
IBM WebSphere Application Server Enterprise,
Version 5

Enterprise Applications

���

Note
Before using this information and the product it supports, read the general information under “Notices” on page 339.

Contents

Chapter 1. Using extended messaging in
applications 1
Extended messaging - overview 1

Extended messaging - receiving messages . . . 2
Extended messaging - sending messages 4
Extended messaging - data mapping 5
Extended messaging - handling late responses . . 5
Extended messaging - transactional support . . . 7
Extended messaging - exception handling . . . 8

Extended messaging - application usage scenarios . . 9
Extended messaging - components 10
Designing an enterprise application to use extended
messaging 12
Developing an enterprise application to use
extended messaging 13
Deploying an enterprise application to use extended
messaging 14

Configuring deployment attributes for a receiver
bean 15
Configuring deployment attributes for a sender
bean 17

Configuring extended messaging service resources 18
Adding a new input port 19
Adding a new output port 19
Configuring an input port 20
Configuring an output port 20
Extended messaging service settings 20
Late response handling extension settings . . . 22
Extended messaging provider settings 23

Troubleshooting extended messaging 31
Extended Messaging: Resources for learning . . . 32

Chapter 2. Developing Web Services
Gateway extensions 35
Writing a filter for the Web Services Gateway . . . 35

Web Services Gateway - the Filter interface . . . 39
Web Services Gateway - the gateway message
context fields 41

Using a filter to select a target service and port . . 43
Web Services Gateway - the Routing interface . . 44

Capturing Web service invocation information from
the Web Services Gateway 45

Web Services Gateway - the MessageWarehouse
interface 45

Handling exceptions for the Web Services Gateway 46
Web Services Gateway - the ExceptionHandler
interface 46

Web Services Gateway: Resources for learning. . . 47

Chapter 3. Using EJB query 49
EJB query language. 49

Example: EJB queries 50
FROM clause 52
Inheritance in EJB query 53
Path expressions. 54

WHERE clause 55
Scalar functions 62
Aggregation functions 66
SELECT clause 67
ORDER BY clause 67
Subqueries. 68
EJB query restrictions 69
EJB Query: Reserved words 70
EJB query: BNF syntax 70
Comparison of EJB 2.0 specification and
WebSphere query language 71

Using the dynamic query service 72
Example: Dynamic query remote client 74
Example: Dynamic query from local client . . . 75

Chapter 4. Using the
internationalization service 77
Internationalization 78
Internationalization service: Overview 79

The internationalization service solution 79
Internationalization challenges in distributed
applications 80

Migrating internationalized applications 81
Assembling internationalized applications 82

Setting the internationalization type for servlets 82
Configuring container internationalization for
servlets 83
Setting internationalization type for enterprise
beans 86
Configuring container internationalization for
enterprise beans 87

Using the internationalization context API 90
Gaining access to the internationalization context
API 90
Accessing caller locales and time zone 92
Accessing invocation locales and time zone. . . 93
Example: Internationalization context in a
contained EJB client 94
Example: Internationalization context in an EJB
servlet 96
Example: Internationalization context in an EJB
session bean 98
Internationalization context API: Programming
reference 99

Managing the internationalization service 112
Enabling the internationalization service for
servlets and enterprise beans 112
Enabling the internationalization service for EJB
clients 113

Troubleshooting the internationalization service . . 114
Internationalization service errors. 114
Internationalization service exceptions 117

Internationalization: Resources for learning . . . 118

Chapter 5. Application profiling. . . . 119

© Copyright IBM Corp. 2003 iii

Application profiling: Overview 119
Tasks 120
Application profiles 121

Assembling applications for application profiling 122
Using access intent policies 122
Configuring a component task policy 130
Configuring a container task policy 130
Creating an application profile 132
Application profile assembly settings 133
Configuring tasks on application profiles . . . 134

Managing application profiles 135
Application profiling exceptions 135
Application profiling service settings 135
Application profile collection 136

Using the TaskNameManager interface 137
TaskNameManager interface 138

Chapter 6. Using Business Rule
Beans 141
Advantages of externalizing business rules . . . 141
Overview of Business Rule Beans. 142

Externalized business rules 143
Types of business rules 144
Rule folders 145
Rule attributes 145
Rule states 147
Rule results 148
Dependent rules 148
BRBeans run-time environment 148
BRBeans run-time behavior. 149
BRBeans run-time exception handling 150
Rule implementors 151
Trigger point framework 152
Trigger points 153
As Of Date 156
Predefined strategy objects 157
Customized strategy objects 159
Customized rule implementors 161
Rule management command 162
Rule importer command. 163
Rule exporter command 164
BRBeans properties file 164
Database considerations for BRBeans 165
Rule Management Application. 168
Rule management APIs 168
BRBeans performance enhancements 170

Developing BRBeans 173
Determining where to place a trigger point . . 173
Placing a trigger point in the application code 175
Administering strategy objects to control
triggers 176
Implementing business rules 177

Assembling applications for use with BRBeans . . 178
Managing rules. 179

Starting the Rule Management Application . . 181
Copying or moving rules or rule folders . . . 181
Working with Quick Copy 182
Finding a rule 182
Deleting rules 183
Deleting rule folders 183
Changing the properties of a rule. 183

Importing a rule 184
Exporting a rule 184
Renaming rules. 185
Renaming rule folders 185
Specifying columns 185
Changing the date and time format 186

Rule Browser 186
File menu 187
Edit menu 201
View menu 203
Find Rules window 204

Business rule beans: Resources for learning . . . 209

Chapter 7. Using asynchronous beans 211
Asynchronous beans 211

Example: Asynchronous bean connection
management 213

Configuring work managers 214
Work managers. 215
Work manager collection 217
Work manager service settings 219

Assembling applications that use work managers 219
Developing work objects to run code in parallel 220

Work objects. 221
Example: Work object 222

Developing event listeners 222
Using the application notification service . . . 223
Example: Event listener 224

Developing Asynchronous scopes 225
Asynchronous scopes. 227
Alarms 228
Subsystem monitors 228
Asynchronous scopes: Dynamic message bean
scenario 229

Chapter 8. Using object pools 231
Object pool managers 232
Object pool manager collection 234

Name 234
JNDI Name 234
Description 234
Category 234
Object pool manager settings 234

Object pool service settings 235
Startup 236

Object pools: Resources for learning 236

Chapter 9. Using startup beans. . . . 237

Chapter 10. Using the scheduler
service 239
Managing the scheduler service 239

Creating the database for scheduler 239
Configuring a scheduler 244
Enabling the scheduler service. 249

Developing and scheduling tasks 249
Developing a task that calls a session bean . . 250
Developing a task that sends a JMS message 251
Receiving scheduler notifications 252
Submitting a task to a scheduler 253

iv IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Managing tasks with a scheduler 253

Chapter 11. Using shared work areas 259
WorkArea service - Overview 259

Work area property modes 260
Nested work areas 261
Distributed work areas 263
WorkArea service: Special considerations . . . 263

Developing applications that use work areas . . . 264
UserWorkArea interface 264
Example: WorkArea SimpleSample application 265
Accessing the WorkArea service 266
Beginning a new work area 266
Setting properties in a work area 267
Using a work area to manage local work . . . 268
Completing a work area 272

Managing the work area service 273
Enabling the WorkArea service 274
Managing the size of work areas 275

Chapter 12. Using the transaction
service 277
Transaction support in IBM WebSphere Application
Server 277

Resource manager local transaction (RMLT) . . 278
Global transactions 279
Local transaction containment (LTC). 280
Local and global transaction considerations . . 283
Extended JTA support 284

Developing components to use transactions . . . 285
Setting transactional attributes in the
deployment descriptor 285
Using bean-managed transactions 289

Configuring transaction properties for an
application server 293

Transaction service settings 295
Using local transactions 296
Managing active transactions 299
Managing transaction logging for optimum server
availability 300

Configuring transaction aspects of servers for
optimum availability 301
Moving a transaction log from one server to
another 302
Restarting an application server on a different
host 303

Transactional interoperation with non-WebSphere
application servers 304

Troubleshooting transactions 304
Transaction service exceptions 305
UserTransaction interface - methods available . . 306
Coordinating access to 1-PC and 2-PC-capable
resources within the same transaction 306

Coordinating access to 1-PC and 2-PC-capable
resources within the same transaction 307
Enabling an application to coordinate access to
1-PC and 2-PC-capable resources within the
same transaction 307
Configuring an application server to allow
logging for heuristic reporting 308
Exceptions thrown for transactions involving
both single- and two-phase commit resources . 309

Last Participant Support: Resources for learning 309

Chapter 13. Using the ActivitySession
service 311
The ActivitySession service 312

Using ActivitySessions with HTTP sessions . . 313
ActivitySession and transaction contexts . . . 315
Combining transaction and ActivitySession
container policies 316

Developing a J2EE application to use
ActivitySessions 322
Developing an enterprise bean or J2EE client to
manage ActivitySessions. 324
Configuring ActivitySession deployment attributes
for an enterprise bean 325

Container ActivitySession assembly properties
for EJB modules 327

Configuring ActivitySession deployment attributes
for a Web application. 329
Disabling or enabling the ActivitySession service 330

ActivitySession service settings 331
Configuring the default ActivitySession timeout for
an application server 332

ActivitySession service settings 333
Troubleshooting ActivitySessions 333
The ActivitySession service application
programming interfaces 334
Samples: ActivitySessions 335
ActivitySession service: Resources for learning . . 336

Notices 339
Trademarks 341

Contents v

vi IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Chapter 1. Using extended messaging in applications

These topics provide information about implementing WebSphere® enterprise
applications that use extended messaging.

IBM® WebSphere Application Server supports asynchronous messaging as a
method of communication based on the Java™ Message Service (JMS)
programming interface. Extended messaging extends the base JMS support, support
for EJB 2.0 message-driven beans, and the Enterprise Java Bean (EJB) component
model, to use the existing container-managed persistence and transactional
behavior.

Using extended messaging, you can build enterprise beans that can provide
messaging services along with methods that implement business logic. The
enterprise beans can use the standard JMS styles of messaging (point-to-point and
publish/subscribe). However, with extended messaging, the JMS usage is
simplified, because JMS support is managed by the extended messaging service.
This helps to effectively separate business logic from the messaging infrastructure.
The use of data mapping enables messages to drive existing or new enterprise
beans as though they were invoked from any EJB client.

You can use IBM WebSphere Studio Application Developer Integration Edition to
develop applications that use extended messaging. You can use the IBM
WebSphere Application Server runtime tools, like the administrative console, to
deploy and administer applications that use extended messaging.

For more information about implementing WebSphere enterprise applications that
use extended messaging, see the following topics:
v “Extended messaging - overview”
v “Extended messaging - application usage scenarios” on page 9
v “Extended messaging - components” on page 10
v “Designing an enterprise application to use extended messaging” on page 12
v “Developing an enterprise application to use extended messaging” on page 13
v “Deploying an enterprise application to use extended messaging” on page 14
v “Configuring extended messaging service resources” on page 18
v “Troubleshooting extended messaging” on page 31

Extended messaging - overview
Extended messaging extends the base JMS support, support for EJB 2.0
message-driven beans, and the Enterprise Java Bean (EJB) component model, to
use the existing container-managed persistence and transactional behavior.

In addition to providing such container-managed messaging, extended messaging
provides new types of enterprise beans and administrative objects for messaging,
and new functionality like data mapping and late response handling. (The
abbreviation, CMM, for the term container-managed messaging is sometimes used to
represent extended messaging.)

© Copyright IBM Corp. 2003 1

Extended messaging uses the bean-managed messaging implementation to provide
the JMS interfaces, which ensures that both bean-managed and extended
messaging use consistent JMS support.

An application that uses extended messaging can receive messages by using a
receiver bean, either by the onMessage() method of a message-driven bean or by a
stateless session bean that polls for a message from a named destination. With
extended messaging and a message-driven bean, code within the bean can use the
message to invoke business logic, as either a method within the same bean or
another enterprise bean. Both the incoming message and the invocation of the
receiver bean can be included within the scope of a transaction. For outbound
messages, an application calls a sender bean that turns a method call into a JMS
message that is then sent asynchronously. These message beans are implemented
as enterprise beans by IBM WebSphere Application Server. Application developers
can create these message beans by using IBM WebSphere Studio Application
Developer Integration Edition, although they can be created without the help of
IBM WebSphere Studio.

With extended messaging, the JMS usage is simplified, because JMS support is
managed by the extended messaging service. This helps to effectively separate
business logic from the messaging infrastructure. Also, the use of data mapping
enables messages to drive existing or new enterprise beans as though they are
invoked from any EJB client. IBM WebSphere Studio enables the types of message
beans that support extended messaging to be developed easily and hides the
messaging infrastructure from developers.

For more conceptual information about extended messaging, see the following
topics:
v “Extended messaging - receiving messages”
v “Extended messaging - sending messages” on page 4
v “Extended messaging - data mapping” on page 5
v “Extended messaging - handling late responses” on page 5
v “Extended messaging - transactional support” on page 7
v “Extended messaging - exception handling” on page 8
v “Extended messaging - application usage scenarios” on page 9
v “Extended messaging - components” on page 10

Extended messaging - receiving messages
To receive messages, applications that use extended messaging use a receiver bean,
which can be a message-driven bean or a session bean:
v A receiver bean (deployed as a message-driven bean) is invoked when a

message arrives at a JMS destination for which a listener is active.
v An application-callable receiver bean (deployed as a session bean) polls a JMS

destination until a message arrives, gets the parsed message as an object, and
can use getter methods to retrieve the message data.

Receiving messages with extended messaging

This figure shows an application calling a receiver bean (as a session bean) to
receive messages from the JMS destination defined on an input port. The
application also calls the ReplySender() method of the receiver bean to send a

2 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

reply to the original message received. For more information about what is shown
in this figure, see the text that accompanies this figure.

When a receiver bean gets a message, it can invoke another method passing either
the JMS Message, or a set of parameters extracted from the message content. The
invoked method can be contained in the receiver bean or in another enterprise
bean (which is the preferred application structure). If data mapping is used, the
method invoked by a receiver bean is unaware of the original JMS message.

In addition to receiving messages, extended messaging enables applications to
reply to received messages in either of the following ways:
v Sending a synchronous reply.

In this mode, which can be used by only receiver beans deployed as
message-driven beans, the reply from the method invoked by the receiver bean
is mapped to a JMS message and sent as a reply to the original message, using
the replyTo field in the JMS header as the target destination.

v Sending an asynchronous reply.

In this mode, which cannot be used receiver beans deployed as message-driven
beans, the application calls the ReplySender() method to send the reply message.
If the reply is passed as a set of parameters to the ReplySender() method, the
reply is mapped to a JMS message before being sent.

If a receiver bean gets a JMS message, then depending upon the programming
model (associated with the receiver bean by WebSphere Studio), one of the
following interactions occurs:
v Receive a request and send no reply.

The receiver bean provides an anonymous invocation in the form of a method
call. The data passed to the method is either the JMS message (if no data
mapping is invoked) or a set of parameters mapped from the JMS message. The
receiver bean cannot return a reply to this invocation. This mode of interaction
can be used with point-to-point or publish/subscribe messaging.

v Receive a request and send a synchronous reply.

Figure 1. Application calling a receiver bean

Chapter 1. Using extended messaging in applications 3

If the receiver bean gets a message, it invokes another method either in the same
bean or another enterprise bean. When the method returns, the data returned
from that call is mapped to a JMS message and sent to the reply destination
specified in the original request message. The type of reply destination (queue or
topic) must be the same as the type used by the original request received.

v Receive a request and send an asynchronous reply.

For a receiver bean deployed as a message-driven bean, the reply is returned
(using the bean’s ReplySender method) to the replyTo destination specified in
the original request message.
For a receiver bean deployed as a session bean, the reply is returned to the
destination defined in the input port for the receiver bean.
In addition to the asynchronous model of this interaction, this mode of
interaction enables a method to send multiple replies to a single invocation.

Extended messaging - sending messages
To send messages, applications that use extended messaging call a method on a
sender bean. A sender bean turns its method invocation into a JMS message, then
passes that message to JMS. If needed, the sender bean can retrieve a response
message, then translate that message into a result value and return it to the caller.
If data mapping is used, the method that invokes a sender bean is unaware of the
original JMS message. The sender bean methods can use data mapping to build
JMS messages from data passed on the method call.

Sending messages with extended messaging

This figure shows an application calling a sender bean to send messages to the
JMS destination defined on an output port. The application also calls the
receiveResponse() method of the sender bean to receive a reply to the original
message sent. For more information about what is shown in this figure, see the text
that accompanies this figure.

Figure 2. Application calling a sender bean

4 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

A sender bean is an enterprise bean (stateless session bean) that can be built by
WebSphere Studio Application Developer. A sender bean should not contain any
application logic, to help preserve the separation between the messaging and
business logic.

Each method defined on a class that implements a sender bean has one of the
following modes of interaction (which is defined when the sender bean is built).
The interaction extends the sender interface to address the issue of synchronizing
anonymous invocations.
v Send a request and receive no response

To send a JMS message, an application invokes the sender bean’s method. The
caller of the sender bean’s method cannot receive a response to the message
sent. This mode of interaction can be used with point-to-point or
publish/subscribe messaging.

v Send a request and receive a synchronous response

To send a JMS message and wait for a synchronous response, an application
invokes the sender bean’s method. The sender bean uses the message sender (an
interface to JMS provided by extended messaging) to send the message and,
when the response is received, to return the response message to the caller of
the sender bean. This mode of interaction can be used with point-to-point
messaging only.

v Send a request and receive a deferred response

To send a JMS message and wait for a deferred response, an application invokes
the sender bean’s method. The sender bean uses the message sender to send the
message, then returns to the caller without waiting for the response. The
response is returned by a generated receiveResponse() method. This mode of
interaction enables an application to receive more than one response message, as
the application is responsible for retrieving the responses. This mode of
interaction can be used with point-to-point messaging only.

Extended messaging - data mapping
A message bean can use data mapping to map between a JMS message and data as
arguments:
v With data mapping, the target method of a receiver bean for an anonymous

invocation receives the contents of an asynchronous message as arguments. The
extended messaging service parses the JMS message and maps from the JMS
message to the method arguments. Similarly, to send a message, an application
invokes a method on a sender bean with appropriate arguments. The extended
messaging service packs appropriate arguments into a JMS message then sends
the asynchronous request.

v Without data mapping, the target method of a receiver bean for an anonymous
invocation receives a JMS message; no data mapping is performed by extended
messaging. Similarly, to send a message, an application invokes a method of a
sender bean with a JMS message.

If a developer selects data mapping when creating a sender or receiver bean,
extended messaging uses the parameter properties specified on the sender or
receiver bean method signatures to perform the data mapping.

Extended messaging - handling late responses
If an application uses a sender bean to send a message, it can optionally retrieve a
response to the message. The sender bean can either wait for the response or defer
retrieval of the response. Sometimes a response is delayed within the messaging

Chapter 1. Using extended messaging in applications 5

infrastructure, and therefore the application cannot receive the response. Extended
messaging can retrieve such a response message (referred to as a late-response
message) when it does arrive and pass it to a message-driven bean provided by
the application to handle late responses. The message-driven bean used to handle
the late response is a standard EJB 2.0 message-driven bean or a receiver bean
deployed as a message-driven bean. The deployed message-driven bean can then
perform its processing on the message.

Late responses should not be considered normal application behaviour.

For extended messaging to handle late responses for an application, the sender
bean must be deployed with the Handle late responses option enabled.

Definition of a late response

A late response occurs when the application is no longer able to retrieve responses
to messages that it has sent, as follows:
v Send with deferred response

The application (enterprise bean) repeatedly tries to retrieve a response until it
ends. When the application no longer wants to retry to get a response, it can
register a request for extended messaging to handle the late response, by calling
a registerLateResponse() method on the sender bean.

v Send with synchronous response handling

When the sender bean sends a message, it waits for the response. The result of
this is that either the sender bean retrieves the response message or a timeout
error occurs. If the system raises a timeout error, the application can no longer
retrieve a response to the message. At this time the extended messaging service
registers the the message for a late response.

Handling responses

Extended messaging handles responses in the following stages:
1. Registering an interest in having a late response retrieved when it is available.

To request the system to handle late responses for a sender bean, you deploy
the sender bean with the Handle late responses extension to the deployment
Descriptor.
If selected, the Handle late responses option defines that extended messaging
should pass the response, when it becomes available, to the message-driven
bean provided by the application to handle late responses. When the sender
bean is deployed a specialized listener port is associated with the bean. This
listener port is known as a handle late response listener port.
If the option is not selected, then the system does not handle late responses,
and it is the application’s responsibility to handle any late responses.

2. Starting a JMS listener to retrieve the message when it is available, which then
drives the message bean to handle the JMS message.
The listener port must be defined with the following properties:
v The same JMS destination as specified as the JMS response destination on the

output port used by the sender bean.
v A listener port extension with Handle Late Responses enabled.

You cannot use a temporary destination for late responses.
3. If a request is made to handle a late response, the extended messaging service

immediately registers a LateResponse message request with the extended

6 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

message consumer for the given listener port. The message request is registered
independently of any transaction context that the sender bean has. A request
record (containing the MessageID of the late response) is added to the
AsyncMessageLog log. When the message is eventually received, it is passed to
the message-driven bean deployed against the specified late response
ListenerPort.

Extended messaging - transactional support
The global transaction context is not flowed on asynchronous (messaging) requests,
so the receipt of an asynchronous message cannot be part of some existing
remotely-established transaction. Reliability in an asynchronous environment is
built on the message provider’s ability to guarantee a once-and-once-only message
delivery.

Transactional support with extended messaging builds on, and extends, the
transactional support provided with bean-managed messaging, as follows:
v Transactional support for receiving messages (receiver beans)
v Transactional support for sending messages (sender beans)

Transactional support for receiving messages (receiver beans)

The extended messaging transactional behaviour for receiver beans depends upon
whether the bean is a receiver bean or an application-callable receiver bean.
v For a receiver bean (deployed as a message-driven bean), incoming message

receipts are defined by the Transaction attribute of the onMessage() bean
method. Message-driven beans can use bean-managed transactions (BMT) or
container-managed transactions (CMT). For message-driven beans using CMT
there are only two supported transaction options: Not supported and Required.
If a message is to be received within a transaction, the message-driven bean
must be using CMT with the Transaction attribute set to Required.

v For a receiver bean as a session bean, the bean only supports container-managed
transactions, and the behaviour is defined by the Transaction attribute of the
receiver bean method.

Dealing with retries: In the asynchronous environment of transaction processing,
rolling back a message receipt means that the message is not removed from the
source destination. Although this behaviour is desirable and correct, it causes the
message retained on the source queue to be reprocessed until the transaction
commits. For receiver beans, you can control this behaviour as follows:
v Receiver bean

To limit the number of times that a transaction is retried, you can either rely on
the facilities of the JMS provider or use the retry limit facility of the Message
Listener:
– WebSphere MQ JMS support provides the ability to move the message to a

backout queue and uses two queue attributes, the backout threshold and the
backout-requeue queue, to perform this.

– The Message Listener retry count can be used to stop the listener processing
the queue if the threshold is reached. The listener behaviour can be disabled
by setting the retry count value higher than the JMS provider threshold value.

v Application-callable receiver bean

To limit the number of times that a transaction is retried depends on the
facilities of the JMS provider to move the message to a backout queue.

Chapter 1. Using extended messaging in applications 7

Transactional support for sending messages (sender beans)

The transactional behaviour for sending messages is defined by the Transaction
attribute on the send method within the sender bean.

If the send() method is part of a transaction, then the sending of an outgoing
message occurs within any currently active transaction. This means that the
message is not transmitted until the transaction is committed. If no transaction is
active when the request to send the message occurs, then the message is
transmitted immediately.

The transactional behaviour where the mode of interaction for a sender bean
method specifies a response (that is, either Send message and receive synchronous
response or Send message and receive deferred response) depends upon the type of
response, as follows:

Transactional behaviour for a synchronous response
The sending of the request message and the receipt of the response
message cannot be performed inside a transaction, because they are both
performed within the same method. Therefore, the send is always
non-transactional, regardless of the transactional setting for the method.
The receive is either transactional or not, depending upon the Transaction
setting of the method.

Transactional behaviour for a deferred response
The response message is received by a receiveResponse() method, which
can have a different transactional behaviour to the sender method inside
the sender bean. The transaction containing the send command must
commit before the response can be received. The transactional behaviour is
specified on the send and receive methods of the Sender bean.

Extended messaging - exception handling
Extended messaging provides the following exception handling for receiver beans
and sender beans:
v Error handling for receiver beans
v Error handling for sender beans

Error handling for receiver beans

The following error conditions can lead to extended messaging exceptions
v Formatting error parsing the message, when performing data mapping
v Exception thrown by the application method
v CMMException when sending the reply

Errors are always logged. If the application does not catch the exception, the
default behavior is to roll back any active transaction. If the received message is
rolled back, then it can be processed again. This can occur a number of times until
the message causing the error is removed from the queue by the JMS provider.
(For more information, see Dealing with retries in “Extended messaging -
transactional support” on page 7.

With data mapping, if a receiver bean is deployed as a message-driven bean and a
replyTo destination is configured, then error messages are sent as replies to that
destination.

8 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Application enterprise beans that call receiver beans deployed as session beans
need to handle the CMMException exception. CMMException is an application
exception which is declared in the throws clause of the methods in the generated
receiver bean.

Error handling for sender beans

The following error conditions can lead to extended messaging exceptions
v Constructing the JMS message when data mapping from the parameters to the

message
v Creating a message sender and sending the message
v Getting the response and parsing the message content

Errors are always logged. If the application does not catch the exception, the
default behavior is to roll back any active transaction.

Application enterprise beans that call sender beans need to handle the
CMMException exception, which is declared in the throws clause of the methods
in the generated sender bean.

Extended messaging - application usage scenarios
Applications can use extended messaging to receive and send messages in a
variety of ways:
v To receive messages, applications that use extended messaging use a receiver

bean(deployed as a message-driven bean) or an application-callable receiver bean
(deployed as a session bean):
– A receiver bean is invoked when a message arrives at a destination for which

a listener is active.
– An application-callable receiver bean polls a destination (defined by an input

port) until a message arrives or a timeout occurs.

In addition to receiving messages, extended messaging enables applications to
send replies in response to the received messages.

For more conceptual information about receiving messages, see “Extended
messaging - receiving messages” on page 2.

v To send messages, applications that use extended messaging call sender bean
methods. The sender bean sends messages to the target destination defined by
an output port. The sender bean methods can be passed either a JMS message or
a number of parameters that are mapped by extended messaging into a JMS
message. Whether or not data mapping is used is specified when the application
is developed.
In addition to sending messages, applications can choose to receive a response to
the message, and can handle any responses either synchronously or
asynchronously. If a response is not received in time, then the system can handle
the late response by directing the message to a message-driven bean.
For more conceptual information about sending messages, see “Extended
messaging - sending messages” on page 4.

v Applications can combine receiving and sending messages in a variety of
different ways. For example, a receiver bean deployed as a message-driven bean
can forward the message by calling a sender bean. The receiver bean can give
message data to sender bean in either of the following ways:

Chapter 1. Using extended messaging in applications 9

– The receiver bean can pass the JMS message to the sender bean, which
forwards that message.

– The receiver bean can extract data from the initial message and send that data
to the sender bean. The sender bean can then map the data values to a new
JMS message, which it forwards.

The application can receive a response to the message that it sent, and then can
send the message received or a new message built from data in the message
received, as a response to the original message.

Also, data mapping can be used to hide the JMS message structure from the
application logic. For more information about data mapping, see “Extended
messaging - data mapping” on page 5

Extended messaging - components
Extended messaging builds on the base support for JMS messaging and
message-driven beans provided by IBM WebSphere Application Server. The new
messaging components for extended messaging are referred to as the Message Bean
package.

Components for receiving messages

The following components, shown in the figure Figure 3 on page 11, are used to
receive messages:

Receiver bean
An application that uses extended messaging can receive messages by
using a receiver bean (using the onMessage() method of a message-driven
bean) or an application-callable receiver bean (a stateless session bean that
polls for a message from a named destination). Both receiver beans and
application-callable receiver beans can receive and process asynchronous
messages, and optionally return selected data as a response message.

Input port
An input port specifies the properties needed by receiver beans as session
beans, by defining the following information:
v Information about the source destination for the message to be received
v Information about how to select and handle the message received
v Optional information about a reply destination, which is used if a reply

is expected and replyTo information is not present in the JMSHeader of
the message received.

A receiver bean as a deployed message-driven bean uses the associated
listener port, so does not need an input port. For more information about
message-driven beans and listener ports, see ″Message-driven beans -
components″ (not in this document).

For more conceptual information about receiving messages, see “Extended
messaging - receiving messages” on page 2.

Components for receiving messages

This figure shows an application calling a receiver bean (as a session bean) to
receive messages from the JMS destination defined on an input port. The
application also calls the ReplySender() method of the receiver bean to send a

10 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

reply to the original message received. For more information about what is shown
in this figure, see the text that accompanies this figure.

Components for sending messages

The following components, shown in the figure Figure 4 on page 12, are used to
send messages:

Sender bean
Bean instances of a sender bean (also known as a message sender bean) can
send asynchronous messages. The sender bean methods can be passed
either a JMS message or a number of parameters that are mapped by
extended messaging into a JMS message, which is then passed to JMS.

Output port
An output port specifies the properties needed by sender beans, to define
the destination for the message being sent, and other optional properties if
a response is expected. It is associated with the Sender Bean at deployment
time and contains the following information:
v Information about the target destination for the message to be sent
v Information about how to select and handle the message to be sent
v Information about the destination used for the response.

For more conceptual information about sending messages, see “Extended
messaging - sending messages” on page 4.

Components for sending messages

This figure shows an application calling a sender bean to send messages to the
JMS destination defined on an output port. The application also calls the
receiveResponse() method of the sender bean to receive a reply to the original
message sent. For more information about what is shown in this figure, see the text
that accompanies this figure.

Figure 3. Components for receiving messages

Chapter 1. Using extended messaging in applications 11

Designing an enterprise application to use extended messaging
This topic describes things to consider when designing an enterprise application to
use extended messaging.

The design of JMS-usage for applications that use extended messaging is the same
as the design for JMS and message-driven beans, except that the JMS-usage is
simplified because JMS support is managed by the extended messaging service.
For design considerations related to JMS and message-driven beans, see the
following topics:
v Designing an enterprise application to use JMS
v Designing an enterprise application to use message-driven beans

The extra design consideration for applications that use extended messaging are as
follows. For more detail, see the related topics.

Steps for this task

1. For a receiver bean, decide whether to use a message-driven bean or stateless
session bean.

Message-driven bean
You can use a deployed message-driven bean as a receiver bean, to
automatically handle messages received at the associated listener port.
As with any message-driven bean, when a message is received on the
JMS destination monitored by the listener port, the message is passed
to the onMessage() method of the message-driven bean.

You need to develop and deploy the message-driven bean, and
configure its associated listener port, separately from the extended
messaging tasks.

Figure 4. Components for sending messages

12 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Stateless session bean
You can use a stateless session bean as a receiver bean, to poll for
messages on a named destination associated with an input port.

You need to develop and deploy the session bean separately from the
extended messaging tasks, but configure the associated input port as
part of the extended messaging tasks.

2. Decide whether or not you want to use data mapping.
If you call the methods of sender and receiver beans with data arguments, you
need to use data mapping to construct the JMS messages needed. For data
mapping, you need to decide what data arguments need to be specified as
properties on the sender or receiver bean method signatures.
For a receiver bean deployed as a message-driven bean, you can define the
mapping behavior if a data exception is caught by extended messaging. That is,
you define whether a message should be flowed back if a ReplyTo destination
is defined in the JMS message header.

3. Decide whether or not you want to handle late responses.
A sender bean can optionally retrieve a response to messages sent. If a response
is delayed within the messaging infrastructure, the bean cannot receive the
response. Extended messaging can retrieve such a response message (referred
to as a late-response message) when it does arrive and pass it to a
message-driven bean provided by the application to handle late responses. To
handle late responses, you need to develop and deploy a standard EJB 2.0
message-driven bean that contains a registerLateResponse() method, and
associate it with a listener port to be used to receive late responses.

Developing an enterprise application to use extended messaging
This topic describes how to develop an enterprise application to use extended
messaging.

This task description assumes that developers are using the WebSphere Studio
Application Developer to develop the application code (receiver and sender beans).

To develop an enterprise application to use extended messaging, complete the
following steps:

Steps for this task

1. Creating the Enterprise Application project.
Because the sender and receiver beans used for extended messaging are EJB 2.0
enterprise beans, you must first have created a J2EE 1.3 Enterprise Application
project for which extended messaging beans will be created.
a. Ensure that you have selected 1.3 as the highest J2EE version that is to be

used in WebSphere Studio.
For example: Window-> Preferences... J2EE preferences-> Select the
highest J2EE version that is to be used-> 1.3

b. Create a J2EE 1.3 Enterprise Application project, as described in the
WebSphere Studio article entitled, ″Creating an Enterprise Application
project″ (which can be accessed only when this topic is installed in a
WebSphere Studio doc plug-in)

2. Creating the application code.

Chapter 1. Using extended messaging in applications 13

To create the application code, use WebSphere Studio to generate the sender
and receiver beans needed by the application, by completing one or more of
the following subtasks as described in the WebSphere Studio Extended
Messaging documentation:
v ″Creating a sender bean″ (which can be accessed only when this topic is

installed in a WebSphere Studio documentation plug-in)
v ″Creating a receiver bean″ (which can be accessed only when this topic is

installed in a WebSphere Studio documentation plug-in)
v ″Creating an application-callable receiver bean″ (which can be accessed only

when this topic is installed in a WebSphere Studio documentation plug-in)
v ″Creating a sender bean and receiver bean″ (which can be accessed only

when this topic is installed in a WebSphere Studio documentation plug-in)
v ″Creating a sender bean and application-callable receiver bean″ (which can

be accessed only when this topic is installed in a WebSphere Studio
documentation plug-in)

The result of this stage is an enterprise bean, containing code automatically
generated for extended messaging, that can be assembled into an .EAR file for
deployment.

3. Assembling and packaging the application for deployment.
You can use WebSphere Studio to assemble and package the application for
deployment.
The following aspects are specific to extended messaging:
a. (Optional) Configure a message selector for a receiver bean.
b. Associate the JNDI names for sender and receiver beans with output and

input ports.
c. (Optional) Specify the timeout for a sender bean response.
d. (Optional) Configure that a sender bean is to handle late responses and

identify the listener port to be used for late responses.

Results

The result of this task is an .EAR file, containing an application enterprise bean
with code for extended messaging, that can be deployed in IBM WebSphere
Application Server.

What to do next

For information about deploying an application to use extended messaging, see
“Deploying an enterprise application to use extended messaging”.

Deploying an enterprise application to use extended messaging
This topic describes how to deploy an enterprise application to use extended
messaging.

This task description assumes that you have an .EAR file, which contains an
application enterprise bean with code for extended messaging, that can be
deployed in IBM WebSphere Application Server.

The Application Install task is also a standard IBM WebSphere Application Server
task. As part of the install procedure you need to associate the Input and Output
ports defined in System Management with the installed .EAR.

14 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

To deploy an enterprise application to use extended messaging, complete the
following steps:

Steps for this task

1. Use the administrative console to define and configure the extended messaging
resources to be used by the application, as described in “Configuring extended
messaging service resources” on page 18.
You should define the input ports for receiver beans, the output ports for
sender beans, and listener port extensions for any sender beans that are to
handle late responses.

2. Ensure that the deployment descriptor attributes for the sender and receiver
beans match those of the extended messaging resources that you configured
using the administrative console.
The deployment descriptor values can be set when you generate the
deployment code for the application. You can change the deployment
descriptor values by using the application assembly tool, as described in the
following topics:
v “Configuring deployment attributes for a receiver bean”
v “Configuring deployment attributes for a sender bean” on page 17

3. If a sender bean is to handle late responses, deploy the message-driven bean to
be used for late responses.
For more information about deploying message-driven beans, see ″Deploying
an enterprise application to use message-driven beans″ (not in this
document-see the InfoCenter).

4. Install the application into IBM WebSphere Application Server.
This stage is a standard IBM WebSphere Application Server task, as described
in ″Installing a new application″ (not in this document-see the InfoCenter).
When you install the application, you are prompted to specify the name of the
listener port that the application is to use for late responses. Select the listener
port, then click OK.

Configuring deployment attributes for a receiver bean
Use this task to configure the deployment attributes for a receiver bean for use
with the extended messaging service.

You can specify these deployment attributes on each EJB method, as part of the
deployment of the receiver bean. Changes to the deployment attributes override
the values defined when the receiver bean was developed and deployment code
was generated for the application.

Note: After deployment code has been generated for an application, the
deployable archive is renamed with the prefix Deployed_ . Any subsequent
changes to the archive from within the Application Assembly Tool are
applied to the version of the archive that existed prior to code generation.
To see changes reflected in your application, you must regenerate
deployment code and re-install the deployable archive.

To configure the deployment attributes for a receiver bean, you can use the
Application Assembly Tool to complete the following steps:

Steps for this task

1. Launch the Application Assembly Tool.

Chapter 1. Using extended messaging in applications 15

2. Create or edit the application EAR file.
For example, to change attributes of an existing application, click File-> Open
then select the EAR file.

3. In the navigation pane, select the receiver bean instance; for example, expand
ejb_module_instance-> Extended messaging then select the bean instance.
A property dialog notebook for the receiver bean is displayed in the property
pane.

4. In the property pane, specify appropriate deployment attributes:

Input port
For an application-callable receiver bean, this is the name of the input
port to be used to receive messages.

Message selector
For an application-callable receiver bean, this is a string used to select
messages to be received.

For more information about the deployment attributes for receiver beans, see
“Extended messaging assembly properties for EJB modules”.

5. To apply the changes and close the Application Assembly Tool, click OK.
Otherwise, to apply the values but keep the property dialog open for additional
edits, click Apply.

6. (Optional) To see changes reflected in your application, regenerate deployment
code and reinstall the deployable archive.

Extended messaging assembly properties for EJB modules
Use this page to configure extended messaging settings for methods of an
enterprise bean.

Name: Specifies a name for the mapping between extended messaging settings
and one or more methods.

Datatype
String

Description: Contains text that describes the mapping

Datatype
String

Methods: The methods to which these settings apply.

To add a new method, click Add. Expand the tree to select the method or methods
from the EJB module

Reply timeout: The time in milliseconds after which replies, delayed within the
messaging infrastructure, are considered as late.

Type the global reply timeout to be used if a reply timeout is not specified on a
sender method call. If you leave this field blank, no global timeout is defined.

This is the time in milliseconds after which replies, delayed within the messaging
infrastructure, are considered as late and therefore the application cannot receive
the response. The extended messaging service can retrieve such a response
message (referred to as a late-reply message) when it arrives and pass it to a
message bean provided by the application.

16 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Data type
Integer

Units Milliseconds

Default
0

Range An integer number of milliseconds, greater than or equal to 0 (0 indicates
that reply messages never timeout).

Message selector: The JMS message selector to be used to determine which
messages the method handles.

For example:
JMSType=’car’ AND color=’blue’ AND weight>2500

The selector string can refer to fields in the JMS message header and fields in the
message properties. Message selectors cannot reference message body values.

Data type
String, whose syntax is based on a subset of the SQL92 conditional
expression syntax.

Handle late responses: Select this check box if you want to generate a method to
handle late responses.

Late response handler listener port name: The name of the input port used to
handle late responses.

This string must match the name of an input port defined in the Administrative
Console.

Data type
String

Configuring deployment attributes for a sender bean
Use this task to configure the deployment attributes for a sender bean.

You can specify deployment attributes on each EJB method.

Changes to the deployment attributes override the values defined when the sender
bean was developed and deployment code was generated for the application.

Note: After deployment code has been generated for an application, the
deployable archive is renamed with the prefix Deployed_ . Any subsequent
changes to the archive from within the Application Assembly Tool are
applied to the version of the archive that existed prior to code generation.
To see changes reflected in your application, you must regenerate
deployment code and re-install the deployable archive.

To change the deployment attributes for a sender bean, you can use the
Application Assembly Tool to complete the following steps:

Steps for this task

1. Launch the Application Assembly Tool.
2. Create or edit the application EAR file.

Chapter 1. Using extended messaging in applications 17

For example, to change attributes of an existing application, click File-> Open
then select the EAR file.

3. In the navigation pane, select the sender bean instance; for example, expand
ejb_module_instance-> Extended messaging then select the bean instance.
A property dialog notebook for the sender bean is displayed in the property
pane.

4. In the property pane, specify appropriate deployment attributes:

Output port
This is the name of the output port to be used to send messages.

Handle late responses
Select this checkbox if the sender bean is to handle late responses. If
you select this checkbox, also specify the following properties:
ReplyTimeout and Late response handler listener port name.

ReplyTimeout
For a sender bean that has been developed to handle late responses,
this is the time after which responses are considered late. This property
is used if a response timeout is not specified on a sender method call.

Late response handler listener port name
For a sender bean that has been developed to handle late responses,
this is the name of the listener port to be used for late responses.

For more information about the deployment attributes for sender beans, see
“Extended messaging assembly properties for EJB modules” on page 16.

5. To apply the changes and close the Application Assembly Tool, click OK.
Otherwise, to apply the values but keep the property dialog open for additional
edits, click Apply.

6. (Optional) To see changes reflected in your application, regenerate deployment
code and reinstall the deployable archive.

Configuring extended messaging service resources
Use these tasks with the WebSphere Administrative console to configure resources
needed by the extended messaging service and applications that use extended
messaging.

You can use IBM WebSphere Application Server system management to configure
resources needed by the extended messaging service and applications that use
extended messaging.

For more information about the tasks involved, see the following topics:
v “Adding a new input port” on page 19
v “Adding a new output port” on page 19
v “Configuring an input port” on page 20
v “Configuring an output port” on page 20
v Configuring a listener port to handle late responses (not in this document-see

the InfoCenter)

Find a link for the previous document

18 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Adding a new input port
Use this task to add a new input port to IBM WebSphere Application Server.

An input port is for use by an application that uses extended messaging.

During this task you configure the initial properties of the input port. You can later
change the properties of the port, as described in “Configuring an input port” on
page 20.

To add a new input port, complete the following steps:

Steps for this task

1. Start the WebSphere Administrative console.
2. In the navigation pane, select Resources-> Extended messaging provider

This displays resources for extended messaging in the content pane.
3. In the Additional Properties table of the content pane, select Input ports

This displays a list of the input ports in the content pane.
4. Click New.
5. Specify appropriate (properties of the input port).
6. Click OK.
7. To save your configuration, click Save on the task bar of the Administrative

console window.
8. (Optional) To have the changed configuration take effect, stop then restart the

application server.

Adding a new output port
Use this task to add a new output port to IBM WebSphere Application Server, and
configure its properties, for use by an application that uses extended messaging.

During this task you configure the initial properties of the output port. You can
later change the properties of the port, as described in “Configuring an output
port” on page 20.

To add a new output port, complete the following steps:

Steps for this task

1. Start the WebSphere Administrative console.
2. In the navigation pane, select Resources-> Extended messaging provider

This displays resources for extended messaging in the content pane.
3. In the Additional Properties table of the content pane, select Output ports

This displays a list of the output ports in the content pane.
4. Click New.
5. Specify appropriate (properties of the output port).
6. Click OK.
7. To save your configuration, click Save on the task bar of the Administrative

console window.
8. (Optional) To have the changed configuration take effect, stop then restart the

application server.

Chapter 1. Using extended messaging in applications 19

Configuring an input port
Use this task to change the properties of an input port for use by an application
that uses extended messaging.

To change the properties of an input port, complete the following steps:

Steps for this task

1. Start the WebSphere Administrative console.
2. In the navigation pane, select Resources-> Extended messaging provider

This displays resources for extended messaging in the content pane.
3. In the Additional Properties table of the content pane, select Input ports

This displays a list of the input ports in the content pane.
4. Select the input port that you want to change.
5. Specify appropriate (properties of the input port).
6. Click OK.
7. To save your configuration, click Save on the task bar of the Administrative

console window.
8. (Optional) To have the changed configuration take effect, stop then restart the

application server.

Configuring an output port
Use this task to change the properties of an output port for use by an application
that uses extended messaging.

To change the properties of an output port, complete the following steps:

Steps for this task

1. Start the WebSphere Administrative console.
2. In the navigation pane, select Resources-> Extended messaging provider

This displays resources for extended messaging in the content pane.
3. In the Additional Properties table of the content pane, select Output ports

This displays a list of the output ports in the content pane.
4. Select the output port that you want to change.
5. Specify appropriate (properties of the output port).
6. Click OK.
7. To save your configuration, click Save on the task bar of the Administrative

console window.
8. (Optional) To have the changed configuration take effect, stop then restart the

application server.

Extended messaging service settings
Use this page to enable or disable the extended messaging service.

The Extended Messaging Service provides run-time service for the support of
extended messaging.

To view this administrative console page, click Servers > Application Servers >
server_name > Extended Messaging Service .

20 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Startup
Specifies whether the server will attempt to start the extended messaging service.

Default
Selected

Range

Selected
When the application server starts, it attempts to start the extended
messaging service automatically.

Cleared
The server does not try to start the extended messaging service. If
extended messaging is to be used in applications that run on this
server, the system administrator must start the extended messaging
service manually or select this property then restart the server.

Late response handling extension collection
Use this page to view the configuration properties of late response handling
extensions.

Late response handling extensions enable the handling of late responses with
extended messaging

To view this administrative console page, click Application Servers > server_name
> Extended Messaging Service > Listener Port Extensions .

Enabled

Specifies whether the handling of late responses is enabled.

Range

Selected
Handling of late responses is enabled.

Cleared
Handling of late responses is not enabled.

Request Interval

Specifies the interval that elaspes between checking for late responses.

Data type
Integer

Units milliseconds

Default
5

Range An integer number of milliseconds, greater than or equal to 0:
v 0 indicates that the late response handler continually checks for requests
v Other values are an integer number of milliseconds between checks for

requests.

Request Timeout

Specifies the duration of time after which to give up waiting for a response.

Chapter 1. Using extended messaging in applications 21

Data type
Integer

Units seconds

Default
0

Range An integer number of milliseconds, greater than or equal to -1:
v -1 indicates that requests to handle late responses are never discarded.
v Other values are an integer number of milliseconds after which requests

are discarded.

Listener Ports

Specifies the name of the listener port to be used to handle late responses.

Late response handling extension settings
Use this page to configure late response handling extensions.

To view this administrative console page, click Application Servers > server_name
> Extended Messaging Service > Listener Port Extensions > extension_name .

Configuration tab

Enabled
Specifies whether the handling of late responses is enabled.

Range

Selected
Handling of late responses is enabled.

Cleared
Handling of late responses is not enabled.

Request Interval
Specifies the interval that elaspes between checking for late responses.

Data type
Integer

Units milliseconds

Default
5

Range An integer number of milliseconds, greater than or equal to -1:
v -1 indicates that requests to handle late responses are never

discarded.
v Other values are an integer number of milliseconds after which

requests are discarded.

Request Timeout
Specifies the duration of time after which to give up waiting for a
response.

Data type
Integer

Units Seconds

22 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Default
0

Range An integer number of milliseconds, greater than or equal to -1:
v -1 indicates that requests to handle late responses are never

discarded.
v Other values are an integer number of milliseconds after which

requests are discarded.

Listener Ports
Specifies the name of the listener port to be used to handle late responses.

Extended messaging provider settings
Use this page to manage extended messaging providers.

The extended messaging provider manages resources defined for use with
extended messaging.

To view this administrative console page, click Resources > Extended Messaging
Providers .

Name
The name of the resource provider.

Data type
String

Range 1 through 30 ASCII characters

Description
An optional description for the resource factory.

Data type
String

Input port collection
Use this page to view the configuration properties of input ports..

An input port specifies the properties needed by receiver beans as session beans.
Receiver beans as message-driven beans do not need an input port, because the
properties needed are associated with the deployed message-driven bean and the
Message Listener service.

To view this administrative console page, click Resources > Extended Messaging
Providers > Input Port .

Name: The name by which the input port is known for administrative purposes.

Data type
String

Units En_US ASCII characters

JNDI Name: The JNDI name for the resource.

Data type
String

Description: A description of the input port, for administrative purposes.

Chapter 1. Using extended messaging in applications 23

Data type
String

Category: A string that can be used to classify or group the resource.

Data type
String

Range 1 through 30 ASCII characters

JMS Connection Factory JNDI Name: The JNDI name for the JMS connection
factory to be used by the input port; for example, jms/connFactory1.

Data type
String

JMS Destination JNDI Name: The JNDI name for the destination to be used by
the input port; for example, jms/destn1.

Data type
String

JMS Acknowledgement Mode: JMS acknowledgment mode to be used for
acknowledging messages.

This property applies only to message-driven beans that use bean-managed
transaction demarcation (Transaction type is set to Bean).

Default
Auto Acknowledge

Range

Auto Acknowledge
The session automatically acknowledges a message in either of the
following cases:
v When the session has successfully returned from a call to receive

a message.
v When the session has called a message listener to process the

message and received a successful response from that listener.

Dups OK Acknowledge
The session acknowledges only the delivery of messages. This is
likely to result in the delivery of some duplicate messages if JMS
fails, so it should be used only by consumers that are tolerant of
duplicate messages.

Destination Type: The type of the JMS resource.

Default
Queue

Range

Queue
The receiver bean receives messages from a queue destination.

Topic The receiver bean receives messages from a topic destination.

Subscription durability: [Topic destinations only.] Specifies whether a JMS topic
subscription is durable or non-durable.

24 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Default
Durable

Range

Durable
A subscriber registers a durable subscription with a unique identity
that is retained by JMS. Subsequent subscriber objects with the
same identity resume the subscription in the state it was left in by
the earlier subscriber. If there is no active subscriber for a durable
subscription, JMS retains the subscription’s messages until they are
received by the subscription or until they expire.

Nondurable
Nondurable subscriptions last for the lifetime of their subscriber
object. This means that a client sees the messages published on a
topic only while its subscriber is active. If the subscriber is not
active, the client is missing messages published on its topic.

Reply JMS Connection Factory JNDI Name: JNDI name of the JMS Connection
Factory to be used for replies.

Data type
String

Reply JMS Destination JNDI Name: JNDI name of the JMS Destination to be
used for replies.

Data type
String

Inport port settings
Use this page to configure an input port.

To view this administrative console page, click Resources > Extended Messaging
Providers > Input Port > inputport_name.

Configuration tab

Name The name by which the input port is known for administrative purposes.

Data type
String

Units En_US ASCII characters

JNDI Name
The JNDI name for the resource.

Data type
String

Description
A description of the input port, for administrative purposes.

Data type
String

Category
A string that can be used to classify or group the resource.

Data type
String

Chapter 1. Using extended messaging in applications 25

Range 1 through 30 ASCII characters

JMS Connection Factory JNDI Name
The JNDI name for the JMS connection factory to be used by the input
port; for example, jms/connFactory1.

Data type
String

JMS Destination JNDI Name
The JNDI name for the destination to be used by the input port; for
example, jms/destn1.

Data type
String

JMS Acknowledgement Mode
JMS acknowledgment mode to be used for acknowledging messages.

This property applies only to message-driven beans that use bean-managed
transaction demarcation (Transaction type is set to Bean).

Default
Auto Acknowledge

Range Auto Acknowledge

The session automatically acknowledges a message in either of the
following cases:
v When the session has successfully returned from a call to receive

a message.
v When the session has called a message listener to process the

message and received a successful response from that listener.

Dups OK Acknowledge

The session acknowledges only the delivery of messages. This is
likely to result in the delivery of some duplicate messages if JMS
fails, so it should be used only by consumers that are tolerant of
duplicate messages.

Destination Type
The type of the JMS resource.

Default
Queue

Range

Queue
The receiver bean receives messages from a queue
destination.

Topic The receiver bean receives messages from a topic
destination.

Subscription durability
[Topic destinations only.] Specifies whether a JMS topic subscription is
durable or non-durable.

Default
Durable

Range

26 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Durable
A subscriber registers a durable subscription with a unique
identity that is retained by JMS. Subsequent subscriber
objects with the same identity resume the subscription in
the state it was left in by the earlier subscriber. If there is
no active subscriber for a durable subscription, JMS retains
the subscription’s messages until they are received by the
subscription or until they expire.

Nondurable
Nondurable subscriptions last for the lifetime of their
subscriber object. This means that a client sees the
messages published on a topic only while its subscriber is
active. If the subscriber is not active, the client is missing
messages published on its topic.

Reply JMS Connection Factory JNDI Name
JNDI name of the JMS Connection Factory to be used for replies.

Data type
String

Reply JMS Destination JNDI Name
JNDI name of the JMS Destination to be used for replies.

Data type
String

Output port collection
Use this page to view the configuration properties of output ports.

The Output port defines the parameters required by the extended messaging
sender bean. These properties define the destination for the message being sent,
together with optional details if a response is expected.

To view this administrative console page, click Resources > Extended Messaging
Providers > Output Port .

Name: The name by which the output port is known for administrative purposes.

Data type
String

JNDI Name: The JNDI name for the output port.

Data type
String

Description: A description of the output port, for administrative purposes.

Data type
String

Category: A string that can be used to classify or group the resource.

Data type
String

JMS Connection factory JNDI name: The JNDI name for the JMS connection
factory to be used by the output port; for example, jms/connFactory1.

Chapter 1. Using extended messaging in applications 27

Data type
String

Units En_US ASCII characters

Range 1 through 30 ASCII characters

JMS Destination JNDI name: The JNDI name for the destination to be used by
the output port; for example, jms/destn1.

Data type
String

JMS Delivery Mode: Specifies whether all messages sent to the destination are
persistent or non-persistent.

Default
Persistent

Range

Persistent
Messages put onto the destination are persistent.

Nonpersistent
Messages put onto the destination are not persistent.

JMS Priority: The message priority for this queue destination.

Data type
Integer

Default
4

Range 0 to 9

JMS Time To Live: The time in milliseconds after which messages on this queue
expire.

Data type
Integer

Units Milliseconds

Default
0

Range 0 ton

0 messages never time out.

n messages time out in n milliseconds.

JMS Disable Message I.D.: Specifies that the system should not generate a JMS
message ID.

Default
Cleared

Range

Selected
The system does not generate message IDs.

28 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Cleared
The system generates message IDs automatically.

JMS Disabled Message Time Stamp: Specifies that the system should not
generate a JMS message timestamp.

Default
Cleared

Range

Selected
Message time stamps are added automatically to messages sent.

Cleared
Message time stamps are not added automatically to messages
sent.

Response JMS Connection Factory JNDI name: The JNDI name for the JMS
connection factory to be used for response messages handled by the output port;
for example, jms/connFactory1.

Data type
String

Units En_US ASCII characters

Range 1 through 30 ASCII characters

Response JMS Destination JNDI name: The JNDI name for the destination to be
used for response messages handled by the output port; for example, jms/destn1.

Data type
String

Output port settings
Use this page to configure an output port.

An output port specifies the properties needed by sender beans to define the
destination for the message being sent, and other optional properties if a response
is expected. The output port is associated with the sender bean at deployment
time.

To view this administrative console page, click Resources > Extended Messaging
Providers > Output Port > outputport_name .

Configuration tab

Name The name by which the output port is known for administrative purposes.

Data type
String

JNDI Name
The JNDI name for the output port.

Data type
String

Description
A description of the output port, for administrative purposes.

Chapter 1. Using extended messaging in applications 29

Data type
String

Category
A string that can be used to classify or group the resource.

Data type
String

JMS Connection factory JNDI name
The JNDI name for the JMS connection factory to be used by the output
port; for example, jms/connFactory1.

Data type
String

Units En_US ASCII characters

Range 1 through 30 ASCII characters

JMS Destination JNDI name
The JNDI name for the destination to be used by the output port; for
example, jms/destn1.

Data type
String

JMS Delivery Mode
Specifies whether all messages sent to the destination are persistent or
non-persistent.

Default
Persistent

Range

Persistent
Messages put onto the destination are persistent.

Nonpersistent
Messages put onto the destination are not persistent.

JMS Priority
The message priority for this queue destination.

Data type
Integer

Default
4

Range 0 to 9

JMS Time To Live
The time in milliseconds after which messages on this queue expire.

Data type
Integer

Units Milliseconds

Default
0

Range 0 to n

0 messages never time out.

30 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

n messages time out in n milliseconds.

JMS Disable Message I.D.
Specifies that the system should not generate a JMS message ID.

Default
Cleared

Range

Selected
The system does not generate message IDs.

Cleared
The system generates message IDs automatically.

JMS Disabled Message Time Stamp
Specifies that the system should not generate a JMS message timestamp.

Default
Cleared

Range

Selected
Message time stamps are added automatically to messages
sent.

Cleared
Message time stamps are not added automatically to
messages sent.

Response JMS Connection Factory JNDI name
The JNDI name for the JMS connection factory to be used for response
messages handled by the output port; for example, jms/connFactory1.

Data type
String

Units En_US ASCII characters

Range 1 through 30 ASCII characters

Response JMS Destination JNDI name
The JNDI name for the destination to be used for response messages
handled by the output port; for example, jms/destn1.

Data type
String

Troubleshooting extended messaging
Use this overview task to help resolve a problem that you think is related to the
extended messaging service.

The extended messaging service uses the standard IBMWebSphere Application
Server RAS facilities. If you encounter a problem that you think might be related
to the extended messaging service, complete the following stages:

Steps for this task

1. Check for extended messaging service messages in the application server’s
SystemOut log at was_home\logs\server\SystemOut.

Chapter 1. Using extended messaging in applications 31

Any error messages associated with the extended messaging service are
labelled with EMSG. The error message indicates the nature of the problem
and provides some detail. The extended messaging service issues EMSG error
messages if it fails to initialize, parse its configuration file, or encounters some
runtime error.

2. Check for more messages in the application server’s SystemOut log.
If the JMS server is running, but you have problems accessing JMS resources,
check the SystemOut log file, which should contain more error messages and
extra details about the problem.

3. Check the Release Notes for specific problems and workarounds
Tthe Release Notes, available from the IBM WebSphere Application Server
library web site, is updated regularly to contain information about known
defects and their workarounds. Check the latest version of the Release Notes
for any information about your problem. If the Release Notes does not contain
any information about your problem, you can also search the Technotes
database on the IBM WebSphere Application Server web site.

4. Check for problems with the WebSphere Messaging functions or
message-driven beans
For more information about troubleshooting WebSphere Messaging, see the
related topics listed at the bottom of this file.

5. (Optional) Get a detailed exception dump for extended messaging.
If the information obtained in the preceding steps is still inconclusive, you can
enable the application server debug trace for the ″Messaging″ group to provide
a detailed exception dump.

Extended Messaging: Resources for learning
Use the following links to find relevant supplemental information about Extended
Messaging. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v “Programming model and decisions”
v “Programming specifications”
v “Other” on page 33

Programming model and decisions

v Sun’s Java Message Service (JMS) specification documentation
http://developer.java.sun.com/developer/technicalArticles/
Networking/messaging/

Programming specifications

v Java Message Service API, 1.0.2
http://java.sun.com/products/jms/

v Enterprise JavaBeans Technology Downloads & Specifications
http://java.sun.com/products/ejb/docs.html

32 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
http://java.sun.com/products/jms/
http://java.sun.com/products/ejb/docs.html

Other

v WebSphere Application Server Enterprise Version 5 Overview: Extended J2EE
Development Accelerators
http://www-3.ibm.com/software/info1/websphere/
index.jsp?tab=products/appserv_enterprise#extended

v Listing of PDF files to learn about WebSphere Application Server Version 5
http://www-3.ibm.com/software/webservers/appserv/appserv_v5.html

v Listing of all IBM WebSphere Application Server Redbooks
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere

v Listing of all IBM WebSphere Application Server Whitepapers
http://www-4.ibm.com/software/webservers/appserv/whitepapers.html

v WebSphere Application Server Enterprise Edition 4.0: A Programmer’s Guide
http://www.redbooks.ibm.com/redbooks/SG246504.html

Chapter 1. Using extended messaging in applications 33

http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=products/appserv_enterprise#extended
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=products/appserv_enterprise#extended
http://www-3.ibm.com/software/webservers/appserv/appserv_v5.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www-4.ibm.com/software/webservers/appserv/whitepapers.html
http://www.redbooks.ibm.com/redbooks/SG246504.html

34 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Chapter 2. Developing Web Services Gateway extensions

Use this task to develop your own extensions for the gateway

Before you begin

This information is intended for use by Java programmers.

To extend the functionality of the Web Services Gateway, you can write your own
Java programs. The gateway does not provide any application programming
interfaces, but there are system level interfaces that you can use. Specific guidance
on how to do this in key areas is given in the following topics:
v “Writing a filter for the Web Services Gateway”
v “Using a filter to select a target service and port” on page 43
v “Capturing Web service invocation information from the Web Services Gateway”

on page 45
v “Handling exceptions for the Web Services Gateway” on page 46

For additional technical details of the Web Services Gateway, see the Web Services
Gateway Javadoc located in the InfoCenter.

Writing a filter for the Web Services Gateway
Use this task to write a filter for the Web Services Gateway.

Before you begin

To use this information you should be familiar with using a J2EE session bean
development environment such as IBM WebSphere Studio Application Developer.

A Web Services Gateway filter is essentially a J2EE session bean implementing
specific Home and Remote interfaces.

To write a filter using IBM WebSphere Studio Application Developer, complete the
following steps. For more detailed information on writing session beans, see the
WebSphere Studio Application Developer documentation topic entitled,
″Developing enterprise beans - overview″ (which can be accessed only when this
topic is installed in a WebSphere Studio documentation plug-in)

Steps for this task

1. Open the J2EE perspective.
2. To create a new EJB application project, complete the following steps:

a. Select File -> New -> Enterprise Application Project.
The Project Creation wizard opens.

b. In the Project Creation wizard, complete the following steps:
1) Select the version of the J2EE specification that you want to use, then

click Next.
2) Type your project name.
3) Clear the Application client module check box.

© Copyright IBM Corp. 2003 35

4) Clear the Web module check box.
5) Click Finish.

Your new EJB application project is created.
3. To add the extra JAR files that your EJB module needs that are not already in

the Enterprise Application Server /lib directory, complete the following steps:
a. Select File -> Import.
b. Select the input source File system, then click Next.
c. In the Import window, complete the following steps:

1) Select WSGW_root/client as the source directory.
where WSGW_root is the root directory for your installation of the
gateway.

2) Select wsgwejb.jar.
3) Select the root directory of your new project as the destination for

imported resources.
4) Click Finish.

d. (Optional) Repeat the previous File -> Import process to add any other
extra JAR files that your EJB module needs.

e. In the J2EE Hierarchy view, from the pop-up menu for your EJB module,
select Open With -> JAR Dependency Editor.

f. In the JAR Dependencies window, select all the JAR files listed.
g. Close the JAR Dependencies window, then click Yes in the Save Resource

window to save your changes.
4. To add extra JAR files to the Java build path for your EJB module, complete the

following steps:
a. In the J2EE Hierarchy view, select your EJB module’s Properties.
b. In the Properties window, ensure that the following JAR files are included

on the Java Build Path:
v WAS_root/lib/jrom.jar

v WAS_root/lib/qname.jar

v WAS_root/lib/wsdl4j.jar

v WAS_root/lib/wsif.jar

v WSGW_root/client/wsgwejb.jar

where WAS_root is the root directory for your installation of IBM WebSphere
Application Server Enterprise, and WSGW_root is the root directory for your
installation of the gateway.

c. Add any other JAR files or projects that you need for compiling your filter.
d. Click OK.

5. To create the session bean, complete the following steps:
a. Select File -> New -> Enterprise Bean.

The Enterprise Bean Creation wizard opens.
b. In the Enterprise Bean Creation wizard, complete the following steps:

1) Select your EJB project, then click Next.
2) Ensure that Session Bean is selected.
3) Enter a name for the bean.
4) Enter the package name for the bean as the Default package.
5) Click Next.

36 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

c. In the Enterprise Bean Details window, complete the following steps:
1) Accept the defaults offered for Session type (Stateless)and Transaction

type (Container).
2) Accept the defaults offered for Bean supertype (<none>), Bean class

and EJB binding name.
3) Confirm that Local client view is not enabled.
4) For the Remote client view: Remote Home Interface, click Class... then

select the com.ibm.wsgw.beans.FilterHome interface.
5) For the Remote client view: Remote Interface, click Class... and select

the com.ibm.wsgw.beans.FilterRemote interface.
6) Click Next.

d. In the EJB Java Class window, complete the following steps:
1) Select Add Package, then add these packages to the import statements:

v com.ibm.wsgw

v com.ibm.wsgw.beans

v org.apache.wsif

2) Click Finish.

Your new session bean is created.
6. The generated java code for your session bean does not implement the Filter.

To update the code, complete the following steps:
a. In the J2EE Hierarchy view, expand your session bean to show Java code

entries for the Home interface, the Remote interface and for the session
bean itself.

b. In the J2EE Hierarchy view, double-click the entry for the session bean code.
In the editor view, the generated code opens for editing.

c. In the editor view, add ″, Filter″ to the end of the ″implements
javax.ejb.SessionBean″ statement.

d. Select File -> Save to save the file. Ignore any errors at this stage.
7. To add the unimplemented methods of the Filter interface to your session bean,

complete the following steps:
a. Open the Outline view (select Window -> Show View -> Outline).
b. In the Outline view, from the pop-up menu for your session bean, select

Override Methods.
c. In the Override Methods window, select all the Filter methods to override

then click OK.

The methods of the Filter interface are added to your session bean.
8. Select File -> Save to save the file. Any errors from the previous File -> Save

are resolved.
9. Develop your filter.

The exact steps that you take to develop your filter depend upon what you
want it to do. However to develop any filter, you use the following resources
v The Filter interface.
v The gateway Javadoc for the Filter interface.
v The additional information on the Filter interface that is in “Web Services

Gateway - the Filter interface” on page 39.

Chapter 2. Developing Web Services Gateway extensions 37

v The gateway message context. (This contains the context values for each
message that comes into the Gateway. These are the values that your filter
acts upon.)

v The gateway Javadoc for the GatewayContextNames class. (To use the
gateway message context values, you import the GatewayContextNames
class.)

v The additional information on the gateway message context fields that is in
“Web Services Gateway - the gateway message context fields” on page 41.

v The Gateway WorkArea. (Filters use this to get and set the message context
values, as described in “Web Services Gateway - the Filter interface” on
page 39.)

v The WSIF Javadoc for the following WSIF objects:
– WSIFRequest
– WSIFResponse
– WSIFMessage
– WSIFException

(the methods of the Filter interface use these objects, as described in “Web
Services Gateway - the Filter interface” on page 39.)

v The example code below.

Note: You must observe the J2EE programming model, and ensure that any
non-gateway services you use are available on all platforms that the filter
might be expected to run on. For example, you should not use static
variables to store state information because on certain platforms, or in
certain configurations (such as a cluster), a filter might be invoked in a
different JVM for each request.

Usage scenario

This example shows you how to access the context and get values in the
filterRequest method of a filter.
import javax.naming.InitialContext;
import javax.naming.NamingException;

import com.ibm.websphere.workarea.UserWorkArea;
import com.ibm.websphere.workarea.WorkAreaException;

import com.ibm.wsgw.GatewayContextNames;

...

try
{
// Lookup the WorkArea Gateway context in JNDI
InitialContext ctx = new InitialContext();
UserWorkArea wsgwContext = (UserWorkArea)ctx.lookup("services:websphere/WSGW/workarea");

// Get the currently selected port name
String Ptype = (wsgwContext.get(GatewayContextNames.TARGET_PORT_NAME)).getClass().getName();
String ThePortname = (String) wsgwContext.get(GatewayContextNames.TARGET_PORT_NAME);

// Get the currently selected target service WSDL location
String Xtype = (wsgwContext.get(GatewayContextNames.TARGET_SERVICE_LOCATION)).getClass().getName();
TargetServiceLocation WSDLObject = (TargetServiceLocation)
wsgwContext.get(GatewayContextNames.TARGET_SERVICE_LOCATION);

String ServiceLocation = WSDLObject.serviceLocation;
int ServiceLocationType = WSDLObject.serviceLocationType;
String ServiceName = WSDLObject.serviceName; String ServiceNamespace = WSDLObject.serviceNamespace;

}
catch (NamingException e)
{

38 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

// Handle any exceptions thrown by the InitialContext here
}
catch (WorkAreaException e)
{
// Handle exceptions thrown by UserWorkArea here
}

...

Note: In the preeding example, the line that begins with TargetServiceLocation
wrapped due to the width of the page. Normally, it is one continuous line.

What to do next

After you have developed your filter, you need to generate deployment code and
export the enterprise application. To do this using IBM WebSphere Studio
Application Developer, complete the following steps:
1. Open the J2EE perspective.
2. In the J2EE Hierarchy view, from the pop-up menu for your EJB module, select

Generate -> Deploy and RMIC code.
3. In the Generate Deploy and RMIC Code window, select the beans for which

you want to generate code, then click Finish.
4. To configure the deployment descriptor properties for your bean, complete the

following steps:
a. In the J2EE Hierarchy view, from the pop-up menu for your bean, select

Open With -> EJB Deployment Descriptor.
b. On the Beans tab, set the JNDI name to the Filter class name. This name

will be used as the ″Home Location″ when the filter is deployed to the
gateway.

c. Close the EJB Deployment Descriptor window, then click Save to save the
changes.

5. In the J2EE Hierarchy view, from the pop-up menu for your project, select
Export EAR file to export the enterprise application.

You are now ready to install your filter (as described in the penultimate step of
Installing the gateway into a deployment manager cell and Installing the gateway
into a standalone application server), then deploy your filter.

Web Services Gateway - the Filter interface
This topic gives more information on using each of the methods of the Filter
interface. It supplements the information given in the following Javadoc:
v The gateway Javadoc for the Filter interface.
v The WSIF Javadoc for

– WSIFRequest
– WSIFResponse
– WSIFMessage
– WSIFException

The Filter interface represents an object which is called during service invocation.
A bean which implements this interface can be registered to be called just before a
request invocation, or just after response receipt for a particular service.

Gateway filters use the Gateway WorkArea to get and set the “Web Services
Gateway - the gateway message context fields” on page 41. You get the gateway’s

Chapter 2. Developing Web Services Gateway extensions 39

WorkArea partition from services:websphere/WSGW/workarea in JNDI, then use the
UserWorkArea API to get and set data within the message context.

These are the two main methods you use for developing your filter:
v FilterAction filterRequest(org.apache.wsif.WSIFRequest request,

org.apache.wsif.WSIFResponse response).
v FilterAction filterResponse(org.apache.wsif.WSIFRequest request,

org.apache.wsif.WSIFResponse response).

Another important method that requires a specific value to be returned is
getContextVersion().

If you want your filter to change the WSIFReponse and WSIFRequest messages,
then note that changes to messages are only recognized if the setUpdatedRequest
and setUpdatedResponse methods are called on the returned FilterAction object.
The FilterAction object can also dictate whether processing of the message should
continue by calling the setContinueProcess method.

filterRequest Method

The filterRequest method is called by the gateway Manager just before a request is
sent to a target service. The return value from the method can indicate that the
request should not be sent.

The request parameter contains the request WSIFMessage. This consists of a set of
named parts. Each part has a value which is encoded as an instance of an
appropriate Java object. Filters can change the values of the Java object instances,
but should not add or remove parts, or replace the values of parts with ones of a
different type.

The Filter might decide that the request should not proceed. In that case it has
three options:
v Throw a FilterException. The Gateway logs the exception but continues

processing filters and the request invocation.
v Throw a WSGWException. The Gateway logs and rethrows the exception, and

processing of filters and the request is stopped. The exeption then goes back to
the receiving channel, and the channel must determine what to do with the
exception (in the case of SOAP-based channels, this results in a Fault message
back to the client). This should only be done for unexpected errors in the filter.

v Return a FilterAction object with the continueProcessing flag set to false. In this
case the response message in the FilterAction can also be set, and is sent to the
originator of the request. No further filters are invoked.

If the request or response is modified, then it must be returned in an instance of
the FilterAction class. If this is not done, any change to the response is ignored by
the Web Services Gateway.

filterResponse Method

The filterResponse method is called by the gateway Manager just after a response
has been received from a target service. The response parameter contains the
response or fault WSIFMessage. This consists of a set of named parts.

40 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Each part has a value which is encoded as an instance of an appropriate Java
object. Filters can change the values of the Java object instances, but should not
add or remove parts, or replace the values of parts with ones of a different type.

The Filter may decide that the response should not proceed. In that case it has
three options:
v Throw a FilterException. The Gateway logs the exception but continues

processing filters and the response invocation.
v Throw a WSGWException. The Gateway logs and rethrows the exception, and

processing of filters and the response is stopped. The exeption then goes back to
the receiving channel, and the channel must determine what to do with the
exception (in the case of SOAP-based channels, this results in a Fault message
back to the client). This should only be done for unexpected errors in the filter.

v Return a FilterAction object with the continueProcessing flag set to false. In this
case the fault WSIF Message is set in the response message in the FilterAction,
and is sent to the originator of the request. No further filters are invoked.

If the response is modified, then it must be returned in an instance of the
FilterAction class. If this is not done, any change to the response is ignored by the
Web Services Gateway.

If the Filter throws a FilterException, it is logged, but the gateway continues to
process other filters. If it throws a WSGWException, processing of the response is
stopped.

getVersionString Method

The getVersionString method returns a string form of the version of the filter
implementation. This is used by the gateway when logging events relating to the
filter so that the exact version of the filter implementation is known.

getContextVersion Method

The getContextVersion method indicates the approach that this filter uses to access
context information. To access the message context information for IBM WebSphere
Application Server Version 5, this method must be implemented to return the
value: Filter.CONTEXT_VERSION_WORKAREA.

init Method

The init method tells the filter that it has been configured with the Web Services
Gateway.

This method is called by the gateway when it has been asked to add a filter.

destroy Method

The destroy method tells the filter that it is no longer configured with the Web
Services Gateway. This method is called by the gateway when it has been asked to
remove a filter.

Web Services Gateway - the gateway message context fields
The gateway message context contains the context information for each incoming
message.

Chapter 2. Developing Web Services Gateway extensions 41

You can use the Context Field Constant values if you import the class
com.ibm.wsgw.GatewayContextNames.

For basic information on the fields that are available in the context, see the Javadoc
for the GatewayContextNames class. Additional information on all of these fields
except AUTH_SUBJECT and copyright is given in the table below.

Note: In this version of the gateway you should treat all of the context fields as
Read only. If your filter attempts to write to a context field, you do not get
an error message (because the write does not actually fail) but subsequent
system behavior is not readily predictable.

If you want to change the target service location and port name fields, then you
should use the Routing interface to get the list of valid target service locations and
to select the target service location. For more information, see “Using a filter to
select a target service and port” on page 43.

Context Field Context Field Constant Description

WSGWAuthPassword AUTH_PASSWORD Read the password from the
incoming HTTP request
(where available)

WSGWAuthUserName AUTH_USER_NAME Read the user name from the
incoming HTTP request
(where available).

WSGWGatewayServiceName GATEWAY_SERVICE_NAME Name of the gateway Service
for which the request was
received.

WSGWReceivingChannelName RECEIVING_CHANNEL_NAMEName of the channel on
which the request was
received.

WSGWRetryCount RETRY_COUNT Number of retries for the
request. NOT CURRENTLY
USED.

WSGWSoapHeaders SOAP_HEADERS Retrieve the SOAP headers
for an inbound soap request;
SOAP Headers are returned
as a Vector of Nodes.

WSGWTargetPortName TARGET_PORT_NAME Currently selected port name.
Not set until after service
invocation, and therefore can
only be got by response
filters and not by request
filters. See also “Using a filter
to select a target service and
port” on page 43.

WSGWTargetServiceName TARGET_SERVICE_LOCATIONGives the location of the
currently selected target
service’s WSDL, Name and
Namespace. See also the
Javadoc for the
TargetServiceLocation class.

WSGWTimeoutTime TIMEOUT_TIME Time-out value for the
response. NOT CURRENTLY
USED.

42 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Context Field Context Field Constant Description

WSGWMessageID MESSAGE_ID Set by the channel and is a
server-unique ID that can be
used to correlate messages,
for example in trace. Can be
made globally unique by
prefixing with host name.

Using a filter to select a target service and port
Use this task to write a filter to select a target service and port.

When a request is received by the gateway, it must determine what the target
service really is, and what port to use to access that service.

The Gateway represents each exported service as a gateway service. Each gateway
service can map to one or more target services, but without filters there is no point
in mapping multiple targets as the gateway will always pick the first one. If you
want to map multiple targets, you also need to write pluggable filters (configured
for each gateway service) that can select the target service from those available.

You write a filter as described in “Writing a filter for the Web Services Gateway”
on page 35. Your filter can get the list of potential target services from the Routing

service. It needs to select the target service, then call the Routing service to set the
target service (note that doing this clears any prior selection of a target service’s
port). Your filter might also use the Routing service to select the target port for the
service invocation.

The Routing service provides a non-standard interface which is defined in the
topic “Web Services Gateway - the Routing interface” on page 44. The
implementation of the Routing service is not pluggable.

The Home object for this service must implement the
com.ibm.wsgw.beans.RoutingHome interface and be located in JNDI at
websphere/WSGW/Routing.

The sequence of events for a filter to determine and set the target service is as
follows:
1. The filter is called with a WSIFRequest.
2. The filter obtains the list of potential target services from the Routing service.
3. The filter selects the target service.
4. The filter calls the Routing service to set the target service (note that doing this

clears any prior selection of a target service’s port).

The Filter can also use the Routing service to select the target port for the service
invocation.

Each target service is identified by the target service definition location (which is
unique) and target service identity information (which might not be unique). So to
select the target service, your filter can either get the table of mappings from target
service location to identity information, then choose a target service to use; or it
can call setSelectedTargetServiceIdentity with the required identity string (relying
on the target service identity information being carefully defined). The routing

Chapter 2. Developing Web Services Gateway extensions 43

service then selects the first target service it finds (for the current gateway service)
with identity information that matches that specified (using String.equals()).

Note: When you use Routing to set the target service or the target port, the
Routing service updates the request context. Because the request context has
changed, you then need to set the request object in the FilterAction object
that you return from the filterRequest method (see “Web Services Gateway
- the Filter interface” on page 39).

Web Services Gateway - the Routing interface
This topic gives more information on using each of the methods of the Routing
interface. It supplements the information given for this interface in the gateway
Javadoc.

The Routing interface encapsulates a service which manages routing for requests.
Filters can use this service to select the target service and port.

Note: The set methods all return a WSIFRequest object that contains the updated
context information.

To get information on the currently selected target service, use the following
Routing interface methods:

getSelectedTargetServiceLocation
This method returns the currently selected target service location for the
request.

getTargetPortName
This method returns the currently selected target port name for the request.

Note: In this version of the gateway, this method always returns blank.

getTargetServiceDefinition
This method returns the currently selected target service definition for the
request.

To set the target port, use the following Routing interface method:

setTargetPortName
This method sets the selected target port name for the request.

To get information on all potential target services, use the following Routing
interface method:

getTargetServices
This method returns the set of target service names which are mapped by
the gateway service on which the request was received.

