to 18 Data salvage loop of the repetitive
data element IDATM. The string sent
at each request is of the following
form:
.DE.IDATM.PRPTEC[i]
where i is the position in the
repetitive.

Text1.LinkItem = Screen & ".DE.IDATM.PROTEC["&Str(I) & "]"
Text1.LinkRequest

If (Text1.Text = " ")Then
Exit For

End if

3. Sending a value, entered in the client application (edit box Text2), in the
operation field of the current screen..

Text1.Text = Text2.Text Reading of the code to be sent

Text1.LinkItem = ".OPERCODE" The target data element in PAW is
the operation code.

Text1.LinkPoke Sending the data.

Text1.LinkExecute (".SEND (ENT)") After the loading, sending request.

66 PAW Developer's Guide

DSPWO000161A

4 - Sending data with a check on the screen code

Text1.Text = Text2.Text
Text1.LinkItem = "ID00E2.DE.ICHOIC.OPER[1]"

Loading the ICHOIC data element
(operation code) in the ID00E2
screen. Sending is only performed
if the current screen is ID00E2.

Text1.LinkPoke

Text1.LinkExecute (".ID00E2.SEND (ENT) ")
Sending if the current screen is
ID00E2.

Script Language 67

DSPWO000161A

8. Script Language

8.1. Introduction
The objective of the script files is to write procedures that would otherwise be
entered manually. This is done by a series of instructions, designed by you, and
sent transparently to the host site.

Procedures to host sites must be extremely precise. Therefore, we have
provided an interpreted language where the control structures are more plentiful
than those available through batch.

Examples of scripts and of a CONNEX.PRM file are automatically copied in
the SAMPLES subdirectory at the PAW installation.

68 PAW Developer's Guide

DSPWO000161A

8.2. Types of Scripts
Scripts belong to two categories:

� Logon scripts (with a SCI extension) and logoff scripts (with a SCF
extension).
These scripts perform an automatic logon or logoff.

� Application and screen scripts (with a SCR extension).
These scripts perform sequences of instructions during the work session, i.e.
between the logon and logoff.
The application scripts can be activated at any time, either via the Script
menu, or via the ClickPad.
The screen scripts are displayed (and can be activated) only when the screen
to which they are linked is displayed.

NOTES:
The maximum number of scripts that can be activated for a screen is 50.
The PAW installation gives you examples of logon (logoff) scripts. These
scripts are automatically copied in the SAMPLES subdirectory.

The chart overleaf shows the different types of scripts.

CO NNEX.PRM

SC1
SC2
...
...

SC1.SCI SC1.SCF SC1.PRM

SC1 SC RIPT

APP1
APP2
APP3

Logon sc rip t
file

Logon Logoff

APP2.SCR

Lis t of application
scrip ts linked to
SC1

APP2 application sc ript
l inked to the SC1 logon

SCREE1.PR M

ECC01
ECC02
ECC03

List of the scrip ts
linked to the SCREE1
screen (D LL code)

T hes e sc rip ts can be activated via the m enu or the
CkickPad when SCR EE1 is d isplayed (a m axim um
of 20 sc rip ts can be l inked to the screen)

Script Language 69

DSPWO000161A

8.3. Implementation of Scripts

8.3.1. Parameters

All the files required for the use of PAW scripts are grouped in a specific
directory (line 030 of the ENVIRON.PRM file).

8.3.1.1. Line Structure of the Scripts

The lists of scripts must be in the .PRM extension files. Each line of the list
must conform to the following structure:

� a file name, from column 1 and a maximum 8 characters long,

� un témoin d'exécution automatique des scripts, entre les signes <>. Si ce
témoin est <1>, l'exécution du script précède l'affichage de l'écran. Un
seul script par écran peut comporter cette particularité. Ce témoin est
facultatif.

� the number of the associated icon in brackets (refer to section
"Associating an icon with a script" in chapter "Advanced Functions",
subchapter "ClickPad").

� a label, which starts at the first non-blank character and can stretch to the
end of the line.

If the lines do not respect this format they will not be taken into account..

8.3.1.2. List of Logon Scripts

The list of the logon scripts is included in the CONNEX.PRM file. When PAW
is started up, a dialog box shows the list of the available logos. The file name
is the file name of the two associated script files, with the .SCI extension for
the logon and the .SCF extension for the logoff.

The CONNEX.PRM file contains one line for each application, in the
following way:

DSMS operating DSMS
PAC150 PACBASE release 1.5
CICST Test CICS
APPLI Example application

70 PAW Developer's Guide

DSPWO000161A

8.3.1.3. List of Application and Screen Scripts

Let us take the example of the application called APPLI. The list of the scripts
to this application is included in the APPLI.PRM file. The structure of this file
is similar to that of the CONNEX.PRM file, for example:

PRTFOLD Printing of a folder
NEWFOLD Creation of a folder using an existing folder

The scripts linked to this application can be activated at any time between the
execution of APPLI.SCI and of APPLI.SCF. The scripts which correspond to
the lines of the APPLI.PRM file are PRTFOL.SCR and CREATD.SCR.

The screen scripts are referenced in a file whose name is that of the screen
revamping DLL file, with a PRM extension. The scripts linked to the DO0000
screen are referenced in the DO0000.PRM file in the following way:

SEARCH <1> Search of a technical package
INITDO Screen initialization

8.3.2. Scripts and DDE

Scripts make it possible to set up dialogues with a DDE server via the following
commands:

� Opening of a dialogue on a given topic with a server (DDEINIT),

� Request or supply of data to the server (DDEREQUEST and DDEPOKE),

� Request of end of conversation (DDETERMINATE),

� Modification of the display of the DDE server window.

8.4. Script Structure
The structure of a script is:

PROG Script-name
declaration(s)
BEGIN

instruction(s)
END

The first line of the script must have the following structure

PROG Script-name

This line declares the script's program line

The PROG keyword must be written in lower or uppercase letters. The program
name is a series of letters and numbers starting with a letter and containing a
maximum of 16 characters. This word must not be a reserved word. (See the
list of reserved words below.)

