
IBM® WebSphere® Application Server, Version 5.0.2

Security

���

Note

Before using this information, be sure to read the general information under .

Compilation date: July 24, 2003

© Copyright International Business Machines Corporation 2003. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Chapter 1. Welcome to Security 1

Chapter 2. Securing applications and

their environments 9

Chapter 3. Planning to secure your

environment 11

Security considerations when adding a Base

Application Server node to Network Deployment . 20

Chapter 4. Implementing security

considerations during installation . . . 23

Securing your environment before installation . . . 23

Securing your environment after installation . . . 24

Protecting plain text passwords 26

Chapter 5. Migrating security

configurations from previous releases . 29

Migrating custom user registries 30

Migrating trust association interceptors 33

Migrating Common Object Request Broker

Architecture programmatic login to Java

Authentication and Authorization Service 36

Migrating from the CustomLoginServlet class to

servlet filters 39

Chapter 6. Developing secured

applications 41

Developing with programmatic security APIs for

Web applications 41

Example: Web applications code 43

Developing servlet filters for form login

processing 44

Developing form login pages 48

Example: Form login 50

Developing with programmatic APIs for EJB

applications 52

Example: Enterprise bean application code . . . 54

Developing with the Java Authentication and

Authorization Service to log in programmatically . . 56

Example: JAAS programmatic login 58

Developing your own J2C principal mapping

module 60

Developing custom user registries 62

Example: Custom user registries 63

UserRegistry interface methods 64

Developing a custom interceptor for trust

associations 71

Chapter 7. Assembling secured

applications 77

Enterprise bean component security 78

Securing enterprise bean applications 78

Security permissions assembly settings 80

Security settings 80

Web component security 83

Securing Web applications 83

Role-based authorization 85

Admin roles 88

Naming roles 89

Adding users and groups to roles 90

Mapping users to RunAs roles 91

Chapter 8. Deploying secured

applications 93

Assigning users and groups to roles 94

Security role to user and group mappings . . . 96

Security role to user and group selections . . . 97

Delegations 98

Assigning users to RunAs roles 100

User and group selection settings 102

Unprotected EJB 2.0 methods protection settings 102

EJB 1.0 method protection level settings . . . 103

RunAs roles to users mapping 104

Updating and redeploying secured applications 104

Chapter 9. Testing security 107

Chapter 10. Managing security 109

Global security 109

Configuring global security 110

Enabling and disabling global security 112

Administrative console and naming service

authorization 117

Assigning users to administrator roles 119

Console users settings 120

Console groups 121

Assigning users to naming roles 122

CORBA Naming Service users settings 122

CORBA Naming Service groups 123

Authentication mechanisms 124

Configuring authentication mechanisms 126

Simple WebSphere authentication mechanism 126

Lightweight Third Party Authentication . . . 126

Configuring Lightweight Third Party

Authentication 127

Trust Associations 131

Configuring trust association interceptors . . . 135

Single Sign-On 138

Configuring single signon 139

User registries 144

Configuring user registries 145

Local operating system user registries 146

Configuring local operating system user

registries 151

Lightweight Directory Access Protocol 153

Configuring Lightweight Directory Access

Protocol user registries 160

© Copyright IBM Corp. 2003 iii

Custom user registries 165

Configuring custom user registries 166

Java Authentication and Authorization Service . . 208

Java Authentication and Authorization Service

authorization 209

Configuring Java Authentication and Authorization

Service login 211

Java Authentication and Authorization Service

login configuration 214

Java Authentication and Authorization service

configuration entry settings 216

Java Authentication Authorization Service login

module settings 217

Application login configuration settings . . . 218

Java 2 Connector security 218

Managing J2EE Connector Architecture

authentication data entries 219

Programmatic login 221

Java Authentication and Authorization Service

custom login module 231

Authentication protocol for EJB security 232

Connection and request interceptors 233

Authentication policy for each request 235

Common Secure Interoperability Version 2

features 236

Identity assertion 236

Message layer authentication 237

Secure Sockets Layer client certificate

authentication 239

Supported IBM protocols: Secure Association

Service and Common Secure Interoperability

Version 2 240

Configuring Common Secure Interoperability

Version 2 and Security Authentication Service

authentication protocols 240

Common Secure Interoperability Version 2 and

Security Authentication Service client

configuration 241

Configuring Common Secure Interoperability

Version 2 inbound authentication 248

Configuring common secure interoperability

version 2 outbound authentication 252

Configuring inbound transports 257

Configuring outbound transports 259

Example: Common Secure Interoperability

Version 2 scenarios 262

Secure Sockets Layer 268

Authenticity 270

Confidentiality 271

Integrity 273

Configuring Secure Sockets Layer 274

Configuring Secure Sockets Layer for Web client

authentication 275

Configuring secure sockets layer for the

lightweight directory access protocol client . . 276

Configuring IBM HTTP Server for secure

sockets layer mutual authentication 278

Configuring the IBM HTTP Server for

distributed platforms and the Web server

plug-in for Secure Sockets Layer 280

Configuring Secure Sockets Layer for Java client

authentication 285

Creating a secure sockets layer repertoire

configuration entry 290

Configuring Federal Information Processing

Standard-approved Java Secure Socket

Extension files 296

Digital certificates 298

Managing digital certificates 302

Cryptographic token support 315

Opening a cryptographic token using the key

management utility (iKeyman) 315

Configuring to use cryptographic tokens 316

Cryptographic token settings 318

Using Java Secure Socket Extension and Java

Cryptography Extension with Servlets and

enterprise bean files 319

Java Secure Socket Extension 319

Java 2 security 324

Troubleshooting 328

Messages 328

AccessControlException 329

Configuring Java 2 security 330

Enable or disable Java 2 Security for the cell . . 332

Enable or disable Java 2 Security for an

application server 332

Using PolicyTool to edit policy files 333

Migrating Java 2 security policy 356

Migrating System Properties 358

Chapter 11. Troubleshooting security

configurations 361

Chapter 12. Tuning security

configurations 363

Tuning CSIv2 364

Tuning LDAP authentication 364

Tuning Web authentication 365

Tuning authorization 365

Security cache properties 366

Secure Sockets Layer performance tips 366

Chapter 13. Integrating IBM

WebSphere Application Server

security with existing security

systems 369

Security and WebSphere MQseries 373

Interoperability issues for security 373

Interoperability with C++ common object

request broker architecture client support and

limitations 373

Interoperating with a C++ common object request

broker architecture client 374

Interoperating with previous product versions . . 375

Chapter 14. Security: Resources for

learning 377

Chapter 15. Notices 379

iv IBM® WebSphere® Application Server, Version 5.0.2: Security

Trademarks 381

Contents v

vi IBM® WebSphere® Application Server, Version 5.0.2: Security

Chapter 1. Welcome to Security

IBM WebSphere Application Server Version 5 provides security infrastructure and

mechanisms to protect sensitive J2EE resources and administrative resources and to

address enterprise end-to-end security requirements on authentication, resource

access control, data integrity, confidentiality, privacy, and secure interoperability.

IBM WebSphere Application Server security is based on industry standards.

Version 5 has an open architecture that processes secure connectivity and

interoperability with Enterprise Information Systems including DB2, CICS, MQ

Series, Domino, IBM Directory and others with security providers including Tivoli

Access Manager (Policy Director) and WebSEAL secure proxy server.

WebSphere Application Server

Resources

Access

Control

WebSphere Application Server Security

Java Security

Platform Security

WebSphere Security

J2EE Security API

CORBA Security (CSIv2)

Java 2 Security

JVM 1.3

Operating System Security

• Naming

• User Registry

• JMX Message

beans

• HTML

• Servlet/JSP file

• Enterprise beans

• Web Services

WebSphere Security Layers

Based on industry standards

The product provides a unified, policy-based, and permission-based model for

securing Web resources and enterprise JavaBeans according to J2EE specifications.

Specifically Version 5 complies with J2EE specification Version 1.3.1 and has passed

the J2EE Compatibility Test Suite. Product security is a layered architecture built on

top of an operating system platform, a Java virtual machine (JVM), and Java 2

security. This security model employs a rich set of security technology including

the:

v Java 2 security model, which provides policy-based, fine-grained, and

permission-based access control to system resources.

v CSIv2 security protocol, in addition to the Secure Association Services (SAS)

security protocol. Both protocols are supported by prior product releases. CSIv2

is an integral part of the J2EE 1.3 Specification and is essential for

interoperability among application servers from different vendors and with

enterprise CORBA services.

© Copyright IBM Corp. 2003 1

v Java Authentication and Authorization Service (JAAS) programming model for

Java applications, servlets, and enterprise beans.

v J2EE Connector architecture for plugging in resource adapters that support

access to Enterprise Information Systems.

The standard security model and interface supported include Java Secure Socket

Extension (JSSE) and Java Cryptographic Extension (JCE) provider for secure

socket communication, message encryption, and data encryption.

Open architecture paradigm

Application server plays an integral part of the multiple-tier enterprise computing

framework. IBM WebSphere Application Server adopts the open architecture

paradigm and provides many plug-in points to integrate with enterprise software

components. Plug-in points are based on standard J2EE specifications wherever

applicable.

WebSphere
Application Server Version 5

Security Server
(Authentication)

Access Manager
(Authorization)

UserRegistry
Interface

Security Role based
Authorization Engine

Principal/
Credential
Mapping

J2EE
Connector

Credential
Mapping

Trust
Association
Interceptor

CSIv2 Security Protocol

Application
Server

Enterprise
Information

System

Secure Reverse
Proxy Server

JAAS
Login Module

User Registry

JAAS
Login Module

The dotted lines indicate the boundary between the product and other business

application components.

The product provides Simple WebSphere Authentication Mechanism (SWAM) and

Lightweight Third Party Authentication (LTPA) mechanisms. Exactly one may be

configured to be the active authentication mechanism for the security domain of

the product. Exactly one user registry implementation may be configured to be the

active user registry of the product security domain. The product provides the

following user registry implementations: UNIX, Windows NT, and AS/400 LocalOS

and LDAP. It also provides file-based and Java database connectivity (JDBC)-based

user registry reference implementations. It supports a flexible combination of

authentication mechanisms and user registries. SWAM is simple to configure and is

useful for a single application server environment. LTPA generates a security token

for authenticated users, which can propagate to downstream servers and is suitable

2 IBM® WebSphere® Application Server, Version 5.0.2: Security

for a distributed environment with multiple application servers. It is possible to

use SWAM in a distributed environment if identity assertion is enabled. Note that

identity assertion feature is available only on the CSIv2 security protocol.

The LTPA authentication mechanism is designed for distributed security.

Downstream servers can validate the security token. It also supports setting up a

trust association relationship with reverse secure proxy servers and single signon

(SSO), which will be discussed later. Besides the combination of LTPA and LDAP

or Custom user registry interface, Version 5 supports LTPA with a LocalOS user

registry interface. The new configuration is particularly useful for a single node

with multiple application servers. It can function in a distributed environment if

the local OS user registry implementation is a centralized user registry (such as

Windows NT Domain Controller) or can be maintained in a consistent state on

multiple nodes.

Authentication Mechanism and User Registry

LTPA JAAS
Login

Module

SWAM JAAS
Login

Module

Security Server

UNIX/ NT/AS400
Local OS

User Registry

LDAP
User

Registry

Custom
User

Registry

User Registry

The product supports the J2EE Connector architecture and offers

container-managed authentication. It provides a default J2C principal and

credential mapping module that maps any authenticated user credential to a

password credential for the specified Enterprise Information Systems (EIS) security

domain. The mapping module is a special JAAS login module designed according

to the Java 2 Connector and JAAS specifications. Other mapping login modules can

be plugged in.

Backward compatibility

While adding new security functions and moving towards new industry standards,

this version maintains backward compatibility with the 4.0.x and 3.5.x releases.

Applications created in the Version 4.x development environment can deploy in

Version 5. When Java 2 Security is enforced in Version 5, give special consideration

to Version 4.0.x applications because Version 4.0 applications might not be Java 2

security compliant. Refer to the Security migration section for steps to port Version

4.0.x to Version 5. See also the Security section of ″What is new in this release″ (not

in this document).

Security for J2EE resources is provided by Web containers and EJB containers. Each

container provides two kinds of security: declarative security and programmatic

security. In declarative security, the security structure of an application, including

data integrity and confidentiality, authentication requirements, security roles, and

access control, is expressed in a form external to the application. In particular the

deployment descriptor is the primary vehicle for declarative security in the J2EE

platform. The product maintains a J2EE security policy, including information

derived from the deployment descriptor and specified by deployers and

Chapter 1. Welcome to Security 3

administrators in a set of XML descriptor files. At run time, the container uses the

security policy defined in the XML descriptor files to enforce data constraints and

access control. When declarative security alone is not sufficient to express the

security model of an application, the application code can use programmatic

security to make access decisions. The API for programmatic security consists of

two methods of the EJB EJBContext interface (isCallerInRole, getCallerPrincipal)

and two methods of the servlet HttpServletrequest interface (isUserInRole,

getUserPrincipal).

From a security perspective, every application server process consists of a Web

container, an EJB container, and the administrative subsystem. There are many

other components that constitute a server process, which are not discussed here.

Security services consist of an authentication mechanism, a user registry, and an

access control manager. Remote interfaces to the administrative subsystem,

including the Admin Service interface through JMX connectors, the user registry

interface, and the naming interface are protected by extended security role-based

access control. The product supports the Java 2 security model. All the system code

in the yellow box, including the administrative subsystem, the Web container, and

the EJB container code, are running in the product security domain, which in the

present implementation are granted with AllPermission and can access all system

resources. Application code running in the application security domain, which by

default is granted with permissions according to J2EE specifications, only can

access a restricted set of system resources. The product run-time classes are

protected by the product class loader and are kept invisible to application code.

JMX Adimin Service

JMX Message beans

Security
Services

Naming
Services

WebSphere Application Server security domain

Web Container Enterprise beans
Container

Web Modules

J2EE application security domain

EJB Modules

RMI/IIOP
JMX

Connector

SOAP/HTTP(S)
JMX

Connector

WebSphere Application Server Process

All of the application server processes, by default, share a common security

configuration, which is defined in a cell-level security XML document. The security

configuration determines whether product security is enforced, whether Java 2

security is enforced, the authentication mechanism and user registry configuration,

security protocol configurations, JAAS login configurations, and Secure Sockets

Layer configurations. Applications can have their own unique security

requirements. Each application server process can create a per server security

configuration to address its own security requirement. Not all security

configurations can be modified at the application server level. Those can be

modified at application server level include whether application security should be

enforced, whether Java 2 security should be enforced, and security protocol

4 IBM® WebSphere® Application Server, Version 5.0.2: Security

configurations. The administrative subsystem security configuration is always

determined by the cell level security document. The Web container and EJB

container security configuration are determined by the optional per server level

security document, which has precence over the cell-level security document.

Security configuration, both at the cell level and at the application server level, are

managed either by the Web-based administrative console application or by the

wsadmin scripting application.

Web security

When a security policy is specified for a Web resource and IBM WebSphere

Application Server security is enforced, the Web container performs access control

when the resource is requested by a Web client. The Web container challenges the

Web client for authentication data if none is present according to the specified

authentication method, ensure the data constraints are met, and determine whether

the authenticated user has the required security role. The product supports the

following login methods: HTTP basic authentication, Hypertext Transfer Protocol

with Secure Sockets Layer (HTTPS) client authentication, and form-based Login.

Mapping a client certificate to a product security credential uses the UserRegistry

implementation to perform the mapping. The LDAP UserRegistry supports the

mapping function while LocalOS UserRegistry does not.

When the LTPA or ICSF authentication mechanism is configured and single signon

(SSO) is enabled, an authenticated client is issued a security cookie, which can

represent the user within the specified security domain. Use Secure Sockets Layer

(SSL) to protect the security cookie form being intercepted and from being

replayed is recommended. When a trust association is configured, the product can

map an authenticated user identity to security credentials based on the trust

relationship established with the secure reverse proxy server.

Reverse Secure
Proxy Server

Trust
Association
Interceptor

HTTPs

HTTP

X509
Certificate

user ID/password

user
identity

authenticated
user principal

authenticated
user principal

Client
Certificate

HTTP
BasicAuth

Form Based
Login

Security
Cookie

Validation

Authentication

Credential
Mapping

Security
Role-based
Access
Control

Web
Resources:
Servlets,
JSP files,
HTML files

HTTP
Client

security token

HTTPs

Web Security

The Web security collaborator enforces role-based access control by using an access

manager implementation. An access manager make authorization decisions based

Chapter 1. Welcome to Security 5

on the security policy derived from the deployment descriptor. An authenticated

user principal can access the requested Servlet or JSP file if it has one of the

required security roles. Servlets and JSP files can use the HttpServletRequest

methods: isUserInRole and getUserPrincipal. As an example, the administrative

console uses the isUserInRole method to determine the proper set of administrative

functionality to expose to a user principal.

When a servlet or JSP file access EJB methods, either the caller identity or a RunAs

identity is propagated to the EJB container, depending on the RunAs configuration.

The product supports the JAAS programming model. Servlet and JSP file also can

perform a JAAS login to the product security domain and execute code under the

JAAS Subject identity. It is executed under either the specified RunAs identity or

the caller identity, depending on the RunAs configuration.

EJB security

When security is enabled, the EJB container enforces access control on EJB method

invocation. The authentication takes place regardless of whether a method

permission is defined for the specific EJB method.

A Java application client can provide the authentication data in several ways.

Using the sas.client.props file, a Java client can specify whether to use a user ID

and password to authenticate or to use an SSL client certificate to authenticate. The

client certificate is stored in the key file or in the hardware cryptographic card, as

defined in a sas.client.props file. The user ID and password can be optionally

defined in the sas.client.props file. At run time, the Java client can either

perform a programmatic login or perform a lazy authentication. In lazy

authentication when the Java client is accessing a protected enterprise bean for the

first time the security run time tries to obtain the required authentication data.

Depending on the configuration setting in sas.client.props file the security

runtime either looks up the authentication data from this file or prompts the user.

Alternatively, a Java client can use programmatic login. The product supports the

JAAS programming model and the JAAS login (LoginContext) is the recommended

way of programmatic login. The login_helper request_login helper function is

deprecated in Version 5. Java clients programmed to the login_helper APT can run

in this version.

The EJB security collaborator enforces role-based access control by using an access

manager implementation. An access manager make authorization decisions based

on the security policy derived from the deployment descriptor. An authenticated

user principal can access the requested EJB method if it has one of the required

security roles. EJB code can use the EJBContext methods isCallerInRole and

getCallerPrincipal. EJB code also can use the JAAS programming model to perform

JAAS login and WSSubject doAs and doAsPrivileged methods. The code in the

doAs and doAsPrivileged PrivilegedAction block executes under the Subject

identity. Otherwise, the EJB method executes under either the RunAs identity or

the caller identity, depending on the RunAs configuration. The J2EE RunAs

specification is at the enterprise bean level. When RunAs identity is specified, it

applies to all bean methods. The method level IBM RunAs extension introduced in

Version 4.0 is still supported in this version.

 Federal Information Processing Standards-approved

Federal Information Processing Standards (FIPS) are standards and guidelines

issued by the National Institute of Standards and Technology (NIST) for federal

computer systems. FIPS are developed when there are compelling federal

6 IBM® WebSphere® Application Server, Version 5.0.2: Security

government requirements for standards, such as for security and

interoperability,but acceptable industry standards or solutions do not exist.

WebSphere Application Server, Version 5.0.2 is integrated with FIPS 140-2 certified

cryptographic modules including Java Secure Socket Extension (JSSE) and Java

Cryptography Extension (JCE). Throughout the documentation and the product,

the FIPS-approved IBM JSSE and JCE modules will be referred to as IBMJSSEFIPS

and IBMJCEFIPS, which distinguishes the FIPS-approved modules from the IBM

JSSE and IBM JCE modules.

The FIPS-approved IBMJSSEFIPS module supports the FIPS-approved TLS cipher

suites including:

v SHA

v DES

v TripleDES

The FIPS-approved IBMJSSEFIPS module supports the following algorithms:

v RSA public key algorithm

v ANSI X9.31

v IBM Random Number Generator (Patent pending)

The FIPS-approved IBMJCEFIPS module supports the following symmetric cipher

suites:

v AES (FIPS 197)

v DES and TripleDES (FIPS 46-3)

v SHA1 Message Digest algorithm (FIPS 180-1)

The FIPS-approved IBMJCEFIPS module supports the following algorithms:

v Digital Signature DSA and RSA algorithms (FIPS 186-2)

v ANSI X 9.31 (FIPS 186-2)

v IBM Random Number Generator

The FIPS-approved IBMJSSEFIPS and IBMJCEFIPS cryptographic modules only

contain the algorithms that are approved by FIPS, which form a proper subset of

those in the IBM JSSE and IBM JCE modules.

Chapter 1. Welcome to Security 7

8 IBM® WebSphere® Application Server, Version 5.0.2: Security

Chapter 2. Securing applications and their environments

WebSphere Application Server supports the J2EE model for creating, assembling,

securing, and deploying applications. This article provides a high-level description

of what is involved in securing resources in a J2EE environment. Applications are

often created, assembled and deployed in different phases and by different teams.

Consult the J2EE specifications for complete details.

Steps for this task

 1. Plan to secure your applications and environment.

 Complete this step before you install the WebSphere Application Server.

 2. Consider pre-installation and post-installation requirements.

 For example, during this step, you learn how to protect security

configurations after you install the product.

 3. Migrate your existing security systems.

 4. Develop secured applications.

 5. Assemble secured applications.

 Development tools, such as the WebSphere Application Assembly Tool (AAT)

and the Deployment Tool for Enterprise JavaBeans (EJBDeploy) are used to

assemble J2EE modules and to set the attributes in the deployment

descriptors.

 Most of the steps in assembling J2EE applications involve deployment

descriptors; deployment descriptors play a central role in application security

in a J2EE environment.

 Application assemblers combine J2EE modules, resolve references between

them, and create from them a single deployment unit, typically an Enterprise

Archive (EAR)file. Component providers and application assemblers can be

the same people, but they do not have to be.

 6. Deploy secured applications.

 Deployer link entities referred to in an enterprise application to the run time

environment. One of the important tasks the deployer performs is mapping

actual users and groups to application roles. The deployer installs the

enterprise application into the environment and makes the final adjustments

needed to run the application.

 7. Test secured applications.

 8. Manage security configurations.

 9. Improve performance by tuning security configurations.

10. Troubleshoot security configurations.

Results

Your applications and production environment are secured.

See Security: Resources for Learning for more information on the WebSphere

Application Server security architecture.

© Copyright IBM Corp. 2003 9

10 IBM® WebSphere® Application Server, Version 5.0.2: Security

Chapter 3. Planning to secure your environment

Before you begin

There are several communication links from a browser on the Internet, through

web servers and product servers, to the enterprise data at the back end. This

section examines some typical configuration and common security practice.

WebSphere Application Server security is built on a layered security architecture as

showed below. This section also examines the security protection offered by each

security layer and common security practice for good quality of protection in

end-to-end security. The following figure illustrates the building blocks that

comprise the operating environment of WebSphere Security:

WebSphere Application Server
Resources

Access Control

WebSphere Application Server Security

Java Security

Platform Security

WebSphere Security

J2EE Security API

CORBA Security (CSIv2)

Java 2 Security

JVM 1.3

Network Security

• Naming
• User Registry

• JMX Message beans

• HTML
• Servlet/JSP file

• Enterprise beans
• Web Services

WebSphere Security Layers

Operating System Security

v Operating System Security - The security infrastructure of the underlying

operating system provides certain security services to the WebSphere Security

Application. This includes the file system security support to secure sensitive

files in WebSphere product installation. The WebSphere system administrator can

configure the product to obtain authentication information directly from the

operating system user registry, for example the Windows NT system Security

Access Manager (SAM).

v Network Security - The Network Security layers provides transport level

authentication and message integrity and encryption. WebSphere Application

Server inter-servers communications can be configured to use Secure Socket

Layer (SSL) and HTTPS. Additionally IP Security and Virtual Private Network

(VPN) may be used for added message protection.

v JVM 1.3.1 - The JVM security model provides a layer of security above the

operating system layer.

© Copyright IBM Corp. 2003 11

v Java 2 Security - The Java 2 Security model offers fine grained access control to

system resources including file system, system property, socket connection,

threading, class loading, etc. Application code must be explicitly grant the

required permission in order to access a protected resource.

v CORBA Security - Any calls made among secure ORBs are invoked over the

Common Security Inter operability Version 2 security protocol that sets up the

security context and the necessary quality of protection. After the session is

established, the call is passed up to the enterprise bean layer. WebSphere

Application Server continue to support the Secure Association Service (SAS)

security protocol which was used in prior releases of WebSphere Application

Server and other IBM products for backward compatibility.

v J2EE Security - The security collaborator enforces J2EE based security policies

and supports J2EE security APIs.

v WebSphere Security - WebSphere security enforces security policies and services

in a unified manner on access to Web resources, enterprise beans, and JMX

administrative resources. It consists of WebSphere security technologies and

features to support the needs of a secure enterprise environment.

The following picture shows a typical multiple-tier business computing

environment. Shown in the picture is a WebSphere Application Server Network

Deployment (ND) installation. Note that there is a Node Agent instance on every

computer node which is omitted in the picture. Each product application server

consists of a web container and an EJB container shown in the yellow shaded area

and the administrative subsystem shown in red shaded area. The WebSphere

Application Server deployment Manager contains only WebSphere administrative

code and the administrative console application. Administrative console is a special

J2EE Web Application that provides the GUI interface for performing

administrative functions. WebSphere Application Server configuration data is

stored in XML descriptor files. Those XML configuration files should be protected

by operating system security. Passwords and other sensitive configuration data can

be modified via administrative console. Hence, the administrative console Web

application has setup data constraint which requires the administrative console

servlets and JSP files to be accessed only through SSL connection when global

security is enabled.

After installation, the administrative console HTTPS port is configured to use

DummyServerKeyFile.jks and DummyServerTrustFile.jks with the default self

signed certificate. Using the Dummy key and trust file certificate is not safe and

you should generate your own certificate to replace dummy ones immediately. It is

more secure if you first enable global security and complete other configuration

tasks after global security is enforced.

12 IBM® WebSphere® Application Server, Version 5.0.2: Security

Browser

In
te

rn
et

Reverse
Proxy
Security
Server
(WebSeal,
etc)

Demilitarized Zone
(DMZ)

DataBase
DB2 V7.1 etc.

MQ
CICS

IBM Directory
(LDAP)

Internet Enterprise
information

systems

D
om

ai
n

F
ire

w
al

l

P
ro

to
co

l F
ire

w
al

l

WebSphere
Application

Server

Web
Server

WebSphere
Application

Server plug-in TAI

Third Party
Security
Provider

(TAM, etc)

WebSphere Application Server servers interact with each other via CSIv2 and SAS

security protocols as well as HTTP and or HTTPS protocols. Those protocols can

be configured to use SSL when WebSphere Application Server global security is

enabled. The WebSphere Application Server administrative subsystem in every

server uses SOAP JMX connectors and or RMI/IIOP JMX connectors to pass

administrative commands and configuration data. When global security is

disabled, the SOAP JMX connector uses HTTP protocol and the RMI/IIOP

connector uses TCP/IP protocol. When global security is enabled, the SOAP JMX

connector always uses HTTPS protocol. When global security is enabled, the

RMI/IIOP JMX connector may be configured to either use SSL or to use TCP/IP.

Again it is recommended to enable global security and enable SSL to protect the

sensitive configuration data.

Note: Global security and administrative security configuration is at the cell level.

While global security is enabled, application security at each individual application

server may be disabled by disabling per server level security enable flag. Disabling

application server security does not affect the administrative subsystem in that

application server which is controlled only by the global security configuration.

Both administrative subsystem and application code in an application server share

the optional per server security protocol configuration. For more information, see.

Security for J2EE resources is provided by Web container and EJB container. Each

container provides two kind of security: declarative security and programmatic

security.

In declarative security, an application security structure includes data integrity and

confidentiality, authentication requirements, security roles, and access control is

expressed in a form external to the application. In particular the deployment

descriptor is the primary vehicle for declarative security in the J2EE platform. The

WebSphere Application Server maintains J2EE security policy including

information derived from the deployment descriptor and specified by deployers

Chapter 3. Planning to secure your environment 13

and administrators in a set of XML descriptor files. At run time, the container uses

the security policy defined in the XML descriptor files to enforce data constraints

and access control.

When declarative security alone is not sufficient to express the security model of

an application, programmatic security may be used by application code to make

access decisions. When global security is enabled and application server security

was not disabled at the server level, J2EE applications security will be enforced.

When security policy is specified for a web resource, the web container performs

access control when the resource is requested by a web client. The web container

would challenge the web client for authentication data if none present according to

the specified authentication method, ensure the data constraints are met, and

determine whether the authenticated user has the required security role. The web

security collaborator enforces role-based access control by using an access manager

implementation. An access manager make authorization decision based on security

policy derived from the deployment descriptor. An authenticated user principal is

allowed to access the requested Servlet or JSP file if it has one of the required

security roles. Servlets and JSP pages may use the HttpServletRequest methods

isUserInRole and getUserPrincipal. When global security is enabled and

application server security is not disabled, EJB container will enforce access control

on EJB method invocation. The authentication would take place regardless of

whether method permission was defined for the specific EJB method. The EJB

security collaborator enforces role-based access control by using an access manager

implementation. An access manager make authorization decision based on security

policy derived from the deployment descriptor. An authenticated user principal is

allowed to access the requested EJB method if it has one of the required security

roles. EJB code may use the EJBContext methods isCallerInRole and

getCallerPrincipal. The J2EE role based access control should be used to protect

valuable business data from being accessed by unauthorized users from both the

Internet and the Intranet. For enabling J2EE application security, refer to “Securing

Web applications” on page 83 and “Securing enterprise bean applications” on page

78.. WebSphere extended security role based access control to administrative

resources including the JMX system management subsystem, user registry, and

JNDI name space. WebSphere administrative subsystem defines four administrative

security roles:

v Monitor role, which can view configuration information and status but not

anything more

v Operator role, which is a monitor that can trigger run time state changes, such

as start an application server or stop an application, but cannot change

configuration

v Configurator role, which is a monitor that can modify configuration information

but cannot change run-time state

v Administrator role, which is an operator as well as a configurator

A user with the configurator role can perform most administrative work including

installing new applications and application servers. There are certain configuration

tasks a configurator does not have sufficient authority to do when global security

is enabled, including modifying WebSphere Application Server server identity and

password, LTPA password and keys, and assigning users to administrative security

roles. Those sensitive configuration tasks require the administrative role because

the server id is mapped to the administrator role.

WebSphere Application Server administrative security is enforced when global

security is enabled. It is recommended that WebSphere Application Server global

security be enabled to protect administrative subsystem integrity. Application

14 IBM® WebSphere® Application Server, Version 5.0.2: Security

server security can be selectively disabled if there is no sensitive information to

protect. For securing administrative security, refer to “Assigning users to

administrator roles” on page 119 and “Assigning users to naming roles” on page

122.. WebSphere Application Server uses Java 2 Security Model to create a secure

environment to run application code. Java 2 Security provides a fine, grained and

policy based access control to protect system resources such as files, system

properties, opening socket connections, loading libraries, and so on. J2EE 1.3

Specification defines typical set of Java 2 security permissions that Web and EJB

components should expect to have, which is shown in the table below.

J2EE Security Permissions set for Web components

 Security Permission Target Action

java.lang.RuntimePermission loadLibrary á

java.lang.RuntimePermission queuePrintJob á

java.net.SocketPermission * connect

java.io.FilePermission * read, write

java.util.PropertyPermission * read

2EE Security Permissions set for EJB components

 Security Permission Target Action

java.lang.RuntimePermission queuePrintJob á

java.net.SocketPermission * connect

java.util.PropertyPermission * read

WebSphere Application Server Java 2 Security implementation was based on J2EE

1.3 Specification. The Specification granted Web components read and write file

access permission to any file in the file system, which may be too broad.

WebSphere Application Server default policy gives Web components read and

write permission to the sub directory and the sub tree where the Web module was

installed. The default Java 2 security policy for all Java virtual machines and

WebSphere Application Server server processes are contained in the following

policy files:

v ${java.home}/jre/lib/security/java.policy - default policy for JVM

v ${user.install.root}/properties/server.policy - default policy for all product

server processes

To simplify policy management, WebSphere Application Server policy is based on

resource type rather than code base (location). Default policy for WebSphere

Application Server subsystem that considered as an extension of WebSphere

Application Server run time, which is referred to as SPI, for library shared by

multiple applications, and for J2EE applications, are:

v ${was.install.root}/config/cells/<cellname>/nodes/<nodename>/spi.policy,

which is for embedded resources defined in resources.xml, such as JMS,

JavaMail and JDBC drivers.

v

 ${was.install.root}/config/cells/<cellname>/nodes/<nodename>/library.policy,

which is for shared library defined by Web Admin Console

v ${was.install.root}/config/cells/<cellname>/nodes/<nodename>/app.policy,

which is the default policy for J2EE applications

Chapter 3. Planning to secure your environment 15

In general applications should not require more permissions to run than those

recommended by the J2EE Specification in order to be portable among various

application servers. But some applications may require more permissions.

WebSphere Application Server allows a per application policy file, was.policy, to be

packaged together with each application from granting extra permissions to that

application. Note that granting extra permissions to an application should be

handled with great care because of the potential of compromising system integrity.

WebSphere Application Server uses a permission filtering policy file to alert users

when an application requires permissions that are on the filter list during

application installation and cause the offended application installation to fail. For

example, the java.lang.RuntimePermission exitVM permission should not be given

to an application so that no application code is allowed to terminate the

WebSphere Application Server application server. The filtering policy is defined by

the filterMask in ${was.install.root}/config/cells/<cellname>/filter.policy.

Moreover, WebSphere Application Server also performs run time permission

filtering based on the run time filtering policy to ensure no application code has

been granted any permission that is considered harmful to system integrity.

Applying Java 2 Security model to application server is new.

WebSphere Application Server Version 4 supported Java 2 Security but only

enforce three permission checking against exitVM, create and set the Security

Manager. Other permission checking are disabled by default. Hence many

applications developed for prior releases of WebSphere Application Server may not

be Java 2 Security ready. To migrate those applications to WebSphere Application

Server Version 5 quickly, you may temporarily give those applications

java.security.AllPermission in the was.policy file. It is recommended to test or

make those applications Java 2 Security ready, i.e., identity what extra permissions,

if any, are required and to just grant those permissions to a particular application.

Not granting applications AllPermission can certainly reduce the risk of

compromising system integrity. For more information on migrating applications to

WebSphere Application Server Version 5, refer to “Migrating Java 2 security policy”

on page 356.

WebSphere Application Server run time uses Java 2 Security to protect sensitive

run-time functions and hence it is always a good idea to enforce Java 2 Security.

Applications that are granted with AllPermission not only have access to sensitive

system resources but also WebSphere Application Server run-time resources and

can potential cause damage to both. In cases where an application can be trusted

to be safe, WebSphere Application Server allows Java 2 Security to be disabled on a

per application server basis. In other words, you can enforce Java 2 Security by

default in security center and disable the per application server Java 2 Security flag

to disable it at the particular application server.

The global security enable flag and Java 2 Security enable flag along with other

sensitive configuration data are stored in a set of XML configuration files. Both role

based access control and Java 2 Security permission based access control are

employed to protect the integrity of the configuration data. We will use

configuration data protection as an example to illustrate how system integrity is

maintained.

v When Java 2 Security is enforced, application code cannot access the WebSphere

Application Server run-time classes that manages the configuration data unless it

has been granted the required WebSphere Application Server run-time

permissions.

16 IBM® WebSphere® Application Server, Version 5.0.2: Security

v When Java 2 Security is enforced, application code cannot access the WebSphere

Application Server configuration XML files unless it has been granted the

required file read and write permissions.

v The JMX administrative subsystem provides SOAP over HTTP(S) and RMI/IIOP

remote interface to allow application programs to extract and to modify

configuration files and data. When global security is enabled, an application

program can modify WebSphere Application Server configuration provided that

the application program has presented valid authentication data and that the

security identity has the required security roles.

v If a user is allowed to disable Java 2 Security, then that user can modify

WebSphere Application Server configuration including the WebSphere

Application Server security identity and authentication data along with other

sensitive data. Hence, only users with the administrator security role is allowed

to disable Java 2 Security.

v Because WebSphere Application Server security identity is given the

administrator role, only users with administrator role are allowed to disable

global security, to change server id and password, and to map users and groups

to administrative roles, and so on.

Other WebSphere Application Server run time resources are protected by similar

mechanism as described above. Hence it is very important to enable WebSphere

Application Server global security and to enforce Java 2 Security. J2EE Specification

defines four authentication method for Web components and WebSphere

Application Server supports HTTP Basic Authentication, Form Based

Authentication, and HTTPS Client Certificate Authentication. When using client

certificate login, it is more convenient for the browser client if the web resources

have integral or confidential data constraint. If a browser uses HTTP to access the

web resource, the web container will automatically redirect it to HTTPS port. The

CSIv2 security protocol also supports client certificate authentication. SSL client

authentication can also be used to setup secure communication among selected set

of servers based on trust relationship.

Starting from the WebSphere Application Server plug-in at web server, SSL mutual

authentication may be configured between it and the WebSphere Application

Server HTTPS server. When using self signed certificate, one can restrict the

WebSphere Application Server plug-in to communicate with only the selected two

WebSphere Application Server servers as shown in the picture. Suppose you want

to restrict the HTTPS server in WebSphere Application Server server A and in

WebSphere Application Server B to accept secure socket connection only from

WebSphere Application Server plug-in W. You can generate three self-signed

certificate using the IKEYMAN tool and certificate management utility, say

certificate W, A, and B. WebSphere Application Server plug-in is configured to use

certificate W and trust certificate A and B. The HTTPS server of WebSphere

Application Server A is configured to use certificate A and to trust certificate W.

The HTTPS server of WebSphere Application Server B is configured to use

certificate B and to trust certificate W.

Chapter 3. Planning to secure your environment 17

Browser

In
te

rn
et

Web
Server

W

WebSphere
Application

Server plug-in

Demilitarized Zone
(DMZ)

Administrative

WebSphere
Application
Server A

Administrative

WebSphere
Application
Server B

Administrative

WebSphere
Application
Server C

Administrative

WebSphere
Application
Server D

DataBase
DB2 V7.1 etc.

MQ
CICS

IBM Directory
(LDAP)

WebSpher
Application

Server
Deployment
Manager/

Administrative
Console

Internet Enterprise
information

systems

D
om

ai
n

F
ire

w
al

l

P
ro

to
co

l F
ire

w
al

l

Browse

E

The trust relationship is shown in the following table.

 Server Key Trust

WebSphere Application Server -plug-in W A, B

WebSphere Application Server Server A A W

WebSphere Application Server Server B B W

In a Network Deployment installation, the WebSphere Application Server

deployment manager is a central point of administration. System management

commands is sent from the Deployment manager to each individual WebSphere

Application Server Server. When global security is enabled, all WebSphere

Application Server servers may be configured to require SSL and mutual

authentication. Suppose one wants to further restrict that WebSphere Application

Server Server application A can only communicate to WebSphere Application

Server application server C and WebSphere Application Server application server B

can only communicate to WebSphere Application Server application server D. Note

that as mentioned above, all WebSphere Application Server application servers

must be able to communicate with WebSphere Application Server Deployment

Manager E. Hence, when using self-signed certificates, one could setup CSIv2 and

SOAP/HTTPS Key and trust relationship as shown in the following table.

 Server Key Trust

WebSphere Application

Server Server A

A C, E

WebSphere Application

Server Server B

B D, E

WebSphere Application

Server Server C

C A, E

WebSphere Application

Server Server D

D B, E

18 IBM® WebSphere® Application Server, Version 5.0.2: Security

WebSphere Application

Server Deployment Manager

E

E A, B, C, D

When WebSphere Application Server is configured to use an LDAP user registry,

SSL with mutual authentication may also be configured between every WebSphere

Application Server server and the LDAP server with self-signed certificate so that

no password will be passed in clear text from WebSphere Application Server to

LDAP server. In this example Node Agent processes were not discussed. Each

node agent needs to communicate with application servers on the same node and

with the Deployment Manager. Node agents also need to communicate with LDAP

servers when configured to use LDAP user registry. It is reasonable to let

Deployment manager and node agents use the same certificate. Suppose

application server A and C are on the same computer node. Node agent on that

node needs to have certificates A and C in its trust file. WebSphere Application

Server does not provide a user registry configuration or management utility. In

addition, it does not dictate user registry password policy. It is recommended to

use the password policy recommended by your user registry, including the

password length and expiration period.

Steps for this task

1. Determine which versions of WebSphere Application Server you are using.

2. Review the WebSphere Application Server security architecture.

3. Review each of the following topics as also defined in Related reference.

v Authentication Protocol for EJB Security

– Supported Authentication Protocols: IBM SAS and OMG CSIv2

– CSIv2 Features

– Identity Assertion
v Authentication Mechanisms

– SWAM

– LTPA

– Trust Association

– Single Sign-On (SSO)
v User Registries

– Local OS

– LDAP
v “Custom user registries” on page 165

v Java 2 Security

– Dynamic Policy
v Java Authentication and Authorization Service (JAAS)

– Programmatic login
v Java 2 Connector Security

v Access Control

– J2EE Role-Based Authorization

– Administrative Console and Naming Service Authorization
v Secure Socket Layer (SSL) Transport

– Authenticity

– Confidentiality

Chapter 3. Planning to secure your environment 19

– Integrity

Security considerations when adding a Base Application Server node

to Network Deployment

Before you begin

At some point, you might decide to centralize the configuration of your

stand-alone base application servers by adding them into a Network Deployment

cell. If your base application server is currently configured with security, there are

some issues to be considered. The major issue when adding a node to the cell is

whether the user registries between the base application server and the

Deployment Manager are the same. When adding a node to the cell, you

automatically inherit both the user registry and the authentication mechanism of

the cell. For distributed security, all servers in the cell must use the same user

registry and authentication mechanism. In order to recover from a user registry

change, you will need to modify your applications so that the user and group to

role mappings are correct for the new user registry. To do this, see “Assigning

users and groups to roles” on page 94.

Another major issue is the SSL public-key infrastructure. Prior to performing

addNode with the Deployment Manager, ensure that addNode can communicate as

an SSL client to the Deployment Manager. This requires that the addNode

truststore (configured in sas.client.props) contains the signer certificate of the

Deployment Manager personal certificate as found in the keystore (specified in the

Administrative Console). See the article, “Managing digital certificates” on page

302..

The following are other issues to consider when running the addNode command

with security:

Steps for this task

1. When attempting to run system management commands such as addNode, you

need to explicitly specify administrative credentials to perform the operation.

The addNode command accepts -username and -password parameters to specify

the userid and password, respectively. The user ID and password, which are

specified should be an administrative user, for example, a user that is a

member of the console users with Operator or Admistrator privileges or the

admistrative user ID configured in the User Registry. An example for addNode,

addNode CELL_HOST 8879 -includeapps -username user -password pass.

-includeapps is optional, but this option attempts to include the server

applications into the Deployment Manager. The addNode command might fail if

the user registries used by the WebSphere Application Server and the

Deployment Manager are not the same. To correct this problem, either make

the user registries the same or turn off security. If you change the user

registries, remember to verify that the users to roles and groups to roles

mappings are correct. See the addNode command for more information on the

addNode syntax.

2. Adding a secured remote node through the administrative console is not

supported. You can either disable security on the remote node before

performing the operation or perform the operation from the command line

using the addNode script.

3. Before running the addNode command, you must ensure that the truststore files

on the nodes will communicate with the keystore files from the Deployment

Manager and vice versa. When using the default DummyServerKeyFile and

20 IBM® WebSphere® Application Server, Version 5.0.2: Security

DummyServerTrustFile, you should not see this problem as these are already

able to communicate. However, you should never use these files in a

production environment or anytime sensitive data is being transmitted.

4. After running addNode, the application server is in a new SSL domain. It

might contain SSL configurations that point to keystore and truststore files that

are not prepared to interoperate with other servers in the same domain.

Consider which servers will be intercommunicating and ensure that the servers

are trusted within your truststore files.

Results

Proper understanding of the security interactions between distributed servers

greatly reduces problems encountered with secure communications. Security adds

complexity because additional function needs to be managed. For security to

function, it needs throrough consideration during the planning of your

infrastructure. This document helps to reduce the problems that could occur due to

inherent security interactions.

What to do next

When you have security problems related to the WebSphere Application Server

Network Deployment environment, check the (Security Troubleshooting) section to

see if you can get information about the problem. When trace is need to solve a

problem, because servers are distributed, quite often it is required to gather trace

on all servers simultaneously while recreating the problem. This trace can be

enabled dynamically or statically, depending on the type problem occurring.

Chapter 3. Planning to secure your environment 21

22 IBM® WebSphere® Application Server, Version 5.0.2: Security

Chapter 4. Implementing security considerations during

installation

Steps for this task

1. “Securing your environment before installation.”

2. Install the WebSphere Application Server.

 During installation you are prompted to migrate your security configurations.

3. “Securing your environment after installation” on page 24.

Securing your environment before installation

Before you begin

The following instructions explain how to perform a product installation with

proper authority on UNIX platforms, Linux platforms, Solaris operating

environments, and Windows platforms.

Unix platforms

On UNIX platforms, log on as root and verify that the umask value is 022.

To verify that the umask value is 022, execute the umask command.

To set up the umask value as 022, execute the umask 022 command.

Linux platforms and Solaris operating environments

On Linux platforms or in Solaris operating environments, make sure that the /etc

directory contains a shadow password file. The shadow password file is named

shadow and is in the /etc directory. If the shadow password file does not exist, an

error occurs after enabling global security and configuring the user registry as local

operating system.

To create the shadow file, run the pwconv command (with no parameters). This

command creates an /etc/shadow file from the /etc/passwd file. After creating the

shadow file, you can configure local operating system security.

Windows platforms

On Windows platforms, the logon user must be a member of the administrator

group with the rights of Act as part of the operating system and Log on as a

service. If the Windows machine is a member of a Windows NT domain, then the

logon user also must be created in the active directory and be a member of the

administrator group with the rights of Act as part of the operating system and

Log on as a service in the Windows NT domain.

To add the rights to a user on a Windows 2000 platform:

Steps for this task

1. Click Start > Programs > Administrative Tools > Local Security Policy (for

domain configuration, select Domain Security Policies, instead).

© Copyright IBM Corp. 2003 23

2. From the Local Security Settings Panel, click Local Policies > User Rights

Assignment and add the following rights to the user ID:

v Act as part of the operating system

v Log on as a service

Securing your environment after installation

Before you begin

WebSphere Application Server depends on several configuration files created

during installation. These files contain password information and need protection.

Although the files are protected to a limited degree during installation, this basic

level of protection is probably not sufficient for your site. Verify that these files are

protected in compliance with the policies of your site.

The files in the install_root\config and install_root\ properties, except for

those in the following list, need protection. For example, give permission to the

user who logs onto the system for WebSphere Application Server primary

administrative tasks. Other users or groups, such as WebSphere Application Server

console users and console groups, who perform partial WebSphere Application

Server administrative tasks, like configuring, starting servers and stopping servers,

need permissions as well. The files, in the install_root\properties directory,

which should not be protected are:

v TraceSettings.properties

v client.policy

v client_types.xml

v implfactory.properties

v sas.client.props

v sas.stdclient.properties

v sas.tools.properties

v soap.client.props

v wsadmin.properties

v wsjaas_client.conf

Steps for this task

1. Secure properties files on a Windows 2000 system:

a. Open the browser for a view of the files and directories on the machine.

b. Locate and right-click the file or the directory to protect.

c. Click Properties.

d. Click the Security tab.

e. Remove the Everyone entry and any other user or group that should not

have access to the file.

f. Add the users who should be allowed to access the files with the proper

permission.
2. Secure files on UNIX systems.

 This procedure applies only to the ordinary UNIX file system. If your site uses

access-control lists, secure the files by using that mechanism. Any site-specific

requirements can affect the desired owner, group and corresponding privileges.

For example, on AIX,

24 IBM® WebSphere® Application Server, Version 5.0.2: Security

a. Go to the install_root directory and change the ownership of the directory

configuration and properties to the user who logs onto the system for

WebSphere Application Server primary administrative tasks. Execute the

following command: chown logon_user config properties.

b. Set up the permission by executing the following command: chmod -R 770

config properties.

c. Go to the install_root\properties directory and set the following file

permission to everybody by executing the following command: chmod 777

file_names.

 where file_names are the following files:

v TraceSettings.properties

v client.policy

v client_types.xml

v implfactory.properties

v sas.client.props

v sas.stdclient.properties

v sas.tools.properties

v soap.client.props

v wsadmin.properties

v wsjaas_client.conf

d. Create a group for WebSphere Application Server and put the users who

perform full or partial WebSphere Application Server administrative tasks in

that group.

e. Restrict access to the /var/mqm directories and log files needed for

WebSphere embedded messaging or WebSphere MQ as the JMS provider.

Give write access only to the user ID mqm or members of the mqm user

group. For detailed information, see ″Securing messaging directories and

log files″ (not in this document).

Results

After securing your environment, only the users given permission can access the

files. Failure to adequately secure these files can lead to a breach of security in

your WebSphere applications.

What to do next

If there are any failures caused by file accessing permissions, check the permission

settings.

Chapter 4. Implementing security considerations during installation 25

Protecting plain text passwords

The WebSphere Application Server has several plain text passwords. These

passwords are not encrypted, but are encoded. The following is a list of files with

encoded passwords:

 File name Additional information

security.xml The following fields contain encoded

passwords:

v LTPA password

v JAAS Auth Data

v User Registry server password

v LDAP User Registry bind password

v Key file password

v Trust file password

v Crypto token device password

sas.client.props

war/WEB-INF/ibm_web_bnd.xml Specify passwords for the default basic

authentication for the ″resource-ref″ bindings

within all descriptors (except in the Java

crytography architecture)

ejb jar/META-INF/ibm_ejbjar_bnd.xml Specify passwords for the default basic

authentication for the ″resource-ref″ bindings

within all descriptors (except in the Java

crytography architecture)

client jar/META-INF/ibm-
appclient_bnd.xml

Specify passwords for the default basic

authentication for the ″resource-ref″ bindings

within all descriptors (except in the Java

crytography architecture)

ear/META-INF/ibm_application_bnd.xml Specify passwords for the default basic

authentication for the ″run as″ bindings

within all descriptors

server.xml The following fields contain encoded

passwords:

v key file password

v trust file password

v crypto token device password

v auth target password

v Session persistence password

v DRS Client data replication password

(not available in WebSphere Application

Server, Version 5

resource.xml (for cells, servers, and nodes) The following fields contain encoded

passwords:

v WAS40Datasource password

v mailTransport password

v mailStore password

v MQQueue queue mgr password

ws-security.xml

ibm-webservices-bnd.xmi

ibm-webservicesclient-bnd.xmi

26 IBM® WebSphere® Application Server, Version 5.0.2: Security

File name Additional information

/properties/soap.client.props

/properties/sas.tools.properties

/properties/sas.stdclient.properties

wsserver.key

To re-encode a password in one of the previous files, complete the following steps:

Steps for this task

1. Access the file using a text editor and type over the encoded password in plain

text.

 The new password is shown in plain text and must be encoded.

2. Use the PropFilePasswordEncoder.bat file in the install_dir/bin/ directory to

re-encode the password.

v If you are re-encoding sas properties files, type <file_name> -sas and the

PropFilePasswordEncoder.bat file encodes the known sas properties.

v If you are encoding files that are not sas properties files, type <file_name>

-sas <password properties_list>

 <file_name> is the name of the sas properties file. <password properties_list> is

the name of the properties to encode within the file.

Results

If you reopen the affected file or files, the passwords do not display in plain text.

Instead, the passwords appear encoded.

Chapter 4. Implementing security considerations during installation 27

28 IBM® WebSphere® Application Server, Version 5.0.2: Security

Chapter 5. Migrating security configurations from previous

releases

Before you begin

This article addresses the need to migration your security configurations from a

previous release of IBM WebSphere Application Server to WebSphere Application

Server, Version 5. Complete the following steps to migrate your security

configurations:

v Before migrating your configurations, verify that the administrative server of the

previous release is running.

v If security is enabled in the previous release, obtain the server ID and password

of the previous release. This information is needed to log onto the administrative

server of the previous release during migration.

v You can optionally disable security in the previous release before migrating the

installation. There is no logon required during the installation.

Steps for this task

1. Start the Installation Wizard by running the install command.

2. On the Installation Wizard panel, click Specify previous version information >

Migrate your applications and configuration from the previous version.

Complete the fields for Install location and Configuration file with

corresponding information.

3. Follow the instructions provided in the Installation Wizard to complete the

installation.

Results

The security configuration of previous WebSphere Application Server releases and

its applications are migrated to the new installation of WebSphere Application

Server Version 5.

Usage scenario

This task is for migrating an installation.

What to do next

After migration is complete, re-enable your security configurations with security

disabled in the migrated version. You must re-enable your security configurations

even if the previous version had security enabled.

If custom user registry is used in the previous version, the migration process does

not migrate the class files used by the custom user registry in the

previous_install_root\classes directory. Therefore, after migration, copy your

custom user registry implementation classes to the install_root\classes directory.

If you upgrade from WebSphere Application Server, Version 4.0.x to WebSphere

Application Server, Version 5 or later, data associated with Version 4.0.x trust

associations is not automatically migrated to Version 5 or later. To migrate trust

associations, see “Migrating trust association interceptors” on page 33.

© Copyright IBM Corp. 2003 29

Migrating custom user registries

Before you begin

Before you perform this task, it is assumed that you already have a custom user

registry implemented and working in WebSphere Application Server Version 4. The

custom registry in WebSphere Application Server Version 4 is based on the

CustomRegistry interface. For WebSphere Application Server Version 5, the

interface is called the UserRegistry interface. The WebSphere Application Server

Version 4-based custom registry works without any changes to the implementation

in WebSphere Application Server Version 5 except when the implementation is

using data sources to connect to a database during initialization. If the previous

implementation is using a data source to access a database, change the

implementation to use JDBC connections to connect to the database. The

WebSphere Application Server Version 4 version of the CustomRegistry interface is

deprecated in WebSphere Application Server Version 5. So, moving your

implementation to the WebSphere Application Server Version 5-based interface is

expected.

In WebSphere Application Server Version 5, in addition to the UserRegistry

interface, the custom user registry requires the Result object to handle user and

group information. This file is already provided in the package and you are

expected to use it for the getUsers, getGroups and the getUsersForGroup methods.

In WebSphere Application Server Version 4, it might have been possible to use

other WebSphere Application Server components (for example, datasources) to

initialize the custom registry. This is no longer possible in WebSphere Application

Server Version 5, since other components like the containers are initialized after

security and are not available during the registry initialization. In WebSphere

Application Server Version 5, a custom registry implementation is a pure custom

implementation, independent of other WebSphere Application Server components.

In WebSphere Application Server Version 4, if you had display names for users the

EJB method getCallerPrincipal() and the servlet methods getUserPrincipal() and

getRemoteUser() returned the display names. This behavior has changed in

WebSphere Application Server Version 5. By default, these methods now return the

security name instead of the display name. However, if you need the display

names to return, set the WAS_UseDisplayName property to true. See the

getUserDisplayName method description or the Javadoc, for more information.

If the migration tool was used to migrate the WebSphere Application Server

Version 4 configuration to WebSphere Application Server Version 5, be aware that

this migration does not involve any changes to your existing code. Since the

WebSphere Application Server Version 4 custom registry works in WebSphere

Application Server Version 5 without any changes to the implementation (except

when using data sources) you can use the Version 4-based custom registry after the

migration without modifying the code. Consider that the migration tool might not

copy your implementation files from Version 4 to Version 5. You might have to

copy them to the class path in the Version 5 setup (preferably to the classes

subdirectoy, just like in Version 4). If you are using the Network Deployment

version, copy the files to the cell and to each of the nodes class paths.

In Version 5, a case insensitive authorization can occur when using the custom

registry. This authorization is new in Version 5 and in effect only on the

authorization check. This function is useful in cases where your custom registry

returns inconsistent (in terms of case) results for user and group unique IDs.

30 IBM® WebSphere® Application Server, Version 5.0.2: Security

Note: Setting this flag does not have any effect on the user names or passwords.

Only the unique IDs returned from the registry are changed to lower-case before

comparing them with the information in the authorization table, which is also

converted to lowercase during run time.

Before proceeding, look at the new UserRegistry interface. See “Developing custom

user registries” on page 62 for a list of changes from WebSphere Application

Server, Version 4.

The following steps go through in detail all the changes required to move your

WebSphere Application Server Version 4 custom user registry to the Version 5

custom user registry. The steps are very simple and involve minimal code changes.

The sample implementation file is used as an example when describing some of

the steps.

Steps for this task

 1. Change your implementation to UserRegistry instead of CustomRegistry.

Change:

public class FileRegistrySample implements CustomRegistry

to

public class FileRegistrySample implements UserRegistry

 2. Throw the java.rmi.RemoteException in the constructors

 public FileRegistrySample() throws java.rmi.RemoteException

 3. Change the mapCertificate method to take a certificate chain instead of a

single certificate. Change

public String mapCertificate(X509Certificate cert)

to

public String mapCertificate(X509Certificate[]cert)

Having a certificate chain gives you the flexibility to act on the chain instead

of one certificate. If you are only interested in the first certificate just take the

first certificate in the chain before processing. In Version 5, the mapCertificate

method is called to map the user in a certificate to a valid user in the registry,

when certificates are used for authentication by the Web or the Java clients

(transport layer certificates, Identity Assertion certificates). In Version 4, this

was only called by Web clients since the Common Secure Interoperability

Version 2 (CSIv2) protocol was not supported.

 4. Remove the getUsers() method.

 5. Change the signature of the getUsers(String) method to return a Result object

and accept an additional parameter (int). Change:

public List getUsers(String pattern)

to

public Result getUsers(String pattern, int limit)

In your implementation, construct the Result object from the list of the users

obtained from the registry (whose number is limited to the value of the limit

parameter) and call the setHasMore() method on the Result object if the total

number of users in the registry exceeds the limit value.

 6. Change the signature of the getUsersForGroup(String) method to return a

Result object and accept an additional parameter (int) and throw a new

exception called NotImplementedException. Change

Chapter 5. Migrating security configurations from previous releases 31

public List getUsersForGroup(String groupName)

 throws CustomRegistryException,

 EntryNotFoundException {

to

public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException {

In Version 5, this method is not called directly by the WebSphere Application

Server Security component. However, other components of the WebSphere

Application Server like the WebSphere Application Server Enterprise Process

Choreographer (Enterprise Edition) use this method when staff assignments

are modeled using groups. Since this already is implemented in WebSphere

Application Server Version 4, it is recommened that you change the

implementation similar to the getUsers method as explained in step 5.

 7. Remove the getUniqueUserIds(String) method.

 8. Remove the getGroups() method.

 9. Change the signature of the getGroups(String) method to return a Result

object and accept an additional parameter (int).

 change

public List getGroups(String pattern)

to

public Result getGroups(String pattern, int limit)

 In your implementation, construct the Result object from the list of the groups

obtained from the registry (whose number is limited to the value of the limit

parameter) and call the setHasMore() method on the Result object if the total

number of groups in the registry exceeds the limit value.

10. Add the createCredential method. This method is not called at this time, so

return as null.

public com.ibm.websphere.security.cred.WSCredential createCredential

 (String userSecurityName) // (preceding line split for publication)

 throws CustomRegistryException,

 NotImplementedException,

 EntryNotFoundException {

 return null;

 }

11. To build the Version 5 implementation make sure you have the sas.jar and

wssec.jar in your class path.

install_root\java\bin\javac -classpath install_root\lib\wssec.jar;

install_root\lib\sas.jar FileRegistrySample.java

Type the previous lines as one continuous line.

5.0.1 +

To build the Version 4 custom registry in Version 5 and Version 5.0.1, only the

wssec.jar file is required.

32 IBM® WebSphere® Application Server, Version 5.0.2: Security

To build the Version 4 custom registry in Version 5.0.2, only the sas.jar file is

required.

12. Copy the implementation classes to the product class path. The

install_root/lib/ext directory is the preferred location. If you are using the

Network Deployment product, make sure that you copy these files to the cell

and all the nodes. Without the files in each of the node class paths the nodes

and the application servers in those nodes cannot start when security is on.

13. Use the administrative console GUI to set up the custom registry. Follow the

instructions in “Configuring custom user registries” on page 166 to set up the

custom registry including the IgnoreCase flag.

 Make sure you add the WAS_UseDisplayName properties, if required.

Results

Migrates a Version 4 custom registry to the Version 5 custom registry.

Usage scenario

This step is required to migrate a custom registry from WebSphere Application

Server Version 4 to WebSphere Application Server Version 5.

What to do next

If you are enabling security, make sure you complete the remaining steps. Once

completed, save the configuration and restart all the servers. Try accessing some

J2EE resources to verify that the custom registry migration was successful.

Migrating trust association interceptors

Before you begin

The following topics are addressed in this document:

v Changes to the product-provided trust association interceptors

v Migrating product-provided trust association interceptors

v Changes to the custom trust association interceptors

v Migrating custom trust association interceptors

Changes to the product-provided trust association interceptors

For the product provided implementation for the WebSeal server a new optional

property com.ibm.websphere.security.webseal.ignoreProxy has been added. If

this property is set to true or yes, the implementation does not check for the proxy

host names and the proxy ports to match any of the host names and ports listed in

the com.ibm.websphere.security.webseal.hostnames and the

com.ibm.websphere.security.webseal.ports property respectively. For example, if

the VIA header contains the following information:

HTTP/1.1 Fred (Proxy), 1.1 Sam (Apache/1.1), HTTP/1.1 webseal1:7002, 1.1 webseal2:7001

and the com.ibm.websphere.security.webseal.ignoreProxy is set to true or yes,

the host name Fred is not be used when matching the host names. By default, this

property is not set, which implies that any proxy host names and ports expected in

the VIA header should be listed in the host names and the ports properties to

satisfy the isTargetInterceptor method.

Chapter 5. Migrating security configurations from previous releases 33

Migrating product-provided trust association interceptors

The properties located in the webseal.properties and trustedserver.properties files

are not migrated from previous versions of the WebSphere Application Server. You must

migrate the appropriate properties to WebSphere Application Server, Version 5 using the

trust association panels in the GUI. For more information, see “Configuring trust

association interceptors” on page 135.