To set the target service, use either of the following Routing interface methods:

setSelectedTargetServiceLocation
This method sets the selected target service location for the request. The
selected port name if any is reset by this call.

setSelectedTargetServiceIdentity
This method sets the selected target service identity for the request. Target
service identity need not be unique, so the first target service found with
matching identity information is set. If none is found that matches, the
method throws a WSGWException.

44 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Capturing Web service invocation information from the Web Services
Gateway

Use this task to help you to capture Web service invocation information from the
Web Services Gateway.

The Web Services Gateway has not implemented a service that stores operational
messages, but the gateway does contain an interface (the MessageWarehouse
interface) to encapsulate such a service. This interface is driven by channels on
receipt of requests and before sending responses.

If you have your own system for handling (classifying, storing and retrieving)
operational messages, you can potentially use it to log the gateway’s operational
messages through “Web Services Gateway - the MessageWarehouse interface”.

The Home object for this service must implement the
com.ibm.wsgw.beans.MessageWarehouseHome interface and be located in JNDI at
websphere/WSGW/MessageWarehouse.

Web Services Gateway - the MessageWarehouse interface
This topic gives more information on using each of the methods of the
MessageWarehouse interface. It supplements the information given for this
interface in the gateway Javadoc.

The MessageWarehouse interface encapsulates a service which stores messages for
archiving. This interface is used by the channels to log incoming requests for the
purposes of non-repudiation.

A default implementation of this interface is not provided by the Web Services
Gateway. If no implementation is present the interface is not used.

logRequest

This method stores a request, along with information about the channel
and originator of the request.

It is called by a channel when a request is received, after the user has been
authenticated and the message decrypted. The channel may provide
information to identify the originator of the request, and to identify the
channel itself. The request itself is logged as a WSIFMessage.

Additional information regarding receipt of the request (for example any
associated digital certificates) can also be logged as Serializable objects.

logResponse

This method stores a response, along with information about the channel
and destination of the response.

It is called by a channel when a response is about to be sent, before the
response is encrypted. The channel may provide information to identify
the destination of the response, and to identify the channel itself. The
response itself is logged as a WSIFMessage.

Additional information regarding sending of the response (for example any
associated digital certificates) can also be logged as Serializable objects.

logException

Chapter 2. Developing Web Services Gateway extensions 45

This method stores a request, along with information about the channel
and originator of the request in the event that an exception is thrown to
the channel while the request is being processed. This method allows the
exact request and exception information to be logged before the channel
decides what actions to take as a result of the exception.

Additional information regarding request and exception (for example any
associated digital certificates) can also be logged as Serializable objects.

Handling exceptions for the Web Services Gateway
Use this task to help you to capture information on the gateway’s exception
handling activities.

During normal processing of a Web service invocation, a fault message might be
generated by the target service, and is passed back to the channel to be sent to the
originator. As far as the Web Services Gateway is concerned there is no difference
between processing a normal output message and processing a fault message.

But when an exception occurs during processing of a request, the channel needs
some way to decide what to do with the exception. What is needed is a service
that provides a pluggable handler that can look at the message, exception and
other information to decide whether the exception should be thrown back to the
originator, or whether a fault message should be constructed.

This service is not provided with the Web services Gateway, but the gateway does
contain an interface to encapsulate such a service. “Web Services Gateway - the
ExceptionHandler interface” allows channels to call an exception handling service,
and allows the exceptions to be reported to a third party for analysis.

The Home object for this service must implement the
com.ibm.wsgw.beans.ExceptionHandlerHome interface and be located in JNDI at
websphere/WSGW/ExceptionHandlerService.

Web Services Gateway - the ExceptionHandler interface
This topic gives more information on using each of the methods of the
ExceptionHandler interface. It supplements the information given in the gateway
Javadoc for the ExceptionHandler interface.

The ExceptionHandler interface encapsulates a service which takes actions when
exceptions occur during request/response processing in the gateway. It is intended
for use by channels to allow a centralized facility to report and take actions when
exceptions occur within the gateway.

handleException

This method is called by a channel when an exception is caught as a result
of processing a message.

The return value indicates what action the channel should take. The
actions include:
v Re-throw the original exception.
v Throw a new exception (this is thrown by the handler itself).
v Convert the exception into a fault message.

46 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Note: If there is no ExceptionHandler installed, the “Capturing Web
service invocation information from the Web Services Gateway” on
page 45 (if any) is always used to log the exception, then the
exception is rethrown.

Web Services Gateway: Resources for learning
Use the following links to find supplementary information about getting started
with the Web Services Gateway. The information resides on IBM and non-IBM
Internet sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

Because the concept of a Web services gateway is so new, there is (as yet) very
little supplementary information about it.
v Inside WebSphere Application Server 5

http://advisor.com/doc/09808
This article from WebSphere Advisor Magazine (August 2002) mentions the
gateway as part of a general discussion of the new features in this version of
WebSphere Application Server.

v Web Services Gateway
http://www.alphaworks.ibm.com/tech/wsgw
The Web Services Gateway area on the IBM alphaWorks® Web site. This area
provides a discussion forum for early adopters.

v The IBM Web Services Gateway: Technical Overview
http://www-3.ibm.com/software/integration/busconn/gateway.html
A different version of the gateway is available as a component of a product
called IBM WebSphere Business Connection. This brief technical summary from
WebSphere Business Connection applies equally well to the version of the
gateway in IBM WebSphere Application Server.

Chapter 2. Developing Web Services Gateway extensions 47

http://advisor.com/doc/09808
http://www.alphaworks.ibm.com/tech/wsgw
http://www-3.ibm.com/software/integration/busconn/gateway.html

48 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Chapter 3. Using EJB query

The EJB query language is used to specify a query over container-managed entity
beans. The language is similar to SQL. An EJB query is independent of the bean’s
mapping to a persistent store.

An EJB query can be used in three situations:
v To define a finder method of an EJB entity bean.
v To define a select method of an EJB entity bean.
v To dynamically specify a query using the executeQuery() dynamic API.

Finder and select queries are specified in the bean’s deployment descriptor using
the <ejb-ql> tag. Queries specified in the deployment descriptor are compiled into
SQL during deployment. Dynamic queries require the interface provided by IBM
WebSphere Application Server Enterprise.

WebSphere’s EJB query language is compliant with the EJB QL defined in Sun’s
EJB 2.0 specification and has additional capabilities as listed in the topic
“Comparison of EJB 2.0 specification and WebSphere query language” on page 71.

In your WebSphere application, you can define an EJB query in the following
ways:
v Application Assembly Tool. When assembling an EJB 2.0 entity bean, specify

the <ejb-ql> tag for the finder() or select() method.
v WebSphere Studio Application Developer. When defining an entity bean,

specify the <ejb-ql> tag for the finder or select method.
v Dynamic query service. Add the executeQuery() method to your application.

The dynamic query API is provided as an Enterprise Extension to IBM
WebSphere Application Server.

Before using EJB query, familiarize yourself with query language concepts, starting
with the topic, “EJB query language”.

Usage scenario

See “Example: EJB queries” on page 50.

EJB query language
An EJB query is a string that contains the following elements:
v a “SELECT clause” on page 67 that specifies the EJBs or values to return
v a “FROM clause” on page 52 that names the bean collections
v an optional “WHERE clause” on page 55 that contains search predicates over the

collections
v an optional GROUP BY and HAVING clause (see “Aggregation functions” on

page 66)
v an optional “ORDER BY clause” on page 67 that specifies the ordering of the

result collection

© Copyright IBM Corp. 2003 49

The SELECT clause is optional in order to maintain compatibility with IBM
WebSphere Application Server, Version 4.

Collections of entity beans are identified in EJB queries through the use of their
abstract schema name in the query FROM clause.

The elements of EJB query language are discussed in more detail in the following
related topics.

Example: EJB queries
Here is an example EJB schema, followed by a set of example queries:

Table 1. DeptBean schema

Entity bean name (EJB name) DeptEJB (not used in query)

Abstract schema name DeptBean

Implementation class com.acme.hr.deptBean (not used in query)

Persistent attributes (cmp fields) v deptno - Integer (key)

v name - String

v budget - BigDecimal

Relationships v emps - 1:Many with EmpEJB

v mgr - Many:1 with EmpEJB

Table 2. EmpBean schema

Entity bean name (EJB name) EmpEJB (not used in query)

Abstract schema name EmpBean

Implementation class com.acme.hr.empBean (not used in query)

Persistent attributes (cmp fields) v empid - Integer (key)

v name - String

v salary - BigDecimal

v bonus - BigDecimal

v hireDate - java.sql.Date

v birthDate - java.util.Calendar

v address - com.acme.hr.Address

Relationships v dept - Many:1 with DeptEJB

v manages - 1:Many with DeptEJB

Address is a serializable object used as cmp field in EmpBean. The definition of
address is as follows:

public class com.acme.hr.Address extends Object implements Serializable {
public String street;
public String state;
public String city;
public Integer zip;

public double distance (String start_location) { ... } ;
public String format () { ... } ;

}

The following query returns all departments:
SELECT OBJECT(d) FROM DeptBean d

50 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

The following query returns departments whose name begins with the letters
″Web″. Sort the result by name:
SELECT OBJECT(d) FROM DeptBean d WHERE d.name LIKE ’Web%’ ORDER BY d.name

The keywords SELECT and FROM are shown in uppercase in the examples but are
case insensitive. If a name used in a query is a reserved word, the name must be
enclosed in double quotes to be used in the query. There is a list of reserved words
later in this document. Identifiers enclosed in double quotes are case sensitive. This
example shows how to use a cmp field that is a reserved word:
SELECT OBJECT(d) FROM DeptBean d WHERE d."select" > 5

The following query returns all employees who are managed by Bob. This example
shows how to navigate relationships using a path expression:
SELECT OBJECT (e) FROM EmpBean e WHERE e.dept.mgr.name=’Bob’

A query can contain a parameter which referes to the corresponding value of the
finder or select method. Query parameters are numbered starting with 1:
SELECT OBJECT (e) FROM EmpBean e WHERE e.dept.mgr.name= ?1

This query shows navigation of a multivalued relationship and returns all
departments that have an employee that earns at least 50000 but not more than
90000:
SELECT OBJECT(d) FROM DeptBean d, IN (d.emps) AS e
WHERE e.salary BETWEEN 50000 and 90000

There is a join operation implied in this query between each department object and
its related collection of employees. If a department has no employees, the
department does not appear in the result. If a department has more than one
employee that earns more than 50000, that department appears multiple times in
the result.

The following query eliminates the duplicate departments:
SELECT DISTINCT OBJECT(d) from DeptBean d, IN (d.emps) AS e WHERE e.salary > 50000

Find employees whose bonus is more than 40% of their salary:
SELECT OBJECT(e) FROM EmpBean e where e.bonus > 0.40 * e.salary

Find departments where the sum of salary and bonus of employees in the
department exceeds the department budget:
SELECT OBJECT(d) FROM DeptBean d where d.budget <
(SELECT SUM(e.salary+e.bonus) FROM IN(d.emps) AS e)

A query can contain DB2 style date-time arithmetic expressions if you use java.sql.*
datatypes as CMP fields and your datastore is DB2. Find all employees who have
worked at least 20 years as of January 1st, 2000:
SELECT OBJECT(e) FROM EmpBean e where year(’2000-01-01’ - e.hireDate) >= 20

If the datastore is not DB2 or if you prefer to use java.util.Calendar as the CMP
field, then you can use the java millsecond value in queries. The following query
finds all employees born before Jan 1, 1990:
SELECT OBJECT(e) FROM EmpBean e WHERE e.birthDate < 631180800232

Find departments with no employees:
SELECT OBJECT(d) from DeptBean d where d.emps IS EMPTY

Chapter 3. Using EJB query 51

Find all employees whose earn more than Bob:
SELECT OBJECT(e) FROM EmpBean e, EmpBean b
WHERE b.name = ’Bob’ AND e.salary + e.bonus > b.salary + b.bonus

Find the employee with the largest bonus:
SELECT OBJECT(e) from EmpBean e WHERE e.bonus =
(SELECT MAX(e1.bonus) from EmpBean e1)

The above queries all return EJB objects. A finder method query must always
return an EJB Object for the home. A select method query can in addition return
CMP fields or other EJB Objects not belonging to the home.

The following would be valid select method queries for EmpBean. Return the
manager for each department:
SELECT d.mgr FROM DeptBean d

Return department 42 manager’s name:
SELECT d.mgr.name FROM DeptBean d WHERE d.deptno = 42

Return the names of employees in department 42:
SELECT e.name FROM EmpBean e WHERE e.dept.deptno=42

Another way to write the same query is:
SELECT e.name from DeptBean d, IN (d.emps) AS e WHERE d.deptno=42

Finder and select queries allow only a single CMP field or EJBObject in the
SELECT clause.

The dynamic query api allows multiple expressions in the SELECT clause. The
following query would be a valid dynamic query, but not a valid select or finder
query:
SELECT e.name, e.salary+e.bonus as total_pay , object(e), e.dept.mgr
FROM EmpBean e
ORDER BY 2

The following dynamic query returns the number of employees in each
department:
SELECT e.dept.deptno as department_number , count(*) as employee_count
FROM EmpBean e
GROUP BY by e.dept.deptno
ORDER BY 1

The dynamic query api allows queries that contain bean or value object methods:
SELECT object(e), e.address.format()
FROM EmpBean e EmpBean e

FROM clause
The FROM clause specifies the collections of objects to which the query is to be
applied. Each collection is identified either by an abstract schema name and an
identification variable, called a range variable, or by a collection member
declaration that identifies a multivalued relationship and an identification variable.

Conceptually, the semantics of the query is to first form a temporary collection of
tuples R. Tuples are composed of elements from the collections identified in the
FROM clause. Each tuple contains one element from each of the collections in the
FROM clause. All possible combinations are formed subject to the constraints

52 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

imposed by the collection member declarations. If any schema name identifies a
collection for which there are no records in the persistent store, then the temporary
collection R will be empty.

Example: FROM clause

DeptBean contains records 10, 20 and 30 in the persistent store. EmpBean contains
records 1, 2 and 3 that are related to department 10 and records 4, 5 that are
related to department 20. Department 30 has no related employees.
FROM DeptBean d, EmpBean e

This forms a temporary collection R that contains 15 tuples.
FROM DeptBean d, DeptBean d1

This forms a temporary collection R that contains 9 tuples.
FROM DeptBean d, IN (d.emps) AS e

This forms a temporary collection R that contains 5 tuples. Department 30 because
it contains no employees will not be in R. Department 10 will be contained in R
three times and department 20 will be contained in R twice.

After forming the temporary collection the search conditions of the WHERE clause
will be applied to R and this will yield a new temporary collection R1. The
ORDER BY and SELECT clauses are applied to R1 to yield the final result set.

An identification variable is a variable declared in the FROM clause using the
operator IN or the optional AS.
FROM DeptBean AS d, IN (d.emps) AS e

is equivalent to:
FROM DeptBean d, IN (d.emps) e

An identification variable that is declared to be an abstract schema name is called a
range variable. In the query above ″d″ is a range variable. An identification
variable that is declared to be a multivalued path expression is called a collection
member declaration. ″d″ and ″e″ in the example above are collection member
declarations.

Note that the following path expression is illegal as a collection member
declaration because it is not multivalued:
e.dept.mgr

Inheritance in EJB query
If an EJB inheritance hierarchy has been defined for an abstract schema, using the
abstract schema name in a query statement implies the collection of objects for that
abstract schema as well as all subtypes.

Example: Inheritance

Suppose that bean ManagerBean is defined as a subtype of EmpBean and
ExecutiveBean is a subtype of ManagerBean in an EJB inheritance hierarchy. The
following query returns employees as well as managers and executives:
SELECT OBJECT(e) FROM EmpBean e

Chapter 3. Using EJB query 53

Path expressions
An identification variable followed by the navigation operator (.) and a cmp or
relationship name is a path expression.

A path expression that leads to a cmr field can be further navigated if the cmr field
is single-valued. If the path expression leads to a multi-valued relationship, then
the path expression is terminal and cannot be further navigated. If the path
expression leads to a cmp field whose type is a value object, it is possible to
navigate to attributes of the value object.

Example: Value object

Assume that address is a cmp field for EmpBean, which is a value object.
SELECT object(e) FROM EmpBean e
WHERE e.address.distance(’San Jose’) < 10 and e.address.zip = 95037

It is best to use the composer pattern to map value object attributes to relational
columns if you intend to search on value attributes. If you store value objects in
serialized format, then each value object must be retrieved from the database and
deserialized. Value object methods can only be done in dynamic queries.

A path expression can also navigate to a bean method. The method must be
defined on either the remote or local bean interface. Methods can only be used in
dynamic queries. You cannot mix both remote and local methods in a single query
statement.

If the query contains remote methods, the dynamic query must be executed using
the query remote interface. Using the query remote interface causes the query
service to activate beans and create instances of the remote bean interface

Likewise, a query statement with local bean methods must be executed with the
query local interface. This causes the query service to activate beans and local
interface instances.

Do not use get methods to access cmp and cmr fields of a bean.

If a method has overloaded definitions, the overloaded methods must have
different number of parameters.

Methods must have non-void return types and method arguments and return
types must be either primitive types byte, short, int, long, float, double, boolean,
char or wrapper types from the following list:

Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Boolean, Character,
java.util.Calendar, java.sql.Date, java.sql.Time, java.sql.Timestamp, java.util.Date

If any input argument to a method is NULL, it is assumed the method returns a
NULL value and the method is not invoked.

A collection valued path expression can be used in the FROM clause as a collection
member declaration, and with the IS EMPTY, MEMBER OF, and EXISTS predicates
in the WHERE clause.

FROM EmpBean e WHERE e.dept.mgr.name=’Bob’ OK

54 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

FROM EmpBean e WHERE e.dept.emps.name=’BOB’ INVALID — cannot navigate through
emps because it is multivalued

FROM EmpBean e, IN (e.dept.emps) e1
WHERE e1.name=’BOB’

OK

FROM EmpBean e WHERE e.dept.emps IS EMPTY OK

WHERE clause
The WHERE clause contains search conditions composed of the following:
v literal values
v input parameters
v expressions
v basic predicates
v quantified predicates
v BETWEEN predicate
v IN predicate
v LIKE predicate
v NULL predicate
v EMPTY collection predicate
v MEMBER OF predicate
v EXISTS predicate
v IS OF TYPE predicate

If the search condition evaluates to TRUE, the tuple is added to the result set.

Literals
A string literal is enclosed in single quotes. A single quote that occurs within a
string literal is represented by two single quotes; For example: ’Tom’’s’. A string
literal cannot exceed the maximum length that is supported by the underlying
persistent datastore.

A numeric literal can be any of the following:
v an exact value such as 57, -957, +66
v any value supported by Java long
v a decimal literal such as 57.5, -47.02
v an approximate numeric value such as 7E3, -57.4E-2

A decimal or approximate numeric value must be in the range supported by Java
double.

A boolean literal can be the keyword TRUE or FALSE and is case insensitive.

Input parameters
Input parameters are designated by the question mark followed by a number; For
example: ?2

Input parameters are numbered starting at 1 and correspond to the arguments of
the finder or select method; therefore, a query must not contain an input parameter
that exceeds the number of input arguments.

Chapter 3. Using EJB query 55

An input parameter can be a primitive type of byte, short, int, long, float, double,
boolean, char or wrapper types of Byte, Short, Integer, Long, Float, Double,
BigDecimal, String, Boolean, Char, java.util.Calendar, java.util.Date, java.sql.Date,
java.sql.Time, java.sql.Timestamp or an EJBObject.

An input parameter must not have a NULL value. To search for the occurrence of
a NULL value the “NULL predicate” on page 61 should be used.

Expressions
Conditional expressions can consist of comparison operators and logical operators
(AND, OR, NOT).

Arithmetic expressions can be used in comparison expressions and can be
composed of arithmetic operations and functions, path expressions that evaluate to
a numeric value and numeric literals and numeric input parameters.

String expressions can be used in comparison expressions and can be composed of
string functions, path expressions that evaluate to a string value and string literals
and string input parameters. A cmp field of type char is handled as if it were a
string of length 1.

Boolean expressions can be used with = and <> comparison and can be composed
of path expressions that evaluate to a boolean value and TRUE and FALSE
keywords and boolean input parameters.

Reference expressions can be used with = and <> comparison and can be
composed of path expressions that evaluate to a cmr field, an identification
variable and an input parameter whose type is an EJB reference

Four different expression types are supported for working with date-time types.
For portability the java.util.Calendar type should be used. DB2® style date, time
and timestamp expressions are supported if the datastore is DB2 and the CMP
field is of type java.util.Date, java.sql.Date, java.sql.Time or java.sql.Timestamp.

A Calendar type can be compared to another Calendar type, an exact numeric
literal or input parameter of type long whose value is the standard Java long
millisecond value.

The following query finds all employees born before Jan 1, 1990:
SELECT OBJECT(e) FROM EmpBean e WHERE e.birthDate < 631180800232

Date expressions can be used in comparison expressions and can be composed of
operators + - , date duration expressions and date functions, path expressions that
evaluate to a date value, string representation of a date and date input parameters.

Time expressions can be used in comparison expressions and can be composed of
operators + - , time duration expressions and time functions, path expressions that
evaluate to a time value, string representation of time and time input parameters.

Timestamp expressions can be used in comparison expressions and can be
composed of operators + - , timestamp duration expressions and timestamp
functions, path expressions that evaluate to a timestamp value, string
representation of a timestamp and timestamp input parameters.

Standard bracketing () for ordering expression evaluation is supported.

56 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

The operators and their precedence order from highest to lowest are:
v Navigation operator (.)
v Arithmetic operators in precedence order:

– + - unary
– * / multiply, divide
– + - add, subtract

v Comparison operators: =, >, <, >=, <=, <>(not equal)
v Logical operator NOT
v Logical operator AND
v Logical operator OR

Null value semantics: The following describe the semantics of NULL values:
v Comparison or arithmetic operations with an unknown (NULL) value yield an

unknown value
v Path expressions that contain NULL evaluate to NULL
v The IS NULL and IS NOT NULL operators can be applied to path expressions

and return TRUE or FALSE. Boolean operators AND, OR and NOT use three
valued logic.

AND True False Unknown

True True False Unknown

False False False False

Unknown Unknown False Unknown

OR True False Unknown

True True True True

False True False Unknown

Unknown True Unknown Unknown

NOT

True False

False True

Unknown Unknown

Example: Null value semantics
select object(e) from EmpBean where e.salary > 10 and e.dept.budget > 100

If salary is NULL the evaluation of e.salary > 10 returns unknown and the
employee object is not returned. If the cmr field dept or budget is NULL evalution
of e.dept.budget > 100 returns unknown and the employee object is not returned.
select object(e) from EmpBean where e.dept.budget is null

If dept or budget is NULL evaluation of e.dept.budget is null returns TRUE and
the employee object is returned.
select object(e) from EmpBean e , in (e.dept.emps) e1 where e1.salary > 10

Chapter 3. Using EJB query 57

If dept is NULL, then the multivalued path expression e.dept.emps results in an
empty collection (not a collection that contains a NULL value). An employee with
a null dept value will not be returned.
select object(e) from EmpBean e where e.dept.emps is empty

If dept is NULL the evaluation of the predicate in unknown and the employee
object is not returned.
select object(e) from EmpBean e , EmpBean e1 where e member of e1.dept.emps

If dept is NULL evaluation of the member of predicate returns unknown and the
employee is not returned.

Date time arithmetic and comparisons: DATE, TIME and TIMESTAMP values
may be compared with another value of the same type. Comparisons are
chronological. Date time values can also be incremented, decremented, and
subtracted.

If the datastore is DB2, then DB2 string representation of DATE, TIME and
TIMESTAMP types can also be used. A string representation of a date or time can
use ISO, USA, EUR or JIS format. A string representation of a timestamp uses ISO
format.

Format Date format Date examples Time format Time examples

ISO yyyy-mm-dd 1987-02-24 1987-2-24 hh.mm.ss 13.50.00 13.50

USA mm/dd/yyyy 2/24/1987 hh:mm AM or
PM

1:50 pm 02:10 AM

EUR dd.mm.yyyy 24.02.1987 24.2.1987 hh.mm.ss 13.50.00 13.55

JIS yyyy-mm-dd 1987-02-24 hh:mm:ss 13:50 13:50:05

Example 1: Date time arithmetic comparisons
e.hiredate > ’1990-02-24’

The timestamp of February 24th, 1990 1:50 pm can be represented as follows:
’1990-02-24-13.50.00.000000’ or
’1990-02-24-13.50.00’

If the datastore is DB2, DB2 decimal durations can be used in expressions and
comparisons. A date duration is a decimal(8,0) number that represents the
difference between two dates in the format YYYYMMDD. A time duration is a
decimal(6,0) number that represents the difference between two time values as
HHMMSS. A timestamp duration is a decimal(20,6) number representing the
differences between two timestamp values as YYYYMMDDHHMMSS.ZZZZZZ
(ZZZZZZ is the number of microseconds and is to the right of the decimal point) .

Two date values (or time values or timestamp values) can be subtracted to yield a
duration. If the second operand is greater than the first the duration is a negative
decimal number. A duration can be added or subtracted from a datetime value to
yield a new datetime value.

Example 2: Date time arithmetic comparisons

DATE(’3/15/2000’) - ’12/31/1999’ results in a decimal number 215 which is a
duration of 0 years, 2 months and 15 days.

58 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Durations are really decimal numbers and can be used in arithmetic expressions
and comparisons.

(DATE(’3/15/2000’) - ’12/31/1999’) + 14 > 215 evaluates to TRUE.

DATE(’12/31/1999’) + DECIMAL(215,8,0) results in a date value 3/15/2000.

TIME(’11:02:26’) - ’00:32:56’ results in a decimal number 102930 which is a time
duration of 10 hours, 29 minutes and 30 seconds.

TIME(’00:32:56’) + DECIMAL(102930,6,0) results in a time value of 11:02:26.

TIME(’00:00:59’) + DECIMAL(240000,6,0) results in a time value of 00:00:59.

e.hiredate + DECIMAL(500,8,0) > ’2000-10-01’ means compare the hiredate plus
5 months to the date 10/01/2000.

Basic predicates
Basic predicates can be of two forms
expression-1 comparison-operator expression-2

expression-3 comparison-operator (subselect)

The subselect must not return more than one value and the subselect can not
return a type of an EJB reference. Boolean types and reference types only support =
and <> comparisons.

Example: Basic predicates
d.name=’Java Development’
e.salary > 20000
e.salary > (select avg(e.salary) from EmpBean e)

Quantified predicates
A quantified predicate compares a value with a set of values produced by a
subselect.
expression comparison-operator SOME | ANY | ALL (subselect)

The expression must not evaluate to a reference type.

When SOME or ANY is specified the result of the predicate is as follows:
v TRUE if the comparison is true for at least one value returned by the subselect.
v FALSE if the subselect is empty or if the comparison is false for every value

returned by the subselect.
v UNKNOWN if the comparison is not true for all of the values returned by the

subselect and at least one of the comparisons is unknown because of a null
value.

When ALL is specified the result of the predicate is as follows:
v TRUE if the subselect returns empty or if the comparison is true to every value

returned by the subselect.
v FALSE if the comparison is false for at least one value returned by the subselect.
v UNKNOWN if the comparison is not false for all values returned by the

subselect and at least one comparison is unknown because of a null value.

Chapter 3. Using EJB query 59

BETWEEN predicate
The BETWEEN predicate determines whether a given value lies between two other
given values.
expression [NOT] BETWEEN expression-2 AND expression-3

Example: BETWEEN predicate
e.salary BETWEEN 50000 AND 60000

is equivalent to:
e.salary >= 50000 AND e.salary <= 60000

e.name NOT BETWEEN ’A’ AND ’B’

is equivalent to:
e.name < ’A’ OR e.name > ’B’

IN predicate
The IN predicate compares a value to a set of values and can have one of two
forms:
expression [NOT] IN (subselect)

expression [NOT] IN (value1, value2,)

ValueN can either be a literal value or an input parameter. The expression can not
evaluate to a reference type.

Example: IN predicate
e.salary IN (10000, 15000)

is equivalent to
(e.salary = 10000 OR e.salary = 15000)

e.salary IN (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

is equivalent to
e.salary = ANY (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

e.salary NOT IN (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

is equivalent to
e.salary <> ALL (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

LIKE predicate
The LIKE predicate searches a string value for a certain pattern.
string-expression [NOT] LIKE pattern [ESCAPE escape-character]

The pattern value is a string literal or parameter marker of type string in which the
underscore (_) stands for any single character and percent (%) stands for any
sequence of characters (including empty sequence). Any other character stands
for itself. The escape character can be used to search for character _ and %. The
escape character can be specified as a string literal or an input parameter.

If the string-expression is null, then the result is unknown.

If both string-expression and pattern are empty, then the result is true.

Example: LIKE predicate

v ’’ LIKE ’’ is true

60 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

v ’’ LIKE ’%’ is true
v e.name LIKE ’12%3’ is true for ’123’ ’12993’ and false for ’1234’
v e.name LIKE ’s_me’ is true for ’some’ and ’same’, false for ’soome’
v e.name LIKE ’/_foo’ escape ’/’ is true for ’_foo’, false for ’afoo’
v e.name LIKE ’//_foo’ escape ’/’ is true for ’/afoo’ and for ’/bfoo’
v e.name LIKE ’///_foo’ escape ’/’ is true for ’/_foo’ but false for ’/afoo’

NULL predicate
The NULL predicate tests for null values.
single-valued-path-expression IS [NOT] NULL

Example: NULL predicate
e.name IS NULL

e.dept.name IS NOT NULL

e.dept IS NOT NULL

EMPTY collection predicate
To test if a multivalued relationship is empty, use the following syntax:
collection-valued-path-expression IS [NOT] EMPTY

Example: Empty collection predicate

To find all departments with no employees:
SELECT OBJECT(d) FROM DeptBean d WHERE d.emps IS EMPTY

MEMBER OF predicate
This expression tests whether the object reference specified by the single valued
path expression or input parameter is a member of the designated collection. If the
collection valued path expression designates an empty collection the value of the
MEMBER OF expression is FALSE.
{ single-valued-path-expression | input_parameter } [NOT] MEMBER [OF]
collection-valued-path-expression

Note: The preceeding example wrapped onto two lines due to the width of the
page.

Example: MEMBER OF predicate

Find employees that are not members of a given department number:
SELECT OBJECT(e) FROM EmpBean e , DeptBean d
WHERE e NOT MEMBER OF d.emps AND d.deptno = ?1

Find employees whose manager is a member of a given department number:
SELECT OBJECT(e) FROM EmpBean e, DeptBean d
WHERE e.dept.mgr MEMBER OF d.emps and d.deptno=?1

EXISTS predicate
The exists predicate tests for the presence or absence of a condition specified by a
subselect.
EXISTS (subselect)

EXISTS collection-valued-path-expression

The result of EXISTS is true if the subselect returns at least one value or the path
expression evaluates to a nonempty collection, otherwise the result is false.

Chapter 3. Using EJB query 61

To negate an EXISTS predicate, precede it with the logical operator NOT.

Example: EXISTS predicate

Return departments that have at least one employee earning more than 1000000:
SELECT OBJECT(d) FROM DeptBean d
WHERE EXISTS (SELECT 1 FROM IN (d.emps) e WHERE e.salary > 1000000)

Return departments that have no employees:
SELECT OBJECT(d) FROM DeptBean d
WHERE NOT EXISTS (SELECT 1 FROM IN (d.emps) e)

The above query can also be written as follows:
SELECT OBJECT(d) FROM DeptBean d WHERE NOT EXISTS d.emps

IS OF TYPE predicate
The IS OF TYPE predicate is used to test the type of an EJB reference. It is similar
in function to the Java instance of operator. IS OF TYPE is used when several
abstract beans have been grouped into an EJB inheritance hierarchy. The type
names specified in the predicate are the bean abstract names. The ONLY option
can be used to specify that the reference must be exactly this type and not a
subtype.
identification-variable IS OF TYPE ([ONLY] type-1, [ONLY] type-2,)

Example: IS OF TYPE predicate

Suppose that bean ManagerBean is defined as a subtype of EmpBean and
ExecutiveBean is a subtype of ManagerBean in an EJB inheritance hierarchy.

The following query returns employees as well as managers and executives:
SELECT OBJECT(e) FROM EmpBean e

If you are interested in objects which are employees and not managers and not
executives:
SELECT OBJECT(e) FROM EmpBean e WHERE e IS OF TYPE(ONLY EmpBean)

If you are interested in object which are managers or executives:
SELECT OBJECT(e) FROM EmpBean e WHERE e IS OF TYPE(ManagerBean)

The above query is equivalent to the following query:
SELECT OBJECT(e) FROM ManagerBean e

If you are interested in managers only and not executives:
SELECT OBJECT(e) FROM EmpBean e WHERE e IS OF TYPE(ONLY ManagerBean)

or:
SELECT OBJECT(e) FROM ManagerBean e
WHERE e IS OF TYPE (ONLY ManagerBean)

Scalar functions
EJB query contains scalar built-in functions for doing type conversions, string
manipulation, and for manipulating date-time values. The list of scalar functions is
documented in the topic “EJB query: Scalar functions” on page 63.

Example: Scalar functions

62 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Find employees hired in 1999:
SELECT OBJECT(e) FROM EmpBean e where YEAR(e.hireDate) = 1999

The only scalar functions that are guaranteed to be portable across backend
datastore vendors are the following:
v ABS
v SQRT
v CONCAT
v LENGTH
v LOCATE
v SUBSTRING

The other scalar functions should be used only when DB2 is the backend datastore.

EJB query: Scalar functions
EJB query contains scalar built-in functions, as listed below, for doing type
conversions, string manipulation, and for manipulating date-time values.

Numeric functions
ABS (< any numeric datatype >) -> < any numeric datatype >

SQRT (< any numeric datatype >) -> Double

Type conversion functions
CHAR (< any numeric datatype >) -> string
CHAR (< string >) -> string
CHAR (< any datetime datatype > [, Keyword k]) -> string

Datetime datatype is converted to its string representation in a format specified by
the keyword k. The valid keywords values are ISO, USA, EUR or JIS. If k is not
specified the default is ISO.
BIGINT (< any numeric datatype >) -> Long
BIGINT (< string >) -> Long

The following function converts the argument to an integer n by truncation and
returns the date that is n-1 days after January 1, 0001:
DATE (< date string >) -> Date
DATE (< any numeric datatype>) -> Date

The following function returns date portion of a timestamp:
DATE(timestamp) -> Date
DATE (< timestamp-string >) -> Date

The following function converts number to decimal with optional precision p and
scale s.
DECIMAL (< any numeric datatype > [, p [,s]]) -> Decimal

The following function converts string to decimal with optional precision p and
scale s.
DECIMAL (< string > [, p [, s]]) -> Decimal

DOUBLE (< any numeric datatype >) -> Double
DOUBLE (< string >) -> Double

FLOAT (< any numeric datatype >) -> Double
FLOAT (< string >) -> Double

Chapter 3. Using EJB query 63

Float is a synonym for DOUBLE.
INTEGER (< any numeric datatype >) -> Integer
INTEGER (< string >) -> Integer

REAL (< any numeric datatype >) -> Float

SMALLINT (< any numeric datatype) -> Short
SMALLINT (< string >) -> Short

TIME (< time >) -> Time
TIME (< time-string >) -> Time
TIME (< timestamp >) -> Time
TIME (< timestamp-string >) -> Time

TIMESTAMP (< timestamp >) -> Timestamp
TIMESTAMP (< timestamp-string >) -> Timestamp

String functions
CONCAT (<string>, <string>) -> String

The following function returns a character string representing absolute value of the
argument not including its sign or decimal point. For example, digits(-42.35) is
″4235″.
DIGITS (Decimal d) -> String

The following function returns the length of the argument in bytes. If the argument
is a numeric or datetime type, it returns the length of internal representation.
LENGTH (< string >) -> Integer

The following function returns a copy of the argument string where all upper case
characters have been converted to lower case.
LCASE (< string >) -> String

The following function returns the starting position of the first occurrence of
argument 1 inside argument 2 with optional start position. If not found, it returns
0.
LOCATE (String s1 , String s2 [, Integer start]) -> Integer

The following function returns a substring of s beginning at character m and
containing n characters. If n is omitted, the substring contains the remainder of
string s. The result string is padded with blanks if needed to make a string of
length n.
SUBSTRING (String s , Integer m [, Integer n]) -> String

The following function returns a copy of the argument string where all lower case
characters have been converted to upper case.
UCASE (< string >) -> String

Date - time functions

The following function returns the day portion of its argument. For a duration, the
return value can be -99 to 99.
DAY (Date) -> Integer
DAY (< date-string >) -> Integer
DAY (< date-duration >) -> Integer
DAY (Timestamp) -> Integer
DAY (< timestamp-string >) -> Integer
DAY (< timestamp-duration >) -> Integer

64 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

The following function returns one more than number of days from January 1,
0001 to its argument.
DAYS (Date) -> Integer
DAYS (< Date-string >) -> Integer
DAYS (Timestamp) -> Integer
DAYS (< timestamp-string >) -> Integer

The following function returns the hour part of its argument. For a duration, the
return value can be -99 to 99.
HOUR (Time) -> Integer
HOUR (< time-string >) -> Integer
HOUR (< time-duration >) -> Integer
HOUR (Timestamp) -> Integer
HOUR (< timestamp-string >) -> Integer
HOUR (< timestamp-duration >) -> Integer

The following function returns the microsecond part of its argument.
MICROSECOND (Timestamp) -> Integer
MICROSECOND (< timestamp-string >) -> Integer
MICROSECOND (< timestamp-duration >) -> Integer

The following function returns the minute part of its argument. For a duration, the
return value can be -99 to 99.
MINUTE (Time) -> Integer
MINUTE (< time-string >) -> Integer
MINUTE (< time-duration >) -> Integer
MINUTE (Timestamp) -> Integer
MINUTE (< timestamp-string >) -> Integer
MINUTE (< timestamp-duration >) -> Integer

The following function returns the month portion of its argument. For a duration,
the return value can be -99 to 99.
MONTH (Date) -> Integer
MONTH (< date-string >) -> Integer
MONTH (< date-duration >) -> Integer
MONTH (Timestamp) -> Integer
MONTH (< timestamp-string >) -> Integer
MONTH (< timestamp-duration >) -> Integer

The following function returns the second part of its argument. For a duration, the
return value can be -99 to 99.
SECOND (Time) -> Integer
SECOND (< time-string >) -> Integer
SECOND (< time-duration >) -> Integer
SECOND (Timestamp) -> Integer
SECOND (< timestamp-string >) -> Integer
SECOND (< timestamp-duration >) -> Integer

The following function returns the year portion of its argument. For a duration, the
return value can be -9999 to 9999.
YEAR (Date) -> Integer
YEAR (< date-string >) -> Integer
YEAR (< date-duration >) -> Integer
YEAR (Timestamp) -> Integer
YEAR (< timestamp-string >) -> Integer
YEAR (< timestamp-duration >) -> Integer

Chapter 3. Using EJB query 65

Aggregation functions
Queries that return aggregate values can only be used with the dynamic query
interface available in IBM WebSphere Application Server Enterprise. However,
aggregation functions can be used in non-dynamic queries if the aggregation
function is used in a subselect or HAVING clause.

Aggregation functions operate on a set of values to return a single scalar value.
The following is an example of an aggregation:
SELECT SUM (e.salary + e.bonus) FROM EmpBean e WHERE e.dept.deptno =20

This computes the total salary and bonus for department 20.

The aggregation functions are avg, count, max, min and sum. The syntax of an
aggregation function is as follows:
aggregation-function ([ALL | DISTINCT] expression)

or:
COUNT(*)

The DISTINCT option eliminates duplicate values before applying the function.
ALL is the default and does not eliminate duplicates. Null values are ignored in
computing the aggregate function except for COUNT(*) which returns a count of
all elements in the set.

MAX and MIN can apply to any numeric, string or datetime datatype and returns
the same datatype. SUM and AVG take a numeric type as input. SUM and AVG
return numeric type. The actual numeric type returned by SUM and AVG depends
on the underlying datastore. COUNT can take any datatype and returns an integer.

The set of values that is used for the aggregate function is determined by the
collection that results from the FROM and WHERE clause of the subquery. This set
can be divided into groups and the aggregation function applied to each group.
This is done by using a GROUP BY clause in the subquery. The GROUP BY clause
defines grouping members which is a list of path expressions. Each path
expression specifies a field that is a primitive type of byte, short, int, long, float,
double, boolean, char, or a wrapper type of Byte, Short, Integer, Long, Float,
Double, BigDecimal, String, Boolean, Character, java.util.Calendar, java.util.Date,
java.sql.Date, java.sql.Time or java.sql.Timestamp.

Finder or select queries can not return aggregation function values. In other words,
aggregation functions can not appear in the top level SELECT of a finder or select
query but can be used in subqueries.

Example: Aggregation functions
SELECT e.dept.deptno, AVG (e.salary) FROM EmpBean e GROUP BY e.dept.deptno

The above query computes the average salary for each department.

In dividing a set into groups, a NULL value is considered equal to another NULL
value.

Just as the WHERE clause filters tuples from the FROM clause, the groups can be
filtered using a HAVING clause that tests group properties involving aggregate
functions or grouping members:

66 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

SELECT e.dept.deptno, AVG (e.salary) FROM EmpBean e
GROUP BY e.dept.deptno
HAVING COUNT(*) > 3 AND e.dept.deptno > 5

This query returns average salary for departments that have more than 3
employees and the department number is greater than 5.

It is possible to have a HAVING clause without a GROUP BY clause in which case
the entire set is treated as a single group to which the HAVING clause is applied.

SELECT clause
For finder and select queries, the syntax of the SELECT clause is as follows:
SELECT [ALL | DISTINCT]
{ single-valued-path-expression | OBJECT (identification-variable) }

The SELECT clause consists of either a single identification variable that is defined
in the FROM clause or a single valued path expression that evaluates to a object
reference or CMP value. The keyword DISTINCT can be used to eliminate
duplicate references.

For a query that defines a finder method the query must return an object type
consistent with the home for which the finder method associated with the query. In
other words, a finder method for a department home can not return employee
objects.

For dynamic queries the syntax is as follows:
SELECT { ALL | DISTINCT } [selection ,]* selection
selection ::= { expression [[AS] id] | scalar-subselect }

A scalar-subselect is a subselect that returns a single value.

Example: SELECT clause

Find all employees that earn more than John:
SELECT OBJECT(e) FROM EmpBean ej, EmpBean e
WHERE ej.name = ’John’ and e.salary > ej.salary

Find all departments that have one or more employees who earn less than 20000:
SELECT DISTINCT e.dept FROM EmpBean e where e.salary < 20000

A select method query can have a path expression that evaluates to an arbitrary
value:
SELECT e.dept.name FROM EmpBean e where e.salary < 2000

The above query returns a collection of name values for those departments having
employees earning less than 20000.

Example: Valid dynamic queries

The following are examples of dynamic queries:
SELECT e.name, e.salary+e.bonus as total_pay from EmpBean e

SELECT SUM(e.salary+e.bonus) from EmpBean e where e.dept.deptno = ?1

ORDER BY clause
The ORDER BY clause specifies an ordering of the objects in the result collection:

Chapter 3. Using EJB query 67

ORDER BY [order_element ,]* order_element
order_element ::= { path-expression | integer } [ASC | DESC]

The path expression must specify a single valued field that is a primitive type of
byte, short, int, long, float, double, char or a wrapper type of Byte, Short, Integer,
Long, Float, Double, BigDecimal, String, Character, java.util.Calendar,
java.util.Date, java.sql.Date, java.sql.Time, java.sql.Timestamp.

ASC specifies ascending order and is the default. DESC specifies descending order.

Integer refers to a selection expression in the SELECT clause.

Example: ORDER BY clause

Return department objects in decreasing deptno order:
SELECT OBJECT(d) FROM DeptBean d ORDER BY d.deptno DESC

Return employee objects sorted by department number and name:
SELECT OBJECT(e) FROM EmpBean e ORDER BY e.dept.deptno ASC, e.name DESC

The following is a valid dynamic query:
SELECT OBJECT(e), e.salary+e.bonus as total_pay FROM EmpBean e ORDER BY 2 DESC

Subqueries
A subquery can be used in quantified predicates, EXISTS predicate or IN predicate.
A subquery should only specify a single element in the SELECT clause. When a
path expression appears in a subquery, the identification variable of the path
expression must be defined either in the subquery, in one of the containing
subqueries, or in the outer query. A scalar subquery is a subquery that returns one
value. A scalar subquery can be used in a basic predicate and in the SELECT
clause of a dynamic query.

Example: Subqueries
SELECT OBJECT(e) FROM EmpBean e
WHERE e.salary > (SELECT AVG(e1.salary) FROM EmpBean e1)

The above query returns employees who earn more than average salary of all
employees.
SELECT OBJECT(e) FROM EmpBean e WHERE e.salary >
(SELECT AVG(e1.salary) FROM IN (e.dept.emps) e1)

The above query returns employees who earn more than average salary of their
department.
SELECT OBJECT(e) FROM EmpBean e WHERE e.salary =
(SELECT MAX(e1.salary) FROM IN (e.dept.emps) e1)

The above query returns employees who earn the most in their department.
SELECT OBJECT(e) FROM EmpBean e
WHERE e.salary > (SELECT AVG(e.salary) FROM EmpBean e1
WHERE YEAR(e1.hireDate) = YEAR(e.hireDate))

The above query returns employees who earn more than the average of employees
hired in same year.

68 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

EJB query restrictions
An EJB query is compiled into an SQL query and executed against the underlying
datastore based on schema mapping of the abstract bean to the datastore schema.
The semantics of comparison and arithmetic operations are that of the underlying
datastore. In the case of SQL, note that two strings are equal if the shorter string
padded with blanks equals the longer string. For example, ’A’ is equal to ’A ’. This
differs from the equality of strings in the Java language. Arithmetic overflow
operations are an error in SQL.

A cmp field can not be used in comparison operations or predicates (except for
LIKE) if that cmp field is mapped to a long varchar or large objects (LOB) column
or any other column type for which the database server does not support
predicates or comparison operations.

A cmp field of any type can be used in a SELECT clause. Fields that can be used in
predicates, grouping, or ordering operations must be of the types listed below:
v Primitive types : byte, short, int, long, float, double, boolean, char
v Object types: Byte, Short, Integer, Long, Float, Double, BigDecimal, String,

Boolean, Char, java.util.Calendar , java.util.Date
v JDBC types: java.sql.Date, java.sql.Time, java.sql.Timestamp

The field must be mapped to a table column that is compatible in type either by
using a ″top-down″ default mapping generated by the WebSphere deploy tool, or
using a ″meet-in-the-middle″ mapping between compatible types.

In order to search on attributes of a cmp field that is a user-defined value object,
you should use a ″meet-in-the-middle″ mapping and use a composer to map each
attribute to a compatible column. The default ″top-down″ mapping stores the
object as a serialized object in a column of type blob, which does not allow
searching.

If a cmp field is mapped to a column using a ″meet-in-the-middle″ mapping with a
converter, that field can only be used with the NULL predicate or with basic
predicates of the following form:
path-expression <comparison> literal_value
path-expression <comparison> input_parameter

In this situation, the converter method toData() is called to convert the right-hand
side of the predicate to an SQL value.

Example of allowable predicate on a cmp field with user defined converter:
e.name = ’Chris’
e.name > ?1
e.name IS NULL

Examples of unallowable predicates:
substring(e.name, 1, 3) = ’ABC’
e.salary > d.budget

A converter should preserve equality, collating sequence and null values when
doing a conversion. Otherwise cmp fields created by the converter should not be
used in WHERE, GROUP, HAVING or ORDER clauses of a query.

Chapter 3. Using EJB query 69

EJB Query: Reserved words
The following words are reserved in WebSphere EJB query:

all, as, distinct, empty, false, from, group, having, in, is, like, select, true, union,
where

Avoid using identifiers that start with underscore (for example, _integer) as these
are also reserved.

EJB query: BNF syntax
EJB QL ::= [select_clause] from_clause [where_clause]

[group_by_clause] [having_clause] [order_by_clause]

from_clause::=FROM identification_variable_declaration
[,identification_variable_declaration]*

identification_variable_declaration::=collection_member_declaration |
range_variable_declaration

collection_member_declaration::=
IN (collection_valued_path_expression) [AS] identifier

range_variable_declaration::=abstract_schema_name [AS] identifier

single_valued_path_expression ::=
{single_valued_navigation | identification_variable}. (cmp_field |

method | cmp_field.value_object_attribute | cmp_field.value_object_method)
| single_valued_navigation

single_valued_navigation::=
identification_variable.[single_valued_cmr_field.]*

single_valued_cmr_field

collection_valued_path_expression ::=
identification_variable.[single_valued_cmr_field.]*

collection_valued_cmr_field

select_clause::= SELECT { ALL | DISTINCT } {single_valued_path_expression |
identification_variable | OBJECT (identification_variable) }

select_clause_eex ::= SELECT { ALL | DISTINCT } [selection ,]* selection

selection ::= { expression [[AS] id] | subselect }

order_by_clause::= ORDER BY [{single_valued_path_expression | integer} [ASC|DESC],]*
{single_valued_path_expression | integer}[ASC|DESC]

where_clause::= WHERE conditional_expression

conditional_expression ::= conditional_term |
conditional_expression OR conditional_term

conditional_term ::= conditional_factor |
conditional_term AND conditional_factor

conditional_factor ::= [NOT] conditional_primary

conditional_primary::=simple_cond_expression | (conditional_expression)

simple_cond_expression ::= comparison_expression | between_expression |
like_expression | in_expression | null_comparison_expression |
empty_collection_comparison_expression | quantified_expression |
exists_expression | is_of_type_expression | collection_member_expression

between_expression ::= expression [NOT] BETWEEN expression AND expression

in_expression ::= single_valued_path_expression [NOT] IN
{ (subselect) | (atom ,]* atom) }

atom = { string-literal | numeric-constant | input-parameter }

like_expression ::= expression [NOT] LIKE
{string_literal | input_parameter}
[ESCAPE {string_literal | input_parameter}]

null_comparison_expression ::=
single_valued_path_expression IS [NOT] NULL

empty_collection_comparison_expression ::=
collection_valued_path_expression IS [NOT] EMPTY

collection_member_expression ::=
{ single_valued_path_expression | input_paramter } [NOT] MEMBER [OF]
collection_valued_path_expression

70 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

quantified_expression ::=
expression comparison_operator {SOME | ANY | ALL} (subselect)

exists_expression ::= EXISTS {collection_valued_path_expression | (subselect)}

subselect ::= SELECT [{ ALL | DISTINCT }] expression from_clause [where_clause]
[group_by_clause] [having_clause]

group_by_clause::= GROUP BY [single_valued_path_expression,]*
single_valued_path_expression

having_clause ::= HAVING conditional_expression

is_of_type_expression ::= identifier IS OF TYPE
([[ONLY] abstract_schema_name,]* [ONLY] abstract_schema_name)

comparison_expression ::= expression comparison_operator { expression | (subquery) }

comparison_operator ::= = | > | >= | < | <= | <>

method ::= method_name([[expression ,]* expression])

expression ::= term | expression {+|-} term

term ::= factor | term {*|/} factor

factor ::= {+|-} primary

primary ::= single_valued_path_expression | literal |
(expression) | input_parameter | functions

<pre/> functions ::= ABS(expression) | AVG([ALL|DISTINCT] expression) |
BIGINT(expression) | CHAR({expression [,{ISO|USA|EUR|JIS}]) | CONCAT
(expression , expression) | COUNT({[ALL|DISTINCT] expression | *}) |
DATE(expression) | DAY({expression) | DAYS(expression) | DECIMAL(
expression [,integer[,integer]]) DIGITS(expression) | DOUBLE(expression) |
FLOAT(expression) | HOUR (expression) | INTEGER(expression) | LCASE (
expression) | LENGTH(expression) | LOCATE(expression, expression [,
expression]) | MAX([ALL|DISTINCT] expression) | MICROSECOND(expression
) | MIN([ALL|DISTINCT] expression) | MINUTE (expression) | MONTH(
expression) | REAL(expression) | SECOND(expression) | SMALLINT(
expression) | SQRT (expression) | SUBSTRING(expression, expression[,
expression]) | SUM([ALL|DISTINCT] expression) | TIME(expression) |
TIMESTAMP(expression) | UCASE (expression) | YEAR(expression)

Comparison of EJB 2.0 specification and WebSphere query
language

Item EJB 2.0 specification WebSphere Query WebSphere
Enterprise (Dynamic)
Query

Bean methods no no yes
Calendar
comparisons

yes yes yes

Delimited identifiers no yes yes
Dependent Value
attributes

no yes yes

Dependent Value
methods

no no yes

Dynamic Query APIs no no yes
EXISTS predicate no yes yes
Inheritance no yes yes
Multiple element
select clauses

no no yes

Order by no yes yes
Scalar functions yes * yes yes
Select clause required optional optional

Chapter 3. Using EJB query 71

Item EJB 2.0 specification WebSphere Query WebSphere
Enterprise (Dynamic)
Query

SQL Date/time
expressions

no yes yes

String comparisons = and <> only = <> > < = <> > <
Subqueries,
aggregations, group
by, and having
clauses

no yes yes

* EJB 2.0 defines the following scalar functions: abs, sqrt, concat, length, locate and
substring. WebSphere query and dynamic query support additional scalar
functions as listed in the topic, “EJB query: Scalar functions” on page 63.

Using the dynamic query service
Before you begin

Consider using the dynamic query service (available with IBM WebSphere
Application Server Enterprise) when any of the following are true:
v You do not know the query search criteria until application runtime.
v You need to return multiple cmp or cmr fields from a query (deployment

queries allow only a single element to be specified in the SELECT clause).
v You want to perform aggregation in the query (deployment queries do not allow

use of aggregation function SUM, AVG, COUNT, MAX, MIN in the top level
SELECT of a query).

v You want to use value object methods or bean methods in the query statement.
v You want to interactively test an EJB query during development but do not want

to repeatedly deploy your application each time you update a finder or select
query.

If you have a query that has a high frequency of execution you should define it as
a finder or select method and consider using SQLJ as a deployment option for best
performance. The dynamic query service always uses JDBC and must parse and
process the EJB query at runtime.

If you need security control over which queries a user can execute, you need to
define the queries as finder or select methods and use EJB method authorization.
The dynamic query service does not have fine grain security control at this time.
You can control who is permitted access to the remote query bean and the local
query bean, but once authorized a user can execute any valid query and return
any data in the server.

The dynamic query API is a stateless session bean. Using the dynamic query API is
similar to using any other J2EE EJB application bean.

The default JNDI name for the query bean is as follows, but your system
administrator can change this name:
com/ibm/websphere/ejbquery/Query

72 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

The system administrator might need to install the query.ear application into the
application server. The WebSphere product install does this only for the default
server.

The query bean has both a remote and a local interface to support both remote and
local clients.
v remote interface = com.ibm.websphere.ejbquery.Query

v remote home interface = com.ibm.websphere.ejbquery.QueryHome

v local interface = com.ibm.websphere.ejbquery.QueryLocal

v local home interface = com.ibm.websphere.ejbquery.QueryLocalHome

To use the local interface of the query bean, you must configure your server to use
the following:
Application Classloader Policy = SINGLE

Using a value of MULTI may result in your application being unable to find the
local interface for the query bean home.

The following Jar files comprise the query service:

Jar Location Usage

query.jar server - AppServer/lib query parser

qjcup.jar server - AppServer/lib auxillary classes for parser

querybean.jar server - installedApps query session bean

qryclient.jar server and client client stubs and classes

querymd.jar server - AppServer/lib auxillary classes for query

queryws.jar server - AppServer/lib auxillary classes for query

Steps for this task

1. To execute a query, have your client do a JNDI lookup for the QueryHome and
create an instance of the query bean. The query bean contains the
executeQuery() method, which takes as parameters the query statement in the
form of a string, and input parameters in the form of an array of
java.lang.Object values. Remote clients also pass as arguments the size of the
result set to return.
The results of the query are returned for remote clients as:
com.ibm.websphere.ejbquery.QueryIterator

or for local clients as:
com.ibm.websphere.ejbquery.QueryLocalIterator

If you want to return remote EJB references from the query, or if the query
statement contains remote methods, you must use the query remote interface.

If you want to return local EJB references from the query, or if the query
statement contains local methods, you must use the query local interface.

Calling the next() method on the iterator returns an intance of
com.ibm.websphere.ejbquery.IQueryTuple, which contains the actual data
values or object references. The iterator also contains the following methods:

Chapter 3. Using EJB query 73

getFieldName(int i)
getFieldsCount();

2. Compile and run your client program with the file qryclient.jar in the
classpath.
For more details, see the Javadoc for package com.ibm.websphere.ejbquery.
Security Considerations. WebSphere does not have security access control for
CMP and CMR fields. You must therefore secure the query bean methods
executeQuery(), prepareQuery(), and executePlan(), and the create() method on
the query home; otherwise, any user is able to perform a dynamic query and
retrieve data from your application.

Example: Dynamic query remote client
import com.ibm.websphere.ejbquery.QueryHome;
import com.ibm.websphere.ejbquery.Query;
import com.ibm.websphere.ejbquery.QueryIterator;
import com.ibm.websphere.ejbquery.IQueryTuple;
import com.ibm.websphere.ejbquery.QueryException;

try {
String query =

"select e.name, object(e) from EmpBean e where e.salary < ?1 ";

InitialContext ic = ... // get initial context

// the following jndi name may have to be changed to match the
// jndi name assigned to query session bean home.
Object obj = ic.lookup("com/ibm/websphere/ejbquery/Query");

QueryHome qh =
(QueryHome) javax.rmi.PortableRemoteObject.narrow(obj, QueryHome.class);

Query qb = qh.create();

// pass in a query parameter of 10000

Object[] parms = new Object[] { new Integer(10000) } ;

// return first 99 result tuples
QueryIterator it = qb.executeQuery(query, parms, null ,0, 99);

qb.remove();

// display the query result
// each tuple contains the values for e.name and object(e) because
// the query was "select e.name, object(e) from ... "
//
// the number of fields and their names can be obtained by calling
// getFieldsCount()
// getFieldName(int i)

while (it.hasNext()) {
IQueryTuple t = (IQueryTuple) it.next();
System.out.print(it.getFieldName(1) +"="+ t.getObject(1));
System.out.println(it.getFieldName(2) +"="+

t.getObject(2).getPrimaryKey().toString());
}

} catch (QueryException qe) {
System.out.println("Query Exception "+ qe.getMessage());

}

74 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Example: Dynamic query from local client
import com.ibm.websphere.ejbquery.QueryLocalHome;

import com.ibm.websphere.ejbquery.QueryLocal;
import com.ibm.websphere.ejbquery.QueryLocalIterator;
import com.ibm.websphere.ejbquery.IQueryTuple;
import com.ibm.websphere.ejbquery.QueryException;

try {
String query =

"select e.name, object(e) from EmpBean e where e.salary < ?1 ";

InitialContext ic = new InitialContext();
// replace "query" with the ejb-local-ref defined for your appl
// in the following line
Object obj = ic.lookup("java:comp/ejb/query");

QueryLocalHome qh = (LocalQueryHome) obj;
QueryLocal qb = qh.create();

// pass in a query parameter of 10000

Object[] parms = new Object[] { new Integer(10000) } ;

// the local query iterator requires a transaction context

userTransaction.begin();

QueryLocalIterator it = qb.executeQuery(query, parms, null);

qb.remove();

// display the query result
// each tuple contains the values for e.name and object(e) because
// the query was "select e.name, object(e) from ... "
//
// the number of fields and their names can be obtained by calling
// getFieldsCount()
// getFieldName(int i)

while (it.hasNext()) {
IQueryTuple t = (IQueryTuple) it.next();
System.out.print(it.getFieldName(1) +"="+ t.getObject(1));
System.out.println(it.getFieldName(2) +"="+

t.getObject(2).getPrimaryKey().toString());
}

userTransaction.commit();

} catch (QueryException qe) {
System.out.println("Query Exception "+ qe.getMessage());

}

Chapter 3. Using EJB query 75

76 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Chapter 4. Using the internationalization service

Before you begin

The internationalization service adds APIs and tooling that enable J2EE
applications to manage the distribution of internationalization information, or
internationalization context, necessary to perform localizations within server-side
application components. This topic summarizes the steps involved in using the
internationalization service.

Steps for this task

1. If you have an application that uses the WebSphere Version 4.0
internationalization service, review the topic “Migrating internationalized
applications” on page 81.

2. “Assembling internationalized applications” on page 82.
Use the Application Assembly Tool to configure the internationalization type
and any container internationalization attributes for the servlets and enterprise
beans of your application.
Internationalization type specifies the internationalization policy applicable to a
servlet or an enterprise bean and, in particular, indicates whether the
application component or its hosting J2EE container will manage
internationalization context. Container internationalization attributes can be
specified for container-managed servlet and enterprise bean business methods.
These attributes tailor a policy by indicating which context the container will
scope to an invocation. Configuring internationalization policies declaratively
prescribes, by means of the application’s deployment descriptor, the
distribution and management of context throughout an application.

3. “Using the internationalization context API” on page 90.
Use the internationalization context API within application components to
obtain or manage internationalization context.
Servlet and enterprise bean business methods can use internationalization
context to perform locale- and time zone-sensitive localizations. EJB client
applications, and server components configured to manage internationalization
context, must use the internationalization context API to set the context
elements scoped to their invocations.

4. “Managing the internationalization service” on page 112.
Use the administrative console to enable the service on all application servers.
By default, the service is enabled within the J2EE client environment, but is
disabled on application servers. You must enable the service on all application
servers hosting your application’s servlets and enterprise beans in order to use
internationalization context.

5. “Troubleshooting the internationalization service” on page 114.
Use the administrative console to enable the trace service to log
internationalization service messages when debugging your applications.

© Copyright IBM Corp. 2003 77

Internationalization
An application that can present information to users according to regional cultural
conventions is said to be internationalized: The application can be configured to
interact with users from different localities in culturally appropriate ways. In an
internationalized application, a user in one region sees error messages, output, and
interface elements in the requested language. Date and time formats, as well as
currencies, are presented appropriately for users in the specified region. A user in
another region sees output in the conventional language or format for that region.

Historically, the creation of internationalized applications has been restricted to
large corporations writing complex systems. Internationalization techniques have
traditionally been expensive and difficult to implement, so they have been applied
only to major development efforts. However, given the rise in distributed
computing and in the use of the World Wide Web, application developers have
been pressured to internationalize a much wider variety of applications. This
requires making internationalization techniques much more accessible to
application developers.

In an application that is not internationalized, the interface that the user sees is
unalterably written into the application code. On the other hand, localizing the
displayed strings adds a layer of abstraction into the design of the application.
Instead of simply printing an error message, an internationalized application
represents the error message with some language-neutral information; in the
simplest case, each error condition corresponds to a key. To print a usable error
message, then, the application looks up the key in the configured message catalog.
Each message catalog is a list of keys with associated strings. Different message
catalogs provide strings for the different languages supported. The application
looks up the key in the appropriate catalog, retrieves the corresponding error
message in the requested language, and prints this string for the user.

Localization of text can be used for far more than translating error messages. For
example, by using keys to represent each element in a graphical user interface
(GUI) and by providing the appropriate message catalogs, the GUI itself (buttons,
menus, and so on) can support multiple languages. Extending support to
additional languages requires that you provide message catalogs for those
languages; in many cases, the application itself needs no further modification.

Internationalization of an application is driven by two variables, the time zone and
the locale. The time zone indicates how to compute the local time as an offset from
a standard time like Greenwich Mean Time. The locale is a collection of
information about language, currency, and the conventions for presenting
information like dates. In a localized application, the locale also indicates the
message catalog from which an application is to retrieve message strings. A time
zone can cover many locales, and a single locale can span time zones. With both
time zone and locale, the date, time, currency, and language for users in a specific
region can be determined.

IBM WebSphere Application Server Enterprise provides an Internationalization
Service, which manages the distribution of locale and time-zone information, or
internationalization context, within Java applications.

78 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Internationalization service: Overview
In a distributed client-server environment, application processes can run on
different machines, configured to different locales, corresponding to different
cultural conventions; they can also be located across geographical boundaries. For
an understanding of how these differences impact application development, review
the topic “Internationalization challenges in distributed applications” on page 80.

The J2EE platform provides support for application components executing on
computers with differing endian architecture and code sets, but does not provide
dedicated support for application components that run on computers having
different locales or time zones.

The conventional method for solving locale and time zone mismatch across remote
application components is to pass one or more extra parameters on all business
methods needed to convey the client-side locale or time zone to the server.
Although simple, this technique has the following limitations when used in EJB
applications:
v It is intrusive because it requires that one or more parameters be added to all

bean methods in the call chain to locale-sensitive or time zone-sensitive
methods.

v It is inherently error-prone.
v It is impracticable within applications that do not afford modification, such as

legacy applications.

The internationalization service solution
The WebSphere internationalization service addresses the challenges posed by
locale and time zone mismatch without incurring the limitations of conventional
techniques. It does this by systematically managing the distribution of
internationalization contexts across the various components of EJB applications,
including client applications, enterprise beans, and servlets.

The service works by associating an “Internationalization context” on page 101
with every thread of execution within an application. When a client-side
component invokes a business method, the internationalization service interposes
by obtaining the internationalization context associated with the current thread of
the client-side process and attaching that context to the outgoing request. On the
server-side, the internationalization service again interposes by detaching the
context from the incoming request and associating it with the thread of the
server-side process on which the business method will execute, effectively scoping
the context to the business method. The service propagates internationalization
context on subsequent business method invocations in the same manner and thus
distributes the context of the originating request over the entire chain of business
method invocations.

This basic operation of “Internationalization context: Propagation and scope” on
page 102 is defined precisely by “Internationalization context: Management
policies” on page 104. Every application component has a default policy, which can
be overridden and tailored for servlets and enterprise beans at development time
using WebSphere’s Application Assembly Tool (AAT). Internationalization policies
specify whether an application component or its hosting J2EE container are to
manage internationalization context. For container-managed components, the
policy indicates which internationalization context the container will scope to
invocations on that component. Server components configured to manage

Chapter 4. Using the internationalization service 79

internationalization context, as well as EJB clients, must use the internationalization
context API to manage the internationalization context elements scoped to their
invocations.

At execution time, application components can use the “Internationalization
context API: Programming reference” on page 99 to get any element of the
internationalization contexts scoped to an invocation. To programmatically access
context elements, application components first resolve an internationalization
context API reference, then invoke the appropriate API method to access the
various context elements, such as the caller locale or the invocation time zone.
These elements can be used in calls to Java 2 SDK internationalization API
methods; for example, to perform localizations such as formatting messages,
configuring dates, or comparing strings.

Internationalization challenges in distributed applications
With the advent of Internet-based business computational models, such as
eCommerce, applications increasingly comprise clients and servers that operate in
different locales and geographical regions. These differences introduce challenges
to the task of designing a sound client-server infrastructure. Specifically, clients and
servers can:
v Execute on computers having different endian architectures or code sets.
v Be located in different locales.
v Be located in different time zones.

The following sections describe these three challenges in more detail.

Computers with differing endian architectures or code sets

Clients and servers can reside in computers having different endian architectures: a
client could reside in a little-endian CPU, while the server code runs in a
big-endian one. As a more complex instance, a client might want to invoke a
business method on a server running in a code set different from that of the client.

A client-server infrastructure must define precise endian and code set tracking and
conversion rules. Both CORBA and J2EE have addressed the problems of endian
and code set mismatches. The language-neutral CORBA formalism uses byte order
indicator in all marshalled data streams to indicate the byte order of the
originating machine; in case of an endian mismatch, the receiving side can perform
byte swapping for endian correction. The code set mismatch is addressed by
CORBA using a comprehensive framework for code set conversion.

J2EE has nearly eliminated these problems in a unique way by relying on its Java
Virtual Machine (JVM), which encodes all string data in UCS-2 format and
externalizes everything in big-endian format. The JVM employs a set of
platform-specific programs for interfacing with the native platform. These
programs perform any necessary code set conversions between UCS-2 and the
native code set of a platform.

Computers located in different locales

Client and server processes can execute in geographical locations having different
locales. For example, a Spanish client might invoke a business method upon an
object residing on an American server. Some business methods can be
locale-sensitive in nature; for example, given a business method that returns a
sorted list of strings, the Spanish client expects that list to be sorted according to

80 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

the Spanish collating sequence, not in the server’s English collating sequence. Since
data retrieval and sorting procedures run on the server, the locale of the client
must be available in order to perform a legitimate sort.

A similar consideration applies in instances where the server has to return strings
containing date, time, currency, exception messages, and so on, formatted
according to the client’s cultural expectations. Neither the CORBA nor the J2EE
specifications have architecturally addressed the locale mismatch problem and
other options involving extra parameters are not practical or have limitations. For
example, requiring an extra parameter could require interface changes, which is a
serious concern for deployed applications.

Computers located in different time zones

Client and server processes can execute in geographical locations having different
time zones. To date, all internationalization literature and resources have
concentrated mainly on code set and locale-related issues. They have generally
ignored the time zone issue, even though business methods can be sensitive to
time zone as well as to locale.

For example, suppose that a vendor makes the claim that ″orders received before
2:00 PM will be processed by 5:00 PM the same day″. The times given, of course,
are in the time zone of the server that is processing the order. It is important to
know the client’s time zone in order to give customers in other time zones the
correct times for same-day processing.

Other time zone-sensitive operations include time stamping messages logged to a
server, and accessing file or database resources. The concept of Daylight Savings
Time (DST) further complicates the time zone issue. Neither the CORBA nor the
J2EE specifications address time zone issues adequately, and conventional methods
of solving this problem are limited.

Migrating internationalized applications
Applications that used the internationalization service in IBM WebSphere
Application Server, Version 4.0 can use the service in Version 5.0 with no
modification. The packaging and structure of the internationalization context API
remain identical across releases. Most importantly, the semantics of the API remain
as well.

In Version 4.0, the internationalization service did not provide internationalization
deployment descriptor policy information to direct how the service manages
internationalization context across the various application components. Rather, the
service employed the implicit client-side internationalization (CSI) and server-side
internationalization (SSI) policies, which dictated how the service managed context
according to the type of J2EE container hosting a component. For details, refer to
the WebSphere Application Server Version 4.0 Integrated InfoCenter. Briefly, all
server components in Version 4.0 were SSI, and all EJB client applications were
CSI.

In Version 5.0, the internationalization type setting of all server components is
configured to ″Container″ by default. The internationalization service assigns the
default container internationalization attribute, ″RunAsCaller″, to any
container-managed (CMI) servlet or enterprise bean invocation lacking a container
internationalization attribute. Hence, invocations of server components lacking
internationalization policy information in the deployment descriptor run under the

Chapter 4. Using the internationalization service 81

http://www.ibm.com/software/webservers/appserv/doc/v40/aee/index.html

policy, [CMI, RunAsCaller], which is semantically equivalent to the SSI
internationalization policy of Version 4.0; EJB client applications run under the
logical policy [AMI, RunAsServer], which is equivalent to the CSI policy of Version
4.0.

When migrating a Version 4.0 application to Version 5.0, it is unnecessary to
configure the internationalization deployment descriptor information during
application assembly because all component invocations execute under
semantically equivalent internationalization context management policies.

Assembling internationalized applications
Use the Application Assembly Tool to configure internationalization deployment
descriptor information for servlets and enterprise beans.

Steps for this task

1. (Optional) Set the internationalization type.
All servlets and enterprise beans have an internationalization type setting that
specifies whether internationalization context is managed by the application
component or by its hosting J2EE container during invocations of their
respective lifecycle and business methods. Internationalization type can be
configured for all server application components except entity beans, which are
container-managed only.
By default, all server components employ container-managed
internationalization (CMI). The default setting should suffice in most cases;
when it does not, modify the internationalization type setting by completing
the steps described in one of the following topics:
v “Setting the internationalization type for servlets”
v “Setting internationalization type for enterprise beans” on page 86

2. (Optional) Set the container internationalization attribute.
You can associate CMI servlets, and business methods of CMI enterprise beans,
with a container internationalization attribute that specifies which of three
internationalization contexts - Caller, Server, or Specified - the container is to
scope to an invocation. When running as specified, the container
internationalization attribute also specifies the custom internationalization
context elements.
Named container internationalization attributes can be associated with sets of
servlets or with sets of EJB business methods. Initially, CMI servlets and
business methods implicitly run as caller and do not associate with a container
internationalization attribute. When the implicit behavior or an associated
attribute setting is unsuitable, configure an attribute by completing the steps
described in one of the following topics:
v “Configuring container internationalization for servlets” on page 83
v “Configuring container internationalization for enterprise beans” on page 87

Setting the internationalization type for servlets
This task sets the internationalization type for a servlet within a Web module.

Steps for this task

1. Start the Application Assembly Tool.
2. View the servlets of your Web module by selecting application_name > Web

Modules > webmodule_name > Web Components in the left-hand pane.

82 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

3. Select your servlet from the left-hand pane.
4. On the WAS Enterprise tab on the right, select either Container or Application

from the Internationalization type drop-down menu.
5. Click Apply.

Results

The internationalization type setting is assigned to the servlet.

Configuring container internationalization for servlets
This task configures container internationalization for a servlet within a Web
module. Use this procedure to relate one or more servlets to a container
internationalization attribute.

Steps for this task

1. Start the Application Assembly Tool.
2. In the left-hand panel, expand your Web module.
3. Select Internationalization.
4. To configure a new attribute, right-click on Internationalization and select

New; otherwise, skip to step 5.
a. On the New Container Internationalization Attribute panel, enter a

Description that uniquely identifies the policy.
b. Click Add. From the Add Servlets list, select one or more servlets to

which the attribute will apply and click OK to exit the panel. The
servlet(s) appear in the Web Components list.

c. Click OK.

The new attribute description is displayed in the Description list in the
right-hand panel.

5. Select a named Container Internationalization Attribute from the Description
list.
The fields of the selected attribute are displayed.

6. If desired, re-enter a description (name) that uniquely identifies this attribute.
A description is an arbitrary character string.

7. Click the Add button adjacent to the Web Components list.
8. From the Add Servlets list, select one or more servlets to which the attribute

applies.
9. Click OK.

The servlets appear in the Web Components list. Repeat these steps for any
remaining servlets you want configure.

10. Complete the Run as field by selecting Caller, Server, or Specified.
If the servlet is to run as Specified, complete the following steps to specify
the context elements that the container will scope to servlet invocations;
otherwise, click OK to exit this panel.

11. (Optional) Enter the Description of the specified localization context.
A description is an arbitrary character string.

12. Complete the Time Zone ID fields:
a. (Optional) Enter the time zone ID Description.

A description is an arbitrary character string.

Chapter 4. Using the internationalization service 83

b. Enter the Time Zone ID.
A time zone ID is an arbitrary, non-empty string that identifies a time zone
supported by the Java SDK type, java.util.SimpleTimeZone. Refer to the
topic Container internationalization attributes for details.

13. Complete the Locales fields; perform the following steps to construct an
ordered list of locales:
a. Click Add.

The Add Locales panel is displayed.
b. [Optional] Enter the locale Description.

A description is an arbitrary character string.
c. Enter the Language Code.

A language code is an arbitrary string. A valid locale must contain at least
a language code or a country code.

d. Enter the Country Code.
A country code is an arbitrary string. A valid locale must contain at least a
language code or a country code.

Refer to the section on locales in the topic “Container internationalization
attributes” on page 107 for details about language codes, country codes, and
variants.

14. Click Apply to apply your changes and exit this panel.

Results

The servlets are now configured to run under the associated internationalization
settings.

Internationalization assembly properties for Web modules
Use this page to specify which internationalization context the Web container will
scope to servlet service method invocations.

By default, a Web container scopes the caller’s internationalization context to
service method invocations of servlets and Java Server Pages (JSPs) configured to
the Container internationalization type. To override this default scoping behavior,
create and configure at least one Container Internationalization attribute.

A Container Internationalization attribute associates those servlets (JSPs) that
employ container-managed internationalization to one of three internationalization
contexts: the Caller context, the Server context, or the context Specified in the
attribute. For each servlet listed in the attribute, the container will scope the
internationalization context indicated by the attribute’s Run as field.

Use the information below to configure new and existing Container
Internationalization attributes.

Description: A description that identifies the attribute.

Data type
String

Servlet: The set of servlets to which the Run as field applies.

Click the Add button to select the servlets specified by this attribute.

84 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Run as: The Run as field specifies which invocation context the container will
scope to every lifecycle method invocation of the servlet indicated in the Servlet
field.

Default
Caller

Range

Caller

The container invokes the attribute’s servlet with the locales (the
accept-languages) of the incoming HTTP request. The container
supplies GMT+00:00 for time zone. Select Caller when you want
servlets to execute under the invocation context of the client
request.

Server

The container invokes the servlet with the default context elements
of the server JVM. Select Server when you want servlets to execute
under the invocation context of the server JVM.

Specified

The container invokes the attribute’s servlet with the context
elements specified in the attribute’s Locales and Time zone ID
fields. Select Specified when you want servlets to execute under
the invocation context elements specified in the attribute. Be sure
to complete the Locales and Time zone ID fields.

Description
A description of the group of specified context elements.

Data type
String

Time zone: A time zone represents a temporal offset and computes daylight
savings information.

Specify the time zone fields within the Time Zone panel according to the
instructions below.

Description
A description of the specified time zone (ID).

Data type
String

ID A short-hand identifier for a time zone.

Enter a valid time zone ID. A valid ID represents any time zone supported
by the SDK type, java.util.TimeZone. Specifically, an ID may be any of the
IDs appearing in the list of time zone IDs returned by method
java.util.TimeZone.getAvailableIds(), or a custom ID having the form
GMT[+|-]hh[[:]mm]; for example, ″America/Los_Angeles″, ″GMT-08:00″
are valid time zone IDs.

Data type
String

Locales: An ordered list of locales, where a locale represents a specific
geographical, cultural, or political region.

Chapter 4. Using the internationalization service 85

Description
A description of the specified locale.

Data type
String

Language code
A code identifying the language spoken within a particular region.

Enter the language code of the new locale. Ideally, language code is one of
the lower-case, two-character codes defined by ISO-639. Language code is
not restricted to ISO codes and is not a required field; however, a valid
locale must contain either a language code or a country code.

Data type
String

Country code
A code identifying the country within a particular region.

Enter the country code of the new locale. Ideally, country code is one of
the upper-case, two-character codes defined by ISO-3166. Country code is
not restricted to ISO codes and is not a required field; however, a valid
locale must specify either a language code or a country code.

Data type
String

Variant
A vendor-specific code.

Enter the variant of the new locale. Variant is not a required field and
serves only to supplement the Language code and Country code fields
according to application- or platform-specific requirements.

Data type
String

Setting internationalization type for enterprise beans
This task sets the internationalization type for an enterprise bean within an EJB
module.

Steps for this task

1. Start the Application Assembly Tool.
2. View the beans of your EJB module by selecting application_name > EJB

Modules > EJBmodule_name > Session Beans | Message-Driven Beans in the
left-hand panel.
Recall that internationalization type cannot be configured on entity beans,
which are CMI only.

