IBM WebSphere Partitioning Facility for
WebSphere Extended Deployment v.5.1

Management and Development Guide

October 2004

Version 1.0.1 Page 1/144 © 2004 IBM

First Edition (October 2004)

This edition applies to IBM WebSphere Application Partitioning Facility for WebSphere Extended
Edition Version 5.1, and to any subsequent releases until otherwise indicated in new editions.
Make sure you are using the correct edition for the level of the product.

© Copyright International Business Machines Corporation 2004. All rights reserved.

US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corporation.

Version 1.0.1 Page 2/144 © 2004 IBM

Notice

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not give you any license to these patents. Y ou can send license inquiries, in writing,
to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
U.SA.

Changes are periodically made to the information herein; these changes will be incorporated in new editions of the
document. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
document at any time without notice. Information in this document could include technical inaccuracies or
typographical errors. IBM Corporation does not warrant that this document is error free.

Any references in thisinformation to non-IBM Web sites are provided for convenience only and do not in any manner
serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM
product, and use of those Web sitesis at your own risk.

The licensed program described in this document and all licensed material available for it are provided by IBM under
terms of the IBM Customer Agreement, IBM International Program License Agreement, or any equivalent agreement
between us.

All statements regarding IBM’ s future direction or intent are subject to change or withdrawal without notice, and
represent goals and objectives only.

Thisinformation is for planning purposes only. The information herein is subject to change before the products
described become available. Thisinformation contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Version 1.0.1 Page 3/144 © 2004 IBM

Trademarks

¢ IBM, the IBM logo, WebSphere, AIX and DB2 Universal Database are trademarks or
registered trademarks of International Business Machines Corporation in the United
States or other countries, or both.

e Sun, Javaand all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

e UNIX isaregistered trademark of The Open Group in the United States and other
countries.

e Linuxisaregistered trademark of Linus Torvalds.

e Microsoft, Windows, Windows NT and Windows logo are trademarks or registered
trademarks of Microsoft Corporation in the United States or other countries or both.

e Other company, product, and service names may be trademarks or service marks of
others.

Version 1.0.1 Page 4/144 © 2004 IBM

Preface

This book, IBM WebSphere Application Partitioning Facility for WebSphere Extended Edition Version 5.1 —
Management & Development Guide, provides a guide for managing the operation aspect of WPF enabled applications
and provides a getting started and reference resource for developing them.

Who should read this book

System administrators who will be involved in deploying and managing J2EE applications that use WPF Partitioned
Stateless Session beans.

Developers who are responsible for developing J2EE applications that will must be deployed in a high performance
computing environment. Developers will create a new type of Stateless Session bean, a Partitioned Stateless Session
Bean. This sort of Statel ess Session bean is simply anormal EJB that implements the WPF programming framework
interfaces. Developers can also enhance http and database system scalability by developing support for partitioned web
applications and partitioned databases offered viathe extended interfaces offered with WebSphere' s Extended
Deployment WPF subsystem.

This guide will describe how to manage and develop high transactional rate capable applications with resource access
patterns conducive to logical partitioning. The installation guide is written for experienced J2EE developers who are
familiar with WebSphere Applicator Server. Prior exposure to WebSphere Studio Application Developer is helpful.

Your Comments are |mportant to Us

IBM Corporation technical staff values your comments. Aswe write and revise, your opinions are the most important
feedback we receive. Please use the reader’s comment form at the back of this book to tell us what you like or dislike
about thisinstallation guide. If you prefer, FAX at 507-253-3495 or write to us at the following address:

IBM Corporation
Department XDTA
3605 Highway 52 North
Rochester, MN 55901

Version 1.0.1 Page 5/144 © 2004 IBM

Related Publications

The following publications are recommended for use with this Guide:

e |BM Application Partitioning and Distributed Work Manager for WebSphere Network
Deployment Version 5.1 - Installation Guide

Overview of WebSphere Application Server for Linux

WebSphere Application Server Enterprise, Version 5 (5630-A37)

IBM WebSphere Studio Application Developer Version 5.1

IBM WebSphere V5.1 Performance, Scalability And High Availability, SG24-6198"

Occasionally, this guide refers you to other IBM publications for system-specific information.
Typically, these publications are called installation or user’ s guides, but their exact names vary by

operating system and platform.

Conventions used in this book

Table 1: Thefollowing typographical, text formatting and key conventions are used in this guide:

Convention

Meaning

Bold

When referring to graphical user interfaces
(GUIs), bold face indicates menus, menu
items, labels, buttons, icons, and folders. It
also can be used to emphasize command
names that otherwise might be confused with
the surrounding text.

Monospace

Indicates text you must enter at a command
prompt. Monospace also indicates screen text,
code examples, and file excerpts.

Italics

Indicates variable values that you must provide
(for example, you supply the name of a file for
fileName). ltalics also indicate emphasis and
the titles of books.

Ctrl-x

Where x is the name of a key indicates a
control-character sequence. For example, Ctrl-
¢ means hold down the Ctrl key while you
press the c key.

Represents the UNIX command-shell prompt
for a command that does not require root
privileges.

#

Represents the UNIX command-shell prompt
for a command that requires root privileges.

C:\

Represents the Windows command prompt.

Entering commands

When instructed to "enter"” or "issue" a
command, type the command and then press
Return. For example, the instruction "Enter the
Is command" means type Is at a command

! Redbooks are available via download in Adobe PDF format from www.redbooks.ibm.com

Version 1.0.1

Page 6/144 © 2004 IBM

| prompt and then press Return.

Version 1.0.1 Page 7/144 © 2004 IBM

Table of Contents

1WebSphere Partitioning Facility Overview 12

11 Partitioning Objective and Benefits 12
12 J2EE Partitioning Capabilities 12
121 EJB Workload Partitioning 13
122 HTTP Partitioning 16
123 Database Partitioning 18
2Introduction to WPF via Example 21
21 WebSphere and WebSphere Extended Deployment Installation Steps 21
2.2 Configuration Quick Start 21
221 Starting the Deployment Manager 22
222 Add each node to the Deployment Manager 22
2.3 Cluster Configuration 22
231 Installing the WPF Example Application 23
232 Starting the Cluster 24
24 Executing WPF Operations 24
241 Verify the application is started, etc... 24
242 Launching a client application 25
243 Balancing the Partitions 26
244 Post Balance - Launching a client application again 27
245 Adding a Partition Dynamically 28
246 Monitoring Transaction Performance Statistics 28
247 Managing Policies Example 33
25 Example Summary 34
3Partitioning Introduction 35
31 WhatisaPartition? 35
311 Partition Life Cycle 35
312 Partition Creation 36
313 I1OP Routing to a Partition 36
32 What isaPartitioned Stateless Session Bean? 37
3.3 What isaPartitioned J2EE Application? 38
34 WhatisaPartitioned HTTP Application? 38
35 Samples Overview 39
351 Partition Examples 39
4Managing a WPF Environment 40
41 HA Manager 40
411 HA Manager Overview 40
412 HA Managed Policy Applied to Partitioning 41
413 HA Manager Quorum Attribute 42
414 WPF Partition HA Manager Implementation 43
415 HA Manager Policy Explanation 43
416 Policy Administration 44
42 How doesa“WPF Partition” relate to an HA Group 44
421 Partition Scope 45
422 How many policies are too many? 45
423 How many partitions are too many? 46
43 Advanced HA Manager Concepts 46
431 HA Managed “Network partitions’ 46
432 Critical time window for network partitions 46
433 Tolerating the critical time window 46
434 Cluster member memory usage for active partitions 47
435 Why define more than one coordinator? 47
436 Partition Activation reaction times. 47
437 Memory usage 48
438 Coordinator Configuration 48
439 Recommendations for preferred server locations 48
4310 Reactiontimes 48
4311 HA Manager Event Callback Thread Pool 49
4.3.12 Number of HA Manager Coordinators 49
4.3.13 HA Manager TCP/IP Tuning 49

Version 1.0.1 Page 8/144 © 2004 IBM

44 Genera Cluster and WPF Management Considerations

441
442
443
444
4.4.5
4.4.6
4.4.7
448
449
4.4.10

Scalability Considerations

Conservative Partition Design

Physical Machines CPU and Paging Utilization

Application Thread Pools (Async Beans)

Carefully control what is running on each node and application server in the cluster
Tune the operating system to use small time slices.

Mixing application types must be considered carefully

SMP machines preferred in partitioned implementations

OnDemand LPAR Resource Advantages

Dealing with hot partitions

45 Management Script (wpfadmin) and Usage

451

452

453

454

455

456

457

4.5.8

459

4.5.10
4511
4512
4513
4514
4.5.15
4.5.16
4.5.17
4.5.18
4.5.19
4.5.20
4521
45.22
4.5.23
4.5.24
4.5.25
4.5.26
4.5.27
4.5.28
4.5.29
4.5.30
4531
4.5.32
4.5.33
4.5.34
4.5.35

Management Commands
listActive
listActiveWithGroups
countActivePartitionsOnServers
countActiveGroupsOnServers
list

listGroups

coreGroupStatus

move

balance

disablePartition
enablePartition
addServerToCoreGroup
removeServerFromCoreGroup
enableWPFPMI
subscribeWPFPMI
setPartitionCount
setStatisticsRange
setEJBName
setStatisticsType
setStatisticsinterval
getTransactionCount
getResponseTime
setTraceSpec

unsubscribe WPFPM |
disableWPFPMI

createPolicy

updatePolicy

Delete Policy

updateJM X Timeout
updateCoreGroupCoordinators
updateHamConfig

listPolicies

queryPolicy
resolvePolicyForGroup

4.6 Performance Monitoring

46.1
46.2
4.6.3
4.6.4
4.6.5
4.6.6
4.6.7

WPF PMI Enablement

WPF PMI path

WPF PMI data aggregation
WPF PMI statistics subscription
WPF PMI statistics retrieval
WPF PMI statistics parameters
WPF PMI Aggregator policy

4.7 Scalability Related Configuration

4.7.1

Configuration

4.8 Proxy DataSource Management
5WebSphere Partitioning Facility Programming 82
51 Partitioned EJB Overview

511
512

Version 1.0.1

Partitioned Stateless Session Bean (PSSB)
Partition Routable Session Bean (PRSB)

Page 9/144

51
51
51
51
52
52
52
52
53
53
53
55
55
55
56
57
57
57
58
60
61
61
63
63

65
65
65
66
66
66
66
67
67
67
68
68
70
71
71
71
71
72
72
73
74
74
75
75
75
76
7
80
81
81
81

82

82
83

© 2004 IBM

5.1.3 Facade Interface for a Partitioned Statel ess Session Bean 83

514 WPF Requirements 84
515 WPF Restrictions 85
52 Developing WPF applications with WSAD 5.1 86
521 Preparing WSAD to Develop WPF Partitioned J2EE Applications 87
522 Partitioned J2EE Application Example 98
5.3 WPF Framework Programming Model 99
531 PartitionDefinition 99
532 PartitionScope 100
533 PartitionM anager 100
534 PartitionManager# reportTransactionComplete 104
535 PartitionHandlerL ocal 106
5.3.6 Threading issues for the PSSB callback methods 107
537 Writing an application client 107
538 Modifying the EJB stubs (required after deploying ear) 107
5.4 DataPartitioning Patterns 110
541 Variable Partition Set 110
542 Fixed Partition Set. 110
543 Singleton Pattern 110
544 Hash based partitioning. 110
545 Slave Multiple Reader/Master Single Writer Pattern 110
5.4.6 Partition Specific CMP data 111
5,5 Proxy DataSource Development 113
551 CMP Datasource Overview 113
552 Proxy DataSource programming model 113
55.3 API 115
554 Developing application using proxy datasource support in WSAD. 115
555 Configure Proxy DataSource |n WebSphere Extended Deployment 124
5.5.6 Install D_ProxyDSA ccountSample.ear application. 127
557 Run the application client 127
55.8 DataStore Helper classes. 127
559 Restrictions 128
56 WPF PMI Client Programming 129
56.1 Subscribe WPF PMI statistics using WPFIMX MBean. 129
5.6.2 subscribe WPF PMI statistics using Java code 129
5.6.3 subscribe WPF PMI statistics using Jacl code 131
5.6.4 subscribe WPF PMI statistics using Jython code 131
57 HTTP Partitions 132
571 Anatomy of An HTTP WPF Application 132
572 Packaging: Specifying HTTP Partitionsin partitions.xml 132
573 Packaging: HttpPartitionBean: A Generic PSSB 133
574 Deployment: Co-locating the Generic PSSB and Servlets 133
575 Packaging: The HttpPartitionFilter 133
5.7.6 Deployment: Loading Servlets at Start-Up 133
577 HTTP Programming Interfaces 134
5.7.8 An Example 136
579 The EJB API: Extending HttpPartitionBean 137
5.710 Mixing Programming Interfaces and partitions.xml 139
6Problem Resolution 140
6.1 Client Invocation Problems 140
6.1.1 Launchclient 140
6.2 Transaction Related 141
6.2.1 Transaction Rollback Distributed Transaction Time Out 141
6.3 Workload Routing 142
6.3.1 Routing Problem determination 142
6.4 Proxy Datasource 143
6.4.1 Session Bean must use local interface to invoke CMP EJB 143
6.4.2 Specify Datasource at Beginning of each Transaction 143
6.4.3 Performance Monitoring 143
6.4.4 Test Connection Non-functional 143
6.4.5 Override the Datastore Helper class when creating the proxy datasource. 144

Version 1.0.1 Page 10/144 © 2004 IBM

Version 1.0.1 Page 11/144 © 2004 IBM

1 WebSphere Partitioning Facility Overview

WebSphere Extended Deployment offers the WebSphere Partitioning Facility (WPF). This new functionality supports
the concept of partitioning for EJBs, HTTP traffic and database access. WPF is both a programming framework and a
system management infrastructure. To utilize WPF, devel opers must implement the WPF framework within their
typical J2EE applications.. WPF isintended for an organization interested in continuing to utilize J2EE Application
Development tools and application sever support, but who are also willing to develop and manage their applicationsin
amore aggressive fashion to achieve higher total transaction volumes.

In general, the goal of partitioning isto support higher volumes of transaction activity, yet scale efficiently. The
following sections describe briefly the various partitioning offerings provided in WebSphere Extended Deployment.

Updates to this document, WPF white papers and other Extended Deployment information can also be found on-line at:

http://www-306.ibm.com/software/webservers/appserv/extend/support/

1.1 Partitioning Objective and Benefits

The primary advantage of partitioning is to provide the ability to more specifically control resources during cluster
member execution. Requests can be routed to a specific application server that has exclusive access to some computing
resource such as a dedicated server process or database server that handles a specific data set. The requests could be an
HTTP, EJB or database request or update. The endpoint receiving the work is still highly available. Consequently,
WPF offers functionality to route work to a particular cluster endpoint. This reduces overall system overhead while
continuing to offer the safety of rapid failure recovery of each endpoint.

For example, assume that an application is being created that tracks weather system status as new weather systems
dynamically occur. In any given evening, many storms are in progress nationally. If the database information is
partitioned by a particular storm and a WPF partition for each storm is created, that application server hosting the
partition could load the information exclusively. This allows both the storm experts updating the quickly changing
information and the clients that need to render the storm information to avoid contention to acquire and present the
information back to end-users to the extent possible. Clients that need to update the information will be routed to one
location within the cluster, and can update the in memory copy. The in memory copy can be persisted asthe
opportunity allows without slowing down the consumers of the information or the updaters of the storm status. Asthe
storm passes, it can be persisted to the database and the partition removed to make room for a new weather event.

In normally cluster applications, thisis not generally possible without very extensive application design and
implementation. For example, in acommon J2EE application implementation each client requesting information about
or updating the status of the storm would have requests randomly directed to various cluster members. Each cluster
member request would result in atransaction being created. To satisfy the request, each read for example would require
the data to be loaded from the database, taking additional time and causing extra database server overhead. The most
intensive operation in the cluster would be a database update, locking out the readers of the application data. Each
update would require exclusive access to the storm data, and would lock out other readers (depending on the isolation
level chosen) across the cluster until the update is complete. In this case, the database also has to track the various
reguests pending on specific information and arbitrate between them. This causes additional database |oad, and several
cluster member requests will take longer to satisfy, in effect reducing the cluster throughput for that applications.

In summary, the intent of partitioning isto direct workload to a given member, and reduce the overall cluster overhead
for each request. Asthese individual savings are accrued, all requests for the same application information or operation
should benefit in terms of lack of contention. WPF a so offers the ability to make each endpoint, a partition, highly
available and manageable. Thus, the general benefits of cluster failover and recovery are till present with WPF, plus
the additional functional capahility to reduce resource contention. Reducing the resource contention will result in
higher overall cluster throughput.

1.2 J2EE Partitioning Capabilities

Version 1.0.1 Page 12/144 © 2004 IBM

WPF is designed to augment typical J2EE technologies, including EJB, HTTP and database workloads with
partitioning capabilities.

1.2.1 EJB Workload Partitioning

This section explains the basic concept of a Partitioned J2EE Application with EJBs, which is simply anormal J2EE
Application with a Partition Statel ess Session Bean. In addition, it describes the “cluster” view of this entity aswell as
how it differs from atypical EJB involved in EJB Workload Management provided in the WebSphere Application
Server and Extended Deployment offerings.

1.2.1.1 Typical J2EE EJB Clustered Workload Processing

The following diagram illustrates a simple 2 node, 1 application server per node cluster configuration. The diagram
depicts an EJB Workload Management” example a J2EE application with 2 EJBs:

EJB Workload Management

Cell
Server
Application Server (JVM)

Client (1 of n) E ?ZCéontaingr
APpP

Server

\\\
/
NServer

"Application Server (JVM)
E

In this case, each client request is routed from the EJB Client viathe ORB and WLM Plug-in to EJB1 in an aternating
fashion between EJB instances. Both EJB1 instances are active in the cluster, but they are not unique, work is routed
between them invisibly without client intervention. While the ability to share the requests helps scalability, there are
implicit limits and constraints to ensure the same data loaded in each entity during normal transaction executionis
safely managed and replicated back to the database. Thus, the invisible functionality provided in the EJB Container,
Adapter and other WebSphere components ensures data corruption is not possible, but does take away from the
performance capabilities of the system. For some workloads this performance cost is relatively expensive and several
application styles exist where this can be avoided.

2 \We suggest the reader review the first 6 chapters of the IBM Redbook IBM WebSphere V5.1
Performance, Scalahility, and High Availability for background information. The redbooks can be
downloaded in Adobe PDF form free of charge from www.redbooks.ibm.com.

Version 1.0.1 Page 13/144 © 2004 IBM

The ability to allow two or more entity bean instances to share the same data is enforced by WebSphere and the
Database server. One of WPF' s goal isto alow asingle endpoint in the cluster to handle all data for a specific instance,
and reduce the burden of the WebSphere and Database server to enforce these semantics, dramatically improving
overall system scalability and throughput. Currently, WebSphere Application Server and Extended Deployment entity
bean developers can use only Options B and C, because Option A exclusive access is not permitted.

1.2.1.2 WPF EJB Workload M anagement

The use of the WebSphere Partition Facility now supports the concept of Option A entity beansin the cluster. This
extra performance does not come about magically, the developer must leverage the programming model provided with
WPF, and in some cases use the Async Beans support provided in the WBI-SF.

The WPF services require one additional Stateless Session Bean to be included in the J2EE Application’s EJB jar. This
session bean is called a Partitioned Statel ess Session Bean. When the application processes the startup sequence during
application server start for the EJB module, 1 to N different “ Partitions” are created. Each “Partition” issimply a
uniquely addressable end point within the cluster. Thus, in summary, a Partitioned Stateless Session Bean (PSSB) is
simply atypical Stateless Session that utilizes the WPF framework’ s PartitionManager to create individual partitions at
bean startup, and implements in addition to the normal SessionBean interface, the PartitionHandlerLocal interface
(described subsequently) to process Partition related life cycle events.

The WPF Partition support services allow a PSSB to create partitions. Each partition is simply an endpoint, directly
accessible by the EJB Client. For this example, assume the Partitioned Statel ess Session Bean, e.g. PSSB1 isincluded
in the J2EE Application, and at startup creates partitions Partitionl, Parititon2, Partition3 and Parittion4. Thus, the EJB
Workload Management diagram above when the Partitioned J2EE Application isinstalled (simplified to focus on
partitions) would look like the following.

Client (1 of n

Database

I
PSLBl.ping(“Partition 17,..)
PSSB1.ping(“Partition4”,...)

The diagram above reflects an EJB Client executing the same PSSB1 method “ping” twice. For each invocation, the
first parameter differsin a String value that is provided as method state. Later in this document, how the mapping
occursisdescribed in more detail, but for now the value of the first parameter is akey and used by WLM to route the
reguest to a particular partition endpoint within the cluster. At cluster started up, partitions Partitionl, Partition2,
Partition3 and Partition4 were created when each server’ s Partitioned J2EE Application was started and the PSSB1
home' sinstance was instantiated. The partitions created are not “servers’ or VMs, but each does have alife cycle

Version 1.0.1 Page 14/144 © 2004 IBM

concept similar to anormal EJB instance when instantiated within an EJB Container. One way to think of a partition is
as an addressable or routable endpoint in the WLM infrastructure.

In the first case, the EJB Client acquired the remote interface of the PSSB1 via JNDI as normal, then executed the first
method ping(...) with the first parameter specifying “Partition1”. WebSphere has been augmented with Extended
Deployment to allow programmers to advise the runtime how to process each method invocation’s parameters, and
based upon the state in the method call route each call to a specific partition.

For programming staff reading this document, the challenge for their implementation of this technology is to collocate
reguests with certain method state to a given application server that has exclusive access to some resource. The
programmer is given extra tools during partition activation and execution to be notified when and where a specific
partition is loaded and unloaded. With this information, the programmer can allocate al information for a specific
partition in one application. In addition, the administrator is not limited in where this processing occurs in the cluster.
The partition can be moved at any time.

1.2.1.3 Administrating Capabilities of a WPF Enabled EJB Workload

The administrator can adjust this behavior after the initial bean startup to meet operational requirements as required.
For example, in the case above, if Parititon2 and Partition4 are both very heavily loaded, and Partitions 1 and 3 are not,
the administrator could move Partition2 to the other application server in the cluster. In this case, the programming staff
would code the implementation of the PSSB1 Statel ess Session Bean to handle a partittionUnloadEvent(...) and a
partititonLoadEvent(...) method. During the execution of the move partition initiated by the administrator, the partition
Parition2 would receive an unload event allowing all references to the database and other j2ee application resources to
be cleaned up and removed from any sort of caching implementation. Subsequently, and very quickly, Partititon2
would be reactivated on the other application server and receive a partition load event, enabling the bean devel oper to
reinitialize the state and prepare to process transactions.

So far, thisis interesting, but the high availability story has not been addressed. The interesting feature of this
technology is not only that the client side can completely control the routing, and independently the server side
administrator can control the final destination, but also how failures can be handled. Here the inclusion of the new HA
Manager component comes to the fore. Although not directly accessible to customers, the HA Manager provides the
WPF service the underpinning to detect a failed application server. The HA Manger also correlates, very quickly, the
relationship between the partitions on that server and what actions should be taken to ensure they are activated
elsewhere.

The diagram below depicts avery simple case of an application failover:

Version 1.0.1 Page 15/144 © 2004 IBM

Cell

Server
Application Server (JVM)
Partition1 EJB Jar
Partition3
PSSB1
Partition2 coB1 EJB2 :
Partition4 S
i =
S: ar
App ver (J*
Partition2> Sery r Fail *
Partitio” EJB2

In the diagram above the application server with partition endpoints Partition2 and Partition4 failed. Upon failure, HA
Manager detected the failure, and activated two different instances of Partittion2 and Partition4 on the other application
server. Thisis but one application server recovery scenario, other scenarios addressed include stopping an application
server down for maintenance, a network partition event and other physical or management scenarios. In this case,
Partition2 and Partition4 experience an outage for a small amount of time, however, the remainders of other partitions
continue as if nothing has happened. In addition, Partition2 and Partition4 can implement alevel optimization at
recovery time because the implementation is advised of the partition reactivation event and can check for any problems
that may need to be addressed during transaction recovery.

The endpoint processing can be handled in several ways depending on the computing architecture a customer would
like to employ. Many customers choose to have afew, very reliable and manageable serversin their clusters. For these
customers, if Partition2 for example experiences an increased load, more LPAR resources could be allocated for that
application server. For other customers that utilize more distributed clusters or blade centers, either the Partition2 could
be moved to another standalone system that is not used or lightly loaded (does require an outage for Partition2 in this
case) or other collocated partitions that are not in use or not heavily loaded could be moved elsewhere in the cluster.
This would leave the Partition2 application server more able to handle the load. For an experienced I T staff, either
option alows great deal of flexibility to meet operational requirements. The coupling of existing WebSphere
functionality and capability with the WPF framework and the underlying HA Manager technology provides a new and
exciting capability to make WebSphere aricher clustering solution for high performance functionality and management
function to handle many typical cluster challenges.

In summary, the unique function WPF offersis aricher client request model in that the client can explicitly choose
where the request should be routed. In addition, not only is the endpoint uniquely addressable and targetable, but also
highly available endpoint. If the application server hosting the partition endpoint fails, the HA Manager provided with
WebSphere Extended Deployment will detect this and active the Partition instance on another application server in the
cluster as denoted in the following diagram. Thisis achieved without disabling any of the existing function that
WebSphere customers have come to rely and expect from arich clustering technology offering.

1.2.2 HTTP Partitioning

The WebSphere Partitioning Facility (WPF) provides the capability to partition HT TP requests across back-end
WebSphere Application Server instances. Known as HTTP Partitioning, this capability works in conjunction with the
On-Demand Router (ODR) that receives awareness of partition location and forwards HT TP requests to the appropriate
target application server. This section gives an overview of the HTTP Partitioning function. Here, we describe the
architecture of the solution and define key concepts required to implement HTTP WPF applications.

Version 1.0.1 Page 16/144 © 2004 IBM

HTTP WPF partitions are no different than EJB Workload 110OP-based partitions: they correspond to arelated
collection of data elements that are commonly accessed together. They have the distinct feature that no data element
belongs to more than one partition. This property enables web applications to make inferences in how these data
elements may betreated. That is, no data element belongs to two partitions and a single partition is only active on at
most one application instance. As aresult, when an application receives a request for a particular partition, it can be
certain that no other application instance is accessing this partition and the data elements associated with it. As such,
the application can leverage this by being more aggressive in treating the partitioned data. When combined with
techniques such as caching and batching, this ultimately improves application performance by increasing the efficacy
of size-limited caches and reducing the overhead in ensuring data consistency.

HTTP Partitioning operates on the premise that incoming HT TP requests contain sufficient information to identify the
partition associated with the request. This places two key restrictions on application architecture: 1) that each HTTP
request access data associated with exactly one partition, and 2) that the HTTP URL contains the partition name.
Restriction 1 can be typically resolved by merging overlapping partitionsinto asingle partition. Care should be taken
when designing the application’s URL to ensure that restriction 2 is satisfied.

1.2.2.1 TheRole of the On-Demand Router (ODR)

As shown in the figure bel ow, the On-Demand Router (ODR) serves as a reverse proxy between the HTTP client and
clustered (partitioned) application. The ODR extracts the partition name from the received HTTP request and routes it
to the application server hosting the application instance that is currently serving this partition. In this case, application
server 1ishosting partition P2. The HTTP Partitioning function ensures that requests are routed to the correct server,
even in circumstances when a partition is unloaded from one partition and loaded in another.

HTTP Request HTTP Request Application

Partition = P2

Active
Partitions =
P1, P2, P3

1.2.2.2 Extracting Partition Names From HT TP Requests

Partition names are extracted from HTTP requests using request expressions. A request expression consists of two
strings: the match expression and the classifying formula. Together, they provide a mechanism for classifying HTTP
requests based on Java-supported regular expressions. The match expression determines how we match on a portion of
the URL and query string. The classify formulaindicates the portion of the URL and query string that specifies the
partition once the expression has been matched.

To determine whether an HTTP request should be partitioned, the ODR makes use of the Pattern and Matching classes
of thejava.util.regex package. If thereisamatch on any application-specified match expression, the request has an
associated partition. The ODR first concatenates the URL and query string to form asingle string. It invokesthe
Patterns built from all application-specified match expressions. Upon a match, the classify formula determines how the
partition name will be built. A specia character, “$’, indicates the portion of the match expression to use.

Consider a case where the match expression is“ (user=)(*)$" and the classify formulais“$2”. The “$2" will take the
portion of the match corresponding to the (.*) portion, asit is the second portion of the matching pattern. For example,

Version 1.0.1 Page 17/144 © 2004 1IBM

if the URL consists of www.ibm.com/something/user=fred, $1 would correspond to “user=", while $2 would
correspond to “fred”.

Consider the match expression “(user=)(*)(rodriguez)$”. Suppose arequest arrived with a URL containing
“user=adolforodriguez”. With aclassify formulaof “$2”, the resulting partition name would be “adolfo”. With a
classify formula of “mypartition$2”, the request would have a partition name of “ mypartitionadolfo”. Likewise, with a
classify formula of “$2$3", the resulting partition name would be “adolforodriguez”.

Also note that match expressions may overlap. For example, if we had two match expressions: “ (user=)(*)$” and
“(user=)(*)&” and we receive a URL with query string containing “ user=adolfo& Submit=Enter”, both expressions
would match. The former expression would extract “adolfo& Submit=Enter” with a $2 classify formula, while the latter
would extract “adolfo”. Since only “adolfo” isavalid partition name, it would be chosen as the partition name. While
itistypical that the “most specific” regular expression was the intended target, HTTP Partitioning does make an
attempt to favor a particular expression over the other. Instead, all expressions are applied until avalid partition name
isfound or none exists.

More information describing the management and implementation of HTTP Partitions is described later in this
document.

1.2.3 Database Partitioning

Though we can configure a very reliable WebSphere cluster to run the application, if the WebSphere cluster uses a
single database instance, then the database becomes a single point of failure aswell asavertical scaling limit. It isa
single point of failure because if it becomes unavailable, no work can be done in the WebSphere cluster. Thisisa
vertical scaling problem because most databases only scale vertically, i.e. to go faster; you need to buy alarger box.

The diagram below shows the single database server architecture.

Single Database

Cell

Server

Client (1 of n) EJB Container

EIJar

Database

Plug -in

@
EJB EJB

Version 1.0.1 Page 18/144 © 2004 1IBM

http://www.ibm.com/something/user=fred

In this diagram, there are two WebSphere application servers, but there is only one database server. When more and
more application servers are added, the database will become a performance bottleneck.

Some customers require databases that scale horizontally and that do not stop the whole application server cluster when
it fails. Many applications whose non-functional requirements allow temporary failures to impact a part of the
application but a complete outage is not acceptable. Such architectures use a partitioned database design.

An example of such adesign would include three boxes running standalone DB2. The table schema and security
system isidentical for all three databases. All read only reference datais replicated to all three databases from a master
reference data DB2 instance that is made highly available in the normal way. This master reference DB2 instance is not
asingle point of failure during normal operation, asit is not used by the application directly.

Once multiple servers are ready, the next step isto ensure the application data is partitionable. We will map the data for
aparticular partition to a particular DB2 instance. This can be done using a simple hashing scheme or arange
mechanism, or be done by using areplicated table in the databases. The table is cached by the application server cluster
and specifies the DB2 instance holding the data for a particular partition. Thisallows ‘hot’ data to be moved between
databases without requiring application changes.

The partition to DB2 instance table is maintained by the master and replicated to all three database nodes. An
application protocol will be needed to coordinate when a partition is moved from one database node to another. This
also allows an application to add a database instance to the set of databases in use for horizontal scalability. The
advantage of using three independent database instances is better availability than anormal clustered database such as
Oracle RAC or DB2 EEE. The databases are independent and a failure of one of the databases just means that the set of
data residing there is now unavailable but the application can continue to process transactions for the dataresiding in
the other online database instances. This is much more preferable to a complete failure. However, the administration is
now more complex as there are three databases instead of one. The application uses what is called ‘ Directed
Transactions' to tell the application server which database instance contains the complete data for the next transaction.
This pattern alows very flexible management of the database aspect of the application especially when used with the
MAPPER table that tells the application which database node has the data for a particular partition.

Applications that use CMP beans normally specify a single database to use with the CMP beans. This approach clearly
has problems when using this pattern. Y ou could deploy the CMP beans N times, once for each database but thisis not
very flexible for the following reasons:

e Requires N copies of the code with N INDI names etc

e Requiresadeploy step when a database is added.

e Itisjust not that easy to manage.

WebSphere Extended Deployment offers a new feature, the Proxy DataSource that allows the application to tell
WebSphere which database to use before the transaction starts. This means that when a cluster member receives a
request for a particular application partition then it can tell the CMP runtime to ignore the DataSource the beans were
deployed with and instead use a specific DataSource for the duration of the next transaction. This allows the directed
transaction pattern to be used with the application, enabling it to increase its availability, and allows the database tier to
scale horizontally on blade type environments. The applications can also take advantage of the MAPPER table pattern
to very flexibly manage data and move partitions around to better manage the operational aspects of an application such
as how to move avery busy partition to alightly loaded database node for performance reasons.

The following diagram shows the new architecture.

Version 1.0.1 Page 19/144 © 2004 IBM

Multiple Database nodes

Database

Client (1 of n)

Plug-in

Database

In this diagram, we have two databases in the system. EJB1 is deployed in both servers. In one transaction, the EJB1 in
the top server access database 1. And in another transaction, EJB1 in the server below access database 2. So the
database load is spread across to several database servers, instead of just one server.

Version 1.0.1 Page 20/144 © 2004 1IBM

2 Introduction to WPF via Example

WPF isarich and functional offering. This section describes the steps required to install WebSphere Extended
Deployment, configure the cluster, install one the samples provided with WebSphere Extended Deployment, and
perform several usage and system management examples as a precursor to diving into the functional specification.

The samples are installed from the installableA pps directory in the Network Deployment Manager (ND) directory tree.
Prior to installing the application, WebSphere Extended Deployment must be installed on top of Application Server and
ND, or Base, Extended Deployment and WBI-SF and required service levels.

2.1 WebSphere and WebSphere Extended Deployment
Installation Steps

For this step, the latest and most current up to date information regarding installing Extended Deployment is located in
the WebSphere Extended Deployment Installation Guide. The WBI-SF steps (in italic) are optiona if your
configuration will be limited to Base/ND.

Install the components in this manner (see the WebSphere Extended Deployment and other WebSphere install guides
for more specific information):

Pick an operating system, either Windows XP, Advanced Server, Linux , AlX, €tc...

Install WebSphere Network Deployment (ND) on primary management machine

Install WebSphere Application Server (Base) on each cluster member

Install WBI-S- over the Network Deployment and each Application Server installed above
Upgrade to WAS Network Deployment 5.1.1 on the Network Deployment management machine
Upgrade to WAS Application Server 5.1.1 over each of the Application Server installations

Upgrade to WBI-S- 5.1.1 over each location WBI-SF isinstalled (every Network Deployment and
Application Server configuration)

Upgrade to WAS Network Deployment 5.1.1.1 over the Network Deployment management machine
Upgrade to WAS Application Server 5.1.1.1 over each of the Application Server installations
ThereisaJDK service level for 5.1.1.1 that should be installed.

a) Upgrade to WAS Network Deployment JDK.

b) Upgrade to WAS Application Server JDK.

Install WebSphere Extended Deployment 5.1 over each Network Deployment and Application Server
install (similar nodes to that installed with WBI-SF)

You can optionally install your database server of choice on each node where non-partitioned or
partitioned data will be placed

2.2 Configuration Quick Start

The steps below describe the configuration of a cluster than can host a WPF Partitioned J2EE Application. Even though
amore optimized development environment can be offered for WPF devel opers, from an administration perspective,
three application servers are used to make this example moreinteresting. In this case, we will describe a single node

Version 1.0.1 Page 21/144 © 2004 IBM

scenario. However, the steps can be followed as a guide to get a multi-node cluster running (will point these divergent
steps out as well).

In addition, we will use one example in this section. The other samples can be installed and operated similarly. See the
samples overview section for more details.

2.2.1 Starting the Deployment Manager

The Deployment Manager provides the configuration, as well as visualization interface for WebSphere Extended
Deployment. This server must be running prior to adding any other application server machineto the cluster. At this
time, using the command line launch the Deployment Manager:

cd <ND Home Directory>\bin
startmanager

The result should be something similar to:

ADMUO0116l: Tool information is being logged in file
C:\was\nd51\logs\Deployment Manager\startServer.log

ADMU3100I: Reading configuration for server: Deployment Manager

ADMU3200I: Server launched. Waiting for initialization status.
ADMU3000I: Server Deployment Manager open for e-business; processid is 2568

2.2.2 Add each node to the Deployment Manager

In an Extended Deployment environment, each node must be added to the Deployment Manager’ s administrative
domain. Thiswill enable the Deployment Manager to add a particular server’s Application Server to the Deployment
Manager’s cell. The following invocation will add the node to the current Deployment Manager:

cd <WAS Base>\bin
addnode <Deployment Manager hostname>

The result should be something similar to:

ADMUO0116l: Tool information is being logged in file
C:\was\base51\logs\addNode.log

ADMUO0001I: Begin federation of node NodeA with Deployment Manager at
XXXXXX:8879.

ADMUO0305I: Install applications onto the Cell cell using wsadmin $AdminApp or the Administrative Console.
ADMU9990I:
ADMUO0003I: Node NodeA has been successfully federated.

2.3 Cluster Configuration

Launch the administration console to manage which applications are installed within the cluster. The URL.:
URL: http:://localhost:9090/admin
or if on aremote:

host: http://<Deployment Manager hostname>:9090/admin

To configure the cluster:
Select Serversin left hand column
Select Clustersin left hand column

Version 1.0.1 Page 22/144 © 2004 IBM

http://<dmgr/

Select the New option in Server Cluster pane
Enter the desired cluster name
Uncheck the Prefer Local Enabled option

The configuration panel should appear similar to:
-+ Step 1: Enter Basic Cluster Information

Cluster name; * |cluster The name of thiz cluster.
Prefer local: |:| Prefer lntal enatied Enable or dizable Node scoped routing oplimization.
Internal |:| Create Replication Domain for this If thiz option iz 2elected, a Replication Domain will be

replication created and the name will be 2t as the Cluster name

domain:

cluster
Exizling zerver: Choos=ing exizting Server as a Cluzter Member. A list

@ R0 ik S acke: ol Eki=SOne) e ¥ of Servers which are not already a part of exizting

tTE cluster s Clusters iz provided. You can specify the weight for
./ Select an existing server to add to thiz Cluster Member. ou can alze choose ifa
thiz cluster Replication Entry needs to be created in this Server

Choo=e a =erver from thiz list: for internal replication.

CeliNodeAiserver! ||

Weight:
2

D Create Replication Entry in thiz
Click on Next
For this example, we will create 3 application servers, all on NodeA (more than one node can be used),
Type “cluster_member_1" in the name field, select Apply.
Type “cluster_member_2" in the name field, select Apply.
Type “cluster_member_3" in the name field, select Apply.
Select Next.
Select Finish.
Select Save
Check the box for “Synchronize changes with Nodes”.

Select Save

2.3.1 Installing the WPF Example Application

For this scenario, the D_WPFK eyBasedPartition.ear will be installed on the application server. In the default case, the
application creates 10 partitions, allowing the user to balance across cluster member application severs. During the
WebSphere Extended Deployment installation, the WPF samples applications are installed in <Deployment Manager
Home>\installableApps.

Select Applications

Select Install New Application

Select Browse on the Local option, browse to <Deployment Manager Home>\installableApps and select:
<Deployment Manager Home>\installableA pps\D_WPFK eyBasedPartitionSample.ear

Select Next

Select Generate Default Bindings check box

Version 1.0.1 Page 23/144 © 2004 IBM

Select Next

The Install Applications pane should have all the correct defaults. One warning, do not select the deploy option. The
PSSB stub will be regenerated and disable the PSSB routing. If that isthe case, the default round robin functionality
will result when client interacts with the partitions. If this occurs, simply reinstall the application again.

Select Next
For the“Step 2: Provide INDI Names for Beans’, select Next.

For the“Step 3: Map modules to application servers’, select the cluster option for module and Apply.
Select Next

Select Finish

Select “ Save to Master Configuration”

Select Save (Synchronize with Nodes options should be selected if not already)

2.3.2 Starting the Cluster

In the Extended Deployment admin console, select the cluster that contains the Partitioned J2EE Application, and start
it.

Select Serversin left hand column

Select Clustersin left hand column

Select the cluster created above.

Select the Start option in Server Cluster pane

Starting the cluster could take a minute or two.

2.4 Executing WPF Operations

This section executes basic WPF operations. The management section provides reference information for each of the
following commands.

2.4.1 Verify the application is started, etc...

To verify the partitions has started, in a command window:

cd <Deployment Manager Home>\bin
wpfadmin listActive

The result should be similar to:

WASX7209I: Connected to process "Deployment Manager" on node CellManager using SOAP connector; The type of processis:
DeploymentManager

WPFCO00501: Application WPFK eyBasedPartitionSample, Partition PK000010: Server Cell\NodeA\cluster_member_3
WPFCO00501: Application WPFK eyBasedPartitionSample, Partition PK000009: Server Cell\NodeA\cluster_member_1
WPFCO00501: Application WPFK eyBasedPartitionSample, Partition PK000008: Server Cell\NodeA\cluster_member_3
WPFCO00501: Application WPFK eyBasedPartitionSample, Partition PK000007: Server Cell\NodeA\cluster_member_1
WPFCO0050I: Application WPFK eyBasedPartitionSample, Partition PK000006: Server Cell\NodeA\cluster_member_1
WPFCO00501: Application WPFK eyBasedPartitionSample, Partition PK000005: Server Cell\NodeA\cluster_member_1
WPFCO00501: Application WPFK eyBasedPartitionSample, Partition PK000004: Server Cell\NodeA\cluster_member_3
WPFCO0050I: Application WPFK eyBasedPartitionSample, Partition PK000003: Server Cell\NodeA\cluster_member_3
WPFCO00501: Application WPFK eyBasedPartitionSample, Partition PK000002: Server Cell\NodeA\cluster_member_3
WPFCO00501: Application WPFK eyBasedPartitionSample, Partition PK000001: Server Cell\NodeA\cluster_member_1

Version 1.0.1 Page 24/144 © 2004 IBM

Thisindicates that the application started and the partitions (10 by default) were activated correctly. The application
server instance a particular partition key starts on, without providing a specific policy, depends upon which server
reaches a point where it is registered in the HA Manager quorum. Whichever servers are in the view at the time quorum
is detected will have activated partitions. Thus, the partitions are not guaranteed to start in a given location until the
programmers or administrators provide additional configuration effort.

An example of specifying apolicy is provided later in this introduction. Also, through this demonstration, each time the
cluster is started, the partition specific member locations at start may vary from these instructions.

2.4.2 Launching a client application

To test the server side, launch the J2EE launchclient application.
Type the following in the command window:
launchclient c:\was\base51\installedA pps\Cel \WPFK eyBasedPartitionSample.ear -CCproviderURL=corbal oc::<host>:<port>

<host> - hosthame where the application server runs
<port> - RMI Connector Port (see application server logs\SystemOut.log (detail below)

The result should look similar to the following:

IBM WebSphere Application Server, Release 5.1

J2EE Application Client Tool

Copyright IBM Corp., 1997-2003

WSCL0012I: Processing command line arguments.

WSCLO0013I: Initializing the J2EE Application Client Environment.
WSCLO0035!I: Initialization of the J2EE Application Client Environment has completed.
WSCL0014I: Invoking the Application Client class com.ibm.websphere.wpf.client. WPFK eyBasedPartitionClient
Create Partitions from PK 000001 to PK 000010

1st call: PK000001->partiton=PK 000001,server=NodeA/cluster_member_1
2nd call: PK000001->partiton=PK 000001,server=NodeA/cluster_member_1
3rd call: PK000001->partiton=PK000001,server=NodeA/cluster_member_1
1st call: PK000002->partiton=PK 000002,server=NodeA/cluster_member_3
2nd call: PK000002->partiton=PK 000002,server=NodeA/cluster_member_3
3rd call: PK000002->partiton=PK 000002,server=NodeA/cluster_member_3
1st call: PK000003->partiton=PK 000003,server=NodeA/cluster_member_3
2nd call: PK000003->partiton=PK 000003,server=NodeA/cluster_member_3
3rd call: PK000003->partiton=PK 000003,server=NodeA/cluster_member_3
1st call: PK000004->partiton=PK 000004,server=NodeA/cluster_member_3
2nd call: PK000004->partiton=PK 000004,server=NodeA/cluster_member_3
3rd call: PK000004->partiton=PK 000004,server=NodeA/cluster_member_3
1st call: PK000005->partiton=PK 000005,server=NodeA/cluster_member_1
2nd call: PK000005->partiton=PK 000005,server=NodeA/cluster_member_1
3rd call: PK000005->partiton=PK 000005,server=NodeA/cluster_member_1
1st call: PK000006->partiton=PK 000006,server=NodeA/cluster_member_1
2nd call: PK000006->partiton=PK 000006,server=NodeA/cluster_member_1
3rd call: PK000006->partiton=PK 000006,server=NodeA/cluster_member_1
1st call: PK000007->partiton=PK 000007,server=NodeA/cluster_member_1
2nd call: PK000007->partiton=PK 000007,server=NodeA/cluster_member_1
3rd call: PK000007->partiton=PK000007,server=NodeA/cluster_member_1
1st call: PK000008->partiton=PK 000008,server=NodeA/cluster_member_3
2nd call: PK000008->partiton=PK 000008,server=NodeA/cluster_member_3
3rd call: PK000008->partiton=PK 000008,server=NodeA/cluster_member_3
1st call: PK000009->partiton=PK 000009,server=NodeA/cluster_member_1
2nd call: PK000009->partiton=PK 000009,server=NodeA/cluster_member_1
3rd call: PK0O00009->partiton=PK 000009,server=NodeA/cluster_member_1
1st call: PK000010->partiton=PK 000010,server=NodeA/cluster_member_3
2nd call: PK000010->partiton=PK 000010,server=NodeA/cluster_member_3
3rd call: PK000010->partiton=PK 000010,server=NodeA/cluster_member_3

Compare the results to the wpfadmin listActive command executed in previous section, the application server where
the request executed is where it had been activated.

Version 1.0.1 Page 25/144 © 2004 IBM

Warning: if the particular partition targeted method call isrouted to a different partition, the application was probably
redeployed either during the application installation or prior to you trying this ear. See the wpfstubutil command in the
programming guide for instructionsto repair the example ear.

