
IBM WebSphere Application Server Enterprise,
Version 5

Common Object Request Broker
Architecture (CORBA)

���

Note
Before using this information and the product it supports, read the general information under “Notices” on page 173.

Contents

Implementing CORBA applications . . . 1
Developing a CORBA C++ client 2

Creating IDL files for an enterprise bean 3
Creating the CORBA client main code (client.cpp) 3
Building a CORBA C++ client 9
Managing the EJB home 10
Client bootstrapping operation 11
CORBA client exception handling 16
Coding tips for CORBA memory management. . 18
CORBA client to WebSphere EJB server 19

Developing a CORBA C++ server 20
Defining the interface for a CORBA servant class 21
Compiling a CORBA server implementation class
IDL (using idlc) 23
Adding declarations to a CORBA servant class
definition (servant.ih) 23
Completing the CORBA servant implementation
(servant_I.cpp) 26
Creating the CORBA server main code
(server.cpp) 27
Building a CORBA C++ server 36
Storing a logical definition for a CORBA server
in the system implementation repository . . . 37

Managing CORBA applications 37
Supporting SSL by WebSphere for CORBA C++
clients 37

Specifying run-time properties for CORBA C++
clients and servers 52
Resolving CORBA run-time errors 66
Managing the CORBA Interface Repository . . . 72

CORBA programming model 76
CORBA concepts 78
CORBA C++ client programming model 82
CORBA server programming model 82
CORBA object services. 84
CORBA communication protocols (GIOP/IIOP) 88
CORBA valuetype considerations 91
CORBA internationalization considerations . . 106

CORBA programming reference 107
CORBA types and business objects 107
Commonly used CORBA interfaces 109
CORBA C++ bindings 110
Storage management and _var types 129
Implementation registration utility (regimpl) 137
CORBA exceptions 138
Interface Definition Language (IDL) 148

CORBA: Resources for learning 172

Notices 173
Trademarks 175

© Copyright IBM Corp. 2003 iii

iv IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

Implementing CORBA applications

The CORBA support provided in IBM® WebSphere® Application Server enables the
use of CORBA interfaces between a server object providing a service and a client
using the service. In practice, this means that a CORBA client can access a
WebSphere CORBA C++ server and a WebSphere EJB server. For a detailed
description of the CORBA environment and elements, refer to “CORBA concepts”
on page 78.

In addition, IBM WebSphere Application Server provides a basic CORBA
environment that can ″bootstrap″ into the J2EE name space and invoke J2EE
transactions. However, it does not provide its own naming and transaction
services. Therefore, a CORBA C++ client or server relies on the J2EE environment
to provide these services.

WebSphere CORBA support can be divided into two categories:

WebSphere to WebSphere CORBA support
Enables creation of CORBA client and server applications within the IBM
WebSphere Application Server environment. You can use the CORBA C++
SDK to build a lightweight WebSphere CORBA server to use with new or
existing C and C++ programs. You also can use the SDK to build a
WebSphere CORBA C++ client to use with a WebSphere EJB server or
WebSphere CORBA C++ server.

WebSphere to other ORB support
Enables other applications that are based on CORBA Object Request
Brokers (ORBs) to interoperate with WebSphere. This enables these
applications to leverage WebSphere-supported open technologies, such as
Java™ ServerPages, XML, Java Servlets, and enterprise beans.

This documentation focuses on WebSphere to WebSphere, the first category of
CORBA support, which encompasses the following scenarios:

WebSphere CORBA C++ client to a WebSphere EJB server
Enables a CORBA C++ client to access enterprise beans hosted by a
WebSphere EJB server. For more information, see “CORBA client to
WebSphere EJB server” on page 19.

WebSphere CORBA C++ client to a WebSphere CORBA C++ server
Enables a WebSphere CORBA C++ client to access a CORBA server
implementation object hosted by a C++ CORBA server within the IBM
WebSphere Application Server environment. This CORBA support provides
the basic CORBA building blocks to create CORBA C++ client and server
applications within WebSphere.

In implementing CORBA applications, refer to the following topics:
v “Developing a CORBA C++ client” on page 2
v “Developing a CORBA C++ server” on page 20
v “Managing CORBA applications” on page 37

For comprehensive programming details, refer to the following topics:
v “CORBA programming model” on page 76

© Copyright IBM Corp. 2003 1

v CORBA programming reference (located in the on-line InfoCenter at
http://www-3.ibm.com/software/webservers/appserv/infocenter.html)

For more information about CORBA, see CORBA: Resources for learning (located
in the InfoCenter at http://www-
3.ibm.com/software/webservers/appserv/infocenter.html)

Developing a CORBA C++ client
Use this task to develop a CORBA C++ client. This task generates the client-side
usage bindings needed by CORBA C++ client programs to access an object class
(enterprise bean or CORBA servant object) hosted by an application server.

Steps for this task

1. Create the interface definition language (IDL) files that specify the public
interface to the server implementation object class. If you want the client to
access a CORBA server implementation class, create the IDL file as part of the
procedure to define the servant implementation as described in Defining the
interface for a servant implementation (servant.idl). If you want the client to
access an enterprise bean, you can create the IDL file from the bean class, as
described in “Creating IDL files for an enterprise bean” on page 3.

2. Use the idlc command to emit the client-side usage bindings from the IDL,
specifying the -suc:hh option.
If you want the client to access a CORBA server implementation, emit the
client-side usage bindings when you compile the servant.idl file, as described in
“Compiling a CORBA server implementation class IDL (using idlc)” on page 23.
If you want the client to access an enterprise bean, you can use the same
procedure with the IDL file created from the bean class.
For example, to emit the client-side bindings from the Hello.idl file and use a
command line to change to the directory that contains the IDL file, type the
following command:
idlc -suc:hh Hello.idl

When the specified idl file is compiled successfully, the idlc command creates
the binding files and returns a value of zero. For example, using the previous
example idlc command, the following binding files are created: Hello.hh and
Hello_C.cpp

3. Create the main code for the client program, as described in “Creating the
CORBA client main code (client.cpp)” on page 3.

4. Compile and link the C++ client main program as described in “Building a
CORBA C++ client” on page 9.

What to do next

For additional information related to Developing a CORBA C++ client, see the
following topics:
v “Managing the EJB home” on page 10
v “Client bootstrapping operation” on page 11
v “CORBA client exception handling” on page 16
v “Coding tips for CORBA memory management” on page 18
v “CORBA client to WebSphere EJB server” on page 19

2 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

http://www-3.ibm.com/software/webservers/appserv/infocenter.html
http://www-3.ibm.com/software/webservers/appserv/infocenter.html
http://www-3.ibm.com/software/webservers/appserv/infocenter.html

Creating IDL files for an enterprise bean
Use this task to generate the interface definition language (IDL) files that specify
the interface to an enterprise bean. You then can use the IDL to create client-side
usage bindings for CORBA clients to use the EJB’s interface. Complete this task
only if you are developing a CORBA client that needs to access an enterprise bean.

Steps for this task

1. Develop the enterprise bean.
2. Ensure that the JAR file that contains the EJB class can be accessed by the rmic

command. The JAR file should be in the system classpath.
To generate IDL files for the com.ibm.ejb.samples.hello.Hello enterprise bean,
you might use the following command:
rmic -idl com.ibm.ejb.samples.hello.Hello com.ibm.ejb.samples.hello.HelloHome

3. Use the Java rmic -idl command to generate IDL files from the enterprise
bean’s remote and home interfaces.
This step results in the class.idl and classHome.idl files. For example, the
previous rmic command for the Hello enterprise bean class created the
following idl files: Hello.idl and HelloHome.idl.

What to do next

You can use the IDL file to create the client-side usage bindings needed by a
CORBA client, as described in “Developing a CORBA C++ client” on page 2.

Creating the CORBA client main code (client.cpp)
Use this task to create the main code for a CORBA client, to locate a servant object
hosted by a CORBA server, and to call methods on the server object. The client’s
main() function performs the following tasks:
1. Initializes the client environment
2. Gets a pointer to the root naming context
3. Accesses the servant object
4. Calls methods on the servant object
5. Stops the client and releases resources used

Steps for this task

1. Create a source file, client.cpp, where client is the name of the client program.
2. Edit the client source file, client.cpp, to add appropriate code to implement the

client. To do this, complete the following steps:
a. Add the necessary include statements, as described in “Adding include

statements” on page 4.
b. Add the main() function in the following form:

main(int argc, char *argv[])
{

int rc;
::CORBA::Object_ptr objPtr;
::CosNaming::NamingContext_var rootNameContext = NULL;
Servant_var liptr = NULL;

exit(0);
}

3. Add code to initialize the client environment as described in “Initializing the
client environment” on page 4.

Implementing CORBA applications 3

4. Add code to get a pointer to the root naming context as described in “Getting a
pointer to the root naming context” on page 5.

5. Add code to access the servant object that has already been created by the
server as described in “Accessing the servant object” on page 7.

6. Add code to call methods on the servant object as described in “Invoking
methods on the servant object” on page 8.

7. Add code to shutdown the client and release resources used as described in
“Shutting down the client and releasing resources used” on page 9.

Adding include statements
Use this task to add the necessary include statements to the source file for a
CORBA client main code.

Add the following include statements:
#include "servant.hh"
#include <CosNaming.hh>

where:

servant.hh
Specifies the name of the client-side usage bindings file for the server
implementation class, servant. This file is created when the server
implementation class IDL is compiled, as described in “Compiling a
CORBA server implementation class IDL (using idlc)” on page 23.

CosNaming.hh
Specifies the header file for the COSNaming functions.

What to do next

You also can add the code for the functions needed in the client main code as
described in “Creating the CORBA client main code (client.cpp)” on page 3.

Initializing the client environment
Use this task to add code that initializes the Object Request Broker (ORB) for use
by the client program.

To do this, edit the client source file, client.cpp, and add the following code to the
main() function:
int main (int argc, char *argv[])
{

CORBA::ORB_ptr orbPtr = CORBA::ORB_init (argc, argv, "DSOM");
if (CORBA::is_nil(orbPtr))
{

cerr << "Error initializing the ORB!" << endl;
return 1;

}

.

.

.

}

Results

This task adds code to initialize the client environment for a CORBA client.

What to do next

4 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

You need to add code to the client source file to enable the client to access naming
contexts as described in “Accessing naming contexts” on page 30.

Client environment initialization of the C++ ORB: One of the first tasks for a
CORBA C++ application after startup is to initialize the Object Request Broker
(ORB) by calling the CORBA::ORB_init() method. If necessary, this method creates a
new instance of the ORB. For example, the following code fragment initializes the
ORB:
CORBA::ORB_ptr op;
op = ::CORBA::ORB_init(argc, argv, "DSOM");

where argc and argv refer to the properties specified in the command used to start
the server.

During the initialization of the ORB, the resolution of initial references can be
configured. Refer to the CORBA::ORB_init method for more information on how the
optional arguments, ORBInitRef and ORBDefaultInitRef are used to configure how
the ORB resolves initial references. This affects how the ORB processes the
CORBA::resolve_initial_references method.

The following is a command line invocation example:
myApp -ORBInitRef NameServer=file://c:/temp/namesvr.ref -ORBDefaultInitRef corbaloc::myHost.myOrg

// Where myApp is a C++ program that passes
// the command line args to ORB_init.
//
#include "corba.h"
...
int main(int argc, char *argv[])
{

//
// Initialize the ORB and obtain a pointer to it
//
CORBA::ORB_ptr p = CORBA::ORB_init(argc, argv, "DSOM");
...
CORBA::Object_ptr obj = p->resolve_initial_references ("NameService");
...

In the previous example, the resolve_initial_references invocation first searches for
a Naming Service object reference in the file, c:/temp/namesvr.ref. If unsuccessful,
the host myHost.myOrg is contacted to find the Naming Service.

Getting a pointer to the root naming context
Before a CORBA server can create and make available a servant object, it must
have a logical name space for the servant object to exist in. This logical name space
is a naming context for servant objects. The server can create a new naming
context within any location within the root naming context. For example, a server
called servantServer might create a new naming context called servantContext into
which the server binds the servant object. Optionally, this context might be located
within a domain context, which in turn is located within the root naming context.
(You can create a servant context with only the root naming context as its parent or
with one or more intermediary parent contexts.)

Use this task to get a pointer to the root naming context. This task adds a ″get
name context″ method (for example, get_name_context) to the source file for a
CORBA client. This method is used to access the naming service and return a
pointer to the root naming context. The method performs the following actions
after the client environment has been initialized:
1. Receives a pointer to the naming service
2. Receives a pointer to the root naming context

Implementing CORBA applications 5

Steps for this task

1. Add the get_name_context() method as shown in the following code extract:
// This method accesses the Name Service and then gets
// the root naming context, which it returns;
// the WSLogger context.

::CosNaming::NamingContext_ptr get_naming_context()
{

::CosNaming::NamingContext_ptr rootNameContext = NULL;
::CORBA::Object_ptr objPtr;

// Get access to the Naming Service.
try
{

objPtr = op->resolve_initial_references("NameService");
}

// catch exceptions ...

if (objPtr == NULL)
{

cerr << "ERROR: resolve_initial_references returned NULL" << endl;
release_resources(op);
return(NULL);

}
else

cout << "resolve_initial_references returned = " << objPtr << endl;

// Get the root naming context.
rootNameContext = ::CosNaming::NamingContext::_narrow(objPtr);
if (::CORBA::is_nil(rootNameContext))
{

cerr << "ERROR: rootNameContext narrowed to nil" << endl;
release_resources(op);
return(NULL);

}
else

cout << "rootNameContext = " << rootNameContext << endl;
// Release the temporary pointer.
::CORBA::release(objPtr);

return(rootNameContext);
}

where

rootNameContext
is the pointer to the root naming context.

This code receives a pointer to the naming service, narrows the pointer object
to the appropriate object type, assigns it to the new pointer object called
rootNameContext, performs some checks, and releases the original pointer
object, objPtr.

2. Add a statement to the main method to call the new method as shown in bold
in the following code extract:
...

if ((rc = perform_initialization(argc, argv)) != 0)
exit(rc);

// Get the root naming context.
rootNameContext = get_naming_context();
if (::CORBA::is_nil(rootNameContext))

exit(-1);

6 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

Results

This step returns a pointer object, rootNameContext, to the root naming context.

What to do next

Add code to the client source file to access the servant object created by the server
as described in “Accessing the servant object”.

Accessing the servant object
Use this task to add code to the source file for a CORBA client and get access to
the servant object that is created by the CORBA server and bound into the name
space. The client code gets access to the servant object by creating a
::CosNaming::Name that specifies the full name of the object from the root naming
context.

For the example code in this task, the CORBA server created the servant object
called servantObject1 in a new context, servantContext. servantContext is bound to
the domain naming context, which is bound to the root naming context. Therefore,
the full name for the servant object, from the root naming context, is
domain.servantContext.servantObject1.

Steps for this task

1. Edit the client source file client.cpp
2. In this client source file, add code to the main() function to get a new

::CosNaming::Name for the servant object and to look up the servant object
with that name in the name space. For an example, see the following code:
// Get the root naming context.

rootNameContext = get_naming_context();
if (::CORBA::is_nil(rootNameContext))

exit(-1);

// Find the servant_Impl created by the server. Look up the
// object using the complex name of domain.servantContext.servantObject1,
// which is its full name from the root naming context, as created
// by the server.
//Note: The actual complex name may vary.
//Run the command WAS_HOME/bin/dumpNameSpace to identify
//the exact name of your servant object.
try
{

// Create a new ::CosNaming::Name to pass to resolve().
// Construct it as the full three-part complex name.
::CosNaming::Name servantName;
servantName.length(3);
servantName[0].id = ::CORBA::string_dup("domain");
servantName[0].kind = ::CORBA::string_dup("");
servantName[1].id = ::CORBA::string_dup("servantContext");
servantName[1].kind = ::CORBA::string_dup("");
servantName[2].id = ::CORBA::string_dup("servantObject1");
servantName[2].kind = ::CORBA::string_dup("");
::CORBA::Object_ptr objPtr = rootNameContext->resolve(servantName);

}

// catch exceptions ...

Results

This task adds code that enables a CORBA client to find the specified servant
object (created by a CORBA server) in the system name space.

Implementing CORBA applications 7

What to do next

Add code to the client source file to enable the client to call methods on the
servant object as described in “Invoking methods on the servant object”. For
related information on accessing the servant object, see “Servant object access”.

Servant object access: To be able to locate a servant object somewhere in a
CORBA environment, a client must know the object reference that uniquely
identifies the target object.

When an object is created, it is assigned an object reference, which can be bound
with a name in the naming service. Any client (or any other object) with access to
the naming service can use the associated name to retrieve the object reference.

Object references are bound into the naming service relative to the root naming
context. After a client has located the root naming context, it can use the standard
CosNaming interface to navigate the name space and retrieve the object reference
associated with any name as shown in the following example:
// Create a new ::CosNaming::Name to pass to resolve().
// Construct it as the full three-part complex name.
::CosNaming::Name loggerName;
loggerName.length(3);
loggerName[0].id = ::CORBA::string_dup("persistent");
loggerName[0].kind = ::CORBA::string_dup("");
loggerName[1].id = ::CORBA::string_dup("WSLoggerContext");
loggerName[1].kind = ::CORBA::string_dup("");
loggerName[2].id = ::CORBA::string_dup("WSLoggerObject1");
loggerName[2].kind = ::CORBA::string_dup("");
::CORBA::Object_ptr objPtr = rootNameContext->resolve(loggerName);
liptr = WSLogger::_narrow(objPtr);

If the client bootstrapping operation does not establish contact with a remote
naming service, you can use the alternative strategies to retrieve the IOR of a
remote object, as outlined in the topic, “Strategies for retrieving the IOR of a
remote object” on page 15.

Invoking methods on the servant object
After a CORBA client has got access to a servant object, the client can call methods
on the servant object. The methods depend entirely on the business functionality of
the client, but have the following general syntax:
servant_pointer->method_name(arguments);

For example, the following code calls the getFileName() method on the object
identified by the liptr object reference and gets the value of the FileName attribute:
...
liptr = servant::_narrow(objPtr);
...
cout << "Logging to file " << liptr->getFileName() << endl;
liptr->setFileName(argv[1]);
cout << "Now logging to file " << liptr->getFileName() << endl;

What to do next

This code forms the main business functionality of the client. When you have
added the method calls needed to your client code, the next stage is to add code to
shut down the client and release the resources that it uses as described in
“Shutting down the client and releasing resources used” on page 9.

8 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

Shutting down the client and releasing resources used
Use this task to create code for a CORBA client, shut down the client, and release
the resources that it used.

To shut down a CORBA client, add the following code to the main() function in
the client.cpp client source file:
int main (int argc, char *argv[])
{

CORBA::ORB_ptr orbPtr = CORBA::ORB_init (argc, argv, "DSOM");

.

.

.

// Release the ORB object.
CORBA::release (orbPtr);

return 0;
}

Results

This task adds code that shuts down a CORBA client and releases the resources
that it used.

Building a CORBA C++ client
This topic provides an overview of how to build the code for a CORBA C++ client.
The actual steps that you need to complete depend on your development
environment.

For example, if you are using the Microsoft® Visual C++ 6.0 compiler on Microsoft
Windows NT® to build a CORBA C++ client, you can use the following
commands:

Steps for this task

1. At a command line, type the following command:
cl /c /GX /DEXCL_IRTC /DSOMCBNOLOCALINCLUDES -IWAS_HOME\include client.cpp

where:

WAS_HOME
is the directory into which IBM WebSphere Application Server is
installed.

client is the name of the C++ client main code file.
2. At a command line, type the following command:

cl /c /GX /DEXCL_IRTC /DSOMCBNOLOCALINCLUDES -IWAS_HOME\include servant_C.cpp

where

servant is the name of the server implementation object (servant) that the client
accesses.

3. At a command line, type the following command:
link client.obj servant_C.obj /OUT:client.exe wasororm.lib wasosa1m.lib

What to do next

Implementing CORBA applications 9

For more examples of building CORBA C++ client code (on several platforms) for
IBM WebSphere Application Server, see the Samples Gallery, which is installed
with IBM WebSphere Application Server.

Managing the EJB home
To access an enterprise bean, a CORBA C++ client needs to locate the EJB home.
The client obtains the root naming context from the naming service and uses it to
locate the EJB home. Obtaining the naming context can be done explicitly by the
client or implicitly by the Object Request Broker’s (ORB’s) string_to_object method.

Steps for this task

1. Identify the EJB home JNDI name for the enterprise bean’s full path.
In WebSphere, the JNDI name for a bean is mapped to the home class for that
bean. The JNDI name is specified in the ibm-ejb-jar-bnd.xmi file generated for
the deployed bean’s JAR file. If you run the command
WAS_HOME/bin/dumpNameSpace, you can see the mapping of the JNDI
name to the corresponding Java class. For an enterprise bean, the JNDI name
(top)/ejbhome is mapped to the home class. The enterprise bean is located in
(top), which is the IBM WebSphere Application Server equivalent to the server’s
root.
If the EJB home is located on a known server, such as server1, the three
components of (top) are ″cell″, ″server″, and ″server1″. In this case, (top) can be
specified as cell/servers/server1.
For example, if the EJB home for the valuetype sample class
com.ibm.websphere.vtlib.sample.Person is on server1, the full EJB home JNDI
name is cell/servers/server1/com/ibm/websphere/vtlib/sample/Person.
What happens when you perform this step.

2. Map the JNDI name to an object using one of two methods

Map the EJB home JNDI name using a URL and string_to_object
For the URL method of mapping the name, form a URL representing
the EJB home JNDI name and pass it on a call to the ORB’s
string_to_object method. The URL should be a corbaname that contains
the string-modified name of the EJB home. For the valuetype sample,
the person bean might be located as follows when the person home is
deployed on server1:
char * home_url = "corbaname::localhost/NameService#cell/servers
/server1/com/ibm/websphere/vtlib/sample/Person";
::CORBA::Object_var homeObj = NULL;
homeObj = orb->string_to_object(home_url);
if (CORBA::is_nil(homeObj))

{ // handle error }

Note: The first line of the previous example wrapped onto a seond line
due to the width of the page.

Map the EJB home JNDI name by invoking resolve on the naming context
For the resolve method of mapping the name, create a
CosNaming::Name object and initialize it to identify the person home.
Obtain the naming context and call its resolve method. The following
code creates a CosNaming Name for the bean’s full path:
// Obtain the naming context. (where op is a valid ORB pointer)
//
CORBA::Object * objPtr = op->resolve_initial_references("NameService");
rootNameContext = ::CosNaming::NamingContext::_narrow(objPtr);
if (CORBA::is_nil(rootNameContext))
{ // handle error }

// Create a CosNaming Name for the bean’s full path
//

10 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

::CosNaming::Name *ejbName = new ::CosNaming::Name;
ejbName->length(9);
(*ejbName)[0].id = ::CORBA::string_dup("cell");
(*ejbName)[0].kind = ::CORBA::string_dup("");
(*ejbName)[1].id = ::CORBA::string_dup("servers");
(*ejbName)[1].kind = ::CORBA::string_dup("");
(*ejbName)[2].id = ::CORBA::string_dup("server1");
(*ejbName)[2].kind = ::CORBA::string_dup("");
(*ejbName)[3].id = ::CORBA::string_dup("com");
(*ejbName)[3].kind = ::CORBA::string_dup("");
(*ejbName)[4].id = ::CORBA::string_dup("ibm");
(*ejbName)[4].kind = ::CORBA::string_dup("");
(*ejbName)[5].id = ::CORBA::string_dup("websphere");
(*ejbName)[5].kind = ::CORBA::string_dup("");
(*ejbName)[6].id = ::CORBA::string_dup("vtlib");
(*ejbName)[6].kind = ::CORBA::string_dup("");
(*ejbName)[7].id = ::CORBA::string_dup("sample");
(*ejbName)[7].kind = ::CORBA::string_dup("");
(*ejbName)[8].id = ::CORBA::string_dup("Person");
(*ejbName)[8].kind = ::CORBA::string_dup("");

// Invoke resolve
//
::CORBA::Object_var homeObj = NULL;
homeObj = rootNameContext->resolve(ejbName);
if (CORBA::is_nil(homeObj))
{ // handle error }

3. Narrow to a specific EJB Home
Finally, narrow the object returned from either resolve or string_to_object. Use
the PersonHome’s _narrow method:
::com::ibm::websphere::vtlib::sample::PersonHome_ptr personHome = NULL;
personHome = ::com::ibm::websphere::vtlib::sample::PersonHome::_narrow(homeObj);
if (CORBA::is_nil(personHome))

{ // handle error }

Usage scenario

For an example of how to locate an EJB home, see the samples article ″Tutorial:
Creating a user-defined C++ client that uses an EJB″ in the Samples Gallery, which
is installed with IBM WebSphere Application Server.

What to do next

The object pointer to the EJB home can be used to create an enterprise bean object.
For example:
ejbPtr = ejbHomePtr->create();

When the EJB object is created successfully, any of its methods can be called. For
example:
msg = ejbPtr->message();

Client bootstrapping operation
The naming service can be used to manage a directory of objects and to map the
name of each object to its associated object reference. To locate a server object
somewhere in a CORBA environment, a client can locate the naming service and
then use a name to retrieve an associated object reference from the naming service.

The location of the naming server that provides the naming service and the
number of the port that it uses to communicate with clients and servers are
specified by the WebSphere run-time properties. The values that you specify for
the run-time properties must match the equivalent settings used to configure the
IBM WebSphere Application Server.

Object references are bound into the naming service relative to the root naming
context.

Implementing CORBA applications 11

When a client is started, it uses a ″bootstrapping″ operation to locate the naming
service and obtain the root naming context, as follows:
1. The client calls the CORBA::ORB::resolve_initial_references(″NameService″)

method, which returns a CORBA::Object.
2. Before the client can use the returned reference as a naming context, the client

must narrow the object to the desired class.

The following is an example of this ″bootstrapping″ procedure:
objPtr = op->resolve_initial_references("NameService");
rootNameContext = ::CosNaming::NamingContext::_narrow(objPtr);

Bootstrapping of the Naming Server is one example of using ″Initial References″.

If the client bootstrapping operation does not establish contact with a remote
naming service, you can use alternative strategies to retrieve the Interoperable
Object Reference (IOR) of the naming service, as outlined in the topic “Initial
references”.

Initial references
An initial reference is a well-known object reference associated with an identifier.
CORBA provides mechanisms to configure, register, list, and get (or resolve) initial
references. Obtaining an initial reference of the Naming Service also is called
″bootstrapping″.

A reference can refer to a local object or to a remote object.

Initial references can be obtained from the Object Request Broker (ORB) by calling
ORB::resolve_initial_references(). Initial object references returned by this call are of
the CORBA::Object class and generally must be narrowed to an appropriate
interface to be useful.

For example:
CORBA::Object * objPtr;
objPtr = op->resolve_initial_references("NameService");
CosNaming::NamingContext * rootNameContext;
rootNameContext = ::CosNaming::NamingContext::_narrow(objPtr);

A list of the initial references that are available from the ORB can be obtained by
calling ORB::list_initial_references().

There are several ways an identifier and an initial reference are known to the ORB:
v CORBA specifies some well-known initial references that represent CORBA

services, such as the Naming Service and the Interface Repository. Their
identifiers are ″NameService″ and ″InterfaceRepository″. These are defined in the
ORB, by default.

v An application can register the reference of a service with the ORB by calling
ORB::register_initial_reference().

v An application can define objects that inherit from the current interface.
However, doing so causes a local-only singleton object to be registered with the
ORB.

Resolution of initial references occurs when ORB::resolve_initial_references() is
invoked. The ORB follows an ordered search for the reference:
v The ORB checks if a reference for the identifier is defined using the ORBInitRef

argument of CORBA::ORB_init().

12 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

v If the ORBDefaultInitRef argument was specified when invoking
CORBA::ORB_init(), the ORB checks if the reference can be resolved by
appending the identifier name to the ORBDefaultInitRef argument.
Note: This argument might be a corbaloc URL string that specifies multiple host
port pairs. Resolution is attempted with each host port pair in order of their
specification. This operation follows CORBA’s Interoperable Naming
Specification (INS).

v The ORB checks if a reference for the identifier is registerd by the application
using the CORBA::register_initial_reference() method.

v The ORB checks if the identifier is one of the predefined or current references.

The C++ ORB supports CORBA’s Interoperable Naming Specification (INS) and a
different method that is an IBM extension. For backward compatibility, the ORB
tries the latter if the INS mode does not succeed.

If an initial reference cannot be obtained using the framework described
previously, there are alternatives for obtaining a reference. For more information,
see the topic, “Strategies for retrieving the IOR of a remote object” on page 15.

Object URLs
Object URLs are intended to provide a human-readable string form of an object
reference. With a syntax similar to internet URLs, they offer an easier way to
specify an object than the string-modified interoperable object reference (IOR).
Because URLs are ″universal″, an IOR sometimes might be considered an object
URL. However, for the purposes of this discussion, an IOR is not an object URL.
IORs are not easy for humans to read.

Object URLs are defined primarily in the context of enabling bootstrapping of the
Naming Service, but can be used to reference any initial service. They also can be
used to obtain an object by invoking the CORBA::string_to_object method.

The syntax of an object URL supports three basic formats: corbaloc, corbaname,
and file. These formats are called URL schemes. The corbaloc URL scheme uses
either IIOP or resolve_initial_references style addressing. The corbaname URL
scheme extends the corbaloc format to specify an entry within a Naming Service.
The file URL scheme identifies a file containing another object reference. For more
detail on each scheme, see the following topics:
v corbaloc
v corbaname
v file

Unlike IOR object references, converting an object URL usually requires the client
ORB to contact the server where the implementation (servant) object resides. The
ORB must retrieve additional information from the server because object URLs are
much simpler than IORs and contain insufficient information to fully describe the
object.

Corbaloc URL scheme: The corbaloc URL scheme, one of the three CORBA object
URL schemes, uses either IIOP or resolve_initial_references (RIR) style addressing.

The IIOP style allows specification of host and port information, which identifies a
server or agent that can be resolved to provide the object. Alternatively, corbaloc
URLs can indicate that an object can be contacted by
CORBA::resolve_initial_references.

Implementing CORBA applications 13

Examples of corbaloc URL scheme strings:
corbaloc:iiop:1.2@xyz_host.net/NameService
corbaloc:rir:/NameService
corbaloc::ABC_host.com/ProductZ/TradingService
corbaloc::primary.com:110,:1.2@backup.com:120/Dev/NameService

A corbaloc URL scheme begins with the characters ″corbaloc:″. This is followed by
″rir:″, which indicates the resolve_initial_references form or one or more IIOP
addresses. Both RIR and IIOP forms are followed by a forward slash delimiter and
the object key.

An IIOP address begins with either ″iiop:″ or just ″:″. Optionally, the GIOP version
can be specified and delimited by a trailing ″@″. Next, a host identifier is specified,
either as a DNS-style host name or as a dotted decimal address. Optionally, the
host identifier is followed by a delimiting ″:″ and a port number. If more than one
IIOP address is specified, a ″,″ delimiter separates each one.

After the last iiop: or rir: address, a forward slash, ″/″, delimits the object key,
which is the final part of the URL. The object key can contain embedded slashes.

If the GIOP version is not specified, it defaults to 1.0. This determines the GIOP
level of messages that are used when contacting the host and port. If the port
number is not specified, it defaults to 2809.

In the corbaloc URL scheme example,
corbaloc::primary.com:110,:1.2@backup.com:120/Dev/NameService, two IIOP
addresses are specified. An attempt to convert this to an object causes the Object
Request Broker (ORB) to contact port 110 at host ″primary.com″ and request an
object identified by the object key, ″Dev/NameService″. If this fails, the ORB
contacts port 120 at the host ″backup.com″, using GIOP Version 1.2 and the object
key ″Dev/NameService″.

When a resolve_initial_reference form of a corbaloc URL scheme is converted to an
object, the object key portion of the URL is passed to
CORBA::resolve_initial_references and the result is returned.

Only the IIOP form of a corbaloc URL scheme can be used as a parameter with the
CORBA::ORB_init method to configure Initial References.

Corbaname URL scheme: The corbaname URL scheme, one of three CORBA
object URL schemes, extends the corbaloc form to specify an entry within a
Naming Service.

The corbaname URL scheme is similiar to the corbaloc scheme, but adds the ability
to specify an entry within the Naming Service. Converting a corbaname URL
scheme to an object is a two step process. The first step obtains a reference to the
naming service. The second step requests an entry within that naming service.

The additional specification of the entry within the naming service is called the key
string. Syntactically, the key string follows the object key and is preceeded by a ″#″
delimiter. After a naming service object is obtained, the key string is passed to the
naming service using the CosNaming::resolve_str method.

If the object key is not specified in a corbaname URL scheme, it defaults to
″NameService″.

14 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

Note: The portion of corbaname URL scheme, excluding the key string, must
identify an object that supports CosNaming.

Example of corbaname URL strings:
corbaname::primary_name.com:402/myNamingService#productX/subcategoryY/specificZ
corbaname:iiop:Linux7.com:114#productX/subcategoryY/widgetW
corbaname:rir:#productX/subcategoryY/specificZ

Using CORBA::string_to_object to convert the first example URL causes the Object
Request Broker (ORB) to contact the primary_name.com host on port 402 and
obtain an object associated with the object key ″myNameService″. The ORB sends a
CosNaming::resolve_str method to this object with the argument
″productX/subcategoryY/specificZ″. The result of the CosNaming::resolve_str
method is returned from string_to_object().

In the second example, the object key is not specified. When converting this, the
ORB contacts the Linux7.com host on port 114 and asks for an object associated
with the default key, ″NameService″. The key string,
″productX/subcategoryY/widgetW″, is passed using a CosNaming::resolve_str()
method to this naming context object.

The third example shows the use of the resolve_initial_references form of
addressing. When converting this, the ORB performs the equivalent of calling
CORBA::resolve_initial_references(″productX/subcategoryY/specificZ″) and returns
the result.

File URL Scheme: The file URL scheme, one of three CORBA object URL
schemes, identifies a file containing another object reference.

A file URL scheme begins with the characters, ″file://″. The rest of the URL is a
path name that identifies a file. When converting this, the Object Request Broker
opens the file and reads from it another object reference, which can be either an
object URL or an Interoperable Object Reference (IOR).

Example of corbaname URL scheme strings:
file://c:\temp\a_url.txt

Converting the previous file URL scheme to an object causes the ORB to read the
object reference (URL or IOR) from the file and, in turn, convert it to an object.

Strategies for retrieving the IOR of a remote object
If the client ″bootstrapping″ operation does not establish contact with a remote
naming service, you can use the following alternative strategies to retrieve the
Interoperable Object Reference (IOR) of a remote object:
v Have the Object Request Broker (ORB) use a name service URL for the name

service initial reference.
You can obtain the remote ORB’s root name context and store it as a
string-modified IOR in a file. During ORB initialization, CORBA C++ clients and
servers can set the com.ibm.CORBA.localObjrefFile ORB property to the path
name of the file that contains the string-modified IOR of a root naming context.
The root naming context is then returned by calling
ORB::resolve_initial_references(″NameService″).

v Pass the naming service object reference directly to a client.
You can write an application to store the string-modified IOR of a remote ORB’s
root naming context into a file. You then can make the file available (for

Implementing CORBA applications 15

example, by copying) to the client environment. The client then can read the
string-modified IOR from the supplied file and use the ORB::string_to_object
interface to resolve the root naming context. Use this approach only once during
initialization, even if the client is to access many different server objects
registered with the same naming service. In addition, the IOR for the name
server is typically fairly static, so it is relatively simple to manage in a
distributed environment.

v Use string_to_object and a file reference.
Similar to the preceding option, put a string-modified IOR for a remote object
into a file, have the client read that IOR, and use the ORB::string_to_object
interface to resolve the object reference. However, it does not use a Name
Service at all.

v Name space federation.
The client can look up an entry in the name server of one ORB and then rebind
the reference in the name server of a different ORB. For example, you can write
a utility to look-up an EJB’s home in the WebSphere name service, string-modify
the object reference and write it to a file. You then can use another utility to read
this file, remodify the object reference, and bind it into another ORB’s naming
service.

v Use a co-existent naming service.
A client can make use of another co-existent ORB that supports ″bootstrapping″
with other ORBs from the same vendor.

dumpior command: The dumpior command is a utility which can be used to
display a stringified Interoperable Object Reference (IOR) in a human-readable
fashion.

Syntax
dumpior filename

where filename is the name of the file which contains the stringified IOR.

Examples

The following example demonstrates the correct syntax:
dumpior file1.ref

CORBA client exception handling
The preferred coding practice for handling errors in C++ and Java is by using
exceptions, which is supported by using the standard try, catch, and throw logic of
exception handling. Handling exceptions are a critical part of the client
programming model. The exceptions that are thrown must be understood and
handled appropriately by application developers.

In some cases, a server implementation object can encounter an error for which it
might need to throw an exception to the client to give the client the opportunity to
recover from the error.

This topic provides the following information about handling exceptions:
v CORBA support, using appropriate exceptions
v CORBA support, catching exceptions

CORBA support, using appropriate exceptions

16 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

CORBA exceptions are used to communicate between server implementation
objects and client applications. You must follow specific rules regarding which
CORBA exceptions to use. The following abstract CORBA exception classes are
defined:

CORBA::Exception
This is the abstract class that is the base of all of the CORBA exceptions.
Because this class is an abstract, it is never thrown. However, it can be
used in catch blocks to process all of the CORBA exceptions in one block.

CORBA::UserException
This is the abstract class for all of the CORBA user exceptions and is a
subclass of CORBA::Exception. This class must be used as the base class of
all user-defined exception classes. The contents of these classes have no
special format. Methods that throw these classes must declare their usage
in IDL using the raises clause.

CORBA::SystemException
This is the abstract class for all of the CORBA standard exceptions and is a
subclass of CORBA::Exception. These exceptions can be thrown by any
method regardless of the interface specification. Standard exceptions cannot
be listed in raises expressions, therefore whether an interface throws a
system exception is unknown. This means, be prepared to handle standard
exceptions on all of the method calls. Each standard exception includes a
minor code to provide more detailed information.

Any method can throw a standard exception, even if there are no exceptions
declared in the raises clause of that method. Thus a method can throw an
exception at any time.

Note: CORBA standard exceptions are a predefined list of exceptions that can be
thrown from any method. CORBA has defined the class that provides this support
as CORBA::System Exception. For more information about CORBA exceptions, see
The Common Object Request Broker: Architecture and Specification.

CORBA support, catching exceptions

Client programs are required to handle exceptions because the default behavior for
uncaught exceptions is to end the process. (If the client process ends unexpectedly,
suspect an uncaught exception.)

A client program can handle exceptions within the catch clause of a try or catch
block that encompasses remote method invocations or calls to ORB services.
Typically, exception instances are actually instances of either the SystemException
or UserException classes.

When deciding how or what exceptions to catch in a client application, consider
the following general rules for exception handling:
v Perform specific error recovery as necessary. You can perform specific error

recovery by proper structuring of catch clauses.
v Check for the most specific exceptions first and most general exceptions last.
v Make use of the information that is available in the exception. All CORBA

exceptions support the id() method that returns the exception identifier. System
exceptions also provide minor() and completed() methods that return the minor
code and completion status respectively.

Implementing CORBA applications 17

Specific standard exceptions cannot be caught individually. If you need to handle
individual standard exceptions, you can do so within a CORBA::SystemException
catch block and use the id() method.

Consider the following simple client example:
try
{

// Some real code goes here
foo.boo();

}
// Catch and process specific User exceptions
...
// Catch any other User exceptions defined for the method in the
// `raises’ clause
catch (CORBA::UserException &ue)
{

// Process any other User exceptions. Use the id() method to
// record or display useful information
cout << "Caught a User Exception: " << ue.id() << endl;

}
// Catch any System exceptions
catch (CORBA::SystemException &se)
{

// Process any System exceptions. Use the id() and minor()
// methods to record or display useful information
cout << "Caught a System Exception: " << ue.id() << ": " <<

ue.minor() << endl;
}
catch (...)
{

// Process any other exceptions. This would catch any other C++
// exceptions and should probably never occur
cout << "Caught an unknown Exception" << endl;

}

Coding tips for CORBA memory management
The rule for proper CORBA memory management is that the caller owns all of the
storage.

Memory management in Java is somewhat automatic.

The general model for CORBA C++ memory management on the client is to use
_var objects. This means that when an _ptr is returned, it must be placed into an
_var by the client. The _var assumes responsibility for the storage pointed to by
the _ptr that is placed into the _var. The _var is a class and its destructor runs
when the _var goes out of scope.

The other option for CORBA C++ clients is to use the duplicate() and release()
methods. The duplicate() method is available for making a copy of a client stub
object, while the release() method is used to free the local memory used by a
pointer.

For more reference information about CORBA C++ memory management, see the
topic, “Storage management and _var types” on page 129.

Managing the storage of object references

Managing the storage of object references is one of the areas where proper memory
management is required. You must use use _var variables or the duplicate() and
release() methods as stated previously.

18 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

There are also special considerations when passing object references as parameters.
The caller is always responsible for allocating storage for object references. The
caller also is responsible for releasing of all inout and returned object parameters.

For inout parameters, the caller provides an initial value. If the receiver wants to
reassign the inout parameter, it must call the release() operation on the initial input
value. To continue to use an object reference passed as an inout, the caller first
must duplicate the reference.

CORBA client to WebSphere EJB server
CORBA clients can use the CORBA client programming model to access enterprise
beans hosted by a WebSphere EJB server, as shown in the following figure:

The EJB server provides the server implementation objects (enterprise beans) that
client applications need to access and implement the services that support those
objects. The EJB class file is used to generate the Interface Definition Language
(IDL) for the class and its home. Serializable objects used in the EJB interface are
expressed in the IDL as CORBA valuetypes. Implementations for CORBA
valuetypes must be provided on the client, so it is important to keep this simple.

In this scenario, when the client wants to call a method on a server object (an
enterprise bean), the following sequence of events occur:
1. When the client environment is started, the client ORB is initialized and the

ORB ″bootstrap″ process accesses the naming service (with CORBA CosNaming
bindings).

2. When a client application needs to access an enterprise bean, the client
environment uses the naming service to find a location for the bean.

3. The home locates or creates the enterprise bean and passes the interoperable
object reference (IOR) of the bean back to the client.

4. The client’s ORB creates a proxy (stub) object for the bean and returns it to the
client application.

Figure 1. Scenario: CORBA client to WebSphere EJB server

Implementing CORBA applications 19

5. The client invokes methods on the proxy object to communicate with the
remote bean as though it is in the local process.

Developing a CORBA C++ server
Use this task to develop a CORBA server to service requests for business functions
used in the implementation of client objects. The instructions and code extracts
provided in this task are based on the development of the WSLoggerServer sample
and are accessible from the Samples Gallery. The Samples Gallery is installed with
IBM WebSphere Application Server.

Steps for this task

1. Create and edit an IDL file, servant.idl, to specify the public interface to the
servant object class; where servant is the name of the server implementation
class.
For more information about creating and editing an IDL file for the servant
object class, see Defining the interface for a CORBA servant class.
This step results in a fully specified servant.idl file.

2. Compile the servant IDL file, servant.idl, to produce the usage binding files
needed to implement and use the servant object within a particular
programming language.
For more information about compiling an IDL file, see “Compiling a CORBA
server implementation class IDL (using idlc)” on page 23.
This step results in the set of usage binding files required for the servant.idl file.

3. Add declarations for class variables, constructors, and destructors to the servant
implementation header (servant.ih).
For more information about adding declarations to an implementation header,
see “Adding declarations to a CORBA servant class definition (servant.ih)” on
page 23.
This step results in the servant implementation header file, servant.idl, that
contains all the declarations for class variables, constructors, and destructors
needed by the implementation.

4. Complete the servant implementation servant_I.cpp, to add the code that
implements the servant business logic.
For more information about completing the servant implementation, see
“Completing the CORBA servant implementation (servant_I.cpp)” on page 26.
This step results in the server implementation file, servant_I.cpp, that contains
the code needed by the implementation to support the business logic.

5. Create the server main source file, server.cpp, to write the code for the methods
that the server implements. (For example, to perform initialization tasks and
create servant objects).
For more information about completing the servant implementation, see
“Creating the CORBA server main code (server.cpp)” on page 27.
This step results in the server main source file, servant.cpp, that contains the
main() function and associated code needed to implement the server.

6. Build the server code as described in Building a CORBA C++ server.
7. Store a logical definition for the server in the system implementation repository

(using regimpl).
For more information about storing a logical definition in the implementation
repository, see “Storing a logical definition for a CORBA server in the system
implementation repository” on page 37.

20 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

This step results in the implementation repository containing an entry for the
server and the server object implementation class that it supports.

Defining the interface for a CORBA servant class
Use this task to define the public interface of a CORBA servant class. It provides
the business logic to be used by clients. This defines the information that a client
must know to call and use servant objects of that class and forms one stage of the
tasks to develop a CORBA server or client.

Steps for this task

1. Create an IDL file, servant.idl, where servant is the name of the server
implementation class.
This step results in a fully specified servant.idl file.

2. Edit the servant.idl file to add an interface definition.
The interface definition declares the interface name (and optionally its base
interface names) and the methods (operations), and any constants, type
definitions, and exception structures that the interface exports.
The following information is an overview of the format of an interface
declaration. It provides links to the reference topics that describe parts of the
IDL declaration and IDL syntax. For reference information about IDL interface
declarations and the component declarations that they can contain, see “IDL
interface declarations” on page 151.
An interface declaration has the following syntax:
interface interface-name
[: base-interface1, base-interface2, ...]
{
[constant declarations]
[type declarations]
[exception declarations]
[attribute declarations]
[operation declarations]

};

interface-name
The name of the public interface for the servant object. This should
match the servant class name.