3. Select your bean from the left-hand panel.
4. On the WAS Enterprise tab of the right-hand panel, select either Container or

Application from the Internationalization type drop-down menu.
5. Click Apply.

Results

The internationalization type is assigned to the bean.

86 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Configuring container internationalization for enterprise beans
This task configures container internationalization for enterprise bean business
methods. Use this procedure to relate one or more business methods to a container
internationalization attribute.

Steps for this task

1. Start the Application Assembly Tool.
2. In the left-hand panel, expand your EJB module.
3. Select Internationalization.
4. To configure a new attribute, right-click on Internationalization and select

New; otherwise, skip to step 5.
a. On the New Container Internationalization Attribute panel, enter a

Description that uniquely identifies the policy.
b. Click Add. From the Add Methods list, select one or more methods to

which the attribute will apply and click OK to exit the panel. The
selections appear in the Methods list.

c. Click OK.

The new attribute description is displayed in the Description list.
5. Select a named Container Internationalization Attribute from the Description

list.
The fields of the selected attribute are displayed.

6. If desired, re-enter a description (name) that uniquely identifies this attribute.
A description is an arbitrary character string.

7. To specify the list of bean methods to which the attribute applies, click the
Add button adjacent to the Methods list.
The Add Methods panel is displayed.

8. Select a bean method to which the attribute applies.
9. Click Apply.

The method appears in the methods list. Repeat these steps for each
remaining bean method that you want configure.

10. Click OK to exit the Add Methods panel.
11. Complete the Run As field by selecting Caller, Server, or Specified.

If the bean is to run as Specified, complete the following steps to specify the
context elements that the container will scope to bean method invocations;
otherwise, click OK to exit the panel.

12. (Optional) Enter a Description of the specified context.
A description is an arbitrary character string.

13. Complete the Time Zone ID fields:
a. (Optional) Enter the Time zone ID Description.

A description is an arbitrary character string.
b. Enter the Time Zone ID.

A time zone ID is an arbitrary, non-empty string that identifies a time zone
supported by the Java SDK type, java.util.SimpleTimeZone. Refer to the
topic “Container internationalization attributes” on page 107 for details.

14. Complete the Locales fields. Complete the following steps to construct an
ordered list of locales:
a. Click Add.

Chapter 4. Using the internationalization service 87

The Add Locales panel is displayed.
b. (Optional) Enter the locale Description.

A description is an arbitrary character string.
c. Enter the Language code.

A language code is an arbitrary string. A valid locale must contain at least
a language code or a country code.

d. Enter the Country code.
A country code is an arbitrary string. A valid locale must contain at least a
language code or a country code.

Refer to the topic “Container internationalization attributes” on page 107 for
details.

15. Click OK to apply your changes and to exit this panel.

Results

The bean methods are now configured to run under the associated
internationalization settings.

Internationalization assembly settings for EJB modules
Use this page to specify which internationalization context the EJB container will
scope to enterprise bean business method invocations.

By default, the EJB container scopes the caller’s internationalization context to
business method invocations of enterprise beans configured to the Container
internationalization type. To override this default scoping behavior, create and
configure at least one Container Internationalization attribute.

A Container Internationalization attribute associates business methods of those
enterprise beans that employ container-managed internationalization to one of
three internationalization contexts: the Caller context, the Server context, or the
context Specified in the attribute. For each method listed in the attribute, the
container will scope the internationalization context indicated by the attribute’s
Run as field.

Use the information below to configure new and existing Container
Internationalization attributes.

Description: A description that identifies the attribute.

Data type
String

Methods: The set of EJB methods to which the Run as field applies. Click the
Add button, then select the methods to be specified in the attribute.

Run as: The specific internationalization context that the EJB container will scope
to invocations of the business methods indicated in the Methods field.

Default
Caller

Range

Caller

88 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

The container invokes the attribute’s methods with the locales and
time zone of the incoming client request. For any missing context
element, the container supplies the corresponding default element
of the server JVM. Select Caller when you want bean methods to
execute under the invocation context of the client request.

Server

The container invokes the attribute’s methods with the default
context elements of the server JVM. Select Server when you want
bean methods to execute under the invocation context of the server
JVM.

Specified

The container invokes the attribute’s methods with the context
elements specified in the attribute’s Locales and Time zone ID
fields. Select Specified when you want bean methods to execute
under the invocation context specified in the attribute. Be sure to
complete the Locales and Time zone ID fields.

Description
A description of the group of specified context elements.

Time zone: Represents a temporal offset and computes daylight savings
information.

Description
A description of the specified time zone (ID).

Data type
String

ID A short-hand identifier for a time zone.

Enter a valid time zone ID. A valid ID represents any time zone supported
by the SDK type java.util.TimeZone. Specifically, an ID can be any of the
IDs appearing in the list of time zone IDs returned by method
java.util.TimeZone.getAvailableIds(), or a custom ID having the form
GMT[+|-]hh[[:]mm]; for example, ″America/Los_Angeles″, ″GMT-08:00″
are valid time zone IDs.

Data type
String

Locales: An ordered list of locales, where a locale represents a specific
geographical, cultural, or political region.

Description
A description of the specified locale.

Data type
String

Language code
A code identifying the language spoken within a particular region.

Enter the language code of the new locale. Ideally, language code is one of
the lower-case, two-character codes defined by ISO-639. Language code is
not restricted to ISO codes and is not a required field; however, a valid
locale must contain either a language code or a country code.

Data type
String

Chapter 4. Using the internationalization service 89

Country code
A code identifying the country within a particular region.

Enter the country code of the new locale. Ideally, country code is one of
the upper-case, two-character codes defined by ISO-3166. Country code is
not restricted to ISO codes and is not a required field; however, a valid
locale must specify either a language code or a country code.

Data type
String

Variant
A vendor-specific code.

Enter the variant of the new locale. Variant is not a required field and
serves only to supplement the Language code and Country code fields
according to application- or platform-specific requirements.

Data type
String

Using the internationalization context API
Before you begin

EJB client applications, servlets, and enterprise beans can programmatically obtain
and manage internationalization context using the internationalization context API

The java.util and com.ibm.websphere.i18n.context packages contain all classes
necessary to use the internationalization service within an EJB application. Classes
specific to the internationalization service reside in the file
WAS_HOME/lib/i18nctx.jar. Before compiling application components that import
internationalization service classes, add the i18nctx.jar file to your CLASSPATH.

Steps for this task

1. “Gaining access to the internationalization context API”
Gaining access to the internationalization context API.

2. “Accessing caller locales and time zone” on page 92
Accessing caller locales and time zone.

3. “Accessing invocation locales and time zone” on page 93
Accessing invocation locales and time zone.

Usage scenario

Each EJB application component uses the internationalization context API
differently. Three code examples are provided that illustrate how to use the API
within each application type. Differences in API usage, as well as other coding tips,
are noted in comments that precede the relevant statement blocks.

Gaining access to the internationalization context API
This topic describes how to access the internationalization service by resolving a
reference to the internationalization context API.

Recommendation: Resolve internationalization context API references once over
the lifecycle of an application component, within the initialization method of that

90 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

component (for example, within the init() method of servlets, or within the
SetXxxContext() method of enterprise beans.)

Steps for this task

1. Resolve a reference to the UserInternationalization interface by performing a
lookup on the following JNDI name:
java:comp/websphere/UserInternationalization

For example:
//--
// Internationalization context imports.
//--
import com.ibm.websphere.i18n.context.*;
import javax.naming.*;
...

public class MyApplication {
...

//--
// Resolve a reference to the UserInternationalization interface.
//--
InitialContext initCtx = null;
UserInternationalization userI18n = null;
final String UserI18nUrl = "java:comp/websphere/UserInternationalization";
try {

initCtx = new InitialContext();
userI18n = (UserInternationalization)initCtx.lookup(UserI18nUrl);

}
catch (NamingException ne) {

// UserInternationalization URL is unavailable.
}

If the UserInternationalization object is unavailable due to an anomaly or a
restriction, the JNDI lookup invocation throws a
javax.naming.NameNotFoundException containing the
java.lang.IllegalStateException.

2. Use the UserInternationalization reference to create references to the
CallerInternationalization or InvocationInternationalization objects, which
provide access to elements of the Caller or Invocation internationalization
contexts, respectively.
The CallerInternationalization reference can be bound to the
Internationalization interface, only; the InvocationInternationalization reference
can be bound to either the Internationalization or the
InvocationInternationalization interfaces, depending on whether the application
requires read-only or read-write access to invocation context.
For example:

...
//--
// Resolve references to the Internationalization and
// InvocationInternationalization interfaces.
//--
Internationalization callerI18n = null;
InvocationInternationalization invocationI18n = null;
try {

callerI18n = userI18n.getCallerInternationalization();
invocationI18n = userI18n.getInvocationInternationalization();

Chapter 4. Using the internationalization service 91

}
catch (IllegalStateException ise) {

// An Internationalization interface(s) is unavailable.
}

Accessing caller locales and time zone
Before you begin

To access caller locales and time zone, an application component first resolves a
reference to the CallerInternationalization object and binds it to the
Internationalization interface. Instructions for resolving this reference can be found
in the topic “Gaining access to the internationalization context API” on page 90.

Every remote invocation of an application component has an associated caller
internationalization context associated with the thread running that invocation.
Caller context is propagated by the internationalization service and middleware to
the target of a request, such as an EJB business method or servlet service method.

Steps for this task

1. Obtain the desired caller context elements:
java.util.Locale [] myLocales = null;
try {

myLocales = callerI18n.getLocales();
}
catch (IllegalStateException ise) {

// The Caller context is unavailable;
// is the service started and enabled?

}
...

The Internationalization interface contains the following methods to get caller
internationalization context elements:
v Locale [] getLocales() Returns the list of caller locales associated with the

current thread.
v Locale getLocale() Returns the first in the list of caller locales associated with

the current thread.
v TimeZone getTimeZone() Returns the caller SimpleTimeZone associated with

the current thread.

The Internationalization interface allows read-only access to internationalization
context within application components. Methods of the Internationalization
interface are available to all EJB application components and are used in the
same manner for each, but the method semantics vary according to the
component’s type. For instance, when obtaining caller locale within an EJB
client application, the interface returns the default locale of the host JVM; in
contrast, when obtaining caller context within a servlet service method (for
example, doPost() or doGet() methods), the interface returns the first locale
(accept-language) propagated within the corresponding HTML request. See the
topic “Internationalization context” on page 101 for a discussion of how the
service propagates internationalization context throughout an application.

2. Use the caller context elements to localize computations under a locale or time
zone of the calling process:
DateFormat df = DateFormat.getDateInstance(myLocale);
String localizedDate = df.getDateInstance().format(aDateInstance);
...

92 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Accessing invocation locales and time zone
Before you begin

To access invocation locales and time zone, an application component must first
resolve a reference to the InvocationInternationalization object and bind it to the
InvocationInternationalization interface of the internationalization context API.
Instructions for resolving this reference can be found in the topic “Gaining access
to the internationalization context API” on page 90.

Every remote invocation of a servlet service or EJB business method has an
invocation internationalization context associated with the thread running that
invocation. Invocation context is the internationalization context under which
servlet and business method implementations execute; it is propagated on
subsequent invocations by the internationalization service and middleware.

Steps for this task

1. Obtain the desired invocation context elements.
java.util.Locale myLocale;
try {

myLocale = invocationI18n.getLocale();
}
catch (IllegalStateException ise) {

// The invocation context is unavailable;
// is the service started and enabled?

}
...

The InvocationInternationalization interface contains the following methods to
both get and set invocation internationalization context elements:
v Locale [] getLocales(). Returns the list of invocation locales associated with

the current thread.
v Locale getLocale(). Returns the first in the list of invocation locales

associated with the current thread.
v TimeZone getTimeZone(). Returns the invocation SimpleTimeZone

associated with the current thread.
v setLocales(Locale []). Sets the list of invocation locales associated with the

current thread to the supplied list.
v setLocale(Locale). Sets the list of invocation locales associated with the

current thread to a list containing the supplied locale.
v setTimeZone(TimeZone). Sets the invocation time zone associated with the

current thread to the supplied SimpleTimeZone.
v setTimeZone(String). Sets invocation time zone associated with the current

thread to a SimpleTimeZone having the supplied ID.

The InvocationInternalization interface allows read and write access to
invocation internationalization context within application components.
However, according to internationalization context management policies, only
components configured to manage internationalization context (AMI
components) have write access to invocation internationalization context
elements. Calls to set invocation context elements within CMI application
components result in a java.lang.IllegalStateException. Any differences in how
application components can use InvocationInternationalization methods are
explained in the topic “Internationalization context” on page 101.

Chapter 4. Using the internationalization service 93

2. Use the invocation context elements to localize a computation under a locale or
time zone of the invoking process:
DateFormat df = DateFormat.getDateInstance(myLocale);

String localizedDate = df.getDateInstance().format(aDateInstance);
...

Usage scenario

In the following code example, locale (en,GB) and simple time zone (GMT)
transparently propagate on the call to the myBusinessMethod() method. Server-side
application components, such as myEjb, can use the InvocationInternationalization
interface to obtain these context elements.
...
//--
// Set the invocation context under which the business method or
// servlet will execute and propagate on subsequent remote business
// method invocations.
//--
try {

invocationI18n.setLocale(new Locale("en", "GB"));
invocationI18n.setTimeZone(SimpleTimeZone.getTimeZone("GMT"));

}
catch (IllegalStateException ise) {

// Is the component CMI; is the service started and enabled?
}
myEjb.myBusinessMethod();

Within CMI application components, the Internationalization and
InvocationInternationalization interfaces are semantically equivalent, and either of
these interfaces can be used to obtain the context associated with the thread on
which that component is running. For instance, both interfaces can be used to
obtain the list of locales propagated to the servlet doPost() service method.

Example: Internationalization context in a contained EJB
client

This code example illustrates how to use the internationalization context API
within a contained EJB client program.
//--
// Basic Example: J2EE EJB client.
//--
package examples.basic;

//--
// INTERNATIONALIZATION SERVICE: Imports.
//--
import com.ibm.websphere.i18n.context.UserInternationalization;
import com.ibm.websphere.i18n.context.Internationalization;
import com.ibm.websphere.i18n.context.InvocationInternationalization;

import javax.naming.InitialContext;
import javax.naming.Context;
import javax.naming.NamingException;
import java.util.Locale;
import java.util.SimpleTimeZone;

public class EjbClient {

public static void main(String args[]) {

//--
// INTERNATIONALIZATION SERVICE: API references.

94 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

//--
UserInternationalization userI18n = null;
Internationalization callerI18n = null;
InvocationInternationalization invocationI18n = null;

//--
// INTERNATIONALIZATION SERVICE: JNDI name.
//--
final String UserI18NUrl =

"java:comp/websphere/UserInternationalization";

//--
// INTERNATIONALIZATION SERVICE: Resolve the API.
//--
try {
Context initialContext = new InitialContext();
userI18n = (UserInternationalization)initialContext.lookup(

UserI18NUrl);
callerI18n = userI18n.getCallerInternationalization();
invI18n = userI18n.getInvocationInternationalization ();
} catch (NamingException ne) {

log("Error: Cannot resolve UserInternationalization: Exception: " + ne);
} catch (IllegalStateException ise) {

log("Error: UserInternationalization is not available: " + ise);
}
...

//--
// INTERNATIONALIZATION SERVICE: Set invocation context.
//
// Under Application-managed Internationalization (AMI), contained EJB
// client programs may set invocation context elements. The following
// statements associate the supplied invocation locale and time zone
// with the current thread. Subsequent remote bean method calls will
// propagate these context elements.
//--
try {

invocationI18n.setLocale(new Locale("fr", "FR", ""));
invocationI18n.setTimeZone("ECT");

} catch (IllegalStateException ise) {
log("An anomaly occurred accessing Invocation context: " + ise);

}
...

//--
// INTERNATIONALIZATION SERVICE: Get locale and time zone.
//
// Under AMI, contained EJB client programs can get caller and
// invocation context elements associated with the current thread.
// The next four statements return the invocation locale and time zone
// associated above, and the caller locale and time zone associated
// internally by the service. Getting a caller context element within
// a contained client results in the default element of the JVM.
//--
Locale invocationLocale = null;
SimpleTimeZone invocationTimeZone = null;
Locale callerLocale = null;
SimpleTimeZone callerTimeZone = null;
try {

invocationLocale = invocationI18n.getLocale();
invocationTimeZone =

(SimpleTimeZone)invocationI18n.getTimeZone();
callerLocale = callerI18n.getLocale();
callerTimeZone = SimpleTimeZone)callerI18n.getTimeZone();

} catch (IllegalStateException ise) {
log("An anomaly occurred accessing I18n context: " + ise);

}

Chapter 4. Using the internationalization service 95

...
} // main

...
void log(String s) {

System.out.println (((s == null) ? "null" : s));
}

} // EjbClient

Example: Internationalization context in an EJB servlet
The following code example illustrates how to use the internationalization context
API within a servlet. Note the init() and doPost() methods.
...
//--
// INTERNATIONALIZATION SERVICE: Imports.
//--
import com.ibm.websphere.i18n.context.UserInternationalization;
import com.ibm.websphere.i18n.context.Internationalization;
import com.ibm.websphere.i18n.context.InvocationInternationalization;

import javax.naming.InitialContext;
import javax.naming.Context;
import javax.naming.NamingException;
import java.util.Locale;

public class J2eeServlet extends HttpServlet {

...
//--
// INTERNATIONALIZATION SERVICE: API references.
//--
protected UserInternationalization userI18n = null;
protected Internationalization i18n = null;
protected InvocationInternationalization invI18n = null;

//--
// INTERNATIONALIZATION SERVICE: JNDI name.
//--
public static final String UserI18NUrl =

"java:comp/websphere/UserInternationalization";

protected Locale callerLocale = null;
protected Locale invocationLocale = null;

/**
* Initialize this servlet.
* Resolve references to the JNDI initial context and the
* internationalization context API.
*/
public void init() throws ServletException {

//--
// INTERNATIONALIZATION SERVICE: Resolve API.
//
// Under Container-managed Internationalization (CMI), servlets have
// read-only access to invocation context elements. Attempts to set these
// elements result in an IllegalStateException.
//
// Suggestion: cache all internationalization context API references
// once, during initialization, and use them throughout the servlet
// lifecycle.
//--
try {

Context initialContext = new InitialContext();

96 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

userI18n = (UserInternationalization)initialContext.lookup(UserI18nUrl);
callerI18n = userI18n.getCallerInternationalization();
invI18n = userI18n.getInvocationInternationalization();

} catch (NamingException ne) {
throw new ServletException("Cannot resolve UserInternationalization" + ne);

} catch (IllegalStateException ise) {
throw new ServletException ("Error: UserInternationalization is not

available: " + ise);
}
...

} // init

/**
* Process incoming HTTP GET requests.
* @param request Object that encapsulates the request to the servlet
* @param response Object that encapsulates the response from the
* Servlet.
*/
public void doGet(

HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
doPost(request, response);

} // doGet

/**
* Process incoming HTTP POST requests
* @param request Object that encapsulates the request to
* the Servlet.
* @param response Object that encapsulates the response from
* the Servlet.
*/
public void doPost(

HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

...
//--
// INTERNATIONALIZATION SERVICE: Get caller context.
//
// The Internationalization service extracts the accept-languages
// propagated in the HTTP request and associates them with the
// current thread as a list of locales within the caller context.
// These locales are accessible within HTTP Servlet service methods
// using the caller internationalization object.
//
// If the incoming HTTP request does not contain accept languages,
// the service associates the server’s default locale. The service
// always associates the GMT time zone.
//
//--
try {

callerLocale = callerI18n.getLocale(); // caller locale
// the following code enables you to get invocation locale,
// which depends on the Internationalization policies.
invocationLocale = invI18n.getLocale(); // invocation locale

} catch (IllegalStateException ise) {
log("An anomaly occurred accessing Invocation context: " + ise);

}
// NOTE: Browsers may propagate accept-languages that contain a
// language code, but lack a country code, like "fr" to indicate
// "French as spoken in France." The following code supplies a
// default country code in such cases.
if (callerLocale.getCountry().equals(""))

callerLocale = AccInfoJBean.getCompleteLocale(callerLocale);

Chapter 4. Using the internationalization service 97

// Use iLocale in JDK locale-sensitive operations, etc.
...

} // doPost

...
void log(String s) {

System.out.println (((s == null) ? "null" : s));
}

} // CLASS J2eeServlet

Example: Internationalization context in an EJB session bean
The following code example illustrates how to perform a localized operation using
the internationalization service within an EJB session bean.
...
//--
// INTERNATIONALIZATION SERVICE: Imports.
//--
import com.ibm.websphere.i18n.context.UserInternationalization;
import com.ibm.websphere.i18n.context.Internationalization;
import com.ibm.websphere.i18n.context.InvocationInternationalization;

import javax.naming.InitialContext;
import javax.naming.Context;
import javax.naming.NamingException;
import java.util.Locale;

/**
* This is a stateless Session Bean Class
*/
public class J2EESessionBean implements SessionBean {

//--
// INTERNATIONALIZATION SERVICE: API references.
//--
protected UserInternationalization userI18n = null;
protected InvocationInternationalization invI18n = null;

//--
// INTERNATIONALIZATION SERVICE: JNDI name.
//--
public static final String UserI18NUrl =

"java:comp/websphere/UserInternationalization";
...

/**
* Obtain the appropriate internationalization interface
* reference in this method.
* @param ctx javax.ejb.SessionContext
*/
public void setSessionContext(javax.ejb.SessionContext ctx) {

//--
// INTERNATIONALIZATION SERVICE: Resolve the API.
//--
try {

Context initialContext = new InitialContext();
userI18n = (UserInternationalization)initialContext.lookup(

UserI18NUrl);
invI18n = userI18n.getInvocationInternationalization();

} catch (NamingException ne) {
log("Error: Cannot resolve UserInternationalization: Exception: " + ne);

} catch (IllegalStateException ise) {
log("Error: UserInternationalization is not available: " + ise);

}

98 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

} // setSessionContext

/**
* Set up resource bundle using I18n Service
*/
public void setResourceBundle()
{

Locale invLocale = null;

//--
// INTERNATIONALIZATION SERVICE: Get invocation context.
//--
try {

invLocale = invI18n.getLocale();
} catch (IllegalStateException ise) {

log ("An anomaly occurred while accessing Invocation context: " + ise);
}
try {

Resources.setResourceBundle(invLocale);
// Class Resources provides support for retrieving messages from
// the resource bundle(s). See Currency Exchange sample source code.

} catch (Exception e) {
log("Error: Exception occurred while setting resource bundle: " + e);

}
} // setResourceBundle

/**
* Pass message keys to get the localized texts
* @return java.lang.String []
* @param key java.lang.String []
*/
public String[] getMsgs(String[] key) {

setResourceBundle();
return Resources.getMsgs(key);

}

...
void log(String s) {

System.out.println(((s == null) ? ";null" : s));
}

} // CLASS J2EESessionBean

Internationalization context API: Programming reference
Application components programmatically manage internationalization context
through the UserInternationalization, Internationalization, and
InvocationInternationalization interfaces in the com.ibm.websphere.i18n.context
package. The following code example introduces the internationalization context
API:
public interface UserInternationalization {

public Internationalization getCallerInternationalization();
public InvocationInternationalization
getInvocationInternationalization();

}

public interface Internationalization {
public java.util.Locale[] getLocales();
public java.util.Locale getLocale();
public java.util.TimeZone getTimeZone();

}

public interface InvocationInternationalization
extends Internationalization {

public void setLocales(java.util.Locale[] locales);

Chapter 4. Using the internationalization service 99

public void setLocale(java.util.Locale jmLocale);
public void setTimeZone(java.util.TimeZonetimeZone);
public void setTimeZone(String timeZoneId);

}

UserInternationalization interface

The UserInternationalization interface provides factory methods for obtaining
references to the CallerInternationalization and InvocationInternationalization
context objects. Use these references to access elements of the caller and invocation
contexts correlated to the current thread.

Methods of the UserInternationalization interface:

Internationalization getCallerInternationalization()
Returns a reference implementing the Internationalization interface that
allows access to elements of the caller internationalization context
correlated to the current thread. If the service is disabled, this method
throws an IllegalStateException.

InvocationInternationalization getInvocationInternationalization()
Returns a reference implementing the InvocationInternationalization
interface. If the service is disabled, this method throws an
IllegalStateException.

Internationalization interface

The Internationalization interface declares methods affording read-only access to
internationalization context. Given a caller or invocation internationalization
context object created with the UserInternationalization interface, bind the object to
the Internationalization interface in order to get elements of that context type.
Observe that caller internationalization context can be accessed only through this
interface.

Methods of the Internationalization interface:

Locale[] getLocales()
Returns the chain of locales within the internationalization context (object)
bound to the interface, provided the chain is not null; otherwise this
method returns a chain of length(1) containing the default locale of the
JVM.

Locale getLocale()
Returns the first in the chain of locales within the internationalization
context (object) bound to the interface, provided the chain is not null;
otherwise this method returns the default locale of the JVM.

TimeZone getTimeZone()
Returns the caller time zone (that is, the SimpleTimeZone) associated with
the current thread, provided the time zone is non-null; otherwise this
method returns the process time zone.

InvocationInternationalization interface

The InvocationInternationalization interface declares methods affording read and
write access to InvocationInternationalization context. Given an invocation
internationalization context object created with the UserInternationalization
interface, bind the object to the InvocationInternationalization interface in order to
get and set elements of the invocation context.

100 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Note: According to the container-managed internationalization (CMI) policy, all set
methods, setXxx(), throw an IllegalStateException when called within a CMI
servlet or enterprise bean.

Methods of the InvocationInternationalization interface:

void setLocales(java.util.Locale[] locales)
Sets the chain of locales to the supplied chain, locales, within the invocation
internationalization context. The supplied chain can be null or have
length(>= 0). When the supplied chain is null or has length(0), the service
sets the chain of invocation locales to an array of length(1) containing the
default locale of the JVM. Null entries can exist within the supplied locale
list, for which the service substitutes the default locale of the JVM on
remote invocations.

void setLocale(java.util.Locale locale)
Sets the chain of locales within the invocation internationalization context
to an array of length(1) containing the supplied locale, locale. The supplied
locale can be null, in which case the service instead sets the chain to an
array of length(1) containing the default locale of the JVM.

void setTimeZone(java.util.TimeZone timeZone)
Sets the time zone within the invocation internationalization context to the
supplied time zone, time zone. If the supplied time zone is not an exact
instance of java.util.SimpleTimeZone or is null, the service instead sets the
invocation time zone to the default time zone of the JVM.

void setTimeZone(String timeZoneId)
Sets the time zone within the invocation internationalization context to the
java.util.SimpleTimeZone having the supplied ID, timeZoneId. If the
supplied time zone ID is null or invalid (that is, it does not appear in the
list of IDs returned by the java.util.TimeZone.getAvailableIds() method) the
service sets the invocation time zone to the simple time zone having an ID
of GMT, an offset of 00:00, and otherwise invalid fields.

Internationalization context
An ″internationalization context″ is a distributable collection of internationalization
information containing an ordered list, or chain, of locales and a single time zone,
where the locales and time zone are instances of Java SDK types, java.util.Locale
and java.util.TimeZone. A locale chain is ordered according to the user’s
preference.

The internationalization service manages and makes available two varieties of
internationalization context: the ″caller context″ representing the caller’s
localization environment; and the ″invocation context″ representing the localization
environment under which a business method executes. Server application
components use elements of the caller and invocation internationalization contexts
to appropriately tailor locale-sensitive and time zone-sensitive computations.

Note: The internationalization service does not support time zone types other than
Java SDK type java.util.SimpleTimeZone. Unsupported time zone types
silently map to the default time zone of the JVM when supplied to
internationalization context API methods. For a complete description of the
java.util.Locale, java.util.TimeZone, and java.util.SimpleTimeZone types,
refer the Java SDK API documentation.

Caller context

Chapter 4. Using the internationalization service 101

Caller internationalization context contains the locale chain and time zone received
on incoming EJB business method and servlet service method invocations; it is the
internationalization context propagated from the calling process. Use caller context
elements within server application components to localize computations to the
calling component. Caller context is read-only and can be accessed by all
application components by using the Internationalization interface of the
internationalization context API.

Caller context is computed in the following manner: On an EJB business method or
servlet service method invocation, the internationalization service extracts the
internationalization context from the incoming request and scopes this context to
the method as the caller context. For any missing or null context element, the
service inserts the corresponding default element of the JVM (for example,
java.util.Locale.getDefault() or java.util.TimeZone.getDefault().)

Formally, caller context is the invocation context of the calling business method or
application component.

Invocation context

Invocation internationalization context contains the locale chain and time zone
under which EJB business methods and servlet service methods execute. It is
managed by either the hosting container or the application component, depending
on the applicable internationalization policy. On outgoing business method
requests, it is the context that propagates to the target process. Use invocation
context elements to localize computations under the specified settings of the
current application component.

Invocation context is computed in the following manner: On an incoming business
method or servlet service method invocation, the internationalization service
queries the associated context management policy. If the policy is
container-managed internationalization (CMI), the container scopes the context
designated by the policy to the invocation; otherwise the policy is
application-managed internationalization (AMI), and the container scopes a
vacuous context to the invocation that can be altered by the method
implementation.

Application components can access invocation context elements through both the
Internationalization and InvocationInternationalization interfaces of the
internationalization context API. Invocation context elements can be set
(overwritten) under the application-managed internationalization policy only.

On an outgoing business method request, the service obtains the currently scoped
invocation context and attaches it to the request. This outgoing exported context
becomes the caller context of the target invocation. When supplying invocation
context elements, either for export on outgoing requests or through the API, the
internationalization service always provides the most recent element set using the
API; also, the service supplies the corresponding default element of the JVM for
any null invocation context element.

Internationalization context: Propagation and scope
The scope of internationalization context is implicit. Every EJB client application,
servlet service method, and EJB business method invocation has two
internationalization contexts under which it executes. For each application
component invocation, the container enters the caller context and the invocation
context, as indicated by the pertinent internationalization policy, into scope before

102 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

the container delegates to the actual implementation. When the implementation
returns, the service removes these contexts from scope. The internationalization
service supplies no programmatic mechanism for components to explicitly manage
the scope of internationalization context.

The service scopes internationalization context differently with respect to
application component type:
v EJB client programs (contained)
v Servlets
v Enterprise beans

Internationalization context observes by-value semantics over remote method
requests, meaning that changes to internationalization context elements scoped to
an invocation do not affect the corresponding elements of the internationalization
context scoped to the remote calling process. Also, modifications to context
elements obtained using the internationalization context API do not affect the
corresponding elements scoped to the invocation.

EJB client programs (contained)

Before it invokes the main() method of a client program, the J2EE client container
introduces into scope invocation and caller internationalization contexts containing
null elements. These contexts remain in scope throughout the life of program. EJB
client programs are the base in a chain of remote business method invocations and,
technically, do not have a logical caller context. Accessing a caller context element
yields the corresponding default element of the client JVM. On outgoing EJB
business method requests, the internationalization service propagates the
invocation context to the target process. Any unset (null) invocation context
elements are replaced with the default of the JVM when exported by the
internationalization context API or by outgoing requests.

Tip: To propagate values other than the JVM defaults to remote business methods,
EJB client programs, as well as AMI servlets or enterprise beans, must set
(override) elements of the invocation context. To learn how to set invocation
context elements, see the topic “Accessing invocation locales and time zone” on
page 93.

Servlets

On every servlet service method (doGet(), doPost()) invocation, the J2EE web
container introduces caller and invocation internationalization contexts into scope
before delegating to the service method implementation. The caller context
contains the accept-languages propagated in the HTTP servlet request, typically
from a Web browser. The invocation context contains whichever context is
indicated by the container internationalization attribute of the internationalization
policy associated with the servlet. Any unset (null) invocation context elements are
replaced with the default of the server JVM when exported by the
internationalization context API or by outgoing requests. The caller and invocation
contexts remain effective until immediately after the implementation returns, at
which time the container removes them from scope.

Enterprise beans

On every EJB business method invocation, the J2EE EJB container introduces caller
and invocation internationalization contexts into scope before delegating to the

Chapter 4. Using the internationalization service 103

business method implementation. The caller context contains the
internationalization context elements imported from the incoming IIOP request; if
the incoming request lacks a particular internationalization context element, the
container scopes a null element. The invocation context contains whichever context
is indicated by the container internationalization attribute of the
internationalization policy associated with the business method. On outgoing EJB
business method requests, the service propagates the invocation context to the
target process. Any unset (null) invocation context elements are replaced with the
default of the server JVM when exported by the internationalization context API or
by outgoing requests. The caller and invocation contexts remain effective until
immediately after the implementation returns, at which time the container removes
them from scope.

Consider a simple WebSphere EJB application having a Java client that invokes
remote bean method, myBeanMethod(). On the client side, the application could
use the Internationalization Service API to set invocation context elements. When
the client calls myBeanMethod(), the service exports the client’s invocation context
to the outgoing request. On the server side, the service detaches the imported
context from the incoming request and scopes it to the method as its caller context;
it also scopes the invocation context to the method as indicated by the associated
internationalization context management policy. The EJB container then calls the
myBeanMethod(), which can use the internationalization context API to access
elements of either the caller or invocation contexts. When myBeanMethod()
returns, the EJB container removes these contexts from scope.

Thread association considerations

The Web and EJB containers scope internationalization contexts to a method by
associating it with the thread that executes the method’s implementation. Similarly,
methods of the internationalization context API either associate context with, or
obtain context associated with, the thread on which these methods execute. In
cases where new threads are spawned within an application component (for
instance, a user-generated thread inside the service() method of a servlet, or a
system-generated event handling thread in an AWT client) the internationalization
contexts associated with the parent thread does not automatically transfer to the
newly-spawned thread. In such instances, the service exports the default locale and
time zone of the JVM on any remote business method request and on any API calls
executed on the new thread. If the default context is inappropriate, the desired
invocation context elements must be explicitly associated to the new thread using
the setXxx() methods of the InvocationInternationalization interface. Currently,
internationalization context management policies allow invocation context to be set
within EJB client programs, as well as within servlets, session beans, and
message-driven beans employing application-managed internationalization.

Internationalization context: Management policies
Internationalization policies declaratively prescribe how J2EE application
components or their hosting containers (the service) will manage
internationalization context on component invocations. There are two
internationalization context management policies applicable to all component
types:
v Application-managed internationalization (AMI)
v Container-managed internationalization (CMI)

These policies are represented in two parts:
v Internationalization type

104 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

v Container internationalization attribute

The service defines a default, or implicit, internationalization policy for every
application component type. At development time, assemblers can override the
default policy for server component types by explicitly configuring their
internationalization type, and optional container internationalization attributes,
using the WebSphere Application Assembly Tool. Policies configured during
assembly are preserved in the application’s deployment descriptor.

All components have an internationalization type that indicates whether it is AMI
or CMI; that is, whether a component is to deploy under the application-managed
or the container-managed internationalization policy. Application assemblers can
set the internationalization type for servlets, session beans, and message-driven
beans. Entity beans are implicitly CMI and EJB clients are implicitly AMI; neither
can be configured otherwise.

For CMI servlets and enterprise beans, optional container internationalization
attributes can be specified to indicate which invocation internationalization context
the container is to scope to service or business methods. A CMI service or business
method invocation can run under the context of the caller’s process, under the
default context of the server’s JVM, or under a custom context specified in the
attribute. Assemblers can specify one container internationalization attribute per
disjoint set of CMI servlets within a Web module, or one Attribute per disjoint set
of business methods of CMI beans within an EJB module. In other words, a
container internationalization attribute can be associated with more than one
method, but a method cannot be associated with more than one attribute.

When a IBM WebSphere Application Server launches an application, the
internationalization service collects policy information from the deployment
descriptor, then uses this information to construct and associate an
internationalization policy to every component invocation. A policy is denoted as:
[<Internationalization Type>,<Container Internationalization Attribute>]

There are several cases where the deployment descriptor appears to lack policy
information, for example: EJB client applications have no configurable
internationalization policy settings; AMI components do not have container
internationalization attributes; and you are not required to specify container
internationalization attributes for CMI components. When the service cannot obtain
the explicit internationalization type and container attribute settings from a
well-formed deployment descriptor, it implicitly inserts the appropriate setting into
the policy.

The service observes the following conventions when applying policies to
invocations:
v Servlets (service) and EJB business methods lacking all internationalization

policy information in the deployment descriptor implicitly execute under policy
[CMI,RunAsCaller].

v CMI servlets and business methods lacking a container internationalization
attribute in the deployment descriptor implicitly execute under policy
[CMI,RunAsCaller].

v AMI servlets and business methods always lack container internationalization
attributes in the deployment descriptor, but implicitly execute under the logical
policy [AMI,RunAsServer].

Chapter 4. Using the internationalization service 105

v EJB clients always lack internationalization policy information in the deployment
descriptor. By definition, EJB clients are implicitly AMI and run under the
invocation context of the JVM; they execute under the logical policy
[AMI,RunAsServer].

For conditions other than these, such as a malformed deployment descriptor, refer
to the topic “Internationalization service errors” on page 114.

Internationalization policies for EJB clients and HTTP clients cannot be configured
using the Application Assembly Tool; HTTP clients do, however, run under the
language priority settings of the hosting Web browser. These settings are
configurable under the options dialog of most Web browsers; refer to your Web
browser’s documentation for details.

Internationalization type: Every server application component has an
internationalization type setting that indicates whether the invocation
internationalization context is to be managed by the component or by the hosting
J2EE container.

Server application components can be deployed to use one of two types of
internationalization context management:
v Application-managed internationalization (AMI)
v Container-managed internationalization (CMI)

A server component may be deployed as AMI or CMI, but not both; CMI is the
default. The setting applies to the entire component, on every invocation. Use the
Application Assembly Tool to configure the internationalization type for servlets,
session beans, and message-driven beans; entity beans are CMI and cannot be
configured otherwise. EJB client applications do not have an internationalization
type setting, but are implicitly AMI.

Application-managed internationalization (AMI)

Under the AMI deployment policy, component developers assume complete
control over the invocation internationalization context. AMI components can use
the internationalization context API to programmatically set invocation context
elements.

AMI components are expected to manage invocation context. Invocations of AMI
components implicitly run under the default locale and time zone of the hosting
JVM. Invocation context elements not set using the API default to the
corresponding elements of the JVM when accessed through the API or when
exported on business methods. To export context elements other than the JVM
defaults, AMI servlets, AMI enterprise beans, and EJB client applications must set
(overwrite) invocation elements using the internationalization context API.
Moreover, the container logically suspends caller context imported on AMI servlet
lifecycle method and AMI EJB business method invocations. To continue
propagating the context of the calling process, AMI servlets and enterprise beans
must use the API to transfer caller context elements to the invocation context.

Specify AMI for server components that have internationalization context
management requirements not supported by container-managed
internationalization (CMI).

Container-managed internationalization (CMI)

106 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

CMI is the preferred internationalization context management policy for server
application components; it is also the default policy. Under CMI, the
internationalization service collaborates with the Web and EJB containers to set the
invocation internationalization context for servlets and enterprise beans. The
service sets invocation context according to the container internationalization
attribute of the policy associated with a servlet (service method) or an EJB business
method.

A CMI policy contains a container internationalization attribute that indicates
which internationalization context the container is to scope to an invocation. For
details, see topic “Container internationalization attributes”. By default, invocations
of CMI components run under the caller’s internationalization context; or rather,
they adhere to the implicit policy [CMI,RunasCaller] whenever the servlet or
business is not associated with an attribute in the deployment descriptor. For
complete details, see the topic “Internationalization context: Management policies”
on page 104.

Methods within CMI components can obtain elements of the invocation context
using the internationalization context API, but cannot set them. Any attempt to set
invocation context elements within CMI components results in a
java.lang.IllegalStateException.

Specify container-managed internationalization for server application components
requiring standard internationalization context management, then specify the
container internationalization attributes for CMI servlets and for business methods
of CMI enterprise beans that should not run under the caller’s internationalization
context.

Container internationalization attributes: The internationalization policy of every
CMI servlet and EJB business method has a container internationalization attribute
that specifies which internationalization context the container is to scope to its
invocation.

The container internationalization attribute has three main fields:
v Run as
v Locales
v Time zone ID

As a convenience, developers can create named container internationalization
attributes and associate them to subsets of CMI servlets within a Web module, or
to subsets of business methods of CMI enterprise beans within an EJB module.

Run-as field

The Run-as field specifies one of three types of invocation context that a container
can scope to a method. For servlet service and EJB business methods, the container
constructs the invocation internationalization context according to the Run as field
and associates this context to the current thread before delegating to the method’s
implementation.

Using the Application Assembly Tool, the Run as field is configurable for any CMI
servlet and business method of a CMI enterprise bean. By default, invocations of
servlet service methods and EJB business methods implicitly run as caller

Chapter 4. Using the internationalization service 107

(RunAsCaller) unless the Run as field of a policy’s attribute specifies otherwise.
EJB client applications and AMI server components always run as server
(RunAsServer).

Invocation context types specifiable with the Run as field are:

Caller The container invokes the method under the internationalization context of
the calling process. For any missing context element, the container supplies
the corresponding default context element of the JVM. Select run as caller
when you want the invocation to execute under the invocation context of
the calling process.

Server The container invokes the method under the default locale and time zone
of the JVM. Select run as server when you want the invocation to execute
under the invocation context of the JVM.

Specified
The container invokes the method under the internationalization context
specified in the attribute. Select run as specified when you want the
invocation to execute under the custom invocation context specified in the
policy, then provide the custom context elements by completing the Locales
and Time zone ID fields.

Note: JMS messages do not contain internationalization context. Although
container-managed message-driven beans can be configured to run as caller,
the container associates the default elements of the server process when
invoking the onMessage() method of any message-driven bean configured as
[CMI, RunAsCaller]

Locales field

The Locales field specifies an ordered list of locales that the container scopes to an
invocation. Using the Application Assembly Tool, the Locales field is configurable
for CMI servlets and for business methods of CMI enterprise beans that run as
specified.

A locale represents a specific geographical, cultural, or political region and contains
three fields:
v Language code. Ideally, language code is one of the lower-case, two-character

codes defined by ISO-639; however, language code is not restricted to ISO codes
and is not a required field. A valid locale must specify a language code if it does
not specify a country code.

v Country code. Ideally, country code is one of the upper-case, two-character
codes defined by ISO-3166; however, country code is not restricted to ISO codes
and is not a required field. A valid locale must specify a country code if it does
not specify a language code.

v Variant. Variant is a vendor-specific code. Variant is not a required field and
serves only to supplement the language and country code fields according to
application- or platform-specific requirements.

A valid locale must specify at least a language code or a country code; the variant
is always optional. The first locale of the list is returned when accessing invocation
context using the internationalization context API method getLocale().

Time zone ID field

108 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

The Time zone ID field specifies a shorthand identifier for a time zone that the
container scopes to an invocation. Using the Application Assembly Tool, the Time
zone ID field is configurable for CMI servlets and for CMI EJB business methods
that run as specified.

A time zone represents a temporal offset and computes daylight savings
information. A valid ID indicates any time zone supported by the SDK type,
java.util.TimeZone. Specifically, a valid ID is any of the IDs appearing in the list of
time zone IDs returned by method java.util.TimeZone.getAvailableIds(), or a
custom ID having the form GMT[+|-]hh[[:]mm]; for example,
America/Los_Angeles, GMT-08:00 are valid time zone IDs.

Internationalization type
Every server application component has an internationalization type setting that
indicates whether the invocation internationalization context is to be managed by
the component or by the hosting J2EE container.

Server application components can be deployed to use one of two types of
internationalization context management:
v Application-managed internationalization (AMI)
v Container-managed internationalization (CMI)

A server component may be deployed as AMI or CMI, but not both; CMI is the
default. The setting applies to the entire component, on every invocation. Use the
Application Assembly Tool to configure the internationalization type for servlets,
session beans, and message-driven beans; entity beans are CMI and cannot be
configured otherwise. EJB client applications do not have an internationalization
type setting, but are implicitly AMI.

Application-managed internationalization (AMI)

Under the AMI deployment policy, component developers assume complete
control over the invocation internationalization context. AMI components can use
the internationalization context API to programmatically set invocation context
elements.

AMI components are expected to manage invocation context. Invocations of AMI
components implicitly run under the default locale and time zone of the hosting
JVM. Invocation context elements not set using the API default to the
corresponding elements of the JVM when accessed through the API or when
exported on business methods. To export context elements other than the JVM
defaults, AMI servlets, AMI enterprise beans, and EJB client applications must set
(overwrite) invocation elements using the internationalization context API.
Moreover, the container logically suspends caller context imported on AMI servlet
lifecycle method and AMI EJB business method invocations. To continue
propagating the context of the calling process, AMI servlets and enterprise beans
must use the API to transfer caller context elements to the invocation context.

Specify AMI for server components that have internationalization context
management requirements not supported by container-managed
internationalization (CMI).

Container-managed internationalization (CMI)

CMI is the preferred internationalization context management policy for server
application components; it is also the default policy. Under CMI, the

Chapter 4. Using the internationalization service 109

internationalization service collaborates with the Web and EJB containers to set the
invocation internationalization context for servlets and enterprise beans. The
service sets invocation context according to the container internationalization
attribute of the policy associated with a servlet (service method) or an EJB business
method.

A CMI policy contains a container internationalization attribute that indicates
which internationalization context the container is to scope to an invocation. For
details, see “Container internationalization attributes” on page 107. By default,
invocations of CMI components run under the caller’s internationalization context;
or rather, they adhere to the implicit policy [CMI,RunasCaller] whenever the
servlet or business is not associated with an attribute in the deployment descriptor.
For complete details, see “Internationalization context: Management policies” on
page 104.

Methods within CMI components can obtain elements of the invocation context
using the internationalization context API, but cannot set them. Any attempt to set
invocation context elements within CMI components results in a
java.lang.IllegalStateException.

Specify container-managed internationalization for server application components
requiring standard internationalization context management, then specify the
container internationalization attributes for CMI servlets and for business methods
of CMI enterprise beans that should not run under the caller’s internationalization
context.

Container internationalization attributes
The internationalization policy of every CMI servlet and EJB business method has
a container internationalization attribute that specifies which internationalization
context the container is to scope to its invocation.

The container internationalization attribute has three main fields:
v Run as
v Locales
v Time zone ID

As a convenience, developers can create named container internationalization
attributes and associate them to subsets of CMI servlets within a Web module, or
to subsets of business methods of CMI enterprise beans within an EJB module.

Run-as field

The Run-as field specifies one of three types of invocation context that a container
can scope to a method. For servlet service and EJB business methods, the container
constructs the invocation internationalization context according to the Run as field
and associates this context to the current thread before delegating to the method’s
implementation.

Using the Application Assembly Tool, the Run as field is configurable for any CMI
servlet and business method of a CMI enterprise bean. By default, invocations of
servlet service methods and EJB business methods implicitly run as caller
(RunAsCaller) unless the Run as field of a policy’s attribute specifies otherwise.
EJB client applications and AMI server components always run as server
(RunAsServer).

110 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Invocation context types specifiable with the Run as field are:

Caller The container invokes the method under the internationalization context of
the calling process. For any missing context element, the container supplies
the corresponding default context element of the JVM. Select run as caller
when you want the invocation to execute under the invocation context of
the calling process.

Server The container invokes the method under the default locale and time zone
of the JVM. Select run as server when you want the invocation to execute
under the invocation context of the JVM.

Specified
The container invokes the method under the internationalization context
specified in the attribute. Select run as specified when you want the
invocation to execute under the custom invocation context specified in the
policy, then provide the custom context elements by completing the Locales
and Time zone ID fields.

Note: JMS messages do not contain internationalization context. Although
container-managed message-driven beans can be configured to run as caller,
the container associates the default elements of the server process when
invoking the onMessage() method of any message-driven bean configured as
[CMI, RunAsCaller].

Locales field

The Locales field specifies an ordered list of locales that the container scopes to an
invocation. Using the Application Assembly Tool, the Locales field is configurable
for CMI servlets and for business methods of CMI enterprise beans that run as
specified.

A locale represents a specific geographical, cultural, or political region and contains
three fields:
v Language code. Ideally, language code is one of the lower-case, two-character

codes defined by ISO-639; however, language code is not restricted to ISO codes
and is not a required field. A valid locale must specify a language code if it does
not specify a country code.

v Country code. Ideally, country code is one of the upper-case, two-character
codes defined by ISO-3166; however, country code is not restricted to ISO codes
and is not a required field. A valid locale must specify a country code if it does
not specify a language code.

v Variant. Variant is a vendor-specific code. Variant is not a required field and
serves only to supplement the language and country code fields according to
application- or platform-specific requirements.

A valid locale must specify at least a language code or a country code; the variant
is always optional. The first locale of the list is returned when accessing invocation
context using the internationalization context API method getLocale().

Time zone ID field

The Time zone ID field specifies a shorthand identifier for a time zone that the
container scopes to an invocation. Using the Application Assembly Tool, the Time
zone ID field is configurable for CMI servlets and for CMI EJB business methods
that run as specified.

Chapter 4. Using the internationalization service 111

A time zone represents a temporal offset and computes daylight savings
information. A valid ID indicates any time zone supported by the SDK type,
java.util.TimeZone. Specifically, a valid ID is any of the IDs appearing in the list of
time zone IDs returned by method java.util.TimeZone.getAvailableIds(), or a
custom ID having the form GMT[+|-]hh[[:]mm]; for example,
America/Los_Angeles, GMT-08:00 are valid time zone IDs.

Managing the internationalization service
To use internationalization context in an EJB application, the internationalization
service must be enabled in the run-time environments for all server-side
components (servlets and enterprise beans) as well as all client-side components
(EJB client applications).

Note: The internationalization service cannot be enabled for HTTP clients because
support for internationalization in that case is provided by the browser, not
by IBM WebSphere Application Server.

Steps for this task

1. “Enabling the internationalization service for servlets and enterprise beans”.
Use the administrative console to enable the service within all hosting IBM
WebSphere Application Servers. The service is disabled by default within
IBMWebSphere Application Server Enterprise.

2. “Enabling the internationalization service for EJB clients” on page 113.
Enable the service within the hosting WebSphere J2EE client environments. The
service is enabled by default within the WebSphere J2EE client container.

Enabling the internationalization service for servlets and
enterprise beans

Any servlet or enterprise bean can use internationalization context if the
internationalization service is enabled within the hosting IBM WebSphere
Application Server.

Steps for this task

1. Start the administrative console.
2. Select Servers > Application Servers > server_name > Internationalization

Service.
3. Enable the Internationalization Service:

a. If not already selected, select the Startup checkbox.
b. Click OK.

Results

When the Startup setting is selected, the application server automatically initializes,
starts, and enables the internationalization service whenever the server starts. If
you change this setting, be sure to restart the application server in order for the
new setting to take effect.

To disable the service, clear the Startup checkbox. In this case, the
internationalization service initializes, but is neither started nor enabled when the
application server starts.

112 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Alternatively, the internationalization service can be enabled from the command
line using the wsadmin tool. To do this, start the wsadmin tool and enter the
following commands
set x [$AdminConfig list I18NService]
$AdminConfig modify $x { { enable true } }
$AdminConfig save
exit

Again, if you enable or disable the internationalization service, be sure to restart
the application server in order for the new setting to take effect.

Internationalization service settings
Use this page to enable or disable the internationalization service.

The internationalization service manages the implicit propagation and scoping of
locale and time zone information, called internationalization context, within
WebSphere Enterprise applications. When the service is enabled, server-side
application components can use the internationalization context API to
programmatically manage locale and time zone information, or to use this
information with the J2SE Internationalization API to perform server-side
localizations.

To view this administrative console page, click Servers > Application Servers >
server_name > Internationalization Service .

Startup: Specifies whether the server will attempt to start the internationalization
service.

Default
Selected

Range

Selected
When the application server starts, it attempts to start the
internationalization service automatically.

Cleared
The server does not try to start the internationalization service. If
internationalization is to be used in applications that run on this
server, the system administrator must select this property then
restart the server.

Enabling the internationalization service for EJB clients
The internationalization service is enabled for use within EJB client applications
whenever the i18nctx.jar file is in the CLASSPATH constructed by the launchclient
utility. When invoking a Java client application, launchclient configures the
CLASSPATH to include the i18nctx.jar file, then activates the WebSphere J2EE
client (container), which initializes, starts, and enables the service before delegating
to the specified application.

The internationalization service is enabled by default within the WebSphere J2EE
client (container). To disable the service, ensure that the i18nctx.jar file is not
included in the CLASSPATH. Because the launchclient utility constructs the
CLASSPATH on behalf of the J2EE client, you must remove the i18nctx.jar file from
the WAS_HOME/lib directory. This prevents the file from inadvertently being
included in the CLASSPATH constructed by the launchclient utility.

Chapter 4. Using the internationalization service 113

Note: Removing the i18nctx.jar file from the WAS_HOME/lib directory prevents
any application server in your installation from using the
internationalization service. To selectively disable the service, submit the
argument -CCDI18NService.enable=false or -CCDI18NService.enable=no
when invoking the launchClient tool.

Troubleshooting the internationalization service
To have your application server emit trace statements for the internationalization
service, specify the appropriate trace string to the server’s diagnostic trace service.

Steps for this task

1. Start the administrative console.
2. Select Servers > application servers > server_name > Diagnostic Trace Service.
3. Select the Enable Trace checkbox.
4. In the Trace Specification field, type the following as a continuous string (no

spaces and no line breaks):
com.ibm.ws.i18n.context.*=all=enabled:
com.ibm.websphere.i18n.context.*=all=enabled

5. Click OK.
6. Click Save on the taskbar.
7. Click Save in the Save to Master Repository panel.

Results

These settings enable the internationalization service trace when you start or restart
the corresponding application server.

Internationalization service errors
The following conditions can occur while your internationalized application is
running. These conditions might cause the internationalization service not to start,
to throw instances of IllegalStateException, or to exercise default behaviors:
v The service is disabled
v The service is not started
v Invalid context element
v Missing context element
v Invalid policy
v Missing policy

If you encounter unexpected or exceptional behavior, the problem is likely related
to one of these conditions. You need to examine the trace log to investigate these
conditions, which requires that you configure the diagnostic trace service to
generate messages about internationalization service function. To do this, see the
topic “Troubleshooting the internationalization service”.

The service is disabled

The internationalization service does not initialize and start when the service’s
startup setting is cleared. The service generates a message indicating whether it is
enabled or disabled. Applications cannot access the internationalization API when
the service is disabled. If an application attempts a JNDI lookup to obtain the
UserInternationationlization reference, the lookup fails with a NamingException

114 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

indicating the reference could not be found. In addition, the service does not scope
(propagate) internationalization context on incoming (outgoing) business method
invocations.

The service is not started

The internationalization service is operational whenever it is in the STARTED state.
For example, if an application attempts to access internationalization context and
the service is not started, the API throws an IllegalStateException. In addition, the
service does not provide runtime support for servlets and enterprise beans.

As an application server progresses through its lifecycle, it initializes, starts, stops,
and terminates (destroys) the internationalization service. If an anomaly occurs
during initialization, the service does not start. Once the service has been started,
its state can change to BLOCKED in the event that a serious error occurs. The
service generates a message for every state change.

If a trace message indicates that the service is not STARTED, examine previous
messages to determine the problem. For instance, the internationalization service
does not start if the activity service is unavailable and a message is displayed to
that effect during initialization of the internationalization service.

During startup, the following messages indicate potential configuration or run-time
problems:

No ORB support
The service could not obtain an instance of the ORB. This is a fatal error.
Examine the logs for information.

No TCM support
The service could not obtain an instance of its thread context manager. This
is a fatal error. Examine the logs for information.

No IIOP (Activity service) support
The service could not register with the Activity service. This is a fatal error.
The internationalization service cannot propagate or receive context on
IIOP requests without Activity service support. Review the logs for error
conditions related to the Activity service.

No AsynchBeans support
The service could not register into the AsynchBeans environment. This
warning indicates that the AsynchBeans environment cannot support
internationalization context. If the application server should have
AsynchBeans support, verify that the asynchbeans.jar and
asynchbeansimpl.jar files exist in the classpath and review the trace log for
any AsynchBeans error conditions.

No EJB container support
The service could not register with the EJB container. This is a warning
that the internationalization service cannot support enterprise beans.
Without EJB container support, internationalization, contexts do not scope
properly to EJB business methods. Review the trace log for any EJB
container-related error conditions.

No Web container support
The service could not register with the Web container. This is a warning
that the internationalization service cannot support servlets and Java
Server Pages (JSPs). Without Web container support, internationalization

Chapter 4. Using the internationalization service 115

contexts do not scope properly to servlet service methods. Review the trace
log for any Web container-related error conditions.

No Meta-data support
The service could not register with the meta-data service. This is a warning
that the internationalization service cannot process the internationalization
policies within application deployment descriptors. Without meta-data
support, the service associates the default internationalization context
management policy, [CMI, RunAsCaller], to every servlet lifecycle method
and enterprise bean business method invocation. Review the trace log for
any meta-data service-related error conditions.

No JNDI (Name service) support
The service could not bind the UserInternationalization object into the
namespace. This is a fatal error. Application components are unable to
access internationalization context API references, and are therefore unable
to access internationalization context elements. Review the trace log for
any Naming (JNDI) service-related error conditions.

No API support
The service could not obtain an instance of an internationalization context
API object. This is a fatal error. Application components are unable to
access internationalization context API references, and are therefore unable
to access internationalization context elements.

Invalid context element

The service detected an invalid internationalization context element. For example,
the internationalization service does not support TimeZone instances of a type
other than java.util.SimpleTimeZone. If the service encounters an invalid element,
it logs a message and substitutes the corresponding default element of the JVM.

Missing context element

The service detected a missing internationalization context element. Incoming
requests, for example from application servers not supporting the
internationalization service will lack internationalization context. When the service
attempts to access a caller internationalization context element, which does not
exist in this case, it logs a message and substitutes the corresponding default
element of the JVM.

Whenever possible, the internationalization service should be enabled within all
clients and hosting application servers comprising a WebSphere enterprise
application. For more information see the topic “Managing the internationalization
service” on page 112.

Invalid policy

The internationalization service detected a malformed internationalization policy in
the application deployment descriptor. At execution, the service replaces the
malformed attribute with the appropriate default. For instance, if the
internationalization type for an entity bean is set to Application during the
execution of a servlet or EJB business method invocation, the service logs the
inconsistency and enforces the Container setting instead.

116 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Also, AMI application components do have an implicit container
internationalization attribute. By default they run as server. The service silently
enforces the implicit policy, [AMI, RunAsServer], and logs messages to this effect.

Invalid container internationalization attributes are likely to occur when specifying
the Locales and Time zone ID fields. When encountering invalid Locales and Time
zone ID within attributes, the service replaces each with the corresponding default
element of the JVM. Be sure to follow the guidelines provided in the topic
“Assembling internationalized applications” on page 82.

Missing policy

The service detected a missing internationalization policy. At execution, the service
replaces the missing policy with the appropriate default. For instance, if the
internationalization type is missing for a servlet or enterprise bean, the service sets
the attribute to Container.

Container internationalization attributes are not mandatory for CMI application
components. In the event that a CMI servlet or EJB business method lacks a
container internationalization attribute, the service silently enforces the implicit
policy [CMI, RunAsCaller].

When an application lacks internationalization policies in its deployment
descriptor, or meta-data support is unavailable, the service logs a message and
applies the policy [CMI, RunAsCaller] on every servlet service method and EJB
business method invocation.

For more information, see the following topics:
v “Migrating internationalized applications” on page 81
v “Assembling internationalized applications” on page 82
v “Container internationalization attributes” on page 107
v “Internationalization type” on page 106
v “No meta-data support” on page 116

Internationalization service exceptions
The internationalization service employs one exception:
java.lang.IllegalStateException. This exception indicates one of the following things:
v An application component attempted an operation not supported by the

service’s programming model.
IllegalStateException is thrown whenever a server application component whose
internationalization type is set to container-managed Internationalization (CMI)
attempts to set invocation context. This is a violation of the CMI policy, under
which servlets and enterprise beans cannot modify their invocation
internationalization context.

v An anomaly occurred that disabled the service.
For instance, if the internationalization service does not properly initialize, the
JNDI lookup on the UserInternationalization URL throws a
javax.naming.NameNotFoundException containing an instance of
IllegalStateException. Refer to the trace log to determine the reason for failure
and, if necessary, contact your IBM support representative.

Chapter 4. Using the internationalization service 117

Internationalization: Resources for learning
Use the following links to find relevant supplemental information about
internationalization. The information resides on IBM and non-IBM Internet sites,
whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
this product but is useful all or in part for understanding the product. When
possible, links are provided to technical papers and Redbooks™ that supplement
the broad coverage of the release documentation with in-depth examinations of
particular product areas.

View links to additional information about:
v “Programming instructions and examples”
v “Programming specifications”

Programming instructions and examples

v Java internationalization tutorial
http://java.sun.com/docs/books/tutorial/i18n/index.html
An online tutorial that explains how to use the Java 2 SDK Internationalization
API.

Programming specifications

v Java 2 SDK, Standard Edition Documentation: Internationalization
http://java.sun.com/j2se/1.3/docs/guide/intl/
The Java internationalization documentation from Sun Microsystems, including a
list of supported locales and encodings.

v Making the WWW truly World Wide
http://www.w3.org/International/
The W3C’s effort to make World Wide Web technology work with the many
writing systems, languages, and cultural conventions of the global community.

v developerWorks - Unicode
http://www.ibm.com/developerworks/unicode/
Articles on various subjects relating to Unicode, from IBM’s developerWorks.

118 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

http://java.sun.com/docs/books/tutorial/i18n/index.html
http://java.sun.com/j2se/1.3/docs/guide/intl/
http://www.w3.org/International/
http://www.ibm.com/developerworks/unicode/

Chapter 5. Application profiling

Application profiling enables you to configure multiple access intent policies on
the same entity bean. Application profiling reflects the fact that different
invocations against the same entity can require different kinds of support from the
server run-time environment. For more information, see the topic “Application
profiling: Overview”.

Steps for this task

1. “Assembling applications for application profiling” on page 122.
This topic describes how to configure tasks, create application profiles, and
configure tasks on profiles, using the Application Assembly Tool.

2. “Managing application profiles” on page 135.
This topic describes how to add and remove tasks from application profiles
using the administrative console.

3. “Using the TaskNameManager interface” on page 137.
This topic describes how to programmatically set the current task name, but
you should use this technique sparingly. Wherever possible, use the declarative
method instead, which results in more portable function.

Application profiling: Overview
Application profiling enables developers to identify particular units of work to the
IBM WebSphere Application Server, Version 5 run-time environment. The run time
can tailor its support to the exact requirements of that unit of work. Access intent
is currently the only run time component that makes use of the application
profiling functionality. For example, you can configure one transaction to load an
entity bean with strong update locks and configure another transaction to load the
same entity bean without locks.

Application profiling introduces two new concepts in order to achieve this
function: ″tasks″ and ″profiles″.

Tasks A task is a named unit of work within a distributed application. Unit of
work in this case means a unique path within the application that may or
may not correspond to a transaction or activity session. The name of the
path is typically assigned declaratively to a J2EE client or servlet, or to the
method of an enterprise bean. This point of configuration marks the head
of a graph or subgraph identified by the name of the task; the task name
flows from the head of the graph downstream on all subsequent IIOP
requests, identifying each subsequent invocation along the graph as
belonging to the developer-configured task.

Profiles
A profile is simply a set of policies that are configured not only on the
components of an application, but on a set of tasks as well. When an
invocation on a bean (whether by a finder method, a cmr getter, or a
dynamic query) requires data to be retrieved from the back-end system, the
current task associated with the request is used to determine the exact
requirement of the transaction; the same bean loads and behaves
differently in the context of the task to profile mapping. Each profile
provides the developer an opportunity to reconfigure the application’s

© Copyright IBM Corp. 2003 119

access intent. If a request is operating in the absence of a task, the run-time
environment uses the access intent configuration external to the application
profiles.

Tasks
Tasks are named units of work. They are the mechanism by which the run-time
environment determines which access intent policies to apply when an entity
bean’s data is loaded from the back-end system.

Application profiles enable developers to configure an entity bean with multiple
access intent policies; if there are n instances of profiles in a given application, each
bean can be configured with as many as n access intent policies.

A task is a unit of work that is given a name by a developer. A task is assigned to
any thread executing within a J2EE component, then propagated implicitly across
all IIOP requests. The IBM WebSphere Application Server run-time environment
queries the task at the invocation of any entity bean, and establishes the
appropriate access intent policy with which an entity instance will be associated. A
task typically corresponds to the execution of a concrete and high-level job within
the application.

If an entity bean is loaded in a unit of work that is not associated with a task, or is
associated with a task that is unassociated with an application profile, the
method-level access intent configuration is applied. If a unit of work is associated
with a task that is configured with an application profile, the bean-level access
intent configuration within the appropriate application profile is applied.

For example, consider a school district application that calls through a session bean
in order to interact with student records. One method on the session bean allows
administrators to modify the students’ records; another method supports student
requests to view their own records. Without application profiling, the two tasks
would operate anonymously and the run-time environment would be unable to
distinguish work operating on behalf of one task or the other. To optimize the
application, a developer can configure one of the methods on the session bean with
the task ″updateRecords″ and the other method on the session bean with the task
″readRecords″. When registered with an application profile that has the student
bean configured with the appropriate locking access intent, the ″updateRecords″
task is assured that it is not unnecessarily blocking transactions that need to only
read the records.

Developers declare tasks using the Application Assembly Tool. Tasks can be
declared in three ways:
v Tasks can be associated with J2EE application clients, servlets, and JSPs; requests

from these components are then associated with the appropriate task.
v Tasks can be associated with methods of an enterprise bean using a task run-as

policy. There are two run-as policies:

run as caller
This is the default policy under which all methods run. If a request is
already associated with a task, the configured method imports and runs
under that task. If the request is not associated with a task, the request
operates in the absence of a task and beans are controlled using the
method-level access intent as configured outside of an application
profile.

120 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

run as specified
Under the run as specified policy, requests to the configured methods
never run under an imported task; instead, a specified task names the
unit of work beginning with the method.

v Tasks can be associated with any point in the execution of a component by using
the programmatic interface of the task name manager. Any task that can be
applied programatically must first be declared for the component; attempts to
set unknown task names result in an IllegalTaskNameException error.

Application profiles
An application profile is the set of access intent or query intent policies that should
be selectively applied, as well as the list of tasks for which the policies should be
applied.

The intention of application profiling is to enable an application to run under a
different set of policies depending on the active task under which the application is
operating.

Consider an application that centralizes the student records for a school district.
These records are frequently accessed by the school district’s central office in order
to generate reports. The report generation process would be optimized if it held no
locks with the back-end system, and if the records could be read into memory with
as few back-end operations as possible. Occasionally, however, the records are
updated by the students’ instructors. Without the ability to distinguish between
transactions, the developer is forced to assume a worst-case scenario and, wishing
to use pessimistic concurrency, lock the records for all transactions.

Using the application profiling service, the developer can configure in as many
ways as necessary the access intent under which the students’ records are loade .
Under one profile, the records can be configured with an exclusive pessimistic
update intent, not only locking-out competing transactions but ensuring that the
student is not removed from the system before the transaction completes. Under
another profile, the records can be configured with an optimistic intent as part of
an object graph that is read from the back-end system in a single database
operation. Any task configured with the pessimistic profile receives the
strong-locking semantics required for certain transactions, while tasks configured
with the optimistic profile receive the performance benefits appropriate for other
transactions.

Multiple tasks can be configured on a single profile, indicating that different units
of work can have the same requirements on the application; however, the same
task cannot be registered with multiple application profiles because the run-time
environment would have to guess which set of policies the developer wanted to
have applied.

Use the Application Assembly Tool (AAT) to create and configure application
profiles. Application profiles span the entire scope of an application. When a
profile is created within a module, that profile is automatically created within all
other EJB modules and at the EAR file level of the application. Likewise, when a
profile is created at the EAR file level of an application, the profile is automatically
pushed down to all EJB modules of the application. When an EJB module is
imported into an application, all profiles within the module, and the profiles
already declared inside the application, are merged.

Chapter 5. Application profiling 121

Assembling applications for application profiling
Before you begin

Application profiling enables multiple access intent policies to be configured on the
same entity bean, to be applied for a particular unit of work. Before using
application profiles, you need to first(apply access intent policies to entity beans).
You can use the one of the default policies or create your own, as described in the
topic, (Creating a custom access intent policy).

Steps for this task

1. Configuring tasks.
Declaratively configure tasks using the Application Assembly Tool, as described
in the following topics:
v “Configuring a component task policy” on page 130.
v “Configuring a container task policy” on page 130.

On rare occasions, you might find it necessary to configure tasks
programatically. Application profiling supports this requirement with a simple
interface that enables both overriding of the current task associated with the
thread of execution, and resetting of the current task to the original task. See
the topic “Using the TaskNameManager interface” on page 137.

2. “Creating an application profile” on page 132.
3. “Configuring tasks on application profiles” on page 134.

Using access intent policies
You can use access intent policies to help the product run-time environment
manage various aspects of Enterprise JavaBeans™ (EJB) persistence. You apply
access intent policies to methods of EJB Version 2.0 entity beans by using the
Application Assembly Tool. This product provides a set of default access intent
policies. You can also create your own custom policies.

Steps for this task

1. Apply access intent policies to methods by “Applying access intent policies to
methods” on page 126 of CMP entity beans.

2. (Optional) Create a custom access intent policy by using the Application
Assembly Tool.

3. (Optional) Apply access intent policies to BMP entity bean methods by “Using
the AccessIntent API” on page 127.

4. (Optional) Apply multiple access intent policies to methods by using
Chapter 5, “Application profiling”, on page 119.

Access intent policies
An access intent policy is a named set of properties (access intents) that governs
data access for Enterprise JavaBeans (EJB) persistence. You can assign a policy to
individual methods on an entity bean’s home, remote, or local interfaces during
assembly. If you have the IBM WebSphere Application Server Enterprise product
installed, you can assign these during development as well. Access intents are
settable only within EJB Version 2.x-compliant modules for entity beans with
bean-managed persistence or with CMP Version 2.x.

This product supplies a number of access intent policies that specify permutations
of read intent and concurrency control; the pessimistic/update policy can be

122 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

qualified further. The selected policy determines the appropriate isolation level and
locking strategy used by the run-time environment.

Access intent policies are specifically designed to supplant the use of isolation level
and access intent method-level modifiers found in the extended deployment
descriptor for EJB version 1.1 enterprise beans. You cannot specify isolation level
and read-only modifiers for EJB version 2.0 enterprise beans.

Access intent policies are named and defined at the module level. A module can
have one or many such policies. Policies are assigned, and apply, to individual
methods of the declared interfaces of entity beans and their associated home
interfaces. A policy is acted upon by either the combination of the EJB container
and persistence manager (for entity beans with container-managed persistence) or
directly by entity beans with bean-managed persistence.

For entity beans that are backed by tables with nullable columns, use an optimistic
policy with caution. Nullable columns are automatically excluded from
overqualified updates at deployment time; concurrent changes to a nullable field
might result in lost updates. When used with the IBM WebSphere Studio
Application Developer product, this product provides support for selecting a
subset of the nonnullable columns that are to be reflected in the overqualified
update statement that is generated in the deployment code to support optimistic
policies.

A method that is configured with a read-only policy that causes a bean to be
activated can cause problems if updates are attempted within the same transaction.
Those changes will not be committed, and an exception will be thrown because
data integrity might be compromised.

Concurrency control: Concurrency control is the management of contention for
data resources. A concurrency control scheme is considered pessimistic when it
locks a given resource early in the data-access transaction and does not release it
until the transaction is closed. A concurrency control scheme is considered
optimistic when locks are acquired and released over a very short period of time at
the end of a transaction.

The objective of optimistic concurrency is to minimize the time over which a given
resource would be unavailable for use by other transactions. This is especially
important with long-running transactions, which under a pessimistic scheme
would lock up a resource for unacceptably long periods of time.

Under an optimistic scheme, locks are obtained immediately before a read
operation and released immediately afterwards. Update locks are obtained
immediately before an update operation and held until the end of the transaction.

To enable optimistic concurrency, this product uses an overqualified update scheme to
test whether the underlying data source has been updated by another transaction
since the beginning of the current transaction. With this scheme, the columns
marked for update and their original values are added explicitly through a
WHERE clause in the UPDATE statement so that the statement fails if the
underlying column values have been changed. As a result, this scheme can provide
column-level concurrency control; pessimistic schemes can control concurrency at
the row level only.

Optimistic schemes typically perform this type of test only at the end of a
transaction. If the underlying columns have not been updated since the beginning

Chapter 5. Application profiling 123

of the transaction, pending updates to container-managed persistence fields are
committed and the locks are released. If locks cannot be acquired or if some other
transaction has updated the columns since the beginning of the current transaction,
the transaction is rolled back: All work performed within the transaction is lost.

Pessimistic and optimistic concurrency schemes require different transaction
isolation levels. Enterprise beans that participate in the same transaction and
require different concurrency control schemes cannot operate on the same
underlying data connection.

Whether or not to use optimistic concurrency depends on the type of transaction.
Transactions with a high penalty for failure might be better managed with a
pessimistic scheme. (A high-penalty transaction is one for which recovery would
be risky or resource-intensive.) For low-penalty transactions, it is often worth the
risk of failure to gain efficiency through the use of an optimistic scheme. In
general, optimistic concurrency is more efficient when update collisions are
expected to be infrequent; pessimistic concurrency is more efficient when update
collisions are expected to occur often.

Read-ahead hints: Read-ahead schemes enable applications to minimize the
number of database roundtrips by retrieving a working set of container-managed
persistence (CMP) beans for the transaction within one query. Read-ahead involves
activating the requested CMP beans and caching the data for their related beans,
which ensures that data is present for the beans that are most likely to be needed
next by an application. A read-ahead hint is a canonical representation of the related
beans that are to be read. It is associated with a finder method for the requested
bean type, which must be an EJB 2.x-compliant CMP entity bean.

Read-ahead hints can be set only through the Add Access Intent wizard of the IBM
WebSphere Studio Application Developer product. In the wizard, the Read Ahead
Hint check box is enabled only with access intent policies with optimistic
concurrency.

Read-ahead is limited to optimistic policies because locking persistent data store
for all beans represented in the hint would be more likely to cause lock conflicts,
and optimistic policies do not obtain locks until immediately before the database
operation.

Currently, only findByPrimaryKey methods can have read-ahead hints. Only beans
related to the requested beans by a container-managed relationship (CMR), either
directly or indirectly through other beans, can be read ahead.

A read-ahead hint takes the form of a character string. You do not have to provide
the string; the wizard generates it for you based on CMRs defined for the bean.
The following example is provided as supplemental information only.

Suppose a CMP bean type A has a finder method that returns instances of bean A.
A read-ahead hint for this method is specified using the following notation:
RelB.RelC; RelD

Interpret the preceding notation as follows:
v Bean type A has a CMR with bean types B and D.
v Bean type B has a CMR with bean type C.

For each bean of type A that is retrieved from the database, its directly-related B
and D beans and its indirectly-related C beans are also retrieved. The order of the

124 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

retrieved bean data columns in each row of the result set is the same as their order
in the read-ahead hint: an A bean, a B bean (or null), a C bean (or null), a D bean
(or null). For hints in which the same relationship is mentioned more than once
(for example, RelB.RelC;RelB.RelE), a
bean’s data columns appear only once, at the position it first appears in the hint.

The tokens shown in the notation (RelB and so on) must be CMR field names for
the relationships as defined in the deployment descriptor for the bean. In indirect
relationships such as RelB.RelC, RelC is a CMR field name
defined in the deployment descriptor for bean type B.

A single read-ahead hint cannot refer to the same bean type in more than one
relationship. For example, if a Department bean has a relationship employees with
the Employee bean and also has a relationship manager with the Employee bean,
the read-ahead hint cannot specify both employees and manager.

For more information about how to set read-ahead hints, see the documentation
for the Websphere Studio Application Developer product.

Access intent service
Access intent is a IBM WebSphere Application Server run-time service that enables
you to more precisely manage an application’s persistence. The access intent
service defines a set of declarative annotations used by the Enterprise JavaBeans
(EJB) container and its agents to make performance optimizations for entity bean
access. These annotations are organized into sets called access intent policies.

Access intent policies contain a set of annotations considered as hints by the EJB
container and its agents. Most access intent policies are hints representing
high-level abstractions that can be mapped to a specific backend resource manager.
It is the responsibility of the EJB persistence machinery to ensure the necessary
concurrency control, connection, and cache management when carrying out the
persistence details. The EJB persistence manager can use access intent hints to
make better performance decisions when carrying out its assigned task. A smaller
number of access intents are hints to the EJB container, influencing the
management of EJB collections.

You can apply access intent policies to methods within the scope of an EJB
module, in which case the policy becomes the default access intent for all requests
upon the configured methods.

You can also apply access intent policies to methods within the scope of
application profiles. Consequently, you can configure methods with multiple and
opposing access intent policies. The application profiling documentation explains
in more detail how to configure an application to apply a particular access intent
policy to a method for one request, then apply another access intent policy to the
same method for a different request.

Access intent with BMP entity beans: Access intent’s declarative functionality
provides great power to you as a CMP entity bean developer. You can provide
hints on how IBM WebSphere Application Server is to manage the details of
persistence without having to explicitly manage any of the persistence logic from
within the application.

There are situations, however, in which you might need to develop BMP entity
beans. Because the only meaningful difference between BMP and CMP components
is who provides the persistence logic, BMP entity beans should be able to leverage

Chapter 5. Application profiling 125

access intent hints just as IBM WebSphere Application Server does on behalf of
CMP entity beans. BMP entity beans that use the access intent service participate in
application profiling; that is, the value of the access intent attributes can differ
from request to request, allowing the BMP entity bean to seamlessly modify its
persistence strategy.

You can apply access intent policies to BMP entity bean methods as well as CMP
entity bean methods. Because access intent hints are not contractual in nature,
there is no obligation for a BMP entity bean to exploit them. BMP entity beans are
expected to use only those access intent attributes that are important to that
particular bean.

The current access intent policy is bound into the java:comp namespace for a
particular BMP entity bean. That policy is current only for the duration of the
method call during which the access intent policy was retrieved. In a typical
scenario, you would cache the access type during invocation of the ejbLoad()
method so that appropriate actions can be taken during invocation of the ejbStore()
method.

Access intent design considerations
Use the access intent service to solve clear performance problems. Identify usage
patterns that lead to poor application performance and apply appropriate access
intent policies.

Refrain from over-tuning an application. You can introduce errors by incorrectly
using the access intent service. For example, misuse of the wsPessimisticUpdate-
NoCollision policy can result in lost updates; inappropriately setting the collection
increment value can introduce performance issues; and problem determination is
more difficult when an application is confusingly configured with multiple access
intent policies. Clarity and simplicity should be your guiding principles when
using the access intent service. This is even more important when applying access
intent polices within the scope of application profiles (a feature of IBM WebSphere
Application Server Enterprise).