Changes to the custom trust association interceptors

If the custom interceptor extends,

com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor, then

implement the following new method to initialize the interceptor:

public int init (java.util.Properties props);

WebSphere Application Server checks the return status before using the Trust

Association implementation. Zero (0) is the default value for indicating the the

interceptor was successfully initialized. However, if a previous implementation of

the trust association interceptor returns a different error status you can either

change your implementation to match the expectations or make one of the

following changes:

Applicability of the following list: [Fix Pack 5.0.2 and later]

Method 1:

Add the com.ibm.websphere.security.trustassociation.initStatus

property in the trust association interceptor custom properties. Set the

property to the value that indicates that the interceptor is successfully

initialized. All of the other possible values imply failure. In case of failure,

the corresponding trust association interceptor is not used.

Method 2:

Add the com.ibm.websphere.security.trustassociation.ignoreInitStatus

property in the trust association interceptor custom properties. Set the

value of this property to true, which tells WebSphere Application Server to

ignore the status of this method. If you add this property to the custom

properties, WebSphere Application Server does not check the return status,

which is similar to previous versions of WebSphere Application Server.

 The public int init (java.util.Properties props); method replaces the public

int init (String propsFile) method.

The init(Properties) method accepts a java.util.Properties object which contains the

set of properties required to initialize the interceptor. All the properties set for an

interceptor (by using the Custom Properties link for that interceptor or using

scripting) will be sent to this method. The interceptor can then use these properties

to initialize itself. For example, in the product provided implementation for the

WebSEAL server, this method reads the hosts and ports so that a request coming in

can be verified to come from trusted hosts and ports. A return value of 0 implies

that the interceptor initialization is successful. Any other value implies that the

initialization was not successful and the interceptor will not be used.

All the properties set for an interceptor (by using the Custom Properties link in

the administrative console for that interceptor or using scripting) is sent to this

method. The interceptor can then use these properties to initialize itself. For

example, in the product-provided implementation for the WebSEAL server, this

34 IBM® WebSphere® Application Server, Version 5.0.2: Security

method reads the hosts and ports so that an incoming request can be verified to

come from trusted hosts and ports. A return value of 0 implies that the interceptor

initialization is successful. Any other value implies that the initialization was not

successful and the interceptor is ignored.

Note: The init(String) method still works if you want to use it instead of

implementing the init(Properties) method. The only requirement is that the file

name containing the custom trust association properties should now be entered

using the Custom Properties link of the interceptor in the administrative console

or by using scripts. You can enter the property using either of the following

methods. The first method is used for backward compatibility with previous

versions of WebSphere Application Server.

Method 1:

The same property names used in the previous release are used to obtain

the file name. The file name is obtained by concatenating the .config to

the com.ibm.websphere.security.trustassociation.types property value.

If the file name is called myTAI.properties and is located in the

C:/WebSphere/AppServer/properties directory, set the following properties:

v com.ibm.websphere.security.trustassociation.types = myTAItype

v com.ibm.websphere.security.trustassociation.myTAItype.config =

C:/WebSphere/AppServer/properties/myTAI.properties

Method 2:

You can set the

com.ibm.websphere.security.trustassociation.initPropsFile property in

the trust association custom properties to the location of the file. For

example, set the following property:

com.ibm.websphere.security.trustassociation.initPropsFile=

C:/WebSphere/AppServer/properties/myTAI.properties

 The previous line of code was split into two lines due to the width of the

screen. Type as one continuous line.

 However, it is highly recommened that your implementation be changed to

implement the init(Properties) method instead of relying on init (String propsfile)

method.

Migrating custom trust association interceptors

The trust associations from previous versions of WebSphere Application Server are

not migrated to version 5. Users can manually migrate these trust asociations using

the following steps:

Steps for this task

1. Recompile the implementation file, if necessary.

 For more information, refer to the ″Changes to the custom trust association

interceptors″ section previously discussed in this document.

 To recompile the implementation file, type the following:

%WAS_HOME%/java/bin/javac -classpath %WAS_HOME%/lib/wssec.jar;

%WAS_HOME%/lib/j2ee.jar <your implementation file>.java

 Note: The previous line of code was broken into two lines due to the width of

the page. Type the code as one continuous line.

2. Copy the custom trust association interceptor class files to a location in your

product class path.

Chapter 5. Migrating security configurations from previous releases 35

It is suggested that you copy these class files into the %WAS_HOME%/lib/ext

directory.

3. Start the WebSphere Application Server

4. Enable security to use the trust association interceptor.

 The properties located in your custom trust association properties file and in the

trustedserver.properties file are not migrated from previous versions of WebSphere

Application Server to version 5. You must migrate the appropriate properties to

WebSphere Application Server, version 5 using the trust association panels in the GUI.

For more information, see “Configuring trust association interceptors” on page

135..

Migrating Common Object Request Broker Architecture programmatic

login to Java Authentication and Authorization Service

Before you begin

WebSphere Application Server Version 5 fully supports the Java Authentication and

Authorization Service (JAAS) as programmatic login APIs. See “Configuring Java

Authentication and Authorization Service login” on page 211 for more details on

JAAS support.

This document outlines the deprecated Common Object Request Broker

Architecture (CORBA) programmatic login APIs and the alternatives provided by

JAAS. The following are the deprecated CORBA programmatic login APISs:

v ${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-
INF/classes/LoginHelper.java.

 The sampleApp is not included in Version 5.

v ${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-
INF/classes/ServerSideAuthenticator.java.

 The sampleApp is not included in Version 5.

v com.ibm.IExtendedSecurity._LoginHelper.

 This API is included with the product, but is deprecated.

v org.omg.SecurityLevel2.Credentials. This API is included with the product, but

not recommended to use.

The alternative APIs provided in WebSphere Application Server Version 5 are a

combination of standard JAAS APIs and a product implementation of standard

JAAS interfaces. The following information is only a summary; refer to the JAAS

documentation, which is included with the product

(${was.install.root}/web/docs/jaas/JaasDocs.zip) and the product Javadoc

(${was.install.root}/web/apidocs/index.html) for details.

v Programmatic login APIs:

– javax.security.auth.login.LoginContext

– javax.security.auth.callback.CallbackHandler interface: The WebSphere

Application Server product provides the following implementation of the

javax.security.auth.callback.CallbackHandler interface:

- com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl: A

non-prompt CallbackHandler, application pushes basic authentication data

(user ID, password, and security realm) or token data to product

LoginModules. This API is recommended for server-side login.

36 IBM® WebSphere® Application Server, Version 5.0.2: Security

- com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl:

A GUI login prompt CallbackHandler to gather basic authentication data

(user ID, password, and security realm). This API is recommended for

client-side login.

 Note: If this API is used on the server side, the server is blocked for input.

- com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl:

A stdin login prompt CallbackHandler to gather basic authentication data

(user ID, password, and security realm). This API is recommended for

client-side login.

 Note: If this API is used on the server side, the server is blocked for input.
– javax.security.auth.callback.Callback interface:

- javax.security.auth.callback.NameCallback: Provided by JAAS to pass the

user name to the LoginModules interface.

- javax.security.auth.callback.PasswordCallback: Provided by JAAS to pass

the password to the LoginModules interface.

- com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl:

Provided by the product to perform a token-based login. With this API, an

application can pass a token-byte array to the LoginModules interface.
– javax.security.auth.spi.LoginModule interface: WebSphere Application Server

provides LoginModules implementation for client and server-side login. Refer

to “Configuring Java Authentication and Authorization Service login” on page

211 for details.
v javax.security.Subject:

– com.ibm.websphere.security.auth.WSSubject: An extension provided by the

product to invoke remote J2EE resources using the credentials in the

javax.security.Subject

– com.ibm.websphere.security.cred.WSCredential: After a successful JAAS

login with the WebSphere Application Server LoginModules intefaces, a

com.ibm.websphere.security.cred.WSCredential credentials is created and

stored in the Subject.

– com.ibm.websphere.security.auth.WSPrincipal: An authenticated principal,

that is created and stored in a Subject that is authenticated by the WebSphere

LoginModules interface.

Steps for this task

1. Use the following as an example of how to perform programmatic login using

the CORBA-based programmatic login APIs:

 The CORBA-based programmatic login APIs are replaced by JAAS login.

public class TestClient {

...

private void performLogin() {

// Get the ID and password of the user.

String userid = customGetUserid();

String password = customGetPassword();

// Create a new security context to hold authentication data.

LoginHelper loginHelper = new LoginHelper();

try {

// Provide the ID and password of the user for authentication.

org.omg.SecurityLevel2.Credentials credentials = loginHelper.login(userid, password);

// Use the new credentials for all future invocations.

loginHelper.setInvocationCredentials(credentials);

// Retrieve the name of the user from the credentials

Chapter 5. Migrating security configurations from previous releases 37

// so we can tell the user that login succeeded.

String username = loginHelper.getUserName(credentials);

System.out.println("Security context set for user: "+username);

} catch (org.omg.SecurityLevel2.LoginFailed e) {

// Handle the LoginFailed exception.

}

}

...

}

2. Use the following example to migrate the CORBA-based programmatic login

APIs to the JAAS programmatic login APIs.

 The following example assumes that the application code is granted for the

required Java 2 security permissions. See (Configuring Java Authentication and

Authorization Service), (Configuring Java 2 security) and JAAS documentation

located in the ${was.install.root}/web/docs/jaas/JaasDocs.zip file for

details.

public class TestClient {

...

private void performLogin() {

// Create a new JAAS LoginContext.

javax.security.auth.login.LoginContext lc = null;

try {

// Use GUI prompt to gather the BasicAuth data.

lc = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication date is collected by GUI login prompt

// and pass to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: failed to instantiate a LoginContext and the exception: "

 + e.getMessage()); // (previous line split for publication)

e.printStackTrace();

// may be javax.security.auth.AuthPermission "createLoginContext" is not granted

// to the application, or the JAAS Login Configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a J2EE resources using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is an protected EJB

} catch (Exception e) {

System.out.println("ERROR: error while accessing EJB resource, exception: " + e.getMessage());

e.printStackTrace();

}

return null;

}

}

);

// Retrieve the name of the principal from the Subject

// so we can tell the user that login succeeded,

38 IBM® WebSphere® Application Server, Version 5.0.2: Security

// should only be one WSPrincipal.

java.util.Set ps =

s.getPrincipals(com.ibm.websphere.security.auth.WSPrincipal.class);

java.util.Iterator it = ps.iterator();

while (it.hasNext()) {

com.ibm.websphere.security.auth.WSPrincipal p =

(com.ibm.websphere.security.auth.WSPrincipal) it.next();

System.out.println("Principal: " + p.getName());

}

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: login failed with exception: " + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

}

}

...

}

Usage scenario

Migrating CORBA-based programmatic login application to JAAS-based

applications.

What to do next

Migrating from the CustomLoginServlet class to servlet filters

Before you begin

The CustomLoginServlet class is deprecated in Version 5. Those applications using

the CustomLoginServlet class to perform authentication now need to use

form-based login. Using the form-based login mechanism, you can control the look

and feel of the login screen. In form-based login, a login page is specified that

displays when retrieving the user ID and password information. You also can

specify an error page that displays when authentication fails.

If login and error pages are not enough to implement the CustomLoginServlet

class, use servlet filters. Servlet filters can dynamically intercept requests and

responses to transform or use the information contained in the requests or

responses. One or more servlet filters attach to a servlet or a group of servlets.

Servlet filters also can attach to JSP files and HTML pages. All the attached servlet

filters are called before invoking the servlet.

Both form-based login and servlet filters are supported by any Servlet 2.3

specification-compliant Web container. A form login servlet performs the

authentication and servlet filters can perform additional authentication,auditing, or

logging tasks.

To perform pre-login and post-login actions using servlet filters, configure these

servlet filters for either form login page or for /j_security_check URL. The

j_security_check is posted by the form login page with the j_username parameter,

containing the user name and the j_password parameter containing the password.

A servlet filter can use user name and password information to perform more

authentication or meet other special needs.

Steps for this task

1. Develop a form login page and error page for the application, as described in

“Developing form login pages” on page 48.

Chapter 5. Migrating security configurations from previous releases 39

2. Configure the form login page and the error page for the application as

described in “Securing Web applications” on page 83.

3. Develop servlet filters if additional processing is required before and after form

login authentication. Refer to “Developing servlet filters for form login

processing” on page 44 for details.

4. Configure the servlet filters developed in the previous step for either the form

login page URL or for the /j_security_check URL. Use an assembly tool or

development tools like WebSphere Application Development Studio to

configure filters.

 After configuring the servlet filters, the web-xml file contains two stanzas. The

first stanza contains the servlet filter configuration, the servlet filter, and its

implementation class. The second stanza contains the filter mapping section

and a mapping of the servlet filter to the URL. In this case, the servlet filter

maps to /j_security_check.

<filter id="Filter_1">

 <filter-name>LoginFilter</filter-name>

 <filter-class>LoginFilter</filter-class>

 <description>Performs pre-login and post-login operation</description>

 <init-param>

 <param-name>ParamName</param-name>

 <param-value>ParamValue</param-value>

 <init-param>

 </filet>

 <filter-mapping>

 <filter-name>LoginFilter</filter-name>

 <url-pattern>/j_security_check</url-pattern>

 </filter-mapping>

Results

This migration results in an application that uses form-based login and servlet

filters without the use of the CustomLoginServlet class.

Usage scenario

The use of form-based login and servlet filters by the new application are used to

replace the CustomLoginServlet class. Servlet filters also are used to perform

additional authentication, auditing and logging.

40 IBM® WebSphere® Application Server, Version 5.0.2: Security

Chapter 6. Developing secured applications

IBM WebSphere Application Server provides security components that provide or

collaborate with other services to provide authentication, authorization, delegation,

and data protection. WebSphere Application Server also supports the security

features described in the Java 2 Enterprise Edition (J2EE) specification. An

application goes through three stages before it is ready to run:

v Development

v Assembly

v Deployment

Most of the security for an application is configured during the assembly stage.

The security configured during the assembly stage is called declarative security

because the security is declared or defined in the deployment descriptors. The

declarative security is enforced by the security run time. For some applications,

declarative security is not sufficient to express the security model of the

application. For these applications, you can use programmatic security.

Steps for this task

1. “Developing with programmatic security APIs for Web applications.”

2. “Developing servlet filters for form login processing” on page 44.

3. “Developing form login pages” on page 48.

4. “Developing with programmatic APIs for EJB applications” on page 52.

5. “Developing with the Java Authentication and Authorization Service to log in

programmatically” on page 56.

6. Develop your own Java 2 security mapping module.

7. “Developing custom user registries” on page 62.

8. “Developing a custom interceptor for trust associations” on page 71.

Developing with programmatic security APIs for Web applications

Before you begin

Programmatic security is used by security-aware applications when declarative

security alone is not sufficient to express the security model of the application.

Programmatic security consists of the following methods of the HttpServletRequest

interface:

getRemoteUser()

Returns the user name the client used for authentication. Returns null if no

user is authenticated.

isUserInRole

(String role name): Returns true if the remote user is granted the specified

security role. If the remote user is not granted the specified role, or if no

user is authenticated, it returns false.

getUserPrincipal()

Returns the java.security.Principal object containing the remote user name.

If no user is authenticated, it returns null.

© Copyright IBM Corp. 2003 41

When the isUserInRole() method is used, declare a security-role-ref element in the

deployment descriptor with a role-name subelement containing the role name

passed to this method. Since actual roles are created during the assembly stage of

the application, you can use a logical role as the role name and provide enough

hints to the assembler in the description of the security-role-ref element to link that

role to the actual role. During assembly, the assembler creates a role-link

subelement to link the role name to the actual role. Creation of a security-role-ref

element is possible if development tools such as WebSphere Studio Application

Developer is used. You also can create the security-role-ref element during

assembly stage using the assembly tool.

Steps for this task

1. Add the required security methods in the servlet code.

2. (Optional) Create a security-role-ref element with the role-name field. If a

security-role-ref element is not created during development, make sure it is

created during the assembly stage.

Results

A programmatically secured servlet application.

Usage scenario

This step is required to secure an application programmatically. This action is

particularly useful is when a Web application wants to access external resources

and wants to control the access to external resources using its own authorization

table (external-resource to remote-user mapping). In this case, use the

getUserPrincipal() or getRemoteUser() methods to get the remote user and then

it can consult its own authorization table to perform authorization. The remote

user information also can help retrieve the corresponding user information from an

external source such as a database or from an enterprise bean. You can use the

isUserInRole() method in a similar way.

After development, a security-role-ref element can be created:

<security-role-ref>

//The following line split for publication:

<description>Provide hints to assembler for linking this role name

to an actual role here<\description>

<role-name>Mgr<\role-name>

</security-role-ref>

During assembly, the assembler creates a role-link element:

<security-role-ref>

//The following line split for publication:

<description>Hints provided by developer to map

the role name to the role-link</description>

<role-name>Mgr</role-name>

<role-link>Manager</role-link>

</security-role-ref>

You can add programmatic servlet security methods inside any servlet doGet(),

doPost(), doPut(), doDelete() service methods. The following example depicts using

a programmatic security API:

public void doGet(HttpServletRequest request, HttpServletResponse response) {

42 IBM® WebSphere® Application Server, Version 5.0.2: Security

// to get remote user using getUserPrincipal()

 java.security.Principal principal = request.getUserPrincipal();

 String remoteUser = principal.getName();

 // to get remote user using getRemoteUser()

 remoteUser = request.getRemoteUser();

 // to check if remote user is granted Mgr role

 boolean isMgr = request.isUserInRole("Mgr");

 // use the above information in any way as needed by the application

}

What to do next

After developing an application, use the Application Assembly Tool (AAT)to create

roles and to link the actual roles to role names in the security-role-ref elements.

Example: Web applications code

The following example illustrates a Web application or servlet using the

programmatic security model. The following example is one usage and not

necessarily the only usage of the programmatic security model. The application can

use the information returned by the getUserPrincipal(), isUserInRole() and

getRemoteUser() methods in any other way that is meaningful to that application.

Using the declarative security model whenever possible is strongly recommended.

File : HelloServlet.java

public class HelloServlet extends javax.servlet.http.HttpServlet {

 public void doPost(

 javax.servlet.http.HttpServletRequest request,

 javax.servlet.http.HttpServletResponse response)

 throws javax.servlet.ServletException, java.io.IOException {

 }

public void doGet(

 javax.servlet.http.HttpServletRequest request,

 javax.servlet.http.HttpServletResponse response)

 throws javax.servlet.ServletException, java.io.IOException {

 String s = "Hello";

 // get remote user using getUserPrincipal()

 java.security.Principal principal = request.getUserPrincipal();

 String remoteUserName = "";

 if(principal != null)

 remoteUserName = principal.getName();

// get remote user using getRemoteUser()

 String remoteUser = request.getRemoteUser();

 // check if remote user is granted Mgr role

 boolean isMgr = request.isUserInRole("Mgr");

 // display Hello username for managers and bob.

 if (isMgr || remoteUserName.equals("bob"))

 s = "Hello " + remoteUserName;

 String message = "<html> \n" +

 "<head><title>Hello Servlet</title></head>\n" +

 "<body> /n +"

 "<h1> " +s+ </h1>/n " +

Chapter 6. Developing secured applications 43

byte[] bytes = message.getBytes();

 // displays "Hello" for ordinary users

 // and displays "Hello username" for managers and "bob".

 response.getOutputStream().write(bytes);

 }

}

After developing the servlet, you can create a security role reference for the

HelloServlet as shown in the following:

<security-role-ref>

<description> </description>

<role-name>Mgr</role-name>

</security-role-ref>

Developing servlet filters for form login processing

Before you begin

You can control the look and feel of the login screen using the form-based login

mechanism. In form-based login, you specify a login page that displays to retrieve

the user ID and password information. You also can specify an error page that

displays when authentication fails.

If additional authentication or additional processing before and after authentication

is required, servlet filters are an option. Servlet filters can dynamically intercept

requests and responses to transform or use the information contained in the

requests or responses. One or more servlet filters can attach to a servlet or a group

of servlets. Servlet filters also can attach to JSP and HTML pages. All the attached

servlet filters are called before the servlet is invoked.

Both form-based login and servlet filters are supported by any servlet version 2.3

specification complaint Web container. The form login servlet performs the

authentication and servlet filters perform additional authentication, auditing, or

logging information.

To perform pre-login and post-login actions using servlet filters, configure these

filters for either form login page support or for the /j_security_check URL. The

j_security_check is posted by a form login page with the j_username parameter

containing the user name and the j_password parameter containing the password.

A servlet filter can use the user name parameter and password information to

perform more authentication or other special needs.

Steps for this task

1. A servlet filter implements the javax.servlet.Filter class. There are three

methods in the filter class that needs implementing:

v init(javax.servlet.FilterConfig cfg). This method is called by the container

exactly once when the servlet filter is placed into service. The FilterConfig

passed to this method contains the init-parameters of the servlet filter.

Specify the init-parameters for a servlet filter during configuration using the

assembly tool.

v destroy(). This method is called by the container when the servlet filter is

taken out of service. Any cleanup required a

v doFilter(ServletRequest req, ServletResponse res, FilterChain chain). This

method is called by the container for every servlet request that maps to this

filter before invoking the servlet. FilterChain passed to this method can be

44 IBM® WebSphere® Application Server, Version 5.0.2: Security

used to invoke the next filter in the chain of filters. The original requested

servlet executes when the last filter in the chain calls the chain.doFilter()

method. Therefore, all filters should call the chain.doFilter() method for the

original servlet to execute after filtering. If an additional authentication check

is implemented in the filter code and results in failure, the original servlet

does not be execute. The chain.doFilter() method is not called and can be

redirected to some other error page.

If a servlet maps to many servlet filters, servlet filters are called in the order

that is listed in the deployment descriptor of the application (web.xml).

 An example of a servlet filter follows: This login filter can map to

/j_security_check to perform pre-login and post-login actions.

import javax.servlet.*;

 public class LoginFilter implements Filter {

 protected FilterConfig filterConfig;

 // Called once when this filter is instantiated.

 // If mapped to j_security_check, called very first time

 // j_security_check is

 // invoked.

 public void init(FilterConfig filterConfig) throws ServletException {

 this.filterConfig = filterConfig;

 }

 public void destroy() {

 this.filterConfig = null;

 }

 // Called for every request that is mapped to this filter.

 // If mapped to j_security_check, called for every

 // j_security_check action

 public void doFilter(ServletRequest request, ServletResponse response,

 FilterChain chain) throws java.io.IOException, ServletException {

 // perform pre-login action here

 chain.doFilter(request, response);

 // calls the next filter in chain.

 // j_security_check if this filter is mapped to j_security_check.

 // perform post-login action here.

 }

 }

Place the servlet filter class file in the WEB-INF/classes directory of the

application.

Configuring servlet filters

WebSphere Application Development Studio or the Application Assembly Tool

(AAT) can configure the servlet filters. There are two steps in configuring a servlet

filter.

Steps for this task

1. Configure the servlet filter.

Chapter 6. Developing secured applications 45

Name the servlet filter and assign the corresponding implementation class to

the servlet filter. Optionally, assign initialization parameters that get passed to

the init() method of the servlet filter.After configuring the servlet filter, the

application deployment descriptor, web.xml, contains a servlet filter

configuration similar to the following example:

<filter id="Filter_1">

 <filter-name>LoginFilter</filter-name>

 <filter-class>LoginFilter</filter-class>

 <description>Performs pre-login and post-login operation</description>

 <init-param>// optional

 <param-name>ParameterName</param-name>

 <param-value>ParameterValue</param-value>

 </init-param>

</filter>

2. Map the servlet filter to URL or servlet.

 Map a servlet or a URL pattern to the servlet filter.After mapping the servlet

filter to a servlet or a URL, the application deployment descriptor (web.xml)

contains servlet mapping similar to the following example:

 <filter-mapping>

 <filter-name>LoginFilter</filter-name>

 <url-pattern>/j_security_check</url-pattern>

 // can be servlet <servlet>servletName</servlet>

</filter-mapping>

Usage scenario

You can use servlet filters to replace the CustomLoginServlet, and to perform

additional authentication, auditing, and logging.

Example: Servlet filters

This example illustrates one way the servlet filters can perform pre-login and

post-login processing during form login.

Servlet filter source code: LoginFilter.java

/**

 * A servlet filter example: This example filters j_security_check and

 * performs pre-login action to determine if the user trying to log in

 * is in the revoked list. If the user is on the revoked list, an error is

 * sent back to the browser.

 *

 * This filter reads the revoked list file name from the FilterConfig

 * passed in the init() method. It reads the revoked user list file and

 * creates a revokedUsers list.

 *

 * When the doFilter method is called, the user logging in is checked

 * to make sure that the user is not on the revoked Users list.

 *

 */

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

public class LoginFilter implements Filter {

 protected FilterConfig filterConfig;

 java.util.List revokeList;

 /**

46 IBM® WebSphere® Application Server, Version 5.0.2: Security

* init() : init() method called when the filter is instantiated.

 * This filter is instantiated the first time j_security_check is invoked for

 * the application (When a protected servlet in the application is accessed).

 */

 public void init(FilterConfig filterConfig) throws ServletException {

 this.filterConfig = filterConfig;

 // read revoked user list

 revokeList = new java.util.ArrayList();

 readConfig();

 }

 /**

 * destroy() : destroy() method called when the filter is taken out of service.

 */

 public void destroy() {

 this.filterConfig = null;

 revokeList = null;

 }

 /**

 * doFilter() : doFilter() method called before the servlet to which this filter

 * is mapped is invoked. Since this filter is mapped to j_security_check,

 * this method is called before j_security_check action is posted.

 */

 public void doFilter(ServletRequest request, ServletResponse response,

 FilterChain chain) throws java.io.IOException, ServletException {

 HttpServletRequest req = (HttpServletRequest)request;

 HttpServletResponse res = (HttpServletResponse)response;

 // pre login action

 // get username

 String username = req.getParameter("j_username");

 // if user is in revoked list send error

 if (revokeList.contains(username)) {

 res.sendError(javax.servlet.http.HttpServletResponse.SC_UNAUTHORIZED);

 return;

 }

 // call next filter in the chain : let j_security_check authenticate user

 chain.doFilter(request, response);

 // post login action

 }

 /**

 * readConfig() : Reads revoked user list file and creates a revoked user list.

 */

 private void readConfig() {

 if (filterConfig != null) {

 // get the revoked user list file and open it.

 BufferedReader in;

 try {

 String filename = filterConfig.getInitParameter("RevokedUsers");

 in = new BufferedReader(new FileReader(filename));

 } catch (FileNotFoundException fnfe) {

 return;

 }

 // read all the revoked users and add to revokeList.

Chapter 6. Developing secured applications 47

String userName;

 try {

 while ((userName = in.readLine()) != null)

 revokeList.add(userName);

 } catch (IOException ioe) {

 }

 }

 }

}

Portion of the web.xml file showing the LoginFilter configured and mapped to

j_security_check:

<filter id="Filter_1">

 <filter-name>LoginFilter</filter-name>

 <filter-class>LoginFilter</filter-class>

 <description>Performs pre-login and post-login operation</description>

 <init-param>

 <param-name>RevokedUsers</param-name>

<param-value>c:\WebSphere\AppServer\installedApps\<app-name>

 \revokedUsers.lst</param-value> \\ (previous line split for publication)

 </init-param>

 </filter-id>

 <filter-mapping>

 <filter-name>LoginFilter</filter-name>

 <url-pattern>/j_security_check</url-pattern>

 </filter-mapping>

An example of a revoked user list file:

user1

cn=user1,o=ibm,c=us

user99

cn=user99,o=ibm,c=us

Developing form login pages

Before you begin

A Web client or browser can authenticate a user to a Web server using one of the

following mechanisms:

v HTTP basic authentication: A Web server requests the Web client to authenticate

and the Web client passes a user ID and password in the HTTP header.

v HTTPS Client authentication: This mechanism requires a user (Web client) to

possess a public key certificate. The Web client sends this certificate to a Web

server that requests for client certificates. This is a strong authentication

mechanism and uses the Hypertext Transfer Protocol with Secure Sockets Layer

(HTTPS) protocol.

v Form-Based Authentication: A developer controls the look and feel of the login

screens using this authentication mechanism.

The Hypertext Transfer Protocol (HTTP) basic authentication transmits a user

password from the Web client to the Web server in simple base64 encoding.

Form-based authentication transmits a user password from the browser to the Web

server in plain text. Therefore, both HTTP basic authentication and form-based

authentication are not very secure unless the HTTPS protocol is used.

48 IBM® WebSphere® Application Server, Version 5.0.2: Security

The Web application deployment descriptor contains information about which

authentication mechanism to use. When form-based authentication is used, the

deployment descriptor also contains entries for login and error pages. A login page

can be either an HTML page or a JavaServer pages (JSP) page. This login page

displays on the Web client side when a secured resource (servlet, JSP file, HTML

page) is accessed from the application. On authentication failure, an error page

displays. You can write login and error pages to suit the application needs and

control the look and feel of these pages. During assembly of the application, an

assembler can set the authentication mechanism for the application and set the

login and error pages in the deployment descriptor.

Form login uses the servlet sendRedirect() method, which has several implications

for the user. The sendRedirect() method is used twice during form login:

v The sendRedirect() method initially displays the form login page in the Web

browser. It later redirects the Web browser back to the originally requested

protected page. The sendRedirect(String URL) method tells the Web browser to

use the HTTP GET (not the HTTP POST) request to get the page specified in the

URL. If HTTP POST is the first request to a protected servlet or JavaServer pages

(JSP) file, and no previous authentication or login occurred, then HTTP POST is

not delivered to the requested page. However, HTTP GET is delivered because

form login uses the sendRedirect() method, which behaves as a HTTP GET

request that tries to display a requested page after a login occurs.

v Using HTTP POST, you might experience a scenario where an unprotected

HTML form collects data from users and then posts this data to protected

servlets or JSP files for processing, but the users are not logged in for the

resource. To avoid this scenario, structure your Web application or permissions

so that users are forced to use a form login page before the application performs

any HTTP POST actions to protected servlets or JSP files.

See the “Example: Form login” on page 50 article for sample form login pages.

Steps for this task

1. Create a form login page with the required look and feel including the required

elements to perform form-based authentication.

2. Create an error page. You can program error pages to retry authentication or

display an appropriate error message.

3. Place the login page and error page in the Web archive (WAR) file relative to

the top directory. For example, if the login page is configured as /login.html in

the deployment descriptor, place it in the top directory of the WAR file as

shown in the previous section. An assembler can also perform this step using

the assembly tool.

4. Create a form logout page and insert it to the application only if required.

Usage scenario

This step is required when a Web application requires a form-based authentication

mechanism.

What to do next

After developing login and error pages, add them to the Web application. Use the

assembly tool to configure an authentication mechanism and insert the developed

login page and error page in the deployment descriptor of the application.

Chapter 6. Developing secured applications 49

Example: Form login

For the authentication to proceed appropriately, the action of the login form must

always be j_security_check. The following example shows how to code the form

into the HTML page:

<form method="POST" action="j_security_check">

<input type="text" name="j_username">

<input type="text" name="j_password">

<\form>

use the j_username input field to get the user name and use the j_password input

field to get the user password.

On receiving a request from a Web client, the Web server sends the configured

form page to the client and preserves the original request. When the Web server

receives the completed Form page from the Web client, it extracts the user name

and password from the form and authenticates the user. On successful

authentication, the Web server redirects the call to the original request. If

authentication fails, the Web server redirects the call to the configured error page.

The following example depicts a login page in HTML (login.html):

<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.0 Transitional//EN">

<html>

<META HTTP-EQUIV = "Pragma" CONTENT="no-cache">

<title> Security FVT Login Page </title>

<body>

<h2>Form Login</h2>

<FORM METHOD=POST ACTION="j_security_check">

<p>

 Enter user ID and password:

 User ID <input type="text" size="20" name="j_username">

 Password <input type="password" size="20" name="j_password">

 And then click this button:

<input type="submit" name="login" value="Login">

</p>

</form>

</body>

</html>

The following example depicts an error page in a JSP file:

<!DOCTYPE HTML PUBLIC "-//W3C/DTD HTML 4.0 Transitional//EN">

<html>

<head><title>A Form login authentication failure occurred</head></title>

<body>

<H1>A Form login authentication failure occurred</H1>

<P>Authentication may fail for one of many reasons. Some possibilities include:

The user-id or password may be entered incorrectly; either misspelled

 or the wrong case was used.

The user-id or password does not exist, has expired, or has been disabled.

</P>

</body>

</html>

50 IBM® WebSphere® Application Server, Version 5.0.2: Security

After an assembler configures the Web application to use form-based

authentication, the deployment descriptor contains the login configuration as

shown:

<login-config id="LoginConfig_1">

<auth-method>FORMauth-method>FORM>

<realm-name>Example Form-Based Authentication Area</realm-name>

<form-login-config id="FormLoginConfig_1">

<form-login-page>/login.html</form-login-page>

<form-error-page>/error.jsp</form-error-page>

</form-login-config>

</login-config>

A sample Web application archive (WAR) file directory structure showing login

and error pages for the previous login configuration:

META-INF

 META-INF/MANIFEST.MF

 login.html

 error.jsp

 WEB-INF/

 WEB-INF/classes/

 WEB-INF/classes/aServlet.class

Form logout

Form logout is a mechanism to log out without having to close all Web-browser

sessions. After logging out the form logout mechanism, access to a protected Web

resource requires reauthentication. This feature is not required by J2EE

specifications, but is provided as an additional feature in WebSphere security.

Suppose that it is desirable to log out after logging into a Web application and

perform some actions. A form logout works in the following manner:

1. The logout-form URI is specified in the Web browser and loads the form.

2. The user clicks Submit on the form to log out.

3. The WebSphere security code logs the user out.

4. Upon logout, the user is redirected to a logout exit page.

Form logout does not require any attributes in a deployment descriptor. It is an

HTML or JSP file that is included with the Web application. The form-logout page

is like most HTML forms except that like the form-login page, it has a special post

action. This post action is recognized by the Web container, which dispatches it to

a special internal WebSphere form-logout servlet. The post action in the

form-logout page must be ibm_security_logout.

You can specify a logout-exit page in the logout form and the exit page can

represent an HTML or JSP file within the same Web application to which that the

user is redirected after logging out. The logout-exit page is specified as a

parameter in the form-logout page. If no logout-exit page is specified, a default

logout HTML message is returned to the user. Here is a sample form logout HTML

form. This form configures the logout-exit page to redirect the user back to the

login page after logout.

<!DOCTYPE HTML PUBliC "-//W3C/DTD HTML 4.0 Transitional//EN">

<html>

 <META HTTP-EQUIV = "Pragma" CONTENT="no-cache">

 <title>Logout Page </title>

 <body>

Chapter 6. Developing secured applications 51

<h2>Sample Form Logout</h2>

 <FORM METHOD=POST ACTION="ibm_security_logout" NAME="logout">

 <p>

 Click this button to log out:

 <input type="submit" name="logout" value="Logout">

 <INPUT TYPE="HIDDEN" name="logoutExitPage" VALUE="/login.html">

 </p>

 </form>

 </body>

</html>

Developing with programmatic APIs for EJB applications

Before you begin

Programmatic security is used by security-aware applications when declarative

security alone is not sufficient to express the security model of the application. The

javax.ejb.EJBContext interface provides two methods whereby the bean provider

can access security information about the enterprise bean caller.

v IsCallerInRole(String rolename): Returns true if the bean caller is granted the

specified security role (specified by role name). If the caller is not granted the

specified role, or if the caller is not authenticated, it returns false. If the specified

role is granted Everyone access, it always returns true.

v getCallerPrincipal(): Returns the java.security.Principal object containing the

bean caller name. If the caller is not authenticated, it returns a principal

containing UNAUTHENTICATED name.

When the isCallerInRole() method is used, declare a security-role-ref element in

the deployment descriptor with a role-name subelement containing the role name

passed to this method. Since actual roles are created during the assembly stage of

the application, you can use a logical role as the role name and provide enough

hints to the assembler in the description of the security-role-ref element to link that

role to actual role. During assembly, assembler creates a role-link sub element to

link the role-name to the actual role. Creation of a security-role-ref element is

possible if development tools such as WebSphere Studio Application Developer is

used. You also can create the security-role-ref element during the assembly stage

using an assembly tool.

Steps for this task

1. Add the required security methods in the EJB module code.

2. (Optional) Create a security-role-ref element with a role-name field for all the

role names used in the isCallerInRole() method.

 If a security-role-ref element is not created during development, make sure it is

created during the assembly stage.

Results

A programmatically secured EJB application.

Usage scenario

Hard coding security policies in applications is strongly discouraged. The J2EE

security model capabilities of declaratively specifying security policies is

encouraged wherever possible . Use these APIs to develop security-aware EJB

applications. An example where this implementation is useful is when an EJB

52 IBM® WebSphere® Application Server, Version 5.0.2: Security

application wants to access external resources and wants to control the access to

these external resources using its own authorization table (external-resource to user

mapping). In this case, use the getCallerPrincipal() method to get the caller

identity and then the application can consult its own authorization table to

perform authorization. The caller identification also can help retrieve the

corresponding user information from an external source, such as database or from

another enterprise bean. You can use the isCallerInRole() method in a similar way.

After development, a security-role-ref element can be created:

<security-role-ref>

<description>Provide hints to assembler for linking this role-name to

 actual role here<\description>

<role-name>Mgr<\role-name>

</security-role-ref>

During assembly, the assembler creates a role-link element:

<security-role-ref>

<description>Hints provided by developer to map role-name to role-link</description>

<role-name>Mgr</role-name>

<role-link>Manager</role-link>

</security-role-ref>

You can add programmatic EJB component security methods (isCallerInRole() and

getCallerPrincipal()) inside any business methods of an enterprise bean. The

following example of programmatic security APIs includes a session bean:

public class aSessionBean implements SessionBean {

 // SessionContext extends EJBContext. If it is entity bean use EntityContext

 javax.ejb.SessionContext context;

 // The following method will be called by the EJB container automatically

 public void setSessionContext(javax.ejb.SessionContext ctx) {

 context = ctx; // save the session bean’s context

 }

 private void aBusinessMethod() {

 // to get bean’s caller using getCallerPrincipal()

 java.security.Principal principal = context.getCallerPrincipal();

 String callerId= principal.getName();

 // to check if bean’s caller is granted Mgr role

 boolean isMgr = context.isCallerInRole("Mgr");

 // use the above information in any way as needed by the application

 }

}

What to do next

Chapter 6. Developing secured applications 53

After developing an application, use the Application Assembly Tool (AAT)to create

roles and link actual roles to role-name elements in the security-role-ref elements.

Example: Enterprise bean application code

The following EJB component example illustrates the use of isCallerInRole() and

getCallerPrincipal() methods in an EJB module. Using that declarative security is

recommended. The following example is one way of using the isCallerInRole() and

getCallerPrincipal() methods. The application can use this result in any way that is

suitable.

A remote interface

A remote interface:

File : Hello.java

package tests;

import java.rmi.RemoteException;

/**

 * Remote interface for Enterprise Bean: Hello

 */

public interface Hello extends javax.ejb.EJBObject {

 public abstract String getMessage()throws RemoteException;

 public abstract void setMessage(String s)throws RemoteException;

}

A home interface

A home interface:

File : HelloHome.java

package tests;

/**

 * Home interface for Enterprise Bean: Hello

 */

public interface HelloHome extends javax.ejb.EJBHome {

 /**

 * Creates a default instance of Session Bean: Hello

 */

 public tests.Hello create() throws javax.ejb.CreateException, java.rmi.RemoteException;

}

A bean implementation

A bean implementation:

File : HelloBean.java

package tests;

/**

 * Bean implementation class for Enterprise Bean: Hello

 */

public class HelloBean implements javax.ejb.SessionBean {

 private javax.ejb.SessionContext mySessionCtx;

 /**

 * getSessionContext

 */

 public javax.ejb.SessionContext getSessionContext() {

 return mySessionCtx;

 }

 /**

 * setSessionContext

54 IBM® WebSphere® Application Server, Version 5.0.2: Security

*/

 public void setSessionContext(javax.ejb.SessionContext ctx) {

 mySessionCtx = ctx;

 }

 /**

 * ejbActivate

 */

 public void ejbActivate() {

 }

 /**

 * ejbCreate

 */

 public void ejbCreate() throws javax.ejb.CreateException {

 }

 /**

 * ejbPassivate

 */

 public void ejbPassivate() {

 }

 /**

 * ejbRemove

 */

 public void ejbRemove() {

 }

 public java.lang.String message;

 //business methods

 // all users can call getMessage()

 public String getMessage() throws java.rmi.RemoteException {

 return message;

 }

 // all users can call setMessage() but only few users can set new message.

 public void setMessage(String s) throws java.rmi.RemoteException {

 // get bean’s caller using getCallerPrincipal()

 java.security.Principal principal = mySessionCtx.getCallerPrincipal();

 java.lang.String callerId= principal.getName();

 // check if bean’s caller is granted Mgr role

 boolean isMgr = mySessionCtx.isCallerInRole("Mgr");

 // only set supplied message if caller is "bob" or caller is granted Mgr role

 if (isMgr || callerId.equals("bob"))

 message = s;

 else

 message = "Hello";

 }

}

After development of the entity bean, create a security role reference in the

deployment descriptor under the session bean, Hello:

<security-role-ref>

<description>Only Managers can call setMessage() on this bean (Hello)</description>

<role-name>Mgr</role-name>

</security-role-ref>

Chapter 6. Developing secured applications 55

Developing with the Java Authentication and Authorization Service to

log in programmatically

Before you begin

Java Authentication and Authorization Service (JAAS) is a new feature in

WebSphere Application Server Version 5. It is also mandated by the J2EE 1.3

Specification. Java Authentication and Authorization Service represents the

strategic APIs for authentication and it replaces the CORBA programmatic login

APIs. WebSphere Application Server provides some extension to JAAS:

v Refer to the Developing applications that use CosNaming (CORBA Naming

interface) article for details on how to set up the environment for thin client

applications to access remote resources on a server.

v If the application uses custom JAAS login configuration, verify that it is properly

defined. See the “Configuring Java Authentication and Authorization Service

login” on page 211.

v Some of the JAAS APIs are protected by Java 2 Security permissions. If these

APIs are used by application code, verify that these permissions are added to

the application was.policy file. See “Configuring Java 2 security policy files” on

page 339. For more details on which APIs are protected by Java 2 Security

permissions, check the IBM Application Developer Kit, Java Technology Edition;

JAAS and WebSphere Application Server public APIs javadoc in . Some of the

APIs used in the sample code in this documentation and the Java 2 Security

permissions required by these APIs follow:

– javax.security.auth.login.LoginContext constructors are protected by

javax.security.auth.AuthPermission ″createLoginContext″

– javax.security.auth.Subject.doAs() and

com.ibm.websphere.security.auth.WSSubject.doAs() are protected by

javax.security.auth.AuthPermission ″doAs″

– javax.security.auth.Subject.doAsPrivileged() and

com.ibm.websphere.security.auth.WSSubject.doAsPrivileged() are protected by

javax.security.auth.AuthPermission ″doAsPrivileged″

v Enhanced model to J2EE resources for authorization checks. Due to a design

oversight in JAAS Version 1.0, the javax.security.auth.Subject.getSubject()

method does not return the Subject associated with the thread of execution

inside a java.security.AccessController.doPrivileged() code block. This can

present an inconsistent behavior, which might have undesirable effects. The

com.ibm.websphere.security.auth.WSSubject provides a workaround to

associate a Subject to a thread of execution. The

com.ibm.websphere.security.auth.WSSubject extends the JAAS model to J2EE

resources for authorization checks. If the Subject associates with the thread of

execution within the com.ibm.websphere.security.auth.WSSubject.doAs()

method or if the com.ibm.websphere.security.auth.WSSubject.doAsPrivileged()

code block contains product credentials, the Subject is used for J2EE resources

authorization checks.

v UI support for defining new JAAS login configuration. You can configure

JAAS login configuration in the administrative console and store it in the

WebSphere Common Configuration Model. Applications can define a new JAAS

login configuration in the administrative console and the data is persisted in the

configuration repository (stored in the WebSphere Common Configuration

Model). However, WebSphere Application Server still supports the default JAAS

login configuration format (plain text file) provided by the JAAS default

implementation. If there are duplication login configurations defined in both the

56 IBM® WebSphere® Application Server, Version 5.0.2: Security

WebSphere Common Configuration and the plain text file format, the one in the

WebSphere Common Configuration takes precedence. There are advantages to

defining the login configuration in the WebSphere Common Configuration:

– UI support in defining JAAS login configuration

– JAAS configuration login configuration can be managed centrally

– JAAS configuration login configuration is distributed in a Network

Deployment installation
v Application support for programmatic authentication. WebSphere Application

Server provides JAAS login configurations for applications to perform

programmatic authentication to the WebSphere security run time. These

configurations perform authentication to the WebSphere-configured

authentication mechanism (Simple WebSphere Authentication Mechanism

(SWAM) or Lightweight Third Party Authentication (LTPA)) and user registry

(Local OS, Lightweight Directory Access Protocol (LDAP) or Custom) based on

the authentication data supplied. The authenticated Subject from these JAAS

login configurations contains the required Principal and Credentials that the

WebSphere security run time can use to perform authorization checks on J2EE

role-based protected resources. Here are the JAAS login configurations provided

by the WebSphere Application Server:

– WSLogin JAAS login configuration. A generic JAAS login configuration can

use Java clients, client container applications, servlets, JSP files, and EJB

components to perform authentication based on a user ID and password, or a

token to the WebSphere security run time. However, this does not honor the

CallbackHandler specified in the client container deployment descriptor.

– ClientContainer JAAS login configuration. This JAAS login configuration

honors the CallbackHandler specified in the client container deployment

descriptor. The login module of this login configuration uses the

CallbackHandler in the client container deployment descriptor if one is

specified, even if the application code specified one CallbackHandler in the

LoginContext. This is for a client container application.

 A Subject authenticated with the previously mentioned JAAS login

configurations contains a com.ibm.websphere.security.auth.WSPrincipal

principal and a com.ibm.websphere.security.auth.WSCredential credential. If

the authenticated Subject is passed in

com.ibm.websphere.security.auth.WSSubject.doAs() or the other doAs()

methods, the product security run time can perform authorization checks on

J2EE resources based on the Subject

com.ibm.websphere.security.auth.WSCredential.

v Customer-defined JAAS login configurations. You can define other JAAS login

configurations to perform programmatic authentication to your authentication

mechanism. See the (Managing Java Authentication and Authorization Service

Login Configuration) article for details. For the product security run time to

perform authorization checks, the subjects from these customer-defined JAAS

login configurations must contain the required principal and credentials.

v Naming requirements for programmatic login on a pure Java client. When

programmatic login occurs on a pure Java client and the property

com.ibm.CORBA.validateBasicAuth equals true, it is necessary for the security

code to know where the SecurityServer resides. Typically, the default

InitialContext is sufficient when a java.naming.provider.url property is set as a

system property or when the property is set in the jndi.properties file. In other

cases it is not desirable to have the same java.naming.provider.url properties

set in a system wide scope. In this case, there is a need to specify security

Chapter 6. Developing secured applications 57

specific bootstrap information in the sas.client.props file. The following steps

present the order of precedence for determining how to find the SecurityServer

in a pure Java client:

Steps for this task

1. Use the sas.client.props file and look for the following properties:

com.ibm.CORBA.securityServerHost=myhost.mydomain

com.ibm.CORBA.securityServerPort=mybootstrap port

If you specify these properties, you are guaranteed that security looks here for

the SecurityServer. The host and port specified can represent any valid

WebSphere host and bootstrap port. The SecurityServer resides on all server

processes and therefore it is not important which host or port you choose. If

specified, the security infrastructure within the client process look up the

SecurityServer based on the information in the sas.client.props file.

2. Place the following code in your client application to get a new InitialContext():

...

 import java.util.Hashtable;

 import javax.naming.Context;

 import javax.naming.InitialContext;

 ...

// Perform an InitialContext and default lookup prior to logging in so that target

realm // and bootstrap host/port can be determined for SecurityServer lookup.

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.ibm.websphere.naming.WsnInitialContextFactory");

 // (preceding line was split for publication)

 env.put(Context.PROVIDER_URL, "corbaloc:iiop:myhost.mycompany.com:2809");

 Context initialContext = new InitialContext(env);

 Object obj = initialContext.lookup("");

 // programmatic login code goes here.

Complete this step prior to executing any programmatic login. It is in this code

that you specify a URL provider for your naming context, but it must point to

a valid WebSphere Application Server within the cell that you are

authenticating to. This allows thread specific programmatic logins going to

different cells to have a single system-wide SecurityServer location.

3. Use the new default InitialContext() method relying on the naming precedence

rules.

 These rules are defined in the InfoCenter article, Example: Getting the default

initial context.

Usage scenario

See the article, “Example: JAAS programmatic login.”

Example: JAAS programmatic login

The following example illustrates how application programs can perform a

programmatic login using Java Authentication and Authorization Service (JAAS):.

LoginContext lc = null;

 try {

 lc = new LoginContext("WSLogin",

58 IBM® WebSphere® Application Server, Version 5.0.2: Security

new WSCallbackHandlerImpl("userName", "realm", "password"));

 } catch (LoginException le) {

 System.out.println("Cannot create LoginContext. " + le.getMessage());

 // insert error processing code

 } catch(SecurityException se) {

 System.out.printlin("Cannot create LoginContext." + se.getMessage();

 // Insert error processing

 }

 try {

 lc.login();

 } catch(LoginExcpetion le) {

 System.out.printlin("Fails to create Subject. " + le.getMessage());

 // Insert error processing code

As shown in the example, the new LoginContext is initialized with the WSLogin

login configuration and the WSCallbackHandlerImpl CallbackHandler. Use the

WSCallbackHandlerImpl instance on a server-side application where prompting is

not desirable. A WSCallbackHandlerImpl instance is initialized by the specified user

ID, password, and realm information. The present WSLoginModuleImpl class

implementation that is specified by WSLogin can only retrieve authentication

information from the specified CallbackHandler. You can construct a LoginContext

with a Subject object, but the Subject is disregarded by the present

WSLoginModuleImpl implementation. For product client container applications,

replace WSLogin by ClientContainer login configuration, which specifies the

WSClientLoginModuleImpl implementation that is tailored for client container

requirements.

For a pure Java application client, the product provides two other CallbackHandler

implementations: WSStdinCallbackHandlerImpl and WSGUICallbackHandlerImpl,

which prompt for user ID, password, and realm information on the command line

and pop-up panel, respectively. You can choose either of these product

CallbackHandler implementations depending on the particular application

environment. You can develop a new CallbackHandler if neither of these

implementations fit your particular application requirement.

You also can develop your own LoginModule if the default WSLoginModuleImpl

implementation fails to meet all your requirements. This product provides utility

functions that the custom LoginModule can use, which are described in the next

section.

In cases where there is no java.naming.provider.url set as a system property or in

the jndi.properties file, a default InitialContext does not function if the product

server is not at the localhost:2809 location. In this situation, perform a new

InitialContext programmatically ahead of the JAAS login. JAAS needs to know

where the SecurityServer resides to verify that the user ID or password entered is

correct, prior to doing a commit(). By performing a new InitialContext in the

way specified below, the security code has the information needed to find the

SecurityServer location and the target realm.

...

 import java.util.Hashtable;

 import javax.naming.Context;

 import javax.naming.InitialContext;

 ...

// Perform an InitialContext and default lookup prior to logging in so that target realm

// and bootstrap host/port can be determined for SecurityServer lookup.

 Hashtable env = new Hashtable();

 env.put(Context.INITIAL_CONTEXT_FACTORY,

Chapter 6. Developing secured applications 59

"com.ibm.websphere.naming.WsnInitialContextFactory"); // (split for publication)

 env.put(Context.PROVIDER_URL, "corbaloc:iiop:myhost.mycompany.com:2809");

 Context initialContext = new InitialContext(env);

 Object obj = initialContext.lookup("");

 LoginContext lc = null;

 try {

 lc = new LoginContext("WSLogin",

 new WSCallbackHandlerImpl("userName", "realm", "password"));

 } catch (LoginException le) {

 System.out.println("Cannot create LoginContext. " + le.getMessage());

 // insert error processing code

 } catch(SecurityException se) {

 System.out.printlin("Cannot create LoginContext." + se.getMessage();

 // Insert error processing

 }

 try {

 lc.login();

 } catch(LoginException le) {

 System.out.printlin("Fails to create Subject. " + le.getMessage());

 // Insert error processing code

 }

Developing your own J2C principal mapping module

Before you begin

WebSphere Application Server provides principal mapping when Java 2 Connector

(J2C) connection factory is configured to perform container managed sign-on. For

example, the application server can map the caller principal to a resource principal

to open a new connection to the backend server. With the container-managed

signon, WebSphere Application Server creates a Subject instance that contains

Enterprise Information Systems (EIS) security domain credentials. A Subject object

returned by a principal mapping module contains a Principal object represents the

caller identity and a PasswordCredential or a GenericCredential. WebSphere

Application Server provides a default principal mapping module that maps any

authenticated user credentials to password credentials for the EIS security domain.

The default mapping module is defined in the Application Login Configuration

panel in the DefaultPrincipalMapping entry. The user ID and password for the EIS

security domain is defined under each connection factory by an authDataAlias

attribute container-managed authentication alias in the administrative console. The

authDataAlias attribute does not actually contain the user name and password. An

authDataAlias attribute contains an alias that refers to a user name and password

pair that is defined in the security configuration document. Since it contains

sensitive data, the security configurtion document requires the most privileged

administrator role for both read and write access. This indirection avoids saving

sensitive user name and password in configuration documents other than the

security document.

The J2C connection factory configuration contains a mapping module which

defines a principal mapping module alias (mappingConfigAlias attribute) and an

authentication data alias (authDataAlias attribute). At run time the J2C-managed

connection factory code passes a reference of the ManagedConnectionFactory and an

authDataAlias object to the configured principal mapping module through the

WSPrincipalMappingCallbackHandler object. WebSphere Application Server

supports plugging in a custom principal mapping module for a connection factory

if the any-authenticated-to-one mapping provided by the default principal

mapping module is insufficient. A custom mapping module is a special purpose

Java Authentication and Authorization Service (JAAS) LoginModule that performs

60 IBM® WebSphere® Application Server, Version 5.0.2: Security

principal or credential mapping in the login method. The

WSSubject.getCallerPrincipal() method can be used to retrieve the application

client identity. Plugging in a custom mapping module is very simple. Change the

value of the mappingConfigAlias object to the custom mapping module. However,

the configuration must be done through the wsadmin scripting tool.

The following steps are needed to perform this task. You can use the

administrative console for the first few steps. Use wsadmin scriptings for the rest

of the configuration.

Steps for this task

1. Start the administrative console. To add a custom mapping module for an

application server, click Servers > Application Servers. Click the particular

server on the right navigation panel.

2. Click Security > JAAS Configuration.

3. Select JAAS Configuration and Application Login. Click New.

4. Enter a unique alias for the new mapping module, and click Apply.

5. Click JAAS Login Modules to define the custom mapping module class.

6. Click New and complete mapping the LoginModule class name.

7. Click Apply. Click Save to save the new configuration.

8. Configure J2C Connection Factory to use the new mapping module using the

wsadmin tool.

a. At the wsadmin prompt, type the following command to show a list of

J2CConnectionFactory objects: wsadmin>$AdminConfig list

J2CConnectionFactory.

b. Select the J2C Connection Factory, type in the following command (on one

line) to show all the attributes. For example (split for publication):

wsadmin>$AdminConfig show

PetStore_CF(cells/hillsideNetwork/nodes/hillside/servers/

server1:resources.xml#CMPConnectorFactory_4).

c. Type the following command to examine the current mapping module

configuration (split for publication): wsadmin>$AdminConfig show {mapping

(cells/hillsideNetwork/nodes/hillside/servers/

server1:resources.xml#MappingModule_7)}.

 The following shows sample results of the above command: {authDataAlias

{}} {mappingConfigAlias DefaultPrincipalMapping}. As shown in the

previous example, the J2C Connection factory is configured to use the

DefaultPrincipalMapping login configuration.

d. Type the following command to modify the mapping module configuration

to use the new mapping module (split for publication):

wsadmin>$AdminConfig modify {mapping

(cells/hillsideNetwork/nodes/hillside/servers/

server1:resources.xml#MappingModule_7)} { {mappingConfigAlias

myMappingModule}}

 You can check the result by typing (split for publication): wsadmin>$AdminConfig

show {mapping (cells/hillsideNetwork/nodes/hillside/servers/

server1:resources.xml#MappingModule_7)} {authDataAlias {}}

{mappingConfigAlias myMappingModule}.

 Note: The authDataAlias is left undefined. In practice, the authDataAlias passes

at run time to the custom mapping module. But using the authDataAlias to

Chapter 6. Developing secured applications 61

look up user ID and password requires the WebSphere Common Configuration

Model (WCCM) programming interface, which is not available at this time.

9. Type save at the wsadmin prompt to save your changes.

Results

A mapping module is defined and is configured for the specified J2C Connection

factory.

Usage scenario

Completing this task allows you to use your own mapping module to fit your

application environment. The WebSphere Application Server default principal

mapping module maps all authenticated user credentials to the same user id and

password credentials of the EIS security domain. The user ID and password are

stored in the security configuration document and is looked up using the

configured alias as a key. Your mapping module may be programmed to perform

more sophisticated mapping and store passwords in other persistent storage or

from a remote service.

What to do next

To develop your own principal and credential mapping LoginModule, refer to the

JAAS documentation for general information. The JAAS documents are shipped

with WebSphere Application Server are located in

install_root/web/docs/jaas/JaasDocs.zip file. Refer to the login.html in the

JaasDocs.zip file for details of how to develop JAAS login module.

In particular, a mapping module needs to obtain the security identity of the caller.

The WSSubject.getCallerPrincipal() static method returns an

com.ibm.websphere.security.auth.WSPrincipal object, which represents the

security identity of an authenticated caller.

Developing custom user registries

Before you begin

WebSphere Application Server security supports the use of custom registries in

addition to Local OS and Lightweight Directory Access Protocol (LDAP) registries

for authentication and authorization purposes. A custom user registry is a

customer implemented user registry which implements the UserRegistry Java

interface as provided by WebSphere Application Server. A custom implemented

user registry can support virtually any type or notion of an accounts repository

from a relational database, flat file, and so on. The custom user registry provides

considerable flexibility in adapting WebSphere Application Server security to

various environments where some notion of a user registry, other than LDAP or

LocalOS, already exist in the operational environment.

Implementing a custom user registry is a software development effort. Use the

methods defined in the UserRegistry interface to make calls to the desired registry

to obtain user and group information. The interface defines a very general set of

methods, for encapsulating a wide variety of registries. You can configure a custom

user registry as the active user registry when configuring WebSphere Application

Server global security.

62 IBM® WebSphere® Application Server, Version 5.0.2: Security

Make sure that your implementation of the custom registry does not depend on

any WebSphere Application Server components such as data sources, enterprise

beans, and so on. Do not have this dependency because security is initialized and

enabled prior to most of the other WebSphere Application Server components

during startup. If your previous implementation used these components, make a

change that will eliminate the dependency. For example, if your previous

implementation used data sources to connect to a database, use Java database

connectivity (JDBC) to connect to the database.

For backward compatibility, the WebSphere Application Server Version 4 custom

registry is also supported. Refer to “Migrating custom user registries” on page 30

for more information on migrating. If your previous implementation uses data

sources to connect to a database, change the implementation to use Java database

connectivity (JDBC) connections. However, it is recommended that you use the

new interface to implement your custom registry.

Steps for this task

1. If not familiar with the custom user registry concept, refer to the article,

“Custom user registries” on page 165.

 This section explains each of the methods in the interface in detail and the

changes for these methods from the version 4 release.

2. Implement all the methods in the interface except for the CreateCredential

method, which is implemented by WebSphere Application Server.

 A sample that implements this interface is provided for reference.

3. Build your implementation.

 You need the install_root/lib/sas.jar and install_root/lib/wssec.jar files

in your class path. For example: install_root\java\bin\javac -classpath

install_root\lib\wssec.jar;install_root\lib\sas.jar

yourImplementationFile.java.

4. Copy the class files generated in the previous step to the product class path.

 The preferred location is the install_root/lib/ext directory. This should be

copied to all the product processes (cell, all NodeAgents) class path.

5. Follow the steps in “Configuring custom user registries” on page 166 to

configure your implementation using the administrative console.

Usage scenario

This step is required to implement custom user registries in Version 5.

What to do next

If you enabling security, make sure you complete the remaining steps. Once this is

done, make sure you save and synchronize the configuration and restart all the

servers. Try accessing some J2EE resources to verify that the custom registry

implementation is successful.

Example: Custom user registries

A custom user registry is a customer-implemented user registry that implements the

UserRegistry Java interface as provided by WebSphere Application Server. A

custom-implemented user registry can support virtually any type or form of an

accounts repository from a relational database, flat file, and so on. The custom user

registry provides considerable flexibility in adapting WebSphere Application Server

Chapter 6. Developing secured applications 63

security to various environments where some form of a user registry, other than

Lightweight Directory Access Protocol (LDAP) or Local OS, already exist in the

operational environment.

Implementing a custom user registry is a software development effort. You must

use the methods defined in the UserRegistry interface to make calls to the desired

registry for obtaining user and group information. The interface defines a very

general set of methods, so it can encapsulate a wide variety of registries. You can

configure a custom user registry as the active user registry when configuring the

product global security.

If you are using the WebSphere Application Server Version 4.0 custom registry you

can plug in your registry without any changes. However, using the new interface

to implement your custom registry is recommended.

To view a sample custom registry, refer to the following files:

v “FileRegistrySample.java file for WebSphere Application Server Version 5.0.2” on

page 190

v “users.props file” on page 207

v “groups.props file” on page 208

UserRegistry interface methods

Implementing this interface enables WebSphere Application Server security to use

custom registries. This capability should extend the java.rmi file. With a remote

registry, you can complete this process remotely.