Common problems when running alaunchclient command:

Launch Client cannot find the ear:
- Either cd to the <Base Application server Home>\installedApps\<CEL L > directory (wherethe ear is
deployed) and run, or
- With launch client, run from the <Base Application server>\bin and specify full path to the EAR on the
command line

Cannot Resolve the INDI Name:
- Inthedirectory <Base Application server Home>\bin, issue a dumpnamespace —port <portnumber>
0 The port number can be found by looking in the application server SystemOut.log, e.g. the
logs\SystemOut.log file.
o find anentry similar to:
o] [9/21/04 7:48:21:231 CDT] 7191d4f0 RMIConnectorC A ADMCO0026l: RMI Connector available at port 9812
- Toverify the gjb referenceis in the name space and valid to reference, the dumpname space command output
should appear similar to the following:
dumpnamespace -port 9812

o

Getting theinitial context
Getting the starting context

Name Space Dump
Provider URL: corbaloc:iiop:localhost:9812
Context factory: com.ibm.websphere.naming.Wsnlnitial ContextFactory
Requested root context: cell
Starting context: (top)=Cell
Formatting rules: jndi
Time of dump: Tue Sep 21 09:27:33 CDT 2004

Beginning of Name Space Dump

1 (top)

2 (top)/clusters javax.naming.Context

3 (top)/clusters/cluster javax.naming.Context

4 (top)/clusters/cluster/ejb javax.naming.Context

5 (top)/clusters/cluster/ejb/com javax.naming.Context

6 (top)/clusters/cluster/ejb/com/ibm javax.naming.Context

7 (top)/clusters/cluster/ejb/com/ibm/websphere javax.naming.Context

8 (top)/clusters/cluster/ejb/com/ibm/websphere/wpf javax.naming.Context

9 (top)/cluster s/cluster/ej b/com/ibm/webspher e/wpf/WPFK eyBasedPartitionHome

9 com.ibm.websphere.wpf.gjb._ WPFK eyBasedPartitionHome_Stub
... remainder of output...

O0O000000D000D00D0DO0O0DO0ODO0OO0ODO0ODO0OO0ODOO0OODODOOO0OO

2.4.3 Balancing the Partitions

In general acustomer can implement any balancing algorithm they would like viathe IMX interfaces provided. In
addition, the wpfadmin command provides two basic options, a simple balancer and one that balances upon the certain
performance monitoring attributes (used only when performance monitoring is enabled). For this case, we will simply
balancing the partitions in a round robin format using the basic function.

Issue the command wpfadmin balance, and the output should appear similar to:

WASX7209I: Connected to process "Deployment Manager" on node CellManager using SOAP connector; The type of processis:
DeploymentManager

Version 1.0.1 Page 26/144 © 2004 IBM

WPFCO0054: Partition PK000010 has moved from Server Cell\NodeA\cluster_member_3 to Server Cell\NodeA\cluster_member_1
WPFCO0054: Partition PK000009 has moved from Server Cell\NodeA\cluster_member_1 to Server Cell\NodeA\cluster_member_1
WPFCO0054!: Partition PK000008 has moved from Server Cell\NodeA\cluster_member_3 to Server Cell\NodeA\cluster_member_1
WPFCO0054: Partition PK000007 has moved from Server Cell\NodeA\cluster_member_1 to Server Cell\NodeA\cluster_member_2
WPFCO0054: Partition PK 000006 has moved from Server Cell\NodeA\cluster_member_1 to Server Cell\NodeA\cluster_member_2
WPFCO0054!: Partition PK000005 has moved from Server Cell\NodeA\cluster_member_1 to Server Cell\NodeA\cluster_member_2
WPFCO0054: Partition PK000004 has moved from Server Cell\NodeA\cluster_member_3 to Server Cell\NodeA\cluster_member_3
WPFCO0054: Partition PK 000003 has moved from Server Cell\NodeA\cluster_member_3 to Server Cell\NodeA\cluster_member_3
WPFCO0054!: Partition PK000002 has moved from Server Cell\NodeA\cluster_member_3 to Server Cell\NodeA\cluster_member_3
WPFCO0054: Partition PK000001 has moved from Server Cell\NodeA\cluster_member_1 to Server Cell\NodeA\cluster_member_1

2.4.4 Post Balance - Launching a client application again

Then, you can run the client again, and the output should reflect the bal ance operation:

IBM WebSphere Application Server, Release 5.1

J2EE Application Client Tool

Copyright IBM Corp., 1997-2003

WSCL0012I: Processing command line arguments.

WSCL0013l: Initializing the J2EE Application Client Environment.
WSCL0035I: Initialization of the J2EE Application Client Environment has completed.
WSCL0014I: Invoking the Application Client class com.ibm.websphere.wpf.client. WPFK eyBasedPartitionClient
Create Partitions from PK 000001 to PK 000010

1st call: PK000001->partiton=PK 000001,server=NodeA/cluster_member_1
2nd call: PK000001->partiton=PK 000001,server=NodeA/cluster_member_1
3rd call: PK000001->partiton=PK000001,server=NodeA/cluster_member_1
1st call: PK000002->partiton=PK 000002,server=NodeA/cluster_member_3
2nd call: PK000002->partiton=PK 000002,server=NodeA/cluster_member_3
3rd call: PK000002->partiton=PK 000002,server=NodeA/cluster_member_3
1st call: PK000003->partiton=PK 000003,server=NodeA/cluster_member_3
2nd call: PK000003->partiton=PK 000003,server=NodeA/cluster_member_3
3rd call: PK000003->partiton=PK 000003,server=NodeA/cluster_member_3
1st call: PK000004->partiton=PK 000004,server=NodeA/cluster_member_3
2nd call: PK000004->partiton=PK 000004,server=NodeA/cluster_member_3
3rd call: PK000004->partiton=PK 000004,server=NodeA/cluster_member_3
1st call: PK000005->partiton=PK 000005,server=NodeA/cluster_member_2
2nd call: PK000005->partiton=PK 000005,server=NodeA/cluster_member_2
3rd call: PK000005->partiton=PK 000005,server=NodeA/cluster_member_2
1st call: PK000006->partiton=PK 000006,server=NodeA/cluster_member_2
2nd call: PK000006->partiton=PK 000006,server=NodeA/cluster_member_2
3rd call: PK000006->partiton=PK 000006,server=NodeA/cluster_member_2
1st call: PK000007->partiton=PK000007,server=NodeA/cluster_member_2
2nd call: PK000007->partiton=PK 000007,server=NodeA/cluster_member_2
3rd call: PK000007->partiton=PK000007,server=NodeA/cluster_member_2
1st call: PK000008->partiton=PK 000008,server=NodeA/cluster_member_1
2nd call: PK000008->partiton=PK 000008,server=NodeA/cluster_member_1
3rd call: PK000008->partiton=PK 000008,server=NodeA/cluster_member_1
1st call: PK000009->partiton=PK 000009,server=NodeA/cluster_member_1
2nd call: PK000009->partiton=PK 000009,server=NodeA/cluster_member_1
3rd call: PK000009->partiton=PK 000009,server=NodeA/cluster_member_1
1st call: PK000010->partiton=PK 000010,server=NodeA/cluster_member_1
2nd call: PK000010->partiton=PK 000010,server=NodeA/cluster_member_1
3rd call: PK000010->partiton=PK 000010,server=NodeA/cluster_member_1

Notice, the client calls have been dispatched to partitions that have been balanced to application sever cluster_member2.
Another useful wpfadmin command is wpfadmin countActivePartitionsOnSevers:

wpfadmin countActivePartitionsOnSevers

The result provides a count of the active partitions per cluster member:

WASX7209I: Connected to process "Deployment Manager” on node CellManager using SOAP connector; The type of processis:
DeploymentManager

WPFCO0051I: Server Cell\NodeA\cluster_member_3: 3

WPFCO0051I: Server Cell\NodeA\cluster_member_2: 3
WPFCO0051I: Server Cell\NodeA\cluster_member_1: 4

Version 1.0.1 Page 27/144 © 2004 IBM

2.4.5 Adding a Partition Dynamically

One of the more innovative featuresis to be able to add and remove partitions dynamically. The following command
will allow a demonstration of this function:

C:\was\base51\bin>launchclient c:\was\base51\installedA pps\Cel \WPFK eyBasedPartitionSampl e.ear -CCproviderURL=corbaloc::
localhost:9813 -addPartition PKMyNewOne

The result will be similar to:

IBM WebSphere Application Server, Release 5.1

J2EE Application Client Tool

Copyright IBM Corp., 1997-2003

WSCL0012I: Processing command line arguments.

WSCLO0013I: Initializing the J2EE Application Client Environment.

WSCL0035!: Initialization of the J2EE Application Client Environment has completed.
WSCLO0014I: Invoking the Application Client class com.ibm.websphere.wpf.client. WPFK eyBasedPartitionClient
Adding partition PKMyNewOne

Partitions added. Since there is a delay when a partition activates, to

run the client against the newly added partition, run launchClient again

without the -addPartition option

The application must be programmed to offer this function, thisis not a feature wpfadmin offers in a generic sense. For
programmers, they can consult the sample application to support dynamic addition and removal of partitions.

The warning above basically mentions adding and activating the partitions to the runtime view may not happen
immediately (will be generally very fast), so the next command may not reflect it immediately in avery large cluster
configuration.

The output of the listActive would look would appear similar to the following:
wsadmin -lang jython -f wpfadmin.pty listActive

WASX7209I: Connected to process "Deployment Manager" on node CellManager using SOAP connector; The type of processis: DeploymentMana
ger

WPFCO0050I: Application WPFK eyBasedPartitionSample, Partition PKMyNewOne: Server Cell\NodeA\cluster_member_3
WPFCO0050I: Application WPFK eyBasedPartitionSample, Partition PK000010: Server Cell\NodeA\cluster_member_3
WPFC0050I: Application WPFK eyBasedPartitionSample, Partition PK000009: Server Cell\NodeA\cluster_member_3
WPFCO0050I: Application WPFK eyBasedPartitionSample, Partition PK000008: Server Cell\NodeA\cluster_member_3
WPFC0050I: Application WPFK eyBasedPartitionSample, Partition PK000007: Server Cell\NodeA\cluster_member_3
WPFC0050I: Application WPFK eyBasedPartitionSample, Partition PK000006: Server Cell\NodeA\cluster_member_3
WPFC0050I: Application WPFK eyBasedPartitionSample, Partition PK000005: Server Cell\NodeA\cluster_member_3
WPFC0050I: Application WPFK eyBasedPartitionSample, Partition PK000004: Server Cell\NodeA\cluster_member_3
WPFC0050I: Application WPFK eyBasedPartitionSample, Partition PK000003: Server Cell\NodeA\cluster_member_3
WPFC0050I: Application WPFK eyBasedPartitionSample, Partition PK000002: Server Cell\NodeA\cluster_member_3
WPFC0050I: Application WPFK eyBasedPartitionSample, Partition PK000001: Server Cell\NodeA\cluster_member_3

In the command output, please notice that the partition “PKMyNewOne” now exists. At this point, the partition can
receive transactions if you run the demonstration client without parameters.

2.4.6 Monitoring Transaction Performance Statistics

WPF provides the WPF Performance Monitoring Facility that provides a command line and graphical visualized
snapshot of the current operational statistics WPF enabled applications are generating. In general, a WPF enabled
application must execute the reportTransactionComplete(...) for this service to provide results. In addition, the
performance monitoring is disabled by default asit does take system resources to track and publish the results. In high
performance scenarios and when resources are tight, it is suggested to monitor the results in a sporadic manner versus
longer term active monitoring.

The current sample application will be used to exercise this function.

Version 1.0.1 Page 28/144 © 2004 IBM

2.4.6.1 Enabling Perfor mance Monitoring

In general, the cluster should be stopped prior to starting this example. Stop the cluster viathe Administrative console.

The following commands will enable the PMI performance monitoring infrastructure, allowing WPF Performance
Monitoring extentions to provide transaction status.

Open anew command line interface, leaving the launchclient window used previously to exercise the server after the
performance monitoring isinitialized in this section.

Perform all the remaining stepsin this section in the new window.

Once the new window is open, cd to the Deployment Manager’ s home directory. In addition, then change directory to
the bin directory, as this exercise will need to execute the wpfadmin script.

Thiswill enable PMI for the cluster. To monitor WPF, the H PMI level is required.

wpfadmin enableWPFPMI H --c cluster

wsadmin -lang jython -f wpfadmin.pty enableWPFPMI H --c cluster
WASX7209I: Connected to process "Deployment Manager" on node CellManager using SOAP connector; The type of processis; DeploymentMana

ger
WPFCO0065I: Cluster set to cluster
WPFC0043l: The wpfModule of PMI is enabled for cluster cluster and set to level H.

This cluster should now be started, please use the admin console to restart the cluster “cluster”.

At this point, you can track a particular transaction count for a specific bean instance. The following command will
track the transaction count the top 10 instances every 30 seconds.

wpfadmin subscribeWPFPM I cumulative TransactionCount WPFK eyBasedPar titionSample WPFK eyBasedPartition 10 30000 --c cluster

wsadmin -lang jython -f wpfadmin.pty subscribeWPFPMI cumulative TransactionCount WPFK eyBasedPartitionSam

ple WPFK eyBasedPartition 10 30000 --c cluster

WASX7209I: Connected to process "Deployment Manager" on node CellManager using SOAP connector; The type of processis: DeploymentMana
ger

WPFCO0065I: Cluster set to cluster

WPFC00401: WPF PMI has been subscribed with options range=cumulative, type=TransactionCount, application name=WPFK eyBase
dPartitionSample, ejb name=WPFK eyBasedPartition, partition count=10, interval=30000

WPFC0041l: Your client id is 1. Use thisin future wpfadmin PMI calls.

Note the client id, it is the reference id used to monitor this subscription. At this point, you have the ability to actually
begin active monitoring.

Before you can monitor, some existing transactions have to be completed. If not, the client application will report an
error. To ensure we have a valid transaction, run the launch client application as done earlier. Without ensuring some
transactions are completed, you would get this error:

wpfadmin getTransactionCount --id 1 --top 15

C:\was\nd51\bin>wsadmin -lang jython -f wpfadmin.pty getTransactionCount --id 1 --top 15
WASX7209I: Connected to process "Deployment Manager" on node CellManager using SOAP connector; The type of processis: DeploymentMana

ger
WPFC0065I: Id set to 1
WPFC0065I: Top interval set to 15

PartitionName TransactionCount TotalResponseTime MinimumTime MaximumTime
WPFC0045I: No statistics are available! Please wait and try again.

launchclient c:\was\base51\installedApps\Cell\W PFK eyBasedPar titionSample.ear -CCprovider URL =cor baloc::<host>:<port>
Turn on the WPF Monitoring Application, use the following command.
wpfadmin getTransactionCount --id 1 --top 15

wsadmin -lang jython -f wpfadmin.pty getTransactionCount --id 1 --top 15

Version 1.0.1 Page 29/144 © 2004 IBM

WA SX7209I: Connected to process “Deployment Manager" on node CellManager using SOAP connector; The type of processis; DeploymentMana

ger
WPFC0065I: Id set to 1
WPFCO0065I: Top interval set to 15

PartitionName ~ TransactionCount TotalResponseTime MinimumTime MaximumTime

PK 000010 3 1418 207 639
PK000009 3 1456 32 752
PK 000008 3 2254 586 907
PK 000007 3 1161 149 817
PK 000006 3 2130 663 760
PK 000005 3 1711 7 908
PK 000004 3 1040 109 784
PK 000003 3 703 22 400
PK 000002 3 1138 125 684
PK 000001 3 926 31 670

PartitionName TransactionCount Tota ResponseTime MinimumTime MaximumTime

PK 000010 3 1418 207 639
PK 000009 3 1456 32 752
PK 000008 3 2254 586 907
PK 000007 3 1161 149 817
PK 000006 3 2130 663 760
PK 000005 3 1711 v 908
PK 000004 3 1040 109 784
PK 000003 3 703 22 400
PK 000002 3 1138 125 684
PK 000001 3 926 31 670

This option will continue tracking as long as the user does not exit with a Control-C in the command window. If a
single snap shot is required rather than a continuous display:

wpfadmin getTransactionCount --id 1

wsadmin -lang jython -f wpfadmin.pty getTransactionCount --id 1
WASX7209I: Connected to process "Deployment Manager" on node CellManager using SOAP connector; The type of processis: DeploymentManager
WPFC0065I: Id set to 1

PartitionName TransactionCount Tota ResponseTime MinimumTime MaximumTime

PK000010 15 7904 99 894
PK 000009 15 6964 32 866
PK000008 15 6880 3 998

PK 000007 15 6766 64 946
PK000006 15 9253 210 993
PK 000005 15 7897 21 971
PK000004 15 7191 109 994
PK 000003 15 7076 6 931

PK 000002 15 7210 84 789
PK 000001 15 6375 31 949

For those willing to experiment further, rather than using the cumulative option, the “active” option can be used. And
the launchclient command will take a—oop xxxxx parameter. After the PMI tracking isin place, the - oop option will
generate transactions against each partition endpoint in alooping manner, and the active transaction will reflect how
many new transaction over a certain instance of time.

For example:

wpfadmin subscribeWPFPM I active TransactionCount WPFK eyBasedPar titionSample WPFK eyBasedPartition 10
30000 --c cluster

And the launch client command to loop:

launchclient c:\was\base51\installedApps\Cel\WPFK eyBasedPar titionSample.ear -CCprovider URL =cor baloc:: <host>:<port> -loop 10000

2.4.6.2 Monitor WPF Partitions via Deployment M anager

Version 1.0.1 Page 30/144 © 2004 IBM

For this section, the Microsoft Internet Explorer will be required. An Adobe SV G plug-in is used. Launch the browser
if oneisnot already connected to the Deployment Manager to http://<hosthmae>:9090/admin.

Ensure the cluster is started, and in a separate window, launch the looping launchclient command described above. This
will populate the transactions for view within the Deployment Manager.

In the console, select:

- Runtime Operations
0 RuntimeMap

For this example, we will monitor more aggressively:

- Preference
0 Change Set Refresh Rateto 15
Set Layer 1 option to Application
Set Layer 2 option to Partition
Set Layer 2 Displayed Entity field to WPFKeyBasedExample
Set static type to cumulative
Select Apply

O o0Oo0oo0oo

The screen should look something like:

o,
) 1 4 Al d B 0 0Ie
Home | Save | Preferences | Logout | Help | E'
User ID: pdykes 15 SetRefresh Rate | [
Cell Clear Search Results £

B Servers

Application Servers
JNS Servers

On Demand Routers
Clusters
Cluster Topology
Dynamic Clusters
Generic Server Clusters
Applications
Resources
[Runtime Operations
Runtime Topology
Runtime Hap
Task Management

Security

Operational Policies

If you place your mouse pointer over the partition, it will show relevant facts, and as more transaction are processed,
the refresh rate should update from the runtime state for the specific partition.

2.4.6.3 Managing Policies Example Overview

Policies are critical to understand when doing partitioned applications, both for programming and effective
administration. As with other aspects of this step-by-step tutorial, there are detailed explanations of HA Manager
policiesin this guide. The goal of this section isto not only give a brief explanation of policies, but as important
provide an example of setting a policy that improves the default behavior to benefit the approach to manage starting
partitions.

By default, the starting of partitions is non-deterministic. The order and timeframe in which the servers start will dictate
how partitions are created within HA Manager and how they are activated. A common need, especially with solutions
that require many partitions, is the need to even out the partition set over the servers that make up the cluster. This
exampleis not an optimal solution, but does provide a basic introduction to the concept of policies and creating a new
one to modify the default behavior partition behavior.

Version 1.0.1 Page 31/144 © 2004 IBM

http://<hostnmae>:9090/admin

To avoid one point of common confusion, it isimportant to distinguish the difference between a balance or move
operation provided and applying a startup policy as this example offers. The balance or move operations do result in a
partition outage, e.g. the partitionUnloadEvent(...) is called on the partition in these cases. While the programmer
should account for thisin these sorts of applications, if apolicy isused to control the startup versus relying solely on
the dynamic balance operations, the effort required to first activate a partition, unload it, and then reactivate on another
member can be avoided.

In summary, an HA Manager policy describes a set of coregroup properties and a specific match criteria. Based upon
the number of match criteria, the policy will be applied to aset of partitions. The number of “matches’ will determine
which policy applies. If two policies result in matches with the same number of criteria, HA Manager will generate an
error, as it does not know which policy to apply to the HA Managed Group. Keep in mind, each partition, is actually an
HA Manager group. In the case of acluster scoped partition, the partition is joined on each node in the cluster where
the Partition J2EE Application isinstalled, but “active” in only one member that will receive the requests.

For example, the default policies, located in the configuration directory’ s coregroup.xml file, look like:

<policies xmi:type="coregroup:OneOfNPolicy" xmi:id="OneOfNPolicy_1097676485106" name="WPF Cluster Scoped Partition Policy"
description="Default WPF Cluster Scoped Partition Policy" policyFactory="com.ibm.ws.hamanager.coordinator.policy.impl.OneOfNPolicyFactory"
isAlivePeriodSec="-1" quorumEnabled="true" failback="false" preferredOnly="false">
<MatchCriteriaxmi:id="MatchCriteria_1097676485116" name="-gt" value="-p" description="Default WPF Match Criterion" />
<MatchCriteriaxmi:id="MatchCriteria_1097676485117" name="-ps" value="-c" description="WPF Cluster Scope Match Criterion"/>
</policies>

<policies xmi:type="coregroup:OneOfNPolicy" xmi:id="OneOfNPolicy_1097676485126" name="WPF Node Scoped Partition Policy"
description="Default WPF Node Scoped Partition Policy" policyFactory="com.ibm.ws.hamanager.coordinator.policy.impl.OneOfNPolicyFactory"
isAlivePeriodSec="-1" quorumEnabled="false" failback="false" preferredOnly="fase">
<MatchCriteriaxmi:id="MatchCriteria_1097676485166" name="-gt" value="-p" description="Default WPF MatchCriterion" />
<MatchCriteriaxmi:id="MatchCriteria_1097676485167" name="-ps’' value="-n" description="WPF Node Scope Match Criterion" />
</policies>

In the two stanzas above, one describes WPF Cluster Scoped Partitions policy and the other is the WPF Node Scoped
Partitions policy. These policies support the default partition types WPF provides. The particular details are described
in more detail in the HA Manager policies section. The key attributes to note for this example are the basic properties
for each policy (quorumEnabled, isAlivePeriodSec, etc...) and the match criteria.

For the match criteria (in bold), the —gt represents the group type, which is—p (for partition). The partition scope
attribute (-ps) differs for each type, e.g. cluster scoped attribute is —c and nodescoped is—n). These name and value
types are reserved for WPF. However, the user can extend these and for extend policy management (other WPF
attributes that are IBM controlled are listed in the policy section). When a partition is created, WPF provides some
default properties that can be used by programmers and administrators to control. The programming guide describes the
IBM set attributes. In addition, users can add their own depending on the manner in which partitions are created.

In this example, we will use an existing property, the partition name specifically, to match yet a third match criteria,
and thus override the two default polices that match two match criteria. A new policy will be created below to
accomplish this. A policy consists of propertiesthat control the behavior of the HA Managed Group, and the match
criteria. For this example, the WPF default attribute name “-pn” is set and the value is the partition name. In the
samples above, the partition name would be PK000001 for example. If apolicy is created, that not only specifies the
match criteriafor HA Manager Group type (in our case for partitions, that is“-gt"), cluster partition scope related to
activation (“-ps’), and the partition name (“-pn”) is defined, the policy will override the defaullt.

Thus, for this example, we will create a new policy with 3 match criteria, effectively overriding the default attributes to
facilitate a common requirement, e.g. to balance the partitions at startup. To accomplish this, we will extend the default
cluster scoped partition policy, and define a preferred server startup choice that resultsin the HA Manager assigning a
partition to one of two servers. Serversthat are for preferred startup are an example of a coregroup property as
compared to a match criteria. Once the maximum match criteriais established during runtime, the policy attributes will
be applied.

In this particular case, a primary and backup server will be denoted. If primary does not start, or starts later than the
secondary, the partition will start on the secondary. The goal in this case isto at least start the partition one 1 of 2
servers, and these two servers will be alternated for each partition to achieve a balance startup.

In addition, as we are not trying to change the Application Server functionality, just the startup location, the other
coregroup properties are set the same as already denoted in the coregroup.xml above.

Version 1.0.1 Page 32/144 © 2004 IBM

With that background in place, it istime to implement the examples.

First, either acquire the example policies from the WPF web site, or type the following in to atext file. For this
example, name the text file “policyPK 1_startup.properties’ and place in the deployment manager \bin directory.

CoreGroupName = DefaultCoreGroup

PolicyType = OneOfNPolicy

PolicyName = PK 1StartupPolicy

PolicyDescription = WPF Cluster Scoped Partition Policy Extended PK 000001 Start
IsAlivePeriodSec = -1

QuorumEnabled = true

NumOfMatchCriteria= 3

Name 0=-gt
Value 0=-p
Name 1= -ps
Vaue 1=-c

Name_2 = -pn

Value_2 = PK000001

Failback = true

PreferredOnly = true
NumOfPolicyServers = 2
NodeName 0 = NodeA
ServerName 0 = cluster_member_1
NodeName_1 = NodeA
ServerName_1 = cluster_member_2

Note, if you opted to use different server names, node names, etc.. make the appropriate changes to suit your
configuration. Notice the 3" match criteriain bold, this will be loaded prior to the startup of the cluster.

2.4.7 Managing Policies Example

If the cluster is running, stop it at this point. Also ensure the Deployment Manger and NodeA’ s node agent is running.
Open acommand shell, and change directory to the Deployment Manager \bin directory. Ensure the
policyPK1_startup.properties created above is a so in the Deployment Manager \bin directory.

Execute the following command to load the policy created above.
wpfadmin createpolicy policyPK 1_startup.properties
The generated output should look something this, if not, please verify the propertiesfile:

wsadmin -lang jython -f wpfadmin.pty createPolicy policyPK 1_startup.properties

WASX7209I: Connected to process "Deployment Manager" on node CellManager using SOAP connector; The type of processis: DeploymentMana
ger

The policy PK 1StartupPoalicy has been created

The coregroup.xml in for the Deployment Manager now has the following policy:

<policies xmi:type="coregroup:OneOfNPolicy" xmi:id="OneOfNPolicy_1097944892103" name="PK 1StartupPolicy" description="WPF Cluster
Scoped Partition Policy Extended PK 000001 Start" policyFactory="com.ibm.ws.hamanager.coordinator.policy.impl.OneOfNPolicyFactory"
isAlivePeriodSec="-1" quorumEnabled="true" failback="true" preferredOnly="true" preferredServers="CoreGroupServer_1097678779756
CoreGroupServer_1097678774418">
<MatchCriteriaxmi:id="MatchCriteria_1097944898452" name="-gt" value="-p" description=",None"/>
<MatchCriteriaxmi:id="MatchCriteria_1097944898532" name="-ps" value="-c" description=",None"/>
<MatchCriteriaxmi:id="MatchCriteria_1097944898582" name="-pn" value="PK000001" description=",None"/>
</policies>

Normally, if the node agent is running, the coregroup file will be propagated (can verify by looking at the
coregroup.xml file and finding the entry above). Otherwise, the node should be synchronized so the policy update in
the coregroup can be propagated to the nodes in the cluster. To do so, with the nodeagent disabled, the syncNode
command can be used.

Version 1.0.1 Page 33/144 © 2004 IBM

Use the administrative console, and start the cluster.

In this case, the partitions startup typically on cluster_member_2, thus PK000001 should be the only one on
cluster_member_1, Y our configuration may differ. To verify after cluster startup:

wpfadmin listActive

wsadmin -lang jython -f wpfadmin.pty listActive
WASX7209I: Connected to process "Deployment Manager" on node CellManager using SOAP connector; The type of processis: DeploymentMana

ger
WPFC0050I: Application WPFK eyBasedPartitionSample, Partition PK000010: Server Cell\NodeA\cluster_member_2
WPFC0050I: Application WPFK eyBasedPartitionSample, Partition PK000009: Server Cell\NodeA\cluster_member_2
WPFC0050I: Application WPFK eyBasedPartitionSample, Partition PK000008: Server Cell\NodeA\cluster_member_2
WPFC00501: Application WPFK eyBasedPartitionSample, Partition PK000007: Server Cell\NodeA\cluster_member_2
WPFC0050I: Application WPFK eyBasedPartitionSample, Partition PK000006: Server Cell\NodeA\cluster_member_2
WPFC0050I: Application WPFK eyBasedPartitionSample, Partition PK000005: Server Cell\NodeA\cluster_member_2
WPFC0050I: Application WPFK eyBasedPartitionSample, Partition PK000004: Server Cell\NodeA\cluster_member_2
WPFCO00501: Application WPFK eyBasedPartitionSample, Partition PK000003: Server Cell\NodeA\cluster_member_2
WPFC0050I: Application WPFK eyBasedPartitionSample, Partition PK000002: Server Cell\NodeA\cluster_member_2
WPFCO0050I: Application WPFK eyBasedPartitionSample, Partition PK 000001: Server Cell\NodeA\cluster_member_1

Notice, all the partitions started on cluster_member_2 rather than cluster_member_1.

To update the policy, we could ssimply update the —pn option, and adjust so applies to PK000002 instead or a second
policy could be created. An additional operation could be simply stop cluster member 1, e.g. “stopserver
cluster_member_1". In this case, since “Failback” is set, HA Manager will try to activate on cluster_member_2.

The policy can be updated using the following command:

wpfadmin updatePolicy “ PK 1StartupPolicy” -failback true-preferredOnly false -preferredServers NodeA/cluster_member_2,NodeA/cluster_member_1

The command output will appear similar to:
C:\was\nd51\bin>wsadmin -lang jython -f wpfadmin.pty updatePolicy PK 1StartupPolicy -failback true -preferredOnly false -preferredServers
NodeA/cluster_member_2,NodeA/cluster_member_1

WASX7209I: Connected to process "Deployment Manager" on node CellManager using SOAP connector; The type of processis: DeploymentManager
The policy PK1StartupPolicy has been updated

To delete the policy:

wpfadmin deletePolicy PK 1StartupPolicy
wsadmin -lang jython -f wpfadmin.pty deletePolicy PK1StartupPolicy
WASX7209I: Connected to process "Deployment Manager" on node CellManager using SOAP connector; The type of processis: DeploymentMana

ger
The policy PK 1StartupPolicy has been deleted

If the cluster is restarted, you noticed you have reverted back to the default startup partition placement algorithms.

This concludes this example sequence. Keep in mind thisis not the optimal way to modify the selected startup servers.
Please refer to the HA Manager Policy section for more information.

2.5 Example Summary

In summary, this sequence of stepsis used to install a Partitioned J2EE Application. The other example applications
can be used in asimilar fashion. Note the readme.txt included within each J2EE ear file for additiona details. The
following sections provide more overview on some the topics illustrated in this example sequence.

Version 1.0.1 Page 34/144 © 2004 IBM

3 Partitioning Introduction

This section explains the terminology used in the remainder of this text, and provides basic information programmers
and administrators should be aware of. More specific information for each audience is provided in the sections specific
to each discipline.

3.1 What is a Partition?

A “Partition” is simply auniquely addressable end point within the cluster. A partition is not aserver (JVM). A
partition has alife cycle, and is managed by the High Availability Manager (HA Manager). A partition is created
dynamically during J2EE application initialization at startup and then available for client applications to use as atarget
end point when in the “ Active” state. To become “Active”, HA Manager will move the partition from a*“ldle” state to
an “Active’ state viaa management transition. The state transitions can result from JM X management commands or
system events such as an application server starting or stopping. The wpfadmin command provides the administrator a
list of active partitions.

A partition can be activated on any cluster member in the cluster. The HA Manager guarantees thereisasingle
instance of an active partition in the cluster at a given time within the cluster for Cluster scoped partitions (thereis
another type called Node Scoped discussed later in this document). The HA Manager allows a partition to be moved
from one member in the cluster to another via awpfadmin command. When moving a partition, the partition will
change states on each cluster member. For example it will be deactivated on the original cluster member, and it will be
activated on the new target cluster member.

3.1.1 Partition Life Cycle

Partitions are by default highly available. A partition will only be hosted on a single cluster member at atime. They are
made highly available using the HA Manager component. If a cluster member fails either because of a JVM shutdown,
aJVM panic or the box hosting the cluster member fails/gets powered down then the HA Manager moves all partitions
which were running on the failed cluster members to the surviving cluster members.

The following diagram illustrates the state transitions a partition will encounter as member of an HA Group.

- IDLE:

Partition is currently deactivated and waiting for an activation command, a Partition isin this state at the Bean
start during server startup after the createPartitionDefinition(...) until the PartitionLoadEvent(...) APl iscalled by
the HA Manager Coordinator.

- ACTIVATING:

HA Manager is attempting to activate the partition but has not been acknowledged yet, thisin effect during the
PSSB PartitionL oadEvent(...) method execution.

- ACTIVATED:

This means the partition current activate and working. The PartitionLoadEvent(...) event in the application has
completed. This state isimplies that the HA Manager has picked a target application server for this partition, it is
active and ready to process methods, and the Work Load Management layer has enabled for client to route
requests to the particular application server associated with the specific partition.

- DISABLED:

This means the partition whilst still part of the group cannot become an active member. Thisisafailure state.

- DEACTIVATING:

The partition received a deactivate signal and is still deactivating. This occurs while the PartitionUnloadEvent(...)
method executesin the PSSB for this partition. The Partition then returnsto IDLE and the HA Manager signals
the activate coordinator managing that group and provide it a copy of the current local state.

Version 1.0.1 Page 35/144 © 2004 IBM

DISABLEJ .~ IDLE

k
N
PSSB Creates

\

/
‘ACTIVATING]

. _/

- ™
FEACTIVATING J

HA M anager
L A ctivates

'ACTIVE

)

Server Stop, Fail
M anagement Comm
(e.g. move)

Figure 1 Group member valid statetransitions

3.1.2 Partition Creation

A partition is created when the J2EE Application starts or subsequently after the start is complete viathe
PartitionManager interface. During the application startup, via the PartitionManager interface in the WPF framework,
the application programmer implements an API that dynamically creates the partitions by name. The partitions created
can be either hard coded strings, e.g. “P0O01” or could be strings from the result of an external input such as a database.
All the same partitions should be created on application serversin the cluster, otherwise that partition will not be
activated.

A more complete example will be placed in the programming guide, but creating a partition in the most straightforward
manner isimplemented with the following API in the programmer’s PSSB’s Partiti onDefinition[]
getPartitions() method:

PartitionDefinition p[x] = createPartitionDefinition(String partitionName)

The programmer will typically implement aloop and create partitions using a string. The name itself can be any typical
character string. For example, 2 partitions could be created with the above API and nhamed “P001” and “P002". Each
partition will be subsequently activated on a single member in the cluster when the HA Manager detects and “runs’ the
policy. The partition name, e.g. “P001”, must be unique within the entire cluster.

If this API does not execute consistently on each application server in the cluster, the partition cannot be moved to or
made active on a given application server. Interms of debugging this problem, please refer to the Debugging Tips
section in the management chapter.

3.1.3 IIOP Routing to a Partition

Client requests submitted using the Orb (via [10P) can be routed to a particular partition in a cluster. When the client
makes a remote request to the routable session bean, the client stubs determine which partition the request is intended
for. The current location of the partition is determined using the WebSphere workload management (WLM)
framework. The request is then sent directly to the cluster member currently hosting the partition. If more than one
cluster member is hosting the partition then the requests are dispatched in round robin fashion over the set of candidates.

Version 1.0.1 Page 36/144 © 2004 IBM

Partition
Context is
NULL?

Partition Router

WLM Router

\

The above diagram shows how the request flow is processed in WPF-enabled WebSphere application servers.

With Extended Deployment isinstalled, new router called WPFWLM router or partition router is created. All requests
will go to WPFWLM router or partition router first no matter the requests need partition routing or not. If partition
router decides that the request doesn’t need to do partition routing, partition router will forward this request to normal
WLM router. If partition router decides that this request requires partition routing, partition router will use partition
routing mechanism to route this request directly to right partition as denoted as small box inside big oven. There may
have thousands of partition per server.

Application writers can control their application’s routing behaviors by writing <EJBName>_PartitionKey.java class,
this classis used to signal whether partition router or normal non-partition WLM router is used to do routing.

There is <EJBName>_PartitionKey.java for each EJB remote interface you want to make it partition routable. Inside
<EJBName>_PartitionKey.java, you need to have a static method for each remote method that you want to make it
partition routable. The static method returns a not null string to signal partition routable to partition router. Without
such static method or static method returning null, partition router will handle this request as non-partition routable, and
forward this request to normal non-partition WLM router. More detail related to the <EIBName>_PartitionKey classis
provided in the programming section of thistext.

3.2 What is a Partitioned Stateless Session Bean?

A Partitioned Statel ess Session Bean is a statel ess session bean that implements the PartitionHandlerL ocal interface,
and utilizes the PartitionManager to create partitions from the WPF framework. Thus, the runtime characteristics are
the same as a normal stateless session bean from a runtime perspective.

The specia features of this bean type include the following:

- While the application started in the EJB Container, the bean is analyzed, and if a PSSB the
PartitionHandlerLocal interface methods are called, which when implemented with the PartitionManager AP
will submit requests to the HA Manager Coordinator to create and activate partitions based upon the current
policy.

- During the execution of methods from the client to the server implementation of the PSSB, each client
method invocation will be intercepted and processed to determine which partition this method should be
driven against on the server infrastructure. For example, assume a PSSB named TestBean is being
demonstrated, and this bean has a remote interface method called ping(String partition). When the client
executes the TestBean.ping(partition) method, the TestBean_PartitionKey.ping(partition) (a class the
programmer will create) will process all the method attributes and return a single string to advice the WLM
subsystem which partition endpoint the method should be directed towards.

Version 1.0.1 Page 37/144 © 2004 1IBM

- The PSSB has several methods to handle the state changes the partition instances may encounter during
normal execution. For example, there is PartitionL oadEvent(Partition) and PartitionUnL oadEvent(Partition)
method that will be executed if the administrator uses IMX or wpfadmin command to move a partition
endpoint from server to another server. In this case, if a Partition POOL is associated with application server
appsvrl, and the user execute a wpfadmin move operation that changes the POO1 partition from appsvrl to
appsvrN in the cluster these bean call back methods are invoked. The PSSB on appsvrl would receive a
deactivate callback from HA Manager, and in turn the WPF runtime would call the
PartitionUnLoadEvent(...) method. After this method successfully completes, on appsvrN HA Manager will
drive an activate related call back method, and the WPF runtime will execute a PartitionLoadEvent(...) on
the PSSB.

In summary, a PSSB is atypical session bean that implements and calls methods from the WPF framework. These
methods in many ways are similar to existing EJB call back method handling, but have function that isrelated to
partitioning rather than normal EJB call back methods.

3.3 What is a Partitioned J2EE Application?

A partitioned J2EE application is atypical J2EE application with a single Partitioned Stateless Session Bean (PSSB).
There are no limitations related to the J2EE application that includes the PSSB. For Extended Deployment 5.1, asingle
application ear file, can include several EJB modules as normal. However, only one EJB module can contain the single
PSSB. In addition, the partition names chosen during the PSSB Partition Manager initialization sequence must be
unique within the cluster. Also, the application should be installed on nodesin the cluster.

For customers using web content, e.g. JSP, HTML, Servlets, they can also reference the PSSB normally via JNDI, and
the EJB module will contain the PSSB. The servlet typically will execute aremote method of the EJB PSSB remote
interface, which result in arouted call to the server with the appropriate target endpoint partition.

A single PSSB can have multiple partition sets created during the partition creation process. For example, if your
organization has a solution that heeds to map partitions to customer id to a given cluster member to take advantage of a
partition database solution. In addition to mapping by the customer id, and acquiring the customer information, assume
the customer request need to be mapped to a partition for further processing. To satisfy this need, the application will
map the request to another partition scheme, in this, case two separate partitions schemes are required. The WPF
framework provides both the programmatic support and management functionality to support more than one type of
partition scheme in the same application.

The various types of programming strategies for PSSB include calling the bean directly, using a Partition Routable
Bean and a Fagade Session interface to the PSSB. Both approaches allow the PSSB to provide the underlying routable
support, but allow the business interfaces to be externalized in another bean within the same application, same EJB Jar
specifically.

3.4 What is a Partitioned HTTP Application?

Aswith a Partitioned J2EE Application with WPF, each HTTP WPF application must also contain a Partitioned
Stateless Session Bean (PSSB). This bean interacts with a HttpPartitionManager interface make requests of HTTP
Partitioning. An application may optionally contain one or more web modules that may also use the
HttpPartitionManager. A Servlet (within aweb module) may register for WPF events such as the loading and
unloading of partitions by the WPF subsystem. . HTTP Partitioning, a single partition should only be active on a
single application server within the cluster. Finally, in addition to the application.xml contained in the META-INF
directory of an enterprise application archive (EAR), an application may also specify partition information in a
partitions.xml file.

This application is particularly useful if the EJB Container and Servlet are collocated on the same application. Note that
the EJB client and Web client will be directed to the same target endpoint partition on the application server. This
implies that partitions used jointly by 11OP and HTTP may only be active on a single application server within the
cluster. Please refer to the programming guide for more information.

Version 1.0.1 Page 38/144 © 2004 IBM

3.5 Samples Overview

WebSphere Extended Deployment installation process installs 8 example Partitioned J2EE Applications. These are
located in the <Deployment Manager Home>\installableA pps directory. Most examples have two versions, a non-
deployed example with the source included and a fully deployed and updated stub version (WPF requires a post
ejbdeploy stub update step).

For those wishing to view the code, we encourage you to import each Partitioned J2EE Application into WSAD, and
look over the Session Bean implementation. The Partitioned J2EE A pplications with the same name but prefixed with a
D_* areready for installation. When installing:

- do not select to execute the deploy step during the installation

- thebasic stepsin the tutorial should be followed

As areminder, every WPF Partitioned J2EE Application must be deployed normally after written. However, these
application require an additional step. Each application must have follow-on processing to update the generated stubs
for this version of the product. The utility to perform thistask is “wpfstubutil”, and documented in the programming
guide. If thistool is not used, the normal round robin session bean method execution across all available will occur.

3.5.1 Partition Examples

Sample Description

WPFK eyBasedPartitionSample.ear Uses a partition schemed based upon specific database
keys. This example Partitioned J2EE application is used
earlier in this document.

Note: this client cannot be installed in the same cluster as
the WPFFacadePartitionSample.ear, due to the current
restriction that partitions names must be unique in the

cluster.

WPFHashBasedPartitionSampl e.ear Uses a mapping approach to map many incoming items to
aset of partitions via hashing.

WPFHybridBasedPartitionSample.ear Combines an integrated key based and hashed based
example

WPFFacadePartitionSample.ear This example uses a session bean fagade, with the intent

that the PSSB routing is all done on the server side. This
is the most optimal way in terms of performance to use
partition based routing, as al the routing work is done
within the server infrastructure versus the client.

Note: this client cannot be installed in the same cluster as
the WPFK eyBasedPartitionSampl e.ear, due to the current
restriction that partitions names must be unique in the
cluster.

ProxyDSA ccountSample.ear Combines the WPF partition functionality with
Datasource Proxy functionality.

httpwpfsample.ear HTTP Partitioning example includes a sample Servlet that
leverages the Servlet API.

The deployed versions have a D _ prefix, and are the ones that should be used by administrators to experiment. The
programming staff can use those without the D__ prefix, as they have the source code included. In addition, both
versions have a "resdme” document that can be used to experiment with the sample.

Version 1.0.1 Page 39/144 © 2004 IBM

4 Managing a WPF Environment

This section describes the management capabilities of the WPF framework within WebSphere Extended Deployment.
The section will assume the user has some experience with the WPF example scenario above. This section beginswith
an HA Manager overview, provides general guidelines and then moves to more detailed explanation of the individual
management functions

4.1 HA Manager

The high availability manager (HA Manager) isanew component for WebSphere 5.1. Extended Deployment provides
the capability to manage HA groups of resourcesin a clustered environment. The HA Manager is configured using a
policy mechanism allowing for precise control of its runtime behavior.

4.1.1 HA Manager Overview

For HTTP and EJB partitioning, the High Availability Manager (HA Manager) generally manages one or more highly
available groups, specifically for WPF this correlates partitions to cluster members. The HA Manager manages highly
available groups of application servers and partitions. As cluster members are stopped, started or fail, the HA Manager
will monitor the current state, and based upon a given set of policy attributes adjust the state of the partitions as
required. Consequently, the HA Manager provides the fundamental functionality to manage partitions. The HA
Manager allows the creation of policies that allow the programmer and administrator to replace or augment the defaults
provided. The HA Manager is a collection of technologies to manage distributed resources. The Core Group,
Coordinator and Policy functions enable the key functions the HA Manager service provides.

Core Group

A core group isaset of servers (JVMs) that can be divided up into various high availability groups. In arun-time server
environment each core group functions as an independent unit. A Java Virtual Machine (JVM) that is contained within
acell can be amember of one core group only. This VM can be anode agent, an application server or a deployment
manager. However, even though the deployment manager can belong to one core group only, it is still responsible for
configuring all of the application servers within a cell, even if multiple core groups are defined for that cell. The core
group configuration is used by the HA Manager to establish the members where WPF partitions will be alocated at
activation.

Coordinator

The coordinator is the elected, or default, high availability manager from aruntime server perspective. The coordinator
isresponsible for tracking all of the members of a core group when members leave, join, or fail. In addition, the
coordinator isnot asingle point of failure. In the event of afailure involving the coordinator, the preferred coordinator,
or adefault, picks up the high availability manager work, including the management of the core group. The default
coordinator is sometimes referred to as the active coordinator. Additional coordinators can be used. These serve as
backup coordinators and under heavy load additional coordinators are required to spread the workload.

Policy

A policy is used to designate core group members as part of a specific high availability group. A Coordinator
relies on the currently active policy as each HA Managed event is detected for each core group member. Even
though a policy is defined at the core group level, it does not apply to the core group.

A policy isbasically a set of attributes describing how the HA Managed Group should behave, and MatchsetCriteria to
define which groups should have a particular policy applied. In the example above, the PK 1StartupPolicy was an
example. As areminder, thisis how the PK1StartupPolicy appearsin the coregroup.xml file:

<policies xmi:type="coregroup:OneOfNPolicy"
xmi:id="OneOfNPolicy_1097944892103"
name="PK 1StartupPolicy"

Version 1.0.1 Page 40/144 © 2004 IBM

description="WPF Cluster Scoped Partition Policy Extended PK 000001 Start"
policyFactory="com.ibm.ws.hamanager.coordinator.policy.impl.OneOf NPolicyFactory"
isAlivePeriodSec="-1"

quorumEnabled="true"

failback="true"

preferredOnly="true"

preferredServers="CoreGroupServer_1097678779756 CoreGroupServer_1097678774418">

<MatchCriteriaxmi:id="MatchCriteria_1097944898452" name="-gt" value="-p" description=",None"/>
<MatchCriteriaxmi:id="MatchCriteria_1097944898532" name="-ps" value="-c" description=",None"/>
<MatchCriteriaxmi:id="MatchCriteria_1097944898582" name="-pn" value="PK000001" description=",None"/>

</policies>

In this case, severa attributes are defined, and HA groups that apply must match three different match criteria.
Each group is created with a set of group properties. When policies are applied, the policy with the most number
of matching attributes will be applied to a given group.