No other information may be included on this line.

Script Language 71

DSPWO000161A

8.5. Reserved Words
Keyword and function names are reserved. They may not be used as names or
as labels for programs and variables.

AND FALSE PROG
BEGIN FOR STRING
BOOLEAN GOTO TRUE
BREAK IF UNTIL
DO INTEGER WHILE
ELSE NOT
END OR

The following reserved words are pre-defined function names. They must be
entered in uppercase letters:

CONCAT ERROR READ
CPYSCR EXIT READC
CURPOS FCLOSE RPARAM
DATAELGET FOPEN SCREENID
DATAELGETAT FREAD SCRSHOW
DATAELGETPOS FWRITE SEARCH
DATAELSET GETPROFSTR SEND
DDEEXEC GETSGLOBAL SETPROFSTR
DDEINIT INPUT SETSGLOBAL
DDEPOKE INTSTR STREXTRACT
DDEREQ OUTPUT WRITE
DDESHOW PAUSE WRITEC
DDETERM PGMEXEC WRITEM
DISPLAY

8.6. Declarations
The declaration part of the program allows you to define the variables and
labels used in the instruction. This part is located between the heading and the
body of the program (if no variable is used, this part can be deleted).

� variable declaration:

Variable_type Variable_name

� label declaration:

$label

8.6.1. Variable Types

There are three types of variables: integer, string and Boolean.

The declaration of a variable is written as follows:

STRING variable_name
or INTEGER variable_name
or BOOLEAN variable_name

72 PAW Developer's Guide

DSPWO000161A

Several variables of the same type can be declared on the same line:

STRING name1 name2

is the same as:

STRING name1

STRING name2

8.6.2. Variable Names

A variable name is a series of alphanumeric characters, beginning with a letter.
The maximum length is 16 characters. All variables used in the program must
be declared. Two variables cannot have the same name. A variable name must
not be a keyword or a function name (see the previous list for the reserved
words).

The variable names must be followed by a blank character or by another non-
alphanumeric character. A declaration ends with a return.

8.6.3. Variable Values

The value of a variable is indicated in the following way:

Variable_name=Value

Integers are between (-maxint) and (maxint -1), maxint where maxint depends
on the machine used (215 = 32768 on IBM PC). Integers are manipulated by the
operators described under "Instruction".

Character strings have a maximum length of 256 characters. They are entered
between double quotes. They can include blanks. When one of the characters
in the string is a double quote itself, it must be doubled.

When a string does not fit on one line, it is necessary to insert a "&", before the
return at the end of the line. The rest of the string begins in column 1 of the
following line. You can input only blanks or tabulation marks between the
continuation character and the end of the line, if not the "&" is considered as a
character in the string.

Examples:

STRING sEXEMPLE

sEXAMPLE="He says ""Hello""."
The contents of the string are:
He says "Hello".

sEXAMPLE="This string continues&
on the following line."
The contents of the string are:
This string continues on the following line.

sEXAMPLE="This string contains a &(ampersand)."
The contents of the string are:
This string contains a &(ampersand).

Booleans can only take two values: TRUE and FALSE. They can be combined
with the logical operators (see below). Booleans are recognized in all
conditional structures.

Script Language 73

DSPWO000161A

8.6.3.1. Test Syntax of a Boolean

Example: prog TEST01SCR:

The following script shows six different ways of testing a Boolean.

Boolean bBool
string stTrue
string stFalse

begin
bBool = true
stTrue = "bBool is TRUE"
stFalse = "bBool is FALSE"

: Syntax 1 :
if (BBool)

begin
ERROR ("Syntax 1" ,"stTrue" ,1)
end

else
begin
ERROR ("Syntax 1" ,"stFalse" ,1)
end

: Syntax 2 :
if (BBool == true)

begin
ERROR ("Syntax 2" ,"stTrue" ,1)
end

else
begin
ERROR ("Syntax 2" ,"stFalse" ,1)
end

: Syntax 3 :
if (NOT BBool)

begin
ERROR ("Syntax 3" ,"stFalse" ,1)
end

else
begin
ERROR ("Syntax 3" ,"stTrue" ,1)
end

: Syntax 4 :
if (NOT BBool == false)

begin
ERROR ("Syntax 4" ,"stTrue" ,1)
end

else
begin
ERROR ("Syntax 4" ,"stFalse" ,1)
end

74 PAW Developer's Guide

DSPWO000161A

: Syntax 5 :
if (NOT (BBool == true))

begin
ERROR ("Syntax 6" ,"stFalse" ,1)
end

else
begin
ERROR ("Syntax 6" ,"stTrue" ,1)
end

8.6.4. Labels

The labels used for branching (GOTO $XXX) must also be declared. A label
contains a maximum of three numbers.

Label declaration:

$Label_name

No other information may be included on this line. All program labels must
have distinct names.

8.6.5. Comments

Comments placed between colons ":", are not interpreted. They may be
inserted anywhere, except in character strings. It is possible to write several
lines of comments by placing a ":" at the beginning of the first line and a ":" at
the end of the last line. Instructions inserted between comment delimiters are
not taken into account:

Examples :

PROG PROGRAM_NAME
:A COMMENT MAKE TAKE UP SEVERAL LINES :

/BEGIN END

PROG PROGRAM_NAME :A PROGRAM HAS SEVERAL LINES
BEGIN :OF COMMENTS IN THE MARGIN
END

PROG PROGRAM_NAME :THESE COMMENTS COVER THE KEY
BEGIN WORD BEGIN. THIS IS AN ERROR
END

PROG PROGRAM_NAME
STRING STRING_NAME
BEGIN STRING_NAME="ARTHUR:COMMENTS:"
END

The value of the string is: ARTHUR:COMMENTS and not ARTHUR.