[: base-interface1, base-interface2, ...]
The base interface names for one or more parent interfaces from which
this interface, interface-name, is derived.

Specify base interface names only if this interface is derived from one
or more parent interfaces. Each base interface is specified in the form,
interface_name, and can be named only once in the interface statement
header. If you specify a base interface name, you also must add an
include statement for the base interface IDL file to the top of the
servant.idl file.

[constant declarations] and [type declarations]
An interface declaration can include constant declarations and type
declarations, as in C and C++, with some restrictions and extensions.
For more information about these declaration types, see “IDL type
declarations” on page 152.

[exception declarations]
An interface declaration can include exception declarations that define
data structures to be returned when an exception occurs during the
execution of an operation. Each exception declaration specifies a name

Implementing CORBA applications 21

and, optionally, a struct-like data structure for holding error
information. For more information about these declaration types, see
“IDL exception declarations” on page 155.

[attribute declarations]
Declaring an attribute as part of an interface is equivalent to declaring
one or two accessor operations: one to retrieve the value of the attribute
(a get or read operation) and, unless the attribute specifies read only,
one to set the value of the attribute (a set or write operation). For more
information about these declaration types, see “IDL attribute
declarations” on page 156.

[operation declarations]
Operation declarations define the interface of each operation introduced
by the interface. An IDL operation typically is implemented by a
method in the implementation programming language. Hence, the
terms operation and method often are used interchangeably. For more
information about these declaration types, see “IDL operation
declarations” on page 157.

The order in which these declarations are specified is usually optional and
declarations of different kinds can be intermixed. Although all of the
declarations listed previously are optional, in some cases using one declaration
can mandate another. For example, if an operation raises an exception, the
exception structure must be defined beforehand. In general, types, constants,
and exceptions, as well as interface declarations, must be defined before they
are referenced, as in C or C++.

Results

This task results in a fully specified IDL file, servant.idl, that contains a declaration
for the public interface to a servant class, servant.

For example, for a servant class called WSLogger, the IDL file, WSLogger.idl, was
created and edited to add the following interface definition:
interface WSLogger
{

void setFileName(in string newFileName);
string getFileName();
void setMethodName(in string newMethodName);
string getMethodName();
short openLogFile();
short closeLogFile();
short writeLogMessage(in string newMessage, in short newSeverity);
enum mdyFormat { DMY_DATE_FORMAT,

MDY_DATE_FORMAT };
void setDateFormat(in unsigned short newDateFormat);
unsigned short getDateFormat();

};

What to do next

Compile the servant.idl to create the usage bindings and other files needed to
complete the implementation as described in “Compiling a CORBA server
implementation class IDL (using idlc)” on page 23.

22 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

Compiling a CORBA server implementation class IDL (using
idlc)

Use this task to compile the IDL file, servant.idl, that defines the public interface for
a CORBA server implementation class. You also can use this task to compile the
IDL file (also referred to in this task as servant.idl) for an enterprise bean.

Note: If your servant.idl file references other IDL files, ensure that all those other
IDL files can be accessed by the idlc program.

Steps for this task

1. At a command line, change to the directory that contains the IDL file,
servant.idl, where servant is the name of the server implementation class.

2. Type the following command:
idlc -ehh:ih:ic:uc:sc servant.idl

The names of the generated output files are derived from the file name of the
specified IDL file. For example, for the IDL file, servant.idl, the -ehh emitter
option outputs the file servant.hh.

This produces the files servant.hh, servant.ih, servant_I.cpp, servant_C.cpp, and
servant_S.cpp.

Results

This task creates the usage binding files needed to implement and use the servant
object within a particular programming language. For example, for a server object
implemetation class called WSLogger, the IDL file, WSLogger.idl, is created and
edited to add its interface definition. To compile the IDL file, the following
command is used:
idlc -ehh:ih:ic:uc:sc WSLogger.idl

This creates the following files: WSLogger.hh, WSLogger.ih, WSLogger_I.cpp,
WSLogger_C.cpp, and WSLogger_S.cpp.

What to do next

Add declarations for class variables, constructors, and destructors to the servant
class definition, servant.ih, as described in “Adding declarations to a CORBA
servant class definition (servant.ih)”.

This task also can be used to create the client-side bindings files needed to develop
a CORBA client to access an enterprise bean as described in “Developing a CORBA
C++ client” on page 2.

Adding declarations to a CORBA servant class definition
(servant.ih)

Use this task to add declarations for class variables, constructors, and destructors
for a CORBA servant class to its skeleton implementation header file, servant.ih.
This defines any private data members for the implementation code in the
associated servant_I.cpp file.

This task follows the task to compile the servant.idl file, which defines the public
interface for the server implementation class. For more information about

Implementing CORBA applications 23

compiling the IDL file, which creates the servant.ih file, see “Compiling a CORBA
server implementation class IDL (using idlc)” on page 23.

Steps for this task

1. At a command line change to the directory that contains the servant.ih file,
where servant is the name of the servant class.

2. Edit the implementation header file, servant.ih, to add appropriate declarations
for class variables, constructors, and destructors. For more information about
the types of declarations that you can add to an implementation header file, see
“IDL type declarations” on page 152.
For example, the idlc command, idlc -ehh:ih:ic:uc:sc -mdllname=WSLogger
WSLogger.idl, converts the following interface declaration to the class
declaration in the WSLogger.ih file. The WSLogger.ih file was edited to add the
extra declarations that are shown in bold in the following example:
Example: WSLogger interface and declarations added to the skeleton
implementation header

24 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

In
te

rf
ac

e
d

ec
la

ra
ti

on
in

W
S

L
og

ge
r.i

d
l

Im
p

le
m

en
ta

ti
on

h
ea

d
er

in
W

S
L

og
ge

r.i
h

in
te

rf
ac

e
WS

Lo
gg

er
{

vo
id

se
tF

il
eN

am
e(

in
st

ri
ng

ne
wF

il
eN

am
e)

;
st

ri
ng

ge
tF

il
eN

am
e(

);
vo

id
se

tM
et

ho
dN

am
e(

in
st

ri
ng

ne
wM

et
ho

dN
am

e
);

st
ri

ng
ge

tM
et

ho
dN

am
e(

);
sh

or
t

op
en

Lo
gF

il
e(

);
sh

or
t

cl
os

eL
og

Fi
le

()
;

sh
or

t
wr

it
eL

og
Me

ss
ag

e(
in

st
ri

ng
ne

wM
es

sa
ge

,
in

sh
or

t
ne

wS
ev

er
it

y)
;

co
ns

t
sh

or
t

DM
Y_

DA
TE

_F
OR

MA
T

=
1;

co
ns

t
sh

or
t

MD
Y_

DA
TE

_F
OR

MA
T

=
2;

vo
id

se
tD

at
eF

or
ma

t(
in

un
si

gn
ed

sh
or

t
ne

wD
at

eF
or

ma
t)

;
un

si
gn

ed
sh

or
t

ge
tD

at
eF

or
ma

t(
);

};

cl
as

s
WS

Lo
gg

er
_I

mp
l

:
pu

bl
ic

vi
rt

ua
l

::
WS

Lo
gg

er
_S

ke
le

to
n

{
pu

bl
ic

:
::

CO
RB

A:
:V

oi
d

se
tF

il
eN

am
e

(c
on

st
ch

ar
*

ne
wF

il
eN

am
e)

;
ch

ar
*

ge
tF

il
eN

am
e

()
;

::
CO

RB
A:

:V
oi

d
se

tM
et

ho
dN

am
e

(c
on

st
ch

ar
*

ne
wM

et
ho

dN
am

e)
;

ch
ar

*
ge

tM
et

ho
dN

am
e

()
;

::
CO

RB
A:

:S
ho

rt
op

en
Lo

gF
il

e
()

;
::

CO
RB

A:
:S

ho
rt

cl
os

eL
og

Fi
le

()
;

::
CO

RB
A:

:S
ho

rt
wr

it
eL

og
Me

ss
ag

e
(c

on
st

ch
ar

*
ne

wM
es

sa
ge

,
::

CO
RB

A:
:S

ho
rt

ne
wS

ev
er

it
y)

::
CO

RB
A:

:V
oi

d
se

tD
at

eF
or

ma
t

(:
:C

OR
BA

::
US

ho
rt

ne
wD

at
eF

or
ma

t)
;

::
CO

RB
A:

:U
Sh

or
t

ge
tD

at
eF

or
ma

t
()

;
pr

iv
at

e:
ch

ar
*

fi
le

Na
me

;
ch

ar
*

me
th

od
Na

me
;

::
CO

RB
A:

:U
Sh

or
t

da
te

Fo
rm

at
;

of
st

re
am

lo
gF

il
e;

::
CO

RB
A:

:U
Sh

or
t

lo
gF

il
eO

pe
n;

pu
bl

ic
:

WS
Lo

gg
er

_I
mp

l(
ch

ar
*

ne
wF

il
eN

am
e

);
vi

rt
ua

l
~W

SL
og

ge
r_

Im
pl

()
;

};

Implementing CORBA applications 25

What to do next

Add code to the skeleton implementation definition, servant_I.cpp, to implement
the business logic as described in “Completing the CORBA servant implementation
(servant_I.cpp)”.

Completing the CORBA servant implementation (servant_I.cpp)
Use this task to add code for a CORBA server implementation class to its skeleton
implementation file, servant_I.cpp. The code defines the methods that implement
the business logic for the server implementation class, servant.

This task follows the task to add declarations for class variables, constructors, and
destructors to the servant implementation header file, servant.ih. For more
information about adding declarations to an implementation header, see “Adding
declarations to a CORBA servant class definition (servant.ih)” on page 23.

Steps for this task

1. At a command line, change to the directory that contains the servant_I.cpp file,
where servant is the name of the server implementation class.

2. Edit the implementation file, servant_I.cpp, to add appropriate code to
implement the business logic methods.
For example, the idlc command, idlc -ehh:ih:ic:uc:sc -mdllname=WSLogger
WSLogger.idl, converts the following interface declaration to the skeleton
methods in the implementation file, WSLogger_I.cpp. The WSLogger_I.cpp file
was edited to add the code to implement the methods. The code added for the
WSLogger_Impl::writeLogMessage method is shown in bold in the following
example:
::CORBA::Void WSLogger_Impl::setFileName (const char* newFileName)
{
}

char* WSLogger_Impl::getFileName ()
{
}

::CORBA::Void WSLogger_Impl::setMethodName (const char* newMethodName)
{
}

char* WSLogger_Impl::getMethodName ()
{
}

::CORBA::Short WSLogger_Impl::openLogFile ()
{
}

::CORBA::Short WSLogger_Impl::closeLogFile ()
{
}

// This method writes one line of message text to the log file. The line
// prefaced with the current date and time in the currently specified
// format, the current method name (if any), the severity level, and
// the message text.

::CORBA::Short WSLogger_Impl::writeLogMessage (const char* newMessage, ::CORBA::Short newSeverity)
{
::CORBA::String_var timeString;

if (logFileOpen == FALSE)
return(-1);

// Get the date and time string.
time_t tp;
time_t tp2;
if ((tp = time(&tp2)) != -1)
{
struct tm *x = gmtime(&tp2);
timeString = ::CORBA::string_dup(ctime(&tp2));

}

26 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

// Determine the day and month.
::CORBA::String_var day = ::CORBA::string_alloc(3);
::CORBA::String_var month = ::CORBA::string_alloc(4);
day[0] = timeString[8];
day[1] = timeString[9];
day[2] = 0;
month[0] = timeString[4];
month[1] = timeString[5];
month[2] = timeString[6];
month[3] = 0;

// Copy the time and year.
::CORBA::String_var time = ::CORBA::string_alloc(14);
strncpy(time, (const char *) &timeString[11], 13);
time[13] = 0;

// Output the time of the log message.
if (dateFormat == DMY_DATE_FORMAT)
logFile << day << " " << month;

else if (dateFormat == MDY_DATE_FORMAT)
logFile << month << " " << day;

logFile << " " << time << ", ";

if (getMethodName() != NULL)
logFile << getMethodName() << ", ";

logFile << "severity " << newSeverity << ": ";

// Output the log message.
logFile << newMessage << endl;

return 0;
}

::CORBA::Void WSLogger_Impl::setDateFormat (::CORBA::UShort newDateFormat)
{
}

::CORBA::UShort WSLogger_Impl::getDateFormat ()
{
}

What to do next

Create the server main code (server.cpp), to implement the server as described in
“Creating the CORBA server main code (server.cpp)”.

Creating the CORBA server main code (server.cpp)
Use this task to create a CORBA server that hosts a servant object. The server
performs the following tasks:
1. Validates user input
2. Initializes the server environment
3. Accesses naming contexts
4. Names, creates, and binds a servant object
5. Creates a server shutdown object
6. Goes into a wait loop
7. Services requests

This task is the next step after adding code for the business logic methods in the
servant implementation file, servant_I.cpp. For more information about adding code
to a servant implementation file, see “Completing the CORBA servant
implementation (servant_I.cpp)” on page 26.

Steps for this task

1. Create a source file, servantServer.cpp, where servant is the name of the
implementation class for which the server is to service requests.

Implementing CORBA applications 27

2. Edit the server source file, servantServer.cpp, to add appropriate code to
implement the server methods. To do this, complete the following steps:
a. Add the necessary include statements, as described in “Adding include

statements”.
b. Add the main() function, in the form:

int main(int argc, char *argv[])
{

int rc = 0;
}

3. Edit the server source file, servantServer.cpp, to add appropriate code to
initialize the server environment as described in “Initializing the server
environment” on page 29.

4. Edit the server source file, servantServer.cpp, to add appropriate code to access
naming contexts as described in “Accessing naming contexts” on page 30.
At this point, initialization has been accomplished and a naming context has
been created for servant objects.

5. Edit the server source file, servantServer.cpp, to add appropriate code to create
and bind servant objects as described in “Creating and binding servant objects”
on page 33.

6. Edit the server source file, servantServer.cpp, to add code to create a server
shutdown object as described in “Creating a server shutdown object” on
page 34.

7. Edit the server source file, servantServer.cpp, to add code to put the server into
an infinite loop (to service any ORB requests received) as described in “Putting
the server into a loop to service requests” on page 35.

8. Edit the server source file, servantServer.cpp, to add code to shutdown the
server and release resources used as described in “Shutting down the server
and releasing resources used” on page 35.

Adding include statements
Use this task to add the necessary include statements to the source file for a
CORBA server main code.

For example:
#include "servant.ih"
#include "servershutdown.h"

#include <CosNaming.hh>

where:

servant.ih
Specifies the name of the implementation header file for the servant class,
servant, to be hosted by the server.

servershutdown.h
Specifies the name of the header file for the class used to shut down the
CORBA server.

CosNaming.hh
Specifies the header file for the COSNaming functions.

What to do next

You can add the code for the functions needed in the server main code as
described in Creating a CORBA server main code (server.cpp).

28 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

Initializing the server environment
One of the first tasks for a CORBA server application after startup is to initialize
the server environment to perform the following actions:
1. Get a pointer to the implementation repository.

The implementation repository is a persistent data store of ImplementationDef
objects, each representing a logical CORBA server that has been registered in
the repository. A server application typically receives a pointer to the
implementation repository by using the CORBA::ImplRepository method. For
example:
::CORBA::ImplRepository_ptr implrep = new ::CORBA::ImplRepository();

2. Get a pointer to the ImplementationDef associated with the server alias.
The ImplementationDef, which is obtained from the Implementation Repository,
describes the server. For example, it specifies a UUID that uniquely identifies
the server throughout a network. Each server must retrieve its own
ImplementationDef object from the Implementation Repository (using the
ImplRepository class) because the ImplementationDef is a parameter required
by the BOA::impl_is_ready method. A server application typically receives a
pointer to its ImplementationDef by using the CORBA::ImplRepository
find_impldef or find_impldef_by_alias method. For example:
imp = implrep->find_impldef_by_alias(argv[1]);

where argv[1] is the server alias specified as a string in the command used to
start the server.

3. Initialize the Object Request Broker (ORB) and BOA.
This action is used to initialize the ORB and BOA and to return a pointer to
each.
A server application initializes the ORB by calling the CORBA::ORB_init()
method, which also returns a pointer to the ORB. (If necessary, this method
creates a new instance of the ORB.) For example, the following code extract
initializes the ORB and returns a pointer to it:
op = ::CORBA::ORB_init(argc, argv, "DSOM");

where argc and argv refer to the properties specified in the command used to
start the server.

A server application initializes the BOA by calling the CORBA::BOA_init()
method on the ORB. For example, the following code extract initializes the
BOA and returns a pointer to it:
bp = op->BOA_init(argc, argv, "DSOM_BOA");

where argc and argv refer to the properties specified in the command used to
start the server. Using the BOA_init() method, you must specify DSOM_BOA after
the parameter argv.

4. Register the server application as a CORBA server.
This action calls the CORBA::BOA::impl_is_ready method to initialize the
server application as a CORBA server. This method initializes the server’s
communications resources so that it can accept incoming request messages and
export objects. For example, the following code extract registers the server
(with the alias specified on the command used to start the server):
bp->impl_is_ready(imp, 0);

Note: The zero (0) value indicates that the server must not register itself with
the location service daemon because CORBA servers within WebSphere support

Implementing CORBA applications 29

transient objects only. This parameter is an IBM extension to the CORBA
specification and must be specified only for lightweight servers of transient
objects.

The following example illustrates the initialization code that must be added to the
server’s main() function:
int main(int argc, char *argv[])
{

// Replace "servantServer" with the appropriate server alias.
const char *serverAlias = "servantServer";

// Create the implementation repository.
::CORBA::ImplRepository *implRep = new ::CORBA::ImplRepository();

// Find this server’s implementation definition.
::CORBA::ImplementationDef *implDef = implRep->find_impldef_by_alias (serverAlias);

if (implDef == NULL)
{

cerr << "Error: could not find the implementation definition: "
<< serverAlias << endl;

return 1;
}

::CORBA::ORB_ptr orbPtr = ::CORBA::ORB_init (argc, argv, "DSOM");
if (::CORBA::is_nil(orbPtr))
{

cerr << "Error: could not initialize the ORB." << endl;
return 2;

}

::CORBA::BOA_ptr boaPtr = orbPtr->BOA_init (argc, argv, "DSOM_BOA");
if (::CORBA::is_nil(boaPtr))
{

cerr << "Error: could not initialize the BOA." << endl;
return 3;

}

try
{

bp->impl_is_ready (implDef, 0);
}
catch (::CORBA::SystemException &e)
{

cerr << "Error: received system exception: " << e.id()
<< ", minor code " << (void *) e.minor() << endl;

}
catch (...)
{

cerr << "Error: received unknown exception." << endl;
}

.

.

.

return 0;
}

What to do next

Add code to the server source file to enable the server to access naming contexts as
described in “Accessing naming contexts”.

Accessing naming contexts
Use this task to add code to the source file for a CORBA server to access naming
contexts. This code is used to create a new naming context within which the
CORBA server can bind servant objects. The code performs the following actions
after the server environment has been initialized:
1. Gets a pointer to the root naming context

30 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

2. Creates a ::CosNaming::Name for the domain and getting a pointer to the
domain naming context

3. Gets a new servant naming context for servant objects

To add the get_naming_context() function to the source file for a CORBA server,
edit the server source file, servantServer.cpp, and add the following code:
//
// This function accesses the Name Service and then gets or creates
// the desired naming contexts. It returns the naming context for
// the servant context.
//
::CosNaming::NamingContext_ptr get_naming_context (::CORBA::ORB_ptr orbPtr)
{

::CosNaming::NamingContext_var rootNameContext = NULL;
::CosNaming::NamingContext_var domainNameContext = NULL;
::CosNaming::NamingContext_ptr servantNameContext = NULL;
::CORBA::Object_var objPtr;

// Get access to the Naming Service.
try
{

objPtr = orbPtr->resolve_initial_references ("NameService");
}
// catch exceptions

// Narrow the returned object to a NamingContext object.
rootNameContext = ::CosNaming::NamingContext::_narrow (objPtr);
if (::CORBA::is_nil(rootNameContext))
{

cerr << "Error: could not narrow the root naming context." << endl;
return NULL;

}

// Create the "domain" Name.
::CosNaming::Name name1;
name1.length(1);
name1[0].kind = ::CORBA::string_dup("");
name1[0].id = ::CORBA::string_dup("domain");

// Find the "domain" naming context.
try
{

objPtr = rootNameContext->resolve (name1);
}
// catch exceptions

// Next, narrow the domain naming context object.
domainNameContext = ::CosNaming::NamingContext::_narrow(objPtr);
if (::CORBA::is_nil(domainNameContext))
{

cerr << "Error: could not narrow the domain naming context." << endl;
return NULL;

}

// Create the "servantContext" Name.
::CosNaming::Name name2;
name2.length(1);
name2[0].kind = ::CORBA::string_dup("");
name2[0].id = ::CORBA::string_dup("servantContext");

// Create the "servantContext" naming context.
try
{

objPtr = domainNameContext->bind_new_context (name2);
}

Implementing CORBA applications 31

// If the servant naming context already exists,
// then just resolve it...
catch (::CosNaming::NamingContext::AlreadyBound &e)
{

cout << "Warning: servant’s naming context already exists." << endl;
cout << "Trying to resolve the context." << endl;
try
{

objPtr = domainNameContext->resolve(name2);
}
// catch exceptions ...

}

// Next, narrow the new naming context object.
servantNameContext = ::CosNaming::NamingContext::_narrow(objPtr);
if (::CORBA::is_nil(servantNameContext))
{

cerr << "Error: could not narrow the servant’s naming context." << endl;
return NULL;

}

return servantNameContext;
}

Next, modify the server’s main() function so that it calls the get_naming_context()
function:
int main(int argc, char *argv[])
{

.

. initialization code

.

// Get the naming contexts to which the servant object will be bound.
::CosNaming::NamingContext_var servantNameContext =

get_naming_context (orbPtr);

if (servantNameContext == NULL)
{

cerr << "Error: failed to obtain the name context." << endl;
return 4;

}

.

.

.

}

Results

This task creates and returns a pointer object, servantNameContext, to the
naming context for servant objects.

What to do next

Add code to the server source file to name, create, and bind servant objects as
described in “Creating and binding servant objects” on page 33.

CORBA server naming contexts: Before a CORBA server can create and make
available a servant object, it must have a logical name space for the servant object
to exist in. This logical name space is a naming context for servant objects. The
server can create a new naming context within any location within the root naming

32 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

context. For example, a server called servantServer might create a new naming
context called servantContext into which the server binds the servant object.
Optionally, this context might be located within a domain context, which in turn is
located within the root naming context. (You can create a servant context with only
the root naming context as its parent or with one or more intermediary parent
contexts.)

Creating and binding servant objects
Use this task to add code to the source file for a CORBA server to create servant
objects, and bind them into the appropriate naming context. This makes it possible
for clients to find and use servant objects.

To add code to create and bind servant objects, edit the server source file,
servantServer.cpp, and add the following code:
int bind_object (

::CORBA::Object_ptr objPtr,
::CosNaming::Name &name,
::CosNaming::NamingContext_ptr servantNameContext
)

{
try
{

servantNameContext->bind (name, objPtr);

cout << "The servant object was bound successfully into the name space." << endl;
}
// catch exceptions

return 0;
}

Next, modify the main() function so that it creates the servant object and calls the
bind_object() function:
int main (int argc, char *argv[])
{

.

. initialization code

.

// Get the servant naming context.
::CosNaming::NamingContext_var servantNameContext = get_naming_context (orbPtr);
if (servantNameContext == NULL)
{

return 4;
}

// Create the servant object.
// This is the object that will be used by the client.
servantImpl *servantObject = new servantImpl();

// Create the CosNaming::Name for our object.
::CosNaming::Name name;
name[0].kind = ::CORBA::string_dup("");
name[0].id = ::CORBA::string_dup("servantObject1");

// Next, bind the servant object into the servant naming context.
rc = bind_object (servantObject, name, servantNameContext);
if (rc != 0)
{

cerr << "Error: could not bind servant object into name space." << endl;
return 5;

}

.

.

.
}

Results

Implementing CORBA applications 33

This task adds code that enables a CORBA server to create and bind servant
objects.

What to do next

Add code to the server source file to enable the server to create a server shut down
object that can be used to help shut down the server as described in “Creating a
server shutdown object”.

Creating a server shutdown object
When a CORBA server is started, it initializes itself, calls the
execute_request_loop()method, and specifies a blocking mode
(::CORBA::BOA::SOMD_WAIT). This puts the server into an infinite wait loop
during which the ORB transmits requests to and from the servant object hosted by
the server. Because the execute_request_loop() method never returns, the server can
never terminate unless it is forced. A server shutdown object makes it possible to
terminate the server gracefully. The server creates a server shutdown object and
gives it a string that is used to shut down the server.

To stop the server, run the WSStopServer program, which tells the ORB to shut the
server down. WSStopServer has the following command syntax:
WSStopServer server_alias

where server_alias is the server alias (defined in the Implementation Respository).

To create a WSServerShutdown object, modify the server’s main() function by
adding the following code:
int main (int argc, char *argv[])
{

.

. initialization code

.

.

. create and bind the servant object

.

// Create a WSServerShutdown object that can break the server out of the
// execute_request_loop() method when we are ready to terminate
// the server. The WSStopServer command will cause the subsequent
// invocation of execute_request_loop() return to the server.
WSServerShutdown *shutdownObj = new WSServerShutdown (serverAlias, boaPtr);
cout << "Created WSServerShutdown object" << endl;

.

.

.
}

When created, the WSServerShutdown object is initialized with the server alias and
the object adapter pointer.

Results

This task adds code to create a WSServerShutdown object. After the server has
initialized itself, it creates the WSServerShutdown object, which waits for a

34 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

message informing it that the server is to be shut down. That message can be sent
by the StopServer command line program provided with IBM WebSphere
Application Server enterprise services.

What to do next

To continue developing the server main code, add code to put the server into an
infinite wait loop. During this loop, the Object Request Broker (ORB) can transmit
requests to and from the servant object hosted by the server as described in
“Putting the server into a loop to service requests”.

Putting the server into a loop to service requests
Use this task to add code to the source file for a CORBA server and cause the
server to enter its request loop. This allows the server to respond to requests
received from clients.

To cause the server to enter its request loop, edit the server source file,
servantServer.cpp, and add the following code to the main() function:
int main(int argc, char *argv[])
{

.

. initialization code

.

.

. create and bind the servant object

.

.

. Create the shutdown object

.

// Enter the request loop.
cout << "Server is ready for e-business..." << endl;
::CORBA::Status stat = boaPtr->execute_request_loop (::CORBA::BOA::SOMD_WAIT);

// Terminate the server.
cout << "Server is now shutting down..." << endl;
.
.
.

return 0;
}

Results

This task adds code that causes the CORBA server to enter its request-processing
loop. During this loop, the server can service incoming requests for the servant
object or objects that it hosts.

What to do next

Add code to the server source file to enable the server to complete the server shut
down when requested as described in “Shutting down the server and releasing
resources used”.

Shutting down the server and releasing resources used
Use this task to create code for a CORBA server, shut down the server, and release
the resources that it used.

Implementing CORBA applications 35

To cause the server to shut down, add the following code to the main() function:
int main (int argc, char *argv[])
{

.

.

.

// Terminate the server
cerr << "Server is shutting down." << endl;

boaPtr->deactivate_impl (implDef);
::CORBA::release (boaPtr);
::CORBA::release (orbPtr);
::CORBA::release (implDef);
::CORBA::release (implRep);

}

Results

This task adds code that shuts down a CORBA server and releases the resources
that it used when the server’s execute_request_loop() is forced to return. The loop
returns when a shut down request is made by a separate server shut down
program.

Building a CORBA C++ server
This topic provides an overview of the task to build the code for a C++ CORBA
server. The actual steps that you complete depend on the development
environment that you use.

For example, if you are using the Microsoft C++ 6.0 compiler on Microsoft
Windows NT to build a C++ CORBA server, you can use the following commands:
1. Compile the server.cpp, servant_I.cpp, and servant_S.cpp files.

At a command line, run the following command for each file:
cl /c /GX /DSOMCBNOLOCALINCLUDES /Iwasee_install\include

where:

wasee_install
is the directory into which IBM WebSphere Application Server is
installed.

filename.cpp
is the name of the file to be compiled (server.cpp, servant_I.cpp, or
servant_S.cpp).

2. At a command line, run the following command for each file:
link server.obj servant_I.obj servant_S.obj /OUT:server.exe

wasororm.lib wasosa1m.lib wassrvsm.lib

What to do next

For more examples of building CORBA C++ server code (on several platforms) for
IBM WebSphere Application Server, see the topic ″Tutorial: Creating a user-defined
C++ server and client″ in the Samples Gallery, which is installed with IBM
WebSphere Application Server.

36 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

Storing a logical definition for a CORBA server in the system
implementation repository

Use this task to register a CORBA server in the implementation repository. To
register a CORBA server in the implementation repository, identify the server’s
alias, the server application program, and the server object implementation class
(servant) that the server implements. The information registered is used to activate
the server process when the server is started and thereafter to help clients to find
the server that supports servants that they want to use.

Steps for this task

1. To register the server, server_alias, type the following command:
regimpl -A -i server_alias -p server_application

where:

server_alias
is the server alias by which the server is known

server_application
is the name of the application program that implements the server.

[Microsoft Windows® platform] The program name has the form
program.exe

[Unix platform] The program name has the form program

Results

This task results in the implementation repository containing an entry for the
server and the server object implementation class that it supports.

For example, for a server object implemetation class called WSLogger, supported
by the server application WSLoggerServer, you use the following regimpl
command:
regimpl -A -i WSLoggerServer

Managing CORBA applications
Steps for this task

1. “Supporting SSL by WebSphere for CORBA C++ clients”
2. “Specifying run-time properties for CORBA C++ clients and servers” on page 52
3. “Resolving CORBA run-time errors” on page 66
4. “Managing the CORBA Interface Repository” on page 72

Supporting SSL by WebSphere for CORBA C++ clients
The following topic describes how to enable SSL to be used between CORBA C++
clients and EJB servers in a WebSphere network:
v “Enabling SSL certificate security between a CORBA C++ client and an EJB

server” on page 38

In addition, the following conceptual topics offer information related to the SSL
security mechanism:
v “SSL security for CORBA C++ clients” on page 48
v “CORBA C++ client: SSL and certificates” on page 49

Implementing CORBA applications 37

v “CORBA C++ client: Structure of a certificate” on page 49
v “CORBA C++ client: Certificate authorities” on page 50
v “CORBA C++ client: Certificate chains” on page 51

Enabling SSL certificate security between a CORBA C++ client
and an EJB server
Before you begin

Create a certificate to represent the target EJB server as described in Certificates.

To enable SSL security between a CORBA C++ client and an EJB server, complete
the following steps:

Note: Each step is a separate procedure. After you complete each step, return to
this overview procedure.

Steps for this task

1. Create a key database file for the client as described in “Creating a key
database for a CORBA C++ client”. This file is used to hold the client’s
certificate and the server’s public key for use by the client.

2. Create a client certificate to uniquely identify the client as described in
“Creating SSL certificates for a CORBA C++ client” on page 39. This also creates
the client key database file that is used to hold the server’s public key for use
by the client.

3. If you have a client certificate from the Certificate Authority (CA), integrate it
into your client key database file as described in “Integrating a CA-signed
certificate into a CORBA C++ client key database file” on page 45. If you create
your own self-signed client certificate, the certificate is created in the specified
client key database file.

4. Extract the client certificate (which includes its public key) and add it as a
signer certificate into the truststore file for each target server. This is described
in the procedures “Extracting a certificate from a CORBA C++ client key
database file” on page 46 and “Adding a signer certificate into a CORBA C++
client key database” on page 47.

5. Configure the server to enable SSL security and configure other security
properties that you want for the server.

6. Configure the CORBA C++ client to enable security and configure other
security properties that you want for the C++ clients as described in “Run-time
properties for CORBA clients and servers” on page 54.

Results

When you start a CORBA C++ client application, the application determines its
client properties file from the WASPROPS environment variable on the client host.
From the file, the application determines the location of the client’s key database
file. The client then can use the certificates in its key database file to create secure
connections with application servers.

Creating a key database for a CORBA C++ client: Use this procedure to create a
Certificate Management System (CMS) key database file for a CORBA C++ client.
This key database file contains the owner’s certificate and its corresponding private
key. The owner uses this key database file to identify itself to anyone that wants to

38 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

authenticate the owner. This procedure uses the GSKit 5 version of the IBM Key
Management tool. To create a CMS key database file for a CORBA C++ client,
complete the following steps:

Steps for this task

1. Start the GSKit 5 IBM Key Management tool, as described in “Starting the IBM
Key Management tool”. Once you have started the IBM Key Management tool,
return to this page for the next step in this task.

2. Create a new CMS key database file. To do this, either click Create a new key
database file on the tool bar or select Key Database File > New from the
menu bar. You are prompted to enter the file name for the key database.

3. Specify a file name and location for the key database. The file name must be
unique for the key database. This is typically in the form name.kdb, where
name is the name of the client for which you are creating the key database.

4. Click OK. The Password Prompt window is displayed. You are prompted to
enter a password for the key database.

5. Specify WebAS, or another password, to access the key database. This
password is not used to protect the file, therefore, the password itself does not
have to be protected. It is only required to release the information stored by the
IBM Key Management tool during run time.

6. Click OK.

Results

You have successfully created a key database, and the IBM Key Management tool
displays all of the default signer certificates. You can add, view, or delete signer
certificates from this screen.

What to do next

Continue with the next step in the overview procedure article, “Enabling SSL
certificate security between a CORBA C++ client and an EJB server” on page 38.

Starting the IBM Key Management tool: Steps for this task

To create and manage certificates for CORBA C++ clients, use the GSKit 5 IBM Key
Management tool provided with the IBM HTTP package. Execute either of the
following to start the IBM Key Management tool:
v For Windows platforms, click Start > Programs > IBM HTTP Server 1.3.26 >

Start Key Management Utility.
v For Unix platforms, start the ″ikeyman.sh″ script in the IBMHttpServer/bin

directory.

Creating SSL certificates for a CORBA C++ client: This procedure creates a
unique certificate for a CORBA C++ client that will use SSL security. Use this
procedure if the client SSL security is enabled to create secure connections with an
EJB server based on SSL that uses client certificates. In this case, WebSphere
assumes that you have created and installed a unique certificate for the client (and
another for the server).

Note: Depending on how you organize the administration of your certificates
(particularly if you involve a commercial certificate authority), the time it takes to
create and install a certificate can be significant; perhaps several days. Therefore,
plan to complete this procedure a few days before you need to use the certificate.

Implementing CORBA applications 39

You can create and install either a test certificate for use during development and
testing or a production certificate for use in a production WebSphere network. If
you want to create your own self-signed test certificate, complete the following
procedure:
v “Creating your own self-signed test certificate on a CORBA C++ client”

If you want to create a production certificate, complete the following procedures:
v “Planning for creating a CA-signed production certificate on a CORBA C++

client” on page 41
v “Creating and sending a certificate signing request on a CORBA C++ client” on

page 43

What to do next

Continue with the next step in the overview procedure article, “Enabling SSL
certificate security between a CORBA C++ client and an EJB server” on page 38.

Creating your own self-signed test certificate on a CORBA C++ client: Before
you begin

If you want to create a self-signed certificate for a key database file, you must have
created the key database file. Later, you can extract the certificate and add it to a
target server’s truststore file. For more information about creating key database
files, see “Creating a key database for a CORBA C++ client” on page 38.

When you are developing a production application, you might not want to
purchase a true digital certificate until after you are done testing the product. With
the IBM Key Management tool, you can create a self-signed digital certificate to
use until tesitng is complete. A self-signed digital certificate is a temporary digital
certificate yo issue to yourself, with yourself as the CA.

Note: Do not release a production application with a self-signed test certificate; no
browser or server will be able to recognize or communicate with your client.

To create a self-signed test certificate in a key database file, follow these steps:
1. Start the IBM Key Management tool as described in “Starting the IBM Key

Management tool” on page 39. The IBM Key Management window is
displayed.
a. Open the key database file (filename.kdb) for the client for which you want

to request a self-signed certificate. To open the key database file, either click
Open a key database file on the tool bar or select Key Database File >
Open from the menu bar. Type the name and location of the key database
file at the prompt.

b. Click OK. The Password Prompt window is displayed.
c. At the prompt, type the password that you specified when you created the

CMS key database file.
d. Click OK. The IBM Key Management tool displays all of the default signer

certificates. You can add, view or delete signer certificates from this screen.
2. To continue creating a self-signed test certificate, either click Create a new

self-signed certificate on the tool bar or select Create > New Self-Signed
Certificate from the menu bar. The Create New Self-Signed Certificate
window is displayed.

40 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

3. Fill in the following certificate attributes, including the name of your client as
the distinguished name. You can leave other attributes with their default
values.

Key Label
The key label is used to uniquely identify the certificate within the key
database file. For the CORBA C++ client, there typically is only one
certificate in each key database file, so you can assign any label value.
However, it is good practice to use a unique label, perhaps related to
the client name.

Version
The version of the RSA cipher algorithm is used to digitally sign and
authenticate certificates. Select the default version X509 V3.

Key size
Key size is the size of the key used to digitally sign and authenticate
certificates. The default is 1024. For 128-bit cipher algorithms, the value
can be either 512 or 1024. For 56-bit cypher algorithms, the value must
be 512.

Common Name
The common name is the primary, universal identity for the certificate.
It must uniquely identify the principal that it represents.

Organization
This is the name of your organization.

Organization Unit
(Optional) This is the name of your organization unit.

Locality
(Optional) This is the name of the location (city).

State/Province
(Optional) This is the name of the state/province.

Zipcode
(Optional) This is the zip code.

Country
This menu is the two-letter identifier of the country in which the server
belongs.

Validity period
The default validity period of 365 days is typically used. Otherwise,
specify the number of days that the certificate is valid.

4. Click OK. The IBM Key Management window is displayed. The Personal
Certificates field shows the name of the self-signed digital certificate you
created.

Note: If you have only one personal certificate, it is set as the default certificate for
the database. If you have more than one personal certificate, choose which
one is the default certificate. You can change the default certificate by first
highlighting the certificate and then selecting View/Edit. Then, select the
checkbox at the bottom of the screen to set this certificate as the default.

Planning for creating a CA-signed production certificate on a CORBA C++
client: Before you begin

Implementing CORBA applications 41

Use this procedure to plan for the signed SSL certificates that you need to get from
a certificate authority (CA) to properly enable SSL security between a server and
C++ clients that use SSL mutual certificate authentication. You can use this
procedure to get a CA-signed certificate for a client.

You need to create a certificate for a C++ client only if the client is enabled to
create secure connections with a server based on SSL using client certificates. In
this case, WebSphere assumes that you have created and installed a unique
certificate for the client (and another for the server).

In a production WebSphere network, the production certificates are authenticated
to verify the principal using the certificate. The principal is authenticated by a CA
when the CA signs the principal’s certificate. Because of the diligence that is
expected of the CA, as described in ″Certificate authorities″, the authentication
process for principals can take a significant amount of time. Commercial CAs often
require up to a week to complete their authentication process. Even on-site CAs
can take up to several days to complete their authentication process.

As a result, when you plan to add a new application server, you must plan for the
certificates that you will need in advance of actually creating the server or client.

On the certificate signing request that you send to the CA, you need to specify the
common name for the certificate. This is the primary, universal identity for the
certificate that uniquely identifies the principal that it represents. For a server, a
common convention is to use the server name. For a client, a common convention
is to use a unique name to represent the C++ secured client.

For some CAs, including the fully qualified name of your host in the common
name is required. For example, some CAs will not sign your certificate unless the
domain portion of the host name is owned by your organization. When you plan
the common name for a certificate request, check the format that your CA requires.

On the certificate signing request that you send to the CA, specify the name and
address of your organization. Some certificate authorities require that you
completely spell out the state or province fields. For example, you need to specify
California as opposed to CA. Thus, check the format requirements for your CA.

If you do not get a production certificate (from a CA) before you want to start
using the SSL security based on the CA-signed certificate, you can start with either
of the following, less secure, alternatives:
v Create and use your own self-signed test certificate to perform some early tests.

This provides an alternative to the test certificate provided with WebSphere.
However, like the test certificate, this does not provide appropriate security for
production use. Thus, replace it with a CA-signed certificate that legitimately
represents your client for production use.

v Use the test certificate provided with WebSphere to perform some early tests.
However, given the lack of security implied by that test certificate, replace it as
soon as possible with a CA-signed or self-signed certificate that legitimately
represents your client.

When you have received a signed certificate from a certificate authority, you can
reconfigure the server and client so that they can use the certificate. From then on,
the clients can access the server with the security provided by the certificate.

42 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

Note: If your client certificate is compromised or even if some other server in its
trust-basis is compromised and you have to produce a replacement
certificate, you can experience the same delay again until a new certificate is
received. For more information about getting and installing server
certificates, see “Creating SSL certificates for a CORBA C++ client” on
page 39.

Creating and sending a certificate signing request on a CORBA C++ client:
Before you begin

If you want to create a request for a certificate authority (CA)-signed certificate
from a key database file, you must have created the key database already. The
request is issued against that key database and the certificate must be integrated
into that database. For information about creating a key database, see “Creating a
key database for a CORBA C++ client” on page 38.

Steps for this task

Use this procedure to create a Certificate Signing Request (CSR). This request is
sent to a CA to get a signed certificate for a C++ client that uses SSL mutual
certificate authentication. You only need to complete this procedure if you want to
get a signed test or production certificate from a CA.

This procedure creates the CSR file in the $WAS_HOME\etc directory. It
automatically creates a corresponding private key for the client that remains in
your keyring file database. You do not transmit the certificate’s private key to the
CA, therefore the private key remains entirely in your possession at all times.

To create a Certificate Signing Request (CSR), complete the following steps:
1. Start the IBM Key Management tool and use it to open the key database file or

cryptographic token from which you want to create the certificate request. If
you want to create a request from a key database file, complete the following
steps:
a. Start the IBM Key Management tool as described in “Starting the IBM Key

Management tool” on page 39.
b. Open the key database file (filename.kdb) for the client for which you want

to request a CA-signed certificate. To open the key database file, either click
Open a key database file or select Key Database File > Open from the
menu bar. Type the name and location of the key database file at the
prompt.

c. Click OK. This opens the Password Prompt window.
d. At the prompt, type the password that you specified when you created the

CMS key database file.
e. Click OK.

2. Select Personal Certificate Requests from the pull-down under Key database
content in the middle of the window. This updates the IBM Key Management
window to list any existing personal certificate requests.

3. Click New. The Create New Key and Certificate Request window is
displayed.

4. Fill in the following certificate attributes:

Key Label
The key label is used to uniquely identify the certificate within the key
database file. For a CORBA C++ client, there typically is only one

Implementing CORBA applications 43

certificate in each key database file, so you can assign any label value.
However, it is good practice to use a unique label, perhaps related to
the server or client name.

Key size
Key size is the size of the key used to digitally sign and authenticate
certificates. The default is 1024. For 128-bit cipher algorithms, the value
can be either 512 or 1024. For 56-bit cypher algorithms, the value must
be 512.

Common Name
This is the primary, universal identity for the certificate that uniquely
identifies the principal that it represents.

Notes:

a. For some CAs, it is required that you include the fully qualified
name of your host in the common name. For example, VeriSign
does not sign your certificate unless the domain portion of the host
name is owned by your organization. Also, some CAs have
restrictions on the characters that you can use for the common name
in a certificate signing request (CSR). For example, your CA might
require that the common name be a fully qualified domain name
without the characters ?*’, ??’, ?:’, ’ ’ (space), or the strings ?http://?
or ?:port number?. Check the format that your CA requires before
continuing to complete your CSR.

b. Any slash character used after host_name in the common name
must be a back-slash (\), even on Unix hosts.

Organization
This is the name of your organization.

Note: Some Certificate Authorities (CAs) might require that you
complete the ″optional″ fields in a certificate signing request
(CSR) and that you completely spell out the state or province.
Check with your intended CA for any such restrictions before
continuing to complete your CSR. For example, your CA might
require that the location, state/province, and zip code fields be
completed for all organizations outside the US or Canada.

Organization Unit
(Optional) This is the name of your organization unit.

Locality
(Optional) This is the name of the location (city).

State/Province
(Optional) This is the name of the state/province.

Zipcode
(Optional) This is the zip code.

Country
This menu is the two-letter identifier of the country in which the server
belongs.

The name of the file in which to store the certificate request
Type the full path name of the file in which you want to store the CSR.
Typically, this is something like the following:

44 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

Websphere_key_dir\common_name.arm, where: Websphere_key_dir is
the WebSphere default keyrings directory (for example,
$WAS_HOME\etc).

common_name
This is the common name of the client for which you are getting a
certificate. The standard extension used for a file in which you want to
store a CSR is .ARM.

Results

When you have filled in all of the required fields for the certificate, click OK.
When the CSR file is created, you are notified and prompted to get the certificate
signed.

What to do next

Send the file to a CA to request a new digital certificate, or cut and paste the
request into the request forms of the CA’s Web site. After the CA sends you a new
CA-signed certificate, you need to add it to the key database from which you
generated the request. Continue with the next step in the overview procedure
article, “Enabling SSL certificate security between a CORBA C++ client and an EJB
server” on page 38.

Integrating a CA-signed certificate into a CORBA C++ client key database file:
Before you begin

You must have requested and received a new signed certificate from a certificate
authority as described in “Creating and sending a certificate signing request on a
CORBA C++ client” on page 43. After the CA sends you a new signed certificate,
you need to add it to the key database file from which you generated the request.