Several different high availability groups can use the same policy, but all of the high availability groups to which
it applies must be part of the same core group. A policy is established for a high availability group when that
group is created. The following policies can be specified for a high availability group:

e All active policy: Under this policy, al of the group members are activated.

e M of N policy: Under this policy, M group members in the core group are activated. The number
represented by M is defined as part of the policy details.

e No operation policy: Under this policy no group members are activated.

e Oneof N palicy: Under this policy, only one group member in the core group is activated.

e Static policy: Under this policy, group members on all serversin the list are activated.

Thus, each set of partitions can have dlightly different policies applied to them. For example, different partition groups
can betreated differently for such attributes as preferred and failback server within the same cluster. Additional details
regarding other policy attributes are described later in the management section.

The attributes particular to a policy describe how HA Manager should machine a set of partitions that map to a policy
viathe respective match criteria. In the example above, the attributes set include:

IsAlivePeriodSec — if the isAlive method should be called for an active HA Managed member, and if so, how many
seconds between requests.

quorumEnabled - aboolean value describing if the HA Group should be managed with quorum detection or not
failback —a boolean describing if when aHA Group active member fails, and recovers, should the member be moved
back to the server that is now recovered.

preferredOnly — should the HA Group active member be started on a specific cluster member, or any available at the
time the partition is ready to be activated

preferredServers—is preferredOnly is enabled, then which servers should HA Manager target to active the member
when the servers start and become operational.

The following sections describe more precisely the WPF partitioning implementation with respect to HA Manager
concepts and techniques.

4.1.2 HA Managed Policy Applied to Partitioning

Partitions use a“ One of N” policy with quorum enabled by default, which means partitions can only be activated when
the majority of the possible cluster members are online or as considered in the case, in a state of “quorum”. Each
Partitioned J2EE application creating a set of partitions (more detail for thisin next section) creates an entire set of HA
managed groups. Each “Partition” is actually an official HA Manager group, and can be managed separately from other
groups. Thus, if the customer has a need to mix and match partition policies differently for each application, or
individual partitions the capability exists. Additionally, when the specifics are discussed, each Partitioned J2EE
application can actually sub classify portions of the overall partition set into subgroups, and manage them uniquely.

For example, assume a user is creating a stock trading application. They wish to have one Partitioned J2EE application

that handles all stock types, but they wish to treat S& P 500 stocks differently due to the trade volume (load)
characteristics. When the application servers start al partitions will be activated on the set of servers available at the

Version 1.0.1 Page 41/144 © 2004 IBM

time quorum is established. At this time, the administrator can set a new policy and balance the load more effectively
using the HA Manager policy infrastructure.

If this example, the administrator wishes to balance the partitions across the entire cluster fairly based on expected
transaction volume. They can create a policy that will balance the S& P 500 partitions uniformly over all the existing
cluster members, and then balance all the other stocks across the same set of cluster members similarly. This approach
guarantees that the stocks transactions against the S& P500 companies will be balanced across the entire cluster, versus
randomly balancing all stocks over the cluster members. If the partitions were managed as one grouping, asin this case,
the result could be that some cluster members may have an inordinate number of high volume S& P 500 related
partitions and thus many more transactions than other servers. In addition, some servers may have alarge number of
stocks that receive little to none in terms of transaction volume in asingle day and are under utilized.

Other examples which utilize the HA Manager Policy support are to set preferred servers for specific partitions,
predefine servers to be used for failover scenarios, define whether a partitions should be sent back to the original server
once the server is back on-line. Many other options are available and described in the subsequent sections.

4.1.3 HA Manager Quorum Attribute

The default partition policy is quorum enabled, which is a policy attribute supported by the HA Manager. If thereisan
odd number of cluster membersin the cluster then quorum state is achieved when the number of members (application
servers hosting partitions) that have successfully started is (N/2) + 1. For a specific example, assume there are five
cluster members, then at least three must be online for any application partitions to be activated in that cluster. Three
servers constitute achieving a quorum state.

If the number of cluster membersis an even number then the same general rule applies, albeit one member will be
given two votes versus each getting one in the case of cluster with an odd number of members. If there are four
members then three of the four must be online. Each cluster member has a vote, and this vote is normally one; however,
when the number of possible cluster membersis even, then the “first cluster member” gets two votes. The “first cluster
member” is not the application server that manages to start first and is amember of a cluster. Rather, the “first cluster
member” is determined by alexically sorted list of the cluster member names. This includes the entire
<Cell>\\<Node>\\<member name> name identifier, not only the member name.

In general, quorum is reached when the sum of the votes from the online cluster members equals or exceeds the
majority of the possible votes for the cluster. Once the current cluster membership achieves quorum, then the HA
Manager will start activating cluster scoped partitions in round-robin fashion over the set of online members each
partition is activated only once across the members of the cluster. The activation process normally resultsin an
unbalanced cluster topology. The included WPF management functions offer the ability to rebalance the partitions
across all available cluster members operational at the time the balance is issued.

A partitioned application will continue running until the hosting cluster loses quorum. If the set number of votesfallsto
less than the majority then the application is stopped. This situation is uncommon and typically only happens when
there is anetwork partition that causes the cluster machines to split into two independent clusters.

For an example, assume a cluster is created, and a core group defined for that cluster. In the core group, if a particular
partition is given a preferred server to be activated within in a policy file, the HA Manager will monitor and enforce the
appropriate policy for the life cycle of the partition and the cluster member. If the cluster member (a core group
member) is brought down for maintenance or simply fails, HA Manager will reactivate the partition on another cluster
member. Additionally, if the partition in this example were defined to fail back, HA Manager would move the partition
back to the previously failed cluster member when it is available for usein the cluster.

An important fact to keep in mind, to ensure cluster reliability, if quorumislost all remaining cluster members will be
terminated. Thisisto ensure that the cluster handling the workload begins to enter a running state that is not safe or
reliable. Administrators must plan for this case, and provision the cluster as required to account for this. Additionally,
quorum is an attribute that can be turned off or on.

Version 1.0.1 Page 42/144 © 2004 IBM

4.1.4 WPF Partition HA Manager Implementation

WPF partitions are simply a single implementation of an HA Manager service. The default HA Group properties
already predefined for WPF partitions are defined in the table below.

Description Property Name Property Vaue Cluster Scoped Node Scoped Common
Cluster Name IBM_hc <cluster name> X X X
HA Group Type | -gt -p X X X
Partition Name -pn <partition name> X X X
Partition Class -pc <PSSB ¢jb class X X X
Name name>

Partition Scope -ps Cluster: -c X X X

Node: -n
Node for group -pnn <node> X

These properties can be used to define a custom policy that applies to a specific set of partition HA Groups. For
example, apolicy could be defined to apply to a particular partition’s group by included the partition namein the
MatchCriteria as was done in the example previously. Alternatively, an administrator or programmer could create a
policy that appliesto all partitions for the same application by using the Partition Class name in a MatchsetCriteria

4.1.5 HA Manager Policy Explanation

The HA Manager requires a matching policy for all WPF partitions. Examples of the possible behaviors using the
built-in policies are shown in the table below.

Built-in Policy HA Manager activation behavior

Oneof N Exactly one of the possible cluster members that can host the partition will be activated at a
time. Thisis‘classic’ HA behavior. Keep the partition running on one server at al times. This
isthe default policy for WPF partitions.

M of N The partition runs on at most M of the N available cluster members. If lessthan M members are
currently online, then it runson al of the currently running members.

All active The serviceis activated on every available cluster member.

NOOP The serviceis not activated on any member. (Not applicable to WPF specific applications).

Static The HA Manager only activates the service on a specific server. If that server is not available

then the serviceis down. Typically, if thisis used then the WebSphere node should be made
highly available using conventional clustering solutions such as HACMP and other solutions.

The default policy isthe One of N for WPF partitions. Cluster scoped partitions default to have quorum enabled, and
Node Scoped partitions do not.

HA Manager policies have the following attributes:

Name : String Thisis the unigue name of the policy.

MatchsetCriteria: Thisisthe set of name/value string properties used to determine which services a policy can
Map<String,String> | manage. Typically, a policy manages more than one HA Group.

Type Thisisthe policy type. (Oneof N, M of N, All Active, NOOP and Static).

Type-specific Each policy type has specific attributes that can be set.

attributes

Quorum : boolean If true then quorum logic is applied to all services managed by the policy.

The match set is used to determine which services are managed by a policy. A service must be managed by exactly one
policy. A policy matches a serviceif its match set is a complete subset of the service name. If multiple policies match a
service then the one with the largest match set is the one chosen to manage the service. If there is more than one policy

matching the service at the end of this process, then the HA Manager reports an error (HMGRO302E) in the log of the
coordinator’s VM, indicating that the service is offline. The wpfadmin command has several policy related commands,

Version 1.0.1 Page 43/144 © 2004 IBM

oneis useful for the cases when many policies may match a given group (and neither will be applied). Seethe
wpfadmin resolvePolicyForGroup invocation.

For example, hereisan example, WPF's Default Cluster Scoped policy:

<policies xmi:type="coregroup:OneOfNPolicy"
xmi:id="OneOfNPolicy_1097968497415"
name="WPF Cluster Scoped Partition Policy"
description="Default WPF Cluster Scoped Partition Policy"
policyFactory="com.ibm.ws.hamanager.coordinator.policy.impl.OneOf NPolicyFactory"
isAlivePeriodSec="-1"
quorumEnabled="true"
failback="false"
preferredOnly="false">
<MatchCriteriaxmi:id="MatchCriteria_1097968497415" name="-gt" value="-p" description="Default WPF Match Criterion"/>
<MatchCriteriaxmi:id="MatchCriteria_1097968497425" name="-ps" vaue="-c" description="WPF Cluster Scope Match Criterion"/>
</policies>

WPF' s Default Node Scoped Policy is defined as:

<policies xmi:type="coregroup:OneOfNPolicy"
xmi:id="OneOfNPolicy_1097968497435"
name="WPF Node Scoped Partition Policy"
description="Default WPF Node Scoped Partition Policy"
policyFactory="com.ibm.ws.hamanager.coordinator.policy.impl.OneOf NPolicyFactory"
isAlivePeriodSec="-1"
quorumEnabled="false"
failback="false"
preferredOnly="false">
<MatchCriteriaxmi:id="MatchCriteria_1097968497465" name="-gt" value="-p" description="Default WPF MatchCriterion"/>
<MatchCriteriaxmi:id="MatchCriteria_1097968497475" name="-ps" value="-n" description="WPF Node Scope Match Criterion"/>
</policies>

For example, here is an example of the WPFK eyBasedSampl e exampl e Partitioned J2EE Application group properties:

4.1.6 Policy Administration

WebSphere 5.1 Extended Deployment does not have the GUI panelsin the admin console to manage the HA Manager
policies. There are two options for administering the policies.

o wpfadmin (both a script and examples for usersto create their own custom scripts)
e wsadmin scripts.

Policies can be updated at any time and take effect immediately (do not require aJVM restart). Refer to the wpfadmin
command for examples that explain managing existing, creating new, and deleting HA Manager CoreGroup policies.

4.2 How does a “WPF Partition” relate to an HA Group

With the previous section as a background, it is important to understand a single WPF “partition” is actualy an HA
Group of members. This may seems counter intuitive. For example, when PK0O00OOO1 is created, it is created on each
cluster member in the specific cluster the application isinstalled and started within at cluster start.

Each cluster member creates a“Partition” and joins with a group of common attributes as described above. The
attributes defined are all the same, but the value of oneis unique to the partition name (-pn). For example, each

PK 000001 partition is created with a property “-pn” having the value of “PK000001". Thusthe HA Group
representing the partition’s HA Group for PK000001 has a member on each available cluster member, and only one.

Depending on the policy chosen, e.g. cluster scoped for example, HA Manager will determine on which cluster
member PK 000001 will be “activated” upon. The activated instance of the group in WPF has a special significance. For
WPF, the active member will receive all work requests for the HA Group that represents PK000001. How many
members of the HA Group for a particular partition is activated over the set of active cluster membersis called
“Partition Scope” and is discussed in more detail below.

Version 1.0.1 Page 44/144 © 2004 IBM

The key concept here is to denote that each cluster member creates a member in the HA Group, and the values of the
properties are the same. When they are created on the separate cluster members, HA Manager recognizes they are of
the same group cluster wide by comparing the group properties providing during application startup, and treats each

individually created cluster member created as part of the PK000001 HA Group when the properties are equal.

4.2.1 Partition Scope

Partitions have two possible scopes: cluster and node scope. The application specifies the scope when it creates the
partition’s PartitionDefinition. The partition scope influences the HA Group properties for the partition at creation time
and how the partition's HA Group is handled once the cluster starts.

4.2.1.1 Cluster Scope Partitions

Cluster scoped WPF Partitions are the default type. In this case, when each member of the cluster creates and joins a
Partition HA Group, only one instance will have a Partition endpoint activated. This allows clients to be guaranteed that
arouting request will be sent to a unique cluster member. Cluster scoped partitions are 11OP routable and only activate
when the cluster reaches quorum.

4.2.1.2 Node Scoped Partitions

A node-scoped partition includes a node attribute in the group properties called “-pnn”, which has a value of <node
name>. Node scoped partitions are named as follows:

If there are five nodes then there will be five active partitions, as the extra attribute —pnn distinguishes each partition on
a separate node from another. For example, on NodeA, serverA, the —pnn attribute would have the value “NodeA” . Al
partitions of that type on that logical node (could be N application server cluster members) with that partition’s set of
similar HA group properties, each set on a specific node establishing their own cluster wide group. Consequently, one
these partitions on NodeA will be activated. For the same partitions created on NodeB, all the partitions would be the
same for that application, exception the pnn value would be set to “NodeB”, uniquely distinguishing them from the
Node Scoped partitions on NodeA.

If aone of N policy matches a node-scoped partition then the partition is activated once on every node with a cluster
member started. If there are four nodes with cluster members running, then the partition will be activated once on every
one of the four nodes.

Node scoped partitions do NOT wait for cluster quorum (see 10) before activating. Requests to these partition types
will be round-robbined across members. Thus, for solutions where more then one endpoint can suffice and would
beneficial, node scoped partitions are available.

4.2.2 How many policies are too many?

The number of policies available in the Default Core Group of the HA Manager does affect performance. Each time an
action must be applied to aHA Manager Group (asingle partitionisaHA Group). The default number of WPF policies
istwo, Cluster and Node Scoped policies. Users can create an enumerable number of more unique policies that meet
their requirements. However, keep in mind, when HA Manager attempts to apply the policiesit must search through all
policies available and determine which one best applies to a specific HA Group.

In general, the suggested approach to paliciesisto use what you need, but only that many. For example, in the case of
the demonstration key based sample, a unique policy was created per partition to control the startup of the application
to agiven application server in the cluster. If the application had 10,0000 partitions, that would require 10,000 policies.
Thisis obviously not the approach a programmer and administrator should take.

Few policies can be used using additional member properties. One of the createPartitionDefinition(...) APl signatures
can have a“Map” of additiona attributes provided. These properties could help reduce the number of policies. For
example, if the user created a new attribute called “ startOn”, and the value could be a string that represents “ server#”
where # is a number representing 1 of the cluster members. The policy could then specify the default already provided
for in the Cluster Scoped policy (-gt=-p, -ps=-c), but also (startOn=server4). Thiswould provide three match criteria,

Version 1.0.1 Page 45/144 © 2004 IBM

and enable # of policies vs. 10,000 partitions. If there were 30 servers for example to start the partitions on, there could
be 30 policies, each with athird match set criteria and the preferred server to be server4. See the wpfadmin policy
commands for an example, or the example above if you have not stepped through the tutorial.

4.2.3 How many partitions are too many?

Asagenerd rule, applications should use as few partitions possible. WPF can scale to a very large number of
partitions; however, more partitions equates to more memory and additional management overhead. The JVMs hosting
the HA Manager coordinators must have adequate memory to manage their partitions. It is possible to tell the HA
Manager to use more than one coordinator to manage its partitions. If the applications in a core group use many
partitions (>1,000), then the HA Manager should be configured to use more coordinators. The actual number that a
single coordinator can manage depends on the amount of available memory in the VM and the number of
partitions/coordinator. Partitions are uniformly distributed over the available coordinator JVMs using a hash scheme
(See 17 for more information on scaling WPF).

4.3 Advanced HA Manager Concepts

4.3.1 HA Managed “Network partitions”

The danger of anetwork partition occurring is termed “ Split Brain Syndrome”. Imagine a seven-node cluster. The
network partition resultsin two clusters of four and three machines respectively. The four-node cluster will start to fail-
over the partitions it believes are down, i.e. the partitions that are running on the three nodes. The three node cluster
will behave likewise. Thisresultsin the same partitions activating in both clusters which is obviously a potentialy a
catastrophic problem (fatal in the case of how the WPF runtime reacts). We will classify the cluster with four nodes as
amajority quorum and the cluster with three nodes as the minority quorum. Majority quorum means the sum of the
votes among the cluster membersis at least the majority of the total votes available (Seven in this example). The HA
Manager will kill all minority cluster members which have active quorum enabled partitions. Thiskill process happens
as soon as the minority cluster is detected and before any partitions are failed over.

4.3.2 Critical time window for network partitions

There till exists a small time window of danger when a network partition occurs. Assume there are seven partitionsin
seven nodes, with a single partition running on each cluster member. The network partition occurs. We now have
partitions 1-4 running in the majority network and partitions 5-7 running on the minority network partition. The HA
Manager running in the majority network partition detects what it thinks is an event showing nodes 5-7 failed, and
starts to failover the application partitions 5-7 on machines 1-4. A problem arises because the HA Manager running in
the minority network partition may not have realized the network partition has occurred before this failover takes place.

This could result in a situation where application partitions 5-7 are running twice, once in the majority network
partition and again in the minority network partition. The HA Manager running in the minority network partition will
tell its nodesto self exit. It is during this critical window that it is possible for an application partition to be active for a
short time period in both network partitions. The application must be designed to ‘tolerate’ this rare but possible
occurrence.

4.3.3 Tolerating the critical time window

If the partitioned application uses a database, then the application can use the following logic to tolerate such
occurrences. We make an additional table in the database called “partition_owner”. It has two columns:
e P _KEY (string).
Thisisthe partition name.
e P_OWNER (string).
The server name that was last activated for the partition.
The application logic should be modified to update the owner column for the partition being activated to the server
name. If the record does not exist then the record should be inserted.
Every transaction that results in the application state changing should then verify that the partition is still owned by this
server. This check should be the last statement to execute in the transaction. If this check fails then the transaction
should be rolled back and any existing exception returned to the client. The application can treat it in a similar manner
as adatabase failure. Thislogic will prevent the unlikely occurrence of the critical time window from causing any
problems for your partitioned applications. Based upon the scenario outlined above, when the majority network
partition starts to activate the partitions in the minor network partition, they will update the owner columns. This will

Version 1.0.1 Page 46/144 © 2004 IBM

cause the partitions running in the minority network partition to fail, and shortly thereafter the HA Manager will suicide
the cluster members ensuring a safe outcome to the network partition. This does incur small performance penalty upon
the partitioned application in the form of asingle SQL statement per update transaction; however, the cost can be
minimized if the SQL reguest can be combined with the last update/del ete statement issued to the database.

The WPF is capable of managing thousands of partitions but this requires planning in order to configure the cluster to
manage this. Normal J2EE applications that are clustered have a single route table. This route table is named after the
application name and contains the endpoints for every cluster member that is currently running the application. If the
cluster has ten members that are currently running then the route table for the application has ten endpoints. When a
cluster application uses partitions then there is one additional route table for each partition. This meansthat if the
application has 20,000 partitions then there are 20,001 route tables for the applications. The route table for a partition
has an end point for each cluster member in which the HA Manager has activated the partition.

4.3.4 Cluster member memory usage for active partitions

The route table for a partition using aone of N policy consumes about 4KB of memory on the cluster member on which
itisactive. Cluster members that are not activated for a partition do not have such aroute table. The HA Manager
coordinators also have a copy of this route table. Therefore, if acluster member has'Y active partitions then there needs
to be 4Y KB of memory. If there are N partitions for the application, then the coordinator needs 4N KB of memory.

For example, assume we have an application that has 20,000 partitions. There are 10 machines Node 1 to Node 10.
These machines have 4GB of memory and have two CPUs. Each machine has two cluster members and a node agent.
Assuming the partitions are spread evenly among the cluster members then each machine has 2000 active partitions,
1000 per cluster member. Thus, each cluster member uses about 4MB (1000 * 4KB) of memory for the route tables.
A single coordinator would require about 20000 * 4KB or roughly 80MB of memory; however, the coordinator
function can be spread across multiple servers. An example configuration for the HA Manager might be:

e Number of coordinators = 4 (All references to 4 below mean the value of this setting
o Preferred Servers = NodeA_NodeAgent, NodeB_NodeAgent, NodeC_NodeAgent, NodeD_NodeAgent

Based upon this configuration, the HA Manager will run up to four coordinatorsin the cell. If there are less than 4
JVMs running in the cell, then the HA Manager will use al running JVMs for the coordinator function. The
management of route tables will be uniformly distributed using a hashing algorithm of the set of available coordinators
(Preferred servers above). The HA Manager normally uses the lexically lowest servers as coordinators. It simply sorts
the JVMs using the server name (cell/node/serverName) and picks the lower M for the coordinator function where M is
the number of desired coordinators from the cell configuration. Based upon the current example, each coordinator will
need 20MB of memory when all four coordinators are running (80MB / 4 coordinators). The preferred coordinator list
lets a customer specify which JVMs the customer would like to use as coordinators. The coordinator function is fault
tolerant; therefore, if aJVM currently hosting a coordinator fails then another VM will replaceit. In the case where
there are less than four JVMs available (this examples preferred number), the coordinators will be redistributed equally
over the survivors.

If all machines were running and then NodeB crashed, the coordinator would continue to run on four JVMs, the three
remaining preferred servers and the lexically lowest of the rest of the JVMsin the cell, thus keeping the number at four.
The JVMs on the machines that are coordinator candidates (i.e. the preferred servers) should have their heap sizes
configured to accommodeate the possible coordinator function. Y ou can have more preferred servers than coordinators.
The HA Manager will just choose the four most preferred servers that are currently running.

4.3.5 Why define more than one coordinator?

We recommend the use of more than one coordinator with alarge number of partitions (a thousand or more) to reduce
partition activation time and distribute the memory cost associated with the coordinator function.

4.3.6 Partition Activation reaction times.

A coordinator manages the route tables of all the partitionsthat it is designated to host (based upon hashing algorithm).
Let us assume there isa single coordinator for 20,000 partitions. When the set of running JVMs changes, the lone
coordinator will evaluate the policy for all 20,000 partitions. It will then send activation/deactivation messages to the
surviving set of VMsin the cell depending on the policy, which with a single coordinator could take an inordinate
amount of time More coordinators allows for thiswork to be performed by multiple machinesin parallel and thus
improve the cell’ s reaction time in the event of partition failures.

Version 1.0.1 Page 47/144 © 2004 IBM

agreggo
Note
Marked set by agreggo

agreggo
Note
Marked set by agreggo

4.3.7 Memory usage

Recall that 20,000 partitions trandlate to a charge of about 80MB of memory for asingle coordinator server process.
Garbage collection could become a factor depending on what else the VM is hosting. Multiple coordinators allows for
the memory burden to be distributed among multiple JVMs.

4.3.8 Coordinator Configuration
When WebSphere Extended Deployment isfirst installed, it is configured as follows:

e Number of coordinators =1
e No preferred servers
e Two threads for the HA Manager to activate/deactivate partitions.

Thisis not arecommended configuration for production, especially if you are using a partitioned application. We
recommend the following work be completed prior to production:

e Figure out how many partitions you plan on having.
e Figure out the memory requirements based upon the number of partitions (see Error! Refer ence sour ce not
found.).
e Determine how many coordinators (N) you want.
e Assignatleast N + 2 preferred servers (so VM heap sizes can be sized appropriately).
e Assign an appropriate number of threads to the HA Manager thread pool.
0 Thisdepends on the number of processors available on a box as well as the nature of the work
performed by the application during partition activation.

4.3.9 Recommendations for preferred server locations

The preferred servers should be on separate physical boxes ideally for isolation reasons. The coordinator adds almost
no load onits VM host during steady state operation with the exception of its memory requirements. We recommend
the preferred servers be on ‘stable’ servers. A stable server isa JVM that is running continually and it should not be
stopped normally during production. The reason for thisis that when aJVM which is currently a coordinator failsor is
stopped then the route tables are redistributed over the surviving JVMs (preferred servers) in the cell. It is better to
reduce this churn to a minimum from an operation perspective and thisis the reasoning for the recommendations. The
additional memory load of a coordinator will increase the frequency of GC and it will reduce the memory available for
caches, etc... to any applications running in that VM. The CPU usage will very slightly influence the VM when the
cluster membership changes. These issues can be avoided by running this function on separate machines if possible.

4.3.10 Reaction times

When a partition is activated on a cluster member then the route table for the partition must be updated. A cluster
member can update the route table at arate of around 250/sec on a uniprocessor 2Ghz P4 system. If we have 10,000
partitions running on ten boxes with 2 cluster members each then this means under normal conditions that there will be
500 active partitions per cluster member. If asingle cluster member VM fails then 500 partitions must be recovered.
These will be spread® over the surviving 19 cluster members and thus each cluster member will have an additional 25
partitions that will take around 0.1 seconds to have the route tables updated. If a box failed then there would be 1000
partitions to recover. The 1000 partitions are spread over the surviving 9 machines or 18 cluster members. Each cluster
member gets an additional 50 partitions that should take around 0.25 second per cluster member for the route tables to
activate. The recovery time of the application must be added to the above times al so.

We will now show a scenario to highlight potential problems. The customer is using 40,000 partitions on a couple of 4
way systems with two cluster members apiece. This means that normally there are 10,000 partitions on a cluster
member. If asingle cluster member failed then 3300 partitions would need to be activated on the surviving 3 cluster
membera. Thiswill take 13 seconds each if it on a uniprocessor and 4 seconds on a4 way box as activation is multi-
threaded”.

3 This assumes that all cluster members are equally €ligible to host the partition. Thisisn't trueif the
customer has policies with preferred servers for certain partitions.
* The HA Manager’s default configuration uses 2 threads for activation purposes ((HAManagerservice.xml).

Version 1.0.1 Page 48/144 © 2004 IBM

agreggo
Note
Marked set by agreggo

agreggo
Note
Unmarked set by agreggo

4.3.11 HA Manager Event Callback Thread Pool

The HA Manager uses athread pool to deliver events, such asthe partition load and unload to the application. The HA
Manager guarantees that sequential events for a particular partition will be delivered serially. So, if the sequence was
load and then unload for a partition then HA Manager guarantees that the unload will not be dispatched until the load
completes, i.e. the application processesit. This thread pool is defined in the hamanagerserver.xml file that is specific
to aparticular server. Different servers can have different thread pool sizes.

4.3.12 Number of HA Manager Coordinators

It is possible to change the number of coordinators and the list of preferred servers without restarting any JVMsin the
cell, but should be done infrequently to reduce change. See wpfadmin to perform these types of changes.

4.3.13 HA Manager TCP/IP Tuning

HA Manager relieson RMM, a high performant java messaging transport protocol to transport state information
between all cluster members. Tuning RMM is critical to high transaction rate WPF transaction processing applications.

43.13.1 Overview

Each network socket is allocated a send buffer for outbound packets and a receive socket for inbound packets. These
buffers are assigned a default size that depends on parameters of the operating system. The operating system also
determines the maximum size of the socket buffers. To support high data rates at the receiver it isimperative to
increase the receiver socket buffer size (avalue of over 1 Megabyte is recommended). The RMM code attempts to
increase socket buffer sizes; in order to succeed the maximum allowed size may have to be configured.

This document describes the procedures of increasing the maximum socket buffer sizein different operating systems.

4.3.13.2 AlX

The command to useis‘no’ (i.e., network options).
The parametersare ‘sb_nmax’ , ‘udp_sendspace’ and ‘udp_r ecvspace’.
The format and recommended values are:

no —o sb_max=<val ue> where val ue= 1048576, 4194304 or 8388608
no —o udp_recvspace=<val ue> where val ue= 1048576, 4194304 or 8388608
no —o udp_sendspace=65536

no —a (to viewthe current value of all options)

Note: the value for sh_max should be greater than the others because it is the max for all socket buffers combined.

The above settings last until the next reboot. To make the changes | ast across reboots the above command should be
added to the end of thefile‘/ et ¢/ r c. net ’ and the full path of the command (‘/ usr/ sbi n/ no’) should be used.

43.13.3 Linux

The command to useis‘sysct |’ (i.e., system control).

The parametersare ‘net . core. rmem defaul t’,‘net. core.rmem nmax’, ‘net. core. wrem def aul t’
and ‘net . cor e. wrem_nmax’

The format and recommended values are

sysctl —w net.core.rmem def aul t =65536
sysctl —w net.core. wrem def aul t =65536

Version 1.0.1 Page 49/144 © 2004 IBM

sysctl —w net.core.rnmem nax=8388608
sysctl —w net.core. wrem nax=8388608

sysctl -a (to view the current value of all options)

The above settings last until the next reboot. To make the changes last across reboots the following lines should be
added to the end of thefile‘/ et ¢/ sysct | . conf’

net.core.rmem def aul t =65536
net. core. wnem def aul t =65536
net.core.rmem max=83838608
net . core. wrem max=8388608

4.3.13.4 Sun

The command to useis‘ndd’ (i.e., network device driver ?).

The parametersare ‘udp_xmni t _hiwat’,‘udp_recv_hi wat’ and ‘udp_rmax_buf’in‘/ dev/ udp’ and
‘icmp_xmt_hiwat’,'icnp_recv_hiwat’and ‘i cmp_nmax_buf’ in'/ dev/raw p’

The format and recommended values are

ndd —set /dev/udp udp_xmt_hiwat 65536
ndd —set /dev/udp udp_recv_hiwat 65536
ndd —set /dev/udp udp_max_buf 8088608

ndd —set /dev/rawip icnp_xnit_hiwat 65536
ndd —set /dev/rawip icnp_recv_hiwat 65536
ndd —set /dev/raw p icnp_max_buf 8088608

ndd /dev/udp \? To view the avail abl e paraneters
ndd /dev/udp udp_max_buf To view the current paraneter val ue

4.3.135 Windows

Under heavy load, one parameter modification that was beneficial was changing the TcpTimedWaitDelay in the
registry with regedit. The specific location is:

HKEY_LOCAL_MACHINE\SY STEM\CurrentControl Set\Services\T CPIP\Parameters

30 is the minimum setting, you will have to create a Dword to add.

Version 1.0.1 Page 50/144 © 2004 IBM

4.4 General Cluster and WPF Management Considerations

This section covers general management concerns to be aware of, command line utilities to manage the WPF
infrastructure and more specialized information such as default HA Group properties partitions have, and how extra
ones created can ease the management of a WPF Partitioned J2EE Application.

4.4.1 Scalability Considerations

For customers who plan to have high workload environments, it isimportant to plan how the cluster will operatein
normal conditions and under failure conditions. This section serves as a reminder to administrators and programmers
to avoid common scenarios that degrade cluster performance. Each application solution is different, but these
guidelines should provide some general advice to ensure your application can achieve and sustain a performant
implementation.

The HA Manager monitors many cluster wide resources. In general, this takes a certain amount of performance. If the
cluster members are paging or otherwise engaged such that the HA Manager functionality cannot operate effectively,
HA Managed events will begin to occur to account for perceived cluster member anomalies. It is recommended the
application servers not be under alarge load in normal cases to better handle spikes at times when challenges arise. In
addition, reducing virtual memory paging as much as possible will result in a more reliable cluster operational
environment.

4.4.2 Conservative Partition Design

The number of partitionsin a specific solution should be managed carefully. When possible, fewer partitions are
generaly simpler and more efficient. Each partition takes system resources to implement within Workload
Management, additional administrator effort from a system management standpoint and will take away cluster
performance when tracking from a performance monitoring perspective.

As a solution requires more partitions, each of these begins to scale and require either additional resource and/or
additional performance to maintain. Some solutions are complicated, and may need larger number of partitions, or even
creating two or three different types of partitions to be more efficient (see hybrid partition vs. akey Application Server
solution), in these cases carefully manage the solution. Possibly dynamically create partitions as they are needed, and
when not required remove them.

From an administrative standpoint for example, often one of the most costly long term aspects of an implementation,
managing several thousand partitions and the load placed against them in the cluster is more challenging when
compared to a solution requiring the management of hundreds of partitions. However, several solutions might require
in the order of thousands of partitions, if so, the computing resources, devel opers and administrative resources to
address the problem will be more extensive.

Internally to IBM, WPF has been tested with 10,000 partitions under load across several machines successfully. A key
concern finding during those tests was that the number of active coordinators must be 4 at least in this case.
Additionally, using the HA Manager Policy to set these coordinators to specific physical machinesin the cluster and
setting preferred servers for the partitions to avoid these machines (or even application serversif have a reduced
number of machines) proved to be beneficial.

More details are provided in the management section, but in general we think users should manage resources
conservatively. This approach ensures that when performance spikes occur and failure conditions arise, the operational
integrity of the cluster is not compromised.

4.4.3 Physical Machines CPU and Paging Utilization

In general, machines should be provisioned within the cluster to utilize 10-20% CPU under load. Thisisto ensure that
under heavy load scenarios, failure and failover cases the remaining cluster members can handle the load. In addition,

this reduces the need for the operating system to use virtual memory paging. For OnDemand, high throughput capable
systems that need to handle critical workloads, avoiding paging isimportant.

Version 1.0.1 Page 51/144 © 2004 IBM

In addition, be mindful that many factors affect performance. The following sections are ideas and reminders
programmers and administrators should consider when implementing a high throughput solution (severa outside the
scope of WPF itself).

4.4.4 Application Thread Pools (Async Beans)

For applications with computational expensive operations which process incoming requests from a non-transactional
message transport, use a separate ‘worker’ thread to perform the computation. After receiving the request, create an
Async Bean Work instance and submit the work to a WorkManager to be performed on a separate thread.

When the Work completes, carry on processing the request. Let us assume that your application is running on a four-
way SMP machine. The WorkManager used for the application should be limited to two threads and should not be
growable, limiting the impact of these long running tasks to two of the four CPUs. The remaining two CPUs can be
used to schedule the short running tasks.

Please refer to WBI-SF documentation for more details, or subsequent to the general availability the Extended
Deployment Library.

4.4.5 Carefully control what is running on each node and application
server in the cluster

It may be obvious, but to achieve the highest performance levels do not run anything else on the cluster members with
your critical application, especially when it has 2 or less CPUs. Do not run any computational commands on the
machine such astar, gzip, or similar applications. These commands may negatively impact thread scheduling for the
applications.

Additionally, service functions such as the WPF PM| Performance Monitor and the HA Manager coordinator(s) should
be carefully managed. The HA Manager policy mechanism covered above allows the administrator to be very specific
about which runtime components should run where.

For example, if the performance monitoring function will be used often for your environment, it is suggested the PMI
Aggregator be configured to run on an application server exclusively. Thiswill then prohibit the chance that
performance monitoring could slow production functionality. Even better solution is to put the performance monitoring
PMI Aggregator on another machine.

The WPF PMI Aggregator is one example, there are several such as the coordinator that implemented the HA Manager
(in some cases several as more partitions are activated in the cluster).

4.4.6 Tune the operating system to use small time slices.

Some operating systems use time slices up to 200ms, which is just too long when many runnable threads could be
scheduled. Lowering the maximum time slice to 10-30ms may help by allowing more threads per second run through
the available CPUs. This can lower the scheduling latency at the expense of delaying threads that take longer than
10ms to complete. Some application specific tuning may be required, but try different values to see what works best
for your application. There may be more context switches, but most modern microprocessors are capable of billions of
instructions per second

AlX http://www-106.ibm.com/devel operworks/eserver/articles/aix5 cpu/

Linux 2.2/2.4 http://www.linuxworld.com/story/34374.htm

4.4.7 Mixing application types must be considered carefully

If your application set has relatively short requests, then installing severa similar applications on the cluster should
provide reasonable throughput. However, the use of CPU intensive requests require special considerations.

Version 1.0.1 Page 52/144 © 2004 IBM

http://www-106.ibm.com/developerworks/eserver/articles/aix5_cpu/
http://www.linuxworld.com/story/34374.htm

One approach isto have a Partitioned J2EE Application for compute intensive application in a unique cluster within the
cell, with exclusive access to specialized hardware for that purpose. Alternatively, if one needsto mix alighter
application set with a more computationally bound application set within the same cluster, the WPF framework can
prove helpful if managed correctly.

To managed the mix of application types, it would be prudent to utilize the HA Manager Policy function to focus CPU
intensive procedure callsto physical and logical nodes designed to handle that |oad. The client use the WPF framework
can then route the requests to the partitions coll ocated with computing resource designed to fit the task within the
cluster. In addition, WPF allows the administrator to dynamically modify the target endpoint if additional computer
resources can be acquired under heavy |load situations.

An additional approach isto create a partition set with an M of N policy with the HA Manager Policy framework. Then,
set the preferred only attribute to true coupled with designating specific establishing preferred servers for those specific
partitions to dedicated machines in the cluster for that purpose. Finally, create a client to direct requests to the cluster
resources designed to handle that load. The M of N policy lets you assign more machines for that workload if you need
it plus [1OP WLM will round robin the requests over the set of machines which are running the heavy load capable
partition set.

In summary, you can achieve the same thing without partitioning by simply putting the heavy logic J2EE application
and deploying it on its own cluster, and then use WebSphere Extended Deployment’s dynamic cluster support to
dynamically expand/contract the cluster if necessary. Please see the WebSphere Extended Deployment Infocenter for
more details on the later option.

4.4.8 SMP machines preferred in partitioned implementations

Two or more processors will execute your requests faster than one for a runnable queue of N entries, and four
processors are twice as fast again (in general). If you cannot segregate the applications with lighter CPU workloads
onto asmaller box, then an SMP solution may be more appropriate, as SMPs are inherently less susceptible to the
problems associated with mixed CPU load scenarios.

4.4.9 OnDemand LPAR Resource Advantages

If the WPF enabled applications are running within a cluster consisting of LPAR capable machines, then it is possible
to allocate additional CPU resources to mitigate latency or higher demand scenarios without suffering even a partition
subset outage. AlX/pSeries offers this support. For many customers, this approach could be critical.

For example, if acustomer utilizes a blade center or Linux cluster, e.g. many smaller footprint servers, and wishes to
even out the load against the given cluster members, an outage for at least a subset of the endpoint partitions will occur,
This occurs because WPF does offer the ability balance partitions dynamically between blades, either in mass or by
selectively moving one partition at a time between application servers. However, this does result in a short term outage
as the partition being moved needs to be taken off-line (deactivated with a PartitionUnL oadEvent(...)) and then
reactivated on another physical blade.

In the case of an LPAR capable machine, more resources can be provided to handle partitions that are receiving
abnormally high number of transaction requests. Many of the IBM servers now allow administrators to literally contact
the IBM web site to purchase additional LPAR resources when heavy load situations occur.

4.4.10 Dealing with hot partitions

This section provides some recommendations to deal with the case of a hot partition, or a partition that is experiencing
an inordinately high workload for which the hosting server cannot keep-up

4.4.10.1 Movethe busy partition(s) to aless busy server.

Use the HA Manager IMX commands to move the busy partition from one server to another or the wpfadmin
command. This action will deactivate the partition on the original server and then activate it on the new server (the
partition will be offline during this period). Most of the offline time is associated with the application’ s deactivate and

Version 1.0.1 Page 53/144 © 2004 IBM

activate code processing. As mentioned in the OnDemand L PAR section above, this does result in an outage for the
specific partition. The approach below is preferred over this approach.

4.4.10.2 Movethelesscritical partitionsto another server.

This processis the inverse of the process discussed in above. In this case, to avoid an outage on the busiest partition
move the less busy partitions on the same cluster member to free up CPU capacity for the busy partitions. Inthis
scenario, the less busy partitions will incur the temporary outage, which may be more acceptable than deactivating the
busy partition(s).

4.4.10.3 L PAR expansion (best option to avoid outages)

For a cluster member hosted on an LPAR, it may be possible to allocate more CPU resource to provide additional
capacity for the partition. This solution does not require an outage and illustrates the major advantage of using
WebSphere Extended Deployment WPF framework.

Version 1.0.1 Page 54/144 © 2004 IBM

4.5 Management Script (wpfadmin) and Usage

The wpfadmin is a python script that allows the user to perform several administrative operations on acluster. This
script is not only meant for customers to use, but also provides programming examples alowing them to create their
own automation command library.

The script callsaHA Manager MBean (IM X Coordinator), which then calls directly to the HA Manager runtime
support to perform the operations as, described above. The following is the list of operations to be supported in the
wpfadmin script, along with specific usage scenarios.

For the purposes of this section, the application WPFK eyBasedPartitionSampl e has been installed to a two node cluster
with thirty partitions divided into two classifications: PK000001 - PK000010 belonging to classl and PK000011 -

PK 000030 belonging to class2. The system wpfsample3 is the deployment manager and also has four application
servers, and wpfsample2 has five application servers.

In the examples below, wpfadmin is executed to demonstrate example invocations. On Windows platforms, the
wpfadmin.cmd application can be used, and referenced on the command line as “wpfadmin”. The command functions
identically across all supported platforms unless documented otherwise for a specific command.

4.5.1 Management Commands

The wpfadmin script provides many commands to assist in managing a WPF environment. The commands ease the
burden of setting trace specifications, manage active partition members, managed polices and many other tasks. Asa
customer you are encouraged to enhance the example script, and create your own as you see fit to better automate your
own environment.

45.2 listActive

Displays the application servers hosting active partitions. This command can be scoped to only show information for a
particular application, partition, and classification.

Available options:

--0 <number of partitions>. The number of partitions that are printed out. If the --0 is not specified; it will default to
50 partitions.

--a<gpplication name>. Prints out partition information for the given application.

--p <partition name>. Prints out partition information for the given partition.

--class <classification name>. Prints out partition information for the given classification.

Usage: ./wpfadmin listActive
Example:
[root@wpfsample3 bin]# ./wpfadmin listActive

WASX7209I: Connected to process "Deployment Manager”" on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

WPFCO0050I:

WPFCO0050I

WPFCO050I:
WPFCO050I:
WPFCO050I:
WPFCO050I:

WPFCO050I

WPFCO050I:
WPFCOO050I:
WPFCO050I:

WPFCO0050I

WPFCO050I:
WPFCO050I:

Version 1.0.1

Application WPFK eyBasedPartitionSampl e, Partition PK000030:
. Application WPFK eyBasedPartitionSample, Partition PK000029:
Application WPFK eyBasedPartitionSample, Partition PK000028:
Application WPFK eyBasedPartitionSampl e, Partition PK000027:
Application WPFK eyBasedPartitionSampl e, Partition PK000026:
Application WPFK eyBasedPartitionSample, Partition PK000025:
: Application WPFK eyBasedPartitionSample, Partition PK(000024:
Application WPFK eyBasedPartitionSampl e, Partition PK000023:
Application WPFK eyBasedPartitionSample, Partition PK000022:
Application WPFK eyBasedPartitionSampl e, Partition PK000021:
. Application WPFK eyBasedPartitionSample, Partition PK000020:
Application WPFK eyBasedPartitionSample, Partition PK000019:
Application WPFK eyBasedPartitionSampl e, Partition PK000018:

Page 55/144

Server wpfsample3Network\wpfsample2\s7
Server wpfsample3Network\wpfsample2\s6
Server wpfsample3Network\wpfsample2\s5
Server wpfsample3Network\wpfsample2\s4
Server wpfsample3Network\wpfsample3\s9
Server wpfsample3Network\wpfsample3\s3
Server wpfsample3Network\wpfsample3\s2
Server wpfsample3Network\wpfsample3\sl
Server wpfsample3Network\wpfsample2\s8
Server wpfsample3Network\wpfsample2\s7
Server wpfsample3Network\wpfsample2\s6
Server wpfsample3Network\wpfsample2\s5
Server wpfsample3Network\wpfsample2\s4

© 2004 IBM

WPFCO0050I:
WPFCO050I:
WPFCO00501:
WPFCO050I:
WPFCO050I:
WPFCO00501:
WPFCOO050I:
WPFCO050I:
WPFCO00501:
WPFCO050I:
WPFCO050I:
WPFCO00501:
WPFCO050I:
WPFCO050I:
WPFCO0050I:
WPFCO050I:
WPFCO050I:

Application WPFK eyBasedPartitionSample, Partition PK000017:
Application WPFK eyBasedPartitionSampl e, Partition PK000016:
Application WPFK eyBasedPartitionSampl e, Partition PK000015:
Application WPFK eyBasedPartitionSample, Partition PK000014:
Application WPFK eyBasedPartitionSampl e, Partition PK000013:
Application WPFK eyBasedPartitionSampl e, Partition PK000012:
Application WPFK eyBasedPartitionSample, Partition PK000011:
Application WPFK eyBasedPartitionSampl e, Partition PK000010:
Application WPFK eyBasedPartitionSampl e, Partition PK000009:
Application WPFK eyBasedPartitionSample, Partition PK000008:
Application WPFK eyBasedPartitionSampl e, Partition PK000007:
Application WPFK eyBasedPartitionSampl e, Partition PK000006:
Application WPFK eyBasedPartitionSample, Partition PK000005:
Application WPFK eyBasedPartitionSampl e, Partition PK000004:
Application WPFK eyBasedPartitionSampl e, Partition PK000003:
Application WPFK eyBasedPartitionSample, Partition PK000002:
Application WPFK eyBasedPartitionSampl e, Partition PK000001:

4.5.3 listActiveWithGroups

Displays the application servers which are active for the set of groups defined by the matchset parameter passed in.