8.6.6. Blanks and Returns

Blanks are equivalent to tabulations and mark the end of a string of characters.
In the remaining part of this chapter, blanks and tabulations will be underlined
when they are required. A keyword that is immediately followed by an
alphanumeric character is not recognized. For example, a heading cannot be
written PROGname: A blank is required after keywords.

Script Language 75

DSPWO000161A

A return represents the end of an instruction. If several lines are required for an
instruction; the character "&" may be used as a continuation character before
the return. The "&" sign must be followed by a blank or a tabulation to be used
as a continuation character, otherwise it is considered as part of the string.

Example :

INPUT("sign-on CICS","user code ",&UTI,6,1,)

is equivalent to:

INPUT("sign-on CICS","user code",UTI,6,1,)

When a return is used, it is possible to leave one or several blank lines, except
in the IF ELSE control structure (see IF ELSE) in which a blank line is not
allowed before ELSE.

8.7. The Body of the Program
This section is delimited by the keywords BEGIN and END. Between these
two keywords is a sequence of instructions whose syntax is described in this
chapter.

8.8. Instructions
The instruction that makes up the body of the program, consists of function
calls, of GOTOs to other parts of the program, and of value assignments to
expressions.

8.9. Assignments
Assignments involve giving a variable the value of an expression, as follows:

variable-name = expression

No other information may be entered on this line.

The expression can be either another variable, or an integer-type constant
(string or Boolean), or a function call, or an expression where the operators are
the expressions according to the rules in the following subchapter.

76 PAW Developer's Guide

DSPWO000161A

8.10. Expressions and Operators
The simplest form of instructions are as follows:

� variable_name

� integer

� literal

� Boolean

The script language provides arithmetic and logical operators that enable you to
define expressions:

expression : expressionA Operator expressionB

Arithmetic operators combined with integer operators produce integers:

- expressionA opposite of expressionA
expressionA + expressionB sum of the expressions
expressionA - expressionB difference of the expressions
expressionA * expressionB product of the expressions
expressionA / expressionB quotient of the expressions

The logical operators produce Boolean results (having the value TRUE or
FALSE):

� expA < expB is TRUE if expA is less than expB; expA and expB must be
integers.

� expA > expB is TRUE if expA is greater than expB; expA and expB must
be integers.

� expA == expB is TRUE if expA is equal to expB; expA and expB must be
of the same type.

� expA <> expB is TRUE if expA is different to expB; expA and expB must
be of the same type.

� expA and expB is TRUE if expA and expB are true; expA and expB must be
Boolean.

� expA or expB is TRUE if expA or expB is true; expA and expB must be
Boolean.

� not expA is TRUE if expA is FALSE and vice versa; expA must be Boolean.

8.10.1. Priority of Operators

The evaluation of expressions that use several operators is done according to a
predefined hierarchical order. Two rules govern this order: the hierarchy of the
mathematical operator and its location in the expression. The following
operators are shown their order of priority (highest to lowest):

- unary
* / associative
- + associative
< > <> == non associative
NOT non associative
AND OR associative

Script Language 77

DSPWO000161A

8.10.2. Processing of Associative Operators

To evaluate A + B + C
use intermediate = A + B
and the result is: intermediate + C.

Two non-associative operators cannot be adjacent. The product of A and the
sum of B and C must be written:

A*B+A*C

The parentheses "(" and ")" change the order of the evaluation. An expression
between parentheses is equal to a temporary variable, the innermost parentheses
are evaluated first:

A=(B+C-D)*(E/F)

is equivalent to:

intermediate_1=B+C

intermediate_2=intermediate_1-D

intermediate_3=E/F
A=intermediate_2*intermediate_3

The parentheses also make the expression more readable without modifying the
evaluation order. Their use is recommended for expressions with operands of
different types, for example:

(a>0) and (a<11)

8.11. The Unconditional Branching
The GOTO $XXX instruction shunts the sequence of the program and goes
directly to the location marked with $XXX .

The blank between "GOTO" and "$" is optional and a line return is required.

Some branching is not allowed: a branching cannot be used to enter into an
instruction block, but can be used to exit from one.

8.12. Control Structures
Control structures consist of groups of commands whose execution is
conditioned.

The control structures are:

IF condition WHILE condition DO FOR condition
block block block block
ELSE UNTIL condition
block

A condition is written:

(expression)

where the expression has a Boolean value. The condition is true if and ONLY
IF the Boolean value is TRUE.

78 PAW Developer's Guide

DSPWO000161A

The condition of the structure FOR is special, see below.

The keyword defining the structure and the condition must be entered on the
same line. They may be separated by a blank.

A block of instructions is used to group several instructions to be executed
sequentially, together and under the same condition. These instructions can be
the control structures.

The instruction block is preceded by the keyword BEGIN and followed by the
keyword END.

Branching can be done only from within the block, however, branching from
outside a block to within a block is not permitted.

8.13. Expressions
A block of instructions is written as follows

BEGIN instructions END

A return is required at the end of the block. It can be inserted before the block,
after BEGIN, before and after the instructions.

DO UNTIL

DO
BEGIN
instructions
END

UNTIL condition

This block is executed as long as the condition is false. The first part (DO) is
executed at least once. Be careful to make sure that the condition eventually
becomes true, or else you will create an infinite loop.

FOR

FOR (expressionA, variable_name,expressionB)
BEGIN
Instructions
END

The "variable_name" acts as a counter and therefore must be an integer.
ExpressionA is evaluated once, and its value must be an integer, and its value
defines the lower limit. ExpressionB is the upper limit. The counter takes the
value of expressionA; and if expressionB is either greater than or equal, the
block is executed. The counter is incremented and a new comparison is made
with the upper limit.

If expressionA is greater than expressionB, the block is not executed, and the
program continues sequentially after the block.