Steps for this task

To receive a CA-signed certificate into a key database file, follow these steps:
1. If you receive an e-mail from a certificate authority containing your new

CA-signed certificate, save that mail in a file, for example, filename.ARM.
2. Start the IBM Key Management tool and use it to open the key database file

or cryptographic token from which you created the certificate request. If you
created a request from a key database file, complete the following steps:
a. Start the IBM Key Management tool as described in “Starting the IBM Key

Management tool” on page 39.
b. Open the key database file (filename.kdb) for the client for which you

want to request a CA-signed certificate. To open the key database file,
either click Open a key database file or select Key Database File > Open
from the menu bar. Type the name and location of the key database file at
the prompt.

c. Click OK. This opens the Password Prompt window.
d. At the prompt, type the password that you specified when you created the

CMS key database file.
e. Click OK.
f. Select Personal Certificate Requests from the pull-down under Key

database content in the middle of the window.

Implementing CORBA applications 45

g. To receive your signed certificate into the key database file, click Receive.
The Receive Certificate from a File window is displayed.

h. In the Receive Certificate from a File window, type the Certificate file
name and Location for the new digital certificate, or click Browse to select
the name and location.

i. To receive your certificate, click OK. The Enter a Label window is
displayed.

j. Type a label, such as Production Certificate for MyWeb at My Company,
for the new digital certificate and click OK. The IBM Key Management
window is displayed. The Personal Certificates field shows the label of the
new digital certificate you added.

What to do next

Continue with the next step in the overview procedure article, “Enabling SSL
certificate security between a CORBA C++ client and an EJB server” on page 38.

Extracting a certificate from a CORBA C++ client key database file: Before you
begin

The key database file must already exist and contain the certificate to be extracted.

Use this procedure to extract a certificate (which includes its public key) from the
(source) key database file to be added as a signer certificate in the (target) key
database file.

This procedure forms the first stage of copying a certificate from one key database
file to another. If the target key database file already contains the signer certificate
of the certificate authority used to sign the certificate that is to be copied, you do
not need to add the certificate to the target key database file. In general, you need
to complete this procedure only for a self-signed certificate to support SSL between
a client and a server, as in the following cases:
v For a CORBA C++ client, if the client and target server are configured to enable

SSL client certificate association.
v The C++ client is to use the client certificate to create secure connections with

the server.
Note:

1. Extracting a certificate from one key database file and adding it to another
key database file is not the same as exporting the certificate and then
importing it. Exporting a certificate copies all of the certificate information,
including its private key, and is normally only used if you want to copy a
personal certificate into another key database file as a personal certificate.

2. If a certificate is self-signed, you need to extract the certificate (which
includes its public key) and add it into the target key database file.

3. If a certificate is CA-signed, verify that the CA certificate used to sign the
certificate is listed as a signer certificate in the target key database file. For
example, to check that the CA certificate for a server certificate is in a client
key database file, complete the following steps:
a. Write down the label names of the CA certificates from the client key

database’s signer certificates.
b. Verify the client’s signer certificates against the list of signer certificates

in the server key database file.

46 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

c. If the CA certificate used to sign the client certificate is not listed in the
server key database file, you can use this procedure to extract the CA
certificate from the client key database file and add it to the server key
database file.

To extract a certificate from a key database file (into a temporary file), complete the
following steps:

Steps for this task

1. Start the IBM Key Management tool as described in “Starting the IBM Key
Management tool” on page 39.

2. Open the key database file (filename.kdb) for the server or client for which
you want to request a CA-signed certificate. To open the key database file,
either click Open a key database file or select Key Database File > Open
from the menu bar. Type the name and location of the key database file at the
prompt.

3. Click OK. This opens the Password Prompt window.
4. Type the password used to create the key database file.
5. Click OK.
6. The title bar of the IBM Key Management window shows the name of the

key database file that you selected and indicates that the key database file is
open and ready.

7. Beneath Key Database Context, select Personal Certificates (the default) from
the Certificate types menu. To copy a signer certificate from the key database
file, click Signer.

8. Select the certificate you want to extract.
9. Click Extract certificate. (If you selected Signer, click Extract.) The Extract a

Certificate to a File window is displayed. Proceed with the remaining steps.
10. Click Data type and select a data type, such as Base64-encoded ASCII data

(the default). The data type needs to match the data type of the certificate
stored in the certificate file. The IBM Key Management tool supports
Base64-encoded ASCII files and binary DER-encoded certificates.

11. Type the certificate file name and location where you want to store the
certificate, or click Browse to select the name and location.

12. Click OK. The certificate is written to the specified file and the IBM Key
Management is displayed.

What to do next

Continue with the next step in the overview procedure article, “Enabling SSL
certificate security between a CORBA C++ client and an EJB server” on page 38.

Adding a signer certificate into a CORBA C++ client key database: Before you
begin

v The key database file must already exist. If you have not created the key
database, see “Creating a key database for a CORBA C++ client” on page 38.

v The signer certificate to be added to the client key database must already have
been extracted from the server key database into a temporary file.

Use this procedure to add a signer certificate (which includes its public key) into
the key database file for a client.

Implementing CORBA applications 47

This forms the second stage of copying a certificate from one key database to
another. If the client key database already contains the signer certificate of the CA
used to sign the certificate that is to be copied, you do not need to add the
certificate to the key database. In general, you need to complete this procedure
only for a self-signed certificate to support SSL between a client and a server, as in
the following cases:
v For a CORBA C++ client, if the client and target server are configured to enable

SSL certificate client association.

To add a signer certificate to a client key database, complete the following steps:

Steps for this task

1. Start the IBM Key Management tool as described in “Starting the IBM Key
Management tool” on page 39.

2. Open the client key database file. For example, filename.kdb, for a C++ client.
3. Type the password for the key database file, then click OK. The title bar of the

IBM Key Management window shows the name of the key database file that
you selected and indicates that the key database is open and ready.

4. In the Key Database Content field, select Signer from the menu.
5. Click Add. This opens the Add CA Certificate from a File window.
6. Specify the data type, certificate file name, and location of the file that you

specified when you extracted the certificate to be added to the key database.
7. Click OK. This opens the Enter a Label window.
8. Specify a name for the certificate.
9. Click OK. At this point, the target key database should contain the new

certificate (as shown in the IBM Key Management window).
10. If no longer needed, close the IBM Key Management window.

What to do next

Continue with the next step in the overview procedure article, “Enabling SSL
certificate security between a CORBA C++ client and an EJB server” on page 38.

SSL security for CORBA C++ clients
Secure Sockets Layer (SSL) is an authentication protocol introduced as an IETF
standard. WebSphere supports SSL-based mutual authentication between IBM
WebSphere Application Servers and CORBA C++ clients.

Both CORBA C++ clients and EJB servers have a key database file, which is a CMS
key database file generated by the IBM Key Management Tool. In the client’s key
database file, a portion contains the server certificate’s public key (or its CA
certificate as a signer). In the server’s key database, there is a truststore file that
contains each client’s certificate public key (or its CA certificate as a signer). SSL
mutual authentication is performed so that the client uses the server’s certificate to
authenticate the server and the server uses the client’s certificate to authenticate
the client.

The SSL support provided by WebSphere for CORBA C++ clients uses the GSKit
SSL library at the C++ clients and IBM JSSE at the server. Both SSL libraries are
shipped with WebSphere.

To enable SSL certificate-based authentication, you must create a server certificate
for each server you want to authenticate and a client certificate for each client that

48 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

you want to authenticate. A server certificate, along with its corresponding private
key, must be placed in a key database file at the server. The server uses this key
database file to present itself to any clients that want to authenticate the server.
Similarly, the client certificate and key must be placed in a key database file at the
client. The client uses its key database file to present itself to servers that want to
authenticate the client.

For more information about WebSphere C++ client use of SSL, see “CORBA C++
client: SSL and certificates”.

CORBA C++ client: SSL and certificates
The Secure Sockets Layer (SSL) protocol is popular in the Internet industry,
primarily because of its use of public-key certificates as a means of authenticating
principals. These certificates represent a possession-based authentication scheme;
you are deemed to be who you claim to be (you are authentic) because you
possess an appropriate certificate. The certificate identifies you and, through the
encryption techniques used to create it, can be proved to be legitimate.

With SSL and public-key certificates, you trust the Certificate Authority (CA) that
signed any certificates presented to you. If you do not trust the CA, then you do
not trust the certificate, and by extension you do not trust the principal it
represents. You only need to know about the relatively small number of CAs that
you trust. As such, you can avoid building a large, central database of registered
users (a user registry), which is essential in an environment that might consist of
millions of end-users, such as the Internet.

Note: An important thing to understand is that, because SSL-based authentication
is based on possession, anyone who can copy your certificate (actually the
private-key that protects your certificate) is able to masquerade as you. For this
reason, it is very difficult to use SSL-based authentication to perform delegation,
that is, to perform down-stream method requests under your identity and
authority. Further, since most enterprise information systems need to control access
to their resources on an individual, group, or role basis, you often have to create
some amount of central (or at least centrally managed) user database information
in the form of Access Control Lists (ACLs).

SSL uses certificates for public-key cryptography. Public-key cryptography uses
two different cryptographic keys: a private key and a public key. Public-key
cryptography is also known as asymmetric cryptography because you can encrypt
information with one key and decrypt it with the complement key from a given
public-private key pair. GSKit 5 provides the standard SSL support (software
cryptography) as in previous versions of WebSphere.

A certificate is your key into a resource. Certificates are signed by an issuing CA
and validated either on an individual basis or on a group basis. The larger the
grouping, the more certificates are impacted if the certificate becomes
compromised.

CORBA C++ client: Structure of a certificate
WebSphere supports the mutual authentication of servers and SSL-enabled CORBA
C++ clients, based on server certificates and client certificates.

A certificate is composed essentially of two major parts: the certificate itself (the
public part) and its corresponding private key. As with public-key encryption, you
can freely give out the certificate (the public part), if you keep secure the
private-key part.

Implementing CORBA applications 49

The public portion of the certificate is also composed of two parts: information that
identifies you, for example, your name and address, and a certificate chain. The
certificate chain is the certificate that identifies the authority that issued (signed)
your certificate, the certificate of the authority that signed their certificate
(authorized them to be a Certificate Authority), and so on. The certificate chain
ends with one or more self-signed certificates, each an authority that authorized
itself to be a Certificate Authority. These are known as the root authorities. For
more information about certificate chains, see “CORBA C++ client: Certificate
chains” on page 51.

Even when using public-key certificates to authenticate servers within the
SSL-based authentication model, those servers also have security credentials.
Creating a certificate for a server is secondary and must only be done if
SSL-enabled clients communicate with the server. In this case, WebSphere assumes
that you have created and installed a unique SSL certificate for each server. There
are many choices to make about the procedures you use to generate and maintain
server certificates. “Creating SSL certificates for a CORBA C++ client” on page 39
describes one way to create and administer server certificates, but there are many
ways for you to tailor these procedures to match the specific needs of your
enterprise and its administration policies.

WebSphere provides a test certificate that you can use during development or
testing so that you can avoid any delays in setting up security for your application
servers.

Note: It is very important that you understand that this is an insecure certificate; it
is self-signed with a relatively weak key and does not uniquely distinguish the
servers where it is used. Therefore, this test certificate should not be used in a
production environment where security integrity is required.

CORBA C++ client: Certificate authorities
A certificate authority (CA) is someone that is assigned the responsibility for
signing your certificates. The process of signing the certificate is an act that
warrants the authenticity of the principal represented by that certificate. In other
words, the certificate authority has done whatever it takes to ensure that the
requesting principal is who they claim to be, and sealed that authenticity by
digitally signing the certificate. The CA signs the principal’s certificate with their
own (the CA’s) certificate.

Anyone can be a certificate authority. Most often you either trust a particular
administrative group within your enterprise to be the CA, or in some cases you
might prefer to delegate this responsibility to any one of a number of commercial
CAs.

In the normal process, if you want to obtain a digitally-signed certificate that
represents who you are, you begin by producing a Certificate Signing Request
(CSR) using your local software. You then submit this CSR to the CA, along with
any accompanying information that is needed to authenticate you. The CA does
what they have to do to verify your authenticity and, if this is successful, signs
your certificate and returns it to you. Often, this process can be completed
electronically through either e-mail or through the world-wide-web.

Each CA has their own process. What the CA does to verify you depends on a
number of conditions. Ultimately, the reputation of the CA is absolutely essential to
their business success. If they fail to properly authenticate a requesting principal
properly, accidentally handing out a certificate that the principal then uses to

50 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

misrepresent themselves, then the CA’s reputation is at stake. You are likely to
loose faith in that CA and no longer trust the certificates that they sign.
Consequently, principals will soon stop using that CA to sign their certificates,
because you have stopped recognizing their authority. As a result, CAs typically go
to great lengths to ensure the authenticity of their requesting principals. They may
perform background checks, verify credit histories, post office registries, business
records, and even criminal histories. This process is in many ways equivalent to
obtaining a passport; the Passport Office requires that you provide some proof of
your legitimacy, such as a birth certificate before issuing you a passport. Other
countries accept that the passport proves who you are, trusting that the Passport
Office has provided this assurance through its own validation checks and sealed
that validity in the physical packaging of your passport.

If you establish your own internal CA (for example, within your systems
management group), then you can use less complicated procedures to authenticate
certificates. For example, you can verify the requesting principal in your
employment records, or based on a previously defined planning manifest, perhaps
by listing all of the server principals that you plan to deploy in your enterprise as
part of some major application delivery plan.

CORBA C++ client: Certificate chains
Often a certificate authority (CA) obtains its authority to sign certificates from
another CA. This is particularly common for in-house CAs. In other words, you
might deem a certificate signed by a particular CA to be legitimate, not because of
who the CA is, but by virtue of that CA having been authenticated by another CA.
In this case, the certificate of the requesting principal is signed with the certificate
of its CA. That CA’s certificate is signed with the certificate of the authorizing CA;
the CA that authorized the first CA to sign the certificate for the requesting
principal. This is referred to as a certificate chain. A certificate chain can be long.

Each successive certificate in a certificate chain represents the next higher certificate
group. You can even create arbitrary, intermediate CA certificates that you use to
sign such groups of principal certificates. Certificate groups are an important
element in the organization of hierarchical trust relationships. For example, you
can combine a set of servers into a server group. Assuming you assign each server
its own certificate (each representing the server principal of each server) you can
sign each of those server certificates with the same common group certificate. The
certificate of that server group can then be combined with the signing certificates
of other server groups, and all signed with another common certificate
representing the super-group. This can go on until eventually there is one or more
certificates that are self-signed. These self-signed certificates are referred to as
root-certificates; they basically represent the root of the certificate hierarchy below
them.

When verifying the validity of a certificate, you must decide who in the certificate
chain you are going to trust. You could form your trust in individual certificates, in
some intermediate Certificate Authority, or the root authority. We refer to this as
the trust-basis for validating certificates. If your trust basis is in individual
certificates, then you must retain a list of each individual certificate that you want
to recognize. If your trust basis is in the root authority, then you only have to
retain the certificate of that authority.

If you ever lose trust in the certificate authority, basically if any certificate issued
by that authority is compromised, then you must change the certificate of that
authority, and reissue every certificate issued by that authority previously. If your
trust was in the root authority, this can be a major exercise. Alternatively, you can

Implementing CORBA applications 51

reach some balance by establishing your trust-basis in some intermediate authority.
(This reduces the impact from losing the trust-basis in that intermediate authority
to only the certificates issued by that authority.)

Specifying run-time properties for CORBA C++ clients and
servers

This topic provides an overview of how to specify the run-time properties for C++
clients and servers. There are three ways to specify Object Request Broker (ORB)
run-time properties:
v Properties can be stored in a file whose name is specified by setting the

WASPROPS environment variable.
v Properties can be specified by setting environment variables.
v Properties can be set by passing argument strings to the CORBA::ORB_init()

function.

Each of these methods is described in detail below.

Specifying properties in a file. To specify ORB run-time properties in a file,
complete the following steps:
1. Create a simple text file, for example, client.props.
2. Add the desired run-time properties to the file. The properties and values that

you choose depend on your use of the ORB and are selected from the
properties listed in the reference topic Runtime properties for CORBA clients
and servers.
Here is an example of a properties file that might be used for a client:
Note: The lines beginning with a pound sign (#) are comment lines and are
ignored.
Set the bootstrap host and port.
com.ibm.CORBA.bootstrapHostName=host1.company.com
com.ibm.CORBA.bootstrapPort=9000

Increase the request timeout from 3 minutes to 5 minutes (300 seconds).
com.ibm.CORBA.requestTimeout=300

Load the transactions service during process initialization.
com.ibm.CORBA.transactionEnabled=yes

that lines beginning with a pound sign (#) are comment lines and are ignored.
3. Set the WASPROPS environment variable to the name of the properties file. An

example follows:
export WASPROPS=/dir1/dir2/client.props
set WASPROPS=c:\dir1\dir2\client.props

In fact, you can specify multiple properties files by setting WASPROPS to a
blank-separated list of filenames. This would be useful if you need to store
commonly used properties in one file (for example, common.props), store
client-specific properties in another file (for example, client.props), and store
server-specific properties in yet another file (for example, server.props). For the
client, you might set WASPROPS like this:
export WASPROPS=/dir1/dir2/common.props /dir1/dir2/client.props
set WASPROPS=c:\dir1\dir2\common.props c:\dir1\dir2\client.props

For the server, you might set WASPROPS like this:

52 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

export WASPROPS=/dir1/dir2/common.props /dir1/dir2/server.props
set WASPROPS=c:\dir1\dir2\common.props c:\dir1\dir2\server.props

Specifying properties with environment variables. To specify ORB run-time
properties with environment variables, you first must set the WASGETENV
environment variable to 1 (one) like this:
export WASGETENV=1
set WASGETENV=1

This indicates to the ORB to obtain properties first from the environment, then
from any properties file or files provided to the ORB.

Next, you need to set environment variables that correspond to the desired
run-time properties. To determine the correct variable name from the run-time
property name, follow these steps:
1. Remove the com.ibm.CORBA. prefix (requestTimeout) starting with the full

property name (for example, com.ibm.CORBA.requestTimeout).
2. Change the result to uppercase (REQUESTTIMEOUT).
3. Add the WAS prefix (WASREQUESTTIMEOUT).
4. Use the resulting string as the environment variable name, like this:

export WASREQUESTTIMEOUT=300
set WASREQUESTTIMEOUT=300

5. Convert any periods (.) to underscores (_) in the string from the preceding step.
For example, if you need to set the com.ibm.CORBA.logger.fileDetail property,
use the WASLOGGER_FILEDETAIL environment variable.

The following shows how the previous two properties might be set using
environment variables:
export WASGETENV=1
export WASREQUESTTIMEOUT=300
export WASLOGGER_FILEDETAIL=no

set WASGETENV=1
set WASREQUESTTIMEOUT=300
set WASLOGGER_FILEDETAIL=no

Specifying properties with CORBA::ORB_init() argument strings. You can set
properties by passing argument strings to the CORBA::ORB_init() function using
the argc and argv parameters. The CORBA::ORB_init() function supports two ways
to set properties:
v To set a property, use an argument string in the form,

-Dproperty_name=property_value. For example, to set the request timeout value,
you might use the argument string, -Dcom.ibm.CORBA.requestTimeout=300.

v To pass the name of a properties file to the ORB, use an argument string in the
form, -PropertiesFile=file_name. For example, if you stored your properties in a
file called /dir1/dir2/client.props, you might use the argument string,
-PropertiesFile=/dir1/dir2/client.props.

The following is a code fragment that illustrates how to use these argument
strings:
.
.
.

char *argList[] = {
"-Dcom.ibm.CORBA.requestTimeout=300",

Implementing CORBA applications 53

"-Dcom.ibm.CORBA.logger.fileDetail=no",
"-PropertiesFile=/dir1/additional.props"
};

int argCount = 3;

CORBA::ORB_ptr orb_ptr = CORBA::ORB_init (argCount, argList, "DSOM");

.

.

.

Run-time properties for CORBA clients and servers
This topic provides reference information about the properties that you can set to
control the run-time environment of CORBA C++ clients and servers. Each
property is listed in the following form:

property_name=value_type
[default_value] A description of the property where
v property_name is the name of the property.
v value_type is the type of value that the property can have.
v [default value] is the default value of the property (only shown if the

property has a default value).

Client and Server general ORB run-time properties

You can specify the following general ORB run-time properties for both clients and
servers:

com.ibm.CORBA.bootstrapHostName=host_name
[current host] The name of the host on which the bootstrap agent runs.
This host name is used with the com.ibm.CORBA.bootstrapPort property
to access the bootstrap agent.

com.ibm.CORBA.bootstrapPort=port_number
[2809] The number of the port that the bootstrap agent uses to
communicate with clients and servers. This property is an integer port
number, in the range 0 through 65536. This port number is used with the
com.ibm.CORBA.bootstrapHostName property to access the bootstrap
agent.

com.ibm.CORBA.requestTimeout=number_seconds
[180] The time, in seconds, that a request waits for a response before
timing out and issuing an error that indicates NO RESPONSE. If this
property is set to 0 (zero), requests wait indefinitely until a response is
received. This property is integer value greater than or equal to 0.

com.ibm.CORBA.initServices=list_of_service_names
This property specifies the set of services which should be loaded by the
ORB during process initialization. This property is a blank-separated list of
words which represent service names. For each service name listed in this
property, the ORB expects to find a corresponding dllName property (see
below) which specifies the name of the DLL or shared library to be loaded
for that service during process initialization.

com.ibm.CORBA.service_name.dllName=library_name
This property specifies the name of the DLL or shared library to be loaded
by the ORB during process initialization to enable the use of a particular
service. For example, if you wanted to use services called my_service1 and
my_service2, then you would set the following properties:

54 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

com.ibm.CORBA.initServices=my_service1 my_service2
com.ibm.CORBA.my_service1.dllName=service1.dll
com.ibm.CORBA.my_service2.dllName=service2.dll

Note: The above example assumes that the my_service1 service is
implemented in service1.dll, and the my_service2 service is implemented in
service2.dll.

com.ibm.CORBA.eMNumThreads=number_threads
[3] The size of the ORB’s event manager thread pool. The event manager is
the component which handles all incoming TCP/IP communications.
Increasing the value of this property may improve performance for servers
which receive an excessive number of connections from clients. This
property is an integer value greater than or equal to 3.

com.ibm.CORBA.maxHops=number_of_location_forwards
[5] The maximum number of location forwards (i.e. hops) that the client or
server should follow before aborting object location. This property is an
integer greater than or equal to 1.

com.ibm.CORBA.processAlias=string
[DefaultClient] This property is used to provide a logical name for the
client or server process. This property can be set to any name which is
meaningful to the user. For servers, the ORB will, by default, set the
process alias so that it matches the name of the implementation def used
for the server, so it should not be necessary to set this property for servers.
For clients, however, the ORB does not set a default value for this property.
Note that the process alias is used only by the RAS message logger in the
message header to indicate the logical name of the process which logged
the message.

com.ibm.CORBA.processType=string
[client] This property is used to specify whether the process is a client or
server. The valid values for this property are client and server. This
property is only used by the RAS message logger in the message header to
indicate the type of process (client, server) which logged the message. Note
that the default value of this property is client, but the ORB will
automatically set this property to server if the CORBA::ORB::BOA_init()
function is called (which means that the process must be a server).

Server-specific ORB run-time properties

You can specify the following ORB run-time properties for servers:

com.ibm.CORBA.exportedHostName=host_name
The hostname string that should be included in object references (IORs)
exported by the server. The value is a TCP/IP hostname of up to 256
ASCII characters. Normally, the C++ ORB uses the dotted-decimal form of
the hostname, but this property can be used to override the dotted-decimal
form with an alternate name. This might be useful in situations where the
server is operating behind a firewall, and you do not want the
dotted-decimal hostname published outside the firewall.

com.ibm.CORBA.serverListenPort=port_number
[0] The port number on which the server should listen for incoming
requests from clients. This enables the server to support a static firewall
scenario, in which the firewall enables use of a set of secure ports. If you
leave this property to default to 0 (zero), the server is automatically
assigned a number for it’s listening port.

Implementing CORBA applications 55

com.ibm.CORBA.iiopVersion=iiop_version
[1.2] The default GIOP/IIOP protocol version that the ORB uses to export
object references. This property effectively specifies the highest level of
GIOP/IIOP that the ORB should support. It can be used to downgrade the
level of GIOP/IIOP used by the WebSphere ORB in order to enhance
interoperability with non-WebSphere ORBs. This property can be set to 1.0,
1.1, or 1.2 (for IIOP 1.0, IIOP 1.1, or IIOP 1.2, respectively).

com.ibm.CORBA.numWorkerThreads=number_threads
[3] The size of the ORB thread pool in which servant objects process
method invocations. This property is an integer greater than 0. When the
ORB receives a request, it activates a thread from the appropriate pool for
the target object to service the request.

com.ibm.CORBA.workerThreadStackSize=number_bytes
[65536] The size, in bytes, of the thread stack used when creating new
threads in the server’s thread pool. This property is an integer greater than
65536 bytes.

com.ibm.CORBA.implDbDir=directory_name
This property specifies the name of the directory containing the ORB’s
implementation repository. If this property is not specified, then the ORB
will store the implementation repository in the implrep directory within
the ORB’s top-level installation directory (identified by the WASORBTOP
environment variable).

com.ibm.CORBA.irUserid=string
This property specifies the user id to be used by the Interface Repository
(IR) server when accessing a remote database. This property is only used if
the IR database is configured as a remote database.

com.ibm.CORBA.irPassword=string
This property specifies the password to be used by the Interface Repository
(IR) server when accessing a remote database. This property is only used if
the IR database is configured as a remote database.

com.ibm.CORBA.TCPIP.lsdPort
[2809] The listening port to be used by the location service daemon
(wasorbd).

com.ibm.CORBA.TCPIP.lsdHostName
[current host]The name of the host on which the location service daemon
(wasorbd) is running.

Client and server codeset translation run-time properties

You can specify the following codeset-related ORB run-time properties for both
clients and servers:

com.ibm.CORBA.translationEnabled=yes_no
[no] This property specifies whether or not the client or server should
perform codeset translation for character data received in remote messages.
This property can have the following values:

no Codeset translation is not performed, and the other codeset-related
properties are ignored.

yes Codeset translation is performed. Also, consider the following
points:
v If you do not specify a value for the

com.ibm.CORBA.nativeWCharSet property, then the ORB

56 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

assumes that the application will not use wide character data
because a wide character code set was not specified.

v Codeset translation is not supported by the IIOP 1.0 protocol.

com.ibm.CORBA.nativeCharCodeset=codeset_name_or_number
This property specifies the native codeset used by the application for
character and string data. If this property is not set, then the ORB will
attempt to determine the native character codeset itself. If this property is
set, the value should be one of the following:
v A decimal integer value representing an OSF (Open Software

Foundation) codeset number (for example, 65537).
v A hexadecimal integer value representing an OSF codeset number (for

example, 0x0010001).
v A string specifying the primary name of the codeset (for example,

ISO-8859-1)

com.ibm.CORBA.nativeWCharCodeset=codeset_name_or_number
This property specifies the native codeset used by the application for wide
character data This property needs to be set only if the application actually
uses wide character data within remote method invocations. If set, the
value should be a decimal or hexadecimal OSF codeset number, or a
codeset name, similar to the nativeCharCodeset property above. Note:If
this property is set, but does not match the native process codeset of the
operating system, codeset translations of wide character data will likely
fail.

com.ibm.CORBA.charCCS=codeset_list
This is a blank-separated list of the codesets to and from which the process
can translate character data. Each codeset is a decimal or hexadecimal OSF
codeset number, or a codeset name.

com.ibm.CORBA.wcharCCS=codeset_list
This is a blank-separated list of the codesets to and from which the process
can translate wide character data. Each codeset is a decimal or hexadecimal
OSF codeset number, or a codeset name.

Client and server trace run-time properties

You can set the following trace-related ORB run-time properties for both clients
and servers. Please note that these trace properties should only be used in
situations where you need to diagnose a problem or otherwise capture very
detailed information about the operation of the ORB and the application. The use
of these trace properties will result in performance degradation, so they should not
be used during normal operation.

com.ibm.CORBA.orbCommunicationsTraceLevel=trace_level
[none] This property controls the amount of trace data that is logged for
ORB communications between the current process and other processes.
This property has one of the following values. Each succeeding value
increases the amount of information that is logged.

none or 0 (zero)
Trace data is not logged.

basic or 1
This setting results in a hexadecimal dump of the contents of each
GIOP message that is sent or received by the process.

Implementing CORBA applications 57

intermediate or 2
This setting includes the basic setting above, plus brief formatting
of each GIOP message sent or received by the process. Brief
formatting includes some basic information about the GIOP
message: the GIOP version number, the message type (e.g. request,
reply, etc.), the byte order (i.e. big endian, little endian, etc.), the
message length, and the request id value. This is usually enough
information to perform problem diagnosis in most situations.

advanced or 3
This setting includes the intermediate setting above, plus detailed
formatting of each GIOP message sent or received by the process.
Detailed formatting includes the formatting of object references,
tagged components, tagged profiles, and service contexts contained
in GIOP messages.

com.ibm.CORBA.orbMethodDispatchTraceLevel=trace_level
[none] This property is used to enable the tracing of methods dispatched
by the object adapter within a server. This property has one of the
following values.

none or 0 (zero)
Trace data is not logged.

basic or 1
This setting turns on method dispatch tracing.

com.ibm.CORBA.orbNLSTraceLevel=trace_level
[none] This property controls the amount of codeset translation-related
trace data that is logged by the ORB. This property has one of the
following values:

none or 0 (zero)
Trace data is not logged.

basic or 1
This setting enables the tracing of basic operations related to
codeset conversions, including information about codeset
negotiation between a client and server, as well as the logging of
configuration information (i.e. the native codesets configured for
the client or server).

intermediate or 2
This setting provides the basic setting above, plus detailed
information about codeset conversion operations.

Client and server message logging properties

The following properties are supported by the message logger implementation
provided with the ORB. These properties can be set for both clients and servers.

com.ibm.CORBA.logger.directoryName=directory_name
[service] The name of the directory which contains the message log and
trace files. The value of this property is appended to the top-level
installation directory, as specified by the WASORBTOP environment
variable.

com.ibm.CORBA.logger.logFileName=file_name
[activity.txt] The name of the message log file produced by the message
logger. This file is stored in the directory specified by the
com.ibm.CORBA.logger.directoryName property.

58 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

com.ibm.CORBA.logger.maxLogFileSize=number_kbytes
[1024] The maximum size (in kilobytes) of the message log file. A value of
0 indicates no limit. Once the message log file reaches its maximum size, it
is renamed to an alternate name, then the ORB continues to log messages
to the orginal message log file. The alternate name is obtained by adding a
.prev suffix to the message log filename. For example, if messages are
being logged to a file called activity.txt, then when this file exceeds the
maximum file size, it is renamed to activity.txt.prev, then the ORB
continues logging messages to activity.txt.

com.ibm.CORBA.logger.logToFile=yes_no
[no] This property specifies whether or not the message logger should
write messages to the message log file. The valid values are yes and no.

com.ibm.CORBA.logger.logToConsole=yes_no
[no] This property specifies whether or not the message logger should
display messages on the console (i.e. the process’s standard output). The
valid values are yes and no.

com.ibm.CORBA.logger.logFilter=log_filter_value
[0] This property is used to selectively filter messages based on the
message severity. The following values can be used:

0 All messages (informational, warning, error) are logged. This
effectively turns off filtering.

1 Only warning and error messages are logged. This setting filters
out informational messages.

2 Only error messages are logged. This setting filters out
informational and warning messages.

com.ibm.CORBA.logger.fileDetail=yes_no
[yes] This property specifies whether detailed or brief messages are written
to the message log file. This property can have the following values:

no Brief messages are written to the message log. A brief message
consists of only the timestamp and message text.

yes Detailed messages are written to the message log. A detailed
message includes the timestamp and message text, as well as other
information such as the process id, the thread id, hostname,
message severity, and source filename and line number which
logged the error.

com.ibm.CORBA.logger.consoleDetail=yes_no
[no] This property specifies whether detailed or brief messages are
displayed on the console (i.e. the process’s standard output). This property
can have the following values:

no Brief messages are diplayed on the console.

yes Detailed messages are displayed on the console.

com.ibm.CORBA.logger.traceToConsole=yes_no
[no] This property specifies whether or not the message logger should
display trace messages on the console (i.e. the process’s standard output).
Valid values for this property are yes and no.

com.ibm.CORBA.logger.traceToFile=yes_no
[yes] This property specifies whether or not the message logger should
write trace messages to a trace file. Valid values for this property are yes
and no.

Implementing CORBA applications 59

com.ibm.CORBA.logger.traceFileDetail=yes_no
[yes] This property specifies whether detailed or brief trace messages are
written to the trace file. This property can have the following values:

no Brief trace messages are written to the trace file.

yes Detailed trace messages are written to the trace file.

com.ibm.CORBA.logger.traceConsoleDetail=yes_no
[no] This property specifies whether detailed or brief trace messages are
displayed on the console (i.e. the process’s standard output). This property
can have the following values:

no Brief trace messages are diplayed on the console.

yes Detailed trace messages are displayed on the console.

com.ibm.CORBA.logger.multipleTraceFiles=yes_no
[no] This property specifies whether or not multiple trace files should be
produced for each process (one trace file per thread of execution). If this
property is set to yes, then the message logger will produce multiple trace
files per process (i.e. one trace file per thread of execution within the
process). If the property is set to no, then the message logger will produce
one trace file per process (i.e. the trace messages for all threads are logged
to a single file for that process).

Client and server transaction support properties

You can specify the following transaction support properties for clients:

com.ibm.CORBA.transactionEnabled=yes_no
[yes] This property specifies whether or not the transaction service is
enabled for this client. The possible values for this property are yes or no.

com.ibm.CORBA.transactions.defaultTimeout=number_seconds
[300] The default time, in seconds, after which a top-level transaction is
rolled back if it has not completed. Because a transaction may hold locks
on database records, it is important to ensure that all transactions complete
within a reasonable period of time. This is especially important in a
distributed environment where a transaction may be originated by a
non-recoverable client. If such a client dies without ending all the
transactions it started, then those transactions should have a period of time
after which they are automatically rolled back by the server on which they
were created.

This timeout value is the time from when the originator started the
top-level transaction to the time when the originator must request that the
transaction be committed or rolled back. It is an integer number of seconds
greater than 0. If you set this property to 0 (zero), the top-level transaction
never times out in the lifetime of the server on which the transaction was
created.

If the application server’s default transaction timeout is set to 0 (zero),
transactions started using the CosTransactions::Current interface do not
have a time limit set. An application program can set a time limit by
calling the set_timeout() operation on the CosTransactions::Current object,
passing the time limit required as a parameter.

com.ibm.CORBA.transactions.deferredBegin=deferbegin
[always] This property is used to control whether clients should attempt to
defer the begin of transactions until the first remote business method is

60 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

called. In general, it is desirable for clients to have a transaction created on
the same application server as at least one of the Enterprise JavaBean
objects. The transaction service provides the ability to defer the creation of
a transaction until the first remote business method is called, allowing the
transaction service on the remote application server to create the
transaction during the processing of that first business method. However,
the transaction service on the remote application server must be capable of
supporting this function.

This property can be set to one of the following values:

always
Always defer the creation of a transaction. This setting can be used
even if IBM WebSphere Application Servers are started with their
default property settings. IBM WebSphere Application Servers
handle deferred begins by default, but do not indicate that they
support this capability.

never Never defer the creation of a transaction. When a client application
requests that a transaction be started, a transaction factory is
obtained using a factory finder. The factory finder may be specified
with the factory finder property. If a value is not specified for the
factory finder property, an arbitrary application server is chosen.
This setting may be detrimental to performance when
communicating with application servers that can support deferred
begin, because transactions may be created on an application
server that is not otherwise involved in the transaction.

serverDependent
Defer the creation of a transaction depending on the capability of
the remote server. The transaction’s client code determines the
capability of the remote transaction service to support the deferred
begin protocol. The client determines the capability of the remote
server from information contained in the target object’s proxy
object, so no remote flows are required for this test.

IBM WebSphere Application Servers that are started specifying the
property com.ibm.ejs.jts.jts.ControlSet.nativeOnly=false export
this information in the target object’s proxy. Note: This is not the
default startup property for the application server.

com.ibm.CORBA.transactions.factoryFinder=string
The name to be used to find a transaction factory for transactional clients.
The value is the fully-qualified path name from the local root, which can
be used in a resolve to get the factory desired. For example, one possible
value to specify is:
com.ibm.CORBA.transactionfactoryFinder=node/servers/xyzServer

You can specify any transaction factory that is bound into the name space.
Through the use of this property, you can direct the search for a particular
transaction factory. The above example finds a factory on the local node
(host) in server xyzServer. The format of the property value may be either
of the following:
node/servers/servername

or
domain/nodes/nodename/servers/servername

Implementing CORBA applications 61

where nodename is the name of one of the nodes in the configured
WebSphere domain and servername is the name of a server. If a null value
is supplied, a search starts on the local bootstrap node and if no factory is
found, the search then proceeds throughout the domain, searching all
configured nodes and servers for an available transaction factory. Thus a
null default value on a large configuration may incur a performance
overhead.

Note: This property is only used if transactions are not deferring the start
of a transaction until the first business method.

Client security properties

In addition to configuring security properties as shown below, you must also
configure the following property to include security:
com.ibm.CORBA.initServices=transactions olt security

com.ibm.CORBA.securityEnabled=yes_no
[no] This property specifies whether or not the client should be enabled
with security service. This property can have the following values:

no security service is disabled.

yes security service is enabled.

If you do not specify a value, the ORB assumes that the application will
not use security service.

com.ibm.CORBA.security.dllName=dll_name
This property specifies the name of the DLL or shared library to be loaded
by the ORB during process initialization to enable the use of security
service. The valid security dll/shared lib names for different platforms are:
NT - wasscc1m.dll
AIX - libwasscc1.so
Solaris - libwasscc1.so
Linux - libwasscc1.so
HP - libwasscc1.sl

com.ibm.CORBA.securityTraceLevel=0_1
[0] This property specifies whether or not trace data is logged for the
security service for the current client process. This property has one of the
following values:

0 Indicates trace is off.

1 Indicates trace is on.

com.ibm.ssl.protocol=protocol_level
[SSLv3] This property is used to specify the SSL protocol level. Each value
must be separated by a space. Possible values: SSLv2, SSLv3, TLS.

com.ibm.ssl.keyFile=key_file_name
This property specifies the name of the key database file to use when
opening an SSL connection. The full path of the key file must be specified.
For information on SSL support, see “Supporting SSL by WebSphere for
CORBA C++ clients” on page 37.

com.ibm.ssl.keyPassword=password
This property is used to specify the password needed to open the key

62 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

database file. For information on how to protect a plain password, see
“Protecting a plain password inside the client security property file” on
page 64.

com.ibm.ssl.enabledv2CipherSuites=enabled_cipher_suites for SSLv2
[SSL_RC4_128_WITH_MD5 and SSL_RC4_128_EXPORT40_WITH_MD5]
This property is used to specify the ciphers to use when opening a SSL
connection with SSLv2 protocol. Each cipher must be separated by a space.
Note that value of this property always overrides the ciphers set by
com.ibm.CSI.performMessageIntergrity and
com.ibm.CSI.performMessageConfidrntialality. Possible values:
SSL_RC4_128_WITH_MD5
SSL_RC4_128_EXPORT40_WITH_MD5
SSL_RC2_CBC_128_CBC_WITH_MD5
SSL_RC2_CBC_128_CBC_EXPORT40_WITH_MD5
SSL_DES_64_CBC_WITH_MD5
SSL_DES_192_EDE3_CBC_WITH_MD5

See the SSL v2 specification for further details about these ciphers.

com.ibm.ssl.enabledv3CipherSuites=enabled_cipher_suites for SSLv3 or TLS
[SSL_RSA_WITH_RC4_128_MD5 and
SSL_RSA_EXPORT_WITH_RC4_40_MD5] This property is used to specify
the ciphers to use when opening a SSL connection with SSLv3 or TLS
protocol. Each cipher must be separated by a space. Note that value of this
property always overrides the ciphers set by
com.ibm.CSI.performMessageIntergrity and
com.ibm.CSI.performMessageConfidentiality. Possible values:
SSL_RSA_WITH_NUL_MD5
SSL_RSA_WITH_NUL_SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5
SSL_RSA_WITH_DES_CBC_SHA
SSL_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_RC4_128_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA

See the SSL v3 specification for further details about these ciphers.

com.ibm.CSI.performTLClientAuthenticationRequired=yes_no
[no] This property is used to determine if transport layer client
authentication is required. If required, every secure socket opened between
client and server authenticates using SSL mutual authentication. When
performing client authentication using SSL, the client key file must have a
personal certificate configured. Without a personal certificate, the client
cannot authenticate to the server over SSL. If the personal certificate is a
self-signed certificate, the server must contain the client’s public key in the
server’s trust file. If the personal certificate is a CA granted certificate, the
server must contain the CA’s root public key in the server’s trust file.
When this property is specified, the associated property
com.ibm.CSI.performTLClientAuthenticationSupported is ignored.

com.ibm.CSI.performTLClientAuthenticationSupported=yes_no
[yes] This property is used to determine if transport layer client
authentication is supported. When performing client authentication using
SSL, the client key file must have a personal certificate configured. Without
a personal certificate, the client cannot authenticate to the server over SSL.
If the personal certificate is a self-signed certificate, the server must contain
the client’s public key in the server’s trust file. If the personal certificate is
a CA granted certificate, the server must contain the CA’s root public key

Implementing CORBA applications 63

in the server’s trust file. This property is only valid when SSL is supported
or required. If the associated property
com.ibm.CSI.performTLClientAuthenticationRequired is enabled, this
property is ignored.

com.ibm.CSI.performTransportAssocSSLTLSRequired=yes_no
[no] This property is used to determine if SSL is required. When SSL is
required, this client must use SSL to communicate to a server. If SSL is not
supported by a server, this client does not attempt a connection to that
server. When this property is enabled, the associated property
com.ibm.CSI.performTransportAssocSSLTLSSupported is ignored.

com.ibm.CSI.performTransportAssocSSLTLSSupported=yes_no
[yes] This property is used to determine if SSL is supported. When SSL is
supported, this client may use either SSL or TCP/IP to communicate to a
server. If SSL is not supported then the client must communicate over
TCP/IP to the server. It is recommended that SSL be supported so that any
sensitive information is encrypted and digitally signed. When the
associated property com.ibm.CSI.performTransportAssocSSLTLSRequired is
enabled (set to yes), this property is ignored. In this case, SSL will always
be required.

com.ibm.CSI.performMessageIntegrityRequired=yes_no
[yes] This property is used to determine if 40-bit ciphers must be used to
make SSL connections. If a target server does not support 40-bit ciphers, a
connection to that server fails. This property is only valid when SSL is
enabled. When this property is enabled, the associated property
com.ibm.CSI.performMessageIntegritySupported is ignored.

com.ibm.CSI.performMessageIntegritySupported=yes_no
[yes] This property is used to determine if 40-bit ciphers may be used to
make SSL connections. If a target server does not support 40-bit ciphers, a
connection may be made using only digital signing ciphers. This property
is only valid when SSL is enabled. This property is ignored if the
associated property com.ibm.CSI.performMessageIntegrityRequired is
enabled.

com.ibm.CSI.performMessageConfidentialityRequired=yes_no
[no] This property is used to determine if 128-bit ciphers must be used to
make SSL connections. If a target server does not support 128-bit ciphers, a
connection to that server fails. This property is only valid when SSL is
enabled. When this property is enabled, the associated property
com.ibm.CSI.performMessageConfidentialitySupported is ignored.

com.ibm.CSI.performMessageConfidentialitySupported=yes_no
[yes] This property is used to determine if 128-bit ciphers may be used to
make SSL connections. If a target server does not support 128-bit ciphers, a
connection may be made at a lower encryption strength. This property is
only valid when SSL is enabled.

Note: If none of the properties below are configured, the default cipher
strength will always be ″confidentiality required″, which uses 128-bit
ciphers:
com.ibm.CSI.performMessageIntegrityRequired
com.ibm.CSI.performMessageIntegritySupported
com.ibm.CSI.performMessageConfidentialityRequired
com.ibm.CSI.performMessageConfidentialitySupported

Protecting a plain password inside the client security property file: The C++
SSL security client provides a password utility (PasswordEncoder4cpp) after an

64 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

IBM WebSphere Application Server Enterprise C++ CORBA SDK or C++ CORBA
client installation. You can use the password utility provided by WebSphere to
encode the key file password in the client’s security property file for further
protection. Security service can decode the password at run time and use the
decoded password when opening the key file. To run the utility, see
passwordEncoder4cpp utility.

Results

If encoding completes without any errors, then the plain password in the original
property file is replaced by an encoded password. If you encounter one of the
following errors, take the recommended user action to correct the problem:

ERROR: invalid target file == C:\property\my.props
This indicates that the target file does not exist or the path is incorrect.

User Action
Check the name and location of the property file and retry.

ERROR: no password properties in specified list were found in target file
This indicates that the ″com.ibm.ssl.keyPassword″ password property does
not exist.

User Action
Provide the password attribute in the property file and retry.

ERROR: cannot load properties from target file
This indicates that the client property file is corrupted and cannot be
loaded.

User Action
Reconstruct the property file or use the backup copy.

ERROR: invalid password encoding exception
This indicates that the utility has a problem encoding the password.

User Action
The valid characters for a password are a-z, A-Z, and 0-9.

ERROR: cannot create backup file
This indicates that the utility has a problem creating a backup file.