Available options:

--0 <number of partitions> . The number of partitions that are printed out. If the --0 is not specified; it will default to

50 partitions.
--m <matchset>. Prints out partition information for the given matchset.
Usage: ./wpfadmin listActiveWithGroups —m -gt=-p,-pc=ClassA

Example:

[root@wpfsample3 bin]# ./wpfadmin listActiveWithGroups --m -pc=classl

WASX7209I: Connected to process "Deployment Manager”" on node wpfsample3Manager using SOAP connector; The type of

processis: DeploymentManager

WPFCO0065I:
WPFCO0050I:
WPFCO050I:
WPFCO0050I:
WPFCO0050I:
WPFCO050I:
WPFCO050I:
WPFCO050I:
WPFCO050I:
WPFCO050I:
WPFCO0050I:

Version 1.0.1

Matchset set to partition_class=classl

Application WPFK eyBasedPartitionSampl e, Partition PK000010:
Application WPFK eyBasedPartitionSample, Partition PK000009:
Application WPFK eyBasedPartitionSampl e, Partition PK000008:
Application WPFK eyBasedPartitionSampl e, Partition PK000007:
Application WPFK eyBasedPartitionSample, Partition PK000006:
Application WPFK eyBasedPartitionSampl e, Partition PK000005:
Application WPFK eyBasedPartitionSampl e, Partition PK000004:
Application WPFK eyBasedPartitionSample, Partition PK000003:
Application WPFK eyBasedPartitionSampl e, Partition PK000002:
Application WPFK eyBasedPartitionSampl e, Partition PK000001:

Page 56/144

Server wpfsample3Network\wpfsample3\s9
Server wpfsample3Network\wpfsample3\s3
Server wpfsample3Network\wpfsample3\s2
Server wpfsample3Network\wpfsample3\s1
Server wpfsample3Network\wpfsample2\s8
Server wpfsample3Network\wpfsample2\s7
Server wpfsample3Network\wpfsample2\s6
Server wpfsample3Network\wpfsample2\s5
Server wpfsample3Network\wpfsample2\s4
Server wpfsample3Network\wpfsample3\s9
Server wpfsample3Network\wpfsample3\s3
Server wpfsample3Network\wpfsample3\s2
Server wpfsample3Network\wpfsample3\s1
Server wpfsample3Network\wpfsample2\s8
Server wpfsample3Network\wpfsample2\s7
Server wpfsample3Network\wpfsample2\s6
Server wpfsample3Network\wpfsample2\s5

Server wpfsample3Network\wpfsample2\s5
Server wpfsample3Network\wpfsample2\s4
Server wpfsample3Network\wpfsample3\s9
Server wpfsample3Network\wpfsample3\s3
Server wpfsample3Network\wpfsample3\s2
Server wpfsample3Network\wpfsample3\sl
Server wpfsample3Network\wpfsample2\s8
Server wpfsample3Network\wpfsample2\s7
Server wpfsample3Network\wpfsample2\s6
Server wpfsample3Network\wpfsample2\s5

© 2004 IBM

45.4 countActivePartitionsOnServers

Counts the number of partitions on all servers. This command can be scoped to only show information for a particular
application, partition, and classification.

Available options:

--0 <number of partitions>. The number of partitions that are printed out. If the --0 is not specified; it will default to
50 partitions.

--a<agpplication name>. Prints out partition information for the given application.

--p <partition name>. Prints out partition information for the given partition.

--class <classification name>. Prints out partition information for the given classification.

Usage: ./wpfadmin countActivePartitionsOnServers

Example:

[root@wpfsample3 bin]# ./wpfadmin countActivePartitionsOnServers
WASX7209I: Connected to process "Deployment Manager” on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

WPFCO0051I: Server wpfsample3Network\wpfsample3\s9: 3
WPFCO0051I: Server wpfsample3Network\wpfsample3\s3: 3
WPFCO0051I: Server wpfsample3Network\wpfsample3\s2: 3
WPFCO0051I: Server wpfsample3Network\wpfsample2\s8: 3
WPFCO0051I: Server wpfsample3Network\wpfsample3\sl: 3
WPFCO0051I: Server wpfsample3Network\wpfsample2\s7: 4
WPFCO0051I: Server wpfsample3Network\wpfsample2\s6: 4
WPFCO0051I: Server wpfsample3Network\wpfsample2\s5: 4
WPFCO0051lI: Server wpfsample3Network\wpfsample2\s4: 3

4.5.5 countActiveGroupsOnServers

Counts the number of groups that match the matchset parameter on all servers

Available options. --0 <number of partitions>. The number of partitions that are printed out. If the--oisnot
specified; it will default to 50 partitions.

--m <matchset>. Prints out partition information for the given matchset.

Usage: ./wpfadmin countActiveGroupsOnServers —m -gt=-p,-pc=ClassA

Example:

[root@wpfsample3 bin]# ./wpfadmin countActiveGroupsOnServers --m -pc=class2

WASX7209I: Connected to process "Deployment Manager”" on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

WPFCO0065!: Matchset set to partition_class=class2
WPFCO0051I: Server wpfsample3Network\wpfsample3\s9:
WPFCO0051I: Server wpfsample3Network\wpfsample3\s3:
WPFCO0051I: Server wpfsample3Network\wpfsample3\s2:
WPFCO0051I: Server wpfsample3Network\wpfsample2\s8:
WPFCO0051I: Server wpfsample3Network\wpfsample3\sl:
WPFCO0051I: Server wpfsample3Network\wpfsample2\s7:
WPFCO0051I: Server wpfsample3Network\wpfsample2\s6:
WPFCO0051I: Server wpfsample3Network\wpfsample2\s5:
WPFCO0051I: Server wpfsample3Network\wpfsample2\s4:

NNWWNNNDDNN

4.5.6 list

Lists the partitions and the status of the member servers. This command can be scoped to only show information for a
particular application, partition, and classification.

Version 1.0.1 Page 57/144 © 2004 IBM

Available options:

--0 <number of partitions>. The number of partitions that are printed out. If the --0 is not specified; it will default to
50 partitions.

--a<agpplication name>. Prints out partition information for the given application.

--p <partition name>. Prints out partition information for the given partition.

--class <classification name>. Prints out partition information for the given classification.

Usage: ./wpfadmin list

[root@wpfsample3 bin]# ./wpfadmin list
WASX7209I: Connected to process "Deployment Manager”" on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager
WPFC00461: Application WPFK eyBasedPartitionSample, Partition PK 000030
wpfsample3Network\wpfsample2\s4
wpfsampl e3Network\wpfsample2\s5
wpfsampl e3Network\wpfsampl e2\s6
wpfsample3Network\wpfsampl e2\s7*
wpfsample3Network\wpfsampl e2\s8
wpfsample3Network\wpfsampl e3\s1
wpfsample3Network\wpfsampl e3\s2
wpfsample3Network\wpfsampl e3\s3
wpfsample3Network\wpfsampl e3\s9
WPFCO00461: Application WPFK eyBasedPartitionSample, Partition PK 000029
wpfsample3Network\wpfsample2\s4
wpfsampl e3Network\wpfsampl e2\s5
wpfsampl e3Network\wpfsampl e2\s6*
wpfsample3Network\wpfsampl e2\s7
wpfsampl e3Network\wpfsample2\s8
wpfsample3Network\wpfsampl e3\s1
wpfsample3Network\wpfsampl e3\s2
wpfsampl e3Network\wpfsampl e3\s3
wpfsample3Network\wpfsampl e3\s9
WPFCO00461: Application WPFK eyBasedPartitionSample, Partition PK 000028
wpfsampl e3Network\wpfsample2\s4
wpfsampl e3Network\wpfsampl e2\s5*
wpfsampl e3Network\wpfsampl e2\s6
wpfsampl e3Network\wpfsampl e2\s7
wpfsample3Network\wpfsample2\s3
wpfsample3Network\wpfsampl e3\s1
wpfsample3Network\wpfsample3\s2
wpfsample3Network\wpfsampl e3\s3
wpfsample3Network\wpfsampl e3\s9
WPFCO00461: Application WPFK eyBasedPartitionSample, Partition PK 000027
wpfsample3Network\wpfsampl e2\s4*
wpfsampl e3Network\wpfsample2\s5
wpfsample3Network\wpfsample2\s6
wpfsample3Network\wpfsampl e2\s7
wpfsample3Network\wpfsample2\s8
wpfsample3Network\wpfsample3\s1
wpfsample3Network\wpfsampl e3\s2
wpfsample3Network\wpfsampl e3\s3
wpfsample3Network\wpfsample3\s9

Not all output for this command is shown.

4.5.7 listGroups

Displays the groups and the status of the members.

Available options:

--0 <number of partitions>. The number of partitions that are printed out. If the --o0 is not specified, it will default to
50 partitions.

--m <matchset>. Prints out partition information for the given matchset.

Version 1.0.1 Page 58/144 © 2004 IBM

Usage: ./wpfadmin listGroups —m -gt=-p,-pc=ClassA
Example:

[root@wpfsample3 bin)# ./wpfadmin listGroups --m -pc=classl

WASX7209I: Connected to process "Deployment Manager” on node wpfsample3Manager using SOAP connector; The type of

processis: DeploymentManager
WPFCO0065!: Matchset set to partition_class=classl
WPFCO00461: Application WPFK eyBasedPartitionSample, Partition PK 000010
wpfsample3Network\wpfsample2\s4
wpfsampl e3Network\wpfsampl e2\s5*
wpfsampl e3Network\wpfsampl e2\s6
wpfsample3Network\wpfsampl e2\s7
wpfsample3Network\wpfsample2\s8
wpfsample3Network\wpfsampl e3\s1
wpfsample3Network\wpfsampl e3\s2
wpfsample3Network\wpfsampl e3\s3
wpfsampl e3Network\wpfsampl e3\s9
WPFCO00461: Application WPFK eyBasedPartitionSample, Partition PK 000009
wpfsampl e3Network\wpfsampl e2\s4*
wpfsampl e3Network\wpfsample2\s5
wpfsample3Network\wpfsampl e2\s6
wpfsample3Network\wpfsampl e2\s7
wpfsample3Network\wpfsample2\s8
wpfsample3Network\wpfsampl e3\s1
wpfsample3Network\wpfsampl e3\s2
wpfsample3Network\wpfsampl e3\s3
wpfsample3Network\wpfsampl e3\s9
WPFCO00461: Application WPFK eyBasedPartitionSample, Partition PK 000008
wpfsampl e3Network\wpfsample2\s4
wpfsample3Network\wpfsample2\s5
wpfsample3Network\wpfsampl e2\s6
wpfsampl e3Network\wpfsampl e2\s7
wpfsample3Network\wpfsample2\s3
wpfsample3Network\wpfsampl e3\s1
wpfsampl e3Network\wpfsampl e3\s2
wpfsample3Network\wpfsampl e3\s3
wpfsampl e3Network\wpfsampl e3\s9*
WPFCO00461: Application WPFK eyBasedPartitionSample, Partition PK 000007
wpfsample3Network\wpfsample2\s4
wpfsampl e3Network\wpfsample2\s5
wpfsample3Network\wpfsample2\s6
wpfsample3Network\wpfsampl e2\s7
wpfsample3Network\wpfsampl e2\s8
wpfsample3Network\wpfsample3\s1
wpfsample3Network\wpfsampl e3\s2
wpfsampl e3Network\wpfsampl e3\s3*
wpfsample3Network\wpfsample3\s9
WPFCO00461: Application WPFK eyBasedPartitionSample, Partition PK 000006
wpfsample3Network\wpfsample2\s4
wpfsample3Network\wpfsample2\s5
wpfsample3Network\wpfsampl e2\s6
wpfsample3Network\wpfsample2\s7
wpfsample3Network\wpfsample2\s8
wpfsample3Network\wpfsampl e3\s1
wpfsampl e3Network\wpfsampl e3\s2*
wpfsample3Network\wpfsample3\s3
wpfsample3Network\wpfsampl e3\s9
WPFCO00461: Application WPFK eyBasedPartitionSample, Partition PK 000005
wpfsample3Network\wpfsample2\s4
wpfsample3Network\wpfsample2\s5
wpfsampl e3Network\wpfsampl e2\s6
wpfsample3Network\wpfsample2\s7
wpfsample3Network\wpfsampl e2\s3
wpfsampl e3Network\wpfsampl e3\s1*
wpfsample3Network\wpfsample3\s2
wpfsample3Network\wpfsample3\s3
wpfsampl e3Network\wpfsampl e3\s9
WPFCO00461: Application WPFK eyBasedPartitionSample, Partition PK000004
wpfsample3Network\wpfsample2\s4

Version 1.0.1 Page 59/144

© 2004 IBM

wpfsample3Network\wpfsample2\s5
wpfsampl e3Network\wpfsampl e2\s6
wpfsample3Network\wpfsampl e2\s7
wpfsampl e3Network\wpfsampl e2\s8*
wpfsample3Network\wpfsampl e3\s1
wpfsample3Network\wpfsampl e3\s2
wpfsample3Network\wpfsample3\s3
wpfsample3Network\wpfsampl e3\s9

WPFCO00461: Application WPFK eyBasedPartitionSample, Partition PK 000003

wpfsample3Network\wpfsample2\s4
wpfsampl e3Network\wpfsample2\s5
wpfsampl e3Network\wpfsampl e2\s6
wpfsample3Network\wpfsample2\s7*
wpfsampl e3Network\wpfsample2\s8
wpfsample3Network\wpfsampl e3\s1
wpfsample3Network\wpfsample3\s2
wpfsampl e3Network\wpfsampl e3\s3
wpfsample3Network\wpfsampl e3\s9

WPFCO00461: Application WPFK eyBasedPartitionSample, Partition PK 000002

wpfsampl e3Network\wpfsample2\s4
wpfsample3Network\wpfsample2\s5
wpfsampl e3Network\wpfsampl e2\s6*
wpfsampl e3Network\wpfsampl e2\s7
wpfsample3Network\wpfsample2\s3
wpfsample3Network\wpfsample3\s1
wpfsampl e3Network\wpfsampl e3\s2
wpfsample3Network\wpfsampl e3\s3
wpfsample3Network\wpfsample3\s9

WPFCO00461: Application WPFK eyBasedPartitionSample, Partition PK 000001

wpfsample3Network\wpfsample2\s4
wpfsampl e3Network\wpfsampl e2\s5*
wpfsampl e3Network\wpfsampl e2\s6
wpfsample3Network\wpfsampl e2\s7
wpfsample3Network\wpfsample2\s8
wpfsample3Network\wpfsampl e3\s1
wpfsample3Network\wpfsampl e3\s2
wpfsample3Network\wpfsample3\s3
wpfsampl e3Network\wpfsampl e3\s9

4.5.8 coreGroupStatus

Shows the core group name, coordinator names, and active servers in the core group.

Usage: ./wpfadmin coreGroupStatus
Example:

[root@wpfsample3 bin]# ./wpfadmin coreGroupStatus

WASX7209I: Connected to process "Deployment Manager" on node wpfsample3Manager using SOAP connector; The type of

processis: DeploymentManager
WPFCO00471: Core group name: DefaultCoreGroup
WPFCO0048I: Coordinator servers:
wpfsampl e3Network\wpfsampl e2\s7
wpfsample3Network\wpfsample3\sl
wpfsample3Network\wpfsample3\s9
wpfsampl e3Network\wpfsampl e2\s5
WPFCO0049I1: Visible members:
wpfsampl e3Network\wpfsample2\nodeagent
wpfsampl e3Network\wpfsample2\s4
wpfsampl e3Network\wpfsample2\s5
wpfsample3Network\wpfsample2\s6
wpfsampl e3Network\wpfsampl e2\s7
wpfsample3Network\wpfsample2\s8
wpfsample3Network\wpfsample3M anager\Deployment Manager
wpfsampl e3Network\wpfsample3\nodeagent
wpfsample3Network\wpfsample3\s1
wpfsample3Network\wpfsample3\s2

Version 1.0.1 Page 60/144

© 2004 IBM

wpfsample3Network\wpfsample3\s3
wpfsampl e3Network\wpfsample3\s9

45.9 move

Moves one partition to another server.

Available options:
--p <partition name>. The name of the partition to move.
--d <server>. Destination server for the partition to move to, of the form <cell>/<node>/<server>

Usage: ./wpfadmin move —p PartitionB —d Cell A/NodeA/Serverl

Warning: The partition will receive an outage for this command. The programmers for this application should have
implemented the partitionL oadEvent(...) and partitionUnloadEvent(...) as described in the programming section. In
addition, if a startup issue or another case where policies could establish proper location to avoid the use of this
command, please see the management section describing the key based sample and the policy sections.

Example:

[root@wpfsample3 bin)# ./wpfadmin move --p PK000001 --d wpfsample3Network/wpfsample2/s4

WASX7209I: Connected to process "Deployment Manager" on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

WPFC0065I: Partition set to PK 000001

WPFCO0065I: Destination set to wpfsample3Network/wpfsample2/s4

WPFCO0054: Partition PK000001 has moved from Server wpfsample3Network\wpfsample2\s6 to Server
wpfsample3Network\wpfsample2\s4

45.10 balance

Balances partitions across the set of active servers. Also, if the user specifiesthe —id option, only the partitions for
which PMI statistics are being gathered relative to the id specified will be balanced.

Available options:

--0 <number of partitions>. The number of partitionsto balance. If the --0 is not specified, it will default to 50
partitions.

--a<gpplication name>. Balance partitions of the given application.

--class <classification name>. Balance partitions for the given classification.

--id <PMI id>. Balance partitions for the given PMI id.

Warning: Each partition that is selected to be moved will receive an outage when this command is executed, the
programmer needs to have implemented the partitionL cadEvent(...) and partitionUnloadEvent(...) as described in the
programming section. In addition, if a startup issue or another case where policies could establish proper location to
avoid the use of this command, please see the management section describing the key based sample and the policy
sections.

Usage: ./wpfadmin balance

Example 1:

[root@wpfsample3 bin]# ./wpfadmin balance

WASX7209I: Connected to process "Deployment Manager”" on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

WPFCO0054: Partition PK 000030 has moved from Server wpfsample3Network\wpfsample2\s7 to Server
wpfsample3Network\wpfsample2\s4

WPFCO0054: Partition PK000029 has moved from Server wpfsample3Network\wpfsample2\s6 to Server
wpfsample3Network\wpfsample2\s4

WPFCO0054: Partition PK 000028 has moved from Server wpfsample3Network\wpfsample2\s5 to Server
wpfsample3Network\wpfsample2\s4

WPFCO0054I: Partition PK000027 has moved from Server wpfsample3Network\wpfsample2\s4 to Server
wpfsample3Network\wpfsampl e2\s5

Version 1.0.1 Page 61/144 © 2004 IBM

WPFCO0054: Partition PK000026 has moved from Server wpfsample3Network\wpfsample3\s9 to Server
wpfsample3Network\wpfsampl e2\s5
WPFCO00541: Partition PK000025 has moved from Server wpfsample3Network\wpfsample3\s3 to Server
wpfsample3Network\wpfsample2\s5
WPFCO0054: Partition PK 000024 has moved from Server wpfsample3Network\wpfsample3\s2 to Server
wpfsample3Network\wpfsampl e2\s6
WPFCO0054I: Partition PK 000023 has moved from Server wpfsample3Network\wpfsample3\sl to Server
wpfsample3Network\wpfsampl e2\s6
WPFCO0054: Partition PK000022 has moved from Server wpfsample3Network\wpfsample2\s8 to Server
wpfsample3Network\wpfsample2\s6
WPFCO0054: Partition PK000021 has moved from Server wpfsample3Network\wpfsample2\s7 to Server
wpfsample3Network\wpfsampl e2\s7
WPFCO0054: Partition PK 000020 has moved from Server wpfsample3Network\wpfsample2\s6 to Server
wpfsample3Network\wpfsampl e2\s7
WPFCO0054: Partition PK000019 has moved from Server wpfsample3Network\wpfsample2\s5 to Server
wpfsample3Network\wpfsample2\s7
WPFCO0054: Partition PK000018 has moved from Server wpfsample3Network\wpfsample2\s4 to Server
wpfsample3Network\wpfsampl e2\s8
WPFCO0054: Partition PK000017 has moved from Server wpfsample3Network\wpfsample3\s9 to Server
wpfsample3Network\wpfsample2\s8
WPFCO0054I: Partition PK000016 has moved from Server wpfsample3Network\wpfsample3\s3 to Server
wpfsample3Network\wpfsample2\s3
WPFCO0054: Partition PK000015 has moved from Server wpfsample3Network\wpfsample3\s2 to Server
wpfsample3Network\wpfsampl e3\s1
WPFCO0054I: Partition PK000014 has moved from Server wpfsample3Network\wpfsample3\sl to Server
wpfsample3Network\wpfsampl e3\s1
WPFCO0054: Partition PK000013 has moved from Server wpfsample3Network\wpfsample2\s8 to Server
wpfsample3Network\wpfsample3\s1
WPFCO0054: Partition PK000012 has moved from Server wpfsample3Network\wpfsample2\s7 to Server
wpfsample3Network\wpfsampl e3\s2
WPFCO0054I: Partition PK000011 has moved from Server wpfsample3Network\wpfsample2\s6 to Server
wpfsample3Network\wpfsampl e3\s2
WPFCO0054: Partition PK000010 has moved from Server wpfsample3Network\wpfsample2\s5 to Server
wpfsample3Network\wpfsample3\s2
WPFCO0054: Partition PK 000009 has moved from Server wpfsample3Network\wpfsample2\s4 to Server
wpfsample3Network\wpfsampl e3\s3
WPFCO0054: Partition PK 000008 has moved from Server wpfsample3Network\wpfsample3\s9 to Server
wpfsample3Network\wpfsampl e3\s3
WPFCO0054: Partition PK000007 has moved from Server wpfsample3Network\wpfsample3\s3 to Server
wpfsample3Network\wpfsampl e3\s3
WPFCO0054: Partition PK 000006 has moved from Server wpfsample3Network\wpfsample3\s2 to Server
wpfsample3Network\wpfsampl e3\s9
WPFCO0054: Partition PK000005 has moved from Server wpfsample3Network\wpfsample3\sl to Server
wpfsample3Network\wpfsampl e3\s9
WPFCO0054: Partition PK 000004 has moved from Server wpfsample3Network\wpfsample2\s8 to Server
wpfsample3Network\wpfsampl e3\s9
WPFCO0054: Partition PK 000003 has moved from Server wpfsample3Network\wpfsample2\s7 to Server
wpfsample3Network\wpfsample2\s4
WPFCO0054: Partition PK000002 has moved from Server wpfsample3Network\wpfsample2\s6 to Server
wpfsample3Network\wpfsampl e2\s5
WPFCO0054: Partition PK000001 has moved from Server wpfsample3Network\wpfsample2\s4 to Server
wpfsample3Network\wpfsampl e2\s6

Example 2:

Another example of the balance command, only balancing the partitions that have the class2 classification:

[root@uwpfsample3 bin)# ./wpfadmin balance --class class2

WASX7209I: Connected to process "Deployment Manager”" on node wpfsample3Manager using SOAP connector; The type of

processis: DeploymentManager

WPFC0065I: Classification set to class2

WPFCO0054: Partition PK000030 has moved from Server wpfsample3Network\wpfsample2\s4 to Server
wpfsample3Network\wpfsample2\s4

WPFCO0054!: Partition PK000029 has moved from Server wpfsample3Network\wpfsample2\s4 to Server
wpfsample3Network\wpfsample2\s4

WPFCO0054I: Partition PK000028 has moved from Server wpfsample3Network\wpfsample2\s4 to Server
wpfsample3Network\wpfsample2\s5

WPFCO0054: Partition PK000027 has moved from Server wpfsample3Network\wpfsample2\s5 to Server
wpfsample3Network\wpfsampl e2\s5

Version 1.0.1 Page 62/144

© 2004 IBM

WPFCO00541: Partition PK 000026 has moved from Server wpfsample3Network\wpfsample2\s5 to Server
wpfsample3Network\wpfsampl e2\s6
WPFCO00541: Partition PK000025 has moved from Server wpfsample3Network\wpfsample2\s5 to Server
wpfsample3Network\wpfsample2\s6
WPFCO0054I: Partition PK 000024 has moved from Server wpfsample3Network\wpfsample2\s6 to Server
wpfsample3Network\wpfsampl e2\s7
WPFCO0054I: Partition PK 000023 has moved from Server wpfsample3Network\wpfsample2\s6 to Server
wpfsample3Network\wpfsampl e2\s7
WPFCO0054: Partition PK000022 has moved from Server wpfsample3Network\wpfsample2\s6 to Server
wpfsample3Network\wpfsample2\s8
WPFCO0054: Partition PK000021 has moved from Server wpfsample3Network\wpfsample2\s7 to Server
wpfsample3Network\wpfsampl e2\s8
WPFCO0054: Partition PK 000020 has moved from Server wpfsample3Network\wpfsample2\s7 to Server
wpfsample3Network\wpfsampl e3\s1
WPFCO0054: Partition PK000019 has moved from Server wpfsample3Network\wpfsample2\s7 to Server
wpfsample3Network\wpfsample3\s1
WPFCO0054: Partition PK 000018 has moved from Server wpfsample3Network\wpfsample2\s8 to Server
wpfsample3Network\wpfsampl e3\s2
WPFCO0054I: Partition PK000017 has moved from Server wpfsample3Network\wpfsample2\s8 to Server
wpfsample3Network\wpfsampl e3\s2
WPFCO0054I: Partition PK000016 has moved from Server wpfsample3Network\wpfsample2\s8 to Server
wpfsample3Network\wpfsample3\s3
WPFCO0054: Partition PK000015 has moved from Server wpfsample3Network\wpfsample3\sl to Server
wpfsample3Network\wpfsampl e3\s3
WPFCO0054I: Partition PK000014 has moved from Server wpfsample3Network\wpfsample3\sl to Server
wpfsample3Network\wpfsampl e3\s9
WPFCO0054: Partition PK000013 has moved from Server wpfsample3Network\wpfsample3\sl to Server
wpfsample3Network\wpfsample3\s9
WPFCO0054I: Partition PK000012 has moved from Server wpfsample3Network\wpfsample3\s2 to Server
wpfsample3Network\wpfsample2\s4
WPFCO0054: Partition PK000011 has moved from Server wpfsample3Network\wpfsample3\s2 to Server
wpfsample3Network\wpfsampl e2\s5

4511 disablePartition

Disables a partition. Depending on how policies are configured, the partition will either be enabled on ancther server,

or will just be disabled.

Available options:

--p <partition name>. The name of the partition to disable.
Usage: ./wpfadmin disablePartition —p PartitionA
Example:

[root@wpfsample3 bin]# ./wpfadmin disablePartition --p PK000002

WASX7209I: Connected to process "Deployment Manager”" on node wpfsample3Manager using SOAP connector; The type of

processis: DeploymentManager
WPFC0065I: Partition set to PK 000002
WPFCO0053]: Partition PK000002 has been stopped

4512 enablePartition

Enables a partition.

Available options:
--p <partition name>. The name of the partition to enable.

Usage: ./wpfadmin enablePartition --p PartitionA
Example:

[root@wpfsample3 bin]# ./wpfadmin enablePartition --p PK 000002

Version 1.0.1 Page 63/144

© 2004 IBM

WASX7209I: Connected to process "dmgr" on node wpfsample3Manager using SOAP connector; The type of processis:
DeploymentManager

WPFCO0065I: Partition set to PK000002

WPFC0053I: Partition PKOO0002 has been enabled

45.13 addServerToCoreGroup

Adds the specified server from the DefaultCoreGroup. This command modifies the coregroup.xml found in the
ND_HOME/config/cellsg/<cell_name>/coregroups/DefaultCoreGroup directory.

Available options:
--s<server name>. Server to add to the core group, of the form <cell>/<node>/<server>

Usage: ./wpfadmin addServerToCoreGroup --s wpfsample3Network/wpfsampl e2/nodeagent

Example:

[root@wpfsample3 bin]# ./wpfadmin addServerToCoreGroup --s wpfsample3Network/wpfsampl e2/nodeagent

WASX7209I: Connected to process "Deployment Manager”" on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

WPFCO0065I: Server set to wpfsample3Network/wpfsample2/nodeagent

WPFCO00671: Server wpfsample2\nodeagent has been added to DefaultCoreGroup

45.14 removeServerFromCoreGroup

Deletes the specified server from the DefaultCoreGroup. This command modifies the coregroup.xml found in the
ND_HOME/config/cells/<cell_name>/coregroups/DefaultCoreGroup directory.

Available options:
--s<server name>. Server to remove from the core group, of the form <cell>/<node>/<server>

Usage: ./wpfadmin removeServerFromCoreGroup --s wpfsample3Network/wpfsample2/nodeagent

Example:

[root@wpfsample3 bin]# ./wpfadmin removeServerFromCoreGroup --s wpfsample3N etwork/wpf sampl €2/nodeagent
WASX7209I: Connected to process "Deployment Manager" on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

WPFCO0065I: Server set to wpfsample3Network/wpfsample2/nodeagent

WPFCO0068I: Server wpfsample2\nodeagent has been removed from DefaultCoreGroup

45.15 enableWPFPMI

Enables the WPF PMI module for all active servers. How PMI works will be explained in the Performance Monitoring
section.

Available options:

<level>. Level of PMI statistics that will be gathered for the wpfModule. Normally should be set to H.

--c <cluster name>. All serversin the given cluster will have PMI enabled.

Usage: ./wpfadmin enableWPFPMI H — clusterl

[root@wpfsample3 bin]# ./wpfadmin enableWPFPMI H --c ¢

WASX7209I: Connected to process "Deployment Manager" on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

WPFCO0065I: Cluster set to ¢

WPFC0043l: The wpfModule of PMI is enabled for cluster ¢ and set to level H.

Version 1.0.1 Page 64/144 © 2004 IBM

45.16 subscribeWPFPMI

Subscribes the asynchronous PMI module for WPF. Here's an example usage of this command:

Jwpfadmin subscribeWPFPMI [activelcumulative] [TransactionCount|ResponseTime] <application_name>
<gjb_name> <partition_count> <aggregator_interval> --c <cluster_name).

If active is passed, the data the user seeswill be reset every time the aggregator interval runsits course. If cumulative
is passed, the datawill not bereset. If TransactionCount is passed, the latest aggregated data for each of the partitions
regarding the number of transactions processed will be returned. If ResponseTime is passed, the latest aggregated data
for each of the partitions regarding the minimum, maximum, and average response time will be returned. These two
options allow the user to look at what partitions are processing the most transactions currently (or which partitions have
the highest response times), as well as a history of the partitions that have processed the most transaction up to thistime
(or history of the partitions that have had the highest response times).

<application_name> and <egjb_name> specify the application and gjb for which to keep PMI statistics.
<partition_count> refers to how many partitions to keep PMI statistics, e.g. if there are 10,000 partitions in the cluster,
and the partition_count is set to 20, only the top 20 partitionsin terms of transaction count or response times will be
stored.

<aggregator_interval> refersto the interval in seconds the aggregator waits between aggregations. The default value is
15000 milliseconds.

<cluster_name> refers to the cluster the application is running. If the PMI specification level for wpfModule is not set
to H for any server in this cluster, subscribeWPFPMI will fail.

The subscribeWPFPMI command returns an id integer to the user. The user will use thisid in subsequent commands
when getting statistics and updating subscribe options.

All of these options can be set separately as well

Example:

[root@wpfsample3 bin]# ./wpfadmin subscribeWPFPMI cumulative TransactionCount WPFK eyBasedPartitionSample

WPFK eyBasedPartition 3 15000 --c clusterl

WASX7209I: Connected to process "Deployment Manager" on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

WPFC0065I: Cluster set to clusterl

WPFCO00401: WPF PMI has been subscribed with options range=cumul ative, type=TransactionCount, application

name=WPFK eyBasedPartitionSample, ejb hame=WPFK eyBasedPartition, partition count=3, interval=15000

WPFCO0041l: Your clientidis 2. Use thisin future wpfadmin PMI calls.

45.17 setPartitionCount

Tells the aggregator server how many partitions to keep PMI statistics for in the bulletin board. For example, if there
are 10,000 partitions in the cluster, and the aggregator partition count is set to 20, the top 20 partitionsin terms of
transaction count and response times will be stored in the bulletin board. The —id option specifies for which
subscription to update the partition count.

Usage: ./wpfadmin setPartitionCount 6 —id 12

Example:

[root@wpfsample3 bin]# ./wpfadmin setPartitionCount 4 --id 2

WASX7209I: Connected to process "Deployment Manager" on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

WPFCO0065I: Id set to 2
WPFCO0066I: Partition count has been set to 4 for clientid 2

45.18 setStatisticsRange

Tells Async PMI to gather statistics cumulatively or to reset the stats after each aggregator interval time period. The
options are either cumulative or active. The—id option specifies for which subscription to update the range.

Version 1.0.1 Page 65/144 © 2004 IBM

Usage: ./wpfadmin setStatisticsRange active —id 12

Example:

[root@wpfsample3 bin]# ./wpfadmin setStatisticsRange active --id 2

WASX7209I: Connected to process "Deployment Manager” on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

WPFC0065I: 1d set to 2
WPFCO0066I: Statistics range has been set to active for clientid 2

45.19 setEJBName

Tells PMI to gather statistics for the specified application. The —id option specifies for which subscription to update the
ejb name.

Usage: ./wpfadmin setEJBName MyApp#MyEJB —id 12

Example:

WASX7209I: Connected to process "Deployment Manager”" on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

WPFC0065I: 1d set to 2
WPFCO0066I: Ejb name has been set to MyApplication for client id 2

4.5.20 setStatisticsType

Tells Async PMI to gather statistics for transaction count or response time. The options are either TransactionCount or
ResponseTime. The —id option specifies for which subscription to update the statistics type.

Usage: ./wpfadmin setStatisticsType ResponseTime —id 12

Example:

[root@wpfsample3 bin]# ./wpfadmin setStatisticsType ResponseTime --id 2

WASX7209I: Connected to process "Deployment Manager” on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

WPFC0065I: Id set to 2
WPFCO0066I: Statistics type has been set to ResponseTime for client id 2

4521 setStatisticsiInterval

Theinterval in milliseconds the aggregator server waits between aggregations. The —id option specifies for which
subscription to update the interval.

<Warning, shorter interval more overhead>

Usage: ./wpfadmin setStatisticslnterval 45000 —id 12

Example:

[root@wpfsample3 bin]# ./wpfadmin setStatisticslnterval 30000 --id 2

WASX7209I: Connected to process "Deployment Manager”" on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

WPFCO0065I: 1d set to 2
WPFCO0066I: Statisticsinterval has been set to 30000 for client id 2

4.5.22 getTransactionCount

Version 1.0.1 Page 66/144 © 2004 IBM

Returns the latest aggregated data for each of the partitions from the bulletin board regarding the number of
transactions processed in the aggregator interval. The number of partitions for which data will be returned is set during
the setPartitionCount command. An optional [--top <refresh time>] can be passed in to show a Unix top-like process
that updates every <refresh time> seconds with the latest transaction data.

Usage: ./wpfadmin getTransactionCount —top 30 —id 10

Example:

[root@wpfsample3 bin]# ./wpfadmin getTransactionCount --id 2

WASX7209I: Connected to process "Deployment Manager" on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

WPFCO0065I: 1d set to 2

PartitionName TransactionCount TotalResponseTime MinimumTime MaximumTime

PK 000030 6 1755 64 496
PK 000026 6 1472 25 998
PK 000025 6 3558 424 792
4.5.23 getResponseTime

Returns the latest aggregated data for each of the partitions from the bulletin board regarding the response time of
transactions processed in the aggregator interval, along with the minimum, maximum, and average response time.
When cumulative is set, the minimum and maximum response time is the minimum and maximum of the whole time,
instead of that period, when active is set. The number of partitions for which data will be returned is set during the
setPartitionCount command. An optional [-top <refresh time>] can be passed in to show a Unix top-like process that
updates every <refresh time> seconds with the latest response time data.

Usage: ./wpfadmin getResponseTime—id 12

4.5.24 setTraceSpec

[Service/diagnostic related] Sets the trace specification for asingle server (using --s <server_name>) or al servers
(using --c <cluster name>) in the specified cluster. With option temp, the new traceSpec will only work if the servers
are currently running. So if the servers are restarted, the traceSpec will go away. With option perm, the new traceSpec
will be set permanently. But if the servers are currently started, the new traceSpec will not take effect until the servers
are restarted.

Available options:

<temp|perm>. Enablestrace while the server is running until the servers are restarted (temp) or after the server is
restarted permanently (perm).

<trace spec>. trace specification.

--s<server name>. Server on which to enable trace.
--c <cluster name>. All serversin the given cluster will have the trace enabled.

Usage: ./wpfadmin setTraceSpec perm com.ibm.ws.wpf.* =all=enabled —c clusterl

45.25 unsubscribeWPFPMI

Notifies the server to stop collecting WPF Async PMI data when not needed.
Available options: --id <pmi id>. Unsubscribe will be called for the given id.
Usage: ./wpfadmin unsubscribe WPFPMI —id 12

Example:

[root@wpfsample3 bin]# ./wpfadmin unsubscribeWPFPMI --id 2

Version 1.0.1 Page 67/144 © 2004 IBM

WASX7209I: Connected to process "Deployment Manager" on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

WPFCO0065I: Id set to 2

WPF PMI has been unsubscribed for client id 2

45.26 disableWPFPMI

Disables the WPF PMI module.
Available options. --c <cluster name>. PMI will be disabled for all serversin the given cluster.
Usage: ./wpfadmin disableWPFPMI — clusterl

Example:

disableWPFPMI: Disables the WPF PMI module.

[root@wpfsample3 bin]# ./wpfadmin disableWPFPMI --c ¢

WASX7209I: Connected to process "Deployment Manager" on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

WPFCO0065I: Cluster setto c
WPFC0064!: The wpfModule of PMI is disabled for cluster ¢

4.5.27 createPolicy

The following scenario is an example of incorporating policies to manage partitions. The wpfadmin command
createPolicy will be used to create four policies. The cluster has four servers that will host partitions on four different
nodes: NodeA/Serverl, NodeB/Server2, NodeC/Server3, and NodeD/Server4. Also each node has abackup server in
case the hosting server goes down. These servers are NodeA/BackupServerl, NodeB/BackupServer2,
NodeC/BackupServer3, and NodeD/BackupServer4. An application will be installed that creates 40 partitions at
startup. The partitions belong to four different classifications: partitions1-10 (classification=classl) to be activated on
NodeA/Serverl, partitions11-20 (classification=class2) to be activated on NodeB/Server2, partitions21-30
(classification=class3) to be activated on NodeC/Server3, and partitions 31-40 (classification=class4) to be activated on
NodeD/Serverd. In order to achieve this, four policies will be created: Policyl, Policy2, Policy3, and Policy4. From
the application server bin directory the command ./wpfadmin createPolicy /Policyl.properties will be run. Here arethe
contents of Policyl.properties:

CoreGroupName = DefaultCoreGroup
Policy Type = OneOfNPolicy

PolicyName = Policyl

PolicyDescription = Policy for partitions1-10
IsAlivePeriodSec = 120

QuorumEnabled = false
NumOfMatchCriteria= 2

Name 0= -gt
Value 0=-p
Name 1=-pc
Value 1=classl

Failback = true

PreferredOnly = true
NodeName 0 = NodeA
ServerName 0 = Serverl
NodeName_1 = NodeA
ServerName_1 = BackupServerl

Next run ./wpfadmin createPolicy /Policy2.properties with the following in Policy2.properties:
CoreGroupName = DefaultCoreGroup
PolicyType = OneOfNPolicy

PolicyName = Policy2
PolicyDescription = Policy for partitions11-20

Version 1.0.1 Page 68/144 © 2004 IBM

IsAlivePeriodSec = 120
QuorumEnabled = false
NumOfMatchCriteria= 2

Name 0=-gt
Value 0=-p
Name 1 =-pc
Value 1=class2

Failback = true

PreferredOnly = true
NodeName_0 = NodeB
ServerName 0 = Server2
NodeName_1 = NodeB
ServerName_1 = BackupServer2

Next run ./wpfadmin createPolicy /Policy3.properties with the following in Policy3.properties:

CoreGroupName = DefaultCoreGroup
PolicyType = OneOfNPolicy

PolicyName = Policy3

PolicyDescription = Policy for partitions21-30
IsAlivePeriodSec = 120

QuorumEnabled = false
NumOfMatchCriteria= 2

Name 0= -gt
Value 0=-p
Name _1=-pc
Value_ 1= class3

Failback = true

PreferredOnly = true
NodeName_0 = NodeC
ServerName 0 = Server3
NodeName 1 = NodeC
ServerName_1 = BackupServer3

Finaly run ./wpfadmin createPolicy /Policy4.properties with the following in Policy4.properties:

CoreGroupName = DefaultCoreGroup
PolicyType = OneOfNPolicy

PolicyName = Policy4

PolicyDescription = Policy for partitions31-40
IsAlivePeriodSec = 120

QuorumEnabled = false
NumOfMatchCriteria= 2

Name 0=-gt
Vaue 0=-p
Name 1 =-pc

Vaue 1=clasA

Failback = true

PreferredOnly = true
NodeName 0 = NodeD
ServerName_0 = Server4
NodeName_1 = NodeD
ServerName_1 = BackupServerd

Notice the match criteria for the four policies. They are set up in name/value pairs. -gt=-p denotes that the group type
we're dealing with is partition. -pc=class4 denotes this policy only appliesto partitions that have classification
“clasA4”.

Now the core group is set up with the four policies. Now start the node agents on nodes A-D. After ashort interval,
the core group changes will be synchronized to all the nodes. Assuming the application is already installed, when
Serverlis started, partitions1-10 will all be activated on Serverl since Policy1 has the preferredOnly set to true. This
means partitionsl1-10 can only be started on Serverl and BackupServerl. |f BackupServerl is started before Serverl,

Version 1.0.1 Page 69/144 © 2004 IBM

partitions1-10 will be activated on BackupServerl, if neither Serverl or BackupServerl are started, the partitions will
not be activated. This explains how the preferredOnly and preferred serverswork. When the failback option is set to
true, this means the partitions for the policy will always be activated on the most preferred server. So if partitionsl-10
are active on Serverl, then Serverl goes down, the partitions will activate on BackupServerl. Then if sometimein the
future Serverl comes up, the partitions will go back to Serverl, sinceitisfirst in the preferred server list.

Consider the following server startup scenario:

Server2 starts - partitions11-20 activate on Server2

Server3 starts - partitions21-30 activate on Server3

BackupServer3 starts - nothing happens, since Server3 is already running and it is before BackupServer3in Policy3's
preferred server list

BackupServerl starts - partitions 1-10 activate on BackupServerl

BackupServer2 starts - nothing happens, since Server2 is already running and it is before BackupServer2 in Policyl’s
preferred server list

BackupServer4 starts - partitions 31-40 activate on BackupServer4

Serverl starts - partitions1-10 deactivate on BackupServerl and activate on Serverl, since failback is set to true and
Serverlis before BackupServerl in Policyl’s preferred server list

Server4 starts - partitions31-40 deactivate on BackupServer4 and activate on Server4, since failback is set to true and
Serverd is before BackupServer4 in Policy4's preferred server list.

4.5.28 updatePolicy

With this command, the user can update any or all of the attributes of the specified policy. Here'salist of each policy
type with the attributes that can be updated:

OneOfNPalicy:

-failback <truelfalse>

-preferredOnly <truelfal se>

-quorumEnabled <truelfalse>

-isAlivePeriodSec <period in seconds>

-preferredServers <nodel>/<serverl>,<node2>/<server2>,...

MOfNPolicy:

-failback <truelfalse>

-preferredOnly <truelfal se>

-quorumEnabled <truelfal se>

-isAlivePeriodSec <period in seconds>

-numActive <number of servers>

-preferredServers <nodel>/<serverl>,<node2>/<server2>,...

StaticPolicy:

-quorumEnabled <truejfal se>

-isAlivePeriodSec <period in seconds>

-servers <nodel>/<serverl>,<node2>/<server2>,...

AllActivePolicy:
-quorumEnabled <truejfal se>
-isAlivePeriodSec <period in seconds>

NoOpPolicy:
-quorumEnabled <truelfal se>
-isAlivePeriodSec <period in seconds>

Example:
[root@wpfsample3 bin]# ./wpfadmin updatePolicy “myM-Of-N FP2 Policy” -failback true -preferredOnly false -preferredServers
NodeA/Serverl,NodeC/Server3

WASX7209I: Connected to process "Deployment Manager" on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

Version 1.0.1 Page 70/144 © 2004 IBM

The policy myM-Of-N FP2 Palicy has been updated
4.5.29 Delete Policy

Deletes the specified policy from the DefaultCoreGroup
Usage: wpfadmin deletePolicy “myM-Of-N FP2 Policy”

Example:

[root@wpfsample3 bin]# ./wpfadmin deletePolicy “myM-Of-N FP2 Policy”

WASX7209I: Connected to process "Deployment Manager”" on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

The policy myM-Of-N FP2 Policy has been deleted

4.5.30 updateJMXTimeout

Sets the timeout value for IMX commands. This modifies the coregroup.xml filein
ND_HOME/config/cellsg/<cell_name>/coregroups/DefaultCoreGroup directory.

Example:

[root@wpfsample3 bin]# ./wpfadmin updateJM X Timeout 40

WASX7209I: Connected to process "Deployment Manager” on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

The IMX timeout value for the core group has been set to 40 seconds

45.31 updateCoreGroupCoordinators

Allows user to adjust number of coordinators for the core group as well as the preferred coordinator serverslist. This
modifies the coregroup.xml filein ND_HOME/config/cells/<cell_name>/coregroups/DefaultCoreGroup directory.

Available options:

-numCoordinators <number>. Number of active coordinators for the core group.

-preferredCoordinatorServers <server list>. List of serversthat will be coordinators for the core group, of the form
<node>/<server>,<node>/<server>,<node>/<server>,...

Example:

[root@wpfsample3 bin]# ./wpfadmin updateCoreGroupCoordinators -numCoordinators 4 -preferredCoordinatorServers
wpfsample2/s7,wpfsample3/s1,wpfsample3/s9,wpfsampl e2/s5

WASX7209I: Connected to process "Deployment Manager” on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

The coordinators for the core group has been updated

4.5.32 updateHamConfig

Changes the buffer and/or maxThreads size for a server (specified by --s), cluster (specified by --c), or cell (specified
by --cell). Thiscommand will modify the hamanagerservice.xml for the specified servers located in the
ND_HOME/config/cells/<cell_name>/nodes/<node_name>/servers/<server_name> directory.

Available options:

-buffer <buffer size>. Size of the transport buffer.
-maxThreads <maximum threads>. Maximum number of threads for the hamanager thread pool.

Version 1.0.1 Page 71/144 © 2004 IBM

--s<server name>. Server name of the form <cell>/<node>/<server>
--c <cluster name>. All serversin the given cluster will be updated.
--cell <cell name>. All serversin the given cell will be updated.