This structure allows you to execute the block a set number of times
(expressionB - expressionA + 1). It uses a counter, which locates the current
iteration. This counter can not be used as a variable in the block: it must not be
modified within a block, it cannot be used as a counter for a nested FOR loop. If
it is used somewhere else in the program, the old value will be lost at the
beginning of the FOR loop.

Script Language 79

DSPWO000161A

IF ELSE

IF condition
BEGIN
instructions
END

ELSE
BEGIN
instructions
END

When the interpreter detects this structure, it evaluates the condition and then
executes the first block if the condition is true, the second if it is false.

The ELSE BEGIN instructions END is optional. In this case, the program
immediately executes the sequence if the condition is false.

Only one return can be placed between the first END and ELSE.

WHILE

WHILE condition
BEGIN
instructions
END

The block is executed if the condition is true. If the condition is false on the
first evaluation then the block is never executed. Be careful to make sure that
the condition eventually becomes false, or else you will create an infinite loop.

Exit From a Loop (BREAK)

As soon as the interpreter detects the keyword BREAK, it exits from the nearest
FOR, WHILE or DO UNTIL loop. This allows you to get out of an iterative
structure prematurely - usually used in testing. A BREAK outside a FOR, WHILE

or DO UNTIL loop will provoke an error.

The keyword BREAK must be followed by a return.

8.14. Functions
Functions can be called either as instructions or as expressions. That is, after
the call, some still produce a value (return code). Others are designed to
interact with the environment. They provide the technique to have the program
communicate with the outside.

You will find examples of functions of the script language in the example
scripts copied automatically in the SAMPLES directory at the PAW
installation.

8.14.1. Function Call

A function call is entered using the following syntax:

function_name (lparameter_list)

Each function will be described later, as to whether or not a value is produced,
and what the values are. The functions that produce values may be used either
in an expression, or as an instruction, but the value of the return code will be
lost. Functions that do not produce values can only be used as instructions.

80 PAW Developer's Guide

DSPWO000161A

8.14.2. Function Parameters

There are two different types of parameters: constant parameters and
modifiable parameters. A constant parameter is not modified by the function.
This can be an expression or a variable. A modifiable parameter is transformed
by a function. These modifications are indicated in the functions' descriptions.

The parameters must be separated by a comma; They may be integer, string or
Boolean. The string parameters must have double quotes. The number of
parameters and their types are tied to the specifications of each individual
function and must be respected.

Note: In the functions' descriptions, the word IN indicates that the
parameter's value (modifiable or constant) is the same in input and in
output. The word OUT indicates that the parameter's value (necessarily a
modifiable parameter) has been modified in input. CR indicates the return
code.

CONCAT

Concatenates several character strings

cr = CONCAT (Parm1,ParmM, ... ,ParmX)

Parm1 out string string receiving the result of the concatenation
ParmM to
ParmX in string string to concatenate

cr integer length of the result

NOTE: if the variable used as parameter 1 is not empty, its contents are also
concatenated; the length of the resulting string must be less than or equal to 132
characters (maximum length of a character string).

CPYSCR

Copies the host screen into a PC file

This command does not interrupt the script execution; it is mainly in test mode
or in case of error, in order to allow the user to determine the cause of the error.
Note that all screens copied are stored in the file, which must be manually
deleted.

cr = CPYSCR (Parm1)

Parm1 in string complete name of the DOS file in the form:
("U:\PATH\PREFIX.EXT")

cr integer 1

CURPOS

Reads the position of the cursor on the host screen

CURPOS (Parm1,Parm2)

Parm1 out integer line number
Parm2 out integer column number

cr integer 1

Script Language 81

DSPWO000161A

DATAELGET

Gives the value of a data element whose code, type and rank are specified

cr = DATAELGET (Parm1, Parm2, Parm3, Parm4)

Parm1 in string data element code
Parm2 in string data element type

LABEL: fixed label
PROTEC: modifiable protected field
ERROR: error message
INPUT: input field
OPER: operation code
ACTION: action code

Parm3 in integer data element rank (for a repetitive)
(if Parm2 = 0 or 1, the first value found is
taken into account)

Parm4 out string data element value

cr integer 1 command executed
-1 screen unrecognized
-2 data element not found

DATAELGETAT

Gives data about a data element whose position is specified

cr = DATAELGETAT (Parm1, Parm2, Parm3, Parm4, Parm5, Parm6)

Parm1 out string data element code
Parm2 out string data element type

LABEL: fixed label
PROTEC: modifiable protected field
ERROR: error message
INPUT: input field
OPER: operation code
ACTION: action code

Parm3 out integer data element rank (for a repetitive)
(if Parm2 = 0 or 1, the first value found
is taken into account)

Parm4 out integer field length
Parm5 in integer line number
Parm6 in integer column number

cr integer 1 command executed
-1 screen unrecognized
-2 data element not found

82 PAW Developer's Guide

DSPWO000161A

DATAELGETPOS

Gives the position of a data element whose code, type and rank are
specified

cr = DATAELGETPOS (Parm1, Parm2, Parm3, Parm4, Parm5)

Parm1 in string data element code
Parm2 in string data element type

LABEL: fixed label
PROTEC: modifiable protected field
ERROR: error message
INPUT: input field
OPER: operation code
ACTION: action code

Parm3 in integer data element rank (for a repetitive)
(if Parm2 = 0 or 1, the first value found is
taken into account)

Parm4 out integer line number
Parm5 out integer column number

cr integer 1 command executed
-1 screen not recognized
-2 data element not found

DATAELSET

Updates a data element field whose code and rank are specified

cr = DATAELSET (Parm1, Parm2, Parm3)

Parm1 in string data element code
Parm2 in integer data element rank (for a repetitive)

(if Parm2 = 0 or 1, the first value found is
taken into account)

Parm3 in string update value

cr integer 1 command executed
-1 screen unrecognized
-2 data element not found

NOTE: This function must be followed by a SEND ("ENT") in order to initiate
the update.