Implementation of this interface must provide implementations for:

v initialize(java.util.Properties)

v checkPassword(String,String)

v mapCertificate(X509Certificate[])

v getRealm

v getUsers(String,int)

v getUserDisplayName(String)

v getUniqueUserId(String)

v getUserSecurityName(String)

v isValidUser(String)

v getGroups(String,int)

v getGroupDisplayName(String)

v getUniqueGroupId(String)

v getUniqueGroupIds(String)

v getGroupSecurityName(String)

v isValidGroup(String)

v getGroupsForUser(String)

v getUsersForGroup(String,int)

v createCredential(String)

public void initialize(java.util.Properties props)

 throws CustomRegistryException,

 RemoteException;

64 IBM® WebSphere® Application Server, Version 5.0.2: Security

This method is called to initialize the UserRegistry method. All the properties

defined in the Custom User Registry panel propagate to this method.

For the Sample, the initialize method retrieves the names of the registry files

containing the user and group information.

This method is called during server bring up to initialize the registry. This method

is also called when validation is performed by the administrative console, when

security is on. This method remains the same as in Version 4.0.

public String checkPassword(String userSecurityName, String password)

 throws PasswordCheckFailedException,

 CustomRegistryException,

 RemoteException;

The checkPassword method is called to authenticate users when they log in using a

name (or ID) and a password. This method returns a string which, in most cases is

the user being authentication. A credential is then created for the user for

authorization purposes. This user name is also returned for the enterprise bean

call, getCallerPrincipal(), and the servlet calls, getUserPrincipal() and

getRemoteUser(). See the getUserDisplayName method for more information if you

have display names in your registry. In some situations if you return a user other

than the one who is logged in, verify that the user is valid in the registry.

For the Sample, the mapCertificate method gets the distinguished name (DN)

from the certificate chain and makes sure it is a valid user in the registry before

returning the user. For the Sample, the checkPassword method checks the name

and password combination in the registry, and if they match, returns the user

being authenticated.

This method is called for various scenarios. It is called by the administrative

console to validate the user information once the registry is initialized. It is also

called when you access protected resources in the product for authenticating the

user and before proceeding with the authorization. This method is the same as in

Version 4.0.

public String mapCertificate(X509Certificate[] cert)

 throws CertificateMapNotSupportedException,

 CertificateMapFailedException,

 CustomRegistryException,

 RemoteException;

The mapCertificate method is called to obtain a user name from an X509

certificate chain supplied by the browser. The complete certificate chain is passed

to this method and the implementation can validate the chain if needed and get

the user information. A credential is created for this user for authorization

purposes. If browser certificates are not supported in your configuration, you can

throw the exception, CertificateMapNotSupportedException. The consequence of

not supporting certificates is that the authentication fails if the challenge type is

certificates, even if they have valid certificates in the browser.

This method is called when certificates are provided for authentication. For Web

applications when the authentication constraints are set to CLIENT-CERT in the

web.xml file of the application this method is called to map a certificate to a valid

user in the registry. For Java clients, this method is called to map the client

certificates in the transport layer, when using the transport layer authentication.

Chapter 6. Developing secured applications 65

Also, when the Identity Assertion Token (when using the CSIv2 authentication

protocol) is set to contain certificates, this method is called to map the certificates

to a valid user.

In Version 4.0, the input parameter was the X509Certificate certificate. In Version 5,

this parameter changes to accept an array of X509Certificate certificates (for

example, certificate chain). Unlike in Version 4.0 (where this parameter was called

only for Web applications), you can call this method for both Web and Java clients.

public String getRealm()

 throws CustomRegistryException,

 RemoteException;

The getRealm method is called to get the name of the security realm. The name of

the realm identifies the security domain for which the registry authenticates users.

If this method returns a null value, a default name of customRealm is used.

For the Sample, the getRealm method returns the string, customRealm. One of the

calls to this method is when the registry information is validated. This method is

the same as in Version 4.0.

public Result getUsers(String pattern, int limit)

 throws CustomRegistryException,

 RemoteException;

The getUsers method returns the list of users from the registry. The names of users

depend on the pattern parameter. The number of users are limited by the limit

parameter. In a registry that has many users, getting all the users is not practical.

So the limit parameter is introduced to limit the number of users retrieved from

the registry. A limit of 0 indicates to return all the users that match the pattern and

can cause problems for large registries. Use this limit with care. The custom

registry implementations are expected to support at least the wildcard search (*).

For example, a pattern of (*) returns all the users and a pattern of (b*) returns the

users starting with b.

The return parameter is an object of type com.ibm.websphere.security.Result.

This object contains two attributes, a java.util.List and a java.lang.boolean.

The list contains the users returned and the Boolean flag indicates if there are more

users available in the registry for the search pattern. This Boolean flag is used to

indicate to the client whether more users are available in the registry.

In the Sample, the getUsers retrieves the required number of users from the

registry and sets them as a list in the Result object. To find out if there are more

users than requested, the Sample gets one more user than requested and if it finds

the additional user, it sets the Boolean flag to true. For pattern matching, the

match method in the RegExpSample class is used, which supports wildcards like

asterisk (*) and question mark (?).

This method is called by the administrative console to add users to roles in the

various map users to roles panels. The administrative console uses the Boolean set

in the Result object to indicate that more entries matching the pattern are available

in the registry.

In Version 4.0, this method specifies to take only the pattern parameter. The return

is a list. In Version 5, this method is changed to take one additional parameter, the

limit. Ideally, your implementation should change to take the limit value and limit

the users returned. The return is changed to return a Result object, which consists

66 IBM® WebSphere® Application Server, Version 5.0.2: Security

of the list (as in Version 4.0) and a flag indicating if more entries exist. So, when

the list returns, use the Result.setList(List) to set the List in the Result object. If

there are more entries than requested in the Limit parameter, set the Boolean

attribute to true in the Result object, using Result.setHasMore() method. The

default for the Boolean attribute in the Result object is false.

public String getUserDisplayName(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

The getUserDisplayName method returns a display name for a user, if one exists.

The display name is an optional string that describes the user that you can set in

some registries. This is a descriptive name for the user and does not have to be

unique in the registry. For example in Windows systems, you can display the full

name of the user. If you do not need display names in your registry, return null or

an empty string for this method.

Note: In WebSphere Application Server Version 4.0, if display names existed for

any user these names were useful for the EJB method call getCallerPrincipal()

and the servlet calls getUserPrincipal() and getRemoteUser(). So, if the display

names were not the same as the security name for any user, the display names are

returned for the previously mentioned enterprise beans and servlet methods.

Returning display names for these methods might become problematic is some

situations because the display names might not be unique in the registry. Avoid

this problem by changing the default behavior to return the user’s security name

instead of the user’s display name in this version of the product. However, if you

want to have the same behavior as in Version 4.0, set the property

WAS_UseDisplayName to true in the Custom Registry Properties panel in the

administrative console. For more information on how to set properties for the

custom registry, see the section on Setting Properties for Custom Registries.

In the Sample, this method returns the display name of the user whose name

matches the user name provided. If the display name does not exist this returns an

empty string.

This method can be called by the product to present the display names in the

administrative console, or through the command line using the wsadmin tool. Use

this method only for displaying. This method is the same as in Version 4.0.

public String getUniqueUserId(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the unique ID of the user given the security name.

In the Sample, this method returns the uniqueId of the user whose name matches

the supplied name. This method is called when forming a credential for a user and

also when creating the authorization table for the application.

public String getUserSecurityName(String uniqueUserId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

Chapter 6. Developing secured applications 67

This method returns the security name of a user given the unique ID. In the

Sample, this method returns the security name of the user whose unique ID

matches the supplied ID.

This method is called to make sure a valid user exists for a given uniqueUserId.

This method is called to get the security name of the user when the uniqueUserId

is obtained from a token. This method is the same as in Version 4.0.

public boolean isValidUser(String userSecurityName)

 throws CustomRegistryException,

 RemoteException;

This method indicates whether the given user is a valid user in the registry.

In the Sample, this method returns true if the user is found in the registry,

otherwise this method returns false. This method is primarily called in situations

where knowing if the user exists in the directory prevents problems later. For

example, in the mapCertificate call, once the name is obtained from the certificate

if the user is found to be an invalid user in the registry, you can avoid trying to

create the credential for the user. This method is the same as in Version 4.0.

 public Result getGroups(String pattern, int limit)

 throws CustomRegistryException,

 RemoteException;

The getGroups method returns the list of groups from the registry. The names of

groups depend on the pattern parameter. The number of groups is limited by the

limit parameter. In a registry that has many groups, getting all the groups is not

practical. So, the limit parameter is introduced to limit the number of groups

retrieved from the registry. A limit of 0 implies to return all the groups that match

the pattern and can cause problems for large registries. Use this limit with care.

The custom registry implementations are expected to support at least the wildcard

search (*). For example, a pattern of (*) returns all the users and a pattern of (b*)

returns the users starting with b.

The return parameter is an object of type com.ibm.websphere.security.Result.

This object contains two attributes, a java.util.List and a java.lang.boolean.

The list contains the groups returned and the Boolean flag indicates whether there

are more groups available in the registry for the pattern searched. This Boolean

flag is used to indicate to the client if more groups are available in the registry.

In the sample, the getUsers retrieves the required number of groups from the

registry and sets them as a list in the result object. To find out if there are more

groups than requested, the sample gets one more user than requested and if it

finds the additional user, it sets the Boolean flag to true. For pattern matching, the

match method in the RegExpSample class is used. It supports wildcards like *, ?.

This method is called by the administrative console to add groups to roles in the

various map groups to roles panels. The administrative console will use the

boolean set in the Result object to indicate that more entries matching the pattern

are available in the registry.

In Version 4.0, this method is used to take the pattern parameter only and returns

a list. In Version 5, this method is changed to take one additional parameter, the

limit. Change to take the limit value and limit the users returned. The return is

changed to return a result object, which consists of the list (as in Version 4.0) and a

flag indicating whether more entries exist. Use the Result.setList(List) to set the

68 IBM® WebSphere® Application Server, Version 5.0.2: Security

list in the result object. If there are more entries than requested in the limit

parameter, set the Boolean attribute to true in the result object using

Result.setHasMore(). The default for the Boolean attribute in the result object is

false.

public String getGroupDisplayName(String groupSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

The getGroupDisplayName method returns a display name for a group if one exists.

The display name is an optional string describing the group that you can set in

some registries. This name is a descriptive name for the group and does not have

to be unique in the registry. If you do not need to have display names for groups

in your registry, return null or an empty string for this method.

In the Sample, this method returns the display name of the group whose name

matches the group name provided. If the display name does not exist, this method

returns an empty string.

The product can call this method to present the display names in the

administrative console or through command line using the wsadmin tool. This

method is only used for displaying and is the same as in Version 4.0.

public String getUniqueGroupId(String groupSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the unique ID of the group given the security name.

In the Sample, this method returns the unique ID of the group whose name

matches the supplied name. This method is called when creating the authorization

table for the application and is the same as in Version 4.0.

public List getUniqueGroupIds(String uniqueUserId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the unique IDs of all the groups to which a user belongs.

In the sample, this method returns the unique ID of all the groups that contain this

uniqueUserID. This method is called when creating the credential for the user. As

part of creating the credential, all the groupUniqueIds in which the user belongs are

collected and put in the credential for authorization purposes when groups are

given access to a resource. This method is the same as in Version 4.0.

public String getGroupSecurityName(String uniqueGroupId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns the security name of a group given its unique ID.

In the Sample, this method returns the security name of the group whose unique

ID matches the supplied ID. This method verifies that a valid group exists for a

given uniqueGroupId. This method is the same as in Version 4.0.

Chapter 6. Developing secured applications 69

public boolean isValidGroup(String groupSecurityName)

 throws CustomRegistryException,

 RemoteException;

This method indicates if the given group is a valid group in the registry.

In the Sample, this method returns true if the group is found in the registry,

otherwise the method returns false. This method can be used in situations where

knowing whether the group exists in the directory might prevent problems later.

This method is the same as in Version 4.0.

public List getGroupsForUser(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method returns all the groups to which a user belongs whose name matches

the supplied name. This method is similar to the getUniqueGroupIds method with

the exception that the security names are used instead of the unique IDs.

In the Sample, this method returns all the group security names that contain the

userSecurityName.

This method is called by the administrative console or the scripting tool to verify

that the users entered for the RunAs roles are already part of that role in the users

and groups to role mapping. This check is required to ensure that a user cannot be

added to a RunAs role unless that user is assigned to the role in the users and

groups to role mapping either directly or indirectly (through a group that contains

this user). Since a group in which the user belongs can be part of the role in the

users and groups to role mapping, this method is called to check if any of the

groups that this user belongs to mapped to that role. This method is the same as in

Version 4.0.

public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

This method retrieves users from the specified group. The number of users

returned is limited by the limit parameter. A limit of 0 indicates to return all the

users in that group. This method is not directly called by the WebSphere

Application Server security component. However, this can be called by other

components. For example, this method isused by the WebSphere Application

Server Enterprise process choreographer when staff assignments are modeled using

groups. In rare situations, if you are working with a registry where getting all the

users from any of your groups is not practical (for example, if there are a large

number of users), you can throw the exception, NotImplementedException for the

particular groups. In this case, verify that if the WebSphere Application Server

Enterprise process choreographer is installed (or if it is installed later) the staff

assignments are not modeled using these particular groups. If there is no concern

about returning the users from groups in the registry, it is recommended that you

do not throw the NotImplemented exception when implementing this method.

The return parameter is an object of type com.ibm.websphere.security.Result.

This object contains two attributes, java.util.List and java.lang.boolean. The

list contains theusers returned and the Boolean flag, which indicates whether there

70 IBM® WebSphere® Application Server, Version 5.0.2: Security

are more users available in the registry for the search pattern. This Boolean flag

indicates to the client whether more users are available in the registry.

In the example, this method gets one user more than the requested number of

users for a group if the limit parameter is not set to 0. If it succeeds in getting one

more user, it sets the Boolean flag to true.

In Version 4.0, this method was mandatory for the product. For Version 5, this

method can throw the exception, NotImplementedException in situations where it is

not practical to get the requested set of users. However, this exception should be

thrown in rare situations, as other components can be affected. In Version 4, this

method accepted only the pattern parameter and the returned a list. In Version 5,

this method accepts one additional parameter, the limit. Chanbe your

implementation to take the limit value and limit the users returned. The return

changes to return a result object, which consists of the list (as in Version 4.0) and a

flag indicating whether more entries exist. As in Version 4.0, when the list is

returned, use the Result.setList(List) method to set the list in the Result object.

If there are more entries than requested in the limit parameter, set the Boolean

attribute to true in the result object using Result.setHasMore(). The default for the

Boolean attribute in the Result object is false.

 public com.ibm.websphere.security.cred.WSCredential

 createCredential(String userSecurityName) // (previous line split for publication)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

In this release of the WebSphere Application Server, this method is not called. You

can return null. In the example, a null is returned.

Developing a custom interceptor for trust associations

Before you begin

If you are using a third party reverse proxy server other than Tivoli WebSEAL, you

must provide an implementation class for the product interceptor interface for

your proxy server. This article describes the interface you must implement.

Steps for this task

1. Define the interceptor class method.

 WebSphere Application Server provides the interceptor Java interface,

com.ibm.websphere.security.TrustAssociationInterceptor, which defines the

following methods:

v public boolean isTargetInterceptor(HttpServletRequest req) throws

WebTrustAssociationException;.

 The isTargetInterceptor method determines whether the request originated

with the proxy server associated with the interceptor. The implementation

code must examine the incoming request object and determine if the proxy

server forwarding the request is a valid proxy server for this interceptor. The

result of this method determines whether the interceptor processes the

request or not.

v public void validateEstablishedTrust (HttpServletRequest req) throws

WebTrustAssociationException;.

 The validateEstablishedTrust method determines if the proxy server from

which the request originated is trusted or not. This method is called after the

Chapter 6. Developing secured applications 71

isTargetInterceptor method. The implementation code must authenticate

the proxy server. The authentication mechanism is proxy-server specific. For

example, in the product implementation for the WebSEAL server, this

method retrieves the basic authentication information from the HTTP header

and validates the information against the user registry used by WebSphere

Application Server. If the credentials are invalid, the code throws the

WebTrustAssociationException, indicating that the proxy server is not

trusted and the request is to be denied.

v public String getAuthenticatedUsername(HttpServletRequest req)

throws WebTrustAssociationException;.

 The getAuthenticatedUsername method is called after trust is established

between the proxy server and WebSphere Application Server. The product

has accepted the proxy server authentication of the request and must now

authorize the request. To authorize the request, the name of the original

requestor must be subjected to an authorization policy to determine if the

requestor has the necessary privilege. The implementation code for this

method must extract the user name from the HTTP request header and

determine if that user is entitled to the requested resource. For example, in

the product implementation for the WebSEAL server, the method looks for

an iv-user attribute in the HTTP request header and extracts the user ID

associated with it for authorization.
2. Configuring the interceptor. To make an interceptor configurable, the

interceptor must extend

com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor.

Implement the following methods:

public int init (java.util.Properties props);

The init(Properties) method accepts a java.util.Properties object,

which contains the set of properties required to initialize the

interceptor. All the properties set for an interceptor (by using the

Custom Properties link for that interceptor or using scripting) is sent to

this method. The interceptor then can use these properties to initialize

itself. For example, in the productimplementation for the WebSEAL

server, this method reads the hosts and ports so that a request coming

in can be verified to originate from trusted hosts and ports. A return

value of 0 implies that the interceptor initialization is successful. Any

other value implies that the initialization is not successful and the

interceptor is ignored.

 However, if a previous implementation of the trust association

interceptor returns a different error status you can either change your

implementation to match the expectations or make one of the following

changes:

 Applicability of the following list: [Fix Pack 5.0.2 and later]

v Add the com.ibm.websphere.security.trustassociation.initStatus

property in the trust association interceptor custom properties. Set

the property to the value that indicates that the interceptor is

successfully initialized. All of the other possible values imply failure.

In case of failure, the corresponding trust association interceptor is

not used.

v Add the

com.ibm.websphere.security.trustassociation.ignoreInitStatus

property in the trust association interceptor custom properties. Set

the value of this property to true, which tells WebSphere Application

Server to ignore the status of this method. If you add this property to

72 IBM® WebSphere® Application Server, Version 5.0.2: Security

the custom properties, WebSphere Application Server does not check

the return status, which is similar to previous versions of WebSphere

Application Server.

public void cleanup ();

This method is called when the application server is stopped. It is used

to prepare the interceptor for termination.

public void setVersion (String s);

This methods is optional. The method is used to set the version and is

for informational purpose only. The default value is Unspecified.

 You must configure the following methods implemented by the custom

interceptor implementation. This listing only shows the methods and does not

include any implementation.

**

import java.util.*;

import javax.servlet.http.HttpServletRequest;

import com.ibm.websphere.security.*;

public class myTAIImpl extends WebSphereBaseTrustAssociationInterceptor

 implements TrustAssociationInterceptor

{

 public myTAIImpl ()

 {

 }

 public boolean isTargetInterceptor (HttpServletRequest req)

 throws WebTrustAssociationException

 {

 //return true if this is the target interceptor, else return false.

 }

 public void validateEstablishedTrust (HttpServletRequest req)

 throws WebTrustAssociationFailedException

 {

 //validate if the request is from the trusted proxy server.

 //throw exception if the request is not from the trusted server.

 }

 public String getAuthenticatedUsername (HttpServletRequest req)

 throws WebTrustAssociationUserException

 {

 //Get the user name from the request and if the user is entitled to

 // the requested resource return the user. Otherwise, throw the exception

 }

 public int init (Properties props)

 {

 //initialize the implementation. If successful return 0, else reurn -1.

 }

 public void cleanup ()

 {

 //Cleanup code.

 }

Chapter 6. Developing secured applications 73

}

**

 Note: If the init(Properties) method is implemented as described previously

in your custom interceptor, this note does not apply to your implementation,

and you can move on to the next step. Previous versions of

com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor

include the public int init (String propsfile) method. This method is no longer

required since the interceptor properties are not read from a file. The properties

are now entered in the administrative console Custom Properties link of the

interceptor using the administrative console or scripts. These properties then

are made available to your implementation in the init(Properties) method.

However, for backward compatibility, the init(String) method still is

supported. The init(String) method is called by the default implementation of

init(Properties) as shown in the following example.

// Default implementation of init(Properties props) method. A Custom

 // implementation should override this.

 public int init (java.util.Properties props)

 {

 String type = props.getProperty // (line split for publication ...)

 ("com.ibm.websphere.security.trustassociation.types");

 String classfile=props.getProperty // (line split for publication ...)

 ("com.ibm.websphere.security.trustassoci

ation."+type+".config");

 if (classfile != null && classfile.length() > 0) {

 return init(classfile);

 } else {

 return -1;

 }

 }

 Change your implementation to implement the init(Properties) method

instead of relying on init(String propsfile) method. As shown in the

previous example, this default implementation reads the properties to load the

property file. The com.ibm.websphere.security.trustassociation.types

property gets the file containing the properties by concatenating .config to its

value.

 Note: The init(String) method still works if you want to use it instead of

implementing the init(Properties) method. The only requirement is that the file

name containing the custom trust association properties should now be entered

using the Custom Properties link of the interceptor in the administrative

console or by using scripts. You can enter the property using either of the

following methods. The first method is used for backward compatibility with

previous versions of WebSphere Application Server.

Method 1:

The same property names used in the previous release are used to

obtain the file name. The file name is obtained by concatenating the

.config to the com.ibm.websphere.security.trustassociation.types

property value. If the file name is called myTAI.properties and is

located in the C:/WebSphere/AppServer/properties directory, set the

following properties:

v com.ibm.websphere.security.trustassociation.types = myTAItype

v com.ibm.websphere.security.trustassociation.myTAItype.config =

C:/WebSphere/AppServer/properties/myTAI.properties

Method 2:

You can set the

com.ibm.websphere.security.trustassociation.initPropsFile

74 IBM® WebSphere® Application Server, Version 5.0.2: Security

property in the trust association custom properties to the location of the

file. For example, set the following property:

com.ibm.websphere.security.trustassociation.initPropsFile=

c:/WebSphere/AppServer/properties/myTAI.properties

 Type the previous code as one continuous line.

 The location of the properties file is fully qualified (for example,

C:/WebSphere/AppServer/properties/myTAI.properties). Since the location can

be different in a Network Deployment environment, use variables such as

{USER_INSTALL_ROOT} to refer to the WebSphere Application Server installation

directory. For example, if the file name is called myTAI.properties, and it is

located in the C:/WebSphere/AppServer/properties directory, then set the

following properties:

v com.ibm.websphere.security.trustassociation.types = myTAItype

v com.ibm.websphere.security.trustassociation.myTAItype.config =

c:/WebSphere/AppServer/properties/myTAI.properties

3. Compile the implementation once you have implemented it. For example,

 install_root/java/bin/javac -classpath

install_root/lib/wssec.jar;install_root/lib/j2ee.jar myTAIImpl.java

a. Copy the class file to a location in the class path (preferably the

install_root/lib/ext directory).

b. Restart all the servers.
4. Delete the default WebSEAL interceptor in the administrative console and click

New to add your custom interceptor.

 Verify that the class name is dot separated and appears in the class path.

5. Click the Custom Properties link to add additional properties that are required

to initialize the custom interceptor. These properties are passed to the

init(Properties) method of your implementation when it extends the

com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor as

described in the previous step.

6. Save and synchronize (if applicable) the configuration.

7. Restart the servers for the custom interceptor to take effect.

Usage scenario

Refer to , which references the WebSphere Application Server Version 5 Redbook to

view an example of a custom interceptor.

Chapter 6. Developing secured applications 75

76 IBM® WebSphere® Application Server, Version 5.0.2: Security

Chapter 7. Assembling secured applications

The Application Assembly Tool (AAT) is a graphical user interface for assembling

enterprise (J2EE) applications. You can use this tool to assemble an application and

secure EJB and Web modules in that application. An EJB module consists of one or

more beans. You can enforce security at the EJB method level. A Web module

consists of one or more Web resources (an HTML page, a JSP file or a servlet). You

can also enforce security for each Web resource. You can use the AAT to secure an

EJB module (Java archive (JAR) file) or a Web module (Web archive (WAR) file) or

an application (enterprise archive (EAR) file). You can create an application, an EJB

module or a Web Module using development tools like the IBM WebSphere Studio

Application Developer.

Steps for this task

1. “Securing enterprise bean applications” on page 78.

2. “Securing Web applications” on page 83.

3. “Adding users and groups to roles” on page 90.

4. Map users to RunAs roles while assembling secured application components.

5. Add the was.policy file to applications for Java 2 security.

6. (Optional) Assemble the application components that you just secured.

7. Specify method permissions and security roles for the application.

8. Save the application (EAR file) that you just assembled.

Results

After securing an application, the resulting .ear file contains security information

in its deployment descriptor. The EJB module security information is stored in the

ejb-jar.xml file and the Web module security information is stored in the web.xml

file. The application.xml file of the application EAR file contains all the roles used

in the application. The user and group to roles mapping is stored in the

ibm-application-bnd.xmi file of the application EAR file. The was.policy file of

the application EAR contains the permissions granted for the application to access

system resources.

Usage scenario

This task is required to secure EJB modules and Web modules in an application.

This task is also required for applications to run properly when Java 2 security is

enabled. If the was.policy file is not created and it does not contain required

permissions, the application might not be able to access system resources.

What to do next

After securing an application using the AAT, you can install an application using

the administrative console. When you install a secured application, refer to to

complete this task.

© Copyright IBM Corp. 2003 77

Enterprise bean component security

An EJB module consists of one or more beans. You can use development tools such

as WebSphere Studio Application Developer to develop an EJB module. You can

also enforce security at the EJB method level.

You can assign a set of EJB methods to a set of one or more roles. When an EJB

method is secured by associating a set of roles, grant at least one role in that set so

that you can access that method. To exclude a set of EJB methods from being

accessed by anyone mark them excluded. You can give everyone access to a set of

enterprise beans method by clearing those methods. You can run enterprise beans

as a different identity (runAs identity) before invoking other enterprise beans.

Securing enterprise bean applications

Before you begin

You can protect enterprise bean methods by assigning security roles to them. So,

you need to know which EJB methods need protecting and how.

Steps for this task

1. Open the EJB application file.

 This file can be an EJB .jar file or an application .ear file that contains one or

more EJB modules. To open the EJB application file click File > Open and

browse. Select the EJB application file.

2. Create security roles.

 You can create security roles at the application level or at the EJB module level.

If you create a security role at the EJB module level, the role displays in the

application level. If a security role is created at the application level, the role

does not appear in all the EJB modules. You can copy and paste one or more

EJB module security roles that you create at application level:

a. Create a role at application level by right-clicking Security Roles under the

application folder. Click New. Type the role name. If the role created for the

application is required for an EJB module, select that role from the

application, copy it and right-click the EJB module Security Roles. Click

Paste.

b. To create a role at an EJB module level, open the corresponding EJB module

folder. Right-click Security Roles under the EJB module and click New.

Type the role name.

3. Create method permissions.

 Method permissions is a mapping of one or more methods to a set of roles. An

enterprise bean has four types of methods: Home methods, Remote methods,

LocalHome methods and Local methods.

a. To create a new method permission in an EJB module, open the EJB module

folder. Right-click MethodPermissions and click New. A new panel

displays.

b. Type the method permission name and description.

c. Add methods by clicking Add under Methods. Browse and select the

required methods. An asterisk (*) indicates all methods.

d. Add the required roles for the methods by clicking Add under Roles.

Browse and click the required roles. If a set of methods needs to be

unprotected, select the check box. Click OK when done.
4. Exclude user access to methods.

78 IBM® WebSphere® Application Server, Version 5.0.2: Security

Users cannot access excluded methods. Any method in the enterprise beans

that is not assigned to a role or is not excluded, is deselected during the

application installation by the deployer.

a. Exclude one or more methods by right-clicking Exclude List under the EJB

module folder. Click New. A new panel displays.

b. Type the description explaining why these methods are excluded.

c. Add methods to exclude by clicking Add. Browse and click the methods to

exclude. Click OK when done.
5. Map security-role-ref and role-name to role-link.

 During the development of enterprise beans, you can create the security-role-ref

element using development tools such as WebSphere Studio Application

Developer. The security-role-ref element contains only the role-name field. The

role-name field determines if the caller is in a specified role(isCallerInRole())

and contains the name of the role that is referenced in the code. Since you

create security roles during the assembly stage, the developer uses a logical

rolename in the role-name field and provides enough information in the

description field for the assembler to map the actual role (role-link). The

security-role-ref element is located at the EJB level. Enterprise beans can have

zero or more security-role-ref elements.

a. Open the required EJB folder and click Security Role References to map

role-name to role-link for a security-role-ref element.

b. Click each role-name on the right navigation panel and click the role that

you intend to map to that role-name by selecting a role from the list of the

link.

c. Right-click Security Role References and click New if you did not create

the security-role-ref element during development. A new panel displays.

d. You can enter the role-name in the Name field and the role-link in the Link

field by selecting a proper role from the list. You can also add a proper

description in the Description field.

e. Map every role-name used during development to the role (role-link) using

the previous steps.
6. Specify the RunAs Identity for enterprise beans components.

 The RunAs Identity of the enterprise bean is used to invoke the next enterprise

beans in the chain of EJB invocations. When the next enterprise beans are

invoked, the RunAsIdentity passes to the next enterprise beans for performing

an authorization check on the next enterprise bean. If the RunAs Identity is not

specified, the client identity is propagated to the next enterprise bean. The

RunAs Identity can represent each of the enterprise beans or can represent each

method in the enterprise beans.

a. Set the RunAs Identity for the enterprise bean component, by clicking the

enterprise beans. Click the security tab in the right navigation panel.

b. Select the Security Identity check box.

c. Click Run-As mode from the list.

d. Click the role name from the list, if UseSpecifiedId is selected. Click Apply

when done.

e. Set the RunAs Identity at the method level by opening the EJB folder. Click

Method Extensions.

f. Select the Advanced tab in the right navigation panel.

g. Select the required methods from the top of the panel and select the

Security Identity check box. Click Run-As Mode. Selecting System Identity

Chapter 7. Assembling secured applications 79

implies that the invocation is done using the WebSphere Application Server

security server ID. Use this ID with caution because this ID has more

privileges.

h. Click the Role Name from the list, if the specified identity is selected.

Results

After securing an EJB application, the resulting .jar file contains security

information in its deployment descriptor. The security information of the EJB

modules is stored in the ejb-jar.xml file.

What to do next

After securing an EJB application using an assembly tool, you can install the EJB

application using the administrative console. During the installation of a secured

EJB application, follow the steps in to complete the task of securing the EJB

application.

Security permissions assembly settings

Specifies a security permission that is required by the resource adapter archive

(RAR) file code.

Security permissions are set for users and for groups of users. Users inherit the

security permissions that apply to any groups to which they belong, thereby

making it convenient to change permissions for many people at once. Permissions

grant authorization to perform activities such as reading or writing local files,

creating network connections, loading native code and other privileged actions.

Specification

Specifies the security permission element.

Description

Specifies a description of privileged activity for the security permission element.

Security permissions

A permission represents access to a system resource.

See Chapter 14, “Security: Resources for learning,” on page 377 for more

information on security permissions.

Security settings

Use the Security Center to modify global and default security settings for all

applications:

v Global settings apply to existing and future applications and cannot be

customized.

v Default settings apply only to future applications and can be customized.

The default settings are used as a template or starting point for configuring

individual applications. The administrator should still explicitly configure security

settings for each application.

The following security settings are specified during application assembly:

Security role assembly settings

When using the Application Assembly Tool (AAT) at an application level

80 IBM® WebSphere® Application Server, Version 5.0.2: Security

(Enterprise Archive (EAR) file), security roles are synchronized with the

security roles defined for the embedded modules of the application.

 If a security role is manually added to the EAR file, it can be automatically

removed when the file is saved if an embedded module does not reference

the role, or the role is in conflict with an existing role. In this case, remove

the manually added role, but then all roles with the same name are

removed.

 The role is automatically added again when the file is saved if it is still

referenced in an embedded module file. If a duplicate role is added in an

embedded module file, delete all roles with the same name and manually

read the correct role.

″Security constraint assembly settings″ (not in this document)

Security constraints declare how to protect Web content. These properties

associate security constraints with one or more Web resource collections. A

constraint consists of a Web resource collection, an authorization constraint,

and a user data constraint.

Security role references

Web application developers or EJB providers that use the available programmatic

security J2EE APIs, isUserInRole(String roleName) or isCallerInRole(String

roleName), use a role-name in the code.

The actual roles used in the deployed run-time environment might not be known

until the Web application and EJB components (for example, Web archive (WAR)

files and ejb-jar.jar files) are assembled into an enterprise archive (EAR) file.

Therefore, the role names used in the Web application or EJB component code are

logical role names which the application assembler maps to the actual run-time

environment roles during application assembly. The security role references

provide a level of indirection that insulate Web application component and EJB

developers from having to know the actual roles in the run-time environment.

The definition of the logical roles and the mapping to the actual run-time

environment roles are specified in the security-role-ref element of both the Web

application and the EJB JAR file deployment descriptors, web.xml and ejb-jar.xml

respectively. Use the Application Assembly Tool (AAT) to define the role names

and map them to the actual run-time roles in the environment with the role-link

element.

The following is an example of a security-role-ref from an EJB ejb-jar.xml

deployment descriptor.

... <enterprise-beans>

... <entity>

<ejb-name>AardvarkPayroll</ejb name>

<ejb-class>com.aardvark.payroll.PayrollBeanejb-class>com.aardvark.payroll.PayrollBean>

...

<security-role-ref>

<description>

This role should be assigned to the employees of the payroll department. Members

of this role have access to the payroll record of everyone. The role has been linked

to the payroll-department role. This role should be assigned to the employees of

the payroll department. Members of this role have access to the payroll record of

everyone. The role has been linked to the payroll-department role.

</description> role-name>payroll</role-name>

<role-link>payroll-department</role-link>

</security-role-ref>

Chapter 7. Assembling secured applications 81

...

</entity>

 ...

</enterprise-beans>

In the previous example, the string payroll, which appears in the <role-name>

element, is what the EJB provider uses as the argument to the isCallerInRole() API.

The <role-link> element is what ties the logical role to the actual role used in the

run-time environment.

Note that for enterprise beans, the security-role-ref element must appear in the

deployment descriptor even if the logical role name is the same as the actual role

name in the environment.

The rules Web application components are slightly different. If no security-role-ref

element matching a security-role element is declared, the container must default to

checking the role-name element argument against the list of security-role elements

for the Web application. The isUserInRole method references the list to determine

whether the caller is mapped to a security role. The developer must be aware that

the use of this default mechanism can limit the flexibility in changing role names

in the application without having to recompile the servlet making the call.

See the EJB Version 2.0 and Servlet Version 2.3 specification in Chapter 14,

“Security: Resources for learning,” on page 377 for complete details on this

specification.

Security role references assembly settings

Use the Application Assembly Tool (AAT) to define the role name sand map them

to the actual run-time roles in the environment with the role-link element.

To get to this panel in the AAT, you must have already created a bean. After

creating a bean, click the EJB module > <bean_type> (session beans, for example)

> <session_bean>. Security role references display in the navigation panel.

Name: Specifies the name of a security role reference used in the application code.

For example, if the name is boss, then the AccountBean can make a decision based

on whether the user executing a method is granted the role of a boss.

 Data type: String

Link: Specifies the name of a security role defined in the encompassing

application.

The role reference is linked to this name. For example, the AccountBean code uses

a role named boss. The Account Bean is a part of an enterprise application,

FinanceApp, that has a role named Manager. If the link specifies ″Manager,″ then

when the bean makes a call to isCallerInRole(″boss″), the result is true if and only

if the user, who invoked the method, has the FinanceApp Manager role granted.

The security role reference is the name used by an application component or

module, and the link name is the name defined in the deployment descriptor of

the encompassing application. The link maps the name used in the component to a

corresponding name in the application.

 Data type: String

82 IBM® WebSphere® Application Server, Version 5.0.2: Security

Description: Contains text describing the security role.

 Data type: String

Web component security

A Web module consists of servlets, jsps, server-side utility classes, static Web

content (html, images, sound files, css), and client-side classes (applets). You can

use development tools such as IBM WebSphere Studio Application Developer to

develop a Web module and enforce security at the method level of each Web

resource.

You can identify a Web resource by its URI pattern. A Web resource method can be

any HTTP method (GET, POST, DELETE, PUT, for example). You can group a set

of URI patterns and a set of HTTP methods together and assign this grouping a set

of roles. When a Web resource method is secured by associating a set of roles,

grant a user at least one role in that set to access that method. You can exclude

anyone from accessing a set of Web resources by assigning an empty set of roles. A

servlet or a JSP file can run as different identities (RunAs identity) before invoking

another enterprise bean component. All the secured Web resources require the user

to log in by using a configured login mechanism. There are three types of Web

login authentication mechanisms: basic authentication, form-based authentication

and client certificate-based authentication.

Securing Web applications

Before you begin

There are three types of Web login authentication mechanisms that you can

configure on a Web application: basic authentication, form-based authentication

and client certificate-based authentication. Protect Web resources in a Web

application by assigning security roles to those resources. So, you need to know in

advance what Web Resources need protecting and how. To secure Web

applications, determine the Web resources that need protecting and determine how

to protect them.

Steps for this task

1. Open the Web application file by clicking File > Open. Browse and select the

Web application file.

 The application file can be a Web archive (WAR) file or an enterprise archive

(EAR) file that contains one or more Web modules.

2. Create security roles either at the application level or at Web module level.

 If a security role is created at the Web module level, the role also displays in

the application level. If a security role is created at the application level, the

role does not display in all the Web modules. You can copy and paste a

security role at the application level to one or more Web module security roles.

a. Create a role at the application level by right-clicking Security Roles under

the application folder. Click New. Type the role name. If the role created for

the application is required for a Web module, select that role from the

application. Copy the role and select the Web module security role.

Right-click the Web module security role and click Paste.

b. Create a role at the Web module level by opening the corresponding Web

module folder. Right-click Security Roles under the Web module and click

New. Type the role name.

Chapter 7. Assembling secured applications 83

3. Create security constraints. Security constraints are a mapping of one or more

Web resources to a set of roles.

a. Open the Web module folder and right-click Security Constraints. Click

New.

 A new panel displays.

b. Type the security constraints name and description.

c. Add required roles by clicking Add under Roles. Browse and click the

required roles. The asterisk (*) indicates all roles. An empty role list

indicates that no user can have access to the Web resources specified under

these security constraints.

d. Set user data constraints by clicking Transport Guarantee from the menu.

 A transport guarantee of NONE indicates that the communication between

the Web client or browser and the server or Web server is transported over

HTTP. A transport guarantee of CONFIDENTIAL or INTEGRAL

guarantees that the communication between the Web client and the Web

server is secured and is transported over HTTP and HTTPS.

e. Click OK when done.

 A new Security Constraints folder is created for the Web module.

f. Open the security constraints created from previous steps and right-click

Web Resources Collection. Click New.

 A new panel displays.

g. Type a Web resource collection name and description.

h. Click Add under Methods and select HTTP methods. Click OK.

 If no methods are selected, all methods are selected by default.

i. Click Add under URLs and type the URL pattern (for example: - /*,

*.jsp, /hello).

 Consult the Servlet specification Version 2.3 for instructions on mapping

URL patterns to servlets. Security run time uses the exact match first to map

the incoming URL with URL patterns. If the exact match is not present, the

security run time uses the longest match. The wild card (*.,*.jsp) URL

pattern matching is used last.

j. Click OK when done.

k. Repeat these steps to create multiple security constraints.
4. Map security-role-ref and role-name elements to the role-link element.

 During the development of a Web application, you can create the

security-role-ref element using development tools such as WebSphere Studio

Application Developer. The security-role-ref element contains only the

role-name field at this stage. The role-name field contains the name of the role

that is referenced in the servlet or JSP code to determine if the caller is in a

specified role (isUserInRole()). Since security roles are created during the

assembly stage, the developer uses a logical role name in the role-name field

and provides enough description in the description field for the assembler to

map the role actual (role-link). The Security-role-ref element is at the servlet

level. A servlet or JSP file can have zero or more security-role-ref elements.

a. Map the role-name element to the role-link element for a security-role-ref

element, by opening the required servlet folder. Click Security Role

References.

b. Select each role name on the right navigation panel and click the actual role

to be mapped to that rolename. Select a role from the menu of the link.

84 IBM® WebSphere® Application Server, Version 5.0.2: Security

c. If the security-role-ref element is not created already during development,

right-click Security Role References. Click New.

 A new panel displays.

d. Enter the role-name in the Name field and the role-link element in the Link

field by selecting a proper role from the menu. Add a description in the

Description field.

 Every role name used during development now maps to the actual role.
5. Specify the RunAs identity for servlets and JSP files.

 The RunAs identity of a servlet is used to invoke enterprise beans from within

the servlet code. When enterprise beans are invoked, the RunAs identity is

passed to the enterprise bean for performing an authorization check on the

enterprise beans. If the RunAs identity is not specified, the client identity is

propagated to the enterprise beans. The RunAs identity is assigned at the

servlet level.

a. Set the RunAs identity for a servlet by clicking the servlet folder. Select the

Security tab on the right navigation panel.

b. Select the role name from the menu. Click Apply when done.
6. Configure the login mechanism. Configure the login mechanism only at the

Web module level. This configured login mechanism applies to all the servlets,

JavaServer page (JSP) files and HTML resources in the Web module.

a. Configure the login mechanism for the Web module by clicking the Web

Module folder.

b. Click the Advanced tab on the right navigation panel.

c. Select the Login Configuration check box.

d. Select the required authentication method from the menu.

e. Type the Login page and Error page URLs if you select form-based

authentication (for example: /login.jsp and /error.jsp). The specified

login and error pages are present in the .war file.

f. Install the client certificate on the browser or Web c lient and place the client

certificate in the server trust keyring file, if ClientCert is selected.

Results

After securing a Web application, the resulting WAR file contains security

information in its deployment descriptor. The Web module security information is

stored in the web.xml file.

What to do next

After using the Application Assembly Tool (AAT) to secure a Web application, you

can install the Web application using the administrative console. During the Web

application installation, complete the steps in the (Deploying Secured Applications)

article to finish securing the Web application.

Role-based authorization

Use authorization information to determine whether a caller has the necessary

privileges to request a service.

The following figure illustrates the flow during an authorization process. Web

resource access from a Web client is handled by a Web collaborator. The EJB

resource access from a Java client (can be enterprise beans or a servlet) is handled

Chapter 7. Assembling secured applications 85

by an EJB Collaborator. The EJB collaborator and the Web collaborator extract the

client credentials from the object request broker (ORB) current object. The client

credentials are set during the authentication process as received credentials in the

ORB Current. The resource and the received credentials are presented to

WSAccessManager to check whether access is permitted to the client for accessing

the requested resource.

The access manager module contains two main modules:

v Resource permission module helps determine the required roles for a given

resource. It uses a resource to roles mapping table that is built by the security

run time during application startup. The resource to role mapping table is built

by reading the deployment descriptor of the enterprise beans or the Web module

(ejb-jar.xml or web.xml)

v Authorization table module consults a role to user or group table to determine

whether a client is granted one of the required roles. The role to user or group

mapping table, also known as the authorization table, is created by the security

run time during application startup. The authorization table is built from

reading the application binding file (ibm-application-bnd.xmi file) for the

application.The authorization table is built from reading the application binding

file (ibm-application-bnd.xmi file) for the application.

CSIV2/SAS, TCP/IP, SSL

EJB Resource Access

HTTP/HTTPS

Web Resource Access

Access Manager Module

WebSphere Application Server

Resource
Permission

Authorization
Table

WSAccess
Manager

Enterprise beans
Collaborator

Web
Collaborator

ORB
Current

Java Client

Web Client

(1)

(1)

(2)

(2)

(3)

(4)

(5)

Received
credentials

Resource and
credentials

Resource Roles

Role Users/
Groups

(3)

Resource

Roles

Roles, credentials

true/false

Received
credentials

Resource and
credentials

Authorization

Use authorization information to determine whether a caller has the necessary

privilege to request a service. You can store authorization information many ways.

For example, with each resource, you can store an access-control list, which contains

a list of users and user privileges. Another way to store the information is to

associate a list of resources and the corresponding privileges with each user. This

list is called a capability list.

WebSphere Application Server uses the Java 2 Enterprise Edition (J2EE)

authorization model. In this model, authorization information is organized as

follows:

v During the assembly of an application, permission to execute methods is granted

to one or more roles. A role is a set of permissions; for example, in a banking

application, roles can include Teller, Supervisor, Clerk, and other industry-related

86 IBM® WebSphere® Application Server, Version 5.0.2: Security

positions. The Teller role is associated with permissions to run methods related

to managing the money in an account, for example, the withdraw and deposit

methods. The Teller role is not granted permission to close accounts; this

permission is given to the Supervisor role. The application assembler defines a

list of method permissions for each role; this list is stored in the deployment

descriptor for the application.

There are two special subjects that are not defined by J2EE: AllAuthenticatedUsers,

Everyone. A special subject is a product-defined entity independent of the user

registry. It is used to generically represent a class of users or groups in the registry.

v AllAuthenticatedUsers is a special subject that permits all authenticated users to

access protected methods. As long as the user can authenticate successfully, the

user is permitted access to the protected resource.

v Everyone is a special subject that permits unrestricted access to a protected

resource. Users do not have to authenticate to get access; this special subject

provides access to protected methods as if the resources were unprotected.

During the deployment of an application, real users or groups of users are

assigned to the roles. The application deployer does not need to understand the

individual methods. By assigning roles to methods, the application assembler

simplifies the job of the application deployer. Instead of working with a set of

methods, the deployer works with the roles, which represent semantic groupings

of the methods. When a user is assigned to a role, the user gets all the method

permissions that are granted to that role. Users can be assigned to more than one

role; the permissions granted to the user are the union of the permissions granted

to each role. Additionally, if the authentication mechanism supports the grouping

of users, these groups can be assigned to roles. Assigning a group to a role has the

same effect as assigning each individual user to the role.

A best practice during deployment is to assign groups, rather than individual users

to roles for the following reasons:

v Improves performance during the authorization check. Typically far fewer

groups exist than users

v Provides greater flexibility, by using group membership to control resource

access

v Supports the addition and deletion of users from groups outside of the product

environment. This action is preferred to adding and removing them to

WebSphere Application Server roles. Stop and restart the enterprise application

for these changes to take effect. This action can be very disruptive in a

production environment

At execution time, WebSphere Application Server authorizes incoming requests

based on the user’s identification information and the mapping of the user to roles.

If the user belongs to any role that has permission to execute a method, the request

is authorized. If the user does not belong to any role that has permission, the

request is denied.

The J2EE approach represents a declarative approach to authorization, but it also

recognizes that you cannot deal with all situations declaratively. For these

situations, methods are provided for determining user and role information

programmatically. For Enterprise JavaBeans, the following two methods are

supported by WebSphere Application Server:

v getCallerPrincipal: This method retrieves the user identification information.

Chapter 7. Assembling secured applications 87

v isCallerInRole: This method checks the user identification information against a

specific role.

For servlets, the following methods are supported by WebSphere Application

Server:

v getRemoteUser

v isUserInRole

v getUserPrincipal

These methods correspond in purpose to the enterprise bean methods.

For more information on the J2EE security authorization model see the following

Web site: http://java.sun.com

Admin roles

The J2EE role-based authorization concept has been extended to protect the

WebSphere Administrative subsystem. A number of administrative roles have been

defined to provide degrees of authority needed to perform certain WebSphere

administrative functions from either the web based admin console or the system

management scripting interface. The authorization policy is only enforced when

global security is enabled. The following table describes the Admin roles:

 Role Description

monitor Least privileged that basically allows a user

to view the WebSphere Application Server

configuration and current state.

configuration Monitor privilege plus the ability to change

the WebSphere Application Server

configuration.

operator Monitor privilege plus the ability to change

run-time state, such as starting or stopping

services for example.

administrator Operator plus configuration privilege.

The identity specified when enabling global security is automatically mapped to

the administrator role. Users, groups, can be added or removed to or from the

Admin roles from the WebSphere Application Server administrative console at

anytime. However, a server restart is required for the changes to take effect. A best

practice is to map a group(s), rather than specific users, to admin roles because it is

more flexible and easier to administer in the long run. By mapping a group to an

Admin role, adding or removing users to or from the group occurs outside of

WebSphere Application Server and does not require a server restart for the change

to take effect.

In addition to mapping user or groups, a special-subject can also be mapped to the

Admin roles. A special-subject is a generalization of a particular class of users. The

AllAuthenticated special subject means that the access check of the admin role

ensures that the user making the request has at least been authenticated. The

Everyone special subject means that anyone, authenticated or not, can perform the

action, as if no security were enabled.

88 IBM® WebSphere® Application Server, Version 5.0.2: Security

http://java.sun.com

Naming roles

The J2EE role-based authorization concept has been extended to protect the

WebSphere CosNaming service.

CosNaming security offers increased granularity of security control over

CosNaming functions. CosNaming functions are available on CosNaming servers

such as the WebSphere Application Server. They affect the content of the

WebSphere Name Space. There are generally two ways in which client programs

will result in CosNaming calls. The first is through the JNDI interfaces. The second

is CORBA clients invoking CosNaming methods directly.

Four security roles are introduced: CosNamingRead, CosNamingWrite,

CosNamingCreate, and CosNamingDelete. The name of the four roles are the

same with WebSphere Advanced Edition Version 4.0.2. However, the roles now

have authority level from low to high as follows:

v CosNamingRead. Users who have been assigned the CosNamingRead role will

be allowed to do queries of the WebSphere Name Space, such as through the

JNDI ″lookup″ method. The special-subject Everyone is the default policy for

this role.

v CosNamingWrite. Users who have been assigned the CosNamingWrite role will

be allowed to do write operations such as JNDI ″bind″, ″rebind″, or ″unbind″,

plus CosNamingRead operations. The special-subject AllAuthenticated is the

default policy for this role.

v CosNamingCreate. Users who have been assigned the CosNamingCreate role

will be allowed to create new objects in the Name Space through such

operations as JNDI ″createSubcontext″, plus CosNamingWrite operations. The

special-subject AllAuthenticated is the default policy for this role.

v CosNamingDelete. And finally users who have been assigned CosNamingDelete

role will be able to destroy objects in the Name Space, for example using the

JNDI ″destroySubcontext″ method, as well as CosNamingCreate operations. The

special-subject AllAuthenticated is the default policy for this role.

Users, groups, or the special subjects AllAuthenticated and Everyone can be added

or removed to or from the Naming roles from the WebSphere web based

administrative console at anytime. However, a server restart is required for the

changes to take effect. A best practice is to map a group(s) or one of the

special-subjects, rather than specific users, to Naming roles because it is more

flexible and easier to administer in the long run. By mapping a group to an

Naming role, adding or removing users to or from the group occurs outside of

WebSphere and does not require a server restart for the change to take effect.

If a user is assigned a particular naming role and that user is a member of a group

that has been assigned a different naming role, the user will be granted the most

permissive access between the role he was assigned and the role his group was

assigned. For example, assume that user MyUser has been assigned the

CosNamingRead role. Also, assume that group MyGroup has been assigned the

CosNamingCreate role. If MyUser is a member of MyGroup, MyUser will be

assigned the CosNamingCreate role because he is a member of MyGroup. If

MyUser were not a member of MyGroup, he would be assigned the

CosNamingRead role.

The CosNaming authorization policy is only enforced when global security is

enabled. When global security is enabled, attempts to do CosNaming operations

Chapter 7. Assembling secured applications 89

without the proper role assignment will result in a

org.omg.CORBA.NO_PERMISSION exception from the CosNaming Server.

In the previous release (Version 4.0.2) of the product, each CosNaming function is

assigned to only one role. Therefore, users who have been assigned

CosNamingCreate role will not be able to query the Name Space unless they have

also been assigned CosNamingRead. In most cases a creator would need to be

assigned three roles: CosNamingRead, CosNamingWrite, and CosNamingCreate.

This has been changed in the release. The CosNamingRead and CosNamingWrite

roles assignment for the creator example in above have been included in

CosNamingCreate role. In most of the cases, WebSphere Application Server

administrators do not have to change the roles assignment for every user or group

when they move to this release from previous one.

Although the ability exist to greatly restrict access to the Name space by changing

the default policy, doing so may result in unexpected

org.omg.CORBA.NO_PERMISSION exceptions at run time. Typically, J2EE

applications access the Name space and the identity they use is that of the user

that authenticated to WebSphere Application Server when they access the J2EE

application. Unless the J2EE application provider clearly communicates the

expected Naming roles, care should be taken when changing the default naming

authorization policy.

Adding users and groups to roles

Before you begin

Before you perform this task, you should have already completed the steps in the

“Securing Web applications” on page 83 and “Securing enterprise bean

applications” on page 78 articles where articles where you created new roles and

assigned those roles to EJB and Web resources. Complete these steps during

application installation. This is because the environment (user registry) under

which the application is running is not known until deployment. If you already

know the environment in which the application is running and the user registry

that is used, then you can use the Application Assembly Tool (AAT) to assign users

and groups to roles. Using the administrative console to assign users and groups to

roles is recommended.

Steps for this task

 1. Open the application file. Open the application file by clicking File > Open.

Browse and select the application file.

 2. Open the application folder.

 3. Click Security Roles.

 4. Click the Bindings tab on the right hand side panel.

 5. Select a role from the right navigation top panel.

 6. Add a group to role by clicking Add under Groups and type in a group

name. Click OK. Repeat this operation to add more groups.

 7. Add a user to a role by clicking Add under Users. Type a user name and click

OK. Repeat this operation to add more users.

 8. Add a special subject (All authenticated users or Everyone) to a role. Click

Add under Special Subjects and select All authenticated users or Everyone as

required. Click OK. When All authenticated users or Everyone special subjects

is assigned to a role, you can skip steps 6 and 7 for that role.

 9. Repeat steps 5 through 8 for all the roles.

90 IBM® WebSphere® Application Server, Version 5.0.2: Security

10. Click Apply when done.

Results

The ibm-application-bnd.xmi file in the application contains the users and groups

to roles mapping table (authorization table).

Usage scenario

This step is required to secure an application.

What to do next

After securing an application, use the Application Assembly Tool (AAT). You can

install an application using the administrative console.

Mapping users to RunAs roles

Before you begin

RunAs roles are used for delegation. A servlet or enterprise bean component uses

the RunAs role to invoke another enterprise bean by impersonating that role.

Before you perform this task:

v Complete secure the Web application and secure enterprise bean applications

where new roles were created and assigned to enterprise bean and Web

resources

v Assign users and groups to roles. Complete this step during the installation of

the application. The environment or user registry under which the application is

going to run is not known until deployment. If you already know the

environment in which the application is going to run and you know the user

registry, then you can use the Application Assembly Tool (AAT) to assign users

to RunAs roles.

Steps for this task

1. Open the application file by clicking File > Open; browse and select the

application file.

2. Click the application folder.

3. Click the Bindings tab on the right-hand panel.

4. Click Add under RunAs Bindings.

5. Choose a role from the menu of the security role.

6. Choose the User ID and Password and click OK. Make sure the user ID entered

is part of the security role selected. If an All Authenticated special subject is

assigned to the security role, you can use any valid user ID and password. If

an Everyone special subject is assigned to Security Role, you do not need to

map a user to that role.

7. Repeat steps 4 through 6 for all the RunAs roles in the application.

8. Click Apply when done.

Results

The ibm-application-bnd.xmi file in the application contains the user to RunAs

role mapping table.

Chapter 7. Assembling secured applications 91

Usage scenario

This step also is required to secure an application. This step is required when a

servlet or an enterprise bean in an application is configured with RunAs settings.

What to do next

After securing an application using the AAT, you can install this application using

the administrative console.

92 IBM® WebSphere® Application Server, Version 5.0.2: Security

Chapter 8. Deploying secured applications

Before you begin

Before you perform this task, verify that you have already designed, developed

and assembled an application with all the relevant security configurations. For

more information on these tasks refer to Chapter 6, “Developing secured

applications,” on page 41 and Chapter 7, “Assembling secured applications,” on

page 77. In this context, deploying and installing an application are considered the

same task.

Deploying applications that have security constraints (secured applications) is not

much different than deploying applications any security constraints. The only

difference is that you might need to assign users and groups to roles for a secured

application, which requires that you have the correct active registry. To deploy a

newly secured application click Applications > Install New Application in the

navigation panel on the left and follow the prompts. If you are installing a secured

application, roles would have been defined in the application. If delegation was

required in the application, RunAs roles also are defined.

One of the steps required to deploy secured applications is to assign users and

groups to roles defined in the application. This task is completed as part of the

step titled Map security roles to users and groups. This assignment might have

already been done through the Application Assembly Tool (AAT). In that case you

can confirm the mapping by going through this step. You can add new users and

groups and modify existing information during this step.

If the applications support delegation, then a RunAs role is already defined in the

application. If the delegation policy is set to Specified Identity (during assembly)

the intermediary invokes a method using an identity setup during deployment.

Use the RunAs role to specify the identity under which the downstream

invocations are made. For example, if the RunAs role is assigned user ″bob″ and

the client ″alice″ is invoking a servlet, with delegation set, which in turn calls the

enterprise beans, then the method on the enterprise beans is invoked with ″bob″ as

the identity. As part of the deployment process one of the steps is to assign or

modify users to the RunAs roles. This step is titled ″Map RunAs roles to users″.

Use this step to assign new users or modify existing users to RunAs roles when

the delegation policy is set to Specified Identity.

These steps are common for both installing an application and modifying an

existing application. If the application contains roles, you see the ″Map security

roles to users and groups″ link during application installation and also during

managing applications, as a link in the Additional Properties section.

Steps for this task

1. Click Applications > Install New Application. Complete the steps

(non-security related) required prior to the step titled Map security roles to

users/groups.

2. “Security role to user and group mappings” on page 96

3. If RunAs roles exist in the application, assign users to RunAs roles.

© Copyright IBM Corp. 2003 93

4. Click Correct use of System Identity to specify RunAs roles if needed.

Complete this action if the application has delegation set to use System Identity

(applicable to enterprise beans only).

 System Identity uses the WebSphere Application Server security server ID to

invoke downstream methods and should be used with caution as this ID has

more privileges than other identities in terms of accessing WebSphere

Application Server internal methods. This task is provided to make sure that

the deployer is aware that the methods listed in the panel have System Identity

set up for delegation and to correct them if necessary. If no changes are

necessary, skip this task.

5. Complete the remaining (non-security related) steps to finish installing and

deploying the application.

What to do next

Once a secured application is deployed, verify that you can access the resources in

the application with the correct credentials. For example, if your application has a

protected Web module, make sure you only use the users listed in the roles for that

Web resource to access.

Assigning users and groups to roles

Before you begin

Before you perform this task:

v Secure the Web applications and EJB applications where new roles were created

and assigned to Web and EJB resources.

v Create all the roles in your application.

v Verify that the user registry is the current or active user registry. It is preferable

to have the security turned on with the user registry of your choice before

beginning this process.

v Make sure that if you change anything in the security configuration (for

example, enable security or change the user registry) you save the configuration

and restart the server before the changes become effective.

Since the default active registry is LocalOS, it is not necessary, although it is

recommended, that you enable security if you want to use the LocalOS registry to

assign users and groups to roles. You can enable security once the users and

groups are assigned in this case. The advantage of enabling security with the

appropriate registry before proceeding with this task is that you can validate the

security setup (which includes checking the user registry configuration) and avoid

any problems using the registry.

These steps are common for both installing an application and modifying an

existing application. If the application contains roles, you see the Map security

roles to users/groups link during application installation and also during

application management, as a link in the Additional Properties section at the

bottom.

Steps for this task

1. Click Map security roles to users/groups.

 A list of all the roles that belong to this application displays. If the roles already

had users or special subjects (All Authenticated, Everyone) assigned, they

display here.

94 IBM® WebSphere® Application Server, Version 5.0.2: Security

2. To assign the special subjects, select either the Everyone or the All

Authenticated check box for the appropriate roles.

3. To assign users or groups, select the role.

 You can select multiple roles at the same time, if the same users or groups are

assigned to all the roles.

4. Click Lookup Users or Lookup groups.

5. Get the appropriate users and groups from the registry by completing the limit

(number of items) and the Search String fields and clicking Search.

 The limit field limits the number of users that are obtained and displayed from

the registry. The pattern is a searchable pattern matching one or more users and

groups. For example, user* lists users like user1, user2. A pattern of asterisk (*)

indicates all users or groups.

 Use the limit and the search strings cautiously so as not to overwhelm the

registry. When using large registries (like Lightweight Directory Access Protocol

(LDAP)) where information on thousands of users and groups resides, a search

for a large number of users or groups can make the system very slow and can

make it fail. When there are more entries than requests for entries, a message

displays on top of the panel. You can refine your search until you have the

required list.

6. Select the users and groups to include as members of these roles from the

Available box and click >> to add them to the roles.

7. To remove existing users and groups, select them from the Selected box and

click <<.

 When removing existing users and groups from roles use caution if those same

roles are used as RunAs roles.

 For example, if user1 is assigned to RunAs role, role1, and you try to remove

user1 from role1, the GUI validation does not delete the user since a user can

only be a part of a RunAs role if the user is already in a role (User1 should be

in role1 in this case) either directly or indirectly through a group. For more

information on the validation checks that are performed between RunAs role

mapping and user and group mapping to roles, see the “Assigning users to

RunAs roles” on page 100 section.

8. Click OK.

 If there are any validation problems between the role assignments and the

RunAs role assignments the changes are not committed and an error message

indicating the problem dispalys at the top of the panel. If there is a problem,

make sure that the user in the RunAs role is also a member of the regular role.

If the regular role contains a group which contains the user in the RunAs role,

make sure that the group is assigned to the role using the administrative

console GUI. Follow steps 4 and 5. Avoid using the application assembly tool

(AAT) or any other manual process where the complete name of the group,

host name, group name, or distinguished name (DN) is not used.

Results

The user and group information is added to the binding file in the application.

This information is used later for authorization purposes.

Usage scenario

This step is required to assign users and groups to roles so that the application is

secured when called by the designated users.

Chapter 8. Deploying secured applications 95

What to do next

If you are installing an application, complete your installation. Once the

application is installed and running you can access your resources according to the

user and group mapping you did in this task. If you are managing applications

and have modified the users and groups to role mapping, make sure you save,

stop and restart the application so that the changes become effective. Try accessing

the J2EE resources in the application to verify that the changes are effective.

Security role to user and group mappings

Use this page to map security roles to users. You can map roles to specific users, to

specific groups, or to different categories.

To view this administrative console page, click Application > Install New

Application. While running the Application Installation Wizard, prompts appear to

help you map security roles to users or groups. To change role to user or group

mappings for deployed applications, click Application > Enterprise Application >

deployed_application > Map security roles to users/groups.