Even though access intent policies can be configured on any method of an entity
bean, some attributes of a policy can only be leveraged by the run-time
environment under certain conditions. For example, concurrency and access intent
are only used for CMP entity beans when the ejbLoad() method is driven to open a
connection to, and read data from, a given resource; that data is cached and used
to drive the proper queries during invocation of the ejbStore() method. Read-ahead
hints are only used during the execution of a finder for a bean. Finally, the
collection increment and resource manager prefetch increment are only used on
multi-object finders. Configuring policies on methods that will not use the policy is
not an error (only certain attributes of any policy are used, even when the policy is
appropriately applied to a method). However, configuring policies unnecessarily
throughout an application obscures the design of the application and complicates
the maintenance of the application.

Applying access intent policies to methods
You apply an access intent policy to a method, or set of methods, in an
application’s entity beans through the Application Assembly Tool (AAT).

Steps for this task

1. Start the AAT.
2. Create or edit the application EAR file.

126 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

For example, to change attributes of an existing application, select File >
Open, then select the EAR file.

3. Select EJB Modules > moduleName > Access Intent.
4. To configure a new access intent policy, right-click and select New.
5. On the New Access Intent panel, specify a name and a description.

These attributes are provided as a convenience to the developer and are not
used at run time.

6. To select the methods to which the access intent policy should apply, click
Add beside the Methods table.

7. From the Applied access intent list, select an access intent policy.
8. (Optional) To override an attribute defined in the applied policy, click Add

beside the Access intent attribute overrides table.
9. Click OK to exit the New Access Intent panel.

10. Save your configuration by selecting File > Save.

Using the AccessIntent API
This task describes how to programmatically retrieve and call the AccessIntent API
during the execution of BMP entity bean methods.

Steps for this task

1. Look up the current access intent in the namespace.
For example:
InitialContext ic = new InitialContext();
AccessIntent ai = ic.lookup("java:comp/websphere/AppProfile/AccessIntent");

2. Call the necessary get() methods.
For example:
int concurrency = ai.getConcurrencyControl();
int accessType = ai.getAccessType();
if ((concurrency == AccessIntent.CONCURRENCY_CONTROL_PESSIMISTIC)

&& (accessType == AccessIntent.ACCESS_TYPE_UPDATE)) {
boolean exclusive = ai.getPessimisticUpdateHintExclusive();
// . . .

}
// . . .

Results

Note: The access intent object reference retrieved from the java:comp lookup is
current for the duration of the method in which the reference was looked
up. Depending on how you configured the application profile, subsequent
calls of the same method might not retrieve the same access intent reference.
You can only look up the object reference during the call of a BMP entity
bean’s method; the reference does not exist during a request on a CMP
entity bean. Therefore, access intent object references should not be cached
beyond, or used outside of, the scope of the execution of any given BMP
method.

Access intent assembly settings
Access intent policies contain data-access settings for use by the persistence
manager. Specify one or more methods and associate an access intent policy with
each method.

These settings are applicable only for EJB 2.x-compliant entity beans that are
packaged in EJB 2.x-compliant modules. Connection sharing between beans with

Chapter 5. Application profiling 127

bean-managed persistence and those with container-managed persistence is
possible if they all use the same access intent policy.

Name: Specifies a name for the mapping between an access intent policy and one
or more methods.

Description: Contains text that describes the mapping.

Methods - Name: Specifies the name of an enterprise bean method, or the
asterisk character (*). The asterisk is used to denote all of the methods of an
enterprise bean’s remote and home interfaces.

Methods - Enterprise bean: Specifies which enterprise bean contains the methods
indicated in the Name setting.

Methods - Type: Used to distinguish between a method with the same signature
that is defined in both the home and remote interface. Use Unspecified if an access
intent policy applies to all methods of the bean.

Data type
String

Range Valid values are Home, Remote,Local, LocalHome or Unspecified

Methods - Parameters: Contains a list of fully qualified Java type names of the
method parameters. This setting is used to identify a single method among
multiple methods with an overloaded method name.

Applied access intent: Specifies how the container must manage data access for
persistence.

Data type
String

Default
wsPessimisticUpdate-WeakestLockAtLoad. However, this policy cannot be
used with Oracle; see the table that follows.

Range Valid settings are wsPessimisticUpdate, wsPessimisticUpdate-NoCollision,
wsPessimisticUpdate-Exclusive, wsPessimisticUpdate-WeakestLockAtLoad,
wsPessimisticRead, wsOptimisticUpdate, or wsOptimisticRead. Only
wsPessimisticRead and wsOptimisticRead are valid when class-level
caching is enabled in the EJB container.

This product supports lazy collections. For each segment of a collection, iterating
through the collection (next()) does not trigger a remote method call to retrieve the
next remote reference. Two policies (wsPessimisticUpdate and
wsPessimisticUpdate-Exclusive) are extremely lazy; the collection increment size
is set to 1 to avoid overlocking the application. The other policies have a collection
increment size of 25.

If a method is not configured with an access intent policy, the run-time
environment typically uses wsPessimisticUpdate-WeakestLockAtLoad by default. If,
however, the Lifetime in cache property is set on the bean, the default value of
Applied access intent is wsOptimisticRead; updates are not permitted. If a method
of a Lifetime in cache-configured bean is configured with an access intent policy
that permits updates, the application will not run until the method or bean is
reconfigured.

128 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Additional information about valid settings follows:

Profile name Concurrency control Access type Transaction isolation

wsPessimisticRead
(Note 1)

pessimistic read For Oracle, read
committed.
Otherwise, repeatable
read

wsPessimisticUpdate
(Note 2)

pessimistic update For Oracle, read
committed.
Otherwise, repeatable
read

wsPessimisticUpdate-
Exclusive (Note 3)

pessimistic update serializable

wsPessimisticUpdate-
NoCollision (Note 4)

pessimistic update read committed

wsPessimisticUpdate-
WeakestLockAtLoad
(Note 5)

pessimistic update Repeatable read

wsOptimisticRead optimistic read read committed

wsOptimisticUpdate
(Note 6)

optimistic update read committed

Notes:

1. Read locks are held for the duration of the transaction.

2. The generated SELECT FOR UPDATE query grabs locks at the beginning of the
transaction.

3. SELECT FOR UPDATE is generated; locks are held for the duration of the transaction.

4. A plain SELECT query is generated. No locks are held, but updates are permitted.
Relative to wsPessimisticUpdate, this difference results in generally better transaction
throughput.

5. The generated SELECT query does not include FOR UPDATE; locks are escalated by the
persistent store at storage time if updates were made.

Do not use this policy with Oracle; doing so results in a NoSuchDataAccessSpec
exception. Comparable alternatives are wsPessimisticUpdate-NoCollision or
wsOptimisticUpdate. If you choose wsOptimisticUpdate, be sure to review the rules for
forming overqualified-update query predicates. Certain column types (for example,
BLOB) are ineligible for inclusion in the overqualified-update query predicate and might
affect your design.

6. Generated overqualified-update query forces failure if CMP column values have changed
since the beginning of the transaction.

Access intent best practices
This topic outlines issues to consider when applying access intent policies to
Enterprise JavaBeans (EJB) methods.
v Start with defaults. The default access intent policy (wsPessimisticUpdate-

WeakestLockAtLoad) loads persistent data with the weakest lock that is supported
by the persistent store (typically a read lock). Updates are allowed, and the
database is permitted to undertake lock escalation when necessary. This option
generally works best for most EJB application patterns. After your application is
built and running, you can more finely tune certain access paths in your
application.

v Don’t mix access types. Avoid using both pessimistic and optimistic policies in
the same transaction. For most databases, pessimistic and optimistic policies use

Chapter 5. Application profiling 129

different isolation levels. This results in multiple database connections, which
prevents you from taking advantage of the performance benefits possible
through connection sharing.

v Access intent for the ejbSelect method must be applied indirectly. Because
ejbSelect methods are not exposed through a home, remote, or local interface,
you cannot apply a policy to them directly. An ejbSelect method is called by a
home or business method, so apply the appropriate policy to the home or
business method that governs the behavior of the ejbSelect method.

v Take care when applying wsPessimisticUpdate-NoCollision. This policy does
not ensure data integrity. No database locks are held, so concurrent transactions
can overwrite each other’s updates. Use this policy only if you can be sure that
only one transaction will attempt to update persistent store at any given time.

Configuring a component task policy
Use the Application Assembly Tool to configure a component’s own task. A
servlet’s or application client’s own task is associated with distributed requests
from the component unless overridden by a container task policy. Components
without a configured task of their own run without a task; units of work without a
task and application profile load entities using the method-level access intent
configuration, without the support of application profiling.

Steps for this task

1. Start the Application Assembly Tool.
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, select File > Open
then select the EAR file.

3. Select Web Modules > module_name.war > Web Components > component_name

4. Select the WAS Enterprise tab.
5. Select the Own task checkbox. Provide a name and description for the task.

Task names do not have to be unique within an application; however, task
names should be shared consciously and conservatively; at run time, all tasks
with the same name are treated the same way, regardless of where the task was
configured.
The description is provided as a convenience to the developer and is not used
by the run-time environment.

6. Click OK.
7. (Optional) Select File > Verify to verify your configuration.
8. Select File > Save to save your configuration.

What to do next

“Configuring tasks on application profiles” on page 134.

Configuring a container task policy
Use the Application Assembly Tool to apply a container task policy to a method, or
set of methods, for an application’s entity beans. A container task policy defines
the task under which the method is invoked. A method can run with an imported
task, with its own task, or with a specified task.

Note: Applications use application profiling on a per task basis. As soon as a path
within an application is configured with a task and that task is associated
with an application profile, any entity enlisted within units of work in the

130 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

scope of that task cease to use the method-level access intent configuration
and instead use the bean-level access intent configuration of the application
profile with which the task is registered.

Steps for this task

1. Start the Application Assembly Tool.
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, select File >
Open then select the EAR file.

3. Select EJB Modules > module_name > Container Tasks.
4. To create a new container task policy, select File > New > Selected Object.
5. On the New Container Task panel, specify a name and a description.

These attributes are provided as a convenience to the developer and are not
used at runtime.

6. To select the methods to which the container task policy should apply, click
Add beside the Methods table.

7. Select one of the these attributes:

Run as caller
This is the default attribute applied to EJB method invocations. If the
configured methods are invoked with an associated task, the method
is executed with the imported task. If a method is invoked by a
request that is unassociated with a task, the method continues to
execute without a task.

Run as specified
The configured methods are never invoked with an imported task.
Instead, the method executes as the specified task name. The task
name can be selected from the pull-down menu or you can enter a
new task name. The description is provided as a convenience to the
developer and is not used at runtime.

8. Click OK.
9. (Optional) Select File > Verify to verify your configuration.

10. Select File > Save to save your configuration.

What to do next

“Configuring tasks on application profiles” on page 134.

Container assembly settings for tasks
Use this page to configure container task policies.

Tasks identify units of work within a distributed application by the implicit
propagation of the task name on remote requests. The task name is configured on
application profiles in order to customize the access intent for the units of work
associated with that task.

A container task policy instructs the container under which task a request upon an
EJB method should operate. Methods can be configured to run as a caller’s task, as
the task configured on the bean, or as a specified task.

Name: The name of the policy.

Chapter 5. Application profiling 131

An optional field provided for the convenience of the developer. Although Name is
a required field, the name is not used except as a label within the application
assembly tool.

Data type
String

Description: A description of the policy.

An optional field provided for the convenience of the developer.

Data type
String

Methods: The methods upon which the container will apply the task policy.

To add a new method to the policy, click New. Expand the tree to select the
method or methods from the EJB module. Be sure that each method has been
configured no more than once with a container task policy. To remove a method,
select it and click Remove.

Name: The policy that the container should apply when the configured set of
methods are invoked.

Default
Run as caller

Range

Run as caller
If the client invokes the bean method with an associated task, the
container invokes the bean method with the same task. If the client
invokes the bean method without a task, the container invokes the
bean method with the task configured as the bean’s default task.

Run as specified
The container invokes the bean method with the specified task.

Name The name of the task

Description
The description of the task

Creating an application profile
Use the Application Assembly Tool to create an application profile. An application
profile contains a set of access intent policies applied to an application’s entity
beans. The access intent policies are only applied for requests that are associated
with tasks configured on the application profile.

Steps for this task

1. Start the Application Assembly Tool.
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, select File >
Open, then select the EAR file.

3. You can create application profiles at the scope of either an application EAR
file or an EJB module.
To create an application profile at the EAR file scope, select Application
Profile.

132 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

To create an application profile at the module scope, expand EJB Modules >
module_name > Application Profile.
An application profile logically spans the application EAR file and all
contained EJB Jar files. When a profile is created for the EAR file, the profile is
automatically created within all EJB Jar files. When a profile is created within
an EJB Jar file, the profile is automatically created for all remaining EJB Jar
files and the EAR file as well. It makes no difference where an application
profile is created, edited, or removed.

4. To create a new application profile, select File > New > Selected Object.
5. On the New Application Profile panel, specify a name and a description.

The name of the profile must be unique within the application; there cannot
be two distinct application profiles with the same name.
The description is provided as a convenience to the developer and is not used
at runtime.

6. Click OK.
7. Be sure that your newly-created application profile is selected. In the

navigation pane, expand the new application profile, then select the Access
Intent node.

8. To apply access intents within the scope of the application profile, follow the
steps as described in the topic Applying access intent policies to entity beans.
Any custom access intent policies are available within the application profile.

9. Select File > Verify to verify your configuration.
10. Select File > Save to save your configuration.

Application profile assembly settings
Use this page to configure application profiles.

Application profiles support the definition of alternate access-intent configurations
that are mapped to particular requests identified by an association with a task
name.

Name

The name of this application profile.

The name must be unique; multiple profiles cannot share the same name.

The creation, configuration, and deletion of profiles is reflected in the configuration
of profiles at both the application and module scope

Data type
String

Description

A description of the application profile

An optional field provided for the convenience of the developer and administrator.

Data type
String

Tasks

Chapter 5. Application profiling 133

Tasks that are configured to operate under the application profile.

Requests associated with any of the configured tasks operate under the
access-intent policies configured with the profile within the EJB modules.

To add a task that has been declared within the application, click Add. To add a
task that has not been declared within the application, click New.

To remove a task, select the task and click Remove. Any given task can be
configured on only one application profile.

Name

The name of the task. Select the name of the task from the pulldown menu or
specify a new name. The name of the task must be unique among the set of
application profiles.

The task name is a required field.

Data type
String

Description

A description of the task.

An optional field provided for the convenience of the developer and administrator.

Data type
String

Configuring tasks on application profiles
Use the Application Assembly tool to associate tasks with application profiles.
When a task is configured on an application profile, the access intent policies
defined in the profile are applied, as appropriate, to requests associated with that
task.

Steps for this task

1. Start the Application Assembly Tool.
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, select File > Open,
then select the EAR file.

3. Associate tasks with an application profile at the scope of either an application
EAR file or an EJB module.
To edit the tasks within an application profile at the EAR file scope, select
Application Profile in the navigation pane, then select the appropriate profile
from the list of application profiles.
To edit the tasks within an application profile at the EJB module scope, expand
EJB Modules > module_name > Application Profile, then select the appropriate
application profile from the list of application profiles.
An application profile logically spans the application EAR file and all contained
EJB Jar files. Adding a task to, or removing a task from, an application profile
within any module or EAR file automatically causes the task to be removed
from the same profile in other modules.

134 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

4. To add a task defined elsewhere in the application, click Add beside the table
of tasks and select a task name from the dropdown menu. To add a task that
you defined outside of the application, click New beside the table of tasks.

5. Select File > Verify to verify your configuration.
6. Select File > Save to save your configuration.

Managing application profiles
Manage your application profiles using the administrative console. From the
console, you can add tasks to, and remove tasks from, application profiles.

Steps for this task

1. Start the administrative console.
2. Select Applications > Applications > application_name > Application Profile >

profile_name > Tasks.
3. On the Tasks collection page, you can add new tasks to the profile, delete tasks,

edit current task settings, and so on.

Note: No task can, within the scope of an application, be configured on more
than one application profile. In such a situation, your application cannot
be restarted until you correct the configuration.

4. Save your configuration.
5. Restart the application in order for your changes to take affect.

Application profiling exceptions
The following exceptions are thrown in response to various illegal actions related
to application profiling:

com.ibm.ws.exception.RuntimeWarning
This exception is thrown when the application is started, if the application
is configured incorrectly. The startup is consequently terminated. You can
validate an application’s configuration by using the Verify function in the
Application Assembly Tool. Some examples of misconfiguration include:
v A task configured on two different application profiles.
v A method configured with two different task run-as policies .

com.ibm.websphere.appprofile.IllegalTaskNameException
This exception is raised if an application attempts to programmatically set
a task when that task has not been configured as a task name reference.

Application profiling service settings
Use this page to enable or disable the application profiling service.

Applications that are configured to use the application profiling service will not
start successfully unless the application profiling service is enabled.

To view this administrative console page, click Servers > Application Servers >
server_name > Application Profiling Service.

Startup
Specifies whether the server will attempt to start the application profiling service.

Default
Selected

Chapter 5. Application profiling 135

Range

Selected
When the application server starts, it attempts to start the
application profiling service automatically.

Cleared
This option is unavailable. The application profiling service cannot
be disabled.

Application profile collection
Use this page to manage application profiles.

An application profile is a set of policies that are to be applied during the
execution of an enterprise bean and a set of tasks that are associated with that
profile. Mapping tasks to application profiles will control which access intent
policies are applied at run time for the units of work that correspond to a
particular task.

To view this administrative console page, click Applications > Applications >
application_name > Application Profile.

Name
The name of the application profile.

The name must be unique; multiple profiles cannot share the same name.

Data type
String

Description
A description of the application profile.

Data type
String

Application profile settings
Use this page to modify application profile settings.

To view this administrative console page, click Applications > Applications >
application_name > Application Profile > application_profile_name.

Name: The name of the application profile.

The name must be unique; multiple profiles cannot share the same name.

Data type
String

Description: A description of the application profile.

Data type
String

136 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Using the TaskNameManager interface
You can declaratively configure tasks on a J2EE component and associate tasks
with EJB methods using the Application Assembly Tool. On rare occasions, you
might find it necessary to programatically set the current task name. Application
profiling supports this requirement with a simple interface that enables both
overriding of the current task associated with the thread of execution, and resetting
of the current task with the original task.

Application profiling does not support queries of the task that is in operation at
run time. Instead, applications interact with logical task names that are
declaratively configured as task references. Logical references enable the actual task
name to be changed without having to recompile applications.

While you cannot programmatically set the current access intent policy, you can
accomplish this by programmatically setting a task. Consider, for example, an
entity bean with a single multi-object finder method, getLargeAccounts(), which is
invoked by the single() method of the AccountManager session bean. By default,
suppose that the entity bean runs assuming read intent; suppose, also, that an
application profile has been configured under which that bean loads assuming
update intent. Configure a task, perhaps with the name ″update″, on the profile.
Now, depending on logic in the session bean’s method, the session bean selectively
and programmatically sets the task update before invoking the entity bean’s finder
method; that finder method correctly functions assuming updates.

Wherever possible, avoid setting tasks programmatically. The declarative method
results in more portable function that can be easily adjusted without requiring
redevelopment and recompilation.

Steps for this task

1. Configure task references.
Application profiling requires that a task name reference be declared for any
task that is to be set programmatically. Task name references introduce a level
of indirection so that the actual task set at run time can be adjusted by
reassembly without requiring recoding or recompilation. Any attempt to set a
task name that is undeclared as a task reference results in the raising of an
exception.
a. Start the Application Assembly Tool.
b. Create or edit the application EAR file.

For example, to change attributes of an existing application, select File >
Open, then select the EAR file.

c. Select Web Modules > module_name.war > Web Components >
component_name

d. Select the WAS Enterprise tab.
e. Click Add beside the Task references table.
f. Provide a name for the task reference.

The name must be unique for the component. This is the name that is
referenced programatically. The name should be short and should be
descriptive of the function that is performed when the task is executed.

g. Provide a name and description for the task, itself.
The name of the task is the identifier that is propagated on remote requests;
it is the task name that is configured on application profiles to dynamically
associate access intent hints with entity bean execution.

Chapter 5. Application profiling 137

h. Click OK.
i. Select File > Save to save your configuration.

2. Perform a JNDI lookup on the TaskNameManager interface:
InitialContext ic = new InitialContext();
TaskNameManager tnManager = ic.lookup
("java:comp/websphere/AppProfile/TaskNameManager");

The TaskNameManager interface is not bound into the namespace if the
application profiling service is disabled.

3. Set the task name:
try {
tnManager.setTaskName("updateAccount");
}
catch (IllegalTaskNameException e) {
// task name reference not configured. Handle error.
}
// . . .
rnManager.resetTaskName();

Resetting the task name undoes the effects of any setTaskName() method
operations and reestablishes whatever task name was current when the
component began execution. If the setTaskName() method has not been called,
the resetTaskName() method has no effect.

What to do next

“Configuring tasks on application profiles” on page 134.

TaskNameManager interface
The TaskNameManager interface is available to all J2EE components using the
following JNDI lookup:
java:comp/websphere/AppProfile/TaskNameManager

package com.ibm.websphere.appprofile;

/**
* The TaskNameManager is the programmatic interface
* to the application profiling function. Using this interface,
* programmers can set the current task name on the
* thread of execution. The task name must have been
* configured in the deployment descriptors as a task
* reference associated with a task. The set task
* name’s scope is the duration of the method
* invocation in the EJB and Web components and for
* the duration of the client process, or until the
* resetTaskName() method is invoked.
*/
public interface TaskNameManager {

/**
* Set the thread’s current task name to the specified
* parameter. The task name must have been configured as
* a task reference with a corresponding task or the
* IllegalTaskName exception is thrown.
*/
public void setTaskName(String taskName) throws IllegalTaskNameException;

/**
* Sets the thread’s task name to the value that was set
* at, or imported into, the beginning of the method
* invocation (for EJB and Web components) or process

138 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

* (for J2EE clients).
*/
public void resetTaskName();

}

Chapter 5. Application profiling 139

140 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Chapter 6. Using Business Rule Beans

Before you begin

This topic provides a brief overview of the steps involved in externalizing Business
Rule Beans. To gain an understanding of business rules and Business Rule Beans
(BRBeans), review the topic “Overview of Business Rule Beans” on page 142. The
following sections provide an overview of externalizing business rules using
Business Rule Beans:

Steps for this task

1. “Developing BRBeans” on page 173
2. “Assembling applications for use with BRBeans” on page 178
3. “Managing rules” on page 179

Usage scenario

To help you get started quickly, a sample BRBeans application is provided.
Samples are installed by default during a typical WebSphere installation or you can
select to install specific samples during a custom installation.

The BRBeans sample is an online movie store application. The application’s EAR
file is installed and the application is configured to use the IBM Cloudscape
database (IBM Cloudscape is provided with IBM WebSphere Application Server). A
number of rules are created that you can view using the Rule Management
Application (RMA). To do this, change to the <install_root>/bin directory and
type one of the following commands:
v On a Microsoft® Windows® platform:

rulemgmt ..\samples\lib\BRBeans\movieSampleProperties

v On a Unix platform:
rulemgmt.sh ../samples/lib/BRBeans/movieSampleProperties

By running the sample, you can see how these rules are used. The source code for
the sample also is provided in the <install_root>/samples/src/BRBeans/Movie
directory. To see the use of trigger points, search the code for places where the
trigger() method is used.

Advantages of externalizing business rules
Business Rule Beans (BRBeans) provide a framework in which business
applications can externalize business rules. You can externalize rules by extending
your application analysis and design processes to identify the points of variability
(or ″trigger points″) in application behavior. When the application is implemented,
the business logic required at the points of variability is externalized into a
business rule. This allows certain aspects of the behavior to be changed without
actually changing the application code.

Here are some advantages of externalizing business rules:

© Copyright IBM Corp. 2003 141

Explicit documentation of business practice decisions
Separating business rule values from the application code makes the code
easier for others to view and understand while isolating information that
relates to business practice decisions.

Clearer understanding of application behavior
Externalization makes it possible to inspect the application to see which
business rules are being applied, when they are applied, and under what
circumstances.

Reuse of rules across business processes
Separating rules from the business logic of the application makes it easy to
reuse a business practice decision in a consistent fashion.

Increased consistency of business practices
Because externalized rules promote reuse and facilitate clear understanding
of business practice decisions, they provide a basis for improving business
practice consistency across applications.

Decreased maintenance and testing costs
Externalized rules have a clearly defined scope and are not tightly coupled
to the application code. This makes them easy to modify, quick to test, and
decreases costs and improves cycle time.

Improved manageability of business practice decisions
Externalization, change history, and inspectability all promote clear
ownership and consequently a better definition of who can change rules
and under what circumstances.

Increased confidence in predicting the business impact of proposed changes
Because rules are available for inspection, have well-defined scope, and are
not tightly coupled to application business logic, they make it easy to
understand the likely impact of changes and to predict whether
contemplated modifications or additions will have unwanted ripple effects.

Ability to identify and correct conflicting business rules in different parts of the
business

Externalized rules make it easy to check that rules being used in two
different parts of an application or even two different applications dealing
with different parts of the business, are consistent.

Overview of Business Rule Beans
Business Rule Beans are used to create and modify rules that keep pace with
complex business practices. This enables your application’s core behavior and user
interface objects to remain intact and untouched, even as business practices change.

The Business Rule Beans (BRBeans) framework enables you to organize rules in
folders. Folders provide a structure similar to the file system on your computer’s
hard drive. For example:
v Rules can be placed in folders based on any criteria you want.
v A rule folder can contain any number of rules and other rule folders.

In the BRBeans framework, each business rule is represented by an entity bean that
persistently stores information related to that rule. Each business rule is assigned
an appropriate rule name and stored in an appropriate rule folder (See “Rule
folders” on page 145 for more information).

142 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

When naming rules and folders, adhere to the Java package naming convention.
That is, name rules and folders based on the domain name of the organization for
which the rules are developed. For example, ACME’s isSeniorCitizen rule’s fully
qualified rule name (″full rule name″), might be
com/acme/ageRules/isSeniorCitizen. In this example, the com/acme path is used by
all of the rules developed by ACME and the ageRules folder is used to separate
″age″ rules from rules of other kinds. The root folder has no name; therefore, fully
qualified path names never start with a forward slash (’/’).

A fully qualified rule name consists of the following:
v The full path of the folder followed by a forward slash (’/’)
v The name of the rule

This fully qualified rule name is used by a trigger point to identify the rule to
trigger. Trigger points are small pieces of code that interface with the Business Rule
Beans trigger point framework to run business rules during application execution.
See “Placing a trigger point in the application code” on page 175 for more
information.

By default, trigger points can only trigger rules that are currently in effect based on
the current date and time when the trigger point is called. A business rule has a
start date and an end date (see “Rule attributes” on page 145 for more information)
that together define the interval during which the rule is in effect (see “Rule states”
on page 147 for more information). This behavior can be overridden by specifying

a date on the trigger point. This date is referred to as the ″As Of Date″. If no start
date is specified, the rule is not valid and cannot be found by trigger points.
Conversely, if no end date is specified, the rule never expires. Dates and times with
a precision of one second can be assigned using the ″Rule Management
Application″.

When there is more than one rule with the same fully qualified name, all of the
rules with that name that are currently in effect are triggered and the results are
combined using the combining strategy specified on the trigger point. See the
“CombiningStrategy method” on page 159 for more information.

Externalized business rules
A business rule is a statement that defines or constrains some aspect of a business
by asserting control over some behavior of that business.

A business rule officiates over frequently changing business practices and can come
from within the company or be mandated from outside, typically by regulatory
agencies. Typical uses for business rules include the following:
v Determining the current interest rate for a home loan
v Calculating a discount for a product
v Calculating the tax to apply to a given product
v Determining whether a given person is a senior citizen

The objects used to implement a business rule contain methods and attributes used
by the Business Rule Beans (BRBeans) run-time environment, its administrative
component, or both. An externalized business rule is implemented as a pair of
objects:
v Rule
v RuleImplementor

Chapter 6. Using Business Rule Beans 143

The Rule is an entity enterprise bean that stores all of the persistent data for the
business rule. This is the object that the trigger point framework code actually
deals with directly. When a trigger point is invoked, the internal framework code
performs a query to find the Rule object or objects representing the business rules
to be triggered. Once the Rules are found, the framework code determines where
the Rule is invoked, either local to the trigger point or remotely on the application
server. Then, it invokes the fire method on either the Rule enterprise bean itself
(for remote triggering) or on a local copy of the enterprise bean (for local
triggering) to perform the function of the business rule.

The class name of the business rule’s RuleImplementor is stored persistently in the
Rule. The RuleImplementor is a transient object (not managed by the application
server) that the Rule instantiates and then uses to do the actual work. When the
fire() method is called on the Rule object, the Rule object combines its persistent
set of values with the parameters it received on invocation. This creates the
parameter list for the RuleImplementor prior to invoking fire() on the
RuleImplementor with this parameter list. The actual execution of the
RuleImplementor algorithm can take place either remotely (within the application
server where the BRBeans enterprise beans are installed) or locally (within the Java
virtual machine (JVM) where the trigger point was called).

Types of business rules
Business rules can be divided into the following types:
v Base rules
v Classifier rules

Base rules are the most common type of rule and are triggered by the
TriggerPoint.trigger method. You can divide Base rules into the following
categories:

Derivation rules
These rules use an algorithm to return a value. These rules return any type
of value that makes sense in the business context in which they are used.
For example, a derivation rule can calculate a discount or compute the
total price of an order.

Constraint rules
These rules confirm that an operation has met all of its obligations and that
a particular constraint or edit has been met. For instance, a constraint rule
can check that a value entered by an external user is within legal bounds.
Business Rule Beans (BRBeans) provide a special return type,
com.ibm.websphere.brb.ConstraintReturn, which can be returned by a
constraint-type rule. A ConstraintReturn object contains a boolean value so
that if it is false, it can contain information that can be used to produce an
external message explaining what constraint was not met.

Invariant rules
These rules ensure that multiple changes made by an operation are
properly related to one another.

Script rules
These rules implement ″micro-workflow″ or electronic performance
support. They are small, variable pieces of a business process that provide
assistance to end-users to get the most from the application.

144 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

On the surface, classifier rules are much like base rules. However, classifier rules
can be used to determine the ways in which variables are classified by a business.
Classifier rules are triggered by the TriggerPoint.triggerClassifier method.

A classifier rule is used to compute a classification for a particular business
situation. The classification returned is required to be of type string. For instance,
bank customers may be classified into gold, silver, and bronze categories based on
their spending history or the amount of money they have in their account. For
more information on this type of rule, refer to “Situational trigger point” on
page 155.

Rule folders
Rule folders are similar to the directories that divide a computer’s hard drive in
that they split a large number of files into conceptual units. The rule folder adds
its path to the fully qualified rule name. Like the directories on a hard drive, a rule
folder can contain any number of rules or rule folders.

Although you can name the folders whatever you deem appropriate, it is
recommended that you follow the Java package naming convention. That is, base
the names on the domain name of the organization where the rules are developed.
So, the fully qualified rule name or full rule name of ACME’s isSeniorCitizen
might be com/acme/ageRules/isSeniorCitizen. In this example, the com/acme path
is used by all of the rules developed by ACME and the ageRules folder is used to
separate ″age″ rules from rules of other kinds.

Note: The root folder has no name, which means that fully qualified path names
never start with a ’/’.

When using the Rule Management APIs, a rule folder contains instances of IRules,
which also are referred to as ″rules″. To begin working with rules, get the root rule
folder by using the getRootFolder method on RuleMgmtHelper class. From the root
rule folder you can add, delete, and retrieve folders and rules using methods on
this interface.

Rule attributes
Rule name

A name for the rule that is appropriate to its business context.

Rule folder
The folder that contains the rule.

Start date
This is the date and time at which the rule goes into effect. Prior to this
time, it will not be found by trigger points. Together with the end date, the
start date defines a period of time during which the rule is effective. A rule
that does not have a start date specified is not a valid rule and will not be
found by trigger points.

End date
This is the date and time at which the rule is no longer effective. After this
date and time the rule is no longer in effect and will not be found by
trigger points. Together with the start date, the end date defines a period
of time during which the rule is effective. A rule that does not have an end
date specified is valid and will never expire.

Ready This indicates whether the rule is ready to be used. Rules that are not
marked as ready will not be found by trigger points. This is intended to be

Chapter 6. Using Business Rule Beans 145

an easy way to keep a rule from being used until it is completely defined
or to temporarily turn a rule off without having to change the basic rule
data such as start and end dates.

Java Rule Implementor name
This is the fully package-qualified name of a Java class that implements the
BRBeans RuleImplementor interface. The fire method of the class
performs the function of the rule. Business Rule Beans (BRBeans) provide
several predefined rule implementors or you can write your own. See
“Rule implementors” on page 151 or “Customized rule implementors” on
page 161 for more information.

Initialization parameters
This is an array of parameters that are passed to the rule implementor to
initialize it. Each element in the array can be any object. This also can be
referred to as the rule data, which is the external data that may change
over time. The initialization parameters defined for a rule are passed
directly to the init method of the rule implementor when it is instantiated.
See ″Rule Implementors″ for more information on how rule implementors
can use initialization parameters.

Firing parameters
Normally, firing parameters are simply the parameters passed on the
trigger point when a rule is triggered. However, it is allowed to override
these parameters by specifying parameters on the rule itself. This is where
these overriding parameters are specified.

Firing location
This specifies where the rule implementor for this rule is instantiated and
run. The following values are allowed:

Local This option instantiates the rule implementor and runs it local to
the trigger point (in the same JVM as the trigger point call). This is
run on the client machine if the trigger point call is done there or
on the server if the server part of an application makes a trigger
point call. Use this option for the best performance since, once a
rule is cached on the client, the entire triggering process can be
performed locally without going to the server at all. The main
disadvantage of this option is that the class files for the rule
implementors need to be available on every client that can trigger
rules.

Remote
This will instantiate the rule implementor and run it on the
application server where the Business Rule Beans enterprise beans
are installed. When using this option at least one remote method
call always is required to trigger a rule since the trigger takes place
on the server. The advantage is that the rule implementor class
files only need to be available on the server.

Anywhere
This option tries to instantiate and run the rule implementor
locally, and, if the class cannot be found, it tries to trigger it
remotely.

Classification
For classified rules, this is the classification to which the rule applies. This
is used when you use a situational trigger. Once a classification is
computed for the situational trigger point, rules that apply to that

146 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

classification are found and triggered. For more information, see
“Situational trigger point” on page 155.

Classifier
This indicates whether this rule computes a classification. Classification is
used for a situational trigger. A classifier rule is used to perform the first
step of a situational trigger which computes a classification that is used to
find rules to deal with the situation. For more information, see ″Situational
trigger point″.

Dependent rules
In many cases, a rule triggers other rules to complete the overall task.
These other rules are referred to as dependent rules and can be specified
using the dependent rules attribute. For more information, see “Dependent
rules” on page 148.

Business intent
This is a text description of the intent of this rule from the view point of
the business analyst. You can store any text string here.

Description
This is a text description of the rule at the programmer’s level. You can
store any text string here.

Original requirement
This is a text description of the initial business analyst requirement of this
rule. You can use this description to keep track of why this rule was
originally created (for example, to keep auditing records). You can store
any text string here.

User-defined data
You can store a user-defined text string here. The format and use of this
data is completely determined by the user.

Primary key
Every rule has a primary key to uniquely identify it in the database where
the enterprise beans are stored. Normally, a unique primary key is
generated automatically when you create a new rule. However, you can
use the rule management APIs to specify your own primary key, if desired.
See (Rule management APIs) for more information.

Precedence
This is the relative priority of this rule. The default finding strategy uses
this value to order the rules found in the database, from lowest to highest,
when more than one rule is found for a particular trigger point. Rules are
sorted numerically by precedence with the numerically lowest precedence
first and the numerically highest precedence last.

Rule states
Rules can be in any one of the following states at any particular time:

scheduled
The rule is scheduled to become effective (its start date is in the future)
and will not be found by current trigger points.

in effect
The rule is currently in effect and can be found by trigger points.

expired
The rule is no longer in effect (the end date is in the past) and will not be
found by trigger points.

Chapter 6. Using Business Rule Beans 147

invalid
The rule is not correctly defined and will not be found by trigger points.

Typically, only those rules that are ″in effect″ are found by the Business Rule Beans
(BRBeans) run-time environment. This behavior can be overridden by setting an
asOfDate on the TriggerPoint object, which then will execute ″as if″ the current
date is the given date. For more information, see ″As Of Date″.

When a Rule is first created, it is marked as ″ready for use″ and is found when
firing Rules. If the Rule is not complete and you do not want it to be found by
BRBeans, then use either of the following to mark the Rule:
v Use the setReady(false) method in the Rule Management APIs
v Use the Rule Management Application to mark the rule as not ready

Rule results
In general, a rule can return any type of result that makes sense for the business
purpose of the rule. The return type on the fire() method is java.lang.Object so
any Java object can be returned, including arrays. You cannot return a Java
primitive since the results must be an object. However, you can return the object
form of the primitives. For example, you can return a java.lang.Integer instead of
an int. If the rule is fired remotely, the returned value must implement
java.io.Serializable.

Dependent rules
When a business rule triggers other business rules as part of its implementation,
the rules that are triggered are called dependent rules of the first rule. An example
is the RuleAND rule implementor supplied with Business Rule Beans (BRBeans). It
uses two or more dependent rules, each of which is assumed to return a true or
false value. When a rule with RuleAND as its implementor is triggered, it triggers
each of its dependent rules and a logical AND operation is performed on all of the
returned results. The result of this AND operation is returned as the result of the
top-level rule.

Dependent rules are specified in the attributes of the top-level rule where the fully
qualified name of each dependent rule is listed. When the top-level rule is
triggered, an array of dependent rule names is passed to the rule implementor’s
init() method. They are stored here until they are triggered by the fire() method.

Note: The BRBeans framework does not ensure that the dependent rules specified
in the enterprise beans are actually triggered. Triggering the dependent rules
and interpreting their results is entirely up to the rule implementor of the
top-level rule.

Dependent rules can be nested within other dependent rules. In other words, a
dependent rule of some particular rule can have its own dependent rules which, in
turn, can have their own dependent rule and so on. The BRBeans framework does
not place any restriction on the number of levels that dependent rules can be
nested. The only practical restriction is the complexity of the rule set that is built
up when dependent rules are nested many levels deep.

BRBeans run-time environment
The Business Rule Beans (BRBeans) run-time environment is used to find and
trigger rules.

148 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

The BRBeans run-time environment is made up of two parts:
v Code that runs on the client (″client″ here meaning wherever the trigger point is

located). This consists of code that does the following:
– Finds the specified rules
– Decides where the rules should be triggered
– Calls the fire method on all rules
– Combines the results from the rules

v Code that runs on the server. This consists of enterprise beans used to represent
rules and rule folders. These enterprise beans do the following:
– Provides for business rule persistence
– Provides query functions that the client part of the run time can use to find

rules to be triggered

BRBeans run-time behavior
Business Rule Beans (BRBeans) run-time behavior can best be described by giving
a simple example of a trigger point selecting, executing, and then responding to
the results of a business rule.

The first step in triggering a rule is for the trigger point framework to perform a
query on the rule server to determine which rules to trigger. The main item used
for the query is the fully qualified rule name. Other items used in the query
include the start and end date, whether this is a classifier, the classification of the
rule, and whether the rule is marked ″ready″. This query returns zero or more
rules. If there is at least one rule, the trigger point assembles the data that is sent
as parameters to each rule. The trigger point then loops through the list of rules
invoking the fire() method on each and passing the parameters. The results are
combined depending on the combining strategy used.

When the trigger point framework invokes fire on a rule, it instantiates the
RuleImplementor and uses it to do the actual work (to execute the rule algorithm or
test). Once it has arrived at a result, the RuleImplementor returns that result. For
constraint rules (ones that arrive at a boolean true or false answer) the returned
value is, by convention, a ConstraintReturn. A ConstraintReturn is a data structure
that indicates whether the constraint was satisfied. If not, the ConstraintReturn
indicates what went wrong. For derivation rules (ones that calculate a single,
generally non-boolean value), the return value can be any type. In the simplest
case, the return value from each RuleImplementor is returned back to the trigger
point where it is analyzed to determine what action to take.

The following is an overview of what happens when the maxTruckDriverHours rule
is triggered:

A rule exists named maxTruckDriverHours. The purpose of this rule is to check that
the number of hours entered by a user for a particular truck driver does not
exceed the maximum allowed value. This rule contains an initialization parameter
list consisting of a single value of 8. This rule is bound to a RuleImplementor class
called MaxRuleImpl. MaxRuleImpl tests the parameter it is passed against the
initialization list value and returns a ConstraintReturn. The ConstraintReturn is
set to true if the passed parameter is less than or equal to the initialization value.
Otherwise, a ConstraintReturn is set to false and some information is added that
describes which values were compared and why the test failed.

When this rule is triggered, the following details the trigger point process:

Chapter 6. Using Business Rule Beans 149

1. During the execution of the application, the application reaches a point where it
needs to verify that the number of truck driver hours that was entered is valid.
The application code invokes a simple trigger point passing the name of the
rule to be triggered and a parameter list containing the entered hours for the
driver.

2. The trigger point framework performs a query on the rule server to find the
rule with the specified name. It receives back a sequence of rule objects. In this
case, this sequence contains one rule, maxTruckDriverHours.

3. The framework determines whether this rule is to be triggered on a local or
remote machine. If local, the framework gets a local copy of the rule object and
calls the fire method on the copy. If remote, the framework calls the fire
method on the enterprise bean reference. The parameter list containing the
weight is passed to the fire method.

4. The maxTruckDriverHours rule (either the copy or the enterprise bean itself)
creates an instance of the rule implementor class, maxRuleImpl, if it does not
already have one. When a new rule implementor instance is created, the rule
calls its init method passing any initialization parameters defined for the rule.
In this case, the initialization parameter list contains the single value 8. If the
rule already has a rule implementor instance, it uses that one and does not call
the init method.

5. The maxTruckDriverHours rule calls the fire method on the rule implementor
instance. The firing parameters passed to the trigger point are passed to the
rule implementor and are possibly modified by any firing parameters defined
in the rule itself. In this case, the firing parameters are passed directly from the
trigger point.

6. The maxRuleImpl returns a ConstraintReturn object to the rule that indicates the
result of its comparison. This ConstraintReturn is returned to the trigger point
framework and ultimately to the application.

7. The application checks the value in the ConstraintReturn and takes the
appropriate action.

BRBeans run-time exception handling
Business Rule Beans (BRBeans) defines one general exception class for exceptions
that might be exposed to the user. All other BRBeans exceptions inherit from this
class. The name of this class is
com.ibm.websphere.brb.BusinessRuleBeansException. A
BusinessRuleBeansException is generally thrown when an unexpected error occurs
within BRBeans. A BusinessRuleBeansException might have information in it about
the original exception that caused the error. Doing a printStackTrace on the
BusinessRuleBeansException prints out this information and the stack trace for the
BusinessRuleBeansException itself. Also, there are methods to access the original
exception programmatically, if desired.

BRBeans also defines a ConstraintViolationException , which extends
BusinessRuleBeansException. A ConstraintViolationException is thrown if the
ThrowViolationCombiningStrategy is specified on the TriggerPoint and the rule
returns a false value (either a ConstraintReturn or a boolean).

Finally, BRBeans defines two exceptions, NoRuleFoundException and
MultipleRulesFoundException , that are thrown by some of the predefined filtering
strategies if an unexpected number of rules is found on a trigger point call. These
two exceptions both extend UnexpectedRulesFoundException which, in turn,
extends BusinessRuleBeansException.

150 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Rule implementors
A rule implementor, in terms of Business Rule Beans, is an algorithm written in
Java that implements the BRBeans RuleImplementor interface.

A Business Rule Beans (BRBeans) Rule is a persistent object that exists on the
BRBeans Rule server. One of the rule’s persistent attributes, in addition to
startDate, endDate, initParams, and so on, is javaRuleImplementorName, which is
the name of its rule implementor.

BRBeans supplies a number of predefined rule implementor classes that can be
used in user-defined BRBeans rules (see the BRBeans Javadoc in the InfoCenter for
more information) to implement the BRBeans RuleImplementor Interface. The Java
source code for these rule implementors is supplied as BRBeans sample code in the
com.ibm.websphere.brb.implementor package. This sample code, packaged in a
JAR file, appears in the CLASSPATH of the BRBeans Rule Server (for ″remote″
firing) or is co-located in the CLASSPATH of the application or applications using
it (for ″local″ firing). Typically, the RuleImplementor is in the application EAR file.

Using standard Java development tools, you can externalize BRBeans by attaching
them to either enterprise beans or ordinary Java objects. Programming a new rule
implementation in Java is typically a simple process. If you write your own rule
implementor, you must create a new Java class that implements the
com.ibm.websphere.brb.RuleImplementor interface. This class must implement the
following methods:

Default constructor
The class must have a default, no-argument constructor so that it can be
instantiated when a rule using it is triggered.

init The init method comes from the RuleImplementor interface and is called
when the rule implementor is first. Its purpose is to perform an
initialization needed by the rule implementor instance before it is actually
fired. The following parameters are passed to the init method:

The initialization parameters defined for the rule being triggered
These can be any parameters needed to properly initialize the rule
implementor instance. Often the initialization parameters consist of
constants required by the algorithm. For example, when using a
rule implementor that checks whether a number is greater than a
threshold value, the threshold value normally is passed as an
initialization parameter. This parameter is null if there are no
initialization parameters for the rule.

An array of names of dependent rules for the rule being triggered
Normally, the rule implementor stores these names to be used
when the fire method is called. These dependent rules are
intended to be triggered as part of the algorithm performed by the
rule implementor. See “Dependent rules” on page 148 for more
information. This parameter is null if there are no dependent rules
defined for the rule.

The user-defined data for the rule being triggered
This data is completely defined by the user of the Business Rule
Beans (BRBeans). BRBeans does not interpret this data in any way.
This parameter is null if there is no user-defined data defined for
the rule.

Chapter 6. Using Business Rule Beans 151

A reference to the actual rule being triggered
This can be used to extract attribute values from the rule, if
needed.

fire The fire method comes from the RuleImplementor interface. This method is
called to perform the algorithm of the rule implementor. Any desired
algorithm can be performed here. Normally, a value is returned by the
fire method that is ultimately returned as the result of triggering the rule.
The following parameters are passed to the fire method:

The TriggerPoint object that is being used to trigger the rule
This parameter is needed if the rule has dependent rules that the
fire method needs to trigger.

The target object for this particular trigger call
This parameter can be any object that is thought of as the target of
the rule. However, the parameter can be null.

A reference to the actual rule being triggered
This parameter can be used to extract attribute values from the
rule, if needed.

The firing parameters for this particular trigger call
Normally, these parameters are the firing parameters passed by the
code that invoke the trigger point. However, these can be
overridden by specifying firing parameters on the rule itself.
Wherever they ultimately come from, these are the parameters that
the rule implementor needs at run time to perform its function.
Normally, these are run-time variables that are to be processed by
the rule implementor. For example, when using a rule implementor
that checks whether a number is greater than a threshold value,
the number to be checked normally is passed as a firing parameter.
This parameter is null if no firing parameters are passed by the
caller and none are defined on the rule itself.

getDescription
getDescription comes from the RuleImplementor interface. The purpose of
this method is to return a text string that describes the function of the rule
implementor. This information might be displayed on a user interface to
help select what implementor to use. This method, however, is currently
not used by the BRBeans framework. Users can incorporate this
information if they create their own rule implementor. For additional
information on the RuleImplementor interface, see the BRBeans Javadoc in
the InfoCenter.

Trigger point framework
A trigger point is the location in a method of an object where externalized business
rules are invoked.

The proper placement of trigger points can add substantially to the flexibility and
speed with which a business application adapts to new business practices.

Wherever a trigger point is placed in user-written code, the Business Rule Beans
(BRBeans) trigger point framework needs to do the following:
1. Assemble the parameter list to send to the rules
2. Find the potential rules that apply
3. Filter out any rules which do not apply (optional)

152 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

4. Fire the rules in the filtered rule set
5. Combine the results of the rule firings is some meaningful way

The application code that contains the trigger point needs to perform the following
functions:
1. Establish a value for the target object. Usually the target object is the object in

which the trigger point is encountered. The target object is one of the
parameters passed to the fire method of the RuleImplementor. However, this is
an optional parameter. If the rule implementor does require a target object, null
can be passed instead.

2. Build the array of objects containing the run-time parameters needed to satisfy
the trigger point’s business purpose. This array is normally passed as one of
the parameters of the fire method of the RuleImplementor. If firing parameters
are specified on the rule itself, then those firing parameters are passed instead
of the ones passed by the caller.

3. Invoke the trigger(), triggerClassifier(), or triggerSituational() method
of the TriggerPoint class.

4. Catch and handle any exceptions that might occur as a result of firing the rules.
Otherwise, take action based upon the rule firing results.

The two simple trigger methods, trigger and triggerClassifier, perform their
function in four steps:
1. Find the rules
2. Filter out those rules which are not desired
3. Fire the remaining rules
4. Combine the results and return to the caller

The complex trigger method, triggerSituational does this sequence of steps
twice. In the first phase, the method performs the four steps once to find a rule
that returns a classification. This classification is fed into the second phase. The
second phase triggers rules that have the name specified in the triggerSituational
method and have a classification equal to the value returned by the first phase.

How each of these steps is performed can be modified through various methods
on the TriggerPoint object. The implementation of each step is defined by a
strategy object. For more information on strategies, see Administering strategy
objects to control triggers.

Trigger points
Examples of how to code a trigger point call are provided in the following topics:
v “Simple trigger point”
v “Classifier trigger point” on page 154
v “Situational trigger point” on page 155

Simple trigger point
A simple trigger point is used to trigger a rule or rules specified by name. This
type of trigger point is used by invoking the trigger method on an instance of the
TriggerPoint class. All rules with the specified name are triggered and the results
are combined using the CombiningStrategy specified on the TriggerPoint object.
This type of trigger point only finds rules that are not marked as classifiers.

Chapter 6. Using Business Rule Beans 153

The following shows an example of using a simple trigger point to trigger a rule
named isSeniorCitizen (in the com/acme/ageRules folder), which determines
whether a person is classified as a senior citizen based on the passed in age:
...
// create an instance of TriggerPoint for triggering the rule and specify that the
// ReturnFirstCombiningStrategy is to be used to return only the first result if
// multiple rules are found.
TriggerPoint tp = new TriggerPoint();
tp.setCombiningStrategy(CombiningStrategy.RETURN_FIRST, TriggerPoint.ALL_RULES);

// define parameter list that’s passed to the rule
Object [] plist = new Object[1];

// define age of person to be tested
Integer age = new Integer(64);

// define name of rule to be fired
String ruleName = "com/acme/ageRules/isSeniorCitizen";

// define result of rule firing
Object result = null;

// initialize parameter list
plist[0] = age;

try {

// fire "com/acme/ageRules/isSeniorCitizen" rule passing parameter list containing age.
// Note: in this case the target object is not used and could be null.
result = tp.trigger(this, plist, ruleName);

// put result into usable format. A single result is returned since we specified to use
// the ReturnFirstCombiningStrategy. By default an array of results would be returned.
boolean seniorCitizen = ((Boolean)result).booleanValue();

// make use of result
if(seniorCitizen) {
...
}

}
catch(BusinessRuleBeansException e) {

// handle exception
...

}

Classifier trigger point
A classifier trigger point is identical to a simple trigger point except that it only
finds rules marked as classifiers. Classifiers are rules that determine what sort of
business situation is present. These rules then return a classification string that
indicates the result.

Usually these rules are used as part of a situational trigger point, but they also can
be triggered on their own. This type of trigger point is used by invoking the
triggerClassifier method on an instance of the TriggerPoint class.

The following shows an example of using a classifier trigger point to trigger a rule
named determineCustomerLevel (in folder com/acme/customerClassfiers). This rule
classifies customers into levels (gold, silver, and bronze) based on their spending
history.
...
// create an instance of TriggerPoint for triggering the rule and specify that the
// ReturnFirstCombiningStrategy is to be used to return only the first result if
// multiple rules are found.
TriggerPoint tp = new TriggerPoint();
tp.setCombiningStrategy(CombiningStrategy.RETURN_FIRST, TriggerPoint.ALL_RULES);

// define parameter list that’s passed to the rule
Object [] plist = new Object[1];

154 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

// information about the customer to be checked is stored in this object
Customer cust = ...;

// define name of rule to be fired
String ruleName = "com/acme/customerClassifiers/determineCustomerLevel";

// define result of rule firing
Object result = null;

// initialize parameter list
plist[0] = cust;

try {

// fire "com/acme/customerClassifiers/determineCustomerLevel" rule passing parameter
// list containing the customer to be checked.
// Note: in this case the target object is not used and could be null.
result = tp.triggerClassifier(this, plist, ruleName);

// put result into usable format. A single result is returned since we specified to use
// the ReturnFirstCombiningStrategy. By default an array of results would be returned.
String customerLevel = (String) result;

// make use of result
if(customerLevel.equals("Gold")) {
...
} else if (customerLevel.equals("Silver")) {
...
} else if (customerLevel.equals("Bronze")) {
...
} else {
...
}
}
catch(BusinessRuleBeansException e) {

// handle exception
...

}

Situational trigger point
A situational trigger point is used when the rule or rules to be triggered depend on
the business situation.

This example evaluates a customer’s past purchasing history to place them into
one of three levels: Gold, Silver, or Bronze. Their classification determines how
much of a discount they receive.

To use a situational trigger point to handle this case, it is first necessary to define
four rules:
v one classifier rule to determine under which of the three levels to classify the

customer
v three classified rules to determine the actual discount to offer

All of the classified rules have the same name and are marked as applying to one
of the three customer levels by specifying the level in its classification attribute. For
example, the rule to determine the discount for a Gold level customer will contain
the string ″Gold″ in its classification attribute.

The situational trigger point takes two rule names as input: the name of the
classifier rule and the name of the classified rule. The situational trigger point then
proceeds in two phases:
1. Find the specified classifier rule and trigger it to generate a classification string.

Chapter 6. Using Business Rule Beans 155

2. Find the rules that have the name specified for the classified rule and have a
classification attribute equal to the classification string returned by the first
phase.

These rules then are triggered to produce the final result, in this case the discount
to offer.

The following shows an example of a situational trigger point used to handle the
case described previously:
...
// create an instance of TriggerPoint for triggering the rule and specify that the
// ReturnFirstCombiningStrategy is to be used to return only the first result if
// multiple rules are found.
TriggerPoint tp = new TriggerPoint();
tp.setCombiningStrategy(CombiningStrategy.RETURN_FIRST, TriggerPoint.ALL_RULES);

// define parameter list that’s passed to the classifier rule
Object [] classifierPlist = new Object[1];

// define parameter list that’s passed to the classified rule
Object [] classifiedPlist = new Object[1];

// information about the customer to be checked is stored in this object
Customer cust = ...;

// define name of classifier rule to be fired
String classifierRuleName = "com/acme/customerClassifiers/determineCustomerLevel";

// define name of classified rule to be fired
String classifiedRuleName = "com/acme/discountRules/determineDiscount";

// define result of rule firing
Object result = null;

// initialize parameter lists
classifierPlist[0] = cust;
classifiedPlist[0] = cust;

try {
// fire the rules to get the discount to offer
// Note: in this case the target object is not used and could be null.
result = tp.triggerSituational(this, classifiedPlist, classifierPlist,
classifiedRuleName, classifierRuleName);

// put result into usable format. A single result is returned since we specified to use
// the ReturnFirstCombiningStrategy. By default an array of results would be returned.
Float discountToOffer = (Float) result;

// make use of result
...
}
catch(BusinessRuleBeansException e) {

// handle exception
...

}

Note: In the preceeding example, the code that following try { wrapped onto two
lines due to the width of the page. The following line of code is normally
typed on one continuous line:
result = tp.triggerSituational(this, classifiedPlist, classifierPlist,
classifiedRuleName, classifierRuleName);

As Of Date
An ″As Of Date″ can cause rules to be triggered as if the given date is the current
date. This is especially useful when you want to test a rule, see what effect a future
change in rules or regulations may have on the overall framework, or see what
past or future rates, discounts, or both might be.

156 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Normally, a rule only can be triggered if it is ″in effect″ (see ″Rule States″) as of the
current date and time.

To set an ″As Of Date″, call the setAsOfDate() method on the TriggerPoint object
and pass the date that you want to be used. To use the current date again, call
unsetAsOfDate or setAsOfDate and pass null for the date.

Predefined strategy objects
The following is a list of predefined strategy objects that are provided in Business
Rule Beans:

FindingStrategy
Accesses the data store and returns those rules that meet the search criteria
specified

FilteringStrategy
Takes the list of rules that were found by the FindingStrategy and filters
out the rules that should not be fired

FiringStrategy
Takes the rules that were found by the FindingStrategy, (possibly modified
by the FilteringStrategy), fires them each in order, and returns an array
containing the results of each rule

CombiningStrategy
Takes the results of the rules that are fired by the FiringStrategy and
combines them to form a reasonable result to the TriggerPoint caller.

FindingStrategy method
The job of the FindingStrategy is to access the data store and return those rules
that meet the search criteria specified. There are two FindingStrategy classes
provided by Business Rule Beans (BRBeans):
v DefaultClassifierFindingStrategy

v DefaultNonClassifierFindingStrategy

Both of these strategies perform a case-sensitive search for Rules that are marked
″ready″ and match the given search criteria. Results are ordered by precedence
from highest to lowest (the first rule in the array has the numerically smallest
precedence, the next rule has the next smallest precedence, and so on). If no rules
are found, then an empty array is returned. The former strategy returns classifier
rules (classifier=true) only and the latter returns non-classifier rules
(classifier=false) only.

These default strategies are used automatically by the TriggerPoint. There is no
need to call setFindingStrategy to use these strategies. Instances of these two
default finding strategies are stored in static constants defined on the
FindingStrategy interface.

FilteringStrategy method
The job of the FilteringStrategy is to take the list of rules that were found by the
FindingStrategy and filter out the rules that should not be fired. There are three
sets of filtering strategies used in TriggerPoint:

v strategy for zero rules found
v strategy for one rule found
v strategy for multiple rules found

Chapter 6. Using Business Rule Beans 157

A different strategy can be used for each of these scenarios, along with different
strategies for classifier and non-classifier rules. The zero rules strategy is invoked if
no rules are found by the finding strategy, the one rule strategy is invoked if
exactly one rule is found and the multiple rules strategy is invoked if more than
one rule is found.

Business Rule Beans (BRBeans) provides the following filtering strategies that can
be used:

Accept Any
BRBeans utilizes all of the rules found (this is the default).

Accept One
BRBeans expects one rule only.

Accept First
BRBeans utilizes the first rule found.

Accept Last
BRBeans utilizes the last rule found.

Instances of these filtering strategies are stored in static constants defined in the
FilteringStrategy interface. You can use these for setting the strategies on a
TriggerPoint.

As an example, here is one common way to use filtering strategies. You want to
ensure that exactly one rule is found on a TriggerPoint call. Thus, set all three
strategies (zero rules, one rule, and multiple rules) for this TriggerPoint to
FilteringStrategy.ACCEPT_ONE. This strategy throws an exception if the number of
rules is not exactly one. The following sequence of method calls accomplishes this
for TriggerPoint tp:
tp.setNoRulesFilteringStrategy(FilteringStrategy.ACCEPT_ONE, TriggerPoint.ALL_RULES);
tp.setOneRuleFilteringStrategy(FilteringStrategy.ACCEPT_ONE, TriggerPoint.ALL_RULES);
tp.setMultipleRulesFilteringStrategy(FilteringStrategy.ACCEPT_ONE, TriggerPoint.ALL_RULES);

FiringStrategy method
The FiringStrategy takes the rules that were found by the FindingStrategy,
(possibly modified by the FilteringStrategy), fires them each in order, and
returns an array containing the results of each rule.

A single default FiringStrategy is provided by Business Rule Beans (BRBeans) as
all of the rules are fired in the same way. This implementation takes each rule in
order and performs the following steps:
1. Determines what firing parameters to pass to the rule. If there are no firing

parameters specified for this rule, the implementation uses the firing
parameters passed on the TriggerPoint call. Otherwise, it uses the firing
parameters specified in the rule in place of the parameters passed on the
TriggerPoint call.

2. Calls the fire method on the rule and passes the firing parameters from the first
step.

Unexpected exceptions result in a BusinessRuleBeansException being thrown that
contains the original exception.

158 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

CombiningStrategy method
The job of the CombiningStrategy is to take the results of the rules that are fired by
the FiringStrategy and combine them to form a reasonable result to the
TriggerPoint caller. Business Rule Beans (BRBeans) provides several combining
strategies to be used in applications:

Return All
Returns the results from all of the rules fired in an array (this is the
default)

Return First
Returns only the result from the first rule fired

Return Last
Returns only the result from the last rule fired

Return AND
Returns the logical AND of the results from all the rules fired. This
strategy requires that all of the results returned by the fired rules are either
ConstraintReturn objects or java.lang.Boolean objects. An exception is
thrown if this is not the case.

Return OR
Returns the logical OR of the results from all of the rules fired. This
strategy requires that all of the results returned by the fired rules are either
ConstraintReturn objects or java.lang.Boolean objects. An exception is
thrown if this is not the case.

Throw Violation
Throws a ConstraintViolationException containing all of the failed
ConstraintReturn objects if any ConstraintReturns contain false.
Otherwise, it returns a true ConstraintReturn.

Instances of these combining strategies are stored in static constants defined in the
CombiningStrategy interface. You can use these for setting the strategies on a
TriggerPoint. For example, the following method call sets the CombiningStrategy
on TriggerPoint tp to be the Return_First strategy:
tp.setCombiningStrategy(CombiningStrategy.RETURN_FIRST, TriggerPoint.ALL_RULES);

Customized strategy objects
The process of triggering a rule or set of rules is controlled by a set of strategy
objects. The following four strategies are used each time a rule is triggered:

FindingStrategy
The FindingStrategy accesses the persistent data store to find the set of
rules matching the search criteria passed to the trigger call. The search
criteria are based on the rule ID information passed on the trigger call. The
set of rules found is passed to the FilteringStrategy.

FilteringStrategy
The FilteringStrategy can change the set of rules that were found by the
FindingStrategy. The set of rules returned is the set that are fired by the
FiringStrategy.

FiringStrategy
The FiringStrategy fires the rules found by the FindingStrategy, which
may be modified by the FilteringStrategy. It gathers the results of the
individual rules and passes them to the CombiningStrategy.

Chapter 6. Using Business Rule Beans 159

CombiningStrategy
The CombiningStrategy takes the results from firing the rules and combines
them to produce the final result of the trigger.

Each TriggerPoint object has its own set of strategies that can be changed
independent of any other TriggerPoint object. There is a set of default strategies
that are used by the TriggerPoint if none are explicitly set.

For each of the four strategies, you can set different strategies for classifier rules
and for non-classifier rules. The strategies set for classifier rules are used when the
Business Rule Beans (BRBeans) framework is triggering a classifier rule. The
strategies for non-classifier rules are used in all other cases.

It is also possible to set three different sets of filtering strategies:
v one to be used if no rules are found
v one to be used if exactly one rule is found
v one to be used if more than one rule is found

This capability can be used to set up filtering strategies that throw exceptions if the
expected number of rules is not found.

Strategy classes must implement one of the strategy interfaces provided by
BRBeans in the com.ibm.websphere.brb package:
v FindingStrategy

v FilteringStrategy

v FiringStrategy

v CombiningStrategy

Users can write their own strategy implementations to perform special functions
not performed by the predefined implementations. Write these strategy
implementations with care since part of the functionality of the BRBeans
framework is replaced when you write a custom strategy. One simple example of
writing a custom strategy is creating a new firing strategy that logs every rule that
is fired.

The basic requirement for a strategy implementation is that it implements the
appropriate strategy interface.

For the filtering and combining strategies, create a class that implements either
FilteringStrategy or CombiningStrategy and either the filterRules() method (for
FilteringStrategy) or the combineResults() method (for CombiningStrategy) to
perform the required functions. At run time, create an instance of the new class
and pass it to the TriggerPoint object using the appropriate set method so that the
new strategy is used when rules are triggered using that TriggerPoint.

The finding and firing strategies are more complicated to customize since they
provide more function than the simple filtering and combining strategies. Default
finding and firing strategy implementations are provided that define a general
outline of the steps necessary to perform the function. It is suggested that you
subclass these when you customize your own strategies and then override the
desired methods on the default implementation to provide the new behavior.

160 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

The BRBeans Javadoc in the InfoCenter provides more information about the
FindingStrategy, FilteringStrategy, FiringStrategy, and the CombiningStragegy
interfaces.

Customized rule implementors
To write your own rule implementor, create a new Java class that implements the
com.ibm.websphere.brb.RuleImplementor interface. This class must implement the
following methods:

Default constructor
The class must have a default, no-argument constructor so that it can be
instantiated when a rule using it is triggered.

init The init method comes from the RuleImplementor interface and is called
when the rule implementor is first created. Its purpose is to perform an
initialization needed by the rule implementor instance before it is actually
fired. The following parameters are passed to the init method:

The initialization parameters defined for the rule being triggered
These can be any parameters needed to properly initialize the rule
implementor instance. Often the initialization parameters consist of
constants required by the algorithm. For example, when using a
rule implementor that checks whether a number is greater than a
threshold value, the threshold value normally is passed as an
initialization parameter. This parameter is null if there are no
initialization parameters for the rule.

An array of names of dependent rules for the rule being triggered
Normally, the rule implementor stores these names to be used
when the fire method is called. These dependent rules are
intended to be triggered as part of the algorithm performed by the
rule implementor. See “Dependent rules” on page 148 for more
information. This parameter is null if there are no dependent rules
defined for the rule.

The user-defined data for the rule being triggered
This data is completely defined by the user of the Business Rule
Beans (BRBeans). BRBeans does not interpret this data in any way.
This parameter is null if there is no user-defined data defined for
the rule.

A reference to the actual rule being triggered
This can be used to extract attribute values from the rule, if
needed.

fire The fire method comes from the RuleImplementor interface. This method is
called to perform the algorithm of the rule implementor. Any desired
algorithm can be performed here. Normally, a value is returned by the
fire method that is ultimately returned as the result of triggering the rule.
The following parameters are passed to the fire method:

The TriggerPoint object that is being used to trigger the rule
This parameter is needed if the rule has dependent rules that the
fire method needs to trigger.

The target object for this particular trigger call
This parameter can be any object that is thought of as the target of
the rule. However, the parameter can be null.

Chapter 6. Using Business Rule Beans 161

A reference to the actual rule being triggered
This parameter can be used to extract attribute values from the
rule, if needed.

The firing parameters for this particular trigger call
Normally, these parameters are the firing parameters passed by the
code invoking the trigger point. However, these can be overridden
by specifying firing parameters on the rule itself. Wherever they
ultimately come from, these are the parameters that the rule
implementor needs at run time to perform its function. Normally,
these will be run-time variables that are to be processed by the rule
implementor. For example, when using a rule implementor that
checks whether a number is greater than a threshold value, the
number to be checked normally is passed as a firing parameter.
This parameter is null if no firing parameters are passed by the
caller and none are defined on the rule itself.

getDescription
getDescription comes from the RuleImplementor interface. The purpose of
this method is to return a text string that describes the function of the rule
implementor. This information might be displayed on a user interface to
help a user select what implementor to use. This method, however, is
currently not used by the BRBeans framework. For additional imformation,
see the RuleImplementor interface in the BRBeans Javadoc (which is
located in the InfoCenter).

Rule management command
The Rule management command assists the user in performing high-level
administration of rules and rule folders.

This includes the capability to create, modify, delete, import, or export rules or rule
folders. This command can be used initially by the programmer to define rules
interactively and then used by the domain analyst for rule management tasks. You
can use the following files:
v On Microsoft Windows platforms, rulemgmt.bat
v On Unix platforms, rulemgmt.sh

Syntax
rulemgmt properties-file [host-address port-number]

Parameters

<properties-file>
The fully qualified name of a file containing the JNDI names of the rule
EJBs for the rule set that is to be accessed.

The following must be specified in the file:
RuleJndi=<JNDI name of the Rule EJB>
RuleFolderJndi=<JNDI name of the RuleFolder EJB>
RuleHelperJndi=<JNDI name of the RuleHelper EJB>

See <WAS_HOME>/bin/brbeansDefaultProperties for an example.

Arguments

host-address
This is the host name of the name server. The default is the local host.

162 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

port-number
This is the port number of the name server. The default is 2809.

Rule importer command
The rule importer command imports rules into a database from one or more XML
documents.

The rule importer command can be invoked using the Rule Management
Application (RMA). The user interface in RMA provides some assistance in
specifying the parameters required by the importer. Alternatively, the rule importer
can be invoked from the command line using the following scripts:
v For Microsoft Windows platforms, ruleimporter.bat
v For UNIX platforms, ruleimporter.sh

Syntax
ruleimporter <properties-file> <import-files> [options]

Parameters

<properties-file>
The fully qualified name of a file containing the JNDI names of the
Business Rule Beans (BRBeans) enterprise beans for the rule set that is to
be accessed. Refer to “BRBeans properties file” on page 164 for a definition
of the contents of this file. This parameter is required.

<import-files>
One or more fully qualified names of the files containing XML rule
definitions to be imported. These files must contain XML in the format
defined in <WAS_HOME>\bin\brb.dtd file. This parameter is required.

Options

-[v]erbose
Shows verbose output while importing. This shows the rule definition of
every rule that is imported.

-[t]est Parses the input files only and does not create rules on the application
server. This will ensure that there are no errors in the syntax of the rule
definitions provided in the XML document. Combined with the -verbose
option, it also can be used to see exactly what rules will be imported.

-[u]pdate
Update the existing rule with values from the input file when a rule in an
input file has the same primary key as an existing rule. If this option is not
specified, then any rule with the same primary key as an existing rule
causes an error and that rule is not imported.

-[c]ommiteach
Performs a commit after each rule is created rather than creating all of the
rules in a single transaction. If this option is not specified, then all rules are
created in a single transaction. This means that if any rule causes an error,
the entire transaction is rolled back and none of the rules are imported. If
-commiteach is specified and a rule causes an error, only that rule is not
imported. Other rules are still imported.

-[h]ost <host-name>
Specifies the name of the host for the name server. The default is the local
host.

Chapter 6. Using Business Rule Beans 163

-[p]ort <port_number>
Specifies the port number for the name server. The default is 2809.

Rule exporter command
The rule exporter command exports rules from a database into an XML document.

The rules that are exported are determined by an XML document, which is
provided to the command. The rule exporter function can be invoked using the
Rule Management Application (RMA). The user interface in RMA provides some
assistance in specifying the parameters required by the exporter. Alternatively, the
rule exporter can be invoked from the command line using the following scripts:
v For Microsoft Windows platforms, ruleexporter.bat
v For UNIX platforms, ruleexporter.sh

Syntax
ruleexporter <properties-file> <export-list-files>[options]

Parameters

<properties-file>
The fully qualified name of a file containing the JNDI names of the
BRBeans enterprise beans for the rule set that is to be accessed. Refer to
“BRBeans properties file” for a definition of the contents of this file. This
parameter is required.

<export-list-files>
One or more fully qualified names of files containing a list of rules, folders,
or both to be exported. These files must contain XML in the format defined
in the <WAS_HOME>\AppServer\bin\brb-export-list.dtd file. This parameter
is required.

Options

-[v]erbose
Shows verbose output while exporting.

-[o]utput <file-name>
Specifies the name of the output file where the XML rule definitions are
stored. This is a required parameter.

-[h]ost <host-name>
Specifies the name of the host for the name server. The default is the local
host.

-[p]ort <port-number>
Specifies the port number for the name server. The default is 2809.

BRBeans properties file
Applications that use the Business Rule Beans (BRBeans) enterprise beans (this
includes applications that trigger rules or use the rule management APIs) must
specify the JNDI names for these enterprise beans so that the application can find
them at run time. If the application is running in a J2EE client container, in a
servlet, or on the application server itself (for example, as part of another
enterprise bean), then these names probably have been specified by the person
who configured the application. If the application is not running in a container, the
names must be specified some other way. The BRBeans properties file provides a
way to do this.

164 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

At run time, the BRBeans code looks for a special Java property that identifies the
name of the properties file. This Java property can be specified on the command
line as -DbrbPropertiesFile=<file_name>. The file specified is expected to contain
the JNDI names used to find the BRBeans enterprise beans. The BRBeans
framework uses these names when it needs to locate the enterprise beans.

When an application attempts to reference BRBeans enterprise beans, the code first
looks for the brbPropertiesFile Java property. If this property is specified, the
names listed in that file are used to find the enterprise beans and to override any
EJB references that were specified in the container (if the application is running in
a container). If the property is not specified, then BRBeans attempts to use the EJB
references specified in the container.

The host name and port number used to access the name server also can be set in
this file. If these are not specified, the BRBeans framework uses the name server
used by the container in which the application is running. If the application is not
running in a container, then localhost is used for the host name and 2809 is used
for the port number.

The properties file must be in the following format (entries can be specified in any
order):
host=<host-name-for-server>
port=<port-number-for-server>
RuleJndi=<JNDI-name-for-Rule-EJB>
RuleFolderJndi=<JNDI-name-for-RuleFolder-EJB>
RuleHelperJndi=<JNDI-name-for-RuleHelper-EJB>

Location

A default properties file is shipped as
<WAS_HOME>\AppServer\bin\brbeansDefaultProperties.

There are a set of JAR files that conform to the BRBeans<database-type>.jar
naming convention (depending on the type of database that you want to use). If
the JAR files are used without changing the JNDI names, then you also can use the
default properties file.

Usage note

The file name still must be specified even if you want to use the default file. There
is no file that is used automatically if the brbPropertiesFile property is not set.

The tools shipped with BRBeans (the Rule Management Application, the rule
importer, and the rule exporter) all run outside of any container. Hence, the JNDI
names need to be specified when these tools are run. The scripts for these tools all
require that you pass a properties file name as a command line parameter. This
name then is specified as the value for the brbPropertiesFile property when the
tool is run.

Database considerations for BRBeans
The following relational databases are supported by Business Rule Beans
(BRBeans):
v IBM DB2
v IBM Cloudscape
v Microsoft SQL Server

Chapter 6. Using Business Rule Beans 165

v Oracle
v Sybase
v Informix®

This documentation does not provide you with specific instructions on how to use
any of these databases. For help with specific commands, consult the
documentation that accompanied your database software. The following are
general considerations for relational databases that are supported by BRBeans:

Large character data

There are several attributes in the BRBeans Rule enterprise beans that might
contain large amounts of data. This includes fields such as: businessIntent,
dependentRules, description, firingParameters, initParameters, originalReq,
and userDefinedData. The value for these attributes is stored in a character type
column within a database table. Whenever possible, the values are stored in large
character fields like LONG VARCHAR (for DB2) and TEXT (for Sybase).

There are several cases where the use of large character fields is problematic,
mostly in terms of a lack of query support. Refer to each of the supported database
sections for details on the column type used for storing the values in these
attributes.

Isolation level

All of the enterprise beans accessed in a transaction must specify the same
isolation level. If your application contains enterprise beans that are used in the
same transaction as the rules, you must do one of the following:
v Change the BRBeans enterprise beans (Rule, RuleFolder, and RuleHelper) to

the same isolation level as your beans.
v Change your beans to the same isolation level as the BRBeans enterprise beans.
v Place the BRBeans enterprise beans in a different database than your enterprise

beans and configure the application to run using the two-phase commit protocol.
This causes the beans to run in different transactions; thereby removing the
restriction that they need to have the same isolation level.

Oracle considerations
Large character data

The preferred Oracle data type for storing large character objects is CLOB. However,
Oracle does not allow a CLOB to be queried. Because of this, a data type of
VARCHAR2 is used by Business Rule Beans (BRBeans). A specific length must be
specified when specifying VARCHAR2. The maximum length for a VARCHAR2 is 4000
bytes.

To determine the default size of VARCHAR2, look in the table.ddl file that was
generated when you deployed the code. If the default size is not acceptable for
your application, you can do one of the following:

Increase the size of the columns
Keep in mind that maximum size for a VARCHAR2 in Oracle is 4000. Increase
the column size either by changing the value in the create table statement
or by changing the schema mapping and deploying the BRBeans JAR file.

166 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Change the schema mapping to specify CLOB
Do this for any of the attributes that you do not wish to query and then
deploy the BRBeans JAR file.

Isolation level

The default isolation level is REPEATABLE_READ. Oracle does not support this
isolation level. Therefore, the IBM WebSphere runtime environment converts this to
the next highest isolation level, which in this case is SERIALIZED. Be aware that this
isolation level tends to be overly restrictive as it prevents two clients from reading
data at the same time. The BRBeansOracle.jar file specifies an isolation level of
READ_COMMITTED.

Sybase considerations
Allowing null values

By default, Sybase does not allow null values in string columns (like VARCHAR, TEXT,
and so on). You can change this default value for a database using ″isql″ by issuing
the following command:

sp_dboption databasename, ″allow nulls by default″, true

In this example ″databasename″ is your database name.

Large character data

The large character data fields are stored in a column of type TEXT. Sybase allows
TEXT fields to be queried only using the SQL ″LIKE″ operator. Queries against the
columns that perform the SQL ″IS NULL″ or ″IS NOT NULL″ operations are not
allowed by Sybase. The alternative is to specify a column type of VARCHAR.
However, the maximum allowed size for a VARCHAR in Sybase is 255 characters.
This is not considered a large enough value for storing firingParameters,
initParameters, descriptions, and so on.

If performing ″IS NULL″ and ″IS NOT NULL″ type queries is important and the 255
character limitation is acceptable, change these column types to VARCHAR. To
accomplish this, alter the schema mapping for the Rule bean and then deploy the
BRBeans JAR file.

The query APIs (in the com.ibm.websphere.brb.query package) allow for ″IS NULL″
and ″IS NOT NULL″ type queries to be performed on several of these fields. In
addition, the Rule Management Application allows the firing parameters to be
queried in this manner. These queries fail on Sybase with the default column type
of TEXT.

Informix considerations
Large character data

The preferred Informix data type for storing large character data is CLOB. However,
Informix does not allow a CLOB to be queried. Because of this, a data type of
LVARCHAR is used by BRBeans. The maximum length for an Informix LVARCHAR is
2,000 characters. If 2,000 characters is not acceptable and your application does not
need to query these data types, you can change the schema mapping to specify
CLOB. Then, deploy the BRBeans JAR file.

Custom properties for the data source

Chapter 6. Using Business Rule Beans 167

When configuring the data source for your application, you must specify the
following properties:
v ifxIFXHOST=Name of the physical machine on which the Informix instance is

installed

v serverName=Informix instance name

v portNumber=Port number for which the Informix instance is configured

v informixLockModeWait=500

A setting of 500 causes a connection to wait for up to 500 seconds for a lock. If
you have a busy system, this wait can appear to be a system hang. This setting
has the same effect as running SET LOCK MODE TO WAIT 500 on the
connection.

Note: The previous configuration values are subject to change. Consult your
Informix documentation for updates.

Rule Management Application
The Rule Management Application (RMA) is a tool that assists the user in
performing high-level administration of rules and rule folders.