User Action
Make sure that you are able to create a backup file in the same
location as the property file.

passwordEncoder4cpp utility: The passwordEncoder4cpp password utility is
used to encode the key file password in the client’s security property file for
further protection.

The C++ SSL security client provides the PasswordEncoder4cpp password utility
after an IBM WebSphere Application Server Enterprise C++ CORBA SDK or C++
CORBA client installation. Security service can decode the password at run time
and use the decoded password when opening the key file.

Syntax

v For Windows platforms:
– Change to the %WAS_HOME%\bin directory.
– Execute PasswordEncoder4cpp.bat filename

where filename is the name of the client security property file.

Implementing CORBA applications 65

v For Unix platforms:
– Change to the $WAS_HOME/bin directory.
– Execute PasswordEncoder4cpp.sh filename

where filename is the name of the client security property file.

A backup file with a .bak extension is generated to save the original file.

Note: For information on encoding errors, see “Protecting a plain password inside
the client security property file” on page 64.

Resolving CORBA run-time errors
If you encounter a problem while running a CORBA application within
WebSphere, consult the following topics, which can help identify the cause of
run-time problems:
v To set the directories and maximum sizes for message and trace logs and to turn

on various tracing features, see “Specifying run-time properties for CORBA C++
clients and servers” on page 52.

v For information on reading a message log, see “Reading a message log” on
page 67.

v For general information on problem determination, see “CORBA problem
determination”.

CORBA problem determination
When IBM WebSphere Application Server is run, it records information about its
activities in its message log. The message log on each host captures events that
show a history of the activities on that host. Some of the entries in the log are
informational and others report system exceptions, such as returned CORBA
exceptions.

If you encounter run-time errors, it is often useful to read the message log and try
to diagnose the problem yourself. If you still need assistance from IBM to help you
diagnose problems, you can provide the message log to your IBM service
personnel.

There is one message log for each host machine. The file is called activity.txt by
default, and it resides in the IBM WebSphere Application Server service
subdirectory. You can set the com.ibm.CORBA.logger.directoryName run-time
property to specify an alternate location. You can also specify the maximum size of
the message log with the com.ibm.CORBA.logger.maxLogFileSize run-time property.
The message log file is automatically created when the first log entry needs to be
written.

Because the message log is an accumulation of information, it always contains
extraneous data. Some message log entries report serious failures, but many of
them only report on the execution of activities, expected exceptions, or warnings of
potentially dangerous situations. For example, in most instances, lower level
components write an entry in the message log when they decide to throw an
exception, even when the caller of the lower level component is prepared to handle
the exception and continue processing on a normal code path. Although all of
these entries on activities, handled exceptions, and warnings can make it difficult
to read the log, sometimes they provide useful data to help you determine the
exact cause of the problem that you are diagnosing.

66 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

If you need to do low-level debugging of problems identified in the message log,
you can turn on tracing for appropriate components and then study the detailed
information generated. For more information about setting trace-related run-time
properties, see “Specifying run-time properties for CORBA C++ clients and
servers” on page 52 and “Run-time properties for CORBA clients and servers” on
page 54.

Note: tracing must be used only in situations where you need to diagnose a
problem or otherwise capture very detailed information about the operation of the
ORB and the application. The use of the trace capabilities result in performance
degradation, so they should not be used during normal operation.

If you turn on tracing for a component type, extra detailed information is recorded
in one or more trace logs for the host. Multiple trace files can be generated if
needed. The trace log files are stored in the IBM WebSphere Application Server’s
service subdirectory by default. Set the com.ibm.CORBA.logger.directoryName
run-time property to specify an alternate location. Trace log files are automatically
created and given unique names that are determined by using the process id,
thread id, and current time stamp.

Reading a message log
The IBM WebSphere Application Server message logs and trace logs are written as
simple text files. These files can be viewed with a text editor or any other text
browser-type utility.

It is easier to locate the cause of a problem in smaller message logs. Therefore,
consider reducing the size of the message log before attempting to read it. For
more information about this, see “Message log: Hints and tips” on page 72. Also,
for information about the contents of a message log entry, see “Message log entry:
Description” on page 68.

When reading a message log, identify the group of entries that are related to the
problem or error that you want to resolve. A group of entries forms a bracket, as
follows:
The start of the bracket

Initial failure, which is a single entry in the log.
Results of the initial failure

A number of entries in the log.
The end of the bracket

Last result of the failure, which is a single entry in the log.

In general, when you are reading the message log, start with its last entry and then
work backwards reading the previous entry, then the one before that, and so on.

To find the bracket of entries for a problem that you are diagnosing, complete the
following steps:

Steps for this task

1. Identify the end of the bracket. The first step in reading the message log is to
identify the last entry that reported the problem that you want to diagnose
(that is, the end of bracket entry). This is essential for identifying the cause of
the problem. Start with the latest entry in the message log and search
backwards for the entry that reports the problem. The last entries of the log do
not always relate to the problem that you are trying to solve.
When the entry related to the failure has been identified, you have found the
end of the bracket. Remember the process id, thread id, process type, and

Implementing CORBA applications 67

process alias associated with the end of bracket entry. This helps to associate
other related message entries with this one.

2. Find relevant entries. Examine each entry with a matching process id, thread
id, process type and process alias and focus on the message entries that have a
time stamp that is relatively the same as the end bracket entry.

3. Find the initial failure. When you have found the first entry for the cause of the
problem, you can take action to resolve it. Depending on the situation, you also
might want to read one or two entries before the initial failure’s entry. This is in
case there is additional data to help you diagnose the problem.

Message log entry: Description: This section describes message log entries. The
information is the same whether the messages are logged to a file or displayed on
a console, whether the messages are the result of a tracing event or a severe error
event. The messages are logged as plain text, and can be viewed with any text
editor or browser utility.

There are several run-time properties that control message logging. See “Run-time
properties for CORBA clients and servers” on page 54 for a complete list of these
properties. In particular, the com.ibm.CORBA.logger.fileDetail and
com.ibm.CORBA.logger.consoleDetail properties control the amount of detail
provided in message log entries (that is, brief or detailed). Detailed messages
contain all of the information known about the message, some of which would be
useful only to IBM support personnel. Brief messages contain only the timestamp
and the message text.

Example of detailed message log entry

The following is an example of a detailed message log entry:
ComponentId: 393316
ProcessId: 981
ThreadId: 857
FunctionName: e:/l0203/src/eborb/lib/or/callstrm/callsiop.cpp
ProbeId: 4180
SourceId: @(#) 1.22 src/eborb/lib/or/misc/wasderr.cpp,

eborb, ebroker,
l0203.02 1/22/02 09:32:01 [1/22/02 17:40:58]

Manufacturer: IBM Corporation
Product: WebSphere Application Server
Version: 5.0
ProcessType: daemon
ProcessAlias: WASDAEMON
HostName: gaston
TimeStamp: 2002-01-25 12:54:26.61339573
Severity: 1
Message Text: A SystemException occurred: INITIALIZE, minor code 0x49420036
(SOMDERROR_SOMDDAlreadyRunning) at e:/l0203/src/eborb/lib/or/callstrm/callsiop.cpp line 4180.
Cannot open the Location Service Daemon’s listening port at address gaston:2809.
The Location Service Daemon may already be running.

Example of a brief message log entry

The following is an example of a brief message log entry:
TimeStamp: 2002-01-25 12:58:17.188243117
A SystemException occurred: INITIALIZE, minor code 0x49420036 (SOMDERROR_SOMDDAlreadyRunning)
at e:/l0203/src/eborb/lib/or/callstrm/callsiop.cpp line 4180.
Cannot open the Location Service Daemon’s listening port at address gaston:2809.
The Location Service Daemon may already be running.

Location of the message log file

By default, messages are logged in the file $WASORBTOP/service/activity.txt,
where WASORBTOP is an environment variable which specifies the top level

68 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

installation directory of the ORB. Note that alternate names for both the directory
and filename can be specified by setting the com.ibm.CORBA.logger.directoryName
and com.ibm.CORBA.logger.logFileName ORB run-time properties. For more
information on this, see “Run-time properties for CORBA clients and servers” on
page 54.

Note: Many different processes may be logging messages to the same message log
file. Each message entry includes the process id and thread id associated with the
program that logged the message.

Message log file rollover

It is possible that the message log file could grow to an undesirable size. This
might be caused by a program logging a large number of messages or by many
programs logging messages to the same file over a long period of time.

To help manage the size of this file, an automatic rollover capability is provided by
the logger.

Note: This capability applies only to the message log file. It is not provided for
trace log files.

Before a message is actually logged to the message log file, a check is made to
determine if the current log file size is larger than the currently configured
maximum size. The ORB run-time property com.ibm.CORBA.logger.maxLogFileSize
is used to specify this maximum size, in kilobytes. The default value is 1024 KB, or
1 MB. If you set this property to 0 (zero), you effectively disable the automatic
rollover capability.

If the message log file is larger than the maximum size, then:
v The message log file is renamed by appending .prev to its name. For example,

$WASORBTOP/service/activity.txt is renamed to
$WASORBTOP/service/activity.txt.prev.
If this is not the first rollover, then a file named
$WASORBTOP/service/activity.txt.prev already exists. This file is overwritten
due the rename operation in the previous step.

v The new message to be logged is then written to a newly-created file named
$WASORBTOP/service/activity.txt.

Communications trace log entries

The com.ibm.CORBA.orbCommunicationsTraceLevel run-time property controls the
tracing of GIOP messages sent or received by the ORB. The ORB supports four
levels of tracing: none, basic, intermediate and advanced. The following sections
provide examples of the basic, intermediate, and advanced trace levels.

Example of basic communications trace log entry

The following is an example of a brief trace log entry with the
com.ibm.CORBA.orbCommunicationsTraceLevel property set to basic:
TimeStamp: 2002-01-28 15:06:31.398705663
File/function e:/l0203/src/eborb/lib/or/trans/transip.cpp:1466

has logged trace data:

0000 47 49 4F 50 01 02 01 00 - 7C 00 00 00 01 00 00 00 GIOP....|.......
0010 03 00 00 00 00 00 00 00 - 43 00 00 00 4A 4D 42 49C...JMBI

Implementing CORBA applications 69

0020 00 00 00 13 00 00 00 00 - 0A C3 63 C2 BD 40 1C 55c.@.U
0030 E0 00 02 E2 09 35 5C A0 - 00 00 00 24 00 00 00 1F5\ ...$....
0040 41 52 53 55 00 10 00 0F - 00 0C 00 04 65 42 6F 61 ARSU........eBoa
0050 00 04 01 54 FA 12 00 12 - 00 00 00 52 03 00 00 00 ...T.......R....
0060 0F 00 00 00 67 65 74 50 - 72 69 6E 74 65 72 4C 69getPrinterLi
0070 73 74 00 00 01 00 00 00 - 1C 4D 42 49 08 00 00 00 st.......MBI....
0080 01 00 00 00 00 00 45 FFE.

The basic trace level provides a hexadecimal dump of the contents of the GIOP
message.

Example of intermediate communications trace log entry

The following is an example of a brief trace log entry with the
com.ibm.CORBA.orbCommunicationsTraceLevel property set to intermediate:
TimeStamp: 2002-01-28 15:05:00.960148555
File/function e:/l0203/src/eborb/lib/or/trans/transip.cpp:1466

has logged trace data:

0000 47 49 4F 50 01 02 01 00 - 7C 00 00 00 01 00 00 00 GIOP....|.......
0010 03 00 00 00 00 00 00 00 - 43 00 00 00 4A 4D 42 49C...JMBI
0020 00 00 00 13 00 00 00 00 - 22 8F 8B B9 BC E5 1C 55U
0030 E0 00 02 FA 09 35 5C A0 - 00 00 00 24 00 00 00 1F5\ ...$....
0040 41 52 53 55 00 10 00 0F - 00 0C 00 04 65 42 6F 61 ARSU........eBoa
0050 00 04 01 54 FA 12 00 30 - 00 00 00 18 01 00 00 00 ...T...0........
0060 0F 00 00 00 67 65 74 50 - 72 69 6E 74 65 72 4C 69getPrinterLi
0070 73 74 00 00 01 00 00 00 - 1C 4D 42 49 08 00 00 00 st.......MBI....
0080 01 00 00 00 00 00 45 FFE.

***** GIOP Message *****
GIOP Version: 1.2
Byte Order: LittleEndian (Intel)
More Fragments: No
Message Length: 124 (0x0000007C)
Message Type: REQUEST
Request ID: 1 (0x00000001)
Response flags: 0x00000003 (reply msg required=Yes, twoway request=Yes)
Method name: getPrinterList

The intermediate trace level adds formatting of the various headers within the
GIOP message for easier readability.

Example of advanced communications trace log entry

The following is an example of a detailed trace log entry with the
com.ibm.CORBA.orbCommunicationsTraceLevel property set to advanced:
ComponentId: 393316
ProcessId: 364
ThreadId: 748
FunctionName: e:/l0203/src/eborb/lib/or/trans/transip.cpp
ProbeId: 1466
SourceId: @(#) 1.12 src/eborb/lib/or/trans/transip.cpp, eborb,

ebroker, k0149.03 10/23/01 11:02:49 [1/4/02 09:13:55]
Manufacturer: IBM Corporation
Product: WebSphere Application Server
Version: 5.0
ProcessType: client
ProcessAlias: DefaultClient
HostName: gaston
TimeStamp: 2002-01-28 15:09:43.357868559
Severity: 3
Message Text:
File/function e:/l0203/src/eborb/lib/or/trans/transip.cpp:1466

70 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

has logged trace data:

0000 47 49 4F 50 01 02 01 00 - 7C 00 00 00 01 00 00 00 GIOP....|.......
0010 03 00 00 00 00 00 00 00 - 43 00 00 00 4A 4D 42 49C...JMBI
0020 00 00 00 13 00 00 00 00 - 0C 4B E9 C5 BE 00 1C 55K.....U
0030 E0 00 02 FF 09 35 5C A0 - 00 00 00 24 00 00 00 1F5\ ...$....
0040 41 52 53 55 00 10 00 0F - 00 0C 00 04 65 42 6F 61 ARSU........eBoa
0050 00 04 01 54 FA 12 00 1E - 00 00 00 12 03 00 00 00 ...T............
0060 0F 00 00 00 67 65 74 50 - 72 69 6E 74 65 72 4C 69getPrinterLi
0070 73 74 00 00 01 00 00 00 - 1C 4D 42 49 08 00 00 00 st.......MBI....
0080 01 00 00 00 00 00 45 FFE.

***** GIOP Message *****
GIOP Version: 1.2
Byte Order: LittleEndian (Intel)
More Fragments: No
Message Length: 124 (0x0000007C)
Message Type: REQUEST
Request ID: 1 (0x00000001)
Response flags: 0x00000003 (reply msg required=Yes, twoway request=Yes)
Method name: getPrinterList

Target Address begins at offset: 20 (0x00000014)

Service context list:
[0] id = 0x49424D1C [IOP::CPPOrbLevelContext],

length = 8 (0x00000008), data offset = 127 (0x0000007F)
Base ORB Major Version: 0x0000FF45
Base ORB Minor Version: 0x00000000
Extended ORB Version: 0x00000000

Parameters begin at offset: 136 (0x00000088)

The advanced trace level adds more detailed formatting of the contents of the
GIOP message, such as formatting of object references, service contexts, tagged
profiles and tagged components.

Location of trace log files

By default, trace messages are written to a file whose name is of the form
$WASORBTOP/service/process_alias/trace_file_name, where:
v WASORBTOP is an environment variable that specifies the ORB’s top level

installation directory.
v service is the default directory name used by the message logger. This can be

changed by setting the com.ibm.CORBA.logger.directoryName run-time property.
v process_alias is the program’s process alias, or logical name. For clients, the

default value for this is DefaultClient, and for a server it is the server’s
implementation definition name (for example, MyServer1, or AppServer25). The
com.ibm.CORBA.processAlias run-time property can be used to explicitly set the
process alias value.

v trace_file_name is a unique filename based on the time of process initialization
and the process id. More specifically, the filename is composed of a 10-digit
integer representing the time that the process was initialized, followed by a
6-digit integer representing the process id. A three character extension is then
added to the end. This extension will be .txt if the
com.ibm.CORBA.logger.multipleTraceFiles property is set to no, otherwise it
will be an indication of which thread is associated with the trace file. The first
thread within the process is identified by the extension .101, then the second is
identified by the extension .102, etc.

Implementing CORBA applications 71

Message log: Hints and tips: In most problem determination situations, you need
to quickly pinpoint the message log entries related to the problem that you are
investigating. One way to do this is to reduce the message log to a more
manageable size by setting its size, or by creating smaller messages logs.

Setting the size of the message log

Before starting client or server processes on a host, set the
com.ibm.CORBA.logger.maxLogFileSize run-time property to the desired number of
kilobytes. For more information about specifying run-time properties, see
“Specifying run-time properties for CORBA C++ clients and servers” on page 52.

Creating smaller message logs

Smaller message logs can speed upyour problem determination process. If the
run-time error can be reproduced by rerunning your application, consider
performing the following steps to create a set of small message logs:
1. Rename or delete your existing message log.

This ensures that you start your problem diagnosis with an empty message log,
which minimizes the amount of extraneous information that you need to
consider when diagnosing problems.

2. Restart the servers associated with the application.
3. When the servers have started, rename the message log to another filename,

such as serverinit.log.
This allows you to keep the server initialization messages together in a small
message log.

4. Run your test.
5. After the test, rename the message log to another filename, such as

testrun.log.
This message log contains messages that directly relate to the test run.

You now have a set of message logs that are small enough to be manageable and
useful for comparison. For example, if testrun.log shows that a client could not
find a factory, then serverinit.log might show you why that factory was not
registered.

Managing the CORBA Interface Repository
The CORBA Interface Repository (IR) is the component of the Object Request
Broker (ORB) that provides persistent storage of interface definitions. It provides
access to a collection of object definitions that are specified in the Interface
Definition Language (IDL). The IR is populated with data by programs that are
emitted by the IDL compiler (through the use of the -eir option). These programs
are produced by the IDL compiler according to the IDL files that describe the
object or objects.

The IR is used mainly to support the Dynamic Invocation Interface (DII) and
Dynamic Skeleton Interface (DSI) capabilities of the ORB. However, it can be used
in any situation where a program needs to dynamically retrieve information about
object definitions.

Steps for this task

1. “Installing the CORBA Interface Repository server” on page 73
2. “Populating the CORBA Interface Repository” on page 74

72 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

3. “Accessing the CORBA Interface Repository” on page 74

Installing the CORBA Interface Repository server
Before you begin

The CORBA Interface Repository (IR) requires IBM DB2®. Be sure you have DB2
installed before proceeding. Support for the CORBA Interface Repository server
(wasirsvr) in WebSphere is provided by the CORBA C++ Software Development
Kit (SDK). While installing the CORBA C++ SDK, you have the option to install
the Interface Repository, as described in the following steps.

Steps for this task

1. Install the base IBM WebSphere Application Server.
2. Install C++ SDK CORBA server support. Follow the steps for your platform.
3. Choose Interface Repository support when installing the CORBA C++ SDK.

The IR database and tables are created automatically during installation.

Results

To verify the IR installation, run the irdump utility from the command line. The
resulting output should show the default CORBA Object entry. For example:
=============
InterfaceDef: ::Object
=============

For more information on the irdump utility, see “irdump utility”.

irdump utility: The irdump utility lists the contents of the Interface Repository.

In default mode, irdump begins at the root of the Interface Repository (IR)
database and outputs everything to standard output. Optionally, a module or
interface name may be specified and only that entity outputs to standard out.

Running irdump when the Interface Repository is empty produces the following
output:
=============
InterfaceDef: ::Object
=============
RepositoryID: IDL:Object:1.0
Defined in: The Repository
Version: 1.0
** Num of Base Interfaces: 0

Interface is empty.

If the Interface Repository resides on the same computer where irdump is being
run, irdump will access the Interface Repository directly.

If the Interface Repository resides on another computer and the Interface
Repository server (wasirsvr) is running there, the irdump utility can be directed to
that server’s Interface Repository.

The command line arguments are passed to ORB_init, so any properties that may
be set on ORB_init can be passed when invoking irdump. For example if wasirsvr
is running on ″host1″ and listening on port 727, irdump can be run by using the
following command:
irdump.exe -ORBInitRef InterfaceRepository=corbaloc::host1:727/InterfaceRepository

Implementing CORBA applications 73

Populating the CORBA Interface Repository
The Interface Repository (IR) is populated with data by programs that are emitted
by the IDL compiler (through the use of the -eir option). These IR population
programs are produced by the IDL compiler according to the IDL files that
describe the object or objects.

Steps for this task

1. Emit the _IR.cpp for application idl. From the C++ SDK environment, given an
application whose interfaces are defined in idl file XXX.idl, run the IDLC
program to emit the IR C++ source file associated with this idl. Specify ″ir″ to
make idlc invoke the IR emitter.
For example:
idlc -eir XXX.idl

The generated source file is XXX_IR.cpp.
2. Build a program. Compile and link the generated XXX_IR.cpp source file into a

program, for example: XXX_IR.
3. Run the program, XXX_IR, on the computer where the IR resides.

Results

To verify that the application interface information has been populated (loaded)
into the IR, run the irdump utility from the command line. The resulting output
shows the application’s interface, operations, attributes, and so forth.

For more information on the irdump utility, see irdump utility article in the
InfoCenter.

Accessing the CORBA Interface Repository
CORBA C++ clients and servers can access the Interface Repository (IR) through a
well-defined API. A program can call the get_interface() method on any object to
obtain its interface definition from the IR or get access to the IR by calling
resolve_initial_references(″InterfaceRepository″).

To enable remote access, a C++ application server must be running on the
computer where the IR resides. Any C++ application server automatically is able to
serve the contents of the IR. If a C++ application server is not available, you can
run the C++ IRServer program, wasirsvr.

If a C++ program is run on the same computer where the IR resides, the IR is
accessed by the program directly. Otherwise, the IR is accessed remotely using
typical CORBA client-server communication.

You can use either of the following APIs to access the IR, regardless of whether the
program is running remotely or locally with respect to the IR:

get_interface() method
The client can access the specific IR information for an application object
by calling the get_interface() method on the application CORBA object.

resolve_initial_references(″InterfaceRepository″) method
In general, you can obtain the root object of the IR by calling the
resolve_initial_references(″InterfaceRepository″) method. However, if the IR
is remote from the client and the resolve_initial_references() method is
used, you must configure both the program using the IR and the server to
use the same port. To do this, complete the following steps:

74 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

1. Configure the server to listen on a specific port. For example, to start
the IR server, wasirsvr, tell it to listen to port 727 by entering the
following command:
wasirsvr -Dcom.ibm.CORBA.serverListenPort=727

2. Configure your program to look for the InterfaceRepository service on
the server’s host and port. Specify the -ORBInitRef option and a
corbaloc URL when you start the program. These arguments are passed
to ORB_init within the program. For example, if the server is running
on ″host1″, you could run the client utility, irdump, using the following
command:
irdump.exe -ORBInitRef InterfaceRepository=corbaloc::host1:727/InterfaceRepository

For more information on the wasirsvr command, see “wasirsvr
command”.

For information on how to stop a server that is running, see
“WSStopServer command” on page 76.

For more information on the irdump utility, see “irdump utility” on
page 73.

wasirsvr command: The wasirsvr command starts the CORBA Interface
Repository server.

The Interface Repository server provides access to the Interface Repository for
CORBA clients. When configured and run on a computer where the Interface
Repository database (WASORBIR) resides, the Interface Repository server hosts the
Interface Repository root object.

Syntax
wasirsvr or wasirsvr.exe

An alternate way to access the Interface Repository is to use a C++ client or server
running on the same computer where the Interface Repository resides. Also, a
CORBA client may use the CORBA get_interface method on a CORBA object if that
object is hosted on a server with access to the Interface Repository.

The Interface Repository server enables CORBA clients and servers to access an
Interface Repository by calling the ORB::resolve_initial_references method with the
argument, ″InterfaceRepository″ as defined by CORBA.

The Interface Repository server must be configured to listen on a specific port. The
client must be configured to look for the Interface Repository service on the
server’s host and port.

Start wasirsvr with a specific listening port by setting the
com.ibm.CORBA.serverListenPort property. For example to start the server and tell
it to listen on port 727, enter the following command:
wasirsvr -Dcom.ibm.CORBA.serverListenPort=727

On the client, call ORB_init with the -ORBInitRef argument, followed by
″InterfaceRepository=″ and a corbaloc URL that specifies the server’s host and
listening port.

Implementing CORBA applications 75

For example, if wasirsvr is running on ″host1″, the client program, irdump, can be
run by the command:
irdump.exe -ORBInitRef InterfaceRepository=corbaloc::host1:727/InterfaceRepository

Note: If the Interface Repository resides on the same computer as the client, the
client’s ORB accesses the Interface Repository directly without using the
server.

Examples
1-H:/d0237.01/src: wasirsvr
CORB1162I:
Interface Repository server listening...

For further information on accessing the CORBA Interface Repository, see
“Accessing the CORBA Interface Repository” on page 74.

For further information on the irdump utility, see “irdump utility” on page 73″.

WSStopServer command: The WSStopServer command line utility is used to stop
a server that is running.

The WSStopServer command line utility contains a WSServerShutdown object. The
WSServerShutdown object enables the server to terminate whenever desired. When
the server is about to terminate, the WSStopServer command line utility (on
Windows, WSStopServer.exe) tells the ORB to shut the server down. The
WSStopServer executable receives the server alias. The executable uses the alias to
send a message to the thread spun off by the WSServerShutdown object,
requesting that the server terminate. The WSServerShutdown object forces the
execute_request_loop() method to return control to the server, which then
terminates.

Syntax
WSStopServer server_alias

where server_alias is the server name created by the regimpl utility.

CORBA programming model
The CORBA programming model describes the artifacts that you develop and
implement to enable client applications to interact with server applications in a
CORBA environment. In this context, the word client refers to any program that
makes a remote method request on a servant object. The server, a server process,
hosts a servant object (in CORBA terminology) through which the client accesses
business functions. On a CORBA C++ server, the servant object implements the
business functions. On an EJB server, the business logic is implemented by an
enterprise bean.

The CORBA programming model, as a distributed-object programming model, is
characterized as follows:

Objects
CORBA objects are defined with the OMG Interface Definition Language
(IDL). IDL is compiled to generate client stubs and server skeletons, which
map an object’s services from the server environment to the client.

Communications protocol
The specification is the General Inter-ORB Protocol (GIOP). The Internet

76 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

Inter-ORB Protocol (IIOP) is one implementation of this specification.
Together, these protocols specify the message formats and data
representations used between CORBA clients and servers.

Object references
CORBA Interoperable Object References (IOR) provide a platform and
vendor-independent object reference.

Naming service
The CORBA CosNaming service is located (bootstrapped) with
resolve_initial_references(). CosNaming binds a CORBA object to a public
name.

The following image shows the artifacts that you develop and implement for the
CORBA programming model:

CORBA programming model

The CORBA programming model comprises the following two interrelated parts:
v The server programming model describes the interfaces and processes used to

develop CORBA server objects that make up the business logic and business
data inherent in a server application. Application programmers use the server
programming model if they are developing CORBA server objects that perform

Figure 2. CORBA programming model

Implementing CORBA applications 77

business functions used in the implementation of client objects. For more
information about the server programming model, see the topic “CORBA server
programming model” on page 82.

v The client programming model describes how client applications use the objects
provided by server applications. Application programmers use the client
programming model if they are developing CORBA clients that access servant
implementations that are either CORBA server objects or enterprise beans. For
more information about the client programming model, see the topic “CORBA
C++ client programming model” on page 82.

In IBM WebSphere Application Server, the CORBA client, and server programming
models are used as follows:
v The CORBA client programming model is used for WebSphere C++ clients to

access a WebSphere EJB server.
v The CORBA client programming model also is used for WebSphere C++ clients

to access a WebSphere C++ server or another CORBA ORB acting as a CORBA
server.

v The J2EE server programming model is used for WebSphere EJB servers.
v The CORBA server programming model is used for WebSphere C++ servers and

other CORBA servers.

CORBA concepts
A CORBA environment is based on client applications finding and using objects
that provide a desired function. The objects typically represent something in the
real world, for example, shopping carts, and are hosted by servers (usually EJB
servers). The type of object is defined by its interface and the semantics defined for
that interface. There can be many instances of an object (with the same interface
and semantics) that represent different entities. CORBA provides the Interface
Definition Language (IDL) to define object interfaces and Object Request Brokers
(ORBs) to provide access to objects through a distributed environment. The
binding of an object’s interface to a specific implementation is handled in the
server environment.

78 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

A CORBA environment comprises the following elements:
v Client programming languages
v Client proxy
v Client run-time environment
v CORBA-compliant Object Request Broker (ORB)
v Internet Inter-ORB protocol (IIOP)
v Implementation repository
v Initial references
v Interface definition language (IDL)
v Interoperable naming service (INS)
v Interoperable object reference (IOR)
v Naming service
v Object
v Object adapter
v Object reference
v Server
v Server implementation (servant) object
v WebSphere Application EJB Server

Client programming languages
WebSphere CORBA clients can be developed in C++. Other CORBA clients can be
developed in C++, ActiveX, Java, or other languages supported by the CORBA
client programming model.

Client proxy
To the client, the object on the server appears as if it resides in the client program.
This is accomplished by using a client-side proxy (stub) object. The proxy object
has the same interface as the server-side object it represents, but does not directly
implement the object’s methods. Instead, the proxy object translates a method

Figure 3. Conceptual view of a CORBA C++ environment

Implementing CORBA applications 79

invocation into a format that is communicated from the client to the server using
their respective ORB infrastructures. The server finds the target servant object,
which executes the actual method implementation.

Client run-time environment
The client run-time environment enables CORBA client applications to access
server implementation objects.

The client environment can be either of the following:
v An IBM WebSphere CORBA C++ client or server (written with the CORBA C++

SDK)
v A non-IBM, ORB-based CORBA client or server

CORBA-compliant Object Request Broker (ORB)
The CORBA-compliant ORB enables clients to communicate with the application
server.

The ORB sends local client requests across a network by using the Internet
Inter-ORB Protocol (IIOP). The IIOP is a TCP/IP-based communications protocol
with CORBA-defined message exchanges. Separate ORBs reside at each end of the
communication channel.

IIOP
The client and server ORBs communicate using the CORBA Internet Inter-ORB
protocol (IIOP), which is a TCP/IP-based protocol with CORBA-defined message
exchanges.

CORBA uses the General Inter-ORB Protocol (GIOP) to define the format of
messages and uses IIOP to encode and decode GIOP messages.

Implementation repository
The implementation repository is a persistent data store of ImplementationDef
objects that each represent a logical CORBA C++ server that has been registered.
The implementation repository is used by the location service daemon.

Initial references
An initial reference is a well-known object reference associated with an identifier.
CORBA provides mechanisms to configure, list, and get (or resolve) initial
references. Obtaining an initial reference of the Naming Service also is called
″bootstrapping″.

Interface definition language (IDL)
The CORBA IDL provides clients and servers with a platform-independent and
language-neutral mechanism to base their communications.

Using IDL, application developers can specify the public interface to a CORBA
class or enterprise bean (as the servant class). For a CORBA server implementation,
the application developer typically creates the IDL ″by hand″. For an enterprise
bean, a tool is used to create the IDL from the interface or class file. The IDL
definition of a servant is used to generate the client proxy (stub). An IDL compiler
generates the code necessary to use an interface with a specific programming
language.

Serializable objects used in an EJB’s interface are expressed in IDL as CORBA
valuetypes. Therefore every Java serializable object passed by a CORBA client as a
parameter or return value for an enterprise bean must be reimplemented in the

80 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

language of the client. To simplify the development of CORBA clients of enterprise
beans, minimize the range of Java serializable objects used in the EJB’s interface.

Interoperable naming service (INS)
The Interoperable Naming Service is a CORBA-defined syntax for specification and
use of object URLs.

An object URL can be used when calling string_to_object or working with initial
references. Use of INS URLs can be used by a client as an alternative to explicit
bootstrapping. However, in generating the object, the ORB accomplishes
bootstrapping internally.

Interoperable object reference (IOR)
An IOR allows objects to be communicated across process boundaries. IORs
provide platform-independent and vendor-independent object references. A client
can convert an IOR into a string, externalize it by saving it to a file, and then
terminate. When the client is activated again, the IOR can be read from the file and
converted back into an object reference.

Naming service
The WebSphere naming service forms the lookup directory for a distributed
system. It provides an interface for binding and resolving names to object
references.

When an object is created, its object reference can be bound to a name in the
naming service. Any application with access to the naming service can use the
name to find the associated object reference. The naming service implements the
CosNaming service, the standard naming service defined by the CORBA services
specification.

A CORBA client can establish access to a root naming context for the naming
service by using a URL as specified by Interoperable Name Service (INS) and
calling string_to_object or by calling resolve_initial_reference(″NameService″) on
the client ORB.

Object
From the client’s point of view, a CORBA object is an entity with an object
reference that provides the operations defined in its interface.

These operations are always available to the client from the time the object instance
is created until the time it is released.

Object adapter
The object adapter acts as a mediator between the communications framework of
the server-side ORB and the servant objects that reside on that server.

When the server-side ORB receives a request, the ORB passes the request to the
object adapter. The object adapter identifies the target of the request and dispatches
it to that servant object. The object adapter class provides methods that allow the
server application to participate in the exporting and importing of object references
and the selection of threads to which remote requests are dispatched.

Object reference
An object reference contains information that is used to identify a target object.

A client-side proxy object contains information to locate the target server and the
target servant object within that server.

Implementing CORBA applications 81

Server
The C++ application server provides the run-time environment in which a servant
object can exist. It initializes the ORB and object adapter, creates a servant object,
and registers it in an appropriate naming context in the naming service. The server
invokes the object adapter’s request processing, enabling it to dispatch requests to
the servant object that the server hosts. If the server is shut down, it removes the
servant object from the run-time environment and cleans up the resources used to
support the servant object.

Server implementation (servant) object
The servant implementation object (also known as a servant object) is the executing
CPU and memory resource that performs an object’s operation. This object is
visible to the server only.

WebSphere Application EJB Server
The WebSphere Application EJB Server supports the communications protocol, the
ORB, object references, and RMI-IIOP. In addition, it implements the Java Naming
and Directory Interface (JNDI) using a directory that also supports CORBA
CosNaming bindings. This enables WebSphere enterprise beans to be visible to
CORBA clients.

For more information, see the CORBA and OMG Web sites.

CORBA C++ client programming model
The CORBA client programming model describes how CORBA clients access
enterprise beans or CORBA server objects. Application programmers use the
CORBA client programming model to develop tier-1 (client) or tier-2 (server)
CORBA applications. (A CORBA server can act as a client to another server.)

The information about the CORBA client programming model, provided in the
following topics, is based on developing CORBA C++ clients:
v Initializing the C++ ORB
v Locating the root naming context (bootstrapping)
v Locating a servant object
v Using a servant object
v Locating the EJB home
v Using an enterprise bean
v Handling CORBA exceptions
v Coding tips for proper CORBA memory management
v CORBA client to WebSphere EJB server

Examples of client programming are provided in the WSLoggerClient sample,
accessible from the Samples Gallery, which is installed with IBM WebSphere
Application Server.

CORBA server programming model
This topic describes the CORBA server programming model, which describes the
interfaces and processes used to develop CORBA server objects that make up the
business logic and business data inherent in a server application. Application
programmers use the server programming model if they are developing CORBA
server implementation objects, known as servant objects, that perform business
functions used in the implementation of client objects.

82 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

The concepts about the server programming model are derived from the following
general procedure for developing a CORBA server. For task information about
developing a CORBA server, see “Developing a CORBA C++ server” on page 20.
Examples of server programming are given in the WSLoggerServer sample,
accessible from the Samples Gallery, which is installed with IBM WebSphere
Application Server.
1. Specify the business logic implementation interface for the servant (servant.idl).

In an Interface Definition Language (IDL)file, you define the public interface to
the methods provided by the business logic. This defines the information that a
client must know to call and use a servant object. For more information about
the IDL definition of an implementation, see “Interface Definition Language
(IDL)” on page 148.

2. Compile the servant IDL (using idlc).
Compiling the servant IDL file produces the usage binding files to implement
and use the servant object within a particular programming language. For
example, this creates an implementation template that provides a native, server
language class template into which method behavior can be inserted.
WebSphere supports CORBA servers implemented in C++.

3. Add declarations for class variables, constructors, and destructors to the servant
class definition (servant.ih).
The implementation class interface header (servant.ih) created by idlc contains a
skeleton class definition, but lacks declarations for class variables, constructors,
and destructors. You need to add the missing declarations.

4. Complete the servant implementation (servant_I.cpp).The implementation class
(servant_I.cpp) created by idlc contains a skeleton implementation definition,
which you need to complete by adding the business logic that the servant
provides.

5. Create the server main code (server.cpp).
Create the server code to define the methods that the server implements. In
particular, create the main() function, which controls the server run time by
performing the following tasks:
a. Validating user input
b. Initializing the server environment
c. Accessing naming contexts
d. Creating a servant object
e. Binding the servant object to the appropriate naming context
f. Creating a server shut down object
g. Going into a wait loop
h. Servicing requests

6. Build the server object and server code.
Like any other programming model, you need to build the modules that the
server host can use to run the server and the servant.

7. Store a logical definition for the server in the system implementation repository
(using regimpl).
Each server needs a unique logical definition in the implementation repository
of the host on which the server runs. The logical definition defines the server
alias that is used to control the server.

Implementing CORBA applications 83

CORBA object services
CORBA object services interoperate by delivering context information, with
messages, that establish service state and other parameters. Some older Object
Request Brokers (ORBs) do not support the passing of this context or use
proprietary context data that cannot interoperate with another server.

Conversely, because a service context is not part of the message normally seen at
the programmer’s level, solutions that involve a break in the normal flow of a
message do not automatically propagate a service context. Such solutions include
wrapper classes or messages manually propagated across co-existent ORBs. If
context propagation is required under such circumstances, it must be explicitly or
manually managed in the code. If available, request interceptors provide a useful
way to propogate contexts.

Naming service
For CORBA applications, WebSphere supports the CORBA CosNaming
service, which binds CORBA objects to a public name. Clients are
″bootstrapped″ according to the CORBA programming model.
CORBA-compliant Interoperable Object References (IORs) must be
obtained and server objects must be bound into the CORBA CosNaming
service. (For CORBA client access to enterprise beans, the EJB home must
be bound into the CORBA CosNaming service.)

For more information about the naming service, see “CORBA naming
service”.

Transaction service
WebSphere supports the CORBA object transaction service (OTS) as
defined by the EJB specification. WebSphere follows the CORBA
transaction service specification for propagating transaction contexts and
forwards the transaction context to the server. For interoperation with
other ORBs, incoming contexts are honored and outgoing transaction
contexts are generated, as appropriate.

For more information about the transaction service, see “CORBA
transaction service” on page 85.

Security service
Security Service has been implemented to support C++ client applications
accessing protected enterprise beans. To access the protected enterprise
beans inside a secure WebSphere domain, a C++ client needs to propagate
its identity over a transport protocol (often a secure one) to a server for
authentication and authorization check. Successful authentication and
authorization allows the client to invoke methods on the protected beans.

For more information about the security service, see “CORBA security
service” on page 86.

CORBA naming service
WebSphere supports the CORBA CosNaming service, which binds CORBA objects
to a public name. Clients are ″bootstrapped″ according to the CORBA
programming mode. CORBA-compliant Interoperable Object References (IORs)
must be obtained and server objects must be bound into the CORBA CosNaming
service. (For CORBA client access to enterprise beans, the EJB home is bound
automatically into the CORBA Naming Service and, therefore, can be accessed
through the CosNaming interfaces.)

The naming service provides a mapping between names and object references.
When an object is created, it is assigned an object reference, which can be bound

84 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

with a ::CosNaming::Name name into the namespace managed by the naming
service. Any client (or any other object) with access to the naming service can use
the associated ::CosNaming::Name name to retrieve the object reference.

The namespace is hierarchical and similar in structure to a file system tree. The
nodes of the namespace are CORBA::objects (either NamingContext objects or leaf
objects). A NamingContext object, or naming context, can contain zero or more
bindings of name-object reference pairs. Each object, bound by name into a naming
context, can be a leaf object or a subordinate NamingContext in the tree.
Subordinate NamingContexts similarly can contain bindings of other
NamingContexts and leaf objects.

For example, a servant object called WSLoggerObject1 is bound into naming
context called WSLoggerContext, which was created by a CORBA server for the
servant objects that it hosts. The WSLoggerContext naming context is bound into
the domain naming context called domain, which is bound into the root naming
context for the naming service. This might be represented by the
domain.WSLoggerContext.WSLoggerObject1 object reference and represented by
the following hierarchy:

/ (root)
|

domain
|

WSLoggerContext
|

WSLoggerObject1

This also can be represented by the name string
″/domain/WSLoggerContext/WSLoggerObject1″.

CORBA transaction service
WebSphere supports the object transaction service (OTS) and follows the CORBA
transaction service specification for propagating transaction contexts. It forwards
the transaction context from a client to the server. An Object Request Broker (ORB)
uses incoming transaction contexts to either handle transactions transparently or
ignore transaction contexts that it does not understand.

For transactional support, a CORBA client of an enterprise bean must rely on one
of the following options:
v Container-managed transactions, where the container automatically starts and

ends each new transaction
v Bean-managed transactions
v Client-initiated transactions

WebSphere CORBA C++ clients and servers provide a client-side transaction
service only. They can act as a transactional client only to a server which supports
a transaction service (for example, a WebSphere EJB server). Objects on a
WebSphere CORBA C++ server are not recoverable.

In many cases the enterprise bean infrastructure within WebSphere automatically
initiates transactions, even if the application code does not. If an enterprise bean
calls a CORBA server from within a transaction, the following might happen:
v (Best) the CORBA server resources are coordinated with the transaction, or there

are no resources to coordinate.
v The server does not recognize the transaction context, so it is ignored. The

application writer must recognize this and code accordingly.

Implementing CORBA applications 85

v The server crashes due to the presence of the WebSphere transaction context.
The application writer must either design the enterprise bean to not run from
within a transaction context, or use coexistence to ensure that the transaction
context is not automatically propagated. To disable automatic creation of
transaction contexts, deploy the WebSphere Enterprise JavaBean with a
transaction attribute other than the default TX_REQUIRED. Use
TX_NOT_SUPPORTED, TX_SUPPORTS, or an equivalent transaction attribute
that does not force the creation of transaction context.

If an EJB client is to use a CORBA server in the scope of a transaction, consider the
following transaction timeout issue. If the enterprise bean is executing a loop, if the
server object takes an excessive amount of time to execute, and the enterprise bean
executes within the scope of a single transaction, then built-in transaction timeouts
can be exceeded. This causes unexpected failures that have nothing to do with
CORBA architectural issues. This is natural behavior but not necessarily expected if
you are not familiar with the issues. This can be avoided by creating a new
transaction each time through the loop.

For clients to other ORBs, you can use the co-existent ORB solution to start other
transactions.

CORBA security service
WebSphere provides a security service that supports CORBA C++ clients to access
protected enterprise beans over SSL. To access the protected beans, the client is
required to prove its identity (by authentication) and role (by authorization) to the
secure EJB server. All request messages are also protected.

The security service uses the SSL transport protocol for both client authentication
and message protection. Once the client is authenticated, the client’s identity may
be used for matching the role required by the server’s authorization policy with
respect to the protected beans. With identity assertion, the server also can assert a
client’s identity for authorization checking or identity propagation in downstream
requests.

WebSphere CORBA C++ clients and servers provide a client-side security service
only. They can act as a secure client only to a server that supports SSL and CSIv2
(for example, a WebSphere EJB server).

The following figure describes a typical C++ client security topology:

86 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

SSL There are different levels of protection for a SSL connection. Client
authentication is also optional. Before a client request is dispatched, the
security service determines an effective security policy by coalescing both
client and server configurations. The effective policy is then used to set the
required level of protection that meets the SSL requirements of both client
and server. Once the coalesced requirement is set, the ORB then attempts
to establish the appropriate SSL connection.

Note: The client configuration is based on the client’s security properties
while the server configuration is read from the Interoperable Object
Reference (IOR). The evaluation of effective security policy is executed at
every method request.

Common Secure Interoperability Version 2 Security Protocol (CSIv2)
There are two authentication protocols implemented for the WebSphere EJB
server: Secure Association Service (SAS) and Common Secure
Interoperability Version 2 (CSIv2). Both protocols are based on the
Interoperable Inter-ORB Protocol (IIOP). Because CSIv2 is the strategic
protocol, the security service is implemented to support only CSIv2 at the
transport layer.

Figure 4. C++ client security - Topology diagram

Implementing CORBA applications 87

Client Authentication with SSL
Client authentication with SSL is enabled by default. When enabled, the
C++ clients must already be configured with a valid SSL certificate, and
the certificate’s public key must already be imported into the server’s
truststore file. Using SSL with client authentication is especially important
since the server might assert the client’s identity for further downstream
requests. If the client authentication fails during the SSL handshake, the
connection fails immediately and the request is rejected. If the client
authentication succeeds and the connection is established, the client’s
identity is then available at the server side.

Identity Assertion
Extracted identity can be stored into an identity token for identity assertion
purposes. Identity assertion is used to assert a caller identity that is
different than the authenticated one after a trust is established. With
identity assertion, the target can assert a client’s identity for authorization
check or identity propagation in downstream requests. Check the CSIv2
sections for further information.

To use the security service, configure properties in the C++ client security
properties file, scclient.props.

CORBA communication protocols (GIOP/IIOP)
The CORBA architecture provides the General Inter-ORB Protocol (GIOP) to define
message formats between objects in a distributed environment. The Internet
Inter-ORB Protocol (IIOP) is an implementation of GIOP.