Users

Specifies the users for role mapping. Verify that the users are defined in your

chosen user registry.

To change the roles to users mapping, click Manage Application > application >

Map security roles to users.

 Data type: String

Groups

Specifies the groups for role mapping. Verify that the groups are defined in your

chosen user registry.

To change the roles to users mapping, click Manage Application > application >

Map security roles to groups.

 Data type: String

Roles

Specifies the roles to which you want to map users and groups. Role privileges

give users and groups permission to run as specified.

Select the check boxes to choose a role or a set of roles. Click Look-up Users to

map users to the roles that you have selected. Click Look-up Groups to map

groups to the selected roles. Use the check boxes to map roles to EVERYONE or

ALL AUTHENTICATED special subject.

 Data type: String

Everyone

Specifies to map roles to everyone. Mapping a role to everyone means that anyone

can access resources protected by this role, and essentially, there is no security.

 Data type: Boolean

96 IBM® WebSphere® Application Server, Version 5.0.2: Security

All Authenticated

Specifies to authenticate all users. Roles are mapped to all authenticated users, and

all authenticated users in the selected user registry are granted access to the role.

 Data type: Boolean

Security role to user and group selections

Use this page to select users and groups for security roles.

To view this administrative console page, click Application > Install New

Application.

While using the Install New Application Wizard, prompts appear to help you map

security roles to users. You also can configure security roles to user mappings of

deployed applications. Different roles can have different security authorizations.

Mapping users or groups to a role authorizes those users or groups to access

applications defined by the role. Users, groups and roles are defined when an

application is installed or configured.

You also can select role to user and group mappings while you are deploying

applications. After deployment in Additional Properties, click (Map Security roles

to users) to change user and group mappings to a role.

Look up users

Specifies whether the server looks up selected users.

Choose the role by selecting the check box beside the role and clicking Lookup

users. Complete the Limit and the Pattern fields. The Limit field contains the

number of entries that the search function returns. The Pattern field contains the

search pattern used for searching entries. For example, bob* searches all users or

groups starting with bob. A limit of zero returns all the entries that match the

pattern. Use this value only when a small number of users or groups match this

pattern in the registry. If the registry contains more entries that match the pattern

than requested, a message appears in the console to indicate that there are more

entries in the registry. You can either increase the limit or refine the search pattern

to get all the entries.

Look up groups

Specifies whether the server looks up selected groups.

Choose the role by selecting the check box beside the role and clicking Lookup

groups. Complete the Limit and the Pattern fields. The Limit field contains the

number of entries that the search function returns. The Pattern field contains the

search pattern used for searching entries. For example, bob* searches all users or

groups starting with bob. A limit of zero returns all the entries that match the

pattern. Use this value only when a small number of users or groups match this

pattern in the registry. If the registry contains more entries that match the pattern

than requested, a message appears in the console to indicate that there are more

entries in the registry. You can either increase the limit or refine the search pattern

to get all the entries.

Role: Specifies user roles.

A number of administrative roles are defined to provide degrees of authority

needed to perform certain WebSphere administrative functions from either the

Chapter 8. Deploying secured applications 97

Web-based administrative console or the system management scripting interface.

The authorization policy is only enforced when global security is enabled. The

following roles are valid:

v Monitor—least privileged that basically allows a user to view the server

configuration and current state

v Configurator—monitor privilege plus the ability to change the server

configuration

v Operator—monitor privilege plus the ability to change the run time state, such

as starting or stopping services

v Administrator—operator plus configurator privilege

 Range Monitor, Configurator, Operator, Administrator

Everyone: Specifies to authenticate everyone.

 Range Monitor, Configurator, Operator, Administrator

All authenticated:

 Range Monitor, Configurator, Operator, Administrator

Mapped users:

Delegations

Delegation is a process security identity propagation from a caller to a called object.

As per the J2EE specification, a servlet and enterprise beans can propagate either

the client (remote user) identity when invoking enterprise beans or they can use

another specified identity as indicated in the corresponding deployment descriptor.

The IBM extension supports Enterprise JavaBeans (EJB) to propagate to the server

ID when invoking other entity beans. There are three types of delegations:

v Delegate (RunAs) Client Identity

v Delegate (RunAs) Specified Identity

v Delegate (RunAs) System Identity

Delegate (RunAs) Client Identity

ID=user1

enterprise beans
or Web Client

RunAs Client ID

enterprise beans
or Servlet

Other
enterprise beans

ID=user1

Delegation Client Identity

Delegate (RunAs) Specified Identity

98 IBM® WebSphere® Application Server, Version 5.0.2: Security

RunAs Specified Role
mapped to user2

ID=user1

Enterprise beans
or Web Client

Enterprise beans
or Servlet

Other
Enterprise beans

ID=user2

Delegate (RunAs) System Identity

ID=user1

Enterprise beans
or Web Servlet

ID=server1

RunAs System ID

server1

Enterprise beans
Other

Enterprise beans

Delegation System Identity

The EJB specification only supports delegation (RunAs) at the EJB level. But an

IBM extension allows EJB method level RunAs specification. Method EJB method

level runAs specification allows one to specify a different RunAs role for different

methods within the same enterprise beans.

The RunAs specification is detailed in the deployment descriptor (the ejb-jar.xml

file in the EJB module and the web.xml file in the Web module). The IBM extension

to the RunAs specification is included in the ibm-ejb-jar-ext.xmi file.

There is also an IBM specific binding file for each application that contains a

mapping from the RunAs role to the user. This file is specified in the

ibm-application-bnd.xmi file.

These specifications are read by the run time during application startup. The

following figure illustrates the delegation mechanism as implemented in the

WebSphere Application Server security model.

CSIV2/SAS, TCP/IP, SSL

EJB Resource Access

HTTP/HTTPS

Web Resource Access

Delegation Process

WebSphere Application Server

Delegation

Resource
to

RunAs Role

RunAs Role
to credentials

Enterprise beans
collaborator

Web
Authenticator

Java Client

Web Client

(1)

(1)

(2)

(3)

(4)

Resource

Resource RunAs
Role

Run AS
Role

Users and
password

(2)

Resource

Resource

RunAs Roles

credentials

RunAs Roles

Delegate
Module

ORB
Current

(6)
Enterprise

beans

Servlet
(6)

(7)

(7)

(5)

Invoke credentials

Delegation Process

Chapter 8. Deploying secured applications 99

There are two tables that help in the delegation process:

v Resource to RunAs role mapping table

v RunAs role to user ID and password mapping table

Use the Resource to RunAs role mapping table to get the role that is used by a

servlet or by enterprise beans to propagate to the next enterprise beans call.

Use the RunAsRole to User ID and Password mapping table to get the user ID that

belongs to the RunAs role and its password.

Delegation is performed after successful authentication and authorization. During

this process, the delegation module consults the Resource to RunAs role mapping

table to get the RunAs role (3). The delegation module consults the RunAs role to

user ID and password mapping table to get the user that belongs to the RunAs

role (4). The user ID and password is used to create a new credential using the

authentication module, which is not shown in figure.The resulting credential is

stored in the ORB Current as an invocation credential (5). Servlet and enterprise

beans when invoking other enterprise beans pick up the invocation credential from

the ORB Current (6) and call the next enterprise beans (7).

Assigning users to RunAs roles

Before you begin

Before you perform this task,

v Secure the Web applications and EJB applications where new RunAs roles were

created and assigned to Web and EJB resources.

v Create all the RunAs roles in your application. The user in the RunAs role can

only be entered if that user or a group to which that user belongs is already part

of the regular role.

v Assign users and groups to security roles. Refer to Assigning users and groups

to security roles for more information.

v Verify that the user registry requirements are met. These requirements are the

same as those discussed in the same as in the case of Assigning users and

groups to security roles task. For example, if role1 is a role that is also used as a

RunAs role, then the user, user1, can be added to the RunAs role. role1, if user1

or a group that user1 belongs to, already is assigned to role1. The

Administrative Console checks this logic when Apply or OK is clicked. If the

check fails, the change is not made and an error message displays at the top of

the panel.

If the special subjects ″Everyone″ or ″All Authenticated″ are assigned to a role,

then no check takes place for that role.

The checking is done every time Apply in this panel is clicked or when OK is

clicked in the Map security roles to users and groups panel. The check verifies

that all the users in all the RunAs roles do exist directly or indirectly (through a

group) in those roles in the Map security roles to users and groups panel. If a role

is assigned both a user and a group to which that user belongs, then either the

user or the group (not both) can be deleted from Map security roles to users and

groups panel.

If the RunAs role user belongs to a group and if that group is assigned to that role,

make sure that the assignment of this group to the role is done through

100 IBM® WebSphere® Application Server, Version 5.0.2: Security

Administrative Console and not through the Application Assembly Tool (AAT) or

any other method. When using the Administrative Console, the full name of the

group is used (for example, hostname\groupName in Windows systems, and

distringuised names (DN) in Lightweight Directory Access Protocol (LDAP)).

During the check, all the groups to which the RunAs role user belongs are

obtained from the registry. Since the list of groups obtained from the registry are

the full names of the groups, the check works correctly. If the short name of a

group is entered using AAT (for example, group1 instead of CN=group1,

o=myCompany.com) then this check fails.

These steps are common to both installing an application and modifying an

existing application. If the application contains RunAs roles, you see the Map

RunAs roles to users link during application installation and also during

managing applications as a link in the Additional Properties section at the bottom.

Steps for this task

1. Click Map RunAs roles to users.

 A list of all the RunAs roles that belong to this application displays. If the roles

already had users assigned, they display here.

2. To assign a user, select the role.

 You can select multiple roles at the same time if the same user is assigned to all

the roles.

3. Enter the user’s name and password in the designated fields. The user name

entered can be either the short name (preferred) or the full name (as seen when

getting users and groups from the registry).

4. Click Apply.

 The user is authenticated using the active user registry. If authentication is

successful, a check is made to verify that this user or group is mapped to the

role in the Map security roles to users and groups panel. If authentication

fails, verify that the user and password are correct and that the active registry

configuration is correct.

5. To remove a user from a RunAs role, select the roles and click Remove.

Results

The RunAs role user is added to the binding file in the application. This file is

used for delegation purposes when accessing J2EE resources.

Usage scenario

This step is required to assign users to RunAs roles so that during delegation the

appropriate user is used to invoke the EJB methods.

What to do next

If you are installing the application, complete installation. Once the application is

installed and running you can access your resources according to the RunAS role

mapping. Save the configuration.

If you are managing applications and have modified the RunAs roles to users

mapping, make sure you save, stop and restart the application so that the changes

become effective. Try accessing your J2EE resources to verify that the new changes

are in effect.

Chapter 8. Deploying secured applications 101

User and group selection settings

Use this page to select users and groups for mapping security roles.

You might also encounter this panel in the administrative console as part of the

wizard for installing an enterprise application or module.

Note: You must install an application that already has security roles defined before

selecting users or groups for mapping.

<h4/>

Steps for this task

1. Click Applications > Enterprise Applications from the left navigation panel.

 A collection of installed application names appear.

2. Click the application name for which you wish to map security roles to users

or groups.

3. Click Map security roles to users/groups.

 At run time, the authorization checking grants access in the following order:

Everyone, All authenticated users, and Select users/groups. If a user or group

is in more than one of these roles, the first match grants access.

4. To select a user or group for the role, select the role and click Lookup Users or

Lookup Groups. Enter a name in the search field or enter a search pattern.

 The search results display in the Available Users/Groups tree view.

5. Select the users or groups and click Add.

6. Click OK.

7. Repeat the steps for each role that needs mapping.

Unprotected EJB 2.0 methods protection settings

Use this page to verify that unprotected EJB 2.0 methods have the correct level of

protection before you map users to roles.

To view this administrative console page, click Application > Install New

Application. While running the Install New Application Wizard, prompts appear

to help you map security roles to users.

Exclude

Specifies that the method is completely protected.

 Data type: Check box

Default: Cleared

Uncheck

Specifies that everyone can access the security method.

 Data type: Check box

Default: Uncheck

Specify role

Specifies the EJB level of protection based on the security role.

102 IBM® WebSphere® Application Server, Version 5.0.2: Security

The roles listed in this menu are obtained from the application scope. If the

selected role is not in the module, then it is added to the modules or Java archive

(JAR) files.

 Data type: String

Units: Role

Module name

Specifies the name of the module.

If a module name appears in this list, then the module contains unprotected EJB

methods.

 Data type: String

Units: Module name

Protection

Specifies the level of protection assigned to a particular module name.

 Data type: String

Default: Cleared

EJB 1.0 method protection level settings

Use this page to verify that all unprotected EJB 1.0 methods have the correct level

of protection before you map users to roles.

To view this administrative console page, click Applications > Install New

Application. While running the Install New Application Wizard, prompts appear

to help you determine that all unprotected EJB 1.0 methods have the correct level

of protection.

EJB Module

Specifies the enterprise bean module name.

 Data Type: String

Units: EJB module name

Module URI

Specifies the Java archive (JAR) file name.

 Data Type: String

Units: JAR file name

Method protection

Specifies the level of protection assigned to the EJB module.

A selected box means to Deny All and that the method is completely protected.

 Data Type: Check box

Default: Cleared

Range: Yes or No

Chapter 8. Deploying secured applications 103

RunAs roles to users mapping

Use this page to map RunAs roles to users. You can change the RunAs settings

after an application deploys.

To view this administrative console page, click Applications > Install New

Application. While running the application installation wizard, prompts appear to

help you map RunAs roles to users. You can change the RunAs roles to users

mappings for deployed applications. Click Applications > application_name > Map

RunAs roles to users in the Additional Properties section.

The enterprise beans you are installing contain predefined RunAs roles. RunAs

roles are used by enterprise beans that need to run as a particular role for

recognition while interacting with another enterprise bean.

User name

Specifies a user name for the RunAs role user.

This user already maps to the role specified in the Mapping users and groups to

roles panel. You can map the user to its appropriate role by either mapping the

user to that role directly or mapping a group that contains the user to that role.

 Data type: String

Password

Specifies the password for the RunAs user.

 Data type: String

Confirm password: Specifies the confirmed password of the administrative user.

 Data type String

Role: Specifies administrative user roles.

A number of administrative roles have been defined to provide degrees of

authority needed to perform certain WebSphere administrative functions from

either the web based administrative console or the system management scripting

interface. The authorization policy is only enforced when global security is

enabled. The following roles are valid:

v Monitor—least privileged that basically allows a user to view the WebSphere

configuration and current state

v Configurator—monitor privilege plus the ability to change the WebSphere

configuration

v Operator—monitor privilege plus the ability to change runtime state, such as

starting or stopping services for example

v Administrator—operator plus configurator privilege

Updating and redeploying secured applications

Before you begin

104 IBM® WebSphere® Application Server, Version 5.0.2: Security

Before you perform this task, secure Web applications, secure EJB applications, and

deploy them in WebSphere Application Server. This section addresses the way to

update existing applications.

Steps for this task

1. Use the administrative console to modify the existing users and groups

mapping to roles.

 The task titled Mapping users and groups to roles details the required steps.

2. Use the administrative console to modify the users for the RunAs roles.

 The task titled Mapping users to RunAs roles details the required steps.

3. Complete the changes and save them.

4. Stop and restart the application for the changes to become effective.

5. Use the Application Assembly Tool (AAT) to update any other security related

information.

6. Use the AAT to modify roles, method permissions, auth-constraints,

data-constraints and so on.

7. Save the Enterprise Archive (EAR) file, uninstall the old application, deploy the

modified application and start the application to make the changes effective.

Results

The applications are modified and redeployed.

Usage scenario

This step is required to modify existing secured applications.

What to do next

If information about roles is modified make sure you update the user and group

information using the administrative console. Once the secured applications are

modified and either restarted or redeployed, make sure that the changes are

effective by accessing the resources in the application.

Chapter 8. Deploying secured applications 105

106 IBM® WebSphere® Application Server, Version 5.0.2: Security

Chapter 9. Testing security

Before you begin

After configuring global security and restarting all of your servers in a secure

mode, it is best to validate that security is properly enabled. There are a few

techniques that you can use to test the various security login types. For example,

you can test Web FormLogin, Web BasicAuth login, and Java Client BasicAuth

login. These basic tests show that the fundamental security components are

working properly. Here are the steps you can take to validate your security

configuration. After completing these basic tests, thoroughly test your secured

applications.

Steps for this task

1. Test Web-based BasicAuth with Snoop, by accessing the following URL:

http://hostname.domain:9080/snoop. A login panel appears. If a login panel

does not appear, there is a problem. If the panel appears, type in any valid user

ID and password in your configured user registry.

 Note: In a Network Deployment environment, the Snoop servlet is only

available in the domain if you included the DefaultApplication option when

adding the application server to the cell. The -includeapps option for the

addNode command migrates the DefaultApplication option to the cell.

Otherwise, skip this step.

2. Test Web-based FormLogin by bringing up the administrative console:

http://hostname.domain:9090/admin. A form-based login page appears. If a

login panel does not appear, there is a problem. Type in the administrative user

ID and password used for configuring your user registry when configuring

security. Note that, when the authentication mechanism is set as Lightweight

Third Party Authentication (LTPA), reprsent the host name as a fully qualified

host name (that is, myhost.mycompany.com:9090 rather than just myhost:9090).

3. Test Java Client BasicAuth with dumpNameSpace by executing the

install_root\bin\dumpNameSpace.bat file. A login panel appears. If a login

panel does not appear, there is a problem. Type in any valid user ID and

password in your configured user registry.

Results

The results of these tests, if successful, indicate that security is fully enabled and

working properly. This test is just a start to security verification. Thoroughly test

all of your applications in secure mode. After enabling security, verify that your

system comes up in secure mode.

What to do next

If all tests pass, proceed with more rigorous testing of your secured applications. If

you have any problems, review the output logs in the WAS /logs/nodeagent or

WAS /logs/server_name directories, respectively. Then check Chapter 11,

“Troubleshooting security configurations,” on page 361 to see if it references any

common problems.

© Copyright IBM Corp. 2003 107

108 IBM® WebSphere® Application Server, Version 5.0.2: Security

Chapter 10. Managing security

Administering secure applications requires access to the WebSphere Application

Server administrative console. Otherwise, log in with a valid user ID and password

that have administrative access. To administer security, complete these steps:

Steps for this task

 1. “Configuring global security” on page 110

 2. “Assigning users to administrator roles” on page 119.

 3. “Assigning users to naming roles” on page 122.

 4. “Configuring authentication mechanisms” on page 126

 5. “Configuring Lightweight Third Party Authentication” on page 127.

 6. “Configuring trust association interceptors” on page 135.

 7. “Configuring single signon” on page 139

 8. “Configuring user registries” on page 145

a. “Configuring local operating system user registries” on page 151.

b. “Configuring Lightweight Directory Access Protocol user registries” on

page 160.

c. “Configuring custom user registries” on page 166.
 9. “Configuring Java Authentication and Authorization Service login” on page

211..

10. “Configuring Common Secure Interoperability Version 2 and Security

Authentication Service authentication protocols” on page 240

11. “Configuring Secure Sockets Layer” on page 274

12. “Configuring Java 2 security” on page 330

Global security

Global security applies to all applications running in the environment and

determines whether security is used at all, the type of registry against which

authentication takes place, and other values, many of which act as defaults.

The term global security represents the security configuration that is effective for the

entire security domain. A security domain consists of all servers configured with the

same user registry realm name. In some cases, the realm can be the machine name

of a Local OS user registry. In this case, all application servers must reside on the

same physical machine. In other cases, the realm can be the machine name of an

Lightweight Directory Access Protocol (LDAP) user registry. Since LDAP is a

distributed user registry, a multiple node configuration is supported, such as the

case for a Network Deployment environment. The basic requirement for a security

domain is that the access ID returned by the registry from one server within the

security domain is the same access ID as that returned from the registry on any

other server within the same security domain. The access ID is the unique

identification of a user and is used during authorization to determine if access is

permitted to the resource.

Configuration of global security for a security domain consists of configuring the

common user registry, the authentication mechanism, and other security

information, which defines the behavior of a security domain. The other security

© Copyright IBM Corp. 2003 109

information that you can configure includes Java 2 Security Manager, Java

Authentication and Authorization Service (JAAS), Java 2 Connector authentication

data entries, Common Secure Interoperability Version 2 (CSIv2)/Security

Authentication Service (SAS) authentication protocol (Remote Method Invocation

over the Internet Inter-ORB Protocol (RMI/IIOP) security), and other miscellaneous

attributes. The global security configuration usually applies to every server within

the security domain.

Configuring global security

Before you begin

It is helpful to understand security from an infrastructure standpoint so that you

know the advantages of different authentication mechanisms, user registries,

authentication protocols, and so on. Picking the right security components to meet

your needs is a part of configuring global security. The following sections help you

make these decisions. Read Chapter 1, “Welcome to Security,” on page 1 before

continuing with the security configuration.

Once you understand the security components, you can proceed to configure

global security in WebSphere Application Server.

Steps for this task

1. Start the WebSphere Application Server administrative console by going to

http://yourhost.domain:9090/admin after the WebSphere Application Server

starts.

 If security is currently disabled, log in with any user ID. If security is currently

enabled, log in with a predefined administrative ID and password (this is

typically the server user ID specified when you configured the user registry).

2. Click Security from the left navigation menu. Configure the authentication

mechanism, user registry, and so on.

 The configuration order is not important. However, when you select the

Enabled flag in the Global Security panel, verify that all these tasks are

completed. When you click Apply or OK and the Enabled flag is set, a

verification occurs to see if the administrative user ID and password can be

authenticated to the configured user registry. If you do not configured these,

the validation fails.

3. Configure a user registry.

 For more information, see Configuring user registries. Configure (LocalOS,

LDAP, or Custom), and then specify details about that registry. One of the

details common to all user registries is the server user ID. This ID is a member

of the chosen user registry, but also has special privileges in WebSphere

Application Server. The privileges for this ID and the privileges associated with

the administrative role ID are the same. The server user ID can access all

protected administrative methods. On Windows systems, the ID must not be

the same name as the machine name of your system, since the registry

sometimes returns machine-specific information when querying a user of the

same name. In LDAP user registries, verify that the server user ID is a member

of the registry and not just the LDAP administrative role ID. The entry must be

searchable.

 The server user ID does not run WebSphere Application Server processes.

Rather, the process ID runs the WebSphere Application Server processes. The

process ID is determined by the way the process starts. For example, if you use

a command line to start processes, the user ID that is logged into the system is

110 IBM® WebSphere® Application Server, Version 5.0.2: Security

the process ID. If running as a service, the user ID that is logged into the

system is the user ID running the service. If you choose the LocalOS registry,

the process ID requires special privileges to call the operating system APIs.

Specifically, the process ID must have the Act as Part of Operating System

privileges on Windows systems or root privileges on a UNIX system.

4. Configure the authentication mechanism.

 To get details about configuring authentication mechanisms, read the

“Configuring authentication mechanisms” on page 126 article. There are two

authentication mechanisms to choose from in the Global Security panel: Simple

WebSphere Authentication Mechanism (SWAM) and Lightweight Third-Party

Authentication (LTPA). However, only LTPA requires any additional

configuration parameters. Use the SWAM option for single server requirements.

Use the LTPA option for multi-server distributed requirements. SWAM

credentials are not forwardable to other machines and for that reason do not

expire. Credentials for LTPA are forwardable to other machines and for security

reasons do expire. This expiration time is configurable. If you choose to go with

LTPA, then see the “Configuring single signon” on page 139 article. This

support permits browsers to visit different product servers without having to

authenticate multiple times.

5. Configure the authentication protocol for special security requirements from

Java clients, if needed.

 This task entails choosing a protocol, either Common Secure Interoperability

Version 2 (CSIv2) or Security Authentication Service (SAS). The CSIv2 protocol

is new to WebSphere Application Server Version 5 and has many new and

improved features. The SAS protocol is still provided as a backwards

compatibility to previous product releases but is being deprecated. For details

on configuring CSIv2 or SAS, see the article, “Configuring Common Secure

Interoperability Version 2 and Security Authentication Service authentication

protocols” on page 240.

6. Modify the default Secure Sockets Layer (SSL) keystore and truststore files that

are packaged with the product.

 This action protects the integrity of the messages sent across the Internet. The

product provides a single location where you can specify SSL configurations

that the various WebSphere Application Server features that use SSL can utilize,

including the LDAP user registry, Web container and the authentication

protocol (CSIv2 and SAS). Create a new keystore and truststore, by referring to

the “Creating a keystore file” on page 306 and “Creating truststore files” on

page 312 articles. You can create different keystore files and truststore files for

different uses or you can create just one set for everything that the server uses

SSL for. Once you create these new keystore and truststore files, specify them in

the SSL Configuration Repertoires. See the article, “Configuring Secure Sockets

Layer” on page 274 for more information. To get to the SSL Configuration

Repertoires, click Security > SSL. You can either edit the DefaultSSLConfig file

or create a new SSL configuration with a new alias name. If you create a new

alias name for your new keystore and truststore files, change every location

that references the DefaultSSLConfig SSL configuration alias. The following list

provides these locations:

v Security > User Registries > LDAP (at the bottom of the panel)

v Security > Authentication Protocol > CSIv2 Inbound Transport

v Security > Authentication Protocol > CSIv2 Outbound Transport

v Security > Authentication Protocol > SAS Inbound Transport

v Security > Authentication Protocol > SAS Outbound Transport

Chapter 10. Managing security 111

v Servers > Application Servers > {app_server_name} -> Web Container ->

HTTP transports > {host_link}

7. Click Security > Global Security to configure the rest of the security settings

and enable security.

 This panel performs a final validation of the security configuration. When you

click OK or Apply from this panel, the security validation routine is performed

and any problems are reported at the top of the page. See the “Global security

settings” on page 113 article for detailed information about these fields. When

you complete all of the fields, click OK or Apply to accept the selected settings.

Click Save to persist these settings out to a file. If you see any informational

messages in red text color, then a problem has occurred with the security

validation. Typically, the message indicates the problem. So, review your

configuration to verify that the user registry settings are accurate and the

correct registry is selected. In some cases the LTPA configuration might not be

fully specified.

8. Store the configuration for the server to use once it restarts. Complete this

action if you have clicked OK or Apply on the Security > Global Security

panel, and there are no validation problems. To save the configuration, click

Save in the menu bar at the top. This action writes the settings out to the

configuration repository. If you do not click Apply or OK in the Global

Security panel before clicking Save on the main menu, your changes are not

written to the repository.

Enabling and disabling global security

You can decide whether to enable IBM WebSphere Application Server security. You

must enable security for all other security settings to function.

Steps for this task

1. “Configuring global security” on page 110

 It is important that you click Security > Global Security and set the Enabled

flag to ON so that security is enabled upon a server restart.

2. Before restarting the server, log off the administrative console.

 You can log off by clicking Logout at the top menu bar.

3. Stop the server by going to the command line in the WebSphere Application

Server /bin directory and issue a stopServer <server_name> command.

4. Restart the server in secure mode by issuing the command startServer

<server_name>.

 Once the server is secure, you cannot stop the server again without specifying

an administrative user name and password. To stop the server once security is

enabled, issue the command, stopServer <server_name> -username <user_id>

-password <password>. Alternatively, you can edit the soap.client.props file in

the install_root/properties directory and edit the com.ibm.SOAP.loginUserid

or com.ibm.SOAP.loginPassword properties to contain these administrative IDs.

 If you have any problems restarting the server, review the output logs in the

install_root/logs/server_name directory.

Disabling global security

Steps for this task

1. Click Security > Global Security and set the Enabled flag to OFF so that

security gets disabled upon a server restart.

2. Before restarting the server, log off the administrative console. You can log out

by clicking Log off at the top menu bar.

112 IBM® WebSphere® Application Server, Version 5.0.2: Security

3. Stop the server by going to the command line in the WebSphere Application

Server /bin directory and issue the following command (split for publication):

 stopServer server_name -username <administrative_user_name>

 -password -<administrative_password>

 You must include the administrative user ID to stop the server when security is

enabled. Alternatively, you can edit the sas.client.props file in the

install_root/properties directory and edit the com.ibm.SOAP.loginUserid or

com.ibm.SOAP.loginPassword properties to contain these administrative IDs. If

you enter stopServer server_name, the administrative user ID is picked up

from the sas.client.props file.

4. Issue the following command to restart the server in secure mode:

 startServer <server_name>

5. If you have any problems restarting the server, review the output logs in the

install_root/logs/server_name directory.

Usage scenario

This scenario is specifically for a stand-alone setup where you have a single

application server and likely utilize your Local OS registry for your repository of

users. The authentication mechanism is probably Simple WebSphere Authentication

Mechanism (SWAM). The application server cannot communicate securely to other

application servers as the SWAM authentication mechanism does not contain a

forwardable token to send to downstream servers.

What to do next

After restarting the server in secure mode, run a couple of simple tests to verify

that most facets of security are working properly.

1. Test basic authentication with snoop by accessing the following URL:

http://hostname.domain:9080/snoop. A login panel appears. Type in any valid

user ID and password in your configured user registry. If the login panel fails

to appear, there is a problem.

2. Test the Java client with dumpNameSpace by executing the

install_dir\bin\dumpNameSpace.bat file. A login panel appears. Type in any

valid user ID and password in your configured user registry. If the login panel

fails to appear, there is a problem.

3. Test form login by bringing up the administrative console:

http://hostname.domain:9090/admin. A form-based login page appears. Type in

the administrative user ID and password that was used for configuring your

user registry when configuring security. When the Authentication Mechanism is

set as LTPA, provide a fully qualified host name (for example,

myhost.mycompany.com:9090, rather than just myhost:9090). If the login panel

fails to appear, there is a problem.

If you encountered a problem with any of these tests, check the WebSphere

Application Server /logs/server_name/SystemOut.log file for hints about the

problems that occurred. Also refer to (Troubleshooting Security) for solutions.

Global security settings

Use this page to configure security. When you enable security, you are enabling

security settings on a global level. When security is disabled, WebSphere

Application Server performance is increased between 10-20%. Therefore, consider

disabling security when it is not needed.

To view this administrative console page, click Security > Global Security.

Chapter 10. Managing security 113

If you are configuring security for the first time, complete the steps in to avoid

problems. Once security is configured, validate any changes to the registry or

authentication mechanism panels. Click Apply to validate the user registry

settings. An attempt is made to authenticate the server ID to the configured user

registry. Validating the user registry settings after enabling global security can

avoid problems when you restart the server for the first time.

Enabled: Specifies for the server to enable security subsystems.

This flag is commonly referred to as the global security flag in WebSphere

Application Server information. When enabling security, set the authentication

mechanism configuration and specify a valid user ID and password in the selected

user registry configuration.

 Data type: Boolean

Default: Disable

Enforce Java 2 Security: Specifies whether to enable or disable Java 2 security

permission checking. By default, Java 2 security is disabled. However, enabling

global security, automatically enables Java 2 security. You can choose to disable

Java 2 security, even when global security is enabled.

When Java 2 security is enabled and if an application requires more Java 2 security

permissions than are granted in the default policy, then the application might fail

to run properly until the required permissions are granted in either the app.policy

file or the was.policy file of the application. AccessControl exceptions are

generated by applications that do g have all the required permissions. Consult the

InfoCenter and review the Java 2 Security and Dynamic Policy sections if you are

unfamiliar with Java 2 security.

If your server does not restart after you enable global security, you can disable

security. Go to your install_root\bin directory and excecute the wsadmin

-conntype NONE command. At the wsadmin> prompt, enter securityoff and then

type exit to return to a command prompt. Restart the server with security

disabled to check any incorrect settings through the administrative console.

 Data type: Boolean

Default: Disabled

Range: Enabled or Disabled

Use Domain Qualified User Names: Specifies the user names to qualify with the

security domain within which they reside.

 Data type: Boolean

Default: Disabled

Range: Enable or Disable

5.0.1 +

When you specify Use Domain Qualified User Names from the Security > Global

Security configuration panel, the runtime call to getCallerPrincipal() from an

enterprise bean returns the qualified name with the realm prepended twice. For

114 IBM® WebSphere® Application Server, Version 5.0.2: Security

example, the format return is realm/realm/user. You can strip the first realm from

the returned value when making API calls. The servlet API getUserPrincipal()

works correctly.

Cache Timeout: Specifies the timeout value in seconds for security cache. This

value is a relative timeout.

If WebSphere Application Server security is enabled, the security cache timeout can

influence performance. The timeout setting specifies how often to refresh the

security-related caches. Security information pertaining to beans, permissions, and

credentials is cached. When the cache timeout expires, all cached information

becomes invalid. Subsequent requests for the information result in a database

lookup. Sometimes, acquiring the information requires invoking a Lightweight

Directory Access Protocol (LDAP)-bind or native authentication.Both invocations

are relatively costly operations for performance. Determine the best trade off for

the application, by looking at usage patterns and security needs for the site.

In a 20-minute performance test, setting the cache timeout so that a timeout does

not occur yeilds a 40% performance improvement.

 Data type: Integer

Units: Seconds

Default: 600

Range: Greater than 30 seconds

Issue Permission Warning: Specifies that when the Issue permission warning is

enabled, during application deployment and application start, the security run time

emits a warning if applications are granted any custom permissions. Custom

permissions are permissions defined by the user applications, not JDK permissions.

JDK permissions are permissions in package java.* and javax.*.

The WebSphere product provides support for policy file management. There are a

number of policy files in this product, some of them are static and some of them

are dynamic. Dynamic policy is a template of permissions for a particular type of

resource. There is no code base defined or relative code base used in the dynamic

policy template. The real code base is dynamically created from the configuration

and run-time data. The filter.policy file contains a list of permissions that an

application should not have according to the J2EE 1.3 specification. For more

information on permissions, see the Java 2 Security Policy Management article in

the InfoCenter.

 Data type: Boolean

Default: Disabled

Range: Enable or Disable

Active Protocol: Specifies the active authentication protocol for Remote Method

Invocation over the Internet Inter-ORB Protocol (RMI IIOP) requests when security

is enabled. In previous releases the Security Authentication Service (SAS) protocol

was the only available protocol.

An Object Management Group (OMG) protocol called Common Secure

Interoperability Version 2 (CSIv2) supports increased vendor interoperability and

additional features. If all the servers in your security domain are Version 5 servers,

specifyCSI as your protocol. If some servers are 3.x or 4.x servers, specify CSI and

SAS.

Chapter 10. Managing security 115

Data type: String

Default: BOTH

Range: CSI and SAS, CSI

Active Authentication Mechanism: Specifies the active authentication mechanism,

when security is enabled.

WebSphere Application Server, Version 5 supports the following authentication

mechanisms: Simple WebSphere Authentication Mechanism (SWAM) and

Lightweight Third Party Authentication (LTPA).

 Data type: String

Default: SWAM (WebSphere Application Server)

Range: SWAM, LTPA

Active User Registry: Specifies the active user registry, when security is enabled.

You can configure settings for one of the following user registries:

v Local operating system

v LDAP user registry. The LDAP user registry settings are used when users and

groups reside in an external LDAP directory. When security is enabled and any

of these properties are changed, go to the Global Security panel and click

Apply or OK to validate the changes.

v Custom user registry

 Data type: String

Default: Local OS

Range: Local OS, LDAP, Custom

Use FIPS: Enables the use of FIPS (Federal Information Processing

Standard)-approved cryptographic algorithms.

When Use FIPS is enabled, the Lightweight Third Party Authentication (LTPA)

implementation uses IBMJCEFIPS. IBMJCEFIPS supports the Federal Information

Processing Standard (FIPS)-approved cryptographic algorithms for DES, Triple

DES, and AES. Although the LTPA keys are backwards compatible with prior

releases of WebSphere Application Server, the LTPA token is not compatible with

prior releases.

WebSphere Application Server provides a FIPS-approved Java Secure Socket

Extension (JSSE) provider called IBMJSSEFIPS. A FIPS-approved JSSE requires the

Transport Layer Security (TLS) protocol as it is not compatible with the Secure

Sockets Layer (SSL) protocol. If you select the Use FIPS checkbox prior to

specifying a FIPS-approved JSSE provider and a TLS protocol, the following error

message displays at the top of the Global Security panel:

The security policy is set to use only FIPS approved cryptographic algorithms.

However at least one SSL configuration may not be using a FIPS approved JSSE provider.

FIPS approved cryptographic algorithms may not be used in those cases.

To correct this problem, configure your JSSE provider and security protocol on the

SSL Configuration Repertoires panel by completing one of the following tasks:

v Clicking Security > SSL and modifying an existing configuration

116 IBM® WebSphere® Application Server, Version 5.0.2: Security

v Clicking New and creating a new configuration

Administrative console and naming service authorization

WebSphere Application Server extends J2EE security role-based access control to

protect the product administrative and naming subsystems.

Administrative console

Four administrative roles are defined to provide degrees of authority needed to

perform certain WebSphere Application Server administrative functions from either

the Web-based administrative console or the system management scripting

interface. The authorization policy is only enforced when global security is

enabled. The four administrative security roles are defined in the following table:

 Role Description

monitor Least privileged where a user can view the

WebSphere Application Server configuration

and current state.

configurator Monitor privilege plus the ability to change

the WebSphere Application Server

configuration.

operator Monitor privilege plus the ability to change

the run-time state, such as starting or

stopping services.

administrator Operator plus configuration privilege and

the permission required to access sensitive

data including the server password, LTPA

password, LTPA, keys, and so on.

When WebSphere Application Server global security is enabled, the administrative

subsystem role-based access control is enforced. The administrative subsystem

includes security server, user registry, and all the Java Management Extensions

(JMX) MBeans. When security is enabled, both the Web-based administrative

console and the administrative scripting tool require users to provide the required

authentication data. Moreover, the administrative console is designed such that the

control functions that display on the GUI pages are adjusted according to the

security roles a user has. For example, a user who has only the monitor role only

can see non-sensitive configuration data. A user with the operator role would have

options available on GUI pages to change the system state.

The server identity specified when enabling global security is automatically

mapped to the administrative role. Users and groups can be added or removed to

or from the administrative roles from the WebSphere Application Server Web-based

administrative console. However, a server restart is required for the changes to

take effect. A best practice is to map a group, rather than specific users, to

administrative roles because it is more flexible and easier to administer in the long

run. By mapping a group to an administrative role, adding or removing users to or

from the group occurs outside of WebSphere Application Server and does not

require a server restart for the change to take effect.

In addition to mapping users or groups, you can map a special-subject to the

administrative roles. A special-subject is a generalization of a particular class of

users. The AllAuthenticated special subject means that the access check of the

administrative role ensures that the user making the request has at least been

Chapter 10. Managing security 117

authenticated. The Everyone special subject means that anyone, authenticated or

not, can perform the action, as if no security were enabled.

When global security is enabled, WebSphere Application Servers run under the

server identity that is defined under the active user registry configuration.

Although it is not shown on the administrative console and in other tools, a special

Server subject is mapped to the administrator role. This is why the WebSphere

Application Server server run-time code, which runs under the server identity,

requires authorization to execute run-time operations. If no other user is assigned

administrative roles, you can log into the administrative console or to the wsadmin

scripting tool using the server identity to perform administrative operations and to

assign other users or groups to administrative roles. Because the server identity is

assigned to the administrative role by default, the administrative security policy

requires the administrative role to perform the following operations:

v Change server ID and server password

v Enable or disable WebSphere Application Server global security

v Enforce or disable Java 2 Security

v Change the LTPA password or generate keys

v Assign users and groups to administrative roles

When enabling security, you can assign one or more users and groups to

administrative roles. For more information, see “Assigning users to naming roles”

on page 122. However, before assigning users to naming roles, configure the active

user registry. User and group validation depends on the active user registry. For

more information, see “Configuring user registries” on page 145.

Naming service authorization

CosNaming security offers increased granularity of security control over

CosNaming functions. CosNaming functions are available on CosNaming servers

such as the WebSphere Application Server. They affect the content of the

WebSphere Application Server name space. There are generally two ways in which

client programs result in CosNaming calls. The first is through the JNDI interfaces.

The second is with CORBA clients invoking CosNaming methods directly.

Four security roles are introduced : CosNamingRead, CosNamingWrite,

CosNamingCreate, and CosNamingDelete. The names of the four roles are the

same with WebSphere Application Server Advanced Edition v4.0.2. However, the

roles now have authority levels from low to high:

CosNamingRead

Users can query of the WebSphere Application Server name space, using,

for example, the JNDI lookup method. The special-subject Everyone is the

default policy for this role.

CosNamingWrite

Users can perform write operations such as JNDI bind, rebind, or unbind,

and CosNamingRead operations. The special-subject AllAuthenticated is

the default policy for this role.

CosNamingCreate

Users can create new objects in the name space through such operations as

JNDI createSubcontext and CosNamingWrite operations. The special

subject AllAuthenticated is the default policy for this role.

CosNamingDelete

Users can destroy objects in the name space, for example using the JNDI

118 IBM® WebSphere® Application Server, Version 5.0.2: Security

destroySubcontext method and CosNamingCreate operations. The

special-subject AllAuthenticated is the default policy for this role.

 Additionally, a Server special-subject is assigned to all the four CosNaming roles

by default. The Server special-subject provides a WebSphere Application Server

server process, which runs under the server identity, access to all the CosNaming

operations. Note that the Server special-subject does not display and cannot be

modified through the administrative console or other administrative tools.

Users, groups, or the special subjects AllAuthenticated and Everyone can be added

or removed to or from the naming roles from the WebSphere Web-based

administrative console at any time. However, a server restart is required for the

changes to take effect. A best practice is to map groups or one of the

special-subjects, rather than specific users, to naming roles because it is more

flexible and easier to administer in the long run. By mapping a group to a naming

role, adding or removing users to or from the group occurs outside of WebSphere

Application Server and does not require a server restart for the change to take

effect.

The CosNaming authorization policy is only enforced when global security is

enabled. When global security is enabled, attempts to do CosNaming operations

without the proper role assignment result in an org.omg.CORBA.NO_PERMISSION

exception from the CosNaming Server.

In WebSphere Application Server Version 4.0.2, each CosNaming function is

assigned to only one role. Therefore, users who are assigned the CosNamingCreate

role cannot query the name space unless they have also been assigned

CosNamingRead. And in most cases a creator needs to be assigned three roles:

CosNamingRead, CosNamingWrite, and CosNamingCreate. The CosNamingRead

and CosNamingWrite roles assignment for the creator example are included in the

CosNamingCreate role. In most of the cases, WebSphere Application Server

administrators do not have to change the roles assignment for every user or group

when they move to this release from a previous one.

Although the ability exists to greatly restrict access to the name space by changing

the default policy, unexpected org.omg.CORBA.NO_PERMISSION exceptions can occur

at run time. Typically, J2EE applications access the name space and the identity

they use is that of the user that authenticated to WebSphere Application Server

when they access the J2EE application. Unless the J2EE application provider clearly

communicates the expected Naming roles, use caution when changing the default

naming authorization policy.

Assigning users to administrator roles

Before you begin

The following steps are needed to assign users to administrative roles.

In administrative console, expand the System Administration folder and click

Console Users or Console Groups.

Steps for this task

1. To add a user or a group, click Add on the Console users or Console groups

panel.

Chapter 10. Managing security 119

2. To add a new administrative user, enter a user identity in the User field,

highlight Administrator, and click OK. If there is no validation error, the

specified user displays with the assigned security role.

3. To add a new administrative group, either enter a group name in the Specify

group field or select either EVERYONE or ALL AUTHENTICATED from the

Select from special subject menu, and click OK. If there is no validation error,

the specified group or special subject displays with the assigned security role.

4. To remove a user or group assignment, click Remove on the Console Users or

Console Groups panel. On the Console Users or Console Groups panel, select

the check box of the user or group to remove and click OK.

5. To manage the set of users or groups to display, expand the filter folder on the

right-hand panel and modify the filter. For example, setting the filter to user*

only displays users with the user prefix.

6. After modifications are complete, click Save to save the mappings.

 Restart the server for changes to take effect.

Usage scenario

The task of assigning users and groups to administrative roles, is performed to

identify users for performing WebSphere Application Server administrative

functions. Users and groups assigned to the administrator roles can perform all

administrative operations and can set up both J2EE role-based and Java 2 security

policy. Users assigned to the configurator role can perform all day-to-day

configuration tasks including installing and uninstalling applications, assigning

users and groups to role mapping for applications, setting run-as configurations,

setting up Java 2 security permissions for applications, and customizing Common

Secure Interoperability Version 2 (CSIv2), Security Authentication Service (SAS),

and Secure Sockets Layer (SSL) configurations.

What to do next

If you are setting up administrative users and groups in preparation to enable

security, you can restart the server for the modifications to take effect. After the

server restarts, all administrative resources are protected. Because the

administrative security configuration is at the cell level, you need to restart all the

servers.

Console users settings

Use this page to give users specific authority to administer WebSphere Application

Server using tools such as the administrative console or wsadmin scripting. The

authority requirements are only effective when global security is enabled.

To view the Console Users administrative console page, click System

Administration > Console Users. To view the CORBA Naming Service Users

administrative console page, refer to “CORBA Naming Service users settings” on

page 122.

User

Specifies users.

The users entered must exist in the configured active user registry.

 Data type: String

120 IBM® WebSphere® Application Server, Version 5.0.2: Security

Role

Specifies user roles.

The following administrative roles provide different degrees of authority needed to

perform certain WebSphere Application Server administrative functions:

Administrator

The administrator role has operator permissions, configurator permissions,

and the permission required to access sensitive data including server

password, LTPA password and keys, and so on.

Configurator

The configurator role has monitor permissions and the ability to change

the WebSphere Application Server configuration.

Operator

The operator role has monitor permissions and the ability to change the

run-time state. For example, the operator can start or stop services.

Monitor

The monitor role has the least permissions. This role primarily confines the

user to viewing the WebSphere Application Server configuration and

current state.

 Data type: String

Range Administrator, Configurator, Operator, and Monitor

Console groups

Use this page to give groups specific authority to administer the WebSphere

Application Server using tools such as the administrative console or wsadmin

scripting. The authority requirements are only effective when global security is

enabled.

To view the Console Groups administrative console page, click System

Administration > Console Groups. To view the CORBA Naming Service Groups

administrative console page, refer to the “CORBA Naming Service groups” on

page 123 article.

Group

Specifies groups.

The ALL_AUTHENTICATED and the EVERYONE groups can have the following

role privileges: Administrator, Configurator, Operator, and Monitor.

 Data type: String

Range: ALL_AUTHENTICATED, EVERYONE

Role

Specifies user roles.

The following administrative roles provide different degrees of authority needed to

perform certain WebSphere Application Server administrative functions:

Administrator

The administrator role has operator permissions, configurator permissions,

and the permission required to access sensitive data including server

password, LTPA password and keys, and so on.

Chapter 10. Managing security 121

Configurator

The configurator role has monitor permissions and the ability to change

the WebSphere Application Server configuration.

Operator

The operator role has monitor permissions and the ability to change the

run-time state. For example, the operator can start or stop services.

Monitor

The monitor role has the least permissions. This role primarily confines the

user to viewing the WebSphere Application Server configuration and

current state.

 Data type: String

Range: Administrator, Configurator, Operator, and Monitor

Assigning users to naming roles

The following steps are needed to assign users to naming roles. In the

administrative console, expand Environment > Naming, and click CORBA

Naming Service Users or CORBA Naming Service Groups.

Steps for this task

1. Click Add on the CORBA Naming Service Users or CORBA Naming Service

Groups panel.

2. To add a new naming service user, enter a user identity in the User field,

highlight one or more naming roles, and click OK. If there is no validation

errors, the specified user displays with the assigned security role.

3. To add a new naming service group, either select Specify group and enter a

group name or select Select from special subject and then select either

EVERYONE or ALL AUTHENTICATED. Click OK. If there is no validation

errors, the specified group or special subject displays with the assigned security

role.

4. To remove a user or group assignment, go to the CORBA Naming Service

Users or CORBA Naming Service Groups panel. Select the check box next to

the user or group that you want to remove and click Remove.

5. To manage the set of users or groups to display, expand the filter folder on the

right-hand panel, and modify the filter text box. For example, setting the filter

to ″user*″ will allow only users with the ″user″ prefix to be displayed.

6. After modifications are complete, click save to save the mappings. Restart the

server for the changes to take effect.

Usage scenario

The default naming security policy is to grant all users read access to the

CosNaming space and to grant any valid user the privilege to modify the contents

of the CosNaming space. You can perform the previously mentioned steps to

restrict user access to the CosNaming space. However, be cautious when changing

the naming security policy. Unless an J2EE application has clearly specified its

naming space access requirements, changing the default policy can result in

unexpected org.omg.CORBA.NO_PERMISSION exceptions at run time.

CORBA Naming Service users settings

Use this page to manage CORBA Naming Service users settings.

122 IBM® WebSphere® Application Server, Version 5.0.2: Security

To view this administrative console page, click Environment > Naming > CORBA

Naming Service Users.

User

Specifies CORBA naming service users.

The users entered must exist in the configured active user registry.

 Data type: String

Role

Specifies naming service user roles.

A number of naming roles are defined to provide degrees of authority needed to

perform certain WebSphere naming service functions. The authorization policy is

only enforced when global security is enabled. The following roles are valid:

CosNamingRead, CosNamingWrite, CosNamingCreate, and CosNamingDelete.

The names of the four roles are the same with WebSphere Application Server,

Advanced Edition Version 4.0.2. However, the roles now have authority levels from

low to high as follows:

v CosNamingRead. Users can query the WebSphere name space using, for

example, the Java Naming and Directory Interface (JNDI) lookup method. The

special-subject EVERYONE is the default policy for this role.

v CosNamingWrite. Users can perform write operations such as JNDI bind,

rebind, or unbind, plus CosNamingRead operations. The special-subject ALL

AUTHENTICATED is the default policy for this role.

v CosNamingCreate. Users can create new objects in the name space through

operations such as JNDI createSubcontext and CosNamingWrite operations. The

special-subject ALL AUTHENTICATED is the default policy for this role.

v CosNamingDelete. Users can destroy objects in the name space, for example

using the JNDI destroySubcontext method and CosNamingCreate operations.

The special-subject ALL AUTHENTICATED is the default policy for this role.

 Data type: String

Range: CosNamingRead, CosNamingWrite, CosNamingCreate and CosNamingDelete

CORBA Naming Service groups

Use this page to manage CORBA Naming Service groups settings.

To view this administrative console page, click Environment > Naming > CORBA

Naming Service Groups.

Group

Identifies CORBA naming service groups.

The ALL_AUTHENTICATED group has the following role privileges:

CosNamingRead, CosNamingWrite, CosNamingCreate, and CosNamingDelete. The

EVERYONE group indicates that the users in this group have CosNamingRead

privileges only.

 Data type: String

Range: ALL_AUTHENTICATED, EVERYONE

Chapter 10. Managing security 123

Role

Identifies naming service group roles.

A number of naming roles are defined to provide degrees of authority needed to

perform certain WebSphere naming service functions. The authorization policy is

only enforced when global security is enabled.

Four name space security roles are introduced : CosNamingRead,

CosNamingWrite, CosNamingCreate, and CosNamingDelete. The names of the

four roles are the same with WebSphere Advanced Edition, Version 4.0.2. However,

the roles now have authority levesl from low to high as follows:

v CosNamingRead. Users can query the WebSphere name space using, for

example, the Java Naming and Directory Interface (JNDI) lookup method. The

special-subject EVERYONE is the default policy for this role.

v CosNamingWrite. Users can perform write operations such as JNDI bind,

rebind, or unbind, and CosNamingRead operations. The special-subject

ALL_AUTHENTICATED is the default policy for this role.

v CosNamingCreate. Users can create new objects in the name space through

operations such as JNDI createSubcontext and CosNamingWrite operations. The

special-subject ALL_AUTHENTICATED is the default policy for this role.

v CosNamingDelete. Users can destroy objects in the name space, for example

using the JNDI destroySubcontext method and CosNamingCreate operations.

The special-subject ALL_AUTHENTICATED is the default policy for this role.

 Data type: String

Range: CosNamingRead, CosNamingWrite, CosNamingCreate and CosNamingDelete

Authentication mechanisms

An authentication mechanism defines rules about security information (for example,

whether a credential is forwardable to another Java process), and the format of

how security information is stored in both credentials and tokens.

Authentication is the process of establishing whether a client is valid in a

particular context. A client can be either an end user, a machine, or an application.

An authentication mechanism in WebSphere Application Server typically

collaborates closely with a User Registry. The user registry is the user and groups

account repository that the authentication mechanism consults with when

performing authentication. The authentication mechanism is responsible for

creating a credential, which is an internal product representation of a successfully

authenticated client user. Not all credentials are created equally. The abilities of the

credential are determined by the configured authentication mechanism.

Although this product provides several authentication mechanisms, you can only

configure a single active authentication mechanism at a time. The active

authentication mechanism is selected when configuring WebSphere global security.

124 IBM® WebSphere® Application Server, Version 5.0.2: Security

CSIV2/SAS, TCP/IP, SSL

Basic or
Token Credentials

HTTP/HTTPS

Basic or Token
or Certificate

Authentication Module

WebSphere Application Server

SWAN
Module

LTPA
Module

Login
Module

Local OS
registry

LDAP
registry

Custom
registry

Enterprise beans
Authenticator

Web
Authenticator

ORB
Current

Java Client

Web Client

(1)

(1)

(6)

(6)
(5)

(5)

(2)

(2)

(3)

(3) (4)

(4)

Received
Credentials

Authorization data

Received
Credentials

Credentials

Credentials

Authorization data

Authentication

Authentication Process

The figure demonstrates the authentication process. Basically, authentication is

required for enterprise bean clients and Web clients when they access protected

resources. Enterprise bean clients (a servlet or other enterprise beans or a pure

client) sends the authentication information to a Web application server using the

Common Secure Interoperability Version 2 (CSIv2) or the Security Authentication

Service (SAS) protocol. Web clients use the HTTP or HTTPS protocol to send the

authentication information as shown in figure 1. The authentication information

can be BasicAuth (user ID and password), credential token (in case of LTPA), or

client certificate. The Web authentication is performed by the WebAuthentication

module and the EJB authentication is performed by the EJB authentication module,

which resides in the CSIV2 and SAS layer.

The authentication module is implemented using the Java Authentication and

Authorization Service (JAAS) login module. WebAuthenticator and

EJBAuthenticator pass the authentication data to the login module (2) which can be

either Lightweight Third Party Authentication (LTPA) or Simple WebSphere

Authentication Mechanism (SWAM).

The authentication module uses the registry that is configured on the system to

perform the authentication (4). There are three types of registries supported: Local

OS, Lightweight Directory Access Protocol (LDAP), and custom registry. External

registry implementation following the registry interface specified by IBM can

replace either the Local OS or the LDAP registry.

The login module creates a JAAS subject after authentication and stores the

Common Object Request Broker Architecture (CORBA) credential derived from the

authentication data in the public credentials list of the subject. The credential is

returned to the Web authenticator or EJB authenticator (5).

The Web authenticator and the EJB authenticator store the received credentials in

the Object Request Broker (ORB) current for the authorization service to use in

performing further access control checks.

Chapter 10. Managing security 125

The WebSphere Application Server provides two authentication mechanisms:

SWAM and LTPA. These two authentication mechanisms differ primarily in the

distributed security features each supports.

Configuring authentication mechanisms

Configure authentication mechanisms through Security in the administrative

console. See the “Lightweight Third Party Authentication settings” on page 130

article.

Steps for this task

1. Configure authentication mechanisms by clicking Authentication Mechanisms

under Security in the administrative console.

v If you are using Simple WebSphere Authentication Mechanism (SWAM),

there is no setup needed. Follow the instructions in “Configuring

Lightweight Third Party Authentication” on page 127 to set up Lightweight

Third Party Authentication (LTPA). If you choose LTPA, follow the steps in

“Configuring single signon” on page 139 for most situations. If trust If trust

association is required, follow the steps in “Configuring trust association

interceptors” on page 135.

Simple WebSphere authentication mechanism

The Simple WebSphere authentication mechanism (SWAM) is intended for simple,

non-distributed, single application server run-time environments. The single

application server restriction is due to the fact that SWAM does not support

forwardable credentials. If a servlet or enterprise bean in application server process

1, invokes a remote method on an enterprise bean living in another application

server process 2, the identity of the caller identity in process 1 is not transmitted to

server process 2. What is transmitted is an unauthenticated credential, which,

depending on the security permissions configured on the EJB methods, can cause

authorization failures.

Since SWAM is intended for a single application server process, single signon

(SSO) is not supported.

The SWAM authentication mechanism is suitable for simple environments,

software development environments, or other environments that do not require a

distributed security solution.

Lightweight Third Party Authentication

Lightweight Third Party Authentication (LTPA) is intended for distributed,

multiple application server and machine environments. It supports forwardable

credentials and single signon (SSO). LTPA can support security in a distributed

environment through cryptography. This supports permits LTPA to encrypt,

digitally sign, and securely transmit authentication-related data, and later decrypt

and verify the signature.

The Lightweight Third Party Authentication (LTPA) protocol enables the

WebSphere Application Server to provide security in a distributed environment

using cryptography. Application servers distributed in multiple nodes and cells can

securely communicate using this protocol. It also provides the single signon (SSO)

feature wherein a user is required to authenticate only once in a domain name

system (DNS) domain and can access resources in other WebSphere cells without

getting prompted. This protocol uses cryptographic keys (LTPA keys) to encrypt

126 IBM® WebSphere® Application Server, Version 5.0.2: Security

and decrypt user data that passes between the servers. These keys need to be

shared between the different cells for the resources in one cell to access resources

in other cells (this assumes all the cells involved use the same LDAP or Custom

registry).

When using LTPA, a token is created with the user information and an expiration

time in it and is signed by the keys. The LTPA token is time sensitive. All product

servers participating in a protection domain must have their time, date, and time zone

synchronized. If not, LTPA tokens appear prematurely expired and cause

authentication or validation failures. This token then passes to other servers, in the

same cell or in a different cell, either through cookies (for Web resources when SSO

is enabled) or through the authentication layer (Security Authentication Service

(SAS) or Common Secure Interoperability Version 2 (CSIv2) for enterprise beans). If

the receiving server or servers share the same keys as the originating server, the

token can be decrypted to obtain the user information, which then is validated to

make sure it has not expired and the user information in the token is valid in its

registry. On successful validation, the resources in the receiving servers are

accessible after the authorization check.

All the WebSphere Application Server processes in a cell (cell, nodes, application

servers) share the same set of keys. If key sharing is required between different

cells, export them from one cell and import them to the other. For security

purposes, the exported keys are encrypted with a user-defined password. This

same password is needed when importing the keys into another cell.

LTPA is the only mechanism supported in the Network Deployment version of

WebSphere Application Server. In the Base version of WebSphere Application

Server, LTPA is supported along with the Simple WebSphere Authentication

Mechanism (SWAM). When security is enabled for the first time in WebSphere

Application Server Network Deployment or in the base product with LTPA,

configuring LTPA is normally the initial step performed.

LTPA requires that the configured user registry is a centrally shared repository

such as LDAP or a Windows domain type registry so that users and groups are the

same regardless of the machine.

The following table summarizes the authentication mechanism capabilities and

user registries with which LTPA can work.

 Forwardable

Credentials

SSO LocalOS User

Registry

LDAP User

Registry

Custom User

Registry

SWAM No No Yes Yes Yes

LTPA Yes Yes Yes Yes Yes

Configuring Lightweight Third Party Authentication

The following steps are needed to perform this task initially when setting up

security for the first time.

Steps for this task

1. Click Security > Authentication mechanisms > LTPA in the Navigation panel

on the left.

Chapter 10. Managing security 127

2. Enter the password and confirm it in the password fields. This password is

used to encrypt and decrypt the LTPA keys during export and import of the

keys. Remember this password because you enter it again when the keys from

this cell are exported to another cell.

3. Enter a positive integer value in the Timeout field. This timeout value refers to

how long an LTPA token is valid in minutes. The token contains this expiration

time so that any server that receives the token can verify that the token is valid

before proceeding further. When the token expires, the user is prompted to log

in. An optimal value for this field depends on your configuration. The default

value is 30 minutes.

4. Click Apply or OK. The LTPA configuration is now set. You should not

generate the LTPA keys in this step because they are automatically generated

later. Proceed with the rest of the steps required to enabled security, starting

with SSO (if SSO is required).

5. Complete the information in the Global Security panel and press OK. When

OK or Apply is clicked in the Global Security panel the LTPA keys are

generated automatically the first time, and therefore, you should not generate

the keys manually.

Results

The previous steps set the LTPA configuration, generates a new set of LTPA keys

that include export and import LTPA keys.

What to do next

1. Generate key files. See “Configuring Lightweight Third Party Authentication

keys” for more information.

2. Export key files. See “Configuring Lightweight Third Party Authentication

keys” for more information.

3. Import key files. See “Configuring Lightweight Third Party Authentication

keys” for more information.

4. If you are enabling security, make sure you complete the remaining steps

starting with enabling single signon (SSO).

5. If you generated a new set of keys or imported a new set of keys, verify the

keys are saved by clicking Save at the top of the panel. Since LTPA

authentication uses time sensitive tokens, verify that the time, date, and time

zone are synchronized among all product servers that are participating in the

protection domain. If the clock skew is too high between servers, the LTPA

token appears prematurely expired and causes authentication or validation

failures.

Configuring Lightweight Third Party Authentication keys

Generating keys: Lightweight Third Party Authentication (LTPA) keys are

automatically generated when a password change is detected. The first time you

set the LTPA password, as part of enabling security, the LTPA keys are

automatically generated once OK or Apply is clicked in the LTPA panel. You do

not have to click Generate Keys in this situation. Complete the following steps in

the administrative console to generate a new set of LTPA keys.

Steps for this task

1. Verify that all the WebSphere Application Server processes are running (cell,

nodes and all the application servers).

128 IBM® WebSphere® Application Server, Version 5.0.2: Security

If any of the servers are down at the time of key generation, they could not be

able to come up later because they would contain old keys. You then have to

copy the new set of keys to these servers to bring them back up.

2. Click Security > Authentication mechanisms > LTPA in the navigation panel

on the left.

3. Click Generate Keys if you want to use the existing password. This action

generates a new set of keys that are encrypted with the same password as the

old set of keys.

 Note: Regardless of the password change, a new set of keys is generated when

you click Generate Keys. This new set of keys is not propagated to the run

time unless saved; save the files immediately.

4. Enter the new password and confirm it, to use a new password to generate

keys. Click OK or Apply.