DDEEXEC

Sends a request to the server

cr = DDEEXEC (Parm1, Parm2, Parm3)

Parm1 in integer DDE dialogue identifier obtained through
DDEINIT

Parm2 in string server request. This line must conform with the
syntax of the server application request
language.

Parm3 in integer maximum time limit (in seconds) given by the
server for the execution of its request.

cr integer -1 unknown dialogue
0 command not executed
 1 command executed

Script Language 83

DSPWO000161A

DDEINIT

Initializes a DDE dialogue

cr = DDEINIT (Parm1, Parm2, Parm3, Parm4)

Parm1 in string name of the application which operates as a
DDE server

Parm2 in string dialogue topic: TOPIC of the DDE
documentation

Parm3 in string command line to be executed if the target
application of the dialogue is not activated
For WINWORD, the parm2 must be the same
as the start-up parameter used in parm3. The
parm3 can also be used to activate another
application.

Parm4 in string display type:
SHOW displays the window with its current size
and position NORMAL displays the window. If it
is iconized or at its maximum size, it is
displayed with its initial size
HIDE hides the window
ICON iconizes the window
MAX displays the maximum size of the window
If this parameter is given the wrong value, value
SHOW is taken into account.

cr string or integer identifier of the DDE dialog if initialization OK, 0
otherwise

DDEPOKE

Forces the update of data in the server

cr = DDEPOKE (Parm1, Parm2, Parm3, Parm4, Parm5)

Parm1 in integer DDE dialogue identifier obtained through
DDEINIT

Parm2 in string object to be updated. (ex: an EXCEL cell or a
WINWORD bookmark)

Parm3 in string update value
Parm4 in string Data format given (format: CF_TEXT)
Parm5 in integer maximum delay (in seconds) given by the client

for the execution of its request.

cr integer -1 unknown dialogue
 0 command not executed
 1 command executed

84 PAW Developer's Guide

DSPWO000161A

DDEREQ

Requests data from the server

cr = DDEREQ (Parm1, Parm2, Parm3, Parm4, Parm5)

Parm1 in integer DDE dialogue identifier obtained through
DDEINIT

Parm2 in string object whose value is requested (ex: an EXCEL
cell)

Parm3 out string character string which contains the requested
value

Parm4 in string Data format (format: CF_TEXT)
Parm5 in integer maximum delay (in seconds) given by the client

for the execution of its request

cr integer -1 unknown dialogue
 0 command not executed
 1 command executed

DDESHOW

Modifies the display of the server window

cr = DDESHOW (Parm1, Parm2)

Parm1 in integer DDE dialogue identifier obtained through
DDEINIT

Parm2 in string display type:
SHOW displays the window with its current size
and position
NORMAL displays the window. If it is iconized
or if at its maximum size, it is displayed with its
initial size
HIDE hides the window
ICON iconizes the window
MAX displays the maximum size of the window
If this parameter is given a wrong value, value
SHOW is taken into account.

cr integer -1 unknown dialogue
 0 command not executed
 1 command executed

DDETERM

Closes the DDE dialogue

cr = DDETERM (Parm1)

Parm1 in integer DDE dialogue identifier obtained through
DDEINIT. This command is compulsory.

cr integer -1 unknown dialogue
 0 command not executed
 1 command executed

Script Language 85

DSPWO000161A

DISPLAY

Displays the host screen

cr = DISPLAY()

This causes an interruption in the script execution. It is useful in testing scripts,
and in error conditions, it will allow the user to see the problem screen.

No parameters

cr integer 1

ERROR

Displays a message box

cr = ERROR (Parm1, Parm2, Parm3)

Parm1 in string box caption
Parm2 in string error message
Parm3 in integer keys:

Windows (English)

1 OK
2 OK Cancel
3 Abort Retry Ignore
4 Yes No Cancel
5 Yes No
6 Retry Cancel

cr integer value of the key pressed by the user:

Windows (English)

1 OK

2 Cancel
3 Abort
4 Retry
5 Ignore
6 Yes
7 No

86 PAW Developer's Guide

DSPWO000161A

EXIT

Ends the script execution

EXIT (Parm1)

Parm1 in integer value different from 0 and 1

FCLOSE

Closes a file

cr = FCLOSE (Parm1)

Parm1 in string file name, possible with the complete path

cr integer index of file closing

FOPEN

Opens a file

cr = FOPEN (Parm1, Parm2)

Parm1 in string file name, possible with the complete path
Parm2 in string opening mode ('r' or 'R' for read, 'w' or 'W' for

write and 'a' or 'A' for add)

cr integer index of the file opening (greater than zero) if
the opening is OK. Otherwise, error code:
-1: incorrect opening mode
-2: too many opened files
-3: other error

FREAD

Reads a file

cr = FREAD (Parm1, Parm2)

Parm1 in string file name, possible with the complete path
Parm2 out string string receiving the field that has been read.

The delimiter is the cr character or the end of
file

cr integer -2 error (see error messages)
-1 end of file
>= 0 number of characters read (if

cr = 0, the line read is empty)

FWRITE

Writes a file

cr = FWRITE (Parm1, Parm2, Parm3)

Parm1 in string file name, possible with the complete path
Parm2 in string character string to be written
Parm3 in string number of returns before the writing

cr integer index of file opening

Script Language 87

DSPWO000161A

GETPROFSTR

Alimentation avec un des éléments du fichier ENVIRON.PRM

cr = GETPROFSTR (Parm1, Parm2, Parm3)

Parm1 in string section of ENVIRON.PRM file:
PAW, COMM, PATHS, CUSTOM, SYSTEM

Parm2 in string element of ENVIRON.PRM file. This element
must be preceded by the section to which it
belongs. The number in parentheses is the line
number in the ENVIRON.PRM file.