Example:

[root@wpfsample3 bin]# ./wpfadmin updateHamConfig -buffer 20 -maxThreads 15 --c ¢
WASX7209I: Connected to process "Deployment Manager" on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

WPFCO0065I: Cluster set to ¢

The MaximumSize of the ThreadPool for the hamanagerservice has been set to 15 for Server s4
The TransportBufferSize for the hamanagerservice has been set to 20 for Server s4

The MaximumSize of the ThreadPool for the hamanagerservice has been set to 15 for Server s5
The TransportBufferSize for the hamanagerservice has been set to 20 for Server s5

The MaximumSize of the ThreadPool for the hamanagerservice has been set to 15 for Server s6
The TransportBufferSize for the hamanagerservice has been set to 20 for Server s6

The MaximumSize of the ThreadPool for the hamanagerservice has been set to 15 for Server s7
The TransportBufferSize for the hamanagerservice has been set to 20 for Server s7

The MaximumSize of the ThreadPool for the hamanagerservice has been set to 15 for Server s8
The TransportBufferSize for the hamanagerservice has been set to 20 for Server s8

The MaximumSize of the ThreadPool for the hamanagerservice has been set to 15 for Server sl
The TransportBufferSize for the hamanagerservice has been set to 20 for Server s1

The MaximumSize of the ThreadPool for the hamanagerservice has been set to 15 for Server s2
The TransportBufferSize for the hamanagerservice has been set to 20 for Server s2

The MaximumSize of the ThreadPool for the hamanagerservice has been set to 15 for Server s3
The TransportBufferSize for the hamanagerservice has been set to 20 for Server s3

The MaximumSize of the ThreadPool for the hamanagerservice has been set to 15 for Server s9
The TransportBufferSize for the hamanagerservice has been set to 20 for Server s9

4.5.33 listPolicies

Liststhe name of all of the policiesin the core group.
Example:

[root@wpfsample3 bin]# ./wpfadmin listPolicies

WASX7209I: Connected to process "Deployment Manager" on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

Policies in DefaultCoreGroup

JetStream Policy

WPF Cluster Scoped Partition Policy

WPF Node Scoped Partition Policy

WPF PM| Aggregator Policy

4.5.34 gueryPolicy

Shows the attributes of the given policy.
Example:

[root@wpfsample3 bin]# ./wpfadmin queryPolicy “WPF Cluster Scoped Partition Policy”
WASX7209I: Connected to process "Deployment Manager" on node wpfsample3Manager using SOAP connector; The type of
processis: DeploymentManager

Attributes for policy WPF Cluster Scoped Partition Policy:

name: WPF Cluster Scoped Partition Policy

description: Default WPF Cluster Scoped Partition Policy

policyFactory: com.ibm.ws.hamanager.coordinator.policy.impl.OneOfNPolicyFactory
isAlivePeriodSec: -1

quorumEnabled: true

failback: false

preferredOnly: false

preferredServers:

Version 1.0.1 Page 72/144 © 2004 IBM

agreggo
Note
Marked set by agreggo

1]
MatchCriteria:
_gt:.p

4.5.35 resolvePolicyForGroup

Shows the name of the policy for each partition.

Available options:

--0 <number of partitions>. The number of partitions that are printed out. If the --0 is not specified, it will default to

50 partitions.

--a<agpplication name>. Prints out policy information for the partitions in the given application.
--p <partition name>. Prints out policy information for the given partition.
--class <classification name>. Prints out policy information for the partitions in the given classification.

Example:

[root@wpfsample3 bin]# ./wpfadmin resolvePolicyForGroup --class ClassA

WASX7209I: Connected to process "Deployment Manager”" on node wpfsample3Manager using SOAP connector; The type of

processis: DeploymentManager
Partition=PK 000001
Policy name=WPF Cluster Scoped Partition Policy

Partition=PK 000002
Policy name=WPF Cluster Scoped Partition Policy

Partition=PK 000003
Policy name=WPF Cluster Scoped Partition Policy

Partition=PK 000004
Policy name=WPF Cluster Scoped Partition Policy

Partition=PK 000005
Policy name=WPF Cluster Scoped Partition Policy

Partition=PK 000006
Policy name=WPF Cluster Scoped Partition Policy

Partition=PK 000007
Policy name=WPF Cluster Scoped Partition Policy

Partition=PK 000008
Policy name=WPF Cluster Scoped Partition Policy

Partition=PK 000009
Policy name=WPF Cluster Scoped Partition Policy

Partition=PK 000010
Policy name=WPF Cluster Scoped Partition Policy

Version 1.0.1

Page 73/144

© 2004 IBM

4.6 Performance Monitoring

Performance monitoring is an activity in which you collect and analyze data about the performance of your applications
and their environment. The product collects data on run-time and applications through the Performance Monitoring
Infrastructure (PM1). Thisinfrastructure is compatible with and extends the JSR-077 specification.

In WebSphere Extended Deployment, we create a PM| module for each partition active in the cluster. We also provide
features to query the most active partitions in a user specified period.

An example using the WPF Performance Monitoring functionality is provided in the Management section. This
example sequence demonstrates the WPFK eyBasedPartitionSample.ear application shipped with WebSphere Extended
Deployment, and the source code is included.

4.6.1 WPF PMI Enablement

Before gathering WPF PMI data, you have to enable WPF PMI. The WPF PMI datais recorded in the system only
when WPF PMI is enabled. WPF PMI can be enabled in several ways. Using the wpfadmin utility command, the
Administrative Console, or the wsadmin tool can enable it. This support must be enabled before the cluster is started.

4.6.1.1 Enabling WPF PM1 from the wpfadmin command

You can call “wpfadmin enableWPFPMI level --c cluster” to enable WPF PMI in a particular cluster. Thisisthe
simplest way and the recommended way to enable WPF PMI.

Steps:
e Changedirectory to <WAS DEPLOYMENT MANAGER_HOME>/hin directory
e runthefollowing command:
wpfadmin enableWPFPMI H --c <your cluster name>
Y ou will see the following output:
WPFC00651: Cluster set to was-cluster-1
WPFC00431: The wpf Module of PM is enabled for cluster was-cluster-1 and set
to level H
Now you’ ve successfully enabled WPF PMI.

4.6.1.2 Enabling WPF PM1 from the admin console.

Or, if you prefer enable WPF PMI from admin console, you can follow the following steps to Here are the steps
to enabling the WPF PMI for a particular server:

Open the administrative console.

Click Servers > Application Servers in the console navigation tree.

Click server.

Click the Configuration tab.

When in the Configuration tab, settings will apply once the server is restarted. When in the Runtime Tab,
settings will apply immediately. Note that enablement of Performance Monitoring Service can only be done
in the Configuration tab.

Click Performance Monitoring Service.

Select the checkbox Startup.

Add wpfModule=H toinitial specification level field.

. Click Apply or OK.

10. Click Save.

11. Restart the application server.

grwONE

© N>

The changes you make will not take affect until you restart the application server.

If you want to enable WPF PMI for an entire node, you can follow the same steps except changing the navigation from
Servers>Application Servers>server to System Administration>Node Agents>node agent.

Y ou can also use IMX MBean or wsadmin tool to enable the WPF PMI. Thisis not different from enabling other PMI
modules. For more details, please refer to the WebSphere Application Server Info Center.

Version 1.0.1 Page 74/144 © 2004 IBM

4.6.2 WPF PMI path

As mentioned before, there is one WPF PMI module for each partition. The Partition PMI is grouped by the
application name and the EJB name. So if users want to query the PMI datafor Partition pl in Session EJB
sessionl of Application appl, the PMI path is “wpfModule,appl#sessionl,pl”. Using this PMI path, users can
directly query the PMI data for a specific partition using wsadmin or IMX MBean just like you would normally
do in the application server.

4.6.3 WPF PMI data aggregation

Since partitions are activated in different application servers, PMI datafor al partitions are possibly spread in different
application serversin acluster. Most likely, users are interested in the N most active partitions in the whole cluster.
WPF provides a PMI aggregation and sorting feature to satisfy this requirement.

WPF elects one server asthe PMI aggregator, which aggregates the partition statistics data from all servers. The PMI
aggregator is an HA Group with one of N policy. The policy nameis caled “WPF PMI Aggregator Policy”. Users can
customize the policy using wpfadmin tool. At any time, thereis only one PMI aggregator active in the core group. This
aggregator is responsible for aggregating the statistics for all the partitioned applications. The best practice isto let this
PMI aggregator run on a separate server from those housing partitions so it will not slow down business execution.
Each application server isresponsible for publishing all of its partition PMI datawhen PMI isturned on. The
aggregator will run at a user-specified interval, thus cutting down the volume of stats the user will be shown. The PMI
aggregator will mainly do the following:

Aggregate the statistics from different servers for each partition. Since partition can be moved from one

server to another, the PMI data for a partition can be spread over different application servers. The PMI

aggregator must gather all the PMI datafor a partition from all servers.

2. Sort the PMI statistics based on what users want. For example, if users are interested in the most active
(biggest number of transaction counts) 50 partitions over last 15 seconds. The PMI aggregator will calculate
the PMI statistics from the last 15 seconds and sort them based on the transaction count.

3. Publish the sorted PMI statistics results.

Users can specify the statistics interests when they subscribe the WPF PMI statistics. These interests include
application name and session EJB name, statistics type, statistics range, partition count, and aggregation interval. They
can a so changes these interest after they subscribe them.

4.6.4 WPF PMI statistics subscription

If users are interested in the PMI statistics of a particular partition or a server, they do not need to subscribe the WPF
PMI statistics. They can directly retrieve it using wsadmin tool or the IMX MBean.

If users are interested in the aggregated or sorted PMI statistics, they have to subscribe the WPF PMI statistics using
wpfadmin command or the WPF IMX MBean.

4.6.4.1 Subscribe WPF PM 1 statistics using wpfadmin command

Users can call the following wpfadmin command to subscribe the WPF PMI statistics:
wpf adni n. bat | wpf admi n subscri beWPFPM

STATI STI CS_RANCGE

STATI STI CSS_TYPE

APPLI CATI ON_NANE

SESSI ONEJB_NAMVE

PARTI TI ON_COUNT

AGGREGATI ON_|I NTERVAL

--c CLUSTER_NAME
where:
STATISTICS_RANGE: the statistics range. It could be cumulative or active.
STATISTICSS _TYPE: the statistics type. It could be TransactionCount or ResponseTime.
APPLICATION_NAME: the application name.

Version 1.0.1 Page 75/144 © 2004 IBM

SESSIONEJB_NAME: the Session EJB name.

PARTITION_COUNT: the number of partitions that users are interested in.

AGGREGATION_INTERVAL: the statistics aggregation interval.

CLUSTER_NAME: the cluster in which the application runs. If the PMI specification level in any server of this cluster
isnot set to H, subscribeWPFPMI will fail.

The output of this command will display the subscription client ID. Thisclient id is very important. It isthe handle to
your subscribed PMI interest. Any changes to this PMI interest or PMI dataretrieval will require this handle.

Steps:

For example, we are interested in the top 5 partitions that have had the longest total response timein the past. We also
want this PMI datawill be updated every 60 seconds. We can execute the following command to subscribe the PMI
interest:

wpf adm n subscri beWPFPM cunul ati ve ResponseTi ne WPFKeyBasedPartiti onSanpl e
WPFKeyBasedPartition 5 60000

Y ou will see the following output:

WPFC00401 : WPF PM has been subscribed with options range=cunul ati ve,
t ype=ResponseTi ne, application nane=WPFKeyBasedPartiti onSanple, ejb
nane=WPFKeyBasedPartition, partition count=5, interval =60000
WPFC00411: Your client idis 1. Use this in future wpfadnmin PM calls.

And theclient id, asdisplayed, is 1.

4.6.5 WPF PMI statistics retrieval

If users are interested in the PMI statistics of a particular partition or a server, they can directly retrieveit using
wsadmin tool or the IMX MBean.

If users have subscribed WPF PMI statistics using the wpfadmin command or WPFIMX MBean, they can use
wpfadmin to retrieve the statistics:
e wpfadm n. bat | wpf adm n get Transacti onCount --id PM _SUBSCRI PTION_ID --top
REFRESH_| NTERVAL.
e wpfadm n. bat | wpf adm n get ResponseTine --id PM _SUBSCRI PTION ID --top
REFRESH_| NTERVAL.

The PMI_SUBSCRIPTION_ID isthe client ID you get when you subscribe the WPF PMI. If you use --top option, the
output will be updated every specified refresh interval just like the Unix top command.

Also, they can also use Java code, jacl script or jython script to get the WPFIMX MBean to get the statistics similar to
the examples shown in 10.5.2.

Steps:

o execute the following command to get the PMI data:
wpf adm n get ResponseTine --id 1
Y ou will see the following output
WPFCO065!1: 1d set to 1

PartitionName TotaResponseTime TransactionCount MinimumTime MaximumTime StartTime
SumOfSquares

WPFC00451: No statistics are available! Please wait and try again.

You don't see any statistics data. That’ s because there are no PMI data in the system yet. Now we can run the client
to generate some statistics.
¢ Open anew command window or shell, execute the following command:
<WAS_HOMVE>/ bi n/ | aunchd i ent
<WAS_HOVE>/i nst al | edApps/ <CELL_NAME>/ WPFKeyBasedPartiti onSanpl e. ear -
CCpr ovi der URL=or bal oc: : HOSTNAME: SERVER _RM _PORT

Version 1.0.1 Page 76/144 © 2004 IBM

where, HOSTNAME is the name of the host that has the application server., and SERVER_RMI_PORT isthe RMI

port of that server, for example, 9811.
Y ou will seeclient runswith asimilar output like this:

| BM WebSphere Application Server, Release 5.1
J2EE Application Cient Too

Copyright 1BM Corp., 1997-2003

WBCL0012I: Processing comand |ine argunents.

WSCL00131: Initializing the J2EE Application Cient Environnent.

WSCLO0351: Initialization of the J2EE Application Cient Environnment has conpleted

WSCL00141: I nvoking the Application Cient class
com i bm websphere. wpf. cl i ent. WPFKeyBasedPartiti onC

i ent

Create Partitions from PKOOOOO1l to PKO00010

1st call: PKO000001l->partiton=PK000001, server=Ti ger1/cluslsrvl
2nd cal | : PKO00001- >partiton=PKO00001, server=Ti ger 1/ cl uslsrvil
3rd call: PKOOOOO1->partiton=PKO00001, server=Ti ger1/cluslsrvl
1st call: PKO00002->partiton=PKO00002, server=Ti ger1/cluslsrvl
2nd cal | : PKO0O0002- >partiton=PKO00002, server=Ti ger 1/ cl uslsrvl
3rd call: PKO00002->partiton=PKO00002, server=Ti ger1/cluslsrvil
1st call: PKO00003->partiton=PKO00003, server=Ti ger1/cluslsrvl
2nd cal | : PKOOO0OO0OO0O3- >partiton=PKO00003, server=Ti ger 1/ cl uslsrvl
3rd call: PKO0O0O0O03->partiton=PKO00003, server=Ti ger1/cluslsrvl
1st cal l: PKO00004- >partiton=PKO00004, server=Ti ger1/cluslsrvl
2nd cal | : PKO0O0004- >partiton=PKO00004, server =Ti ger 1/ cl uslsrvl
3rd call: PKO0O00O4->partiton=PKO00004, server=Ti ger1/cl uslsrvl
1st call: PKO000005->partiton=PKO00005, server=Ti ger1/cluslsrvl
2nd cal | : PKO00005- >partiton=PKO00005, server =Ti ger 1/ cl uslsrvil
3rd call: PKOOOOO5->partiton=PKO0000S5, server=Ti ger1/cl uslsrvl
1st call: PKO00006->partiton=PKO00006, server=Ti ger 1/ cl uslsrvl
2nd cal | : PKOO0O0OO06- >partiton=PKO00006, server=Ti ger 1/ cl uslsrvl
3rd call: PKO0O0006->partiton=PKO00006, server=Ti ger1/cluslsrvl
1st cal l: PKO00007->partiton=PKO00007, server=Ti ger1/cluslsrvl
2nd cal | : PKO0O0OOO7->partiton=PKO00007, server=Ti ger1/cl uslsrvl
3rd call: PKOOOOO7->partiton=PKO00007, server=Ti ger1/cluslsrvl
1st call: PKO000008->partiton=PKO00008, server=Ti ger1l/cluslsrvl
2nd cal | : PKO0O0008- >partiton=PKO00008, server =Ti ger 1/ cl uslsrvil
3rd call: PKOOOOO8->partiton=PKO00008, server=Ti ger1/cluslsrvl
1st call: PKO00009->partiton=PKO00009, server=Ti ger1/cluslsrvl
2nd cal | : PKO0OO0009- >partiton=PKO00009, server=Ti ger 1/ cl uslsrvl
3rd call: PKO00009->partiton=PKO00009, server=Ti ger1/cluslsrvil
1st call: PKO000010->partiton=PK000010, server=Ti ger 1/ cl uslsrvl
2nd cal | : PKO0O0010- >partiton=PKO00010, server=Ti ger 1/ cl uslsrvl
3rd call: PKO0O0010->partiton=PKO00010, server=Ti ger1/cluslsrvl

e 3.Wait for 60 seconds to let the aggregator sort the statistics, and then execute “wpfadmin getResponseTime —id 1"
again, you will see the following output.

WPFCO0651: 1d set to 1

Partiti onNane Tot al ResponseTi ne Transacti onCount M ni nunili e Maxi nunili e
StartTi me Sumf Squar es

PK000004 1625 3 87 903
1094180666309 1226203

PK000010 1543 3 260 671
1094180667170 892385

PK000005 1423 3 51 965
1094180666389 1099475

PK000008 932 3 99 482
1094180666990 365326

PK000002 862 3 217 364

1094180666038 258546

Notice that the TotalResponseTime in your output might be different from the one here, since the response time is
generated as arandom value.

4.6.6 WPF PMI statistics parameters
As mentioned before, a WPF statistic has several parameters. Y ou have used them in the subscribeWPFPMI command.

Version 1.0.1

Page 77/144

© 2004 IBM

4.6.6.1 application name and session EJB name

Partitions are grouped by the application name and the session EJB name. When subscribing the WPF PMI statistics,
users have to specify the application name and the session EJB name.

Users can use “wpf admi n. bat | wpf admi n set EJBNane EJB_NAME [--a APPLI CATI ON_NAME] --id
PM _SUBSCRI PTI ON_I D’ to set the EJB name and the application name for one PMI subscription. —ais used to
specify the application name.

Users can choose using fully qualified EJB name or not. For example, if users want to change the EJB name to
“session2” and application nameto “app2”, they can execute either of the following commands.

e . /wpfadm n set EJBNane app2#session2 --id 1

e ./wpfadm n set EJBNane session2 --a app2 --id 1

User can also use Java code, jacl script, or jython script to get the com.ibm.websphere.wpf.jmx.WPFIMX MBean
instance, and change the statistics type viathe MBean. For how to get an instance of MBean in different ways, please
refer to section 5.5.2.

Steps:

e Execute“wpf admi n set EJBNane
WPFKeyBasedPar titi onSanpl e#NonExi st ent Sessi onBean --id 1". Notice
NonExi st ent Sessi onBean EJB doesn’t exist in the application.

e Wait for 60 seconds, and retrieve the statistics by executing “wpf adm n get ResponseTine --id 1".
Y ou will not see any statistics as expected.

e Execute“wpf admi n set EJBNane
WPFKeyBasedPar titi onSanpl e#WPFKeyBasedPartition --id 1".

e Wait for 60 seconds, and retrieve the statistics by executing “wpf adm n get ResponseTine --id 1”.
Y ou will see the statistics again.

4.6.6.2 statisticstype

There are two types of partition statistics users are interested in: transaction count or response time. Transaction count
tracks the number of transactionsin a certain period. Response time tracks the total response time of al transactions
over acertain period. WPF has its own WPF PMI module, called wpfModule, which can be enabled to track these two
statistics. Thereis only one TimeStatistics in this module, since transaction count can also be tracked by TimeStatistics
objects.

Both transaction count and response time will be displayed when you retrieve the statistics. This statistics type is used
for sorting purpose. When statistics type is set to transaction count, the statistics are sorted by transaction counts, and
vice versa

Users can use “wpf Admi n. bat | wpf admi n set Stati sticsType
[Transacti onCount | ResponseTine] --id PM _SUBSCRI PTI ON_| D’ to set the statistics type for one
PMI subscription.

User can aso use Java code, jacl script, or jython script to get the com.ibm.websphere.wpf.jmx.WPFIMX MBean
instance, and change the statistics type viathe MBean. For how to get an instance of MBean in different ways, please
refer to section 5.5.2.

Steps:
e Execute“wpfadmi n setStatisticsType TransactionCount --id 1” tochangethe statistics
type to TransactionCount.
e Wait for 60 seconds, and retrieve the statistics by executing “wpf adm n get Transacti onCount - -
id 1". Youwill get the following output:

Partiti onName Transacti onCount Tot al ResponseTime M ni nunili me Maxi nunili e
StartTi me Sunf Squar es
PK000010 3 1543 260 671

1094180667170 892385

Version 1.0.1 Page 78/144 © 2004 IBM

PK0O00009 3 369 21 242
1094180667070 70241

PK000008 3 932 99 482
1094180666990 365326
PK0O00007 3 396 25 200
1094180666829 69866
PK000006 3 392 75 236

1094180666759 67882

Y ou can see the statistics doesn’t change much from the last output except the orders of TransactionCount and
Total ResponseTime column are exchanged. However, TransactionCount, instead of TotalResponseTime, sorts this
output.

4.6.6.3 StatisiticsStatisticsrange

There are two types of statistics range users are interested in: cumulative statistics or active statistics. Cumulative
statistics track statistics from transaction onein a partition. Active statistics track statistics over the recent period. For
example, users can track how many transactions happened in the latest 15 seconds.

Users can use “wpf Admi n. bat | wpf admi n set St ati sti csRange [cunul ative|active] --id
PM _SUBSCRI PTI ON_I D’ to set the statistics range for one PM 1 subscription.

User can aso use Java code, jacl script, or jython script to get the com.ibm.websphere.wpf.jmx. WPFIMX MBean
instance, and change the statistics range via the MBean. For how to get an instance of MBean in different ways, please
refer to section 5.5.2.

Steps:
e Execute“wpfadmi n setStatisticsRange active --id 1" tochangethe statistics range from
cumulative to active.
e Retrievethe statistics by executing “wpf adm n get Transacti onCount --id 1".Youwill getthe
following output:
Partiti onNane Transacti onCount Total ResponseTime M ni nunili me Maxi nunili e
StartTi me Sumcf Squar es
PKO00010 0 0 260 671
1094180667170 O
PKO00009 0 0 21 242
1094180667070 0O
PKO00008 0 0 99 482
1094180666990 0
PKO00007 0 0 25 200
1094180666829 0
PKO00006 0 0 75 236

1094180666759 0

This is because the active statistics are calculated to record the transaction statistics in the last 60 seconds. Y ou haven't
generated any transactions in the last 60 seconds. That’s why you get the transaction count and total response time 0.

e open acommand window, run the client to generate the transactions again:
<WAS_HOVE>\ bi n\ | aunchd i ent
<WAS_HOVE>/ i nst al | edApps/ <CELL_NAME>/ WPFSi npl eSanpl e. ear -
CCpr ovi der URL=or bal oc: : HOSTNAVE: SERVER_RM _PORT
o Keep retrieving the statistics by executing “wpf adni n get ResponseTinme --id 1" until you get the
following output.

Partiti onNane TransactionCount Total ResponseTine M nimunili e Maxi munili me
StartTime SunOf Squar es

PK000010 3 1695 232 827
1094180667170 1142249

PK000009 3 2089 21 899
1094180667070 1574733

PKO0O00008 3 1616 99 887
1094180666990 1140270

PK000007 3 1832 25 871
1094180666829 1228214

PK0O00006 3 2210 75 895

1094180666759 1690502

Version 1.0.1 Page 79/144 © 2004 IBM

e Change the range from active to cumulative by executing “wpf adm n set St ati sti csRange
curmul ative --id 1”

o (optiond) If you retrieve the statistics again, you will see a different output with transaction count as 6.

4.6.6.4 partition count

Users can also set the number of partitionsthey are interested in. For example, they are interested in the 50 partitions
that have the largest number of transaction counts.

Users can use use “wpf Admi n. bat | wpf admi n setPartiti onCount PARTI TI ON_COUNT --id
PM _SUBSCRI PTI ON_I D’ to set the partition count for one PMI subscription.

User can also use Java code, jacl script, or jython script to get the com.ibm.websphere.wpf.jmx.WPFIMX MBean
instance, and change the partition count via the MBean. For how to get an instance of MBean in different ways, please
refer to section 5.5.2.

Steps:
e Execute“wpfadmin setPartitionCount 8 --id 1” tochange the partition count to 8.
e Keep arecord of current time, and then retrieve the statistics by executing “wpf admi n
get Transacti onCount --id 1" until you see 8 partitionsin the output. Calculate how many seconds
has passed.

4.6.6.5 statistics aggregation interval

As mentioned earlier, the PMI aggregator only aggregates and sorts the PMI statisticsin intervals. Thisinterval is
called the statistics aggregation interval.

Users can use “wpf Admi n. bat | wpf admi n set Stati sticslnterval | NTERVAL--id
PM _SUBSCRI PTI ON_I D’ to set the partition count for one PM| subscription.

User can aso use Java code, jacl script, or jython script to get the com.ibm.websphere.wpf.jmx.WPFIMX MBean
instance, and change the statistics aggregation interval viathe MBean. For how to get an instance of MBean in different
ways, please refer to section 5.5.2.

Steps:
e Execute“wpfadmi n setStatisticslnterval 10000 --id 1" tochangethe statisticsinterval to
10 seconds.
e Execute“wpfadmin setPartitionCount 9 --id 1” tochange the partition count to 9.
e Keep arecord of current time, and then retrieve the statistics by executing “wpf admi n
get ResponseTine --id 1" until you see 9 partitionsin the output. Calculate how many seconds has
passed. You will notice that it is much quicker to show 9 partitions than the last time to show 8 partitions.

4.6.7 WPF PMI Aggregator policy

The PMI Aggregator isaHA Group member, so you can configure the HA Group parameters, such as which server the
aggregator is running, whether the aggregator runsin preferred servers, etc.

Users can use the following wpfadmin command to configure the aggregator policy:

wpf adm n. bat | wpf admi n set Aggr egat or Pol i cy

--fail back [true|fal se]

--preferredOnly [true|false]

--nunmOf Pol i cyServers NUVBER_OF_SERVERS

--servers SERVER LI ST

where:
o failback: whether the aggregator is failedback. The recommended valueis true.
o perferredOnly: Whether the aggregator is only running in preferred server list or not.
¢ numOfPolicyServers: the number of the servers which can house the PMI aggregator
o servers. The preferred server list separated by comma.

Version 1.0.1 Page 80/144 © 2004 IBM

4.7 Scalability Related Configuration

This section isintended to point out what configuration properties may need to be changed to handle application which
allocate 5,000 — 30,000 partitions. In general, customers should keep the number of actual partitions to a minimum to
ensure the cluster performance is not degraded. In addition, each attribute column has a foot note explaining how the
attribute can be set.

4.7.1 Configuration

For a maximum configuration IBM has tested, 10,000 partitions spread across 30 application servers, here are the
recommended configuration changes.

Update core group coordinator settings using wpfadmin updateCor eGroupCoordinators. Set the -numCoordinators
option to 4, and set the -preferredCoordinatorServers to be on different physical nodes as described earlier.

Update HA Manager service transport buffer setting for all serversin the cell using wpfadmin updateHamConfig.
Set the -buffer option to 20 and set the --cell to the name of the cell.

Change the maximum heap size for al serversin the cell to 512 and set the Deployment Manager's maximum heap size
to as big as possible (1400 if you have the physical memory). Thiscan all be done through the WebSphere GUI and
requires restarting all modified servers.

If you see OutOfMemory, IMXTimedOut, and other errors when running wpfadmin commands, try increasing the
number of coordinators for the core group. Thismay be seen with large numbers of partitions.

Suggested Configuration for Various partition counts:

Partition Count | # Cooridnators®
1000 2

5,000 2

10,000 3P

4.8 Proxy DataSource Management

If you want to use Proxy DataSource support, you need to create the proxy datasources from the administrative console,
or using wsadmin tool. WebSphere Extended Deployment ships two JDBC providers for Proxy DataSource support.
Oneiscalled “Proxy DataSource JDBC Provider”, which isfor connecting to non-X A-capable data sources. The other
iscalled “Proxy DataSource JDBC Provider (XA)”, which isfor connecting to X A-capable data sources.

Please refer to section 4.4.5.2 for how to create a proxy datasource for your application to use.

® This option is set viawpfadmin.
® Note, use the HA Manager policy attribute to collocate coordinators exclusively on application servers
located on different physical nodes (see wpfadmin).

Version 1.0.1 Page 81/144 © 2004 IBM

5 WebSphere Partitioning Facility Programming

This section describes the WPF programming environment, and how to interact with WPF programming when using
the WebSphere Studio Application Developer product. For those simply looking for a summary of the WPF and Proxy
Datasource APIs, they can refer to the published javadoc:

<Deployment Manager Home>\web\xd\apidocs\index.html

The goal in this document is to enable a programmer, who is already familiar with EJB development how to create
Partitioned Applications. Because WPF is a very manageable environment, and the devel oper should understand HA
Manager policies and how the administrator may manage a WPF environment, it is strongly suggested the
programmers review the earlier sections of this guide to understand the capability and review the examples located in
the following directory for WPF examples:

<Deployment Manager Home>\install ableA pps\WPF*

In addition, the Proxy Datasource sampleis also included at that location, and is packaged in the
ProxyDSAccountSample.ear.

Earlier in this document, there is a description of each of the sample programs and an example that steps through the
configuration of acluster, installing and finally using the example Partitioned J2EE WPFK eyBasedPartition application.
The examplesinclude the source code and can be imported into WebSphere Studio for review.

WPF requires the use of one PSSB EJB and optionally allows you to use other session EJBs as partition routable
session EJBs (PRSBSs) or non-routable facade session beans to PSSB beans.

5.1 Partitioned EJB Overview

The WebSphere Partitioning Facility (WPF) strives to offer the promise of high transaction rate computing, but also
allows the developer to continue using the existing J2EE programming model. Other than adding WPF Framework
related APIs, the developer’ s entity bean implementation should be fundamentally the same as with any other J2EE
Application and can use the same tool set.

When the WPF Framework APIs are used, and the Partitioned Statel ess Session Bean implements the WPF Framework
APIs, the bean will take on anew level of function and have enhancement management functions available to the
administrator.

5.1.1 Partitioned Stateless Session Bean (PSSB)

A partitioned stateless session bean (PSSB) must implement the WPF Framework API, and utilize the
PartitionManager interface to create and manage partitions. In addition a <Bean>_PartitionKey.java class must be
implemented is called by the workload routing to determine the partition endpoint the request should be routed to.

5.1.1.1 PSSB <Bean>_PartitionK ey Routing Class

The programmer implementing WPF must implement a <Bean>_ParititionK ey class to direct where the method request
should be routed within the cluster. The endpoint will be a partition, and is described using a string. For example, in the
WPF various samples, the following classes with the _PartitionKey are implemented and appear similar to the
following.

Version 1.0.1 Page 82/144 © 2004 IBM

package com.ibm.websphere.wpf.ejb;

/**
* PartitionKey for Partitioned Stateless Session Bean WPFKeyBasedPartition
*/

public class WPFKeyBasedPartition PartitionKey {

/**
* return the partition string as the partition key
* partition
*
*/

public static String buy (String partition) {
return partition;

}

In this case, (from the WPFFacadePartitionSample PSSB) the bean only has a single static remote method, buy(String)
which has the partition destination passed in. The user will receive all method argument passed to the signature, and
can process them as required to determine which appropriate partition endpoint cluster member should host the work.

All methods in the remote interface of the PSSB should be implemented.

5.1.1.2 The PSSB Bean needsto haveits generated stub updated

The wpfstubutil is a utility that regenerates the stub, and inserts the appropriate interfaces to enable the
<Bean>_PartitionKey classto be called for each route method execution. This tool should be called each time after the
EJB is deployed. The deployment process will result in the file being rewritten without these modifications.

An additional concern is administrators should never “deploy” when installing a Partitioned J2EE Application within
the cluster, as this will reset the generated stub, and the WPF Framework required changes will be present at runtime.
For examples of the updated stub, the samples in the installabeApps directory beginning with D_* can be reviewed.

5.1.2 Partition Routable Session Bean (PRSB)

A partition routable session bean (PRSB) is a statel ess session bean packaged in the same EJB module (jar) with the
PSSB, but does not implement the required PSSB interfaces. The PSSB must implement the interfaces as defined
above.

The PRSB would implement the business methods and the PSSB would not specify them. There can be more than one
of PRSBs implemented in the jar. Thisis useful if the application has several sets of partitions for multiple purposes
(the partition sets must be named uniquely) and multiple session beans implementing separate pieces of agive
application.

The advantage is only the business method interfaces need to be present in the PRSB (verses all the “plumbing”, e.g.
the APIs supporting the WPF Framework like getPartitions, partitionUnloadEvent(...), etc...). Since the PSSB beanis
collocated, the routing will be based upon the PSSB, but does enable the application writer to avoid using the PSSB
implementation directly to make the code more readable. All administration functions however will utilize the PSSB
bean name, thisisjust an abstraction.

As areminder, the PSSB partitions for that Partitioned J2EE Application will be associated with the PSSB. For
example, the -pn Group Member property (see the HA Manager section) will be the name of the PSSB bean, versus the
PRSB. However, this should not cause a problem.

The programmer must use the wpfstubutil on the PRSB just as they would with the PSSB if remote methods are to be
routable to the correct partition on the server.

5.1.3 Facade Interface for a Partitioned Stateless Session Bean

A PSSB and PRSB can directly provide an interface for remote method invocations to a remote server infrastructure (or
locally aswell if within the same server side JVM). However, often programmers would like to have a single facade to
these sorts of WPF Framework bean types, and the server implementation would execute the PSSB and PRSB bean

Version 1.0.1 Page 83/144 © 2004 IBM

functionality. Thisis not only for EJB programmers, but also for those implementing servlets for example. To
implement this, we have provided a simple example, the WPFFacadePartitionSample.

This sample caches the remote home of an example PSSB bean, and provides a single, non-routable method
implementation that executes the PSSB method on the server JVM. The source code isincluded in the
WPFFacadePartitionSample.ear.

This approach does have an advantage. If the client uses only a facade interface, and the PSSB/PRSB client routing
portion is executed in the server infrastructure, the general routing functionality will be faster as the client routing state
information does not have to be downloaded and cached in the client VM making the request.

For example, the WPFK eyBasedPartitionSample.ear sample client (WPFKeyBasedPartitionClient.java) uses INDI and
directly instantiates the PSSB home instance, and creates an instance from it. Each remote method invocation on the
instance requires the client VM to acquire routing information, download the client VM, and then cacheit. The
download step can add overhead to the client implementation in terms of performance (the routing data is cached and
stored in memory for both cases so there is not a memory footprint savings). For the case where a user solution has
thousands of partitions and many clients in separate client JVMs, bottlenecks can arise when transferring this much
information and if possible is better to be avoid.

However, in summary, both Fagade and non-Facade approaches are supported and useful in certain scenarios.

5.1.4 WPF Requirements

This section describes key requirements to ensure a PSSB has valid WPF Framework implementation.

5.1.4.1 PSSB L ocal Interfaces

When implementing a PSSB, it must be a Statel ess Bean and the following interfaces must be used:

Interface Ejb-jar descriptor Interface
L ocal Home local-home com.ibm.webspherewpf.PartitionHandler L ocalHome
Local local com.ibm.webspher ewpf.PartitionHandler L ocal

For example, the gjb-jar.xml for WPFK eyBasedPartition is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
"http://java.sun.com/dtd/ejb-jar 2 0.dtd">
<ejb-jar id="ejb-jar ID">
<display-name>WPFKeyBasedPartitionEJB</display-name>
<enterprise-beans>
<session id="WPFKeyBasedPartition">
<ejb-name>WPFKeyBasedPartition</ejb-names>
<homes>com. ibm.websphere.wpf.ejb.WPFKeyBasedPartitionHome</homes>
<remote>com. ibm.websphere.wpf.ejb.WPFKeyBasedPartition</remote>
<local-home>com.ibm.websphere.wpf.PartitionHandlerLocalHome</local-home>
<local>com.ibm.websphere.wpf.PartitionHandlerLocal</local>
<ejb-class>com. ibm.websphere.wpf.ejb.WPFKeyBasedPartitionBean</ejb-class>
<session-type>Stateless</session-types>
<transaction-typesContainer</transaction-types>
<env-entry>
<description>The number of partitions this session bean will create</descriptions
<env-entry-name>NumberOfPartitions</env-entry-names
<env-entry-typesjava.lang.Integer</env-entry-types>
<env-entry-value>10</env-entry-values>
</env-entrys>
</session>
</enterprise-beans>
</ejb-jars>

5.1.4.2 Partition Router Object (<EJBName>_PartitionK ey class)

Version 1.0.1 Page 84/144 © 2004 IBM

The application programmer is responsible for creating a partition router that acts as a callback for WPF. WPF uses
this callback to determine the target partition for requests. The class, whichisaplain old java object (POJO), must
follow these rules:

e It must reside in the same package as the EJB it supports

e Theclass name must be the same as the EJB and have the string _PartitionKey appended to the name

e Theremust be a static method for each remote method on the EJB. These methods should match the
signature of each method on the EJB but should always return a String representing the EJB’ s partition hame.
WPF calls these methods when a remote method is called on the EJB.

e Themethod should not throw any checked exceptions.

e The customer must run wpfstubutil on the deployed ear with the partition router object to “WPF” enable for
partition routing

5.1.5 WPF Restrictions

5.1.5.1 Partition Names must be Cluster Unique

Cluster Scoped Partition names must be unique within the cluster they are hosted within. For example, if a Partitioned
J2EE Application creates a partition named “ PartitionX”, another application in the same cluster cannot create another
partition with the same name.

One way to address this, is to use the PartitionManager.getApplicationName() interface, and if carefully used
(specifically do not use long strings), can preappend the partition name with deployed application name to the partition
name. For example, assume the administrator deployed the application with “ App45v1r2”, the
createPartitionDefinition(...) API could preappend the App45v1r2 to PartitionX, and create a partition named
“App45v1r2_PartitionX”.

Node Scoped Partitions names within the same application will be the same for each application on each logical node,
however, Node Scoped Partition names across different Partitioned Applications also need to be unique.

5.1.5.2 Other Restrictions

Please refer to each WPF subsystem to review specific restrictions (such as the Proxy Datasource).

Version 1.0.1 Page 85/144 © 2004 IBM

5.2 Developing WPF applications with WSAD 5.1

This section describes how to use WSAD to create an Partitioned J2EE Application. This section will ensure WSAD is
enabled correctly, and allow a developer to create a new Partitioned J2EE Application or work with a WPF framework
example, modify it, repackage, update the Partitioned J2EE A pplication with the wpfstubutil and finally run the
example.

For those wishing to start from scratch creating a PSSB, please refer to the next section

Version 1.0.1 Page 86/144 © 2004 IBM

5.2.1 Preparing WSAD to Develop WPF Partitioned J2EE Applications

This example assumes you wish to create a PSSB (to include within anew Partitioned J2EE Application).

5.2.1.1 Getting Started with a new WPF Partitioned Application

Create a J2EE project with an EJB module and an application client. We need to add the wpf.jar from the project to the
EJB module project. Right click on the ejb module and select the properties menu item.

2> Java - EJB yme : o : are dio App L—_‘.LEH;E
Flle Edt Source Refactor MNawigate Search Froject Profile Run WebSphere Window Help
H-ER S| % BRAYR |G-k -~ |K~||ddpe-| s |AAA||Cecra-C)|aF§
T i3 Package Explorer <~ =+ W 4w x||T o groups.t... 7] .| JTabled | @28 Depioyme... x ||[B2 outine *
I s
2/ 77| oo e re—
Y] < . Isage
L5 o | Gobmwo - Genersi INGrmation - « [Book
E + | open in Hew Window Display name: [NavajEdn The fllowing enterprise applications use this £33 module: - g 'c::umrparw
¥ (B “
‘Open Type Hierarchy Descrighon:
+ [T imajo + B instrumentautharity
¥ (3 |of 1 + [instrumentsd
s : i Copy ' - Unterprise Javabeans . gh:mfm
el L || The following Enterprise JavaBeans are used in this + (B order
+ () | W Dolete application: . %P’urtmonmer
o[Source v * Assembly Descriptor + [Portfolio
= L Refactor [N] Baoak = The following is a link to the method transactions, method + [Position
« @ B Counterpacy permissions, and securty roles defined for this EM application. + @ BookFascade
+ (| 22 Import.. Bew + @ OrderFrontEnd
v (B | e Eport... %mmmm.lmm ¥ @ TickerFamitionManager
Y lnsneord
Build Froject B LimitCiass
Cars [\
& LimitIn-dance
+ [| & Refresh o
& Order
% (| Close Project B Bastitinnhmmne &
. = T
: Run Validation T _Referemces =
P 3eb Server... The follawing is & link ta the references defined for enterprise somall:[|| Browse....
+ (3 g L o °: — K | besns in this 38 applicanan. O []
+ UM O SEVEr... —
:) Frofile on Server... ! orpe:
B C
: Add JET Nature
. Add 5QU) Support...
.'} Team i " = Relationships 2.0
g Compara With » The felowing relabonships are defined for this EJ8 application:
© G Na Replace With =
il ey Rastore from Loca History... | Overview Beans Assembly Descrptor References, Access Source Outhe Propertes
© B4 oW unk unites I
@ oblk web Sences " | ¥ Tasks (Fiter matched 72 of 552 Reme))) wo - x]
L - " [+]] peseription [Resource [n Falder [Location -
L - ' i Book.java has been deleted [HivajoEls/ejbModule/nav...
w
W pre T i Aookfiann. jwa has been deleted locally bk HaajoE IR ejbModule)nav. .
o it " i BookConstants. jovs has been deleted lacally book HavajoE I8/ ejbModule/nav...
< W pre| Propertes i BoakHome. java has been deleted locally boak HavajoE 18/ e bModule nav. .
W prereqm i BookLocal java has been deleted locally boak HavajoE 18/ e jbModule nav. .
W prereq.weem i BookLocalome. java has been deleted bocally book HavajoElB/ejbModule/nav...
¥ @ prereq.weem, pme i BookSnapshot. jeva has been deleted locally book HavajoEIB) e jbModule/nav...
W ras i BeokSuspendedException. java has been deleted locally book HavajoElE) ejbModule/na...
= @ recovery.log i Operationtiames.jova has been deleted locally book NavajoElE)ejbModule/nav...
i Order.java has been deleted loc baoak NavajoE1E/ejbModule/nav. .
W runtime
ep— i Orderfiean. java has been deleted kocally boak HavajoEle/ejbModule/nav...
W runtme.impl i OrdérHome.java has been deleted locally [HavajoElE/ejbModule/nav...
) Scruch. i Orderinfo.jave has been deleted locally book HavajoElB/elbModule/nav... »
@ secuty) |E2 EX:
|£] > Tasks Search Synchronize Conscl
HavajoEIR

Figure 2 Selecting the project properties
This makes the following dialog appear.

Version 1.0.1 Page 87/144 © 2004 1IBM

=

Properties for NavajoEJB

= %]

£] 1l

Info

BeanInfo Path

Cvs

EJB Deployment
External Tools Builders
J2EE

Java Build Path

Java Compiler

Javadoc Location

Java JAR Dependencies
Java Task Tags

Project References
Server Preference
Simple CMVC

5QU1 Customization Script
Validation

2]

Java Build Path

=2 Source] = Projects lifi Libraries l 1l Order and Export]

JARs and class folders on the build path:

SERVERIDK_50_PLUGIMDIR/jre/lib/rt.jar - C:\|»
WAS_50_PLUGINDIR/libfappprofile.jar - C:\w:
WAS_50_PLUGINDIR/lib/commons-discovery.j
WAS_50_PLUGINDIR/lib/commons-logging-ap
WAS_50 PLUGINDIR/libfecutils.jar - C:\wsad(
WAS_50_PLUGINDIR/libfejbcontainer.jar - C:
WAS_50_PLUGINDIR/lib/ejbportable.jar - C:\u
WAS_50_PLUGINDIR/lib/ivjejb35.jar - C:\wsa
WAS_50 PLUGINDIR/libfj2ee.jar - C:\wsad0d7
WAS_50_PLUGINDIR/libfpm.jar - C:\wsad072
WAS_50_PLUGINDIR/lib/pmimpl.jar - C:\wsac
WAS_50_PLUGINDIR/lib/qname.jar - C:\wsad
WAS_50 PLUGINDIR/libfquerymd.jar - C:\wsi
WAS_50_PLUGINDIR/libfras.jar - C:\wsad[l?z[v]

WAS SN PILIETMNTR (likfreadantareri iar - £
] [>]

]

5]

m

ESR S Sy
(RO VR W Wi Wi VL W S i S S S S Sl 8

o e e

A E

Add JARs...
Add External JARs...
Add Variable...
Add Library...
Add Class Folder...

[=
I

Default output folder:

|Na\rajoElE,-‘EJbM0duIe

]

Browse...

Cancel |

Figure 3 Editing the project class path

The next step isto click on the “Add Variable” button to define a variable indicating where you have installed the
Extended Deployment product.

Preferences

B[=] % |

Classpath Variables

Classpath Variables

A classpath variable can be added to a project's class path. It can be
used to define the location of a JAR file that isn't part of the workspace.
The reserved class path variables JRE_LIB, JRE_SRC, JRE_SRCROOT are

set internally depending on the JRE setting.
Defined classpath variables:

[ACTIVATIONIAR - C:\wsad0724\runtimes\base_\
ﬁ}gACTIVATION_]AR - C:\wsad0724\runtimes\hase
(W BASIC_WIZARDS - C:\wsad0724\wstools\eclipse'
(W DB2IAVA - Ci\wsad0724\runtimes\base_v3\lib\sl
(Wi DB2_DRIVER_PATH - C:\sgllib\java\db2java.zip
ﬁ}xECLIPSEﬁCORE - C:\wsad0724\eclipse'\plugins\or
(= ECLIPSE_HOME - C:\wsad0724'\eclipse

[ECLIPSE_HOME_COM_IBM_WSAPFDEV_LINK - C:
(W GENERATOR - C:\wsad0724\eclipse\plugins\org.¢
(W JB_VIEWBEAN - C:\wsad0724\wstools\eclipse\plt
ﬁ}g]BfW]ZARD - C:\wsad0724\wstools\eclipse'plugi
(W IDT_CORE - C:\wsad0724'\eclipse\plugins\org.ec
ﬁ}gJRE_LIB (reserved) - C:\wsad0724\edlipse\jre\lib
(= JRE_SRC (reserved) - (empty)

(= JRE_SRCROOT (reserved) - (empty)

ﬁ}gMAIUAR - C\wsad0724'\runtimes\base_v5\java\,
W MATL 1AR - C:\Vﬁsadﬂ?%\runtimes\base vS\i[ava]
< i ¥

]

L New...
i Edit...

Remove

(]

Cancel

Figure 4 Variable editing screen

Now click on the “New...” button and we will make the XD_HOME variable.

Version 1.0.1

Page 88/144

© 2004 IBM

New Variable Entry

Name: | XD_HOME

Path: | c:\wsSl\ File...

Folder...