GIOP includes a Common Data Representation (CDR) that resolves differences
between native hardware architectures within such an environment. Different
hardware architectures can have variations in byte ordering and alignment for
multi-byte data types within the address space. GIOP provides the means for
resolving the differences across platforms. GIOP supports a number of simple data
types, compound data types, object references, exceptions, and other features,
depending upon the version of the specification (as shown in the following table).
Nevertheless, early ORBs can encounter interoperability problems related to byte
ordering.

If you suspect a GIOP-related interoperability problem, it is reasonably safe to
adopt GIOP Version 1.0, as all of the major ORBs support GIOP at this level.
WebSphere supports client ORBs that use GIOP Version 1.0, 1.1, or 1.2. The
WebSphere ORB accepts fragmented GIOP messages, but it does not send
fragmented messages.

88 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

GIOP
feature

Data types
GIOP version WebSphere ORB

1.0 1.1 1.2 Java C++

Simple
data types

octet, char, short,
unsigned short,
long, unsigned
long long long,
unsigned long
long, float,
double, boolean,
string

Yes Yes Yes Yes Yes

long double Yes Yes Yes - -

fixed Yes Yes Yes - -

wchar, wstring

- Yes

Yes (Footnote 1:
There are
differences in
the wchar and
wstring
encoding
between GIOP
1.1 and 1.2,
which creates
interoperability
challenges. For
detailed
information,
review the
portion of the
CORBA
specification
relating to
GIOP and
CDR.)

1.1 1.1, 1.2

enum Yes Yes Yes Yes Yes

Compound
data types

struct, union,
array, sequence

Yes Yes Yes Yes Yes

valuetype - - Yes Yes Yes

CORBA::Object Yes Yes Yes Yes Yes

any Yes Yes Yes Yes Yes

context Yes Yes Yes Yes Yes

exception Yes Yes Yes Yes Yes

GIOP
Message
types

Request, Reply,
CancelRequest,
LocateRequest,
LocateReply,
CloseConnection,
MessageError

Yes Yes Yes Yes Yes

Fragment Yes Yes Yes Yes Yes

Bi-directional- - - Yes - -

Resolving unsupported CORBA data types
If a client Object Request Broker (ORB) does not support a data type required by a
server object, such as an enterprise bean or C++ servant object, you can use a
variety of techniques to resolve this, including the following:

Implementing CORBA applications 89

v Removing a data type that is not needed from the IDL for a server object
v Using a wrapper to hide an unsupported data type
v Using the dynamic invocation interface to call the server

Removing a data type that is not needed from the IDL for a server object

If a client Object Request Broker (ORB) does not support a data type defined in the
Interface Definition Language (IDL) file for a server object and the client does not
need to use the associated feature, you can remove the data type from the IDL
used to create the client. For example, you can use the following steps to enable
the client to use a version of the IDL file to access the server object:
1. Generate the IDL file that represents the server object. For example, to generate

IDL for an enterprise bean, run rmic -idl on the EJB’s home and remote
interfaces.

2. Make a copy of the IDL file to use with the client.
3. Edit the IDL for the client to remove all references to unsupported data types.

This can involve removing exceptions, objects, attributes, and methods (but not
individual parameters or return types).

4. Compile the IDL and link the client with the generated bindings.

Using a wrapper to hide an unsupported data type

You can use a wrapper to hide unsupported data types needed by a server object
behind a thin intermediate server object. The wrapper can be a CORBA object or a
session bean. If a wrapper is being used to resolve an ORB that does not support
valuetypes, then implement the wrapper as a CORBA object to avoid the various
extraneous valuetypes generated by the EJB-to-IDL compiler.

A wrapper provides an alternate interface, a supported interface, and delegates its
implementation to the original server object. The CORBA client accesses the
intermediate wrapper and the wrapper is deployed on a server that can directly
access the target server object. The wrapper interface must be designed such that it
provides access to the target object’s interface without using valuetypes (for an EJB
server) or other unsupported data types.

A wrapper may be the only way to get client access working for some vendor
ORBs.

When using wrappers, consider the following points:
v Management: The wrappers must be installed and managed in a CORBA server.
v Lifecycle: For an enterprise bean, the EJB container manages the lifecycle

automatically. If the wrapper is a CORBA object in the same server as the
enterprise bean, the wrapper’s lifecycle must be managed explicitly in your
code.
Note: For Session Beans, you can manage the wrapper’s lifecycle by unexporting
and destroying the wrapper when the bean is removed. Because not all beans,
for example, entity beans, are eventually removed, the unexport and destruction
of the wrapper might have to be explicitly exposed to the client’s programming
model.In this situation, it is better to put CORBA wrappers in a CORBA server
and enterprise beans in a different EJB server.

v Data types: The wrappers must convert between enterprise bean types and IDL
types unless the client uses only primitive types. For example, EJB object

90 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

references must be converted into IDL object references. Also, Java serializable
objects must be converted into IDL equivalents.
The client marshalls data into an opaque octet stream and passes it to the IDL
wrapper. The IDL wrapper unmarshalls the data, inflates Java objects by value if
necessary, and passes the data onto the target server object. For a target
enterprise bean, this can be done in a session bean, which is free to use
RMI-IIOP and valuetypes while interacting with entity beans.

v Hand coding: Both the wrapper interface design and the wrapper object must be
hand-coded.

Using the dynamic invocation interface to call the server

As a last resort, the CORBA Dynamic Invocation Interface (DII) enables a client to
make a call to a server without using IDL. Instead, the client makes a call by
constructing the method parameters dynamically and storing them as CORBA::Any
data types. This mode of access can be useful in the following cases:
v Accessing remote objects, such as enterprise beans, when the representative IDL

might contain unsupported data types with the following characteristics:
– The data types that prevent the IDL from being compiled by the client Object

Request Broker’s (ORB’s) IDL compiler.
– The data types are not required for the methods or features that must be

accessed.
v The client does not have prior knowledge of the IDL definitions.
v The repository ID of an EJB interface is redefined, for example, some older ORBs

do not support the rmi: prefix.

CORBA valuetype considerations
The Java language to Interface Definition Language (IDL) specification maps Java
serializables to CORBA valuetypes (pass-by-value objects). Therefore, every Java
serializable object that is passed between a client and server (for example, by a
CORBA client as a parameter or return value for an enterprise bean) must be
reimplemented in the language of the client. (The implementation for the valuetype
must be defined and provided in the language run time for both the client and the
server.) Implementation of Java serializable objects as valuetypes in C++ or another
language can be a significant development effort.

Valuetypes were introduced by the CORBA 2.3 specification and many other Object
Request Brokers (ORBs) do not implement the specification or do not implement it
fully.

To aid application development, IBM WebSphere Application Server provides a
valuetype library that contains the C++ valuetype implementation for some
commonly used Java classes in the java.lang, java.io, and java.util packages (for
example, Integer, Float, Vector, Exception, OutputStream, and so on). For more
information about the valuetype library provided with IBM WebSphere Application
Server, see “CORBA valuetype library for C++” on page 92.

Java language to IDL specification

An enterprise bean is implemented in Java with no hint of the CORBA architecture
in its programming model. The enterprise bean specification requires that the
server implementation be restricted to using those Java language constructs
defined as the RMI/IDL subset by the Java language to IDL specification.

Implementing CORBA applications 91

By following the Java language to IDL specification, you can create CORBA clients
implemented in any programming language for which there is a defined mapping
and for which ORB supporting valuetypes are available.

When valuetypes are not supported

For languages other than Java, such as C++, the CORBA architecture is often the
only viable option for accessing enterprise beans.

For session bean interfaces that only use primitive data types, you can use
generated IDL files to access the enterprise beans even if the client ORB does not
support valuetypes. However, the IDL generated from such an enterprise bean still
can include valuetype declarations for exceptions or other entities.

If you decide that the features supported by valuetypes are not needed, consider
using the strategies outlined in “Resolving unsupported CORBA data types” on
page 89.

CORBA valuetype library for C++
The Java Language to IDL specification maps Java serializable objects to CORBA
value types. Therefore every Java serializable object to be passed by a CORBA
client as a parameter or return value for an enterprise bean must be
reimplemented in the language of the client. Implementation of Java serializable
objects as value types in C++ or another language can be a significant
development effort.

To aid application development, IBM WebSphere Application Server provides a
valuetype library that contains C++ valuetype implementations for some
commonly used Java classes in the java.lang, java.io, java.util, javax.ejb, java.sql,
and java.math packages, for example, Integer, Float, Vector, Exception,
OutputStream, and so on. The valuetype library supports the WebSphere C++
Object Request Broker (ORB).

These classes represent an established hierarchy in the Java language and are
implemented to preserve the inheritance relationship that exists in certain Java
packages. These classes enable CORBA programmers to use the WebSphere C++
classes in the same way they use their Java counterparts. Constructors in the
original Java classes do not need to be mapped to the IDL definitions and the C++
bindings. When mapped, constructors become create (or init) methods on the
factory classes.

The IDL compiler always provides a pointer type definition for each type. For
example, for a valuetype class T, the pointer type definition is typedef T * T_ptr.
Unlike mapping for interfaces, the reference counting for valuetype must be
implemented by the instance of the valuetypes. The IDL compiler also generates a
_var class, which you can use instead of the _ptr. The _var class for a valuetype
automates the reference counting, that is, it automatically manages the memory
associated with the dynamically allocated object reference. When the T_var object
is deleted, the object associated with T_ptr is released. When a T_var object is
assigned a new value, the old object reference pointed to by T_ptr is released after
the assignment takes place. A casting operator also is provided to enable you to
assign a T_var to a type T_ptr.

Data type mappings: The WebSphere CORBA valuetype library for C++ provides
mappings for the following primitive data types:

92 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

Java IDL Type C++ Type

boolean boolean CORBA::Boolean
byte octet CORBA::Octet
char wchar CORBA::Wchar
double double CORBA::Double
float float CORBA::Float
int long CORBA::Long
int unsigned long CORBA::ULong
long long long CORBA::LongLong
long unsigned long long CORBA::ULongLong
byte char CORBA::Char
short short CORBA::Short
short unsigned short CORBA::UShort
void void CORBA::void

Objects behave somewhat differently, as shown in the following examples (Java
type-> IDL type-> C++ type):
v Array

byte[]-> ::org::omg::boxedRMI::seq1_octet-> ::org::omg::boxedRMI::seq1_octet*

v String
java.lang.String-> ::CORBA::WstringValue-> ::CORBA::WstringValue*

v Standard Java objects
Java.util.Enumeration-> abstract valuetype Enumeration-> ::java::util:: Enumeration

The IDL definition for the Enumeration valuetype (as generated by the rmic -idl
utility) is as follows:
module java {

module util {
abstract valuetype Enumeration;

};
};

Run-time type information: Some of the classes in the WebSphere value type
library contain methods that accept instances of a superclass. For such cases, the
library use a C++ dynamic_cast to determine the type of the passed object. For
example:
CORBA::Boolean equals(CORBA::ValueBase& arg0)
{

...
OBV_java::lang::Integer* argInteger = dynamic_cast<OBV_java::lang::Integer*>(& arg0) ;
...
}

This functionality allows you to perform type inquiries just as you would in Java
using the ″instance of″ operator.

Note: For this code to work, a polymorphic hierarchy must exist, that is, at least
one virtual function must be implemented in the class hierarchy.

Another possible approach is to use the ″typeid()″ operator of the type_info class.
For example:
#include <typeinfo>
#include <iostream>
using namespace std;
class Test1 { __ };
class Test2 : Test1 {_..};

Implementing CORBA applications 93

void main(void)
{
Test2* ptr = new Test2();
cout << typeid(*ptr).name() << endl; //yields the string "class Test2"
}

Depending on the compiler that is used, you must enable certain options in order
for this functionality to work properly. For example, for MSVC++, the /GR option
must be added to the compiler settings.

Application programming interface: The WebSphere valuetype library for C++
implements the methods listed in “CORBA valuetype library for C++: Methods
implemented”. Because the implemented classes are derived from generated
classes, the member functions they contain differ slightly from those in the java
classes. For example, in java, the java.io.FilterOutputStream class extends the
abstract class java.io.OutputStream, so it must provide definitions for all abstract
methods specified in the superclass. However, in the valuetype library hierarchy
java_io_FilterOutputStream_Impl is derived from java_io_OutputStream_Impl; a
concrete class that defines the methods of the generated class
::java::io::OutputStream.

The types used in the signatures of these methods are derived from the OMG
Specification. The semantics of each of the valuetype methods conforms exactly to
those of their Java counterparts. For a more detailed function specification of each
method, see Sun’s Javadoc.

For each valuetype, there is a corresponding factory class. You must use the
creation methods of a factory class (class name with _init or _factory suffix) to
create instances of a valuetype (unlike the normal practice of using constructors to
create objects in Java). Except in two cases, each creation method of the factory
classes corresponds to a constructor in the Java counterparts of the valuetypes.

In addition to the valuetype classes, a utility class called VtlUtil is defined to
provide several common methods to print debugging messages, handle exceptions,
get registered factory objects, and make transformation between C++ strings and
the ::CORBA::WstringValue objects.

Note: You can reuse a registered factory object with the
com::ibm::ws::VtlUtil::getFactory() method instead of creating a new factory every
time.

The vtlib.h header file contains the definitions of all the factory classes and the
VtlUtil class. These classes are defined in the com::ibm::ws name space.

For an example of using a registered factory object, the
com::ibm::ws::VtlUtil::getFactory() method, and the creation methods of a factory,
see ″Example: C++ value type library″ in the InfoCenter.

CORBA valuetype library for C++: Methods implemented: The WebSphere
valuetype library for C++ implements the following methods:
v java::io::IOException
v java::io::IOException_init

virtual CORBA::ValueBase *create_for_unmarshal()
virtual java::io::IOException* create__ ()
virtual java::io::IOException* create__CORBA_WStringValue (::CORBA::WStringValue* arg0)

v java::lang::Boolean

94 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

::CORBA::Boolean booleanValue ();
::CORBA::Boolean equals (const ::java::lang::Object& arg0);
::CORBA::Boolean getBoolean (::CORBA::WStringValue* arg0);
::CORBA::Long hashCode ();
::CORBA::WStringValue* toString ();
::java::lang::Boolean* valueOf (::CORBA::WStringValue* arg0);

v java::lang::Boolean_init
virtual CORBA::ValueBase *create_for_unmarshal();
java::lang::Boolean* create__CORBA_WStringValue(::CORBA::WStringValue* arg0);
java::lang::Boolean* create__boolean(CORBA::Boolean arg0);

v java::lang::Byte
::CORBA::Octet byteValue ();
::CORBA::Long compareTo (const ::java::lang::Object& arg0);
::CORBA::Long compareTo__java_lang_Byte (::java::lang::Byte* arg0);
::java::lang::Byte* decode (::CORBA::WStringValue* arg0);
::CORBA::Boolean equals (const ::java::lang::Object& arg0);
::CORBA::Long hashCode ();
::CORBA::Octet parseByte__CORBA_WStringValue (::CORBA::WStringValue* arg0);
::CORBA::Octet parseByte__CORBA_WStringValue__long (::CORBA::WStringValue*

arg0, ::CORBA::Long arg1);
::CORBA::WStringValue* toString__ ();
::CORBA::WStringValue* toString__octet (::CORBA::Octet arg0);
::java::lang::Byte* valueOf__CORBA_WStringValue (::CORBA::WStringValue* arg0);
::java::lang::Byte* valueOf__CORBA_WStringValue__long (::CORBA::WStringValue* arg0,
::CORBA::Long arg1);

v java::lang::Byte_init
virtual CORBA::ValueBase *create_for_unmarshal();
java::lang::Byte* create__ ();
java::lang::Byte* create__octet(::CORBA::Octet arg0);
java::lang::Byte* create__CORBA_WStringValue(::CORBA::WStringValue* arg0);

v java::lang::Character
::CORBA::WChar charValue ();
::CORBA::Long compareTo (const ::java::lang::Object& arg0);
::CORBA::Long compareTo__java_lang_Character (::java::lang::Character* arg0);
::CORBA::Long digit (::CORBA::WChar arg0, ::CORBA::Long arg1);
::CORBA::Boolean equals (const ::java::lang::Object& arg0);
::CORBA::WChar forDigit (::CORBA::Long arg0, ::CORBA::Long arg1);
::CORBA::Long getNumericValue (::CORBA::WChar arg0);
::CORBA::Long getType (::CORBA::WChar arg0);
::CORBA::Long hashCode ();
::CORBA::Boolean isDefined (::CORBA::WChar arg0);
::CORBA::Boolean isDigit (::CORBA::WChar arg0);
::CORBA::Boolean isISOControl (::CORBA::WChar arg0);
::CORBA::Boolean isIdentifierIgnorable (::CORBA::WChar arg0);
::CORBA::Boolean isJavaIdentifierPart (::CORBA::WChar arg0);
::CORBA::Boolean isJavaIdentifierStart (::CORBA::WChar arg0);
::CORBA::Boolean isJavaLetter (::CORBA::WChar arg0);
::CORBA::Boolean isJavaLetterOrDigit (::CORBA::WChar arg0);
::CORBA::Boolean isLetter (::CORBA::WChar arg0);
::CORBA::Boolean isLetterOrDigit (::CORBA::WChar arg0);
::CORBA::Boolean isLowerCase (::CORBA::WChar arg0);
::CORBA::Boolean isSpace (::CORBA::WChar arg0);
::CORBA::Boolean isSpaceChar (::CORBA::WChar arg0);
::CORBA::Boolean isTitleCase (::CORBA::WChar arg0);
::CORBA::Boolean isUnicodeIdentifierPart (::CORBA::WChar arg0);
::CORBA::Boolean isUnicodeIdentifierStart (::CORBA::WChar arg0);
::CORBA::Boolean isUpperCase (::CORBA::WChar arg0);
::CORBA::Boolean isWhitespace (::CORBA::WChar arg0);
::CORBA::WChar toLowerCase (::CORBA::WChar arg0);
::CORBA::WStringValue* toString ();
::CORBA::WChar toTitleCase (::CORBA::WChar arg0);
::CORBA::WChar toUpperCase (::CORBA::WChar arg0);

v java::lang::Character_init
virtual CORBA::ValueBase *create_for_unmarshal();
virtual java::lang::Character* create (::CORBA::WChar arg0);

v java::lang::Double
::CORBA::Long compareTo (const ::java::lang::Object& arg0);
::CORBA::Long compareTo__java_lang_Double (::java::lang::Double* arg0);
::CORBA::LongLong doubleToLongBits (::CORBA::Double arg0);
::CORBA::Double doubleValue ();
::CORBA::Boolean equals (const ::java::lang::Object& arg0);

Implementing CORBA applications 95

::CORBA::Long hashCode ();
::CORBA::Boolean infinite ();
::CORBA::Boolean isInfinite (::CORBA::Double arg0);
::CORBA::Boolean naN ();
::CORBA::Boolean isNaN (::CORBA::Double arg0);
::CORBA::Double longBitsToDouble (::CORBA::LongLong arg0);
::CORBA::Double parseDouble (::CORBA::WStringValue* arg0);
::CORBA::WStringValue* toString__ ();
::CORBA::WStringValue* toString__double (::CORBA::Double arg0);
::java::lang::Double* valueOf (::CORBA::WStringValue* arg0);

v java::lang::Double_init
virtual CORBA::ValueBase *java_lang_Double_factory::create_for_unmarshal();
java::lang::Double *java_lang_Double_factory::create__double (::CORBA::Double arg0);
java::lang::Double *java_lang_Double_factory::create__CORBA_WStringValue

(::CORBA::WStringValue* arg0);

v java::lang::Exception
v java::lang::Exception_init

virtual CORBA::ValueBase *create_for_unmarshal()
virtual java::lang::Exception* create__ ()
virtual java::lang::Exception* create__CORBA_WStringValue (::CORBA::WStringValue* arg0)

v java::lang::Float
::CORBA::Long compareTo (const ::java::lang::Object& arg0);
::CORBA::Long compareTo__java_lang_Float (::java::lang::Float* arg0);
::CORBA::Boolean equals (const ::java::lang::Object& arg0);
::CORBA::Long floatToIntBits (::CORBA::Float arg0);
::CORBA::Float floatValue ();

::CORBA::Long hashCode ();
::CORBA::Float intBitsToFloat (::CORBA::Long arg0);
::CORBA::Boolean infinite ();
::CORBA::Boolean isInfinite (::CORBA::Float arg0);
::CORBA::Boolean naN ();
::CORBA::Boolean isNaN (::CORBA::Float arg0);
::CORBA::Float parseFloat (::CORBA::WStringValue* arg0);
::CORBA::WStringValue* toString__ ();
::CORBA::WStringValue* toString__float (::CORBA::Float arg0);
::java::lang::Float* valueOf (::CORBA::WStringValue* arg0);

v java::lang::Float_init
virtual CORBA::ValueBase *java_lang_Float_factory::create_for_unmarshal();
java::lang::Float *java_lang_Float_factory::create__double (::CORBA::Double arg0);
java::lang::Float *java_lang_Float_factory::create__float (::CORBA::Float arg0);
java::lang::Float *java_lang_Float_factory::create__CORBA_WStringValue (::CORBA::WStringValue* arg0);

v java::lang::Integer
::CORBA::Long compareTo (const ::java::lang::Object& arg0);
::CORBA::Long compareTo__java_lang_Integer (::java::lang::Integer* arg0);
::java::lang::Integer* decode (::CORBA::WStringValue* arg0);
::CORBA::Boolean equals (const ::java::lang::Object& arg0);
::java::lang::Integer* getInteger__CORBA_WStringValue (::CORBA::WStringValue* arg0);
::java::lang::Integer* getInteger__CORBA_WStringValue__long (::CORBA::WStringValue*

arg0, ::CORBA::Long arg1);
::java::lang::Integer* getInteger__CORBA_WStringValue__java_lang_Integer

(::CORBA::WStringValue* arg0, ::java::lang::Integer* arg1);
::CORBA::Long hashCode ();
::CORBA::Long intValue ();
::CORBA::Long parseInt__CORBA_WStringValue (::CORBA::WStringValue* arg0);
::CORBA::Long parseInt__CORBA_WStringValue__long (::CORBA::WStringValue* arg0,

::CORBA::Long arg1);
::CORBA::WStringValue* toBinaryString (::CORBA::Long arg0);
::CORBA::WStringValue* toHexString (::CORBA::Long arg0);
::CORBA::WStringValue* toOctalString (::CORBA::Long arg0);
::CORBA::WStringValue* toString__ ();
::CORBA::WStringValue* toString__long (::CORBA::Long arg0);
::CORBA::WStringValue* toString__long__long (::CORBA::Long arg0, ::CORBA::Long arg1);
::java::lang::Integer* valueOf__CORBA_WStringValue (::CORBA::WStringValue* arg0);
::java::lang::Integer* valueOf__CORBA_WStringValue__long (::CORBA::WStringValue* arg0,

::CORBA::Long arg1);

v java::lang::Integer_init
virtual CORBA::ValueBase *create_for_unmarshal();
java::lang::Integer* create__long (::CORBA::Long arg0);
java::lang::Integer* create__CORBA_WStringValue (::CORBA::WStringValue* arg0);

v java::lang::Long

96 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

::CORBA::Long ompareTo (const ::java::lang::Object& arg0);
::CORBA::Long compareTo__java_lang_Long (::java::lang::Long* arg0);
::java::lang::Long* decode (::CORBA::WStringValue* arg0);
::CORBA::Boolean equals (const ::java::lang::Object& arg0);
::java::lang::Long* getLong__CORBA_WStringValue (::CORBA::WStringValue* arg0);
::java::lang::Long* getLong__CORBA_WStringValue__long_long (::CORBA::WStringValue*

arg0, ::CORBA::LongLong arg1);
::java::lang::Long* getLong__CORBA_WStringValue__java_lang_Long

(::CORBA::WStringValue* arg0, ::java::lang::Long* arg1);
::CORBA::Long hashCode ();
::CORBA::LongLong longValue ();
::CORBA::LongLong parseLong__CORBA_WStringValue (::CORBA::WStringValue* arg0);
::CORBA::LongLong parseLong__CORBA_WStringValue__long (::CORBA::WStringValue*

arg0, ::CORBA::Long arg1);
::CORBA::WStringValue* toBinaryString (::CORBA::LongLong arg0);
::CORBA::WStringValue* toHexString (::CORBA::LongLong arg0);
::CORBA::WStringValue* toOctalString (::CORBA::LongLong arg0);
::CORBA::WStringValue* toString__ ();
::CORBA::WStringValue* toString__long_long (::CORBA::LongLong arg0);
::CORBA::WStringValue* toString__long_long__long (::CORBA::LongLong arg0,

::CORBA::Long arg1);
::java::lang::Long* valueOf__CORBA_WStringValue (::CORBA::WStringValue* arg0);
::java::lang::Long* valueOf__CORBA_WStringValue__long (::CORBA::WStringValue* arg0,

::CORBA::Long arg1);

v java::lang::Long_init
virtual CORBA::ValueBase *create_for_unmarshal();
java::lang::Long* create__long_long(::CORBA::LongLong arg0);
java::lang::Long* create__CORBA_WStringValue(::CORBA::WStringValue* arg0);

v java::lang::Number

virtual ::CORBA::Long intValue();
virtual ::CORBA::LongLong longValue();
virtual ::CORBA::Float floatValue();
virtual ::CORBA::Double doubleValue();
virtual ::CORBA::Octet byteValue();
virtual ::CORBA::Short shortValue();

v java::lang::Short
::CORBA::Long compareTo (const ::java::lang::Object& arg0);
::CORBA::Long compareTo__java_lang_Short (::java::lang::Short* arg0);
::java::lang::Short* decode (::CORBA::WStringValue* arg0);
::CORBA::Boolean equals (const ::java::lang::Object& arg0);
::CORBA::Long hashCode ();
::CORBA::Short parseShort__CORBA_WStringValue (::CORBA::WStringValue* arg0);
::CORBA::Short parseShort__CORBA_WStringValue__long (::CORBA::WStringValue*

arg0, ::CORBA::Long arg1);
::CORBA::Short shortValue ();
::CORBA::WStringValue* toString__ ();
::CORBA::WStringValue* toString__short (::CORBA::Short arg0);
::java::lang::Short* valueOf__CORBA_WStringValue (::CORBA::WStringValue* arg0);
::java::lang::Short* valueOf__CORBA_WStringValue__long (::CORBA::WStringValue* arg0,

::CORBA::Long arg1);

v java::lang::Short_init
virtual CORBA::ValueBase *create_for_unmarshal();
java::lang::Short* create__CORBA_WStringValue(::CORBA::WStringValue* arg0);
java::lang::Short* create__short(::CORBA::Short arg0);

v java::lang::Throwable
::CORBA::WStringValue* localizedMessage ()
::CORBA::WStringValue* message ()
::CORBA::Void setMessage (const ::CORBA::WStringValue& arg0);
::CORBA::WStringValue* getMessage () const;
::CORBA::WStringValue* toString ()

v java::lang::Throwable_init
virtual CORBA::ValueBase *create_for_unmarshal()
virtual java::lang::Throwable* create__ ()
virtual java::lang::Throwable* create__CORBA_WStringValue (::CORBA::WStringValue* arg0)

v java::math::BigDecimal
::CORBA::Long java::math::BigDecimal::signum ()
::CORBA::Long java::math::BigDecimal::scale ()
::java::math::BigInteger* java::math::BigDecimal::unscaledValue ()

Implementing CORBA applications 97

::java::math::BigDecimal* java::math::BigDecimal_factory::create__java_math_BigInteger
(::java::math::BigInteger* arg0)

::java::math::BigDecimal* java::math::BigDecimal_factory::create__java_math_BigInteger__long
(::java::math::BigInteger* arg0, ::CORBA::Long scale)

Note: The fourth and fifth line of the previous example wrapped due to the
width of the page.

v java::math::BigInteger
::CORBA::Long java::math::BigInteger::signum ()
::java::math::BigInteger* java::math::BigInteger_factory::
create__org_omg_boxedRMI_seq1_octet (::org::omg::boxedRMI::seq1_octet* magnitude)

Note: The second line of the previous example wrapped due to the width of the
page.

v java::sql::Date
::java::sql::Date* java::sql::Date_factory::create__long_long (::CORBA::LongLong time)

v java::sql::Time
::java::sql::Time* java::sql::Time_factory::create__long_long (::CORBA::LongLong time)

v java::sql::Timestamp
::CORBA::Long java::sql::Timestamp::nanos ()
::CORBA::Void java::sql::Timestamp::nanos (::CORBA::Long nanos)
::java::sql::Timestamp* java::sql::Timestamp_factory::create__long_long (::CORBA::LongLong time)

v java::util::Date
::java::lang::Object* java::util::Date::clone ()
::CORBA::LongLong java::util::Date::time ()
::CORBA::Void java::util::Date::time (::CORBA::LongLong time)
::java::util::Date* java::util::Date_factory::create__ ()

v java::util::Vector
::CORBA::Long getCapacity() const;
::CORBA::Void setCapacity(::CORBA::Long cap);
java_util_Vector_Impl& operator=(const java_util_Vector_Impl& aVector);
const std::vector<java::lang::Object>& getVectorInstance() const;
const std::vector<java::lang::Object>::iterator& getObjectIterator() const;
std::vector<java::lang::Object>::iterator& resetObjectIterator();
::CORBA::Void setCapacityIncrement(::CORBA::Long incrementValue);
::CORBA::Long getCapacityIncrement();
::CORBA::Void addElement (const ::java::lang::Object& arg0);
::CORBA::Long capacity ();
::java::lang::Object* clone ();
java::util::Vector* cloneVector ();
::CORBA::Void copyInto (::org::omg::boxedRMI::java::lang::seq1_Object* arg0);
::java::lang::Object* elementAt (::CORBA::Long arg0);
::java::lang::Object* getElements ();
::CORBA::Void ensureCapacity (::CORBA::Long arg0);
::java::lang::Object* firstElement ();
::CORBA::Long indexOf__java_lang_Object__long (const ::java::lang::Object& arg0,
::CORBA::Long arg1);
::CORBA::Void insertElementAt (const ::java::lang::Object& arg0, ::CORBA::Long arg1);
::CORBA::Boolean isEmpty();
::java::lang::Object* lastElement ();
::CORBA::Long lastIndexOf__java_lang_Object__long (const ::java::lang::Object& arg0,
::CORBA::Long arg1);
::CORBA::Void removeAllElements ();
::CORBA::Boolean removeElement (const ::java::lang::Object& arg0);
::CORBA::Void removeElementAt (::CORBA::Long arg0);
::CORBA::Void setElementAt (const ::java::lang::Object& arg0, ::CORBA::Long arg1);
::CORBA::Void setSize (::CORBA::Long arg0);
::CORBA::Long size();
::CORBA::Void trimToSize ();

v java::util::Vector_init
virtual ::CORBA::ValueBase *create_for_unmarshal()
virtual ::java::util::Vector* create__ ()
::java::util::Vector* create__long (::CORBA::Long arg0)
::java::util::Vector* create__long__long (::CORBA::Long arg0, ::CORBA::Long arg1)

v javax::ejb::CreateException
v javax::ejb::CreateException_init

98 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

virtual CORBA::ValueBase *create_for_unmarshal()
virtual javax::ejb::CreateException* create__ ()
virtual javax::ejb::CreateException* create__CORBA_WStringValue (::CORBA::WStringValue* arg0)

v javax::ejb::RemoveException
v javax::ejb::RemoveException_init

virtual CORBA::ValueBase *create_for_unmarshal()
virtual javax::ejb::RemoveException* create__ ()
virtual javax::ejb::RemoveException* create__CORBA_WStringValue (::CORBA::WStringValue*arg0)

v javax::ejb::FinderException
v javax::ejb::FinderException_init

virtual CORBA::ValueBase *create_for_unmarshal()
virtual javax::ejb::RemoveException* create__ ()
virtual javax::ejb::RemoveException* create__CORBA_WStringValue (::CORBA::WStringValue*arg0)

v javax::ejb::ObjectNotFoundException
v javax::ejb::ObjectNotFoundException_init

virtual CORBA::ValueBase *create_for_unmarshal()
virtual javax::ejb::RemoveException* create__ ()
virtual javax::ejb::RemoveException* create__CORBA_WStringValue(::CORBA::WStringValue*arg0)

v javax::ejb::DuplicateKeyException
v javax::ejb::DuplicateKeyException_init

virtual CORBA::ValueBase *create_for_unmarshal()
virtual javax::ejb::RemoveException* create__ () virtual javax::ejb::
RemoveException* create__CORBA_WStringValue(::CORBA::WStringValue*arg0)

Note: The second line of the previous example wrapped due to the width of the
page.

v javax::ejb::EJBMetaData
::javax::ejb::EJBHome_ptr getEJBHome ()
::javax::rmi::CORBA::ClassDesc* getHomeInterfaceClass ()
::javax::rmi::CORBA::ClassDesc* getRemoteInterfaceClass ()
::javax::rmi::CORBA::ClassDesc* getPrimaryKeyClass ()
void setEJBHome (::javax::ejb::EJBHome_ptr arg0);
void setHomeInterfaceClass (::javax::rmi::CORBA::ClassDesc* arg0);
void setRemoteInterfaceClass (::javax::rmi::CORBA::ClassDesc* arg0);
void setPrimaryKeyClass (::javax::rmi::CORBA::ClassDesc* arg0)
::CORBA::Boolean isSession ()

v javax::rmi::CORBA::ClassDesc
v com::ibm::ws::java_io_PrintStream_factory

virtual CORBA::ValueBase *create_for_unmarshal()
virtual ::java::io::PrintStream* create__ ()
virtual ::java::io::PrintStream* create__java_io_OutputStream (::java::io::OutputStream *arg0)
virtual ::java::io::PrintWriter* create__java_io_Writer (::java::io::Writer *arg0)

/**
* Create a new print stream over a file output stream.
*
* @param The name of the file output stream to which values and objects will be
* printed.
* @return the pointer to the created PrintStream object.

*/
virtual ::java::io::PrintStream* create__CORBA_WStringValue (::CORBA::WStringValue* arg0)

v com::ibm::ws::java_io_FilterOutputStream_factory
virtual CORBA::ValueBase *create_for_unmarshal()
virtual ::java::io::FilterOutputStream* create__ ()

v com::ibm::ws::java_io_PrintWriter_factory
virtual CORBA::ValueBase *create_for_unmarshal()
virtual ::java::io::PrintWriter* create__ ()
virtual ::java::io::PrintWriter* create__java_io_Writer (::java::io::Writer *arg0)
virtual ::java::io::PrintWriter* create__java_io_OutputStream
(::java::io::OutputStream *arg0)

/**
* Create a new print writer over a file output stream.

Implementing CORBA applications 99

*
* @param The name of the file output stream to which values and objects will be
* printed.
* @return the pointer to the created PrintStream object.

*/
virtual ::java::io::PrintWriter* create__CORBA_WStringValue (::CORBA::WStringValue* arg0)

Note: The fourth line of the previous example wrapped due to the width of the
page.

v com::ibm::ws::javax_rmi_CORBA_ClassDesc_factory
virtual CORBA::ValueBase *create_for_unmarshal()
virtual javax::rmi::CORBA::ClassDesc *create__()

v com::ibm::ws::javax_ejb_EJBMetaData_factory
virtual CORBA::ValueBase *create_for_unmarshal()
virtual ::javax::ejb::EJBMetaData *create__ ()

v com::ibm::ws::VtlUtil
static const char* exceptionLogFileName;
static const char* debugLogFileName;

/**
* debugOn set to 1 is the debugging mode.
* debugOn set to 0 is the non-debugging mode.
*/

static const int debugOn; // = 0;

/**
* debugInfoToStdOut set to 1, the debugging messages will be printed to stdout.
* debugInfoToStdOut set to 0, the debugging messages will not be printed to stdout.
*/

static const ::CORBA::Boolean debugInfoToStdOut;

/**
* debugInfoToFile set to 1, the debugging messages will be printed to the file defined by
* debugLogFileName.
* debugInfoToFile set to 0, the debugging messages will not be printed to a file.
*/

static const ::CORBA::Boolean debugInfoToFile; // = false;

/**
* Print the debugging message string msg to the designated media when debugOn is true.
*
* @param msg the <code>char *</code> to be printed.
* @return void

*/
static void debug(char *msg);

/**
* Concatenate strings msg1 and msg2. Print the result string to the designated media
* if debugOn is true.
*
* @param msg1 the <code>char *</code> to be printed.
* @param msg2 the <code>char *</code> to be printed.
* @return void

*/
static void debug(char *msg1, char *msg2);

/**
* Print the debugging message string str and the attributes of the exception e to
* the designated media if debugOn is true.

*
* @param msg the <code>char *</code> to be printed.
* @param e the <code>java::lang:: Throwable* </code> to be printed.
* @return void

*/
static void debug(char msg, java::lang::Throwable* e);

/**
* Print the attributes of the exception e to stderr and the designated log file defined by the
* exceptionLogFileName.

*
* @param e the <code> java::lang::Throwable*</code> to be printed.
* @return void

*/
static void handleException(java::lang::Throwable* e);

/**
* Print the attributes of the exception e and the message string msg to stderr and

100 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

* the designated log file * defined by the exceptionLogFileName.

* @param e the <code> java::lang::Throwable*</code> to be printed.
* @param msg the <code>char *</code> to be printed.
* @return void

*/
static void handleException(java::lang::Throwable* e, char *msg);

/**
* Transform the string str to a WStringValue object and return its pointer.

*
* @param str the <code>char *</code> to be transformed.
* @return pointer to the transformed WStringValue object

*/

static ::CORBA::WStringValue* toWStringValue(const char *str);

/**
* Concatenate strings str1 and str2, and transform the result string to a
WStringValue object and return
* its pointer.

*
* @param str1 the <code>char *</code> to be transformed.
* @param str2 the <code>char *</code> to be transformed.
* @return pointer to the transformed WStringValue object

*/
static ::CORBA::WStringValue* toWStringValue(const char *str1, const char *str2);

/**
* Concatenate strings str1, str2,and str3, and transform the result string to a
* WStringValue object and return its pointer.

*
* @param str1 the <code>char *</code> to be transformed.
* @param str2 the <code>char *</code> to be transformed.
* @param str3 the <code>char *</code> to be transformed.
* @return pointer to the transformed WStringValue object

*/
static ::CORBA::WStringValue* toWStringValue(const char *str1, const char *str2, const char *str3);

/**
* Transform the WStringValue object wsv to a string and return the pointer to the string.

*
* @param wsv the pointer to <code>::CORBA::WstringValue </code> to be transformed.
* @return pointer to the transformed string.

*/
static char* WStringValueToString(::CORBA::WStringValue *wsv);

/**
/**

* Returns the registered factory object for the valuetype that has the designated repository id.
* If the factory object is not found, a NULL pointer will be returned.
*
* @param the repository id of the factory to be retrieved as defined in the Vtlib.idl file.
* @return the pointer to the registered factory.

*/
static ::CORBA::ValueFactoryBase* getFactory(const char * rid);

/**
* Each of the following methods returns the registered factory object for the named valuetype.
* If the factory object is not found, a NULL pointer will be returned.
*
* @return the pointer to the registered factory.

*/
static java::lang::Boolean_init* getBooleanFactory();
static java::lang::Byte_init* getByteFactory();
static java::lang::Character_init* getCharacterFactory();
static java::lang::Double_init* getDoubleFactory();
static java::lang::Float_init* getFloatFactory();
static java::lang::Integer_init* getIntegerFactory();
static java::lang::Long_init* getLongFactory();
static java::lang::Short_init* getShortFactory();
static java::lang::Throwable_init* getThrowableFactory();
static java::lang::Exception_init* getExceptionFactory();
static java::io::IOException_init* getIOExceptionFactory();
static javax::ejb::CreateException_init * getCreateExceptionFactory();
static javax::ejb::RemoveException_init * getRemoveExceptionFactory();
static java::util::Vector_init* getVectorFactory();
static com::ibm::ws::javax_rmi_CORBA_ClassDesc_factory* getClassDescFactory();
static com::ibm::ws::java_io_PrintStream_factory* getPrintStreamFactory();
static com::ibm::ws::java_io_FilterOutputStream_factory* getFilterOutputStreamFactory();
static com::ibm::ws::java_io_PrintWriter_factory* getPrintWriterFactory();
static com::ibm::ws::javax_ejb_EJBMetaData_factory* getEJBMetaDataFactory();

Implementing CORBA applications 101

Example: C++ value type library: The following examples are provided to
illustrate use of the valuetype library methods in a distributed environment.

Example: A client program that uses a remote object to call methods of
::java::util::Vector
//First obtain the stringified ior of an EJB deployed on an AE server

using namespace com::ibm::ws;

CORBA::Object_var vector_obj;
//init the orb
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv, "DSOM");

//Get the stringified ior from a file, then use it to obtain a valid object reference
ifstream in;
int fileIndex = 0;
char* iorfile = "VectorSession.ior"; // the stringified ior of a session bean that

// uses instances of the java serializable
// java.util.Vector

in.open(iorfile);
if (in.fail()) {

std::cerr << "Cannot open file " << iorfile << std::endl;
return 1;

}
char iorstr[2048];
//read ior from file
in >> iorstr;

in.close();

std::cout << "using ior:’" << iorstr << "’" << std::endl;

//get stringified ior
vector_obj = orb->string_to_object(iorstr);
if (CORBA::is_nil(vector_obj))
{

std::cerr << "string_to_object failed"<< std::endl;
return 1;

}

// Now, call the createVector method of the stub class ejbPackage::VectorSession to access
// an EJB method that returns an instance of the java serializable, java.util.Vector. The
// stub method then returns a pointer to a java::util::Vector.

::CORBA::Short initialElement = 999;
java::util::Vector *vPrt;

try
{

vPrt = vector_obj ->createVector(initialElement);
if (vPrt == 0)
{

VtlUtil::debug("In testVector: vector_obj ->createVector(arg) returned a null pointer\n");

}
} catch (...)

{
VtlUtil::debug("In testVector: vector_obj ->createVector(arg) has thrown an exception\n");

}

//Next use the remote object to a method of ::java::util::Vector.

/************************
* Create and populate a
* java::lang::Object
************************/

short inValue = 999;
::CORBA::Long incrementValue = 1;

java::lang::Object obj;
obj <<= inValue; //rvalue is a ptr

/**
* Call the addElement method using the pointer obtaned remotely
* via the createVector method. Add "numberToAdd" elements.
* Verify that the correct size is returned
***/

::CORBA::Long numberToAdd = 5;
for (int i = 0; i < numberToAdd; i ++) {

102 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

try {
vPrt->addElement (obj);
} catch (...)

{
VtlUtil::debug("In testVector: In catch after pwPtr->addElement()\n");

}
}

Example: A client program that uses a remote object to call methods of
::java::lang::Boolean
using namespace com::ibm::ws;

const char *factoryName = "java::lang::Boolean_init";

// Use the utility method, com::ibm::ws::VtlUtil::getBooleanFactory to get a pointer to the registered
// java:lang::Boolean_init factory object.

java::lang::Boolean_init* fact = VtlUtil::getBooleanFactory();

if(fact == 0)
{

VtlUtil::debug("VtlUtil::getFactory returned a null value ");
}
else
{

VtlUtil::debug("VtlUtil::getFactory returned a valid value ");
}

//call create__boolean to create a pointer to a java::lang::Boolean that contains true
java::lang::Boolean* booleanPtr = fact->create__boolean(1);
if(booleanPtr == 0)
{
VtlUtil::debug("booleanPtr == 0");
return failed;

}
else
{
VtlUtil::debug("create__boolean returned a valid value: test succeeded");

}

CORBA::Object_var boolean _obj;
::CORBA::Boolean trueBooleanValue = boolean_obj->callBooleanValue(booleanPtr);
int tempTrueBooleanValue = trueBooleanValue;
if (tempTrueBooleanValue == 1)
{

VtlUtil::debug("tempTrueBooleanValue == 1");
}

Creating your own C++ valuetypes
To aid application development, IBM WebSphere Application Server provides a
valuetype library that contains C++ valuetype implementations for some
commonly used Java classes in the java.lang, java.io, java.util, and javax.ejb
packages. For example, Integer, Float, Vector, Exception, and so on. However, you
might want to create your own C++ valuetypes.

The following steps describe how to create a C++ valuetype from an existing
sample class called vttest.Book

Steps for this task

1. If you have private variables in your class that are accessed using EJB getter
and setter methods, rename the methods to not use ″get″ and ″set″ in their
names. For example, rename getProperty() and setProperty() to readProperty()
and writeProperty(). This change is necessary to work around a problem with
rmic.

2. Use the following command to generate the IDL file of your Java class:
rmic -idl vttest.Book

3. Use the following command to generate the Book.hh and Book_C.cpp files:
idlc -mcpponly -mnohhguards -mdllname=vtlib_name -shh:uc -Iinclude-path vttest/Book.idl

Implementing CORBA applications 103

This outputs the client-side definition and client bindings files, Book.hh and
Book_C.cpp. These two files are generated and must not be edited.

4. Use the following command to generate the Book.ih and Book_I.cpp files:
idlc -mcpponly -mnohhguards -mdllname=vtlib_name -eih:ic -Iinclude-path vttest/Book.idl

This outputs the skeleton implementation files, Book.ih and Book_I.cpp.
5. In the generated Book.ih file, add an inheritance from

OBV_<package>::<class> to the <module>_<class>_Impl definition.
For example:
class vttest_Book_Impl : virtual public ::vttest::Book, virtual
public ::CORBA:: DefaultValueRefCountBase

becomes:
class vttest_Book_Impl : virtual public ::vttest::Book, virtual
public OBV_vttest::Book, virtual public
::CORBA::DefaultValueRefCountBase

You need this additional inheritance to use the default implementation class,
OBV_<module>::<class>. See step 7 for further details.