For the PAW section:
Version (001),
UserLang: user workstation language (001),
DevLang: developer workstation language
(001),
Target System: target system (007),
LearningMode: learning mode (023),
WorkStation: type of workstation (024).

For the COMM section:
ProgramName: name of communication
manager (002),
ParamName: associated parameters file (002).

For the PATHS section:
Exe: path of .exe files (003),
User: user path (004),
ListDlls: value lists paths (005),
Developer: developer's path (006),
Communication: GSCOM files directory (027)
Parameters: parameter files path (028),
Scripts: scripts path (030),
TText: DSMS text editor path (034).

For the CUSTOM section:
IconDll: icons file (020).

For the SYSTEM section:
PollingRate: interrogation delay (020),
ScreenAdjust: automatic adjustment of the
screens (021),
ExternalNames: external names (022),
ScriptWindow: display the script window in test
mode (031).

Parm3 out string string which receives the specific element

cr -1 failure
0 success

88 PAW Developer's Guide

DSPWO000161A

GETSGLOBAL

Consults a global variable.

cr = GETSGLOBAL (Parm1, Parm2)

Parm1 in string name of global variable to consult.

Parm2 in string value of this variable.

cr 1 command executed (variable found)

INPUT

Creates a dialogue box

cr = INPUT (Parm1,ParmN,ParmN+1,ParmN+2,1ParmN+3,&
ParmN,ParmN+1,ParmN+2,1ParmN+3,&
...
ParmN,ParmN+1,ParmN+2,1ParmN+3)

This function has a variable number of parameters:

Parm1 in string name of the dialogue box

The parameters are grouped in fours, each group corresponding to a dialogue
line in the window; the number of lines is not limited.

ParmN in string label of the line
ParmN+1 out string variable receiving the user's answer
ParmN+2 in integer length of the answer
ParmN+3 in integer display user input on the screen:

1 YES
2 NO (e.g. passwords)

cr integer 1 OK

Example :

INPUT("Sign-on CICS","User Code",UTI,6,1,"Password",PAS,8,2)

This command builds the following dialogue box:

C IC S S ign-on

U ser C ode

O K

Password

This box includes two input fields: the user code (UTI), six characters which
are displayed, and the user password (PAS), eight which are not displayed. The
string for "CSIS Sign-on" is truncated after 50 characters.

Script Language 89

DSPWO000161A

INTSTR

Converts an integer into a string

cr = INTSTR (Parm1, Parm2)

Parm1 out string resulting string
Parm2 in integer integer to convert

cr integer length of the result

OUTPUT

Displays a message on the PC screen

cr = OUTPUT (Parm1, Parm2)

Parm1 in string message to display
Parm2 in integer display type
0 or >6 the message is displayed in the connection box

in order to identify the current connection phase.
1 à 6 message box overrides the connection box; see

the documentation on the ERROR function for a
complete description of these values.

cr integer 1
if parameter 2 = 0;
see the ERROR return codes in the other
cases.

PAUSE

Sets a time period between two commands

cr = PAUSE (Parm1)

Parm1 in integer time in seconds

cr integer 1

PGMEXEC

Starts up a WINDOWS application

cr = PGMEXEC (Parm1, Parm2)

Parm1 in string command line containing the name of the
program to run and possibly one or several
parameters

Parm2 in string display type:
SHOW: displays the window with its current size
and position
NORMAL displays the window. If it is iconized
or if at its maximum size, it is displayed with its
initial size
HIDE hides the window
ICON iconizes the window
MAX displays the maximum size of the window.
If this parameter is given a wrong value, value
SHOW is taken into account.

cr integer 0 command not executed
1 command executed

90 PAW Developer's Guide

DSPWO000161A

READ

Reads a character string

cr = READ (Parm1, Parm2, Parm3, Parm4)

Parm1 in integer line
Parm2 in integer column
Parm3 out string string receiving the result
Parm4 in integer length of the field to read

cr integer 1 read OK

READC

Reads a field on the screen at the cursor position

cr = READC (Parm1,Parm2)

Parm1 out string string receiving the result
Parm2 in integer length of the field to read

cr integer 1 read OK

RPARAM

Reads PACBASE identification connection parameters during the script
execution

cr = RPARAM (Parm1, Parm2)

Parm1 in integer parameter type
Parm2 out string string receiving the parameter

cr integer 1 OK
2 invalid value for Parm1

Parameter type

0 user code
1 password
2 database code
3 library code
4 session number (9999: current session)
5 session type (H: frozen session/T: test session)
6 DSMS product code
7 DSMS Change number

SCREENID

Supplies a character string with the code of the screen DLL

SCREENID (Parm1)

Parm1 out string string which receives the DLL code

Script Language 91

DSPWO000161A

SCRSHOW

Displays a PAW screen which was previously hidden

cr = SCRSHOW (Parm1)

Parm1 in string display type:
SHOW displays the window with its current size
and position
NORMAL displays the window. If it is iconized or
if at its maximum size, it is displayed with its
initial size
HIDE hides the window
ICON iconizes the window
MAX displays the maximum size of the window
If this parameter is given a wrong value, value
SHOW is taken into account

cr integer 0 command not executed
1 command executed

SEARCH

Searches a character string on the screen

cr = SEARCH (Parm1,Parm2,Parm3,Parm4,Parm5)

Parm1 out integer line where the search begins
(0: the search is performed on all lines)

Parm2 out integer column where the search begins
(0: the search is performed on all columns)

Parm3 in string string to search
Parm4 in integer length of the string to search
Parm5 in integer maximum duration of the search in seconds

cr integer 0 string not found
1 string found

NOTE:

Parm4 is not systematically used:
� if the length parameter is zero or is greater than the length of the string to

search , it is ignored;
� if the length parameter is less than the length of the string to search, the

function searches the sub-string with a length equal to the length parameter;
� the value 0 is ignored.
EXAMPLE:

SEARCH (ln, cl , "AAAA" , 12 , 10) searches "AAAA"
SEARCH (ln, cl , "AAAAAAAA" , 4, 10) searches "AAAA".