OK | Cancel |

Ul

Click OK. Now you should see:

Figure5 Add theXD_HOME variable

New Variable Classpath Entry = @E

Select variables to add to build path:

ﬁ};WAS_W_XALAN S C:\wsadl]?zq\runtlmes\aes_w[’\l Extend... |

ﬁ'];WAS_V‘%_XERCES - C:\wisad0724\runtimes\aes_

[F, WAS_V5_IMPL_FACTORY_PROP - C:\wsad0724)
[l WAS_V5_XALAN - C:\wsad0724\runtimes\base_» i
[l WAS_V5_XERCES - C:\wsad0724\runtimes\base.

(== WEBTOOLS_PLUGINDIR - C:\wsad0724\wstools\e

[, WEB_WIZARD - C:\wsadD?24\wst00|s\eclipse\pILE
ﬁhWORFJAR - C:\wsad0724\wstools\eclipse\pluging
@XD_HOME- c:\ws51 [vl

(]_____IIH - | o o [)]

Variable points to a folder: Click '...choose an archive inside the folder.

oK ‘ Cancel ‘

Figure6 Variablesadded

Thereisnow an XD_HOME variable. Click on the “Extend...” button. This allows you to add a jar based on this
variable to your project class path. The use of a variable means that when multiple developers are using CV S then each
developer can set XD_HOME to a different directory pretty easily and still use the project easily when Extended
Deployment may be installed in different directories.

@ Variable Extension _ @E

Choose extensions to "XD_HOME".

(M, placement.jar [Al
(i pmiasyncserver.jar

(W policy.jar

(W, policyimpl.jar

i rmm-pgm.jar

(M ssichannelimpl.jar

(W swingall.jar

(W, tcpchannel.jar

(W tcpchannelimpl.jar

(M Tib.jar

(¥ weemn.xd.channelfw.jar

(W weemn.xd.hamanager.jar

(W weemn.xd.servicepolicy. jar

(h wpfijar

(i, ws-config-common_group.jar
(W wsmmcore.jar

(W wsmmfilter.jar [vl

Figure 7 Selecting therequired jarsfor the project

Expand the lib subdirectory and then select the wpf.jar and click OK. If you need any other jars then select those al so.
The other jars typically needed are asynchbeansjar from the lib directory if you have also installed WBI-SF.

Version 1.0.1

Page 89/144

© 2004 IBM

Properties for NavajoEJB

=%

Info

BeanInfo Path

CVs

EJB Deployment
External Tools Builders
J2EE

Java Build Path

Java Compiler

Javadoc Location

Java JAR Dependencies
Java Task Tags

Project References
Server Preference
Simple CMWC

SQU Customization Script
Validation

E

Java Build Path

= Source] 1 Projects lili Libraries l 11 Order and Exportl
JARs and class folders on the build path:

3 R o = 3 3 = [3 [3 R e

<

COPPPRRPERPREVLEE

WAS_50_PLUGINDIR/lib/querymd.jar - C: \wsa_A

WAS_50_PLUGINDIR/lib/ras.jar - C:\wsadd72
WAS_50_PLUGINDIR/lib/rsadaptercci.jar - C:\
WAS_50_PLUGINDIR/lib/rsadapterspi.jar - C:'
WAS_50_PLUGINDIR/lib/rsaexternal.jar - C:\w
WAS_50_PLUGINDIR/libfruntime.jar - C:\wsa
WAS_50_PLUGINDIR/lib/runtimefw.jar - C:\w
WAS_50_PLUGINDIR/lib/utils.jar - C:\wsad07.
WAS_50_PLUGINDIR/libfvaprt.jar - C:\wsadd:
WAS_50_PLUGINDIR/libfwebservices.jar - C:\
WAS_50_PLUGINDIR/libfwsdl4j.jar - C:\wsad
WAS_50_PLUGINDIR/libfwsexception.jar - C:\
KD_HOME/classes/wipf.jar - c:\ws51\classesy

XD_HOME/lib/asynchbeans.jar - c:‘\wsSl\Iib\E-v-

.).. 1

Add JARs... |
Add External JARs...
Add Variable...
Add Library...
Add Class Folder...

Edit...
Remove

Default output folder:

NavajoEIB/ejbModule

Browse...

oK | Cancel ‘

Figure 8 Thefinished build path screen

This shows what the build path would ook like when both the wpf and asynchbeans jars are added to the classpath.
Now click “OK” and your classpath is set correctly. If you are using any additional jarsin third party products such as
Log4J etc then they should be added using a similar approach. Define a variable and then extend it.

5.2.1.2 Creating a Partition Stateless Session Bean (PSSB) Example.

The PSSB is the center of a WPF application. It allows the application server to query the application at startup to
determine which partitions the application requires. It also is used by the application server to inform the application
when a partition is activated or deactivated. Activated means the HA Manager has assigned a partition to this cluster
member (See the section on HA Manager policies to see how the HA Manager assigns partitions to a cluster member).

S0, let us add a PSSB to your EJB module. Right click on the EJB project and click on “New”. This brings up the
following screen that allows you to choose to make an Enterprise bean.

Version 1.0.1

Page 90/144

© 2004 IBM

New &3

Select oo

0
Create an enterprise hean ﬁ

Component Test |~ | 8% EIB Project
+ Data | |® Access Bean
Eclipse Modeling Framework @\ Enterprise Bean
EJB W% Converter or Composer
Example EMF Model Creation Wizar
J2EE E
#-Java

Plug-in Development

Remote File Transfer

Server

Simple

Symptom Database

UML Visualization
w Web I
<l | 2

| Next > | it ‘ Cancel

Figure9 Making anew EJB

Click on the EJB item on the left of the dialog and then click on “Enterprise Bean” on the right. Now, click on “Next>".
Y ou can now choose the ejb module you want to host your PSSB. The module selected should already be the correct
one since that is what you clicked on to get to these dialogs. Now click on Next. We now choose that we want to make
asession bean as follows:

Version 1.0.1

Create a 2.0 Enterprise Bean

Select the EJB 2.0 type and the basic properties of the bean. @

" Message-driven bean

" Session bean

" Entity bean with bean-managed persistence (BMF) fields

" Entity bean with container-managed persistence (CMP) fields

i i
EJB project: NavajoEJB
Bean name: ‘Letters

Default package: ‘ billy.test Browse...

Create an Enterprise Bean E

Source folder: ‘eijoduIe Browse...

< Back Next = | | Cancel |

Figure 10 Creating the Partition Stateless Session Bean (PSSB)

Page 91/144

© 2004 IBM

The following dialog should now appear:

Create an Enterprise Bean E
Enterprise Bean Details
Select the session type, transaction type, supertype and Java classes for the EIB @
2.0 session bean.
Session type
" Stateful * Stateless

Transaction type

" Container " Bean
Bean supertype: |<n0ne> j
Bean class: |bi||y.test.LettersBean Package... | Class...
EJB binding name: |ejbfbillyftesthettersLocaIHome

W Local client view

Local home interface: |biIIy.test.LettersLocaIHume Package... | Class...
Local interface: |h|||y.test.LettersanaI Package... | Class...

I” Remote client view

Remote home interface: |
Remote interface: |

< Back | Next = | Finish | Cancel |

Figure 11 About to specify the local interfacesfor the PSSB

The PSSB isrequired to use a particular local interface and local home interface. We will now override the defaults
shown above and use the correct interfaces. Click onthe“Class...” button next to local home interface. This brings up
the following dialog.

Version 1.0.1 Page 92/144 © 2004 IBM

; Enterprise Bean

Select the sessi

Type Selection

=1}

2.0 session bea

Session type-
" Stateful

~ Transaction ty

' Container
Bean supertype
Bean class:
EJB binding nar

W Local client

Local home int:

Local interface

[~ Remaote clie

Remote home

Remote interfa

Select an interface using: javax.ejb.EJBLocalHome
]as

Matching types:

@ BookrascadelacalHome
@ BooklLocalHome

(1} CounterpartylocalHome
O FillLocalHome

O mstrumentAuthorityLocalHome
O mstrumentldLocalHome
O LimitClassLocalHome

@ LimitinstanceLocalHome
@ orderFrontEndLocalHome
O orderLocalHome

@ PartitionHandlerLocalHome
© PartitionOwnerlLocalHome
O portfolioLocalHome

@ PositionLocalHome

Qualifier:

3 com.ibm.websphere.wpf - C:fws51/classas/wpf.jar

]

Cancel |

EJB

B
_] Class...

| o |
o

< Back |

Next > ‘ Finish

Cancel

Figure 12 Selecting the PSSB home interface

Scroll down and select the PartitionHandlerL ocalHome interface. Y ou can see the package name
“com.ibm.websphere.wpf” from the wpf.jar file we added to the build path previously. This dialog only shows
interfaces that are usable as local home interfaces. Click OK. Now, click on the“Class...” button beside the local
interface and then select the “ PartitionHandlerLocal” interface and again click OK. The dialog should now look like

this:

Version 1.0.1

Page 93/144

© 2004 IBM

Create an Enterprise Bean

Enterprise Bean Details

Select the session type, transaction type, supertype and Java classes for the EIB @
2.0 session bean.

Session type

" Stateful & Stateless

Transaction type

* Container " Bean
Bean supertype: |<nune> j
Bean class: |bi||y.test.LettersBean Package... | Class...

EJB binding name: |ejb[biInytesthettersLocalHome

W Local client view

Local home interface: |com.iIJm.'v'.-eIJsphere.v.-pf.Par‘titionHandI Package... | Class...

Local interface: |com.iIJm.'v'.-eIJsphere.v.-pf.Par‘titionHandI Package... | Class...

I” Remote client view

Remote home interface: |

W
L i

Remote interface: |

< Back | Next = | Finish | Cancel

Figure 13 Completed PSSB creation dialog

Now click on the “Finish” button. The PSSB is now created and included in your EJB module. Next, we need to add
the methods from the PartitionHandler to the implementation bean for the EJB. Thereis no built-in mechanism for
doing this easily, but there isatrick we can use to get WSAD to add the methods very easily. Find the implementation
bean you just added. The sample so far creates the PSSB in the billy.test package. Find thisin your project and double
click on LettersBean (or whatever you called your PSSB). Now change the L ettersBean to also implement the
PartitionHandlerLocal interface and choose Save. Then, right click on the class name in the outline and generate the
missing methods on the interfaces.

Version 1.0.1

Page 94/144

© 2004 IBM

|5 (I BN EE % T A TR TSR TP E U T (| Y [$mEem || R AT

public woid setSessionContext (javax.ejb.Sessionl
mySessionCtx = ctx:

Add Constructors from Superclass
Add Javadoc Comment

Occurrences in File

1 chamcoregroup... |?",¢chamhagroups.... |fj>,¢chamnetworkch... |fj>,fchamserverenvi...] Deplwmen...[mLettersBean.j... x I 5% Outline F
[~m]| - billy.test
import com.ibm.websphere.wpf.PartitionHandlerLocal: ‘= import declara
, [= 0. siders
* Bean implementation class for Enterprise Bean: Letters OpenTYPEHmramhy mySe%@r
v oé' getSessior
‘%pmblic class Lettersbean implements javax.ejb.S5essionBean, PartitionHandlerLocal setSessior
private javax.ejb.SeszionContext mySessionCtx; CUDY ejbCreate(
TAd @B ejbActivate
* getSessionContext % Delete ejbPassiva
*/ B ;7 eibRemov:
public javax.ejb.SessionContext getSessionConte Sort Members Source
return mySessionCtx; 5 Refactor L4
" Override/Implement Methods...
[Generate Getter and Setter... References 4
* setSessionContext Generate Delegate Methods... Declarations 4
*/

Run Validation

}

Externalize Strings...

3¢ Debug on Server...

public void ejbPassivate() {
}
! VL

fxx
* ejbCreate & Run on Server...

*/ & Profile on Server...

public woid ejbCreate () throws javax.ejb.CreateException { Team »

}

[Compare With 4
* ejbActivate Replace With 4
:ﬂf:’l' (4 eepmees . Restore from Local History...

1C VOl e ctivate

1;' 2 g Link Utilities 4

fxx
* ejbPassivate .
-y Properties

M <

Outline | Properties

O3] Tacbm FEilbne cnmtabhnd 9 Af CE Snom-)

Figure 14 Adding the PSSB methods automatically.

Now you should see the following dialog:

ibm.websphere.wpf.PartitionHandlerLocal;

lementa .
& Override/Implement Methods) [=]%

= Lette] ndlerLocal
. javax.{| Select methods to override or implement:
cosioncl| | = [Z]© PartitionHandlerLocal

[¥le getPartitions()
javax.e [l @ isPartitionAlive(String)
oron myS [¥le@ partitionLoadEvent(String)

[¥]® partitionunloadEvent(String)

) —-[J® eBLocalObject

SRR [Je getElBLocalHome()
I Oe getPrlmawKey[] .
—— Qe isldentical(EJBLocalObject)

e remove()

+[]® object
reate
woid ej
.ctivate
void e3ll ¥ Group methods by types
_ Select Al | Deselect Al |
assivat
wvold eJll i 4 methods selected.
oK I Cancel |

matched 72 of 552 items)
stion | resourc
O S T [

Figure 15 Selecting the PSSB methods to add to your bean

Version 1.0.1 Page 95/144

© 2004 1IBM

Clear the checkbox for the EJBLocal Object and then click OK. This adds the methods from the local interface in one
easy step. Finally, remove the PartitionHandlerLocal interface from the LettersBean and saveit. Y our PSSB is now
ready for customization. The screen should now look something like the following:

chamcoregroup... chamhagroups.... chamnetworkch... chamserverenvi... *EIB Deploymen... | [J] LettersBean.j... X | 3=/ Outline B12E L 0 x
package billy.test; -~ B billy.test
| a_
+-"= import declarations
import com.ibm.websphere.wpf.PartitionDefinition; =@, >LettersBean (ASCIT -kkv)

import com.ibm.websphere.wpf.PartitionHandlerLocal;
= = bl o mySessionChx : javax.ejb.Sessi

[@ getSessionContext()

* Bean implementation class for Enterprise Bean: Letters @ .. setSessionContext(SessionCont
/ @ ejbCreate()

public class LettersBean implements javax.ejb.SessionBean { @ . ejbActivate()

private javax.ejb.SessionContext mySessionCtx;

@ .. ejbPassivate()
@ .. ejbRemove()

® .getaess;cr._cr.t,ext, @ getPartitions()

public javax.ejb.5essionContext getSessionContext() { oL 'SPa_rt_'t'WAl'Ve(Sm”g]_
return mySessionCtx; @ partitionLoadEvent(String)
3 @ partitionUnloadEvent(String)

* setSessionContext

public woid setSessionContext(javax.ejb.SessionContext ctx) {
mySessionCtx = cLX;
}

* gjbCreate

public wvoid ejbCreate() throws javax.ejb.CreateException {
}

* ejbActivate

public void ejbActivate() {
}
* gjbPassivate

public woid ejbPassivate() { = < | {1} [»]

Outline | Properties

Figure 16 Completed PSSB with PSSB methods

Here you can see the 4 new methods added to the bean and you will see we removed the PartitionHandlerL ocal
interface from the bean implements list.

5.2.1.3 Adding some sample partitions
Add the following variable to the PSSB.

PartitionManager ivRuntime;

You'll also need to add the following import.

import com.ibm.websphere.wpf.*;

Update your setSessionContext method to look like the following:
public void setSessionContext (javax.ejb.SessionContext ctx) {
mySessionCtx = ctx;

try

InitialContext ic = new InitialContext () ;
ivRuntime = (PartitionManager)ic.lookup (PartitionManager.JNDI_ NAME) ;

catch (Exception e)

throw new EJBException ("Problem initializing PSSB", e);

}
Thisretrieves the PartitionM anager service that is used to create data structures needed for partitioning.

5.2.1.3.1 Update the getPartitions method

Now, update the getPartitions method as follows:

Version 1.0.1 Page 96/144 © 2004 IBM

public PartitionDefinition[] getPartitions/()
ArrayList partitions = new ArrayList();

// first add some key based partitions. These are static here but could

// just as easily be loaded from a database when the application starts.

String[] keys = new Stringl] {"IBM", "csco", "SUNW", "BEAS", "ORCL", "MSFT", "GE"};
for(int 1 = 0; i < keys.length; ++1i)

PartitionDefinition p = ivRuntime.createPartitionDefinition("K " + keys[i],
"KEYS", PartitionScope.K_ CLUSTER) ;
partitions.add(p) ;

}

// now add some partitions for our hash test. We'll have a hash space of 16 slots
// thus allowing us to scale to 16 JVMs. We can easily use a larger number but 16
// is sufficient for this sample.

for(int i = 0; 1 < 16; ++1i)

PartitionDefinition p = ivRuntime.createPartitionDefinition("H_ " + i,
"HASH", PartitionScope.K CLUSTER) ;
partitions.add(p) ;

PartitionDefinition p = ivRuntime.createPartitionDefinition ("SINGLETON") ;
partitions.add(p) ;
return (PartitionDefinition[])partitions.toArray();

}

This method shows an example of three types of partitioning schemes. The first creates a partition per ‘key’. The keys
here are stock symbols. Y ou could load the list of stock symbols (there are usually thousands) and return partition
definitions for each of those.

The next scheme shows how partitions can be created to hash a set of keys on to afixed set of partitions using a
hashing scheme. The sample uses sixteen partitions.

Finally, we show how to make a singleton service for the cluster by giving it a single partition. The purpose of the
PSSB is simply to allow the application to specify the set of partitions at startup time. Each partition specified allows
the cluster member to be a potential activation member for the partition. Each cluster member should normally return
the same set of partitions and the customer should use the HA Manager and its policies to determine partition
placement. This offers both flexibility and simplicity by separating the concerns of partition definition versus partition
placement (there is no need to implement complicated application logic returning different partition sets for each
cluster member).

Once the cluster starts then each partition is activated on one of the cluster members. The partition

5.2.1.3.2 Update the isPartitionAlive method

Partitions may take advantage of the partition health checking mechanism. The
The partition’ s isPartitionAlive method is invoked by the HA Manager to interrogate the application to check the state
of apartition. If the application can determine that a partition is healthy, then it should return true. Otherwise, it should
return false. The partition’ sisPartitionAlive method will be called when:
e The partition is activating.
The partitionL oadEvent method has been called but has not yet returned. The isPartitionAlive must return
true during this period.
e Thepartition isactive.
The partitionL oadEvent returned and the cluster member is now hosting the active partition and receiving
I1OP requests (or requests through other means). The isPartitionAlive method will be called periodically to
check the partition health.
e Thepartition is deactivating.
The partitionUnloadEvent has been called and the application is currently shutting down the partition on this
cluster member.

public boolean isPartitionAlive (String partitionName)

return isMyParititionAlive (partitionName) ;

Version 1.0.1 Page 97/144 © 2004 IBM

agreggo
Note
Marked set by agreggo

agreggo
Note
Marked set by agreggo

agreggo
Note
Marked set by agreggo

5.2.2 Partitioned J2EE Application Example

This example explains how to start from one of the examples provided with WPF.

5.2.2.1 Importing the WPFK eyBasedPartitionSample Sample
Application
Inthe <ND Install Image Location>\installableApps you will see the WPFK eyBasedPartitionSample.ear. This ear has

not been deployed and contains the source for the WPF example. The D_ WPFK eyBasedPartitionSample.ear isa
deployed example and for administrators who wish to load and begin experimenting with the WPF framework.

To import the sample:
- Stat WSAD

0 Create anew Project

0 Select Enterprise Application Project

0 Select J2EE 1.3 Enterprise Application Project
0 Next

0 Determine a project name, e.g. “test”

o Click Finish

- Inthe J2EE Hierarchy window
0 Select the“test” project
Hold the right mouse, select import
Select “Import..."
In the Import dialog, select “EAR file”
Select Next
Browse to the <Deployment Manager>\installableA pps directory
Select an WPF example ear, for example, WPFK eyBasedPartitionSample.ear
Select Finish

O O0OO0OO0OO0OO0Oo

At this point, normal developers can be done. The application can be changed, programmer can regenerated the
deployed code with the Generate Deployment Code option and exported into a new ear file.

After the ear file is exported, wpfstubutil should be ran and reprocess the EJB stub. This command is documented later
in this section.

Finaly, the application can be installed (or reinstalled) in the cluster. The example in the initial portion of this text
illustrates the steps to install a WPF Partitioned J2EE Application.

Version 1.0.1 Page 98/144 © 2004 IBM

5.3 WPF Framework Programming Model

This section describes the programming model for the WebSphere Partition Facility (WPF). There are three aspectsto
the programming model.

e Partition Stateless Session Bean (PSSB).

Thisisthe stateless session bean used to obtain the initial set of partitions from the application at start time as well
as send events such as partition activated, deactivated and isPartitionAlive to the application at the appropriate
times.

e Partition Manager.

This allows an application to create new application partitions and shutdown existing partitions. It can return the
current set of application partitionsin use. It allows the application to report transactions to the runtime.

e JMX commands.
The specific APIsareinstalled in the following directory:

<Deployment Manager Home>\web\xd\apidocs\index.html

5.3.1 PartitionDefinition

Applications create ParitionDefinition instances to describe a partition to the partition runtime.

NOTE: PartitionDefinition instances can only be created using the factory methods of the provided PartitionManager
interface.

5311 PartitionDefinition#getPartitionName

This method returns the name of the partition definition.

The method signature is:
String getPartitionName ()

The partition name must be unique through the entire cluster. The application writer must ensure their partition names
are unique for this version of WPF.

5312 PartitionDefinition#getPartitionClass

This method returns the class name of the partition definition.

The method signature is:

String getPartitionClass ()

5313 PartitionDefinition#getScope

This method returns the Partition Scope of the partition definition.

The method signatureis:

Version 1.0.1 Page 99/144 © 2004 IBM

agreggo
Note
Marked set by agreggo

PartitionScope getPartitionScope ()

The Scope will either be cluster or node scoped, see PartitionScope for more information.

5314 PartitionDefinition#getAttributeM ap

This returns the attribute map of the partition definition if provided when partition definition was created (thisis
optional). When creating an HA Group the user can create a set of attributes, which are useful in policy management.
Map keys and values can only be Strings.

The method signatureis:

Map getPartitionMap ()

The default is an empty map with no entries.

5315 PartitionDefinition#setPartitionAlias

This method is reserved for future use in the WPF Framework.

The method signatureis:

void setPartitionAlias (String aliasName)

5316 PartitionDefinition#getPartitionAlias

This method is reserved for future use in the WPF Framework.

The method signatureis:

String getPartitionAlias()

5.3.2 PartitionScope

PartitionScope is used to specify a partition as having either cluster or node scope during PartitionDefinition creation.

5.3.2.1 PartitionScope#K CLUSTER

This specifies cluster level scope. This means the HA Manager will apply the policy to al running cluster members.

5.3.2.2 PartitionScope#K NODE

This specifies node level scope. This means the HA Manager will apply the policy only to the cluster memberson a
particular node. If aone of N policy is used, then this means one cluster member per node will be activated. If [IOP
routing is being used then the requests will be spread over the active cluster members on the various nodes.

5.3.3 PartitionManager

An instance of the PartitionManager can be obtained by the application from JNDI. An instance is bound into INDI by
the runtime. The following code segment shows how the PSSB can look up an instance and then cache it using an
instance variable.

public void setSessionContext(javax.ejb.SessionContext ctx) {

Version 1.0.1 Page 100/144 © 2004 I1BM

mySessionCtx = ctx;

try
/I cache various references.
Initial Context ic = new Initial Context();
bookHome = (PartitionManager)ic.lookup(PartitionManager.JNDI_NAME);
}
catch(Exception €)
throw new EJBException(e);
}

}

See the sample programmers for more example usage.

5.3.3.1 PartitionM anager#JNDI_NAME

This attribute can be used by an application to retrieve the PartitionManager service using JNDI.

5.3.3.2 PartitionM anager #cr eatePar titionDefinition

This method has three signatures, and each is used to create a PartitionDefinition instance representing an application
partition. This method is overloaded and the appropriate method should be chosen depending on the desired behavior.

The first method signatureiis:
PartitionDefinition createPartitionDefinition(String partitionName)

Thisisthe creates a PartitionDefinition with the default classification and cluster scope. The default classification
string is the value of the PartitionDefinition#DEFAULT_CLASSIFICATION (“_DFLT"). This version cannot create a
unique classification per partition, specify Node Scoped partitions or provide a MAP to better manage the partitions.

The second method signatureis:

PartitionDefinition createPartitionDefinition(String partitionName,
String partitionClass,
PartitionScope scope)

This creates a PartitionDefinition with the specified partition classification (partitionClass) and a specific partition
scope. This version does not provide a Map of policy attributes to create the partition definition. Providing a map of
extra policy attributes can offer better partition management options.

The method signature is:

PartitionDefinition createPartitionDefinition(String partitionName,
String partitionClass,
PartitionScope scope,
Map attributemap)

This creates a PartitionDefinition with the specified partition classification (partitionClass) and a specific partition
scope. In addition, a set of attribute and value pairs can be added to the default list of HA Manager group properties for
this partition. The extra attributes can be used to control the HA Manager policies more specifically. One caveat, the
Map attributes are using during the runtime, so the minimizing the number and the actual datain use isimportant.

Thefirst value inserted in the Map put() APl isthe HA Manager “key”, the second will be the HA Manager “value” for
that “key” pair.

Version 1.0.1 Page 101/144 © 2004 I1BM

An example when using the optional map parameter can be implemented something similar to the following:

public PartitionDefinition[] getPartitions()

String names = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
PartitionDefinition[] rc = new PartitionDefinition[names.length()];
for(int i = 0; i < names.length(); ++1)
Map testMap = new HashMap() ;
testMap.put (“custom-attrib", "samplevalue") ;
testMap.put ("activateOn", Integer.toString(i%3)); // have 3 servers, balance at start
rc[i] = ivRuntime.createPartitionDefinition (names.substring(i, i + 1),
"MapExamle",
PartitionScope.K NODE,
testMap) ;
testMap = null;

!
logger.trace (RASITraceEvent .TYPE _LEVEL1, this, "getPartitions", "Returning partitions", rc);
return rc;

}

In this case, a Map was created that had one HA Manager key attribute set to the same value for all partitions (custom-
attrib), and a second that is named “activateOn” and had a string value 0-2. This example was used in conjunction with
the policy support to create a policy for each start value and request the preferred server policy be unique for every
third partition. See policy sections for more detail on this approach.

5.3.3.2.1 createPartitionDefinition() Attribute Constraints

The attributes provided to the createPartitionDefinition() APl must comply with the following rules, or during the
create operation an HA Manager failure exception “HAMapException” will be thrown and the Partition will not be
created correctly. Not only do these apply to the Map attribute’ s key and value pairs, but also the Partition Name and
Classification (in this case the user will be providing the values for WPF defaulted key values —pn and —pc

respectively).
* The map cannot be null or empty

(WPF guarantees against this case as WPF provides default Map values which include
the Partition Name, Default Classification and other attributes documented in the HA
Manager Policy section so in genera this rule should not be a concern).

* All keysin the map must be Strings.

+ All valuesin the map must be Strings.

*No key is allowed to start with the underbar ('_") character.

*No key or valueis allowed to contain the comma (',") character.
*No key or valueis allowed to contain the equals ('=") character.

*No key or value is allowed to contain the vertical bar (|') character.

5.3.3.3 PartitionM anager #getPartitions

This method can be called to get alist of the known partitions for this cluster member.

The method signatureis:

String[] getPartitions ()

5.3.3.4 PartitionM anager #getApplicationName

Version 1.0.1 Page 102/144 © 2004 I1BM

This method can be called to get the application name determined by the administrator at deploy time. This string can
be used in the name of the partition to ensure it is unique within the cluster (the deployed application name must be
unique within awebsphere cluster).

The method signature is:
String getApplicationName ()

Asacaveat, if thisis used when creating a partition, we suggest you deploy the Partitioned J2EE Application with a
minimal hame in terms of string length, as the name is used throughout the HA Manager runtime.

One common use, can be to use thisto version partition references, having the same Partitioned J2EE Application in
the same cluster, simply installed with a different name, and each partition, e.g. “PartitionA” can instead be called
“Appv2r2.PartitionA”. Thus, in the cluster, the user could have “ Appv2r 1.PartitionA” and “Appv2r 2.PartitionA”
active concurrently. The application would simply address their request to the version they are compatible with. Thisis
just one approach to this problem.

5.3.3.5 PartitionM anager #addPartition

This method is called by an application to dynamically add a new partition.
The method signature is:
void addPartition(PartitionDefinition name)

If acluster member adds a partition then it is also asynchronously added to all current cluster members automatically.
Using the Default Cluster Scoped Policy, the partition will be typically be activated often on the cluster member
receiving the request, although thisis not guaranteed behavior. In addition, activating a partition across acluster isa
distributed function, thus, atime delay is reasonable between the time the API returns and the actual activation of the
partition occurs. Programmers should account for this.

This APl is demonstrated in the WPFK eyBasedPartition example.

5.3.3.6 PartitionM anager #r emovePartition

This method allows an application to remove a partition dynamically. If the partition is currently active on any cluster
member then it is also deactivated. The partition is removed across al online cluster members.

The method signatureis:
void removePartition (String name)

Deactivating a partition across a cluster is a distributed function, thus, atime delay is reasonable between the time the
API returns and the actual deactivation of the partition occurs. Programmers should account for this.

For scenarios where atemporary error is suspect rather than a permanent error, the programmer should consider using

the disablePartition() API. In this case, the policy mechanism can be used to determine if the partition should actually
not restart, or in fact could be restarted on another cluster member if the opportunity exists.

5.3.3.7 PartitionM anager #disablePartition

This dynamically disables a partition. Calling this method disables the partition on the current cluster members. This
can also be accomplished viathe wpfadmin command.

The method signature is:
void removePartition(String name)

When the method isinvoked, the partition will either enter a deactivated state or activate immediately on another
cluster member capable of hosting the partition. The partition would be deactivated depending on the current policy

Version 1.0.1 Page 103/144 © 2004 I1BM

agreggo
Note
Marked set by agreggo

settings, but by default activated on another cluster member if oneisavailable. If partition is not automatically
reactivated, wpfadmin can be used to enable the member once the administrator can review the logs and determine any
action that should be done prior to reenabling the partition.

The partitionUnloadEvent(...) is not called as the application will call this method and can clean as much asis possible
prior to the invocation.

5.3.3.8 PartitionM anager #r epor tPar titionFault

This method is called by the application to indicate a problem with an active partition. This causes the HA Manager to
react according to the value of the severity parameter. This method is reserved for future use, and not implemented at
this time. See disablePartition() to take corrective action.

5.3.3.9 PartitionM anager #r eport TransactionComplete

Thismethod is called by an application to report a transaction has just completed with a specific response time for a
particular partition. Thisis normally used when the application is using an asynchronous method for receiving work
reguests as opposed to synchronous |1 OP requests.

The method signatureis:

void reportTransactionComplete (String partitionName, long responseTime ms)

This API result is stored and transferred to the WPF Performance Monitoring facility. The WPF Performance
Monitoring facility will track the individual results across the entire cluster. This serviceis discussed in severa parts of
this document, and examples are also included in the getting started section.

This APl is demonstrated in the WPFK eyBasedPartitionSample example.

5.3.3.10 PartitionM anager #setHttpPar titionM anager

Thisindicates to WPF that this application uses HTTP Partitioning. See the HT TP Partitioning section of this document.

The method signatureis:

void setHttpPartitionManager (HttpPartitionManagerInterface manager)

5.3.4 PartitionManager# reportTransactionComplete

WPF PMI contains one statistic, responseTime, which is used to measure the response time of transactions and
transaction number executed on behalf of a specific partition. The response timeis collected by users applications. User
applications update the PM| statistics by calling the reportTransactionComplete method of the
com.ibm.websphere.wpf.PartitionManager interface. Here is the method signature in the PartitionM anager interface:
/ * %
* This should be called to inform the runtime when a transaction/operation

* completes on this partition. This is used for records how many
* transactions per seconds are being executed per partition.

* partitionName the name of the partition.

* responseTime _ms the response time for the transaction.

* IllegalStateException If the calling application has no partition handler
bean

*/

void reportTransactionComplete (String partitionName, long responseTime ms)

Users can call PartitionManager.reportTransactionComplete in the Partition Statel ess Session Bean. The best practiceis
that users calculate the transaction time of a transaction and then use this API to report the transaction time. Here is one
example. Method buy is a method to simulate the transaction in the WPFK eyBasedPartition Bean in the

Version 1.0.1 Page 104/144 © 2004 I1BM

WPFK eyBasedPartitionSampl e application.

/**

* A buy method. This method does nothing now except report the transaction

* completion. The transaction takes a random value ranging from 0 ms to 1000ms.
*

* partitionName

* the partition name

*/

public String buy(String partitionName) {
String serverName =
AdminServiceFactory.getAdminService () .getNodeName () +"/"+AdminServiceFactory.getAdminServ
ice () .getProcessName () ;

ivManager.reportTransactionComplete (partitionName, (long) (1000 * Math.random())) ;

logger.trace (
RASITraceEvent .TYPE LEVEL1,

this,

n buy n ,

"The method called at " + serverName + "." + partitionName) ;
return "partiton=" + partitionName + ", server=" + serverName;

Thefirst time the PartitionManager.reportTransactionComplete is called for a particular partition in one application
server, a PMI moduleis created for this partition grouped by the application name and the session EJB name. For
example, if the application nameis “appl”, and the Session EJB name is “sessionl”, the PMI moduleis grouped by
“appl#sessionl”. We will describe thisin more details in the PMI path section.

The responseTime statistics is designed to cal culate some statistics facts, for example, average response time, minimum

response time, maximum response time, and sum of squares of the response times. Users can access these data by
querying the PMI data using wpfadmin command, wsadmin command or MBean.

Version 1.0.1 Page 105/144 © 2004 I1BM

5.3.5 PartitionHandlerLocal

The PartitionHandlerL ocal interface defines callback methods that enable your application to receive specific partition
lifecycle events from the WPF runtime. There are 4 methods on this interface.

5.3.5.1 PartitionHandler L ocal#getPartitions

The getPartitions method is called when the application is started in a cluster member. It’ simportant to realize that this
method is called once on EVERY cluster member EVERY time the application starts. This method signatureis:

PartitionDefinition[] getPartitions()

The method should return an array of PartitionDefinition objects. There should be exactly one PartitionDefinition for
every partition the application can host in this cluster member. A cluster member can only be a candidate for a partition
when that partition has been returned from getPartitions.

NOTE: It's recommended that the application always return the same set of partitions on each cluster member.

The HA Manager policies can be used to limit the partition to activation on certain cluster members or even’'pin’ a
partition to a particular cluster member.
Here is an example getPartitions method:

public PartitionDefinition[] getPartitions/()

PartitionDefinition[] rc = new PartitionDefinition[10];
for(int 1 = 0; 1 < rc.length; ++1i)

rc[i] = ivRuntime.createPartitionDefinition("" + 1i);

}

return rc;

}

This returns 10 partitions to the runtime. The partitions are named {0,1,2,3,4,5,6,7,8,9} . They are all created using the
default classification.

5.3.5.2 PartitionHandler L ocal#partitionL oadEvent

The HA Manager calls the partitionL oadEvent when a partition is activated on a cluster member. This givesthe
application the opportunity to perform any required initialization prior to receiving |1OP requests for the specified
partition (The partition name is provided as a string parameter). The partionLoadEvent method signatureiis:

boolean partitionLoadEvent (String partitionName)

The method should return true if the cluster member is ready to accept work for the specified partition. Once the
method returns, the 11OP routing tables are updated and incoming 110P requests will be delivered to this cluster
member for the specified partition.

If the method returns false, then the HA Manager disables the cluster member for this partition and will try to activate
the partition on a different cluster member based upon the current policy. This disabling only appliesto the partition
passed to the method, other partitions may still be activated on this cluster member. Applications that return false
should ensure that adequate trace is enabled to allow the administrator to diagnose the problem. If the problemis
determined to be transient in nature, then the administrator can use IMX to enable the cluster member again for that
specific partition.

If an application is using messaging to accept incoming requests for a partition (as opposed to direct [1OP routing) then
the application should subscribe at this time to the topics/queues on which the requests can arrive.

5.3.5.3 PartitionHandler L ocal#partitionUnloadEvent

Version 1.0.1 Page 106/144 © 2004 I1BM

The HA Manager calls this method when a partition is deactivated. The event tells the application to stop processing
requests for the specified partition. The WPF runtime updates the [1OP routing table for this cluster member prior to
invoking this callback. The method has the following signature:

void partitionUnloadEvent (String partitionName)

If an application is using messaging to accept incoming requests (as opposed to direct 110P routing) then it should
unsubscribe to the topics/queues on which those requests arrive. The HA Manager will not activate a replacement
cluster member until this method returns.

5.3.5.4 PartitionHandler L ocal#isPartitionAlive

The isPartitionAlive method is only called when the policy controlling the partition has the isAlive attribute set to true
in the CoreGroup Policy in effect for this partition set (see wpfadmin policy overview and policy command examples).

The default WPF Partition policies disable this call back, asfor many partitions, the overall cluster performance can be
affected. For very tightly managed environments, they may wish to manage this attribute in an active manner.

When the HA Manager policy isAlive attribute is true, this method is called every X seconds (also set in the policy)
while a partition is activating/active or deactivating. The interval isin seconds and is specified using a different
attribute on the controlling policy. The isPartitionAlive method is never called when the isAlive policy attributeis set
tofalse. The method signatureis:

boolean isPartitionAlive (String partitionName)

If the method returns false then the VM is ‘ panicked’ (the VM is halted) and another cluster member is chosen to host
the partition. The application can use this method to verify that the partition is operating correctly, perhaps by asking a
peer cluster member to invoke a partition method to perform a ping type operation or sanity check from aremote VM.
If the result of this operation is not successful then the VM knows that something is wrong and then

5.3.6 Threading issues for the PSSB callback methods

The HA Manager always calls the partitionL oadEvent before the partitionUnloadEvent, and the invocations occur
serially for the same partition (they are never called concurrently for the same partition). The HA Manager maintains a
dedicated thread pool for invoking these methods. When N partitions are activated, the load events are delivered to the
application using this thread pool; therefore, if the thread pool has 10 threads, then at most 10 partitions are
activated/deactivated at once. If there are 100 partitions to activate, then the 100 activation method calls are queued to
the thread pool and the thread pool delivers the events to the application 10 at atime (approximately, dependent upon
CPU count, operating system, etc.). See Error! Reference source not found. for more information.

5.3.7 Writing an application client

There is no difference between WPF-enabled client and normal client.

5.3.8 Modifying the EJB stubs (required after deploying ear)

The normal EJB deploy process produces cluster enabled stubs. These stubs need to be modified with a second passin
order to be partition routable. The tool provided takes the EAR and produces a new EAR with the newly modified stubs.
The stubs are modified for all the partition routable EJBs. A partition routable EJB is a statel ess session bean with a
remote interface and an associated XX X_PartitionKey router Class (POJO).

The wpfStubUtil isatool located in the <WAS_ND_HOME>/bin directory that should be run on partitioned ear files
after gibdeploy has been run. Here's the usage for wpfStubUtil (the order of the options isimportant, and tool may fail
if order is not preserved):

wpfStubUtil -ear <earname> -jar <jarname> -class <classname> -temp <temp working directory> [optional flags: -
stubUpdateClasspath <classpath> -verbose -stubDebug -keep -rmicextclasspath <classpath> -extdirs <javac extdirs>]

Version 1.0.1 Page 107/144 © 2004 I1BM

The -ear, -jar, -class, and -temp are al required. The -stubUpdateClasspath command is optional, but if it isused it
must be the first argument after the temp working directory. An explanation of each option:

-ear <ear name>: The ear containing the partitioned application.

-jar <jar name>: The gb jar within the ear that contains the partitioned EJB.

-class <class name>: The remote interface class of the bean.

-temp <temp working directory>: The directory where all the work takes place

-stubUpdateClasspath <classpath>: (optional) The tool will append its classpath with what the user passes.
-verbose: (optional) Verbose option for the tool output.

-stubDebug: (optional) Puts extradebug output in the stub. Should not be used in production environment.
-keep: (optional) Does not delete the contents of the temp working directory after tool isfinished.
-rmicextclasspath <classpath>: (optional) Appends what the user passesin to the rmic classpath.

-extdirs <javac extdirs>: (optional) Appendswhat the user passesin to the javac extdirs.

The wpfStubULtil can update any session EJBs with XXX_PartitionKey class defined. These Session EJBs can be either
PRSB or PSSB.

An example of running wpfStubUtil for an ear containing a facade PRSB bean:

C:\stub>\ws\A pplication server\bin\wpfStubUtil.cmd -ear D_WPFFacadePartitionSample.ear -jar
WPFK eyBasedPartitionEJB..jar -class com/ibm/websphere/wpf/ejb/WPFK eyBasedPartition.class -temp \working
A subdirectory or file \working already exists.

WPFC0069I: Unpacking ear file D_WPFFacadePartitionSampl e.ear

WPFCO0070I: Unpacking jar file WPFKeyBasedPartitionEJB.jar

WPFCO0071l: Running rmic to generate stub source

[rmic output - removed]

[donein 2334 mg]

WPFCO0072l: Updating stub source

WPFCO0073l: Compiling modified stub source

WPFC0074l: Rejaring jar file WPFK eyBasedPartitionEJB.jar

WPFCO0075I: Rejaring ear file D_WPFFacadePartitionSample.ear

Cleaning up

An example of running wpfStubUtil for two ears containing partitioned routable session beans. Notice the
D_StockAccount.ear requires an extrajar file (StockEJB.jar) to be appended to the rmic classpath (-rmicextclasspath),
stubUpdateClasspath (-stubUpdateClasspath), and javac ext dirs (-extdirs):

C:\stub>\ws\A pplication server\bin\wpf StubUtil.cmd -ear D_Stock.ear -jar StockEJB.jar -class
wpf/test/stock/ejb/ProcessStock.class -temp \working
A subdirectory or file \working already exists.
WPFC0069I: Unpacking ear file D_Stock.ear
WPFCO0070l: Unpacking jar file StockEJB.jar
WPFCO0071l: Running rmic to generate stub source
[rmic output - removed]

[donein 2324 ms]

WPFCO0072l: Updating stub source

WPFCO0073l: Compiling modified stub source
WPFCO0074l: Rejaring jar file StockEJB.jar
WPFCO0075I: Rejaring ear file D_Stock.ear

Cleaning up

C:\stub>\ws\A pplication server\bin\wpfStubUtil.cmd -ear D_StockAccount.ear -jar StockAccountEJB.jar -class
wpf/test/stockaccount/ejb/Process.class -temp \working -stubUpdateClasspath \stub\StockEJB..jar -rmiextclasspath
\stub\ StockEJB.jar -extdirs \stub\StockEJB.jar

A subdirectory or file \working already exists.

WPFC0069I: Unpacking ear file D_StockAccount.ear

WPFCO0070I: Unpacking jar file StockAccountEJB.jar

WPFCO0071l: Running rmic to generate stub source

[rmic output - removed]

[donein 2333 mg)

WPFCO0072l: Updating stub source

WPFCO0073l: Compiling modified stub source

Version 1.0.1 Page 108/144 © 2004 I1BM

WPFC0074l: Rejaring jar file StockAccountEJB.jar
WPFCO0075I: Rejaring ear file D_StockAccount.ear
Cleaning up

An example of running wpfStubUtil for an ear containing only a partitioned stateless session bean:
C:\stub>\ws\A pplication server\bin\wpf StubUtil.cmd -ear D_WPFK eyBasedPartitionSample.ear -jar
WPFK eyBasedPartitionEJB..jar -class com/ibm/websphere/wpf/ejb/WPFK eyBasedPartition.class -temp \working
A subdirectory or file \working already exists.

WPFC0069I: Unpacking ear file D_WPFK eyBasedPartitionSample.ear

WPFCO0070I: Unpacking jar file WPFK eyBasedPartitionEJB.jar

WPFCO0071l: Running rmic to generate stub source

[rmic output - removed]

[donein 2373 ms]

WPFCO0072l: Updating stub source

WPFCO0073l: Compiling modified stub source

WPFC0074l: Rejaring jar file WPFK eyBasedPartitionEJB.jar

WPFCO0075I: Rejaring ear file D_WPFK eyBasedPartitionSample.ear

Cleaning up

There are some instances where the wpfStubUtil cannot find a class even though it islocated in ajar that is specified in

the classpath. In these cases, unjar all of the classes from the jar containing the classit cannot find in the -temp <temp
directory>.

Version 1.0.1 Page 109/144 © 2004 I1BM

5.4 Data Partitioning Patterns

This pattern maps a subset of the datato asingle server only. This server can then aggressively cache that data because
it knows all requests for that subset are being routed to a single server. The data can be partitioned a number of ways.
We can use either a variable set of partitions or afixed set of partitions.

When using aone of N policy for the partitions, the HA Manager will activate each partition on exactly one cluster
member. Thisisvery useful if an application has some long-lived tasks that would benefit from running only on a
single cluster member at atime.

5.4.1 Variable Partition Set

The use of an object key as the partition name is perhaps the best example of the variable partition set pattern. The
routing POJO extracts the data key from each request, and the request is then routed to the cluster member that the
partition was assigned to by the HA Manager.

One advantage of this approach is that if a specific key becomes ‘hot’, from aload perspective, then the key can be
moved independently of other partitions to another server. One disadvantage of this pattern is that there are likely to be
many partitions, and therefore a higher system overhead associated with their administration/management. WPF can
scale to avery large number (~20k) partitions, but applications should aways strive to minimize the number of
partitions for each application.

5.4.2 Fixed Partition Set.

We can use any hashing scheme that maps the keysto afixed set of partitions, for example, you could use a normal
hashing algorithm that takes the key and convertsit to an integer. Thistype of hash function typically returns a 32 bit
or 64 bit integer, which in general produces too large a space of partitions. Instead, apply a modulo to the generated
hash to limit the total number of partitions. For example, we could hash the key and then use the 128 as the modulo
(number of partitions). The application should create 128 partitions, the first one named 0 and the last one named 127,
so (128 intotal). Thisisagood compromise as this pattern can potentially scale to 128 cluster members before we
have more servers than partitions.

Another approach isto use ranges. Thisis still aform of hashing. The partitions could be named “A-F’, “G-N", “O-R”,
“S-Z". The routing POJO would then examine the key from the request and return a string from one of these ranges.

5.4.3 Singleton Pattern

This pattern can be used for a clustered application requiring a singleton to perform some task within the cluster. The
PSSB would create a PartitionDefinition whose name is based on the singleton, for example “RECORD_PURGER”.
The singleton’ stask is to purge removed records from the database in batch mode.

Upon startup, the HA Manager would assign the singleton partition to exactly one cluster member. In addition, the HA
Manager policy could be configured to specify a preferred server for the singleton, or even ‘pin’ the singletonto a
specific server.