 A new set of keys is generated. A message indicating that a new set of keys is

generated displays on the console. Do not click Generate Keys. These new keys

are propagated to the run time once you save them.

5. Click Save to save the keys.

 Once a new set of keys is generated and saved, the key propagation is

dynamic. All the processes running at that time (cells, node agents, application

servers) are updated with the new set of keys. The next sections describe the

process of exporting and importing the keys.

Exporting keys: To support single signon (SSO) in WebSphere Application Server

across multiple WebSphere Application Server domains or cells, share the LTPA

keys and the password among the domains. The times on the domains are similar

to prevent the tokens from appearing as expired between the cells. You can use

Export Keys to export the LTPA keys to other domains or cells. Complete the

following steps in the administrative console to export key files for LTPA.

Steps for this task

1. Click Security > Authentication mechanisms > LTPA in the navigation panel

on the left.

2. In the Key File Name field, enter the full path of a file for key storage. This file

needs write permissions.

3. Click Export Keys. A file is created with the LTPA keys.

 Exporting keys fails if a new set of keys is generated or imported and not

saved prior to exporting. To avoid failure, make sure you save the new set of

keys (if any) prior to exporting them.

4. Click Save to save the configuration.

Importing keys: To support single signon (SSO) in WebSphere Application Server

across multiple WebSphere Application Server domains or cells, share the LTPA

keys and the password among the domains. You can use Import Keys to import

the LTPA keys from other domains. Verify that key files are exported from one of

the cells involved, into a file. Complete the following steps in the administrative

console to import key files for LTPA.

Importing keys is a dynamic operation. All the servers that are running at this time

are updated with the new set of keys. Any back-level tokens signed with the

back-level keys fail validation, and the user is prompted to log in again.

Steps for this task

Chapter 10. Managing security 129

1. Click Security > Authentication mechanisms > LTPA in the navigation panel

on the left.

2. Change the password in the password fields to match the password in the cell

from which you are importing the keys.

3. Click Save to save the new set of keys in the repository.

 This is an important step to complete before importing the keys. If the

password and the keys do not match, the servers fail. If the servers fail, turn off

security and redo these steps.

4. In the Key File Name field, enter the full path of a file for key storage. This file

needs read permissions.

5. Click Import Keys. The keys are now imported into the system.

6. Click Save to save the new set of keys in the repository. It is important to save

the new set of keys to match the new password so that there are no problems

starting the servers later.

Lightweight Third Party Authentication settings

Use this page to configure Lightweight Third Party Authentication (LTPA) settings.

To view this administrative console page, click Security > Authentication

Mechanisms > LTPA.

If you are configuring security for the first time only the password is required.

Once the password is entered click Apply. Click Single Sign On (SSO) and enter

the domain name. Make sure that SSO is enabled. Click Apply. To complete the

security setup, make sure the appropriate registry is set up and click Apply from

the Global Security panel. When security is enabled and any of these properties

change, go to the Global Security panel and click Apply to validate the changes.

Generate Keys: Specifies whether the server will generate new LTPA keys.

When security is turned on for the first time with LTPA as the authentication

mechanism the LTPA keys are automatically generated with the password entered

in the panel. If you need a new set of keys to be generated using the previously set

password click Generate Keys. If a new password is used do not click this button.

Once the new password is entered and OK or Apply is clicked, a new set of keys

are generated. Whenever a new set of keys are generated, they will not be used until you

save them.

Import Keys: Specifies whether the server will import new LTPA keys.

To support Single Sign-On (SSO) in the WebSphere product across multiple

WebSphere domains (cells), share the LTPA keys and the password among the

domains. The Import Keys button can be used to import the LTPA keys from other

domains. The LTPA keys should have been previously exported from one of the

cells to a file. In order to import a new set of LTPA keys, enter the appropriate

password and the file name where the LTPA keys are located. Click Import Keys

only and do not click OK or Apply.

Export Keys: Specifies whether the server will export LTPA keys.

To support single sign on (SSO) in the WebSphere product across multiple

WebSphere domains (cells), share the LTPA keys and the password among the

domains. The Export Keys button can be used to export the LTPA keys to other

domains.

130 IBM® WebSphere® Application Server, Version 5.0.2: Security

To export the LTPA keys, make sure that the system is running with security

enabled, and using LTPA. Enter the file name in Key File Name field and click

Export Keys. The encrypted keys will be stored in the file specified.

Password: Specifies the password to encrypt and decrypt the LTPA keys. Use this

password when importing these keys into other WebSphere Application Server

administrative domain configurations (if any) and when configuring SSO for

Domino server.

Once the keys are generated or imported they are used to encrypt and decrypt the

LTPA token. Whenever the password is changed, a new set of LTPA keys are

automatically generated when you click OK or Apply. These new set of keys will

be used only when you save.

 Data type String

Confirm Password: Specifies the confirmed password used to encrypt and

decrypt the LTPA keys.

Use this password when importing these keys into other WebSphere Application

Server administrative domain configurations (if any) and when configuring SSO

for Domino Server.

 Data type String

Timeout: Specifies the time period in minutes at which an LTPA token will expire.

Ensure this time period is longer than cache timeout configured in the Global

Security panel.

 Data type Integer

Units Minutes

Default 120

Key File Name: Specifies the name of the file used when importing or exporting

keys.

Enter a fully qualified key file name, and click Import Keys or Export Keys.

 Data type String

Trust Associations

Trust Association enables the integration of IBM WebSphere Application Server

security and third-party security servers. More specifically, a reverse proxy server

can act as a front-end authentication server while the product applies its own

authorization policy onto the resulting credentials passed by the proxy server.

Demand for such an integrated configuration has become more compelling,

especially when a single product cannot meet all customer needs or when

migration is not a viable solution. This article provides a conceptual background

behind the approach.

There is a growing demand to provide customers with a trust association solution

between IBM WebSphere Application Server and other Web authentication servers

Chapter 10. Managing security 131

that act as reverse proxy security server (IBM Tivoli Security Manager - WebSEAL

for Policy Director, ECommerce Server) as an entry point to all service requests

(See Figure 1). This implementation design intends to have the proxy server as the

only exposed entry point. It authenticates all requests that come in and provides

coarse, granularity junction point authorization.

In this setup, the WebSphere Application Server is used as a back-end server to

further exploit its fine-grained access control. The reverse proxy server passes the

HTTP request to the WebSphere Application Server that includes the credentials of

the authenticated user. WebSphere Application Server then uses these credentials to

authorize the request.

Trust association model

The idea that WebSphere Application Server can support trust association implies

that the product application security recognizes and processes HTTP requests

received from a reverse proxy server. WebSphere Application Server and the proxy

server engage in a contract in which the product gives its full trust to the proxy

server and the proxy server applies its authentication policies on every Web

request that is dispatched to WebSphere Application Server. This trust is validated

by the interceptors that reside in the product environment for every request

received. The method of validation is agreed upon by the proxy server and the

interceptor.

Running in trust association mode does not prohibit WebSphere Application Server

from accepting requests that did not pass through the proxy server. In this case, no

interceptor is needed for validating trust. It is possible, however, to configure

WebSphere Application Server to strictly require that all HTTP requests go through

a reverse proxy server. In this case, all requests that do not come from a proxy

server are immediately denied by WebSphere Application Server.

Figure 1. Trust association

Http Req: user ID/password in BasicAuth data
Web Application ServerModified Http Req: Trusted Server ID/password in BasicAuth data

And user ID in the HTTP Request Header

(6)
Requested
Resource

HTTP Request
(1)

Web
Client

Reverse
Proxy
Server

Web
Authenticator

User Reg

Trust Association
Interceptor

user ID

credentials

user ID

(3)

if trust is valid

Modified HTTP

(4)

Trust Association Model

Modified
HTTP Request

(5)
Requested
Resource

(2)

IBM WebSphere Application Server—WebSEAL Integration

The integration of WebSEAL and WebSphere Application Server security is

achieved by placing the WebSEAL server at the front-end as a reverse proxy server.

See Figure 2. From a WebSEAL management perspective, a junction is created with

132 IBM® WebSphere® Application Server, Version 5.0.2: Security

WebSEAL on one end, and the product Web server on the other end. A junction is

a logical connection created to establish a path from the WebSEAL server to

another server.

In this setup, a request for Web resources stored in a protected domain of the

product is submitted to the WebSEAL server where it is authenticated against the

WebSEAL security realm. If the requesting user has access to the junction, the

request is transmitted to the WebSphere Application Server HTTP server through

the junction, and then to the application server.

Meanwhile, the WebSphere Application Server validates every request that comes

through the junction to ensure that the source is a trusted party. This process is

referenced as validating the trust and it is performed by a WebSEAL

product-designated interceptor. If the validation is successful, the WebSphere

Application Server authorizes the request by checking whether the client user has

the required permissions to access the Web resource. If so, the Web resource is

delivered to the WebSEAL server, through the Web server, which then gives it to

the client user.

WebSEAL server

The policy director delegates all Web requests to its Web component, the WebSEAL

server. One of the major functions of the server is to perform authentication of the

requesting user. The WebSEAL server consults an Lightweight Directory Access

Protocol (LDAP) directory. It can also map the original user ID to another user ID,

such as when global single signon (GSO) is used.

Figure 2. Policy director (WebSEAL server)

HitCount
Servlet

HitCountBean

Servlet
Engine

Enterprise beans
Container

WebSEAL Trust

Security
Collaborator

Security
Application

authorization
&

delegation

Product
resources

Trust
Validation

Requested
Resource

HTTP
Request

with
credentials

Web Server

Web Server/WebSphere
Application Server

Web server
plug-in

Web server
resource

Requested
Resource

HTTP
Request

Web
Client

Policy
Director

(WebSEAL)

For successful authentication, the server plays the role of a client to WebSphere

Application Server when channeling the request. It needs its own user ID and

password to identify itself to WebSphere Application Server. This identity must be

valid in the security realm of WebSphere Application Server. The WebSEAL server

replaces the basic authentication information in the HTTP request with its own

user ID and password. In addition, WebSphere Application Server needs to know

the user ID of the requesting client so it can base its authorization decision from

Chapter 10. Managing security 133

this user ID, and not from a WebSEAL user ID. This information is transmitted

through the HTTP request, by creating a header called iv-user with the client user

ID as its value.

HTTP server

The junction created in the WebSEAL server must get to the HTTP server that

serves as the product front end. However, the HTTP server is shielded from

knowing that trust association is used. As far as it is concerned, the WebSEAL

product is just another HTTP client, and as part of its normal routines, it sends the

HTTP request to the product. The only requirement on the HTTP server is an

Secure Sockets Layer (SSL) configuration using server authentication only. This

requirement protects the requests that flow within the junction.

Figure 3. HTTP server

HTTP
Request

HTTP
Request

HTTP
Server

HitCount
Servlet

HitCountBean WebSEAL
Trust Association

Interceptor

HTTP
Request

HTTP
RequestWeb

Authenticator

Authorization Policy

Web
Collaborator

Servlet
Engine

Enterprise beans
Container

WebSphere Application Server

WebSEAL

Web collaborator

When trust association is enabled, the Web collaborator manages the interceptors

that are configured in the system. It loads and initializes these interceptors when

you restart your servers. When a request is passed to WebSphere Application

Server by the Web server, the Web collaborator eventually receives the request for a

security check. Two actions must take place:

1. The request must be authenticated.

2. The request must be authorized.

The Web authenticator is called to authenticate the request by passing the HTTP

request. If successful, a good credential record is returned by the authenticator,

which the Web collaborator uses to base its authorization for the requested

resource. If the authorization succeeds, the Web collaborator indicates to

WebSphere Application Server that the security check has succeeded and the

requested resource can be served.

Web authenticator

The Web authenticator is asked by the Web collaborator to authenticate a given

HTTP request. Knowing that trust association is enabled, the task of the Web

authenticator is to find the appropriate trust association interceptor to direct the

134 IBM® WebSphere® Application Server, Version 5.0.2: Security

request for processing. It does this by querying every available interceptor. If no

target interceptor is found, the Web authenticator processes the request as though

trust association is not enabled.

For an HTTP request sent by the WebSEAL server, the WebSEAL trust association

interceptor replies with a positive response to the Web authenticator. Subsequently,

the interceptor is asked to validate its trust association with the WebSEAL server

and retrieve the user ID of the original user client.

Trust association interceptor feature

The intent of the trust association interceptor feature is to have reverse proxy

security servers (RPSS) exist as the exposed entry points to perform authentication

and coarse-grained authorization, while the WebSphere Application Server enforces

further fine-grained access control. Trust associations improve security by reducing

the scope and risk of exposure.

In a typical e-business infrastructure, the distributed environment of a company

consists of Web application servers, Web servers, legacy systems and one or more

RPSS, such as the WebSEAL product from Tivoli. Such reverse proxy servers,

front-end security servers or security plug-ins registered within Web servers, guard

the HTTP access requests to the Web servers and Web application servers. While

protecting access to the Uniform Resource Identifiers (URIs), these RPSS perform

authentication, coarse-grained authorization and request routing to the target

application server.

Using the trust association interceptor feature

The following points further describe the benefits of the trust association

interceptor (TAI) feature:

v RPSS can authenticate WebSphere Application Server users up front and send

credential information about the authenticated user to the product so that the

product can trust the RPSS to perform authentication and not prompt the end

user for authentication data later. The strength of the trust relationship between

RPSS and the product is based on the criteria of trust association that is

particular to a RPSS and enforced through the TAI implementation. This level of

trust might need relaxing based on the environment, but the WebSphere

Application Server user should be aware of the vulnerabilities in cases where the

RPSS is not trusted, based on a security technology.

v The end user credentials most likely are sent in a special format as part of the

Hypertext Transfer Protocol (HTTP) headers as in the case of RPSS

authentication. It can be a special header or a cookie. The data that passes is

implementation specific, and the TAI feature considers this fact and

accommodates the idea. The TAI implementation works with the credential data

and returns a string that represents the end user that WebSphere Application

Server uses to enforce security policies.

Configuring trust association interceptors

These steps are required to use either a WebSEAL trust association interceptor or

your own trust association interceptor with a reverse proxy security server.

Steps for this task

1. Click Security > Authentication mechanisms > LTPA in the left navigation

panel.

Chapter 10. Managing security 135

2. Click Trust Association under Additional Properties.

3. Select the Trust Association Enabled check box.

4. Click Interceptors under Additional Properties.

 The default value appears.

5. Click com.ibm.ws.security.web.WebSealTrustAssociationInterceptor if you

are using the WebSEAL interceptor. This interceptor is the default value. To use

a different interceptor, complete the following steps:

a. Click New.

b. Type the name of the interceptor into the Interceptor Classname field.

c. Click OK.

d. Click the name of the new interceptor.
6. Click Custom Properties under Additional Properties.

7. Click New to enter the property name and value pairs.

 The name and value pairs for WebSeal follow. For a new interceptor, enter the

name and value pairs that correspond to your interceptor.

com.ibm.websphere.security.trustassociation.types

WebSEAL

com.ibm.websphere.security.webseal.loginId

The ID of the WebSEAL server.

com.ibm.websphere.security.webseal.id

iv-user. This is a special header field that is sent by the WebSEAL

server with the request to the WebSphere Application Server.

com.ibm.websphere.security.webseal.hostnames

The host names (case sensitive) that are expected in the request header

(the VIA header). This should also include the proxy host names (if

any) unless the com.ibm.websphere.security.webseal.ignoreProxy is

set to true.

com.ibm.websphere.security.webseal.ports

The corresponding port number of the host names that are expected in

the request header (the VIA header). This should also include the proxy

ports (if any) unless the

com.ibm.websphere.security.webseal.ignoreProxy is set to true.

com.ibm.websphere.security.webseal.ignoreProxy

An optional property that if set to true or yes ignores the proxy host

names and ports in the VIA header. By default this property is set to

false.
8. Click OK.

Results

Enables trust association.

Usage scenario

A typical scenario using the trust association interceptor (TAI) is used would

include an environment where IBM Tivoli WebSEAL product is deployed and used

with WebSphere Application Server. For the WebSEAL product, there is an

implementation of the TAI already provided with the product. The following steps

136 IBM® WebSphere® Application Server, Version 5.0.2: Security

outline the typical flow of an HTTP request for a secured WebSphere Application

Server resource authenticated by the WebSEAL server, through a Web trust

association.

1. The browser makes a request for a secured WebSphere resource.

2. The WebSEAL server sends back a challenge, either an HTTP basic

authentication or a form-based challenge.

3. A user name and password are supplied. The WebSEAL product authenticates

the user.

4. The modified request is forwarded by the WebSEAL product to the WebSphere

Application Server.

5. The plug-in (TAI) establishes that the WebSphere Application Server trusts the

WebSEAL server by using the validateEstablishedTrust method.

6. The plug-in extracts the end-user name from the iv-user header field and

passes it to the WebSphere Application Server for authorization.

Note: WebSEAL Version 3.9 and higher do not send the user ID and password to

the server. Trust is based on a mutual Secure Sockets Layer (SSL) established

between the WebSEAL server and the WebSphere Application Server. Steps 5 and 6

do not apply to WebSEAL Version 3.9 and higher.

1. HTTP
Request

Browser WebSEAL

3. ID:joanna
password:joanna

5. HTTP Request
ID:WebSEAL, password:
password, iv-user:
joanna

4. Bind: joanna, joanna
authenticate

Validate established trust
get AuthenticatedUsername

Security Server

Trust Association Interceptor

7. joanna

WebSEAL

2. Challenge

6. Bind:WebSEAL,
password

Web Trust Association authentication flow

What to do next

1. Make sure that you complete the remaining steps if you enable security.

2. Save, stop and restart all the product servers (cell, nodes and all the application

servers) for the changes to take effect.

Trust association settings

Trust Association enables the integration of IBM WebSphere Application Server

security and third-party security servers. More specifically, a reverse proxy server

can act as a front-end authentication server while the product applies its own

authorization policy onto the resulting credentials passed by the proxy server. Use

this page to configure trust association settings.

To view this administrative console page, click Security Center > Authentication

Mechanisms > LTPA > Trust Association.

Chapter 10. Managing security 137

When security is enabled and any of these properties change, go to the Global

Security panel and click Apply to validate the changes.

Enabled: Specifies whether trust association is enabled.

 Data type: Boolean

Default: Disable

Range: Enable or Disable

Trust association interceptor collection

Use this page to specify trust information for reverse security proxy servers.

To view this administrative console page, click Security > Authentication

Mechanisms > LTPA > Trust Association > Interceptors.

When security is enabled and any of these properties are changed, go to the Global

Security panel and click Apply to validate the changes.

Interceptor Class Name: Specifies the trust association interceptor class name.

 Data type String

Default com.ibm.ws.security.web.WebSealTrustAssociationInterceptor

Single Sign-On

With single signon (SSO) support, Web users can authenticate once when accessing

both WebSphere Application Server resources, such as HTML, JSP files, servlets,

enterprise beans, and Domino resources, such as documents in a Domino database,

or accessing resources in multiple WebSphere domains.

Web users can authenticate once to a WebSphere Application Server or Domino

server and then access any other WebSphere Application Servers or Domino

servers in the same Domain Name System (DNS) domain that are enabled for SSO

without logging on again. This authentication is accomplished by configuring the

WebSphere Application Servers and the Domino servers to share authentication

information.

Enable SSO among WebSphere Application Servers by configuring SSO for

WebSphere Application Server. To enable SSO between WebSphere Application

Servers and Domino servers, you must configure SSO for both WebSphere

Application Server and for Domino.

Prerequisites and conditions

To take advantage of support for single signon between WebSphere Application

Servers or between a WebSphere Application Server and a Domino server,

applications must meet the following prerequisites and conditions:

v Verify that all servers are configured as part of the same DNS domain. For

example, if the DNS domain is specified as mycompany.com, then SSO is effective

with any Domino server or WebSphere Application Server on a host that is part

of the mycompany.com domain, for example, a.mycompany.com and

b.mycompany.com.

v Verify that all servers share the same user registry. This registry can be either a

supported LDAP directory server or, if SSO is configured between two

WebSphere Application Servers, a custom user registry. Domino servers do not

support custom registries, but you can use a Domino-supported registry as a

138 IBM® WebSphere® Application Server, Version 5.0.2: Security

custom registry within WebSphere Application Server. For more information on

custom registries, see Introduction to custom registries.

 You can use a Domino directory (configured for LDAP access) or other LDAP

directory for the user registry. The LDAP directory product must have

WebSphere Application Server support. Supported products include both

Domino and IBM SecureWay LDAP directory servers. Regardless of the choice to

use an LDAP or custom registry, the SSO configuration is the same. The

difference is in the configuration of the registry.

v Define all users in a single LDAP directory. Using LDAP referrals to connect

more than one directory together is not supported. Using multiple Domino

directory assistance documents to access multiple directories also is not

supported.

v Enable HTTP cookies in browsers because the authentication information that is

generated by the server is transported to the browser in a cookie. The cookie is

then used to propagate the user’s authentication information to other servers,

exempting the user from entering the authentication information for every

request to a different server.

v For a Domino server:

– Domino Release 5.0.6a for iSeries 400 or later and Domino Release 5.0.5 or

later for other platforms are supported.

– A Lotus Notes client Release 5.0.5 or later is required for configuring the

Domino server for SSO.

– You can share authentication information across multiple Domino domains.
v For WebSphere Application Server:

– WebSphere Application Server Version 3.5 or later for all platforms is

supported.

– You can use any HTTP Web server supported by WebSphere Application

Server.

– You can share authentication information across multiple product

administrative domains.

– Basic authentication (user ID and password) using the basic and form-login

mechanisms is supported.

– By default WebSphere Application Server does a case sensitive comparison for

authorization. This comparison implies that a user who is authenticated by

Domino should match exactly the entry (including the base distinguished

name) in the WebSphere Application Server authorization table. If case

sensitivity should not be considered for the authorization, the Ignore Case

property should be enabled in the LDAP user registry settings.

Configuring single signon

Before you begin

With single signon (SSO) support, Web users can authenticate once when accessing

Web resources across multiple WebSphere Application Servers. This authentication

is supported only when Lightweight Third Party Authentication (LTPA) is the

authentication mechanism. SSO uses HTTP cookies to achieve this functionality.

When SSO is enabled, a cookie is created within the LTPA token. When the user

accesses other Web resources in any other WebSphere Application Server process in

the same domain name system (DNS) domain, the cookie is sent in the request.

The LTPA token is then extracted from the cookie and validated. If the request is

between different cells of WebSphere Application Servers, sharing the LTPA keys

and the user registry between the cells is required for SSO to work.

Chapter 10. Managing security 139

The LTPA authentication mechanism requires that SSO is enabled if any of the Web

applications have form login as the authentication method.

The following steps are needed when setting up security for the first time.

Steps for this task

1. Click Security > Authentication mechanisms > LTPA in the Navigation panel

on the left. Click Single Signon (SSO) in the Additional Properties section.

2. Click Enable if SSO is disabled.

3. Enable the Requires SSL field if all the requests are expected to come over

HTTPS.

4. Enter the domain namewhere SSO is effective. The cookie is sent for all the

servers in this domain only.

 For example, if the domain is ibm.com, SSO works between the domains

austin.ibm.com, raleigh.ibm.com and not austin.otherCompany.com.

 Note: The domain field is optional, and, if left blank, the Web browser defaults

to the domain name of the SSO cookie to the WebSphere Application Server

that created it. In this case, SSO is only valid for the server that created the

cookie. This behavior might be desirable when multiple virtual hosts are

defined and they each need to have a separate domain specified in the SSO

cookie.

5. Click OK.

Results

This procedure is required to set up an SSO configuration. Form login mechanisms

for Web applications require that SSO is enabled.

What to do next

1. If you enable security, make sure you complete the remaining steps.

2. For the changes to take effect, save, stop and restart all the product servers

(cell, nodes and all the WebSphere Application Server systems).

Single signon settings

Use this page to set the configuration values for single signon (SSO).

To view this administrative console page, click Security > Authentication

Mechanisms > LTPA > Single Signon (SSO).

Requires SSL: Specifies that the single signon function is enabled only when

requests are made over HTTPS Secure Sockets Layer (SSL) connections.

 Data type: Boolean

Default: Disable

Range: Enable or Disable

Domain Name: Specifies the domain name (.ibm.com, for example) for all single

signon hosts.

If no value is specified, the user’s Web browser defaults to the value of the host

name where the Web application is running. This restricts the HTTP cookie

(generated for SSO purposes) only to the host that originated it. Restricting the

HTTP cookie can be undesirable if there is more than one host participating in the

SSO domain. Leaving the domain name attribute empty is only desirable if

140 IBM® WebSphere® Application Server, Version 5.0.2: Security

multiple virtual hosts with different domain names are running on the same

physical host. Leaving this field empty allows your Web browser to default the

domain name to each different virtual host. If a domain name is explicitly specified

in this field, then that value is used for all virtual hosts and thereby restricting

them to a single domain, which can be undesirable in some situations.

If a domain name is explicitly specified, then all URLs used to access protected

Web resources contain the server domain name system (DNS) host name. For

example, once global security is configured for LTPA and an explicit SSO domain

name is specified, then the administrative console is accessible with the following

URL: http://yourhost.austin.ibm.com:9090/admin, where yourhost.austin.ibm.com is

replaced with your server DNS host name.

 Data type: String

Enabled: Specifies that the single signon function is enabled.

Web applications that use J2EE FormLogin style login pages (such as the

WebSphere Application Server administrative console) require single signon (SSO)

enablement. Only disable SSO for certain advanced configurations where LTPA

SSO type cookies are not required.

 Data type: Boolean

Default: Enabled

Range: Enabled or Disabled

Troubleshooting single signon configurations

Before you begin

This article describes common problems in configuring single signon (SSO)

between a WebSphere Application Server and a Domino server and suggests

possible solutions.

Steps for this task

1. Failure to save the Domino Web SSO Configuration document

 The client must be able to find Domino server documents for the participating

SSO Domino servers. The Web SSO Configuration document is encrypted for

the servers that you specify, so the home server indicated by the client location

record must point to a server in the Domino domain where the participating

servers reside. This pointer ensures that lookups can find the public keys of the

servers.

 If you receive a message stating that one or more of the participating Domino

servers cannot be found, then those servers cannot decrypt the Web SSO

Configuration document or perform SSO.

 When the Web SSO Configuration document is saved, the status bar indicates

how many public keys were used to encrypt the document by finding the listed

servers, authors, and administrators on the document.

2. Domino server console fails to load the Web SSO Configuration document upon

Domino HTTP server startup

 During configuration of SSO, the server document is configured for

Multi-Server in the Session Authentication field. The Domino HTTP server

tries to find and load a Web SSO Configuration document during startup. The

Domino server console reports the following if a valid document is found and

decrypted: HTTP: Successfully loaded Web SSO Configuration.

Chapter 10. Managing security 141

If a server cannot load the Web SSO Configuration document, SSO does not

work. In this case, a server reports the following message: HTTP: Error Loading

Web SSO configuration. Reverting to single-server session authentication.

 Verify that there is only one Web SSO Configuration document in the Web

Configurations view of the Domino directory and in the $WebSSOConfigs

hidden view. You cannot create more than one document, but you can insert

additional documents during replication.

 If there is only one Web SSO Configuration document, another condition that

can elicit the same error message is when the public key of the Server

document does not match the public key in the ID file. In this case, attempts to

decrypt the Web SSO Configuration document fail and the error message is

generated.

 This situation can occur when the ID file is created multiple times but the

Server document is not updated correctly. Usually, there is an error message

displays on the Domino server console stating that the public key does not

match the server ID. If this happens, then SSO does not work because the

document is encrypted with a public key for which the server does not possess

the corresponding private key.

 To correct a key-mismatch problem:

a. Copy the public key from the server ID file and paste it into the Server

document.

b. Re-create the Web SSO Configuration document.
3. Authentication fails when accessing a protected resource.

 If a Web user is repeatedly prompted for a user ID and password, SSO is not

working because either the Domino or the WebSphere security server is not

able to authenticate the user with the Lightweight Directory Access Protocol

(LDAP) server. Check the following possibilities:

v Verify that the LDAP server is accessible from the Domino server machine.

Use the TCP/IP ping utility to check TCP/IP connectivity and to verify that

the host machine is running.

v Verify that the LDAP user is defined in the LDAP directory. Use the

ldapsearch utility to confirm that the user ID exists and that the password is

correct. For example, you can run the following command, entered as a

single line, from the OS/400 Qshell, a UNIX shell, or a Windows DOS

prompt:

 % ldapsearch -D "cn=John Doe, ou=Rochester, o=IBM, c=US" -w mypassword

 -h myhost.mycompany.com -p 389

 -b "ou=Rochester, o=IBM, c=US" (objectclass=*)

(The percent character (%) indicates the prompt and is not part of the

command.) A list of directory entries is expected. Possible error conditions

and causes follow:

– No such object: This error indicates that the directory entry referenced by

either the user’s distinguished name (DN) value, which is specified after

the -D option, or the base DN value, which is specified after the -b option,

does not exist.

– Invalid credentials: This error indicates that the password is invalid.

– Cannot contact LDAP server: This error indicates that the host name or

port specified for the server is invalid or that the LDAP server is not

running.

– An empty list means that the base directory specified by the -b option

does not contain any directory entries.

142 IBM® WebSphere® Application Server, Version 5.0.2: Security

v If you are using the user’s short name (or user ID) instead of the

distinguished name, verify that the directory entry is configured with the

short name. For a Domino directory, this is the Short name/UserID field of

the Person document. For other LDAP directories, this is the userid property

of the directory entry.

v If Domino authentication fails when using an LDAP directory other than

Domino directory, verify the configuration settings of the LDAP server in the

Directory Assistance document in the Directory Assistance database. Also

verify that the Server document refers to the correct Directory Assistance

document. The following LDAP values specified in the Directory Assistance

document must match the values specified for the user registry in the

WebSphere administrative domain:

– Domain name

– LDAP host name

– LDAP port

– Base DN

Additionally, the rules defined in the Directory Assistance document must

refer to the base DN of the directory containing the directory entries of the

users.

 You can trace Domino server requests to the LDAP server by adding the

following line to the server notes.ini file:

 webauth_verbose_trace=1

After restarting the Domino server, trace messages displays in the Domino

server console as Web users attempt to authenticate to the Domino server.
4. Authorization fails when accessing a protected resource.

 After authenticating successfully, if a Web user is shown an authorization error

message, security is not configured correctly. Check the following possibilities:

v For Domino databases, verify that the user is defined in the access-control

settings for the database. Refer to the Domino Administrative documentation

for the correct way to specify the user’s DN. For example, for the DN cn=John

Doe, ou=Rochester, o=IBM, c=US, the value on the access-control list must be

set as John Doe/Rochester/IBM/US.

v For resources protected by WebSphere Application Server, verify that the

security permissions are set correctly.

– If granting permissions to selected groups, make sure that the user

attempting to access the resource is a member of the group. For example,

you can verify the members of the groups by using the following URL to

display the directory contents:

Ldap://myhost.mycompany.com:389/ou=Rochester, o=IBM, c=US??sub

– If you have changed the LDAP configuration information (host, port, and

base DN) in a WebSphere Application Server administrative domain since

the permissions were set, the existing permissions are probably invalid

and need to be re-created.
5. SSO fails when accessing protected resources.

 If a Web user is prompted to authenticate with each resource, SSO is not

configured correctly. Check the following possibilities:

a. Both WebSphere Application Server and the Domino server must be

configured to use the same LDAP directory. The HTTP cookie used for SSO

stores the full DN of the user, for example, cn=John Doe, ou=Rochester,

o=IBM, c=US, and the domain name system (DNS) domain.

Chapter 10. Managing security 143

b. If the Domino Directory is used, define Web users by hierarchical names.

For example, update the User name field in the Person document to include

names of this format as the first value: John Doe/Rochester/IBM/US.

c. URLs issued to Domino servers and WebSphere Application Servers

configured for SSO must specify the full DNS server name, not just the host

name or TCP/IP address. For browsers to send cookies to a group of

servers, the DNS domain must be included in the cookie, and the DNS

domain in the cookie must match the URL. (This requirement is why you

cannot use cookies across TCP/IP domains.)

d. Domino and WebSphere Application Server must be configured to use the

same DNS domain. Verify that the DNS domain value is exactly the same,

including capitalization. The DNS domain value is found on the Configure

Global Security Settings panel of the WebSphere administrative console and

in the Web SSO Configuration document of a Domino server. If you make a

change to the Domino Web SSO Configuration document, replicate the

modified document to all Domino servers participating in SSO.

e. Clustered Domino servers must have the host name populated with the full

DNS server name in the Server document for Domino Internet Cluster

Manager (ICM) to redirect to cluster members using SSO. If this field is not

populated, by default, ICM redirects URLs to clustered Web servers by

using only the host name. It cannot send the SSO cookie because the DNS

domain is not included in the URL. To correct the problem:

1) Edit the Server document.

2) Click Internet Protocols > HTTP tab.

3) Enter the server’s full DNS name in the Host names field.
f. If a port value for an LDAP server was specified for a WebSphere

Application Server administrative domain, edit the Domino Web SSO

Configuration document and insert a backslash character (\) into the value

of the LDAP Realm field before the colon character (:). For example, replace

myhost.mycompany.com:389 with myhost.mycompany.com\:389.

User registries

Information about users and groups reside in a user registry. In WebSphere

Application Server, a user registry authenticates a user and retrieves information

about users and groups to perform security-related functions, including

authentication and authorization. WebSphere Application Server provides several

implementations to support multiple operating system or operating

environment-base user registries. You can use the custom LDAP feature to support

any LDAP server by setting up the correct configuration (user and group filters).

However, support is not extended to these custom LDAP servers since there are

many possibilities that cannot be tested.

In addition to Local OS and LDAP registries, WebSphere Application Server also

provides a plug-in to support any registry by using the custom registry feature

(also referred as custom user registry). The custom registry feature supports any

user registry that is not implemented by WebSphere Application Server. The

possibilities are endless in that you can make any registry to work in the product

environment by implementing an interface called the UserRegistry interface. This

interface is very helpful in situations where the current user and group information

exists in some other formats (for example, a database) and cannot move to Local

OS or LDAP. In such a case, implement the UserRegistry interface so that

WebSphere Application Server can use the existing registry for all the

security-related operations. Implementing a custom registry is a software

144 IBM® WebSphere® Application Server, Version 5.0.2: Security

implementation effort and it is expected that the implementation does not depend

on other WebSphere Application Server resources, for example, data sources, for its

operation.

Note: Although the product supports different types of user registries, only one

can be active. This active registry is shared by all the product server processes. If

the product processes in one node or cell need to communicate with other product

processes in other nodes or cells using Lightweight Third Party Authentication

(LTPA), it is a requirement that all the nodes and or cells share the same user

registry. Since Local OS registries are restricted to the local machines, it is expected

that either LDAP or a custom registry is used when inter-node or inter-cell

communication is required. One exception to this is the Windows Domain registry,

which can be used as a centralized repository for all the processes.

Configuring user registries

Before you begin

Before configuring the user registry, decide which registry to use. Though different

types of registries are supported, all the processes in WebSphere Application Server

can use one active registry. Configuring the correct registry is a prerequiste to

assigning users and groups to roles for applications. By default, when no registry

is configured the Local OS registry is used. So if your choice of registry is not

Local OS you need to first configure the registry, which is normally done as part of

enabling security, restart the servers, and then assign users and groups to roles for

all your applications.

Once the applications are assigned users and groups, and you need to change the

registries (for example from Lightweight Directory Access Protocol(LDAP) to

Custom), it is recommended that you delete all the users and groups (including

any RunAs role) from the applications and reassign them after changing the

registry. through the GUI or using wsadmin scripting. The following wsadmin

command removes all the users and groups (including the RunAs role) from any

application:

$AdminApp deleteUserAndGroupEntries yourAppName

where yourAppName is the name of the application. Backing up the old application

is advised before performing this operation. However, if you have all the user and

group names (including the password for the RunAs role users) in all the

applications matching in both registries and if the application bindings file does

not contain the accessIDs (which are unique for each registry, even for the same

user or group name) you might be able to switch the registries without having to

delete the users and groups information. By default, an application does not

contain accessIDs in the bindings file (they are generated on the fly when the

applications start). However, if you migrated an existing application from an

earlier release, or if you used the wsadmin script to add accessIDs for the

applications to improve performance you have to remove the existing user and

group information and add the information after configuring the new registry.

Steps for this task

1. “Configuring local operating system user registries” on page 151

2. “Configuring Lightweight Directory Access Protocol user registries” on page

160

3. “Configuring custom user registries” on page 166.

Chapter 10. Managing security 145

Usage scenario

This step is required as part of enabling security in WebSphere Application Server.

What to do next

1. If you are enabling security, make sure you complete the remaining steps.

Verify that the Active User Registry in the Global Security panel is set to the

appropriate registry. As the final step, validate the user and password by

clicking OK or Apply in the Global Security panel. Save, stop and start all the

WebSphere Application Servers.

2. For any changes in user registry panels to be effective, validate the changes by

clicking OK or Apply in the Global Security panel. Once validated, save the

configuration, stop and start all the WebSphere Application Servers (cells, nodes

and all the application servers). To avoid inconsistencies between the

WebSphere Application Server processes, make sure any changes to the registry

are done when all the processes are running. If any of the processes are down,

force syncronization to make sure that process can come up later.

3. If the server or servers start without any problems, the set up is correct.

Local operating system user registries

With the local operating system, or Local OS, user registry implementation, the

WebSphere authentication mechanism can use the user accounts database of the

local operating system.

WebSphere Application Server provides implementations for Windows NT and

Windows 2000 local accounts registry and domain registry, as well as

implementations for the Linux, Solaris and AIX user accounts registries. Windows

Active Directory is supported through the LDAP user registry implementation

discussed later.

A Local OS user registry is not a centralized user registry like LDAP. Do not use a

Local OS user registry in a distributed WebSphere Application Server environment,

where application servers are dispersed across several machines, because each

machine has its own user registry. There are exceptions though, a Windows

domain registry is a centralized registry.

Also, as mentioned previously, the access-IDs taken from the user registry are

used during authorization checks. Since these IDs are typically unique identifiers,

they vary from machine to machine even if the exact users and passwords exist on

each machine.

Note: Web client certificate authentication is not currently supported when using

the local operating system user registry. However, Java client certificate

authentication does function with a local operating user registry. Java client

certificate authentication maps the first attribute of the certificate domain name to

the user ID in the user registry.

Even though Java client certificates function correctly, the following error displays

in the SystemOut.log file:

SECJ0337E: The mapCertificate method is not supported

The error is intended for Web client certificates; however, it also displays for Java

client certificates. Ignore this error for Java client certificates.

146 IBM® WebSphere® Application Server, Version 5.0.2: Security

Using Windows operating system registries

When enabling security on Windows operating systems, if local operating system

(LocalOS) is selected as the registry, keep the following in mind:

Required privileges

The user that is running the WebSphere Application Server process should have

enough operating system privilege to call the Windows systems API for

authenticating and obtaining user and group information from the Windows

operating system. This is the user who logs into the machine or if running as a

service this is the Log On As user. Depending on the machine (whether the

machine is a stand-alone machine or a machine that is part of a domain or is the

domain controller, itself), the access requirements vary.

v For a stand-alone machine, the user should be:

– A member of the administrative group.

– Should have the Act as part of the operating system privilege.

– Should have the Log on as a service privilege, if the server is run as a

service.
v For a machine that is a member of a domain, only a domain user can start the

server process and should be:

– A member of the domain administrative groups in the domain controller.

– Should have the Act as part of the operating system privilege in the Domain

Security Policy on the domain controller.

– Should have the Act as part of the operating system privilege in the Local

Security Policy on the local machine.

– Should have the Log on as a service privilege on the local machine, if the

server is run as a service.

 Note: The user is a domain user and not a local user, which implies that

when a machine is part of a domain, only a domain user can start the server.
v For a Domain Controller machine, the user should be:

– A member of the domain administrative groups in the domain controller.

– Should have the Act as part of the operating system privilege in the Domain

Security Policy on the domain controller.

– Should have the Log on as a service privilege on the domain controller, if the

server is run as a service.

To give a user the Act as part of the operating system or Log on as a service on

Windows 2000:

1. Click Start > Settings > Control Panel > Admininstrative Tools > Local

Security Policy > Local Policies > User Rights Assignments > Act as part of

the operating system (or Log on as a service) .

2. Add the user name using the Add button.

3. Restart the machine.

 Note: For a Windows 2000 Domain Controller replace Local Security Policy

with Domain Security Policy in the previous step.

 Note: In all of the previous configurations, the server can be run as a service

using the LocalSystem for the Log On As entry. LocalSystem has the required

privileges and there is no need to give any user special privilege. However,

because the LocalSystem has special privileges, make sure it is appropriate to use it in

your environment.

Chapter 10. Managing security 147

If the user running the server does not have the required privilege you may see

one of the following exception messages in the log files:

v A required privilege is not held by the client.

v Access is denied.

Domain and local registries

When WebSphere Application Server is started, the security run time initialization

process dynamically attempts to determine if the local machine is a member of a

Windows domain. If the machine is part of a domain then by default both the local

registry users or groups and the domain registry users or groups can be used for

authentication and authorization purposes with the domain registry taking

precendence. The list of users and groups presented during the security role

mapping would then include users and groups from both the local user registry

and the domain user registry. The users and groups can be distinguished by the

host names associated with them.

WebSphere Application Server does not support trusted domains.

If the machine is not a member of a Windows system domain, the user registry

local to that machine is used.

Using both the domain registry and the local registry. As previously mentioned,

when the machine hosting the WebSphere Application Server process is a member

of a domain, both the local and the domain registries are used by default. The

following section describes more on this topic and recommends some best practices

to avoid undesirable consequences.

v Best Practices

 In general, if the local and the domain registries do not contain common users

or groups, it is simpler to administer and it eliminates undesirable side effects.

So if possible, it is recommended that users and groups given access to security

roles (including the server ID and administrative roles) be unique. In other

words, they do not exist in both the local registry and the domain registry. In

this situation, select the users and groups from either the local registry or the

domain registry to map to the roles.

 In cases where the same user(s) or group(s) exist in both the local registry and

the domain registry, it is recommended that at least the server ID and the users

and groups who are mapped to the administrative roles be unique in the

registries (exist only on the domain).

 If a common set of users exists, set a different password to make sure that the

appropriate user is authenticated.

v How it works

 When a machine is part of a domain, the domain user registry takes precedence

over the local user registry. For example, when a user logs into the system, the

domain registry tries to authenticate the user first. If the authentication fails the

local registry will be used. Also, when a user or a group is mapped to a role, the

user/group information is first obtained from the domain registry. In case of

failure the local registry will be tried. However, when a fully qualified user or a

group name (one that has a domain or host name attached to it) is mapped to a

role, then only that registry is used to get the information. Use the

administrative console or scripts to get the fully qualified user and group names

and is the recommended way to map users and groups to roles.

148 IBM® WebSphere® Application Server, Version 5.0.2: Security

Note: A user Bob on one machine (the local registry, for example) is not the

same as the user Bob on another machine (say the domain registry) because the

uniqueID of Bob (the security identifier [SID], in this case) is different in

different registries.

v Examples

 Let’s say the machine MyMachine is part of the domain MyDomain. MyMachine

contains the following users and groups:

– MyMachine\user2

– MyMachine\user3

– MyMachine\group2

MyDomain contains the following users and groups:

– MyDomain\user1

– MyDomain\user2

– MyDomain\group1

– MyDomain\group2

 Here are some scenarios assuming the above set of users and groups.

1. When user2 logs into the system, the domain registry is used for

authentication. If the authentication fails (the password is different) the local

registry is used.

2. If the user MyMachine\user2 are mapped to a role, only the user2 in

MyMachine can access it. So if the user2 password is same on both the local

and the domain registries, user2 cannot access the resource, since user2 is

always authenticated using the domain registry. Hence, if both registries

have common users, it is recommended that the password be different.

3. If the group2 is mapped to a role (using the Application Assembly Tool, for

example), only the users who are members of the MyDomain\group2 can access

the resource since group2 information is first obtained from the domain

registry.

4. If the group MyMachine\group2 is mapped to a role, only the users who are

members of the MyMachine\group2 can access the resource. This is because a

specific group is mapped to the role (MyMachine\group2 instead of just

group2).

5. Use either user3 or MyMachine\user3 to map to a role, since user3 is unique;

it exists in only one registry.

 Authorizing with the domain user registry first can cause problems if a user

exists in both the domain and local user registries with the same password.

Role-based authorization can fail in this situation because the user is first

authenticated within the domain user registry. This authentication produces a

unique domain security ID that is used in WebSphere Application Server during

the authorization check. However, the local user registry is used for role

assignment. The domain security ID does not match the unique security ID

associated with the role. To avoid this problem, map security roles to domain

users instead of local users.

Using either the local or the domain registry. If you want to access users and

groups from either the local registry or the domain registry, instead of both, set the

property com.ibm.websphere.registry.UseRegistry. This can be set to either local

or domain. When this property is set to local (case insensitive) only the local

registry is used. When this property is set to domain (case insensitive) only the

domain registry is used. This property should be set by using the Custom

Chapter 10. Managing security 149

Properties link in the Security > User Registries > Local OS panel in the

administrative console or by using scripts.

Note: When the property is set, the privilege requirement for the user who is

running the product process does not change. For example, if this property is set to

local, the user running the process requires the same privilege, as if the property

were not set.

Using UNIX system registries

When using UNIX system registries, the process ID that runs the WebSphere

Application Server process should have the root authority to call the local

operating system APIs for authentication and obtaining user or group information.

Note: In UNIX systems, only the local machine registry is used. NIS (Yellow Pages)

is not supported.

Using Linux and Solaris system registries

For WebSphere Application Server Local OS security registry to work on the Linux

and Solaris platforms, a shadow password file must exist. The shadow password

file is named shadow and is located in the /etc directory. If the shadow password

file does not exist, an error occurs after enabling global security and configuring

the user registry as Local OS.

To create the shadow file, run the pwconv command (with no parameters). This

command creates an /etc/shadow file from the /etc/passwd file. After creating the

shadow file, you can enable local operating system security successfully.

Remote registries

By default, the registry is local to all the product processes. The performance is

higher, (no need for remote calls) and it also increases availability. Any process

failing will not effect other processes. When using LocalOS as the registry, every

product process must run with privilege access (root in UNIX, Act as part of

operating system in Windows systems). If this is not practical in some situations,

you can use a remote registry from the node (or in very rare situations from the

cell). Using a remote registry affects performance and creates a single point of

failure. Use remote registries only in rare situations.

The node and the cell processes are meant for manipulating configuration

information and using them to host the registry for all the application servers

creates traffic and can cause problems. Using a node agent (instead of the cell) to

host the remote registry is preferable, since the cell process is not designed to be

highly available. Also, using a node to host the remote registry indicates that only

the application servers in that node are using it. Since the Node Agent does not

contain any application code giving it the privilege access required should not be a

concern.

You can set up a remote registry by setting the property WAS_UseRemoteRegistry in

the Global Security panel using the Custom Properties link at the bottom of the

administrative console panel. The value should be either Cell or Node (case

insensitive). If the value is Cell, the cell registry is used by all the product

processes including the Node Agent and all the application servers. If the cell

process is down for any reason, restart all the processes after the cell is restarted. If

the node agent registry needs to be used for the remote registry, set the value,

150 IBM® WebSphere® Application Server, Version 5.0.2: Security

WAS_UseRemoteRegistry, to node. In this case, all the application server processes

use the node agent registry. In this case, if the node agent fails and does not start

automatically, then depending on that node agent, you might need to restart all the

application servers, once the node agent is started.

Configuring local operating system user registries

Before you begin

For security purposes, the WebSphere Application Server provides and supports

the implementation for Windows NT systems and Windows 2000 operating system

registries, AIX, Solaris and multiple versions of Linux operating systems. The

respective operating system APIs are called by the product processes (servers) for

authenticating a user and other security-related tasks (for example, getting

user/group information). Access to these APIs are restricted to users who have

special privileges. These privileges depend on the operating system and are

described below.

Before configuring the LocalOS registry you need to know the user name (ID) and

password that will be used here. This user can be any valid user in the registry.

This user will be referred to as either a product security server ID, a server ID or a

server user ID in the documentation. Having a server ID means that a user to has

special privileges when calling protected internal methods. Normally, this ID and

password are used to log into the administrative console once security is turned

on. You can use other users to log in if those users are part of the administrative

roles. When security is enabled in the product, this server ID and password are

authenticated with the registry during product startup. If authentication fails the

server does not come up. So it is important to choose an ID and password that do

not expire or change often. If the product server user ID or password need to be

changed in the registry, ensure that the changes are performed when all the

product servers are up and running. Once the changes are completed in the

registry, use the steps described below to change the ID and the password

information. Save, stop and restart all the servers so that the product can use the

new ID or password. If there is any problem starting the product because of

authentication problems (that cannot be fixed), disable security before the server

can start up. To avoid this step, make sure the changes are validated in the Global

Security panel. Once the server is up, change the ID and password information

and enable security.

When using the Windows operating system, keep the following in mind:

v The server ID should not be the same as the Windows machine name where the

product is installed. For example, if the Windows machine name is vicky and the

security server ID is vicky, Windows treats the machine vicky to have an account

similar to user vicky and hence will fail when getting the information (group

information, for example) for user vicky.

v WebSphere Application Server dynamically determines whether the machine is a

member of a Windows system domain.

v WebSphere Application Server does not support Windows trusted domains.

v If a machine is a member of a Windows domain, both the domain user registry

and the local user registry of the machine participate in authentication and

security role mapping.

v The domain user registry takes precedence over the local user registry of the

machine and can have undesirable implications if users with the same password

exist in both user registries.

Chapter 10. Managing security 151

v The user that the product processes run under should have the Administrative

and Act as part of the operating system privileges to call the Windows

operating system APIs that authenticate or collect user and group information.

The process needs special authority, which is given by these privileges. The user

in this example may not be the same as the security server ID (the requirement

for which is a valid user in the registry). This user logs into the machine (if

using the command line to start the product process) or the Log On User setting

in the services panel if the product processes have started using the services. If

the machine is also part of a domain, this user should be part of the Domain

Admin group in the domain to call the operating system APIs in the domain in

addition to having the Act as part of operating system privilege in the local

machine.

When using the UNIX operating systems (AIX, Solaris, Linux), consider the

following:

v The user that the product processes run under should have the root privilege.

This privilege is needed to call the UNIX operating system APIs to authenticate

or to collect user and group information. The process needs special authority,

which is given by the root privilege. This user may not be the same as the

security server ID (the requirement is that it should be a valid user in the

registry). This user logs into the machine and is running the product processes.

v When using the Linux operating system, you might need to have the password

shadow file in your system.

The following steps are needed to perform this task initially when setting up

security for the first time.

Steps for this task

1. Click Security > User Registries > LocalOS in the left navigation panel of the

administrative console.

2. Enter a valid user name in the Server User ID field.

3. Enter the user password in the Server User Password field.

4. Click OK. Validation of the user and password does not happen in this panel.

Validation is only done when you click OK or Apply in the Global Security

panel. If you are in the process of enabling security for the first time, complete

the other steps and go to the Global Security panel, make sure that Local OS is

the Active User Registry. If security was already enabled and you had changed

either the user or the password information in this panel, make sure to go to

the Global Security panel and click OK or Apply to validate your changes. If

your changes are not validated the server may not be able to come up.

Results

The Local OS registry has been configured.

What to do next

1. If you are enabling security, complete the remaining steps. As the final step,

ensure that you validate the user and password by clicking OK or Apply in the

Global Security panel. Save, stop and start all the product servers.

2. For any changes in this panel to be effective, you need to save, stop and start

all the product servers (cell, nodes and all the application servers).

3. If the server comes up without any problems the set up is correct.

152 IBM® WebSphere® Application Server, Version 5.0.2: Security

Local operating system user registry settings

Use this page to configure local operating system user registry settings.

To view this administrative console page, click Security > User Registries > Local

OS.

Server user ID: Specifies a valid user ID in the Local OS registry.

This ID is the security server ID, which is only used for WebSphere Application

Server security and is not associated with the system process that runs the server.

The server calls the Local OS registry to authenticate and obtain privilege

information about users by calling the native APIs in that particular registry.

Access to native APIs is normally restricted to users having special privileges (for

example, root in UNIX systems and Act as part of operating system in Windows

systems). To use security in the application server, the process ID (not the security

server ID) on which WebSphere Application Server runs requires enough privileges

to call the system APIs. The special privilege means that the process running the

WebSphere Application Server needs to be part of the Administrators group and

have the Act as part of operating system privilege on Windows systems, and be

root, or have root authority on UNIX systems.

When using a Windows system registry, this ID cannot match the name of the

Windows machine. Windows systems treat the machine name bob as having an

account similar to user bob.

 Data type: String

Units: Alphanumeric characters

Server user password: Specifies a valid user password that corresponds to a valid

user ID in the Local OS registry.

 Data type String

Lightweight Directory Access Protocol

Lightweight Directory Access Protocol (LDAP) is a user registry in which

authentication is performed using an LDAP binding.

WebSphere Application Server security provides and supports implementation of

most major LDAP directory servers, which can act as the repository for user and

group information. These LDAP servers are called by the product processes

(servers) for authenticating a user and other security related tasks (for example,

getting user or group information). This support is provided by using different

user and group filters to obtain the user and group information. These filters have

default values which you can modify to fit your needs. The Custom LDAP feature

enables you to use any other LDAP server (which is not in the product supported

list of LDAP servers) for its user registry by using the appropriate filters.

To use LDAP as the user registry, you need to know a valid user name (ID), the

user password, the server host and port, the base distinguished name (DN) and if

necessary the bind DN and the bind password. You can choose any valid user in

the registry that is searchable. In some LDAP servers, the administrative users are

not searchable and cannot be used (for example, cn=root in SecureWay). This user

is referred to as WebSphere Application Server security server ID, server ID, or

server user ID in the documentation. Being a server ID means a user has special

Chapter 10. Managing security 153

privileges when calling some protected internal methods. Normally, this ID and

password is used to log into the administrative console once security is turned on.

You can use other users to log in if those users are part of the administrative roles.

When security is enabled in the product, this server ID and password are

authenticated with the registry during the product startup. If authentication fails,

the server does not start. It is important to choose an ID and password that do not

expire or change often. If the product server user ID or password need to change

in the registry, make sure the changes are performed when all the product servers

are up and running. Once the changes are done in the registry, use the steps

described in “Configuring Lightweight Directory Access Protocol user registries”

on page 160. Change the ID, password, and other configuration information, save,

stop, and restart all the servers so that the new ID or password is used by the

product. If there are any problems starting the product when security is enabled,

disable security before the server can start up (to avoid these problems, make sure

any changes in this panel are validated in the Global Security panel). Once the

server is up, you can change the ID, password and other configuration information

and then enable security.

Supported directory services

WebSphere Application Server security supports several different LDAP servers.

Though it is expected that other LDAP servers that follow the LDAP specification

would function, support is limited to these specific directory servers only. You can

use any other directory server by using the custom directory type in the

drop-down list and by filling in the filters required for that directory.

To improve performance for LDAP searches, the default filters for IBM Directory

Server, iPlanet Directory Server, and Active Directory are defined such that when

you search for a user, the result contains all the relevant information about the user

(user ID, groups, and so on). As a result, the product does not call the LDAP

server multiple times. This definition is possible only in these directory types,

which support searches where the complete user information is obtained.

If you use the IBM Directory Server, enable the IgnoreCase flag. This flag is

required because when the group information is obtained from the user object

attributes, the case is not the same as when you get the group information directly.

For the authorization to work in this case, perform a case insensitive check and

verify the requirement for the IgnoreCase flag.

Lightweight Directory Access Protocol settings

Use this page to configure Lightweight Directory Access Protocol (LDAP) settings

when users and groups reside in an external LDAP directory.

To view this administrative console page, click Security > User Registries > LDAP.

When security is enabled and any of these properties change, go to the Global

Security panel and click Apply to validate the changes.

Server User ID: Specifies the user ID under which the server runs, for security

purposes.

Although this ID is not the LDAP administrator user ID, specify a valid entry in

the LDAP directory located under the Base Distinguished Name.

Server User Password: Specifies the password corresponding to the security

server ID.

154 IBM® WebSphere® Application Server, Version 5.0.2: Security

Type: Specifies the type of LDAP server to which you connect.

The type is used to preload default LDAP properties. IBM Directory Server users

can choose either IBM_Directory_Server or SecureWay as the directory type. Use

the IBM_ Directory_server directory type for better performance. Users of the

iPlanet Directory Server can choose either iPlanet Directory Server or NetScape as

the directory type. Use the iPlanet Directory Server directory type for better

performance after configuring the iPlanet to use role (nsRole) as the grouping

method.

For a list of supported LDAP servers, see the InfoCenter article, ″Supported

directory services.″

Host: Specifies the host ID (IP address or domain name system (DNS) name) of

the LDAP server.

Port: Specifies the host port of the LDAP server.

If multiple WebSphere Application Servers are installed and configured to run in

the same single signon domain, or if the WebSphere Application Server

interoperates with a previous version of the WebSphere Application Server, then it

is important that the port number match all configurations. For example, if the

LDAP port is explicitly specified as 389 in a Version 4.0.x configuration, and a

WebSphere Application Server at Version 5 is going to interoperate with the

Version 4.0.x server, then verify that port 389 is specified explicitly for the Version

5 server.

 Default: 389

Note: If the port, including the default port number, is specified explicitly in one

server configuration, then verify that it is specified explicitly in all server

configurations.

Base Distinguished Name: Specifies the base distinguished name of the directory

service, indicating the starting point for LDAP searches of the directory service.

For example, for a user with a distinguished name (DN) of cn=John Doe,

ou=Rochester, o=IBM, c=US, you can specify the base DN as (assuming a suffix of

c=us): ou=Rochester, o=IBM, c=us o=IBM, c=us c=us. For authorization purposes,

this field is case sensitive. This implies that if a token is received (for example,

from another cell or Domino) the base DN in the server must match exactly the

base DN from the other cell or Domino. If case sensitivity is not a consideration for

authorization, enable the Ignore Case field. This field is required for all LDAP

directories except for the Domino Directory, where it is optional.

Bind Distinguished Name: Specifies the distinguished name for the application

server to use when binding to the directory service.

If no name is specified, the application server binds anonymously. See the Base

Distinguished Name field description for examples of distinguished names.

Bind Password: Specifies the password for the application server to use when

binding to the directory service.

Search Timeout: Specifies the timeout value in seconds for an LDAP server to

respond before aborting a request.

Chapter 10. Managing security 155

Default: 300

Reuse connection: Specifies whether the server should reuse the LDAP

connection. Clear this option only in rare situations where a router is used to spray

requests to multiple LDAP servers and when the router does not support affinity.

 Default: Enabled

Range: Enabled or Disabled

Ignore Case: Specifies that a case insensitive authorization check is performed.

This field is required when IBM Directory Server is selected as the LDAP directory

server. Otherwise, this field is optional and can be enabled when a case sensitive

authorization check is required. For example, when you use certificates and the

certificate contents do not match the case of the entry in the LDAP server. You can

also enable the Ignore Case field when using single signon (SSO) between the

product and Domino.

 Default: Disabled

Range: Enabled or Disabled

SSL Enabled: Specifies whether secure socket communication is enabled to the

LDAP server. When enabled, the LDAP Secure Sockets Layer (SSL) settings are

used, if specified.

SSL Configuration: Specifies the Secure Sockets Layer configuration to use for the

LDAP connection. This configuration is used only when SSL is enabled for LDAP.

 Default: DefaultSSLSettings

Lightweight Directory Access Protocol advanced settings

Use this page to configure advanced Lightweight Directory Access Protocol

(LDAP) user registry settings when users and groups reside in an external LDAP

directory.

To view this administrative page, click Security > User Registries > LDAP

Advanced LDAP settings.

Default values for all the user and group related filters are already completed in

the appropriate fields. You can change these values depending on your

requirements. These default values are based on the type of LDAP server selected

in the LDAP settings panel. If this type changes (for example from NETSCAPE to

SECUREWAY) the default filters automatically change. When the default filter

values change, the LDAP server type changes to Custom to indicate that custom

filters are used. When security is enabled and any of these properties change, go to

the Global Security panel and click Apply or OK to validate the changes.

User Filter: Specifies the LDAP user filter that searches the registry for users.

This option is typically used for Security Role to User assignments. It specifies the

property by which to look up users in the directory service. For example, to look

up users based on their user IDs, specify

156 IBM® WebSphere® Application Server, Version 5.0.2: Security

(ampersand(uid=%v)(objectclass=inetOrgPerson) where ampersand is the

ampersand symbol (&). For more information about this syntax, see the LDAP

directory service documentation.

 Data type: String

Group Filter: Specifies the LDAP group filter that searches the registry for groups

This option is typically used for Security Role to Group assignments. It specifies

the property by which to look up groups in the directory service. For more

information about this syntax, see the LDAP directory service documentation.

 Data type: String

User ID Map: Specifies the LDAP filter that maps the short name of a user to an

LDAP entry.

Specifies the piece of information that represents users when users appear. For

example, to display entries of the type object class = inetOrgPerson by their IDs,

specify inetOrgPerson:uid. This field takes multiple objectclass:property pairs

delimited by a semicolon (;).

 Data type: String

Group ID Map: Specifies the LDAP filter that maps the short name of a group to

an LDAP entry.

Specifies the piece of information that represents groups when groups appear. For

example, to display groups by their names, specify *:cn. The asterisk (*) is a

wildcard character that searches on any object class in this case. This field takes

multiple objectclass:property pairs delimited by a semicolon (;).

 Data type: String

Group Member ID Map: Specifies the LDAP filter which identifies user to group

relationships.

For directory types SecureWay, NetScape, and Domino, this field takes multiple

objectclass:property pairs, delimited by a semicolon (;). In an objectclass:property

pair, the objectclass value is the same objectclass defined in Group Filter, and the

property is the member attribute. If the objectclass value does not match the

objectclass in Group Filter, authorization might fail if groups are mapped to

security roles. For more information about this syntax, see your LDAP directory

service documentation.

For IBM Directory Server, iPlanet Directory Server and Active Directory, this field

takes multiple (group attribute:member attribute) pairs delimited by a semicolon

(;). They are used to find the group memberships of a user by enumerating all the

group attributes possessed by a given user. For example, attribute pair

(memberof:member) is used by Active Directory, and (ibm-allGroup:member) is used

by IBM Directory Server . This field also specifies which property of an objectclass

stores the list of members belonging to the group represented by the objectclass.