92 PAW Developer's Guide

DSPWO000161A

SEND

Sends the value of a key

cr = SEND (Parm1)

Parm1 in string key to send

cr integer 1 normal send
2 unknown key
3 no answer from host

KEYS FOR ALL HARDWARE

ENT enter
GCHE cursor to the left
DRTE cursor to the right
HAUT cursor upwards
BAS cursor downwards
TAR tabulation backwards (on formatted screen)
TAV tabulation (on formatted screen)

PF01 à PF24 Function keys

WITH A 3270 PROTOCOL:
ATTN attn
ATTR attributes
CLS clear screen
CURS select cursor
DEL delete one character
DUP dup
EEOF erase EOF

ERA erase
HOME return to beginning of line
PA1 PA1
PA2 PA2
PA3 PA3
 PRN print
REST restore
RSET reset
SYST system call

WITH A VIP-QUESTAR PROTOCOL:

CLS local screen clear + transmission
FLC local screen clear + transmission

HOME first character on the screen

Script Language 93

DSPWO000161A

SETPROFSTR

Modification of the work environment (Parm1 and Parm2) with the
contents of Parm3.

Note: the ENVIRON.PRM file is not modified. Only the values in memory
are affected.

cr = SETPROFSTR (Parm1, Parm2, Parm3)

Parm1 out string section of ENVIRON.PRM file:
PAW or PATHS.

Parm2 out string element of ENVIRON.PRM file. This element
must come before the section which it belongs
to. The number in parentheses is the line
number in the ENVIRON.PRM file.

For the PAW section:
UserLang: user language (001).

For the PATHS section:
ListDlls: values lists path (005),
Scripts: scripts path (030).

Parm3 in string string containing a value updating an element of
the ENVIRON.PRM file.

cr -1 failure
0 success

SETSGLOBAL

Memorization of a global variable

cr = SETSGLOBAL (Parm1, Parm2)

Parm1 out string name of the variable to be positioned or
modified (if it already exists).

Parm2 in string value to be assigned to this variable.

cr 1 command executed

STREXTRACT

Extraction of a string segment

cr = STREXTRACT (sOrigin, iBeginning, iLength, sTarget)

cr integer length of the extracted string

94 PAW Developer's Guide

DSPWO000161A

WRITE

Writes a character string on the screen

cr = WRITE (Parm1, Parm2, Parm3 , Parm4)

Parm1 in integer line
Parm2 in integer column
Parm3 in string character string to write
Parm4 in integer MDT bit modification (3270 mode)

display the string in test mode
0 no modification of the MDT, string displayed
1 modification of the MDT, string displayed
2 no modification of the MDT, string not displayed
3 modification of the MDT, string not displayed

cr integer 1 write OK
2 error on write

NOTE: This function must be followed by a SEND ("ENT") in order to initiate
the update.

WRITEC

Writes a character string on the screen at the cursor position

cr = WRITEC (Parm1, Parm2)

Parm1 in string string to write
Parm2 in integer MDT bit modification (3270 mode)

display the string in test mode

0 no modification of the MDT, string displayed
1 modification of the MDT, string displayed
2 no modification of the MDT, string not displayed
3 modification of the MDT, string not displayed

cr integer 1 write OK
2 error on write

(Note that the write may not be executed when the cursor is not on an input
field)

NOTE: This function must be followed by a SEND ("ENT") in order to initiate
the update.

WRITEM

Writes a character string in non-formatted mode - for Bull hardware

cr = WRITEM (Parm1,Parm2)

Parm1 in integer character string to write
Parm2 in integer in test mode: 0 = string displayed

2 = string hidden

cr integer 1 write OK
2 error on write

NOTE: This function must be followed by a SEND ("ENT") in order to initiate
the update.

Script Language 95

DSPWO000161A

8.15. Errors
When the interpreter detects an error, it terminates the script's execution and
sends a message which indicates the number of the erroneous line and if
possible a diagnostic message.

Errors may be divided into three groups: source code errors, syntax errors and
execution errors. The first two groups involve errors found in reading the
source code: variable types and their utilization, branches and their labels, and
syntax errors. The second category involves errors found in the source of the
execution of the script.

8.15.1. Source Code Errors

The principal characteristic of source code is that the interpreter will send an
error message to the screen should an error be detected and then continue. The
script however is not executed.

The interpreter checks for compatibility between variable and constant types,
the validity of expressions and of parameters. Constraints imposed upon
operator types, parameters or predefined functions, counters or FOR loops and
conditions are documented earlier in this chapter.

Several tests are performed on variables: using a variable which was not
initialized directly or by assignment; using a variable that is used as a parameter
in a predefined function causes an error, as well as using an undeclared
variable. When variables are declared and not used, a warning message is
issued though this causes no error.

Unconditional branching is strictly controlled: labels must be defined;
branching inside an instruction block causes an error. When declared labels are
not used, a warning message is issued, though this causes no error.

8.15.2. Syntax Errors

When a syntax error is encountered, the interpreter issues an error message and
returns control to the user. The error message indicates the number of the line
where the error was detected. Note that the line number refers to the line on
which the inconsistency problem was detected, and not necessarily where the
correction needs to be made.

EXAMPLE:

1 PROG PROGRAM_NAME
2 STRING SELECTOR
3 BEGIN
4 SELECTOR="OPEN"
5 IF (SELECTOR=="OPEN")
6 BEGIN
7 WRITEM ("RUN")
8 END
9 ELSE
10 BEGIN
11 WRITEM ("WAIT")
12 PAUSE (25)
13 END

In this example, the error will be detected on line 13, whereas the error is due to
a missing END at line 12: the interpreter cannot know the number of lines
contained in the ELSE block before it reads line 13.