This includes the capability to create, modify, delete, import, or export rules or rule
folders. The RMA tool can be used initially by the programmer to define rules
interactively, and then by the domain analyst for rule management tasks. The main
window for the RMA is the Rules Browser.

The column on the left side of the Rule Browser window shows a nested hierarchy
of all of the existing rule folders. Click one of these folders to display the rules it
contains. The names of these rules appear in the right column.

Navigate as you would in a typical file-management browser.
1. Click the ″+″ icon to expand by one level and click the ″-″ icon to collapse it.
2. Click a rule or folder name to highlight it, right-click the rule or folder name to

launch a list of actions, or select an option from the main menu.

RMA is designed to be a general purpose tool for interactive management of rules.
Alternatively, you can write your own user interface that is tailored more
specifically to the domain in which you work. For instance, a domain-specific user
interface can provide more help to the user in the task of managing rules than a
general purpose tool such as RMA. If you plan to write your own user interface,
refer to the RuleImplementor interface in the BRBeans Javadoc for assistance. The
BRBeans interface is located in the InfoCenter.

Rule management APIs
Business Rule Beans (BRBeans) provide a set of APIs to perform rule management
tasks programmatically. These tasks include creating, deleting, and updating rules
and folders. These APIs are provided to simplify the interaction with the BRBeans
enterprise beans. Use these APIs to perform rule management tasks instead of
coding directly in the EJB interfaces.

The rule management APIs consist of the classes in the
com.ibm.websphere.brb.mgmt package. You might use the following main classes:

IRule

168 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

This is the interface used to access the object representing a business rule in
BRBeans. It provides methods to read and update attributes of the rule, to delete
the rule, and to make a copy of the rule. The methods to create rules are in the
IRuleFolder interface since you must always create a rule and specify a particular
folder in which it will reside. In the rule management APIs, any time you get a
rule, you have the option to receive a reference to the enterprise bean itself or to
receive a local copy of the data contained in the enterprise beans. Regardless of
which option you choose, the IRule interface can be used to access the returned
object. If a local copy is requested, it is possible to cast the returned object to an
IRuleCopy. IRuleCopy extends IRule and adds a couple additional methods to
those defined by IRule. See the IRuleCopy section for more details.

IRuleCopy

This is the interface used to access a local copy of the enterprise bean that
represents a business rule. An object implementing this interface is returned from
rule management API methods if you ask for a local copy of the rule. The main
reason for requesting a local copy is performance. Calling a method on a local
copy is much faster than calling the method on the actual enterprise bean. If you
need to access several different rule attributes, this may make a big difference.
Similarly, when updating a rule, all updates can be sent to the enterprise bean in
one method call instead of many. The individual set methods are called on the
copy and then the updatePersistentRule() method is called to actually send the
updates to the enterprise bean.

IRuleFolder

This is the interface used to access the object representing a rule folder. It provides
methods to create, delete, and find rules and subfolders. It also provides methods
to move and rename the folder, and to get the parent folder. The IRuleFolder
representing the root folder is generally what you start with when performing rule
management tasks. Once you have the root folder you can navigate up and down
the folder hierarchy and access rules contained within the folders.

RuleMgmtHelper

This is a helper class intended to contain methods that are of general use for
performing rule management tasks. Currently, the only methods available are used
to get the IRuleFolder representing the root folder. The root folder is normally the
starting point for performing rule management tasks.

IParameter

This is the interface used to represent an initialization or firing parameter stored in
a Rule EJB. Every parameter has a user description and a value that are accessible
from this interface. The following classes are provided to implement the
IParameter interface:

ConstantParameter
This is the most common type of parameter. It represents a single constant
value that is to be passed as an initialization or firing parameter.

MethodCallParameter
This class represents a parameter whose value is determined by calling a
method on the target object. The method to call must be a public method
and must take zero parameters. This is only used for firing parameters.

Chapter 6. Using Business Rule Beans 169

TriggerPointParameter
This class represents a parameter that is retrieved from one of the trigger
point firing parameters. This is mainly used for reordering the firing
parameters passed on the trigger point. This is only used for firing
parameters.

For more details on the rule management interfaces, including a number of coding
examples, refer to the com.ibm.websphere.brb.mgmt package in the BRBeans
Javadoc.

BRBeans performance enhancements
Externalizing business logic using Business Rule Beans (BRBeans) has many
benefits, but does not come completely without a cost. Since every business rule is
represented by an enterprise bean, then, in general, every rule trigger is performed
in three parts:
1. a query is performed to find the enterprise beans that represent the rules to be

triggered.
2. a remote method call is performed on the EJB instance to trigger the rule.
3. a remote method call is made to determine whether to fire the rule locally or

remotely.

The first two steps both require server processing so processing can become rather
slow.

This section documents the following ways to improve performance:
v Performance enhancements through caching
v Performance enhancements using indexes
v Performance enhancements by changing the firing location

Performance enhancements through caching
The Business Rule Beans (BRBeans) framework incorporates a cache on the client
side; that is, wherever the trigger() method on the TriggerPoint object is called.
This cache is scoped to the Java virtual machine (JVM) in which the client is
running so that any trigger calls performed in a particular JVM use the same cache
and two triggers performed in different JVMs use two different caches. The
BRBeans cache caches the results of all of the queries performed to find a set of
rules to be triggered. The next time a trigger is performed in that JVM with the
same rules specified, the rules are found in the cache and the query does not
require server processing.

Once the rules are found in the cache they are triggered, either locally or remotely,
depending on how they were defined. If a rule found in the cache is specified to
be triggered locally, then the entire trigger process for that rule is performed on the
client without calling the server. Even if the rule is specified to be triggered
remotely, finding the rule in the cache eliminates one call to the server since the
query is not performed on the server.

The BRBeans cache can improve performance greatly, however it has one
disadvantage: changes made to rules are not recognized immediately.

When a change is made to a rule on the server, there is no way to inform all of the
potential clients that something has changed and that they may need to refresh
their caches. Thus, the client cache must check periodically to see if anything in the
persistent rule data has changed. This is implemented by associating a polling

170 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

frequency with the cache. This polling frequency specifies an interval of time that
the cache waits before checking to see if anything has changed. The next time a
trigger is performed after a polling interval has passed, the cache checks to see if
any changes have been made to the persistent rule data stored on the server. If no
changes have been made, then the cache is not refreshed. If any changes have been
made, the entire cache is cleared so that the changes are picked up. Thus, changes
to the rules are only picked up by the cache after a polling interval has passed.

The default polling frequency is 10 minutes. The user can change this value by
changing the single initialization parameter specified for the special rule named
com/ibm/websphere/brb/BRB CacheRule. The value for this initialization parameter
is in the following format: hh:mm:ss

hh stands for hours, mm stands for minutes, and ss stands for seconds.

Thus the default of 10 minutes is specified by a value of 00:10:00. To specify a
polling frequency of, for example, 1 hour, 30 minutes, specify 01:30:00

When this value is changed, it does not take effect until the previous polling
interval has passed. Thus, if the previous polling interval is set to 24 hours and the
polling frequency is changed to 1 hour, the new frequency does not take effect
until the previous 24 hour polling interval passes. The only other ways to get the
new frequency to take effect are to either restart the client (since this causes the
cache to be re-initialized from scratch) or have the client code call the
refreshCache() method on the TriggerPoint object. If there is more than one client
JVM performing triggers, this must be done for each client since each JVM has its
own cache.

Note: There is only one BRB CacheRule and this rule applies to all clients. There is
no way to set different polling frequencies for different clients.

Caching can be disabled for a particular TriggerPoint object using the
disableCaching() method. After the disableCaching() method is called any triggers
performed using that TriggerPoint object can not use the cache. Triggers performed
using other TriggerPoint objects are not affected.

Performance enhancements using indexes
Creating an index over the database table that is used to store rules is an
important way to improve the performance of rule queries. It is recommended that
an index be created over the rulename column of the table containing the rules.
This greatly improves the performance of rule-triggered queries that are looking
for a rule or rules with a specific name. The index saves the query from searching
every row in the table. Refer to the documentation for your database for
instructions on how to create an index.

Performance enhancements by changing the firing location
The Business Rule Beans (BRBeans) framework allows you to specify where to fire
a particular rule. This determines where the rule implementor is instantiated and
invoked. The following lists the possible values for the firing location:

Local Fires the Java rule implementor in the same JVM in which the trigger was
performed.

Remote
Fires the Java rule implementor on the server where the rules exist.

Chapter 6. Using Business Rule Beans 171

Anywhere
Tries to fire the Java rule implementor locally. If the Java rule implementor
cannot be found, then it fires the the implementor remotely. This is the
default value.

For simple rule implementors that do not perform any server-intensive work,
specifying Local usually results in the best performance. This is true both without
and with caching. A complete comparison of local firing versus remote firing must
consider four cases: local and remote firing without caching and local and remote
firing with caching. A description of these four cases follow:

Remote call without caching

Without caching, the work done to fire a rule remotely involves the following:
1. Finding the rule.
2. Determining whether the rule is to be fired locally or remotely.
3. Calling fire on the remote rule.

Each of these three operations requires a remote call to the server.

Local call without caching

Without caching the work done to fire a rule locally involves the following:
1. Finding the rule.
2. Determining whether the rule is to be fired locally or remotely.
3. Calling fire on a local copy of the rule.

This requires only two remote calls. Firing locally results in a savings of one
remote method call.

Local call with caching

With caching, local firing results in even more dramatic improvements. The work
done to fire a rule remotely involves the following:
1. Finding the rule. This involves a search of the local cache and does not involve

calling the database.
2. Calling fire on the remote copy of the rule found in the server’s cache.

This requires only one remote method call.

Remote call with caching

The work done to fire a rule locally with caching involves the following:
1. Finding the rule. This involves a search of the local cache and does not involve

calling the database.
2. Calling fire on the local copy of the rule found in the cache.

This does not involve any remote method calls. The entire rule firing process takes
place locally without remote method calls. To get the full benefit of the BRBeans
cache, use local firing. However, remotely fired rules still benefit from the cache
due to the elimination of the query on the server and the elimination of the remote
call to determine whether the rule is being fired locally or remotely.

172 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

There may be some cases where a rule implementor must perform some work that
requires significant interaction with the server. In these cases, it may be beneficial
to have rules using this rule implementor defined to be fired remotely. This might
make the server interaction performed by the implementor more efficient.

Note: In addition to performance, maintenance also must be considered in relation
to specifying a firing location. The rule implementor classes for rules that
are defined to be fired locally must be present on any client system that tries
to fire those rules. Otherwise, the implementor cannot be instantiated when
the rule is fired. This can result in maintenance problems when the rule
implementors are changed since they must be updated on many different
systems.

Developing BRBeans
Although the development tasks in this article are shown in sequential order, the
exact sequence is left to your discretion. In particular, you might choose to create
the business rules before or after the trigger point is placed. Also, you can write
the rule implementor before or after creating the actual business rules. However, if
you do not have the rule implementor at the time that the business rule is created,
then you cannot complete the rule implementor field or the initialization
parameters in the rule. However, you can leave the business rule marked as not
ready until you can complete that information. For this reason, we have chosen to
list the task of writing the rule implementor first. Complete the following tasks to
develop Business Rule Beans:

Steps for this task

1. “Determining where to place a trigger point”
Determine where there are points of variability and where business logic must
be externalized as part of application analysis and design process.

2. “Placing a trigger point in the application code” on page 175
Add code to the application to invoke the trigger point framework, to find
business rules, and to fire the rules.

3. “Administering strategy objects to control triggers” on page 176
Control the process of triggering the rules using a set of strategy objects.

4. “Implementing business rules” on page 177
Use a rule implementor, written in Java, to implement the BRBeans
RuleImplementor interface. Also, create business rules invoked by the rule
implementor.

What to do next

It is possible to develop your own customized strategy objects and rule
implementors. See “Customized strategy objects” on page 159Customized strategy
objects and “Customized rule implementors” on page 161Customized rule
implementors for more information.

Determining where to place a trigger point
To determine where to place your trigger points, you can use either the case
analysis or the Object Interaction Diagrams (OIDs) method. The following are
examples of methods that you can use to determine where to place a trigger point:

Use case analysis

Chapter 6. Using Business Rule Beans 173

Trigger points can be found during analysis by inspecting the use cases or user
interaction scenarios that are typically developed as statements of requirement as
input to the analysis process. A fragment of a use case is shown below:

The vehicle is entered into the system or chosen. The customer service representative
attempts to locate the named driver in the system. If the driver is not found, she or he is
added to the system and then picked.

Otherwise the found driver is simply picked. If the vehicle is an auto, anyone between the
ages of 16 and 75 can be picked as a driver. If the vehicle is a truck, only drivers 16 to 70
years old can be picked. And if the vehicle is a motorcycle, drivers 14 to 65 can be picked.

After the driver has been picked, a rate quote can be performed...

To identify potential trigger locations in use case analyses such as this one, look for
keywords such as:
v ″if X is in a special category Y″ (For example, ″if the vehicle is a truck″)
v ″except when″

v ″unless″

v ″depends on″

Object Interaction Diagrams (OIDs)

OIDs that are based on use cases can yield a number of observable patterns that
can be used to identify trigger points fairly easy. The following are some of the
rules to look for and where the trigger point might be placed:
v Validation of edits on create methods.
v Validation of edits on set methods.
v Referential integrity of edits on methods that set references.
v Cardinality checks at a consistency point (a point in time where all of the data is

expected to be self consistent).
v Required fields checks at a consistency point.
v Cross field edits at a consistency point.
v Constraints or derivations that have a high potential for reuse (especially if the

algorithm is complex) at any appropriate point.
v Constraints or derivations that a business desires to be consistent across

applications (at any appropriate point).
v Constraints or derivations where the business wants to decouple the

maintenance cycle for a rule from the maintenance cycle for the code (at any
appropriate point).

Results

By using either method, you will be able to identify where to locate trigger points
to use Business Rule Beans (BRBeans) effectively.

What to do next

Once the trigger points have been identified, place the trigger point or points. See
“Placing a trigger point in the application code” on page 175 for more information.

174 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Placing a trigger point in the application code
Before you begin

Before placing a trigger point, review the following topics:
v Trigger point framework
v Determining where to place a trigger point

The TriggerPoint class is the primary interface of the Business Rule Beans
(BRBeans) Trigger Point framework. The class is used to transfer control to the
Trigger Point framework to find and fire the rules specified in the application’s
trigger point.

Steps for this task

1. Create an instance of the com.ibm.websphere.brb.TriggerPoint class. All rule
triggers must be performed against an instance of this class. Also, set any
desired strategies on the TriggerPoint instance.

2. Gather together the parameters to be passed on the trigger.
For the simple trigger() and triggerClassifier() methods this includes the
following:

An optional target object
This can be used to specify an object that is to be the target of the rule’s
algorithm. Whether this is needed depends completely on the design of
the rule implementor being used.

The firing parameters for this rule trigger
This is an array of run-time parameters needed by the rule to satisfy its
business purpose. The exact set of required firing parameters is
determined by the rule implementor that is used by the rule.

Note: Any firing parameters defined on the rule itself will override
whatever is passed here.

Information identifying the rule or rules to be triggered
Normally this is either a single String containing the name of the rule
to be triggered or an array of Strings each element of which is the
name of a rule to be triggered. However if a custom finding strategy is
being used, this could be whatever information it needs in order to find
the correct rules.

The triggerSituational method differs in that it takes two sets of firing
parameters and two sets of rule identification information: one set for the
classifier rules and one for the classified rules.

3. Invoke the trigger(), triggerClassifier(), or triggerSituational() method
of the TriggerPoint instance. This will actually trigger the rule or rules.

4. Process the results of the triggered rule or rules.

What to do next

Examples of how to code a trigger point call are provided in the following topics:
v Simple trigger point
v Classifier trigger point
v Situational trigger point

Chapter 6. Using Business Rule Beans 175

For a detailed description of the trigger point programming interfaces refer to the
Trigger Point class in the BRBeans Javadoc. The BRBeans Javadoc is located in the
InfoCenter.

Administering strategy objects to control triggers
Strategy objects are used to alter TriggerPoint functions. The two simple trigger
methods, trigger() and triggerClassifier(), perform their function in the
following sequence:

Steps for this task

1. Find the rules.
2. Filter out those rules which are not desired.
3. Fire the remaining rules.
4. Combine the results and return to the caller.

Results

The complex trigger method triggerSituational() does this sequence of steps
twice; the first sequence finds the classification to feed into the second sequence.

Default strategy objects already are defined for each of the four TriggerPoint steps
and they are used if none are specified explicitly. For each of these steps, there are
at least two strategy objects used, one for triggering classifier rules, and one for
triggering non-classifier rules. For the filtering step, there are actually three pairs of
strategies that are used, based on the number of rules which the finding strategy
returns (zero, one, or multiple).

While the sheer number of strategies that are available can be intimidating (twelve
different strategy classes can be set), very few will need updating. Most users will
modify the filtering strategies or the combining strategies only.

A number of predefined strategy objects are provided and can be used for the
majority of cases. Although the following strategies are described separately, they
have a definite dependency on each other. For example, the FilteringStrategy filters
rules from the FindingStrategy; the FiringStrategy uses the results of the
FindingStrategy to operate; and the CombiningStrategy depends on the results of
the FiringStrategy.

FindingStrategy
The FindingStrategy accesses the data store and returns those rules that
meet the search criteria specified. See the “FindingStrategy method” on
page 157 for more information.

FilteringStrategy
The FilteringStrategy takes the list of rules that were found by the
FindingStrategy and filters out the rules that should not be fired. See the
“FilteringStrategy method” on page 157 for more information.

FiringStrategy
The FiringStrategy takes the rules that were found by the FindingStrategy,
(possibly modified by the FilteringStrategy), fires them each in order, and
returns an array containing the results of each rule. See the “FiringStrategy
method” on page 158 for more information.

CombiningStrategy
The CombiningStrategy takes the results of the rules that are fired by the

176 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

FiringStrategy and combines them to form a reasonable result to the
TriggerPoint caller. See the “CombiningStrategy method” on page 159 for
more information.

The Java classes for these strategy objects are defined in the
com.ibm.websphere.brb.strategy package. Static constants also are defined in the
interfaces for the various strategies. This allows easy access to instances of the
strategy classes to set them on the TriggerPoint.

Also, it is possible to write your own strategy class if the supplied ones do not
perform the function you need. See “Customized strategy objects” on page 159 for
more details.

Implementing business rules
Before you begin

After determining where to place a trigger point, placing the trigger point, and
defining your strategy objects, you must provide a method to implement the
business rules and then create the rules. In addition, you might choose to organize
your rules by creating rule folders.

Note: Although the development tasks in this article are shown in sequential
order, the exact sequence is left to your discretion. In particular, you might
choose to write the rule implementor before or after creating the actual
business rules.

The business rule encapsulates and externalizes the business logic for the rule and
any data that parameterizes the rule. Complete the following process to implement
business rules:

Steps for this task

1. Provide an implementation, called a rule implementor, for each business rule
that you create
The rule implementor provides the actual business logic for the rule,
implemented in Java. The rule implementor’s fire() method is called when the
business rule is triggered to actually perform the processing for the rule.
Several generic rule implementors are shipped with BRBeans, which might be
useful in some situations. However, if these rule implementors do not meet
your needs, you can write your own rule implementor. Refer to the section on
writing your own rule implementor for details.

2. Use the Rule Management Application (RMA) to create the business rule
a. In the Rule Browser window, select the folder where you want the new

rule to be created.
b. From the main menu, click File > New > Rule.

In the New Rule properties window, use the following tabs to define the
rule:

General
Use this tab to enter general information about the rule.

Implementation
Use this tab to define the manner in which the rule is implemented.

Description
Use this tab to define the purpose and intent of the rule.

Chapter 6. Using Business Rule Beans 177

Dependent Rules
Use this tab to specify the rules that the newly created rule will
depend upon.

Other Use this tab to to establish precedence, and enter information that is
relevant to you, but does not fit into any other category.

c. To complete the creation of the rule, click OK.
If there are any mandatory fields still undefined, either go back and give
them a value, or make the rule unavailable for use (see Status in the
General tab for more information on this).

3. (Optional) Create a rule folder using the Rule Management Application to
contain the new business rule
a. In the Rule Browser window, select the folder where you want the new

folder to be nested.
b. From the main menu, click File > New > Folder.

A new folder appears in the folder hierarchy in edit mode. Enter a folder
name and hit the Enter key.

Assembling applications for use with BRBeans
When you are ready to ship your application, include a Business Rule Beans
(BRBeans) JAR file in your EAR file. There are several of these JAR files in the
<WAS_HOME>/BRBeans directory; one for each supported database. Each name reflects
the database type that it uses (for example, BRBeansDB2.jar). These JAR files
contain three enterprise beans with the following JNDI names:
v brbeans/application/Rule

v brbeans/application/RuleFolder

v brbeans/application/RuleHelper

In your EAR files, complete the following steps:

Steps for this task

1. Change the JNDI names of the BRBeans enterprise beans to make them unique
for your application.
For example, if your application is called MyApp, you could change the first
one to brbeans/MyApp/Rule or com/MyCompany/MyApp/Rule.

2. Define EJB references to these three enterprise beans in any module where a
trigger...() method exists in one or more of its classes.
You can do this using the WebSphere Studio Application Developer tool or the
Application Assembly tool. The Name field should contain the following and
correspond to the enterprise beans listed above:
v ejb/com/ibm/ws/brb/Rule

v ejb/com/ibm/ws/brb/RuleFolder

v ejb/com/ibm/ws/brb/RuleHelper

Note: The JNDI name on the Bindings tab should be the same as the JNDI
names that you gave earlier to the enterprise beans.

Since the BRBeans enterprise beans refer to each other, there are also EJB
references defined within the BRBeans JAR file itself. Each of the three BRBeans
enterprise beans has two EJB references defined. These six references also need
to be updated with the JNDI names you assigned earlier.

178 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

3. If you are not using the BRBeansCloudscape.jar file, skip this step. In the
BRBeansCloudscape.jar file each entity enterprise bean has a resource reference
defined for the data source it will use. You must update the JNDI binding for
this reference to specify the JNDI name of the actual data source you want to
use for the BRBeans entity enterprise bean. The shipped BRBeansCloudscape.jar
file contains a dummy JNDI name for each binding. There are two resource
references that need to be updated: one for the Rule enterprise bean and one
for the RuleFolder enterprise bean. You can use the WebSphere Studio
Application Developer tool or the Application Assembly tool to perform this
update.

What to do next

After you have an EAR file that includes your application code and the BRBeans
enterprise beans, complete the following steps to install and run the application:
1. Deploy the EAR file to generate run-time code for the BRBeans enterprise

beans and any other enterprise beans that you may have in your application.
Deployment can be accomplished either as a separate step (using the ejbdeploy
command) or as part of the process of installing the EAR file onto an
application server. Refer to the base WebSphere documentation for more
information about deploying an EAR file.

2. The deployment process generates a file named Table.ddl. Table.ddl contains
database commands to create the database tables needed by the BRBeans entity
enterprise beans. You must use your database software to create a database and
then use the commands in the Table.ddl file to create tables in this database.
Refer to your database software documentation for more information on the
commands needed to set up a database and the database tables.

3. Create a JDBC provider and a data source to access the database created in the
previous step. For all of the databases except IBM Cloudscape, the BRBeans
enterprise beans are configured to require a Version 4 data source. For
Cloudscape, you can use a normal data source.

Note: The JNDI name you specify for the data source also must be specified
when you install the EAR file on the application server so that the server
knows which data source to use.

Refer to the base WebSphere documentation for more information on these
topics.

4. Install the EAR file on an application server. To install the EAR file, either use
command line tools or the WebSphere Administrative Console.

Note: The EAR file can be deployed either as a separate step or as part of the
installation process on the server.

Refer to the base WebSphere documentation for more information on installing
an EAR file on an application server.

5. Start the application using the WebSphere Administrative Console.

You now have an application installed and running using BRBeans.

Managing rules
Before you begin

In Business Rule Beans (BRBeans), rule management involves making changes to
the set of business rules used by applications. This can include any of the
following activities:

Chapter 6. Using Business Rule Beans 179

v “Implementing business rules” on page 177: Creating rules and rule folders
v “Copying or moving rules or rule folders” on page 181
v “Working with Quick Copy” on page 182
v “Finding a rule” on page 182
v “Deleting rules” on page 183
v “Deleting rule folders” on page 183
v “Changing the properties of a rule” on page 183
v “Importing a rule” on page 184
v “Exporting a rule” on page 184
v “Renaming rules” on page 185
v “Renaming rule folders” on page 185
v “Specifying columns” on page 185
v “Changing the date and time format” on page 186

There are two different interfaces that can be used for rule management:

Rule Management Application
An external user interface that allows users to manage rules interactively. It
provides a general purpose interface for managing rules where no
assumptions are made about the content or implementation of the rules.
For information on how to use the Rule Management Application, see
“Starting the Rule Management Application” on page 181.

Rule management APIs
A programmatic interface that can be used by programmers to manage
rules or to customize an external user interface. For more information on
Rule management APIs, see the com.ibm.websphere.brb.mgmt package in
the Javadoc. The Javadoc is accessible through the InfoCenter.

Rules can be managed in any way that makes sense for your application, but the
BRBeans framework was designed with the following administrative paradigm in
mind:

Steps for this task

1. Understand the desired change in business behavior.
2. Inspect the application documentation (in particular information that indicates

where trigger points are located) to understand where the changes need to be
made in the system.

3. Inspect the corresponding set of existing business rules using the Rule
Management Application (or your own custom management application, if
you have one) to understand which rules need to change.

4. Use the Rule Management Application, on a test system, to create one or more
new rules that implement the required new behavior. Give these rules the
correct name so that they are triggered by the appropriate trigger point. Also,
make sure that these new rules are currently in effect.

5. Withdraw (by setting the end date of the rule), on the test system, all of the
rules that are to be superseded.

6. Test the application to ensure that it behaves as expected.
7. Export the new rules using the Rule Exporter on the test system. Schedule the

rules to become effective at the correct point in time.
8. Export the rules to be superseded using the Rule Exporter on the test system.

Set them to expire when the new rules come into effect.

180 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

9. Import the new rules using the Rule Importer on the production system. This
creates the new rules and schedules them to become effective at the date you
specified when you exported them.

10. Import the rules to be superseded using the Rule Importer on the production
system. This puts the new end date into the existing rules on the production
system and sets them to expire on the specified date.

What to do next

For more information on the overall topic of Externalizing business rules, see
Chapter 6, “Using Business Rule Beans”, on page 141.

Starting the Rule Management Application
Before you begin

Review the overview topic “Managing rules” on page 179

To administer BRBeans, use the Rule Management Application (RMA). To launch
the RMA, complete the following steps:

Steps for this task

1. Open a command window and change to the following directory:
<WAS_HOME>/bin

2. For Microsoft Windows platforms, enter rulemgmt.bat <properties-file>. For
UNIX® platforms, enter rulemgmt.sh <properties-file>

where <properties-file> is a fully qualified name of a file containing port,
host, and JNDI names used for the Business Rule Beans (BRBeans) enterprise
beans. If you are using localhost port 2809 and you are using the default JNDI
names for the BRBeans enterprise beans, you can specify the following in the
default properties file: <WAS_HOME>/bin/brbeansDefaultProperties. For a full
definition of the contents of this file, see “BRBeans properties file” on page 164.

Copying or moving rules or rule folders
Copy or move rules or rule folders either by cutting and pasting, or dragging and
dropping.

To copy or move rules or rule folders, proceed as follows:

Cutting and pasting
Use the menu commands (Edit > Copy, Edit > Cut and Edit > Paste) or
keyboard commands (CTRL-C, CTRL-V, and CTRL-X).

Dragging and dropping
Highlight the rule or rule folder you want to copy. Then press and hold
the right mouse button, drag the cursor to the target location, and release.
Select Copy or Move from the list.

Note: A rule also can be copied so that the copy replaces the existing rule at a
specified date. This is referred to as a Quick Copy.

See “Managing rules” on page 179 for other tasks related to the management of
your rules.

Chapter 6. Using Business Rule Beans 181

Working with Quick Copy
Use Quick Copy to make a copy of a rule that will replace the existing one on a
specified date.

For example, suppose that we have an ″isSeniorCitizen″ rule. Currently a person is
considered a senior citizen if they are 62 years of age or older. Starting on January
1, 2002, we are going to change this to 65. Use Quick Copy to specify the new
date, and change the age from 62 to 65. The current rule will be set to expire on
the same date that the new rule will take effect with the new senior citizen age
defined as 65.

To use Quick Copy from the Rule Browser or Search Results window, proceed as
follows:

Steps for this task

1. Select the rules you want to Quick Copy.
2. From the main menu, click Edit > Quick Copy.
3. In the Quick Copy window, specify in the following fields how the copy will

differ from the original:

Start Date For New Rule
Enter the date that the new rule will replace the existing rule. Use the
date and time format that is shown.

Change parameter values for new rule
Enter the new parameter values.

4. Click OK to finish.

What to do next

See “Managing rules” on page 179 for other tasks related to the management of
your rules.

Finding a rule
To search for a specific rule using the Rule Management Application Find function,
proceed as follows:

Steps for this task

1. To search through all rules in all folders:
a. From the main menu of the Rule Browser, click Edit > Find.
b. Use the tabs in the Find Rules window to determine your search criteria.

2. To search a specific folder:
a. Right-click the folder and select Find from the list.
b. Use the tabs in the Find Rules window to determine your search criteria.

What to do next

The results of your search are displayed in a Search Results window.

See “Managing rules” on page 179 for other tasks related to the management of
your rules.

182 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Deleting rules
To delete rules from the Rule Browser or Search Results window, proceed as
follows:

Steps for this task

1. Select the rules you want to delete.
2. From the main menu, click File > Delete.

3. Click Delete and then confirm the delete request.

What to do next

Note: You cannot delete com/ibm/websphere/brb/BRB CacheRule as this rule is
needed by the Business Rule Beans run-time environment.

See “Managing rules” on page 179 for other tasks related to the management of
your rules.

Deleting rule folders
To delete rule folders from the Rule Browser window, proceed as follows:

Steps for this task

1. Select the folder you want to delete.
2. From the main menu, click File > Delete.

3. Click Delete and then confirm the delete request.

What to do next

Note: You cannot delete the root folder or any of the folders in the path
com/ibm/websphere/brb

See “Managing rules” on page 179 for other tasks related to the management of
your rules.

Changing the properties of a rule
To change the properties of a rule, perform the following steps in either the Rule
Browser or Search Result window:

Steps for this task

1. Highlight the rule you wish to edit.
2. From the main menu, click File > Properties.

In the Rule Properties properties window, use the following tabs to edit the
rule’s definition:

General
Use this tab to edit general information about the rule.

Implementation
Use this tab to edit the manner in which the rule is implemented.

Description
Use this tab to edit the purpose and intent of the rule.

Chapter 6. Using Business Rule Beans 183

Dependent Rules
Use this tab to edit the list of rules that the newly created rule will
depend upon.

Other Use this tab to establish precedence, and enter information that is
relevant to you, but does not fit into any other category.

3. To complete the editing of the rule, click OK.
If there are any mandatory fields still undefined, either go back and give them
a value, or make the rule unavailable for use (see Status in the General tab for
more information on this).

What to do next

See “Managing rules” on page 179 for other tasks related to the management of
your rules.

Importing a rule
To import rules from an XML format, use the Rule Browser window and proceed
as follows:

Steps for this task

1. In the main menu, click File > Import.

2. In the Import Rules window, specify the file you want to import.
3. Click OK.

Rules and rule folders are created as specified within the XML.

What to do next

See “Managing rules” on page 179 for other tasks related to the management of
your rules.

Exporting a rule
To export rules, use the Rule Browser or Search Results window and proceed as
follows:

Steps for this task

1. In the main menu click File > Export.

2. In the Export Rules Wizard, proceed as follows:
a. In the Specify Rules to Export window, select the rule or rules that you

want to export and click Next.
b. In the Change Effective Dates On Exported Rules window, alter the start

and end dates of the rule (if desired) and click Next.
c. In the Select File For Rule Export window, choose a name and location for

the exported rule.
3. Click Export to finish.

What to do next

See “Managing rules” on page 179 for other tasks related to the management of
your rules.

184 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Renaming rules
To rename rules, use the Rule Browser or Search Results window and proceed as
follows:

Steps for this task

1. Highlight the rule you want to rename.
2. From the main menu, click File > Rename.

3. Type a new name and press the Enter key.
To cancel the name change while it is still in progress, press the Esc key.

What to do next

See “Managing rules” on page 179 for other tasks related to the management of
your rules.

Renaming rule folders
To rename rule folders, use the Rule Browser or Search Results window and
proceed as follows:

Steps for this task

1. Place the folder name in edit mode by performing one of the following tasks:
a. Right-click the folder and select Rename from the list.
b. Highlight the folder and click File >Rename in the main menu.
c. Click the folder name twice with a slight pause between each click.

2. Type a new name and press the Enter key.
To cancel the name change while it is still in progress, press the Esc key.

Results

Note: You cannot change the name of the root folder.

What to do next

See “Managing rules” on page 179 for other tasks related to the management of
your rules.

Specifying columns
To choose which columns you want shown in your Rule Browser window, perform
the following steps in either the Rule Browser or Search Results window:

Steps for this task

1. From the main menu, click View > Specify Columns.
2. In the Specify Column window, proceed as follows:

To add a new column
Select one or more entries in the Available columns list and click the
Add button. The selected entries are added to the end of the Columns
displayed list.

Chapter 6. Using Business Rule Beans 185

To remove a column
Select one or more entries in the Columns displayed list and click the
Remove button. The selected entries are added to the end of the
Available columns list.

To reorder columns
Select one or more entries in the Columns displayed list. To move the
entries towards the top of the list, click the Up arrow. To move them
towards the bottom, click the Down arrow.

What to do next

See “Managing rules” on page 179 for other tasks related to the management of
your rules.

Changing the date and time format
To change the date and time format, use either the Rule Browser or Search
Results window and proceed as follows:

Steps for this task

1. In the main menu, click View > Specify Date/Time Format.

2. In the Specify Date/Time Format window, choose one of the following radio
button options:

Use default format for this locale
Use this option to adjust the date and time format to match the default
setting of your current locale.

Select a predefined format for the date and time
Use this option to choose from one of several existing date and time
formats.

Specify a custom format for the date and time
Use this option to determine your own format for your date and time
display.

3. When the example in the lower left of the window meets your needs, click OK
to finish.

What to do next

See “Managing rules” on page 179 for other tasks related to the management of
your rules.

Rule Browser
The Rule Browser is the main window of the Rule Management Application
(RMA), which is the tool used to administer business rules for Business Rules
Beans. The RMA is a simple graphic user interface that assists the user in the
high-level administration of rules and rule folders. The column on the left side of
the Rule Browser window shows a nested hierarchy of all of the existing rule
folders. Open one of these rule folders to display the rules. The names of these
folders appear in the right column.

To navigate through the information, perform the following actions:
v Click the + icon to expand the folder by one level; click the - icon to collapse it.

186 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

v Click a file name to highlight it, right-click it to launch a list of actions, or select
an option from the main menu.

File menu
This article describes the options available in the File menu window.

New
Use the New option to create one of the following objects:

Folder The Folder selection creates a new folder within the folder currently
selected in the browser. To create a new folder, complete the following
steps:
1. Select the folder, in the Rule Browser window in which to nest the new

folder.
2. Click File > New > Folder from the main menu. A new folder appears

in the folder hierarchy in edit mode.
3. Enter a folder name and press Enter.

Rule The Rule selection creates a new rule within the folder that is currently
selected in the browser. To create a new rule, complete the following steps:
1. Select the folder, in the Rule Browser window, where you want to

create the new rule.
2. Click File > New > Rule from the main menu.
3. Use the following options, in the New Rule Properties window, to

define the rule. For more information on each of these tabs, see the
associated help file.

General
Use the General tab to enter general information about the
rule. For more information, click the New Rule properties
window: General tab link under Related reference.

Implementation
Use the Implementation tab to define the manner in which the
rule is implemented. For more information, see “Rule
properties window: Implementation tab” on page 197.

Description
Use the Description tab to define the purpose and intent of the
rule. For more information, see “Rule properties window:
Description tab” on page 200.

Dependent Rules
Use the Dependent Rules tab to specify the rules that the
newly created rule will depend upon. For more information,
see “Rule properties window: Dependent Rules tab” on
page 201.

Other Use the Other tab to establish precedence and enter
information that is relevant to you, but does not fit into any
other category. For more information, see “Rule properties
window: Other tab” on page 201.

Note: When you change the properties of a rule and there are
undefined mandatory fields, either give them a value or make
the rule unavailable for use. See ″status″ on the General tab for
more information.

Chapter 6. Using Business Rule Beans 187

4. Click OK to complete the creation of the rule.

Rule Browser Window
This selection opens a new Rule Browser window on your desktop and
shows the content of the currently selected folder.

Import
Use the Import option to import rules that are defined in a file and written in
XML. The rules are imported into folders as specified within the XML.

Importing rules

You can use the Rule Browser window to import from an XML format. To import
rules, complete the following steps:
1. Click File > Import in the main menu.
2. Specify the file, in the Import Rules window, that you want to import.
3. Click OK. The rules are imported as specified within the XML.

For more information, see “Import Rules window” on page 195.

Export
Use the Export option to export a file in an XML format.

Exporting rules

You can export rules from the Rule Browser or Search Results windows. To export
rules, complete the following steps:
1. Click File > Export, in the main menu.
2. Proceed as follows using the Export Rules Wizard:

v In the Select Rules to Export window, select the rule or rules that you want
to export and click Next.

v In the Change Effective Dates On Exported Rules window, alter the start and
end dates of the rule, if desired, and click Next.

v In the Select File For Rule Export window, choose a name and location for
the exported rule.

3. Click Export to finish.

For more information on this Export Rules Wizard, see “Select Rules To Export
window” on page 196.

Delete
Use the Delete option to delete the selected rule or rule folder. If a rule folder is
selected, all of the rules and subfolders the folder contains also are deleted.

Deleting rules

You can delete rules from the Rule Browser or Search Results windows. To delete
rules, complete the following steps:
1. Select the rules that you want to delete using the Rule Browser window.
2. Click File > Delete from the main menu.
3. Click Delete and then confirm the delete request.

Note: You cannot delete com/ibm/websphere/brb/BRB CacheRule as this rule is
needed by the Business Rule Beans run-time environment.

188 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Deleting a folder

To delete a folder, complete the following steps:
1. Select the folder you want to delete using the Rule Browser window.
2. Click File > Delete in the main menu.
3. Click Delete and then confirm the delete request.

Note: You cannot delete the root folder.

Rename
Use the Rename option to rename the selected rule or rule folder.

Renaming a rule

You can rename rules from the Rule Browser or Search Results windows. To
rename a folder, complete the following steps:
1. Highlight the rule you want to rename.
2. Click File >Rename from the main menu.
3. Type a new name and press Enter. To cancel the name change while it is still in

progress, press Esc.

Renaming a folder

1. Place the folder name in edit mode by doing any of the following:
v Right-click the folder and select Rename from the list.
v Highlight the folder and click File >Rename in the main menu.
v Click the folder name twice with a slight pause between each click.

2. Type a new name and press Enter. To cancel the name change while it is still in
progress, press Esc.

Note: You cannot rename the root folder.

Properties
Use the Properties option to modify the properties of the selected rule or rule
folder and then click OK.

Use the following tabs, in the Rule Properties window, to define the rule. For
more information on each of these tabs, see the associated help file.

General
Use the General tab to enter general information about the rule. For more
information, see “Rule properties window: General tab” on page 197.

Implementation
Use the Implementation tab to define the manner in which the rule is
implemented. For more information, see “Rule properties window:
Implementation tab” on page 197.

Description
Use the Description tab to define the purpose and intent of the rule. For
more information, click “Rule properties window: Description tab” on
page 200.

Dependent Rules
Use the Dependent Rules tab to specify the rules that the newly created
rule will depend upon. For more information, see “Rule properties
window: Dependent Rules tab” on page 201.

Chapter 6. Using Business Rule Beans 189

Other Use the Other tab to establish precedence and enter information that is
relevant to you, but does not fit into any other category. For more
information, see “Rule properties window: Other tab” on page 201.

Note: When you change to the properties of a rule and there are undefined
mandatory fields, either give the fields a value or make the rule unavailable
for use. See ″status″ in the “Rule properties window: General tab” on
page 197 for more information.

Close
Use the Close option to terminate the application and close the window.

New Rule properties window: General tab
Use the New Rule properties window: General tab to enter general information
about the rule. The following fields and options are available on this tab:

Name and location

Folder name
(Required) Use the Folder name field to identify the folder in which to
create the rule. To browse the existing folders, click the ellipses button to
the right of the text field.

Name (Required) Use the Name field to give the rule a name. The name cannot
include the forward slash ’/’ and must contain at least one non-blank
character. The name cannot exceed the maximum length of the rule name
column in the database table.

Period when rule is in effect

Start date
(Required) Use the Start date field to specify the date and time that the
rule will go into effect. If you do not specify the time, a value of midnight
is used.

End date
Use the End date field to determine the date when this rule expires. If you
do not specify a value, the rule never expires.

Classification

Use this section to specify your rule’s classification status. Choose one of the
following options:
v Rule is not classified and does not perform a classification (default)
v Rule performs a classification
v Rule is classified with the following classification

Status

Rule is available for use
Select Rule is available for use when the rule is available for use by the
Business Rule Beans run-time environment. This feature is useful when
you have not finished creating the rule, but need to save your changes.

New Rule properties window: Implementation tab
Use the New Rule properties window: Implementation tab to define the manner
in which the rule is implemented.

190 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Note: The rule contains the data, but it does not perform the implementation.
Rather, the Java rule implementor implements the rule.

For example, suppose you want to create a rule that determines whether a given
person is a senior citizen, 62 years old or older. To implement this rule, give the
″com.ibm.websphere.brb.implementor.RuleGreaterThanEqual″ Java rule
implementor the value 62 and specify it as an initialization parameter. When the
application fires the rule, the person’s age is passed to the Java rule implementor
as a firing parameter and 62 is passed as an initialization parameter. The person’s
age is compared against the initialization parameter of 62 and a value of true or
false is returned from the Java rule implementor to the application. To change the
age at which a person is considered a senior citizen, change the value of the
initialization parameter.

The following fields and options are available on this tab:

Java rule implementor

(Required) Use the Java rule implementor field to specify a class to implement this
rule. The initialization and firing parameters that are required are determined by
looking at the documentation for the specified Java rule implementor.

Firing location

Use the Firing location field to determine where the rule is fired. You can fire the
Java rule implementor on the server where the rules exist or fire it locally on the
client machine. The client can be a servlet running on the server. Specify one of the
following values for the firing location:

Local Use the Local option to fire the Java rule implementor local to the
application that fired the rule.

Remote
Use the Remote option to fire the Java rule implementor on the server
where the rules exist.

Anywhere (default)
Use the Anywhere option to attempt to fire the Java rule implementor
locally first. If the Java rule implementor cannot be found, then it is fired
remotely.

To choose the value of the firing location, you must take both performance and
maintenance into consideration. Most rules perform better if they are run on the
same Java virtual machine (JVM) as the application (locally). However, there might
be cases where a Java rule implementor performs server-intensive tasks, in which
case the rules might run better when they run on the server. To run locally, you
must have all of the Java rule implementors installed locally. They must be
accessible by the application that fires the rules.

Initialization parameters

The initialization parameters contain constant values passed to the rule
implementor when it is initialized. Typically, the initialization parameters contain
values that might change as your business practices evolve, such as the age at
which a person is considered a senior citizen or the current interest rate for a loan.

Chapter 6. Using Business Rule Beans 191

To add a new initialization parameter to the list, click Add and fill in the fields in
the Add Initialization Parameter window.

To edit an existing initialization parameter, highlight it, click Change, and fill in
the fields in the Change Initialization Parameter window.

To delete an initialization parameter, highlight it and click Delete.

To change the order of the initialization parameters, highlight one and click the up
or down arrows to move it to a new location.

Firing parameters

The firing parameters contain values passed from the trigger point in the
application to the Java rule implementor at run time. You can alter the parameters
coming from the application before passing them to the Java rule implementor.
Typically, these parameters are left unaltered.

For example, when implementing the ″isSeniorCitizen″ rule that determines
whether a person is a senior citizen, you might want to pass a person from the
application to the rule as the target object. However, the ″isSeniorCitizen″ rule uses
the RuleGreaterThanEqual Java rule implementor, which requires that you pass an
integer value. You can alter the firing parameters to specify that the method
″getAge″ is called on the person object and pass that result to the Java rule
implementor.

You must choose one of the following options:

Pass firing parameters from trigger point unchanged
The parameters specified in the trigger point of the application are passed
to the Java rule implementor without being altered. This is the default
value.

Specify firing parameters
The values specified in the table are passed to the Java rule implementor.

To add a new firing parameter to the list, click Add and fill in the fields in the
Add Firing Parameter window.

To edit an existing firing parameter, highlight the firing parameter, click Change,
and fill in the fields in the Change Firing Parameter window.

To delete a parameter, highlight the firing parameter and click Delete.

To change the order of the firing parameters, highlight one and click the up or
down arrows to move it to a new location.

Add Initialization Parameter window
Use the Add Initialization Parameter window to add initialization parameters to a
rule. The initialization parameters contain constant values passed to the Java rule
implementor when it is initialized. Typically, the initialization parameters contain
values that will change as your business practices evolve. These values might be
the age at which a person is considered a senior citizen or the current interest rate
for a loan.

To add an initialization parameter, proceed as follows:
1. Fill in the fields as needed.

192 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

2. Click Add. The initialization parameter is added and the window remains open
to specify additional parameters.

3. When you are finished specifying initialization parameters, click Close.

The following fields and options are available in this window:

Description
Use the Description field to specify a description of the initialization
parameter. This field can contain any information necessary to describe the
purpose of the initialization parameter.

Type Use the Type field to specify the type of data that is contained within this
initialization parameter. The data itself is stored in the Value field (see the
following field description). For example, if this initialization parameter
specifies the age at which a person is considered a senior citizen, then the
Type likely is an ″Integer″. If the initialization parameter specifies a
company name, such as ″IBM″, then the Type is a ″String″.

The following values are available:
v String
v Character
v Byte
v Short
v Integer
v Long
v Float
v Double
v Boolean
v java.math.BigDecimal
v java.math.BigInteger
v Null Value

Value Use the Value field to add a value for the parameter. For example, if the
initialization parameter is intended to specify the age at which a person is
considered a senior citizen, then this field might be set to 62.

Change Initialization Parameter window
Use the Change Initialization Parameter window to edit an existing initialization
parameter.

The initialization parameters contain constant values passed to the Java rule
implementor when it is initialized. Typically, the initialization parameters contain
values that change as your business practices evolve. These values might be the
age at which a person is considered a senior citizen or the current interest rate for
a loan.

To edit an existing initialization parameter, modify the fields and click OK.

The following fields are available in this window:

Description
Use the Description field to specify a description of the initialization
parameter. This field can contain any information necessary to describe the
purpose of the initialization parameter.

Type Use the Type field to specify the type of data that is contained within this

Chapter 6. Using Business Rule Beans 193

initialization parameter. The data itself is stored in the Value field (see the
following field description). For example, if this initialization parameter
specifies the age at which a person is considered a senior citizen, then the
Type likely is an ″Integer″. If the initialization parameter specifies a
company name, such as ″IBM″, then the Type is a ″String″.

The following values are available:
v String
v Character
v Byte
v Short
v Integer
v Long
v Float
v Double
v Boolean
v java.math.BigDecimal
v java.math.BigInteger
v Null Value

Value Use the Value field to add a value for the parameter. For example, if the
initialization parameter is intended to specify the age at which a person is
considered a senior citizen, then this field might be set to 62.

New Rule properties window: Description tab
Use the New Rule properties window: Description tab to define the purpose and
intent of the rule. All of the fields in this panel are optional and none of them are
used by the Business Rule Beans run time. The following fields are available on
this tab:

Business Intent: Use the Business Intent field to describe the business intent of
this rule.

Description: Use the Description field to define a general description of the rule
and its purpose.

Original requirement: Use the Original requirement field to compose a
description of the original requirement that created this rule.

New Rule properties window: Dependent Rules tab
Use the New Rule properties window: Dependent Rules tab to specify the rules
that the newly created rule will depend upon.

To add names to the Dependent rule names field, proceed as follows:
1. Locate the dependent rule. You can do this in one of two ways:

Browse for a rule
If you are familiar with the location of the dependent rule, then click
the Browse button. Navigate to the rule’s location and highlight it.

Find a rule
If you are unfamiliar with the location of the rule, then click the Find
button. This launches a Find Rules window in which you can specify
options and then initiate a search. When you have located the rule,
highlight it.

194 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

2. Click the Add button.

To delete a rule from the Dependent rule names field, highlight the rule and click
Delete.

To change the order of the rules, highlight a rule and click the Up or Down arrows
to move it to a new location.

New Rule properties window: Other tab
Use the New Rule properties window: Other tab to establish precedence and
enter information that is relevant to you, but does not fit into any other category.
The following fields are available on this tab:

Precedence: Use the Precedence field to specify the relative priority when firing
the rule. This value is used to order the rules from lowest to highest.

User defined data: Use the User defined data field to enter any additional text
that you want to store. The Business Rule Beans run time does not use this field.

Import Rules window
Use the Import Rules window to select and import a rule expressed in an XML
format. The following fields and options are available in this window:

File Name: Use the File Name field to specify the name of a file that contains the
rules that you want to import. To search for a file, click the ellipses icon to the
right of the text entry field.

Show output from rule importer: Select Show output from rule importer to
display detailed information about the rules that you want to import.

Show rules to be created but do not create them: Select Show rules to be
created but do not create them to validate the XML prior to committing to the
rule’s creation. The rule XML runs through the importer but is not created.

Update existing rules with the same primary key: Select Update existing rules
with the same primary key to update the rules with the same primary key. If this
check box is clear, the rule is not imported if one is found with this same primary
key. An error message is shown and the transaction in which this rule was created
is not committed. The primary key is an optional tag within the XML and there is
a possibility that a rule already exists on the system with this same primary key.

Transaction Option: The following is a list of transaction options:

One transaction per rule
Use the One transaction per rule option to start a transaction for each rule.
If one rule fails to import, it does not prevent other rules in the specified
file from being imported.

One transaction for all rules
Use the One transaction for all rules option to stop all of the rules from
being imported if any rule fails to import successfully. Use this feature to
ensure that all of your rules are in a consistent state. Typically, it is
undesirable to have only a portion of the rules imported successfully since
rules might have dependencies on other rules.

Chapter 6. Using Business Rule Beans 195

Select Rules To Export window
This is the first of three windows in the Export Rules Wizard. Use the Select Rules
To Export window to select the rules to export. After entering the appropriate
information in the following fields, click Next.

Note: If you specify a folder, the tool exports the entire contents of the folder
including its subfolders.

The following options are available in this window:

Add: Use the Add option to open a window in which you can type the fully
qualified name of a rule or a rule folder. If there are multiple rules with the
specified name, they are all exported.

Find

Use the Find option to open a Find Rules window in which you can specify your
search criteria. If there are multiple rules with the same name, only the selected
rules are exported.

Browse button

Use the Browse button to open a window and browse for rules to add to the list. If
there are multiple rules with the same name, only the selected rules are exported.

Remove button

Use the Remove button to remove the selected rules from the list.

Show output from rule exporter

Select Show output from rule exporter to open a window that contains details
about the export operation of the select rules. This window is shown when the
export operation begins.

Change Effective Dates On Exported Rules window
This is the second of three windows in the Export Rules Wizard. Use the Change
Effective Dates on Exported Rules window to alter the rule’s start and end times.
This procedure is useful when the application and the rules are tested on a
development system prior to being deployed on a production system. You can
change the dates of the rules and test on the development system using the current
date, even if you plan to use the rules on the production system at a future date.
The rules on the development system are not changed; only the exported version
of the rules are changed. After determining whether to select the check boxes in
the following descriptions, click Next.

The following fields and options are available in this window:

Change start date and time on exported rules
Select Change start date and time on exported rules to alter the start date
of the rules to export. You must specify a valid date and time using the
format shown. For example, the format might be ″m/d/yy h:mm a″
resulting in 10/23/01 1:45 PM.

Change end date and time on exported rules
Select Change end date and time on exported rules to alter the end date

196 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

of the rules to export. You must specify a valid date and time using the
format shown. For example, the format might be ″m/d/yy h:mm a″
resulting in 10/23/01 1:45 PM.

Select File For Rule Export window
This is the third of three windows in the Export Rules Wizard. Use the Select File
For Rule Export window to chose a name and location for the exported rule.
1. Browse to an existing directory or create a new one.
2. Type the name of the file. Typically, the file will end with an ″.xml″ extension.
3. Click Export.

Rule properties window: General tab
Use the Rule properties window: General tab to enter general information about
the rule. The following fields and options are available in this window:

Name and location

Folder name
(Required) Use the Folder name field to identify the folder in which to
create the rule. To browse the existing folders, click the ellipses button to
the right of the text field.

Name (Required) Use the Name field to give the rule a name. The name cannot
include the forward slash ’/’ and must contain at least one non-blank
character. The name cannot exceed the maximum length of the rule name
column in the database table.

Period when rule is in effect

Start date
(Required) Use the Start date field to specify the date and time that the
rule goes into effect. If you do not specify the time, a value of midnight is
used.

End date
Use the End date field to determine the date when this rule expires. If you
do not specify a value, the rule never expires.

Classification

Use the Classification section to specify your rule’s classification status. Choose
one of the following options:
v Rule is not classified and does not perform a classification (default)
v Rule performs a classification
v Rule is classified with the following classification

Status

Rule is available for use
Select Rule is available for use when the rule is available for use by the
Business Rule Beans run-time environment. This feature is useful when
you have not finished creating the rule, but you want to save your
changes.

Rule properties window: Implementation tab
Use the Rule properties window: Implementation tab to define the manner in
which the rule is implemented.

Chapter 6. Using Business Rule Beans 197

Note: The rule contains the data and it does not perform the implementation.
Rather, the Java rule implementor implements the rule.

For example, suppose you want to create a rule that determines whether a given
person is a senior (62 years old or older). To implement this rule, give the
″com.ibm.websphere.brb.implementor.RuleGreaterThanEqual″ Java rule
implementor the value 62 and specify it as an initialization parameter. When the
application fires the rule, the person’s age is passed to the Java rule implementor
as a firing parameter and 62 is passed as an initialization parameter. The person’s
age is compared against the initialization parameter of 62 and a value of true or
false is returned from the Java rule implementor to the application. To change the
age at which a person is considered a senior citizen, change the value of the
initialization parameter.

The following fields and options are available on this tab:

Java rule implementor

(Required) Use the Java rule implementor field to specify a class to implement this
rule. The initialization and firing parameters that are required are determined by
looking at the documentation for the specified Java rule implementor.

Firing location

Use the Firing location field to determine where the rule is fired. You can fire the
Java rule implementor on the server where the rules exist or fire it locally on the
client machine. The client can be a servlet running on the server. Specify one of the
following values for the firing location:

Local Use the Local option to fire the Java rule implementor local to the
application that fired the rule.

Remote
Use the Remote option to fire the Java rule implementor on the server
where the rules exist.

Anywhere (default)
Use the Anywhere option to attempt to fire the Java rule implementor
locally first. If the Java rule implementor cannot be found, then it is fired
remotely.

To choose the value of the firing location, you must take both performance and
maintenance into consideration. Most rules perform better if they are run on the
same Java virtual machine (JVM) as the application (locally). However, there might
be cases where a Java rule implementor performs server-intensive tasks, in which
case the rules might run better when they run on the server. To run locally, you
must have all of the Java rule implementors installed locally. They must be
accessible by the application that fires the rules.

Initialization parameters

The initialization parameters contain constant values passed to the rule
implementor when it is initialized. Typically, the initialization parameters contain
values that might change as your business practices evolve, such as the age at
which a person is considered a senior citizen or the current interest rate for a loan.

198 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

To add a new initialization parameter to the list, click Add and fill in the fields in
the Add Initialization Parameter window.

To edit an existing initialization parameter, highlight it, click Change, and fill in
the fields in the Change Initialization Parameter window.

To delete an initialization parameter, highlight it and click Delete.

To change the order of the initialization parameters, highlight one and click the up
or down arrows to move it to a new location.

Firing parameters

The firing parameters contain values passed from the trigger point in the
application to the Java rule implementor at run time. You can alter the parameters
coming from the application before passing them to the Java rule implementor.
Typically these parameters are left unaltered.

For example, when implementing the ″isSeniorCitizen″ rule that determines
whether a person is a senior citizen, you might want to pass a person from the
application to the rule as the target object. However, the ″isSeniorCitizen″ rule uses
the RuleGreaterThanEqual Java rule implementor, which requires that you pass an
integer value. You can alter the firing parameters to specify that the method
″getAge″ is called on the person object and pass that result to the Java rule
implementor.

You must choose one of the following:

Pass firing parameters from trigger point unchanged
The parameters specified in the trigger point of the application are passed
to the Java rule implementor without being altered. This is the default
value.

Specify firing parameters
The values specified in the table are passed to the Java rule implementor.

To add a new firing parameter to the list, click Add and fill in the fields in the
Add Firing Parameter window.

To edit an existing firing parameter, highlight the firing parameter, click Change,
and fill in the fields in the Change Firing Parameter window.

To delete a parameter, highlight the firing parameter and click Delete.

To change the order of the firing parameters, highlight one and click the up or
down arrows to move it to a new location.

Add Firing Parameter window
Use the Add Firing Parameter window to add a firing parameter to a rule. The
firing parameters contain values passed from the trigger point in the application to
the Java rule implementor at run time. You can alter the parameters coming from
the application before passing them to the Java rule implementor. Typically, these
parameters are left unaltered.

To add a firing parameter, enter a field description, select an appropriate option,
and click Add. The parameter is added and the window remains open to specify

Chapter 6. Using Business Rule Beans 199

additional parameters. When you finish specifying initialization parameters, click
Close. The following fields and options are available in this window:

Description
Use the Description field to type a description of the firing parameter.

Specify a type and value
Use the Specify a type and value option to specify a constant value to
pass to the Java rule implementor.

Get value from method call
Use the Get value from method call option to call the specified method on
the target object.

Get value from trigger point firing parameters
Use the Get value from trigger point firing parameters option to get a
specific value from the firing parameters that were specified in the trigger
method in the application. An index to the original firing parameter must
be specified. This index starts with 0; thus, specify the value 0 to pass the
first firing parameter. Specify the trigger point parameter number.

Change Firing Parameter window
Use the Change Firing Parameter window to edit an existing firing parameter. The
firing parameters contain values passed from the trigger point in the application to
the Java rule implementor at run time. You can alter the parameters coming from
the application before passing them to the Java rule implementor. Typically, these
parameters are left unaltered.

To change a firing parameter, enter a field description, select an appropriate option,
and click Change. The parameter is changed and the window remains open to
specify additional parameters. When you finish specifying initialization
parameters, click Close.

The following fields and options are available in this window:

Description
Use the Description field to type a description of the firing parameter.
There are three types of firing parameters that can be specified.

Specify a type and value
Use the Specify a type and value option to specify a constant value to
pass to the Java rule implementor.

Get value from method call
Use the Get value from method call option to call the specified method on
the target object.

Get value from trigger point firing parameters
Use the Get value from trigger point firing parameters option to pass a
specific value from the firing parameters that were specified on the trigger
method in the application. An index to the original firing parameter must
be specified. This index starts with 0; thus, specify the value 0 to pass the
first firing parameter.

Rule properties window: Description tab
Use the Rule properties window: Description tab to define the purpose and intent
of the rule. All of the fields in this panel are optional and none are used by the
Business Rule Beans run-time environment. The following fields are available on
this tab:

200 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Business Intent: Use the Business Intent field to describe the business intent of
this rule.

Description: Use the Description field to define a general description of the rule
and its purpose.

Original requirement: Use the Original requirement field to compose a
description of the original requirement that created this rule.

Rule properties window: Dependent Rules tab
Use the Rule properties window: Dependent Rules tab to specify the rules that
the newly created rule will depend upon. To add names to the Dependent rule
names field, proceed as follows:
1. Locate the dependent rule. You can do this in one of two ways:

Browse for a rule
If you are familiar with the location of the dependent rule, then click
the Browse button. Navigate to the rule’s location and highlight it.

Find a rule
If you are unfamiliar with the location of the rule, then click the Find
button. This will launch a Find Rules window in which you can specify
options and then initiate a search. When you have located the rule,
highlight it.

2. Click the Add button.

To delete a rule from the Dependent rule names field, highlight the rule and click
Delete.

To change the order of the rules, highlight a rule and click the Up or Down arrows
to move it to a new location.

Rule properties window: Other tab
Use the Rule properties window: Other tab to establish precedence and enter
information that is relevant to you, but does not fit into any other category. The
following fields are available in this window:

Precedence: Use the Precedence field to specify the relative priority when firing
the rule. This value is used to order the rules from lowest to highest.

User defined data: Use the User defined data field to enter any additional text
that you want to store. The Business Rule Beans run-time environment does not
use this field.

Edit menu
This menu describes the options available on the Edit menu window. The
following options are available in this window:

Cut
Use the Cut option to move rules and rule folders.

Copy
Use the Copy option to copy rules and rule folders. The following tasks can be
accomplished using the Copy option:
v Copying rules

Copy or move a rule from one folder to another by either cutting and pasting it
or dragging and dropping it.

Chapter 6. Using Business Rule Beans 201

Cutting and pasting
Use menu commands (Edit > Copy, Edit > Cut and Edit > Paste) or
keyboard commands (CTRL-C, CTRL-V and CTRL-X) to copy or move
a rule.

Dragging and dropping
Highlight the rule you want to copy. Then, press and hold the right
mouse button, drag the cursor to the target location, and release. Select
Copy or Move from the list.

Note: A rule also can be copied so that the copy replaces the existing rule at a
specified date. This is referred to as a Quick Copy.

v Copying rule folders

Copy or move a rule folder and all its contents by either cutting and pasting it
or dragging and dropping it.

Cutting and pasting
Use menu commands (Edit > Copy, Edit > Cut and Edit > Paste) or
keyboard commands (CTRL-C, CTRL-V and CTRL-X) to copy or move
a rule.

Dragging and dropping
Press and hold the right mouse button on the folder to be copied. Drag
the cursor to the target location and release the mouse button. Select
Copy or Move from the list.

Paste
Use the Paste option to add cut or copied rules and rule folders.

Find
Use the File option to search for a rule. A window opens in which you can specify
your search criteria. If you would like to search a specific folder, then right-click it
and select Find from the list. For more information, see “Find Rules window” on
page 204.
v Search the whole directory

To search the whole directory, complete the following steps:
1. Click Edit > Find from the main menu of the Rule Browser.
2. Determine your search criteria in the Find Rules window.

v Search a specific folder

To search a specific folder, complete the following steps:
1. Right-click the folder and select Find from the list.
2. Determine your search criteria in the Find Rules window.

The results of your search are displayed in a Search Results window.

Quick Copy
Use the Quick Copy option to make a copy of a rule that will replace the existing
one on a specified date. You can modify the copy slightly so that a new value goes
into effect on the desired date and time while the old rule expires. For more
information, see the Quick Copy window link in Related reference.

Select All
Use the Select All option to facilitate rule selection.

Deselect All
Use the Deselect All option to deselect rules.

202 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Quick Copy window
Use the Quick Copy window to make a copy of a rule that replaces the existing
one on a specified date.

For example, suppose that you have an ″isSeniorCitizen″ rule. Currently, a person
is considered a senior citizen if they are 62 years of age or older. Starting on
January 1, 2002, you must change this to 65. Use Quick Copy to specify the new
date and to change the age from 62 to 65. The current rule is set to expire on the
same date that the new rule takes effect. The new senior citizen age is defined as
65.

Note: Use the Quick Copy function for simple changes only.

In the following fields, specify how the copy differs from the original:

Start Date For New Rule: Use the Start Date For New Rule field to enter the
date that the new rule replaces the existing rule. Use the date and time format that
is shown. For example, the format might be the following:

Usage scenario

M/d/yy h:mm a.

Change parameter values for new rule: Use the Change parameter values for
new rule field to add new parameter values.

View menu
This article describes the options available in the View menu window. The
following options are available in this window:

Status Bar
Use the Status Bar option to toggle the status bar on or off. The status bar is
shown along the bottom of the Rule Browser window.

Specify Columns
Use the Specify Columns option to adjust the type and order of the columns that
display in your window.

In the window that opens, the following tasks can be accomplished:

Add a new column
Select one or more entries in the Available columns list and click the Add
button. The selected entries are added to the end of the Columns
displayed list.

Remove a column
Select one or more entries in the Columns displayed and click the Remove
button. The selected entries are added to the end of the Available columns
list.

Reorder columns
Select one or more entries in the Columns displayed list. To move the
entries towards the top of the list, click the Up arrow; to move the entries
towards the bottom, click the Down arrow.

Chapter 6. Using Business Rule Beans 203

Specify Date/Time Format
Use the Specify Date/Time Format option to adjust the format used when
displaying dates and times. For more information, click the Specify Date/Time
Format window link under Related reference.

Refresh
Use the Refresh option to update the contents of the folder hierarchy and the rule
table.

Specify Date/Time Format window
Use the Specify Date/Time Format window to change the date and time format.
Choose one of the following radio button options and then click OK:

Use default format for this locale: Use the Use default format for this locale
option to adjust the date and time format to match the default setting of your
current locale.

Select a predefined format for the date and time: Use the Select a predefined
format for the date and time option to select one of several existing date and time
formats.

Specify a custom format for the date and time: Use the Specify a custom format
for the date and time option to determine your own format for your date and time
display. Choose one of the date and time formats from the two menus.

Find Rules window
Use the Find Rules window to specify search criteria to locate rules. The search
combines your queries using a logical ″AND″ operation. For example, if you
specify both a folder name and a rule name, the search finds rules that match both
the folder name and rule name. It displays the results in a Search Results window.

Note: All of the fields in this window are optional.

Main menu

The main menu has the following options:
v File

Save As
Use the Save as option to open a Save Search window and store the
current search criteria.

Open Use the Open option to open the Open Saved Search window and load
a previously saved set of search criteria into the Find Rules window.

Close Use the Close option to close the Find Rules window.
v View

Show Search
Use the Show Search option to display a text description of your search
criteria on one screen.

Specify Date/Time Format
Use the Specify Date/Time Format option to adjust the format used
when displaying dates and times. For more information, see “Specify
Date/Time Format window”.

Tabs

204 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

The following tabs are displayed in this window:

Name Use the Name tab to specify the basic search criteria. For more
information, “Find Rules window: Name tab”.

Date Use the Date tab to specify the date-related search criteria. For more
information, see “Find Rules window: Date tab” on page 206.

Classification
Use the Classification tab to specify the search criteria related to a rule’s
classification. For more information, see “Find Rules window: Classification
tab” on page 206.

Implementation
Use the Implementation tab to specify the search criteria that is based on
the manner in which the rule is implemented. For more information, see
“Find Rules window: Implementation tab” on page 207.

Description
Use the Description tab to specify the text-based search criteria related to a
rule’s description. For more information, see “Find Rules window:
Description tab” on page 207.

Other Use the Other tab to specify the search criteria based on precedence and
user-defined data. For more information, see “Find Rules window: Other
tab” on page 208.

Find Rules window: Name tab
Use the Find Rules window: Name tab to specify the basic search criteria. The
following fields and options are available on this tab:

Name: Use the Name field to search for a specific rule name.

Note: This is case-sensitive.

Drop-down search option list: Use the one of the following options in the
Drop-down search option list to narrow your search:

equal Use the equal selection to look for an exact match.

starting with
Use the starting with selection to find rules whose name starts with the
specified value.

ending with
Use the ending with selection to find rules whose name ends with the
specified value.

containing
Use the containing selection to find rules that contain the specified value.

Location: Use the Location field to specify the folder that you want to search.
Click the ellipses button to the right of the field if you want to browse for the
folder.

Note: The folder names are case-sensitive.

Include subfolders: Select Include subfolders to include the folder’s subfolders
in the search.

Status: Use the Status menu to specify a search criteria that is based on a rule’s
availability.

Chapter 6. Using Business Rule Beans 205

Find Rules window: Date tab
Use the Find Rules window: Date tab to specify date-related search criteria. A rule
always has a start date and a range of time in which it is in effect. The end date is
optional and if it is not specified, the rule never expires. The following options are
available on this tab:

Find Rules for any date: Use the Find Rules for any date option to remove the
date from consideration in the search criteria.

Find Rules that are: Use the Find Rules that are option to search for rules in one
of the following states:

currently in effect
The currently in effect selection finds rules that are active at this point in
time.

scheduled
The scheduled selection finds rules that go into effect at a future date.

expired
The expired selection finds previously active rules that are beyond the
rule’s end date.

Find Rules: Use the Find Rules option to specify the dates you want to search.
Modify the following criteria to narrow your search:
1. Select one of the following rule states from the menu:

v in effect
v starting
v ending

2. Select Query on date only if you would like your search to ignore time-specific
information.

3. Select one of the following three methods by which to search:

on x Select the on x option to find rules that are in the desired state (as
chosen in Step 1) on the specified date. If the Query on date only check
box is clear, then midnight is used for the time.

anytime between x and y
Select the anytime between x and y option to find rules that are in the
desired state (as chosen in Step 1) anytime between the given dates.
Specify a start date (represented by x) and an end date (represented by
y). If the Query on date only check box is clear, then midnight of each
day is used for the time.

anytime during the next x days
Select the anytime during the next x days option to find rules that are
in the desired state (as chosen in Step 1) within this period of time and
specified in days.

Find Rules window: Classification tab
Use the Find Rules window: Classification tab to specify search criteria related to
a rule’s classification. The following options are available on this tab:

Show all: Use the Show all option if you do not want to include the classification
information in the search criteria.

206 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Show rules that are not classified and do not perform classification: Use the
Show rules that are not classified and do not perform classification option to
find rules that you do not need to classify.

Show rules that perform classification: Use the Show rules that perform
classification option to find rules that return a classification such as ″Gold″,
″Silver″, or ″Bronze″.

Show rules that are classified: Use the Show rules that are classified option to
find rules that are classified with the specified classification. The specified
classification is case-sensitive. Enter a specific classification into the field that is
provided.

Find Rules window: Implementation tab
Use the Find Rules window: Implementation tab to specify search criteria that is
based on the manner in which the rule is implemented. The following options are
available on this tab:

Java rule implementor: Use the Java rule implementor option to search for rules
that use the specified Java rule implementor. You can use one of the values in the
list or type in your own.

Firing location: Use the Firing location option to search for the location in which
the rule implementor is run. Choose one of the following values from the check
box:

Local Use the Local option to search locally for the location in which the rule
implementor is run.

Remote
Use the Remote option to search the server for the location in which the
rule implementor is run.

Anywhere
Use the Anywhere option to search both locally and on the server for the
location in which the rule implementor is run.

Firing parameters: Use the Firing parameters option to search for rules that alter
the firing parameters passed from the trigger point to the Java rule implementor.
For more information, see the Add Firing Parameter window..

The following selections are available for the firing parameter option:
v show rules that alter firing parameters
v show rules that do not alter firing parameters

Find Rules window: Description tab
Use the Find Rules window: Description tab to specify text-based search criteria
related to a rule’s description. The following fields and options are available on
this tab:

Business intent: Use the Business intent field to search for rules with a given
business intent.

Description: Use the Description field to search for rules with a given
description.

Original requirement: Use the Original requirement field to search for rules with
a given original requirement.

Chapter 6. Using Business Rule Beans 207

Drop-down search option list: Use the following options in the Drop-down
search option list to narrow your search in the Business intent, Description, and
Original requirements fields:

equal Use the equal selection to look for an exact match.

starting with
Use the starting with selection to find rules whose name starts with the
specified value.

ending with
Use the ending with selection to find rules whose name ends with the
specified value.

containing
Use the containing selection to find rules that contain the specified value.

Find Rules window: Other tab
Use the Find Rules window: Other tab to specify search criteria based on
precedence and user-defined data. The following options are available on this tab:

Precedence: Use the Precedence option to search for rules with given precedence.
The precedence is an integer value that specifies the relative priority of this rule
when it is fired.

Drop-down search option list: Use the Drop-down search option list to narrow
your search by using one of the following options:
v equal
v less than
v less than or equal
v greater than
v greater than or equal
v not equal

User defined data: Use the User defined data option to search for rules with
given user defined data.

Drop-down search option list: Use one of the following options from the
Drop-down search option list:

equal Use the equal selection to look for an exact match.

starting with
Use the starting with selection to find rules whose name starts with the
specified value.

ending with
Use the ending with selection to find rules whose name ends with the
specified value.

containing
Use the containing selection to find rules that contain the specified value.

Search Results window
This window contains the results of a search from a Find Rules window. It is
virtually identical to the Rule Browser in terms of form and function. Use the
options in the main menu to perform many of the same administrative actions,
with a few additions:

208 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

The following options are available in this window:

File menu:

Save As
Use the Save As option to open a Save Search window and store the
current search criteria.

Open Containing Folder
Use the Open Containing Folder option to open a Rule Browser window
and display the contents of the folder in which the selected rule resides.

Close Use the Close option to close the Find Rules window.

View menu:

Show Search
Use the Show Search option to display a text description of your search
criteria on one screen.

Specify Date/Time Format
Use the Specify Date/Time Format option to adjust the format used when
displaying dates and times. For more information, see the Specify
Date/Time Format window link in the Related reference.

Refresh
Use the Refresh option to reissue the search and repopulate the table with
the updated search results.

Save Search window
Use the Save Search window to store the current search criteria for later retrieval.
Follow the following steps to save your search:
1. Type in a name for your search or replace a previously saved search from the

list.
2. Click OK.

The saved search criteria is loaded into the Find Rules window.

Open Saved Search window
Use the Open Saved Search window to open a previously saved search. Follow
these steps to open your saved search:
1. In the Select a Search window, highlight the name of the search you want to

open.
2. Click OK.

The saved search criteria is loaded into the Find Rules window.

Business rule beans: Resources for learning
Use the following links to find relevant supplemental information about business
rule beans. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

Chapter 6. Using Business Rule Beans 209

View links to additional information about:
v “Planning, business scenarios, and IT architecture”
v “Programming instructions and examples”
v “Administration”

Planning, business scenarios, and IT architecture

v Delivering new business value to the enterprise on a J2EE and Web services base
(Update)
http://www7b.software.ibm.com/wsdd/library/summaries/200462.html
This paper, in PDF form, describes the strategy behind the IBM extensions to
J2EE and Web services functionality in the IBM WebSphere Application Server
Enterprise, Version 4.0. It explains Enterprise Services, business rule beans,
message beans and JMS listener, internationalization, shared work areas,
bidirectional CORBA connectivity, the ActiveX bridge, and the C++ CORBA
SDK.

v WebSphere Application Server V5.0 Architecture and Overview
http://developerworks.cybercentral.com/ibm0502/amt/
ibmpresentations/683_1.pdf
This is an IBM developerWorks presentation that provides an overview of the
functionality available with IBM WebSphere Application Server, Version 5

Programming instructions and examples

v Message-Driven Beans and Encapsulated Business Rules
http://www2.theserverside.com/resources/article.jsp?l=
Message-Driven-Beans-And-Encapsulated-Business-Rules
This article describes how to use business rules with Message-driven Beans.

v WebSphere Application Server Enterprise Edition 4.0: A Programmer’s Guide
http://www.redbooks.ibm.com/redbooks/SG246504.html
Chapter three of this programmer’s guide provides information about
implementation, modification, and deployment of business rules.

v WebSphere Application Server Enterprise Edition Technology Sample
http://www7b.software.ibm.com/wsdd/downloads/ee41_landing.html
This technology sample enables developers to gain experience with the Business
Rule Beans technology.

Administration

v IBM WebSphere Administration
http://books.mcgraw-hill.com/cgi-bin/pbg/0072223154.html

v Listing of all IBM WebSphere Application Server Redbooks
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
This is a listing of the Redbook publications about the WebSphere software
platform.

v WebSphere Application Server Version 4.0 Enterprise Edition -- Presentations
and Labs
http://www7b.boulder.ibm.com/wsdd/library/presents/
WAS_EE_Training.html

210 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

http://www7b.software.ibm.com/wsdd/library/summaries/200462.html
http://www7b.software.ibm.com/wsdd/library/summaries/200462.html
http://developerworks.cybercentral.com/ibm0502/amt/ibmpresentations/683_1.pdf
http://www2.theserverside.com/resources/article.jsp?l=Message-Driven-Beans-And-Encapsulated-Business-Rules
http://www.redbooks.ibm.com/redbooks/SG246504.html
http://www7b.software.ibm.com/wsdd/downloads/ee41_landing.html
http://books.mcgraw-hill.com/cgi-bin/pbg/0072223154.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www7b.boulder.ibm.com/wsdd/library/presents/WAS_EE_Training.html
http://www7b.boulder.ibm.com/wsdd/library/presents/WAS_EE_Training.html

Chapter 7. Using asynchronous beans

The asynchronous beans feature adds a new set of APIs that enable J2EE
applications to run work asynchronously inside a IBM WebSphere Application
Server Enterprise. This topic provides a brief overview of the tasks involved in
using asynchronous beans. For a more detailed description of the asynchronous
beans model, review the conceptual topic “Asynchronous beans”.

Steps for this task

1. “Configuring work managers” on page 214
2. “Assembling applications that use work managers” on page 219
3. “Developing work objects to run code in parallel” on page 220
4. “Developing event listeners” on page 222
5. “Developing Asynchronous scopes” on page 225

Asynchronous beans
An asynchronous bean is a Java object or enterprise bean that can be executed
asynchronously by a J2EE application, using the J2EE context of the bean’s creator.

Asynchronous beans can improve performance by enabling a J2EE program to
decompose operations into parallel tasks. Asynchronous beans enable the
construction of stateful, ″active″ J2EE applications. These applications address a
segment of the application space that J2EE has not previously addressed (that is,
advanced applications that require application threading, active agents within a
server application, or distributed monitoring capabilities).

Asynchronous beans can run using the J2EE security context of the creator J2EE
component. These beans also can run with copies of other J2EE contexts. For
example:
v Internationalization context
v Application profiles
v Work areas
v Access intent policies

Asynchronous bean interfaces

There are three types of asynchronous bean:

Work object
A work object implements the com.ibm.websphere.asynchbeans.Work
interface. A work object runs parallel to its caller using the
WorkManager.startWork() method. Applications implement work objects in
order to run code blocks asynchronously. For more information on the
Work interface, see the Related reference section at the end of this article.

Alarm listener
An alarm listener is an object that implements the
com.ibm.websphere.asynchbeans.AlarmListener interface. Alarm listeners

© Copyright IBM Corp. 2003 211

are called when a high-speed transient alarm expires. For more information
on the AlarmListener interface, see the Related reference section at the end
of this article.

Event listener
An event listener can implement any interface. An event listener is a
lightweight, asynchronous notification mechanism for asynchronous events
within a single JVM. An event listener would typically be used to enable
J2EE components within a single application to notify each other about
various asynchronous events.

Supporting interfaces

Work manager
A work manager is a thread pool that administrators create for J2EE
applications. The administrator specifies the properties of the thread pool
and a policy that determines which J2EE contexts the asynchronous bean
will inherit.