Note: The generated file <class>_C.cpp contains the syntax required for the
class OBV_<module>::<class>.

6. Add a class factory definition in the form <module>::<class>_factory to the
<class>.ih file.
For example:
class <module_<class>_factory : public ::<module>::<class>_init
{

public:

virtual ;
::CORBA::ValueBase* create_for_unmarshal();
::<module>::<class>* create();
::CORBA::ValueBase* asValueBase(void* v);

};

For Book class, this becomes:
class vttest_Book_factory : public ::vttest::Book_init
{

public:

virtual:
::CORBA::ValueBase* create_for_unmarshal();
::vttest::Book* create();
::CORBA::ValueBase* asValueBase(void* v);

};

A template can be found in the factory classes defined in the file
Vtlib_i_vb.cxx in your samples directory. The following steps use
java_lang_Boolean_factory as a template.

Note: This template includes implementation code, which is omitted here. The
template also lacks the asValueBase definition, which is added here.

class java_lang_Boolean_factory : public java::lang::Boolean_init
{
public:
virtual ::CORBA::ValueBase*

create_for_unmarshal();
virtual java::lang::Boolean*

104 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

create__CORBA_WStringValue(::CORBA::WStringValue* arg0);
virtual java::lang::Boolean*

create__boolean(::CORBA::Boolean arg0);
virtual ::CORBA::ValueBase*

asValueBase(void* v);
};

The <class>_init class defined in the generated <class>.hh file shows the create
constructors that must be included in the <class>_factory for your class. (The
create consructors above are specific to the Boolean valuetype class.) The class
Book_init in Book.hh contains only one create constructor:
virtual Book* create ()=0;

Therefore, only that create constructor is added to the class definition for
vttest_Book_factory:
virtual ::vttest::Book* create();

7. Add implementations for the factory class methods to <class>_I.cpp. Sample
implementations can be copied from the file vtlib_i_vb.cxx in the samples
directory, such as the following for Boolean_factory:
virtual CORBA::ValueBase *create_for_unmarshal()
{
return new java_lang_Boolean_Impl();
}
virtual java::lang::Boolean* create__boolean (CORBA::Boolean arg0)
{
java_lang_Boolean_Impl *ptr = new java_lang_Boolean_Impl();
ptr->value(arg0);
return ptr;
}

The create_for_unmarshal() method creates a new <class>_Impl object and
returns it. The create methods create new <class>_Impl classes and initialize
them with appropriate values. (Your create methods must match those in your
class.) Since the methods in the implementation file are not virtual, the virtual
keyword must be deleted. In their completed form, the implementations for
the Book class look like this:
::CORBA::ValueBase* vttest_Book_factory::create_for_unmarshal()
{
return new ::vttest_Book_Impl();
}
::vttest::Book* vttest_Book_factory::create()
{
return new ::vttest_Book_Impl();
}

The instance variables of a Java class are mapped into C++ counterparts in the
OBV_* namespace’s default implementation. (In a previous step, you added
an inheritance of OBV_<module>::<class>). Use these OBV_ getters and setters
in your implementation class.

8. An implementation of the factory method asValueBase() also is required. The
method is a cast from (void *) to (::CORBA::ValueBase *). It takes the
following form:
::CORBA::ValueBase* <module>_<class>_factory::asValueBase(void* v)
{
return (::CORBA::ValueBase*)((::<module>::<class>*) v);
}

You must change the class name to match your own class. In the case of the
Book class:

Implementing CORBA applications 105

::CORBA::ValueBase* vttest_Book_factory::asValueBase(void* v)
{
return (::CORBA::ValueBase*)((::vttest::Book*)v);
}

9. Register your factory with the ORB by adding additional class,
<module>_<class>_factoryInit. For the Book class, the following class and
object instantiation do this:
class vttest_Book_factoryInit { public : vttest_Book_factoryInit() {
::CORBA::ORB_ptr _vtlibOrb; int _argc = 0; ::CORBA::ValueFactoryBase_var
retfact; ::CORBA::ValueFactoryBase_var fact; // Get access to the ORB.
_vtlibOrb = ::CORBA::ORB_init(_argc, NULL, ″DSOM″); // Create a Book
factory. fact = new ::vttest_Book_factory(); // Register the factory. retfact =
_vtlibOrb->register_value_factory((char *)::vttest::Book::Book_RID, fact.in()); }
}; // Static instantiation of the class. static vttest_Book_factoryInit
__vttest_Book_factoryInit;

10. Add code that creates a Book objectd. You can put this code in the client
source. First, insert an include of .hh. For Book, add #include <Book.hh>.
Next, add a function that creates a Book object.
::<module>::<class>* create<class>()
{
static <module>_<class>_init *factory = NULL;
if (factory == NULL)
factory = (<module>::<class>_init*) ::com::ibm::ws::VtlUtil::getFactory
(::<module>::<class>::<class>_RID);
::<module>::<class>* myPtr = factory->create();
return myPtr;
}

Note: The fifth and sixth lines of the previous example are one continuous
line. However, the example had to wrap to fit within the width of the
page.

For the Book class, this is:
::vttest::Book* createBook()
{
static ::vttest::Book_init *factory = NULL;
factory = (::vttest::Book_init*) ::com::ibm::ws::VtlUtil::getFactory(::vttest::Book::Book_RID);
::vttest::Book* bookPtr = factory->create();
return bookPtr;
}

What to do next

You have now completed creation of your own C++ valuetype. Instances of this
class can be created and used locally by your client. Because this class is a
valuetype, it also can be serialized and sent to a server, where it can be used and
returned to your client.

CORBA internationalization considerations
When you code CORBA applications for international use, consider the issues
discussed in the following topics:
v “Initialization of client programs”
v “Character set restriction” on page 107
v “Codeset conversions” on page 107
v “Passing object references between multiple platforms” on page 107
v “OMG char data type in IDL files” on page 107

Initialization of client programs
All C++ clients should have their locale information set correctly. To do this, add
the following so that it is called prior to calling CORBA::ORB_init():

106 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

setlocale(LC_ALL, "");

Character set restriction
When developing CORBA applications, use only the Portable Character Set (PCS)
in your IDL string type parameters. The PCS consists of the following characters:
0 1 2 3 4 5 6 7 8 9
: ; < = > ? @ [\] ^ _ ` ’ ~ { | } ! " # $ % & () * + , - . / <space>
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Codeset conversions
One of the fundamental features of the Object Request Broker (ORB) is to provide
a way for clients and servers to communicate. Client and server processes can exist
on various platforms and can be configured to use different locale information.

The ORB is responsible for performing the necessary codeset conversions to allow
clients and servers on different platforms to interoperate. This section describes the
ORB codeset conversion capabilities for both character and wide character data.

Passing object references between multiple platforms
When passing an object reference that is stored in a file from one platform to
another, any string-modified values must be passed with the appropriate code
page conversion.

For example, when you transfer files between Microsoft Windows NT and IBM
OS/390®, you must use an ASCII-aware mechanism (such as FTP in ASCII mode
or an ASCII NFS mount). Do not use FTP in binary mode.

OMG char data type in IDL files
Successful communications between clients and servers can involve codeset
conversions. But CORBA limits the size of a char data item to one octet during
transportation. So if any char data item is expanded to more than one octet in
length during code set conversion, a CORBA::DATA_CONVERSION exception is
thrown.

Use the char data type for a parameter or return result when the parameter or
return result can contain data from the Portable Character Set only. For more
information, see “Character set restriction”. Otherwise, use a string data type or
char array.

CORBA programming reference
CORBA 2.3 specifies standard forms by which client code can manipulate data
whose types are described using an Interface Definition List (IDL). Reference
material on programming these standard forms is grouped under the following
topics:
v “CORBA types and business objects”
v “Commonly used CORBA interfaces” on page 109
v “CORBA C++ bindings” on page 110
v “Storage management and _var types” on page 129
v “CORBA exceptions” on page 138

CORBA types and business objects
CORBA basic types

Implementing CORBA applications 107

Most of the CORBA types map directly onto C++ types and can be used
transparently to C++. The following basic C++ types map directly into CORBA
types:
v Atomic data types:

– Boolean
– Char
– Double
– Float
– Long
– Octet (hexadecimal)
– Short
– ULong (unsigned long)
– UShort (unsigned short)

v Enum (enumerations)
v LongLong (long long)
v Struct
v ULongLong (unsigned long long)
v WChar (wide character)

All of these types are scoped to the CORBA class and must be declared
accordingly. Their use in C++ is transparent and straightforward. For example:
CORBA::Short aShortvariable;
...
aShortVariable = 12;
...

CORBA types that return object references

Other CORBA types are not as straightforward to use because they return object
references to the caller. The following CORBA types return object references to the
caller:
v Any
v Array
v Sequence
v String
v Union
v WString (wide string)

It is the responsibility of the caller to manage the object references and their
associated memory. There are two facilities provided by CORBA to do this:

A_var This is the facility most frequently used by client code because it is a smart
pointer that automatically releases its object reference when it is
deallocated or assigned a new object reference. This is the safest and most
straightforward approach to managing these types.

A_ptr This is a pointer type that provides the most basic object reference, which
has similar semantics to a standard C++ pointer.

Note: Avoid declaring C++ Static variables as _var. The _var holds a reference to
an object. During the end of the process, this object might reference another object

108 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

that was removed before end processing completes for this static type. As a result,
the _var might reference an inappropriate address or null pointer and thereby
cause an undesirable ending.

Commonly used CORBA interfaces
The following are the most commonly used CORBA interfaces:
v CORBA class interfaces
v CORBA::object interfaces
v CORBA::ORB interfaces

CORBA class interfaces

The CORBA interface provides the following commonly used class operations.
These are used like a C++ class reference (for example
CORBA::is_nil(somePointer);).

is_nil This operation returns a boolean that indicates if the input object reference
is nil. This is useful for many operations involving object references,
including those operations that do not throw exceptions when they fail -
for example CORBA::Object::_narrow().

release
This operation releases resources associated with an object or pseudo-object
reference.This operation may or may not perform a C++ delete operation.
A reference count is used by this operation and
CORBA::Object::_duplicate(). When the reference count reaches zero then
the appropriate delete operations are performed. Care must be taken when
using the release and _duplicate operations to ensure that objects are not
leaked or inadvertently deleted. Alternatively use the _var technique
described for string_dup below.

string_dup
This operation copies a string. A common example of its use is when
returning a string from an operation. Strings and wide strings, unlike the
other basic CORBA types, have associated allocated memory. So care must
be taken when using these variables. The resulting string should
subsequently be freed by using the CORBA::string_free operation, or by
assigning the string to a _var variable which will free the string
appropriately.

CORBA::object interfaces

The CORBA interface provides the following object interfaces:

_duplicate
This operation duplicates an object reference. This is particularly useful
when passing references to objects to resolve memory ownership issues.
For every _duplicate that is performed on an object an equal number of
release() must also be performed for proper memory management. An
alternative to the _duplicate() and release() logic is to use _var support as
described for string_dup in CORBA class interfaces.

_is_a This operation is used to determine whether an object reference supports a
given IDL interface. If the object supports the interface the _narrow
operation can be successfully performed.

Implementing CORBA applications 109

_is_equivalent
This operation is used to determine whether two object references refer to
the same object.

_narrow
This operation is used to narrow a more generic interface to a more
specific interface. This operation will return an empty pointer without
throwing an exception if the interface cannot be narrowed to the requested
type. Care must be taken to check the returned value before using it.

_nil This operation returns a nil CORBA::Object. This object could be used for
comparison operations.

_non_existent
This operation determines whether an object reference refers to a valid
object. This will result in verification of the object reference only, no other
operations are performed on the requested object.

CORBA::ORB interfaces

The CORBA interface provides the following ORB interfaces:

object_to_string
This operation converts an object reference to an external form that can be
stored for later use or exchanged between processes. The string_to_object
operation can be used to reconstruct the object reference.

string_to_object
This operation converts a stringified object reference to a reconstructed
object reference. The object_to_string operation must have been used to
create the input stringified data.

Note: Although object_to_string is the way to save object references for future
usage, the returned data should only be used with string_to_object to reconstruct
that object reference. Do not use the string for comparing equivalence of object
references. The object_to_string operation may return different values at different
times because various Object Services may be adding information to this IOR.

CORBA C++ bindings
C++ bindings are generated, based on CORBA 2.1 standard forms, to enable client
C++ code to manipulate data whose types are described using IDL. C++ bindings
that support the standard forms are called compliant and client code that uses
(only) these forms is called conformant.

For more information about C++ bindings, see the following topics:
v “CORBA C++ bindings for constants”
v “CORBA C++ bindings for data types” on page 111
v “CORBA C++ bindings for interfaces” on page 126
v “CORBA C++ binding restrictions” on page 128
v “Name scoping and modules in the C++ bindings” on page 129

CORBA C++ bindings for constants
Constants can be defined within the Interface Definition Language (IDL) in either
of the following ways:
v Within a module or interface.
v Globally, outside any module or interface.

110 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

If you declare an IDL constant within a module or interface, the constant is
mapped as a static data item local to the C++ class for that module or interface. If
you declare an IDL constant globally, the constant is mapped as a static data item
global to that client application.

For example, consider the following IDL:
module M
{

const string name = "testing";
};

After compiling the client bindings, a C++ client application can refer to the
constant using the expression M::name.

If the same constant is declared globally, outside any module or interface, then
(after compiling the client bindings) a C++ client application can refer to the
constant using the expression name.

CORBA C++ bindings for data types
C++ bindings can be created for the following CORBA data types:
v “C++ bindings for CORBA Any type”
v “C++ bindings for CORBA Array types” on page 115
v “C++ bindings for CORBA Atomic data types” on page 118
v “C++ bindings for CORBA Enumerations” on page 118
v “C++ bindings for CORBA Sequence types” on page 118
v “C++ bindings for CORBA Strings” on page 122
v “C++ bindings for CORBA Struct types” on page 123
v “C++ bindings for CORBA Union types” on page 124
v “C++ bindings for CORBA WStrings” on page 125

C++ bindings for CORBA Any type: The purpose of the IDL ″any″ type is to
encapsulate data of some arbitrary IDL type. The C++ bindings provide a C++
class named CORBA::Any that provides this functionality. A CORBA::Any class
encapsulates a void* pointer and a CORBA::TypeCode object that describes the
thing being pointed to by the void*.

The Any type can be used with many of the CORBA types. It is useful when
different types can be used that are unknown to the receiver of the data or also
used as a common storage mechanism for passing a variety of types. The Any type
can be used with many of the CORBA types. However, it has a unique method of
redirection for setting and retrieving data.

The following data types are handled in this manner:
v Double
v Enumerations
v Float
v Long
v Short
v ULong
v UShort
v Unbounded Strings
v Object References

Implementing CORBA applications 111

For example:
::CORBA::Any anything;
anything <<= (::CORBA::Long) 123456;
::CORBA::Long anythingStart = 123456;
::CORBA::Long anythingLongResult = 0;
policyVar->anything(anything);

::CORBA::Any_var anythingResult_var(policyVar->anything());
::CORBA::Any anythingResult(anythingResult_var);
anythingResult >>= anythingLongResult;
if (anythingStart != anythingLongResult)
{

cout << "Anything not set" << endl;
return 1;

}
else
{

cout << "Anything set correctly..." << endl;
}

There are also specialized structures provided for the following types for
conversion with Any:
v Boolean
v Char
v Octet
v String

The data in an Any object is initialized and accessed using insertion (<<=) and
extraction (>>=) operators defined by the C++ bindings. These operators are
provided (using overloading) by CORBA::Any for each primitive data type, and
are provided by the generated C++ bindings for each user-defined IDL type. As a
result, there is usually no need to indicate a typecode when inserting or extracting
data from a CORBA::Any (although the CORBA::Any class does provide methods
for manipulate the data using an explicit TypeCode).

Types that cannot be distinguished by C++ overloading are inserted into and
extracted from Any’s using special wrapper classes. These wrapper classes are not
transparent to the application; the application must explicitly create and use them
when inserting or extracting ambiguous types into or from Any’s. For primitive
IDL types that do not map to distinct C++ types (boolean, octet, and char), the
wrapper classes are defined within the CORBA::Any scope; they are called
from_boolean, to_boolean, from_octet, to_octet, from_char, and to_char. For
information on the scope, see the topic “IDL name scoping” on page 150. Because
bounded strings cannot be distinguished in C++ from unbounded strings,
CORBA::Any provides the from_string and to_string wrapper classes, for
inserting/extracting bounded strings. For extracting object references from Any’s as
the base CORBA::Object type, CORBA::Any provides a to_object wrapper class.

For application-specific arrays, the bindings provide a special forany class, for
inserting or extracting the array into or from an Any. For example, here is an IDL
array definition:
typedef long LongArray[4][5];

A C++ class, similar to the following, is emitted for the LongArray:
typedef CORBA::Long LongArray[4][5];
typedef CORBA::Long LongArray_slice[5];
class LongArray_forany
{

112 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

public:
LongArray_forany();
LongArray_forany(LongArray_slice*, CORBA::Boolean nocopy=0);
LongArray_forany(const LongArray_forany);
...

};
void operator<<=(Any& , const LongArray_forany&);
CORBA::Boolean operator>>=(const Any& , LongArray_forany&);

To determine what kind of data is in Any, invoke the type method on a
CORBA::Any to access a TypeCode that describes the data it holds. Alternatively,
you can try to extract data of a particular type from the Any; the extraction
operator returns a boolean to indicate success. If the extraction operation fails, the
Any does not hold data of the type you tried to extract.

A CORBA::Any object always owns the data that its void* points to, and deletes
(or releases) it when the Any is given a new value or deleted. The only question is
whether this data is a copy of the data that was inserted into the Any.

When primitives (including strings and enums) are inserted, a copy is made and
returned when the data is extracted.

When a reference to non-primitive (constructed) data is inserted into an Any, a
copy is made. In this case, the caller retains ownership of the original data. When a
pointer to non-primitive (constructed) data is inserted into an Any, no copy is
made. In this case, the Any takes ownership of the storage and caller is forbidden
from accessing the storage. When the data is extracted from the Any, the caller is
given a pointer that locates the data, but the Any owns the data. The caller should
not free this data or reference it after the Any has been given a new value.

The following are examples of the emitted insertion and extraction signatures:
void operator <<=(Any&, const T*;); // insertion by pointer
void operator <<=(Any&, const T&); // insertion by reference
CORBA::Boolean operator>>=(const Any&, const T*&); // extraction

In summary, when extracting data from an Any, the caller does own the data for
primitive types, but does not own the data for constructed types. When inserting
data into an Any, the caller retains ownership of the data for primitive types, for
constructed types inserted by value, and for storage embedded within constructed
types inserted by pointer. The caller does not retain ownership of the top-level
contiguous storage for a constructed type inserted into an Any by pointer.

The followng is an example that illustrates the previously discussed aspects of
CORBA::Any usage. The IDL that follows is used in the succeeding example. It
defines a struct and an array that is inserted into an Any:
Module M
{

Struct S
{

string str;
longlng;

};
typedef long long1[2][3];

}

A C++ program illustrating Any insertion and extraction appears below:
#include stdio.h
#include any_C.cpp
main()

Implementing CORBA applications 113

{
CORBA::Any a; // the Any that we’ll be using
// test a long
long l = 42;
a <<= l;
if (a.type()->equal(CORBA::_tc_long))
{

long v;
a >>= v;
printf("the any holds a long = %d\n", v);

}
else
printf("failure: long insertion\n");
// test a string
char *str = "abc";
a <<= str;
if (a.type()->equal(CORBA::_tc_string))
{

char *ch;
a >>= ch;
printf("the any holds the string = %s\n", ch);
delete ch;
a >>= ch;
printf(" the any still holds the string = %s\n", ch);
delete ch;

}
else
printf("failure: string insertion\n");
// test a bounded string -- note you do not use a typecode here
char *bstr = "abcd";
char *rstr;
a <<= CORBA::Any::from_string(bstr, 6);
if (a >>= CORBA::Any::to_string(rstr,6))
printf("the any holds a bounded string<6> = %s\n", rstr);
else
printf("failure: bounded string insertion\n");

// test a user-defined struct
M::S *s1 = new M::S;
char *saveforlater = CORBA::string_dup("abc");
s1->str = saveforlater;
s1->lng = 42;
a <<= s1; // insertion by pointer
if (a.type()->equal(_tc_M_S))
{

M::S *sp;
a >>= sp;
printf("the any holds an M::S = {%s, %d}\n", sp->str, sp->lng);

}
else
printf("failure: struct insertion by pointer\n");
M::S s2;
s2.str = CORBA::string_dup("def");
s2.lng = 23;
a <<= s2; // note: this deletes *s1, but not saveforlater
printf("saveforlater still = %s\n", saveforlater);
CORBA::string_free(saveforlater);
if (a.type()->equal(_tc_M_S))
{

M::S *sp;
a >>= sp;
printf("the any holds an M::S = {%s, %d}\n", sp->str, sp->lng);

}
else
printf("failure: struct insertion by value\n");
M::S_var s3 = new M::S;
s3->str = CORBA::string_dup("ghi");

114 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

s3->lng = 96;
a <<= *s3;
if (a.type()->equal(_tc_M_S))
{

M::S *sp;
a >>= sp;
printf("the any holds an M::S = {%s, %d}\n", sp->str, sp->lng);

}
else
printf("failure: struct insertion by ref to value\n");
// test an array
M::long1_var l1v = M::long1_alloc();
for (i=0;i<2;i++)
for (j=0;j<3;j++)
l1v[i][j] = (i+1)*(j+1);
a <<= M::long1_forany(l1v);
if (a.type()->equal(_tc_M_long1))
{

M::long1_forany l1s;
a >>= l1s;
printf("the any holds the array: ");
for (i=0;i<2;i++)
for (j=0;j<3;j++)
printf("%d ",l1s[i][j]);
printf("\n");

}
else printf("failure: array insertion\n");

}

Output from the above program is:
the any holds a long = 42
the any holds a string = abc
the any still holds a string = abc
the any holds a bounded string<6> = abcd
the any holds an M::S = {abc, 42}
saveforlater still = abc
the any holds an M::S = {def, 23}
the any holds an M::S = {ghi, 96}
the any holds the array: 1 2 3 2 4 6

C++ bindings for CORBA Array types: An Interface Definition Language (IDL)
array type is mapped to the corresponding C++ array definition. There also is a
corresponding _var type. For example, given the following IDL definition:
typedef long LongArray [4][5];

The C++ bindings are similar to the following definitions:
typedef CORBA::Long LongArray[4][5];
typedef CORBA::Long LongArray_slice[5];
typedef LongArray_slice* LongArray_slice_vPtr;
typedef const LongArray_slice* LongArray_slice_cvPtr;
class LongArray_var
{

public:
LongArray_var();
LongArray_var(LongArray_slice*);
LongArray_var(const LongArray_var&);
LongArray_var & operator= (LongArray_slice*);
LongArray_var & operator= (const LongArray_var &);
~LongArray_var();
const LongArray_slice& operator[] (int) const;
const LongArray_slice& operator[] (CORBA::ULong) const;
LongArray_slice & operator[] (int);
LongArray_slice & operator[] (CORBA::ULong);
operator LongArray_slice_cvPtr () const;

Implementing CORBA applications 115

operator LongArray_slice_vPtr& ();
const LongArray_slice* in() const;
LongArray_slice* inout();
LongArray_slice* out();
LongArray_slice* _retn();

};
LongArray_slice * LongArray_alloc();
void LongArray_free (LongArray_slice*);
LongArray_slice * LongArray_dup (const LongArray_slice*);
LongArray_copy (LongArray_slice* to, const LongArray_slice* from);

As shown previously, array mappings provide the following funcations:

alloc function
This is used for allocating storage. The alloc function dynamically allocates
an array, which can be later freed using the free function.

dup function
This is used for duplicating arrays. The dup function dynamically allocates
an array and copies the elements of an existing array into it.

copy function
This is used for copying array elements. The copy function copies elements
from a previously allocated array to another previously allocated array.

free function
This is used for freeing array storage. The free function frees an array
allocated using the alloc or dup function and properly releases the
elements of the array. A NULL pointer can be passed to the free function.

None of these functions throws exceptions.

The type of the pointer returned from LongArray_alloc is LongArray_slice*. The
C++ bindings define ″slice″ types for all arrays declared in IDL to indicate the type
of the array. In this case, the slice type is an array of Long. The slice type has one
less array dimension than the array. Thus, the bindings for LongArray include the
following typedef:
typedef Long LongArray_slice[5];

Hence, LongArray_slice* is the correct type for do describe an array of Long
arrays.

As with structs and sequences, arrays use special auxiliary classes for automatic
storage management of string and object reference elements. The auxiliary classes
for strings and object references manage storage the same way the associated _var
classes do.

When the array is allocated, the default constructor for each element is
automatically invoked to construct the element. If the array’s elements are object
references, the elements are set to nil when the array is allocated. If the array’s
elements are strings or wstrings, the elements are set to the empty string.

When assigning a value to an array element that is an object reference, the
assignment operator automatically releases the previous value, if any. When
assigning an object reference pointer to an array element, the array assumes
ownership of the pointer (no _duplicate is done) and the application must no
longer access the pointer directly. If this is not the desired behavior, then the caller
can explicitly _duplicate the object reference before assigning it. However, when
assigning to an object reference array element from a _var object or from another

116 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

struct, union, array, or sequence member (rather than from an object reference
pointer), a _duplicate is done automatically.

The following is an example that involves multidimensional arrays and array_vars
from the IDL snippet at the end of this article:
typedef string s2_3[2][3];
typedef string s3_2[3][2];

The code at the end of this article uses the C++ arrays that correspond to the
previous IDL snippet. In the following example, there is no need to explicitly use
slice types when working with the array _var types. This is possible because the
bindings declare the pointer held by an array _var type using the appropriate slice
type. At the end, the program explicitly frees the storage pointed to by s2_3p
(using an array delete operator), but does not do this for s3_2v. Instead, its pointer
is deleted when the destructor for s3_2v is implemented. This is the purpose of the
_var types.
#include arr_C.cpp
#include stdio.h
main()
{

int i,j;
char id[40];
// create arrays
s2_3_slice* s2_3p = s2_3_alloc();
s3_2_var s3_2v = s3_2_alloc();
// load the arrays
for(i=0; i<2; i++)
{

for (j=0; j<3; j++)
{

sprintf(id, "s2_3 element [%d][%d]",i,j);
// Use string_dup when assigning a char*
// if you do not want the array to own the original:
s2_3p[i][j] = CORBA::string_dup(id);

}
}
for(i=0; i<3; i++)
{

for (j=0; j<2; j++)
{

sprintf(id, "s3_2_var element [%d][%d]",i,j);
// Use string_dup when assigning a char*
// if you do not want the array to own the original:
s3_2v[i][j] = CORBA::string_dup(id);

}
}
// print the array contents
for(i=0; i<2; i++)
{

for (j=0; j<3; j++)
{

printf("%s\n", s2_3p[i][j]);
}

}
for(i=0; i<3; i++)
{

for (j=0; j<2; j++)
{

printf("%s\n", s3_2v[i][j]);
}

}

Implementing CORBA applications 117

delete [] s2_3; // needed to prevent a storage leak.
// Nothing is needed for s3_2v, because
// it is a _var type.

}

Output from the above program is:
s2_3 element [0][0]
s2_3 element [0][1]
s2_3 element [0][2]
s2_3 element [1][0]
s2_3 element [1][1]
s2_3 element [1][2]
s3_2_var element [0][0]
s3_2_var element [0][1]
s3_2_var element [1][0]
s3_2_var element [1][1]
s3_2_var element [2][0]
s3_2_var element [2][1]

C++ bindings for CORBA Atomic data types: The atomic Interface Definition
Language (IDL) data types (long, short, unsigned long, unsigned short, float,
double, char, boolean, and octet) are mapped into types defined in corba.h, which
are nested within the CORBA scope. See “IDL name scoping” on page 150 for more
information. The first letter of the mapped type is capitalized. For example, to
introduce and initialize a local variable named Myvar whose type corresponds to
the IDL type named long, a C++ programmer might use the following expression:
CORBA::Long Myvar = 1;

The mapping for the IDL boolean type (CORBA::Boolean) defines only the values 0
and 1. The unsigned long and unsigned short IDL types are mapped to
CORBA::ULong and CORBA::UShort, respectively.

C++ bindings for CORBA Enumerations: An Interface Definition Language (IDL)
enum is mapped to a corresponding C++ enum. For example, given the following
IDL:
module M
{

enum Color
{

red, green, blue
};

};

a C++ programmer might introduce a local variable of the corresponding C++ type
and initialize it with the following code:
{

M::Color MYCOLOR = M::red;
}

Note: The name of the enumeration value is M::red not M::Color::red. The enum
construct does not introduce a nested scope; the enumeration value identifiers are
in the same scope as the name of the enum. For this reason, choose the names of
the enumeration values carefully so that they do not conflict with other IDL
identifiers.

C++ bindings for CORBA Sequence types: An Interface Definition Language
(IDL) sequence type is mapped to a C++ class that behaves like an array with a
current length (how many elements are stored) and a maximum length (how much
storage is currently allocated). The array indexing operator [] is used to read and

118 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

write sequence elements. The indexing begins at zero. It is the programmer’s
responsibility to check the current sequence length to prevent accessing the
sequence beyond its bounds. The length and maximum of the sequence are not
increased automatically to accommodate new elements; the programmer must
explicitly increase them.

There are two kinds of sequences: bounded and unbounded. A bounded sequence
has a maximum length that is part of the IDL sequence type and cannot be
changed. An unbounded sequence has a flexible maximum length that can be set
during construction and modified during processing. In either case, the maximum
length determines the amount of buffer storage used by the sequence to hold its
elements.

The sequence class contains a member function ULong length() to query the
number of elements in the sequence. Another member function, length(ULong
newLength), indicates the number of elements in the sequence. Increasing the
length causes new elements to be added to the end of the sequence. These new
elements are default constructed (similar to the default construction of fields for an
IDL struct). Decreasing the length causes the elements at the end of the seqence to
be released (if the sequence owns the buffer). The length of a bounded sequence
cannot exceed the maximum length. If the length of an unbounded sequence is
increased past the maximum, the sequence allocates a new buffer and copies the
sequence elements to the new buffer.

The buffer, used by the sequence, can either be managed (owned) by the sequence
or managed by the client code. By default, the sequence manages its own storage.
The release() method indicates whether the sequence manages the buffer (release()
returns TRUE if the sequence manages the buffer). Under most circumstances, it is
advisable to let the sequence manage its own buffer.

There are a number of methods available to control the management of the
sequence’s buffer. The programmer must allocate a buffer using the allocbuf
function. The allocated buffer is given to the sequence using either the specialized
constructor seq(ULong max, ULong length, Data* buffer, Boolean release) or the
replace(ULong max, ULong length, Data* buffer, Boolean release) method. During
processing, the programmer can query the buffer directly using the const Data*
get_buffer() const method or can modify the buffer using the Data*
get_buffer(Boolean orphan) method. If the orphan flag is set to TRUE, the sequence
yields ownership of the buffer to the client.

The destructor destroys each of the sequence elements if the sequence owns the
buffer.

The copy constructor creates a new sequence with the same maximum and length
as the input sequence and copies the sequence elements to the storage that the
sequence owns. The assignment operator performs a deep copy and releases the
previous sequence elements, if the sequence owns the buffer. This operator behaves
as if the destructor was run and is followed by the copy constructor.

The allocbuf function allocates enough storage for the specified number of
sequence elements. Each sequence element is initialized using its default
constructor. The string elements are initialized to the empty string and the object
reference elements are initialized to nil object references. NULL is returned if the
storage cannot be allocated for any reason. If ownership of the allocated buffer is

Implementing CORBA applications 119

not transferred to a sequence, the buffer should be subsequently freed using the
freebuf function. The freebuf function ensures the following before the buffer is
deleted:
v Each sequence element’s destructor is run
v For strings, CORBA::string_free is called
v For object references, CORBA::release is called

Neither allocbuf nor freebuf throw CORBA exceptions.

As with structs, sequences use special auxiliary classes for automatic storage
management of string and object reference elements. These auxiliary classes
manage strings and object references just as the associated _var classes do.

If a storage-managed sequence’s elements are object references, assignment to an
element (using operator[]) automatically releases the previous value. If the source
of the assignment is an object reference pointer, the sequence assumes ownership
of the pointer and no _duplicate is done. If the source is an object reference (_var
object, struct field, array element, etc.), a _duplicate is done automatically.

If a storage-managed sequence’s elements are strings, assignment to an element
(using operator[]) automatically frees the previous string. As with assigning to
String_vars, assigning a char* to a string element does not make a copy, but
assigns a const char *, a String_var, or another struct, union, array, sequence. A
string member automatically makes a copy. Thus, never assign a string literal (such
as ″abc″) to an element without an explicit cast to const char*. When assigning a
char* that occupies static storage (rather than one that was dynamically allocated),
the caller can use CORBA::string_dup to duplicate the string before assigning it.

There is a corresponding _var type defined for every sequence class.The _var type
for a sequence provides an overloaded operator[] that delegates to the underlying
sequence.

The following example illustrates loading and accessing the elements of a
sequence. It illustrates a recursive sequence whose entries are structs of the same
type that contain the sequence. The IDL that follows is used in the succeeding
example:
struct S
{

long sf1;
sequence sf2;

};
typedef sequence Sseq;

The following is an example program that creates and loads a sequence of type
Sseq and then prints out its contents:
#include seq_C.cpp
#include stdio.h
main()
{

int i,j;
Sseq seq; // create an Sseq
seq.length(3); // set length of seq to 3
for (i=0; i<3; i++) { // index the three S structs in seq
seq[i].sf1 = i; // place a number in the i-indexed struct
seq[i].sf2.length(i+1); // set length of the sequence in
// the i-indexed struct
for (j=0; j<i+1; j++) // index the i+1 S structs in the sequence
// in the i-indexed struct

120 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

seq[i].sf2[j].sf1 = (i+1)*10+j; // place a number in
// the j-indexed struct

}
// OK. Print out what you have created!
printf("seq = (%d sequence elements)\n", seq.length());
for (i=0; i<3; i++)
{

printf(" struct[%d] = {\n", i);
printf(" sf1 = %d\n", seq[i].sf1);
printf(" sf2 = (%d sequence elements)\n",
seq[i].sf2[j].length());
for (j=0; j<i+1; j++)
{

printf(" struct[%d] = \n",j);
printf(" sf1 = %d\n", seq[i].sf2[j].sf1);
printf(" sf2 = (%d sequence elements)\n",
seq[i].sf2[j].sf2.length());
printf(" }\n");
}

printf(" }\n");
}

}

Note: The previous program never explicitly constructs any data of type S, even
though the sequences contain structs of this type. The reason is that when a
sequence buffer is allocated, default constructors are run for each of the buffer
elements. When the previous program sets the length of a sequence of S structs
(either at the top level for the seq variable or for the sf2 field of an S struct in seq),
the resulting buffer is populated automatically with default structs of type S.

The output from the previous program is:
seq = (3 sequence elements)

struct[0] = {
sf1 = 0
sf2 = (1 sequence elements)

struct[0] = {
sf1 = 10
sf2 = (0 sequence elements)

}
}
struct[1] = {

sf1 = 1
sf2 = (2 sequence elements)

struct[0] = {
sf1 = 20
sf2 = (0 sequence elements)

}
struct[1] = {

sf1 = 21
sf2 = (0 sequence elements)

}
}
struct[2] = {

sf1 = 2
sf2 = (3 sequence elements)

struct[0] = {
sf1 = 30
sf2 = (0 sequence elements)

}
struct[1] = {

sf1 = 31
sf2 = (0 sequence elements)

}
struct[2] = {

Implementing CORBA applications 121

sf1 = 32
sf2 = (0 sequence elements)

}
}

C++ bindings for CORBA Strings: The mapping for strings is provided by
corba.h, within the CORBA scope. See “IDL name scoping” on page 150 for more
information. The user-visible types are CORBA::String and CORBA::String_var.
CORBA::String is a typedef name for char*. The CORBA::String_var class performs
storage management of a dynamically allocated CORBA::String. The following
functions are for dynamic allocation and deallocation of memory to hold a string:
v CORBA::string_alloc
v CORBA::string_free
v CORBA::string_dup

A String_var object behaves as a char* except when it is assigned or goes out of
scope, the memory it points to is automatically freed by CORBA::string_free. When
a String_var is constructed or assigned from a char*, the String_var assumes
ownership of the string and the caller must no longer access the string directly. If
this is not the desired behavior, as when the char* occupies static storage, the caller
can use CORBA::string_dup to copy the char* before assigning it. When a
String_var is constructed or assigned from a const char*, another String_var, or a
String element of a struct, union, array, or sequence, an automatic copy of the
source string is done. The String_var class provides subscripting operations to
access the characters within the embedded string.

C++ compilers do not treat a string literal (such as ″abc″) as a const char* upon
assignment. Given both a const and a non-const assignment operator, the compiler
chooses the non-const operator. As a result, when a string literal is assigned to a
String_var, a copy of the string is not made into dynamically allocated memory.
The pointer ″owned″ by the String_var points to memory that cannot be freed.
Thus, string literals must not be assigned to a String_var without an explicit cast to
const char*.

Note: If a string type is used as a field or element type, the bindings initialize the
field or element to the empty string ″″ and not null. This rule applies to sequence
elements, array elements, struct fields, union fields, and exception fields.

The following is an example using String_var objects:
// first some supporting functions for the examples
char* f1()
{

return "abc";
}
char* f2()
{

char* s=CORBA::string_alloc(4);strcpy(s,"abc");return s;
}
// then the examples
void main()
{

CORBA::String_var s1;
if (0) s1 = f1();// Wrong!! The pointer cannot be freed and
// no copy is done.
if (0) s1 = "abc"; // Also wrong, for the same reason.
const char* const_string = "abcd"; // *const_string cannot be changed
s1 = const_string; // OK. A copy of the string is made because
// it is const, and the copy can be freed.
CORBA::String_var s3 = f2();// OK. no copy is made, but f2

122 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

// returns a string that can be freed
CORBA::String_var s4 = CORBA::string_alloc(10); // also OK. no copy
s4 = s3; // s4 will use string_free followed by string_dup
long l4 = strlen(s4); // l4 will receive 3
long l1 = strlen(s1); // l1 will receive 4
if (l4 >= l1)
strcpy(s4,s1); // OK, but only because of the condition.
// note that s4’s buffer only has size=4.
s4 = const_string; // OK. s4 will use string_free followed by
// string_dup. The copy is made because String_vars
// must reference a buffer that can be modified.

}
// The s1, s3 and s4 destructors run successfully, freeing their buffers

C++ bindings for CORBA Struct types: An Interface Definition Language (IDL)
struct type is mapped to a corresponding C++ struct whose field names
correspond to those in the IDL declaration and whose field types support access
and storage of the C++ types corresponding to the IDL struct field types.
Dynamically allocated storage used to hold this type of C++ struct must be
allocated and freed using the C++ new and delete operators.

When a struct is constructed, the default constructor for each field is invoked,
object reference files are initialized to nil references, and string fields are initialized
to an empty string. When a struct is deleted (or goes out of scope), the destructor
for each field is invoked. All of the object references are released and all of the
strings are freed. The copy constructor performs a deep copy including duplicating
object references. The assignment operator acts as a destructor (releasing all
memory) followed by a copy constructor.

When assigning a value to a struct field that is an object reference, the assignment
operator for the struct field automatically releases the previous value, if any. When
assigning an object reference pointer to a struct member, the struct member
assumes ownership of the pointer (no _duplicate is made) and the application
must no longer access the pointer directly. If this is not the desired behavior, then
the caller can explicitly _duplicate the object reference before assigning it to the
struct member. However, when assigning to an object reference struct member
from a _var object or from another struct, union, array, or sequence member (rather
than from an object reference pointer), a _duplicate is made automatically.

When assigning a value to a struct field that is a string or when the struct is
deleted or goes out of scope, any previously held (non-null) string is automatically
freed. Assigning a char* to a string field does not make a copy, but assigning a
const char *, a String_var, or another struct, union, array, sequence string member
does make a copy automatically. Never assign a string literal (for example, ″abc″)
to a string struct member without an explicit cast to ″const char*″. When assigning
a char* that occupies static storage (rather than one that was dynamically
allocated), the caller can use CORBA::string_dup to duplicate the string before
assigning it.

As with all constructed types, a _var type is provided for managing an instance of
the C++ struct that corresponds to an IDL struct. When assigning one struct’s _var
to another, the receiving _var deletes its current pointer (thus running all contained
destructors) and creates a new struct to hold the assignment result. The new struct
is initialized using copy constructors for each of the contained fields. For example,
if the source struct has an object reference field, the struct _var assignment
automatically duplicates this reference.

Implementing CORBA applications 123

The IDL that follows is used in the succeeding example, which shows both correct
and incorrect ways to create and manipulate the corresponding C++ struct and the
corresponding _var type :
Interface A
{

struct S
{

string f1;
A f2;

};
};

The following code illustrates both correct and incorrect ways to create and
manipulate the corresponding C++ struct and the corresponding _var type.
{

A::S_var sv1 = new A::S;
A::S_var sv2 = new A::S;
// sv1->f1 = "abc"; -- Wrong! f1 cannot free this pointer later
sv1->f1 = CORBA::string_alloc(20);
A_ptr a1 = // get an A somehow
A_ptr a2 = // get an A somehow
sv1->f2 = a1; // a1 still has ref cnt = 1
sv2->f1 = CORBA::string_alloc(20);
sv2->f2 = a2; // a2 still has ref cnt = 1
sv1 = sv2; // This runs copy ctors, and increments a2’s ref cnt.
// Also, a1’s ref count is decremented.
sv1->f1 = sv2->f1;

}

C++ bindings for CORBA Union types: Union fields are not accessible directly to
C++ programmers. Instead, the C++ mapping for Interface Definition Language
(IDL) unions defines a class that provides accessor methods for the union
discriminator and the corresponding union fields. The union discriminator accessor
is named _d. The union field accessors are named using the IDL union field names
and are overloaded to allow both reading and writing.

Setting a union’s value using a field accessor automatically sets the discriminator
and releases the storage associated with the previous value, if any. It is an error for
an application to attempt to access the union’s value through an accessor that does
not match the current discriminator value. It is also an error for an application to
use the discriminator modifier method to implicitly switch between different union
members.

Unions that have an implicit default member (no explicit default case and not all
possible discriminator values are used) have a _default method. The _default
method sets the discriminator value to a legal default value and does not have a
union member value.

A _var type is defined for managing a pointer to a union in dynamically allocated
memory.

To illustrate the C++ bindings for IDL unions, consider the following IDL:
module A
{

interface X
{
};
union U switch (long)
{

case 1: long u1;

124 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

case 2: string u2;
case 3: X u3;

};
};

The following code illustrates usage of the C++ bindings corresponding to the
previous IDL:
{

X_ptr x = // get an X somehow
A::U_var uv = new A::U;
uv.u2((const char*) "testing"); // sets the discriminator to 2
// and copies the string
if (u._d() == 2)// the condition evaluates to true
u.u1(23); // frees the string, and sets the discriminator to 1
if (u._d() == 1) // the condition evaluates to true
u.u3(x); // duplicates x and sets discriminator to 3

}

The default constructor of a union class does not initialize the discriminator or the
union members, so the application must initialize the union before accessing it. The
copy constructor and assignment operator perform deep copies. The assignment
operator and destructor release all storage owned by the union.

With respect to memory management, accessor and modifier methods for union
members work similarly to those for struct members. Modifier methods make a
deep copy of their input when passed by value (for simple types) or by reference
(for constructed types). Accessor methods that return a non-const reference can be
used by the application to update a union member’s value, but only for struct,
union, sequence, and any members.

The modifier method for a string union member makes a copy when given a const
char* or a String_var, but not when given a char*. As shown in the example above,
a string literal must not be assigned to a union without an explicit ″const char*″
cast. The accessor method for a string union member returns a const char* and
therefore, the string union member cannot be modified. This is done to prevent the
string union member from being assigned to a String_var and resulting in memory
management errors.

The modifier method for an object reference union member duplicates the input
object reference and releases the previous object reference value, if any. The
accessor method for an object reference union member does not duplicate the
returned object reference because the union retains ownership of it.

The accessor method for an array union member returns a pointer to the array
slice. Thus, the application can read or write the union-member array elements
using subscript operators. If the union member is an anonymous array (one
without an explicit type name), the union defines (typedefs) the slice type by
cocatenating a leading underscore and appending ″_slice″ to the union member
name.

C++ bindings for CORBA WStrings: The WString type provides support for
wide strings. It is fairly comparable to using strings except for type declarations
and assignments. The following example, uses the WString type:
#include wcstr.h // For WChar and WString support
...
const wchar_t* wcomments = L"This policy looks pretty good...";
wchar_t* wcommentsResult=::CORBA::wstring_alloc(wcslen(wcomments));
::CORBA::WString_var wcommentsResult_var(wcommentsResult);
policyVar->wcomments(wcomments);

Implementing CORBA applications 125

if (!wcscmp(wcommentsResult_var, wcomments))
{

cout << "Wcomments not set" << endl;
return 1;

}
else
{

cout << "Wcomments set correctly..." << endl;
}
wcommentsResult = policyVar->wcomments();

CORBA C++ bindings for interfaces
The CORBA 2.1 C++ client bindings define a variety of C++ types corresponding
to a single Interface Definition Language (IDL) interface. The following is a list of
these interfaces:
v I
v I_ptr
v I_var

For example, an IDL interface I is mapped to C++ client types. The types named I
and I_var are classes. The type I_ptr (the object reference) is defined in the IBM
Object Request Broker (ORB) as an I*.