For supported LDAP directory servers, see the InfoCenter article, ″Supported

directory services.″

Chapter 10. Managing security 157

Data type: String

Certificate Map Mode: Specifies whether to map X.509 certificates into an LDAP

directory by EXACT_DN or CERTIFICATE_FILTER. Specify CERTIFICATE_FILTER

to use the specified certificate filter for the mapping.

 Data type: String

Certificate Filter: Specifies whether to use the filter certificate mapping property

to specify the LDAP filter, which is used to map attributes in the client certificate

to entries in the LDAP registry.

To enable this field, click CERTIFICATE_FILTER for the certificate mapping. If

more than one LDAP entry matches the filter specification at run time, then

authentication fails because it results in an ambiguous match. The syntax or

structure of this filter is: LDAP attribute=${Client certificate attribute} (for

example, uid=${SubjectCN}). The left side of the filter specification is an LDAP

attribute that depends on the schema that your LDAP server is configured to use.

The right side of the filter specification is one of the public attributes in your client

certificate. The right side must begin with a dollar sign ($) and open bracket ({)

and end with a close bracket (}). You can use the following certificate attribute

values may be used on the right side of the filter specification. The case of the

strings is important:

v ${UniqueKey}

v ${PublicKey}

v ${PublicKey}

v ${Issuer}

v ${NotAfter}

v ${NotBefore}

v ${SerialNumber}

v ${SigAlgName}

v ${SigAlgOID}

v ${SigAlgParams}

v ${SubjectCN}

v ${Version}

 Data type: String

Using specific directory servers as the LDAP server

Using IBM Directory Server as the LDAP server: You can choose the directory

type of either IBM Directory Server or SecureWay for the IBM Directory Server.

For supported directory servers, refer to the article, “Supported directory services”

on page 154. The difference between these two types is group membership lookup.

It is recommended that you choose the IBM Directory Server for optimum

performance during run time. In the IBM Directory Server, the group membership

is an operational attribute. With this attribute, a group membership lookup is done

by enumerating the ibm-allGroups attribute for the entry, rather than selecting a

group and browsing through the members list. To utilize this attribute in a security

authorization application, use a case-insensitive match so that attribute values

returned by ibm-allGroups are all in uppercase.

158 IBM® WebSphere® Application Server, Version 5.0.2: Security

Using iPlanet Directory Server as the LDAP server: You can choose the iPlanet

Directory Server or NetScape for your iPlanet Directory Server system. For

supported directory servers, refer to the article, “Supported directory services” on

page 154. The difference between the two directory server types is group

membership lookup. The iPlanet Directory Server directory is selected to use with

the iPlanet Directory Server new grouping mechanism only. The new grouping

mechanism is called roles in the iPlanet Directory Server, and the attribute is nsRole.

Roles unify entries. Roles are designed to be more efficient and easier to use for

applications. For example, an application can locate the role of an entry by

enumerating all the roles possessed by a given entry, rather than selecting a group

and browsing through the members list. With the iPlanet Directory Server

directory, WebSphere Application Server security only supports groups defined by

nsRole. If you plan to use traditional grouping methods to group entries in the

iPlanet Directory Server , select NetScape as the directory type.

Using MS Active Directory server as the LDAP server: Before you begin

To use Microsoft Active Directory as the LDAP server for authentication with

WebSphere Application Server, there are specific steps you must take. By default,

Microsoft Active Directory does not permit anonymous LDAP queries. To create

LDAP queries or browse the directory, an LDAP client must bind to the LDAP

server using the distinguished name (DN) of an account that belongs to the

administrator group of the Windows system. Group membership search in the

Active Directory is done by enumerating the memberof attribute possessed by a

given user entry, rather than browsing through the member list in each group. If

you change this default behavior to browse each group, you can change the Group

Member ID Map field from memberof:member to group:member.

To set up Microsoft Active Directory as your LDAP server, complete the following

steps.

Steps for this task

1. Determine the full DN and password of an account in the administrators

group.

 For example, if the Active Directory administrator creates an account in the

Users folder of the Active Directory Users and Computers Windows NT or

Windows 2000 systems control panel and the DNS domain is ibm.com, the

resulting DN has the following structure:

cn=<adminUsername>, cn=users, dc=ibm,

dc=com

2. Determine the short name and password of any account in the Microsoft Active

Directory.

 This password does not have to be the same account used in the previous step.

3. Use the WebSphere Application Server administrative console to set up the

information needed to use Microsoft Active Directory:

a. Start the administrative server for the domain, if necessary.

b. On the administrative console, click Security on the left navigation panel.

c. Click the Authentication mechanisms tabbed page. Select Lightweight

Third Party Authentication (LTPA) as the authentication mechanism.

d. Enter the following information in the LDAP settings fields:

v Security Server ID: The short name of the account chosen in 2

v Security Server Password: The password of the account chosen in step 2

Chapter 10. Managing security 159

v Directory Type: Active Directory

v Host: The domain name system (DNS) name of the machine running

Microsoft Active Directory

v Base Distinguished Name: The domain components of the DN of the

account chosen in step 1. For example: dc=ibm, dc=com Bind

v Distinguished Name: The full DN of the account chosen in step 1. For

example: cn=<adminUsername>, cn=users, dc=ibm, dc=com

v Bind Password: the password of the account chosen in step 1
e. Click OK to save the changes.

f. Stop and restart the administrative server so that changes take effect.

Using a Lotus Domino Server as the LDAP server: If you choose the Lotus

Domino LDAP server version 6 and the attribute shortname is not defined in the

schema, you can do either of the following:

v Change the schema to add the shortname attribute.

v Change the user ID map filter to replace the shortname with any other defined

attribute (preferably to uid). For example, change person:shortname to

person:uid

Configuring Lightweight Directory Access Protocol user

registries

Before you begin

Review the article on “Lightweight Directory Access Protocol” on page 153 (LDAP)

before beginning this task.

Steps for this task

 1. In the administrative console, click Security > User Registries > LDAP in the

left navigation panel.

 2. Enter a valid user name in the Server User ID field. You can either enter the

complete distinguished name (DN) of the user or the short name of the user

as defined by the User Filter in the Advanced LDAP settings panel. For

example, for Netscape enter the user ID.

 3. Enter the password of the user in the Server User Password field.

 4. Select the type of LDAP server that is used from the Type list. The type of

LDAP server determines the default filters that are used by the WebSphere

Application Server. When these default filters change the Type field changes

to Custom, which indicates that custom filters are used. This action occurs

once you click OK or Apply in the Advanced LDAP settings panel. Choose

the Custom type from the list and modify the user and group filters to use

other LDAP servers, if required. If either the IBM Directory Server or iPlanet

Directory Server is selected, also select the Ignore Case field.

 5. Enter the fully qualified host name of the LDAP server in the Host field.

 6. Enter the LDAP server port number in the Port field. The host name along

with the port number, represent the realm for this LDAP server in the

WebSphere Application Server cell. So, if servers in different cells are

communicating with each other using Lightweight Third Party Authentication

(LTPA) tokens, these realms must match exactly in all the cells.

 7. Enter the Base distinguished name (DN) in the Base Distinguished Name

field. The Base DN indicates the starting point for searches in this LDAP

directory server. For example, for a user with a DN of cn=John Doe,

160 IBM® WebSphere® Application Server, Version 5.0.2: Security

ou=Rochester, o=IBM, c=US, specify the Base DN as any of (assuming a suffix

of c=us): ou=Rochester, o=IBM, c=us or o=IBM c=us or c=us. This field can be

case sensitive, and it is recommended that they match the case in your

directory server. This field is required for all LDAP directories except the

Domino Directory. The Base DN field is optional for the Domino server.

 8. Enter the Bind DN name in the Bind Distinguished Name field, if necessary.

The Bind DN is required if anonymous binds are not possible on the LDAP

server to obtain user and group information. If the LDAP server is set up to

use anonymous binds, leave this field blank.

 9. Enter the password corresponding to the Bind DN in the Bind password field,

if necessary.

10. Modify the Search Time Out value if required. This timeout value is the

maximum amount of time the LDAP server waits to send a response to the

product client before aborting the request. The default is 120 seconds.

11. Disable the Reuse Connection field only if you use routers to spray requests

to multiple LDAP servers, and if the routers do not support affinity. Leave this

field enabled for all other situations.

12. Enable the Ignore Case flag, if required. When this is enabled, the

authorization check is case insensitive. Normally, an authorization check

involves checking the complete DN of a user, which is unique in the LDAP

server and is case sensitive. However, when using either the IBM Directory

Server or the iPlanet Directory Server LDAP servers, this flag needs enabling

because the group information obtained from the LDAP servers is not

consistent in case. This inconsistency only effects the authorization check.

13. Enable Single Sockets Layer (SSL) if the communication to the LDAP server is

through SSL. For more information on setting up LDAP for SSL, refer to

“Configuring secure sockets layer for the lightweight directory access protocol

client” on page 276.

14. If SSL is enabled, select the appropriate SSL alias configuration from the list in

the SSL configuration field.

15. Click OK.

 The validation of the user, password, and the setup do not take place in this

panel. Validation is only done when you click OK or Apply in the Global

Security panel. If you are enabling security for the first time, complete the

remaining steps and go to the Global Security panel. Select LDAP as the

Active User Registry. If security is already enabled, but information on this

panel changes, go to the Global Security panel and click OK or Apply to

validate your changes. If your changes are not validated, the server might not

come up.

Results

Sets the LDAP registry configuration.

Usage scenario

This step is required to set up the LDAP registry. This step is required as part of

enabling security in the WebSphere Application Server.

What to do next

1. If you are enabling security, complete the remaining steps. As the final step,

validate this setup by clicking OK or Apply in the Global Security panel.

Chapter 10. Managing security 161

2. For changes in this panel to take effect, save, stop and restart all the product

servers (cell, nodes and all the application servers).

3. If the server comes up without any problems the setup is correct.

Configuring Lightweight Directory Access Protocol search filters

Before you begin

The WebSphere Application Server uses Lightweight Directory Access Protocol

(LDAP) filters to search and obtain information about users and groups from a

LDAP directory server. A default set of filters are provided for each LDAP server

that the product supports. You can modify these filters to fit your LDAP

configuration. Once the filters are modified (and OK or Apply is clicked) the

directory type in the LDAP Registry panel changes to custom, which indicates that

custom filters are being used. Also, you can develop filters to support any

additional type of LDAP server. The effort to support additional LDAP directories

is optional, and IBM does not provide support for other LDAP directory types.

Steps for this task

1. In the administrative console, click Security > User Registries > LDAP in the

left navigation panel. Click Advanced LDAP Setting in Additional Properties.

2. Modify the User filter, if necessary.

 The user filter is used for searching the registry for users and typically used for

the Security Role to User assignment. Also, the filter is used to authenticate a

user using the attribute specified in the filter. It specifies the property used to

look up users in the directory service. In the following example, the property

that is assigned to %v, which is the short name of the user, must be a unique

key. This means that two LDAP entries with the same object class cannot have

the same short name. To look up users based on their user IDs (uid) and using

the object class inetOrgPerson, specify the following:

(&(uid=%v)(objectclass=inetOrgPerson)

 For more information about this syntax, see the “Supported directory services”

on page 154 documentation.

3. Modify the Group filter, if necessary.

 The group filter is used in searching the registry for groups and typically used

for the Security Role to Group assignment. Also, the filter is used to specify the

property by which to look up groups in the directory service. In the following

example, the property that is assigned to %v, which is the short name of the

group, must be a unique key. This means that two LDAP entries with the same

object class cannot have the same short name. To look up groups based on their

common names (cn) and using the object class of either groupOfNames or

groupOfUniqueNames, specify the following:

(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))

 For more information about this syntax, see the “Supported directory services”

on page 154 documentation.

4. Modify the User ID map filter, if necessary.

 This filter maps the short name of a user to an LDAP entry. It specifies the

piece of information that represents users when these users are displayed with

their short names. For example, to display entries of the type object class =

inetOrgPerson by their IDs, specify inetOrgPerson:uid. This field takes

multiple objectclass:property pairs delimited by a semicolon (;). To provide a

consistent value for methods like getCallerPrincipal(), getUserPrincipal() the

short name obtained by using this filter is used. For example the user CN=Bob

162 IBM® WebSphere® Application Server, Version 5.0.2: Security

Smith, ou=austin.ibm.com, o=IBM, c=US can log in using any attributes that are

defined for him (for example, e-mail address, social security number, and so

on) but when these methods are called, the user ID bob is returned no matter

how the user logs in.

5. Modify the Group ID Map filter, if necessary.

 This filter maps the short name of a group to an LDAP entry. it specifies the

piece of information that represents groups when groups display. For example,

to display groups by their names, specify *:cn. The (*) is a wildcard character

that searches on any object class in this case. This field takes multiple

objectclass:property pairs delimited by a semicolon (;).

6. Modify the Group Member ID Map filter, if necessary.

 This filter identifies user to group memberships. For SecureWay, Netscape, and

Domino directory types, this field is used to query all the groups that match

the specified object classes to find if the user is contained in the attribute

specified. For example, to get all the users belonging to groups whose object

class is groupOfNames and the users are contained in the member attributes,

specify groupOfNames:member. This specifies which property of an objectclass

stores the list of members belonging to the group represented by the

objectclass. This field takes multiple objectclass:property pairs delimited by a

semicolon (;).

 For more information about this syntax, see the “Supported directory services”

on page 154. For the IBM Directory Server, iPlanet Directory Server and Active

Directory this is used to query all users in a group by using the information

stored in the user object (instead of querying all the groups individually to find

if the user exists in that group). For example, the filter memberof:member (for

Active Directory) is used to get the memberof attribute of the user object to get

all the groups to which the user belongs. The member attribute is used to get all

the users in a group using the group object. Using the user object to obtain the

group information is expected to improve performance.

7. Modify the Certificate Map Mode, if necessary.

 You can use the X.590 certificates for user authentication when LDAP is

selected as the user registry. This field is used to indicate whether to map the

X.509 certificates into an LDAP directory user by EXACT_DN or

CERTIFICATE_FILTER. If EXACT_DN is selected, the DN in the certificate

must exactly match the user entry in the LDAP server (including case and

spaces). Use the Ignore Case field in the LDAP settings to make the

authorization case insensitive. If CERTIFICATE_FILTER is selected, fill in the

appropriate certificate filter (in the next field) to use for mapping the certificate

to a user in LDAP.

8. If you specify the filter certificate mapping in step 7, use this property to

specify the LDAP filter for mapping attributes in the client certificate to entries

in LDAP.

 If more than one LDAP entry matches the filter specification at run time,

authentication fails because it results in an ambiguous match. The syntax or

structure of this filter is: LDAP attribute=${Client certificate attribute} (for

example, uid=${SubjectCN}). The left side of the filter specification is an LDAP

attribute that depends on the schema that your LDAP server is configured to

use. The right side of the filter specification is one of the public attributes in

your client certificate. Note that the right side must begin with a dollar sign ($),

open bracket ({), and end with a close bracket ({). Use the following certificate

attribute values on the right side of the filter specification. The case of the

strings is important.

v ${UniqueKey}

Chapter 10. Managing security 163

v ${PublicKey}

v ${Issuer}

v ${NotAfter}

v ${NotBefore}

v ${SerialNumber}

v ${SigAlgName}

v ${SigAlgOID}

v ${SigAlgParams}

v ${SubjectDN}

v ${Version}

To enable this field, select CERTIFICATE_FILTER for the certificate mapping.

9. Click Apply.

 Note: When any LDAP user or group filter is modified in the Advanced LDAP

Settings panel click Apply. Clicking OK navigates you to the LDAP User

Registry panel, which contains the previous LDAP directory type, rather than

the custom LDAP directory type. Clicking OK or Apply in the LDAP User

Registry panel saves the back-level LDAP directory type and the default filters

of that directory. This action overwrites any changes to the filters that you

made. To avoid overwritting changes, you can take either of the following

actions:

v Click Apply in the Advanced LDAP Settings panel. To proceed to another

panel, use the left navigation. Using the navigation to access the LDAP User

Registry panel changes the directory type to Custom.

v Choose Custom type from the LDAP User Registry panel. Click Apply and

then change the filters by clicking the Advanced LDAP Settings panel. Once

you complete your changes, click Apply or OK.

The validation of the changes (if any) does not take place in this panel.

Validation is done when you click OK or Apply in the Global Security panel.

If you are in the process of enabling security for the first time, complete the

remaining steps and go to the Global Security panel. Select LDAP as the

Active User Registry. If security already is enabled and any information on this

panel changes, make sure to go to the Global Security panel and click OK or

Apply to validate your changes. If your changes are not validated, the server

might not come up.

Results

Sets the LDAP search filters.

Usage scenario

This step is required to modify existing user and group filters for a particular

LDAP directory type. It is also used to set up certificate filters to map certificates

to entries in the LDAP server.

What to do next

1. If you are enabling security, complete the remaining steps. As the final step

make sure that you validate this setup by clicking OK or Apply in the Global

Security panel. Save, stop and start all the product servers.

2. For any changes in this panel to become effective, save, stop and start all the

product servers (cell, nodes and all the application servers).

164 IBM® WebSphere® Application Server, Version 5.0.2: Security

3. Once the server comes up, go through all the security-related tasks (getting

users, getting groups and so on) to verify the changes to the filters function.

Custom user registries

A custom user registry is a customer-implemented user registry, which implements

the UserRegistry Java interface as provided by the product. A custom-implemented

user registry can support virtually any type of an account repository from a

relational database, flat file, and so on. The custom user registry provides

considerable flexibility in adapting product security to various environments where

some form of a user registry, other than Lightweight Directory Access Protocol

(LDAP) or Local Operating System (LocalOS), already exists in the operational

environment.

WebSphere Application Server security provides an implementation that uses

various local operating system-based registries (Windows, AIX, Solaris, Linux) and

various Lightweight Directory Access Protocol (LDAP)-based registries. However,

there might be situations where your user and group data resides in other

repositories or custom registries (a database, for example) and moving this

information to either a Local OS or LDAP registry implementation might not be

feasible. For these situations WebSphere Application Server security provides a

service provider interface (SPI) that you can implement to interact with your

current registry. The SPI is the UserRegistry interface. This interface has a set of

methods to implement in order for the product security to interact with your

registries for all security-related tasks. The Local OS and LDAP registry

implementations that are provided also implement this interface. are provided also

implement this interface. Custom user registries are sometimes called the pluggable

user registries or custom registries for short.Your custom user registry

implementation is expected to be thread-safe.

The UserRegistry interface is a collection of methods required to authenticate

individual users using either password or certificates and to collect information

about the user (privilege attributes) for authorization purposes. It also includes

methods that obtain user and group information so that they can be given access

to resources. When implementing the methods in the interface, you must decide

how to map the information manipulated by the UserRegistry interface to the

information in your registry.

Make sure that your implementation of the custom registry does not depend on

any WebSphere Application Server components such as data sources, enterprise

beans, and so on. Do not have this dependency because security is initialized and

enabled prior to most of the other WebSphere Application Server components

during startup. If your previous implementation used these components, make a

change that will eliminate the dependency. For example, if your previous

implementation used data sources to connect to a database, use Java database

connectivity (JDBC) to connect to the database.

The methods in the UserRegistry interface operate on the following information for

users:

User Security Name

The user name, which is similar to the user name in the Windows systems

and the UNIX systems Local OS registries. This name is used to log in

when prompted by a secured application. By default, the EJB method

getCallerPrincipal and the servlet methods getRemoteUser and

getUserPrincipal return this name. The user security name is also referred

to as userSecurityName, userName or user name.

Chapter 10. Managing security 165

Unique ID

This ID represents a unique identifier for the user. The UserRegistry

interface requires this identifier to be unique. The unique ID similar to the

system ID (SID) in Windows systems, Unique ID (UID) in UNIX systems,

distinguished name (DN) in Lightweight Directory Authentication Protocol

(LDAP). This is also referred to as uniqueUserId. The unique ID is used to

make the authorization decisions for protected resources.

Display name

This name is an optional string that describes a user, and it is similar to the

FullName attribute in Windows operating systems. The implementation can

use display names for informational purposes only; these names are not

required to exist or to be unique. The GUI can use the display name to

present more information about the user.

Group Security name

This name, which represents the security group, is also referred to as

groupSecurityName, groupName and group name.

Unique ID

The unique ID is the identifier for a group. It is also referred to as

uniqueGroupId.

Display name

The display name is an optional string that describes a group.

 describes each of the methods in the UserRegistry interface that need

implementing. An explanation of each of the methods along with their usage in the

Sample and any changes from the Version 4.0 interface are provided. The Related

references section provides links to all other custom user registries documentation,

including a simple file-based registry Sample. The Sample provided is very simple

and is intended to familiarize you with this feature. Do not use this Sample in an

actual production environment.

Configuring custom user registries

Before you begin

Before you begin this task, implement and build the UserRegistry interface. For

more information on developing custom user registries refer to “Developing

custom user registries” on page 62. The following steps are required to configure

custom user registries through the administrative console.

Steps for this task

1. In the administrative console, click Security > User Registries > Custom in the

left navigation panel.

2. Enter a valid user name in the Server User ID field.

3. Enter the password of the user in the Server User Password field.

4. Enter the full name of the location of the implementation class file in the

Custom Registry Classname field.

 This should be a dot-separated file name. For the sample this file name is

com.ibm.websphere.security.FileRegistrySample. The file exists in the

WebSphere Application Server class path (preferably in the

install_root/lib/ext directory).This file exists in all the product processes. So,

if you are operating in a Network Deployment environment, this file exists in

the cell class path as well as all the nodes class paths.

166 IBM® WebSphere® Application Server, Version 5.0.2: Security

5. Select the Ignore Case check box for the authorization to perform a case

insensitive check. Enabling this option is necessary only when your registry is

case insensitive and does not provide a consistent case when queried for users

and groups.

6. Click Apply if you have any other additional properties to enter for the

registry initialization. Otherwise click OK and complete the steps required to

turn on security.

7. If you need to enter additional properties to initialize your implementation,

click Custom Properties at the bottom of the panel. Click New. Enter the

property name and value. Click OK. Repeat this step to add other additional

properties.

 For the sample, enter the following two properties: (assuming the users.props

and groups.props file are in myDir directory under the product installation

directory).

 Property name Property value

usersFile {USER_INSTALL_ROOT}/myDir/users.props

groupsFile {USER_INSTALL_ROOT}/myDir/groups.props

The Description, Required and Validation Expression fields are not used and

you can leave them blank.

 Note: In a Network Deployment environment where multiple WebSphere

Application Server processes exist (cell, and multiple nodes in different

machines), these properties are available for each process. Use the relative name

{USER_INSTALL_ROOT} to locate any files, as this expands to the product

installation directory. If this name is not used, ensure that the files exist in the

same location in all the nodes.

Results

This step is required to set up the custom user registry. This step is required as

part of enabling security in WebSphere Application Server.

What to do next

1. If you enable security, you complete the remaining steps. As the final step,

validate the user and password by clicking OK or Apply in the Global Security

panel. Save, synchronize (in the cell environment), stop and start all the

product servers.

2. Once security is turned on, save, stop and start all the product servers (cell,

nodes and all the application servers) for any changes in this panel to take

effect.

3. If the server comes up without any problems, the setup is correct.

UserRegistry.java files

// 5639-D57, 5630-A36, 5630-A37, 5724-D18

// (C) COPYRIGHT International Business Machines Corp. 1997, 2002

// All Rights Reserved * Licensed Materials - Property of IBM

//

// DESCRIPTION:

//

// This is the UserRegistry interface that custom registries

// in WebSphere Application Server

// should implement to enable WebSphere security to use the custom registry.

//

package com.ibm.websphere.security;

import java.util.*;

Chapter 10. Managing security 167

import java.rmi.*;

import java.security.cert.X509Certificate;

import com.ibm.websphere.security.cred.WSCredential;

/**

 * Implementing this interface enables WebSphere Security to use Custom

 * Registries. This should extend java.rmi.Remote as the registry can be in

 * a remote process.

 *

 * Implementation of this interface must provide implementations for:

/*

v initialize(java.util.Properties)

v checkPassword(String,String)

v mapCertificate(X509Certificate[])

v getRealm

v getUsers(String,int)

v getUserDisplayName(String)

v getUniqueUserId(String)

v getUserSecurityName(String)

v isValidUser(String)

v getGroups(String,int)

v getGroupDisplayName(String)

v getUniqueGroupId(String)

v getUniqueGroupIds(String)

v getGroupSecurityName(String)

v isValidGroup(String)

v getGroupsForUser(String)

v getUsersForGroup(String,int)

v createCredential(String)

**/

public interface UserRegistry extends java.rmi.Remote

{

 /**

 * Initializes the registry. This method is called when creating the

 * registry.

 *

 * @param props the registry-specific properties with which to

 * initialize the custom registry

 * @exception CustomRegistryException

 * if there is any registry specific problem

 * @exception RemoteException

 * as this extends java.rmi.Remote

 **/

 public void initialize(java.util.Properties props)

 throws CustomRegistryException,

 RemoteException;

 /**

 * Checks the password of the user. This method is called to authenticate a

 * user when the user’s name and password are given.

 *

 * @param userSecurityName the name of user

 * @param password the password of the user

 * @return a valid userSecurityName. Normally this is

 * the name of same user whose password was checked but if the

168 IBM® WebSphere® Application Server, Version 5.0.2: Security

* implementation wants to return any other valid

 * userSecurityName in the registry it can do so

 * @exception CheckPasswordFailedException if userSecurityName/

 * password combination does not exist in the registry

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String checkPassword(String userSecurityName, String password)

 throws PasswordCheckFailedException,

 CustomRegistryException,

 RemoteException;

 /**

 * Maps a certificate (of X509 format) to a valid user in the registry.

 * This is used to map the name in the certificate supplied by a browser

 * to a valid userSecurityName in the registry

 *

 * @param cert the X509 certificate chain

 * @return the mapped name of the user userSecurityName

 * @exception CertificateMapNotSupportedException if the particular

 * certificate is not supported.

 * @exception CertificateMapFailedException if the mapping of the

 * certificate fails.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String mapCertificate(X509Certificate[] cert)

 throws CertificateMapNotSupportedException,

 CertificateMapFailedException,

 CustomRegistryException,

 RemoteException;

 /**

 * Returns the realm of the registry.

 *

 * @return the realm. The realm is a registry-specific string indicating

 * the realm or domain for which this registry

 * applies. For example, for OS400 or AIX this would be the

 * host name of the system whose user registry this object

 * represents.

 * If null is returned by this method realm defaults to the

 * value of "customRealm".

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getRealm()

 throws CustomRegistryException,

 RemoteException;

 /**

 * Gets a list of users that match a pattern in the registry.

 * The maximum number of users returned is defined by the limit

 * argument.

 * This method is called by GUI(adminConsole) and Scripting(command line) to

 * make available the users in the registry for adding them (users) to roles.

 *

 * @parameter pattern the pattern to match. (For e.g., a* will match all

 * userSecurityNames starting with a)

 * @parameter limit the maximum number of users that should be returned.

 * This is very useful in situations where there are thousands of

 * users in the registry and getting all of them at once is not

 * practical. A value of 0 implies get all the users and hence

 * must be used with care.

 * @return a Result object that contains the list of users

 * requested and a flag to indicate if more users exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

Chapter 10. Managing security 169

* @exception RemoteException as this extends java.rmi.Remote

 **/

 public Result getUsers(String pattern, int limit)

 throws CustomRegistryException,

 RemoteException;

 /**

 * Returns the display name for the user specified by userSecurityName.

 *

 * This method is called only when the user information displays

 * (information purposes only, for example, in GUI) and not used

 * in the actual authentication or authorization purposes. If there are no

 * display names in the registry return null or empty string.

 *

 * In WebSphere Application Server Version 4.0 custom registry,

 * if you had a display name for the user and

 * if it was different from the security name, the display name was

 * returned for the EJB methods getCallerPrincipal() and the servlet methods

 * getUserPrincipal() and getRemoteUser().

 * In WebSphere Application Server Version 5.0 for the same methods

 * the security name is returned by

 * default. This is the recommended way as the display name is not unique

 * and might create security holes.

 * However, for backward compatability if one needs the display name to

 * be returned set the property WAS_UseDisplayName to true.

 *

 * See the Infocenter documentation for more information.

 *

 * @parameter userSecurityName the name of the user.

 * @return the display name for the user. The display name

 * is a registry-specific string that represents a descriptive, not

 * necessarily unique, name for a user. If a display name does

 * not exist return null or empty string.

 * @exception EntryNotFoundException if userSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

public String getUserDisplayName(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Returns the unique ID for a userSecurityName. This method is called when

 * creating a credential for a user.

 *

 * @parameter userSecurityName the name of the user.

 * @return the unique ID of the user. The unique ID for an user is

 * the stringified form of some unique, registry-specific, data

 * that serves to represent the user. For example, for the UNIX

 * user registry, the unique ID for a user can be the UID.

 * @exception EntryNotFoundException if userSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUniqueUserId(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Returns the name for a user given its unique ID.

 *

 * @parameter uniqueUserId the unique ID of the user.

 * @return the userSecurityName of the user.

 * @exception EntryNotFoundException if the uniqueUserID does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

170 IBM® WebSphere® Application Server, Version 5.0.2: Security

* @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUserSecurityName(String uniqueUserId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Determines if the userSecurityName exists in the registry

 *

 * @parameter userSecurityName the name of the user

 * @return true if the user is valid. false otherwise

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public boolean isValidUser(String userSecurityName)

 throws CustomRegistryException,

 RemoteException;

 /**

 * Gets a list of groups that match a pattern in the registy.

 * The maximum number of groups returned is defined by the limit

 * argument.

 * This method is called by GUI(administrative console) and

 * scripting (command line) to

 * make available the groups in the registry for adding them (groups) to

 * roles.

 *

 * @parameter pattern the pattern to match. (For e.g., a* will match all

 * groupSecurityNames starting with a)

 * @parameter limit the maximum number of groups to return.

 * This is very useful in situations where there are thousands of

 * groups in the registry and getting all of them at once is not

 * practical. A value of 0 implies get all the groups and hence

 * must be used with care.

 * @return a Result object that contains the list of groups

 * requested and a flag to indicate if more groups exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public Result getGroups(String pattern, int limit)

 throws CustomRegistryException,

 RemoteException;

 /**

 * Returns the display name for the group specified by groupSecurityName.

 *

 * This method may be called only when the group information displayed

 * (for example, GUI) and not used in the actual authentication or

 * authorization purposes. If there are no display names in the registry

 * return null or empty string.

 *

 * @parameter groupSecurityName the name of the group.

 * @return the display name for the group. The display name

 * is a registry-specific string that represents a descriptive, not

 * necessarily unique, name for a group. If a display name does

 * not exist return null or empty string.

 * @exception EntryNotFoundException if groupSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getGroupDisplayName(String groupSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

Chapter 10. Managing security 171

RemoteException;

 /**

 * Returns the unique ID for a group.

 * @parameter groupSecurityName the name of the group.

 * @return the unique ID of the group. The unique ID for

 * a group is the stringified form of some unique,

 * registry-specific, data that serves to represent the group.

 * For example, for the UNIX user registry, the unique IDd could

 * be the GID.

 * @exception EntryNotFoundException if groupSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUniqueGroupId(String groupSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Returns the unique IDs for all the groups that contain the unique ID of

 * a user.

 * Called during creation of a user’s credential.

 *

 * @parameter uniqueUserId the unique ID of the user.

 * @return a list of all the group unique IDs that the unique user ID

 * belongs to. The unique ID for an entry is the stringified

 * form of some unique, registry-specific, data that serves

 * to represent the entry. For example, for the

 * UNIX user registry, the unique ID for a group could be the GID

 * and the unique ID for the user could be the UID.

 * @exception EntryNotFoundException if unique user ID does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public List getUniqueGroupIds(String uniqueUserId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Returns the name for a group given its unique ID.

 *

 * @parameter uniqueGroupId the unique ID of the group.

 * @return the name of the group.

 * @exception EntryNotFoundException if the uniqueGroupId does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getGroupSecurityName(String uniqueGroupId)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Determines if the groupSecurityName exists in the registry

 *

 * @parameter groupSecurityName the name of the group

 * @return true if the groups exists, false otherwise

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

172 IBM® WebSphere® Application Server, Version 5.0.2: Security

**/

 public boolean isValidGroup(String groupSecurityName)

 throws CustomRegistryException,

 RemoteException;

 /**

 * Returns the securityNames of all the groups that contain the user

 *

 * This method is called by GUI(administrative console) and Scripting(Command Line)

 * to verify the user entered for RunAsRole mapping belongs to that role

 * in the roles to user mapping. Initially, the check is done to see if

 * the role contains the user. If the role does not contain the user

 * explicitly, this method is called to get the groups that this user

 * belongs to so that checks are made on the groups that the role contains.

 *

 * @parameter userSecurityName the name of the user

 * @return a List of all the group securityNames that the user

 * belongs to.

 * @exception EntryNotFoundException if user does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public List getGroupsForUser(String userSecurityName)

 throws EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * Gets a list of users in a group.

 *

 * The maximum number of users returned is defined by the limit

 * argument.

 *

 * This method is being used by the WebSphere Application Server Enterprise

 * Process Choreographer (Enterprise) when staff assignments are

 * modeled using groups.

 *

 * In rare situations if you are working with a registry where getting all

 * the users from any of your groups is not practical (for example if there

 * are a large number of users) you can throw the NotImplementedException

 * for that particular group(s). Make sure that if the WebSphere Application Server

 * Process Choreographer is installed (or if installed later) that the staff assignments

 * are not modeled using these particular groups. If there is no concern about

 * returning the users from groups in the registry it is recommended that

 * this method be implemented without throwing the NotImplemented exception.

 *

 * @parameter groupSecurityName the name of the group

 * @parameter limit the maximum number of users to return.

 * This is very useful in situations where there are lot of

 * users in the registry and getting all of them at once is not

 * practical. A value of 0 implies get all the users and

 * must be used with care.

 * @return a Result object that contains the list of users

 * requested and a flag to indicate if more users exist.

 * @deprecated This method will be deprecated in future.

 * @exception NotImplementedException throw this exception in rare situations

 * if it is not practical to get this information for any of the

 * groups from the registry.

 * @exception EntryNotFoundException if the group does not exist in

 * the registry

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

Chapter 10. Managing security 173

EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

 /**

 * This method is implemented internally by the WebSphere code in this

 * release. This method is not called for the custom registry implementations

 * for this release. Return null in the implementation.

 *

 * Note that since this method is not called one can also return the

 * NotImplementedException as the previous documentation says.

 *

 **/

 public com.ibm.websphere.security.cred.WSCredential

 createCredential(String userSecurityName) // (line split for publication)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException,

 RemoteException;

}

FileRegistrySample.java file for WebSphere Application Server

Version 5 and Version 5.0.1

If you are using WebSphere Application Server Version 5.0.2 or later, see

“FileRegistrySample.java file for WebSphere Application Server Version 5.0.2” on

page 190. The user and group information required by this sample is contained in

the “users.props file” on page 207 and “groups.props file” on page 208 files.

The contents of the FileRegistrySample.java file:

package com.ibm.websphere.security;

//

// 5639-D57, 5630-A36, 5630-A37, 5724-D18

// (C) COPYRIGHT International Business Machines Corp. 1997, 2002

// All Rights Reserved * Licensed Materials - Property of IBM

//

//--

// This program may be used, executed, copied, modified and distributed

// without royalty for the purpose of developing, using, marketing, or

// distributing.

//--

//

// This sample is for the Custom User Registry feature in WebSphere Application Server

//--

// The main purpose of this sample is to demonstrate the use of the

// Custom Registry feature available in the product. This sample is a very

// simple File based registry sample where the users and the groups information

// is listed in files (users.props and groups.props). As such simplicity and

// not the performance was a major factor behind this. This sample should be

// used only to get familiarized with this feature. An actual implementation

// of a realistic registry should consider various factors like performance,

// scalability etc.

//--

import java.util.*;

import java.io.*;

import java.security.cert.X509Certificate;

import com.ibm.websphere.security.*;

public class FileRegistrySample implements UserRegistry {

 private static String USERFILENAME = null;

 private static String GROUPFILENAME = null;

174 IBM® WebSphere® Application Server, Version 5.0.2: Security

// Default Constructor

 public FileRegistrySample() throws java.rmi.RemoteException {

 }

 /**

 * Initializes the registry. This method is called when creating the

 * registry.

 *

 * @param props the registry-specific properties with which to

 * initialize the custom registry

 * @exception CustomRegistryException

 * if there is any registry specific problem

 **/

 public void initialize(java.util.Properties props)

 throws CustomRegistryException {

 try {

 /* try getting the USERFILENAME and the GROUPFILENAME from

 * properties that are passed in (i.e from GUI).

 * These values should be set in the security center GUI in the

 * Special custom settings in the custom user registry section of

 * the Authentication panel.

 * For example:

 * usersFile c:/temp/users.props

 * groupsFile c:/temp/groups.props

 */

 if (props != null) {

 USERFILENAME = props.getProperty("usersFile");

 GROUPFILENAME = props.getProperty("groupsFile");

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage());

 }

 if (USERFILENAME == null || GROUPFILENAME == null) {

 throw new CustomRegistryException("users/groups information missing");

 }

 }

 /**

 * Checks the password of the user. This method is called to authenticate a

 * user when the user’s name and password are given.

 *

 * @parameter userSecurityName the name of user

 * @parameter password the password of the user

 * @return a valid <code>userSecurityName. Normally this is

 * the name of same user whose password was checked but if the

 * implementation wants to return any other valid

 * <code>userSecurityName in the registry it can do so

 * @exception CheckPasswordFailedException if <code>userSecurityName/

 * <code>password combination does not exist in the registry

 * @exception CustomRegistryException if there is any registry specific

 * problem

 **/

 public String checkPassword(String userSecurityName, String passwd)

 throws PasswordCheckFailedException,

 CustomRegistryException {

 String s,userName = null;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":",index+1);

Chapter 10. Managing security 175

// check if the userSecurityName:passwd combination exists

 if ((s.substring(0,index)).equals(userSecurityName) &&

 s.substring(index+1,index1).equals(passwd)) {

 // Authentication successful, return the userId.

 userName = userSecurityName;

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage());

 } finally {

 fileClose(in);

 }

 if (userName == null) {

 throw new PasswordCheckFailedException(userSecurityName);

 }

 return userName;

 }

 /**

 * Maps a Certificate (of X509 format) to a valid user in the Registry.

 * This is used to map the name in the certificate supplied by a browser

 * to a valid <code>passworduserSecurityName in the registry

 *

 * @parameter cert the X509 certificate chain

 * @return the mapped name of the user <code>userSecurityName

 * @exception CertificateMapNotSupportedException if the particular

 * certificate is not supported.

 * @exception CertificateMapFailedException if the mapping of the

 * certificate fails.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 **/

 public String mapCertificate(X509Certificate[] cert)

 throws CertificateMapNotSupportedException,

 CertificateMapFailedException,

 CustomRegistryException {

 String name=null;

 X509Certificate cert1 = cert[0];

 try {

 // map the SubjectDN in the certificate to a userID.

 name = cert1.getSubjectDN().getName();

 } catch(Exception ex) {

 throw new CertificateMapNotSupportedException(ex.getMessage());

 }

 if(!isValidUser(name)) {

 throw new CertificateMapFailedException(name);

 }

 return name;

 }

 /**

 * Returns the realm of the registry.

 *

 * @return the realm. The realm is a registry-specific string indicating

 * the realm or domain for which this registry

 * applies. For example, for OS400 or AIX this would be the

 * host name of the system whose user registry this object

 * represents.

 * If null is returned by this method realm defaults to the

 * value of "customRealm".

 * @exception CustomRegistryException if there is any registry specific

 * problem

 **/

176 IBM® WebSphere® Application Server, Version 5.0.2: Security

public String getRealm()

 throws CustomRegistryException {

 String name = "customRealm";

 return name;

 }

 /**

 * Gets a list of users that match a pattern in the registy.

 * The maximum number of users returned is defined by the limit

 * argument.

 * This method is called by GUI (administrative console)

 * and Scripting (command line) to

 * make available the users in the registry for adding them (users) to roles.

 *

 * @parameter pattern the pattern to match. (For e.g., a* will match all

 * userSecurityNames starting with a)

 * @parameter limit the maximum number of users that should be returned.

 * This is very useful in situations where there are thousands of

 * users in the registry and getting all of them at once is not

 * practical. The default is 100. A value of 0 implies get all the

 * users and hence must be used with care.

 * @return a Result object that contains the list of users

 * requested and a flag to indicate if more users exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public Result getUsers(String pattern, int limit)

 throws CustomRegistryException {

 String s;

 BufferedReader in = null;

 List allUsers = new ArrayList();

 Result result = new Result();

 int count = 0;

 int newLimit = limit+1;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 String user = s.substring(0,index);

 if (match(user,pattern)) {

 allUsers.add(user);

 if (limit !=0 && ++count == newLimit) {

 allUsers.remove(user);

 result.setHasMore();

 break;

 }

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage());

 } finally {

 fileClose(in);

 }

 result.setList(allUsers);

 return result;

 } /**

 * Returns the display name for the user specified by userSecurityName.

 *

 * This method may be called only when the user information is displayed

 * (i.e information purposes only, for example, in GUI) and hence not used

 * in the actual authentication or authorization purposes. If there are no

 * display names in the registry return null or empty string.

 *

 * In WebSphere Application Server Version 4.0 custom registry,

Chapter 10. Managing security 177

* if you had a display name

 * for the user and if it was different from the security name,

 * the display name

 * was returned for the EJB methods getCallerPrincipal()

 * and the servlet methods

 * getUserPrincipal() and getRemoteUser().

 * In WebSphere Application Server Version 5 for the same methods the

 * security name will be returned by default. This is the recommended way

 * as the display name is not unique and might create security holes.

 * However, for backward compatability if one needs the display name to

 * be returned set the property WAS_UseDisplayName to true.

 *

 * See the Infocenter documentation for more information.

 *

 * @parameter userSecurityName the name of the user.

 * @return the display name for the user. The display name

 * is a registry-specific string that represents a descriptive, not

 * necessarily unique, name for a user. If a display name does

 * not exist return null or empty string.

 * @exception EntryNotFoundException if userSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 **/

 public String getUserDisplayName(String userSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,displayName = null;

 BufferedReader in = null;

 if(!isValidUser(userSecurityName)) {

 EntryNotFoundException nsee =

 new EntryNotFoundException(userSecurityName);

 // (preceding line split for publication)

 throw nsee;

 }

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.lastIndexOf(":");

 if ((s.substring(0,index)).equals(userSecurityName)) {

 displayName = s.substring(index1+1);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage());

 } finally {

 fileClose(in);

 }

 return displayName;

 }

 /**

 * Returns the unique ID for a userSecurityName. This method is called when

 * creating a credential for a user.

 *

 * @parameter userSecurityName the name of the user.

 * @return the unique ID of the user. The unique ID for an user is

 * the stringified form of some unique, registry-specific, data

 * that serves to represent the user. For example, for the UNIX

 * user registry, the unique ID for a user can be the UID.

178 IBM® WebSphere® Application Server, Version 5.0.2: Security

* @exception EntryNotFoundException if userSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 **/

 public String getUniqueUserId(String userSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,uniqueUsrId = null;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 if ((s.substring(0,index)).equals(userSecurityName)) {

 int index2 = s.indexOf(":", index1+1);

 uniqueUsrId = s.substring(index1+1,index2);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage());

 } finally {

 fileClose(in);

 }

 if (uniqueUsrId == null) {

 EntryNotFoundException nsee =

 new EntryNotFoundException(userSecurityName);

 throw nsee;

 }

 return uniqueUsrId;

 }

 /**

 * Returns the name for a user given its uniqueId.

 *

 * @parameter uniqueUserId the unique ID of the user.

 * @return the userSecurityName of the user.

 * @exception EntryNotFoundException if the uniqueUserId does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public String getUserSecurityName(String uniqueUserId)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,usrSecName = null;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 int index2 = s.indexOf(":", index1+1);

 if ((s.substring(index1+1,index2)).equals(uniqueUserId)) {

 usrSecName = s.substring(0,index);

 break;

 }

 }

 }

 } catch (Exception ex) {

Chapter 10. Managing security 179

throw new CustomRegistryException(ex.getMessage());

 } finally {

 fileClose(in);

 }

 if (usrSecName == null) {

 EntryNotFoundException ex =

 new EntryNotFoundException(uniqueUserId);

 throw ex;

 }

 return usrSecName;

 }

 /**

 * Determines if the <code>userSecurityName exists in the registry

 *

 * @parameter userSecurityName the name of the user

 * @return true if the user is valid. false otherwise

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public boolean isValidUser(String userSecurityName)

 throws CustomRegistryException {

 String s;

 boolean isValid = false;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 if ((s.substring(0,index)).equals(userSecurityName)) {

 isValid=true;

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage());

 } finally {

 fileClose(in);

 }

 return isValid;

 }

 /**

 * Gets a list of groups that match a <code>pattern in the registy.

 * The maximum number of groups returned is defined by the <code>limit

 * argument.

 * This method is called by GUI(adminConsole) and Scripting(Command Line) to

 * make available the groups in the registry for adding them (groups) to

 * roles.

 *

 * @parameter pattern the pattern to match. (For e.g., a* will match all

 * groupSecurityNames starting with a)

 * @param limit the maximum number of groups that should be returned.

 * This is very useful in situations where there are thousands of

 * groups in the registry and getting all of them at once is not

 * practical. The default is 100. A value of 0 implies get all the

 * groups and must be used with care.

 * @return a <code>Result object that contains the list of groups

 * requested and a flag to indicate if more groups exist.

 * @exception CustomRegistryException if there is any registry-specific

180 IBM® WebSphere® Application Server, Version 5.0.2: Security

* problem

 **/

 public Result getGroups(String pattern, int limit)

 throws CustomRegistryException {

 String s;

 BufferedReader in = null;

 List allGroups = new ArrayList();

 Result result = new Result();

 int count = 0;

 int newLimit = limit+1;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 String group = s.substring(0,index);

 if (match(group,pattern)) {

 allGroups.add(group);

 if (limit !=0 && ++count == newLimit) {

 allGroups.remove(group);

 result.setHasMore();

 break;

 }

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage());

 } finally {

 fileClose(in);

 }

 result.setList(allGroups);

 return result;

 }

 /**

 * Returns the display name for the group specified by groupSecurityName.

 * For this version of WebSphere Application Server the only usage

 * of this method is by the

 * clients (GUI and Scripting) to present a descriptive name of the user

 * if it exists.

 *

 * @parameter groupSecurityName the name of the group.

 * @return the display name for the group. The display name

 * is a registry-specific string that represents a descriptive, not

 * necessarily unique, name for a group. If a display name does

 * not exist return null or empty string.

 * @exception EntryNotFoundException if groupSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public String getGroupDisplayName(String groupSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,displayName = null;

 BufferedReader in = null;

 if(!isValidGroup(groupSecurityName)) {

 EntryNotFoundException nsee =

 new EntryNotFoundException(groupSecurityName);

 // (preceding line split for publication)

 throw nsee;

 }

 try {

 in = fileOpen(GROUPFILENAME);

Chapter 10. Managing security 181

while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.lastIndexOf(":");

 if ((s.substring(0,index)).equals(groupSecurityName)) {

 displayName = s.substring(index1+1);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage());

 } finally {

 fileClose(in);

 }

 return displayName;

 }

 /**

 * Returns the Unique ID for a group.

 * @parameter groupSecurityName the name of the group.

 * @return the unique ID of the group. The unique ID for

 * a group is the stringified form of some unique,

 * registry-specific, data that serves to represent the group.

 * For example, for the UNIX user registry, the unique ID could

 * be the GID.

 * @exception EntryNotFoundException if groupSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUniqueGroupId(String groupSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,uniqueGrpId = null;

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 if ((s.substring(0,index)).equals(groupSecurityName)) {

 uniqueGrpId = s.substring(index+1,index1);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage());

 } finally {

 fileClose(in);

 }

 if (uniqueGrpId == null) {

 EntryNotFoundException nsee = new EntryNotFoundException(groupSecurityName);

 throw nsee;

 }

 return uniqueGrpId;

 }

 /**

 * Returns the Unique ids for all the groups that contain the UniqueId of

 * a user. Called during creation of a user’s credential.

182 IBM® WebSphere® Application Server, Version 5.0.2: Security

*

 * @parameter uniqueUserId the unique ID of the user.

 * @return a list of all the group unique IDs in which the uniqueUserId

 * belongs. The unique ID for an entry is the stringified

 * form of some unique, registry-specific, data that serves

 * to represent the entry. For example, for the

 * UNIXx user registry, the unique ID for a group could be the GID

 * and the unique ID for the user could be the UID.

 * @exception EntryNotFoundException if uniqueUserId does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public List getUniqueGroupIds(String uniqueUserId)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,uniqueGrpId = null;

 BufferedReader in = null;

 List uniqueGrpIds=new ArrayList();

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 int index2 = s.indexOf(":", index1+1);

 if ((s.substring(index1+1,index2)).equals(uniqueUserId)) {

 int lastIndex = s.lastIndexOf(":");

 String subs = s.substring(index2+1,lastIndex);

 StringTokenizer st1 = new StringTokenizer(subs, ",");

 while (st1.hasMoreTokens())

 uniqueGrpIds.add(st1.nextToken());

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage());

 } finally {

 fileClose(in);

 }

 return uniqueGrpIds;

 }

 /**

 * Returns the name for a group given its uniqueId.

 *

 * @ uniqueGroupId the unique ID of the group.

 * @return the name of the group.

 * @exception EntryNotFoundException if the uniqueGroupId does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public String getGroupSecurityName(String uniqueGroupId)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,grpSecName = null;

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 if ((s.substring(index+1,index1)).equals(uniqueGroupId)) {

Chapter 10. Managing security 183

grpSecName = s.substring(0,index);

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage());

 } finally {

 fileClose(in);

 }

 if (grpSecName == null) {

 EntryNotFoundException ex =

 new EntryNotFoundException(uniqueGroupId);

 throw ex;

 }

 return grpSecName;

 }

 /**

 * Determines if the <code>groupSecurityName exists in the registry

 *

 * @parameter groupSecurityName the name of the group

 * @return true if the groups exists, false otherwise

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public boolean isValidGroup(String groupSecurityName)

 throws CustomRegistryException {

 String s;

 boolean isValid = false;

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 if ((s.substring(0,index)).equals(groupSecurityName)) {

 isValid=true;

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage());

 } finally {

 fileClose(in);

 }

 return isValid;

 }

 /**

 * Returns the securityNames of all the groups that contain the user

 *

 * This method is called by GUI(adminConsole) and Scripting(Command Line)

 * to verify the user entered for RunAsRole mapping belongs to that role

 * in the roles to user mapping. Initially, the check is done to see if

 * the role contains the user. If the role does not contain the user

 * explicitly, this method is called to get the groups in which the user

 * belongs so that check can be made on the groups that the role contains.

 *

 * @parameter userSecurityName the name of the user

 * @return a list of all the group securityNames in which the user

 * belongs.

 * @exception EntryNotFoundException if user does not exist.

184 IBM® WebSphere® Application Server, Version 5.0.2: Security

* @exception CustomRegistryException if there is any registry-specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public List getGroupsForUser(String userName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s;

 List grpsForUser = new ArrayList();

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 StringTokenizer st = new StringTokenizer(s, ":");

 for (int i=0; i<2; i++)

 st.nextToken();

 String subs = st.nextToken();

 StringTokenizer st1 = new StringTokenizer(subs, ",");

 while (st1.hasMoreTokens()) {

 if((st1.nextToken()).equals(userName)) {

 int index = s.indexOf(":");

 grpsForUser.add(s.substring(0,index));

 }

 }

 }

 }

 } catch (Exception ex) {

 if (!isValidUser(userName)) {

 throw new EntryNotFoundException(userName);

 }

 throw new CustomRegistryException(ex.getMessage());

 } finally {

 fileClose(in);

 }

 return grpsForUser;

 }

 /**

 * * Gets a list of users in a group.

 *

 * The maximum number of users returned is defined by the limit

 * argument.

 *

 * This method is being used by the WebSphere Application Server Enterprise

 * process choreographer when staff assignments are

 * modeled using groups.

 *

 * In rare situations, if you are working with a registry where getting all

 * the users from any of your groups is not practical (for example if there

 * are a large number of users) you can throw the exception, NotImplementedException

 * for that particualar groups. Make sure that if the process choreographer

 * is installed (or if installed later) the staff assignments are not

 * modeled using these particular groups. If there is no concern about

 * returning the users from groups in the registry, it is recommended that

 * this method be implemented without throwing the NotImplemented exception.

 *

 * @parameter groupSecurityName the name of the group

 * @parameter limit the maximum number of users that should be returned.

 * This is very useful in situations where there are lot of

 * users in the registry and getting all of them at once is not

 * practical. A value of 0 implies get all the users and hence

 * must be used with care.

 * @return a Result object that contains the list of users

 * requested and a flag to indicate if more users exist.

 * @deprecated This method will be deprecated in future.

Chapter 10. Managing security 185

* @exception NotImplementedException throw this exception in rare situations

 * if it is not pratical to get this information for any of the

 * group(s) from the registry.

 * @exception EntryNotFoundException if the group does not exist in

 * the registry

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

 EntryNotFoundException,

 CustomRegistryException {

 String s, user;

 BufferedReader in = null;

 List usrsForGroup = new ArrayList();

 int count = 0;

 int newLimit = limit+1;

 Result result = new Result();

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 if ((s.substring(0,index)).equals(groupSecurityName))

 {

 StringTokenizer st = new StringTokenizer(s, ":");

 for (int i=0; i<2; i++)

 st.nextToken();

 String subs = st.nextToken();

 StringTokenizer st1 = new StringTokenizer(subs, ",");

 while (st1.hasMoreTokens()) {

 user = st1.nextToken();

 usrsForGroup.add(user);

 if (limit !=0 && ++count == newLimit) {

 usrsForGroup.remove(user);

 result.setHasMore();

 break;

 }

 }

 }

 }

 }

 } catch (Exception ex) {

 if (!isValidGroup(groupSecurityName)) {

 throw new EntryNotFoundException(groupSecurityName);

 }

 throw new CustomRegistryException(ex.getMessage());

 } finally {

 fileClose(in);

 }

 result.setList(usrsForGroup);

 return result;

 }

 /**

 * This method is implemented internally by the product code in this

 * release. This method is not called for the custom registry implementations

 * for this release. Returns null in the implementation.

 *

 **/

 public com.ibm.websphere.security.cred.WSCredential

 createCredential(String userSecurityName) // (preceding line split for publication)

 throws CustomRegistryException,

 NotImplementedException,

 EntryNotFoundException {

186 IBM® WebSphere® Application Server, Version 5.0.2: Security

// This method is not called.

 return null;

 }

 // private methods

 private BufferedReader fileOpen(String fileName)

 throws FileNotFoundException {

 try {

 return new BufferedReader(new FileReader(fileName));

 } catch(FileNotFoundException e) {

 throw e;

 }

 }

 private void fileClose(BufferedReader in) {

 try {

 if (in != null) in.close();

 } catch(Exception e) {

 System.out.println("Error closing file" + e);

 }

 }

 private boolean match(String name, String pattern) {

 RegExpSample regexp = new RegExpSample(pattern);

 boolean matches = false;

 if(regexp.match(name))

 matches = true;

 return matches;

 }

}

//--

// The program provides the regular expression implementation used in the

// Sample for the custom user registry (FileRegistrySample). The pattern

// matching in the sample uses this program to search for the pattern (for

// users and groups).

//--

class RegExpSample

{

 private boolean match(String s, int i, int j, int k)

 {

 for(; k < expr.length; k++)

label0:

 {

 Object obj = expr[k];

 if(obj == STAR)

 {

 if(++k >= expr.length)

 return true;

 if(expr[k] instanceof String)

 {

 String s1 = (String)expr[k++];

 int l = s1.length();

 for(; (i = s.indexOf(s1, i)) >= 0; i++)

 if(match(s, i + l, j, k))

 return true;

 return false;

 }

 for(; i < j; i++)

 if(match(s, i, j, k))

 return true;

 return false;

Chapter 10. Managing security 187

}

 if(obj == ANY)

 {

 if(++i > j)

 return false;

 break label0;

 }

 if(obj instanceof char[][])

 {

 if(i >= j)

 return false;

 char c = s.charAt(i++);

 char ac[][] = (char[][])obj;

 if(ac[0] == NOT)

 {

 for(int j1 = 1; j1 < ac.length; j1++)

 if(ac[j1][0] <= c && c <= ac[j1][1])

 return false;

 break label0;

 }

 for(int k1 = 0; k1 < ac.length; k1++)

 if(ac[k1][0] <= c && c <= ac[k1][1])

 break label0;

 return false;

 }

 if(obj instanceof String)

 {

 String s2 = (String)obj;

 int i1 = s2.length();

 if(!s.regionMatches(i, s2, 0, i1))

 return false;

 i += i1;

 }

 }

 return i == j;

 }

 public boolean match(String s)

 {

 return match(s, 0, s.length(), 0);

 }

 public boolean match(String s, int i, int j)

 {

 return match(s, i, j, 0);

 }

 public RegExpSample(String s)

 {

 Vector vector = new Vector();

 int i = s.length();

 StringBuffer stringbuffer = null;

 Object obj = null;

 for(int j = 0; j < i; j++)

 {

 char c = s.charAt(j);

 switch(c)

 {

 case 63: /* ’?’ */

 obj = ANY;

 break;

 case 42: /* ’*’ */

 obj = STAR;

188 IBM® WebSphere® Application Server, Version 5.0.2: Security

break;

 case 91: /* ’[’ */

 int k = ++j;

 Vector vector1 = new Vector();

 for(; j < i; j++)

 {

 c = s.charAt(j);

 if(j == k && c == ’^’)

 {

 vector1.addElement(NOT);

 continue;

 }

 if(c == ’\\’)

 {

 if(j + 1 < i)

 c = s.charAt(++j);

 }

 else

 if(c == ’]’)

 break;

 char c1 = c;

 if(j + 2 < i && s.charAt(j + 1) == ’-’)

 c1 = s.charAt(j += 2);

 char ac1[] = {

 c, c1

 };

 vector1.addElement(ac1);

 }

 char ac[][] = new char[vector1.size()][];

 vector1.copyInto(ac);

 obj = ac;

 break;

 case 92: /* ’\\’ */

 if(j + 1 < i)

 c = s.charAt(++j);

 break;

 }

 if(obj != null)

 {

 if(stringbuffer != null)

 {

 vector.addElement(stringbuffer.toString());

 stringbuffer = null;

 }

 vector.addElement(obj);

 obj = null;

 }

 else

 {

 if(stringbuffer == null)

 stringbuffer = new StringBuffer();

 stringbuffer.append(c);

 }

 }

 if(stringbuffer != null)

 vector.addElement(stringbuffer.toString());

 expr = new Object[vector.size()];

 vector.copyInto(expr);

 }

 static final char NOT[] = new char[2];

 static final Integer ANY = new Integer(0);

Chapter 10. Managing security 189

static final Integer STAR = new Integer(1);

 Object expr[];

}

FileRegistrySample.java file for WebSphere Application Server

Version 5.0.2

The user and group information required by this sample is contained in the

“users.props file” on page 207 and “groups.props file” on page 208 files.

The contents of the FileRegistrySample.java file:

//

// 5639-D57, 5630-A36, 5630-A37, 5724-D18

// (C) COPYRIGHT International Business Machines Corp. 1997, 2003

// All Rights Reserved * Licensed Materials - Property of IBM

//

//--

// This program may be used, executed, copied, modified and distributed

// without royalty for the purpose of developing, using, marketing, or

// distributing.

//--

//

// This sample is for the Custom User Registry feature in WebSphere Application Server

import java.util.*;

import java.io.*;

import java.security.cert.X509Certificate;

import com.ibm.websphere.security.*;

/**

 * The main purpose of this sample is to demonstrate the use of the

 * Custom Registry feature available in WebSphere Application Server. This

 * sample is a file-based registry sample where the users and the groups

 * information is listed in files (users.props and groups.props). As such

 * simplicity and not the performance was a major factor behind this. This sample

 * should be used only to get familiarized with this feature. An actual implementation

 * of a realistic registry should consider various factors like performance,

 * scalability, thread safety, and so on

 **/

public class FileRegistrySample implements UserRegistry {

 private static String USERFILENAME = null;

 private static String GROUPFILENAME = null;

 /** Default Constructor **/

 public FileRegistrySample() throws java.rmi.RemoteException {

 }

 /**

 * Initializes the registry. This method is called when creating the

 * registry.

 *

 * @param props the registry-specific properties with which to

 * initialize the custom registry

 * @exception CustomRegistryException

 * if there is any registry specific problem

 **/

 public void initialize(java.util.Properties props)

 throws CustomRegistryException {

 try { /* try getting the USERFILENAME and the GROUPFILENAME from

 * properties that are passed in (i.e from GUI).

 * These values should be set in the security center GUI in the

 * Special Custom Settings in the Custom User Registry section of

 * the Authentication panel.

 * For example:

 * usersFile c:/temp/users.props

190 IBM® WebSphere® Application Server, Version 5.0.2: Security

* groupsFile c:/temp/groups.props

 */

 if (props != null) {

 USERFILENAME = props.getProperty("usersFile");

 GROUPFILENAME = props.getProperty("groupsFile");

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 }

 if (USERFILENAME == null || GROUPFILENAME == null) {

 throw new CustomRegistryException("users/groups information missing");

 }

 }

 /**

 * Checks the password of the user. This method is called to authenticate a

 * user when the user’s name and password are given.

 *

 * @param userSecurityName the name of user

 * @param password the password of the user

 * @return a valid <code>userSecurityName</code>. Normally this is

 * the name of same user whose password was checked but if the

 * implementation wants to return any other valid

 * <code>userSecurityName</code> in the registry it can do so

 * @exception CheckPasswordFailedException if <code>userSecurityName</code>/

 * <code>password</code> combination does not exist in the registry

 * @exception CustomRegistryException if there is any registry specific

 * problem

 **/

 public String checkPassword(String userSecurityName, String passwd)

 throws PasswordCheckFailedException,

 CustomRegistryException {

 String s,userName = null;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":",index+1);

 // check if the userSecurityName:passwd combination exists

 if ((s.substring(0,index)).equals(userSecurityName) &&

 s.substring(index+1,index1).equals(passwd)) {

 // Authentication successful, return the userId.

 userName = userSecurityName;

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 if (userName == null) {

 throw new PasswordCheckFailedException

 ("Password check failed for user: " + userSecurityName);

 // (preceding line split for publication)

 }

 return userName;

Chapter 10. Managing security 191

}

 /**

 * Maps a X.509 format certificate to a valid user in the registry.