5.4.4 Hash based partitioning.

Here, we hash the data keys and then use the resulting hash code modulo some maximum number as the partition
names. The application returns a set of partitions numbered from 0 till 511. This allows the application to hash the
reguest keys and then use the hash code modulo 512 as the partition name.

5.4.5 Slave Multiple Reader/Master Single Writer Pattern

The optimal application for this pattern requires a single writer for an application partition at atime for high write
performance. Thiswriter uses awrite through cache for database access. So long as there are no external applications
modifying the database then the writer can cache very aggressively and virtually eliminate queries against the database.
The read load on a given partition however would be very high. The application also has a requirement to not allow
heavy read activity to slow down the writer. It is also permissible for the reads to be dlightly stale. We also want to be
able to distribute the readers for a partition across multiple cluster members to spread the system load.

Version 1.0.1 Page 110/144 © 2004 I1BM

agreggo
Note
Marked set by agreggo

5.4.6 Partition Specific CMP data

Thisis data specific for an active partition in a server. We want to cache this data on the cluster member that has the
active partition and then use a write through cache to write it to the database when it changes. We don’t have to worry
about invalidations by other cluster members because WPF guarantees the partition is on exactly one cluster member.
This allows the application to work as single server speed without loss of data integrity in acluster. Clearly, the
database can be modified by other applications then this cannot be used. If thisis the case then option C cached with
optimistic update is probably the best answer but it depends greatly on the read/write ratio of the application.

5.4.6.1 Option A CMPs

Thisis an important approach for partitions with specific data access patterns. If we used the approach in Error!
Reference sour ce not found. then we can potentially run in to alot of problems. The main problem with Option C
CMPs with lifetime in cache is that WebSphere provides no API for removing such a CMP instance from the cache.
WebSphere does provide a JM'S mechanism that can remove an object but thisisn't efficient for this scenario. So,
objects cached using life time in cache cannot be removed programmatically from the cache by the application. This
makes option C with lifetime cache unsuitable for partition data. The only option that will work is option A. Option A
CMPs can be thought of as cached CMP although it’s not technically a cache. The J2EE specification saysthat if an
option A CMP method throws an unexpected exception then the bean instance must be removed from the container and
the transaction currently active isrolled back. We will take advantage of this to implement the partition data cache.

5.4.6.2 Efficiently removing an option A CMP instance

We will now describe the most efficient way to remove such an instance from the option A pool. First, add a method to
your CMP bean.

public void invalidateFromCache ()

}
Add this method to the CMP local interface. Modify the descriptor for the method so that it uses TX_REQUIRED

Y ou can do this using the EJB descriptor editor by clicking on the assembly tab and then click the “Add...” button on
the container transactions panel. Select the CMP and then click on the invalidateFromCache method. Select “Required”
from the combo box and then click OK. Y ou should then see something like Error! Reference source not found..
Now, we'll add a home method like the one below:

public void ejbHomeInvalidateCompleteOrders (Collection/*<OrderLocal>*/ orders)

Iterator iter = orders.iterator();
while (iter.hasNext ())

OrderLocal order = (OrderLocal)iter.next () ;
// this just adds the option A bean to this transaction so that when we rollback
below
// it gets discarded, i.e. removed from the cache.
order.invalidateFromCache () ;

myEntityCtx.setRollbackOnly () ;

Add this method to the beans local home by right clicking on the method, select Enterprise Beans and then promote to
local home. Set this method transaction attribute to RequiresNew also using the same approach as before. This method
takesalList of OrderLocal (our CMPis called Order) and removes them from the option A ‘cache’. Note, that we could
have taken a List of keys but then we' d need to execute a findByPrimaryK ey and then call the method. Thisis more
expensive than the approach taken here. The method basically iterates over the list and calls the invalidate method on
each order in thelist. The invalidate method associates the option A bean with the current transaction. After each bean
is associated with the transaction, we mark it asroll back only. When the method returns, the transaction is rolled back
and all the associated option A beans are discarded from the cache. Here is an example. We have some business logic
that accepts anew order. As part of accepting a new order, it' s possible that several other orders may be completed.
The acceptOrder method returns a List<OrderL ocal> to the caller. The caller must then pass this list to the home
method above to remove them from the cache. They are not deleted from the database, just the cache. Hereis an
example:

Version 1.0.1 Page 111/144 © 2004 I1BM

BookLocal book = ivBookHome.findByPrimaryKey (ivOrder.getSymbol ()) ;
Collection/*<OrderKey>*/ completedOrders =

book.acceptOrder (session, pub, ivOrder, cache);
// invalidate all completed orders from the CMP option A cache.
try

if (!completedOrders.isEmpty())
ivOrderHome.invalidateCompleteOrders (completedOrders) ;

catch (Exception e)

// ignore expected exception

This shows us looking up a Book CMP, calling its accept order method. This method returns the orders that need to be
removed from the cache as aresult of the call. The acceptOrder method uses a RequiresNew transaction so its
transaction is committed automatically when this method returns. We then just use the home method on Order to
remove the returned CMPs from the cache. The acceptOrder method just collects all the Order instances that need to be
removed like this:

public Collection/*<OrderLocal>*/ acceptOrder (..)
Collection completeOrders = new LinkedList() ;
OrderLoca buyer = ...;
OrderLocal seller = ...;
... Some businesslogic....

if (buyer.getIsComplete())
completeOrders.add (buyer) ;

if (seller.getIsComplete())
completeOrders.add(seller) ;

return completedOrders;

This code demonstrates the application removing a cached object that it has finished processing. If the application
didn’t do this then the cache has both useful and useless instancesin it. The useful ones are records that it still needs or

are pending or not completed. There is no point in caching completed records so an application can use this approach to
remove ‘completed’ objects.

Version 1.0.1 Page 112/144 © 2004 I1BM

5.5 Proxy DataSource Development

5.5.1 CMP Datasource Overview

Applications that use CMP beans normally specify a single database to use with one CMP EJB. That means, all the
CMP EJB instances of one type will read and write to one database node, which will become the performance
bottleneck. . You could deploy the CMP beans N times, once for each database but thisis not very flexible for the
following reasons:

e RequiresN copies of the code with N INDI names etc
e Requiresadeploy step when a database is added.
e Itisjust not that easy to manage.

WebSphere Extended Deployment has a feature that allows the application to tell WebSphere which datasource to use
before the transaction starts. This means that when a cluster member receives arequest for a particular application
partition then it can tell the CMP runtime to use a specific DataSource for the duration of the current transaction. This
allows the directed transaction pattern to be used with the application. This allows such applications to increase their
availability and allows the database tier to scale horizontally on blade type environments. The applications can also
take advantage of the MAPPER table pattern to very flexibly manage data and move partitions around to better manage
the operational aspects of an application such as how to move avery busy partition to alightly loaded database node
for performance reasons.

Due to testing efforts, in WAS Extended Deployment 5.1, only support DB2 UDB and Oracle are supported with the
proxy datasource. Here are the supported JDBC drivers:

- DB2v8.1FP7 (v8.2) legacy CLI-based JDBC drivers.

- DB2v8.1FP7 (v8.2) Universal type 2 JDBC drivers.

- DB2v8.1FP7 (v8.2) Universal type 4 JDBC drivers.

- Oracle9i thin client JDBC drivers

If you need support for other databases or JDBC drivers, please contact IBM support for more details.

5.5.2 Proxy DataSource programming model

In the current WebSphere Application Server programming model, you can only specify one CMP connection factory,
which corresponds to one datasource, for one CMP EJB. Under the new proxy datasource support, we still specify only
one CMP connection factory for one CMP EJB, however, during the run time, this proxy datasource will route the
connection requests to different underlying datasources.

Which underlying datasource the proxy datasource will route to is decided by the application. At the beginning of every
transaction, users can use WehSphere Extended Deployment -specific API to specify which underlying datasource this
current transaction will use.

Here isthe general programming model for the proxy datasource support:

- Application developers use a Session EJB as the session fagade. The Session EJB is reguired to use CMP
EJB local interfaces to interact with CMP EJBs.

- Application developers or assemblers define al the resource references for CMP EJB persistencein the
session EJB. For example, if you expect your CMP EJBs be persisted in three different database servers, you
will need to create three different resource (datasource) reference names.

- Create the datasources. Creating the datasources consists of two steps: creating all underlying datasources
and creating the proxy datasource. The application deployer creates datasources for all of the database servers
used for CMP EJB persistence in the WebSphere administration space. For example, the deployer creates
four datasources for three different database servers with JINDI name “jdbc/WestAccountDS’,
“jdbc/EastAccountDS’, “jdbc/NorthAccountDS’, and “jdbc/SouthAccountDS’. The application deployer
then creates a proxy datasource using the proxy DataSource JDBC provider or proxy DataSource JDBC
provider (XA) provided only in WebSphere Extended Deployment. In the customer property “jndiNames’ of

Version 1.0.1 Page 113/144 © 2004 I1BM

the proxy datasource, the deployer add the INDI names of all the datasources just defined in the format of
“dsINDIName_1;dsINDIName_2; dsINDIName_3... dsINDIName_N". In this example, the jndiNames will
be set to “jdbc/WestA ccount;jdbc/EastAccount;jdbc/NorthAccount;jdbc/SouthAccount”.

- Inthe EJB applications, application developers will provide a mapping for CMP EJB attributes (one or more
attributes) to the resource references defined in the session EJBs. This mapping can be stored in an XML,
database, and property file or even programmatically, whichever the way they want. Based on this mapping,
the devel oper knows which datasource a transaction should use. Here is an example of creating mapping
programmatically.

if (accountId.startsWith(*w”)) {
return resrefs[0];

else if ((accountId.startsWith(“e”)) {
return resrefs [1];

else if ((accountId.startsWith(“n”)) {
return resrefs [2];

else if ((accountId.startsWith(“s”)) {
return resrefs [3];

In this example, account I1Ds starting with “w” (west) are mapped to the first INDI name; account IDs
starting with “€” (east) are mapped to the second JNDI name; etc.

- Session EJBs can lookup WSDataSourceHel per from the INDI namespace (one lookup in one EJB lifecycle)
in the setSessionContext method, and then call
WBDat aSour ceHel per . r esol veDat aSour ceRef er ence(St ri ng) to get the global INDI name for every
resource reference name.

- During the beginning of the transaction, the session bean calls

WSDat aSour ceHel per . set Cur r ent Dat aSour ce(dsJndi Nane) with the global INDI name to specify
which datasource should be used. Session EJBs can then do normal CMP operationsin that transaction.

Version 1.0.1 Page 114/144 © 2004 I1BM

5.5.3 API
The main API for the proxy datasource support is WSDataSourceHel per. Here is the WSDataSourceHel per interface.

*

/
<p>WSDataSourceHelper interface is an interface used for CMP multiple
datasource support (also called proxy datasource). Users can lookup an
instance of WSDataSourceHelper from the JNDI name space using JNDI name
WSDataSourceHelper.JNDIiNAME.</p>

<p>There are two helper methods in this interface.</p>

<uls>

<lisresolveDataSourceReference (String):

This helper method is used to resolve the global JNDI name of the
datasource associated with a resource reference. For example, if a

resource reference "jdbc/myDS1" is mapped to a datasource with global

JNDI name "jdbc/Bankl", method call resolveDataSourceReference ("jdbc/myDS1")
will return "jdbc/Bankl".

<lissetCurrentDataSourcedndiName (String):

This method is used to set the JNDI name (not the resource reference name) of
the datasource that the current transaction will access. Currently,

one transaction can only access one datasource.

F ok Ok o o O o O O F F F F F X X X X X X X

*

@ibm-api
*/

public interface WSDataSourceHelper

/** The JNDI name for user to look up an instance of WSDataSourceHelper */
String JNDI_NAME = "java:comp/env/com/ibm/websphere/proxyds/WSDataSourceHelper";

/**

* Resolve the datasource reference to the global JNDI name. For example,
if a resource reference "jdbc/myDS1" is mapped to a datasource with
global JNDI name "jdbc/Bankl", resolveDataSourceReference ("jdbc/myDS1")
will return "jdbc/Bankl".

dsResRefName resource reference name
the resolved datasource global JNDI name for this resource reference.
ResRefNotFoundException indicates the resource reference name
* cannot be found.
*/
String resolveDataSourceReference (String dsResRefName) throws
ResRefNotFoundException;

/**

* <p>Set the JNDI name (not the resource reference name) of the datasource

* ok Ok Ok F X F

* that the current transaction will access. Currently, one transaction can

* only access one datasource.</p>

*

* <p>During the development time, the developers cannot know the global JNDI
* name of the datasource that a resource reference will be mapped to. The

* only known fact is the resource reference name. The recommneded practice is
* to call the resolveDataSourceRefrence (String) method to get the JNDI name of
* the mapped datasource, and then call setCurrentDataSourcedndiName with the
* global JNDI name.</p>

*

* dsdndiName the current datasource JNDI name

*/

void setCurrentDataSourcedndiName (String dsJdndiName) ;

5.5.4 Developing application using proxy datasource supportin
WSAD.

ProxyDSA ccountSampl e application contains one Application Client module and one EJB module. The EJB module,
ProxyDSA ccountSampleEJB, has four EJBs:

e Account: CMPEJB

e AccountOwner: CMP EJB. One Account CMP EJB has one or more AccountOwner EJBs.

Version 1.0.1 Page 115/144 © 2004 I1BM

e AccountTransaction: Thisis afagade session bean to access CMP EJBs. It is also a Partitioned Routable
Session Bean (PRSB).
e AccountPartitionBean: Thisis a Partitioned Stateless Session Bean (PSSB).

Accounts and account owners are stored in two databases, one located in the west coast, and the other located in the
east coast. The database in the west coast has database name as “ westtest”, and the database in the east coast has
database name as “ easttest”. All the accounts stored in the westtest have a prefix “W”, and all the accounts stored in the
easttest have a prefix “E”.

When the Fagade AccountTransaction gets a request from the client to do account operations, it examines the accountld.
If the accountld starts with “W”, the database westtest will be used. If the accounted starts with “E”, the database
easttest will be used.

Here we will develop a J2EE application that uses proxy datasoure features in WebSphere Studio Application
Developer. Our goal isto develop the ProxyDSA ccountSample shipped with WebSphere Extended Deployment. The
ProxyDSAccountSampleis shipped in WAS_HOMFE/install ableA pps/ProxyDSA ccountSample.ear file. Beforewe
start the project, please extract all the source codes from this ear file. We will need to copy the source codesto
complete the exercise.

5.5.4.1 Create ProxyDSAccountSample project

a

oo

Create a ProxyDSA ccountSample J2EE Project by select “ File/New/Enterprise Application
Project”, and click “next”.

Select “create J2EE 1.3 Enterprise Application Project”, and then click “Next”.

Set the “Project name” to “ProxyDSAccountSample”, and then click “Next”.

Click “New Module...”. Leave the “ Application Client Project” and “EJB Project” checked, and
uncheck “Web Project” and “ Connector Project”, and you will see the panel as shown in Figure
44.1.

#F New Module Project | x| I

Mew Module Project PP

! qF
Create a new module project for the selected module bpe ﬁ

¥ Create default module projects

¥ Application Client Project: IF'ru:u:-:_l.lDS.-’-'-.cn:DuntSamplaﬁ.pplicatinnElient

¥ EJE Froject: IF'ru:u:-:_l,lD SAccounts ampleEdB

[web Project: IF'l:u:-;yDS.n‘-‘-.u:n:u:uurfr.S amplettieb

IF'r-:-:-c_I.ID ShcoountSampleConnestal

o Hack Heqhs | Einizh I Cancel

Version 1.0.1

Figure 4.4.1 New Module Project.

Page 116/144 © 2004 I1BM

e. Click “Finish” to finish creating the modules, and then click “Finish” to finish creating the
application project. Click “yes’ if thereisawindow to ask you switch to J2EE perspective. You
will see the enterprise application project ProxyDSA ccountSample, the application client project
ProxyDSA ccountSampl eA pplicationClient, and the EJB project ProxyDSA ccountSampleEJB are
created.

5.5.4.2 Create entity EJBs Account and AccountOwner

In order to simplify the sample, we will use only two entity beans: Account and AccountOwner. Again, for the
reason of simplification, there is a one to many relationship between Account and AccountOwner.
f. Click “File/New/Enterprise Bean” to create a CMP EJB. Select “ ProxyDSAccountSampleEJB” as
the project name, and then click “Next”
0. Youwill seethefollowing picture 4.4.2. Check “Entity bean with container-managed persistence
(CMP)” field. Check “CMP 2.0 Bean”. Type “Account” as the “Bean name’, and
“com.ibm.websphere.proxyds’ asthe “ Default package”.

&F Create an Enterprise Bean I

Create a 2.0 Enterprise Bean
Select the EJB 2.0 type and the basic properties of the bean. @

 Meszage-diiven bean

™ Session bean

= Enfity bean with bean-managed persistence [EMP] fields

& Enftity bean with container-managed persistence [CMP) fields
" CMP 11 Bean 8 CMP 20 Bean

EJE project: ProspD SAccountS ampleEJE

Bean name: I.-’-'-.I:ccuunt

Source folder: IEiI:uM odule Browse... |
Default package: |u:u:um.ibm.wehsphere.pmx}lds Browse. . |

< Back I Hest » I et Cancel

Version 1.0.1 Page 117/144 © 2004 I1BM

Figure 4.4.2 Create Account CMP EJB

h. Click “Next”, and you will see the panel as shown in Figure 4.4.3. Leave the “local client view”
checked and the “remote client view” unchecked.
i. Createthefollowing four CMPfields
accountld. Type String. Thisis also the key field.
balance. Type double
creationData. Type java.sgl.Timestamp
openBalance. Type double.

&P Create an Enterprise Bean l_

Enterprise Bean Details

Select the zupertype, Java claszes, and CMP fields for the EJB container-managed @
perzistence entity bean.

Bean supertype:; I <honEs j
Bean class Iu:u:um.il:um.websphere.pru:u:-:_l,lds..-'i‘-.cc-:uuntB £an Fackage... | Clazz... |
E.B binding name; ieil:u."cclma’il:lm.-’wel:usphere#prn:-cyds#.-’-‘-.u:u:nuntLDcalH ome

¥ Local client view

Local home interface: iu:u:um.iI:um.websphere.prnxyds..ﬁ.ccnuntLDcalHDm F'au:kage...l I:Iass...l

Local interface: Il:l:lm.il:lm.websphere.prcu:-:_l,lds..ﬁ.ccnuntLu:n:al F'au:kage...l Clazs... |

[Bemote client view

R emote hame interface: I Faclane., | [Elzms |
Femote interface:; I EEEhEEE | (BlEEs |
fenclges Iiava.lang.ﬁtring Fackane., I B [I

¥ Usze the zingle key attiibute type far the key class

CHP attributes:

@@accnuntld: java.lang. String [ofdd.
(@ balance : double Edit |
creationD ate : java.zql. Timestamp e

(@ operBalance : double Bemove |

< Back Mest = | Eirnizh I Cancel

Figure 4.4.3 create the Account CMP EJB.

j. Click “Finish”.

Now you’ ve created the CMP EJB Account, follow the same steps from 6) to 10) to create CMP EJB AccountOwner
with the following CMP fields:

Version 1.0.1 Page 118/144 © 2004 I1BM

ssn. Type String. Thisis also the key filed.

name. Type String
address. Type String
phone. Type String

Now, you can create a one-to-many relationship between Account and AccountOwner.
k. Click “Beans’ tab on the right panel. Select “ Account” from the “Beans” list.
I. Scroll down to “Relationships’ list, then click “Add”.
m. Select “Account” and “AccountOwner” as the “source EJB”.
n. Click “Next”, Select “Many” for the "Multiplicity” for role account, then check “cascade delete”
for role account. Leave others as default.

0. Click “Finish".

-

Edit Relationship Ed
Relationship Roles P
Maodify the relationship roles between two enterprise beans, Fr;Iﬂ
LML wiew:
|Accu:uunt—Accu:uuntO'..\'ner
& AccountOwner & Account
[accountaner] [account]
EJB spedification view:
Source EJB: AccountOwner Source EJB:Account
Role name: Role name:
| account J accountowner
Multiplicity: Multiplicity:
]Man\; :_1 JOnE _ﬂ
v Mavigable v MNavigable
CMR field referencng Account: CMR field referencing AccountOwner:
| account J accountowner
CMR field type: CMR field type:
| _J 1java.uﬁ|.Cullecti0n j
¥ Cascade delete [7 Cascade delete
< Back | Mek Finish Cancel

4.4.4 Create CMR between CMP EJB Account and AccountOwner

5.5.4.3 Create PRSB AccountTransaction.

In this step, we will create a Partition Routable Session Bean (PRSB) AccountTransaction. This session bean will serve
as both routable bean and fagade bean to access the CMP EJBs.

p. Click “File/New/Enterprise Bean” to create an EJB. Select “ProxyDSAccountSampleEJB” asthe
project name, and then click “Next”

g- Check “Session Bean” field. Input “ AccountTransaction” asthe “Bean name”, and
“com.ibm.websphere.proxyds’ asthe “ Default package”.

r. Click Next. Leave dll fields as defaullt,

s. Click “Finish”

Version 1.0.1

Page 119/144 © 2004 I1BM

t.

Copy the AccountTransaction.java, AccountTransactionBean.java from the extracted
ProxyDSA ccountSample java code into the workspace. Y ou will see several compilation errors,
which we will resolve later.

5.5.4.4 Create PSSB AccountPartitionBean

This example will use both WPF and Proxy Datasource features. In order to use WPF feature, we need to create a
Partitioned Stateless Session Bean (PSSB).

u.

V.

Click “File/New/Enterprise Bean” to create an EJB. Select “ProxyDSAccountSampleEJB” asthe
project name, and then click “Next”

Check “ Session Bean” field. Type “AccountPartitionBean” as the “Bean name”, and
“com.ibm.websphere.proxyds’ asthe “ Default package”.

Click Next.

Uncheck the “Remote client view”, and check the “Local client view”.

Type “com.ibm.websphere.wpf.PartitionHandlerLocalHome" asthe local home, and
“com.ibm.websphere.wpf.PartitionHandlerLocal” as the local interface.

Click “Finish”

Copy the AccountPartitionBean.java from the extracted ProxyDSAccountSample java code into the
workspace. Y ou will see several compilation errors, which we will resolve later.

5.5.4.5 Set the classpath

In order to develop an application with the proxy datasource support, you will need the proxyds.jar from the WAS
Application Server server lib directory.

If you don’t have Extended Deployment lib directory created as a variable, follow the following steps to create a

variable.

bb. Click Windows/Preferences, then expand “Java’, then click “Classpath Variables'.
cc. Click “New” to create anew variable XD_L 1B, and set the path of it as shown in Figure 4.4.5.

| #& New Variable Entip |

Mame: [<D_LIE

Path: IF:a"wasE1 fbaseB1 b File... |

k. Cancel

Figure 4.4.5 Creste classpath variable

Now we add the proxyds.jar into the build path.

dd. Inthe J2EE perspective, expand “EJB modules’, right click “ProxyDSA ccountSampleEJB”, then

select “Java build path”.

ee. Onthepanel, click “Libraries’ tab, and then click “Add Variable”. Select “XD_LIB” from the list,

Version 1.0.1

and click “Extend...”. Select proxyds.jar and click Ok as shown in Figure 4.4.6.

Page 120/144 © 2004 I1BM

4 Mew Variab

Select variables to add to build path:

'ﬁ}fw’ﬁﬁ"@‘ﬁ‘?ﬁfﬂfﬁﬁ—mﬁunhmeskbas_l Eaxtend... |

[="'wD0_EMF_JARS_PATH - C:\temphweahruntime

[=WDO_JARS_PATH - C:htempasatwstoolshecl Edit... |

= WEBTOOLS_FLUGIMDIR - C:htempiwsabwston
ﬁ}:\,WDFlF.J.&FI - I::'\temp'\wsa'\wstnnls'\eclipse\plugiJ
[=-RD_LIB - F:\wash14baze514ib

ﬁhXEHEES C '\temp\wsa'\ecllpse\plugmskmg aps _

o WC DT C LA T benrh yim b e sinbirn sk momn oAb
{I I 3

Wariable points ta a folder: Click 'e... choose an archive inzide the folder.

o]

Cancel |

B0 WAS_S0_PLUG

LR N i = B N Tl

<

(=] P33} & v ariable Extension (=] E3

Chooze extenzions to =0 _LIB'

_[=II§. PrAiSEPnCEEryer. jar
—{Hk, pmiclient jar

(i pmimpl.jar
ﬁ?& iR, jar
(i, policy jar
-~ policylmpl jar
~{Hh potupdate.jar
ﬁ?& processintf. jar
<, Processmgmt.jar

(W prosy.jar

i prn:-:_l,.llmp| jar
ﬁh proNysEryer jar
ﬁ};‘ proxg-validation, jar

Drefault output folder:

IProHyDSAccnuntSampleE

(i grame.jar

O TR YT e AT

[

Figure 4.4.6 Add proxyds.jar to the build path

Repesat the same step to add wpf.jar to the build path, since we use WPF feature in this EJB project.

5.5.4.6 Set the connection factory for the CMP EJBs.

Now we will configure the CMP connection factory for the CMP EJBs.

ff. Inthe J2EE perspective, expand EJB Modules/Entity Bean, and then click “ Account”.
gg. Onetheright panel (the EJB deployment descriptor panel”, click “Beans’ tab. Y ou will see the

panel as shown in Figure 4.4.7.

hh. Set the “CMP Connection Factory JINDI Name” to “jdbc/dsSampleDSProxy” . Thisisthe JINDI
name of the proxy datasoure that will be created by the deployer. If the deployer wants to create
another proxy datasource, he can modify this field using during assembly time or deployment time.

ii. Setthe“Container authorization type” to “Container”.

Beans

fﬁ.ﬁ.cmunt
@ﬁcmuntﬂ nEr
@ AccountTranzaction

WebSphere Bindings

The fallowing are binding properties for the WebSphere Application Server.

JHDT name: |eil:u.-"u:u:um.-"iI:um.-"weI:us|:|here.-"pru:u:-:_l,lds.-".-’-'-.cccuuntLDcalH anme |

ChP Connection Facton JMDI Hame: |jdbc/dsS ampleD S Prosy

Container authorization bpe:

| Add... | | Hemu:uve|

-]

Class and Interface Files

Remove

Overview | Beanz |.-i'-.sseml:ul_l,l Descriptor | References | Access | Source
4.4.7 Set Connection Factory for the Account CMP EJB
Version 1.0.1 Page 121/144 © 2004 1BM

Repeat the same step for AccountOwner. AccountOwner uses the same CM P connection factory JNDI name
“jdbc/dsSampleDSProxy”

5.5.4.7 Configuretheresourcereferencesfor the session bean.

Aswe briefly described in the programming model section, the session bean will need to create the resource references
for the datasources the CMP EJB will use viathe Proxy DataSource, and then specify the datasource to be used in the

transactions.

As we described previously, the CMP EJB will use two DB2 datasources, one to access west coast database westtest,
and the other to access east coast database easttest. So we need to create two datasource references for the session bean
AccountTransaction.

il

Select AccountTransaction from the beans list on the References tab of the EJB deployment

descriptor.

kk. Click “Add....". Select “Resource reference” from the panel and then click “Next”. You will seea

panel as shown in Figure 4.4.7.
Set the “Name” asas*“jdbc/myDS1”,

mm. Set the “ Type” as “javax.sgl.Datasource”.
nn. Set the “Authentication” as* Container”.
00. Set the“Sharing scope” as“ Shareable”.
pp. Click “Finish”.

Repeat the same step to create a resource reference “jdbc/myDS2”.

&k Add Resource Reference | %] r

Resource Reference

Create areference to an external resource, @

M ame: Iidhcf’myDS1

Tupe: |iavaH.sqI.DataSDurce

Authentication: ID::ntainer

Sharing scope: I Shareable

Description:

L) L L e

A1

< Back Tdert | Finizh I Cancel

e = 2 =

Figure 4.4.8 Add resource reference for “jdbc/myDS1”.

Now, you' ve create two resource references for the session bean AccountTransaction. On the references panel, set the

websphere binding for “jdbc/myDS1” to “jdbc/WestDS’, and the websphere binding for “jdbc/myDS2” to

“jdbc/EastDS’.

Version 1.0.1

Page 122/144

© 2004 I1BM

5.5.4.8 Programming the session bean.

Open AccountTransactionBea.n.java on the WSAD, and examine the code. In the session bean, we define the resource
reference name and their resolved JNDI names. The following code in this bean defines these attributes.

/** Dat aSource resource reference 1 */
private static String resRefl = "jdbc/nyDS1";

/** Dat aSource resource reference 2 */
private static String resRef2 = "jdbc/ nyDS2";

/** G obal datasource JNDI nane for the DataSource resource reference 1 */
private String gl obal DSIJNDI Nanel = nul | ;

/** d obal datasource JNDI nane for the DataSource resource reference 2 */
private String gl obal DSINDI Name2 = nul | ;

We also define a WSDataSourceHel per instance, so the session bean can use it to resolve the datasource INDI name
and set the datasource JNDI name for the transaction.

/**
* the WSDataSourceHelper instance used to set the datasource JNDI name
* for the current transaction and resolve the datasource resource reference
* to the global JNDI name
*/
WSDataSourceHelper dsHelper = null;

Now, lets look at the setSessionContext method

public void setSessionContext (javax.ejb.SessionContext ctx) {
mySessionCtx = ctx;

// Lookup the WSDataSourceHelper, and the EJB local homes

try {
InitialContext ic = new InitialContext () ;
dsHelper = (WSDataSourceHelper) ic.lookup (WSDataSourceHelper.JNDI_NAME) ;
accountHome = (AccountLocalHome) ic.lookup (accountHomeJNDIName) ;
accountOwnerHome = (AccountOwnerLocalHome) ic.lookup (accountOwnerHomeJNDIName) ;

catch (Exception e) {
throw new EJBException(e) ;

// Get the server name
AdminService service = AdminServiceFactory.getAdminService() ;
SERVER NAME =
service.getCellName ()

4 n/n

+ service.getNodeName ()

+ n/n

+ AdminServiceFactory.getAdminService () .getProcessName () ;
// Resolve the resource references to the global datasource JNDI names
try {

globalDSJNDINamel = dsHelper.resolveDataSourceReference (resRefl) ;
globalDSJINDIName2 = dsHelper.resolveDataSourceReference (resRef2) ;

catch (ResRefNotFoundException rrnfe) {
throw new EJBException (rrnfe) ;

}
}

We look up the WSDataSourceHel per form the INDI namespace using the following statement and
dsHel per = (WsDat aSour ceHel per) ic. | ookup(WsDat aSour ceHel per. JNDI _NAME) ;

Then we lookup the AccountL ocalHome and AccountOwnerLocalHome as normal. After that, we use the
AdminService AP to get the server name. We use this server name to verify the partition routing is correct. Users don’t
have to do thisin their applications. The WPF runtime will guarantee the right partition routing behavior.

Then we call the following statement to resolve the datasource references.
gl obal DSINDI Nanmel = dsHel per. resol veDat aSour ceRef erence(resRef1);

Version 1.0.1 Page 123/144 © 2004 I1BM

During the application development time, the devel oper doesn’t know which JNDI name this resource reference will be
mapped to. Proxy Datasource component provide an API for the application to get the INDI name of the datasource,
This INDI name datasource will be used to tell runtime which datasource should be used.

Now, lets ook at the business method. Here is the code snippet for one of the business methods “withdraw” in the
AccountTransactionBean.java

/**

* withdraw money from an account

* accountId

* amount

*

* InSufficientFundException
*/

public String withdraw(String accountId, float amount) throws
InSufficientFundException {
// Set the datasource this transaction will access.
setDataSource (accountId) ;

try {
AccountLocal account = accountHome.findByPrimaryKey (accountId) ;
account .withdraw (amount) ;

catch (ObjectNotFoundException onfe) {
throw new EJBException (onfe) ;

catch (FinderException fe) {
throw new EJBException (fe) ;

return SERVER_NAME;

}

The difference between this method and a normal method is that we add the following statement:
/] Set the datasource this transaction will access.
set Dat aSour ce(account | d);

Here is the method setDataSource:
/**
* Set the datasource the CMP is going to use for the current transaction.
* If the accountID starts with W, datasource 1 will be used. If the accountID

* starts with E, datasource 2 will be used.
*

* s
*/

private void setDataSource (String s) {
if (s.startsWith("w")) {

dsHelper.setCurrentDataSourcedndiName (globalDSINDINamel) ;

else {
dsHelper.setCurrentDataSourcedndiName (globalDSINDIName2) ;

}

What the method setDataSource does is to use WSDataSourceHel per to set the current datasource JINDI name for the current
transaction. If the accountld starts with “W”, which means the account |D should be stored in west coast database, the INDI name
globalDSINDINamel will be set on the thread. If the accountld starts with “E”, which means the account 1D should be stored in east
coast database, the INDI name global DSINDIName2 will be set on the thread.

Now, your application has been enabled the proxyds datasource support. In the next step, we will show how to configure the DB2
datasources and the proxy datasource in the next section.

5.5.5 Configure Proxy DataSource In WebSphere Extended
Deployment

In this section, we will show how to configure Proxy DataSource in WebSphere Extended Deployment to make
ProxyDSA ccountSample work.

Version 1.0.1 Page 124/144 © 2004 I1BM

5.5.5.1 Configureyour database

In order to run the sample, you need to create two DB2 databases, either in one database node or two database nodes.
Here we create two DB2 databases, westtest and easttest, and connect to it using the authorized user 1D and password. |
will use “dbuserl” and “xxxxxx” as the user name and password for this example. Replacein the following example or
scripts with your user |Ds and passwords.

Find the META-INF/Table.ddl from the extracted artifacts of ProxyDSA ccountSample.ear, and then execute the
following commands to create tables in those two databases.

>db2 create database westtest

>db2 create database easttest

>db2 connect to westtest user dbuserl using XXXxxx

>db2 —tvf Table.ddl

>db2 connect to easttest user dbuserl using XXXXxX

>db2 —tvf Table.ddl

5.5.5.2 Configurethe data sour ces.

5.5.5.2.1 Create J2C Authentication alias

1) Open the administrative console.
2) Onetheleft panel, expand Security/JAAS Configuration, and then click "J2C Authentication Data’'.
3) Click New, Fill in the following to the panel:
Alias: aliasl
User ID: dbuserl
Password: XXXXXX
4) Click OK.

5.5.5.2.2 Create DB2 data sources.

5) Expand “Resources’ on the left panel, Click “JDBC Providers’.

6) Createacell-wide DB2 Universal JDBC provider. In order to create a cell-wide JDBC provider, you need to
set the scope to cell level. Make sure you see ared arrow on the left of the cell.

7) The classpath of the JDBC provider uses DB2 JDBC driver jar files. Y ou need to define the variables as the
path where your DB2 JDBC driver jar filesreside. If you have multiple nodes, and DB2 JDBC driver jar files
arein different directories, you need to override the variables appropriately in the node level.

8) Click “Apply”, and then click “Data Sources’.

9) Under this JDBC provider, click “New” to create a data source with INDI name as "jdbc/WestDS" and name
as“WestDS'.

10) Click "Usethis Data Source in container managed persistence (CMP)".

11) Select “<CELL>/aliasl” asthe Component-managed Authentication Alias and the Container-managed
Authentication Alias.

12) Leave others as default. Click “Apply”.

13) Click “custom properties’. Set databaseName to “westtest”, set driverType to 4, set the serverName to your
database server name, and set the PortNumber to your database server number.

14) Navigate to the JIDBC provider panel.

15) Under the same DB2 Universal JDBC provider, create a datasource with INDI name as "jdbc/EastDS" and
name as “EastDS’,

16) Click "Use this Data Source in container managed persistence (CMP)".

17) Select “<CELL>/aliasl” asthe Container-managed Authentication Alias.

18) Leave others as default. Click “Apply”.

19) Click “custom properties’. Set databaseNane to “easttest”, set driverType to 4, set the serverName to your
database server name, and set the PortNumber to your database server number.

5.5.5.2.3 Create Proxy data source

20) Expand Resources/JIDBC Providers

21) Select "Proxy DataSource JDBC Provider" from thelist. Click “Apply”.
22) On the Proxy DataSource JDBC Provider. Click “Apply”.

23) Click "Data Sources'.

Version 1.0.1 Page 125/144 © 2004 I1BM

24) Click "New". You will see the panel as shown in Figure 4.4.9

Configuration

' Test Connection l

Scope * cellz:tiger2Network [il The =cope of the configured
resource. This value indicates the
configuratien location for the
configuration file.

Name # | ProxyDataSource 1 [il The required dizplay name for

LR o e f e e
JNDI Name jdbc/dsSampleDSProxy [l The JNDI name for the
; - resource.

Container managed perzigtence Use this Data Source in container managed persistence (CMP) [il Enable if thiz dgta =source will
be used for container managed
perziztence of EJBs. This will
cause a corregponding CMP
connection factory which
correzpoends to thiz datazource to
be created for the relational

resource adapter.

Description [New Proxy Datasource.] D (il An optional description for the
resource.

Statement Cache Size 0 [i] Number of free prepared
statements per connection. This is
different from the old datasource
which iz defined as number of
free prepared statements per data
source.

statements

Datasource Helper Classnams com.ibm.websphere. proxyds.helper. [i The datastore helper that is
used to perform specific database
functionz.

Component-managed Authentication Alias | (none) M [i] References authentication data
for component-managed =ignen to
the resource.

Container-managed Authentication Alias | tigerzManager/alias1 lll [i] References authentication data
for container-managed signon to
the rezource.

Mapping-Configuration Alias | DefaultPrincipalMapping M [i] select a suitable JAAS login
configuration from the security-
JAAS configuration panel to map
the uzer identity and credentials to
a rezource principal and
credentiale that is required te open
a connection to the back-end
SErVEr.

Apply| M R&setl Cancel |

Figure 4.4.9 Create proxy datasource jdbc/dsSampleDSProxy .

25) Set the following properties.

Set Name to "dsSampleDSProxy"

set INDI Name to "jdbc/dsSampleD SProxy",

Check "Use this Data Source in container managed persistence (CMP)".

Set the DataStore Helper to “ com.ibm.websphere.proxyds.hel per.DB2ProxyD SUniversal DataStoreHel per”
Select “<CELL>/aliasl” as the Container-managed Authentication Alias

Leave others as default. Remember the statement cache size has to be 0.

26) Click custom properties. Set jndiNames to “jdbc/WestDS;jdbc/EastDS’ and set statementCacheSizes to 10
Click Saveto save dl the configurations.

If you click “Test Connection” button for this proxy datasource, it will not work.

Version 1.0.1 Page 126/144 © 2004 1IBM

5.5.6 Install D_ProxyDSAccountSample.ear application.

Install the D_ProxyDSAccountSample.ear in the cluster you have created. Do not deploy the EJB when you install the
app. Remember to map the application modules to the cluster instead of the default server serverl.

5.5.7 Run the application client
Start the cluster.

Inthe <WAS_ND_HOME>/bin directory, do the following
wpfadmin |istActive --a ProxyDSAccount Sanple --0 200

Y ou will see 200 partitions are being activated.

In the client window, execute the following command in the <SWAS_HOME>/installedA pps/<cell>/ directory:
..\..\bin\launchd ient.bat ProxyDSAccount Sanpl e. ear - CCBoot st rapPort=<BOOTSTRAP_PORT> run

Where, the BOOTSTRAP_PORT isthe bootstrap port of any server in this node, for example, 9811.

Y ou will see the following output:[11]

| BM WebSphere Application Server, Release 5.1

J2EE Application Cient Tool

Copyright |1BM Corp., 1997-2003

WSCL00121: Processing command |ine argunents.

WBCL0013I: Initializing the J2EE Application Cient Environment.

WSCL00351: Initialization of the J2EE Application Cient Environment has conpl et ed.

WSCL0014Il : I nvoking the Application Cient class

com i bm webspher e. proxyds. cl i ent. ProxyDSAccount Sanpl eCl i ent

----Mve partition EO001 and WO001 to different servers using the follow ng conmmand.
<WAS_DEPLOYMENT MANAGER_HOVE>/ bi n/ wpf admi n. cnd| wpf admi n nove --p E0001| WO001 --d

<DESTI NATI ON_SERVER>

----Press <ENTER> to continue..........

Issue the commands mentioned in the output to move partitions E0001 and WO000L1 to different servers. Then hit
<ENTER>. The following will be displayed in the application client window:

1. Create Account E_ACCT0001 with bal ance 1000 for Jian
in server <SERVER1>

2. Create Account W ACCTO0001 with balance 2000 for Josh
in server <SERVER2>

----Check the server to see the routing is correct.
----Check your database. The previous records are added to two different databases you
have confi gured.

Press <ENTER> to continue..........

Make sure <SERVER1> isthe server to which you just moved partition E0001, and <SERVER2> is the server to
which you just moved partition W0001.

Y ou can also check the database to make sure account W_ACTO000L1 is created in westtest database, and account
E_ACCTO000L iscreated in easttest database. Then hit <ENTER>. And the following will be displayed in the
application client window:

3. Del ete Account W ACCT0001
4. Del ete Account E_ACCT0001
5. Sanpl e finishes.

5.5.8 DataStore Helper classes.
Currently, WebSphere Extended Deployment 5.1 Proxy DataSource only supports DB2 UDB and Oracle.

When creating the proxy datasource for DB2, the following datastore hel pers have to be used:

- com.ibm.websphere.proxyds.hel per.DB2ProxyDSDataStoreHel per: for DB2 CLI1-based legacy JDBC driver
- com.ibm.websphere.proxyds.hel per.DB2Universal ProxyDSDataStoreHel per: for DB2 universal JDBC driver

Version 1.0.1 Page 127/144 © 2004 I1BM

When creating the proxy datasource for Oracle, the following datastore hel per has to be used:
- com.ibm.websphere.proxyds.hel per.Oracl eProxyD SDataStoreHel per

5.5.9 Restrictions

There are some restrictions for the proxy datasource support in WebSphere Extended Deployment 5.1. Please refer
section 6.4 for the proxy datasource restrictions and tips.

Version 1.0.1 Page 128/144 © 2004 I1BM

5.6 WPF PMI Client Programming

This section describes how to subscribe to WPF PMI statistics (see the management section describing how to enable
this infrastructure and the PSSB programming section to include reportTransactionComplete(...) in your application).

5.6.1 Subscribe WPF PMI statistics using WPFIMX MBean.

Instead of using wpfadmin tool, we can also use WPFIM X MBean to subscribe WPF PMI. Here we describe the
following ways to get the MBean instance.

5.6.2 subscribe WPF PMI statistics using Java code

Here is an example of how to subscribe and unsubscribe WPF PMI statistics using Java code. Users can modify them to
change statistics types, ranges, etc.

Version 1.0.1 Page 129/144 © 2004 I1BM

package com.ibm.websphere.wpf.jmx;

import
import

import
import
import
import
import

import
import
import

/*

*
*
*
*
*
*

*
*

*

java.util.Properties;
java.util.Set;

javax.management . InstanceNotFoundException;
javax.management .MBeanException;
javax.management .MalformedObjectNameException;
javax.management .ObjectName;

javax.management .ReflectionException;

com. ibm.websphere.management .AdminClient;
com. ibm.websphere.management .AdminClientFactory;
com. ibm.websphere.management .exception.ConnectorException;

Creates a node scoped resource.xml entry for a DB2 XA datasource.

The

You

datasource created is for CMP use.

need following to run with the classpath

SWAS HOME\lib\admin.jar;
SWAS HOME\lib\wasjmx.jar;
SWAS HOME\lib\wasx.jar

/

public class PMIJMXSample {

+

/**
*
*
*

*
*

*/

Main method.

arg[0] is the connection type, such as SOAP.

arg[l] is the connection host, such as localhost.

arg[2] is the connections port, such as 8879

arg[3] is the optional process. Default is Deployment Manager

public static void main(String[] args)

throws
MalformedObjectNameException,
ConnectorException,
MBeanException,
ReflectionException,
InstanceNotFoundException {

System.out.println("Sample starts");

// Initialize the AdminClient.
String connectorType = args[0];
String connectorHost = args[1];
String connectorPort = args[2];

String jmxServer = "Deployment Manager";
if (args.length >= 4)

jmxServer = args[3];
}

Properties adminProps = new Properties();

adminProps.setProperty (AdminClient . CONNECTOR TYPE, connectorType)
adminProps.setProperty (AdminClient . CONNECTOR HOST, connectorHost)
adminProps.setProperty (AdminClient . CONNECTOR PORT, connectorPort)
AdminClient adminClient = AdminClientFactory.createAdminClient (adminProps) ;

7
7
7

ObjectName queryName = new ObjectName ("WebSphere:type=WPF,process=" + jmxServer

|l,~k|l),.

ObjectName wpfJMX = null;
Set s = adminClient.queryNames (queryName, null) ;

if (!s.isEmpty()) {
wpfJMX = (ObjectName) s.iterator() .next();
else {

System.out.println ("WPF JMX MBean was not found") ;
System.exit (0) ;

String subscribeWPFPMIName = "subscribeWPFPMI";
String[] subscribeSignatures =
new Stringl]

"java.lang.String",
"java.lang.String",
"java.lang.Integer",
"java.lang.Integer",
"java.lang.Integer",

Version 1.0.1 Page 130/144 © 2004 I1BM

"java.lang.Integer" };
Object [] subscribeParams =
new Object[] {
"WPFKeyBasedPartitionSample",
"WPFKeyBasedPartition",
new Integer(0),
new Integer(1l),
new Integer(5),
new Integer (60000) };

// invoke the subscribeWPFPMI method
Long id = (Long) adminClient.invoke (wpfJMX, subscribeWPFPMIName,
subscribeParams, subscribeSignatures) ;

System.out.println("Subscription ID is " + id);

String unsubscribeWPFPMIName = "unsubscribeWPFPMI";
String[] unsubscribeSignatures = new String[] { "java.lang.Long" };
Object [] unsubscribeParams = new Object[] { id };

// invoke the unsubscribeWPFPMI method

adminClient.invoke (wpfJMX, unsubscribeWPFPMIName, unsubscribeParams,
unsubscribeSignatures) ;

}

5.6.3 subscribe WPF PMI statistics using Jacl code

Users can write ajacl script and then use “wsamdin —f JACL_FILE” to subscribe WPF PMI. Here is an Jacl example of
subscribing and unsubscribing WPF PMI.

Jacl script to show how to subscribe and unsubscribe WPF PMI

get WPF Mbean
set wpf [lindex [$SAdminControl queryNames "type=WPF,process=Deployment Manager,*"] 0]
puts swpf

subscribe WPF PMI

set id [$AdminControl invoke Swpf subscribeWPFPMI "WPFKeyBasedPartitionSample
WPFKeyBasedPartition 0 1 5 60000"]

puts sid

unsubscribe WPF PMI
S$AdminControl invoke Swpf unsubscribeWPFPMI $id

5.6.4 subscribe WPF PMI statistics using Jython code

Users can write ajython script and then use “wsamdin —-ang jython —f JYTHON_FILE” to subscribe WPF PMI. Hereis
an jython example of subscribing and unsubscribing WPF PMI.