The class I is referred to as the interface class corresponding to the IDL interface
named I. The IDL constructs defined within the IDL interface I are defined with
public access within the C++ class I. For example, the operations within an IDL
interface are mapped as C++ virtual member methods within the corresponding
C++ class.

As with other user-defined IDL types, the I_var type is used to assist storage
management. Specifically, an I_var type holds an I_ptr and can be used as if it
were an I_ptr. When an I_var type is assigned a new value or when it goes out of
scope, it releases the I_ptr it is holding at that time.

The CORBA specification prohibits CORBA-compliant applications from the
following:
v Explicitly creating an instance of an interface class, as in:

I my_instance; // NOT ALLOWED!
I_ptr my_instance = new I; // NOT ALLOWED!

v Declaring a pointer (I*) or a reference (I) to an interface class.

Instead, the I_ptr, and I_var types must be used to hold object references and
object references can be created only by client applications by invoking methods
that return object references. The interface class I is used by client applications only
as a name scope.

IDL operations defined in (or inherited by) interface I are invoked in C++ using
the arrow (->) operator on either an I_ptr, IRef, or I_var type.

Nil object references of type I_ptr can be obtained using a static member function
of I called _nil(). Operations cannot be invoked on nil object references. The
CORBA::is_nil function is the only CORBA-conformant way to determine whether
a given object reference is nil. CORBA::release can be invoked on a nil object
reference, but is not needed. The _duplicate and _narrow functions defined by the
C++ bindings can be given a nil object reference.

126 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

In the IBM C++ bindings, the CORBA-prescribed types are implemented as
follows:
v The interface class for I is derived using virtual inheritance from the interface

classes for I’s IDL parents. When I has no IDL parents, its interface class is
derived using virtual inheritance from CORBA::Object. Types, constants, and
operations declared within the I interface are mapped to types, constants, and
member functions declared within the corresponding interface class.

v The object reference type I_ptr is typedefed to I* (for example, an I_ptr points to
an object of type I). However, CORBA specifies that treating an I_ptr as a C++
pointer (for example, using conversion to void*, using arithmetic and relational
operators, testing for equality) is not conformant. However, this is not enforced
by the bindings.

v An instance of I addressed is called a proxy and is created by a proxy factory
object of class IProxyFactory.

v Nil object references are represented as NULL pointers. However, CORBA
conformant applications must not assume this and must use the _nil() and
is_nil() functions to manipulate nil object references.

v The I_var class introduces an instance variable of type I_ptr. The purpose of an
I_var object is to handle release operations on the I_ptr that it holds.

v Other auxillary classes are generated for implementation purposes. An
I_SeqElem class is generated, which is used to hold I elements in an array. Its
function is similar to the I_var class as it automatically controls the releasing of
the object_reference. The I_StructElem class is used for holding I items in a field
of a struct, union, or exception. Its function is similar to I_SeqElem. The I_out
class is used in the bindings when passing I items as out arguments.

For more details on C++ bindings for CORBA interfaces, see the following topics:
v “C++ bindings for CORBA: Managing CORBA object references”
v “C++ bindings for CORBA: Widening CORBA object references”
v “C++ bindings for CORBA: Narrowing CORBA object references” on page 128
v “C++ bindings for CORBA: Narrowing to a C++ implementation” on page 128

C++ bindings for CORBA: Managing CORBA object references: The mapping
for interface I defines a static member function named _duplicate that takes as
input an object reference of type I_ptr and returns an object reference of type I_ptr
(This is potentially the same reference, when reference counting is employed, as is
the case with IBM WebSphere Application Server C++ bindings). The
CORBA::release function indicates that the caller will no longer access the object
reference and that the resources associated with the object reference can be
deallocated. (In the IBM WebSphere Application Server C++ bindings, an object
reference is only deleted when its reference count falls to zero. This occurs only if
CORBA::release is called for each _duplicate or _narrow performed on the object
reference.)

Duplicating an object reference using _duplicate is analogous to copying a string
before transferring ownership of it. Releasing an object reference is analogous to
deleting a string that is no longer needed. Unlike strings, object references cannot
be directly copied or deleted by the client programmer Object references are
managed by the Object Request Broker (ORB) and can be duplicated or released by
the application only.

C++ bindings for CORBA: Widening CORBA object references: If interface A is
a (direct or indirect) base of interface B, the following assignments do not require
an explicit C++ cast:

Implementing CORBA applications 127

v B_ptr to A_var

v B_ptr to A_ptr

v B_ptr to Object_var

v B_ptr to Object_ptr

v B_var to A_ptr

v B_var to Object_ptr

B_var cannot be assigned to A_var or a compile-time error occurs. To assign B_var
to A_var, use B::_duplicate on B_var to create B_ptr and assign B_ptr to A_var.

C++ bindings for CORBA: Narrowing CORBA object references: The mapping
for an interface I defines a static member function named _narrow that takes as
input an object reference of any type (for example, an Object_ptr) and returns an
object reference of type I_ptr. If the referenced object (the actual implementation
object corresponding to the proxy addressed by the input object reference) does not
support the I interface, the result is NULL. Otherwise, the I_ptr addresses an object
that also supports the I interface. In the case where the proxy addressed by the
input argument does not support interface I and the actual implementation object
does, the I_ptr returned by I::_narrow addresses a different proxy object than the
input argument.

The _narrow static member function does an implicit _duplicate of the input
argument. Therefore, the caller is responsible for releasing both the object reference
input to _narrow and the return result.

C++ bindings for CORBA: Narrowing to a C++ implementation: Given an
interface pointer to an object, it can be useful to narrow to the implementation
pointer of the object. For example, given interface I, the C++ implementation
hierarchy for I might look like the following:

I
^
|

I_Skeleton
^
|

I_Impl

You might convert a pointer to I into a pointer to I_Impl. There is no
CORBA-prescribed mechanism for this conversion. Within the confines of the C++
language, you can use dynamic cast.

CORBA C++ binding restrictions
When a forward reference to an interface appears within an Interface Definition
List (IDL) module, the IDL compiler issues an error message if the referenced
interface is not defined within the module. When a similar unresolved forward
reference appears at global (file) scope, a warning is issued that indicates the
bindings being emitted will not include a mapping for the undefined interface. For
information on the scope, see the topic “IDL name scoping” on page 150. The
assumption is that the interface is defined by bindings other than those currently
being generated. This approach supports IDL files with mutually-referential
interfaces (as long as they appear at global scope). The following example
illustrates how to organize the IDL files for such cases:
// file foo.idl
#ifndef foo_idl
#define foo_idl
interface Foo; // declare Foo so bar.idl can refer to it

128 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

#include bar.idl
interface Foo
{

Bar foo1(); // notice the use of Bar
};
#endif // foo_idl
// file bar.idl
#ifndef bar_idl
#define bar_idl
interface Bar; // declare Bar so foo.idl can refer to it
#include foo.idl
interface Bar
{

Foo bar1(); // notice the use of Foo
};
#endif // bar_idl

The following is a known limitation due to problems inherent in the CORBA
mapping for C++:

The C++ bindings map attributes into overloaded C++ accessor functions whose
name is the attribute name. As a result, the following IDL does not map to useful
C++ bindings (because Y’s l method interferes with the inherited mapping for X’s
attribute). If Y’s method took any arguments, there would not be a problem
because of C++ overloading. The compiler indicates an error only when C++
overloading does not distinguish inherited accessors from newly introduced
methods (or vice versa).
interface X
{

attribute long l;
}
interface Y : X
{

long l();
};

Name scoping and modules in the C++ bindings
Interface Definition List (IDL) scoped names are mapped to C++ scopes as follows:
v IDL modules are mapped to C++ namespaces. IDL definitions occurring within a

module are mapped to corresponding C++ definitions within the C++
namespace.

v IDL interfaces are mapped to C++ classes. All IDL constructs defined within an
interface are mapped to corresponding C++ definitions within the C++ interface
class.

v If an IDL identifier is the same as the name of a C++ keyword, the IDL identifier
is mapped to the same identifier prepended with ″_cxx_″. For example, an IDL
identifier named ″class″ is mapped to ″_cxx_class″.

Storage management and _var types
The C++ bindings attempt to make the programmer’s storage management
responsibility as easy as possible. One aspect of this is the ″_var″ types. For each
user-defined structured Interface Definition List (IDL) type T (struct, union,
sequences, and arrays) and for interfaces, the bindings generate both a class T and
a class T_var. The classes CORBA::String and CORBA::Any also have
corresponding CORBA::String_var and CORBA::Any_var classes.

The essential purpose of a _var object is to hold a pointer to dynamically allocated
memory. A _var object can be used as if it were a pointer to the IDL type for which
it is named. Special constructors, assignment operators, and conversion operators

Implementing CORBA applications 129

make this work in a way that is invisible to programmers. The memory pointed to
by a _var object always is considered to be owned (managed) by the _var object.
When the _var object is deleted, goes out of scope, or is assigned a new value, it
deletes (or, in the case of an object reference, releases) the managed memory.

A typical _var object is declared by a programmer as an automatic (stack) variable
within a code block and is then used to receive an operation result or is passed to
an operation as an out parameter. Later, when the code block is exited, the _var
object destructor runs and its managed memory is deleted (or, for object references,
released).

When a pointer (rather than another _var object, struct, union, array, or sequence
element) is assigned to (or used to construct) a _var object, this pointer must point
to dynamically allocated memory. It must point to dynamically allocated memory
because the _var object does not make a copy. Instead, it assumes ownership of the
pointer and later deletes it (or, for object references, releases it). The single
exception is that pointers to const data can be assigned to a _var object. When this
occurs, the _var object dynamically allocates new memory and copies the const
data into the new memory. A pointer assigned to a _var object must not be
″owned″ by some other data structure and the pointer must not be subsequently
used by the application except by the _var object.

The default constructor for a _var type loads the contained pointer with NULL.
You must assign a value to a _var object created by a default constructor before
invoking methods on it. This is similar to when you assign a value to a pointer
variable before invoking methods on it.

The copy constructor and _var assignment operator of a _var type perform a deep
copy of the source data. The copy is later deallocated (or released, in the case of
object references) when the _var is destroyed or when it is assigned a new value.

Methods are provided to fully support the passing of _var types as parameters. In
most cases, these methods are not necessary, but they might be used solely to
self-document the code. The in() method returns the appropriate type for in
parameters. The inout() method returns the appropriate type for inout parameters.
The out() method returns the appropriate type for out parameters and ensures that
any pre-existing value is properly released.

Note: Out signatures use the _out class, which also takes care of releasing
pre-existing values.

The _retn() method is useful for obtaining a value from a _var type that contains a
returned value. The _retn() method obtains the value and releases/clears the value
in the _var.

The following is the typical form for a T_var class that is emitted for an
IDL-constructed data type named T:
class T_var
{

public:
T_var ();
T_var (T*);
T_var (const T_var&);
~T_var ();
T_var &operator= (T*);
T_var &operator= (const T_var&);
T * operator-> ();

130 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

const T * operator-> () const;
in_paramater_type in() const;
inout_paramater_type inout();
out_paramater_type out();
return_paramater_type _retn();

...
};

For more information on storage management and argument passing, see
“Argument passing considerations for C++ bindings”.

Argument passing considerations for C++ bindings
Rules must be observed when passing parameters to a CORBA object
implementation. The type used to pass the parameters of a method signature is
dependent on the Interface Definition List (IDL) type and the directionality of the
parameter (in , inout, out, or return value).

The following rules for passing these parameters are dictated by CORBA Object
Management Group (OMG) IDL to C++ mapping and must be followed to:
v Ensure the required access authority
v Prevent memory leaks
v Ensure that the allocation and deallocation of memory is performed consistently

in parameters
The caller (client) must allocate the input parameters. The callee
(implementation) is restricted to read access. The caller is responsible for
the eventual release of the storage. Primitive types and fixed-length
aggregate types can either be heap allocated or stack allocated. By their
nature, variable-length aggregates cannot be completely stack allocated.

Normally, a caller uses a _var object to pass non-primitive arguments as
input parameters. The _var class contains an in() method that can be used
as additional evidence that the argument is an input argument..
call opIn(t_var);
call opIn(t_var.in());

inout parameters
For inout parameters, the caller provides the initial value and the callee
can change that value. For primitive types and fixed-length aggregates, this
is a straightforward process. The caller provides the storage and the callee
overwrites the storage on return. For variable-length aggregates, the size of
the contained data provided as input might differ from the size of the
contained data provided at output. Therefore, the callee is required to
deallocate any contained input data that is being replaced on output with
callee allocated data. For object references, the caller provides an initial
value. If the callee reassigns the value, the callee must first release the
original input value. The callee assumes or retains ownership of the
returned parameters and must eventually deallocate or release them.

Normally, a caller uses a _var object to pass non-primitive arguments as
inout parameters. The _var class contains an inout() method that can be
used as additional evidence that the argument is an inout argument.
call opInOut(t_var);
call opInOut(t_var.inout());

out parameters
For primitive types and fixed-length aggregate types, the caller allocates
the storage for the out parameter and the callee sets the value. For

Implementing CORBA applications 131

variable-length aggregate types, the caller allocates a pointer and passes it
by reference and the callee sets the pointer to point to a valid instance of
the parameter’s type. For object references, the caller allocates storage for
the _ptr and the callee sets the _ptr to point to a valid instance. Because a
pointer to an array in C++ must be represented as a pointer to the array
element type, CORBA defines an array_slice type, where a slice is an array
with all the dimensions of the original except the first. The output
parameter is typed as a reference to an array_slice pointer. The caller
allocates the storage for the pointer and the callee updates the pointer to
point to a valid instance of an array_slice. The caller assumes or retains
ownership of the output parameter storage and must eventually deallocate
it or, in the case of object references, release it.

The callee can assume that the output argument does not have a value. If
an output argument contains an initial value, the value is orphaned and
never released. To prevent this from happening, all of the out parameters
are defined in the method signature with an _out class. The _out class is a
special generated class that ensures that the values are properly released
before the callee gets control. The callee can treat _out objects as if they
were the underlying type.

Normally, a caller uses a _var object to pass non-primitive arguments as
out parameters. The _var class contains an out() method that can be used
as additional documentation that the argument is an out argument.
call opOut(t_var);
call opOut(t_var.out());

return values
For primitive types and fixed-length aggregate types, the caller allocates
the storage for the return value and the callee returns a value for the type.
For variable-length aggregate types, the caller allocates a pointer and the
callee returns a pointer to an instance of the type. For object references, the
caller allocates storage for the _ptr and the callee returns a _ptr that points
to a valid object instance. Because a pointer to an array in C++ must be
represented as a pointer to the array element type, the array_slice type is
used for returning array values. The caller allocates storage for a pointer to
the array_slice and the callee returns a pointer to a valid instance of an
array_slice. The caller assumes or retains ownership of the storage
associated with returned values and must eventually deallocate it or, in the
case of object references, release it.

These rules for passing parameters are captured and enforced by the header files
produced when an IDL interface description is compiled. Some rules cannot be
enforced by the bindings. For example, parameters that are passed or returned as a
pointer type (T*) or reference to pointer(T*&) must not be passed or returned as a
null pointer. Memory management responsibilities cannot be enforced by the
bindings. Client (caller) and implementation (callee) programmers must
understand and implement according to these rules.

For more detailed information on storage management and argument passing, see
the following topics:
v “C++ type mapping for argument passing”
v “Storage management responsibilities for arguments” on page 134

C++ type mapping for argument passing:

132 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

Argument type mappings are discussed in this topic and summarized in the two
tables that follow. For the rules that must be observed when passing parameters (in
, inout, out, or return value) to a CORBA object implementation, see “Argument
passing considerations for C++ bindings” on page 131.

For primitive types and enumerations, the type mapping is straightforward. For in
parameters and return values, the type mapping is the C++ type representation
(abbreviated as ″T″ in the text that follows) of the Interface Definition List (IDL)
specified type. For inout and out parameters the type mapping is a reference to the
C++ type representation (abbreviated as ″T&″ in the text that follows).

For object references, the type mapping uses _ptr for in parameters and return
values and _ptr& for inout and out parameters. That is, for a declared interface A,
an object reference parameter is passed as type A_ptr or A_ptr&. The conversion
functions on the _var type permit the client (caller) the option of using _var type
rather than the _ptr for object reference parameters. Using the _var type can have
an advantage because it relieves the client (caller) of the responsibility to deallocate
a returned object reference (out parm or return value) between successive calls.
This is because changing the assignment operator of a _ptr to a _var automatically
releases the embedded reference.

The type mapping of parameters for aggregate types (also referred to as complex
types) are complicated by when and how the parameter memory is allocated and
deallocated. Mapping in parameters is straightforward because the parameter
storage is caller-allocated and read-only. For an aggregate IDL type t with a C++
type representation of T, the in parameter mapping is const T&. The mapping of
out and inout parameters is slightly more complex. To preserve the client
capability to stack allocate fixed length types, Object Management Group (OMG)
has defined the mappings for fixed-length and variable-length aggregates
differently. The inout and out mapping of an aggregate type represented in C++ as
T is T& for fixed-length aggregates and as T*& for variable-length aggregates.

Basic argument and result passing

Data Type In Inout Out Return

short Short Short& Short& Short

long Long Long& Long& Long

long long LongLong LongLong& LongLong& LongLong

unsigned short UShort UShort& Ushort& Ushort

unsigned long ULong ULong& Ulong& Ulong

unsigned long long ULongLong ULongLong& ULongLong& ULongLong

float Float Float& Float& Float

double Double Double& Double& Double

long double LongDouble LongDouble& LongDouble& LongDouble

boolean Boolean Boolean& Boolean& Boolean

char Char Char& Char& Char

wchar Wchar Wchar& Wchar& Wchar

octet Octet Octet& Octet& Octet

enum enum enum& enum& enum

object reference ptr objref_ptr objref_ptr& objref_ptr& objref_ptr

Implementing CORBA applications 133

Data Type In Inout Out Return

struct, fixed const struct& struct& struct& struct

struct, variable const struct& struct& struct*& struct*

union, fixed const union& union& union& union

union, variable const union& union*& union*& union*

string const char* char*& char*& char*

wstring const Wchar* Wchar*& Wchar*& Wchar*

sequence const sequence& sequence& sequence*& sequence*

array, fixed const array array array array slice*

array, variable const array array array slice*& array slice*

any const any& any& any*& any*

valuetype valuetype* valuetype*& valuetype*& valuetype*

For an aggregate type represented by the C++ type T, the T_var type also is
defined. The conversion operations on each T_var type allows the client (caller) to
use the T_var type directly for any directionality, instead of using the required
form of the T type (T, T& or T*&) The emitted bindings define the operation
signatures in terms of the parameter passing modes shown in the 134 and result
passing table and the T_var types provide the necessary conversion operators to
allow them to be passed directly.

T_var argument and result passing

Data Type In Inout Out Return

object
reference_var

const object_var& objref_var& objref_var& objref_var

struct_var const struct_var& struct_var& struct_var& struct_var

union_var const union_var& union_var& union_var& union_var

string_var const string_var& string_var& string_var& string_var

sequence_var const sequence_var& sequence_var& sequence_var& sequence_var

array_var const array_var& array_var& array_var& array_var

any_var const any_var& any_var& any_var& any_var

valuetype_var const valuetype_var& valuetype_var& valuetype_var& valuetype_var

Do not pass or return a null pointer for parameters that are passed or returned as
a pointer type (T*) or reference to pointer(T*&). However, this cannot be enforced
by the bindings.

Storage management responsibilities for arguments:

The storage access and allocation responsibilities for argument passing are
summarized in the following two tables. For the detailed rules that must be
observed when passing parameters (in , inout, out, or return value) to a CORBA
object implementation, see “Argument passing considerations for C++ bindings” on
page 131.

134 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

As an overall requirement when allocating and deallocating argument storage, the
storage allocation rules for the specific type must be followed. Specifically, for
strings, sequences, and arrays or for aggregate types composed of these types, use
the associated memory allocation and dealloaction functions. For string types, use
the string_alloc(), string_dup(), and string_free() methods. For sequence types, use
the allocbuf() and freebuf() methods. For arrays, use the T_alloc(), T_dup() and
T_free() methods. The memory deallocation responsibilities of the client can be
minimized by stack allocation and with the use of the _var types whenever
possible. When an argument is passed or returned as a pointer type, do not pass or
return a NULL pointer value.

The following table shows the storage access responsibilities for argument passing.

Argument storage responsibilities

Data Type Inout Out Return

short 1 1 1

long 1 1 1

long long 1 1 1

unsigned short 1 1 1

unsigned long 1 1 1

unsigned long long 1 1 1

float 1 1 1

double 1 1 1

boolean 1 1 1

char 1 1 1

wchar 1 1 1

octet 1 1 1

enum 1 1 1

object reference pointer 2 2 2

struct, fixed 1 1 1

struct, variable 1 3 3

union, fixed 1 1 1

union, variable 1 3 3

string 4 3 3

wstring 4 3 3

sequence 5 3 3

array, fixed 1 1 6

array, variable 1 6 6

any 5 3 3

valuetype 7 7 7

For definitions of the numerical values in the previous table, refer to the table
below.

Argument passing cases

Implementing CORBA applications 135

Case Description

1

The caller allocates all of the necessary
storage, except the storage that can be
encapsulated and managed within the
parameter itself. For inout parameters, the
caller allocates the storage but does need not
to initialize it. The callee sets the value.
Function returns are by value.

2

Caller allocates storage for the object
reference. For inout parameters, the caller
provides an initial value. If the callee wants
to reassign the inout parameter, it first calls
CORBA:release on the original input value.
To continue to use an object reference passed
in as an inout, the caller must first duplicate
the reference. The caller is responsible for the
release of all out and return object references.
Release of all of the object references
embedded in other structures is performed
automatically by the structures themselves.

3

The callee sets the pointer to point to a valid
instance of the parameter’s type. For returns,
the callee returns a similar pointer. The callee
is not allowed to return a null pointer in
either case. In both cases, the caller is
responsible for releasing the returned
storage. To maintain local and remote
transparency, the caller must always release
the returned storage, regardless of whether
the callee is located in the same address
space as the caller or is located in a different
address space. Following the completion of a
request, the caller is not allowed to modify
any values in the returned storage: To
modify the values, the caller first must copy
the returned instance into a new instance and
then modify it.

4

For inout strings, the caller provides storage
for both the input string and the char*
pointing to it. Because the callee can
deallocate the input strings and reassign the
char* to point to new storage to hold the
output value, the caller should allocate the
input string using string_alloc(). The size of
the out string is therefore not limited by the
size of the in string. The caller is responsible
for deleting the storage for the out using
string_free(). The callee is not allowed to
return a null pointer for an inout, out, or
return value.

5

The assignment or modification of an inout
sequence or the any type might cause
deallocation of owned storage before any
reallocation occurs. This depends upon the
state of the Boolean release parameter with
which the sequence or the any type was
constructed.

136 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

Case Description

6

For out parameters, the caller allocates a
pointer to an array slice, which has all the
same dimensions of the original array except
the first, and passes the pointer by reference
to the callee. The callee sets the pointer to
point to a valid instance of the array. For
returns, the callee returns a similar pointer.
The callee is not allowed to return a null
pointer. In both cases, the caller always must
release the returned storage, regardless of
whether the callee is located in the same
address space as the caller or is located in a
different address space. Following the
completion of a request, the caller is not
allowed to modify any values in the returned
storage. To modify any values, the caller
must first copy the returned array instance
into a new array instance, and then modify
the new instance.

7

The caller allocates storage for the valuetype
instance. For inout parameters, the caller
provides an initial value. If the callee wants
to reassign the inout pointer to a different
valuetype instance, it first calls _remove_ref
on the original input valuetype. To continue
to use a valuetype instance passed in as an
inout after the invoked operation returns, the
caller first must invoke _add_ref on the
valuetype instance. The caller is responsible
for invoking _remove_ref on all out and
return valuetype instances. The structures
themselves reduce the reference counts
using_remove_ref for all valuetype instances
embedded in other structures.

Implementation registration utility (regimpl)
Before a server can be used by client applications, it must be registered in the
Implementation Repository by running the implementation registration utility,
regimpl.

The regimpl utility can be entered at a command prompt. For IBM WebSphere
Application Server enterprise services, the regimpl utility takes the following usage
syntax forms and parameters:

Syntax

To add an implementation
regimpl -A -i alias_string [-p svr_string] [-m
{on|off}] [-t string]

To update an implementation
regimpl -A -i alias_string [-p svr_string] [-m
{on|off}] [-t prot_string]

To delete one or more implementations
regimpl -D -i alias_string [-i ...]

Implementing CORBA applications 137

To list all, or selected, implementations
regimpl -L [-i alias_string [-i ...]]

To list all implementation aliases
regimpl -S

Parameters

The following table describes the command parameters used in the previous
syntax forms.

regimpl command parameters used by WebSphere enterprise services

Parameter Description

-i alias_string Implementation alias name (maximum of 16 -i
names)

-p svr_string Server program name (default: null)

-m {on|off} Enable multi-threaded server (optional)

-t prot_string Protocol name (default: SOMD_TCPIP)

Examples
regimpl -L

CORB1150I: Retrieving all aliases from the database...
==
Information for implementation definition 1:

ID: 1bc727f8-7f95-1dad-e000-079809355cc6
ALIAS: WASDAEMON
PROGRAM:
PROTOCOLS: TCPIP
CONFIG:
Server specific name 1 : DAEMON_PID
Server specific value 1 : 00000634

--

==
Information for implementation definition 2:

ID: 13463dad-7fe1-1dad-e000-030409355cc6
ALIAS: indiserver
PROGRAM: indiserv.exe
PROTOCOLS: TCPIP
CONFIG:

--

==
Information for implementation definition 3:

ID: 042f1128-7fed-1dad-e000-07c809355cc6
ALIAS: wasirsvr
PROGRAM: wasirsvr.exe
PROTOCOLS: TCPIP
CONFIG:

--

CORB1148I: Exiting the regimpl utility

CORBA exceptions
The preferred coding practice for handling errors in C++ and Java is using
exceptions. The CORBA programming model supports this coding practice by
using the standard try and throw logic of exception handling. Handling exceptions

138 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

are a critical part of the programming model. The exceptions that are thrown must
be understood and handled appropriately by application developers.

No matter how much care an object provider takes in implementing a business
object, there are times when things go wrong. In these cases, a business object
might need to throw an exception to the client to give the client the opportunity to
recover from the error.

The detail of exception handling is given in the following topics:
v CORBA exceptions: Catching
v CORBA exceptions: Throwing
v CORBA system exception minor codes

For further information regarding C++ exceptions and their usage, see a standard
C++ book.

CORBA exceptions: Catching
You must handle exceptions in client programs. Remember that any method might
throw a standard exception. Therefore, an exception can be thrown by these
methods at any time - even if there are no exceptions declared in the raises clause
of that method. The default behavior for uncaught exceptions is to end that
process. If this happens, suspect an uncaught exception first. The exact style of
how or what exceptions are caught depends on what the client application does for
error recovery. However, the following is a list of some general rules:
v Perform the most specific error recovery that you need. By properly structuring

catch clauses, specific error recovery can be done.
v Check for most specific exceptions first and most general exceptions last.
v Make use of the information that is available in the exception. All of the CORBA

exceptions support the .id() method that returns the exception identifier. System
exceptions also provide .minor() and .completed() methods that return the minor
code and completion status respectively.

The following is a simple client code example:
try
{

// Some real code goes here
foo.boo();

}
// Catch any specific User exceptions defined for the method in the
// `raises’ clause
catch (IManagedClient::INoObjectWKey nowk)
{

// Process the error, more specific recovery could be made here
// because the specific error is known

}
// Catch and process any other specific User exceptions
...
// Catch any other User exceptions defined for the method in the
// `raises’ clause
catch (CORBA::UserException ue)
{

// Process any other User exceptions. Use the .id() method to
// record or display useful information
cout << "Caught a User Exception: " << ue.id() << endl;

}
// Catch any System exceptions defined for the method in the
// `raises’ clause
catch (CORBA::SystemException se)
{

Implementing CORBA applications 139

// Process any System exceptions. Use the .id(), and .minor()
// methods to record or display useful information
cout << "Caught a System Exception: " << ue.id() << ": " <<

ue.minor() << endl;
}
catch (...)
{

// Process any other exceptions. This would catch any other C++
// exceptions and should probably never occur
cout << "Caught an unknown Exception" << endl;

}

Specific standard exceptions cannot be caught individually. If processing individual
standard exceptions is required, it can be done within the
CORBA::SystemException catch block using the .id() method.

CORBA exceptions: Throwing
A business object might wrap existing logic that might not be written in C++ or
might not use the exception paradigm. These business objects must convert the
existing exceptions or error return codes to CORBA exceptions that can be returned
to the client program.

Any non-CORBA exception thrown by the business object is mapped automatically
to CORBA::UNKNOWN by the framework. This does not provide specific
information to the client and severely limits the error recovery capability of the
client program. These C++ exceptions should be mapped to appropriate CORBA
exceptions by the business object.

CORBA system exception minor codes
In the CORBA model for exception handling, a system exception might contain an
associated minor code. This topic provides details of these minor codes, grouped
by system exception.

Minor codes are used in several ways:
v Returned in the minor code field of exception bodies (when appropriate).
v Placed in the message log as part of the PrimaryMessage.
v Can be written in diagnostic messages on a computer screen.

Each minor code consists of a 5-digit hexadecimal vendor identifier followed by a
3-digit hexadecimal value, which indicates the specific reason for the system
exception. A minor code containing a vendor identifier of 0x4F4D0 is an Object
Management Group (OMG)-assigned minor code. A minor code containing a
vendor identifier of 0x49420 is an IBM-assigned minor code.

Specific minor code values are meaningful only within the context of the particular
system exception in which they are contained. Minor code values might be used in
more than one system exception type, but the system exception is used to interpret
the minor code value. For example, the minor code value 0x4F4D0001 means ″the
repository ID is already defined in the Interface Repository″ when associated with
a BAD_PARAM exception, However, the same code means ″unable to locate
and/or use the appropriate Value Factory″ when associated with a MARSHAL
exception.

In this topic, the description of each minor code consists of:

The System Exception (in alphabetical order)
A description of the problem that caused the error.

140 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

User Response: Actions are needed to resolve the problem, if appropriate.

Minor Code number (prefixed with vendor ID). In some cases, the minor
code number is followed by the following entries:
v Error Text A string that identifies the minor code.
v Details Details for this specific minor code, in the context of the System

Exception.

Minor code definitions

BAD_CONTEXT
Explanation: Cannot find a specified CORBA::Context property.

User Response: Ensure that the specified property name exists in the
context object.

0x49420047 SOMDERROR_CtxNoPropFound

Error Text: A string that identifies the minor code.

Details: This error occurs if an invalid property name was passed to
CORBA::Context::delete_values.

BAD_INV_ORDER
Explanation: Operations were invoked in an improper order.

User Response: Verify the proper order of the operations and correct the
order.

0x4942005D SOMDERROR_BadInvOrder

Details: This is the generic bad invocation order minor code.

0x4F4D0004

Details: The Object Request Broker (ORB) has been shut down, but an
ORB operation was requested.

0x4F4D000A

Details: There is an invalid Portable Interceptor call or a valid Portable
Interceptor call in an invalid order.

0x4F4D000B

Details: A request was made to add a new service context to the Portable
Interceptor. The service context was found to exist already but the
requester specified that it not be replaced.

BAD_OPERATION
Explanation: A bad class, method, operation, or object reference was
encountered.

User Response: Verify the operation and make sure the correct bindings
exist.

0x49420045 SOMDERROR_ClassNotFound

Details: Cannot convert an Interoperable Object Reference (IOR) to an
object. The class name was unknown or the proxy factory cannot be
created. Verify the class implementation and verify that the bindings exist.

0x4942004DSOMDERROR_WrongRefType

Details: The wrong type of object reference was used. Probably, a client
invoked an operation on an object in a server and the object did not

Implementing CORBA applications 141

support the invoked method. To support a given operation, a server must
be compiled and linked with the server-side C++ bindings for the interface
that introduces that IDL operation. This error also occurs when a server
application invokes CORBA::BOA::get_id and passes in a proxy object
rather than a local object. Verify that a server is compiled and linked with
all of the server-side C++ bindings for the interfaces.

BAD_PARAM
Explanation: An application supplied an invalid parameter to an
operation.

User Response: Check the error log for a message that indicates which
operation was given the invalid parameter. Check the documentation for
that operation and verify that the passed parameters are valid.

0x49420048 SOMDERROR_BadParm

Details: This is the generic bad parameter minor code.

0x4F4D0001

Details: Interface Repository. An operation specified an object with an ID
that already exists in the Interface Repository (IR) database container.

0x4F4D0002

Details: Interface Repository. Repository ID is defined already in the
Interface Repository.

0x4F4D0003

Details: Interface Repository. Name is used already in the context in the
Interface Repository.

0x4F4D0004

Details: Interface Repository. The target is not a valid container.

0x4F4D0005

Details: Interface Repository. The name clash is in inherited context.

0x4F4D0017

Details: A Portable Interceptor operation cannot find the specified service
context.

0x4F4D0018

Details: A null object was passed into register_initial_reference().

0x4F4D0019

Details: A Portable Interceptor operation cannot find the specified tagged
component on the target object.

0x4F4D001A

Details: A Portable Interceptor operation was given a profile ID that is not
supported. The supported profile id’s are IOP::TAG_INTERNET_IOP and
IOP::TAG_MULTIPLE_COMPONENTS.

COMM_FAILURE
Explanation: A communications failure occurred. Possible reasons are:
v A process might have received an unknown or unexpected message type

or message content.

142 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

v The process might have encountered a low-level communications failure
in attempting to send a message or binding to a socket.

v An unexpected broken connection might have occurred.

User Response:See the details of the following minor codes.

0x49420038 SOMDERROR_HostAddress

Details: Cannot map a host name on a different machine to a host address.
Ensure that the host to which this process is attempting to communicate is
known and can be reached via TCP/IP. Ping the remote host by the host
name.

0x4942003ESOMDERROR_CannotConnect

Details: A client process cannot connect to a server process when
attempting to invoke a method on a proxy to an object residing in that
server process. Ensure that the location service daemon is running. Ensure
that the object reference is still valid. Ping the remote machine to see that
the two machines are connected.

0x49420042SOMDERROR_CommunicationsError

Details. This is the generic communications error minor code. Ensure that
communications resources are functioning properly. For example, when
using TCP/IP, ping the remote host. Ensure that the process has not failed
due to an application error.

0x49420059SOMDERROR_Server_Connection_Broken

Details. The location service daemon might not restore a connection to a
server whose connection was broken.

DATA_CONVERSION
Explanation: Cannot perform codeset translation for character data or wide
character data. This results from a failure of the translation utilities. It can
occur if the process is using a non-standard codeset that does not map to
an OSF codeset. Also, it can occur if there is no common codeset between
the client and the server.

User Response: When using the translationEnabled configuration setting,
ensure that the NLS-related configuration settings are correctly set. Verify
that both the client and the server are using standard codesets and that
there is some codeset supported by both the client and the server. Refer to
the codeset reference section of this document.

0x49420051 SOMDERROR_DataConversion

Details: This is the generic data conversion minor code.

INITIALIZE
Explanation:A configuration or installation error is causing a problem
during initialization.

User Response: See the details of the following minor codes.

0x49420015 SOMDERROR_CouldNotLoadLibrary

Details: Client initialization cannot load a required library. Check the
activity log for more information.

0x49420035 SOMDERROR_InvalidProtocolInformation

Details: The configuration of the communications protocol is incorrect.
Supported communication protocols are TCP/IP and IPC. Verify that at

Implementing CORBA applications 143

least one valid communications protocol image is configured. Also, verify
that for each communications protocol configured, the csProfileTag and
portNumber are set and that the portNumber is not use by another process
on the system. (The portNumber is the port on which the location service
daemon or server listens for requests.) The csProfileTag and portNumber
settings must be unique.

0x49420036 SOMDERROR_SOMDDAlreadyRunning

Details: The location service daemon cannot begin listening because
another process is using the port number. Probably another instance of the
process is running already. If no other location service daemon is running,
reconfigure the location service daemon to listen on a different port
number.

0x49420037 SOMDERROR_InvalidConfigSetting

Details: A configuration setting or environment variable was not properly
set. An error log entry indicates which configuration setting or
environment variable is not properly set. If the reported variable is
WASORBTOP, verify that the product was properly installed (Set
WASORBTOP to the directory where the product was installed.)

0x49420046 SOMDERROR_ServerAlreadyExists

Details. A server cannot register with the location service daemon during
CORBA::BOA::impl_is_ready. Another server might be registered already
with the location service daemon under the server UUID. Only one
instance of a particular server can run on a given host. Terminate the
duplicate server process. If no duplicate server process is running, restart
the location service daemon.

0x4942004E SOMDERROR_SOMDDNotRunning

Details: A server cannot register with the location service daemon (in
CORBA::BOA::impl_is_ready) because it cannot contact the daemon. It is
possible that the daemon is not running or the daemon is running on a
port number that is different from what the server expected. Verify that the
location service daemon is running and is listening on the correct port.

INTERNAL
Explanation: An internal error condition was detected.

User Response: See the details of the following minor codes. Report the
occurrence to technical support.

0x49420034 SOMDERROR_NotImplemented

Details: The invoked operation is not supported in the product or is not
valid on the target object. Check that the operation being invoked and the
target object run-time type are compatible. Refer to the documentation for
the operation for information about restrictions.

0x4942004B SOMDERROR_Internal

Details: Report the problem to technical support.

0x4942004F SOMDERROR_ServerInterrupt

Details: The server has been shut down by an invocation of the
interrupt_server() method.

0x4F4D0001

144 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

Details: A Portable Interceptor operation cannot find an object key on the
target object.

0x4F4D0002

Details: A Portable Interceptor operation cannot find an object key on the
target most derived object.

INTF_REPOS
Explanation:An Interface Repository operation has encountered a problem
or error.

User Response: See the details of the following minor codes.

0x49420052 SOMDERROR_IRIncoherent

Details: An Interface Repository object references another named Interface
Repository object that no longer resides in the IR database. Delete and
rebuild the WASORBIR database to correct the problem.

0x49420053 SOMDERROR_IRInternal

Details: An internal programming or database error has occurred. Delete
and rebuild the WASORBIR database to correct the problem.

0x49420054 SOMDERROR_IRDuplicateEntry

Details. There was an attempt to create an Interface Repository object
when one already exists in the Interface Repository with either the same
CORBA::RepositoryId or the same name within that container. Change the
ID (CORBA::RepositoryId) parameter that is passed to the ’create_xxxx’
operation or change the ID (CORBA::RepositoryId) value of the object
already in the IR that is causing the duplicate entry error using the ID
write operation. Or, change the name of one of the two conflicting objects
within that container.

0x49420055 SOMDERROR_IREntryNotFound

Details: This error might occur when the client is attempting to use
Dynamic Invocation Interface (DII) with interfaces that are not accessible in
the Interface Repository. Check that the client has access to the Interface
Repository and that the interfaces being used are defined in the Interface
Repository.

0x49420056 SOMDERROR_IRCannotConnect

Details: Cannot find or access the Interface Repository database. This can
occur during a call to resolve_initial_references (with an input string of
InterfaceRepository). Verify that the Interface Repository database exists
and is properly configured. Also, verify that the directory or file
permissions associated with the Interface Repository database allow access
by the user receiving the exception. If the database is remote, check that
the ID and password are properly configured for that database using
configuration properties com.ibm.CORBA.irUserid and
com.ibm.CORBA.irPassword.

0x49420057 SOMDERROR_IRNameReUse

Details. Another thread or process is updating the needed portion of the
Interface Repository database. Retry the Interface Repository operation that
generated the exception at a later time.

INV_OBJREF
Explanation: An invalid object reference was used. For example, if a client

Implementing CORBA applications 145

uses a reference to an object that no longer exists or cannot be located in
the specified server, this error is sent from the server to the client. This
error can occur in a client process if an invalid string is passed to
CORBA::ORB::string_to_object. It occurs in a server if CORBA::BOA::create
is called with input ReferenceData that does not map to any known
exportable object residing in that server. The error occurs if
CORBA::BOA::get_id is invoked on a nil object reference or on an object
reference that has no associated ReferenceData in that server. Also, this
error occurs if a server attempts to export an object reference that has no
associated ReferenceData in that server or if a client attempts to pass a
local object as a parameter on a remote method invocation.

User Response: In a client process, verify that the object that the object
reference refers to still exists. Verify that strings passed to
CORBA::ORB::string_to_object have not been corrupted or truncated. There
is no maximum length for an object reference string. Some lengths,
however, are larger than others. Verify that servers do not attempt to
export objects that are not handled by the application adaptor of the server.

0x49420040 SOMDERROR_BadObjref

Details: This is the generic invalid object reference minor code.

MARSHAL
Explanation: An error has occurred when trying to marshall or demarshall
method parameters or return results as part of a remote invocation. This
can occur when demarshalling an inout sequence if the length of the
incoming sequence is greater than the original sequence maximum. It
alsocan occur if methods are not invoked on the ServerRequest object in
the correct order when you use the Dynamic Skeleton Interface (DSI).

User Response: Verify that inout sequences do not exceed the sequence
maximum. If using the DSI, verify that operations are invoked in the
correct order on the ServerRequest object.

0x4942003C SOMDERROR_MarshalingError

Details: This is the generic marshal error minor code.

0x4F4D0001 SOMDERROR_MarshalingError

Details: Unable to locate or use the appropriate Value Factory.

NO_MEMORY
Explanation: A memory allocation failed

User Response: Verify that the process does not have a memory leak.
Increase system resources.

0x4942000A SOMDERROR_NoMemory

Details: This is the generic no memory minor code.

NO_RESOURCES
Explanation: There is a system resources problem. A needed resource is
unavailable.

User Response: See the details of the following minor codes.

0x4942000D SOMDERROR_CouldNotStartThread

Details: Cannot start a thread. Check the log for more information.
Increase system resources.

0x49420014 SOMDERROR_CouldNotStartProcess

146 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

Details. The location service daemon cannot start a server process. Check
the log for more information.

0x4F4D0001

Details: A Portable Interceptor operation was invoked that is not
supported.

NO_RESPONSE
Explanation: Some process has timed out.

User Response: See the details of the following minor codes.

0x4942003B SOMDERROR_NoMessages

Details: No request messages were pending in a server process when the
server invoked CORBA::BOA::execute_next_request or
CORBA::BOA::execute_request_loop with the
CORBA::BOA::SOMD_NO_WAIT flag. Wait for a request to become
available or use the CORBA::BOA::SOMD_WAIT flag to call
CORBA::BOA::execute_next_request or
CORBA::BOA::execute_request_loop.

0x4942003D SOMDERROR_CommTimeOut

Details. A process has timed out while waiting for a response from another
process. Typically, a client receives this error when the server has
terminated or is hanging due to an application error. Verify that the other
process is still active. To increase the timeout period, change the
requestTimeout property in the configuration.

Note: Setting the requestTimeout property to zero results in an infinite
timeout.

0x4942005A : SOMDERROR_Server_Registration_Timeout

Details: A server has been started by the location service daemon, but that
server has not registered within the timeout period.

OBJECT_NOT_EXIST
Explanation: A locate request failed to find the requested object or the
object’s server is not running.

User Response: Verify that the correct object reference is being used and
the correct server is running.

0x4942005C SOMDERROR_ObjectNotExist

Details: This is the generic object not exist minor code.

PERSIST_STORE
Explanation: There is a Problem with the Implementation Repository.

User Response: See the details of the following minor codes.

0x49420043 SOMDERROR_ImplRepIO

Details: Cannot access the Implementation Repository database. Verify that
the Implementation Repository was correctly created and configured. Each
host machine must have its own Implementation Repository.

0x49420044 SOMDERROR_EntryNotFound

Details: Cannot find an entry in the Implementation Repository when

Implementing CORBA applications 147

attempting to delete, update, or locate it. Verify that the specified server
alias or UUID matches a server that was previously registered in the
Implementation Repository.

0x4942004A SOMDERROR_DuplicateEntry

Details: The application attempted to add a duplicate entry to the
Implementation Repository or attempted to update the server alias of an
existing entry using a name that is not unique. The server alias does not
need to be unique throughout the network, but it must be unique in each
Implementation Repository. Verify that the server UUID and server alias of
the ImplementationDef to be added or updated in the Implementation
Repository are unique.

SQL_INFORMATION
Explanation:A SQL error occurred.

User Response: Report the problem to technical support.

0x49420058 SOMDERROR_IRSQLInformation

Details: An Interface Repository operation has caught a SQL error.

UNKNOWN
Explanation:An unknown error occurred.

User Response: Report the problem to technical support.

0x49420041 SOMDERROR_Unknown

Details: An unexpected error occurred during an operation.

0x4F4D0001

Details: An unknown user exception was detected in the Portable
Interceptor.

Interface Definition Language (IDL)
The interface to a class of objects contains the information that a caller must know
to use an object. Specifically, it contains the names of its attributes and the
signatures of its methods. In the CORBA programming model, the Object
Management Group (OMG) Interface Definition Language (IDL) is the formal
language used to define object interfaces independent of the programming
language used to implement those methods.

148 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

This is an overview of the relationship between IDL and application development
languages. Object providers use IDL to define the interfaces to their objects. The
IDL can be directly defined by the object provider or can be produced
transparently to the user in application development tools. Code emitters and
generators produce the following elements:
v A usage binding that provides a native, client language rendering of the IDL (for

example, as a C++ class or Java interface). The usage binding also is used to
generate a client stub object that, through delegation, maps the interface onto the
server object providing the implementation.

v An implementation template that provides a native, server language class
template into which method behavior can be inserted (for example, by editing
the file and adding source code). The implementation of a class of objects (that
is, the procedures that implement operations and the variables used to store an
object’s state) is written in the implementor’s preferred programming language
(for example, C++ or Java).

v Implementation objects such as skeletons and stubs also can be emitted and
compiled if the client and server are in different processes or in different
languages. These implementation objects provide the functions needed to make
interlanguage calls and remote method execution.