 * This is used to map the name in the certificate supplied by a browser

 * to a valid <code>userSecurityName</code> in the registry

 *

 * @param cert the X509 certificate chain

 * @return The mapped name of the user <code>userSecurityName</code>

 * @exception CertificateMapNotSupportedException if the particular

 * certificate is not supported.

 * @exception CertificateMapFailedException if the mapping of the

 * certificate fails.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public String mapCertificate(X509Certificate[] cert)

 throws CertificateMapNotSupportedException,

 CertificateMapFailedException,

 CustomRegistryException {

 String name=null;

 X509Certificate cert1 = cert[0];

 try {

 // map the SubjectDN in the certificate to a userID.

 name = cert1.getSubjectDN().getName();

 } catch(Exception ex) {

 throw new CertificateMapNotSupportedException(ex.getMessage(),ex);

 }

 if(!isValidUser(name)) {

 throw new CertificateMapFailedException("user: " + name + " is not valid");

 }

 return name;

 }

 /**

 * Returns the realm of the registry.

 *

 * @return the realm. The realm is a registry-specific string indicating

 * the realm or domain

 * for which this registry applies. For example, for OS/400 or AIX

 * this would be the host name of the system whose user registry

 * this object represents.

 * If null is returned by this method, realm defaults to the

 * value of "customRealm".

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public String getRealm()

 throws CustomRegistryException {

 String name = "customRealm";

 return name;

 }

 /**

 * Gets a list of users that match a <code>pattern</code> in the registry.

 * The maximum number of users returned is defined by the <code>limit</code>

 * argument.

 * This method is called by GUI (administrative console) and scripting (command line) to

 * make the users in the registry available for adding them (users) to roles.

 *

 * @param pattern the pattern to match. (For e.g., a* will match all

 * userSecurityNames starting with a)

 * @param limit the maximum number of users that should be returned.

 * This is very useful in situations where there are thousands of

 * users in the registry and getting all of them at once is not

 * practical. The default is 100. A value of 0 implies get all the

 * users and hence must be used with care.

 * @return a <code>Result</code> object that contains the list of users

 * requested and a flag to indicate if more users exist.

192 IBM® WebSphere® Application Server, Version 5.0.2: Security

* @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public Result getUsers(String pattern, int limit)

 throws CustomRegistryException {

 String s;

 BufferedReader in = null;

 List allUsers = new ArrayList();

 Result result = new Result();

 int count = 0;

 int newLimit = limit+1;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 String user = s.substring(0,index);

 if (match(user,pattern)) {

 allUsers.add(user);

 if (limit !=0 && ++count == newLimit) {

 allUsers.remove(user);

 result.setHasMore();

 break;

 }

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 result.setList(allUsers);

 return result;

 }

 /**

 * Returns the display name for the user specified by userSecurityName.

 *

 * This method may be called only when the user information is displayed

 * (information purposes only, for example, in GUI) and hence not used

 * in the actual authentication or authorization purposes. If there are no

 * display names in the registry return null or empty string.

 *

 * In WebSphere Application Server 4.0 custom registry,

 * if you had a display name for the user and

 * if it was different from the security name, the display name was

 * returned for the EJB methods getCallerPrincipal() and the servlet methods

 * getUserPrincipal() and getRemoteUser().

 * In WebSphere Application Server Version 5, for the same methods,

 * the security name will be returned by

 * default. This is the recommended way as the display name is not unique

 * and might create security holes.

 * However, for backward compatability if one needs the display name to

 * be returned set the property WAS_UseDisplayName to true.

 *

 *See the Infocenter documentation for more information.

 *

 * @param userSecurityName the name of the user.

 * @return the display name for the user. The display name

 * is a registry-specific string that represents a descriptive, not

 * necessarily unique, name for a user. If a display name does

 * not exist return null or empty string.

 * @exception EntryNotFoundException if userSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

Chapter 10. Managing security 193

**/

 public String getUserDisplayName(String userSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,displayName = null;

 BufferedReader in = null;

 if(!isValidUser(userSecurityName)) {

 EntryNotFoundException nsee = new EntryNotFoundException

 ("user: " + userSecurityName + " is not valid");

 throw nsee;

 }

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.lastIndexOf(":");

 if ((s.substring(0,index)).equals(userSecurityName)) {

 displayName = s.substring(index1+1);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(), ex);

 } finally {

 fileClose(in);

 }

 return displayName;

 }

 /**

 * Returns the unique ID for a userSecurityName. This method is called when

 * creating a credential for a user.

 *

 * @param userSecurityName the name of the user.

 * @return the unique ID of the user. The unique ID for an user is

 * the stringified form of some unique, registry-specific, data

 * that serves to represent the user. For example, for the UNIX

 * user registry, the unique ID for a user can be the UID.

 * @exception EntryNotFoundException if userSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public String getUniqueUserId(String userSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,uniqueUsrId = null;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 if ((s.substring(0,index)).equals(userSecurityName)) {

 int index2 = s.indexOf(":", index1+1);

 uniqueUsrId = s.substring(index1+1,index2);

 break;

 }

194 IBM® WebSphere® Application Server, Version 5.0.2: Security

}

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 if (uniqueUsrId == null) {

 EntryNotFoundException nsee = new EntryNotFoundException

 ("Cannot obtain uniqueId for user: " + userSecurityName);

 // (the two preceding lines belong on one line - split for publication)

 throw nsee;

 }

 return uniqueUsrId;

 }

 /**

 * Returns the name for a user given its uniqueId.

 *

 * @param uniqueUserId the unique ID of the user.

 * @return The userSecurityName of the user.

 * @exception EntryNotFoundException if the unique user ID does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

public String getUserSecurityName(String uniqueUserId)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,usrSecName = null;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 int index2 = s.indexOf(":", index1+1);

 if ((s.substring(index1+1,index2)).equals(uniqueUserId)) {

 usrSecName = s.substring(0,index);

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(), ex);

 } finally {

 fileClose(in);

 }

 if (usrSecName == null) {

 EntryNotFoundException ex =

 new EntryNotFoundException("Cannot obtain the user

 securityName for " + uniqueUserId);

 throw ex; // (preceding line split for publication)

 }

 return usrSecName;

 }

 /**

 * Determines if the <code>userSecurityName</code>

 * exists in the registry

 *

 * @param userSecurityName the name of the user

 * @return true if the user is valid; otherwise false

Chapter 10. Managing security 195

* @exception CustomRegistryException if there is any registry-specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public boolean isValidUser(String userSecurityName)

 throws CustomRegistryException {

 String s;

 boolean isValid = false;

 BufferedReader in = null;

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 if ((s.substring(0,index)).equals(userSecurityName)) {

 isValid=true;

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(), ex);

 } finally {

 fileClose(in);

 }

 return isValid;

 }

 /**

 * Gets a list of groups that match a <code>pattern</code>

 * in the registy.

 * The maximum number of groups returned is defined by the

 * <code>limit</code>

 * argument.

 * This method is called by GUI (administrative console)

 * and scripting (command line) to

 * make available the groups in the registry for adding them (groups) to roles.

 *

 * @param pattern the pattern to match. (For e.g., a* will match all

 * groupSecurityNames starting with a)

 * @param limit the maximum number of groups that should be returned.

 * This is very useful in situations where there are thousands of

 * groups in the registry and getting all of them at once is not

 * practical. The default is 100. A value of 0 implies get all the

 * groups and hence must be used with care.

 * @return a Result object that contains the list of groups

 * requested and a flag to indicate if more groups exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public Result getGroups(String pattern, int limit)

 throws CustomRegistryException {

 String s;

 BufferedReader in = null;

 List allGroups = new ArrayList(); Result result = new Result();

 int count = 0;

 int newLimit = limit+1;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 String group = s.substring(0,index);

 if (match(group,pattern)) {

196 IBM® WebSphere® Application Server, Version 5.0.2: Security

allGroups.add(group);

 if (limit !=0 && ++count == newLimit) {

 allGroups.remove(group);

 result.setHasMore();

 break;

 }

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 result.setList(allGroups);

 return result;

 }

 /**

 * Returns the display name for the group specified by groupSecurityName.

 * For this version of WebSphereApplication Server, the only usage of this

 * method is by the clients (GUI and Scripting) to present a descriptive name

 * of the user if it exists.

 *

 * @param groupSecurityName the name of the group.

 * @return the display name for the group. The display name

 * is a registry-specific string that represents

 * a descriptive, not necessarily unique, name for

 * a group. If a display name does

 * not exist return null or empty string.

 * @exception EntryNotFoundException if groupSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public String getGroupDisplayName(String groupSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,displayName = null;

 BufferedReader in = null;

 if(!isValidGroup(groupSecurityName)) {

 EntryNotFoundException nsee = new EntryNotFoundException("group: "

 + groupSecurityName + " is not valid"); // (split for publication)

 throw nsee;

 }

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.lastIndexOf(":");

 if ((s.substring(0,index)).equals(groupSecurityName)) {

 displayName = s.substring(index1+1);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 return displayName;

Chapter 10. Managing security 197

}

 /**

 * Returns the Unique id for a group.

 * @param groupSecurityName the name of the group.

 * @return the unique ID of the group. The unique ID for

 * a group is the stringified form of some unique,

 * registry-specific, data that serves to represent the group.

 * For example, for the UNIX user registry,

 * the unique ID might be the GID.

 * @exception EntryNotFoundException if groupSecurityName does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public String getUniqueGroupId(String groupSecurityName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,uniqueGrpId = null;

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 if ((s.substring(0,index)).equals(groupSecurityName)) {

 uniqueGrpId = s.substring(index+1,index1);

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 if (uniqueGrpId == null) {

 EntryNotFoundException nsee = new EntryNotFoundException

 ("Cannot obtain the uniqueId for group: " + groupSecurityName);

 throw nsee;

 }

 return uniqueGrpId;

 }

 /**

 * Returns the Unique ids for all the groups that contain the UniqueId of

 * a user. Called during creation of a user’s credential.

 *

 * @param uniqueUserId the unique ID of the user.

 * @return a list of all the group unique IDs that the unique user ID

 * belongs to. The unique ID for an entry is the stringified

 * form of some unique, registry-specific, data that serves

 * to represent the entry. For example, for the

 * UNIX user registry, the unique ID for a group might be the GID

 * and the Unique ID for the user might be the UID.

 * @exception EntryNotFoundException if uniqueUserId does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public List getUniqueGroupIds(String uniqueUserId)

 throws CustomRegistryException,

 EntryNotFoundException {

198 IBM® WebSphere® Application Server, Version 5.0.2: Security

String s,uniqueGrpId = null;

 BufferedReader in = null;

 List uniqueGrpIds=new ArrayList();

 try {

 in = fileOpen(USERFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 int index2 = s.indexOf(":", index1+1);

 if ((s.substring(index1+1,index2)).equals(uniqueUserId)) {

 int lastIndex = s.lastIndexOf(":");

 String subs = s.substring(index2+1,lastIndex);

 StringTokenizer st1 = new StringTokenizer(subs, ",");

 while (st1.hasMoreTokens())

 uniqueGrpIds.add(st1.nextToken());

 break;

 }

 }

 }

 } catch(Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 return uniqueGrpIds;

 }

 /**

 * Returns the name for a group given its uniqueId.

 *

 * @param uniqueGroupId the unique ID of the group.

 * @return the name of the group.

 * @exception EntryNotFoundException if the uniqueGroupId does not exist.

 * @exception CustomRegistryException if there is any registry specific

 * problem

 **/

 public String getGroupSecurityName(String uniqueGroupId)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s,grpSecName = null;

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 int index1 = s.indexOf(":", index+1);

 if ((s.substring(index+1,index1)).equals(uniqueGroupId)) {

 grpSecName = s.substring(0,index);

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 if (grpSecName == null) {

 EntryNotFoundException ex =

 new EntryNotFoundException("Cannot obtain the group security name for: "

 + uniqueGroupId); // (split for publication)

Chapter 10. Managing security 199

throw ex;

 }

 return grpSecName;

 }

 /**

 * Determines if the <code>groupSecurityName</code> exists in the registry

 *

 * @param groupSecurityName the name of the group

 * @return true if the groups exists; otherwise false

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public boolean isValidGroup(String groupSecurityName)

 throws CustomRegistryException {

 String s;

 boolean isValid = false;

 BufferedReader in = null;

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 if ((s.substring(0,index)).equals(groupSecurityName)) {

 isValid=true;

 break;

 }

 }

 }

 } catch (Exception ex) {

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 return isValid;

 }

 /**

 * Returns the securityNames of all the groups that contain the user

 *

 * This method is called by GUI (administrative console)

 * and scripting (command line)

 * to verify the user entered for RunAsRole mapping belongs to that role

 * in the roles to user mapping. Initially, the check is done to see if

 * the role contains the user. If the role does not contain the user

 * explicitly, this method is called to get the groups that this user

 * belongs to so that check can be made on the groups that the role contains.

 *

 * @param userSecurityName the name of the user

 * @return a list of all the group securityNames that the user

 * belongs to.

 * @exception EntryNotFoundException if user does not exist.

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 * @exception RemoteException as this extends java.rmi.Remote

 **/

 public List getGroupsForUser(String userName)

 throws CustomRegistryException,

 EntryNotFoundException {

 String s;

 List grpsForUser = new ArrayList();

 BufferedReader in = null;

 try {

200 IBM® WebSphere® Application Server, Version 5.0.2: Security

in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 StringTokenizer st = new StringTokenizer(s, ":");

 for (int i=0; i<2; i++)

 st.nextToken();

 String subs = st.nextToken();

 StringTokenizer st1 = new StringTokenizer(subs, ",");

 while (st1.hasMoreTokens()) {

 if((st1.nextToken()).equals(userName)) {

 int index = s.indexOf(":");

 grpsForUser.add(s.substring(0,index));

 }

 }

 }

 }

 } catch (Exception ex) {

 if (!isValidUser(userName)) {

 throw new EntryNotFoundException("user: " + userName + " is not valid");

 }

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 return grpsForUser;

 }

 /**

 * Gets a list of users in a group.

 *

 * The maximum number of users returned is defined by the limit

 * argument.

 *

 * This method is being used by the WebSphere Application Server Enterprise

 * Process Choreographer (Enterprise) when staff assignments are

 * modeled using groups.

 *

 * In rare situations if you are working with a registry where getting all

 * the users from any of your groups is not practical (for example if there

 * are a large number of users) you can throw the NotImplementedException

 * for that particualar group(s). Make sure that if the WebSphere Application Server

 * Choreographer is installed (or if installed later) the staff assignments are not

 * modeled using these particular groups. If there is no concern about

 * returning the users from groups in the registry it is recommended that

 * this method be implemented without throwing the NotImplemented exception.

 *

 * @param groupSecurityName the name of the group

 * @param limit the maximum number of users that should be returned.

 * This is very useful in situations where there are lot of

 * users in the registry and getting all of them at once is not

 * practical. A value of 0 implies get all the users and hence

 * must be used with care.

 * @return a Result object that contains the list of users

 * requested and a flag to indicate if more users exist.

 * @deprecated This method will be deprecated in future.

 * @exception NotImplementedException throw this exception in rare situations

 * if it is not pratical to get this information for any of the

 * group or groups from the registry.

 * @exception EntryNotFoundException if the group does not exist in

 * the registry

 * @exception CustomRegistryException if there is any registry-specific

 * problem

 **/

 public Result getUsersForGroup(String groupSecurityName, int limit)

 throws NotImplementedException,

Chapter 10. Managing security 201

EntryNotFoundException,

 CustomRegistryException {

 String s, user;

 BufferedReader in = null;

 List usrsForGroup = new ArrayList();

 int count = 0;

 int newLimit = limit+1;

 Result result = new Result();

 try {

 in = fileOpen(GROUPFILENAME);

 while ((s=in.readLine())!=null)

 {

 if (!(s.startsWith("#") || s.trim().length() <=0)) {

 int index = s.indexOf(":");

 if ((s.substring(0,index)).equals(groupSecurityName))

 {

 StringTokenizer st = new StringTokenizer(s, ":");

 for (int i=0; i<2; i++)

 st.nextToken();

 String subs = st.nextToken();

 StringTokenizer st1 = new StringTokenizer(subs, ",");

 while (st1.hasMoreTokens()) {

 user = st1.nextToken();

 usrsForGroup.add(user);

 if (limit !=0 && ++count == newLimit) {

 usrsForGroup.remove(user);

 result.setHasMore();

 break;

 }

 }

 }

 }

 }

 } catch (Exception ex) {

 if (!isValidGroup(groupSecurityName)) {

 throw new EntryNotFoundException("group: " + groupSecurityName

 + " is not valid"); // (split for publication)

 }

 throw new CustomRegistryException(ex.getMessage(),ex);

 } finally {

 fileClose(in);

 }

 result.setList(usrsForGroup);

 return result;

 }

 /**

 * This method is implemented internally by the WebSphere Application Server

 * code in this

 * release. This method is not called for the Custom Registry implementations

 * for this release. Return null in the implementation.

 *

 **/

 public com.ibm.websphere.security.cred.WSCredential

 createCredential(String userSecurityName) // (split for publication)

 throws CustomRegistryException,

 NotImplementedException,

 EntryNotFoundException {

 // This method is not called.

 return null;

 }

 // private methods

 private BufferedReader fileOpen(String fileName)

202 IBM® WebSphere® Application Server, Version 5.0.2: Security

throws FileNotFoundException {

 try {

 return new BufferedReader(new FileReader(fileName));

 } catch(FileNotFoundException e) {

 throw e;

 }

 }

 private void fileClose(BufferedReader in) {

 try {

 if (in != null) in.close();

 } catch(Exception e) {

 System.out.println("Error closing file" + e);

 }

 }

 private boolean match(String name, String pattern) {

 RegExpSample regexp = new RegExpSample(pattern);

 boolean matches = false;

 if(regexp.match(name))

 matches = true;

 return matches;

 }

}

//--

// The program provides the Regular Expression implementation used in the

// Sample for the Custom User Registry (FileRegistrySample). The pattern

// matching in the sample uses this program to search for the pattern (for

// users and groups).

//--

class RegExpSample

{

 private boolean match(String s, int i, int j, int k)

 {

 for(; k < expr.length; k++)

label0:

 {

 Object obj = expr[k];

 if(obj == STAR)

 {

 if(++k >= expr.length)

 return true;

 if(expr[k] instanceof String)

 {

 String s1 = (String)expr[k++];

 int l = s1.length();

 for(; (i = s.indexOf(s1, i)) >= 0; i++)

 if(match(s, i + l, j, k))

 return true;

 return false;

 }

 for(; i < j; i++)

 if(match(s, i, j, k))

 return true;

 return false;

 }

 if(obj == ANY)

 {

 if(++i > j)

 return false;

 break label0;

Chapter 10. Managing security 203

}

 if(obj instanceof char[][])

 {

 if(i >= j)

 return false;

 char c = s.charAt(i++);

 char ac[][] = (char[][])obj;

 if(ac[0] == NOT)

 {

 for(int j1 = 1; j1 < ac.length; j1++)

 if(ac[j1][0] <= c && c <= ac[j1][1])

 return false;

 break label0;

 }

 for(int k1 = 0; k1 < ac.length; k1++)

 if(ac[k1][0] <= c && c <= ac[k1][1])

 break label0;

 return false;

 }

 if(obj instanceof String)

 {

 String s2 = (String)obj;

 int i1 = s2.length();

 if(!s.regionMatches(i, s2, 0, i1))

 return false;

 i += i1;

 }

 }

 return i == j;

 }

 public boolean match(String s)

 {

 return match(s, 0, s.length(), 0);

 }

 public boolean match(String s, int i, int j)

 {

 return match(s, i, j, 0);

 }

 public RegExpSample(String s)

 {

 Vector vector = new Vector();

 int i = s.length();

 StringBuffer stringbuffer = null;

 Object obj = null;

 for(int j = 0; j < i; j++)

 {

 char c = s.charAt(j);

 switch(c)

 {

 case 63: /* ’?’ */

 obj = ANY;

 break;

 case 42: /* ’*’ */

 obj = STAR;

 break;

 case 91: /* ’[’ */

 int k = ++j;

 Vector vector1 = new Vector();

 for(; j < i; j++)

204 IBM® WebSphere® Application Server, Version 5.0.2: Security

{

 c = s.charAt(j);

 if(j == k && c == ’^’)

 {

 vector1.addElement(NOT);

 continue;

 }

 if(c == ’\\’)

 {

 if(j + 1 < i)

 c = s.charAt(++j);

 }

 else

 if(c == ’]’)

 break;

 char c1 = c;

 if(j + 2 < i && s.charAt(j + 1) == ’-’)

 c1 = s.charAt(j += 2);

 char ac1[] = {

 c, c1

 };

 vector1.addElement(ac1);

 }

 char ac[][] = new char[vector1.size()][];

 vector1.copyInto(ac);

 obj = ac;

 break;

 case 92: /* ’\\’ */

 if(j + 1 < i)

 c = s.charAt(++j);

 break;

 }

 if(obj != null)

 {

 if(stringbuffer != null)

 {

 vector.addElement(stringbuffer.toString());

 stringbuffer = null;

 }

 vector.addElement(obj);

 obj = null;

 }

 else

 {

 if(stringbuffer == null)

 stringbuffer = new StringBuffer();

 stringbuffer.append(c);

 }

 }

 if(stringbuffer != null)

 vector.addElement(stringbuffer.toString());

 expr = new Object[vector.size()];

 vector.copyInto(expr);

 }

 static final char NOT[] = new char[2];

 static final Integer ANY = new Integer(0);

 static final Integer STAR = new Integer(1);

 Object expr[];

}

Chapter 10. Managing security 205

Result.java file

This module is used by user registries in WebSphere Application Server when

calling the getUsers and getGroups methods. The user registries use this method to

set the list of users and groups and to indicate if there are more users and groups

in the registry than requested.

Usage scenario

// (C) COPYRIGHT International Business Machines Corp. 1997, 2002

// All Rights Reserved * Licensed Materials - Property of IBM

//

package com.ibm.websphere.security;

import java.util.List;

public class Result implements java.io.Serializable {

 /**

 Default constructor

 */

 public Result() {

 }

 /**

 Returns the list of users and groups

 @return the list of users and groups

 */

 public List getList() {

 return list;

 }

 /**

 indicates if there are more users and groups in the registry

 */

 public boolean hasMore() {

 return more;

 }

 /**

 Set the flag to indicate that there are more users and groups

 in the registry to true

 **/

 public void setHasMore() {

 more = true;

 }

 /**

 Set the list of users and groups

 @param list list of users/groups

 */

 public void setList(List list) {

 this.list = list;

 }

 private boolean more = false;

 private List list;

}

Custom user registry settings

Use this page to configure the custom user registry.

To view this administrative console page, click Security > User Registries >

Custom.

206 IBM® WebSphere® Application Server, Version 5.0.2: Security

Once the properties are set in this panel, click Apply. Use the Properties panel for

additional properties that the custom registry requires. When security is enabled

and any of these properties change, go to the Global Security panel and click

Apply to validate the changes.

Server User ID: Specifies the user ID under which the server runs, for security

purposes.

This server ID represents a valid user in the custom registry.

 Data type: String

Server User Password: Specifies the password corresponding to the security

server ID.

 Data type: String

Custom Registry Classname: Specifies a dot-separated class name that

implements the com.ibm.websphere.security.UserRegistry interface.

Put the custom registry class name in the class path. A suggested location is the

install_root/lib/ext directory. Although the custom registry implements the

com.ibm.websphere.security.UserRegistry interface, for backward compatibility, a

user registry can alternately implement the

com.ibm.websphere.security.CustomRegistry interface.

 Data type: String

Default: com.ibm.websphere.security.FileRegistrySample

Ignore Case: Specifies that a case insensitive authorization check is performed.

 Default: Enabled

Range: Enabled or Disabled

Use the Custom Properties link to add any additional properties required to

initialize the custom registry. The following property is pre-defined by the product;

set this property only when required:

v WAS_UseDisplayName—When set to true, the methods getCallerPrincipal(),

getUserPrincipal(), getRemoteUser() return the display name. By default, the

securityName of the user is returned. This is primarily introduced to support

backward compatibility with the Version 4.0 custom registry.

users.props file

Following is the format for the users.props file:

Usage scenario

5639-D57, 5630-A36, 5630-A37, 5724-D18

(C) COPYRIGHT International Business Machines Corp. 1997, 2002

All Rights Reserved * Licensed Materials - Property of IBM

Format:

name:passwd:uid:gids:display name

where name = userId/userName of the user

passwd = password of the user

uid = uniqueId of the user

Chapter 10. Managing security 207

gid = groupIds of the groups that the user belongs to

display name = a (optional) display name for the user.

bob:bob1:123:567:bob

dave:dave1:234:678:

jay:jay1:345:678,789:Jay-Jay

ted:ted1:456:678:Teddy G

jeff:jeff1:222:789:Jeff

vikas:vikas1:333:789:vikas

bobby:bobby1:444:789:

groups.props file

Following is the format for the groups.props file:

Usage scenario

5639-D57, 5630-A36, 5630-A37, 5724-D18

(C) COPYRIGHT International Business Machines Corp. 1997, 2002

All Rights Reserved * Licensed Materials - Property of IBM

Format:

name:gid:users:display name

where name = groupId of the group

gid = uniqueId of the group

users = list of all the userIds that the group contains

display name = a (optional) display name for the group.

admins:567:bob:Administrative group

operators:678:jay,ted,dave:Operators group

users:789:jay,jeff,vikas,bobby:

Java Authentication and Authorization Service

The standard Java 2 security API helps enforce access control, based on the

location of the code and who signed it. The current principal of the execution

thread is not considered in the Java 2 security authorization. There are instances

where authorization is based on the principal, rather than the code base and the

signer. The Java Authentication and Authorization Service is a standard Java API

that supports the Java 2 security authorization to extend the code base on the

principal as well as the code base and signers.

The Java Authentication and Authorization Service (JAAS) Version 1.0 extends the

Java 2 security architecture of the Java 2 platform with additional support to

authenticate and enforce access control upon users. It implements a Java version of

the standard Pluggable Authentication Module (PAM) framework, and extends the

access control architecture of the Java 2 platform in a compatible fashion to

support user-based authorization. WebSphere Application Server fully supports the

JAAS architecture and extends the access control architecture to support role-based

authorization for Java 2 Platform, Enterprise Edition (J2EE) resources including

servlets, JavaServer pages (JSP) files, and EJB components.

The following sections cover the product JAAS authentication and authorization

implementation and programming model:

v “Java Authentication and Authorization Service login configuration” on page 214

v “Programmatic login” on page 221

v “Java Authentication and Authorization Service authorization” on page 209

The accompanying product Javadoc contains detailed descriptions of the

WebSphere Application Server programming APIs and the JAAS Javadoc also ships

with the product. Refer to the install_root/web/docs/jaas directory.

208 IBM® WebSphere® Application Server, Version 5.0.2: Security

Java Authentication and Authorization Service authorization

Java 2 security architecture uses a security policy to specify which access rights are

granted to executing code. This architecture is code-centric. That is, the permissions

are granted based on code characteristics: where the code is coming from and

whether it is digitally signed and by whom. Java Authentication and Authorization

Service (JAAS) authorization augments the existing code-centric access controls

with new user-centric access controls. Permissions are granted based on what code

is running and who is running it.

When using JAAS authentication to authenticate a user, a subject is created to

represent the authenticated user. A subject is comprised of a set of principals,

where each principal represents an identity for that user. You can grant

permissions in the policy to specific principals. After the user has been

authenticated, the application can associate the subject with the current access

control context. For each subsequent security-checked operation, the Java run time

automatically determines whether the policy grants the required permission only

to a specific principal. If so, the operation is allowed only if the subject associated

with the access control context contains the designated principal.

Associate a subject with the current access control context, by calling the static

doAs method from the subject class, passing it an authenticated subject and

java.security.PrivilegedAction or java.security.PrivilegedExceptionAction. The doAs

method associates the provided subject with the current access control context and

then invokes the run method from the action. The run method implementation

contains all the code executed as the specified subject. The action executes as the

specified subject.

In the J2EE programming model, when invoking the EJB method from an

enterprise bean or servlet, the execution is under the user identity that is

determined by the run-as setting. The J2EE Version 1.3 Specification does not

indicate which user identity to use when invoking an enterprise bean from a

Subject.doAs action block within either the EJB code or the servlet code. A logical

extension is to use the proper identity specified in the subject when invoking the

EJB method within the Subject doAs action block.

This simple rule of letting Subject.doAs overwrite the run-as identity setting would

be an ideal way to integrate the JAAS programming model with the J2EE run-time

environment. However, a design oversight was introduced into JDK V1.3 when

integrating the JAAS V 1.0 implementation with the Java 2 security architecture. A

subject, which is associated with the access control context is cut off by a

doPrivileged call when a doPrivileged occurs within the Subject.doAs action block.

Until this problem is corrected, there is no reliable and run-time efficient way to

guarantee the correct behavior of Subject.doAs in aJ2EE run-time environment.

The problem can be explained better with the following example:

Subject.doAs(subject, new java.security.PrivilegedAction() {

 Public Object run() {

 // Subject is associated with the current thread context

 java.security.AccessController.doPrivileged(new

 java.security.PrivilegedAction() {

 public Object run() {

 // Subject was cut off from the current thread context

 return null;

 }

 });

Chapter 10. Managing security 209

// Subject is associated with the current thread context

 return null;

 }

 });

At line three, the subject object is associated with the context of the current

execution thread. As indicated on line 7 within the run method of a doPrivileged

action block, the subject object is removed from the thread context. After leaving

the doPrivileged block, the subject object is restored to the current thread context.

Since doPrivileged blocks can be placed anywhere along the execution path and

instrumented quite often in a server environment, the run-time behavior of a doAs

action block becomes difficult to manage.

To resolve this difficulty, WebSphere Application Server provides a helper class,

WSSubject, to extend the JAAS authorization to a J2EE EJB method invocation as

described previously. WSSubject class provides static doAs and doAsPrivileged

methods that have identical signatures to the subject class. The WSSubject.doAs

method basically associates the WSPrincipal, WSCredential, and the CORBA

credential to the current execution thread. The credential is used by the Security

Authentication Service (SAS) run time for EJB invocation. The WSSubject.doAs and

WSSubject.doAsPrivileged methods then invoke the corresponding Subject.doAs

and Subject.doAsPrivileged methods. The original credential is restored and

associated with the execution thread upon leaving the WSSubject.doAs and

WSSubject.doAsPrivileged methods.

Note that WSSubject is not a replacement of the subject object, but rather a helper

class to ensure consistent run-time behavior as long as an EJB method invocation is

a concern.

The following example illustrates the run-time behavior of the WSSubject.doAs

method:

WSSubject.doAs(subject, new java.security.PrivilegedAction() {

 // Subject’s CORBA Credentials is associated with SAS thread local storage

 Public Object run() {

 // Subject is associated with the current thread context

 java.security.AccessController.doPrivileged(new

 java.security.PrivilegedAction() {

 public Object run() {

 // Subject was cut off from the current thread context, but

 // nonetheless its CORBA Credentials is still associated with

 // SAS thread local storage

 return null;

 }

 });

 // Subject is associated with the current thread context and its CORBA

 // Credentials is still associated with SAS thread local storage

 return null;

 }

 });

 // Subject’s CORBA Credential is removed from SAS thread local storage

 // and the original CORBA Credentials is restored.

The Subject.doAs and Subject.doAsPrivileged methods are not integrated with the

J2EE run-time environment. EJB methods that are invoked within the Subject.doAs

and Subject.doAsPrivileged action blocks are executed under the identity specified

by the run-as setting and not by the subject identity.

210 IBM® WebSphere® Application Server, Version 5.0.2: Security

v The subject object generated by the WSLoginModuleImpl instance and

WSClientLoginModuleImpl instance contains a principal that implements the

WSPrincipal interface. Using the getCredential() method for a WSPrincipal object

returns an object that implements the WSCredential interface. You can also find

the WSCredential object instance in the PublicCredentials list of the subject

instance. You should retrieve the WSCredential object from the PublicCredentials

list instead of using the getCredential() method.

v The getCallerPrincipal() method for the WSSubject class returns a string

representing the caller security identity. The return type differs from the

getCallerPrincipal method of the EJBContext interface (which is

java.security.Principal).

v The Subject object generated by the J2C DefaultPrincipalMapping module

contains a resource principal and a PasswordCredentials list. The resource

principal represents the caller.

Refer to “Java 2 Connector security” on page 218 for more information

Configuring Java Authentication and Authorization Service login

Before you begin

Java Authentication and Authorization Service (JAAS) is a new feature in

WebSphere Application Server. It is a collection of WebSphere Application Server

strategic authentication APIs and replaces the Common Object Request Broker

Architecture (CORBA) programmatic login APIs. JAAS also is mandated by the

J2EE Version 1.3 specification.

The WebSphere Application Server provides some extensions to JAAS:

v com.ibm.websphere.security.auth.WSSubject. Due to a design oversight in the

JAAS V1.0, javax.security.auth.Subject.getSubject() method does not return the

subject associated with the thread of execution inside a

java.security.AccessController.doPrivileged() code block. This presents an

inconsistent behavior that is problematic and causes undesirable effort. The

com.ibm.websphere.security.auth.WSSubject API provides a workaround to

associate the subject to a thread of execution. The

com.ibm.websphere.security.auth.WSSubject API extends the JAAS authorization

model to J2EE resources.

v You can configure JAAS login in the administrative console and stored in

WebSphere Common Configuration Model (WCCM). However, WebSphere

Application Server still supports the default JAAS login configuration format

(plain text file) provided by the JAAS default implementation. If there are

duplicate login configurations defined in both the WCCM and the plain text file

format, the one in the WCCM takes precedence. There are advantages to

defining the login configuration in the WCCM:

– User Interface support in defining JAAS login configuration

– Central management of the JAAS configuration login configuration

– Distribution of the JAAS configuration login configuration in a Network

Deployment product installation
v Proxy LoginModule. The default JAAS implementation does not use the thread

context class loader to load classes. The LoginModule cannot load if the

LoginModule class file is not in the application class loader or the Java extension

class loader class path. Due to this class loader visibility problem, WebSphere

Application Server provides a proxy LoginModule to load the JAAS

LoginModule using the thread context class loader. You do not need to place the

Chapter 10. Managing security 211

LoginModule implementation on the application class loader or the Java

extension class loader classpath with this proxy LoginModule.

Two JAAS login configurations are defined in the WCCM security document for

applications to use. They may be found in the left navigation pane at Security>

JAAS Configuration > Application Login Config: WSLogin and ClientContainer.

The WSLogin defines a login configuration and LoginModule implementation that

applications can be used in general. The ClientContainer defines a login

configuration and LoginModule implementation that is similar to that of WSLogin,

but enforces the requirements of the WebSphere Application Server client container.

The third entry, DefaultPrincipalMapping, defines a special LoginModule that is

typically used by Java 2 Connector to map an authenticated WebSphere user

identity to a set of user authentication data (user ID and password) for the

specified back end Enterprise Information System (EIS). For more information

about Java 2 Connector and the DefaultMappingModule refer to the Java 2 security

section.

New JAAS login configuration may be added and modified using Security Center.

The changes are saved in the cell level security document and are available to all

managed application servers. An application server restart is required for the

changes to take effect at run time.

Note: Do not remove or delete the pre-defined JAAS login configurations

(ClientContainer, WSLogin and DefaultPrincipalMapping). Deleting or removing

them could cause other enterprise applications to fail.

Steps for this task

1. Delete a JAAS login configuration.

a. Click Security in the navigation tree.

b. Click JAAS Configuration > Application Logins.

 The Application Login Configuration panel appears.

c. Select the check box for the login configurations to delete and click Delete.
2. Create a new JAAS login configuration.

a. Click Security in the navigation tree.

b. Click JAAS Configuration > Application Logins.

c. Click New.

 The Application Login Configuration panel appears.

d. Specify the alias name of the new JAAS login configuration and click

Apply.

 This is the name of the login configuration that you pass in the

javax.security.auth.login.LoginContext for creating a new LoginContext.

 Click Apply to save changes and to add the extra node name that preceeds

the original alias name. Clicking OK does not save the new changes in the

security.xml file.

e. Click JAAS Login Modules.

f. Click New.

g. Specify the Module Classname.

 It is recommended that you specify WebSphere Proxy LoginModule

because of the limitation of the class loader visibility problem.

h. Specify the LoginModule implementation as the delegate property of the

Proxy LoginModule.

212 IBM® WebSphere® Application Server, Version 5.0.2: Security

The WebSphere Proxy LoginModule class name is

com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy.

i. Select Authentication Strategy from the list and click Apply.

j. Click Custom Properties.

 This navigates to the Custom Properties panel for the selected LoginModule.

k. Create a new property with the name delegate and the value of the real

LoginModule implementation.

 You can specify other properties like debug with value true. These properties

are passed to the LoginModule as options to initialize() method of the

LoginModule.

l. Click Save.

 For Network Deployment installation, make sure a file synchronization

operation is performed to propagate the changes to other nodes.
3. Change the plain text file.

 WebSphere Application Server supports the default JAAS login configuration

format (plain text file) provided by the JAAS default implementation. However,

there is no tool provided to edit plain text files in this format. You can define

the JAAS login configuration in the plain text file

(install_root/properties/wsjaas.conf), any syntax errors can cause the

incorrect parsing of the plain JAAS login configuration text file. This could

cause other applications to fail. Java client programs that use the Java

Authentication and Authorization Service (JAAS) for authentication must

invoke with the JAAS configuration file specified. This configuration file is set

in /install_root/bin/launchClient.bat as set JAAS_LOGIN_CONFIG=-
Djava.security.auth.login.config=install_root\properties\wsjaas_client.conf.

If the launchClient.bat file is not used to invoke the Java client program,

verify that the appropriate JAAS configuration file is passed to the Java virtual

machine with the -Djava.security.auth.login.config flag.

 Note: Do not remove or delete the pre-defined JAAS login configurations

(ClientContainer, WSLogin, system.SWAM and system.LTPA). Deleting or

removing them could cause other enterprise applications to fail.

Results

A new JAAS login configuration is created or and old JAAS login configuration is

removed. An enterprise application can use newly created JAAS login

configuration without restarting the application server process.

However, new JAAS login configurations defined in the

install_root/properties/wsjaas.conf file, do not refreshed automatically. Restart

the application servers to validate changes. These JAAS login configurations are

specific to a particular node and are not available for other application servers

running on other nodes.

Usage scenario

Create new JAAS login configurations used by enterprise applications to perform

custom authentication.

What to do next

Use these newly defined JAAS login configurations to perform programmatic

login.

Chapter 10. Managing security 213

Java Authentication and Authorization Service login

configuration

 Java Authentication and Authorization Service (JAAS) is a new feature in

WebSphere Application Server. It is mandated by J2EE 1.3 Specification. JAAS is

WebSphere strategic APIs for authentication and it will replace of the CORBA

programmatic login APIs. WebSphere Application Server provides some extensions

to JAAS:

v com.ibm.websphere.security.auth.WSSubject: Due to a design oversight in the

JAAS 1.0, javax.security.auth.Subject.getSubject() does not return the Subject

associated with the thread of execution inside a

java.security.AccessController.doPrivileged() code block. This can present a

inconsistent behavior that is problematic and causes undesirable effort.

com.ibm.websphere.security.auth.WSSubject provides a work around to associate

Subject to thread of execution. com.ibm.websphere.security.auth.WSSubject

extends the JAAS authorization model to J2EE resources.

Note: You can retrieve the subjects in a Subject.doAs() block with the

Subject.getSubject() call. However, this procedure does not work if there is

an AccessController.doPrivileged() call within the Subject.doAs() block. In

the following example, s1 is equal to s, but s2 is null:

AccessController.doPrivileged() not only truncate the Subject propagation, also reduce the perm
Subject.doAs(s, new PrivilegedAction() {

 public Object run() {

 System.out.println(″Within Subject.doAsPrivileged()″);

 Subject s1 = Subject.getSubject(AccessController.getContext());

 AccessController.doPrivileged(new PrivilegedAction() {

 public Object run() {

 Subject s2 = Subject.getSubject(AccessController.getContext());

 return null;

 }

 });

 return null;

}

});

v JAAS Login Configuration can be configured in Admin Console and stored in

WCCM (WebSphere Common Configuration Model): Application can define new

JAAS login configuration in the Admin Console and the the data is persisted in

the configuration respository (stored in the WCCM). However, WebSphere still

support the default JAAS login configuration format (plan text file) provided by

the JAAS default implementation. But if there are duplication login

configurations defined in both the WCCM and the plan text file format, the one

in the WCCM takes precedence. There are advantages to define the login

configuration in the WCCM:

– UI support in defining JAAS login configuration.

– The JAAS configuration login configuration can be managed centrally.

– The JAAS configuration login configuration is distributed in a Network

Deployment installation.

v Proxy LoginModule: The default JAAS implementation does not use the thread

context class loader to load classes, the LoginModule could not be loaded if the

LoginModule class file is not in the application class loader or the Java extension

class loader classpath. Due to this class loader visibility problem, WebSphere

provides a proxy LoginModule to load JAAS LoginModule using the thread

214 IBM® WebSphere® Application Server, Version 5.0.2: Security

context class loader. The LoginModule implementation does not have to be

placed on the application class loader or the Java extension class loader

classpath with this proxy LoginModule.

Note: Please do not remove or delete the pre-defined JAAS Login Configurations

(ClientContainer, WSLogin and DefaultPrincipalMapping). Deleting or

removing them could cause other enterprise applications to fail.

A system administrator determines the authentication technologies, or

LoginModules, to be used for each application and configures them in a login

configuration. The source of the configuration information (for example, a file or a

database) is up to the current javax.security.auth.login.Configuration

implementation. The WebSphere Application Server implementation permits the

login configuration to be defined in both the WebSphere Common Configuration

Model (WCCM) security document and in a JAAS configuration file where the

former takes precedence.

Two JAAS login configurations are defined in the WCCM security document for

applications to use. They may be found in the left navigation pane at Security >

JAAS Configuration > Application Login Config: WSLogin and ClientContainer.

The WSLogin defines a login configuration and LoginModule implementation that

may be used by applications in general. The ClientContainer defines a login

configuration and LoginModule implementation that is similar to that of WSLogin

but enforces the requirements of the WebSphere Application Server Client

Container. The third entry, DefaultPrincipalMapping, defines a special

LoginModule that is typically used by Java 2 Connector to map an authenticated

WebSphere user identity to a set of user authentication data (user ID and

password) for the specified back end Enterprise Information System (EIS). For

more information about Java 2 Connector and the DefaultMappingModule please

refer to the Java 2 Security section.

New JAAS login configuration may be added and modified using Security Center.

The changes are saved in the cell level security document and are available to all

managed application servers. An application server restart is required for the

changes to take effect at run time.

WebSphere Application Server also reads JAAS Configuration information from the

wsjaas.conf file under the properties sub directory of the root directory under

which WebSphere Application Server is installed. Changes made to the

wsjaas.conf file is used only by the local application server and will take effect

after restarting the application server. Note that JAAS configuration in the WCCM

security document takes precedence over that defined in the wsjaas.conf file. In

other words, a configuration entry in wsjaas.conf will be overridden by an entry

of the same alias name in the WCCM security document.

Note: The Java Authentication and Authorization Service (JAAS) login

configuration entries in the Security Center are propagated to the server run

time when they are created, not when the configuration is saved. However,

the deleted JAAS login configuration entries are not removed from the

server run time. To remove the entries, save the new configuration, then

stop and restart the server.

Chapter 10. Managing security 215

Java Authentication and Authorization service configuration

entry settings

Use this page to specify a list of Java Authentication and Authorization Service

(JAAS) login configurations for the application code to use, including enterprise

beans, Java Server Pages (JSP) files, servlets and resource adapters.

To view this administrative console page, click Security > JAAS Configuration >

Application Login Configuration.

Reading the JAAS documentation in the InfoCenter before you begin defining

additional login modules for authenticating to the WebSphere Application Server

security run time is strongly recommended. You can define additional login

configurations for your applications. However, if the WebSphere Application Server

LoginModule (com.ibm.ws.security.common.auth.module.WSLoginModuleImpl) is

not used or the LoginModule does not produce a credential that is recognized by

WebSphere Application Server, then the WebSphere Application Server security run

time cannot use the authenticated subject from these login configurations for an

authorization check for resource access.

 Note: You must invoke Java client programs that use Java Authentication and

Authorization Service (JAAS) for authentication with a JAAS configuration file

specified. The WebSphere product supplies the default JAAS configuration file,

wsjaas_client.conf under the install_root/properties directory. This configuration file

is set in the /install_root/bin/launchClient.bat file as: set

JAAS_LOGIN_CONFIG=-
Djava.security.auth.login.config=install_root\properties\wsjaas_client.conf

If launchClient.bat file is not used to invoke Java client programs, make sure the

appropriate JAAS configuration file is passed to the Java virtual machine with the

-Djava.security.auth.login.config flag.

ClientContainer

Specifies the login configuration used by the client container application, which

uses the CallbackHandler API defined in the client container deployment

descriptor.

ClientContainer is the default login configuration for the WebSphere Application

Server. Do not remove this default, as other applications that use it fail.

 Default: ClientContainer

DefaultPrincipalMapping

Specifies the login configuration used by Java 2 Connectors to map users to

principals that are defined in the J2C Authentication Data Entries.

DefaultPrincipalMapping is the default login configuration for the WebSphere

Application Server. Do not remove this default, as other applications that use it

fail. The DefaultPrincipalMapping login configuration authenticates users for the

WebSphere Application Server security run time. Use credentials from the

authenticated subject returned from this login configuration as an authorization

check for access to WebSphere Application Server resources.

 Default: ClientContainer

216 IBM® WebSphere® Application Server, Version 5.0.2: Security

WSLogin

Specifies whether all applications can use the WSLogin configuration to perform

authentication for the WebSphere Application Server security run time.

This login configuration does not honor the CallbackHandler defined in the client

container deployment descriptor. To use this functionality, use the ClientContainer

login configuration.

WSLogin is the default login configuration for the WebSphere Application Server.

Do not remove this default, as other applications that use it fail. This login

configuration authenticates users for the WebSphere Application Server security

run time. Use credentials from the authenticated subject returned from this login

configurations as an authorization check for access to WebSphere Application

Server resources.

 Default: ClientContainer

Java Authentication Authorization Service login module

settings

Use this page to define the login module for a Java Authentication Authorization

Service (JAAS) login configuration.

To view this administrative page, click Security > JAAS Configuration >

Application Logins > alias_name > JAAS Login Modules.

Module Class Name

Specifies the class name of the given login module.

The default login modules defined by the WebSphere product use a proxy

LoginModule class,

com.ibm.ws.security.common.auth.module.WSLoginModuleProxy. This proxy class

loads the WebSphere login module with the thread context class loader and

delegates all the operations to the real login module implementation. The real login

module implementation is specified as the delegate option in the option

configuration. The proxy class is needed because the Developer Kit application

class loaders do not have visibility of the WebSphere product class loaders.

 Data type: String

Authentication Strategy

Specifies the authentication behavior as authentication proceeds down the stack of

login modules.

A JAAS authentication provider supplies the authentication strategy. In JAAS, an

authentication strategy is implemented through the LoginModule interface.

 Data type: String

Default: Required

Range: Required, Requisite, Sufficient and Optional

Specify additional options in Options Additional Properties. These name and

value pairs are passed to the login modules during initialization. This is one of the

mechanism used to passed information to login modules.

Chapter 10. Managing security 217

Application login configuration settings

Use this page to configure application login configurations.

To view this administrative console page, click Security > JAAS Configuration >

Application Logins > alias_name.

Click Apply to save changes and to add the extra node name that preceeds the

original alias name. Clicking OK does not save the new changes in the

security.xml file.

Alias

Specifies the alias name of the application login.

Do not use the forward slash character (/) in the alias name when defining JAAS

login configuration entries. The JAAS login configuration parser cannot handle the

forward slash character.

 Data type: String

Java 2 Connector security

Java 2 Connection authentication data entries are used by resource adapters and

JDBC data sources. A Java 2 Connection authentication data entry contains

authentication data.

The connector architecture defines a standard architecture for connecting the Java 2

Platform, Enterprise Edition (J2EE) to heterogeneous Enterprise Information

Systems (EIS). Examples of EIS include Enterprise Resource Planning (ERP),

mainframe transaction processing (TP) and database systems.

The connector architecture enables an EIS vendor to provide a standard resource

adapter for its EIS. A resource adapter is a system-level software driver that is used

by a Java application to connect to an EIS. The resource adapter plugs into an

application server and provides connectivity between the EIS, the application

server, and the enterprise application. Information in EIS must be protected from

unauthorized access. The Java 2 Connector security architecture is designed to

extend the end-to-end security model for J2EE-based applications to include

integration with EISs. An application server and an EIS collaborate to ensure the

proper authentication of a resource principal, which establishes a connection to an

underlying EIS. The connector architecture identifies the following as the

commonly-supported authentication mechanisms:

v BasicPassword: Basic user-password-based authentication mechanism specific to

an EIS

v Kerbv5: Kerberos Version 5-based authentication mechanism

WebSphere Application Server implementation of a Java 2 connection supports

basic password authentication mechanisms.

The user ID and password for the target EIS is either supplied by applications, or

by the application server. WebSphere Application Server uses a Java Authentication

and Authorization Service (JAAS) pluggable authentication mechanism to perform

principal mapping to convert a WebSphere principal to a resource principal.

WebSphere Application Server provides a DefaultPrincipalMapping LoginModule,

which basically converts any authenticated principal to the pre-configured EIS

218 IBM® WebSphere® Application Server, Version 5.0.2: Security

resource principal and password. Subsequently, you can plug in their principal

mapping LoginModule through the JAAS plug-in mechanism.

J2C mapping module configuration

When a Java 2 Connection Factory is configured for container-managed signon,

WebSphere Application Server uses the configured principal mapping module to

create a Subject instance that contains a user ID and password for the target EIS.

Mapping modules are special JAAS login modules that provide principal and

credential mapping functionality. You can define and configure custom mapping

modules through the administrative console. Associated with the mapping module

configuration is a set of user IDs and passwords that you can define in the security

configuration with a specified alias name. The WebSphere Application Server run

time passes the user ID, password and a reference of the connection factory

manager to the configured mapping module to create a subject.

For more information about mapping module requirements, please refer to the

Javadoc of the WSDefaultPrincipalMapping class. For more detailed information

about developing a mapping module, refer to “Developing your own J2C principal

mapping module” on page 60.

J2C mapping module programming reference

You can develop your own mapping module if your application requires more

sophisticated mapping functions. You can use the WSSubject.getCallerPrincipal()

method to retrieve the application client identity. The subject instance contains a

WSPrincipal instance in the principals set and a WSCredential instance in the set of

public credentials.

Managing J2EE Connector Architecture authentication data

entries

Before you begin

This task creates and deletes Java 2 Connector (J2C) authentication data entries.

Java 2 Connector authentication data entries are used by resource adapters and

JDBC data sources. A Java 2 Connector authentication data entry contains

authentication data, which contains the following information:

Alias An identifier used to identify the authenticated data entry. When

configuring resource adapters or Java database connectivity (JDBC) data

sources, the administrator can specify which authentication data to choose

for the corresponding alias.

User ID

A user identity of the intended security domain. For example, if a

particular authentication data entry is used to open a new connection to

DB2, this entry contains a DB2 user identity.

Password

The password of the user identity is encoded in the configuration

respository.

Description

A short text description.

 Steps for this task

Chapter 10. Managing security 219

1. Delete a J2C authentication data entry.

a. Click Security in the navigation tree, then click JAAS Configuration > J2C

Authentication Data. This navigates to the J2C Authentication Data Entries

panel.

b. Select the check boxes for the entries to delete and click Delete.

 Before deleting or removing an authentication data entry, make sure that it

is not used or referenced by any resource adapter or JDBC data source. If

the deleted authentication data entry is used or referenced by a resource,

the application that uses the resource adapter or JDBC data source fails to

connect to the resources.
2. Create a new J2C authentication data entry.

a. Click Security in the navigation tree, then click JAAS Configuration > J2C

Authentication Data.

 This will navigate to the J2C Authentication Data Entries panel.

b. Click New.

c. Enter a unique alias, a value user ID, a valid password, and a short

description (optional).

d. Click OK or Apply.

 There is no validation for the user ID and password.

e. Click Save.

 For a Network Deployment installation, make sure a file synchronized

operation is performed to propagate the changes to other nodes.

Results

A new J2C authentication data entry is created or an old entry is removed. The

newly created entry is visible without restarting the application server process for

use in the data source definition. But the entry is only in effect after the server is

restarted. Specifically, the authentication data is loaded by an application server

when starting an application and is shared among applications in the same

application server.

If you create or update a data source that points to a newly created J2C

authentication data alias, Test Connection fails to connect until you have restarted

the deployment manager. Once you restart the deployment manager, the J2C

authentication data is reflected in the run-time configuration. Any changes to the

J2C authentication data fields require a deployment manager restart for the

changes to take effect.

Usage scenario

This step defines authentication data that you can share among resource adapters

and JDBC data sources.

What to do next

Use the authentication data entry defined in the resource adapters or JDBC data

sources.

Java 2 Connector authentication data entry settings

Use this page as a central place for administrators to define authentication data,

which includes user identities and passwords. These can reference authentication

220 IBM® WebSphere® Application Server, Version 5.0.2: Security

data entries by resource adapters, data sources and other configurations that

require authentication data using an alias.

To view this administrative page, click Security > JAAS Configuration > J2C

Authentication Data Entries.

Note: Be careful when deleting authentication data entries. If the deleted

authentication data is used by other configurations, the initializing resources

process fails.

Define a new authentication data entry by clicking New.

Alias: Specifies the name of the authentication data entry.

 Data type: String

Units: String

Default: None

User ID: Specifies the user identity.

 Data type: String

Description: Specifies an optional description of the authentication data entry. For

example, this authentication data entry is used to connect to DB2.

 Data type: String

Programmatic login

Programmatic login is a type of form login that supports application presentation

site-specific login forms for the purpose of authentication.

When Java enterprise bean client applications require the user to provide

identifying information, the writer of the application must collect that information

and authenticate the user. You can broadly classify the work of the programmer in

terms of where the actual user authentication is performed:

v In a client program

v In a server program

Users of Web applications can receive prompts for authentication data in many

ways. The login-config element in the Web application deployment descriptor

defines the mechanism used to collect this information. Programmers who want to

customize login procedures, rather than relying on general purpose devices like a

401 dialog window in a browser, can use a form based login to provide an

application specific HTML form for collecting login information.

No authentication occurs unless WebSphere global security is enabled. If you want

to use form-based login for Web applications, you must specify FORM in the

auth-method tag of the login-config element in the deployment descriptor of each

Web application.

Applications can present site-specific login forms by using the WebSphere

form-login type. The J2EE specification defines form login as one of the

authentication methods for Web applications. However, the Servlet Version 2.2

Chapter 10. Managing security 221

specification does not define a mechanism for logging out. WebSphere Application

Server extends J2EE by also providing a form-logout mechanism.

Java Authentication and Authorization Service programmatic login

Java Authentication and Authorization Service (JAAS) is a new feature in

WebSphere Application Server. It is also mandated by the J2EE 1.3 Specification.

JAAS is a collection of WebSphere strategic authentication APIs and replace of the

CORBA programmatic login APIs. WebSphere Application Server provides some

extensions to JAAS:

Before you begin developing with programmatic login APIs, consider the

following:

v For the pure Java client application or client container application, make sure

that the host name and the port number of the target JNDI bootstrap properties

are specified properly. See the Developing applications that use CosNaming

(CORBA Naming interface) section for details.

v If the application uses custom JAAS login configuration, make sure that the

custom JAAS login configuration is properly defined. See the“Configuring Java

Authentication and Authorization Service login” on page 211 section for details.

v Some of the JAAS APIs are protected by Java 2 security permissions, if these

APIs are used by application code, make sure that these permissions are added

to the application was.policy file. See “Adding the was.policy file to

applications” on page 348 to the application, “Using PolicyTool to edit policy

files” on page 333 and “Configuring was.policy” on page 344 sections for details.

For more details of which APIs are protected by Java 2 Security permissions,

check the IBM Developer Kit, Java edition; JAAS and the WebSphere public APIs

Javadoc for more details. The following lists only the APIs used in the samples

code provided in this documentation.

– javax.security.auth.login.LoginContext constructors are protected by

javax.security.auth.AuthPermission ″createLoginContext″.

– javax.security.auth.Subject.doAs() and

com.ibm.websphere.security.auth.WSSubject.doAs() are protected by

javax.security.auth.AuthPermission ″doAs″.

– javax.security.auth.Subject.doAsPrivileged() and

com.ibm.websphere.security.auth.WSSubject.doAsPrivileged() are protected by

javax.security.auth.AuthPermission ″doAsPrivileged″.
v com.ibm.websphere.security.auth.WSSubject: Due to a design oversight in the

JAAS 1.0, javax.security.auth.Subject.getSubject() does not return the Subject

associated with the thread of execution inside a

java.security.AccessController.doPrivileged() code block. This can present an

inconsistent behavior that is problematic and causes undesirable effort. The

com.ibm.websphere.security.auth.WSSubject API provides a work around to

associate Subject to thread of execution. The

com.ibm.websphere.security.auth.WSSubject API extends the JAAS model to

J2EE resources for authorization checks. The Subject associated with the thread

of execution within com.ibm.websphere.security.auth.WSSubject.doAs() or

com.ibm.websphere.security.auth.WSSubject.doAsPrivileged() code block is used

for J2EE resources authorization checks.

v UI support for defining new JAAS login configuration: You can configure JAAS

login configuration in the administrative console and store it in WCCM

(WebSphere Common Configuration Model). Applications can define new JAAS

login configuration in the administratiave console and the the data is persisted

in the configuration respository (stored in the WCCM). However, WebSphere

222 IBM® WebSphere® Application Server, Version 5.0.2: Security

Application Server still supports the default JAAS login configuration format

(plain text file) provided by the JAAS default implementation. But if there are

duplication login configurations defined in both the WCCM and the plain text

file format, the one in the WCCM takes precedence. There are advantages to

defining the login configuration in the WCCM:

– UI support in defining JAAS login configuration.

– You can manage the JAAS configuration login configuration centrally.

– The JAAS configuration login configuration is distributed in a Network

Deployment installation.
v WebSphere JAAS login configurations: WebSphere provides JAAS login

configurations for application to perform programmatic authentication to the

WebSphere security run time. These WebSphere JAAS login configurations

perform authentication to the WebSphere configured authentication mechanism

(SWAM or LTPA) and user registry (Local OS, LDAP or Custom) based on the

authentication data supplied. The authenticated Subject from these JAAS login

configurations contain the required Principal and Credentials that can be used

by WebSphere security run time to perform authorization checks on J2EE

role-based protected resources. Here is the JAAS login configurations provided

by WebSphere:

– WSLogin JAAS login configuration: A generic JAAS login configuration that a

Java Client, client container application, servlet, JSP file, enterprise bean, and

so on, can use to perform authentication based on a user ID and password, or

a token to the the WebSphere security run time. However, this does not honor

the CallbackHandler specified in the Client Container deployment descriptor.

– ClientContainer JAAS login configuration: This JAAS login configuration

honors the CallbackHandler specified in the client container deployment

descriptor. The login module of this login configuration uses the

CallbackHandler in the client container deployment descriptor if one is

specified, even if the application code specified one CallbackHandler in the

LoginContext. This is for client container application.

 Note: Subject authenticated with the previously mentioned JAAS login

configurations contain a com.ibm.websphere.security.auth.WSPrincipal and a

com.ibm.websphere.security.auth.WSCredential. If the authenticated Subject is

passed the in com.ibm.websphere.security.auth.WSSubject.doAs() (or the other

doAs() methods), the WebSphere security run time can perform authorization

checks on J2EE resources, based on the Subject

com.ibm.websphere.security.auth.WSCredential.
v Customer defined JAAS login configurations: You can define other JAAS login

configurations. See “Configuring Java Authentication and Authorization Service

login” on page 211 section for details. Use these login configurations to perform

programmatic authentication to the customer authentication mechanism.

However, the subjects from these customer-defined JAAS login configurations

might not be used by WebSphere security run time to perform authorization

checks if it does not contain the required principal and credentials.

 Finding the root cause login exception from a JAAS login:

If you get a LoginException after issuing the LoginContext.login() API, you can

find the root cause exception from the configured user registry. In the login

modules, the registry exceptions are wrapped by a

com.ibm.websphere.security.auth.WSLoginFailedException. This exception has a

getCause() method that allows you to pull out the exception that was wrapped

after issuing the above command.

Chapter 10. Managing security 223

Note: You are not always guaranteed to get an exception of type

WSLoginFailedException, but you should note that most of the exceptions

generated from the user registry show up here.

The following is a LoginContext.login() API example with associated catch block.

WSLoginFailedException has to be casted to

com.ibm.websphere.security.auth.WSLoginFailedException if you want to issue

the getCause() API.

Note: The determineCause() example below can be used for processing

CustomUserRegistry exception types.

try

 {

 lc.login();

 }

 catch (LoginException le)

 {

 // drill down through the exceptions as they might cascade through the runtime

 Throwable root_exception = determineCause(le);

 // now you can use "root_exception" to compare to a particular exception type

 // for example, if you have implemented a CustomUserRegistry type, you would

 // know what to look for here.

 }

/* Method used to drill down into the WSLoginFailedException to find

 the "root cause" exception */

 public Throwable determineCause(Throwable e)

 {

 Throwable root_exception = e, temp_exception = null;

 // keep looping until there are no more embedded

 // WSLoginFailedException or WSSecurityException exceptions

 while (true)

 {

 if (e instanceof com.ibm.websphere.security.auth.WSLoginFailedException)

 {

 temp_exception = // (line split for publication ...)

 ((com.ibm.websphere.security.auth.WSLoginFailedException) e).getCause();

 }

 else if (e instanceof com.ibm.websphere.security.WSSecurityException)

 {

 temp_exception = // (line split for publication ...)

 ((com.ibm.websphere.security.WSSecurityException) e).getCause();

 }

 else if (e instanceof com.ibm.ws.security.registry.nt.NTException)

 // get NT specific error code, if configured

 {

 System.out.println ("Error code from NT exception: " // (split for publication ...)