Event source
An event source implements the
com.ibm.websphere.asynchbeans.EventSource interface. An event source is
a system-provided object that supports a generic, type-safe asynchronous
notification server within a single JVM. The event source enables event
listener objects, which implement any interface, to be registered. For more
information on the EventSource interface, see the Related reference section
at the end of this article.

Event source events
Every event source can generate events of its own. Event sources also can
generate their own events such as ’listener count changed’. An application
can register an event listener object that implements
com.ibm.websphere.asynchbeans.EventSourceEvents. This enables the
application to catch events such as listeners being added or removed, or a
listener throwing an unexpected exception. For more information on
EventSourceEvents, see the Related reference section at the end of this
article.

Additional interfaces, including alarms and subsystem monitors, are introduced in
the topic “Developing Asynchronous scopes” on page 225, which discusses some of
the advanced applications of asynchronous beans.

Transactions

Every asynchronous bean method is called using its own transaction, much like
container-managed transactions in a typical enterprise bean. It is very similar to
the situation when an EJB method is called with TX_NOT_SUPPORTED. The
run-time environment starts a local transaction before invoking the method. The
asynchronous bean method is free to start its own global transaction if this is
possible for the calling J2EE component. For example, if an enterprise bean creates
the component, the method that creates the asynchronous bean must be
TX_BEAN_MANAGED.

If the asynchronous bean method throws an exception, any local transactions are
rolled back. If the method returns normally, any incomplete local transactions are
completed according to the unresolved action policy configured for the bean. EJB
methods can configure this policy using their deployment descriptor. If the

212 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

asynchronous bean method starts its own global transaction and does not commit
this global transaction, the transaction is rolled back when the method returns.

Access to J2EE component meta-data

If an asynchronous bean is a J2EE component, such as a session bean, its own
meta-data is active when a method is called. If an asynchronous bean is a simple
Java object, the J2EE component metadata of the creating component is available to
the bean. Like its creator, the asynchronous bean can look up the java:comp
namespace. This enables the bean to access connection factories and enterprise
beans, just as it would if it were any other J2EE component. The environment
properties of the creating component also are available to the asynchronous bean.

The java:comp namespace is identical to the one available to the creating
component and the same restrictions apply. For example, the
java:comp/UserTransaction object is only available if the creating enterprise bean
was TX_BEAN_MANAGED. All of the connection factories use the same
resource-sharing scope as the creating component.

Connection management

An asynchronous bean method can use the connections that its creating J2EE
component obtained using java:comp resource references. (For more information on
resource references, see References). However, the bean method must access those
connections using a get, use, close pattern. There is no connection caching between
method calls on an asynchronous bean. The connection factories or DataSources
themselves can be cached, but the connections must be retrieved on every method
call, used, and then closed. While the asynchronous bean method can look up
connection factories using a global JNDI name, this is not recommended for the
following reasons:
v The JNDI name is hard-coded in the application (for example, as a property or

string literal).
v The connection factories are unshared because there is no way to specify a

sharing scope.

For code examples that demonstrate both the correct and the incorrect ways to
access connections from asynchronous bean methods, see the topic “Example:
Asynchronous bean connection management”.

Example: Asynchronous bean connection management
An asynchronous bean method can use the connections that its creating J2EE
component obtained using java:comp resource references. (For more information on
resource references, see the topic References.) The following is an example of an
asynchronous bean that uses connections correctly:
class GoodAsynchBean
{
DataSource ds;
public GoodAsynchBean()
throws NamingException
{
// ok to cache a connection factory or datasource
// as class instance data.
InitialContext ic = new InitialContext();
// we are assuming that the creating J2EE component has this
// resource reference defined in its deployment descriptor.
ds = (DataSource)ic.lookup("java:comp/env/jdbc/myDataSource");
}

Chapter 7. Using asynchronous beans 213

// When the asynchronous bean method is called, get a connection,
// use it, then close it.
void anEventListener()
{
Connection c = null;
try
{
c = ds.getConnection();
// use the connection now...
}
finally
{
if(c != null) c.close();
}
}
}

The following is an example of an asynchronous bean that uses connections
illegally:
class BadAsynchBean
{
DataSource ds;
// Do not do this. You cannot cache connections across asynch method calls.
Connection c;

public BadAsynchBean()
throws NamingException
{
// ok to cache a connection factory or datasource as
// class instance data.
InitialContext ic = new InitialContext();
ds = (DataSource)ic.lookup("java:comp/env/jdbc/myDataSource");
// here, you broke the rules...
c = ds.getConnection();
}
// Now when the asynch method is called, illegally use the cached connection
// and you’ll likely see a bunch of J2C related exceptions at runtime.
// close it.
void someAsynchMethod()
{
// use the connection now...
}
}

Configuring work managers
Before you begin

If you are unfamiliar with work managers, review the conceptual topic “Work
managers” on page 215.

A work manager acts as a thread pool for application components that use
asynchronous beans. Use the administrative console to configure work managers.
You can define multiple work managers for each cell. Each work manager is bound
to a unique place in JNDI.

Note: The work manager service is only supported from within the EJB Container
or Web Container (EJBs or Servlets). Looking-up and using a configured
WorkManager from a J2EE Application Client container is not supported.

Steps for this task

1. Start the administrative console.

214 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

2. Select Resources > Work Managers.
3. Click New.
4. Specify the following required properties:

Name The display name for the work manager.

JNDI Name
The JNDI name for the work manager. This name is used by
asynchronous beans that need to look up the work manager. Each work
manager must have a unique JNDI name within the cell.

Number of Alarm Threads
The maximum number of threads to be used for processing alarms.
There is a single thread that is used to monitor pending alarms and
dispatch them. Also there is an additional pool of threads that is used
for dispatching the threads. All alarm managers on the asynchronous
beans associated with this work manager share this set of threads. That
is, there is a single alarm thread pool for each work manager and all of
the asynchronous beans associated with the work manager share this
pool of threads.

Minimum Number Of Threads
The initial number of threads to be created in the thread pool.

Maximum Number Of Threads
The maximum number of threads to be created in the thread pool. The
maximum number of threads can be exceeded temporarily if the
Growable checkbox is selected. These additional threads are discarded
when the work on the thread completes.

Thread Priority
The order of priority for threads available in the thread pool.

5. [Optional] Specify a Description and a Category for the work manager.
6. [Optional] Select the Service Names (J2EE contexts) on which you want this

work manager to be made available. Any asynchronous beans that use this
work manager then will inherit the selected J2EE contexts from the component
that creates the bean. The list of selected services also is known as the ″sticky″
context policy for the work manager.

Note: Selecting more services than are actually required might impede
performance.

7. Save your configuration.

Results

The work manager is now configured and ready to be accessed by application
components that need to manage asynchronous code execution.

Work managers
A work manager is a thread pool created for J2EE applications that use
asynchronous beans.

Using the administrative console, an administrator can configure any number of
work managers. The administrator specifies the properties of the work manager,
including the ″sticky″ context (inheritance) policy for any asynchronous beans that
use the work manager. The administrator binds each work manager to a unique
place in JNDI.

Chapter 7. Using asynchronous beans 215

When writing a Web or EJB component that uses asynchronous beans, the
developer should include a resource reference in each component that needs access
to a work manager. (For more information on resource references, see the topic
References.) The component looks up a work manager using a logical name in the
component’s java:comp namespace, just as it would look up a datasource,
enterprise bean, or connection factory.

The deployer binds physical work managers to logical work managers when the
application is deployed.

For example, if a developer needs three thread pools to partition work between
bronze, silver, and gold levels, the developer writes the component to pick a
logical pool based on an attribute in the client application’s profile. The deployer
has the flexibility to decide how to map this request for three thread pools. The
deployer might decide to use a single thread pool on a small machine. In this case,
the deployer binds all three resource references to the same work manager instance
(that is, the same JNDI name). A larger machine might allow for three thread
pools, so the deployer binds each resource reference to a different work manager.
Work managers can be shared between multiple J2EE applications installed on the
same server.

An application developer can use as many logical work managers as necessary; the
deployer chooses whether to map one physical work manager or several to the
logical work manager defined in the application.

Note: All J2EE components that need to share asynchronous scope objects must
use the same work manager. These scope objects have an affinity with a
single work manager so an application that uses AsynchScopes should
verify that all of the components using scope objects use the same work
manager.

When multiple work managers are defined, the underlying thread pools are
created in a JVM only if an application within that JVM looks up the work
manager. For example, there might be ten thread pools (work managers) defined,
but none are actually created until an application looks them up.

How to look up a work manager

An application can look up a work manager as follows. Here, the component
contains a resource reference named wm/myWorkManager, which was bound to a
physical work manager when the component was deployed:
InitialContext ic = new InitialContext();
WorkManager wm = (WorkManager)ic.lookup("java:comp/env/wm/myWorkManager");

″Sticky″ J2EE contexts

Asynchronous beans can inherit the following J2EE contexts. In other words, these
contexts can be made ″sticky″:

Internationalization context

Work area

Application profile

Security
The asynchronous bean can be run as anonymous or as the client
authenticated on the thread that created it. This is useful because the

216 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

asynchronous bean can do only what the caller can do. This is more useful
than a RUN_AS mechanism, for example, which prevents this kind of
behavior.

Component meta-data
Component meta-data is relevant only when the asynchronous bean is a
simple Java object. If the bean is a J2EE component, such as an enterprise
bean, the component’s meta-data is active.

Which contexts are sticky depends on the work manager used by the application
that creates the asynchronous bean. Using the administrative console, the
administrator defines the sticky context policy of a work manager by selecting the
services on which the work manager is to be made available.

Work manager collection
Use this page to view the configuration properties of work managers.

A work manager contains a pool of threads bound into JNDI.

To view this administrative console page, click Resources > Work Managers .

Name
The name by which the work manager is known for administrative purposes.

Data type
String

JNDI Name
The JNDI name used to look up the work manager in the namespace.

Data type
String

Description
A description of this work manager for administrative purposes.

Data type
String

Category
A string that can be used to classify or group this work manager.

Data type
String

Number of Alarm Threads
The number of threads used to execute concurrent alarms.

Data type
Integer

Minimum Number of Threads
The minimum number of threads available in this work manager for running
works.

Data type
Integer

Maximum Number of Threads
The maximum number of threads available in this work manager for running
works.

Chapter 7. Using asynchronous beans 217

Data type
Integer

Thread Priority
The priority of the threads available in this work manager

Data type
Integer

Growable
Specifies whether the number of threads in this work manager can be increased.

Service Names
A list of service names on which this work manager is made available.

The context information of each selected service is propagated to each work or
alarm that is created using this work manager. Selecting services that are not
needed can negatively impact performance.

Work manager settings
Use this page to modify work manager settings.

A work manager contains a pool of threads bound into JNDI.

To view this administrative console page, click Resources > Work Managers >
workmanager_name.

Name: The name by which the work manager is known for administrative
purposes.

Data type
String

JNDI Name: The JNDI name used to look up the work manager in the
namespace.

Data type
String

Description: A description of this work manager for administrative purposes.

Data type
String

Category: A string that can be used to classify or group this work manager.

Data type
String

Number of Alarm Threads: The number of threads used to execute concurrent
alarms.

Data type
Integer

Minimum Number of Threads: The minimum number of threads available in
this work manager for running works.

Data type
Integer

218 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Maximum Number of Threads: The maximum number of threads available in
this work manager for running works.

Data type
Integer

Thread Priority: The priority of the threads available in this work manager

Data type
Integer

Growable: Specifies whether the number of threads in this work manager can be
increased.

Service Names: A list of service names on which this work manager is made
available.

The context information of each selected service is propagated to each work or
alarm that is created using this work manager. Selecting services that are not
needed can negatively impact performance.

Work manager service settings
Use this page to enable or disable the work manager service, which manages work
manager resources used by the server.

To view this administrative console page, click Servers > Application Servers >
server_name > Work Manager Service .

Startup
Specifies whether the server will attempt to start the work manager service.

Default
Selected

Range

Selected
When the application server starts, it attempts to start the work
manager service automatically.

Cleared
The server does not try to start the work manager service. If work
manager resources are to be used on this server, the system
administrator must start the work manager service manually or
select this property then restart the server.

Assembling applications that use work managers
Before you begin

Your administrator needs to configure at least one work manager using the
administrative console.

If your application references one or more logical work managers, the logical work
managers must be bound to one or more physical work managers using the
Application Assembly Tool.

Steps for this task

Chapter 7. Using asynchronous beans 219

1. Declare a resource reference for each work manager (required action by the
application developer). This forms an EAR file. (For more information on
resource references, see the topic References.)

2. Using the Application Assembly Tool (AAT), bind each resource reference to a
physical work manager.

3. Add a resource reference with the type
’com.ibm.websphere.asynchbeans.WorkManager’ to the application’s descriptor.
The application then can look up this work manager using its resource
reference name in java:comp. The AAT or WebSphere Studio Application
Developer Integration Edition (WSAD-IE) then can specify which resource
references are bound to a physical work manager.

Note: The previous process is the same as the process used for DataSources.

Developing work objects to run code in parallel
Before you begin

Your administrator must have configured at least one work manager using the
administrative console.

To run code in parallel, or in a different J2EE context, wrap the code in a work
object.

Steps for this task

1. Create a work object.
A work object implements the com.ibm.websphere.asynchbeans.Work interface.
For example:
class SampleWork implements Work

2. Determine the number of work managers needed by this application
component.

3. Look up the work manager or managers using the work manager’s resource
reference (or logical name) in the java:comp namespace. (For more information
on resource references, see the topic References.)
InitialContext ic = new InitialContext();
WorkManager wm = (WorkManager)ic.lookup("java:comp/env/wm/myWorkManager");

The resource reference for the work manager (in this case,
wm/myWorkManager) must be declared as a resource reference in the
application’s deployment descriptor.

4. Call the WorkManager.startWork() method using the work object as a
parameter.
For example:
Work w = new MyWork(...);
WorkItem wi = wm.startWork(w);

The startWork() method can take a startTimeout parameter. This specifies a
hard time limit for the Work object to be started.

The startWork() method returns a work item object. This object is a handle that
provides a link from the component to the now running work object.

5. [Optional] If your application component needs to wait for one or more of its
running work objects to complete, call the WorkManager.join() method.

220 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

For example:
WorkItem wiA = wm.start(workA);
WorkItem wiB = wm.start(workB);
ArrayList l = new ArrayList();
l.add(wiA);
l.add(wiB);
if(wm.join(l, wm.JOIN_AND, 5000)) // block for up to 5 seconds
{

// both wiA and wiB finished
}
else
{

// timeout

// we can check wiA.getStatus or wiB.getStatus to see which, if any, finished.
}

This method takes an array list of work items that your component wants to
wait on and a flag that indicates whether the component will wait for one or
all of the work objects to complete. You also can specify a timeout value.

6. Using the release() method, set a variable in a synchronized block.
For example:
public synchronized void release()
{
released = true;
}

The Work.run() method should periodically examine this variable to check
whether the loop should exit or not.

Work objects
A work object is a type of asynchronous bean used by application components to
run code in parallel or in a different J2EE context.

A work object implements the com.ibm.websphere.asynchBeans.Work interface. A
work object is essentially a java.lang.Runnable object that is serializable and
provides additional methods. For details, see the Interface Work in the Javadoc,
which is located in the InfoCenter.

A component wanting to run work in parallel, or in a different J2EE context,
locates a work manager in JNDI, then calls the WorkManager.startWork() method
using the work object as a parameter.

The startWork() method returns a work item object. This object is a handle that
provides a link from the component to the now running work object. The work
item object is typically used when the component needs to wait for one or more of
its running work objects to complete. The WorkManager.join() method takes an
array list of work items that the component wants to wait on, and a flag indicating
whether the component will wait for all or one of the work objects to complete. A
timeout can be specified, which prevents the component from waiting indefinitely.

Why not have the application simply create Java 2 SDK threads? The threads
created by the Java 2 SDK are not managed threads and hence know nothing about
the J2EE environment and are unusable inside an application server. In addition,
these threads have no J2EE context (for example, a java:comp) and are not

Chapter 7. Using asynchronous beans 221

authenticated when they fire. Work object threads, on the other hand, are fully
supported by the application server and have the same properties as any other
asynchronous bean.

Example: Work object
The following is an example of a work object that dynamically subscribes to a
topic:
class SampleWork implements Work
{
boolean released;
Topic targetTopic;
EventSource es;
TopicConnectionFactory tcf;
public SampleWork(TopicConnectionFactory tcf, EventSource es, Topic targetTopic)
{
released = false;
this.targetTopic = targetTopic;
this.es = es;
this.tcf = tcf;
}
synchronized boolean getReleased()
{
return released;
}
public void run()
{
// setup our JMS stuff.
TopicConnection tc = tcf.createConnection();
TopicSession sess = tc.createSession(false, Session.AUTOACK);
tc.start();

MessageListener proxy = es.getEventTrigger(MessageListener.class, false);
while(!getReleased())
{
// block for up to 5 seconds.
Message msg = sess.receiveMessage(5000);
if(msg != null)
}
tc.close();
}
// called when we want to stop the Work object.
public synchronized void release()
{
released = true;
}
}

As a result, any component that has access to the event source can add an event
on demand, which allows components to subscribe to a topic in a more scalable
way than by simply giving each client subscriber its own thread. The previous
example is fully explored in the WebSphere Trader sample. See your Samples
Gallery for details.

Developing event listeners
Application components that listen for events can use the
EventSource.addListener() method to register an event listener object (a type of
asynchronous bean) with the event source to which the events will be published.
An event source also can fire events in a type-safe manner using any interface.

222 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Notifications between components within a single EAR file are handled by a
special event source. See the topic, “Using the application notification service”.

Steps for this task

1. Create an event listener object, which can be any type. For example, see the
following interface code:
interface SampleEventGroup
{

void finished(String message);
}

class myListener implements SampleEventGroup
{

public void finished(String message)

{

// This will be called when we ’finish’.

}
}

2. Register the event listener object with the event source
For example, see the following code:
InitialContext ic = ...;
EventSource es = (EventSource)ic.lookup("java:comp/websphere/ApplicationNotificationService");
myListener l = new myListener();
es.addListener(l);

This enables the myListener.finished() method to be called whenever the event
is fired. The following code example shows how this event might be fired:
InitialContext ic = ...;
EventSource es = (EventSource)ic.lookup("java:comp/websphere/ApplicationNotificationService");
myListener proxy = es.getEventTrigger(myListener.class);
// fire the ’event’ by calling the method
// representing the event on the proxy
proxy.finished("done");

Using the application notification service
During an application’s lifetime, individual J2EE components (servlets or enterprise
beans) within a single EAR file might need to signal each other. There is an event
source in the java:comp namespace that is bound into all components within an
EAR file. The JNDI name for this event source is:
java:comp/websphere/ApplicationNotificationService

Components within the same application can fire asynchronous events and register
event listeners using this application notification service. Startup beans can be used
to register these event listeners at application startup or they can be registered
dynamically at run time.

To have your enterprise bean or servlet use the application notification service,
write code similar to what is shown in the following example:
InitialContext ic = new InitialContext();
EventSource appES = (EventSource)

ic.lookup("java:comp/websphere/ApplicationNotificationService");
// now, the application can add a listener using the EventSource.addListener method.
// MyEventType is an interface.
MyEventType myListener = ...;
AppES.addListener(myListener);

Chapter 7. Using asynchronous beans 223

// later another component can fire events as follows
InitialContext ic = new InitialContext();
EventSource appES = (EventSource)
ic.lookup("java:comp/websphere/ApplicationNotificationService");

// This highlights a constant string on the EventSource interface which
// specifies the ’java:comp/websphere/ApplicationNotificationService’ string.
ic.lookup(appES.APPLICATION_NOTIFICATION_EVENT_SOURCE)
// now, the application can add a listener using the EventSource.addListener method.
MyEventType proxy = appES.getEventTrigger(MyEventType.class, false);
proxy.someEvent(someArguments);

Example: Event listener
The following code example demonstrates how to fire a listenerCountChanged
event:
// imagine this snippet inside an EJB or servlet method.
// Make an inner class implementing the required event interfaces.
EventSourceEvents listener = new Object() implements EventSourceEvents.class
{
void listenerCountChanged(EventSource es, int old, int newCount)
{
try
{

InitialContext ic = new InitialContext();
// here, the asynch bean can access an environment variable of
// the component which created it.
int i = (Integer)ic.lookup("java:comp/env/countValue").intValue());
if(newCount == i)
{
// do something interesting
}
// this should be called when the code below executes.
}
catch(NamingException e)
{
}
}
void listenerExceptionThrown(EventSource es, Object listener,

String methodName, Throwable exception)
{
}
void unexpectedException(EventSource es, Object runnable, Throwable exception)
{
}
}
// register it.
es.addListener(listener);

...

// now fire an event which the above listener should receive.
EventSourceEvents proxy = (EventSourceEvents)

es.getEventTrigger(EventSourceEvents.class, false);

proxy.listenerCountChanged(es, 0, 1);

// now, fire another event, we could call any of the methods.
proxy.listenerCountChanged(es, 4, 5);

In this example, we get a proxy for the interface that we want to fire a method on.
Then, call the method corresponding to the event on the proxy. This causes the
same method, with the same parameters, to be called on any event listeners that

224 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

implement the EventSourceEvents interface and that were previously registered
with the EventSource ″es″. The same proxy can be used to send multiple events
simultaneously.

The boolean parameter on the getEventTrigger() is named ″sameTransaction″.
When the sameTransaction parameter is false, a new transaction is started for each
event listener invoked and these event listeners can be called in parallel to the
caller. However, the event() method always is blocked until all of the event
listeners have been notified. If the sameTransaction parameter is true, the current
transaction, if any, on the thread is used for all of the event listeners; that is, the
event listeners share the transaction of the method that fired the event. For that
reason, all event listeners must run serially in an undetermined order. That is, the
order in which the listeners are called is undefined and the order in which listeners
were registered should not be a guide for the order used at run time. The method
on the proxy does not return until all of the event listeners have been called; that
is, it is a synchronous operation.

The parameters are passed by reference and listeners should not interfere with
these references unless the method that fired the event has purposefully designed
such interaction. For example, event listeners can be used as collaborators and add
data to a map, which was a parameter. Each event listener runs on its own
transaction, independent of any transaction that is active on the thread. Extreme
care must be taken when the sameTransaction parameter is false because the
parameters can potentially be accessed by multiple threads.

Developing Asynchronous scopes
Asynchronous scopes are units of scoping that comprise a set of alarms, subsystem
monitors, and child asynchronous scopes. Using asynchronous scopes can involve
some or all of the following steps:

Steps for this task

1. Create asynchronous scopes
Create a parent asynchronous scope object by calling the
AsynchScopeManager.createAsynchScope() method using a unique name as the
parameter.
You can store properties in an asynchronous scope object. This provides J2EE
applications with a way to store a non-serializable state that otherwise cannot
be stored in a session bean.
You also can create child asynchronous scopes, which is useful for scoping data
beneath the parent.

2. Listen for alarm notifications
a. Create a listener object by implementing the AlarmListener interface. For

more information, see the AlarmListener interface in the Javadoc, which is
located in the InfoCenter.

b. Supply this object to the AlarmManager.create() method, as the target for
the alarm.
The create() method takes the following parameters:

Target for the alarm
The target on which the fired() method is called when the alarm is
fired.

Chapter 7. Using asynchronous beans 225

Context
The context object for the alarm. This is useful for supplying
alarm-specific data to the listener and allows a single listener to be
used for multiple alarms.

Interval
The number of milliseconds before the alarm fires.

After the specified interval, the alarm fires and the fired() method of the
listener is called with the firing alarm as a parameter. The alarm object,
itself, is returned. By calling methods on this object, you can cancel or
reschedule the alarm.

3. Monitoring remote systems
a. Implement a mechanism for detecting messages sent from the remote

system. For example, publish-subscribe messaging.
b. Create a subsystem manager object by calling the

SubsystemMonitorManager.create() method with the following parameters:

Name Each subsystem monitor must have a unique name.

Heartbeat interval
The expected interval, in milliseconds, between heartbeats.

Missed heart beats until stale or suspect
The number of heartbeats that can be missed before the subsystem
is marked as stale.

Missed heart beats until dead
The number of heartbeats that can be missed before the system is
marked as dead.

c. Create an object that implements the SubsystemMonitorEvents interface. For
more information, see the SubsystemMonitorEvents in the Javadoc, which is
located in the InfoCenter

d. Add an instance of this object to the subsystem monitor using the
SubsystemMonitor.addListener() method.

e. Whenever a heartbeat message arrives from the remote system, call the
SubsystemMonitor’s ping() method.

The subsystem monitor configures alarms to track the heartbeat status of the
remote system. Whenever the ping() method is called, the alarms are reset. If
an alarm fires, the ping() method has not been called; that is, the application
did not receive a heartbeat from the subsystem being monitored.

Usage scenario

Asynchronous scopes are useful in stateful server applications. An application can
have a startup bean that creates an asynchronous scope on a named work
manager. The application also might create subsystem monitors to monitor the
health of any remote systems on which the application is dependent.

When a client attaches to the server, the application creates a child asynchronous
scope that is owned by the application asynchronous scope for the client and
named using the client ID. A subsystem monitor for monitoring the client itself
might be created on the client asynchronous scope. If the client times out, a
callback can clean up the client state on the server. Callbacks can be attached to the
application subsystem monitors, on behalf of the client. When a remote system
becomes unavailable, the client code in the server is notified and an event is sent

226 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

to the client to warn it that a critical remote system has failed. For example, the
failure might be a data feed in an electronic trading application.

Asynchronous scopes
An asynchronous scope (AsynchScope object) is a unit of scoping provided for use
with asynchronous beans.

Asynchronous scopes are collections of alarms, subsystem monitors, and child
asynchronous scopes that enable a relationship to be formed. Each asynchronous
scope uses a single work manager.

Each AsynchScope object owns and controls the life cycle of the following objects:

Child asynchronous scopes
Each AsynchScope object extends the AsynchScopeManager interface,
which is a factory for AsynchScope objects. (For more information on the
AsynchScopeManager interface, see the Javadoc, which is located in the
InfoCenter.). Any asynchronous scope can therefore create named
asynchronous scopes (children). Child asynchronous scopes can be useful
for scoping data underneath the parent. All of the child asynchronous
scopes must be uniquely named. These children are destroyed if the parent
asynchronous scope is destroyed.

Alarms
Each asynchronous scope has an associated alarm manager. All of the
alarms created by the alarm manager are automatically cancelled if the
associated asynchronous scope is destroyed.

Subsystem monitors
Each asynchronous scope has a subsystem monitor manager, which
manages a set of subsystem monitors associated with the asynchronous
scope. When the asynchronous scope is destroyed, all of the associated
subsystem monitors also are destroyed.

To summarize, asynchronous scopes can be organized into an acyclic tree. The life
cycle of each asynchronous scope is directly coupled to that of its parent
asynchronous scope. Each asynchronous scope is associated with a set of alarms
and subsystem monitors, and an optional set of child asynchronous scopes. These
objects are cancelled and destroyed when the asynchronous scope is destroyed.

Asynchronous scope state

Each asynchronous scope has an associated map, in which applications can store
state in the form of name and value pairs.

Asynchronous scope events

Each asynchronous scope is also an event source. Applications can therefore
register event listeners against the asynchronous scope. The event listeners can
receive notification if, for example, the AsynchScope object is about to be
destroyed.

Applications also can use this event source to fire events only to listeners of this
asynchronous scope. For example, an AsynchScope object created for a client
session might be used to fire asynchronous events to parties interested in that
client.

Chapter 7. Using asynchronous beans 227

Alarms
An alarm executes J2EE context-aware code at a given time interval. Alarm objects
are fine-grained, non-persistent, transient, and can fire at millisecond intervals.

Alarms, themselves, are executed using a thread pool associated with the work
manager that owns the associated asynchronous scope.

The AlarmManager.createAlarm() method takes an application-written object that
implements the AlarmListener interface. (For more information on the
AlarmListener interface, see the Javadoc, which is located in the InfoCenter.)The
fired method is called when the alarm expires. The createAlarm() method returns a
non-serializable handle, which can be used to cancel or reset the alarm. All of the
pending alarms are cancelled when its associated AsynchScope object is destroyed.

The Java 2 SDK already has a timer mechanism, so why create a new one? The
Java 2 SDK is a J2SE feature that knows nothing about the J2EE environment.
Timers fired by the J2SE feature do not run on a managed thread and are therefore
unusable inside an application server. These timers also lack a J2EE context (that is,
a java:comp value) and are not authenticated when they fire. The asynchronous
scope alarms are fully supported by IBM WebSphere Application Server Enterprise
and have the same properties as any other asynchronous bean.

Alarm performance

The alarm subsystem is designed to handle a large number of alarms. However, do
not have alarms undertake heavy processing when they are firing as this slows the
processing of later alarms. If an alarm needs to process a heavy load, design a
work object that is activated by a work manager. This procedure moves the heavy
processing to a different thread and enables the alarm threads to process alarms
unhampered. All of the alarms owned by asynchronous scopes that, in turn, are
owned by a single work manager, share a common thread pool. The properties of
this thread pool can be tuned at the work manager level using the administrative
console.

Subsystem monitors
A subsystem monitor is an object that monitors the health of a remote system. It
uses an event source to inform all registered listeners of the health of the system.

Advanced J2EE applications often rely on remote, non-managed, non-J2EE systems.
These remote systems can periodically send clients a message to indicate that they
are working. A subsystem monitor is essentially a set of alarms that track
indicators messages or ″heartbeats″ from a remote system.

An application creates a subsystem monitor by calling the
SubsystemMonitorManager.create() method with the following parameters:

Name Each subsystem monitor must be uniquely named.

Heart beat interval
The time period, in milliseconds, between arriving heartbeat messages.

Missed heart beats until stale or suspect
The number of heartbeats that can be missed before the subsystem is
marked as stale. This designation indicates that the subsystem might be
having problems.

228 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Missed heart beats until dead
The number of heartbeats that can be missed before the system is
considered to be down. The system then is marked as dead.

The subsystem monitor configures alarms to track the heartbeat status. Whenever
the ping() method is called, the alarms are reset. If an alarm fires, the ping()
method has not been called; that is, the application did not receive a heartbeat
from the subsystem being monitored. When the number of Missed heart beats
until stale has elapsed without a ping, a stale event is fired. Later, if the number of
Missed heart beats until dead elapses without a ping, a dead event is fired. If a
ping is received after a stale or dead notification, a fresh event is sent, which
indicates that the subsystem is alive again.

Make Missed heart beats until dead greater or equal to the Missed heart beats
until stale. If Missed heart beats until stale equals Missed heart beats until dead,
a stale event is not published; only a dead event is published.

Applications that want to be informed of these events can register a listener that
implements the SubsystemMonitorEvents interface. For more information on the
SubsystemMonitorEvents interface, see the Javadoc, which is located in the
InfoCenter..

Heart beat messages can be transmitted using a variety of mechanisms. The
application must call the SubsystemMonitor’s ping() method whenever a heartbeat
message arrives from a remote system, but the method used to detect these
messages is up to the application. For example, you might use a Java Message
Service (JMS) publish or subscribe implementation or even a third-party Java
messaging product that does not implement JMS.

Asynchronous scopes: Dynamic message bean scenario
J2EE now supports message-driven beans, but the beans are static. All of the
message sources must be known in advance and bound at deployment time. This
is not always viable, especially in fluid messaging environments such as those
found in brokerages. Some environments have publish-subscribe topic spaces that
are continually changing and clients need servers that can subscribe on demand to
an arbitrary topic.

An asynchronous bean application can create a work object that performs a
blocking receive on a JMS topic and then publishes the message as an event on an
application-defined event source. Clients requiring a subscription to that message
can add an event listener to the event source. The event source can inform the
work object when there are no listeners. Then, the event source can shut down and
make the JMS and thread resources available. The work object registers a listener
with its own event source. When the count is one again, the work object knows
that it is the only listener and its time to shut down the work object. The
WebSphere Trader sample (see your installed Samples Gallery) uses this pattern to
dynamically subscribe to JMS topics at run time to gather stock prices. For more
information, see an overview of the samples.

How does the server catch clients that disconnect or crash? It creates a subsystem
monitor to watch the client and adds an event listener to catch dead events. When
a dead event occurs, the server application can clean up the client’s server state.
For example, the server application can remove the client’s event listener from the
dynamic message bean; thereby allowing the server to subscribe to a dynamic
topic only when it is needed.

Chapter 7. Using asynchronous beans 229

230 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Chapter 8. Using object pools

An object pool enables an application to avoid creating new Java objects
repeatedly. Most objects can be created once, used, and then reused at a later point.
An object pool allows an object to be pooled while waiting for the point when it
can be reused. These object pools are not meant to be used for pooling JDBC
connections or JMS connections and sessions. WebSphere provides specialized
mechanisms for dealing with those types of objects. These object pools are
intended for pooling application-defined objects or basic JDK types.

To use an object pool, the WebSphere administrator must define an object pool
manager using the administrative console. Multiple object pool managers can be
created in a Websphere cell.

Note: The Object pool manager service is only supported from within the EJB
Container or Web Container (EJBs or Servlets). Looking-up and using a
configured object pool manager from a J2EE application client container is
not supported.

Steps for this task

1. Start the administrative console.
2. Select Resources > Object Pools.
3. Define the name of the object pool manager. This name can be up to 30 ASCII

characters long.
4. Assign the object pool manager a JNDI name.
5. Provide a description of this object pool manager.
6. Categorize the object pool manager.

Results

After completing this steps, applications can find the object pool manager by doing
a JNDI lookup using the specified JNDI name.

Usage scenario

The following code illustrates how an application can find an Object pool manager
object:
InitialContext ic = new InitialContext();
ObjectPoolManager opm = (ObjectPoolManager)ic.lookup("java:comp/env/pool");

Once the application has an ObjectPoolManager, it can cache an object pool for
classes of the types it wants to use. The following is an example:
ObjectPool arrayListPool = nulll;
ObjectPool vectorPool = null;
try
{
arrayListPool = opm.getPool(ArrayList.class);
vectorPool = opm.getPool(Vector.class);
}
catch(InstantiationException e)
{
// problem creating pool
}

© Copyright IBM Corp. 2003 231

catch(IllegalAccessException e)
{
// problem creating pool
}

Once the application has the pools, it can use them as in the following example:
ArrayList list = null;
try
{
list = (ArrayList)arrayListPool.getObject();
list.clear(); // just in case
for(int i = 0; i < 10; ++i)
{
list.add("" + I);
}
// do what ever we need with the ArrayList
}
finally
{
if(list != null) arrayListPool.returnObject(list);
}

This is the basic pattern for using object pooling. If the application ″forgets″ to
return the object, the only adverse effect is that the object cannot be reused.

Object pool managers
Object pool managers control the reuse of application objects and JDK objects such
as Vectors and HashMaps.

Multiple object pool managers can be created in a WebSphere cell. Each object pool
manager has a unique cell-wide JNDI name. Applications can find a specific object
pool manager by doing a JNDI lookup using the specific JNDI name.

The Object pool manager and its associated objects implement the following
interfaces:
public interface ObjectPoolManager
{
ObjectPool getPool(Class aClass)
throws InstantiationException, IllegalAccessException;
ObjectPool createFastPool(Class aClass)
throws InstantiationException, IllegalAccessException;

}

public interface ObjectPool
{
Object getObject();
void returnObject(Object o);

}

Each object pool manager can be used to pool any Java object with the following
characteristics:
v The object must be a public class with a public default constructor.
v Each object class to be pooled must have its own object pool.
v An application gets an object pool for a specific object using either the

ObjectPoolManager.getPool() or ObjectPoolManager.createFastPool() method. The
difference between these methods is that the getPool() method returns a pool

232 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

that can be shared across multiple threads. The createFastPool() method returns
a pool that can only be used by a single thread.

If, in a JVM, the getPool() method is called multiple times for a single class, the
same pool is returned. A new pool is returned for each call when the
createFastPool() method is called. Basically, the getPool() method returns a pool
that is thread-synchronized.

The pool for use by multiple threads is slightly slower than a fast pool due to the
need to handle thread synchronization. However, extreme care must be taken
when using a fast pool. Consider the following interface:
public interface PoolableObject
{
void init();
void returned();
}

If the objects placed in the pool implement this interface and
theObjectPool.getObject() is called, the object returned has the init() method called
on it. When the ObjectPool.returnObject() method is called, the returned method is
called on the object before it is returned to the object pool. This allows objects to be
pre-initialized or cleaned up.

It is not always possible for an object to implement PoolableObject. For example,
an application might want to pool ArrayList objects. The ArrayList would need to
be cleared each time the application reuses it. The application might extend
ArrayList and have that implement Poolable. For example, consider the following:
public class PooledArrayList extends ArrayList implements PoolableObject
{
public PooledArrayList()
{
}

public void init() {
}

public void returned()
{
clear();
}
}

If the application uses this, in place of a true ArrayList, the ArrayList is cleared
automatically when it is returned to the pool.

Note: Clearing an ArrayList simply marks it as empty and the array backing the
ArrayList is not freed.

Therefore, as the application reuses the ArrayList, the backing array expands until
it is big enough for all of the application requirements. Once this point is reached,
it stops allocating and copying new backing arrays and achieves the best
performance.

It might not be possible or desirable to use the previous procedure. An alternative
is to implement a custom object pool and register this with the object pool
manager as the pool to use for classes of that type. The class is registered by the
WebSphere administrator when the object pool manager is defined in the cell. Take
care that these classes are packaged in JAR files available on all of the nodes in the
cell where they might be used.

Chapter 8. Using object pools 233

Object pool manager collection
Use this page to manage object pool managers.

To view this administrative console page, click Resources > Object Pools .

Name
The name by which the object pool manager is known for administrative purposes.

Data type
String

Range 1 through 30 ASCII characters

JNDI Name
The JNDI name for the object pool manager.

Data type
String

Description
A description of the object pool manager.

Data type
String

Category
A category string used to classify or group this object pool manager.

Data type
String

Object pool manager settings
Use this page to modify object pool manager settings.

To view this administrative console page, click Resources > Object Pools >
objectpoolmanager_name

Name
The name by which the object pool manager is known for administrative purposes.

Data type
String

Range 1 through 30 ASCII characters

JNDI Name
The JNDI name for the object pool manager.

Data type
String

Description
A description of the object pool manager.

Data type
String

234 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Category
A category string used to classify or group this object pool manager.

Data type
String

Custom object pool collection
Use this page to manage object pools.

To view this administrative console page, click Resources > Object Pools >
objectpoolmanager_name > Object Pools.

Pool Class Name

The fully-qualified class name of the objects that are stored in the object pool.

Data type
String

Pool Impl Class Name

The fully-qualified class name of the CustomObjectPool implementation class for
this object pool.

Data type
String

Custom object pool settings
Use this page to modify custom object pool settings.

An object pool manages a pool of arbitrary objects.

To view this administrative console page, click Resources > Object Pools >
objectpoolmanager_name > Object Pools > objectpool_name.

Configuration tab

Pool Class Name
The fully-qualified class name of the objects that are stored in the object
pool.

Data type
String

Pool Impl Class Name
The fully-qualified class name of the CustomObjectPool implementation
class for this object pool.

Data type
String

Object pool service settings
Use this page to enable or disable the object pool service, which manages object
pool resources used by the server.

To view this administrative console page, click Servers > Application Servers >
server_name > Object Pool Service .

Chapter 8. Using object pools 235

Startup
Specifies whether the server will attempt to start the object pool service.

Default
Selected

Range

Selected
When the application server starts, it attempts to start the object
pool service automatically.

Cleared
The server does not try to start the object pool service service. If
object pool resources are to be used on this server, the system
administrator must start the object pool service manually or select
this property then restart the server.

Object pools: Resources for learning
Use the following links to find relevant supplemental information about object
pools. The information resides on IBM and non-IBM Internet sites, whose sponsors
control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

Programming model and decisions

v Java theory and practice: Thread pools and work queues
http://www-106.ibm.com/developerworks/library/j-jtp0730.html

v Java performance programming, Part 1: Smart object-management saves the day
http://www-106.ibm.com/developerworks/library/jw-performance.html

v Build your own ObjectPool in Java to boost app speed
http://www.javaworld.com/jw-06-1998/jw-06-object-pool.html

v Improve the robustness and performance of your ObjectPool
http://www.javaworld.com/jw-08-1998/jw-08-object-pool.html

v Java Tip 78: Recycle broken objects in resource pools
http://www.javaworld.com/javaworld/javatips/jw-javatip78.html

236 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

http://www-106.ibm.com/developerworks/library/j-jtp0730.html
http://www-106.ibm.com/developerworks/library/jw-performance.html
http://www.javaworld.com/jw-06-1998/jw-06-object-pool.html
http://www.javaworld.com/jw-08-1998/jw-08-object-pool.html
http://www.javaworld.com/javaworld/javatips/jw-javatip78.html

Chapter 9. Using startup beans

A startup bean is a stateful session bean that is loaded when an application starts.
Startup beans enable J2EE applications to execute business logic automatically,
whenever an application starts or stops normally.

Startup beans are especially useful when used in combination with asynchronous
bean features. For example, a startup bean might create an alarm object that uses
JMS to periodically publish heartbeat messages on a well-known topic. This
enables clients or other server applications to determine whether the application is
available.

Steps for this task

1. Use the home interface, com.ibm.websphere.startupservice.AppStartUpHome,
to designate a bean as a startup bean

2. Use the remote interface, com.ibm.websphere.startupservice.AppStartUp, to
define a start() and stop() method on the bean.
The bean’s start() method is called when the application starts. It implements
any business logic that needs to run at application start time.
The start() method returns a boolean. True indicates normal application startup
and false indicates that the application start process should be aborted. The
start() and stop() methods should not use a TX_MANDATORY attribute
because there never is a transaction on the thread when the start() or stop()
methods are invoked. Any other TX_* attribute can be used. If
TX_MANDATORY is used, an exception is logged (need a transaction for
mandatory) and the application does not start.
The bean’s stop() method is called when the application stops and implements
any business logic that needs to run at this time. Any exception thrown by a
stop() method is ignored, but logged to trace.
The start() and stop() methods on the remote interface use Run-As mode.
Run-As mode specifies the credential information to be used by the security
service to determine the permissions that a principal has on various resources.
If security is on, the Run-As mode needs to be defined on all of the methods
called. The identity of the bean without this setting is undefined. For more
information about the Run-As mode, see the topic Method extension assembly
settings.
There are no restrictions on what code the start() and stop() methods can run,
since the full Enterprise Application Server programming model is available to
these methods.

3. Use an optional environment property called wasStartupPriority, which is an
integer, to specify the start order of multiple startup beans in the same JAR file.
If the environment property is found and is the wrong type, application startup
is aborted. If no priority value is specified, a default priority of 0 is used. It is
recommended that you specify the priority property. Beans that have specified
a priority are sorted using this property. Beans with numerically lower
priorities are executed first. Beans that have the same priority are executed in
an undefined order. All priorities must be positive integers. The priority is used
to order beans within an EJB JAR file. The order in which this process is
applied to different EJB JAR files in a single EAR file is undefined. Beans are
stopped in the opposite order to their start priority.

© Copyright IBM Corp. 2003 237

Startup beans must specify a timeout value of 0. Failure to do so causes the
bean to be passivated and results in errors when attempting to call the stop()
method when the application is stopped.

238 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Chapter 10. Using the scheduler service

The scheduler service enables tasks to be executed at a requested time. The
following tasks can be scheduled:
v Invoke a session bean method.
v Send a JMS message on a Queue or Topic.

The scheduler service performs the task, repeating as necessary, according to the
task’s metadata.

Steps for this task

1. “Developing and scheduling tasks” on page 249.
Includes instructions for developing various types of tasks, receiving
notifications from a scheduler, submitting tasks to a scheduler, and managing
tasks.

Note: Creating and manipulating scheduled tasks through the Scheduler
interface is only supported from within the EJB Container or Web
Container (enterprise beans or servlets). Looking-up and using a
configured scheduler from a J2EE application client container is not
supported.

2. “Managing the scheduler service”.
Includes instructions for creating and configuring a database for scheduler,
configuring a scheduler instance, and enabling or disabling the scheduler
service (the service is enabled by default).

Managing the scheduler service
Schedulers are configured using the administrative console. Schedulers are
available to all servers on which the scheduler service is enabled.

Steps for this task

1. “Creating the database for scheduler”
2. “Configuring a scheduler” on page 244
3. “Enabling the scheduler service” on page 249

The scheduler service is enabled by default.

Creating the database for scheduler
Before you begin

Your database system must be installed and available.

It is important to realize that the scheduler uses this database for storing tasks and
then executing them. The performance of the scheduler is ultimately limited by the
performance of the database. If you need more tasks per second, you can run the
scheduler daemons on larger systems or you can use clusters for the session beans
used by the tasks. Eventually, however, the task database becomes saturated and
you then need a larger or better-tuned database system.

© Copyright IBM Corp. 2003 239

Multiple applications can share a scheduler database. This can lower the cost of
administering the scheduler database.

Scheduler requires a database, JDBC provider, and data source.

Steps for this task

1. Create the database according to the description for your database system:
v “Creating a Cloudscape database for scheduler”
v “Creating a DB2 database for scheduler” on page 241
v “Creating an Informix database for scheduler” on page 242
v “Creating a Microsoft SQL Server database for scheduler” on page 242
v “Creating an Oracle database for scheduler” on page 243
v “Creating a Sybase database for scheduler” on page 244

2. If the database is not on the same machine as your IBM WebSphere Application
Server, verify that you can access the database from your application server
machine.

3. Configure your JDBC provider and data source.
For details, see ″Creating and configuring a JDBC provider and data source″ in
the InfoCenter..

Creating a Cloudscape database for scheduler
Cloudscape is a database system implemented in Java. It is delivered with IBM
WebSphere Application Server as three JAR files. The Cloudscape license that
comes with WebSphere is only for development and test, not for production
purposes.

Steps for this task

1. Open a command-line window.
2. Make sure that you have administrator rights for the database system.
3. If you want to use an existing database, skip to [].

Note: Make sure that the database supports Unicode (UTF-8) . Otherwise, it
cannot store all characters that can be handled in Java, and you could
run into codepage conversion problems when a client uses an
incompatible codepage.

4. Use the Cloudview utility supplied with Cloudscape to create a database
named scheddb.

Note: Cloudscape allows only one local connection. If IBM WebSphere
Application Server is running and accessing a Cloudscape database,
attempts to open a second connection to the database from the command
line are rejected.

5. Create the schema.
a. Using a text editor, edit the script

%WAS_HOME%\Scheduler\createSchemaCloudscape.ddl according to the
instruction at the top of the file.

b. Enter one of the following commands:
On Windows:
%WAS_HOME%\java\jre\bin\java -Djava.ext.dirs=%WAS_HOME%/lib
-Dij.protocol=jdbc:db2j: -Dij.database=scheddb com.ibm.db2j.tools.ij
%WAS_HOME%\Scheduler\createSchemaCloudscape.ddl

240 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

On UNIX:
%WAS_HOME%/java/jre/bin/java -Djava.ext.dirs=%WAS_HOME%/lib
-Dij.protocol=jdbc:db2j: -Dij.database=scheddb com.ibm.db2j.tools.ij
%WAS_HOME%/Scheduler/createSchemaCloudscape.ddl

Note: The previous two commands were split into three lines due to the
maximum width of the page. However, type the appropriate
command on one continuous line.

Results

The Cloudscape database for Scheduler exists.

Creating a DB2 database for scheduler
Steps for this task

1. Open a DB2 command-line window.
2. Make sure that you have administrator rights for the database system.
3. If you want to use an existing database, skip to [].

Note: Make sure that the database supports Unicode (UTF-8) . Otherwise, it
cannot store all characters that can be handled in Java, and you could
run into codepage conversion problems when a client uses an
incompatible codepage.

To avoid deadlocks, be sure that the DB2 isolation level is set to ″read stability″.
If necessary, enter the command db2set DB2_RR_TO_RS=YES then restart the DB2
instance to activate the change.

4. In the DB2 command line processor, enter this command to create the database:
db2 CREATE DATABASE scheddb USING CODESET UTF-8 TERRITORY en-us

A DB2 database named scheddb has been created.
5. Create the tablespace and schema.

a. (Optional) Analyze the results of your experiences during development and
system testing.
The size of your database depends on many factors. If possible, distribute
tablespace containers across different logical disks, and implement an
appropriate security policy. Consider the performance implications of your
choices for bufferpools and log file settings.

b. Using a text editor, edit the following scripts according to the instruction at
the top of each file: %WAS_HOME%\Scheduler\createTablespaceDB2.ddl,
%WAS_HOME%\Scheduler\createSchemaDB2.ddl,
%WAS_HOME%\Scheduler\dropSchemaDB2.ddl, and
%WAS_HOME%\Scheduler\dropTablespaceDB2.ddl.

c. Make sure that you are attached to the correct instance.
Check the environment variable DB2INSTANCE.

d. To connect to a database named scheddb, enter the command:
db2 connect to scheddb

e. To create the tablespace, enter the command:
db2 -tf createTablespaceDB2.ddl

Make sure that the script’s output contains no errors. If there were any
errors, you can drop the tablespace using the script dropTablespaceDB2.ddl.

Chapter 10. Using the scheduler service 241

f. To create the schema (tables and indices), in the DB2 command line
processor, enter the command:
db2 -tf createSchemaDB2.ddl

Make sure that the script’s output contains no errors. If there were any
errors, you can use dropSchemaDB2.ddl to drop the schema.

Results

The DB2 database for scheduler exists.

Creating an Informix database for scheduler
Steps for this task

1. Open a command-line window.
2. Make sure that you have administrator rights for the database system.
3. If you want to use an existing database, skip to [].

Note: Make sure that the database supports Unicode (UTF-8) . Otherwise, it
cannot store all characters that can be handled in Java, and you could
run into codepage conversion problems when a client uses an
incompatible codepage.

4. If you want to create a new database named scheddb, enter the command:
dbaccess CREATE DATABASE scheddb

5. Create the schema.
a. Using a text editor, edit the script

%WAS_HOME%\Scheduler\createSchemaInformix.sql according to the
instruction at the top of the file.

b. Enter the command:
dbaccess scheddb createSchemaInformix.sql

Results

The Informix database for scheduler exists.

Creating a Microsoft SQL Server database for scheduler
Steps for this task

1. Open a command-line window.
2. Change to the directory where the configuration scripts for scheduler are

located. This is the Scheduler subdirectory of the IBM WebSphere Application
Server installation directory.
On Windows, enter:

cd %WAS_HOME%\Scheduler

On UNIX, enter:
cd $WAS_HOME/Scheduler

3. Using a text editor, edit the schema creation script createSchemaMSSQL.sql
according to the instruction at the top of the file.

4. If you want to use an existing database, skip to [].

242 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Note: Make sure that the database supports Unicode (UTF-8) . Otherwise, it
cannot store all characters that can be handled in Java, and you could
run into codepage conversion problems when a client uses an
incompatible codepage.

5. If you want to create a new database named scheddb:
a. Make sure that you are using a user ID that has administrator rights for the

database system.
b. In the Enterprise Manager, expand a server group, then expand a server.
c. Right-click Databases, then click New Database.
d. Type the name scheddb.
e. Modify any default values, as desired, then save.

An Microsoft SQL Server database named scheddb has been created.
6. To create the schema:

a. Make sure that you have administrator rights for the database system.
The user ID you use to create the schema must be the one that you tell
WebSphere to use when accessing the database.

b. Run the script to create the schema (tables and views):
isql -S <serverName> -U<userid> -P<password> -D<databaseName> -i createSchemaMSSQL.sql

Results

The Microsoft SQL Server database for scheduler exists.

Creating an Oracle database for scheduler
Steps for this task

1. Open a command-line window.
2. Make sure that you have administrator rights for the database system.
3. If you want to use an existing database, skip to [].

Note: Make sure that the database supports Unicode (UTF-8) . Otherwise, it
cannot store all characters that can be handled in Java, and you could
run into codepage conversion problems when a client uses an
incompatible codepage.

4. Use the Database Configuration Assistant to create a database named scheddb.
Make sure that you select the JServer option for the database. It is
recommended to use a Unicode codepage when creating the database. The text
data you pass to the APIs must be compatible with the selected codepage.

5. Create the tablespace and schema.
a. Using a text editor, edit the scripts

%WAS_HOME%\Scheduler\createTablespaceOracle.ddl and
%WAS_HOME%\Scheduler\createSchemaOracle.ddl according to the instruction
at the top of the files.

b. If you do not want the schema to be created in the default instance, set the
environment variable ORACLE_SID

c. To create the tablespace, run the script createTablespaceOracle.ddl.
For test purposes you can use the same location for all tablespaces and pass
the path as a command line argument to the script, for example, on
Windows, user ID scheduser, password schedpwd, database name scheddb,
and tablespace path d:\mydb\ts, enter the command:
sqlplus scheduser/schedpwd@scheddb @createTablespaceOracle.ddl d:\mydb\ts

Chapter 10. Using the scheduler service 243

If you get any errors creating the tablespace, you can use
dropTablespaceOracle.ddl to drop the tablespace.

d. To create the schema, run the script createSchemaOracle.ddl.
For example, on Windows, enter:
sqlplus scheduser/schedpwd@scheddb @createSchemaOracle.ddl

If you get any errors creating the schema (tables and views), you can use
dropSchemaOracle.ddl to drop the schema.

Results

The Oracle database for scheduler exists.

Creating a Sybase database for scheduler
Steps for this task

1. Open a command-line window.
2. Make sure that you have administrator rights for the database system.
3. Make sure that you have the DTM option for Sybase ASE installed.
4. If you want to use an existing database, skip to [].

Note: Make sure that the database supports Unicode (UTF-8) . Otherwise, it
cannot store all characters that can be handled in Java, and you could
run into codepage conversion problems when a client uses an
incompatible codepage.

5. Use the Sybase isql utility to create a database named scheddb. See your Sybase
product documentation for details.

6. Create the schema:
a. Using a text editor, edit the script

%WAS_HOME%\Scheduler\createSchemaSybase12.ddl according to the
instruction at the top of the file.

b. Enter the command:
isql -S <serverName> -U<userid> -P<password> -D scheddb -i createSchemaSybase12.ddl

Results

The Sybase database for scheduler exists.

Configuring a scheduler
Before your application can make use of the scheduler service, you need to
configure a scheduler instance using the administrative console. Conceptually, a
scheduler is similar to a datasource: you specify various configuration attributes,
including a JNDI name where the instance will be bound. Once defined, an
application using the scheduler API can look up the scheduler object and call
various methods to manage tasks.

Steps for this task

1. Start the administrative console.
2. Select Resources > Scheduler Configurations.
3. Click New.
4. Specify configuration settings.

Fields marked with an asterisk (*) are required. The settings are described in
detail in the topic (configuration settings).

244 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Scheduler configuration collection
Use this page to manage scheduler configurations.

To view this administrative console page, click Resources > Scheduler
Configurations .

Name

The name by which this scheduler is known for administrative purposes.

Data type
String

JNDI Name

The JNDI name for the scheduler.

The JNDI name specifies where this scheduler instance is bound in the namespace.
Clients can look this name up directly, although the use of resource references is
recommended.

Data type
String

Description

A description of this scheduler for administrative purposes.

Data type
String

Category

A string that can be used to classify or group this scheduler.

Data type
String

Datasource JNDI Name

Datasource where persistent tasks will be stored.

Any datasource available in the name space can be used with a scheduler. Multiple
schedulers can share a single datasource while using different tables by specifying
a table prefix.

Data type
String

Datasource Alias

Alias to a user name and password used to access the datasource.

Data type
String

Table Prefix

String prepended to the table name TASK.

Chapter 10. Using the scheduler service 245

Multiple independent schedulers can share the same database if each instance
specifies a different prefix string.

Data type
String

Poll Interval

The interval at which the scheduler daemon polls the database. Each scheduled,
repeating task’s minimum repeat interval will be equal to this value regardless of
what is specified on the task.

Each poll operation can be expensive. If the interval is extremely small and there
are many scheduled tasks, polling can consume a large portion of system
resources.

Data type
Integer

Units Seconds

Default
30

Range Any positive long integer

Work Manager

Specifies the work manager used by this scheduler.

The Work Manager is a server object that serves as a logical thread pool for the
scheduler. Each repeating task that is created using this scheduler will use the
″Number Of Alarm Threads″ specified in the Work Manager which will affect the
number tasks that can run concurrently. Use the Work Manager’s ″Service Names″
property to limit the amount of context information that is propagated to the task
when it executes.

When a task fires, the task is run in the Work Manager associated with the
scheduler instance. Configuring a scheduler with a specific Work Manager enables
you to control how many tasks are actively running at a given time.

Scheduler configuration settings
Use this page to modify scheduler settings.

To view this administrative console page, click Resources > Scheduler
Configurations > scheduler_name.

Configuration tab

Name The name by which this scheduler is known for administrative purposes.

Data type
String

JNDI Name
The JNDI name for the scheduler.

The JNDI name specifies where this scheduler instance is bound in the
namespace. Clients can look this name up directly, although the use of
resource references is recommended.

246 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Data type
String

Description
A description of this scheduler for administrative purposes.

Data type
String

Category
A string that can be used to classify or group this scheduler.

Data type
String

Datasource JNDI Name
Datasource where persistent tasks will be stored.

Any datasource available in the name space can be used with a scheduler.
Multiple schedulers can share a single datasource while using different
tables by specifying a table prefix.

Data type
String

Datasource Alias
Alias to a user name and password used to access the datasource.

Data type
String

Table Prefix
String prepended to the table name TASK.

Multiple independent schedulers can share the same database if each
instance specifies a different prefix string.

Data type
String

Poll Interval
The interval at which the scheduler daemon polls the database. Each
scheduled, repeating task’s minimum repeat interval will be equal to this
value regardless of what is specified on the task

Each poll operation can be expensive. If the interval is extremely small and
there are many scheduled tasks, polling can consume a large portion of
system resources.

Data type
Integer

Units Seconds

Default
30

Range Any positive long integer

Work Manager
Specifies the work manager used by this scheduler.

The Work Manager is a server object that serves as a logical thread pool
for the scheduler. Each repeating task that is created using this scheduler
will use the ″Number Of Alarm Threads″ specified in the Work Manager
which will affect the number tasks that can run concurrently. Use the Work

Chapter 10. Using the scheduler service 247

Manager’s ″Service Names″ property to limit the amount of context
information that is propagated to the task when it executes.

When a task fires, the task is run in the Work Manager associated with the
scheduler instance. Configuring a scheduler with a specific Work Manager
enables you to control how many tasks are actively running at a given
time.

Creating a scheduler resource reference
When a scheduler has been defined in the server configuration, the object instance
is bound into the global name space under the configured JNDI name. A resource
reference can be used to avoid hardcoding this JNDI name into your application.

You can alternatively create a scheduler resource reference by editing the XML
directly. A scheduler resource reference is a J2EE compliant resource that uses the
class com.ibm.websphere.scheduler.Scheduler as the object type. For information
regarding the XML file format, see the J2EE Specification.

Steps for this task

1. Start the Application Assembly Tool.
2. Select your application.
3. In the left-hand panel, right-click on Resource References and select New.
4. On the General tab, complete the following fields:

Name Specify the name suffix. For example, if the scheduler name is
MyScheduler, the reference JNDI name is java:comp/env/MyScheduler

Type From the drop-down list select
com.ibm.websphere.scheduler.Scheduler

5. (Optional) At this time you can also specify the global JNDI name to which this
resource reference is bound by entering the JNDI name on the Bindings tab.

Scheduler daemon
A scheduler daemon is a background thread that searches for events in the
persistent store.

A scheduler daemon is started for each scheduler defined on each server. If
″Scheduler 1″ is configured on server1, then there will only be one scheduler
daemon running on server1 unless it is cloned. If ″Scheduler 1″ is defined at the
node scope level, then the scheduler will run on each server within that node.

The poll interval determines the frequency at which the persistent store is queried.
By default, this value is set to 30 seconds. When a task is found that is scheduled
to fire within the current poll interval, an alarm is set. The task then runs as close
to this time as possible using an alarm thread from the scheduler’s associated work
manager. Thus, the number of alarm threads configured on the work manager
determines how many concurrent tasks are executed. No tasks are lost. If we reach
this limit, then new tasks are simply queued to be executed when an alarm thread
becomes available. The actual firing time is dictated by server load and availability
of free threads in the alarm thread pool of the associated work manager.

Scheduler daemons in a cluster

When multiple scheduler daemons are configured to the same table (as is the case
in a clustered environment), any of the daemons can find a task and set the timer
in its Java Virtual Machine (JVM). The task is executed in the virtual machine
where the timer first fires.

248 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Enabling the scheduler service
Before you begin

Before an application can make use of the scheduler service, you need to
“Configuring a scheduler” on page 244.

The scheduler service manages all schedulers used by a given server. The
scheduler service can be enabled and disabled on a server-by-server basis using the
administrative console. The service is enabled by default. If you disable the service
on a server, all schedulers configured on that server are no longer available. All
lookups fail and all scheduler daemons are inactive.

Steps for this task

1. Start the administrative console.
2. Select Servers > server_name > Scheduler Service.
3. Select or clear the Startup checkbox in order to enable or disable the service.
4. Click Save on the menu bar to save your configuration.

Results

The change takes effect on the next server restart.

Scheduler service settings
Use this page to enable or disable the scheduler service, which manages scheduler
resources used by the server.

To view this administrative console page, click Servers > Application Servers >
server_name > Scheduler Service .

Startup: Specifies whether the server will attempt to start the scheduler service.

Default
Selected

Range

Selected
When the application server starts, it attempts to start the
scheduler service automatically.

Cleared
The server does not try to start the scheduler service. If scheduler
resources are to be used on this server, the system administrator
must start the scheduler service manually or select this property
then restart the server.

Developing and scheduling tasks
Steps for this task

1. Developing a task.
The scheduler API supports different implementations of the TaskInfo interface,
each of which can be used to schedule a particular type of work. Refer to one
of the following topics for details:
v “Developing a task that calls a session bean” on page 250.
v “Developing a task that sends a JMS message” on page 251. This task object

can send a JMS message to either a queue or a topic.

Chapter 10. Using the scheduler service 249

Note: Creating and manipulating scheduled tasks through the Scheduler
interface is only supported from within the EJB Container or Web
Container (enterprise beans or servlets). Looking-up and using a
configured scheduler from a J2EE application client container is not
supported.

2. “Receiving scheduler notifications” on page 252.
A notification sink is set on a task in order to receive the notification events
that are generated by a scheduler when it performs an operation on the task.

3. “Submitting a task to a scheduler” on page 253.
After a TaskInfo object has been created, it can be submitted to the scheduler
for task creation by calling the Scheduler.create() method.

4. “Managing tasks with a scheduler” on page 253.

Developing a task that calls a session bean
The scheduler API supports different implementations of the TaskInfo interface,
each of which can be used to schedule a particular type of work. This topic
describes how to call a method on a task handler session bean using the
BeanTaskInfo implementation.

Steps for this task

1. Create a stateless session bean that implements the process() method in the
com.ibm.websphere.scheduler.TaskHandler remote interface. The process()
method is called when the task fires.
The Home and Remote interfaces must be set as follows in the bean’s
deployment descriptor:
v com.ibm.websphere.scheduler.TaskHandlerHome
v com.ibm.websphere.scheduler.TaskHandler

2. Create an instance of the BeanTaskInfo class.
To create a BeanTaskInfo instance, call the constructor on the class. For
example:
BeanTaskInfo taskInfo = new BeanTaskInfo();

Several other constructors are available that can simplify this programming
model. For more information, refer to the Javadoc for the BeanTaskInfo class,
which is located in the InfoCenter.

Note: Creating a BeanTaskInfo object does not add the task to the persistent
store. Rather, it creates a placeholder for the necessary data. The task is
not added to the persistent store until the create() method is called on a
Scheduler instance, as described in the topic “Submitting a task to a
scheduler” on page 253.

3. Set parameters on the BeanTaskInfo object. These parameters define which task
is to run, which session bean is called, and so on.
The TaskInfo interface contains various set() methods that you can use to
control execution of the task, including when the task will fire and what work
the task will do when it fires. For example:
//create a date object which represents 30 seconds from now
java.util.Date startDate = new java.util.Date(System.currentTimeMillis()+30000);

//find the session bean to be called when the task executes
Object o = new InitialContext().lookup("java:comp/env/ejb/MyTaskHandlerHome");
TaskHandlerHome home = (TaskHandlerHome)javax.rmi.PortableRemoteObject.narrow
(o,TaskHandlerHome.class);

250 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

//now set the start time and task handler to be called in the task info
taskInfo.setTaskHandler(home);
taskInfo.setStartTime(startDate);

Note: The sixth line of the preceeding example wrapped onto a second line
due to the width of the page.

The TaskInfo.html interface specifies additional control points, as documented
in Javadoc.The Javadoc is located in the InfoCenter.

Results

A TaskInfo object has been created that contains all of the relevant data for a task.

What to do next

Submit the task to a scheduler instance for creation, as described in the topic
“Submitting a task to a scheduler” on page 253.

Developing a task that sends a JMS message
The scheduler API supports different implementations of the TaskInfo interface,
each of which can be used to schedule a particular type of work. This topic
describes how to use the MessageTaskInfo implementation, which sends a JMS
message to either a queue or a topic.

Steps for this task

1. Create an instance of the MessageTaskInfo class.
To create a MessageTaskInfo instance, call the constructor on the class. For
example:
MessageTaskInfo taskInfo = new MessageTaskInfo();

Several other constructors are available that can simplify this programming
model. For more information, refer to the MessageTaskInfo.html class in the
Javadoc.The Javadoc is located in the InfoCenter.

Note: Creating a MessageTaskInfo object does not add the task to the persistent
store. Rather, it creates a placeholder for the necessary data. The task is
not added to the persistent store until the create() method is called on a
Scheduler instance, as described in the topic “Submitting a task to a
scheduler” on page 253.

2. Set parameters on the MessageTaskInfo object.
The TaskInfo interface contains various set() methods that can be used to
control execution of the task, including when the task will fire and what work
the task will do when it fires. For example:
//create a date object which represents 30 seconds from now
java.util.Date startDate = new java.util.Date(System.currentTimeMillis()+30000);

//now set the start time and the JNDI names for the queue connection factory and the queue
taskInfo.setConnectionFactoryJndiName("jms/MyQueueConnectionFactory");
taskInfo.setDestination("jms/MyQueue");
taskInfo.setStartTime(startDate);

The TaskInfo interface specifies additional control points, as documented in
Javadoc. The Javadoc is located in the InfoCenter.

Results

Chapter 10. Using the scheduler service 251

A TaskInfo object has been created that contains all of the relevant data for a task.

What to do next

Submit the task to a scheduler instance for creation, as described in the topic
“Submitting a task to a scheduler” on page 253.

Receiving scheduler notifications
Various notification events are generated by a scheduler when it performs an
operation on a task. These events include:

Scheduled
A task has been scheduled.

Purged
A task has been permanently deleted from the persistent store.

Suspended
A task was suspended.

Resumed
A task was resumed.

Complete
A task has run completely. If it was a repeating task, all repeats have been
performed.

Cancelled
A task has been cancelled. It will not run again.

Fired A task fired successfully.

Fire Failed
A task could not fire successfully.

To receive notification events, call the setNotificationSink() method on the TaskInfo
interface before creating the event. The setNotificationSink() method enables you to
specify the session bean that is to act as the callback, and a mask that restricts
which events are generated.

Steps for this task

1. Create a notification sink session bean.
Create a stateless session bean that implements the handleEvent() method in
the com.ibm.websphere.scheduler.NotificationSink remote interface. The
handleEvent() method is called when the notification is fired. The Home and
Remote interfaces can be set as follows in the bean’s deployment descriptor:
com.ibm.websphere.scheduler.NotificationSinkHome
com.ibm.websphere.scheduler.NotificationSink

The notification sink bean must exist in the same application (EAR file) that is
used to create the task.

The NotificationSink interface defines the following method:
public void handleEvent(TaskNotificationInfo task) throws java.rmi.RemoteException;

The transactional context used by the session bean is defined by the assembler.
2. Specify the notification sink session bean to be used as the callback.

The following code illustrates how to set this option:

252 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

TaskInfo taskInfo = ...
Object o = new InitialContext().lookup("java:comp/env/ejb/NotificationSink");
NotificationSinkHome home = (NotificationSinkHome)
javax.rmi.PortableRemoteObject.narrow(o,NotificationSinkHome.class);
taskInfo.setNotificationSink(home,TaskNotificationInfo.ALL_EVENTS);

Note: The third line of the preceeding code example beginning with
″NotificationsSinkHome″ was split into two lines due to the width of the
page.

3. Specify the event mask.
The event mask is specified as an integer mask. You can either use an
individual mask such as TaskNotificationInfo.CREATED to receive specific
events, TaskNotificationInfo.ALL_EVENTS to receive all events or a
combination of specific events.. For example:
int eventMask = TaskNotificationInfo.CREATED+TaskNotificationInfo.PURGED;

Submitting a task to a scheduler
Before you begin

This task assumes that you have already “Configuring a scheduler” on page 244
using the administrative console.

Once you have developed a TaskInfo object that contains all relevant data for a
task, submit the task to a scheduler instance for creation. For example:
//lookup the scheduler instance to be used
Scheduler scheduler = (Scheduler)new InitialContext.lookup("java:comp/env/Scheduler");

TaskStatus status = scheduler.create(taskInfo);

When you configure a scheduler, it is bound to a global JNDI name. Although the
desired scheduler instance can be found by performing a lookup on that JNDI
name, it is better to create a resource reference, which allows for more flexibility in
configuring the scheduler.

Note: The scheduler interface is a local interface. It can only be used by server-side
code; that is, J2EE applications.

Once the call to the create() method is executed, the task exists in the persistent
store and is run at the time specified in the TaskInfo object. This call is
transactional. If a transactional context is present on the thread when the create()
method rolls back or is aborted, the task does not run.

The status object, which has been returned by the call to the create() method,
contains information about the state of the task, as well as the task ID. The task ID
is the unique identifier for this task, and is required if the task is to be suspended,
resumed, cancelled, and so on, at a later time.

Note: The status object is only a snapshot of the current state of the task. Use the
Scheduler.getStatus() method to receive the current state when needed.

Managing tasks with a scheduler
When a task is created by calling the create() method on a scheduler instance, a
TaskStatus object is returned to the caller. The status object contains the task ID,
which is a unique identifier. The scheduler API defines several additional methods
that pertain to the management of tasks, each of which accepts the task ID as a
parameter. The following task management methods are defined:

Chapter 10. Using the scheduler service 253

suspend()
Suspends a task. The task does not run until it has been resumed.

resume()
Resumes a previously suspended task.

cancel()
Cancels a task. The task is not run.

purge()
Permanently deletes the task from the persistent store.

getStatus()
Returns the current status of the task.

For example, the following code creates and cancels a task:
//Create the task.
TaskInfo taskInfo = ...
TaskStatus status = scheduler.create(taskInfo);

//Get the task ID
String taskId = status.getTaskId();

//Cancel the task. Specify the purgeAlso flag so that the task does not remain
in the persistent store
scheduler.cancel(taskId,true);

Transactionality. All methods of the scheduler API are transactional. If a global
transactional context is present, it is used to perform the operation. If an
unexpected exception is thrown, the transaction is marked to roll back. If an
expected or declared exception is thrown, the transaction remains intact and the
caller must choose to roll back or to commit the transaction. If the transaction is
rolled back at some point, all scheduler operations performed within the
transaction ware also rolled-back.

If a local transactional context is present, it is suspended and a new global
transactional context begins. Likewise, if no transactional context is active, a global
transactional context begins. In both cases, if an unexpected exception is thrown,
the transaction rolls back. If a declared exception is thrown, the transaction is
committed.

If another thread is concurrently modifying the task in question, a TaskPending
exception is thrown. This is because schedulers lock the database optimistically.
The calling application can then retry the operation.

All methods defined by the scheduler API are described in Javadoc. The Javadoc is
located in the InfoCenter.

Transactions and the scheduler service
Transactions and the scheduler daemon

Scheduled BeanTaskInfo and MessageTaskInfo objects are guaranteed to execute
only once. This is accomplished by grouping all of the work done in the task as a
single unit of work. When each task fires, the following events occur in a single
global transactional context:
1. The context of the application that created the task is applied to the thread.
2. A global transactional context is started.
3. The next fire time and start-by time are calculated using the UserCalendar bean

or the DefaultUserCalendar.

254 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

4. The task database task record is updated in the database with the state of the
next task or deleted if the task is complete and the task’s auto-purge setting is
true.

5. The BeanTaskInfo or MessageTaskInfo object is executed.
6. If the task fails and the NotificationSink bean is set, a FIRE_FAILED notification

is fired on a separate transaction.
7. If the task’s NotificationSink bean is set, then the various notifications are fired

as required.
8. The global transaction is committed.

Because all of a task’s events are executed in a single global transactional context,
you need to consider the following points in order to avoid transaction-related
errors:
v Each resource participating in the task’s transaction must be 2-phase XA

capable.
This includes the JDBC datasource configured for the scheduler, any JMS
services used by the MessageTaskInfo objects, and any resources used within
any of the UserCalendar, TaskHandler, or NotificationSink beans that have a
transaction setting of ″Requires″.

v One resource can be single-phase, if last participant support is enabled for the
application that created the transaction.
Enable last participant support using the Application Assembly Tool. On the
WAS Enterprise tab for your enterprise application, select the Accept heuristic
hazard checkbox.

All unexpected exceptions are logged to the activity log and all events
participating in the task’s global transaction are rolled back. This includes changes
to the task’s database record, which force the task to be executed again when the
scheduler daemon polls the database during the next poll cycle. The UserCalendar,
TaskHandler, and NotificationSink beans can choose not to participate in the global
transaction by setting the bean’s transaction setting to ″Requires new″.

Transactions and the scheduler interface

All Scheduler interface methods participate in a single global transactional context.
If a global transactional context is already present on the thread when the create(),
suspend(), resume(), cancel(), and purge() methods are executed, the existing global
transaction is used. Otherwise, a new global transaction begins.

If the method participates in the caller’s global transaction and an unexpected error
occurs, the transaction is marked to roll back. If the exception is a declared
exception, then the exception is rethrown to the caller, and the transaction is left
alone for the caller to commit or roll back.

If the method starts its own global transaction and any exception occurs, the
transaction is rolled-back, and the exception is rethrown to the caller.

Scheduler interface
A scheduler object exists in the JNDI namespace for each scheduler configuration.
A reference to a scheduler can be obtained by performing a lookup on the JNDI
name; however, the lookup is valid only from the server process where the
scheduler instance exists. Once a reference has been obtained, tasks can be created,
suspended, cancelled, and so on, if the caller has access to the scheduler instance.

Chapter 10. Using the scheduler service 255

For details, see the Interface Scheduler in the Javadoc. The Javadoc is located in the
InfoCenter.

Task creation
The task is created in the persistent store using the caller’s global
transactional context if present. See the topic “Transactions and the
scheduler service” on page 254 for more details. Since this is a transactional
operation, the task cannot be run or modified from another thread until the
current transaction commits.

Task modification
Tasks that have been created can be modified with the suspend(), resume(),
cancel(), and purge() methods. These methods take a Task Identifier string
as a parameter, which is generated by the create() method and can be
found in the TaskStatus object. If a task is currently running or being
modified by another thread, an operation that attempts to modify the state
of the task does not block on the attempt, but a TaskPending exception is
thrown. The operation can be reattempted at another time. Tasks can only
be modified by the same application (EAR file) that was used to create the
task.

Task execution
Tasks are executed in the thread pool specified by the configuration’s work
manager, under the security ID of the task creator. If multiple schedulers
are configured to share the same database table, the tasks found in the
table can be executed on any of the schedulers, whether or not they are in
the same server, node, or cell.

Task lookup
Tasks can be located using the Name property that was assigned at
creation time. This is useful when you need to modify a group of tasks and
tracking individual task ID’s is not convenient.

TaskInfo interface
TaskInfo objects contain the information that can be used to create a task. Several
implementations of this class exist, one for each type of task that can be run.
Available TaskInfo implementations include:

BeanTaskInfo
Calls a stateless session bean.

MessageTaskInfo
Sends a JMS message to a queue or publishes a message to a topic.

For details, see the Interface TaskInfo in the Javadoc. The Javadoc is located in the
InfoCenter.

After a TaskInfo object is created, it can be submitted to the scheduler for task
creation by calling the Scheduler.create() method.

Specifying time intervals. setStartTimeInterval(), setStartByInterval(), and
setRepeatInterval() methods all take a String parameter that represents time
interval. Time intervals are calculated using user calendars.

TaskHandler interface
A task handler is a user-defined stateless session bean that is called by tasks
created using a BeanTaskInfo object. A task handler bean uses the following home
and remote interfaces, which are defined in the deployment descriptor using the
Application Assembly Tool or WebSphere Studio Application Developer:

256 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

com.ibm.websphere.scheduler.TaskHandlerHome
com.ibm.websphere.scheduler.TaskHandler

The bean itself needs to implement the process() method defined in the remote
interface. For details, see the Interface TaskHandler in the Javadoc. The javadoc is
located in the InfoCenter.

If a task is created using a BeanTaskInfo object, the process() method on the
TaskHandler session bean is called whenever the task runs. Because the TaskStatus
object for the task is passed as a parameter, the handler can make use of the saved
UserContext field, as well as determine information about the task, such as when it
will fire next, the number of repeats remaining, and so on.

NotificationSink interface
A notification sink is a user-defined stateless session bean that is called by tasks
when their state changes throughout the bean’s lifecycle. A notification sink bean
uses the following home and remote interfaces, which are defined in the
deployment descriptor using the Application Assembly Tool or WebSphere Studio
Application Developer:
com.ibm.websphere.scheduler.NotificationSinkHome
com.ibm.websphere.scheduler.NotificationSink

The bean itself needs to implement the handleEvent() method defined in the
remote interface. For details, see the Interface NotificationSink in the Javadoc. The
Javadoc is located in the InfoCenter.

A NotificationSink provides an event notification callback on a task-by-task basis.
A notification sink is set on the TaskInfo interface, using the setNotificationSink()
method. If a notification sink is not specified on a task, all notifications are lost;
however, the status of a task can be determined by calling the getStatus() method
from the Scheduler interface. A notification callback is made for each of the
following events:
v Scheduled
v Suspended
v Resumed
v Fired
v Fire
v Failed
v Complete
v Purged

UserCalendar interface
A user calendar is a user-defined stateless session bean that is called by tasks when
they need to calculate date-related values. A user calendar bean uses the following
home and remote interfaces, which are defined in the deployment descriptor using
the Application Assembly Tool or WebSphere Studio Application Developer:
com.ibm.websphere.scheduler.UserCalendarHome
com.ibm.websphere.scheduler.UserCalendar

The bean itself needs to implement the applyDelta() and validate() methods
defined in the remote interface. For details, see the Interface UserCalendar in the
Javadoc. The Javadoc is located in the InfoCenter.

User calendars can be used to calculate time intervals, such as the time between
when a repeating task fires and the next time it fires. A user calendar takes a

Chapter 10. Using the scheduler service 257

java.util.Date object and applies the interval string. The resulting object is a
java.util.Date object that is an incremented date.