96 PAW Developer's Guide

DSPWO000161A

Syntax errors are often due to:

� missing or superfluous block delimiters (BEGIN or END);

� operators which should be on a new line but are not;

� line skip before an ELSE;

� unmatched parentheses;

 � missing parenthesis in conditions;

� final END missing.

8.15.3. Errors during Execution

Though many errors may be detected before an actual execution, there are
problems which may only appear when the script is run.

These problems depend on the length and intricacies of the script, as well as on
the correctness of algorithms. Problems due to limitations of the PC's memory
and the maximum time allowed for routine execution depend on the hardware
and operating system used: for instance, an endless loop could cause an error or
may even impact on the PC's performance.

The arithmetic calculations may go over the absolute maximum value for an integer (32767). This can
lead to erroneous results, but not always in an obvious way (the calculation of de a+b-c, with a, b and c
large can cause an error in the calculation of a+b, while the calculation of a+(b-c) can encounter no
problems). The interpreter stops the execution in the event of such a problem (the error message does
not give the number of the line to blame).

	Table of Contents
	1. Presentation of the Developer's and User's Workstations
	1.1. Developer's Workstation
	1.2. User's Workstation

	2. Installation
	2.1. Installation Procedure
	2.1.1. Common Characteristics of Dialogue Boxes
	2.1.2. 'Installation Language' Box
	2.1.3. 'PAW user language' box
	2.1.4. 'ENVIRON.PRM Directory' Box
	2.1.5. 'PAW Installation Parameters' Box
	2.1.5.1. 'Workstation Type'
	2.1.5.2. 'Learning Mode'
	2.1.5.3. 'Root Directory'
	2.1.5.4. 'Unit'
	2.1.5.5. 'Disk Space'

	2.1.6. 'PAW Component Directories' Box
	2.1.7. 'Windows Directory' Box
	2.1.8. 'Communication Protocol' Box
	2.1.9. 'Protocol Variant' Box
	2.1.10. 'Reinstalling PAW on a Previous Version' Box
	2.1.11. End of Installation
	2.1.11.1. Developer's Workstation
	2.1.11.2. User's Workstation

	2.2. Customization of the Workstation
	2.2.1. ENVIRON.PRM file
	2.2.2. PAWLIB.PRM file
	2.2.3. PAWMAK.PRM file

	3. Revamping an Application
	3.1. Extraction from the Server
	3.2. Transferring the Extraction File to a PC
	3.3. Generating the Screen Source Files
	3.4. Compilation
	3.5. Tests on the Generation and Compilation Steps
	3.6. Implementation

	4. Error Management
	4.1. Installation Errors
	4.2. Generation Errors
	4.3. Compilation Errors
	4.4. Operation Errors

	5. Advanced Functions
	5.1. External Value Lists
	5.1.1. Structure of External Value Source Files
	5.1.2. Local Generation of the External Value Lists
	5.1.3. Compiling and Checking the Resulting Files
	5.1.4. To put the Characteristics of a Data Element into Contact and to Enrich them.
	5.1.5. Generation of Revamping Files by PAWGEN

	5.2. Customizing the On-Line Help
	5.2.1. Modifying an Existing Text
	5.2.2. Adding One or Several Divisions to a Help Text
	5.2.3. Regenerating the On-Line Help

	5.3. Automating the Tasks: .BAT
	5.4. Keyboard Configuration
	5.4.1. Generalities
	5.4.2. Local Functions
	5.4.3. Values of Keys (to be inserted in PAW_KBRD.PRM)

	5.5. ClickPad
	5.5.1. Characteristics
	5.5.2. Changing the Standard Icons
	5.5.2.1. Adding New Icons in the ICOPAW.RC File
	5.5.2.2. Changing the Icon of a Standard Button
	5.5.2.3. Associating an Icon with an Action or Screen Branching Button
	5.5.2.4. Associating an Icon with a Script

	6. Examples of PAW revamping
	6.1. Porting a MICROFOCUS Application onto a Revamped Application
	6.1.1. Architecture of a DOS MICROFOCUS Dialogue Application
	6.1.2. Architecture of the Revamped Application under WINDOWS 3
	6.1.3. Notes and Recommendations
	6.1.4. Examples of Compilation Command Files

	6.2. Revamping an IBM Product: DSMS
	6.2.1. DSMS Revamping: Introduction
	6.2.2. Installation
	6.2.3. Building the External Value Lists
	6.2.4. Keyboard Configuration
	6.2.5. If problems arise

	7. PAW DDE Server
	7.1. Characteristics of a DDE Dialogue
	7.2. Characteristics of DDE Connections
	7.3. Syntax of the Items
	7.4. Syntax of the Commands
	7.5. VisualBasic Example of PAW used as a DDE Server

	8. Script Language
	8.1. Introduction
	8.2. Types of Scripts
	8.3. Implementation of Scripts
	8.3.1. Parameters
	8.3.1.1. Line Structure of the Scripts
	8.3.1.2. List of Logon Scripts
	8.3.1.3. List of Application and Screen Scripts

	8.3.2. Scripts and DDE

	8.4. Script Structure
	8.5. Reserved Words
	8.6. Declarations
	8.6.1. Variable Types
	8.6.2. Variable Names
	8.6.3. Variable Values
	8.6.3.1. Test Syntax of a Boolean

	8.6.4. Labels
	8.6.5. Comments
	8.6.6. Blanks and Returns

	8.7. The Body of the Program
	8.8. Instructions
	8.9. Assignments
	8.10. Expressions and Operators
	8.10.1. Priority of Operators
	8.10.2. Processing of Associative Operators

	8.11. The Unconditional Branching
	8.12. Control Structures
	8.13. Expressions
	8.14. Functions
	8.14.1. Function Call
	8.14.2. Function Parameters

	8.15. Errors
	8.15.1. Source Code Errors
	8.15.2. Syntax Errors
	8.15.3. Errors during Execution