Jython script to show how to subscribe and unsubscribe WPF PMI

get WPF Mbean
strObjectName=AdminControl.queryNames ("type=WPF, process=Deployment Manager, *")
objectName = AdminControl.makeObjectName (strObjectName)

wpf = TypedProxy.makeProxy (AdminControl, objectName, "com.ibm.websphere.wpf.jmx.WPFJIJMX")

subscribe WPF PMI
id = wpf.subscribeWPFPMI ("WPFKeyBasedPartitionSample", "WPFKeyBasedPartition", 0, 1, 5,

60000)
print id

unsubscribe WPF PMI
wpf .unsubscribeWPFPMI (id)

Version 1.0.1 Page 131/144 © 2004 I1BM

5.7 HTTP Partitions

This section describes the necessary packaging and deployment actions required to develop HT TP WPF applications.

5.7.1 Anatomy of An HTTP WPF Application

Asin IIOP WPF, each HTTP WPF application must also contain a Partitioned Stateless Session Bean (PSSB). This
bean interacts with a HttpPartitionManager interface to make requests of HTTP WPF. An application may optionally
contain one or more web modules that may also use the HttpPartitionManager. A Servlet may register for WPF events
such as the loading and unloading of partitions by the WPF subsystem. Finally, in addition to the application.xml
contained in the META-INF directory of an enterprise application archive (EAR), an application may also specify
partition information in a partitions.xml file.

Websphere Application Server Extended Deployment ships with a sample HTTP WPF application in the archive
httpwpfsample.ear. Thisislocated inthe <WAS_ROOT>/installableApps directory by default. This application
contains an application-generic PSSB, aweb archive with asimple Servlet, and the appropriate packaging including a
sample partitions.xml file. Its contents, though subject to change, are included here:

http.wpf.generic.gjb.jar

http.wpf.sample.web.war

META-INF/MANIFEST.MF

META-INF/application.xml

META-INF/partitions.xml

doc\readme.txt

s wWN PR

5.7.2 Packaging: Specifying HTTP Partitions in partitions.xml

The HTTP Partitioning function requires the specification of two configuration lists: expressions and partitions. The
expression list consists of all regular expressions that will be used to extract valid partition names from incoming HTTP
requests. The partitions list contains all valid partition names identifying all partitions that should be managed by HA
Manager and activated in back-end target servers.

There are two ways for supplying thisinformation: 1) using the HttpPartitionManager, and 2) including a partitions.xml
filein the META-INF directory of an enterprise archive. A sample partitions.xml fileis provided here:
6 <?ml version="1.0" encoding="UTF-8"?>
7 <wpfhttp:Partitions xmi:version="2.0" xmins:xmi="http://www.omg.org/XMI"
xmlns:wpfhttp="http://www.ibm.com/websphere/application server/schemas/6.0/wpfhttp.xmi"
xmi:id="http.wpf.sample">
8 <ExpressionList xmi:id="ExpressionList_1095302397199">
9 <RequestExpression xmi:id="ReguestExpression_1095302397199"
MatchExpression="(user=)(.*)$" ClassifyFormula="$2"/>
10 </ExpressionList>
11 <PartitionList xmi:id="PartitionList_1095302397199">
12 <PartitionEntry xmi:id="PartitionEntry_1095302397199" Name="adolfo"/>
13 <PartitionEntry xmi:id="PartitionEntry_1095302397200" Name="isabell€"/>
14 </PartitionList>
15 </wpfhttp:Partitions>

This partitions file identifies matching regular expressions (in the ExpressionList section) with two strings: the match
expression and the classify formula. The match expression determines how we match on a portion of the URL and
query string. The classify formulaindicates the portion of the URL and query string that specifies the partition once the
expression has been matched.

Note that XML has a special set of characters that cannot be used in normal XML strings. Most notably among them is
the ampersand character, ‘&, which is the character used to separate variables in the query string. Asaresult, amatch
expression containing the ampersand character will result in generated XML such as this:

16 <RegquestExpression xmi:id="ReguestExpression_1095302397199"

MatchExpression="(user=)(.*)&" ClassifyFormula="$2"/>

Though not recommended, one may modify a partitions.xml manually. Care must be taken to ensure that these special
set of charactersis not used when editing a partitions.xml file. For more information on these characters, please refer
to the XML specification.

Version 1.0.1 Page 132/144 © 2004 I1BM

In lieu of manual edit, an Eclipse (WebSphere Studio Application Developer) plug-in will be made available via web
download at the http://www.ibm.com/devel operworks web site.

The second portion of thisfile (the PartitionList) is much more straightforward as it simply lists al valid partition
names. Thislist is communicated with WPF during application startup to inform WPF of the partitions it should
activate.

5.7.3 Packaging: HttpPartitionBean: A Generic PSSB

The HTTP Partitioning function provides a generic Partitioned Statel ess Session Bean (named HttpPartitionBean) to
interact with WPF. It is contained within the EAR file of the sample HTTP WPF application (httpwpfsample.ear). As
such, all HTTP WPF applications must include this EJB as amodule in the enterprise archive. Asaresult, the
application.xml of the EAR file should include a section for this module, such as:

17 <module id="EjbModule_1090414118785">
18 <gb>http.wpf.generic.gjb.jar</gjb>
19 </module>

Note that this EJB may be modified by the user to invoke HttpPartitionManager services or handle partition events. As
an alternative, a Servlet may invoke the HttpPartitionManager directly. In fact, an application may invoke HTTP
Partitioning with both the PSSB and Servlets simultaneously.

5.7.4 Deployment: Co-locating the Generic PSSB and Servlets

The HttpPartitionBean provides the mechanism for triggering WPF eventsin the HTTP WPF application. Assuch, itis
imperative that this bean reside on the same target servers as each partition-enabled Servlet. In the general and
recommended case, all Servlets and the HttpPartitionBean should map to the same cluster, however, thisis not a strict
requirement. Different partition-enabled Servlets (web modules) may be mapped to different clusters only if the
HttpPartitionBean is active on all servers where a Servlet may come active.

5.7.5 Packaging: The HttpPartitionFilter

Each Servlet contained within aweb application that accesses a partition must make use of the HttpPartitionFilter. This
filter ensures that incoming HT TP requests destined for a specific partition are delivered correctly to the application
instance housing that partition. Small timing windows exist during partition movement where an ODR’s partition-to-
server mapping is temporarily out-of-date (due to a small delay in propagation this information from the target servers
to the ODR). Inthese case, the Servlet filter ensures that the request is not delivered to an incorrect application
instance. Rather, the Servlet filter detects the inconsistency and redirects the request to the appropriate target server.

To insert the HttpPartitionFilter into the processing chain, the filter must declared and mapped in the web.xml
deployment descriptor of the web module archive (WAR file). An example of thisisillustrated here:

20 <filter>

21 <filter-name>HttpPartitionFilter</filter-name>

22 <display-name>HttpPartitionFilter</display-name>

23 <filter-class>com.ibm.websphere.http.wpf.HttpPartitionFilter</filter-class>
24 <ffilter>

25 <filter-mapping>

26 <filter-name>HttpPartitionFilter</filter-name>

27 <url-pattern>/* </url-pattern>

28 </filter-mapping>

5.7.6 Deployment: Loading Servlets at Start-Up

When using the Serviet API, a Servlet may specify the expressions and partitions associated with an HTTP WPF
application. Asaresult, the Servlet must load at application start-up to ensure that these specifications are available to

Version 1.0.1 Page 133/144 © 2004 I1BM

http://www.ibm.com/developerworks

the HTTP Partitioning function, and subsequently the ODR. In this manner, the ODR has the sufficient information to
forward requests to the appropriate target servers. Note that thisis not arequirement if the Servlet API is not used to
specify expressions and partitions, such asis the case with using the EJB API for this or when including a
partitions.xml file with the application.

This can be done by specifying the <load-on-startup> directive with some negative value in the Servlet definition (in
web.xml of the web archive):

29 <servlet>

30 <servlet-name>ListPartitions</servlet-name>

31 <display-name>L.istPartitions</display-name>

32 <servlet-class>http.wpf.sample.web.ListPartitions</servlet-class>
33 <load-on-startup>-1</load-on-startup>

34 </serviet>

5.7.7 HTTP Programming Interfaces

The HTTP WPF API can be used by EJBs and Servlets to perform the following actions:
1. Specify request expression and valid partition names to WPF and HT TP Partitioning
2. Receive notification regarding load and unload events of partitions
3. Receive queriesto determineif apartition is still alive

The APIs leverage the HttpPartitionManger that can be used to register callbacks for partition events as well as make
partition-related requests, such as alocating a request expression.

5.7.7.1 The HttpPartitionM anager

The cornerstone of the HTTP WPF API is the HttpPartitionM anager that can be accessed from both Serviet and EJB
environments in this fashion:
35 HttpPartitionManager httpPartitionM anager = HttpPartitionM anager.instance;

Thisinterfaces provides all the basic methods used by Servlets and EJBs to interact with the HTTP Partitioning
function.

5.7.7.2 The HttpPartitionExpression

Another fundamental building block associated with the HTTP WPF API is the HttpPartitionExpression that represents
arequest expression, including the match expression and classify formula portions:
36 public interface HttpPartitionExpression {

37 [**

38 * Get the expression string.

39 */

40 public String getMatchExpression();
41

42 [**

43 * Get the classify formula

44 */

45 public String getClassifyFormula();
46 }

The HttpPartitionManager is used to all ocate an HttpPartitionExpression using the following HttpPartitionM anager
method:

47 P
48 * Create an HttpPartitionExpression.
49 */

50 public HttpPartitionExpression createHttpPartitionExpression (String expression, String formula);

5.7.7.3 The Notification I nterface

The Servlet API consists a method for receiving partition callabacks (regarding partition events) using the
HttpPartitionNotification interface. The notification interface is asfollows:
public interface HttpPartitionNotification {

51 I*
52 * Fetch the vector of partition strings from the web module.
53 */

54 public Vector getPartitions();

Version 1.0.1 Page 134/144 © 2004 I1BM

56 I*

57 * Fetch the array of expressions from the web module.
58 */

59 public HttpPartitionExpression[] getExpressions();

60

61 I*

62 * Queries the web module to determine if the specified partition is still alive.
63 */

64 public boolean isPartitionAlive(String partitionName);
65

66 /*

67 * Indicates that this partition has been loaded by WPF.
68 */

69 public boolean loadEvent(String partitionName);

70

71 I*

72 * |ndicates that this partition has been loaded by WPF.
73 */

74 public void unloadEvent(String partitionName);

75

Though thisinterface is very similar to that supported by the Application Server WPF function, there are some minor
differences. The most notable of these is the inclusion of a getExpressions() method that is used by the HTTP
Partitioning function to gather the request expressions that will be used with this application.

A Servlet can register itself (or some other class) to receive notifications by invoking the
HttpPartitionManager.registerNotfication() method, for example, in itsinit() method:

76 public void init() throws ServletException {

7 System.out.printin(classNamet+": Registering notification ");
78 httpPartitionM anager.registerNotification(appName, this);

79 }

80

81 public void destroy() {

82 System.out.printIn(className+": Deregistering notification ");
83 httpPartitionM anager.deregisterNotification(appName, this);
84}

This example aso illustrates the use of the HttpPartitionManager.deregisterNotfication() method in the Servlet’s
destroy() method. For correctness, all registered notifications must be deregistered.

5.7.7.4 Other Servlet API HttpPartitionM anager M ethods

In addition to registration and deregistration of notifications and creating request expressions, the HttpPartitionM anager
supports a number of other functions useful to Servlets:

85 [**

86 * Get thelist (Vector of Strings) of active partitions.

87 */

88 public Vector getActivePartitions(String appName);

89

90 [**

91 * Add apartition.

92 */

93 public void addPartition(String appName, String partitionName);

94

95 [**

96 * Remove a partition.

97 */

98 public void removePartition(String appName, String partitionName) throws
UnknownPartitionException;

The getActivePartitions() method returns the Vector of Strings corresponding to the partitions that the
HttpPartitionManager believesto be active at agiven time. The addPartition() and removePartition() methods alow a
servlet (and an EJB) to register new partition names with HTTP Partitioning. In the case of addPartition, thiswill result
in the activation of the partition in some application instance in the cluster.

Version 1.0.1 Page 135/144 © 2004 I1BM

5.7.8 An Example

Listed below are the entire contents of the sample HTTP WPF application Servlet.

99 public class ListPartitions extends HttpServlet implements Servlet, HttpPartitionNotification {
private static String className = "ListPartitions";

private static String appName = "http.wpf.sample”;

private static HttpPartitionManager httpPartitionManager = HttpPartitionM anager.instance;

Version 1.0.1

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

154

155

156
157
158
159
160
161
162

public void init() throws ServletException {

}

System.out.printin(classNamet+": Registering notification ");
httpPartitionM anager.registerNotification(appName, this);

public void destroy() {

}

System.out.printIn(className+": Deregistering notification ");
httpPartitionM anager.deregisterNotification(appName, this);

public void doGet(HttpServletRequest req, HttpServletResponse resp)

}

throws ServletException, | OException {

resp.setContentType("text/html");

ServletOutputStream out = resp.getOutputStream();
out.println("<html>");

out.printin("<head><title>Hello Worl d</title></head>");
out.printin("<body>");

out.printin("<h1>Hello World</h1><h1>");
out.printIn(listPartitions());

out.printin("</h1>");

out.println("</body></html>");

public void doPost(HttpServletRequest req, HttpServletResponse resp)

}

throws ServletException, | OException {

public static String listPartitions() {

}

HttpPartitionM anager httpPartitionManager = HttpPartitionManager.instance;
Vector partitions = httpPartitionManager.getActivePartitions(appName);
String output = "Number of Partitions: "+partitions.size()+":\nPartitions:\n";
for (int i=0; i< partitions.size(); i++)

output = output.concat(partitions.elementAt(i) + "\n");
return output;

public Vector getPartitions() {

}

System.out.printin(classNamet": getPartitions");

Vector myVect = new Vector();

myVect.add("jian");

myVect.add("lou");

System.out.printIn(className+": getPartitions number of partitions: "+myVect.size());
return myVect; // Do not override partitions

public HttpPartitionExpression[] getExpressions() {

"$2');
"$2°);

System.out.printin(classNamet+": getExpressions");

HttpPartitionExpression[] expressions = new HttpPartitionExpression[2];
expressions[0] = httpPartitionM anager.createHttpPartitionExpression(" (user=)(.*)&",
expressions|1] = httpPartitionM anager.createHttpPartitionExpression(" (user=)(.*)$",

System.out.printIn(className+": getExpressions number of expressions

"+expressions.length);

}

return expressions; // Do not override expressions

public boolean loadEvent(String partitionName) {

/*
* now isagood time to start caching relevant data
*/

Page 136/144 © 2004 I1BM

163 System.out.printIn(className+": load "+partitionName);

164

165 return true;

166 }

167

168 public void unloadEvent(String partitionName)

169 {

170 I*

171 * now isagood time to flush relevant cached data
172 */

173 System.out.printIn(className+": unload " +partitionName);
174}

175

176 public boolean isPartitionAlive(String partitionName)

177 |

178 I*

179 * can check if apartitionisstill active

180 */

181 System.out.printin(classNamet": isPartitionAlive");
182 return true;

183

184 }

This exampleillustrates how the HttpPartitionManager is used to specify two partition names (“lou” and “jian” in this
case) and two request expressions using the getPartitions() and getExpressions() methods of the notification interface.
If this Servlet were not to specify these (if, for example, they were provided in an accompanying partitions.xml file or
specified by the EJB), these methods would return null.

5.7.9 The EJB API: Extending HttpPartitionBean

The HttpPartitionBean serves as the link between WPF and HTTP WPF applications. It registers the Application
Server WPF PartitionManager with the HttpPartitionManager. When using the Servlet API, the sample
HttpPartitionBean shipped with WAS Extended Deployment need not be modified.

One may, however, modify HttpPartitionBean to perform any function available viathe Servlet API. By using the EJB
API, partitions and expressions may be specified, partitions may be added, and the HttpPartitionManager may be used
asinthe Servlet API. This section describesin further detail, how this may be done. In addition, it describes the
internals of the HttpPartitionBean.

5.7.9.1 EJB-Specific HttpPartitionM anager M ethods

The HttpPartitionBean is aware of both the Application Server WPF PartitionManager as well asthe
HttpPartitionManager. These agents work in conjunction to perform partition operations. The HttpPartitionManager
contains additional methods that are employed by the HttpPartitionBean, including the setPartitionManager() method
that registers the PartitionM anager with the HttpPartitionManager. This should be done when initializing the
PartitionManager and HttpPartitionM anager.

Other methods that can be used by the EJB API include:

185 [**

186 * Set the Application Server WPF PartitionManager.

187 */

188 public void setPartitionManager(String appName, PartitionManager manager);
189

190

191

192 /**

193 * Set the HTTP expressions in the WAS config.

194 */

195 public void setExpressions(String appName, HttpPartitionExpression[] expressions);
196

197

The setPartitions() and setExpressions() allow the EJB to inform the HttpPartitionManager of partition and expression
specifications. If the EJB were to determine the list of partitions and expressions, it would invoke these methods.

Version 1.0.1 Page 137/144 © 2004 I1BM

5.7.9.2 HttpPartitionBean Details

The following details the contents of the HttpPartitionBean. Asiis, the default HttpPartitionBean provides the minimal

functionality required for HTTP Partitioning. When using only the Serviet API to interact with partitions, no
modification isrequired in this code. This simple PSSB only needs to be supplied with the application.

Version 1.0.1

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

public class HttpPartitionBean implements javax.ejb.SessionBean {
private javax.gjb.SessionContext mySessionCtx;
private PartitionManager partitionManager;
private HttpPartitionManager httpPartitionManager;

/* *
* getSessionContext
*/
public javax.ejb.SessionContext getSessionContext() {
return mySessionCtx;
}
/* *
* setSessionContext
*/

public void setSessionContext(javax.ejb.SessionContext ctx) {
mySessionCtx = ctx;
try
{

Initial Context ic = new Initial Context();

partitionManager =
(PartitionManager)ic.lookup(PartitionManager.JNDI_NAME);

httpPartitionM anager = HttpPartitionM anager.instance;

partitionM anager.setHttpPartitionM anager (httpPartitionM anager);

String appName = partitionManager.getApplicationName();

httpPartitionM anager.setPartitionM anager(appName, partitionManager);

}
catch(Exception €)
{
throw new EJBException(e);
}
}
/* *
* gjbCreate
*/
public void ejbCreate() throws javax.ejb.CreateException {
}
/* *
* gibActivate
*/
public void gjbActivate() {
/* *
* gjbPassivate
*/
public void ejbPassivate() {
}
/* *
* gibRemove
*/
public void ejpbRemove() {
}
/* *
* @return
*/

public PartitionDefinition[] getPartitions() {
return new PartitionDefinition[0];
}

/**

Page 138/144 © 2004 I1BM

257 * Thisis called when a specific partition is assigned to this server process.
258 * @param partitionName
259 * @return

260 */

261 public boolean partitionL oadEvent(String partitionName)
262 {

263 return false;

264 }

265

266 [**

267 * Thisis called when previously assigned partition is withdrawn from this server.
268 * @param partitionName

269 */

270 public void partitionUnloadEvent(String partitionName)
2711 {

272}

273

274 [**

275 * This may be called periodically to verify that this server is functioning correctly if
276 * it was assigned a partition.

277 * @param partitionName

278 * @return

279 */

280 public boolean isPartitionAlive(String partitionName)
281 {

282 return false;

283 }

284 }

The getPartitions() method shown in line 254 simply returns an empty partition definition array since this EJB is not
specifying any partitions. If this EJB returned partitions, the setPartitions() method would need to be called on the
HttpPartitionManager. Additionally, the EJB could specify HTTP request expressions by invoking the
setExpressions() method.

Note, however, that once established with the HttpPartitionBean.getPartitions() (of the session bean), any subsequent
partitions must be added with the HttpPartitionManager.addPartition() method.

5.7.10 Mixing Programming Interfaces and partitions.xml

Whileit is recommended that only one of the three partition and expression specification methods is used with each
application (the three methods are partitions.xml, Servliet API, and EJB APl), thisis not astrict requirement. |If
partitions or expressions are specified with two, or even three, of the specification methodol ogies, the union of thelist
of partitions and expressions will be used. This may be advantageous during the development phases of an enterprise
application.

Version 1.0.1 Page 139/144 © 2004 I1BM

6 Problem Resolution

6.1 Client Invocation Problems

6.1.1 Launchclient

Error:

launchclient c:\was\base51\installedApps\Cel\WPFK eyBasedPar titionSample.ear -CCprovider URL =cor baloc::localhost: 9813

IBM WebSphere Application Server, Release 5.1
J2EE Application Client Tool
Copyright IBM Corp., 1997-2003
WSCL0012I: Processing command line arguments.
WSCL0013l: Initializing the J2EE Application Client Environment.
WSCL0035!: Initialization of the J2EE Application Client Environment has completed.
WSCL0014I: Invoking the Application Client class com.ibm.websphere.wpf.client. WPFK eyBasedPartitionClient
WSCL0100E: Exception received: javalang.reflect.InvocationTargetException

at sun.reflect.NativeM ethodA ccessorlmpl.invokeO(Native M ethod)

at sun.reflect.NativeM ethodA ccessorl mpl.invoke(NativeM ethodA ccessorl mpl .java: 85)

at sun.reflect.NativeM ethodA ccessorl mpl.invoke(NativeM ethodA ccessorl mpl .java: 58)

at sun.reflect.Del egatingM ethodA ccessorl mpl.invoke(Del egatingM ethodA ccessor I mpl .java: 60)

at java.lang.reflect.Method.invoke(Method.java:391)

at com.ibm.websphere.client.applicationclient.launchClient.createContainerAndL aunchApp(launchClient.java:638)

at com.ibm.websphere.client.applicationclient.launchClient.main(launchClient.java:425)

at sun.reflect.NativeM ethodA ccessorl mpl.invokeO(Native Method)

at sun.reflect.NativeM ethodA ccessorl mpl.invoke(NativeM ethodA ccessorl mpl .java:85)

at sun.reflect.NativeM ethodA ccessorl mpl.invoke(NativeM ethodA ccessorl mpl .java: 58)

at sun.reflect.Del egatingM ethodA ccessorl mpl.invoke(Del egatingM ethodA ccessor mpl .java: 60)

at javalang.reflect.Method.invoke(Method.java:391)

at com.ibm.ws.bootstrap.WSL auncher.main(WSLauncher.java: 189)
Caused by: com.ibm.websphere.naming.Cannotl nstanti ateObjectException: Exception occurred while the INDI NamingManager wa
S processing a javax.naming.Reference object. [Root exception is javax.naming.CommunicationException: A communication fa
ilure occurred while attempting to obtain an initial context with the provider URL: "corbaloc::localhost:9813". Make sur
ethat any bootstrap address information in the URL is correct and that the target name server isrunning. A bootstrap
address with no port specification defaults to port 2809. Possible causes other than an incorrect bootstrap address or
unavailable name server include the network environment and workstation network configuration. [Root exception is org.om
g.CORBA.COMM_FAILURE: WRITE_ERROR_SEND_1 vmcid: 0x49421000 minor code: 50 completed: No]]

at com.ibm.ws.naming.util.Hel pers.processSerializedObjectForL ookupExt(Hel pers,java:931)

at com.ibm.ws.naming.urlbase.Url ContextHel per.processBoundObjectForL ookup(Url ContextHel per.java: 152)

at com.ibm.ws.naming.java,javaURL ContextRoot.processBoundObjectForL ookup(javaURL ContextRoot.java: 398)

at com.ibm.ws.naming.urlbase.Url Contextlmpl.lookup(Url Contextlmpl .java: 1278)

at com.ibm.ws.naming.java,javaURL ContextRoot.lookup(javaURL ContextRoot.java: 196)

at com.ibm.ws.naming.javajavaURL ContextRoot.lookup(javaURL ContextRoot.java: 137)

at javax.naming.lnitial Context.lookup(l nitial Context.java:361)

at com.ibm.websphere.wpf.client. WPFK eyBasedPartitionClient. main(WPFK eyBasedPartitionClient.java: 110)

... 13 more

Possible Causes:

- Cluster has not been made operational.
- Incorrect port used when dispatching the request.
- Cluster is starting, or started, but the partitions have not been activated to receive regquests.

Explanation:

In generd it can take a few minutes for al partitions to enter the activated state. For the scenarios common in
development scenarios, e.g. reasonably few in number often the partitions will be active and ready for work as soon as
the server reports “ Open for e-business”.

However, as the partition numbers are larger, more cluster members are in the overall cluster or production related
work begins, it isimportant to note that large number of partitions may take several minutesto fully activate. Due to
the possible number of partitions, even printing out trace line for one partition for key scenarios could drastically affect
performance, the default caseisto not print out any specific messages that describe the status of a WPF partition.

Version 1.0.1 Page 140/144 © 2004 I1BM

However, users can enable atrace spec, WPFSTATUS. Thiswill print out a message for each partition upon activation
and other important life cycle events. For those preparing for production, this can be turned on and the general time to
document the startup time expected for the particular implementation of WPF. It is suggested that for production
scenarios this trace not be used, but rather for pre-production documentation generation or problemsin production
when it is not clear a partition is activated and it should be. Assuming you have a cluster named “cluster”, the trace
specification can be set for al nodes with the following command:

wpfadmin setTraceSpec perm WPFSTATUS=all=enabled — cluster
The following is the example output to expect.

wsadmin -lang jython -f wpfadmin.pty setTraceSpec perm WPFSTATUS=all=enabled --c cluster

WASX7209I: Connected to process "Deployment Manager" on node CellManager using SOAP connector; The type of processis: DeploymentManager
WPFC0065I: Cluster set to cluster

WPFC0059I: Setting trace to WPFSTATUS=all=enabled for Server
cluster_member_1(cells/Cell/nodes/NodeA/servers/cluster_member_1:server.xml#Server_1)

WPFC0059I: Setting trace to WPFSTATUS=all=enabled for Server
cluster_member_2(cells/Cell/nodes/NodeA/servers/cluster_member_2:server.xml#Server_1)

WPFC0059I: Setting trace to WPFSTATUS=all=enabled for Server
cluster_member_3(cells/Cell/nodes/NodeA/servers/cluster_member_3:server.xml#Server_1)

After thetraceis enabled on the cluster members, trace entries will appear in the log directory for each partition (with
other information, this text was filtered). The trace snapshot below is an example:

[10/14/04 11:53:53:287 CDT] 1f3052f7 XDClusterAdap | WPFR0002I: Partition routing cluster for partition PK000002 is successfully created and open
for e-Business at this server.
[10/14/04 11:53:53:647 CDT] 1f3052f7 XDClusterAdap | WPFR0002I: Partition routing cluster for partition PK000001 is successfully created and open
for e-Business at this server.
[10/14/04 11:53:54:639 CDT] 1f3052f7 XDClusterAdap | WPFR0002!I: Partition routing cluster for partition PK000004 is successfully created and open
for e-Business at this server.
[10/14/04 11:53:55:600 CDT] 1f3052f7 XDClusterAdap | WPFR0002I: Partition routing cluster for partition PK000008 is successfully created and open
for e-Business at this server.
[10/14/04 11:53:56:041 CDT] 1f3052f7 XDClusterAdap | WPFR0002!I: Partition routing cluster for partition PK000003 is successfully created and open
for e-Business at this server.
[10/14/04 11:53:56:091 CDT] 1f3052f7 XDClusterAdap | WPFR0002!I: Partition routing cluster for partition PK000005 is successfully created and open
for e-Business at this server.
[10/14/04 11:53:56:241 CDT] 1f3052f7 XDClusterAdap | WPFR0002!: Partition routing cluster for partition PK000010 is successfully created and open
for e-Business at this server.
[10/14/04 11:53:56:411 CDT] 1f3052f7 XDClusterAdap | WPFR0002!I: Partition routing cluster for partition PK000006 is successfully created and open
for e-Business at this server.
[10/14/04 11:53:56:692 CDT] 1f3052f7 X DClusterAdap | WPFR0002!I: Partition routing cluster for partition PK000007 is successfully created and open
for e-Business at this server.
[10/14/04 11:53:56:732 CDT] 1f3052f7 XDClusterAdap | WPFR0002!I: Partition routing cluster for partition PK000009 is successfully created and open
for e-Business at this server.

In this case, the last partition started at 11:53:56, as compared to the server’s own log entry:

10/14/04 11:53:47:649 CDT] 719092f5 WsServer A WSVRO0001I: Server cluster_member_2 open for e-business
Consequently in this case, it took approximately from 11:53:47 when the application server started until 11:53:56 when
the last partition was activated and enrolled in the cluster to receive requests. Thisis about 9 seconds for 10 partitions.
Thisisnot ageneral rule as startup policies can affect this a great deal and the startup sequence can vary depending on

server start order and timing, but the general point isthat client requests will be rejected until the partitions are
accessible from the client viewpoint.

6.2 Transaction Related

6.2.1 Transaction Rollback Distributed Transaction Time Out

Problem: Transactions might rollback when using WebSphere Partition Feature.
Cause: When you use WebSphere Partition Feature, you might hit

TransactionRolledbackException. This could be due to the fact that transactions time out when a
distributed transaction is re-imported onto the originating server causing the current transaction to

Version 1.0.1 Page 141/144 © 2004 I1BM

rollback. This problem has been fixed in PQ93714. For more details, please look at the
description of PQ93714

Recommendation: Please contact IBM support for a fix for this problem.

6.3 Workload Routing

6.3.1 Routing Problem determination

If one of your partitions are not activated or all of your partitions are activated but routing cluster data are not created
for some activated partition, you will see the following error messages:

1st call: PK000573->partiton=PK000573,server=hao/ss

2nd call: PK000573->partiton=PK 000573,server=hao/s5

3rd call: PK000573->partiton=PK000573,server=hao/ss

1st call: PK000574->partiton=PK 000574,server=hao/s5

2nd call: PK000574->partiton=PK 000574,server=hao/s5

3rd call: PK000574->partiton=PK 000574,server=hao/s5

javarmi.RemoteException: CORBA NO_IMPLEMENT 0x49421040 No; nested exception is:

org.omg.CORBA.NO_IMPLEMENT: vmcid: 0x49421000 minor code: 40 completed: No
at com.ibm.CORBA .iiop.Util Del egatel mpl.mapSystemException(Util Del egatel mpl java: 257)
at javax.rmi.CORBA.Util.mapSystemException(Util .java(lnlined Compiled Code))
at com.ibm.websphere.wpf.ejb._WPFKeyBasedPartition_Stub.buy(_WPFKeyBasedPartition_Stub.java(Compiled Code))
at com.ibm.websphere.wpf.ejb._ WPFK eyBasedPartition_Stub.buy(_ WPFK eyBasedPartition_Stub.java(Compiled Code))
at com.ibm.websphere.wpf.ejb._WPFKeyBasedPartition_Stub.buy(_WPFKeyBasedPartition_Stub.java(Compiled Code))
at com.ibm.websphere.wpf.ejb._ WPFK eyBasedPartition_Stub.buy(_ WPFK eyBasedPartition_Stub.java(Compiled Code))
at com.ibm.websphere.wpf.ejb._WPFKeyBasedPartition_Stub.buy(_WPFKeyBasedPartition_Stub.java(Compiled Code))
at com.ibm.websphere.wpf.ejb._ WPFK eyBasedPartition_Stub.buy(_ WPFK eyBasedPartition_Stub.java(Compiled Code))
at com.ibm.websphere.wpf.ejb._WPFKeyBasedPartition_Stub.buy(_WPFKeyBasedPartition_Stub.java(Compiled Code))
at com.ibm.websphere.wpf.ejb._ WPFK eyBasedPartition_Stub.buy(_ WPFK eyBasedPartition_Stub.java(Compiled Code))
at com.ibm.websphere.wpf.ejb._WPFKeyBasedPartition_Stub.buy(_WPFKeyBasedPartition_Stub.java(Compiled Code))
at com.ibm.websphere.wpf.client. WPFK eyBasedPartitionClient$1.run(WPFK eyBasedPartitionClient.java: 90)
at java.lang.Thread.run(Thread.java:567)

Caused by: org.omg.CORBA.NO_IMPLEMENT: vmcid: 049421000 minor code: 40 completed: No
at com.ibm.ws.wpf.sel ection.WPFSel ectionM anager..targetForwarded(\WPFSel ectionM anager .java: 450)
at com.ibm.ws.wim.client. WL M ClientRequestI nterceptor.receive_other(WL M ClientRequestinterceptor.java(Compiled Code))
at com.ibm.rmi.pi.InterceptorM anager.iterateReceiveOther(I nterceptorManager.java(Compiled Code))
at com.ibm.rmi.corba.ClientDel egate.intercept(ClientDel egate.java(Compiled Code))
at com.ibm.rmi.corba. ClientDel egate.invoke(ClientDel egate.java(CompiledCode))
at com.ibm.CORBA .iiop.ClientDel egate.invoke(ClientDel egate.java(Compiled Code))
at com.ibm.rmi.corba.ClientDel egate.invoke(ClientDel egate.java(CompiledCode))
at com.ibm.CORBA .iiop.ClientDel egate.invoke(ClientDel egate.java(Compiled Code))
at org.omg.CORBA .portable.ObjectImpl._invoke(Objectimpl.java(lnlined Compiled Code))
... 11 more

org.omg.CORBA.NO_IMPLEMENT: No Cluster Data Available vmcid: 0x49421000 minor code: 42 completed: No
at com.ibm.ws.wpf.plugin.WPFServerRequest nterceptor.forwardRequest(\WPFServerRequest| nterceptor.java:525)
at com.ibm.ws.wpf.plugin.WPFServerRequestI nterceptor.partitionForward(WPFServerRequesti nterceptor.java: 400)
at com.ibm.ws.wpf.plugin.WPFServerRequest| nterceptor.check AndForward(WPFServerRequesti nterceptor.java: 364)
at com.ibm.ws.wpf.plugin.WPFServerRequesti nterceptor.receive_request_service _contexts(WPFServerRequestinterceptor.java:229)
at com.ibm.rmi.pi.I nterceptorM anager .iterateRecei veContext(I nterceptorM anager.java: 669)
at com.ibm.rmi.iiop.ServerRequestimpl.runinterceptors(ServerRequestimpl java: 122)
at com.ibm.rmi.iiop.Connection.doWork(Connection.java:2176)

If you see the above error message, the first thing to do isto list Active Partitions as follows:
wpfadmin countActivePartitionsOnServers --o 6000
The following execution will similarly occur:

wsadmin -lang jython -f wpfadmin.pty countActivePartitionsOnServers --0 6000

WASX7209I: Connected to process "Deployment Manager" on node haoManager using SOAP conn
ector; Thetype of processis: DeploymentManager
WPFC0065I: Override set to 5000

Version 1.0.1 Page 142/144 © 2004 I1BM

WPFC0051I: Server haoNetwork\|BM Cluster2\s6: 0
WPFCO0051I: Server haoNetwork\IBM Cluster2\s5: 1,674
WPFC0051I: Server haoNetwork\hao\s3: 1,673
WPFCO0051I: Server haoNetwork\hao\s1: 1,673

Total number of partitionsis 5020

6.4 Proxy Datasource

6.4.1 Session Bean must use local interface to invoke CMP EJB

The session bean has to use locd interface to invoke the CMP EJBs. Remote interfaces of CMP EJBs are not supported
and will cause unexpected behavior.

6.4.2 Specify Datasource at Beginning of each Transaction

At the beginning of every transaction (method), the Session bean has to specify the datasource the current transaction
will use by using APl WSDataSourceHel per.setCurrentDataSourceJNDIName(String). If the session bean does not
specify the datasource INDI name. The first datasource JINDI name from the jndiNames custom property of the proxy
datasource will be used, and awarning will be logged.

6.4.3 Performance Monitoring

Problem: Performance Monitoring Instrumentation is not available for statement cache used in Proxy DataSource.

Description: Proxy DataSource uses a special statement cache for caching the prepared statements. In this release, there
is no performance monitoring instrumentation for this statement cache.

6.4.4 Test Connection Non-functional

Problem: Test Connection does not work for Proxy DataSource.

Description: "Test Connection” button from the administrative console will not work for proxy datasource. Even if you
configure your proxy datasource in aright way, you will see exceptionsif click the "Test Connection" button. Trying to
use testConnection function from the MBean will not work either.

Recommendation: If you want to make sure the datasource is configured right, click "Test Connection™ button of the
underlying datasources for the proxy datasource. For example, if your proxy datasource has custom property
"jdbc/dsNamel;jdbc/dsName2"”, you can test the connection to datasources with INDI name jdbc/dsNamel and
jdbc/dsName2.

Configuring Proxy DataSource Statement Cache

Topic: Configure the right statement cache size for a Proxy Datasource.

Description: When you create a proxy datasource, please set the statement cache size to 0 in the datasource panel. The
right way to configure the statement cache size for the proxy datasource is using the custom property
statementCacheSizes. If the value is a single integer, the statement cache sizes for all underlying datasources will be set

to that value. Alternatively, you can set the statement cache size for individual underlying datasources using semicolon

underlying datasource 1 is 10, the statement cache size for the underlying datasource 2 is 20, and the statement cache
size for the underlying datasource 3 is 30.

Version 1.0.1 Page 143/144 © 2004 I1BM

6.4.5 oOverride the Datastore Helper class when creating the proxy datasource.

Topic: Override the Datastore Hel per class when creating the proxy datasource.

Description: Currently, there is only two proxy datasource JDBC provider for al supported databases, one for non-XA,
and one for XA. Users have to specify the right datastore helper class when creating the datasources. If awrong kind of
datastore helper class is specified, users might get exceptions. For example, if your underlying datasources use DB2
Universal JDBC provider, the datastore helper class should be orverriden as

"com.ibm.websphere.proxyds.hel per.DB2Universal DSProxyDataStoreHel per.

Version 1.0.1 Page 144/144 © 2004 I1BM

	WebSphere Partitioning Facility Overview
	Partitioning Objective and Benefits
	J2EE Partitioning Capabilities
	EJB Workload Partitioning
	Typical J2EE EJB Clustered Workload Processing
	WPF EJB Workload Management
	Administrating Capabilities of a WPF Enabled EJB Workload

	HTTP Partitioning
	The Role of the On-Demand Router (ODR)
	Extracting Partition Names From HTTP Requests

	Database Partitioning

	Introduction to WPF via Example
	WebSphere and WebSphere Extended Deployment Installation Ste
	Configuration Quick Start
	Starting the Deployment Manager
	Add each node to the Deployment Manager

	Cluster Configuration
	Installing the WPF Example Application
	Starting the Cluster

	Executing WPF Operations
	Verify the application is started, etc…
	Launching a client application
	Balancing the Partitions
	Post Balance - Launching a client application again
	Adding a Partition Dynamically
	Monitoring Transaction Performance Statistics
	Enabling Performance Monitoring
	Monitor WPF Partitions via Deployment Manager
	Managing Policies Example Overview

	Managing Policies Example

	Example Summary

	Partitioning Introduction
	What is a Partition?
	Partition Life Cycle
	Partition Creation
	IIOP Routing to a Partition

	What is a Partitioned Stateless Session Bean?
	What is a Partitioned J2EE Application?
	What is a Partitioned HTTP Application?
	Samples Overview
	Partition Examples

	Managing a WPF Environment
	HA Manager
	HA Manager Overview
	HA Managed Policy Applied to Partitioning
	HA Manager Quorum Attribute
	WPF Partition HA Manager Implementation
	HA Manager Policy Explanation
	Policy Administration

	How does a “WPF Partition” relate to an HA Group
	Partition Scope
	Cluster Scope Partitions
	Node Scoped Partitions

	How many policies are too many?
	How many partitions are too many?

	Advanced HA Manager Concepts
	HA Managed “Network partitions”
	Critical time window for network partitions
	Tolerating the critical time window
	Cluster member memory usage for active partitions
	Why define more than one coordinator?
	Partition Activation reaction times.
	Memory usage
	Coordinator Configuration
	Recommendations for preferred server locations
	Reaction times
	HA Manager Event Callback Thread Pool
	Number of HA Manager Coordinators
	HA Manager TCP/IP Tuning
	Overview
	AIX
	Linux
	Sun
	Windows

	General Cluster and WPF Management Considerations
	Scalability Considerations
	Conservative Partition Design
	Physical Machines CPU and Paging Utilization
	Application Thread Pools (Async Beans)
	Carefully control what is running on each node and applicati
	Tune the operating system to use small time slices.
	Mixing application types must be considered carefully
	SMP machines preferred in partitioned implementations
	OnDemand LPAR Resource Advantages
	Dealing with hot partitions
	Move the busy partition(s) to a less busy server.
	Move the less critical partitions to another server.
	LPAR expansion (best option to avoid outages)

	Management Script (wpfadmin) and Usage
	Management Commands
	listActive
	listActiveWithGroups
	countActivePartitionsOnServers
	countActiveGroupsOnServers
	list
	listGroups
	coreGroupStatus
	move
	balance
	disablePartition
	enablePartition
	addServerToCoreGroup
	removeServerFromCoreGroup
	enableWPFPMI
	subscribeWPFPMI
	setPartitionCount
	setStatisticsRange
	setEJBName
	setStatisticsType
	setStatisticsInterval
	getTransactionCount
	getResponseTime
	setTraceSpec
	unsubscribeWPFPMI
	disableWPFPMI
	createPolicy
	updatePolicy
	Delete Policy
	updateJMXTimeout
	updateCoreGroupCoordinators
	updateHamConfig
	listPolicies
	queryPolicy
	resolvePolicyForGroup

	Performance Monitoring
	WPF PMI Enablement
	Enabling WPF PMI from the wpfadmin command
	Enabling WPF PMI from the admin console.

	WPF PMI path
	WPF PMI data aggregation
	WPF PMI statistics subscription
	Subscribe WPF PMI statistics using wpfadmin command

	WPF PMI statistics retrieval
	WPF PMI statistics parameters
	application name and session EJB name
	statistics type
	StatisiticsStatistics range
	partition count
	statistics aggregation interval

	WPF PMI Aggregator policy

	Scalability Related Configuration
	Configuration

	Proxy DataSource Management

	WebSphere Partitioning Facility Programming
	Partitioned EJB Overview
	Partitioned Stateless Session Bean (PSSB)
	PSSB <Bean>_PartitionKey Routing Class
	The PSSB Bean needs to have its generated stub updated

	Partition Routable Session Bean (PRSB)
	Facade Interface for a Partitioned Stateless Session Bean
	WPF Requirements
	PSSB Local Interfaces
	Partition Router Object (<EJBName>_PartitionKey class)

	WPF Restrictions
	Partition Names must be Cluster Unique
	Other Restrictions

	Developing WPF applications with WSAD 5.1
	Preparing WSAD to Develop WPF Partitioned J2EE Applications
	Getting Started with a new WPF Partitioned Application
	Creating a Partition Stateless Session Bean (PSSB) Example.
	Adding some sample partitions
	Update the getPartitions method
	Update the isPartitionAlive method

	Partitioned J2EE Application Example
	Importing the WPFKeyBasedPartitionSample Sample Application

	WPF Framework Programming Model
	PartitionDefinition
	PartitionDefinition#getPartitionName
	PartitionDefinition#getPartitionClass
	PartitionDefinition#getScope
	PartitionDefinition#getAttributeMap
	PartitionDefinition#setPartitionAlias
	PartitionDefinition#getPartitionAlias

	PartitionScope
	PartitionScope#K_CLUSTER
	PartitionScope#K_NODE

	PartitionManager
	PartitionManager#JNDI_NAME
	PartitionManager#createPartitionDefinition
	createPartitionDefinition() Attribute Constraints

	PartitionManager#getPartitions
	PartitionManager#getApplicationName
	PartitionManager#addPartition
	PartitionManager#removePartition
	PartitionManager#disablePartition
	PartitionManager#reportPartitionFault
	PartitionManager#reportTransactionComplete
	PartitionManager#setHttpPartitionManager

	PartitionManager# reportTransactionComplete
	PartitionHandlerLocal
	PartitionHandlerLocal#getPartitions
	PartitionHandlerLocal#partitionLoadEvent
	PartitionHandlerLocal#partitionUnloadEvent
	PartitionHandlerLocal#isPartitionAlive

	Threading issues for the PSSB callback methods
	Writing an application client
	Modifying the EJB stubs (required after deploying ear)

	Data Partitioning Patterns
	Variable Partition Set
	Fixed Partition Set.
	Singleton Pattern
	Hash based partitioning.
	Slave Multiple Reader/Master Single Writer Pattern
	Partition Specific CMP data
	Option A CMPs
	Efficiently removing an option A CMP instance

	Proxy DataSource Development
	CMP Datasource Overview
	Proxy DataSource programming model
	API
	Developing application using proxy datasource support in WSA
	Create ProxyDSAccountSample project
	Create entity EJBs Account and AccountOwner
	Create PRSB AccountTransaction.
	Create PSSB AccountPartitionBean
	Set the classpath
	Set the connection factory for the CMP EJBs.
	Configure the resource references for the session bean.
	Programming the session bean.

	Configure Proxy DataSource In WebSphere Extended Deployment
	Configure your database
	Configure the data sources.
	Create J2C Authentication alias
	Create DB2 data sources.
	Create Proxy data source

	Install D_ProxyDSAccountSample.ear application.
	Run the application client
	DataStore Helper classes.
	Restrictions

	WPF PMI Client Programming
	Subscribe WPF PMI statistics using WPFJMX MBean.
	subscribe WPF PMI statistics using Java code
	subscribe WPF PMI statistics using Jacl code
	subscribe WPF PMI statistics using Jython code

	HTTP Partitions
	Anatomy of An HTTP WPF Application
	Packaging: Specifying HTTP Partitions in partitions.xml
	Packaging: HttpPartitionBean: A Generic PSSB
	Deployment: Co-locating the Generic PSSB and Servlets
	Packaging: The HttpPartitionFilter
	Deployment: Loading Servlets at Start-Up
	HTTP Programming Interfaces
	The HttpPartitionManager
	The HttpPartitionExpression
	The Notification Interface
	Other Servlet API HttpPartitionManager Methods

	An Example
	The EJB API: Extending HttpPartitionBean
	EJB-Specific HttpPartitionManager Methods
	HttpPartitionBean Details

	Mixing Programming Interfaces and partitions.xml

	Problem Resolution
	Client Invocation Problems
	Launchclient

	Transaction Related
	Transaction Rollback Distributed Transaction Time Out

	Workload Routing
	Routing Problem determination

	Proxy Datasource
	Session Bean must use local interface to invoke CMP EJB
	Specify Datasource at Beginning of each Transaction
	Performance Monitoring
	Test Connection Non-functional
	Override the Datastore Helper class when creating the proxy