User calendars are set by the setUserCalendar() method on the TaskInfo interface,
and called by the scheduler run-time code when a delta calculation is necessary.

The following methods on the TaskInfo interface specify delta strings that use the
user calendar for calculation:
v setStartTimeInterval
v setStartByInterval
v setRepeatInterval

Default user calendar
If a user calendar has not been specified using the
TaskInfo.setUserCalendar() method, a default user calendar is used. The
default calendar allows for simple delta specifications, such as seconds,
minutes, hours, days, and months. See the Javadoc for details on the
default calendar. The Javadoc is located in the InfoCenter.

Calendar specifiers
A single user calendar can contain logic for multiple calendars. Which
calendar is used is determined by a string that acts as the specifier. For
example, a bean might be implemented to recognize the interval ″day″,
with a specifier that determines whether to calculate ″day″ as a standard
calendar day, or as a business day.

Internationalization and timezones
Scheduler makes use of the java.util.Date class when storing and
processing dates. Internally, this class saves the time as milliseconds since
the Epoch, Greenwhich Mean Time. Since the Date is not converted to local
time until converted to a string, scheduler respects the timezone where the
date was created.

Writing user calendars
Because the user calendar is a stateless session bean, the same J2EE
Programming model available to other session beans is available to the
user calendar as well.

258 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Chapter 11. Using shared work areas

The WorkArea service enables application developers to implicitly propagate
information beyond the information passed in remote calls. Applications can create
a work area, insert information into it, and make remote invocations. The work
area is propagated with each remote method invocation, eliminating the need to
explicitly include an appropriate argument in the definition of each method. The
methods on the server side can use or ignore the information in the work area as
appropriate.

Before proceeding with the steps to implement work areas, as described below,
review the topic “WorkArea service - Overview”.

Steps for this task

1. “Developing applications that use work areas” on page 264.
Applications interact with the WorkArea service by implementing the
UserWorkArea interface.

2. “Managing the work area service” on page 273.
The WorkArea service is managed using the administrative console.

WorkArea service - Overview
One of the foundations of distributed computing is the ability to pass information,
typically in the form of arguments to remote methods, from one process to another.
When application-level software is written over middleware services, many of the
services rely on information beyond that passed in the application’s remote calls.
Such services often make use of the implicit propagation of private information in
addition to the arguments passed in remote requests; two typical users of such a
feature are security and transaction services. Security certificates or transaction
contexts are passed without the knowledge or intervention of the user or
application developer. The implicit propagation of such information means that
application developers do not have to manually pass the information in method
invocations, which makes development less error-prone, and the services requiring
the information do not have to expose it to application developers. Information
such as security credentials can remain secret.

The WorkArea service gives application developers a similar facility. Applications
can create a work area, insert information into it, and make remote invocations.
The work area is propagated with each remote method invocation, eliminating the
need to explicitly include an appropriate argument in the definition of every
method. The methods on the server side can use or ignore the information in the
work area as appropriate. If methods in a server receive a work area from a client
and subsequently invoke other remote methods, the work area is transparently
propagated with the remote requests. When the creating application is done with
the work area, it terminates it.

There are two prime considerations in deciding whether to pass information
explicitly as an argument or implicitly by using a work area. These considerations
are:
v Pervasiveness: Is the information used in a majority of the methods in an

application?
v Size: Is it reasonable to send the information even when it will not be used?

© Copyright IBM Corp. 2003 259

When information is sufficiently pervasive that it is easiest and most efficient to
make it available everywhere, application programmers can use the WorkArea
service to simplify programming and maintenance of code. The argument does not
need to go onto every argument list. It is much easier to put the value into a work
area and propagate it automatically. This is especially true for methods that simply
pass the value on but do nothing with it. Methods that make no use of the
propagated information simply ignore it.

Work areas can hold any kind of information, and they can hold an arbitrary
number of individual pieces of data, each stored as a property.

Work area property modes
The information in a work area consists of a set of properties; a property consists
of a key-value-mode triple. The key-value pair represents the information
contained in the property; the key is a name by which the associated value is
retrieved. The mode determines whether the property can be removed or modified.

Property modes

There are four possible mode values for properties, as shown in the following code
example:

Code example: The PropertyModeType definition
public final class PropertyModeType {

public static final PropertyModeType normal;
public static final PropertyModeType read_only;
public static final PropertyModeType fixed_normal;
public static final PropertyModeType fixed_readonly;

};

A property’s mode determines three things:
v Whether the value associated with the key can be modified
v Whether the property can be deleted
v Whether the mode associated with the key-value pair can be modified

The two read-only modes forbid changes to the information in the property; the
two fixed modes forbid deletion of the property.

The WorkArea service does not provide methods specifically for the purpose of
modifying the value of a key or the mode associated with a property. To change
information in a property, applications simply rewrite the information in the
property; this has the same effect as updating the information in the property. The
mode of a property governs the changes that can be made. Modifying key-value
pairs describes the restrictions each mode places on modifying the value and
deleting the property. Changing modes describes the restrictions on changing the
mode.

Changing modes

The mode associated with a property can be changed only according to the
restrictions of the original mode. The read-only and fixed read-only properties do
not permit modification of the value or the mode. The fixed normal and fixed
read-only modes do not allow the property to be deleted. This set of restrictions
leads to the following permissible ways to change the mode of a property within
the lifetime of a work area:

260 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

v If the current mode is normal, it can be changed to any of the other three
modes: fixed normal, read-only, fixed read-only.

v If the current mode is fixed normal, it can be changed only to fixed read-only.
v If the current mode is read-only, it can be changed only by deleting the property

and re-creating it with the desired mode.
v If the current mode is fixed read-only, it cannot be changed.
v If the current mode is not normal, it cannot be changed to normal. If a property

is set as fixed normal and then reset as normal, the value is updated but the
mode remains fixed normal. If a property is set as fixed normal and then reset
as either read-only or fixed read-only, the value is updated and the mode is
changed to fixed read-only.

Note: The key, value, and mode of any property can be effectively changed by
terminating (completing) the work area in which the property was created
and creating a new work area. Applications can then insert new properties
into the work area. This is not precisely the same as changing the value in
the original work area, but some applications can use it as an equivalent
mechanism.

Nested work areas
Applications can nest work areas. When an application creates a work area, a work
area context is associated with the creating thread. If the application thread creates
another work area, the new work area is nested within the existing work area and
becomes the current work area. Nested work areas allow applications to define and
scope properties for specific tasks without having to make them available to all
parts of the application. All properties defined in the original, enclosing work area
are visible to the nested work area. The application can set additional properties
within the nested work area that are not part of the enclosing work area.

An application working with a nested work area does not actually see the nesting
of enclosing work areas. The current work area appears as a flat set of properties
that includes those from enclosing work areas. In the figure below, the enclosing
work area holds several properties and the nested work area holds additional
properties. From the outermost work area, the properties set in the nested work
area are not visible. From the nested work area, the properties in both work areas
are visible.

Defining new properties in nested work areas

Chapter 11. Using shared work areas 261

Nesting can also affect the apparent settings of the properties. Properties can be
deleted from or directly modified only within the work areas in which they were
set, but nested work areas can also be used to temporarily override information in
the property without having to modify the property. Depending on the modes
associated with the properties in the enclosing work area, the modes and the
values of keys in the enclosing work area can be overridden within the nested
work area.

The mode associated with a property when it is created determines whether nested
work areas can override the property. From the perspective of a nested work area,
the property modes used in enclosing work areas can be grouped as follows:
v Modes that permit a nested work area to override the mode or the value of a

key locally. The modes that permit overriding are:
– Normal
– Fixed normal

v Modes that do not permit a nested work area to override the mode or the value
of a key locally. The modes that do not permit overriding are:
– Read-only
– Fixed read-only

If an enclosing work area defines a property with one of the overridable modes, a
nested work area can specify a new value for the key or a new mode for the
property. The new value or mode becomes the value or mode seen by
subsequently nested work areas. Changes to the mode are governed by the
restrictions described in Changing modes. If an enclosing work area defines a
property with one of the modes that cannot be overridden, no nested work area
can specify a new value for the key.

A nested work area can delete properties from enclosing work areas, but the
changes persist only for the duration of the nested work area. When the nested
work area is completed, any properties that were added in the nested area vanish
and any properties that were deleted from the nested area are restored.

262 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

The following figure illustrates the overriding of properties from an enclosing
work area. The nested work area redefines two of the properties set in the
enclosing work area. The other two cannot be overridden. The nested work area
also defines two new properties. From the outermost work area, the properties set
or redefined in the nested work are not visible. From the nested work area, the
properties in both work areas are visible, but the values seen for the redefined
properties are those set in the nested work area.

Redefining existing properties in nested work areas

Distributed work areas
If a remote invocation is issued from a thread associated with a work area, a copy
of the work area is automatically propagated to the target object, which can use or
ignore the information in the work area as necessary. If the calling application has
a nested work area associated with it, a copy of the nested work area and all its
ancestors is propagated to the target. The target application can locally modify the
information, as allowed by the property modes, by creating additional nested work
areas; this information will be propagated to any remote objects it invokes.
However, no changes made to a nested work area on a target object are
propagated back to the calling object. The caller’s work area is unaffected by
changes made in the remote method.

WorkArea service: Special considerations
Developers who use work areas should consider the following issues that could
potentially cause problems: interoperability between the EJB and CORBA
programming models; and the use of work areas with Java’s Abstract Windowing
Toolkit.

EJB and CORBA interoperability

Although the WorkArea service can be used across the EJB and CORBA
programming models, many composed data types cannot be successfully used
across those boundaries. For example, if a SimpleSampleCompany instance is

Chapter 11. Using shared work areas 263

passed from the WebSphere environment into a CORBA environment, the CORBA
application can retrieve the SimpleSampleCompany object encapsulated within a
CORBA Any object from the work area, but it cannot extract the value from it.
Likewise, an IDL-defined struct defined within a CORBA application and set into a
work area will not be readable by an application using the UserWorkArea class.
Applications can avoid this incompatibility by directly setting only primitive types,
like integers and strings, as values in work areas, or by implementing complex
values with structures designed to be compatible, like CORBA valuetypes. Also,
CORBA Anys that contains either the tk_null or tk_void typecode can be set into
the work area by using the CORBA interface, but the work-area specification
cannot allow the J2EE implementation to return null on a lookup that retrieves
these CORBA-set properties without incorrectly implying that there is no value set
for the corresponding key. If a J2EE application tries to retrieve CORBA-set
properties that are non-serializable, or contain CORBA nulls or void references, the
com.ibm.websphere.workarea.IncompatibleValue exception is raised.

Using work areas with Java’s Abstract Windowing Toolkit (AWT)

Work areas must be used cautiously in applications that use Java’s Abstract
Windowing Toolkit (AWT). The AWT implementation is multithreaded, and work
areas begun on one thread are not available on another. For example, if a program
begins a work area in response to an AWT event, such as pressing a button, the
work area might not be available to any other part of the application after the
execution of the event completes.

Developing applications that use work areas

Applications interact with the WorkArea service by implementing the
“UserWorkArea interface”. This interface defines all of the methods used to create,
manipulate, and complete work areas:

Steps for this task

1. “Accessing the WorkArea service” on page 266.
2. “Beginning a new work area” on page 266.
3. “Setting properties in a work area” on page 267.
4. “Using a work area to manage local work” on page 268.
5. “Completing a work area” on page 272.

Usage scenario

An example application, the “Example: WorkArea SimpleSample application” on
page 265, is used throughout this documentation to illustrate these tasks

UserWorkArea interface
Applications interact with the WorkArea service by implementing the
UserWorkArea interface. This interface, shown below, defines all of the methods
used to create, manipulate, and terminate work areas:
package com.ibm.websphere.workarea;

public interface UserWorkArea {
void begin(String name);
void complete() throws NoWorkArea, NotOriginator;

String getName();
String[] retrieveAllKeys();

264 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

void set(String key, java.io.Serializable value)
throws NoWorkArea, NotOriginator, PropertyReadOnly;

void set(String key, java.io.Serializable value, PropertyModeType mode)
throws NoWorkArea, NotOriginator, PropertyReadOnly;

java.io.Serializable get(String key);
PropertyModeType getMode(String key);
void remove(String key)

throws NoWorkArea, NotOriginator, PropertyFixed;
}

Note: EJB applications can use the UserWorkArea interface only within the
implementation of methods in the remote interface; likewise, servlets can
use the interface only within the service method of the HTTPServlet class.
Use of work areas within any lifecycle method of a servlet or enterprise
bean is considered a deviation from the work area programming model and
is not supported.

Exceptions

The WorkArea service defines the following exceptions for use with the
UserWorkArea interface:

NoWorkArea
Thrown when a request requires an associated work area but none is
present.

NotOriginator
Raised when a request attempts to manipulate the contents of an imported
work area.

PropertyReadOnly
Raised when a request attempts to modify a read-only or fixed read-only
property.

PropertyFixed
Raised by the remove method when the designated property has one of the
fixed modes.

Example: WorkArea SimpleSample application
In this example, the client creates a work area and inserts two properties into the
work area: a site identifier and a priority. The site-identifier is set as a read-only
property; the client does not allow recipients of the work area to override the site
identifier. This property consists of the key company and a static instance of a
SimpleSampleCompany object. The priority property consists of the key priority
and a static instance of a SimpleSamplePriority object. The object types are defined
as shown in the following code example
public static final class SimpleSampleCompany {

public static final SimpleSampleCompany Main;
public static final SimpleSampleCompany NewYork_Sales;
public static final SimpleSampleCompany NewYork_Development;
public static final SimpleSampleCompany London_Sales;
public static final SimpleSampleCompany London_Development;

}

public static final class SimpleSamplePriority {
public static final SimpleSamplePriority Platinum;
public static final SimpleSamplePriority Gold;
public static final SimpleSamplePriority Silver;
public static final SimpleSamplePriority Bronze;
public static final SimpleSamplePriority Tin;

}

Chapter 11. Using shared work areas 265

The client then makes an invocation on a remote object. The work area is
automatically propagated; none of the methods on the remote object take a work
area argument. On the remote side, the request is first handled by the
SimpleSampleBean; the bean first reads the site identifier and priority properties
from the work area. The bean then intentionally attempts, and fails, both to write
directly into the imported work area and to override the read-only site-identifier
property.

The SimpleSampleBean successfully begins a nested work area, in which it
overrides the client’s priority, then calls another bean, the
SimpleSampleBackendBean. The SimpleSampleBackendBean reads the properties
from the work area, which contains the site identifier set in the client and priority
set in the SimpleSampleBean. Finally, the SimpleSampleBean completes its nested
work area, writes out a message based on the site-identifier property, and returns.

The implementation of this application is discussed in the topic, “Developing
applications that use work areas” on page 264.

Accessing the WorkArea service
The WorkArea service provides a JNDI binding to an implementation of the
UserWorkArea interface under the name java:comp/websphere/UserWorkArea.
Applications that need to access the service can perform a lookup on that JNDI
name, as shown in the following code example:

Usage scenario
import com.ibm.websphere.workarea.*;
import javax.naming.*;

public class SimpleSampleServlet {
...

InitialContext jndi = null;
UserWorkArea userWorkArea = null;
try {

jndi = new InitialContext();
userWorkArea = (UserWorkArea)jndi.lookup(

"java:comp/websphere/UserWorkArea");
}
catch (NamingException e) { ... }

}

What to do next

The next step is to use the begin() method to create a new work area and associate
it with the calling thread, as described in the topic “Beginning a new work area”.

Beginning a new work area
Before you begin

Be sure that your client has a reference to the UserWorkArea interface, as described
in the topic “Accessing the WorkArea service”

Use the begin() method to create a new work area and associate it with the calling
thread. The begin() method takes a string as an argument; the string is used to
name the work area. The argument must not be null, which causes the
java.lang.NullPointer exception to be raised. In the following code example, the
application begins a new work area with the name SimpleSampleServlet:

266 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

public class SimpleSampleServlet {
...

try {
...
userWorkArea = (UserWorkArea)jndi.lookup(

"java:comp/websphere/UserWorkArea");
}
...

userWorkArea.begin("SimpleSampleServlet");
...

}

The begin() method is also used to create nested work areas; if a work area is
associated with a thread when the begin() method is called, the method creates a
new work area nested within the existing work area.

The WorkArea service makes no use of the names associated with work areas; You
can name work areas in any way that you choose. Names are not required to be
unique, but the usefulness of the names for debugging is enhanced if the names
are distinct and meaningful within the application. Applications can use the
getName() method to return the name associated with a work area by the begin()
method.

What to do next

“Using a work area to manage local work” on page 268.

Setting properties in a work area
An application with a current work area can insert properties into the work area
and retrieve the properties from the work area. The UserWorkArea interface
provides two set() methods for setting properties and a get() method for retrieving
properties. The two-argument set() method inserts the property with the property
mode of normal. The three-argument set() method takes a property mode as the
third argument. (See ″Setting property modes″, later in this topic.)

Both set() methods take the key and the value as arguments. The key is a String;
the value is an object of the type java.io.Serializable. None of the arguments can be
null, which causes the java.lang.NullPointer exception to be raised.

The “Example: WorkArea SimpleSample application” on page 265 uses objects of
two classes, the SimpleSampleCompany class and the SimpleSampleProperty class,
as values for properties. The SimpleSampleCompany class is used for the site
identifier, and the SimpleSamplePriority class is used for the priority. These classes
are shown in following code example:
public class SimpleSampleServlet {

...
userWorkArea.begin("SimpleSampleServlet");

try {
// Set the site-identifier (default is Main).
userWorkArea.set("company",

SimpleSampleCompany.Main, PropertyModeType.read_only);

// Set the priority.
userWorkArea.set("priority", SimpleSamplePriority.Silver);

}

catch (PropertyReadOnly e) {
// The company was previously set with the read-only or

Chapter 11. Using shared work areas 267

// fixed read-only mode.
...

}

catch (NotOriginator e) {
// The work area originated in another process,
// so it can’t be modified here.
...

}

catch (NoWorkArea e) {
// There is no work area begun on this thread.
...

}

// Do application work.
...

}

The get() method takes the key as an argument and returns a Java Serializable
object as the value associated with the key. For example, to retrieve the value of
the company key from the work area, the code example above uses the get()
method on the work area to retrieve the value.

Setting property modes. The two-argument set() method on the UserWorkArea
interface takes a key and a value as arguments and inserts the property with the
default property mode of normal. To set a property with a different mode,
applications must use the three-argument set() method, which takes a property
mode as the third argument. The values used to request the property modes are as
follows:
v Normal: PropertyModeType.normal
v Fixed normal: PropertyModeType.fixed_normal
v Read-only: PropertyModeType.read_only
v Fixed read-only: PropertyModeType.fixed_readonly

Using a work area to manage local work
Before you begin

Be sure that your client has a reference to the UserWorkArea interface, as described
in the topic “Accessing the WorkArea service” on page 266

In a business application that uses work areas, server objects typically retrieve the
work area properties and use them to guide local work.

Steps for this task

1. “Retrieving the name of the active work area” on page 269
This step determines whether the calling thread is associated with a work area.

2. “Overriding work area properties” on page 269
Server objects can override client work area properties by creating their own,
nested work area.

3. “Retrieving work area properties” on page 271
4. “Retrieving a list of all keys in a work area” on page 271
5. “Querying the mode of a work area property” on page 272
6. “Deleting a work area property” on page 272
7. “Completing a work area” on page 272

268 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Usage scenario

The server side of the “Example: WorkArea SimpleSample application” on page 265
accepts remote invocations from clients. With each remote call, the server also gets
a work area from the client if the client has created one. The work area is
propagated transparently. None of the remote methods includes the work area on
its argument list.

In the example application, the server objects use the work area interface for
demonstration purposes only. For example, the SimpleSampleBean intentionally
attempts to write directly to an imported work area, which triggers the
NotOriginator exception. Likewise, the bean intentionally attempts to mask the
read only SimpleSampleCompany, which triggers the PropertyReadOnly exception.
The SimpleSampleBean also nests a work area and successfully overrides the
priority property before invoking the SimpleSampleBackendBean. A true business
application would extract the work area properties and use them to guide the local
work. The SimpleSampleBean mimics this by writing a message that function is
denied when a request emanates from a sales environment.

Retrieving the name of the active work area
Applications use the getName() method on the UserWorkArea interface to retrieve
the name of the current work area. This is the recommended method for
determining whether the thread is associated with a work area; if the thread is not
associated with a work area, the getName() method returns null. In the following
code example, the name of the work area corresponds to the name of the class in
which the work area was begun.

Usage scenario
public class SimpleSampleBeanImpl implements SessionBean {

...

public String [] test() {
// Get the work-area reference from JNDI.
...

// Retrieve the name of the work area. In this example,
// the name is used to identify the class in which the
// work area was begun.
String invoker = userWorkArea.getName();
...

}
}

Overriding work area properties
Work areas are inherently associated with the process that creates them. In the
sample application, the client begins a work area and sets into it the site-identifier
and priority properties. This work area is propagated to the server when the client
makes a remote invocation.

Applications nest work areas in order to temporarily override properties imported
from a client process. The nesting mechanism is automatic; invoking begin on the
UserWorkArea interface from within the scope of an existing work area creates a
nested work area that inherits the properties from the enclosing work area.
Properties set into the nested work area are strictly associated with the process in
which the work area was begun; the nested work area must be completed within
the process that created them. If a work area is not completed by the creating
process, the work-area facility terminates the work area when the process exits.
After a nested work area is completed, the original view of the enclosing work

Chapter 11. Using shared work areas 269

area is restored. However, the view of the complete set of work areas associated
with a thread cannot be decomposed by downstream processes.

Applications set properties into a work area using property modes in ensure that a
particular property is fixed (not removable) or read-only (not overrideable) within
the scope of the given work area.

Usage scenario

In the following code example, the server-side sample bean attempts to write
directly to the imported work area; this action is not permitted, and the
NotOriginator exception is thrown. The sample bean must begin its own work area
in order to override any imported properties, as shown in the second code
example.
public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...
String invoker = userWorkArea.getName();

try {
userWorkArea.set("key", "value");

}
catch (NotOriginator e) {
}
...

}
}

The following code example demonstrates beginning a nested work area, using the
name of the creating class to identify the nested work area.
public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...
String invoker = userWorkArea.getName();
try {

userWorkArea.set("key", "value");
}
catch (NotOriginator e) {
}

// Begin a nested work area. By using the name of the creating
// class as the name of the work area, we can avoid having
// to explicitly set the name of the creating class in
// the work area.
userWorkArea.begin("SimpleSampleBean");

...
}

}

In the example application, the client sets the site-identifier property as read-only;
that guarantees that the request will always be associated with the client’s
company identity. A server cannot override that value in a nested work area. In the
following code example, the SimpleSampleBean attempts to change the value of
the site-identifier property in the nested work area it created.
public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...

270 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

String invoker = userWorkArea.getName();
try {

userWorkArea.set("key", "value");
}
catch (NotOriginator e) {
}

// Begin a nested work area.
userWorkArea.begin("SimpleSampleBean");

try {
userWorkArea.set("company",

SimpleSampleCompany.London_Development);
}
catch (NotOriginator e) {
}
...

}
}

Retrieving work area properties
Properties can be retrieved from a work area by using the get() method. This
method is intentionally lightweight; there are no declared exceptions to handle. If
there is no active work area, or if there is no such property set in the current work
area, the get() method returns null.

Note: The get() method can raise a NotSerializableError in the relatively rare
scenario in which CORBA clients set composed data types and invoke
enterprise-bean interfaces.

Usage scenario

The following example shows the retrieval of the site-identifier and priority
properties by the SimpleSampleBean. Recall that one property was set into an
outer work area by the client, and the other property was set into the nested work
area by the server-side bean; the nesting is transparent to the retrieval of the
properties.
public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...

// Begin a nested work area.
userWorkArea.begin("SimpleSampleBean");
try {

userWorkArea.set("company",
SimpleSampleCompany.London_Development);

}
catch (NotOriginator e) {
}

SimpleSampleCompany company =
(SimpleSampleCompany) userWorkArea.get("company");

SimpleSamplePriority priority =
(SimpleSamplePriority) userWorkArea.get("priority");

...
}

}

Retrieving a list of all keys in a work area
The UserWorkArea interface provides the retrieveAllKeys() method for retrieving a
list of all the keys visible from a work area. This method takes no arguments and

Chapter 11. Using shared work areas 271

returns an array of strings. This method returns null if there is no work area
associated with the thread. If there is an associated work area containing no
properties, the method returns an array of size 0.

Querying the mode of a work area property
The UserWorkArea interface provides the getMode() method for determining the
mode of a specific property. This method takes the property’s key as an argument
and returns the mode as a PropertyModeType object. (See “Setting properties in a
work area” on page 267 for more information on names of mode types.) If the
specified key does not exist in the work area, the method returns
PropertyModeType.normal, indicating that the property can be set and removed
without error.

Deleting a work area property
The UserWorkArea interface provides the remove() method for deleting a property
from the current scope of a work area. If the property was initially set in the
current scope, removing it deletes the property. If the property was initially set in
an enclosing work area, removing it deletes the property until the current scope is
completed. When the current work area is completed, the deleted property is
restored.

The remove() method takes the property’s key as an argument. Only properties
with the modes normal and read-only can be removed. Attempting to remove a
fixed property causes the PropertyFixed exception to be thrown. Attempting to
remove properties in work areas that originated in other processes causes the
NotOriginator exception to be thrown.

Completing a work area
After an application has finished using a work area, it must complete the work
area by calling the complete() method on the UserWorkArea interface. This
terminates the association with the calling thread and destroys the work area. If
the complete method is called on a nested work area, the nested work area is
terminated and the parent work area becomes the current work area. If there is no
work area associated with the calling thread, a NoWorkArea exception is thrown.

Every work area must be completed, and work areas can be completed only by the
originating process. For example, if a server attempts to call the complete() method
on a work area that originated in a client, a NotOriginator exception is thrown.
Work areas created in a server process are never propagated back to an invoking
client process.

Note: The WorkArea service claims full local-remote transparency. Even if two
beans happen to be deployed in the same server, and therefore the same
JVM and process, a work area begun on an invocation from another is
completed and the bean in which the request origininated is always in the
same state after any remote call.

Usage scenario

The following code example shows the completion of the work area created in the
client application.
public class SimpleSampleServlet {

...
userWorkArea.begin("SimpleSampleServlet");
userWorkArea.set("company",

SimpleSampleCompany.Main, PropertyModeType.read_only);
userWorkArea.set("priority", SimpleSamplePriority.Silver);

272 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

...

// Do application work.
...

// Terminate the work area.
try {

userWorkArea.complete();
}

catch (NoWorkArea e) {
// There is no work area associated with this thread.
...

}

catch (NotOriginator e) {
// The work area was imported into this process.
...

}
...

}

The following code example shows the sample application completing the nested
work area it created earlier in the remote invocation.
public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...

// Begin a nested work area.
userWorkArea.begin("SimpleSampleBean");
try {

userWorkArea.set("company",
SimpleSampleCompany.London_Development);

}
catch (NotOriginator e) {
}

SimpleSampleCompany company =
(SimpleSampleCompany) userWorkArea.get("company");

SimpleSamplePriority priority =
(SimpleSamplePriority) userWorkArea.get("priority");

// Complete all nested work areas before returning.
try {

userWorkArea.complete();
}
catch (NoWorkArea e) {
}
catch (NotOriginator e) {
}

}
}

Managing the work area service

The WorkArea service is managed using the administrative console. There are two
administrative tasks associated with work areas:
v “Enabling the WorkArea service” on page 274. The WorkArea Service is enabled

by default on both clients and servers.
v “Managing the size of work areas” on page 275. Applications can set maximum

sizes on each work area to be sent and to be accepted.

Chapter 11. Using shared work areas 273

Enabling the WorkArea service

For an application to take advantage of work areas, the WorkArea service must be
enabled for both clients and servers. In both cases, the service is enabled by
default.

Steps for this task

1. Enable (or disable) the use of work areas on a server:
a. Start the administrative console.
b. Select Servers > server_name > WorkArea Service.
c. Select or clear the Startup checkbox.

This specifies whether or not the server should automatically start the
WorkArea service when the server starts.

2. Enable (or disable) the use of work areas on a client:
Set the com.ibm.websphere.workarea.enabled property to TRUE or FALSE
before starting the client. For example, edit the launchClient script in the
$WAS_HOME/bin directory and add the following to the Java invocation:
-Dcom.ibm.websphere.workarea.enabled=false

WorkArea service settings
Use this page to manage the work area service.

The work area service manages the scope and implicit propagation of application
context.

To view this administrative console page, click Servers > Application Servers >
server_name > Work Area Service .

Startup: Specifies whether the server will attempt to start the work area service.

Default
Selected

Range

Selected
When the application server starts, it attempts to start the work
area service automatically.

Cleared
The server does not try to start the work area service. If work areas
are to be used on this application server, the system administrator
must start the service manually or select this property then restart
the server.

Maximum Send Size: Specifies the maximum size of data that can be sent within
a single work area.

Data type
Integer

Units Bytes

Default
32767

Range -1 to no limit

-1 Default.

274 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

0 No limit.

Maximum Receive Size: Specifies the maximum size of data that can be received
by a single work area.

Data type
Integer

Units Bytes

Default
32767

Range -1 to no limit

-1 Default.

0 No limit.

Managing the size of work areas
Applications can set maximum sizes on each work area to be sent or received. By
default, the maximum size of a work area that is sent by a client and received,
then possibly re-sent, by a server is 32,768 bytes. You can change this size as
described in this topic.

Steps for this task

1. Change the size of the work area that can be sent or received by a server:
a. Start the administrative console.
b. Select Servers > server_name > WorkArea Service.
c. Enter a new value in the maxSendSize field to modify the size of the work

area that this server can send, or enter a new value in the maxReceiveSize
field to modify the size of the work area that this server can accept.

2. Change the size of the work area that can be sent by a client:
Set the com.ibm.websphere.workarea.maxSendSize property to the desired
number of bytes before starting the client. This can be done in several ways.
For example, to set the maximum size to 10,000 bytes, edit the launchClient
script in the $WAS_HOME/bin directory and add the following to the Java
invocation:
-Dcom.ibm.websphere.workarea.maxSendSize=10000

Results

The maximum size that can be specified is determined by the maximum value
expressible in the Java Integer data type, 2,147,483,647. The smallest maximum size
that can be specified is 1. Using a maximum size of 1 byte effectively means that
no requests associated with the work area can leave the system or enter another
system. A value of 0 means that no limit is imposed. A value of -1 means that the
default value is to be honored. The default value is also used if an invalid value or
a malformed property is specified.

Chapter 11. Using shared work areas 275

276 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Chapter 12. Using the transaction service

These topics provide information about using transactions with WebSphere
applications

WebSphere applications can use transactions to coordinate multiple updates to
resources as atomic units (as indivisible units of work) such that all or none of the
updates are made permanent.

In IBM WebSphere Application Server, transactions are handled by three main
components:
v A transaction manager that supports the enlistment of recoverable XAResources

and ensures that each such resource is driven to a consistent outcome either at
the end of a transaction or after a failure and restart of the application server.

v A container in which the J2EE application runs. The container manages the
enlistment of XAResources on behalf of the application when the application
performs updates to transactional resource managers (for example, databases).
Optionally, the container can control the demarcation of transactions for
enterprise beans configured for container-managed transactions.

v An application programming interface (UserTransaction) that is available to
bean-managed enterprise beans and servlets. This allows such application
components to control the demarcation of their own transactions.

For more information about using transactions with WebSphere applications, see
the following topics:
v “Transaction support in IBM WebSphere Application Server”
v “Developing components to use transactions” on page 285
v “Configuring transaction properties for an application server” on page 293
v “Using local transactions” on page 280
v “Setting transactional attributes in the deployment descriptor” on page 285
v “Using bean-managed transactions” on page 289
v “Managing active transactions” on page 299
v “Managing transaction logging for optimum server availability” on page 300
v “Troubleshooting transactions” on page 304
v “Transaction service exceptions” on page 305
v “UserTransaction interface - methods available” on page 306
v “Coordinating access to 1-PC and 2-PC-capable resources within the same

transaction” on page 306
v Chapter 13, “Using the ActivitySession service”, on page 311

Transaction support in IBM WebSphere Application Server
A transaction is unit of activity within which multiple updates to resources can be
made atomic (as an indivisible unit of work) such that all or none of the updates
are made permanent. For example, multiple SQL statements to a relational
database are committed atomically by the database during the processing of an
SQL COMMIT statement. In this case, the transaction is contained entirely within

© Copyright IBM Corp. 2003 277

the database manager and can be thought of as a resource manager local transaction
(RMLT). In some contexts, a transaction is referred to as a logical unit of work
(LUW).

The way that applications use transactions depends on the type of application
component, as follows:
v A session bean can either use container-managed transactions (where the bean

delegates management of transactions to the container) or bean-managed
transactions (where the bean manages transactions itself).

v Entity beans use container-managed transactions.
v Web components (servlets) use bean-managed transactions.

IBM WebSphere Application Server is a transaction manager that supports the
coordination of resource managers through their XAResource interface and
participates in distributed global transactions with other OTS 1.2 compliant
transaction managers (for example J2EE 1.3 application servers). WebSphere
applications can also be configured to interact with databases, JMS queues, and
JCA connectors through their local transaction support when distributed transaction
coordination is not required.

Resource managers that offer transaction support can be categorized into those that
support two-phase coordination (by offering an XAResource interface) and those
that support only one-phase coordination (for example through a LocalTransaction
interface). The IBM WebSphere Application Server transaction support provides
coordination, within a transaction, for any number of two-phase capable resource
managers. It also enables a single one-phase capable resource manager to be used
within a transaction in the absence of any other resource managers, although a
WebSphere transaction is not necessary in this case.

With the Last Participant Support of IBM WebSphere Application Server
Enterprise, you can coordinate the use of a single one-phase commit (1PC) capable
resource with any number of two-phase commit (2PC) capable resources in the
same global transaction. At transaction commit, the two-phase commit resources
are prepared first using the two-phase commit protocol, and if this is successful the
one-phase commit-resource is then called to commit(one_phase). The two-phase
commit resources are then committed or rolled back depending on the response of
the one-phase commit resource.

The ActivitySession service of IBM WebSphere Application Server Enterprise
provides an alternative unit-of-work (UOW) scope to that provided by global
transaction contexts. It is a distributed context that can be used to coordinate
multiple one-phase resource managers. The WebSphere EJB container and
deployment tooling support ActivitySessions as an extension to the J2EE
programming model. EJBs can be deployed with lifecycles that are influenced by
ActivitySession context, as an alternative to transaction context. An application can
then interact with a resource manager through its LocalTransaction interface for the
period of a client-scoped ActivitySession rather than just the duration of an EJB
method.

Resource manager local transaction (RMLT)
A resource manager local transaction (RMLT) is a resource manager’s view of a
local transaction; that is, it represents a unit of recovery on a single connection that
is managed by the resource manager.

Resource managers include:

278 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

v Enterprise Information Systems that are accessed through a resource adapter, as
described in the J2EE Connector Architecture 1.0.

v Relational databases that are accessed through a JDBC datasource.
v JMS queue and topic destinations.

Resource managers offer specific interfaces to enable control of their RMLTs. J2EE
connector resource adapters that include support for local transactions provide a
LocalTransaction interface to enable applications to request that the resource
adapter commit or rollback RMLTs. JDBC datasources provide a Connection
interface for the same purpose.

The boundary at which all RMLTs must be complete is defined in IBM WebSphere
Application Server by a “Local transaction containment (LTC)” on page 280.

Global transactions
If an application uses two or more resources, then an external transaction manager
is needed to coordinate the updates to both resource managers in a global
tansaction.

Global transaction support is available to web and enterprise bean J2EE
components. Enterprise bean components can be subdivided into beans that exploit
container-managed transactions (CMT) or bean-managed transactions (BMT).

BMT enterprise beans and web components can use the Java Transaction API (JTA)
UserTransaction interface to define the demarcation of a global transaction. The
UserTransaction interface is obtained by a JNDI lookup of
java:comp/UserTransaction. The UserTransaction is not available to the following
components:
v CMT enterprise beans. Any attempt by such beans to obtain the interface results

in an exception in accordance with the EJB specification.
v Client applications running outside the Web and EJB containers.

Ensure that programs that perform a JNDI lookup of the UserTransaction interface,
use an InitialContext that resolves to a local implementation of the interface. Also
ensure that such programs use a JNDI location appropriate for the EJB version.

Before the EJB 1.1 specification, the JNDI location of the UserTransaction interface
was not specified. Each EJB container implementor defined it in an
implementation-specific manner. Earlier versions of IBM WebSphere Application
Server, up to and including Version 3.5.x (without EJB 1.1), bind the
UserTransaction interface to a JNDI location of jta/usertransaction. IBM WebSphere
Application Server, Version 4, and later releases, bind the UserTransaction interface
at the location defined by EJB 1.1, which is java:comp/UserTransaction. IBM
WebSphere Application Server, Version 5 no longer provides the jta/usertransaction
binding within Web and EJB containers to applications at a J2EE level of 1.3 or
later. For example, EJB 2.0 applications can use only the
java:comp/UserTransaction location.

A web component or enterprise bean (CMT or BMT) can get the
ExtendedJTATransaction interface through a lookup of
java:comp/websphere/ExtendedJTATransaction. This interface provides access to
the transaction identity and a mechanism to receive notification of transaction
completion.

Chapter 12. Using the transaction service 279

http://java.sun.com/j2ee/connector/index.html

Local transaction containment (LTC)
A local transaction containment (LTC) is used to define the application server
behavior in an unspecified transaction context.

(Unspecified transaction context is defined in the Enterprise JavaBeans 2.0
Specification.)

A LTC is a bounded unit-of-work scope within which zero, one, or more resource
manager local transactions (RMLTs) can be accessed. The LTC defines the
boundary at which all RMLTs must be complete; any incomplete RMLTs are
resolved, according to policy, by the container. An LTC is local to a bean instance;
it is not shared across beans even if those beans are managed by the same
container. LTCs are started by the container before dispatching a method on a J2EE
component (such as an enterprise bean or servlet) whenever the dispatch occurs in
the absence of a global transaction context. LTCs are completed by the container
depending on the application-configured LTC boundary; for example at the end of
the method dispatch. There is no programmatic interface to the LTC support;
rather LTCs are managed exclusively by the container and configured by the
application deployer through transaction attributes in the application deployment
descriptor.

A local transaction containment cannot exist concurrently with a global transaction.
If application component dispatch occurs in the absence of a global transaction, the
container always establishes an LTC. The only exceptions to this are as follows:
v Where application component dispatch occurs without container interposition;

for example, for a stateless session bean create.
v J2EE 1.2 web components.
v J2EE 1.2 BMT enterprise beans.

A local transaction containment can be scoped to an ActivitySession context that
lives longer than the enterprise bean method in which it is started, as described in
“ActivitySession and transaction contexts” on page 315.

Using local transactions
Local transaction containment (LTC) support, and its configuration through local
transaction extended deployment descriptors, gives IBM WebSphere Application
Server application programmers a number of advantages. This topic describes
those advantages and how they relate to the settings of the local transaction
extended deployment descriptors. This topic also describes points to consider to
help you best configure transaction support for some example scenarios that use
local transactions.

Develop an enterprise bean or servlet that accesses one or more databases that
are independent and require no coordination.

If an enterprise bean does not need to use global transactions, it is often
more efficient to deploy the bean with the Container Transaction
deployment descriptor Transaction attribute set to Not supported instead
of Required.

With the extended local transaction support of IBM WebSphere Application
Server, applications can perform the same business logic in an unspecific
transaction context as they can under a global transaction. An enterprise
bean, for example, runs under an unspecified transaction context if it is
deployed with a Transaction attribute of Not supported or Never.

280 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

http://java.sun.com/products/ejb/2.0.html
http://java.sun.com/products/ejb/2.0.html

The extended local transaction support provides a container-managed,
implicit local transaction boundary within which application updates can
be committed and their connections cleaned up by the container.
Applications can then be designed with a greater degree of independence
from deployment concerns. This makes using a Transaction attribute of
Supports much simpler, for example, when the business logic may be
called either with or without a global transaction context.

An application can follow a get-use-close pattern of connection usage
regardless of whether or not the application runs under a transaction. The
application can depend on the close behaving in the same way and not
causing a rollback to occur on the connection if there is no global
transaction.

There are many scenarios where ACID coordination of multiple resource
managers is not needed. In such scenarios running business logic under a
Transaction policy of Not supported performs better than if it had been
run under a Required policy. This benefit is exploited through the Local
Transactions - Resolution-control extended deployment setting of
ContainerAtBoundary. With this setting, application interactions with
resource providers (such as databases) are managed within implicit RMLTs
that are both started and ended by the container. The RMLTs are
committed by the container at the configured Local Transactions -
Boundary; for example at the end of a method. If the application returns
control to the container by an exception, the container rolls back any
RMLTs that it has started.

This usage applies to both servlets and enterprise beans.

Use local transactions in a managed environment that guarantees clean-up.
Applications that want to control RMLTs, by starting and ending them
explicitly, can use the default Local Transactions - Resolution-control
extended deployment setting of Application. In this case, the container
ensures connection cleanup at the boundary of the local transaction
context.

J2EE specifications that describe application use of local transactions do so
in the manner provided by the default setting of Local Transactions -
Resolution-control=Application and Local Transactions -
Unresolved-action=Rollback. By configuring the Local Transactions -
Unresolved-action extended deployment setting to Commit, then any
RMLTs started by the application but not completed when the local
transaction containment ends (for example, when the method ends) are
committed by the container. This usage applies to both servlets and
enterprise beans.

Extend the duration of a local transaction beyond the duration of an EJB
component method.

The J2EE specifications restrict the use of RMLTs to single EJB methods.
This restriction is because the specifications have no scoping device,
beyond a container-imposed method boundary, to which an RMLT can be
extended. In IBM WebSphere Application Server Enterprise, you can
exploit the Local Transactions - Boundary extended deployment setting to
give the following advantages:
v Significantly extend the use-cases of RMLTs
v Make conversational interactions with one-phase resource managers

possible through ActivitySession support.

Chapter 12. Using the transaction service 281

An ActivitySession is an IBM WebSphere Application Server Enterprise
programming model extension that provides a distributed context with a
boundary that is longer than a single method. You can extend the use of
RMLTs over the longer ActivitySession boundary, which can be controlled
by a client. The ActivitySession boundary reduces the need to use
distributed transactions where ACID operations on multiple resources are
not needed. This benefit is exploited through the Local Transactions -
Boundary extended deployment setting of ActivitySession. Such extended
RMLTs can remain under the control of the application or be managed by
the container depending on the use of the Local Transactions -
Resolution-control deployment descriptor setting.

Coordinate multiple one-phase resource managers.
For resource managers that do not support XA transaction coordination, a
client can exploit ActivitySession-bounded local transaction contexts. Such
contexts give a client the same ability to control the completion direction of
the resource updates by the resource managers as the client has for
transactional resource managers. A client can start an ActivitySession and
call its entity beans under that context. Those beans can perform their
RMLTs within the scope of that ActivitySession and return without
completing the RMLTs. The client can later complete the ActivitySession in
a commit or rollback direction and cause the container to drive the
ActivitySession-bounded RMLTs in that coordinated direction.

To determine how best to configure the transaction support for an application,
depending on what you want to do with transactions, consider the following
points.

General points

v You want to start and end global transactions explicitly in the
application (BMT session beans and servlets only).
For a session bean, set the Transaction type to Bean (to use
bean-managed transactions) in the component’s deployment descriptor.
(You do not need to do this for servlets.)

v You want to access only one XA or non-XA resource in a method.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to ContainerAtBoundary. In the Container transaction
deployment descriptor, set Transaction to Supports.

v You want to access several XA resources atomically across one or more
bean methods.
In the Container transaction deployment descriptor, set Transaction to
Required, Requires new, or Mandatory.

v You want to access several non-XA resource in a method without having
to worry about managing your own local transactions.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to ContainerAtBoundary. In the Container transaction
deployment descriptor, set Transaction to Not supported.

v You want to access several non-XA resource in a method and want to
manage them independently.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to Application and set Local Transactions -
Unresolved-action to Rollback. In the Container transaction deployment
descriptor, set Transaction to Not supported.

Points specific to IBM WebSphere Application Server Enterprise

282 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

v You want to access one of more non-XA resources across multiple EJB
method calls without having to worry about managing your own local
transactions.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to ContainerAtBoundary, Local Transactions -
Boundary to ActivitySession, and Bean Cache - Activate at to
ActivitySession. In the Container transaction deployment descriptor, set
Transaction to Not supported and set ActivitySession attribute to
Required, Requires new, or Mandatory.

v You want to access several non-XA resources across multiple EJB method
calls and want to manage them independently.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to Application, Local Transactions - Boundary to
ActivitySession, and Bean Cache - Activate at to ActivitySession. In
the Container Transaction deployment descriptor, set Transaction to Not
supported and set ActivitySession attribute to Required, Requires new,
or Mandatory.

v You want to use a single non-XA resource and one or more
XAResources.
Use the Last Participant Support of IBM WebSphere Application Server
Enterprise.

Local and global transaction considerations
Applications use resources, such as JDBC data sources or connection factories, that
are configured through the Resources view of the IBM WebSphere Application
Server Administrative Console. How these resources participate in a global
transaction depends on the underlying transaction support of the resource
provider. For example, a JDBC provider can provide either XA or non-XA versions
of a data source. A non-XA data source can support only resource manager local
transactions (RMLTs), but an XA data source can support two-phase commit
coordination.

If an application uses two or more resource providers that support only RMLTs,
then atomicity cannot be assured because of the one-phase nature of these
resources. To ensure atomic behavior, the application should use resources that
support XA coordination and should access them within a global transaction.

If an application uses only one RMLT, the atomic behavior can be guaranteed by
the resource manager, which can be accessed under a local transaction containment
context.

An application can also access a single resource manager under a global
transaction context, even if that resource manager does not support the XA
coordination. An application can do this, because IBM WebSphere Application
Server performs an ″only resource optimization″ and interacts with the resource
manager under a RMLT. Within a global transaction context, any attempt to use
more than one resource provider that supports only RMLTs causes the global
transaction to be rolled back.

At any moment, an instance of an enterprise bean can have work outstanding in
either a global transaction context or a local transaction containment context, but
never both. An instance of an enterprise bean can change from running under one
type of context to the other (in either direction), if all outstanding work in the

Chapter 12. Using the transaction service 283

original context is complete. Any violation of this principle causes an exception to
be thrown when the enterprise bean tries to start the new context.

Extended JTA support
Extended JTA support provides application programming interfaces additional to
the UserTransaction interface that is defined in the JTA as part of the J2EE
specification. Specifically, the API extensions provide the following functionality:
v Access to global and local transaction identifiers associated with the thread.

The global id is based on the tid in CosTransactions::PropagationContext: and
the local id identifies the transaction uniquely within the local JVM.

v A transaction synchronization callback that enables any J2EE component to
register an interest in transaction completion.
This can be used by advanced applications to flush updates before transaction
completion and clear up state after transaction completion. J2EE (and related)
specifications position this function generally as the domain of the J2EE
containers. The exception is for CMT session beans, for which the EJB
specification defines the SessionSynchronization interface. WebSphere provides
this Enterprise functionality in recognition that more advanced applications can
profit from the ability to receive such notifications.

An application uses a JNDI lookup of
java:comp/websphere/ExtendedJTATransaction to get an ExtendedJTATransaction
object, which it then uses as follows:
ExtendedJTATransaction exJTA = (ExtendedJTATransaction)ctx.lookup("
java:comp/websphere/ExtendedJTATransaction");
SynchronizationCallback sync = new SynchronizationCallback();
exJTA.registerSynchronizationCallback(sync);

The ExtendedJTATransaction object supports the registration of one or more
application-provided SynchronizationCallbacks. Each registered callback is called at
the end of every transaction that runs on the application server (whether the
transaction is started locally or imported).

The following information provides an overview of the interfaces provided by the
Extended JTA support. For more detailed information, see the Javadoc provided
with WAS Enterprise.

SynchronizationCallback interface

An object implementing this interface is enlisted once through the
ExtendedJTATransaction interface, and receives notification of the completion of
each subsequent transaction mediated by the transaction manager in the local JVM.

Although an object implementing this interface can run in a J2EE server, there is
no specific J2EE component active when this object is called. So, the object has
limited direct access to any J2EE resources. Specifically, it has no access to the java:
namespace or to any container-mediated resource. Such an object can cache a
reference to a J2EE component (for example, a stateless session bean) that it
delegates to. The object would then have all the normal access to J2EE resources
and could be used, for example, to acquire a JDBC connection and flush updates to
a database during beforeCompletion.

ExtendedJTATransaction interface

284 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

A WebSphere programming model extension to the J2EE JTA support. An object
implementing this interface is bound, by WebSphere J2EE containers that support
this interface, at java:comp/websphere/ExtendedJTATransaction. Access to this
object, when called from an EJB container, is not restricted to bean-managed
transactions.

Developing components to use transactions
These topics provide information about developing WebSphere application
components to use transactions

The way that applications use transactions depends on the type of application
component, as follows:
v A session bean can either use container-managed transactions (where the bean

delegates management of transactions to the container) or bean-managed
transactions (where the bean manages transactions itself).

v Entity beans use container-managed transactions.
v Web components (servlets) use bean-managed transactions.

You configure whether a component uses container- or bean-managed transactions
by setting an appropriate value on the Transaction type deployment attribute, as
described in “Setting transactional attributes in the deployment descriptor”. You
can also configure other transactional deployment descriptor attributes.

If you want a session bean to manage its own transactions, you must write the
code that explicitly demarcates the boundaries of a transaction as described in
“Using bean-managed transactions” on page 289.

Similarly, if you want a Web component to use transactions, you must write the
code that explicitly demarcates the boundaries of a transaction as described in
“Using bean-managed transactions” on page 289.

Setting transactional attributes in the deployment descriptor
Use this task to configure the transactional deployment descriptor attributes
associated with an EJB or Web module, to enable a J2EE application to use
transactions.

To set transactional attributes in the deployment descriptor for an application
component (enterprise bean or servlet), complete the following steps:

Steps for this task

1. Start the Application Assembly Tool.
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, click File-> Open
then select the EAR file.

3. In the navigation pane, select the component instance; for example:
v For a session bean, expand ejb_module_instance-> Session beans then select

the bean instance.
v For a servlet, expand web_application-> Web Components then select the

servlet instance.

A property dialog notebook for the component is displayed in the property
pane.

Chapter 12. Using the transaction service 285

4. In the property pane, select the Advanced tab.
5. Set the Transaction type attribute, which defines the transactional manner in

which the container invokes a method.
You can set this attribute to Container or Bean, as follows:
v For a session bean to use container-managed transactions, set Container
v For a session bean to use bean-managed transactions, set Bean
v For an entity bean, set Container
v For a Web component (servlet), set Bean

6. In the property pane, select the IBM Extensions tab.
7. Configure J2EE component extensions attributes for extended local transaction

containment.
To enable management of local transaction containments, configure the
following EJB extensions attributes. These attributes configure, for the
component, the behaviour of the container’s local transaction containment
(LTC) environment that the container establishes whenever a global transaction
is not present.

Boundary
Specifies the duration of a local transaction context. You can set this
attribute to Bean method or ActivitySession, as described in ″Entity
bean assembly settings″ (not in this document-see the InfoCenter for
more information).

Note: The ActivitySession option is not supported in the web container.

Resolution control
Specifies how the local transaction is to be resolved before the local
transaction context ends: by the application through user code or by the
EJB container. You can set this attribute to either Application or
ContainerAtBoundary, as described in ″Entity bean assembly settings″
(not in this document-see the InfoCenter for more information).

Unresolved action
Specifies the action that the container must take when the local
transaction context scope ends, if resources are uncommitted by an
application in a local transaction and the Resolution control is set to
Application. You can set this attribute to either Commit or Rollback, as
described in ″Entity bean assembly settings″ (not in this document-see
the InfoCenter for more information).

8. [For EJB components only] For container-managed transactions, configure how
the container must manage the transaction boundaries when delegating a
method invocation to an enterprise bean’s business method:
a. In the navigation pane, select Container Transactions.

This displays a table of the methods for enterprise beans.
b. For each method of the enterprise bean set the Transaction attribute

attribute to an appropriate value, as defined in ″Container transaction
assembly settings. ″ (not in this document-see the InfoCenter for more
information).

If the application uses ActivitySessions, how the container manages transaction
boundaries when delegating a method invocation depends on both the
Transaction attribute attribute, set here, and the ActivitySession kind attribute,
as described in “Configuring ActivitySession deployment attributes for an

286 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

enterprise bean” on page 325. For more detail about the relationship between
these two properties, see “Combining transaction and ActivitySession container
policies” on page 316.

Using local transactions
Local transaction containment (LTC) support, and its configuration through local
transaction extended deployment descriptors, gives IBM WebSphere Application
Server application programmers a number of advantages. This topic describes
those advantages and how they relate to the settings of the local transaction
extended deployment descriptors. This topic also describes points to consider to
help you best configure transaction support for some example scenarios that use
local transactions.

Develop an enterprise bean or servlet that accesses one or more databases that
are independent and require no coordination.

If an enterprise bean does not need to use global transactions, it is often
more efficient to deploy the bean with the Container Transaction
deployment descriptor Transaction attribute set to Not supported instead
of Required.

With the extended local transaction support of IBM WebSphere Application
Server, applications can perform the same business logic in an unspecific
transaction context as they can under a global transaction. An enterprise
bean, for example, runs under an unspecified transaction context if it is
deployed with a Transaction attribute of Not supported or Never.

The extended local transaction support provides a container-managed,
implicit local transaction boundary within which application updates can
be committed and their connections cleaned up by the container.
Applications can then be designed with a greater degree of independence
from deployment concerns. This makes using a Transaction attribute of
Supports much simpler, for example, when the business logic may be
called either with or without a global transaction context.

An application can follow a get-use-close pattern of connection usage
regardless of whether or not the application runs under a transaction. The
application can depend on the close behaving in the same way and not
causing a rollback to occur on the connection if there is no global
transaction.

There are many scenarios where ACID coordination of multiple resource
managers is not needed. In such scenarios running business logic under a
Transaction policy of Not supported performs better than if it had been
run under a Required policy. This benefit is exploited through the Local
Transactions - Resolution-control extended deployment setting of
ContainerAtBoundary. With this setting, application interactions with
resource providers (such as databases) are managed within implicit RMLTs
that are both started and ended by the container. The RMLTs are
committed by the container at the configured Local Transactions -
Boundary; for example at the end of a method. If the application returns
control to the container by an exception, the container rolls back any
RMLTs that it has started.

This usage applies to both servlets and enterprise beans.

Use local transactions in a managed environment that guarantees clean-up.
Applications that want to control RMLTs, by starting and ending them
explicitly, can use the default Local Transactions - Resolution-control

Chapter 12. Using the transaction service 287

extended deployment setting of Application. In this case, the container
ensures connection cleanup at the boundary of the local transaction
context.

J2EE specifications that describe application use of local transactions do so
in the manner provided by the default setting of Local Transactions -
Resolution-control=Application and Local Transactions -
Unresolved-action=Rollback. By configuring the Local Transactions -
Unresolved-action extended deployment setting to Commit, then any
RMLTs started by the application but not completed when the local
transaction containment ends (for example, when the method ends) are
committed by the container. This usage applies to both servlets and
enterprise beans.

Extend the duration of a local transaction beyond the duration of an EJB
component method.

The J2EE specifications restrict the use of RMLTs to single EJB methods.
This restriction is because the specifications have no scoping device,
beyond a container-imposed method boundary, to which an RMLT can be
extended. In IBM WebSphere Application Server Enterprise, you can
exploit the Local Transactions - Boundary extended deployment setting to
give the following advantages:
v Significantly extend the use-cases of RMLTs
v Make conversational interactions with one-phase resource managers

possible through ActivitySession support.

An ActivitySession is a IBM WebSphere Application Server Enterprise
programming model extension that provides a distributed context with a
boundary that is longer than a single method. You can extend the use of
RMLTs over the longer ActivitySession boundary, which can be controlled
by a client. The ActivitySession boundary reduces the need to use
distributed transactions where ACID operations on multiple resources are
not needed. This benefit is exploited through the Local Transactions -
Boundary extended deployment setting of ActivitySession. Such extended
RMLTs can remain under the control of the application or be managed by
the container depending on the use of the Local Transactions -
Resolution-control deployment descriptor setting.

Coordinate multiple one-phase resource managers.
For resource managers that do not support XA transaction coordination, a
client can exploit ActivitySession-bounded local transaction contexts. Such
contexts give a client the same ability to control the completion direction of
the resource updates by the resource managers as the client has for
transactional resource managers. A client can start an ActivitySession and
call its entity beans under that context. Those beans can perform their
RMLTs within the scope of that ActivitySession and return without
completing the RMLTs. The client can later complete the ActivitySession in
a commit or rollback direction and cause the container to drive the
ActivitySession-bounded RMLTs in that coordinated direction.

To determine how best to configure the transaction support for an application,
depending on what you want to do with transactions, consider the following
points.

General points

v You want to start and end global transactions explicitly in the
application (BMT session beans and servlets only).

288 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

For a session bean, set the Transaction type to Bean (to use
bean-managed transactions) in the component’s deployment descriptor.
(You do not need to do this for servlets.)

v You want to access only one XA or non-XA resource in a method.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to ContainerAtBoundary. In the Container transaction
deployment descriptor, set Transaction to Supports.

v You want to access several XA resources atomically across one or more
bean methods.
In the Container transaction deployment descriptor, set Transaction to
Required, Requires new, or Mandatory.

v You want to access several non-XA resource in a method without having
to worry about managing your own local transactions.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to ContainerAtBoundary. In the Container transaction
deployment descriptor, set Transaction to Not supported.

v You want to access several non-XA resource in a method and want to
manage them independently.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to Application and set Local Transactions -
Unresolved-action to Rollback. In the Container transaction deployment
descriptor, set Transaction to Not supported.

Points specific to IBM WebSphere Application Server Enterprise

v You want to access one of more non-XA resources across multiple EJB
method calls without having to worry about managing your own local
transactions.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to ContainerAtBoundary, Local Transactions -
Boundary to ActivitySession, and Bean Cache - Activate at to
ActivitySession. In the Container transaction deployment descriptor, set
Transaction to Not supported and set ActivitySession attribute to
Required, Requires new, or Mandatory.

v You want to access several non-XA resources across multiple EJB method
calls and want to manage them independently.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to Application, Local Transactions - Boundary to
ActivitySession, and Bean Cache - Activate at to ActivitySession. In
the Container Transaction deployment descriptor, set Transaction to Not
supported and set ActivitySession attribute to Required, Requires new,
or Mandatory.

v You want to use a single non-XA resource and one or more
XAResources.
Use the Last Participant Support of IBM WebSphere Application Server
Enterprise.

Using bean-managed transactions
This topic describes how to enable a session bean or servlet to use bean-managed
transactions, to manage its own transactions directly instead of letting the
container manage the transactions.

Chapter 12. Using the transaction service 289

Note: Entity beans cannot manage transactions (so cannot use bean-managed
transactions).

To enable a session bean or servlet to use bean-managed transactions, complete the
following steps:

Steps for this task

1. Set the Transaction type attribute in the component’s deployment descriptor to
Bean, as described in ″Setting transactional attributes in the deployment
descriptor″ (not in this document).

2. Write the component code to actively manage transactions
When writing the code required by a component to manage its own
transactions, remember the following basic rules:
v An instance of a stateless session bean cannot reuse the same transaction

context across multiple methods called by an EJB client.
v An instance of a stateful session bean can reuse the same transaction context

across multiple methods called by an EJB client.

The following code extract shows the standard code required to obtain an
object encapsulating the transaction context. There are three basics steps
involved:
v The component class must set the value of the javax.ejb.SessionContext object

reference in the setSessionContext method.
v A javax.transaction.UserTransaction object is created by calling a lookup on

″java:comp/UserTransaction″.
v The UserTransaction object is used to participate in the transaction by calling

transaction methods such as begin and commit as needed. If an enterprise
bean begins a transaction, it must also complete that transaction either by
invoking the commit method or the rollback method.

...
import javax.transaction.*;
...
public class MyStatelessSessionBean implements SessionBean {
private SessionContext mySessionCtx =null;
...
public void setSessionContext (SessionContext ctx)throws EJBException {
mySessionCtx =ctx;
}
...

public float doSomething(long arg1)throws FinderException,EJBException {
UserTransaction userTran = (UserTransaction)initCtx.lookup(

"java:comp/UserTransaction");
...
//User userTran object to call transaction methods
userTran.begin ();
//Do transactional work
...
userTran.commit ();
...

}
...

}

Using local transactions
Local transaction containment (LTC) support, and its configuration through local
transaction extended deployment descriptors, gives IBM WebSphere Application
Server application programmers a number of advantages. This topic describes
those advantages and how they relate to the settings of the local transaction

290 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

extended deployment descriptors. This topic also describes points to consider to
help you best configure transaction support for some example scenarios that use
local transactions.

Develop an enterprise bean or servlet that accesses one or more databases that
are independent and require no coordination.

If an enterprise bean does not need to use global transactions, it is often
more efficient to deploy the bean with the Container Transaction
deployment descriptor Transaction attribute set to Not supported instead
of Required.

With the extended local transaction support of IBM WebSphere Application
Server, applications can perform the same business logic in an unspecific
transaction context as they can under a global transaction. An enterprise
bean, for example, runs under an unspecified transaction context if it is
deployed with a Transaction attribute of Not supported or Never.

The extended local transaction support provides a container-managed,
implicit local transaction boundary within which application updates can
be committed and their connections cleaned up by the container.
Applications can then be designed with a greater degree of independence
from deployment concerns. This makes using a Transaction attribute of
Supports much simpler, for example, when the business logic may be
called either with or without a global transaction context.

An application can follow a get-use-close pattern of connection usage
regardless of whether or not the application runs under a transaction. The
application can depend on the close behaving in the same way and not
causing a rollback to occur on the connection if there is no global
transaction.

There are many scenarios where ACID coordination of multiple resource
managers is not needed. In such scenarios running business logic under a
Transaction policy of Not supported performs better than if it had been
run under a Required policy. This benefit is exploited through the Local
Transactions - Resolution-control extended deployment setting of
ContainerAtBoundary. With this setting, application interactions with
resource providers (such as databases) are managed within implicit RMLTs
that are both started and ended by the container. The RMLTs are
committed by the container at the configured Local Transactions -
Boundary; for example at the end of a method. If the application returns
control to the container by an exception, the container rolls back any
RMLTs that it has started.

This usage applies to both servlets and enterprise beans.

Use local transactions in a managed environment that guarantees clean-up.
Applications that want to control RMLTs, by starting and ending them
explicitly, can use the default Local Transactions - Resolution-control
extended deployment setting of Application. In this case, the container
ensures connection cleanup at the boundary of the local transaction
context.

J2EE specifications that describe application use of local transactions do so
in the manner provided by the default setting of Local Transactions -
Resolution-control=Application and Local Transactions -
Unresolved-action=Rollback. By configuring the Local Transactions -
Unresolved-action extended deployment setting to Commit, then any
RMLTs started by the application but not completed when the local

Chapter 12. Using the transaction service 291

transaction containment ends (for example, when the method ends) are
committed by the container. This usage applies to both servlets and
enterprise beans.

Extend the duration of a local transaction beyond the duration of an EJB
component method.

The J2EE specifications restrict the use of RMLTs to single EJB methods.
This restriction is because the specifications have no scoping device,
beyond a container-imposed method boundary, to which an RMLT can be
extended. In IBM WebSphere Application Server Enterprise, you can
exploit the Local Transactions - Boundary extended deployment setting to
give the following advantages:
v Significantly extend the use-cases of RMLTs
v Make conversational interactions with one-phase resource managers

possible through ActivitySession support.

An ActivitySession is an IBM WebSphere Application Server Enterprise
programming model extension that provides a distributed context with a
boundary that is longer than a single method. You can extend the use of
RMLTs over the longer ActivitySession boundary, which can be controlled
by a client. The ActivitySession boundary reduces the need to use
distributed transactions where ACID operations on multiple resources are
not needed. This benefit is exploited through the Local Transactions -
Boundary extended deployment setting of ActivitySession. Such extended
RMLTs can remain under the control of the application or be managed by
the container depending on the use of the Local Transactions -
Resolution-control deployment descriptor setting.

Coordinate multiple one-phase resource managers.
For resource managers that do not support XA transaction coordination, a
client can exploit ActivitySession-bounded local transaction contexts. Such
contexts give a client the same ability to control the completion direction of
the resource updates by the resource managers as the client has for
transactional resource managers. A client can start an ActivitySession and
call its entity beans under that context. Those beans can perform their
RMLTs within the scope of that ActivitySession and return without
completing the RMLTs. The client can later complete the ActivitySession in
a commit or rollback direction and cause the container to drive the
ActivitySession-bounded RMLTs in that coordinated direction.

To determine how best to configure the transaction support for an application,
depending on what you want to do with transactions, consider the following
points.

General points

v You want to start and end global transactions explicitly in the
application (BMT session beans and servlets only).
For a session bean, set the Transaction type to Bean (to use
bean-managed transactions) in the component’s deployment descriptor.
(You do not need to do this for servlets.)

v You want to access only one XA or non-XA resource in a method.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to ContainerAtBoundary. In the Container transaction
deployment descriptor, set Transaction to Supports.

v You want to access several XA resources atomically across one or more
bean methods.

292 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

In the Container transaction deployment descriptor, set Transaction to
Required, Requires new, or Mandatory.

v You want to access several non-XA resource in a method without having
to worry about managing your own local transactions.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to ContainerAtBoundary. In the Container transaction
deployment descriptor, set Transaction to Not supported.

v You want to access several non-XA resource in a method and want to
manage them independently.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to Application and set Local Transactions -
Unresolved-action to Rollback. In the Container transaction deployment
descriptor, set Transaction to Not supported.

Points specific to IBM WebSphere Application Server Enterprise

v You want to access one of more non-XA resources across multiple EJB
method calls without having to worry about managing your own local
transactions.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to ContainerAtBoundary, Local Transactions -
Boundary to ActivitySession, and Bean Cache - Activate at to
ActivitySession. In the Container transaction deployment descriptor, set
Transaction to Not supported and set ActivitySession attribute to
Required, Requires new, or Mandatory.

v You want to access several non-XA resources across multiple EJB method
calls and want to manage them independently.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to Application, Local Transactions - Boundary to
ActivitySession, and Bean Cache - Activate at to ActivitySession. In
the Container Transaction deployment descriptor, set Transaction to Not
supported and set ActivitySession attribute to Required, Requires new,
or Mandatory.

v You want to use a single non-XA resource and one or more
XAResources.
Use the Last Participant Support of IBM WebSphere Application Server
Enterprise.

Configuring transaction properties for an application server
Use this task to configure the transaction properties for an application server; for
example, to define the location of the directory that contains the transaction log or
to change default timeouts associated with transactions.

To configure the transaction properties for an application server, complete the
following steps:

Steps for this task

1. Start the Administrative console
2. In the navigation pane, select Servers-> Manage Application Servers->

your_app_server

This displays the properties of the application server, your_app_server, in the
content pane.

Chapter 12. Using the transaction service 293

3. Select the Transaction Service tab, to display the properties page for the
transaction service, as two notebook pages:

Configuration
The values of properties defined in the configuration file. If you
change these properties, the new values are applied when the
application server next starts.

Runtime
The runtime values of properties. If you change these properties, the
new values are applied immediately, but are overwritten with the
Configuration values when the application server next starts.

4. Select the Configuration tab, to display the transaction-related configuration
properties.

5. (Optional) If you want to change the directory in which transaction logs are
written, type the full pathname of the directory in the Transaction log
directory field.
You can check the current runtime value of Transaction log directory, by
clicking the Runtime tab.
You can also specify a size for the transaction logs, as described in the
following step.

Note: If you change the transaction log directory, you should apply the
change and restart the application server as soon as possible, to
minimize the risk of problems caused that might occur before the
application server is restarted. For example, if a problem causes the
server to fail (with in-flight transactions), the server next starts with the
new log directory and is unable to automatically resolve in-flight
transactions that were recorded in the old log directory.

6. (Optional) If you want to change the default file size of transaction log files,
modify the Transaction log directory field to include a file size setting, in the
following format:
directory_name;file_size

Where
v directory_name is the name of the transaction log directory
v file_size is the new default size specified in bytes. The nK or nM suffix can

be used to indicate kilobytes or megabytes. If you do not specify a file size
value, the default value of 1M is used.

For example, c:\tranlogs;2M indicates the files are to be created with 2M
bytes size and stored in the directory c:\tranlogs.

In a non-production environment, you can use the transaction log directory
value of ;0 to disable transaction logging. (There must be no directory name
element before the size element of 0.) You should not disable transaction
logging in a production environment, because this prevents recovery after a
system failure and, therefore, data integrity cannot be guaranteed.

7. In the Total transaction lifetime timeout field, type the number of
milliseconds a transaction can remain inactive before it is ended by the
transaction service. A value of 0 (zero) indicates that there is no timeout limit.

8. In the Client inactivity timeout field, type the number of seconds after which
a client is considered inactive and the transaction service ends any
transactions associated with that client. A value of 0 (zero) indicates that there
is no timeout limit.

294 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

9. Click OK.
10. Stop then restart the application server.

If you change the transaction log directory configuration property to an
incorrect directory name, the application server will restart but be unable to
open the transaction logs. You should change the configuration property to a
valid directory name, then restart the application server.

Transaction service settings
Use this page to modify transaction service settings.

To view this administrative console page, click Servers > Application Servers >
server > Transaction Service.

Transaction log directory
Specifies the name of a directory for this server where the transaction service stores
log files for recovery.

A blank value in the server configuration is expanded by the transaction log at
startup as the directory (install_root)/tranlog/(server_name).

When the application running on the WebSphere product accesses more then one
resource, the WebSphere product stores transaction information to properly
coordinate and manage the distributed transaction. In a higher transaction load,
this persistence slows down performance of the application server due to its
dependency on the operating system and the underlying storage systems.

To achieve better performance, move the transaction log files to a storage device
with more physical disk drives, or preferably RAID disk drives. When the log files
are moved to the file systems on the raided disks, the task of writing data to the
physical media is shared across the multiple disk drives. This allows more
concurrent access to persist transaction information and faster access to that data
from the logs. Depending upon the design of the application and storage
subsystem, performance gains can range from 10% to 100%, or even more in some
cases.

This change is applicable only to the configuration where the application uses
distributed resources or XA transactions, for example, multiple databases and
resources are accessed within a single transaction. Consider setting this property
when the application server shows one or more of following signs:
v CPU utilization remains low despite an increase in transactions
v Transactions fail with several time outs
v Transaction rollbacks occur with ″unable to enlist transaction″ exception
v Application server hangs in middle of a run and requires the server to be

restarted
v The disk on which an application server is running shows higher utilization

Data type
String

Default
Initial value is the %WAS_HOME%\tranlog directory and a default size of
1MB.

Recommended
Create a file system with at least 3-4 disk drives raided together in a

Chapter 12. Using the transaction service 295

RAID-0 configuration. Then, create the transaction log on this file system
with the default size. When the server is running under load, check the
disk input and output. If disk input and output time is more then 5%,
consider adding more physical disks to lower the value. If disk input and
output is low, but the server is still high, consider increasing the size of the
log files.

Total transaction lifetime timeout
Specifies the maximum duration, in seconds, for transactions on this application
server.

Any transaction that is not requested to complete before this timeout is rolled back.
If set to 0, there is no timeout limit.

Data type
Integer

Units Seconds

Default
120

Range 0 to 2 147 483 647

Client inactivity timeout
Specifies the maximum duration, in seconds, between transactional requests from a
remote client.

Any period of client inactivity that exceeds this timeout results in the transaction
rolling back in this application server. If set to 0, there is no timeout limit.

Data type
Integer

Units Seconds

Default
60

Range 0 to 2 147 483 647

Maximum Transaction Timeout
Specifies the maximum duration, in seconds, that transactions started by or
propagated into this application server are allowed to execute.

Data type
Integer

Units Seconds

Default
300

Range 0 to 2 147 483 647

Using local transactions
Local transaction containment (LTC) support, and its configuration through local
transaction extended deployment descriptors, gives IBM WebSphere Application
Server application programmers a number of advantages. This topic describes
those advantages and how they relate to the settings of the local transaction

296 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

extended deployment descriptors. This topic also describes points to consider to
help you best configure transaction support for some example scenarios that use
local transactions.

Develop an enterprise bean or servlet that accesses one or more databases that
are independent and require no coordination.

If an enterprise bean does not need to use global transactions, it is often
more efficient to deploy the bean with the Container Transaction
deployment descriptor Transaction attribute set to Not supported instead
of Required.

With the extended local transaction support of IBM WebSphere Application
Server, applications can perform the same business logic in an unspecific
transaction context as they can under a global transaction. An enterprise
bean, for example, runs under an unspecified transaction context if it is
deployed with a Transaction attribute of Not supported or Never.

The extended local transaction support provides a container-managed,
implicit local transaction boundary within which application updates can
be committed and their connections cleaned up by the container.
Applications can then be designed with a greater degree of independence
from deployment concerns. This makes using a Transaction attribute of
Supports much simpler, for example, when the business logic may be
called either with or without a global transaction context.

An application can follow a get-use-close pattern of connection usage
regardless of whether or not the application runs under a transaction. The
application can depend on the close behaving in the same way and not
causing a rollback to occur on the connection if there is no global
transaction.

There are many scenarios where ACID coordination of multiple resource
managers is not needed. In such scenarios running business logic under a
Transaction policy of Not supported performs better than if it had been
run under a Required policy. This benefit is exploited through the Local
Transactions - Resolution-control extended deployment setting of
ContainerAtBoundary. With this setting, application interactions with
resource providers (such as databases) are managed within implicit RMLTs
that are both started and ended by the container. The RMLTs are
committed by the container at the configured Local Transactions -
Boundary; for example at the end of a method. If the application returns
control to the container by an exception, the container rolls back any
RMLTs that it has started.

This usage applies to both servlets and enterprise beans.

Use local transactions in a managed environment that guarantees clean-up.
Applications that want to control RMLTs, by starting and ending them
explicitly, can use the default Local Transactions - Resolution-control
extended deployment setting of Application. In this case, the container
ensures connection cleanup at the boundary of the local transaction
context.

J2EE specifications that describe application use of local transactions do so
in the manner provided by the default setting of Local Transactions -
Resolution-control=Application and Local Transactions -
Unresolved-action=Rollback. By configuring the Local Transactions -
Unresolved-action extended deployment setting to Commit, then any
RMLTs started by the application but not completed when the local

Chapter 12. Using the transaction service 297

transaction containment ends (for example, when the method ends) are
committed by the container. This usage applies to both servlets and
enterprise beans.

Extend the duration of a local transaction beyond the duration of an EJB
component method.

The J2EE specifications restrict the use of RMLTs to single EJB methods.
This restriction is because the specifications have no scoping device,
beyond a container-imposed method boundary, to which an RMLT can be
extended. In IBM WebSphere Application Server Enterprise, you can
exploit the Local Transactions - Boundary extended deployment setting to
give the following advantages:
v Significantly extend the use-cases of RMLTs
v Make conversational interactions with one-phase resource managers

possible through ActivitySession support.

An ActivitySession is an IBM WebSphere Application Server Enterprise
programming model extension that provides a distributed context with a
boundary that is longer than a single method. You can extend the use of
RMLTs over the longer ActivitySession boundary, which can be controlled
by a client. The ActivitySession boundary reduces the need to use
distributed transactions where ACID operations on multiple resources are
not needed. This benefit is exploited through the Local Transactions -
Boundary extended deployment setting of ActivitySession. Such extended
RMLTs can remain under the control of the application or be managed by
the container depending on the use of the Local Transactions -
Resolution-control deployment descriptor setting.

Coordinate multiple one-phase resource managers.
For resource managers that do not support XA transaction coordination, a
client can exploit ActivitySession-bounded local transaction contexts. Such
contexts give a client the same ability to control the completion direction of
the resource updates by the resource managers as the client has for
transactional resource managers. A client can start an ActivitySession and
call its entity beans under that context. Those beans can perform their
RMLTs within the scope of that ActivitySession and return without
completing the RMLTs. The client can later complete the ActivitySession in
a commit or rollback direction and cause the container to drive the
ActivitySession-bounded RMLTs in that coordinated direction.

To determine how best to configure the transaction support for an application,
depending on what you want to do with transactions, consider the following
points.

General points

v You want to start and end global transactions explicitly in the
application (BMT session beans and servlets only).
For a session bean, set the Transaction type to Bean (to use
bean-managed transactions) in the component’s deployment descriptor.
(You do not need to do this for servlets.)

v You want to access only one XA or non-XA resource in a method.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to ContainerAtBoundary. In the Container transaction
deployment descriptor, set Transaction to Supports.

v You want to access several XA resources atomically across one or more
bean methods.

298 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

In the Container transaction deployment descriptor, set Transaction to
Required, Requires new, or Mandatory.

v You want to access several non-XA resource in a method without having
to worry about managing your own local transactions.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to ContainerAtBoundary. In the Container transaction
deployment descriptor, set Transaction to Not supported.

v You want to access several non-XA resource in a method and want to
manage them independently.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to Application and set Local Transactions -
Unresolved-action to Rollback. In the Container transaction deployment
descriptor, set Transaction to Not supported.

Points specific to IBM WebSphere Application Server Enterprise

v You want to access one of more non-XA resources across multiple EJB
method calls without having to worry about managing your own local
transactions.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to ContainerAtBoundary, Local Transactions -
Boundary to ActivitySession, and Bean Cache - Activate at to
ActivitySession. In the Container transaction deployment descriptor, set
Transaction to Not supported and set ActivitySession attribute to
Required, Requires new, or Mandatory.

v You want to access several non-XA resources across multiple EJB method
calls and want to manage them independently.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to Application, Local Transactions - Boundary to
ActivitySession, and Bean Cache - Activate at to ActivitySession. In
the Container Transaction deployment descriptor, set Transaction to Not
supported and set ActivitySession attribute to Required, Requires new,
or Mandatory.

v You want to use a single non-XA resource and one or more
XAResources.
Use the Last Participant Support of IBM WebSphere Application Server
Enterprise.

Managing active transactions
Use this task to manage transactions that are active on an application server.

You can use this task to display a snapshot of all the transactions currently running
on an application server. For each transaction, the following properties are shown:
its local ID, global ID, and current status. You can also choose to finish transactions
manually.

Under normal circumstances, transactions should run and complete (commit or
rollback) automatically, without the need for intervention. However, in some
circumstances, you may need to finish a transaction manually. For example, you
may want to finish a transaction that has become stuck polling a resource manager
that you know will not become available again within the desired timeframe.

Note: If you choose to finish a transaction on an application server, it is recorded
as having completed in the transaction service logs for that server, so will

Chapter 12. Using the transaction service 299

not be eligible for recovery during server start up. If you finish a
transaction, you are responsible for cleaning up any in-doubt transactions on
the resource managers affected.