Figure 5. IDL, usage and implementation

Implementing CORBA applications 149

The IDL compiler takes an IDL file as input and produces the usage binding files
that make it convenient to implement and use objects that support the defined
interface within a particular programming language.

For an enterprise bean, you can create the IDL files from the bean’s interface and
home classes.

IDL name scoping
An Interface Definition List (IDL) file, together with the contents of any files
referenced by #include statements, forms a naming scope. Definitions that do not
appear inside a scope are part of the global scope. The following kinds of
definitions introduce nested scopes: module, interface, valuetype, struct, union,
operation, and exception. An identifier can be defined one time in a particular
scope. Identifiers can be redefined in nested scopes, except that an identifier cannot
be the same as the identifier defining the scope. For example, an interface X cannot
contain an identifier named X. It is possible to define multiple modules with the
same identifier. The first declaration of the module defines the module. Subsequent
declarations of the module with the same identifier reopens the module and hence
its scope, which allows additional definitions to be added to it.

A particular definition may be referenced using an unqualified name (simply the
name of the identifier) or a qualified name. An unqualified name reference is
resolved by successively searching the enclosing scopes. If an unqualified name is
referenced in a scope, that identifier cannot be redefined within the same scope.

A qualified name reference is a series of identifiers with intervening double colons
(::). The last identifier is the name of the definition and the leftmost identifiers
indicate the scope of the definition. Qualified names have the following form:
scope-name::identifier

For example, the method name mymethod defined within the interface Test of
module M1 has the fully qualified name:
M1::Test::mymethod

A qualified name is resolved by first resolving the scope-name to a particular scope,
S and then locating the definition of the identifier within that scope. Scopes that
enclose the scope S are not searched.

Qualified names also can have the following form:
::identifier

These names are resolved by locating the definition of identifier within the
outermost name scope.

Every name defined in an IDL specification is given a global name and is
constructed as follows:
v Before the IDL compiler scans the IDL file, the name of the current root and the

name of the current scope are empty. When each module is encountered, the
string of two colons (::) and the module name are appended to the name of the
current root. At the end of the module, they are removed.

v When each interface, valuetype, struct, union, or exception definition is
encountered, the string of two colons (::) and the associated name are appended
to the name of the current scope. At the end of the definition, they are removed.
While parameters of an operation declaration are processed, a new unnamed
scope is entered so that parameter names can duplicate other identifiers.

150 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

v The global name of an IDL definition is then the concatenation of the current
root, the current scope, two colons (::), and the local name for the definition.

The names of types, constants, and exceptions defined by base interfaces and
valuetypes are accessible in a derived interface. References to these names must be
unambiguous. Ambiguities can be resolved by using a scoped name (prefacing the
name with the name of the interface that defines it and the two colons (::), as in
base-interface::identifier). Scope names also can be used to refer to a constant, type,
or an exception name defined by a base interface or valuetype but redefined by a
derived interface or valuetype.

IDL interface declarations
The Interface Definition Language (IDL) specification for a class of objects must
contain a declaration of the interface these objects support.

IDL interfaces and types should be enclosed inside a module scope. IDL declared
outside of a module scope takes up namespace in the global IDL namespace and
risks having name collisions with names declared by other IDL developers. For
more information, see “IDL name scoping” on page 150.

When objects are implemented using classes, the interface name also is used as a
class name. In addition to the interface name and its base interface names, an
interface indicates new methods (operations) and any constants, type definitions,
and exception structures that the interface exports.

An interface declaration has the following syntax:
interface interface-name [: base-interface1, base-interface2, ...]
{

constant declarations
type declarations
exception declarations
attribute declarations
operation declarations

};

All of the declaration elements are optional and their order usually is not
significant. However you must bear in mind the following considerations:
v Interface names must be declared before they are referenced.
v Types, constants, exceptions, and interface declarations must be defined before

they are referenced (as in C or C++).
v Using one declaration can mandate another and determine the order in which

they are declared. For example, if an operation raises an exception, the exception
must be declared and must come before the operation in the list.

The base-interface names specify the interfaces from which interface-name is
derived. Parent-interface names are required only for the immediate base
interfaces. Each base interface must have its own IDL specification that must be
referenced by a #include in the IDL file. A base interface cannot be named more
than one time in the interface statement header.

The following topics describe the declaration elements that can be specified within
the body of an interface declaration:
v “IDL constant declarations” on page 152
v “IDL type declarations” on page 152
v “IDL exception declarations” on page 155

Implementing CORBA applications 151

v “IDL attribute declarations” on page 156
v “IDL operation declarations” on page 157

IDL constant declarations: Constants are declared in Interface Declaration
Language (IDL) just as in C++ except that the type of the constant must be a valid
IDL type. IDL constant declarations take the following form:

const const-type identifier=constant-expression;

The const-type must be a valid IDL integer, char, wchar, boolean, floating point,
string, wstring, octet, or enum type. The identifier is the name of the constant being
defined. The constant-expression is a constant expression as in C or C++ and can
include the following that are usual in the C and C++ programming languages:
v unary and binary operators (|, ^, &, >>, <<, +, -, *, /, %, ~~)
v parentheses for controlling operator precedence
v literal values (integer, string, character, and floating point)
v boolean literal values TRUE and FALSE.

IDL type declarations: IDL specifications can include the following type
declarations as in C++ with the restrictions and extensions described in these
topics:
v “IDL integer types”
v “IDL floating point types” on page 153
v “IDL character types” on page 153
v “IDL boolean type” on page 153
v “IDL octet type” on page 153
v “IDL any type” on page 153
v “IDL constructed types” on page 153
v “IDL template types” on page 154
v “IDL arrays” on page 155
v “IDL object types” on page 155

The form of a type declaration within the body of an interface declaration is
described in IDL interface declarations.

IDL integer types: The Interface Definition Language (IDL) supports the following
integer types only, which represent the corresponding value ranges:

Table 1. Supported IDL integer types and their value ranges

Integral type Value range

short -215 through (215)-1

long -231 through (231)-1

long long -263 through (263)-1

unsigned short 0 through (216)-1

unsigned long 0 through (232)-1

unsigned long long 0 through (264)-1

152 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

IDL floating point types: The Interface Definition Language (IDL) supports the float
and double floating-point types. The float type represents the IEEE single-precision
floating-point numbers. The double floating-point type represents the IEEE
double-precision floating-point numbers.

Because returning floats and doubles by value might not be compatible across all
Microsoft Windows compilers, client programs should return floats and doubles by
reference.

IDL character types: IDL supports a char type, which represents an 8-bit quantity.
The ISO Latin-1 (8859.1) character set defines the meaning and representation of
graphic characters. The meaning and representation of null and formatting
characters is the numerical value of the character as defined in the ASCII (ISO 646)
standard. Unlike C and C++, type char cannot be qualified as signed or unsigned.
(The octet type can be used in place of unsigned char.)

IDL boolean type: The Interface Definition Language (IDL) supports a boolean type
for data items that can take only the values zero (FALSE) and one (TRUE).

IDL octet type: The Interface Definition Language (IDL) supports an octet type,
which is an 8-bit quantity guaranteed not to undergo conversion when transmitted
between a client and server process. The octet type can be used in place of the
unsigned char type. For more information on the unsigned type, see “IDL character
types”.

IDL any type: The Interface Definition Language (IDL) supports an any type,
which permits the specification of values of any IDL type. Conceptually, an any
consists of a value and a TypeCode that represents the type of the value. The
TypeCode class provides functions for obtaining information about an IDL type.

IDL constructed types: In addition to the basic types, the Interface Definition
Language (IDL) also supports three constructed types:
v Structure (struct)
v Union (union)
v Enumeration (enum)

The structure and enumeration types are specified in the IDL just as they are in C
and C++. However, they have the following restrictions:
v Recursive type specifications are allowed only through the use of the sequence

template type.
v Structures and enumerations in IDL must be tagged. For example, struct { int a;

... } is an inappropiate type specification because the tag is missing. The tag
introduces a new type name.

v Structure and enumeration type definitions need not be part of a typedef
statement. Furthermore, if they are part of a typedef statement, the tag of the
struct must differ from the type name being defined by the typedef. For
example, the following are valid IDL struct and enum definitions:
struct myStruct {

long x;
double y;

};
/* defines type name myStruct */
enum colors { red, white, blue };
/* defines type name colors */

The following IDL definitions are not valid:

Implementing CORBA applications 153

typedef struct myStruct {
/* NOT VALID */
long x;
/* Tag myStruct is the same */
double y;
/* as the type name below; */

} myStruct;
/* myStruct has been redefined */

typedef enum colors { red, white, blue } colors;
/* NOT VALID */

The IDL union type is a cross between the C union and switch statements. This
type is specified in IDL just as it is in C and C++, with the restriction that
discriminated unions in IDL must be tagged. The syntax of a union type
declaration is as follows:
union identifier switch
(switch-type) { case+ }

v The identifier following the union keyword defines a new legal type. (Union
types also can be named using a typedef declaration.)

v The switch-type specifies an integral, character, boolean, or enumeration type, or
the name of a previously defined integral, boolean, character or enumeration
type.

v Each case of the union is specified with the following syntax:
case-label+ type-spec declarator;

where:
– Each case-label has the following form:

case const-expr:

default: The const-expr is a constant expression that must match or be
automatically castable to the switch-type. A default case can appear no more
than once.

– type-spec is any valid type specification.
– declarator is an identifier or an array declarator (such as, foo[3][5]).

Note: A deviation from CORBA specifications exists; there is no support of
longlong discriminators in unions.

IDL template types: The Interface Definition Language (IDL) defines two template
types not found in C and C++: sequences and strings. A sequence is a
one-dimensional array with two characteristics: an optional maximum size
(specified at compile time) and a length (determined at run time). Sequences
permit passing unbounded arrays between objects. Sequences are specified as
follows:
sequence simple-type [, positive-integer-const]

where simple-type specifies any valid IDL typeand the optional positive-integer-const
is a constant expression that specifies the maximum size of the sequence (as a
positive integer).

A string is similar to a sequence of type char. It can contain all possible 8-bit
quantities except NULL. Strings are specified as follows:
string [positive-integer-const]

154 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

where the optional positive-integer-const is a constant expression that specifies the
maximum size of the string (as a positive integer, which does not include the extra
byte to hold a NULL as required in C or C++).

Since CORBA gives no specific rules on how to process blanks contained within
strings, IBM WebSphere Application Server treats "ABC" and "ABC " as referring
to different managed objects. If you do not want blanks to be treated as significant
pre-process your code to either remove trailing blanks or add trailing blanks to
some fixed string length.

IDL arrays: Multidimensional, fixed-size arrays can be declared in the Interface
Definition Language (IDL) as follows:
identifier { [positive-integer-const] }+

where the positive-integer-const is a constant expression that specifies the array size,
in each dimension, as a positive integer. The array size is fixed at compile time.

IDL object types: The name of the interface to a class of objects can be used as a
type name. For example, if an Interface Definition Language (IDL) specification
includes an interface declaration for a class (of objects) C1, then C1 can be used as
a type name within that IDL specification. When used as a type, an interface name
indicates a reference to an object that supports that interface. An interface name
can be used as the type of an operation argument, as an operation return type, or
as a member of a constructed type (a struct, union, or enum). In all cases, the use
of an interface name indicates a reference to (instead of an instance) an object that
supports that interface.

IDL exception declarations: Interface Definition Language (IDL) specifications
can include exception declarations, which define data structures to be returned
when an exception occurs during the execution of an operation. A name is
associated with each type of exception. Optionally, a struct-like data structure for
holding error information also can be associated with an exception. Exceptions are
declared as follows:
exception identifier

{
member*

};

The identifier is the name of the exception and each member has the following form:
type-spec declarators ;

The type-spec is a valid IDL type specification and declarators is a list of identifiers
or array declarators, delimited by commas. The members of an exception structure
must contain information to help the caller understand the nature of the error. The
exception declaration can be treated like a struct definition. Whatever you can
access in an IDL struct, you can access in an IDL exception. Unlike a struct, an
exception can be empty which means that the exception is just identified by its
name.

If an exception is returned as the outcome of an operation, the exception identifier
indicates which exception occurred. The values of the members of the exception
provide additional information specific to the exception. The article, “IDL operation
declarations” on page 157 describes how to indicate that a particular operation can
raise a particular exception.

The following is an example showing the declaration of a BAD_FLAG exception:

Implementing CORBA applications 155

exception BAD_FLAG
{

long ErrCode; char Reason[80];
};

In addition to user-defined exceptions, there are several predefined exceptions for
system run-time errors. The standard exceptions as prescribed by CORBA are
subclasses of CORBA::SystemException. These exceptions correspond to standard
run-time errors that can occur during the execution of any operation (regardless of
the list of exceptions listed in the operation’s IDL specification).

Each of the standard exceptions has the same structure: an error code (to designate
the subcategory of the exception) and a completion status code. For example, the
NO_MEMORY standard exception has the following definition:
enum completion_status
{

COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE
};
exception NO_MEMORY
{

unsigned long minor;
completion_status completed;

};

The ″completion_status″ value indicates whether the operation was never initiated
(COMPLETED_NO), if the operation completed its execution prior to the exception
(COMPLETED_YES) , or if the operation’s completion status is indeterminate
(COMPLETED_MAYBE).

IDL attribute declarations: Declaring an attribute as part of an interface is
equivalent to declaring one or two accessor operations: one to retrieve the value of
the attribute (a get or read operation) and (unless the attribute specifies read-only)
one to set the value of the attribute (a set or write operation).

Attributes are declared as follows:
[readonly] attribute type-spec declarators;

where:
v type-spec specifies any valid Interface Definition Language (IDL) type (except a

sequence).
v declarators is a list of identifiers, delimited by commas. An array declarator

cannot be used directly when declaring an attribute. The type of an attribute can
be a user-defined type that is also an array. Although the type of an attribute
cannot be a sequence, it can be a user-defined type that is a sequence. The
optional readonly keyword specifies that the value of the attribute can be
accessed but not modified. (In other words, a readonly attribute has no set
operation.) The following is an example of attribute declarations, which are
specified within the body of an interface statement:
interface Goodbye: Hello
{

void sayBye();
attribute short xpos;
attribute char c1, c2;
readonly attribute float xyz;

};

Attributes are inherited from base interfaces. An inherited attribute name cannot be
redefined to be a different type.

156 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

IDL operation declarations: Operation declarations define the interface of each
operation introduced by the interface. An Interface Definition Language (IDL)
operation is typically implemented by a method in the implementation
programming language. Hence, the terms operation and method are often used
interchangeably. An operation declaration is similar to a C++ virtual function
definition:
[oneway] type-spec identifier (parameter-list) [raises-expr [context-expr] ;

where:
v identifier is the name of the operation.
v type-spec is any valid IDL type, except a sequence or the keyword void that

indicates that the operation returns no value. (Although the return type cannot
be a sequence, it can be a user-defined type that is a sequence.) Unlike C and
C++ procedures, operations that do not return a result must specify void as their
return type.

The remaining syntax of an operation declaration is elaborated in the following
topics:
v “IDL operation declarations: ″oneway″ keyword”
v “IDL operation declarations: parameter list”
v “IDL operation declarations: ″raises″ expression” on page 158
v “IDL operation declarations: ″context″ expression” on page 158

IDL operation declarations: ″oneway″ keyword: For an overview of IDL operation
declarations, see “IDL operation declarations”.

The optional oneway keyword specifies that when a caller invokes the operation,
no reply is expected or received. The invocation semantics of a oneway operation
are best-effort, which does not guarantee delivery of the call. Best-effort implies
that the operation is invoked ″at most once″. A oneway operation must not have
any output parameters and must have a return type of void. A oneway operation
also must not include a raises expression.

If the oneway keyword is not specified, then the operation has at-most-once
invocation semantics if an exception is raised and it has exactly-once semantics if
the operation succeeds. This means that an operation that raises an exception is
implemented zero or one times and an operation that succeeds is implemented
exactly once.

IDL operation declarations: parameter list: For an overview of the Interface
Declaration Language (IDL) operation declarations, see “IDL operation
declarations”.

The parameter-list contains zero or more parameter declarations for the operation
and is delimited by commas. (The target object for the operation is not explicitly
specified as an operation parameter in IDL.) If there are no explicit parameters, the
syntax ″()″ must be used, rather than ″(void)″. A parameter declaration has the
following syntax:
{ in | out | inout } type-spec declarator

where type-spec is any valid IDL type (except a sequence) and declarator is an
identifier or an array declarator. Although the type of a parameter cannot be a
sequence, it can be a user-defined type that is a sequence.

Implementing CORBA applications 157

The required in, out, or inout directional attribute indicates whether the parameter
is to be passed from caller to callee (in), from callee to caller (out), or in both
directions (inout). The following are examples of valid operation declarations:
short meth1(in char c, out float f);

oneway void meth2(in char c);
float meth3();

An operation’s implementation should not modify an in parameter. If a change
must be made by the implementation, the implementation should copy the
parameter and modify the copy only.

If an operation raises an exception, the values of the return result and the values of
the out and inout parameters (if any) are undefined.

IDL operation declarations: ″raises″ expression: For an overview of the Interface
Definition Language (IDL) operation declarations, see “IDL operation declarations”
on page 157.

The optional raises expression in an IDL operation declaration indicates which
exceptions the operation can raise. A raises expression is specified as follows:
raises (identifier1, identifier2, ...)

where each identifier is the name of a previously defined exception. In addition to
the exceptions listed in the raises expression, an operation also can signal any of
the standard exceptions. Standard exceptions, however, should not appear in a
raises expression. If no raises expression is given, then an operation can raise the
standard exceptions only. “IDL exception declarations” on page 155 contains further
information on defining exceptions and the list of standard exceptions.

IDL operation declarations: ″context″ expression: For an overview of the Interface
Declarations Language (IDL) operation declarations, see “IDL operation
declarations” on page 157.

The optional context expression (context-expr) in an operation declaration indicates
which elements of the caller’s context the operation’s implementation can consult.
A context expression is specified as follows:
context (identifier1, identifier2, ...)

where each identifier is a string literal made up of alphanumeric characters,
periods, underscores and asterisks. The first character must be alphabetic and an
asterisk can only appear as the last character, where it serves as a wildcard
matching any characters. If convenient, identifiers can consist of period-separated ,
valid identifier names, but that form is optional.

The context is a special object that is specified by the CORBA standard. It contains
a property list. The property list contains a set of property name and string value
pairs that the caller can use to store information about its environment, which
operations can find useful. It is used similar to environment variables. The
property list is passed as an additional parameter to operations that are defined as
context-sensitive in the IDL.

The context expression of an operation declaration in IDL specifies which property
names the operation uses. If these properties are present in the context object
supplied by the caller, they are passed to the object implementation, which can
access them through the interface of the context object.

158 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

The argument that is passed to the operation having a context expression is a
Context object, not the names of the properties. The caller must create a context
object and use its interface to set the context properties. The caller then passes the
context object in the operation invocation. The CORBA standard allows properties,
in addition to those in the context expression, to be passed in the context object.

Multiple IDL interfaces
A single Interface Definition Language (IDL) file can define multiple interfaces.
When a file defines two or more interfaces that reference one another, forward
declarations are used to declare the name of an interface before it is defined. This
is done as follows:
interface interfaceName ;

The actual definition of the interface for interfaceName must appear later in the
same IDL file.

If multiple interfaces are defined in the same IDL file, they can be grouped into
modules by using the following syntax:
module moduleName { definition+ };

where each definition is a type declaration, constant declaration, exception
declaration, interface statement, or nested module statement. Modules are used to
scope identifiers.

Alternatively, multiple interfaces can be defined in a single IDL file without using
a module to group the interfaces. Whether or not a module is used for grouping
multiple interfaces, the language bindings produced from the IDL file include
support for all of the defined interfaces.

IDL include directives
If your interface declaration refers to a parent interface or uses some other
referenced types, the Interface Declaration Language (IDL) file must contain
#include statements that tell the IDL compiler where to find the referenced
interface definitions (the IDL files).

If your interface declaration refers to IDL types (defined by the CORBA
specification) that are not IDL reserved words, then the IDL file should contain an
#include statement for the orb.idl file.

As in C and C++, if an #include statement specifies a file name that is enclosed in
angle brackets ([]), the search for the file begins in system-specific locations. If the
file name is enclosed in double quotation marks (″″), the search for the file begins
in the current working directory, before searching the system-specific locations.

For information on other preprocessor directives that can be used in IDL, see “IDL
pragma directives”.

IDL pragma directives
For information on preprocessor directives that can be used in Interface Definition
Language (IDL), see “IDL include directives”.

localonly pragma

This pragma supports the generation of bindings for objects that are known to be
local (not distributed). This pragma can occur at any point in the IDL file following
the definition or forward declaration of the designated interface.

Implementing CORBA applications 159

The syntax is:
#pragma meta interface-name localonly

The IDL interface identified by interface-name is treated by generated bindings as
strictly local to the caller’s process. No calls to the CORBA Object Request Broker
(ORB) occur when invoking the operations defined in this interface. interface-name
can be a simple name of an interface in the current scope or a fully- or partially
qualified interface name. The interface must be previously defined or forward
declared when the pragma statement is encountered.

localonly abstract pragma

This pragma is like the localonly pragma, but it signifies an abstract function that
cannot be instantiated. These types of interfaces are used to just define interfaces.

The syntax is:
#pragma meta interface-name localonly abstract

cpponly pragma

This pragma suppresses the generation of IOM interlanguage bindings.

The syntax is:
#pragma meta interface_name cpponly

In the default case, without this pragma, two sets of bindings are produced:
v The standard CORBA C++ bindings suitable for use with the ORB component.
v IOM bindings suitable for interlanguage interaction.

Without this pragma, only the standard CORBA C++ bindings are produced.

init pragma

This pragma specifies a function used to initialize newly created objects.

The syntax is:
#pragma meta method-name init

This pragma allows the IDL to specify the name of a function used to initialize the
newly created method. When this pragma is not used, the emitters produce a
_create() function that does not take parameters and does no initialization after the
new object is created.

For example, if the IDL contains:
interface A
{

void initFunction(int);
};
#pragma meta A::initFunction init

the C++ class A that implements interface A has a _create() function that takes an
int parameter (because initFunction takes an int). Also, the code inside _create(int)
creates a new instance of class A, calls initFunction(int) on the newly created
object, and passes along its int parameter.

160 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

ID pragma

This CORBA-defined pragma overrides the default RepositoryID for an IDL entity.

The syntax is:
#pragma ID scoped-name literal-string

This sets the RepositoryID of scoped-name to literal-string instead of the default
Repository ID.

Prefix pragma

This CORBA-defined pragma sets the RepositoryID prefix.

The syntax is:
#pragma prefix string

This sets the current prefix used in generating OMG IDL format RepositoryIDs.
The specified prefix applies to RepositoryIDs generated after the pragma until the
end of the current scope is reached or another prefix pragma is encountered.

version pragma

This CORBA-defined pragma sets the RepositoryID version number.

The syntax is:
#pragma version scoped-name major.minor

This uses the major.minor as the version number for RepositoryID of the
scoped-name.

idlc command (IDL compiler)
The Interface Definition Language Compiler (idlc) command creates usage and
implementation bindings for interfaces described in IDL files.

Use this command to compile one or more files containing CORBA 2.3-compliant
IDL statements and (optionally) to emit generated language bindings appropriate
to each named input file.

Syntax
idlc [options] filename-list

where options are described in this article and filename-list is a list of one or more
IDL files.

Each file name specified in filename-list can be specified with or without a file name
extension. If no file name extension is supplied, it is assumed to be ″.idl″.

When all of the specified input files are compiled, the idlc command returns a
value of zero if no errors are detected. Otherwise, a non-zero value is returned.

Options

Options for the idlc command are preceeded with a dash (-) character and can be
specified individually or run together. For example, -p -v -V or -pvV are
acceptable.

Implementing CORBA applications 161

Some options accept an argument. Where several options have the same argument,
these options also can be specified individually or run together. For example, -p -m
tie or -pm tie are acceptable.

The space between the option and its argument is optional. For example, either
-mtie or -m tie are acceptable.

All options are case-sensitive, even on platforms where file names are not
case-sensitive.

The following table describes each available option:

idlc command options

Option Description

-d directory-name Specifies the directory in which to place
emitted output files and directories. If none
is specified, the default is the current
directory.

-V Shows the version number of the idlc
command.

-v Specifies verbose mode. This shows all of the
internal commands (and their arguments)
issued by the idlc command.

-? (or -h) Writes a brief description of the idlc
command syntax to standard output.

-D define-expression Predefines a preprocessor variable for the
IDL compiler.

-I include-directory Adds a directory to the list of directories
used by the IDL compiler to find #include
files. In addition to the -I option, the
IDLC_INCLUDE environment variable can
be used to specify a list with include-directory
names separated by the PATH separator
character.

-i file-name Specifies the name of a file to be compiled
that does not have the .idl extension. Do not
add an implicit .idl suffix to the file-name.

-p Used as a shorthand for -D__PRIVATE__.

162 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

Option Description

-e (or -s) emit-list Specifies a list of emitters to run. Emitters
generate output files that contain
language-specific usage and implementation
bindings appropriate to each named input
file. The rules used to generate the names of
these output files are described in the article
entitled, ″The idlc command: Emitted C++
filenames″.

Each emitter in the list is separated from the
others by a colon (:) or semicolon (;)
character. Valid emitter names are:

hh Produces C++ usage bindings. If no
modifiers are present, bindings with
support for remote cross-language
operation are produced. The
cpponly and localonly modifiers
cause specialized bindings to be
produced (see -mname[=value]).

sc Produces a C++ skeleton
(server-side bindings) for the basic
object adapter of the Object Request
Broker (ORB). If no modifiers are
present, bindings with support for
remote cross-language operation are
produced. The cpponly and
localonly modifiers cause specialized
bindings to be produced (see
-mname[=value]).

uc Produces local implementations
needed by the C++ usage bindings.
If no modifiers are present, bindings
with support for remote
cross-language operation are
produced. The cpponly and
localonly modifiers cause specialized
bindings to be produced (see
-mname[=value]).

ih Produces a C++ implementation
header.

ic Produces a template file for the C++
object implementation code.

Implementing CORBA applications 163

Option Description

-m name[=value] Specifies an output modifier. A modifier can
be given as a name or a name=value
expression. The emitters are sensitive to the
following modifiers:

LINKAGE=value
Used to insert customized C++
linkage modifiers into the generated
bindings.

notcconsts
Eliminates the generation of C++
TypeCode constants and overloaded
any operators.

tie Generates ″tie-style″ bindings that
assume delegation rather than
inheritance.

cpponly
Suppresses the production of
cross-language bindings and
produces standard CORBA C++
bindings suitable for use with a
standalone ORB. cpponly affects the
bindings produced by the hh, sc,
and uc emitters.

localonly
Generates bindings that only can be
used to access a local object for all
of the most-derived interfaces in the
IDL file.

IRforce Causes the interface repository (IR)
emitter to destroy objects already
present in the IR with the same
name as in the IDL being produced.

dllname=value
Puts Microsoft Windows NT import,
export, or both specifications into
classes contained in the DLL named
by value.

preInclude=file-name
Adds the line:

#include file-name

to the .hh file, just before the line
that includes corba.h.

postInclude=file-name
Adds the line:

#include file-name

just before the end of the .hh file.

164 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

Option Description

-J Passes options through to the Java interpreter
used internally. For example:

-J"-mx32m"

sets the heap size for the interpreter to 32M.

Environment Variables

IDLC OPTIONS

Any of the idlc command options can also be specified in the environment by
adding the option to the IDLC_OPTIONS environment variable. Options specified
in the IDLC_OPTIONS environment variable are treated as if they were entered on
the command line before any of the actual command line options. For example, the
IDLC_OPTIONS might be:
IDLC_OPTIONS="-mcpponly -mdllname=mydll"

and the command line might be:
idlc -ehh idlfile

The result is the same as if the IDLC_OPTIONS variable is not set and the
command line is:
idlc -mcpponly -mdllname=mydll -ehh idlfile

IDLC_EMIT

Emitters can also be specified in an emit-list held in the IDLC_EMIT environment
variable. When you run the idlc command, it looks for emitters specified by the -e
or -s options, and also looks in the IDLC_EMIT environment variable. If it cannot
find an emit-list in either source, then only the syntax of the named files is checked
and any errors are reported. When a compilation error (but not a warning) is
detected for a particular input file, the emit phase for that file is skipped.

idlc command: Emitted C++ filenames: The names of the generated output files
are derived from the file name of the corresponding Interface Definition Language
(IDL) file. For a file named filestem.idl, the following list of output files can be
emitted when the idlc command is run. The list contains the emitter and its
corresponding output file name.

hh filestem.hh

sc filestem_S.cpp

uc filestem_C.cpp

ih filestem.ih

ic filestem_I.cpp

IDL-to-Java compiler
The IDL-to-Java compiler generates Java bindings for a given Interface Definition
Language (IDL) file.

The command to invoke the IDL-to-Java code compiler has the general form:
idlj [options] source_IDL

Implementing CORBA applications 165

where source_IDL is the name of a file that contains IDL definitions and [options] is
any combination of the options in the following list. Options can appear in any
order, but must precede the IDL file specification.

IDL-to-Java command options

Option Description

-d symbol Defines a symbol before compilation. This is
equivalent to putting the line #define symbol
in an IDL file. It is useful when you want to
define a symbol for compilation that is not
defined within the IDL file, for example to
include debugging code in the bindings.

-emitAll Emits all types, including those found in
#include files. By default, only those types
found in idl file are emitted. For more
information, see “Emitting bindings for
include files” on page 168.

-fside Defines what bindings to emit. side is one of
client, server, all, serverTie, and allTie.
This assumes -fclient if the flag is not
specified. For more information, see
″Emitting client and server bindings″

-i include_ path By default, the current directory is scanned
for included files. This option adds another
directory. For more information, see
“Specifying alternative locations for include
files” on page 167.

-keep Preserves preexisiting bindings. The default
is to generate all of the files without
considering if they already exist. If the Java
binding files do already exist, this option
stops the compiler from overwriting them.
This is useful if you have customized those
files, which you should not do unless you
are very comfortable with their contents.

-pkgPrefix type package Wherever type is encountered, ensures it
resides within package in all generated files.

Note: type must be a fully qualified,
Java-style name. For more information, see
″Inserting package prefixes″.

-td target_directory By default, the compiler outputs bindings to
the directory from which it was invoked (the
current directory). To direct the output to
another directory, specify the target directory
immediately following the -td flag. The
target directory can be absolute or relative.

-v, -verbose Generates status messages so that you can
track the progress of compilation. If this
option is not selected, messages are not
outputed unless there are errors.

166 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

Option Description

-version Displays the build version of the IDL-to-Java
compiler. Any additional options appearing
on the command line are ignored.

Note: Version information also appears
within the bindings generated by the
compiler.

Emitting client and server bindings: To generate the Java bindings for an
Interface Definition Language (IDL) file named My.idl, set the current working
directory to the one that contains My.idl and issue the following command:
idlj My.idl

This command generates client-side bindings only and is equivalent to:
idlj -fclient My.idl

Client-side bindings include all of the generated files except the skeleton. If you
want to generate server-side bindings for My.idl, issue the following command:
idlj -fserver My.idl

This command generates all of the client-side bindings plus an inheritance-model
skeleton (ImplBase). Currently, server-side bindings include all generated files,
even the stub. Thus, the previous command is currently equivalent to each of the
following:
idlj -fclient -fserver My.idl
idlj -fall My.idl

The compiler generates inheritance-model skeletons by default. Given an interface
My defined in My.idl, the compiler generates Skeleton _MyImplBase.java. You
provide the implementation for My, which must extend _MyImplBase.

Specifying alternative locations for include files: If My.idl included another
Interface Definition List (IDL) file, MyOther.idl, the compiler assumes that
MyOther.idl resides in the local directory. If it resides in directory /includes, for
example, invoke the compiler with the following command:
idlj -i /includes My.idl

If My.idl also included Another.idl that resided in /moreIncludes, then you would
invoke the compiler as:
idlj -i /includes -i /moreIncludes My.idl

You can begin to see that if you have a number of places where included files can
come from, the command becomes long and unmanageable. As a result, there is
another means of indicating to the compiler where to search for included files. This
technique is very similar to the idea of an environment variable. You must create a
file called idl.config in a directory that is listed in your CLASSPATH. Inside of
idl.config you must provide a line in the following form:
includes=/includes;/moreIncludes

The compiler takes the first version of the file it locates and reads in its includes
list. In this example, the separator character between the two directories is a
semicolon (;). It is a semicolon (;) on the Microsoft Windows NT platform and a
colon (:) on the AIX® platform.

Implementing CORBA applications 167

Note: Some platforms will fail when issuing a long command line. If the command
line to invoke the compiler becomes too long, use the idl.config file.

Emitting bindings for include files: By default, only those interfaces, structs, and
so on, that are defined in the Interface Definition Language (IDL) file on the
command line have the Java bindings generated for them. The types defined in
included files are not generated. For example, assume the following two IDL files:
My.idl

#include MyOther.idl
interface My
{
};

MyOther.idl

interface MyOther
{
};

The following command only generates bindings for types within My:
idlj My.idl

To generate bindings for all of the types in My.idl and all of the types in files that
My.idl includes (in this example, MyOther.idl), use the following command:
idlj -emitAll My.idl

There is a caveat to the default rule. #include statements, which appear at the
global scope, are treated as described. These #include statements can be thought of
as import statements. #include statements that appear within some enclosing scope
are treated as true #include statements. This means that the code within the
included file is treated as if it appeared in the original file and, therefore, Java
bindings are emitted for it. Here is an example:
My.idl

#include MyOther.idl
interface My
{

#include Embedded.idl
};

MyOther.idl

interface MyOther
{
};

Embedded.idl

enum E {one, two, three};

Running the following command:
idlj My.idl

will generate the following list of Java files:
./MyHolder.java
./MyHelper.java
./_MyStub.java
./MyPackage

168 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

./MyPackage/EHolder.java

./MyPackage/EHelper.java

./MyPackage/E.java

./My.java

Note: MyOther.java is not generated because it is defined in an import-like
#include. But E.java is generated because it is defined in a true #include. Also,
because Embedded.idl was included within the scope of the interface My, it
appears within the scope of My (that is, in MyPackage).

If the -emitAll flag is used in the previous example, all types in all of the included
files are emitted.

Inserting package prefixes: This option has the following form:
-pkgPrefix type package

It ensures that wherever type is encountered, type resides within package in all of
the generated files.

For example, let us suppose that a company called ABC has constructed the
following Interface Definition Language (IDL) file:
Widgets.idl

module Widgets
{

interface W1 {...};
interface W2 {...};

};

Running this file through the IDL-to-Java compiler places the Java bindings for W1
and W2 within the package Widgets. But what if there is an industry convention
that states that a company’s packages must reside within a package named
com.company name? Then, the Widgets package does not conform. To follow the
convention, it must be com.abc.Widgets. To place this package prefix onto the
Widgets module, implement the following:
idlj -pkgPrefix Widgets com.abc Widgets.idl

Be aware that if you have an IDL file that includes Widgets.idl, the -pkgPrefix flag
must appear on that command as well. If it does not, then your IDL file will look
for a Widgets package rather than a com.abc.Widgets package.

If you have a number of these packages that require prefixes, it might be easier to
place them into the idl.config file as described in “Specifying alternative locations
for include files” on page 167. Each package prefix line should be of the form:
PkgPrefix.type=prefix

The line for the previous example would be:
PkgPrefix.Widgets=com.abc

Emitting makefiles and specifying the path separator character: When the Java
bindings are compiled using a makefile, it can become tedious to build the
makefile by hand. There are two arguments to the IDL-to-Java compiler that can
help to build the makefile.
idlj -m My.idl

Besides the usual bindings, this command generates bfile My.u that contains the
following lines:

Implementing CORBA applications 169

MyHelper.java: My.idl
My.java: My.idl
MyHolder.java: My.idl
MyPackage/E.java: Embedded.idl
MyPackage/EHelper.java: Embedded.idl
MyPackage/EHolder.java: Embedded.idl
_MyStub.java: My.idl

MyHelper.java \
My.java \
MyHolder.java \
MyPackage/E.java \
MyPackage/EHelper.java \
MyPackage/EHolder.java \
_MyStub.java

If you build a makefile that runs on multiple platforms, the slash (/) character is
not necessarily the file separator character. The build environment might have a
special variable for the file separator character. If this variable were $(Sep), then
the compiler can place this in place of the slash in My.u with the following
command:
idlj -m -sep \$\(Sep\) My.idl

Now My.u contains the following:
MyHelper.java: My.idl
My.java: My.idl
MyHolder.java: My.idl
MyPackage$(Sep)E.java: Embedded.idl
MyPackage$(Sep)EHelper.java: Embedded.idl
MyPackage$(Sep)EHolder.java: Embedded.idl
_MyStub.java: My.idl

MyHelper.java \
My.java \
MyHolder.java \
MyPackage$(Sep)E.java \
MyPackage$(Sep)EHelper.java \
MyPackage$(Sep)EHolder.java \
_MyStub.java

Conventions used in documenting IDL syntax
The following conventions are used in these topics to describe the syntax of
Interface Definition Language (IDL) as specified by the CORBA standard:

bold Indicates literals (such as keywords)

variable Indicates user-supplied elements
{ } Groups related items together as a single item
[] Encloses an optional item
* Indicates zero or more repetitions of the preceding item
+ Indicates one or more repetitions of the preceding item
| Separates alternatives
_ Within a set of alternatives, an underscore indicates the default, if defined

IDL lexical rules
Interface Definition Language (IDL) generally follows the same lexical rules as C
and C++. Exceptions to C++ lexical rules include:
v IDL uses the ISO Latin-1 (8859.1) character set.
v White space is ignored except as token delimiters.
v C and C++ comment styles are supported.

170 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

v IDL supports standard C or C++ preprocessing, including macro substitution,
conditional compilation, and source file inclusion.

v Identifiers (user-defined names for operations, attributes, instance variables, and
so on) are composed of alphanumeric and underscore characters (with the first
character alphabetic) and can be of arbitrary length, up to an operating-system
limit of about 250 characters.

v Identifiers must be spelled consistently with respect to case throughout a
specification.

v Identifiers that differ only in case yield a compilation error.
v Within a particular name scope, there is a single namespace for all identifiers,

regardless of their type. For example, using the same identifier for a constant
and an interface name within the same name scope yields a compilation error.

v Integer, floating point, character, and string literals are defined as in C and C++.

IDL reserved words
The terms listed below are reserved words and cannot be used otherwise. Reserved
words must be spelled using upper- and lower-case characters exactly as shown in
the table. For example, ″void″ is correct, but ″Void″ yields a compilation error.

Reserved words for IDL

abstract double local raises typedef

any enum long readonly unsigned

attribute exception module sequence union

boolean factory native short ValueBase

case FALSE Object string valuetype

char fixed octet struct void

const float oneway supports wchar

context in out switch wstring

custom inout private TRUE

default interface public truncatable

Syntax for comments in IDL code
The Interface Definition Language (IDL) supports both C and C++ comment styles.
Two slashes (//) start a line comment, which finishes at the end of the current line.
A slash and an asterisk (/*) start a block comment that finishes with an asterisk
and a slash (*/). Block comments do not nest. The two comment styles can be used
interchangeably.

Because comments appearing in an IDL specification can be transferred to the files
that the IDL Compiler generates and because these files are often used as input to
a programming language compiler, avoid using characters that are not generally
allowed in comments of most programming languages. For example, the C
language does not allow an asterisk and a slash (*/) to occur within a comment.
Thus, avoid it even when you are using C++ style comments in the IDL file.

IDL also supports throw-away comments. They can appear anywhere in an IDL
specification. Throw-away comments start with the string of two slashes and a
number sign (//#) and end at the end of the line. Use throw-away comments to
comment out portions of an IDL specification.

Implementing CORBA applications 171

CORBA: Resources for learning
Use the following links to find relevant supplemental information about CORBA.
The information resides on IBM and non-IBM Internet sites, whose sponsors
control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks™ that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v “Planning, business scenarios, and IT architecture”
v “Programming model and decisions”
v “Administration”

Planning, business scenarios, and IT architecture

v Introduction to CORBA
http://developer.java.sun.com/developer/onlineTraining/corba/

v The Object Management Group (OMG) Website
http://www.corba.org/

v Welcome to OMG’s CORBA for Beginners Page!
http://cgi.omg.org/corba/beginners.html

Programming model and decisions

v A Brief Tutorial on CORBA
http://www.cs.indiana.edu/~kksiazek/tuto.html

Administration

v Listing of all IBM WebSphere Application Server Redbooks
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere

v WebSphere Application Server Enterprise Edition 4.0: A Programmer’s Guide
http://www.redbooks.ibm.com/redbooks/SG246504.html

172 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

http://developer.java.sun.com/developer/onlineTraining/corba/
http://www.corba.org/
http://cgi.omg.org/corba/beginners.html
http://www.cs.indiana.edu/~kksiazek/tuto.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www.redbooks.ibm.com/redbooks/SG246504.html

Notices

This information was developed for products and services offered in the U.S.A.
IBM might not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003 173

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written.

These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these

174 IBM WebSphere Application Server Enterprise, Version 5: Common Object Request Broker Architecture (CORBA)

programs. You may copy, modify, and distribute these sample programs in any
form without payment to IBM for the purposes of developing, using, marketing, or
distributing application programs conforming to IBM’s application programming
interfaces.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

AIX
DB2
IBM
OS/390
Redbooks
WebSphere

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 175

	Contents
	Implementing CORBA applications
	Developing a CORBA C++ client
	Creating IDL files for an enterprise bean
	Creating the CORBA client main code (client.cpp)
	Adding include statements
	Initializing the client environment
	Getting a pointer to the root naming context
	Accessing the servant object
	Invoking methods on the servant object
	Shutting down the client and releasing resources used

	Building a CORBA C++ client
	Managing the EJB home
	Client bootstrapping operation
	Initial references
	Object URLs
	Strategies for retrieving the IOR of a remote object

	CORBA client exception handling
	Coding tips for CORBA memory management
	CORBA client to WebSphere EJB server

	Developing a CORBA C++ server
	Defining the interface for a CORBA servant class
	Compiling a CORBA server implementation class IDL (using idlc)
	Adding declarations to a CORBA servant class definition (servant.ih)
	Completing the CORBA servant implementation (servant_I.cpp)
	Creating the CORBA server main code (server.cpp)
	Adding include statements
	Initializing the server environment
	Accessing naming contexts
	Creating and binding servant objects
	Creating a server shutdown object
	Putting the server into a loop to service requests
	Shutting down the server and releasing resources used

	Building a CORBA C++ server
	Storing a logical definition for a CORBA server in the system implementation repository

	Managing CORBA applications
	Supporting SSL by WebSphere for CORBA C++ clients
	Enabling SSL certificate security between a CORBA C++ client and an EJB server
	SSL security for CORBA C++ clients
	CORBA C++ client: SSL and certificates
	CORBA C++ client: Structure of a certificate
	CORBA C++ client: Certificate authorities
	CORBA C++ client: Certificate chains

	Specifying run-time properties for CORBA C++ clients and servers
	Run-time properties for CORBA clients and servers

	Resolving CORBA run-time errors
	CORBA problem determination
	Reading a message log

	Managing the CORBA Interface Repository
	Installing the CORBA Interface Repository server
	Populating the CORBA Interface Repository
	Accessing the CORBA Interface Repository

	CORBA programming model
	CORBA concepts
	Client programming languages
	Client proxy
	Client run-time environment
	CORBA-compliant Object Request Broker (ORB)
	IIOP
	Implementation repository
	Initial references
	Interface definition language (IDL)
	Interoperable naming service (INS)
	Interoperable object reference (IOR)
	Naming service
	Object
	Object adapter
	Object reference
	Server
	Server implementation (servant) object
	WebSphere Application EJB Server

	CORBA C++ client programming model
	CORBA server programming model
	CORBA object services
	CORBA naming service
	CORBA transaction service
	CORBA security service

	CORBA communication protocols (GIOP/IIOP)
	Resolving unsupported CORBA data types

	CORBA valuetype considerations
	CORBA valuetype library for C++
	Creating your own C++ valuetypes

	CORBA internationalization considerations
	Initialization of client programs
	Character set restriction
	Codeset conversions
	Passing object references between multiple platforms
	OMG char data type in IDL files

	CORBA programming reference
	CORBA types and business objects
	Commonly used CORBA interfaces
	CORBA C++ bindings
	CORBA C++ bindings for constants
	CORBA C++ bindings for data types
	CORBA C++ bindings for interfaces
	CORBA C++ binding restrictions
	Name scoping and modules in the C++ bindings

	Storage management and _var types
	Argument passing considerations for C++ bindings

	Implementation registration utility (regimpl)
	CORBA exceptions
	CORBA exceptions: Catching
	CORBA exceptions: Throwing
	CORBA system exception minor codes

	Interface Definition Language (IDL)
	IDL name scoping
	IDL interface declarations
	Multiple IDL interfaces
	IDL include directives
	IDL pragma directives
	idlc command (IDL compiler)
	IDL-to-Java compiler
	Conventions used in documenting IDL syntax
	IDL lexical rules
	IDL reserved words
	Syntax for comments in IDL code

	CORBA: Resources for learning

	Notices
	Trademarks