To manage the active transactions for an application server, use the administrative
console to complete the following steps:

Steps for this task

1. In the navigation pane, select Servers-> Manage Application Servers

This displays a list of application servers in the content pane.
2. In the content pane, click your_app_server

This displays the properties of the application server, your_app_server.
3. In the content pane, click the Runtime tab.

This displays the runtime properties of the application server.
4. In the Additional Properties table, select Transaction Service

This displays the runtime properties of the Transaction Service.
5. Click Manage Transactions.

This displays a snapshot of all the transactions currently running on the server.
For each transaction, the following properties are shown: its local ID, global ID,
and current status.

6. (Optional) If you want to finish one or more transactions, select the checkbox
provided on the entry for the transaction, then click Finish. Alternatively, to
finish all transactions, select the checkbox in the header of the transactions
table, then click Finish.

Managing transaction logging for optimum server availability
This topic describes some considerations and actions that you can use to manage
transaction logging to help ensure that the availability of your application servers
is optimized.

The transaction service writes information to the transaction log for every global
transaction which involves two or more resources or is distributed across multiple
servers. The transaction log is stored on disk and is used by the transaction service
for recovery after a system or server crash. The transaction log for each application
server consists of multiple files held in a single directory. You can change the
directory that an application server uses to store the transaction log, as described
in “Configuring transaction properties for an application server” on page 293.

When a global transaction is completed, the information in the transaction log is
not needed anymore so is marked for deletion. Periodically, this redundant
information is garbage collected and the space reused by new transactions. The log
files are created of fixed size at server startup, thus no further disk space allocation
is required during the lifetime of the server. The default allocation is suitable for
around 500 concurrent transactions.

If all the log space is in use when a transaction needs to save information, the
transaction is rolled back and the message ″WTRN0075W: The transaction log file
is full. Transaction rolled back.″ is reported to the system error log. No more
transactions can commit until more log space is made available when existing
active transactions complete.

300 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

You can monitor the number of concurrent global transactions by using the
performance monitoring counters for transactions. The ″Global transaction commit
time″ counter is a measure of how long a transaction takes to complete and,
therefore, how long the log is in use by a transaction. If this value is high, then
transactions are taking a long time to complete, which can be due to resource
manager or network failures. If you ensure this value is low, the log is more
efficiently used and unlikely to become full.

You can change the default size of log files by updating the transaction log settings
as described in “Configuring transaction properties for an application server” on
page 293. Take care if you increase the size above the default 1Mbyte setting,
because this extends the time of the log file garbage collection process, and can
lead to undesireable periodic ″transaction stall″ effects.

Configuring transaction aspects of servers for optimum
availability

This topic describes some considerations and actions that you can take to configure
transaction-related aspects of application servers for optimum availability.

To configure transaction-related aspects of application servers for optimum
availability, complete the following steps:

Steps for this task

1. Store the transaction log files on a fast disk in a highly-available file system,
such as a RAID device.
The transaction log may need to be accessed by every global transaction and be
used for transaction recovery after a crash. Therefore, the disk the log files are
being written to should be on a highly-available file system, such as a RAID
device.
The performance of the disk also directly affects the transaction performance. In
general, a global transaction makes two disk writes, one after the prepare phase
when the outcome of the transaction is known (this information is forced to
disk) and a further disk write at transaction completion. Therefore, the
transaction logs should be placed on the fastest disks available and not make
use of network mounted devices.

2. Mirror the transaction log files by using hardware disk mirroring or
dual-ported disks.
If log files have been mirrored or can be recovered, they can be used when
restarting a failed server or moved to an another machine and another server
started there to perform recovery.
Hardware disk mirroring or dual-ported disks can be used by specifiying the
appropriate file system directory for the transaction logs using the WebSphere
Administrative Console.

3. Specify the optimum location of the transaction log directory for application
servers.
The default transaction log directory for an application server configuration is
unset. By default the application server places transaction log files in a
subdirectory of the installed WebSphere tranlog directory (as defined by the
WebSphere variable TRANLOG_ROOT), and the subdirectory name is the same
as the server name. For example, the default directory for a server named
server1 on Windows 2000 is: c:\WebSphere\AppServer\tranlog\server1.
You can specify an optimum location of the transaction log directory for all
application servers, either on a node or cell scope, by setting the WebSphere

Chapter 12. Using the transaction service 301

variable TRANLOG_ROOT. You can specify a different location separately for
each application server by setting the Transaction Log Directory property for
the server.

4. Never allow more than one application server to concurrently use the same set
of log files.
Because the transaction logs record the state of global transactions within a
server, if the logs become lost or corrupt, then transactions that are in the
prepared state before failure can leave resources in an in-doubt state and
prevent further updates or access to the resources by other users or servers.
These transactions may need to be manually resolved by either committing or
rolling back the transactions at the affected resource managers. The failed
server can then be cold-started, which creates new empty transaction logs.
If log files have been mirrored or can be recovered, they can be used when
restarting the failed server or moved to an alternate server or machine and
another server restarted to perform recovery, as described in the related tasks.
Never allow more than one application server to concurrently use the same set
of log files, because each server will destroy the information recorded by the
other, resulting in corrupt log files that are unusable for future recovery
purposes.

5. Configure application servers to always use the same listening port address at
each startup.
If you are running distributed transactions between multiple application
servers, the remote object references saved in the transaction log need to be
redirected to the originating server on recovery.
On IBM WebSphere Application Server Network Deployment, the node agents
automatically redirect such remote object references to the appropriate
application servers on recovery. However, if the distributed transaction is
between application servers that are not on IBM WebSphere Application Server
Network Deployment, then you must handle the redirection of remote object
references for transaction recovery to complete. For example, you must do this
is if an application server is deployed on IBM WebSphere Application Server
(not the Network Deployment edition) and runs distributed transactions with
non-WebSphere EJB or Corba servers.
In particular, the default restart action of an application server not on IBM
WebSphere Application Server Network Deployment is to use a different
listening port address to the port when the server shut down. This prevents
transaction recovery completing. To overcome this, you should always
configure application servers to always use the same listening port address at
each startup (see the ORB property com.ibm.CORBA.ListenerPort in ″Object
Request Broker service settings that can be added to the administrative
console″″ (not in this document- See the InfoCenter)). You may need to make
similar configuration changes to other application servers involved in
transactions, to be able to access those servers during recovery.

Moving a transaction log from one server to another
This topic describes some considerations and actions that you can take to move the
transaction logs for an application server to another server.

To move transaction logs from one application server to another, consider the
following steps:

Steps for this task

1. Move all the transaction log files for the application server.

302 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

The transaction log directory for each server contains four log files; named
tranlog1, tranlog2, XAresource1, and XAresource2. When moving transaction
logs from one server to another you must move all four files; otherwise
recovery may not complete resulting in data inconsistency.

2. For a single server configuration, move the transaction logs to any server that
has access to the same resource managers.
For a single server configuration (where there are no distributed transactions),
the transaction logs can be moved to any server (on any node) that has access
to the same resource managers as the original server. For example, the server
needs communication and valid security access to databases or message
queues.
All the transaction log files for the original server need to be moved to a
directory accessible by the new server. This can be accomplished by either
renaming the transaction log directory or copying all the log files to the new
server’s transaction log directory before starting the new server.

Note: To complete transaction recovery, the application server uses the resource
manager configuration information in the transaction logs. However, for
the application server to continue to do new work with the same
resource managers, the server must have an appropriate resource
manager configuration (as for the original server).

3. For a network-deployed server configuration, move the transaction logs to a
server that has the same name and host IP address, and access to the same
resource managers.
For a network-deployed server configuration, where there can be distributed
transactions present in the logs, there are more restrictions. Distributed
transactions that access multiple servers log information about each server
involved in the transaction. This information includes the server name and the
IP address of the machine on which the server is running. When recovery is
taking place on server restart, the server uses this information to contact the
distributed servers and similarly, the distributed servers try to contact the
server with the same original name. So, if a server fails and the logs need to
the recovered on an alternative server, that alternative server needs to have the
same name and host IP address as the original server. The alternative server
also needs to have access to the same resource managers as the original server.
For example, the server needs communication and valid security access to
databases or message queues.

Notes:

a. All servers within a cell must have unique names.
b. To complete transaction recovery, the application server uses the resource

manager configuration information in the transaction logs. However, for the
application server to continue to do new work with the same resource
managers, the server must have an appropriate resource manager
configuration (as for the original server).

Restarting an application server on a different host
This topic describes some considerations and actions that you can take with
transaction logs to restart an application server on a different host.

Moving transactions logs to a different host is similar to moving logs from one
server to another, as described in “Moving a transaction log from one server to
another” on page 302″Moving a transaction log from one server to another″.

Chapter 12. Using the transaction service 303

This involves moving an original application server on one host to an alternative
server, which has access to the same resource managers, on another host. For a
network-deployed server configuration, the alternative server must have the same
name and host IP address as the original server.

Note: To complete transaction recovery, the application server uses the resource
manager configuration information in the transaction logs. However, for the
application server to continue to do new work with the same resource
managers, the server must have an appropriate resource manager
configuration (as for the original server).

To restart an application server on a different host, complete the following steps:

Steps for this task

1. Ensure that the alternative application server is stopped.
2. Move all the transaction logs for the original server to the alternative

application server, according to the considerations described in “Moving a
transaction log from one server to another” on page 302.

3. Restart the alternative application server.

Transactional interoperation with non-WebSphere application servers
To interoperate transactionally with a non-WebSphere application server, IBM
WebSphere Application Server switches dynamically between native transaction
contexts and interoperable OTS contexts depending on the capability of the partner
with which it is interoperating. The following system properties (that were needed
to be set in IBM WebSphere Application Server before version 5.0 to enable
transactional interoperation), and the use of native contexts, are deprecated:
com.ibm.ejs.jts.jts.ControlSet.nativeOnly=false
com.ibm.ejs.jts.jts.ControlSet.interoperabilityOnly=true

In a future release of IBM WebSphere Application Server only interoperable OTS
contexts will be supported.

Troubleshooting transactions
Use this overview task to help resolve a problem that you think is related to the
Transaction service.

To identify and resolve transaction-related problems, you can use the standard IBM
WebSphere Application Server RAS facilities. If you encounter a problem that you
think might be related to transactions, complete the following stages:

Steps for this task

1. Check for transaction messages in the admin console.
The Transaction service produces diagnostic messages prefixed by ″WTRN″.
The error message indicates the nature of the problem and provides some
detail. The associated message information provides an explanation and any
user actions to resolve the problem.

2. Check for Transaction messages in the activity log.
Activity log messages produced by the Transaction service are accompanied by
log analyzer descriptions.

3. Check for more messages in the application server’s stdout.log.

304 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

For more information about a problem, check the stdout.log file for the
application server, which should contain more error messages and extra details
about the problem.

4. Check for messages in the application server’s transaction log directory for
information about the transactions in-flight when the problem occurred.

Note: If you changed the transaction log directory and a problem caused the
application server to fail (with in-flight transactions) before the server
was restarted properly, the server will next start with the new log
directory and be unable to automatically resolve in-flight transactions
that were recorded in the old log directory. To resolve this, you can copy
the transaction logs to the new directory then stop and restart the
application server.

Transaction service exceptions
This topic lists the exceptions that can be thrown by the IBM WebSphere
Application Server transaction service. The exceptions are listed in the following
groups:
v Standard exceptions
v Heuristic exceptions

If the EJB container catches a system exception from the business method of an
enterprise bean, and the method is running within a container-managed
transaction, the container rolls back the transaction before passing the exception on
to the client. For more information about how the container handles the exceptions
thrown by the business methods for beans with container-managed transaction
demarcation, see the section Exception handling in the Enterprise JavaBeans 2.0
specification. That section specifies the container’s action as a function of the
condition under which the business method executes and the exception thrown by
the business method. It also illustrates the exception that the client receives and
how the client can recover from the exception.

Standard exceptions

The standard exceptions such as TransactionRequiredException,
TransactionRolledbackException, and InvalidTransactionException are defined in
the Java Transaction API (JTA) 1.0.1 Specification.

InvalidTransactionException
This exception indicates that the request carried an invalid transaction
context.

TransactionRequiredException exception
This exception indicates that a request carried a null transaction context,
but the target object requires an active transaction.

TransactionRolledbackException exception
This exception indicates that the transaction associated with processing of
the request has been rolled back, or marked for roll back. Thus the
requested operation either could not be performed or was not performed
because further computation on behalf of the transaction would be
fruitless.

Heuristic exceptions

Chapter 12. Using the transaction service 305

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/jta/

A heuristic decision is a unilateral decision made by one or more participants in a
transaction to commit or rollback updates without first obtaining the consensus
outcome determined by the Transaction Service. Heuristic decisions are an issue
only after the participant has been prepared and the second phase of commit
processing is underway. Heuristic decisions are normally made only in unusual
circumstances, such as repeated failures by the transaction manager to
communicate with a resource manage during two-phase commit. If a heuristic
decision is taken, there is a risk that the decision differs from the consensus
outcome, resulting in a loss of data integrity.

The following list provides a summary of the heuristic exceptions. For more detail,
see the Java Transaction API (JTA) 1.0.1 Specification.

HeuristicRollback exception
This exception is raised on the commit operation to report that a heuristic
decision was made and that all relevant updates have been rolled back.

HeuristicMixed exception
This exception is raised on the commit operation to report that a heuristic
decision was made and that some relevant updates have been committed
and others have been rolled back.

UserTransaction interface - methods available
For details about the methods available with the UserTransaction interface, see the
IBM WebSphere Application Server Release 5 API Specification (found in the
Javadoc section of the InfoCenter) or the Java Transaction API (JTA) 1.0.1
Specification.

Coordinating access to 1-PC and 2-PC-capable resources within the
same transaction

Use these topics to help you coordinate the use of a single 1-phase commit (1PC)
capable resource with any number of 2-phase commit (2PC) capable resources in
the same global transaction.

You can coordinate the use of a single 1-phase commit (1PC) capable resource with
any number of 2-phase commit (2PC) capable resources in the same global
transaction.

At transaction commit, the 2-phase commit resources are prepared first using the
2-phase commit protocol, and if this is successful the 1-phase commit-resource is
then called to commit(one_phase). The 2-phase commit resources are then
committed or rolled back depending on the response of the 1-phase commit
resource.

For more information about coordinating access to 1PC and 2PC-capable resources
within the same transaction, see the following topics:
v “Coordinating access to 1-PC and 2-PC-capable resources within the same

transaction” on page 307
v “Enabling an application to coordinate access to 1-PC and 2-PC-capable

resources within the same transaction” on page 307
v “Configuring an application server to allow logging for heuristic reporting” on

page 308

306 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

http://java.sun.com/products/jta/
http://java.sun.com/products/jta/
http://java.sun.com/products/jta/

Coordinating access to 1-PC and 2-PC-capable resources
within the same transaction

You can coordinate the use of a single 1-phase commit (1PC) capable resource with
any number of 2-phase commit (2PC) capable resources in the same global
transaction.

At transaction commit, the 2-phase commit resources are prepared first using the
2-phase commit protocol, and if this is successful the 1-phase commit-resource is
then called to commit(one_phase). The 2-phase commit resources are then
committed or rolled back depending on the response of the 1-phase commit
resource.

Note: If the global transaction is distributed across multiple application servers,
you cannot coordinate access to 1-PC and 2-PC-capable resources within the
same transaction.

Coordinating access to 1-PC and 2-PC-capable resources within the same
transaction introduces an increased risk of an heuristic outcome to the transaction.
That is, the transaction manager cannot be sure that all resources were completed
in the same direction (either committed or rolled back). For this reason, to enable
an application to coordinate access to 1-PC and 2-PC-capable resources within the
same transaction, you configure the application to accept the increased risk of an
heuristic outcome.

An heuristic outcome occurs if the transaction service (JTS) receives no response
from the commit one-phase flow on the 1PC resource. In this situation the
transaction service cannot determine whether changes for the 1PC resource were
committed or rolled back, so cannot drive reliably the correct outcome of the
global transaction on the other 2PC resources.

You can configure the transaction service for an application server to indicate
whether or not to log that it is about to commit the 1PC resource. This does not
reduce the heuristic hazard, but ensures that any failure, and subsequent recovery,
of the application server during the 1PC phase occurs with knowledge of whether
or not the 1PC resource was asked to commit:
v If the 1PC resource was asked to commit, a heuristic outcome is reported to the

activity log.
v If the 1PC resource was not asked to commit, then the transaction is rolled back

consistently.

Enabling an application to coordinate access to 1-PC and
2-PC-capable resources within the same transaction

Use this task to enable an application to coordinate access to 1-phase and 2-phase
commit capable resources within the same transaction.

To enable an application to coordinate access to 1-phase and 2-phase commit
capable resources within the same transaction, you must configure the application
to accept the increased risk of an heuristic outcome.

To configure an application to indicate that you accept the increased risk of an
heuristic outcome, use the Application Assembly tool to complete the following
steps:

Steps for this task

Chapter 12. Using the transaction service 307

1. Launch the Application Assembly Tool.
2. Open the application EAR file.
3. In the navigation pane, select the application

This displays the properties notebook in the property pane.
4. In the property pane, select the WAS Enterprise tab.
5. Select the Accept heuristic hazard checkbox.
6. To apply the changes and close the Application Assembly Tool, click OK.

Otherwise, to apply the values but keep the property dialog open for additional
edits, click Apply.

7. (Optional) To see changes reflected in your application, regenerate deployment
code and re-install the deployable archive.

Last participant support extension settings
Use this page to configure last participant support extensions.

Last participant support is an extension to the transaction service to allow a single
one-phase resource to participate in a two-phase transaction with one or more
two-phase resources.

To view this administrative console page, click Applications > Applications >
application_name > Last Participant Support Extension.

Accept Heuristic Hazard: Specifies whether the application accepts the possibility
of an heuristic hazard occurring in a two-phase transaction containing a one-phase
resource.

Default
Cleared

Range

Selected
The application accepts the increased risk of an heuristic outcome.

Cleared
The application does not accept the increased risk of an heuristic
outcome.

Configuring an application server to allow logging for
heuristic reporting

To enable an application server to log ″about to commit 1PC resource″ events from
transactions that involve a 1-phase commit resource and 2-phase commit resources,
use the Administrative console to complete the following steps:

Steps for this task

1. Start the Administrative console
2. In the navigation pane, select Servers-> Manage Application Servers->

your_app_server

This displays the properties of the application server, your_app_server, in the
content pane.

3. Select the Transaction Service tab, to display the properties page for the
transaction service, as two notebook pages:

308 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Configuration
The values of properties defined in the configuration file. If you change
these properties, the new values are applied when the application
server next starts.

Runtime
The runtime values of properties. If you change these properties, the
new values are applied immediately, but are overwritten with the
Configuration values when the application server next starts.

4. Select the Configuration tab, to display the transaction-related configuration
properties.

5. Select the Enable logging for heuristic reporting checkbox.
6. Click OK.
7. Stop then restart the application server.

Exceptions thrown for transactions involving both single- and
two-phase commit resources

The exceptions that can be thrown by transactions that involve single- and
two-phase commit resources are the same as those that can be thrown by
transactions involving only two-phase commit resources, and are listed in the
WebSphere API reference information (Javadoc).

Last Participant Support: Resources for learning
Use the following links to find relevant supplemental information about Last
Participant Support. The information resides on IBM and non-IBM Internet sites,
whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v “Programming specifications”
v “Other”

Programming specifications

v J2EE Activity Service for Extended Transactions
http://www.jcp.org/en/jsr/detail?id=95

v Java Transaction API (JTA) 1.0.1
http://java.sun.com/products/jta/

Other

v WebSphere Application Server Enterprise Version 5 Overview: Advanced
Transactional Connectivity
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=products/
appserv_enterprise#advanced

v Listing of PDF files to learn about WebSphere Application Server Version 5
http://www-3.ibm.com/software/webservers/appserv/was/

v Listing of all IBM WebSphere Application Server Redbooks

Chapter 12. Using the transaction service 309

http://www.jcp.org/en/jsr/detail?id=95
http://java.sun.com/products/jta/
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=products/appserv_enterprise#advanced
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=products/appserv_enterprise#advanced
http://www-3.ibm.com/software/webservers/appserv/was/
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere

http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
v Listing of all IBM WebSphere Application Server Whitepapers

http://www-4.ibm.com/software/webservers/appserv/whitepapers.html
v WebSphere Application Server Enterprise Edition 4.0: A Programmer’s Guide

http://www.redbooks.ibm.com/redbooks/SG246504.html

310 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

http://www-4.ibm.com/software/webservers/appserv/whitepapers.html
http://www.redbooks.ibm.com/redbooks/SG246504.html

Chapter 13. Using the ActivitySession service

These topics provide information about implementing WebSphere enterprise
applications that use ActivitySessions.

The ActivitySession service provides an alternative unit-of-work (UOW) scope to
that provided by global transaction contexts. ActivitySessions provide a scoping
mechanism for units of work, and both an ActivitySession and a transaction has
the same following characteristics:
v It can be bean-managed or container-managed
v It can be distributed across application servers
v It can be used as the context for managing EJB activation policy and lifecycle

An ActivitySession differs significantly from a transaction in the manner of its
interaction with resource managers. An ActivitySession is used to scope or
coordinate local transactions. That is, an ActivitySession can be used to request
multiple 1-phase resource managers to come to an application- or
container-determined outcome. Unlike a transaction, an ActivitySession has no
notion of a prepare phase or any notion of recovery at a service level.

The WebSphere EJB container and deployment tools support ActivitySessions as an
extension to the J2EE programming model. Enterprise beans can be deployed with
lifecycles that are influenced by ActivitySession context, as an alternative to
transaction context. An enterprise bean with an ActivitySession-scoped lifecycle can
participate in a resource manager local transaction (RMLT) that has a duration of
the ActivitySession rather than an individual method on the bean (which is all that
is possible under the standard J2EE model). Applications can then be composed of
several enterprise beans with ActivitySession-based activation, with each bean
participating in extended local transactions with one or more resource managers.
At the end of the ActivitySession each of the local transactions can be directed to a
common outcome by the ActivitySession manager.

You can configure the WebSphere containers and deployable applications to
support enterprise beans that operate under application- or container-initiated
ActivitySessions rather than, or in addition to, transactions.

For more information about implementing WebSphere enterprise applications that
use ActivitySessions, see the following topics:
v “The ActivitySession service” on page 312

– “ActivitySession and transaction contexts” on page 315
– “Using ActivitySessions with HTTP sessions” on page 313

v “The ActivitySession service application programming interfaces” on page 334
v “Developing a J2EE application to use ActivitySessions” on page 322
v “Samples: ActivitySessions” on page 335
v “Configuring ActivitySession deployment attributes for an enterprise bean” on

page 325
v “Configuring ActivitySession deployment attributes for a Web application” on

page 329
v “Disabling or enabling the ActivitySession service” on page 330

© Copyright IBM Corp. 2003 311

v “Configuring the default ActivitySession timeout for an application server” on
page 332

v “Troubleshooting ActivitySessions” on page 333

The ActivitySession service
The ActivitySession service provides an alternative unit-of-work (UOW) scope to
that provided by global transaction contexts. An ActivitySession context can be
longer-lived than a global transaction context and can encapsulate global
transactions.

Support for the ActivitySession service is shown in the following figure:

The ActivitySession service. This figure show the main components of the
ActivitySession service within IBM WebSphere Application Server. For an overview
of these components, see the text that accompanies this figure.

Although the purpose of a global transaction is to coordinate multiple resource
managers, global transaction context is often used by J2EE applications as a
″session″ context through which to access EJB instances. An ActivitySession context
is such a session context, and can be used in preference to a global transaction in
cases where coordination of two-phase commit resource managers is not needed.
Further, an ActivitySession can be associated with an HttpSession to extend a
″client session″ to an HTTP client.

ActivitySession support is available to Web, EJB, and J2EE-client components. EJB
components can be divided into beans that exploit container-managed
ActivitySessions and beans that use bean-managed ActivitySessions.

312 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

The ActivitySession service provides a UserActivitySession application
programming interface available to J2EE components that use bean-managed
ActivitySessions for application-managed demarcation of ActivitySession context.
The ActivitySession service also provides a system programming interface for
container-managed demarcation of ActivitySession context and for
container-managed enlistment of one-phase resources (RMLTs) in such contexts.

The UserActivitySession interface is obtained by a JNDI lookup of
java:comp/websphere/UserActivitySession. This interface is not available to
enterprise beans that use container-managed ActivitySessions, and any attempt by
such beans to obtain the interface results in a NotFound exceptions.

Using ActivitySessions with HTTP sessions
A web application that runs in the WebSphere Web container can participate in an
ActivitySession context.

If the web application is designed such that several servlet invocations occur as
part of the same logical application, then the servlets can use the HttpSession to
preserve state across servlet invocations. The ActivitySession context is one state
that can be suspended into the HttpSession and resumed on a future invocation of
a servlet that accesses the HttpSession.

An ActivitySession is associated automatically with an HttpSession, so can be used
to extend access to the ActivitySession over multiple HTTP invocations, over
inclusion or forwarding of servlets, and to support EJB activation periods that can
be determined by the lifecycle of the web HTTP client. An ActivitySession context
stored in an HttpSession can also be used to relate work for the ActivitySession
back to a specific web HTTP client.

The Web container manages ActivitySessions based on deployment descriptor
attributes associated with servlets in the Web application module, as described in
“Configuring ActivitySession deployment attributes for a Web application” on
page 329. The two usage models are:
v The Web container starts and ends ActivitySessions.

The Web application invokes a servlet that has been configured for container
control of ActivitySessions.
– If an HttpSession exists then it has an associated ActivitySession.
– If an HttpSession does not exist, the servlet can start an HttpSession, which

causes an ActivitySession to be started automatically and associated with the
HttpSession.

A servlet cannot start a new HttpSession until an existing HttpSession has been
ended. Within an HttpSession, the Web application can invoke other servlets that
can use the associated ActivitySession context. When the Web application
invokes a servlet that ends the HttpSession, the ActivitySession is ended

Chapter 13. Using the ActivitySession service 313

automatically. This is shown in the following diagram:

v The Web application starts and ends ActivitySessions.
The Web application invokes a servlet that has been configured for application
control of ActivitySesions.
– If an HttpSession exists and has an associated ActivitySession, the servlet can

use or end that ActivitySession context.
– If an HttpSession does not exist, the servlet can start an HttpSession, but this

does not automatically start an ActivitySession.
– If an HttpSession exists but does not have an associated ActivitySession, the

servlet can start a new ActivitySession. This automatically associates the
ActivitySession with the HttpSession. The ActivitySession lasts either until the
ActivitySession is specifically ended or until the HttpSession is ended.

The servlet cannot start a new ActivitySession until an existing ActivitySession
has been ended. The servlet cannot start a new HttpSession until an existing
HttpSession has been ended.

Within an HttpSession, the Web application can invoke other servlets that can
use or end an existing ActivitySession context or, if no ActivitySession exists
start a new ActivitySession. When the Web application invokes a servlet that
ends the HttpSession, the ActivitySession is ended automatically. This is shown
in the following diagram:

314 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

A Web application can invoke servlets configured for either usage model.

The following points apply to both usage models:
v To end an HttpSession (and any associated ActivitySession), the Web application

must invalidate that session. This causes the ActivitySession to be checkpointed.
v Any downstream EJBs activated within the context of an ActivitySession can be

held in memory rather than passivated between servlet invocations, because the
client effectively becomes the web HTTP client.

v Web applications can be composed of many Web components, but each
component in the Web application must be configured with the same value for
ActivitySessionControl. ActivitySessionControl determines whether the Web
component or its container starts any ActivitySessions.

v An ActivitySession context that encapsulates an active transaction context cannot
be associated with an HttpSession, because a transaction can hold database locks
and should be designed to be shortlived. If an application moves an active
transaction to an HttpSession, the transaction is rolled back and the
ActivitySession is suspended into the HTTPSession. In general, you should
design applications to use ActivitySessions or other constructs as the long-lived
entities and ACID transactions as short-duration entities within these.

v Only one ActivitySession can be associated with an HttpSession at any time, for
the duration of the ActivitySession. An ActivitySession associated with an
HttpSession remains associated for the duration of that ActivitySession, and
cannot be replaced with another until the first ActivitySession is completed. The
ActivitySession can be accessed by multiple servlets if they have shared access to
the HttpSession.

v ActivitySessions are not persistent. If a persistent HttpSession exists longer than
the server hosting it, any cached ActivitySession is terminated when the hosting
server ends.

v If the HttpSession times out before the associated ActivitySession has ended, the
ActivitySession is reset.

v If the ActivitySession times out, it is reset then the HttpSession is ended.

ActivitySession and transaction contexts
The ActivitySession service defines a hierarchical relationship between transaction
and ActivitySession context, requiring that any transaction context be either wholly
inside or wholly outside an ActivitySession context.

An ActivitySession context is very similar to a transaction context and extends the
lifecycle choices for activation of enterprise beans; it can encapsulate one or more
transactions. The ActivitySession context is a distributed context that, like the
transaction context, can be bean- or container-managed. An ActivitySession context
is used mainly by a client to scope the lifecycle of an enterprise bean that it uses
either beyond or in the absence of individual transactions started by that client.

ActivitySessions have a lower overhead than transactions and can be used instead
of transactions that are only used to scope the lifecycle of a called enterprise bean.
For a bean with an activation policy of ActivitySession, the duration of any
resource manager local transactions (RMLTs) started by that bean can be bounded
by the duration of the ActivitySession instead of the bean method in which the
RMLT was started. This provides flexibility and potential for using RMLTs in an
enterprise bean beyond the scenarios described in the J2EE specifications. The J2EE
specifications define that RMLTs need to be completed before the end of the bean

Chapter 13. Using the ActivitySession service 315

method, because the bean method is the only containment boundary for local
transactions available in those specifications.

The following rules defines the relationship between transactions and
ActivitySessions.
v The EJB or Web container always uses a local transaction containment (LTC) if

there is no global transaction present. An LTC can be method-scoped or
ActivitySession-scoped.

v Before a method dispatch, the container ensures that there is always either an
LTC or global transaction context, but never both contexts.

v ActivitySessions cannot be nested within each other. Any attempt to start a
nested ActivitySession results in a
com.ibm.websphere.ActivitySession.NotSupportedException on
UserActivitySession.beginSession().

v An ActivitySession can wholly encapsulate one or more global transactions.
v An ActivitySession cannot be encapsulated by a global transaction nor should

ActivitySession and global transaction boundaries overlap. Any attempt to start
an ActivitySession in the presence of a global transaction context results in a
com.ibm.websphere.ActivitySession.NotSupportedException on
UserActivitySession.beginSession(). Any attempt to call
endSession(EndModeCheckpoint) on an ActivitySession that contains an
incomplete global transaction results in a
com.ibm.websphere.ActivitySession.ContextPendingException. Neither the global
transaction nor the ActivitySession context are affected. If
endSession(EndModeReset) is called then the ActivitySession is reset and the
global transactions marked rollback_only.

v Each global transaction wholly encapsulated by an ActivitySession is
independent of every other global transaction within that ActivitySession. A
rollback of one global transaction does not affect any others or the
ActivitySession itself.

v ActivitySession and global transaction contexts can coexist with an
ActivitySession encapsulating one or more serially-executing global transactions.

Combining transaction and ActivitySession container policies
This topic provides details about the relationship between the deployment
descriptor properties that determine how the container manages ActivitySession
boundaries.

If an enterprise bean uses ActivitySessions, how the EJB container manages
ActivitySession boundaries when delegating a method invocation depends on both
the ActivitySession kind and Transaction attribute deployment descriptor
attributes configured for the enterprise bean. The following table lists the
relationship between these two properties.

In each row, the final column describes the behavior that the EJB container takes
with respect to global transaction and ActivitySession context, based on the
following abbreviations:

Sn An ActivitySession, where n indicates the ActivitySession instance.

Tn A transaction, where n indicates the transaction instance.

In every case where the container does not start or leave a global transaction
context associated with the thread, it starts (or obtains from the bean instance) a
local transaction containment and associates that with the thread. The duration of

316 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

the local transaction containment is determined by a combination of the
local-transaction boundary descriptor (configured as part of the application
deployment descriptor, and not shown in the following table) and the presence or
not of an ActivitySession context, as described in “ActivitySession and transaction
contexts” on page 315.

The rows highlighted in bold are not allowed.

Container behavior for activitysession and transaction policies deployment
settings

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Transaction
attribute)

Received
contexts

Container
behaviour

Required Required None Start S1, Start T1
S1 Start T1
T1 Suspend T1, Start

S1, Start T2
S1, T1 No Action

Requires new None Start S1, Start T1
S1 Start T1
T1 Suspend T1, Start

S1, Start T2
S1, T1 Suspend T1, Start

T2
Supports None Start S1

S1 No Action
T1 Suspend T1, Start

S1
S1, T1 No Action

Not supported None Start S1
S1 No Action
T1 Suspend T1, Start

S1
S1, T1 Suspend T1

Mandatory None Exception
S1 Exception
T1 Exception
S1, T1 No action

Never None Start S1
S1 No Action
T1 Suspend T1, Start

S1
S1, T1 Exception

Chapter 13. Using the ActivitySession service 317

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Transaction
attribute)

Received
contexts

Container
behaviour

Requires new Required None Start S1 + T1
S1 Suspend S1, Start

S2 + T1
T1 Suspend T1, Start

S1 + T2
S1 + T1 Suspend S1 + T1,

Start S2 + T2
Requires new None Start S1 + T1

S1 Suspend S1, Start
S2 + T1

T1 Suspend T1, Start
S1 + T2

S1 + T1 Suspend S1 + T1,
Start S2 + T2

Supports None Start S1
S1 Suspend S1, Start

S2
T1 Suspend T1, Start

S1
S1, T1 Suspend S1 + T1,

Start S2
Not supported None Start S1

S1 Suspend S1, Start
S2

T1 Suspend T1, Start
S1

S1, T1 Suspend S1 + T1,
Start S2

Mandatory None Exception
S1 Exception
T1 Exception
S1, T1 Exception

Never None Start S1
S1 Suspend S1, Start

S2
T1 Suspend T1, Start

S1
S1, T1 Suspend S1 + T1,

Start S2

318 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Transaction
attribute)

Received
contexts

Container
behaviour

Supports Required None Start T1
S1 Start T1
T1 No Action
S1, T1 No Action

Requires new None Start T1
S1 Start T1
T1 Suspend T1, Start

T2
S1, T1 Suspend T1, Start

T2
Supports None No Action

S1 No Action
T1 No Action
S1, T1 No Action

Not supported None No Action
S1 No Action
T1 Suspend T1
S1, T1 Suspend T1

Mandatory None Exception
S1 Exception
T1 No Action
S1, T1 No Action

Never None No Action
S1 No Action
T1 Exception
S1, T1 Exception

Chapter 13. Using the ActivitySession service 319

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Transaction
attribute)

Received
contexts

Container
behaviour

Not supported Required None Start T1
S1 Suspend S1, Start

T1
T1 No Action
S1, T1 Suspend S1 + T1,

Start T2
Requires new None Start T1

S1 Suspend S1, Start
T1

T1 Suspend T1, Start
T2

S1, T1 Suspend S1 + T1,
Start T2

Supports None No Action
S1 Suspend S1
T1 No Action
S1, T1 Suspend S1 + T1

Not supported None No Action
S1 Suspend S1
T1 Suspend T1
S1, T1 Suspend S1 + T1

Mandatory None Exception
S1 Exception
T1 No Action
S1,T1 Exception

Never None No Action
S1 Suspend S1
T1 Exception
S1, T1 Suspend S1 + T1

320 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Transaction
attribute)

Received
contexts

Container
behaviour

Mandatory Required None Exception
S1 Start T1
T1 Exception
S1, T1 No Action

Requires new None Exception
S1 Start T1
T1 Exception
S1, T1 Suspend T1, Start

T2
Supports None Exception

S1 No Action
T1 Exception
S1, T1 No Action

Not supported None Exception
S1 No Action
T1 Exception
S1, T1 Suspend T1

Mandatory None Exception
S1 Exception
T1 Exception
S1, T1 No Action

Never None Exception
S1 No Action
T1 Exception
S1,T1 Exception

Never Required None Start T1
S1 Exception
T1 No Action
S1, T1 Exception

Requires new None Start T1
S1 Exception
T1 Suspend T1, Start

T2
S1,T1 Exception

Supports None No Action
S1 Exception
T1 No Action
S1,T1 Exception

Not supported None No Action
S1 Exception
T1 Suspend T1
S1,T1 Exception

Mandatory None Exception
S1 Exception
T1 No Action
S1,T1 Exception

Never None No Action
S1 Exception
T1 Exception
S1,T1 Exception

Chapter 13. Using the ActivitySession service 321

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Transaction
attribute)

Received
contexts

Container
behaviour

Bean managed Bean managed None No Action
S1 Suspend S1
T1 Suspend T1
S1, T1 Suspend S1 + T1

Developing a J2EE application to use ActivitySessions
This topic provides an overview of the scenarios for which you would develop a
J2EE application to use an ActivitySession.

The following common J2EE application scenarios make use of an ActivitySession:
v Developing a J2EE application to use one or more enterprise beans that are

persisted to non-transactional datastores.
This scenario can be used by an application that needs to coordinate multiple
1-phase resource managers; for example, for two or more entity EJBs whose
persistence is delegated to LocalTransaction resource adapters.
In this scenario, the enterprise beans used by the application have an Activation
policy of ActivitySession and a local transaction containment policy with a
boundary of ActivitySession and resolution-control of ContainerAtBoundary.
These configuration attributes are described in “Configuring ActivitySession
deployment attributes for an enterprise bean” on page 325. The synchronization
of the EJB state data is synchronized, by the container, with the 1-phase resource
managers at ActivitySession completion and no application code is required to
be aware of ActivitySession support.

v Developing a J2EE application in which an enterprise bean accesses a resource
manager multiple times in different business methods.
This scenario can be used by an application that needs to extend a resource
manager local transaction (RMLT) over several business methods of an
enterprise bean instance.
In this scenario, the enterprise beans used by the application have an Activation
policy of ActivitySession and a local transaction containment policy with a
boundary of ActivitySession and resolution-control of Application. These
configuration attributes are described in “Configuring ActivitySession
deployment attributes for an enterprise bean” on page 325. The application logic
starts and ends the RMLTs, for example using the
javax.resource.cci.LocalTransaction interface offered by a LocalTransaction
Connector, but is not constrained to start and commit the LocalTransaction in the
same method.

v Developing a J2EE client application to use an ActivitySession to scope EJB
activation and load-balancing.
This scenario can be used by an application client that needs to access an entity
bean instance several times in the same client session, either without needing to
run under a transaction context, or with the need to run under a number of
distinct and serially-executed transactions.
In this scenario, the enterprise beans used by the application client have an
Activation policy of ActivitySession and a local transaction containment policy
appropriate to the function of the enterprise bean. These configuration attributes
are described in “Configuring ActivitySession deployment attributes for an
enterprise bean” on page 325. The J2EE client application can represent a period

322 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

of user activity, for example a signon period, during which a number of
interactions occur with one or more enterprise beans. If the J2EE client
application begins an ActivitySession and invokes the enterprise beans within
the scope of the UOW represented by the ActivitySession, then the enterprise
bean instances are activated by the container on the ActivitySession boundary
and remain in the active state until passivated by the container at the end of the
ActivitySession. Workload affinity management based on the ActivitySession is a
platform quality of service. Global transactions can begin and end within the
ActivitySession, if they are wholly encapsulated by the ActivitySession and run
serially. EJB instances activated at the ActivitySession boundary remain active
across the serial global transactions.

v Developing a Web application client to participate in an ActivitySession context.
A web application that runs in the WebSphere Web container can participate in
an ActivitySession context. Web applications can use the UserActivitySession
interface to begin and end an ActivitySession context. Also, the ActivitySession
can be associated with an HttpSession, thereby extending access to the
ActivitySession over multiple HTTP invocations and supporting EJB activation
periods that can be determined by the lifecycle of the web HTTP client.
The Web container manages ActivitySessions based on deployment descriptor
attributes associated with the Web application module, as described in
“Configuring ActivitySession deployment attributes for a Web application” on
page 329.

General considerations:

v An application that is accessed under an ActivitySession context can receive a
javax.transaction.InvalidTransactionException RemoteException, thrown by the
EJB container when servicing any application method. This exception occurs
when an instance of an enterprise bean that has an ActivitySession-based
activation policy becomes involved with concurrent global and local
transactions.

v To enable an enterprise bean to participate in an ActivitySession context and
support ActivitySession-based operations, it must be configured with an
ActivationPolicy of ACTIVITY_SESSION. A bean configured with
ActivationPolicy of either TRANSACTION or ONCE cannot participate in
ActivitySession context.

v A session bean can either use container-managed ActivitySessions or implement
bean-managed ActivitySessions; entity beans can only use container-managed
ActivitySessions. A bean is deployed to be bean-managed or container-managed
with respect to ActivitySession management by setting its transaction type
deployment attribute to be bean-managed or container-managed when
deploying the enterprise bean, as described in “Configuring ActivitySession
deployment attributes for an enterprise bean” on page 325. A bean that uses
bean-managed transactions can use bean-managed ActivitySessions; a bean that
uses container-managed transactions can use container-managed
ActivitySessions.

v If you want a session bean or J2EE client to manage its own ActivitySessions,
you must write the code that explicitly demarcates the boundaries of an
ActivitySession, as described in “Developing an enterprise bean or J2EE client to
manage ActivitySessions” on page 324.

For examples of using ActivitySessions in J2EE applications, see “Samples:
ActivitySessions” on page 335.

Chapter 13. Using the ActivitySession service 323

Developing an enterprise bean or J2EE client to manage
ActivitySessions

Use this task to write the code needed by a session EJB or J2EE client application
to manage an ActivitySession, based on the example code extract provided.

In most situations, an enterprise bean can depend on the EJB container to manage
ActivitySessions within the bean. In these situations, all you need to do is set the
appropriate ActivitySession attributes in the EJB module deployment descriptor, as
described in “Configuring ActivitySession deployment attributes for an enterprise
bean” on page 325. Further, in general, it is practical to design your enterprise
beans so that all ActivitySession management is handled at the enterprise bean
level.

However, in some cases you may need to have a session bean or J2EE client
participate directly in ActivitySessions. You then need to write the code needed by
the session bean or J2EE client application to manage its own ActivitySessions.

Note: Session beans that use BMT and have an Activate at setting of Activity
session can manage ActivitySessions. Entity beans cannot manage
ActivitySessions; the EJB container always manages ActivitySessions within
entity beans.

When preparing to write code needed by a session bean or J2EE client application
to manage ActivitySessions, consider the points described in “ActivitySession and
transaction contexts” on page 315.

To write the code needed by a session EJB or J2EE client application to manage an
ActivitySession, complete the following steps based on the example code extract
below:

Steps for this task

1. Get an initial context for the ActivitySession.
2. Get an implementation of the UserActivitySession interface, by a JNDI lookup

of the URL java:comp/websphere/UserActivitySession. The
UserActivitySession interface is used to begin and end ActivitySessions and to
query various attributes of the active ActivitySession associated with the
thread.

3. (Optional) Set the timeout, in seconds, after which any subsequently started
ActivitySessions are automatically completed by the ActivitySession service. If
the session bean or J2EE client does not specifically set this value, the default
timeout (300 seconds) is used.
The default timeout can also be overridden for each application server, on the
server-> Activity Session Service panel of the administrative console.

4. Start the ActivitySession, by calling the beginSession() method of the
UserActivitySession.

5. Within the ActivitySession, call business methods to do the work needed. You
can also call UserActivitySession methods to manage the ActivitySession; for
example, to get the status of the ActivitySession or to checkpoint all the
ActivitySession resources involved in the ActivitySession.

6. End the ActivitySession, by calling the endSession() method of the
UserActivitySession.

Usage scenario

324 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

The following code extract provides a basic example of using the
UserActivitySession interface:
// Get initial context
InitialContext ic = new InitialContext();

// Lookup UserActivitySession
UserActivitySession uas = (UserActivitySession)ic.lookup

("java:comp/websphere/UserActivitySession");

// Set the ActivitySession timeout to 60 seconds
uas.setSessionTimeout(60);

// Start a new ActivitySession context
uas.beginSession();

// Do some work under this context
MyBeanA beanA.doSomething();
...
MyBeanB beanB.doSomethingElse();

// End the context
uas.endSession(EndModeCheckpoint);

Note: The fourth line of the preceeding example wrapped onto a second line due
to the width of the page.

Configuring ActivitySession deployment attributes for an enterprise
bean

Use this task to configure the ActivitySession deployment attributes for an
enterprise bean to enable the bean to participate in an ActivitySession context and
support ActivitySession-based operations.

You can specify ActivitySession deployment attributes as part of the deployment of
an enterprise bean.

To configure the ActivitySession deployment attributes for an enterprise bean, use
the Application Assembly Tool to complete the following steps:

Steps for this task

1. Launch the Application Assembly Tool.
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, click File-> Open
then select the EAR file.

3. In the navigation pane, select the enterprise bean instance; for example, for an
entity bean expand ejb_module_instance-> Entity beans then select the bean
instance.
A property dialog notebook for the enterprise bean is displayed in the property
pane.

4. In the property pane, select the IBM Extensions tab.
5. In the Bean Cache group box, set the Activate at attribute to Activity Session:

An enterprise bean with this activation policy is activated and passivated as
follows:
v On an ActivitySession boundary, if an ActivitySession context is present on

activation.
v On a transaction boundary, if a transaction context, but no ActivitySession

context, is present on activation.
v Otherwise on an invocation boundary.

6. (Optional) In the Local Transactions group box, set the Boundary attribute to
ActivitySession:

Chapter 13. Using the ActivitySession service 325

When this setting is used, the local transaction must be resolved within the
scope of any ActivitySession in which it was started or, if no ActivitySession
context is present, within the same bean method in which it was started.

7. For entity beans, or session beans, set the ActivitySessions properties for each
EJB method.
a. In the navigation pane, select Container ActivitySessions.

This displays a table of the methods for enterprise beans.
b. For each method of the enterprise bean set the ActivitySession kind

attribute to specify how the container must manage the ActivitySession
boundaries when delegating a method invocation to an enterprise bean’s
business method:

Supports
If the client invokes the bean method within an ActivitySession, the
container invokes the bean method within an ActivitySession
context. If the client invokes the bean method without a
ActivitySession context, the container invokes the bean method
without an ActivitySession context. The ActivitySession context is
passed to any enterprise bean objects or resources that are used by
this bean method.

Not supported
The container invokes bean methods without an ActivitySession
context. If a client invokes a bean method from within an
ActivitySession context, the container suspends the association
between the ActivitySession and the current thread before invoking
the method on the enterprise bean instance. The container then
resumes the suspended association when the method invocation
returns. The suspended ActivitySession context is not passed to any
enterprise bean objects or resources that are used by this bean
method.

Never The container invokes bean methods without an ActivitySession
context.
v If the client invokes a bean method from within an

ActivitySession context, the container throws an
InvalidActivityException exception, which is a
javax.rmi.RemoteException.

v If the client invokes a bean method from outside an
ActivitySession context, the container behaves in the same way as
if the Not Supported value was set. The client must call the
method without an ActivitySession context.

Required
The container invokes the bean method within an ActivitySession
context. If a client invokes a bean method from within an
ActivitySession context, the container invokes the bean method
within the client ActivitySession context. If a client invokes a bean
method outside an ActivitySession context, the container creates a
new ActivitySession context and invokes the bean method from
within that context. The ActivitySession context is passed to any
enterprise bean objects or resources that are used by this bean
method.

Requires new
The container always invokes the bean method within a new
ActivitySession context, regardless of whether the client invokes the

326 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

method within or outside an ActivitySession context. The new
ActivitySession context is passed to any enterprise bean objects or
resources that are used by this bean method.

Any received ActivitySession context is suspended for the duration
of the method and resumed after the method ends. The container
starts a new ActivitySession before method dispatch and completes
it after the method ends.

Mandatory
The container always invokes the bean method within the
ActivitySession context associated with the client. If the client
attempts to invoke the bean method without an ActivitySession
context, the container throws an ActivityRequiredException
exception to the client. The ActivitySession context is passed to any
EJB object or resource accessed by an enterprise bean method.

The ActivityRequiredException exception is
javax.rmi.RemoteException.

How the container manages the ActivitySession boundaries when delegating a
method invocation depends on both the ActivitySession kind attribute, set
here, and the Transaction attribute attribute, as described in″Setting
transactional attributes in the deployment descriptor″ (not in this document).
For more detail about the relationship between these two properties, see
“Combining transaction and ActivitySession container policies” on page 316.

8. To apply the changes and close the Application Assembly Tool, click OK.
Otherwise, to apply the values but keep the property dialog open for additional
edits, click Apply.

9. (Optional) To see changes reflected in your application, regenerate deployment
code and reinstall the deployable archive.

Container ActivitySession assembly properties for EJB
modules

Use this page to specify how a container must manage the scope of an
ActivitySession for an enterprise bean’s method invocations.

Name
Specifies a name for the mapping between an ActivitySession attribute and one or
more methods.

Datatype
String

Description
Contains text that describes the mapping

Datatype
String

Methods
The methods to which the ActivitySession attribute applies.

To add a new method, click Add. Expand the tree to select the method or methods
from the EJB module

Chapter 13. Using the ActivitySession service 327

ActivitySession attribute
How the container must manage the activity session boundaries when delegating a
method invocation to an enterprise bean’s business method

Default
Supports

Range

Not supported
The container invokes bean methods without an ActivitySession
context. If a client invokes a bean method from within an
ActivitySession context, the container suspends the association
between the ActivitySession and the current thread before invoking
the method on the enterprise bean instance. The container then
resumes the suspended association when the method invocation
returns. The suspended ActivitySession context is not passed to
any enterprise bean objects or resources that are used by this bean
method.

Required
The container invokes the bean method within an ActivitySession
context. If a client invokes a bean method from within an
ActivitySession context, the container invokes the bean method
within the client ActivitySession context. If a client invokes a bean
method outside an ActivitySession context, the container creates a
new ActivitySession context and invokes the bean method from
within that context. The ActivitySession context is passed to any
enterprise bean objects or resources that are used by this bean
method.

Supports
If the client invokes the bean method within an ActivitySession, the
container invokes the bean method within an ActivitySession
context. If the client invokes the bean method without a
ActivitySession context, the container invokes the bean method
without an ActivitySession context. The ActivitySession context is
passed to any enterprise bean objects or resources that are used by
this bean method.

Requires new
The container always invokes the bean method within a new
ActivitySession context, regardless of whether the client invokes
the method within or outside an ActivitySession context. The new
ActivitySession context is passed to any enterprise bean objects or
resources that are used by this bean method.

Any received ActivitySession context is suspended for the duration
of the method and resumed after the method ends. The container
starts a new ActivitySession before method dispatch and completes
it after the method ends.

Mandatory
The container always invokes the bean method within the
ActivitySession context associated with the client. If the client
attempts to invoke the bean method without an ActivitySession
context, the container throws an ActivityRequiredException
exception to the client. The ActivitySession context is passed to any
EJB object or resource accessed by an enterprise bean method.

328 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

The ActivityRequiredException exception is defined as a
javax.rmi.RemoteException that is propagated over an ORB
boundary as a CORBA.ACTIVITY_REQUIRED system exception.

EJB clients that access these entity beans must do so within an
existing ActivitySession. For other enterprise beans, the enterprise
bean or bean method must implement bean-managed
ActivitySessions or use the Required or Requires New value. For
non-enterprise bean EJB clients, the client must invoke an
ActivitySession by using the UserActivitySession interface.

Never The container invokes bean methods without an ActivitySession
context.
v If the client invokes a bean method from within an

ActivitySession context, the container throws an
InvalidActivityException exception, which is defined as a
javax.rmi.RemoteException that is propagated over an ORB
boundary as a CORBA.INVALID_ACTIVITY system exception.

v If the client invokes a bean method from outside an
ActivitySession context, the container behaves in the same way
as if the Not Supported value was set. The client must call the
method without an ActivitySession context.

Configuring ActivitySession deployment attributes for a Web
application

Use this task to configure the ActivitySession deployment attributes for a Web
application to start UserActivitySessions and perform work scoped within
ActivitySessions.

You can specify ActivitySession deployment attributes as part of the deployment of
a Web application.

To configure the ActivitySession deployment attributes for a Web application, use
the Application Assembly Tool to complete the following steps:

Steps for this task

1. Launch the Application Assembly Tool.
2. Create or edit the Web module.

For example, to change attributes of an existing module, click File-> Open then
select the archive file for the module.

3. In the navigation pane, expand web_application-> Web Components then
select the servlet instance.
A property dialog box for the servlet instance is displayed in the property pane.

4. In the property pane, select the WAS Enterprise tab.
This displays the Enterprise properties in the property pane.

5. Set the ActivitySession control kind attribute to either Application, Container,
or None. All Web components in a Web application must be configured with
the same value for ActivitySession control kind.

Application
The Web application is responsible for starting and ending
ActivitySessions, as follows:

Chapter 13. Using the ActivitySession service 329

v If an HttpSession is active when an application begins an
ActivitySession, then the container associates the ActivitySession with
the HttpSession.

v If an ActivitySession is started in the absence of an HttpSession, then
the application must ensure it is completed before the dispatched
method completes; otherwise, an exception results.

v If an HttpSession is associated with a request dispatched to an
application with this ActivitySession control value, and if that
HttpSession has an ActivitySession associated with it, then the
container dispatches the request in the context of that
ActivitySession. For example, the container resumes the
ActivitySession context onto the thread before the dispatch.

v A Web application can use both transactions and ActivitySessions.
Any transactions started within the scope of an ActivitySession must
be ended by the web component that started them and within the
same request dispatch.

Container
A servlet has no access to UserActivitySessions. Any HttpSession
started by the servlet has an ActivitySession automatically associated
with it by the container, and this ActivitySession is put onto the thread
of execution. If such a servlet is dispatched by a request that has an
HttpSession containing no ActivitySession, then the container starts an
ActivitySession and associates it with the HttpSession and the thread.

A Web application can use both transactions and ActivitySessions. Any
transactions started within the scope of an ActivitySession must be
ended by the web component that started them and within the same
request dispatch.

None A servlet has no access to UserActivitySessions, and no participation in
an ActivitySession is tolerated. Any HttpSession containing an
ActivitySession that is associated with a request dispached on such a
servlet is rejected with a ServletException.

6. To apply the changes and close the Application Assembly Tool, click OK.
Otherwise, to apply the values but keep the property dialog open for additional
edits, click Apply.

7. (Optional) To see changes reflected in your application, regenerate deployment
code and re-install the deployable archive.

Disabling or enabling the ActivitySession service
Use this task to disable or enable the ActivitySession service for an application
server.

You can use the ActivitySession Startup property to specify whether or not the
ActivitySession service is started automatically for an application server.

To configure the ActivitySession Startup property for an application server, use the
Administrative console to complete the following steps:

Steps for this task

1. Start the Administrative console.
2. In the navigation pane, expand Servers-> Manage Application Servers

This displays a list of the application servers in the content pane.

330 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

3. In the Content pane, select the application server that you want to configure.
This displays the properties for the application server in the content pane.

4. In the Additional Properties table, select ActivitySession service. This displays
the ActivitySession service properties in the content pane.

5. Select or clear the Startup property as needed:

Selected
[Default] The ActivitySession service is started when the application
server is started. This enables applications that specify use of
ActivitySessions in their deployment descriptors to run on such an
application server.

Cleared
The ActivitySession service is not started when the application server is
started. Applications that specify use of ActivitySessions in their
deployment descriptors cannot start on such an application server.

Any attempt to start an application that uses ActivitySessions is
rejected and a message similar to the following is issued:
WACS0043E: Error found starting an application. application_name
specified an ActivitySession attribute that is not allowed when the
ActivitySession service is not enabled

If this happens during server startup, the server continues to start
without the application.

6. Click OK.
7. To save your configuration, click Save on the task bar of the Administrative

console window.
8. (Optional) To have the changed configuration take effect, stop then restart the

application server.

ActivitySession service settings
Use this page to administer the run-time properties of the ActivitySession service.

To view this administrative console page, click Servers > Application Servers >
server_name > Activity Session Service.

Startup
Specifies whether the server will attempt to start the ActivitySession service.

Default
Selected

Range

Selected
When the application server starts, it attempts to start the
ActivitySession service automatically.

Cleared
The server does not try to start the ActivitySession service. If
ActivitySessions are to be used in applications that run on this
server, the system administrator must start the service manually or
select this property then restart the server.

Default timeout
The default timeout for an ActivitySession. A server resets an ActivitySession if a
remote client has failed to complete the ActivitySession within this time period.

Chapter 13. Using the ActivitySession service 331

The Default ActivitySession timeout specifies the time after which an
ActivitySession is completed automatically by the ActivitySession service, if a
remote client has failed to complete the ActivitySession within the specified time.
The initial default timeout can be configured separately for each application server,
and can be overridden programmatically by the UserActivitySession interface
(setSessionTimeout).

Data type
Integer

Units Seconds

Default
300 (5 minutes)

Range -1 through 2147483647 seconds
v -1 indicates that ActivitySessions never timeout
v 0 indicates that the default timeout applies
v Other values are an integer number of seconds

Configuring the default ActivitySession timeout for an application
server

Use this task to configure the default ActivitySession timeout for an application
server, after which any started ActivitySessions are completed automatically by the
ActivitySession service.

The ActivitySession timeout is used to reset any ActivitySession whose remote
client has failed to complete the ActivitySession in a timely fashion. The initial
default timeout can be configured separately for each application server, and can
be overridden programmatically by the UserActivitySession interface
(setSessionTimeout). If an ActivitySession that contains a transaction reaches the
timeout, the transaction’s timeout is accelerated so that it is timed out (and rolled
back) immediately before the ActivitySession is reset.

To configure the default ActivitySession timeout for an application server, use the
WebSphere Administrative console to complete the following steps:

Steps for this task

1. Start the WebSphere Administrative console.
2. In the navigation pane, expand Servers-> Manage Application Servers

This displays a list of the application servers in the content pane.
3. In the Content pane, select the application server that you want to configure.

This displays the properties for the application server in the content pane.
4. In the Additional Properties table, select ActivitySession service. This displays

the ActivitySession service properties in the content pane.
5. Set the ActivitySession timeout property to the default timeout as an integer

number of seconds.
v -1 indicates that ActivitySessions never timeout
v 0 indicates that the default timeout, 300 seconds, applies
v Other values are an integer number of seconds

6. Click OK.
7. To save your configuration, click Save on the task bar of the Administrative

console window.

332 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

8. (Optional) To have the changed configuration take effect, stop then restart the
application server.

ActivitySession service settings
Use this page to administer the run-time properties of the ActivitySession service.

To view this administrative console page, click Servers > Application Servers >
server_name > Activity Session Service.

Startup
Specifies whether the server will attempt to start the ActivitySession service.

Default
Selected

Range

Selected
When the application server starts, it attempts to start the
ActivitySession service automatically.

Cleared
The server does not try to start the ActivitySession service. If
ActivitySessions are to be used in applications that run on this
server, the system administrator must start the service manually or
select this property then restart the server.

Default timeout
The default timeout for an ActivitySession. A server resets an ActivitySession if a
remote client has failed to complete the ActivitySession within this time period.

The Default ActivitySession timeout specifies the time after which an
ActivitySession is completed automatically by the ActivitySession service, if a
remote client has failed to complete the ActivitySession within the specified time.
The initial default timeout can be configured separately for each application server,
and can be overridden programmatically by the UserActivitySession interface
(setSessionTimeout).

Data type
Integer

Units Seconds

Default
300 (5 minutes)

Range -1 through 2147483647 seconds
v -1 indicates that ActivitySessions never timeout
v 0 indicates that the default timeout applies
v Other values are an integer number of seconds

Troubleshooting ActivitySessions
Use this overview task to help resolve a problem that you think is related to the
ActivitySession service.

To identify and resolve ActivitySession-related problems, you can use the standard
IBM WebSphere Application Server RAS facilities. If you encounter a problem that
you think might be related to ActivitySessions, complete the following stages:

Chapter 13. Using the ActivitySession service 333

Steps for this task

1. Check for ActivitySession messages in the admin console.
The ActivitySession service produces diagnostic messages prefixed by ″WACS″.
The error message indicates the nature of the problem and provides some
detail. The associated message information provides an explanation and any
user actions to resolve the problem.

2. Check for ActivitySession messages in the activity log.
Activity log messages produced by the ActivitySession service are accompanied
by log analyzer descriptions.

3. Check for more messages in the application server’s stdout.log.
For more information about a problem, check the stdout.log file for the
application server, which should contain more error messages and extra details
about the problem.

The ActivitySession service application programming interfaces
The ActivitySession service consists of an application programming interface
available to Web applications, session EJBs, and J2EE client applications for
application-managed demarcation of ActivitySession context. Applications use the
UserActivitySession interface, which provides demarcation scope methods.

ActivitySession API

The ActivitySession service provides the UserActivitySession interface for use by
EJB Session beans using bean-managed context demarcation, Web application
components configured with ActivitySession control=Web Application, and J2EE
client applications. This UserActivitySession interface defines the set of
ActivitySession operations available to an application component. An
implementation of this interface is obtained via a JNDI lookup of the URL
″java:comp/websphere/UserActivitySession″. It is used to begin and end
ActivitySessions and to query various attributes of the active ActivitySession
associated with the thread.

For more information about the ActivitySession API, see the ActivitySession API
(Javadoc), which is located in the InfoCenter.

The ActivitySession API and the implementation of its interfaces is contained in
the com.ibm.websphere.ActivitySession package.

Programming Examples

The following code extract provides a basic example of using the
UserActivitySession interface:
// Get initial context
InitialContext ic = new InitialContext();

// Lookup UserActivitySession
UserActivitySession uas = (UserActivitySession)ic.lookup

("java:comp/websphere/UserActivitySession");

// Set the ActivitySession timeout to 60 seconds
uas.setSessionTimeout(60);

// Start a new ActivitySession context
uas.beginSession();

// Do some work under this context
MyBeanA beanA.doSomething();
...
MyBeanB beanB.doSomethingElse();

// End the context
uas.endSession(EndModeCheckpoint);

334 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Note: The fourth line of the preceeding example wrapped onto a second line due
to the width of the page.

Samples: ActivitySessions
The following ActivitySession samples are provided with IBM WebSphere
Application Server:

MasterMind sample
This sample is based on the game MasterMind. It consists of the following
components:
v A servlet, configured with Activity session contol set to Container, that

accesses a stateful session bean.
v A stateful session bean, configured with an activation policy of

ActivitySession containing transient state data.

The servlet begins an HttpSession at the start of each new game, and ends
it at the end of each game; therefore an ActivitySession lasts for the
duration of each game. The ActivitySession activation policy stops the bean
from being passivated and therefore the transient data remains in memory.
This is to demonstrate HttpSession/ActivationSession association in the
web container, and an ActivitySession-scoped activation policy.

J2EE client container application and a CMP entity bean backed by a
1-phase-commit datasource

In this sample, the entity bean is configured with the following properties:
v TX_NOT_SUPPORTED
v An ActivitySession container managed policy of REQUIRES
v An LTC boundary of ActivitySession
v An LTC Resolution Control of ContainerAtBoundary

The client accesses the UserActivitySession, begins an ActivitySession,
updates two instances of the bean, then ends the ActivitySession. It does
this twice using EndModeReset then EndModeCheckpoint. This sample
demonstrates the following functionality:
v Client access to the UserActivitySession interface
v Multiple RMLTs being scoped to the ActivitySession and automatically

taking their completion direction from that of the ActivitySession

The entity bean also holds a transient variable incremented by each
method call (gets and sets for the persistent data). This value is checked
before the end of the ActivitySession to show that the same bean instance
is used. The client checks for the correct results.

A J2EE client container application and two session beans with different
ActivitySession types

This sample consists of a J2EE client container application and the
following session beans:
v SLB1, a stateless session bean configured with an ActivitySession Type of

Bean.
v SFB2, a stateful session bean configured with ActivitySession Type of

Requires, an LTC boundary of ActivitySession, LTC Resolution Contol of
APPLICATION, and an LTC Unresolved Action of ROLLBACK.

Both beans are configured with TX_NOTSUPPORTED.

Chapter 13. Using the ActivitySession service 335

This sample performs the following steps:
1. The client starts SLB1
2. SLB1 accesses the UserActivitySession interface, begins an

ActivitySession, then calls a method on SFB2
3. SFB2 accesses the UserActivitySession interface, begins an

ActivitySession, calls a method on SFB2
4. SFB2 gets a connection (setAutoCommit false) then uses JDBC to

update a single-phase datasource.
5. SLB1 then optionally calls a seperate method on SFB2 to finish the

work either committing or rolling-back the RMLT.
6. SLB1 then ends the ActivitySession with an EndModeCheckpoint.

This demonstrates that the ActivitySession completion direction is
unconnected to the direction of the RMLTs, although their containment is
bound to the ActivitySession, and the use of the container using the
unresolved action when the RMLT is not completed. It also shows a
bean-managed ActivitySessions bean using the UserActivitySession
interface. The sample checks for correct results and reports them back to
the client.

ActivitySession service: Resources for learning
Use the following links to find relevant supplemental information about
ActivitySessions. The information resides on IBM and non-IBM Internet sites,
whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v “Programming model and decisions”
v “Programming specifications”
v “Other”

Programming model and decisions

v ActivitySession API (Javadoc)
See the Javadoc in the InfoCenter

Programming specifications

v J2EE Activity Service for Extended Transactions
http://www.jcp.org/en/jsr/detail?id=95

v Java Transaction API (JTA) 1.0.1
http://java.sun.com/products/jta/

Other

v WebSphereApplication Server Enterprise Version 5 Overview: Advanced
Transactional Connectivity
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=
products/appserv_enterprise#advanced

336 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

http://www.jcp.org/en/jsr/detail?id=95
http://java.sun.com/products/jta/
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=products/appserv_enterprise#advanced
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=products/appserv_enterprise#advanced

v Listing of PDF files to learn about WebSphere Application Server Version 5
http://www-3.ibm.com/software/webservers/appserv/was/

v Listing of all IBM WebSphere Application Server Redbooks
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere

v Listing of all IBM WebSphere Application Server Whitepapers
http://www-4.ibm.com/software/webservers/appserv/whitepapers.html

v WebSphere Application Server Enterprise Edition 4.0: A Programmer’s Guide
http://www.redbooks.ibm.com/redbooks/SG246504.html

Chapter 13. Using the ActivitySession service 337

http://www-3.ibm.com/software/webservers/appserv/was/
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www-4.ibm.com/software/webservers/appserv/whitepapers.html
http://www.redbooks.ibm.com/redbooks/SG246504.html

338 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

Notices

This information was developed for products and services offered in the U.S.A.
IBM might not offer the products, services, or features discussed in this document
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the information. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
information at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003 339

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Department LZKS
11400 Burnet Road
Austin, TX 78758
U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written.

These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these

340 IBM WebSphere Application Server Enterprise, Version 5: Enterprise Applications

programs. You may copy, modify, and distribute these sample programs in any
form without payment to IBM for the purposes of developing, using, marketing, or
distributing application programs conforming to IBM’s application programming
interfaces.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
The following terms are trademarks of International Business Machines
Corporation in the United States, or other countries, or both:

alphaWorks
DB2
IBM
Informix
Redbooks
WebSphere

Java, JavaBeans, and all Java-based trademarks and logos are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Microsoft, Windows and Windows NT® are trademarks of Microsoft Corporation
in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 341

	Contents
	Chapter 1. Using extended messaging in applications
	Extended messaging - overview
	Extended messaging - receiving messages
	Extended messaging - sending messages
	Extended messaging - data mapping
	Extended messaging - handling late responses
	Extended messaging - transactional support
	Extended messaging - exception handling

	Extended messaging - application usage scenarios
	Extended messaging - components
	Designing an enterprise application to use extended messaging
	Developing an enterprise application to use extended messaging
	Deploying an enterprise application to use extended messaging
	Configuring deployment attributes for a receiver bean
	Extended messaging assembly properties for EJB modules

	Configuring deployment attributes for a sender bean

	Configuring extended messaging service resources
	Adding a new input port
	Adding a new output port
	Configuring an input port
	Configuring an output port
	Extended messaging service settings
	Startup
	Late response handling extension collection

	Late response handling extension settings
	Extended messaging provider settings
	Name
	Description
	Input port collection
	Inport port settings
	Output port collection
	Output port settings

	Troubleshooting extended messaging
	Extended Messaging: Resources for learning

	Chapter 2. Developing Web Services Gateway extensions
	Writing a filter for the Web Services Gateway
	Web Services Gateway - the Filter interface
	Web Services Gateway - the gateway message context fields

	Using a filter to select a target service and port
	Web Services Gateway - the Routing interface

	Capturing Web service invocation information from the Web Services Gateway
	Web Services Gateway - the MessageWarehouse interface

	Handling exceptions for the Web Services Gateway
	Web Services Gateway - the ExceptionHandler interface

	Web Services Gateway: Resources for learning

	Chapter 3. Using EJB query
	EJB query language
	Example: EJB queries
	FROM clause
	Inheritance in EJB query
	Path expressions
	WHERE clause
	Literals
	Input parameters
	Expressions
	Basic predicates
	Quantified predicates
	BETWEEN predicate
	IN predicate
	LIKE predicate
	NULL predicate
	EMPTY collection predicate
	MEMBER OF predicate
	EXISTS predicate
	IS OF TYPE predicate

	Scalar functions
	EJB query: Scalar functions

	Aggregation functions
	SELECT clause
	ORDER BY clause
	Subqueries
	EJB query restrictions
	EJB Query: Reserved words
	EJB query: BNF syntax
	Comparison of EJB 2.0 specification and WebSphere query language

	Using the dynamic query service
	Example: Dynamic query remote client
	Example: Dynamic query from local client

	Chapter 4. Using the internationalization service
	Internationalization
	Internationalization service: Overview
	The internationalization service solution
	Internationalization challenges in distributed applications

	Migrating internationalized applications
	Assembling internationalized applications
	Setting the internationalization type for servlets
	Configuring container internationalization for servlets
	Internationalization assembly properties for Web modules

	Setting internationalization type for enterprise beans
	Configuring container internationalization for enterprise beans
	Internationalization assembly settings for EJB modules

	Using the internationalization context API
	Gaining access to the internationalization context API
	Accessing caller locales and time zone
	Accessing invocation locales and time zone
	Example: Internationalization context in a contained EJB client
	Example: Internationalization context in an EJB servlet
	Example: Internationalization context in an EJB session bean
	Internationalization context API: Programming reference
	Internationalization context
	Internationalization context: Propagation and scope
	Internationalization context: Management policies
	Internationalization type
	Container internationalization attributes

	Managing the internationalization service
	Enabling the internationalization service for servlets and enterprise beans
	Internationalization service settings

	Enabling the internationalization service for EJB clients

	Troubleshooting the internationalization service
	Internationalization service errors
	Internationalization service exceptions

	Internationalization: Resources for learning

	Chapter 5. Application profiling
	Application profiling: Overview
	Tasks
	Application profiles

	Assembling applications for application profiling
	Using access intent policies
	Access intent policies
	Access intent service
	Access intent design considerations
	Applying access intent policies to methods
	Using the AccessIntent API
	Access intent assembly settings
	Access intent best practices

	Configuring a component task policy
	Configuring a container task policy
	Container assembly settings for tasks

	Creating an application profile
	Application profile assembly settings
	Configuring tasks on application profiles

	Managing application profiles
	Application profiling exceptions
	Application profiling service settings
	Startup

	Application profile collection
	Name
	Description
	Application profile settings

	Using the TaskNameManager interface
	TaskNameManager interface

	Chapter 6. Using Business Rule Beans
	Advantages of externalizing business rules
	Overview of Business Rule Beans
	Externalized business rules
	Types of business rules
	Rule folders
	Rule attributes
	Rule states
	Rule results
	Dependent rules
	BRBeans run-time environment
	BRBeans run-time behavior
	BRBeans run-time exception handling
	Rule implementors
	Trigger point framework
	Trigger points
	Simple trigger point
	Classifier trigger point
	Situational trigger point

	As Of Date
	Predefined strategy objects
	FindingStrategy method
	FilteringStrategy method
	FiringStrategy method
	CombiningStrategy method

	Customized strategy objects
	Customized rule implementors
	Rule management command
	Rule importer command
	Rule exporter command
	BRBeans properties file
	Database considerations for BRBeans
	Oracle considerations
	Sybase considerations
	Informix considerations

	Rule Management Application
	Rule management APIs
	BRBeans performance enhancements
	Performance enhancements through caching
	Performance enhancements using indexes
	Performance enhancements by changing the firing location

	Developing BRBeans
	Determining where to place a trigger point
	Placing a trigger point in the application code
	Administering strategy objects to control triggers
	Implementing business rules

	Assembling applications for use with BRBeans
	Managing rules
	Starting the Rule Management Application
	Copying or moving rules or rule folders
	Working with Quick Copy
	Finding a rule
	Deleting rules
	Deleting rule folders
	Changing the properties of a rule
	Importing a rule
	Exporting a rule
	Renaming rules
	Renaming rule folders
	Specifying columns
	Changing the date and time format

	Rule Browser
	File menu
	New
	Import
	Export
	Delete
	Rename
	Properties
	Close
	New Rule properties window: General tab
	New Rule properties window: Implementation tab
	Add Initialization Parameter window
	Change Initialization Parameter window
	New Rule properties window: Description tab
	New Rule properties window: Dependent Rules tab
	New Rule properties window: Other tab
	Import Rules window
	Select Rules To Export window
	Change Effective Dates On Exported Rules window
	Select File For Rule Export window
	Rule properties window: General tab
	Rule properties window: Implementation tab
	Add Firing Parameter window
	Change Firing Parameter window
	Rule properties window: Description tab
	Rule properties window: Dependent Rules tab
	Rule properties window: Other tab

	Edit menu
	Cut
	Copy
	Paste
	Find
	Quick Copy
	Select All
	Deselect All
	Quick Copy window

	View menu
	Status Bar
	Specify Columns
	Specify Date/Time Format
	Refresh
	Specify Date/Time Format window

	Find Rules window
	Find Rules window: Name tab
	Find Rules window: Date tab
	Find Rules window: Classification tab
	Find Rules window: Implementation tab
	Find Rules window: Description tab
	Find Rules window: Other tab
	Search Results window
	Save Search window
	Open Saved Search window

	Business rule beans: Resources for learning

	Chapter 7. Using asynchronous beans
	Asynchronous beans
	Example: Asynchronous bean connection management

	Configuring work managers
	Work managers
	Work manager collection
	Name
	JNDI Name
	Description
	Category
	Number of Alarm Threads
	Minimum Number of Threads
	Maximum Number of Threads
	Thread Priority
	Growable
	Service Names
	Work manager settings

	Work manager service settings
	Startup

	Assembling applications that use work managers
	Developing work objects to run code in parallel
	Work objects
	Example: Work object

	Developing event listeners
	Using the application notification service
	Example: Event listener

	Developing Asynchronous scopes
	Asynchronous scopes
	Alarms
	Subsystem monitors
	Asynchronous scopes: Dynamic message bean scenario

	Chapter 8. Using object pools
	Object pool managers
	Object pool manager collection
	Name
	JNDI Name
	Description
	Category
	Object pool manager settings
	Name
	JNDI Name
	Description
	Category
	Custom object pool collection
	Custom object pool settings

	Object pool service settings
	Startup

	Object pools: Resources for learning

	Chapter 9. Using startup beans
	Chapter 10. Using the scheduler service
	Managing the scheduler service
	Creating the database for scheduler
	Creating a Cloudscape database for scheduler
	Creating a DB2 database for scheduler
	Creating an Informix database for scheduler
	Creating a Microsoft SQL Server database for scheduler
	Creating an Oracle database for scheduler
	Creating a Sybase database for scheduler

	Configuring a scheduler
	Scheduler configuration collection
	Scheduler configuration settings
	Creating a scheduler resource reference
	Scheduler daemon

	Enabling the scheduler service
	Scheduler service settings

	Developing and scheduling tasks
	Developing a task that calls a session bean
	Developing a task that sends a JMS message
	Receiving scheduler notifications
	Submitting a task to a scheduler
	Managing tasks with a scheduler
	Transactions and the scheduler service
	Scheduler interface
	TaskInfo interface
	TaskHandler interface
	NotificationSink interface
	UserCalendar interface

	Chapter 11. Using shared work areas
	WorkArea service - Overview
	Work area property modes
	Nested work areas
	Distributed work areas
	WorkArea service: Special considerations

	Developing applications that use work areas
	UserWorkArea interface
	Example: WorkArea SimpleSample application
	Accessing the WorkArea service
	Beginning a new work area
	Setting properties in a work area
	Using a work area to manage local work
	Retrieving the name of the active work area
	Overriding work area properties
	Retrieving work area properties
	Retrieving a list of all keys in a work area
	Querying the mode of a work area property
	Deleting a work area property

	Completing a work area

	Managing the work area service
	Enabling the WorkArea service
	WorkArea service settings

	Managing the size of work areas

	Chapter 12. Using the transaction service
	Transaction support in IBM WebSphere Application Server
	Resource manager local transaction (RMLT)
	Global transactions
	Local transaction containment (LTC)
	Using local transactions

	Local and global transaction considerations
	Extended JTA support

	Developing components to use transactions
	Setting transactional attributes in the deployment descriptor
	Using local transactions

	Using bean-managed transactions
	Using local transactions

	Configuring transaction properties for an application server
	Transaction service settings
	Transaction log directory
	Total transaction lifetime timeout
	Client inactivity timeout
	Maximum Transaction Timeout

	Using local transactions
	Managing active transactions
	Managing transaction logging for optimum server availability
	Configuring transaction aspects of servers for optimum availability
	Moving a transaction log from one server to another
	Restarting an application server on a different host

	Transactional interoperation with non-WebSphere application servers
	Troubleshooting transactions
	Transaction service exceptions
	UserTransaction interface - methods available
	Coordinating access to 1-PC and 2-PC-capable resources within the same transaction
	Coordinating access to 1-PC and 2-PC-capable resources within the same transaction
	Enabling an application to coordinate access to 1-PC and 2-PC-capable resources within the same transaction
	Last participant support extension settings

	Configuring an application server to allow logging for heuristic reporting
	Exceptions thrown for transactions involving both single- and two-phase commit resources

	Last Participant Support: Resources for learning

	Chapter 13. Using the ActivitySession service
	The ActivitySession service
	Using ActivitySessions with HTTP sessions
	ActivitySession and transaction contexts
	Combining transaction and ActivitySession container policies

	Developing a J2EE application to use ActivitySessions
	Developing an enterprise bean or J2EE client to manage ActivitySessions
	Configuring ActivitySession deployment attributes for an enterprise bean
	Container ActivitySession assembly properties for EJB modules
	Name
	Description
	Methods
	ActivitySession attribute

	Configuring ActivitySession deployment attributes for a Web application
	Disabling or enabling the ActivitySession service
	ActivitySession service settings
	Startup
	Default timeout

	Configuring the default ActivitySession timeout for an application server
	ActivitySession service settings
	Startup
	Default timeout

	Troubleshooting ActivitySessions
	The ActivitySession service application programming interfaces
	Samples: ActivitySessions
	ActivitySession service: Resources for learning

	Notices
	Trademarks