 + ((com.ibm.ws.security.registry.nt.NTException)e).getErrorCode());

 return e;

 }

 else if (e instanceof com.ibm.ws.security.registry.unix.UnixRegistryException)

 // get Unix specific error code, if configured

 {

 System.out.println ("Error code from Unix exception: " // (split for publication ...)

 + ((com.ibm.ws.security.registry.unix.UnixRegistryException)e).getErrorCode());

 return e;

 }

 else if (e instanceof javax.naming.NamingException)

 // check for Ldap embedded exception

 {

224 IBM® WebSphere® Application Server, Version 5.0.2: Security

temp_exception = ((javax.naming.NamingException)e).getRootCause();

 }

 else if (e instanceof your_custom_exception_here)

 {

 // your custom processing here, if necessary

 }

 else

 {

 // this exception is not one of the types we are looking for,

 // lets return now, this is the root from the WebSphere perspective

 return root_exception;

 }

 if (temp_exception != null)

 {

 // we have an exception, let’s go back an see if this has another one

 // embedded within it.

 root_exception = temp_exception;

 e = temp_exception;

 continue;

 }

 else

 {

 // we finally have the root exception from this call path,

 // this has to occur at some point

 return root_exception;

 }

 }

 }

 Finding the root cause login exception from a Servlet filter:

You can also receive the root cause exception from a servlet filter when addressing

post-Form Login processing. This is suitable because it shows the user what

happened. The following API can be issued to obtain the root cause exception:

Throwable t = com.ibm.websphere.security.auth.WSSubject.getRootLoginException();

if (t != null)

 t = determineCause(t);

Note: Once you have the exception you can run it through the determineCause()

example above to get the native registry root cause.

 Enabling root cause login exception propagation to pure Java clients:

Currently, the root cause does not get propagated to a pure client for security

reasons. However, you might want to propagate the root cause to a pure client in a

trusted environment. If you want to enable root cause login exception propagation

to a pure client, set the following property on the WSAS server Admin Console to:

Security -> Global Security -> Custom Properties:

com.ibm.websphere.security.registry.propagateExceptionsToClient=true

Non-prompt programmatic login:

WebSphere Application Server provides a non-prompt implementation of the

javax.security.auth.callback.CallbackHandler interface, which is called

com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl. Using this

interface, an application can push authentication data to the WebSphere

Chapter 10. Managing security 225

LoginModule to perform authentication. This capability proves useful for server

side application code to authenticate an identity and use that identity to invoke

downstream J2EE resources.

javax.security.auth.login.LoginContext lc = null;

try {

lc = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl

 ("user", "securityrealm", "securedpassword")); // (split for publication)

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication data is "push" to the authentication mechanism

// implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: failed to instantiate a LoginContext and the exception: "

 + e.getMessage()); // (preceding line split for publication)

e.printStackTrace();

// may be javax.security.auth.AuthPermission "createLoginContext" is not granted

// to the application, or the JAAS login configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a J2EE resources using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is an protected EJB

} catch (Exception e) {

System.out.println("ERROR: error while accessing EJB resource, exception: "

 + e.getMessage()); // (preceding line split for publication)

e.printStackTrace();

}

return null;

}

}

);

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: login failed with exception: " + e.getMessage());

e.printStackTrace();

// login failed, might want to provide relogin logic

}

Note: You can use the

com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl callback handler

with a pure Java client, a client application container, enterprise bean, JSP files,

servlet, or other J2EE resources.

GUI prompt programmatic login

WebSphere Application Server also provides a GUI implementation of the

javax.security.auth.callback.CallbackHandler interface to collect authentication data

from user through GUI login prompts. This callack handler,

com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl, presents a

GUI login panel to prompt users for authentication data.

226 IBM® WebSphere® Application Server, Version 5.0.2: Security

javax.security.auth.login.LoginContext lc = null;

try {

lc = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication date is collected by GUI login prompt

// and pass to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: failed to instantiate a LoginContext and the exception: "

 + e.getMessage()); // (preceding line split for publication)

e.printStackTrace();

// may be javax.security.auth.AuthPermission "createLoginContext" is not granted

// to the application, or the JAAS login configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a J2EE resources using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00);

// where bankAccount is a protected enterprise bean

} catch (Exception e) {

System.out.println("ERROR: error while accessing EJB resource, exception: "

 + e.getMessage()); // (preceding line split for publication)

e.printStackTrace();

}

return null;

}

}

);

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: login failed with exception: "

 + e.getMessage()); // (preceding line split for publication)

e.printStackTrace();

// login failed, might want to provide relogin logic

}

Note: Avoid using the

com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl callback

handler for server side resources (like enterprise bean, servlet, JSP file, or any other

server side resources). The GUI login prompt blocks the server for user input. This

behavior is not desirable for a server process.

Stdin prompt programmatic login

WebSphere Application Server also provide a stdin implementation of the

javax.security.auth.callback.CallbackHandler interface to collect authentication data

from a user through stdin, which is called

com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl. This

callback handler prompts a user in the stdin for authentication data.

Chapter 10. Managing security 227

javax.security.auth.login.LoginContext lc = null;

try {

lc = new javax.security.auth.login.LoginContext("WSLogin",

new com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl());

// create a LoginContext and specify a CallbackHandler implementation

// CallbackHandler implementation determine how authentication data is collected

// in this case, the authentication date is collected by stdin prompt

// and pass to the authentication mechanism implemented by the LoginModule.

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: failed to instantiate a LoginContext and the exception: "

 + e.getMessage()); // (preceding line split for publication)

e.printStackTrace();

// may be javax.security.auth.AuthPermission "createLoginContext" is not granted

// to the application, or the JAAS login configuration is not defined.

}

if (lc != null)

try {

lc.login(); // perform login

javax.security.auth.Subject s = lc.getSubject();

// get the authenticated subject

// Invoke a J2EE resource using the authenticated subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new java.security.PrivilegedAction() {

public Object run() {

try {

bankAccount.deposit(100.00); // where bankAccount is a protected enterprise bean

} catch (Exception e) {

System.out.println("ERROR: error while accessing EJB resource, exception: "

 + e.getMessage()); // (preceding line split for publication)

e.printStackTrace();

}

return null;

}

}

);

} catch (javax.security.auth.login.LoginException e) {

System.err.println("ERROR: login failed with exception: "

 + e.getMessage()); // (preceding line split for publication)

e.printStackTrace();

// login failed, might want to provide relogin logic

}

Note: Avoid using the

com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl callback

handler for server side resources (like enterprise beans, servlets, JSP files, and so

on). The stdin prompt does not make send in the server environment, most servers

run in the background and do not have a console. However, if the server does

have a console, the stdin prompt blocks the server for user input. This behavior is

not desirable for a server process.

Getting the Caller Subject from the Thread

The Caller subject (or ″received subject″) contains the user authentication

information used in the call for this request. This subject is returned after issuing

the WSSubject.getCallerSubject() API to prevent replacing objects existing in it. It is

marked read-only. This API can be used to get access to the WSCredential

(documented in the Javadoc information) so you can put or set data in the

hashmap within the credential.

228 IBM® WebSphere® Application Server, Version 5.0.2: Security

Note: Most data within the subject is not propogated downstream to another

server. Only the credential token within the WSCredential is propogated

downstream (and a new caller subject generated).

try

{

 javax.security.auth.Subject caller_subject;

 com.ibm.websphere.security.cred.WSCredential caller_cred;

 caller_subject = com.ibm.websphere.security.auth.WSSubject.getCallerSubject();

 if (caller_subject != null)

 {

 caller_cred = caller_subject.getPublicCredentials // (split for publication ...)

 (com.ibm.websphere.security.cred.WSCredential.class).iterator().next();

 String CALLERDATA = (String) caller_cred.get ("MYKEY");

 System.out.println("My data from the Caller credential is: " + CALLERDATA);

 }

}

catch (WSSecurityException e)

{

 // log error

}

catch (Exception e)

{

 // log error

}

Note: You need the following Java 2 Security permissions to execute this API:

permission javax.security.auth.AuthPermission

″wssecurity.getCallerSubject;″.

Getting the RunAs Subject from the Thread

The RunAs subject (or invocation subject) contains the user authentication

information for the RunAs mode set in the application deployment descriptor for

this method.

The RunAs subject (or invocation subject) contains the user authentication

information for the RunAs mode set in the application deployment descriptor for

this method. This subject is marked read-only when returned from

theWSSubject.getRunAsSubject() API to prevent replacing objects existing in it. This

can be used to get access to the WSCredential (documented in the Javadoc

information) so you can put or set data in the hashmap within the credential.

Note: Most data within the Subject is not propogated downstream to another

server. Only the credential token within the WSCredential is propagated

downstream and a new Caller subject is generated.

try

{

 javax.security.auth.Subject runas_subject;

 com.ibm.websphere.security.cred.WSCredential runas_cred;

 runas_subject = com.ibm.websphere.security.auth.WSSubject.getRunAsSubject();

 if (runas_subject != null)

 {

 runas_cred = runas_subject.getPublicCredentials // (split for publication)

 (com.ibm.websphere.security.cred.WSCredential.class).iterator().next();

 String RUNASDATA = (String) runas_cred.get ("MYKEY");

 System.out.println("My data from the RunAs credential is: " + RUNASDATA);

 }

}

Chapter 10. Managing security 229

catch (WSSecurityException e)

{

 // log error

}

catch (Exception e)

{

 // log error

}

Note: You need the following Java 2 Security permissions to execute this API:

permission javax.security.auth.AuthPermission ″wssecurity.getRunAsSubject;″.

Overriding the RunAs Subject on the Thread

To extend the function provided by the Java Authentication and Authorization

Service (JAAS) APIs, you can set the RunAs subject (or invocation subject) with a

different valid entry that is used for outbound requests on this execution thread.

To extend the function provided by the Java Authentication and Authorization

Service (JAAS) APIs, you can set the RunAs subject (or invocation subject) with a

different valid entry that is used for outbound requests on an execution thread.

This gives flexibility for associating the Subject with all remote calls on this thread

without having to do a WSSubject.doAs() to associate the subject with the remote

action. For example:

try

{

javax.security.auth.Subject runas_subject, caller_subject;

 runas_subject = com.ibm.websphere.security.auth.WSSubject.getRunAsSubject();

 caller_subject = com.ibm.websphere.security.auth.WSSubject.getCallerSubject();

 // set a new RunAs subject for the thread, overriding the one declaratively set

 com.ibm.websphere.security.auth.WSSubject.setRunAsSubject(caller_subject);

 // do some remote calls

 // restore back to the previous runAsSubject

 com.ibm.websphere.security.auth.WSSubject.setRunAsSubject(runas_subject);

}

catch (WSSecurityException e)

{

 // log error

}

catch (Exception e)

{

 // log error

}

Note: You need the following Java 2 Security permissions to execute these APIs:

permission javax.security.auth.AuthPermission "wssecurity.getRunAsSubject";

permission javax.security.auth.AuthPermission "wssecurity.getCallerSubject";

permission javax.security.auth.AuthPermission "wssecurity.setRunAsSubject";

User revocation from a cache

In WebSphere Application Server, Version 5.0.2 and later, revocation of a user from

the security cache using an MBean interface is allowed. The following Java

Command Language (JACL) revokes a user when given the realm and user ID and

cycles through all SecurityAdmin MBean instances returned for the entire cell

when executed from the Deployment Manager WSADMIN. It also purges the user

from the cache during each process.

230 IBM® WebSphere® Application Server, Version 5.0.2: Security

Note: This procedure can be called from another JACL script. The following code

sample has additional line breaks inserted for publication.

proc revokeUser {realm userid} {

 global AdminControl AdminConfig

 if {[catch {$AdminControl

 queryNames WebSphere:type=SecurityAdmin,*} result]}

 puts stdout "\$AdminControl

 invoke $secBean purgeUserFromAuthCache $realm $userid

 caught an exception $result\n"

 return

 } else {

 if {$result != {}} {

 foreach secBean $result {

 if {$secBean != {} || $secBean != "null"} {

 if {[catch {$AdminControl invoke $secBean

 purgeUserFromAuthCache "$realm $userid"} result]} {

 puts stdout "\$AdminControl invoke $secBean

 purgeUserFromAuthCache $realm $userid caught an exception $result\n"

 return

 } else {

 puts stdout "\nUser $userid has been purged

 from the cache of process $secBean\n"

 }

 } else {

 puts stdout "unable to get securityAdmin

 Mbean, user $userid not revoked"

 }

 }

 } else {

 puts stdout "Security Mbean was not found\n"

 return

 }

 }

 return true

}

Java Authentication and Authorization Service custom login

module

An authenticated user is represented by a Java Authentication and Authorization

Service (JAAS) subject instance that contains a WSCredential and a WSPrincipal

instance. The subject instance is used by the authorization subsystem to enforce

resource access control. The WSCredential instance contains authentication

information that is used when invoking EJB methods. The WSPrincipal instance

contains the user identity.Use the WebSphere Application Server WSLogin JAAS

login configuration to create the subject instance. The subject instance must contain

only one WSCredential instance and one WSPrincipal instance.

To modify the contents of the subject instance, add an additional login module to

the WSLogin configuration. You can specify the WSLogin configuration by clicking

Security > JAAS Configuration in the administrative console on the server-side or

by modifying the install_dir/properties/wsjaas_client.conf file on the client.

This modification enables you to implement the custom login() and commit()

methods for post-processing.

Before implementing a custom login module, you must first call the

com.ibm.ws.security.common.auth.module.WSLoginModuleImpl implementation.

When you call a custom login module, you must use the

com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy proxy,

which also is used for the WSLoginModuleImpl implementation. For more

Chapter 10. Managing security 231

information on the WSLoginModuleProxy, see “Configuring Java Authentication

and Authorization Service login” on page 211. If you want to add your own

principal and credential to the subject, then the call sequence is not important.

Authentication protocol for EJB security

In WebSphere Application Server Version 5, there are two authentication protocols

to choose from: Secure Association Service (SAS) and Common Secure

Interoperability Version 2 (CSIv2). SAS is the authentication protocol used by all

previous releases of WebSphere Application Server and is maintained for

backwards compatibility. The Object Management Group (OMG) has defined a

new authentication protocol, called CSIv2, so that vendors can interoperate

securely. CSIv2 is implemented in WebSphere Application Server with more

features than SAS and is considered the strategic protocol.

Invoking EJB methods in a secure WebSphere Application Server environment

requires an authentication protocol to determine the level of security and type of

authentication, which occur between any given client and server for each request.

It is the job of the authentication protocol during a method invocation to coalesce

the server authentication requirements (determined by the object IOR) with the

client authentication requirements (determined by the client configuration) and

come up with an authentication policy specific to that client and server pair.

The authentication policy makes the following decisions, among others, which are

all based on the client and server configurations:

v What kind of connection can you make to this server—SSL or TCP/IP?

v If Secure Sockets Layer (SSL) is chosen, how strong is the encryption of the

data?

v If SSL is chosen, should the client be authenticated using client certificates?

v Should the client be authenticated using a user ID and password? Is there an

existing credential to use?

v Should the client identity be asserted to downstream servers?

v Given the configuration of the client and server, should a secure request

proceed?

You can configure both protocols (SAS and CSIv2) to work simultaneously. If a

server supports both protocols, it exports an IOR containing tagged components

describing the configuration for SAS and CSIv2. If a client supports both protocols,

it reads tagged components for both CSIv2 and SAS. If the client supports both

and the server supports both, CSIv2 is used. However, if the server supports SAS

(for example, it is a previous WebSphere Application Server release) and the client

supports both, the client chooses SAS for this request, since the SAS protocol is

what both have in common. Choose a protocol by specifying the

com.ibm.CSI.protocol property on the client side and configuring through the

administrative console on the server side. More details are included in the SAS and

CSIv2 properties articles.

Common Secure Interoperability Specification, Version 2

The Common Secure Interoperability Specification, Version 2 (CSIv2) defines the

Security Attribute Service (SAS) that enables interoperable authentication,

delegation and privileges. The CSIv2 SAS and SAS protocols are entirely different.

The CSIv2 SAS protocol is a subcomponent of CSIv2 that supports SSL and

interoperability with the EJB Specification, Version 2.0.

232 IBM® WebSphere® Application Server, Version 5.0.2: Security

Security Attribute Service

The Common Secure Interoperability Specification, Version 2 Security Attribute

Service (CSIv2 SAS) protocol is designed to exchange its protocol elements in the

service context of a General Inter-ORB Protocol (GIOP) request and reply messages

that are communicated over a connection-based transport. The protocol is intended

for use in environments where transport layer security, such as that available

through SSL and TLS, is used to provide message protection (that is, integrity and

or confidentiality) and server-to-client authentication. The protocol provides client

authentication, delegation and privilege functionality that might be applied to

overcome corresponding deficiencies in an underlying transport. The CSIv2 SAS

protocol facilitates interoperability by serving as the higher-level protocol under

which secure transports can be unified.

Connection and request interceptors

The authentication protocols used by WebSphere Application Server are add-on

Interoperable Inter-ORB Protocol (IIOP) services. IIOP is a request-and-reply

communications protocol used to send messages between two Object Request

Brokers (ORBs). For each request made by a client ORB to a server ORB, there is

an associated reply made by the server ORB back to the client ORB. Prior to any

request flowing, a connection between the client ORB and server ORB must be

established over the TCP/IP transport (SSL is a secure version of TCP/IP). The

client ORB invokes the authentication protocol client connection interceptor, which

is used to read the tagged components in the IOR of the object located on the

server. As mentioned previously, this is where the authentication policy is

established for the request. Given the authentication policy (a coalescing of the

server configuration with the client configuration), the strength of the connection is

returned to the ORB. The ORB makes the appropriate connection, usually over

SSL.

Once the connection is established, the client ORB invokes the authentication

protocol client request interceptor, which is used to send security information other

than what is established by the transport. This includes the user ID and password

token (authenticated by the server), an authentication mechanism-specific token

(validated by the server), or an identity assertion token. Identity assertion is a way

for one server to trust another server without the need to re-authenticate or

re-validate the originating client. However, some work is required for the server to

trust the upstream server. This additional security information is sent along with

the message in a service context. A service context has a registered identifier so that

the server ORB can identify which protocol is sending the information. The fact

that a service context contains a unique identity is another way for WebSphere

Application Server to support both SAS and CSIv2 simultaneously because both

protocols have different service context IDs. Once the client request interceptor

finishes adding the service context to the message, the message is sent to the

server ORB.

When the message is received by the server ORB, the ORB invokes the

authentication protocol server request interceptor. This interceptor looks for the

service context ID known by the protocol. When both SAS and CSIv2 are

supported by a server, two different server request interceptors are invoked and

both interceptors look for different service context IDs. However, only one finds a

service context for any given request. When the server request interceptor finds a

service context, it reads the information in the service context. A method is

invoked to the security server to authenticate or validate client identity. The

security server either rejects the information or returns a credential. A credential

Chapter 10. Managing security 233

contains additional information about the client, retrieved from the user registry so

that authorization can make the appropriate decision. Authorization is the process

of determining if the user can invoke the request based on the roles applied to the

method and the roles given to the user. If the request is rejected by the security

server, a reply is sent back to the client without ever invoking the business

method.

If no service context is found by the CSIv2 server request interceptor, it then looks

at the transport connection to see if a client certificate chain was sent. This is done

when SSL client authentication is configured between the client and server. If a

client certificate chain is found, the distinguished name (DN) is extracted from the

certificate and is used to map to an identity in the user registry. If the user registry

is Lightweight Directory Access Protocol (LDAP), the search filters defined in the

LDAP registry configuration determine how the certificate maps to an entry in the

registry. If the user registry is LocalOS, the first attribute of the DN maps to the

user ID of the registry. This attribute is typically the common name. If the

certificate does not map, no credential is created and the request is rejected. When

invalid security information is presented, the method request is rejected and a

NO_PERMISSION exception is sent back with the reply. However, when no

security information is presented, an unauthenticated credential is created for the

request and the authorization engine determines if the method gets invoked or not.

For an unauthenticated credential to invoke an EJB method, either no security roles

are defined for the method or a special Everyone role is defined for the method.

When the method invocation is completed in the EJB container, the server request

interceptor is invoked again to complete server authentication and a new reply

service context is created to inform the client request interceptor of the outcome.

This process is typically for making the request stateful. When a stateful request is

made, only the first request between a client and server requires that security

information is sent. All subsequent method requests only need to send a unique

context ID so that the server can look up the credential stored in a session table.

The context ID is unique within the connection between a client and server.

Finally, the method request cycle is completed by the client request interceptor

receiving a reply from the server with a reply service context providing

information so the client side stateful context ID can be confirmed and reused.

Specifying a stateful client is done through the property

com.ibm.CSI.performStateful (true/false). Specifying a stateful server is done

through the administrative console configuration.

234 IBM® WebSphere® Application Server, Version 5.0.2: Security

Authentication Protocol Flow
Step 1: Client
ORB calls the
connection
interceptor to
create the
connection.

Step 5: Client ORB
calls the request
interceptor to allow
the client to clean up
and set the session
status as good or bad.

Client Request
Interceptor -
receive_reply()

Client
Connection
Interceptor Client Request

Interceptor -
send_request() Server Request

Interceptor -
receive_request()

Server Request
Interceptor -
send_reply()

Step 3: Server ORB
calls the request
interceptor to receive
the security information,
authenticate, and set
the received credential.

Step 4: Server ORB
calls the request
interceptor to allow
security to send
information back to
the client along with
the reply.

Step 2: Client
ORB calls the
request
interceptor to
get client
security
information.

Client
ORB

Server
ORB

invocation
credential:
user: peter

pass: beans

1

2
Request

Service
Context

Service
Context

Transport connection

3

received
credential:

security
token

45
Reply

foo.getCoffee()
server

enterprise
beans Foo

user: peter,
password: beans

foo.getCoffee()

Coffee

stateful request
valid

Authentication policy for each request

The authentication policy of a given request determines the security protection

between a client and a server. A client or server authentication protocol

configuration can describe required features, supported features and

non-supported features. When a client requires a feature, it can only talk to servers

that either require or support that feature. When a server requires a feature, it can

only talk to clients that either require or support that feature. When a client

supports a feature, it can talk to a server that supports or requires that feature, but

can also talk to servers that do not support the feature. When a server supports a

feature, it can talk to a client that supports or requires the feature, but can also talk

to clients that do not support the feature (or chose not to support the feature).

For example, for a client to support client certificate authentication, some setup is

required to either generate a self-signed certificate or get one from a certificate

authority (CA). Some clients might not want the trouble of doing these actions,

therefore, they can configure this feature as not supported. By making this decision,

it cannot communicate with a secure server requiring client certificate

authentication. Instead, this client can choose to use the user ID and password as

the method of authenticating itself to the server.

Typically, supporting a feature is the most common way of configuring features. It

is also the most successful during run time since it is more forgiving than

requiring a feature. Knowing how secure servers are configured in your domain,

you can choose the right combination for the client to ensure successful method

Chapter 10. Managing security 235

invocations and still get the most security. If you know that all of your servers

support both client certificate and user ID and password authentication for the

client, you might want to require one and not support the other. If both the user

ID and password and the client certificate are supported on the client and server,

both are performed but user ID and password take precedence at the server. This

action is based on the CSIv2 specification requirements.

Common Secure Interoperability Version 2 features

The following Common Secure Interoperability Version 2 (CSIv2) features are

available in IBM WebSphere Application Server: SSL client certificate

authentication, message layer authentication and identity assertion.

v “Secure Sockets Layer client certificate authentication” on page 239.

 An additional way to authenticate a client to a server using SSL client

authentication.

v “Message layer authentication” on page 237.

 Authenticates credential information and sends that information across the

network so that a receiving server can interpret it.

v “Identity assertion.”

 Allows a downstream server to accept the client identity established on an

upstream server, without having to reauthenticate. The downstream server trusts

the upstream server.

Identity assertion

Identity assertion is the invocation credential that is asserted to the downstream

server.

When a client authenticates to a server, the received credential is set. When

authorization checks the credential to determine whether access is permitted, it

also sets the invocation credential so that if the EJB method calls another EJB

method located on other servers, the invocation credential can be the identity used

to invoke the downstream method. Depending on the RunAs mode for the

enterprise beans, the invocation credential is set as the originating client identity,

the server identity, or a specified different identity. Regardless of the identity that

is set, when identity assertion is enabled, it is the invocation credential that is

asserted to the downstream server.

The invocation credential identity is sent to the downstream server in an identity

token. In addition, the sending server identity, including password or token, is sent

in the client authentication token. Both tokens are needed by the receiving server

to accept the asserted identity. The receiving server completes the following actions

to accept the asserted identity:

v The server determines whether the sending server identity is on the trusted

principal list of the receiving server. The server determines whether the sending

server can send an identity token to the receiving server.

v Once it is determined that the sending server is on the trusted list, the server

authenticates the sending server to verify its identity.

v The server is authenticated by comparing the user ID and password from the

sending server to the receiving server, or it might require a real authenticate call.

If the credentials of the sending server are authenticated and on the trusted

principal list, then the server proceeds to evaluate the identity token.

Evaluation of the identity token consists of the following four identity formats that

exist in an identity token:

236 IBM® WebSphere® Application Server, Version 5.0.2: Security

v Principal name

v Distinguished name

v Certificate chain

v Anonymous identity

The product servers that receive authentication information typically support all

four identity types. The sending server decides which one is chosen, based on how

the original client authenticated. The existing type depends on how the client

originally authenticates to the sending server. For example, if the client uses Secure

Sockets Layer (SSL) client authentication to authenticate to the sending server, then

the identity token sent to the downstream server contains the certificate chain. This

information is important because it permits the receiving server to perform its own

certificate chain mapping. It enables more interoperability with other vendors and

platforms.

Once the identity format is understood and parsed, the identity maps to a

credential. For an ITTPrincipal identity token, this maps one-to-one with the user

ID fields. For an ITTDistinguishedName identity token, the mapping depends on

the user registry. For Lightweight Directory Access Protocol (LDAP), the configured

search filter determines how the mapping occurs. For Local OS, the first attribute

of the distinguished name (DN), which is typically the same as the common name,

maps to the user ID of the registry. For an ITTCertChain identity token, see the

section, “Map certificates to users” on page 314 for details on how this action is

performed for the LDAP user registry. For LocalOS, the first attribute of the DN in

the certificate is used to map to the user ID in the registry.

Some user registry methods are called to gather additional credential information

used by authorization. In a stateful server, this action completes once for the

sending server and receiving server pair where the identity tokens are the same.

Subsequent requests are made through a session ID.

Identity assertion is only available using the Common Secure Interoperability

Version 2 (CSIv2) protocol.

Message layer authentication

Defines the credential information and sends that information across the network

so that a receiving server can interpret it.

When sending authentication information across the network using a token

(whether the token is a user ID and password token ,that is, Generic Security

Services Username Password (GSSUP), or a mechanism-specific format token,

lightweight third party authentication (LTPA), for example, this is considered

message layer authentication because the data is sent along with the message

inside a service context.

A pure Java client will use basic authentication (GSSUP) as the authentication

mechanism to establish client identity. However, a servlet can use either basic

authentication (GSSUP) or the authentication mechanism of the server (LTPA) to

send security information in the message layer. Use LTPA by authenticating or

mapping the basic authentication credentials to the security mechanism of the

server.

The security token contained in a token-based credential is authentication

mechanism specific. That is, the way the token is interpreted is only known by the

authentication mechanism. Therefore, each authentication mechanism has an object

Chapter 10. Managing security 237

ID (OID) representing it. The OID and the client token are sent to the server, so

that the server knows which mechanism to use when reading and validating the

token. A list of the OIDs for each mechanism follows:

BasicAuth (GSSUP): oid:2.23.130.1.1.1

LTPA: oid:1.3.18.0.2.30.2

SWAM: No OID since it is not forwardable

On the server, the authentication mechanisms can interpret the token and create a

credential, or they can authenticate basic authentication data from the client, and

create a credential. Either way, the created credential is the received credential that

the authorization check uses to determine if the user has access to invoke the

method. You can specify the authentication mechanism by using the

com.ibm.CORBA.authenticationTarget property on the client side. (Basic

authentication is currently the only valid value.) You can configure the server

through the administrative console.

While this property tells you which authentication mechanism to use, you also

need to specify whether you want to perform authentication over the message

layer (that is, get a BasicAuth or token-based credential). To complete this task,

specify the com.ibm.CSI.performClientAuthenticationRequired(True or False) and

com.ibm.CSI.performClientAuthenticationSupported (True or False) properties.

Indicating that client authentication is required implies that it must be done for

every request. Indicating that the authentication mechanism is supported implies

that it might be done but is not required. For some servers, this option is

appropriate if no resources are protected. In most cases it is a best practice to

indicate that this is supported. Doing so ensures that client authentication is

performed if both the client and server support it, and it is not performed when

communicating with certain servers that do not want security, yet the method

requests still succeed.

Configuring authentication retries

There are situations where you want a prompt to reappear if you have entered

your user ID and password incorrectly or you want a method to retry when a

particular error occurs back at the client. If you can correct the error by

information at the client side, the system automatically performs a retry without

the client seeing the failure, if it is configured to do so.

Some of these errors include:

v Entering an invalid user ID and password

v Having an expired credential on the server

v Failing to find the stateful session on the server

By default, authentication retries are enabled and perform three retries before

returning the error to the client. The property used to enable or disable

authentication retries is com.ibm.CORBA.authenticationRetryEnabled (True or

False). The property used to specify the number of retry attempts is

com.ibm.CORBA.authenticationRetryCount.

Immediate validating of a basic authentication login

In WebSphere Application Server Version 5, a new behavior is defined during

request_login for a BasicAuth login. In prior releases, a BasicAuth login takes

the user ID and password entered through the loginSource method and creates a

BasicAuth credential. If the user ID or password is invalid, the client program does

not find out until the first method request is attempted. When the user ID or

password is specified during a prompt or programmatic login, the user ID and

password are authenticated by default with the security server, with a True or

238 IBM® WebSphere® Application Server, Version 5.0.2: Security

False being returned as the result. If False, an

org.omg.SecurityLevel2.LoginFailed exception is returned to the client indicating

the user ID and password are invalid. If True, then the BasicAuth credential is

returned to the caller of the request_login. To disable this feature on the pure

client, specify com.ibm.CORBA.validateBasicAuth=false. By default this feature is

set to True. On the server side, specify this property in the security dynamic

properties.

Secure Sockets Layer client certificate authentication

An additional way to authenticate a client to a server is using Secure Sockets Layer

(SSL) client authentication.

Using SSL client authentication is another way of authenticating a client to a

server. This form of authentication does not occur at the message layer as

described above (using a user ID and password or tokens). It occurs during the

connection handshake using SSL certificates. When the client is configured with a

personal certificate in the SSL keystore file, which indicates that SSL client

authentication is desired and the server supports SSL client authentication, the

following actions occur to establish the identity on the client side.

When a method request is invoked in the client code to a remote enterprise bean,

the Object Request Broker (ORB) invokes the client connection interceptor to

establish a connection with the server. Since the configuration specifies SSL, and

SSL client authentication, the connection type is SSL and the SSL handshake sends

the client certificate to the server to validate. If the client certificate does not

validate, the connection is not established and an exception is sent back to the

client code where the method is invoked, which indicates the failure. If the client

certificate is validated, then a connection opens between the client and the server.

The ORB proceeds to call the client request interceptor, which might be busy. If

basic authentication is also configured, for example, then the user might be

prompted for a user ID and password. Since this action is not necessary, disable

this option in the configuration if the SSL certificate is the desired identity against

which to invoke the method. If there is no message layer security, then no security

context is created and associated with the request.

Once the server receives the request, the server side request interceptor checks for

a security context. Since the server does not find a service context, it checks the

server socket for a client certificate chain that contains the client identity. In this

case, the server finds the certificate chain from the client. The identity in the

certificate chain is valid since the connection was made. To create a credential, map

the identity from the certificate to the user registry. This action is done differently

based on the type of authentication mechanism. Mapping a certificate to a

credential is done differently based on the user registry type. See the article, “Map

certificates to users” on page 314, for details on how this mapping is performed for

the Lightweight Directory Access Protocol (LDAP) user registry. For LocalOS, the

first attribute of the distinguished name (DN) in the certificate is used to map to

the user ID in the registry.

One benefit of SSL client certificate authentication is that it optimizes

authentication performance, since an SSL connection is typically created anyway.

The extra overhead of sending the client certificate is minimal. While the client-side

request interceptor performs no activity, the server side request interceptor maps

the certificate to a credential. One disadvantage to this type of authentication is the

complexity of setting up the keystore file on each client system.

Chapter 10. Managing security 239

To enable SSL client certificate authentication on the client side, you must enable

the properties, such as SSL. This action is completed using the following two

properties:

v com.ibm.CSI.performTransportAssocSSLTLSRequired (true or false)

v com.ibm.CSI.performTransportAssocSSLTLSSupported (true or false)

Indicating SSL is required implies that every request must generate an SSL

connection key. If a server does not support SSL, then the request fails. Once you

have enabled SSL by either supporting it or requiring it, you can enable some of

the SSL features.

To enable SSL client authentication, you can specify the following two properties:

v com.ibm.CSI.performTLClientAuthenticationRequired (true or false)

v com.ibm.CSI.performTLClientAuthenticationSupported (true/false)

The TL means transport layer. If you indicate that SSL client authentication is

required, then you only limit the ability to communicate with servers that support

SSL client authentication. For a server to support SSL client authentication, that

server must have similarly configured properties through the administrative

console, and have an SSL listener port that is opened to handle mutual

authentication handshakes. Configuration of server properties are done through the

administrative console GUI.

SSL client certificate authentication from a Java client is only available using the

CSIv2 protocol.

Supported IBM protocols: Secure Association Service and

Common Secure Interoperability Version 2

There are two authentication protocols supported by IBM. Secure Association

Service (SAS) is the authentication protocol used by all previous releases of the

WebSphere product. Common Secure Interoperability Version 2 (CSIv2) is

implemented in WebSphere Application Server, Version 5 and is considered the

strategic protocol.

You can configure both protocols to work simultaneously. If a server supports both

protocols, it exports an IOR containing tagged components describing the

configuration for SAS and CSIv2. If a client supports both protocols, it reads

tagged components for both CSIv2 and SAS. If the client and the server support

both protocols, CSIv2 is used. However, if the server supports SAS (for example, it

is a previous WebSphere release) and the client supports both protocols, the client

chooses SAS for this request. Choose a protocol using the com.ibm.CSI.protocol

property on the client side and configure this protocol through the GUI on the

server side.

Configuring Common Secure Interoperability Version 2 and Security

Authentication Service authentication protocols

Steps for this task

1. Determine how to configure security inbound and outbound at each point in

your infrastructure.

 For example, you might have a Java client communicating with an EJB

application server, which in turn communicates to a downstream EJB

application server. The Java client utilizes the sas.client.props file to configure

240 IBM® WebSphere® Application Server, Version 5.0.2: Security

outbound security (pure clients only need to configure outbound security). The

upstream EJB application server configures inbound security to handle the right

type of authentication from the Java client. The upstream EJB application server

utilizes the outbound security configuration when going to the downstream EJB

application server.

 This type of authentication might be different than what you expect from the

Java client into the upstream EJB application server. Security might be tighter

between the pure client and the first EJB server, depending on your

infrastructure. The downstream EJB server utilizes the inbound security

configuration to accept requests from the upstream EJB server. These two

servers require similiar configuration options as well. If the downstream EJB

application server communicates to other downstream servers, then the

outbound security might require a special configuration.

2. Specify the type of authentication.

 By default, authentication using a User ID and Password is performed. Both

Java client certificate authentication and identity assertion are disabled by

default. If you want this type of Basic Authentication performed at every tier,

use the CSIv2 authentication protocol configuration as is. However, if you have

any special requirements where some servers authenticate differently from

other servers, then consider how to configure CSIv2 to take advantage of the

features it offers.

3. Configure clients and servers.

 Configuring a pure Java client is always done through the sas.client.props

file where properties are modified. Configuring servers is always done from the

administrative console, either from the Security navigation for cell-level

configurations or from the application server Server Security for server-level

configurations. If you want some servers to authenticate differently from others,

modify some of the server level configurations. When you modify the

server-level configurations, you are overriding the cell-level configurations.

Common Secure Interoperability Version 2 and Security

Authentication Service client configuration

A secure Java client requires configuration properties to determine how to perform

security with a server. These configuration properties are typically put into a

properties file somewhere on the client machine and referenced by specifying the

following system property (split for publication) on the command line of the Java

client:

-Dcom.ibm.CORBA.ConfigURL=file:/C:/WebSphere/AppServer/properties/sas.client.props.

Note: The syntax of this property accepts a valid URL with the protocol type, file.

When this file is processed by the object request broker (ORB), security can be

enabled between the Java client and the target server. If there are any syntax

problems with the ConfigURL property and the sas.client.props file is not found,

the Java client proceeds to connect insecurely. Errors should be printed out

indicating the failure to read the ConfigURL property. Typically the problem is

related to having two slashes after file, which is invalid.

The following properties are used to configure the SAS and CSIv2 authentication

protocols:

v “Security Authentication Service and Common Secure Interoperability Version 2

authentication protocol common settings for a client configuration” on page 242

v “CSIv2 authentication protocol client settings” on page 244

Chapter 10. Managing security 241

v “Security Authentication Service Authentication Protocol client settings” on page

247

Security Authentication Service and Common Secure

Interoperability Version 2 authentication protocol common

settings for a client configuration

Use the following settings in the install_dir\properties\sas.client.props file to

configure Security Authentication Service (SAS) and Common Secure

Interoperability Version 2 (CSIv2) clients.

com.ibm.CORBA.securityEnabled: Use to determine if security is enabled for the

client process.

 Data type: Boolean

Default: True

Valid values: True or False

com.ibm.CSI.protocol: Use to determine which authentication protocols are

active.

The client can configure protocols of ibm, csiv2 or both as active. The only

possible values for an authentication protocol are ibm, csiv2 and both. Do not use

sas for the value of an authentication protocol. This restriction applies to both

client and server configurations.

Typically, specifying both provides the best interoperability with other servers.

When communicating with previous releases of WebSphere Application Server,

speicify either both or the ibm protocol. If communicating with only WebSphere

Application Server Version 5 servers, specify csiv2 because the SAS interceptors are

not loaded and executed for each method request.

 Data type: String

Default: Both

Valid values: ibm, csiv2, both

com.ibm.CORBA.authenticationTarget: Use to determine the type of

authentication mechanism for sending security information from the client to the

server.

If basic authentication is specified, the user ID and password are sent to the server.

Using the SSL transport with this type of authentication is recommended because

otherwise the password is not encrypted. The target server must support the

specified authenticationTarget.

If you specify Lightweight Third Party Authentication (LTPA), then LTPA must be

the mechanism configured at the server for a method request to proceed securely.

 Data type: String

Default: BasicAuth

Valid values: BasicAuth, LTPA

com.ibm.CORBA.validateBasicAuth: Used to determine if the user ID and

password get validated immediately after the login data is entered when the

authenticationTarget property is set to BasicAuth.

242 IBM® WebSphere® Application Server, Version 5.0.2: Security

In past releases, BasicAuth logins only validated with the initial method request.

During the first request, the user ID and password would get sent to the server.

This is the first time the client can notice an error, if the user ID or password is

incorrect, . When validateBasicAuth is specified, the validation of the user ID and

password occurs immediately to the security server.

For performance reasons, you might want to disable this property if it is not

desirable to verify the userid and password immediately. If the client program can

wait, it is better to have allow the initial method request flow to the user ID and

password. However, program logic might not be as clean and simple because of

error handling considerations.

 Data type: Boolean

Default: True

Valid values: True or False

com.ibm.CORBA.authenticationRetryEnabled: Used to specify that a failed login

attempt is retried. This property determines if a retry occurs for other errors, such

as stateful sessions not found on a server or validation failures at the server

because of an expiring credential.

The minor code in the exception returned to a client determines which errors are

retried. The number of retry attempts is dependent upon the property

com.ibm.CORBA.authenticationRetryCount.

 Data type: Boolean

Default: True

Valid values: True or False

com.ibm.CORBA.authenticationRetryCount: Used to specify the number of

retries that occur until either a successful authentication occurs or the maximum

retry value is reached.

When the maximum retry value is reached, the authentication exception is

returned to the client.

 Data type: Integer

Default: 3

Range: 1-10

com.ibm.CORBA.loginSource: Used to specify how the request interceptor

attempts to log in if it does not find an invocation credential already set.

This property is only valid if message layer authentication occurs. If only transport

layer authentication occurs, this property is ignored. When specifying properties,

the following two additional properties need to be defined:

com.ibm.CORBA.loginUserid and com.ibm.CORBA.loginPassword. When

performing a programmatic login, it is not necessary to specify none as the

loginSource. Unless you want the request to fail, there should not be a credential

set as the invocation credential during a method request.

 Data type: String

Default: Prompt

Valid values: prompt, key file, stdin, none, properties

Chapter 10. Managing security 243

com.ibm.CORBA.loginUserid: Used to specify the user ID when a properties

login is configured and message layer authentication occurs.

This property is only valid when com.ibm.CORBA.loginSource=properties. Also set

the property com.ibm.CORBA.loginPassword.

 Data

type:

String

Range: Any string appropriate for a user ID in the configured user registry of the server.

com.ibm.CORBA.loginPassword: Used to specify the password when a

properties login is configured and message layer authentication occurs.

This property is only valid when com.ibm.CORBA.loginSource=properties. Also set

the property com.ibm.CORBA.loginUserid.

 Data

type:

String

Range: Any string appropriate for a password in the configured user registry of the

server

com.ibm.CORBA.keyFileName: Used to specify the key file being used to log in.

A key file is a file which contains a list of realm, user ID, password combinations

that a client uses to log into multiple realms. The realm used is the one found in

the IOR for the current method request. The value of this property is used when

com.ibm.CORBA.loginSource=key file is used.

 Data

type:

String

Default: C:/WebSphere/AppServer/properties/wsserver.key

Range: Any fully qualified path and file name of a WebSphere Application Server key

file

com.ibm.CORBA.loginTimeout: Used to specify the length in time that the login

prompt stays available before it is considered a failed login.

 Data type: Integer

Units: Seconds

Default: 300 (5 minute intervals)

Range: 0 - 600 (10 minute intervals)

com.ibm.CORBA.securityEnabled: Used to determine if security is enabled for

the client process.

 Data type: Boolean

Default: True

Range: True or False

CSIv2 authentication protocol client settings

In addition to the properties that are valid for both Security Authentication Service

(SAS) and Common Secure Interoperability Version 2 (CSIv2), this page documents

the properties that are valid for only the CSIv2 protocol.

244 IBM® WebSphere® Application Server, Version 5.0.2: Security

com.ibm.CSI.performStateful: Used to determine if the CSIv2 protocol maintains

stateful sessions between a client and server after the initial secure association

(authentication between a particular client and server).

For performance reasons, it is beneficial to enable this property. Considerations for

disabling this property include troubleshooting an authentication protocol session

related problem.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performClientAuthenticationSupported: Used to determine if

message layer client authentication is supported.

When supported, message layer client authentication is performed when

communicating with any server that supports or requires the authentication.

Message layer client authentication involves transmitting either a user ID and

password or a token from an already authenticated credential. If the

authenticationTarget property is BasicAuth, the user ID and password are

transmitted to the target server. If the authenticationTarget password is a

token-based mechanism such as Lightweight Third Party Authentication (LTPA) or

Kerberos, then the credential token is transmitted to the server after authenticating

the user ID and password directly to the security server.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performClientAuthenticationRequired: Used to determine if

message layer client authentication is required.

When required, message layer client authentication must occur when

communicating with any server. If transport layer client authentication is also

enabled, both authentications are performed, but message layer client

authentication takes precedence at the server.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performTransportAssocSSLTLSSupported: Used to determine if

Secure Sockets Layer (SSL) is supported.

When SSL is supported, this client causes either SSL or TCP/IP to communicate

with a server. If SSL is not supported, then the client must communicate over

TCP/IP to the server. Supporting SSL is recommended so that any sensitive

information is encrypted and digitally signed. When the associated property

com.ibm.CSI.performTransportAssocSSLTLSRequired is enabled (set to true), this

property is ignored. In this case, SSL is always required.

 Data type: Boolean

Default: True

Range: True or False

Chapter 10. Managing security 245

com.ibm.CSI.performTransportAssocSSLTLSRequired: Used to determine if SSL

is required.

When SSL is required, this client must use SSL to communicate to a server. If SSL

is not supported by a server, this client does not attempt a connection to that

server. When this property is enabled, the associated property

com.ibm.CSI.performTransportAssocSSLTLSSupported is ignored.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performTLClientAuthenticationSupported: Used to determine if

transport layer client authentication is supported.

When performing client authentication using SSL, the client key file must have a

personal certificate configured. Without a personal certificate, the client cannot

authenticate to the server over SSL. If the personal certificate is a self-signed

certificate, the server must contain the public key of the client in the server trust

file. If the personal certificate is a CA granted certificate, the server must contain

the root public key of the CA in the server trust file. This property is only valid

when SSL is supported or required. If the associated property

com.ibm.CSI.performTLClientAuthenticationRequired is enabled, this property is

ignored.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performTLClientAuthenticationRequired: Used to determine if

transport layer client authentication is required.

If required, every secure socket opened between a client and server authenticates

using SSL mutual authentication. When performing client authentication using SSL,

the client key file must have a personal certificate configured. Without a personal

certificate, the client cannot authenticate to the server over SSL.

If the personal certificate is a self-signed certificate, the server must contain the

public key of the client in the server trust file. If the personal certificate is a CA

granted certificate, the server must contain the root public key of the CA in the

server trust file. When this property is specified, the associated property

com.ibm.CSI.performTLClientAuthenticationSupported is ignored.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performMessageConfidentialitySupported: Used to determine if

128-bit ciphers are supported to make SSL connections.

If a target server does not support 128-bit ciphers, you can make a connection at a

lower encryption strength. This property is only valid when SSL is enabled.

 Data type: Boolean

246 IBM® WebSphere® Application Server, Version 5.0.2: Security

Default: True

Range: True or False

com.ibm.CSI.performMessageConfidentialityRequired: Used to determine if

128-bit ciphers must be used to make SSL connections.

If a target server does not support 128-bit ciphers, a connection to that server fails.

This property is only valid when SSL is enabled. When this property is enabled,

the associated property com.ibm.CSI.performMessageConfidentialitySupported is

ignored.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performMessageIntegritySupported: Used to determine if 40-bit

ciphers are supported to make SSL connections.

If a target server does not support 40-bit ciphers, you can make a connection using

only digital signing ciphers. This property is only valid when SSL is enabled. This

property is ignored if the associated property

com.ibm.CSI.performMessageIntegrityRequired is enabled.

 Data type: Boolean

Default: True

Range: True or False

com.ibm.CSI.performMessageIntegrityRequired: Used to determine if 40-bit

ciphers must be used to make SSL connections.

If a target server does not support 40-bit ciphers, a connection to that server fails.

This property is only valid when SSL is enabled. When this property is enabled,

the associated property com.ibm.CSI.performMessageIntegritySupported is ignored.

 Data type: Boolean

Default: True

Range: True or False

Security Authentication Service Authentication Protocol client

settings

In addition to those properties which are valid for both Security Authentication

Service (SAS) and Common Secure Interoperability Version 2 (CSIv2), this article

documents properties which are valid only for the SAS authentication protocol.

com.ibm.CORBA.standardPerformQOPModels: Specifies the strength of the

ciphers when making an SSL connection.

 Data type: String

Default: High

Range Low, Medium, High

Chapter 10. Managing security 247

Configuring Common Secure Interoperability Version 2

inbound authentication

Before you begin

Inbound authentication refers to the configuration that determines the type of

accepted authentication for inbound requests. This authentication is advertised in

the Interoperable Object Reference (IOR) that the client retrieves from the name

server.

Steps for this task

1. Start the administrative console. Navigate to Security > Authentication

Protocol > CSI Inbound Authentication.

2. Consider the following three layers of security:

v “Identity assertion” on page 236(attribute layer). When selected, this server

accepts identity tokens from upstream servers. If the server receives an

identity token, the identity is taken from an originating client. For example,

the identity is in the same form as the originating client presented it to the

first server. An upstream server sends the identity of the originating client.

The format of the identity can be either a principal name, a distinguished

name, or a certificate chain. In some cases, the identity is anonymous. It is

important to trust the upstream server that sends the identity token, since

the identity is authenticating on this server. The server ID is sent in the client

authentication token with the identity token. The server ID is checked

against the trusted server ID list. If the server ID is on the trusted server list,

the server ID is authenticated. If the server ID is valid, then the identity

token identity is put into a credential and used for authorization of the

request.

v User ID and Password (message layer). This type of authentication is the

most typical. The user ID and password or authenticated token is sent from a

pure client or from an upstream server. Usually, a token is sent from an

upstream server and a user ID and password are sent from a client

(including a servlet). When a user ID and password are received at the

server, they are authenticated with the user registry. When a token is

received at the server level, it is validated to determine whether the token is

expired or has been tampered with.

v “Secure Sockets Layer client certificate authentication” on page 239 (transport

layer). This type of authentication typically occurs from pure clients using

the certificate identity, and from servers trusting the upstream server.

Usually, when a server delegates an identity to a downstream server, it

comes from either the message layer (a client authentication token) or the

attribute layer (an identity token), not from the transport layer, through the

client certificate authentication. A client has an SSL client certificate stored in

the keystore file of the client configuration. When SSL client authentication is

enabled on this server, the server requests that the client send it when the

connection is established. The certificate chain is available on the socket

whenever a request is sent to the server. The server request interceptor gets

the certificate chain from the socket and maps it to a user in the registry. This

type of authentication is optimal for communicating directly from a client to

a server. However, when you have to go downstream, the identity typically

flows over the message layer or through identity assertion.
3. Consider the following points when deciding what type of authentication to

accept:

248 IBM® WebSphere® Application Server, Version 5.0.2: Security

v A server can receive multiple layers simultaneously, so an order of

precedence rule decides which identity to use. The identity assertion layer

has the highest priority, the message layer follows, and the transport layer

has the lowest priority. The SSL client certificates authentication is used when

it is the only layer provided. If the message layer and transport layer are

provided, the message layer is used to establish the identity for

authorization. The identity assertion layer is used to establish precedence,

when provided.

v Does this server usually receive requests from a client, from a server or both?

If the server always receives requests from a client, identity assertion is not

needed. You can then choose either the message layer, the transport layer, or

both. You also can decide when the authentication is required or just

supported. To select a layer as required, the sending client must supply this

layer, or the request is rejected. However, if the layer is only supported, the

layer might not be supplied.

v What kind of client identity is supplied? If the client identity is client

certificates authentication and you want the certificate chain to flow

downstream so that it maps to the downstream server user registries, then

identity assertion is the appropriate choice. Identity assertion preserves the

format of the originating client. If the originating client authenticated with a

user ID and password, then a principal identity is sent. If authentication is

done with a certificate, then the certificate chain is sent. In some cases, if the

client authenticated with a token and a Lightweight Directory Access

Protocol (LDAP) server is the user registry, then a distinguished name (DN)

is sent.
4. Configure a trusted server list.

 When identity assertion is selected for inbound requests, insert a comma

separated list of server administrator IDs to which this server can allow

identity tokens to be submitted. If you choose to allow any server to send an

identity token, you can enter an asterisk (*) in this field. This action is called

presumed trust. In this case, use SSL client certificate authentication between

servers to establish the trust.

5. Configure session management.

 You can choose either stateful or stateless security. Performance is optimum

when choosing stateful sessions. The first method request between a client and

server is authenticated. All subsequent requests (or until the credential token

expires) reuse the session information, including the credential. A client sends a

context ID for subsequent requests. The context ID is scoped to the connection

for uniqueness.

Results

When you finish configuring this panel, you have configured most of the

information that a client coalesces when determining what to send to this server. A

client or server outbound configuration with this server inbound configuration,

determines the security that is applied. When you know what clients send, the

configuration is simple. However, if you have a diverse set of clients with differing

security requirements, your server considers various layers of authentication.

Usage scenario

For an enterprise bean server, the authentication choice is usually either identity

assertion or message layer because you want the identity of the originating client

delegated downstream. You cannot easily delegate a client certificate using an SSL

Chapter 10. Managing security 249

connection. It is acceptable to enable the transport layer because additional server

security, as the additional client certificate portion of the SSL handshake, adds

some overhead to the overall SSL connection establishment.

What to do next

Once you determine which type of authentication data this server might receive,

you can determine what to select for outbound security. Refer to the article,

“Configuring common secure interoperability version 2 outbound authentication”

on page 252.

Common Secure Interoperability inbound authentication settings

Use this page to specify the features that a server supports for a client accessing its

resources.

To view this administrative console page, click Security > Authentication Protocol

> CSI Inbound Authentication.

CSI inbound authentication settings for configuring the type of authentication

information contained in an incoming request or transport.

Authentication features include three layers of authentication that you can use

simultaneously:

v Transport layer. The transport layer, the lowest layer, might contain a Secure

Sockets Layer (SSL) client certificate as the identity.

v Message layer. The message layer might contain a user ID and password or an

expirable authenticated token.

v Attribute layer. The attribute layer might contain an identity token, which is an

identity from an upstream server that already is authenticated. The identity layer

has the highest priority, followed by the message layer and then the transport

layer. If a client sends all three, only the identity layer is used. The only way to

use the SSL client certificate as the identity is if it is the only information

presented during the request. The client picks up the IOR from the name space

and reads the values from the tagged component to determine what the server

needs for security.

Basic Authentication: Specifies that basic authentication occurs over the message

layer.

In the message layer, basic authentication (user ID and password) takes place. This

type of authentication typically involves sending a user ID and password from the

client to the server for authentication. This also involves delegating a credential

token from an already authenticated credential, provided the credential type is

forwardable (for example, Lightweight Third Party Authentication (LTPA)). If Basic

Authentication is selected for the server, specify both user ID and password

authentication as well as token-based authentication.

When selecting Basic Authentication, you need to decide whether it is Required

or Supported. Selecting Required, indicates only clients configured to authenticate

to this server through the message layer are allowed to invoke requests on the

server. Selecting supported, indicates that this server accepts Basic Authentication.

However, other methods of authentication can occur if configured and anonymous

requests are accepted. Selecting Never, indicates that the server is not configured

to accept message layer authentication from any client.

250 IBM® WebSphere® Application Server, Version 5.0.2: Security

Data type: String

Client Certificate Authentication: Specifies that authentication occurs when the

initial connection is made between the client and server during a method request.

In the transport layer, Secure Sockets Layer (SSL) client certificate authentication

takes place. In the message layer, basic authentication (user ID and password) is

performed. Client certificate authentication typically performs better than message

layer authentication, but requires some additional setup steps. These additional

steps involve ensuring that the server has the signer certificate of each client to

which it is connected. If the client uses a certificate authority (CA) to create its

personal certificate, then you need only the CA root certificate in the server signer

section of the SSL trust file. When the certificate is authenticated to an Lightweight

Directory Access Protocol (LDAP) user registry, the distinguished name (DN) is

mapped based on the filter specified when configuring LDAP. When the certificate

is authenticated to a Local OS user registry, the first attribute of the DN in the

certificate (typically the common name) is mapped to the user ID in the registry.

The identity from client certificates is used only if no other layer of authentication

is presented to the server.

When selecting Client Certificate Authentication, you need to decide whether it is

Required or Supported. When selecting Required, only clients that are configured

to authenticate to this server through SSL client certificates can invoke requests on

the server. When selecting Supported, this server accepts SSL client certificate

authentication, however, other methods of authentication can occur (if configured)

and anonymous requests are accepted. When selecting Never, this server is not

configured to accept client certificate authentication from any client.

 Data type String

Identity Assertion: Specifies that identity assertion is a way to assert identities

from one server to another during a downstream EJB invocation.

Identity assertion is performed in the attribute layer and is only applicable on

servers. The principal determined at the server is based on precedence rules. If

identity assertion is performed, the identity is always derived from the attribute. If

basic authentication is performed without identity assertion, the identity is always

derived from the message layer. Finally, if SSL client certificate authentication is

performed without either basic authentication, or identity assertion, then the

identity is derived from the transport layer.

The identity asserted is the invocation credential that is determined by the RunAs

mode for the enterprise bean. If the RunAs mode is Client, the identity is the client

identity. If the RunAs mode is System, the identity is the server identity. If the

RunAs mode is Specified, the identity is the one specified. The receiving server

receives the identity in an identity token and also receives the sending server

identity in a client authentication token. The receiving server validates the sending

server identity as a trusted identity through the Trusted Server IDs entry box.

Enter a list of comma-separated principal names, for example, serverid1,

serverid2, serverid3.

When authenticating to a LocalOS user registry, all identity token types map to the

user ID field of the active user registry. For an ITTPrincipal identity token, this

maps one-to-one with the user ID fields. For an ITTDistinguishedName identity

Chapter 10. Managing security 251

token, the value from the first equal sign is mapped to the user ID field. For an

ITTCertChain identity token, the value from the first equal sign of the

distinguished name is mapped to the user ID field.

When authenticating to an LDAP user registry, the LDAP filters determine how an

identity of type ITTCertChain and ITTDistinguishedName get mapped to the

registry. If the token type is ITTPrincipal, then the principal gets mapped to the

UID field in the LDAP registry.

 Data type: String

Trusted Server User IDs: Specifies a comma-separated list of server user IDs,

which are trusted to perform identity assertion to this server.

Use this list to quickly decide whether a server is trusted. Even if the server is on

the list, the sending server must still authenticate with the receiving server to

accept the identity token of the sending server.

 Data type String

Stateful Sessions: Specifies stateful sessions, used mostly for performance

improvements.

The first contact between a client and server must fully authenticate. However, all

subsequent contacts with valid sessions, reuse the security information. The client

passes a context ID to the server, and the ID is used to look up the session. The

context ID is scoped to the connection, which guarantees uniqueness. Whenever

the security session is invalid and the authentication retry is enabled (it is by

default), the client-side security interceptor invalidate the client-side session and

resubmits the request without user awareness. This might occur if the session does

not exist on the server (the server failed and resumed operation). When this value

is disabled, every method invocation must re-authenticate.

 Data type String

Configuring common secure interoperability version 2

outbound authentication

Before you begin

Outbound authentication refers to the configuration that determines the type of

authentication performed for outbound requests to downstream servers. There are

several layers or methods of authentication that can occur. The downstream server

inbound authentication configuration must support at least one choice made in this

server outbound authentication configuration. If nothing is supported, the request

might go outbound as unauthenticated. This does not create a security problem

because the authorization run time is responsible for preventing access to protected

resources. However, if you choose to prevent an unauthenticated credential to go

outbound, you might want to designate one of the authentication layers as

required, rather than supported. If a downstream server does not support

authentication, when authentication is required the method request fails to go

outbound.

The following choices are available in the Common Secure Interoperability

Version 2 (CSIv2) Outbound Authentication panel. Remember that you are not

252 IBM® WebSphere® Application Server, Version 5.0.2: Security

required to complete these steps in the displayed order. Rather, these steps are

provided to help you understand your choices for configuring outbound

authentication.

Steps for this task

1. Select Identity Assertion (attribute layer).

 When selected, this server submits an identity token to a downstream server, if

the downstream server supports identity assertion. When an originating client

authenticates to this server, the authentication information supplied is

preserved in the outbound identity token. If the client authenticating to this

server uses client certificate authentication, then the identity token format is a

certificate chain, containing the exact client certificate chain on the socket. The

same scenario is true for other mechanisms of authentication. Read the article,

“Identity assertion” on page 236, for more information.

2. Select User ID and Password (message layer).

 This type of authentication is the most typical. The user ID and password (if

BasicAuth credential) or authenticated token (if authenticated credential) are

sent outbound to the downstream server if the downstream server supports

message layer authentication in the inbound authentication panel. Refer to the

article, “Message layer authentication” on page 237, for more information.

3. Select SSL Client certificate authentication (transport layer).

 The main reason to enable outbound Secure Sockets Layer (SSL) client

authentication from one server to a downstream server is to create a trusted

environment between those servers. For delegating client credentials, use one of

the two layers mentioned previously. However, you might want to create SSL

personal certificates for all servers in your domain, and only trust those servers

in your SSL truststore file. No other servers or clients can connect to the servers

in your domain, except at the tiers where you want them. This process can

protect your enterprise bean servers from access by anything other than your

servlet servers. Refer to the article,“Secure Sockets Layer client certificate

authentication” on page 239, for more information.A server can send multiple

layers simultaneously, therefore, an order of precedence rule decides which

identity to use. The identity assertion layer has the highest priority, the message

layer follows, and the transport layer has the lowest priority. SSL client

certificates are only used as the identity for invoking method requests, when

that is the only layer provided. SSL client certificates are useful for trust

purposes, even if the identity is not used for the request. If only the message

layer and transport layer are provided, the message layer is used to establish

the identity for authorization. If the identity assertion layer is provided

(regardless of what is provided), then the identity from the identity token is

always used by the authorization engine as the identity for that request.

Configuring session management

You can choose either stateful or stateless security. Performance is optimum when

choosing stateful sessions. The first method request between this server and the

downstream server is authenticated. All subsequent requests reuse the session

information, including the credential. A unique session entry is defined as the

combination of a unique client authentication token and an identity token, scoped

to the connection.

Results

When you finish configuring this panel, you configured the information that this

server uses to make decisions about the type of authentication to perform with

Chapter 10. Managing security 253

downstream servers. If the downstream server is configured not to support the

outbound configuration of the server, the following exception (formatted for

publication) likely occurs:

Exception received: org.omg.CORBA.INITIALIZE:

JSAS1477W: SECURITY CLIENT/SERVER CONFIG MISMATCH: The client security

configuration (sas.client.props or outbound settings in GUI) does not support

 the server security configuration for the following reasons:

ERROR 1: JSAS0607E: The client requires SSL Confidentiality

 but the server does not support it.

ERROR 2: JSAS0610E: The server requires SSL Integrity

 but the client does not support it.

ERROR 3: JSAS0612E: The client requires client (e.g., userid/password or token),

 but the server does not support it.

minor code: 0 completed: No

 at com.ibm.ISecurityLocalObjectBaseL13Impl.SecurityConnectionInterceptor.

 getConnectionKey(SecurityConnectionInterceptor.java:1770)

 at com.ibm.ws.orbimpl.transport.WSTransport.getConnection(Unknown Source)

 at com.ibm.rmi.iiop.TransportManager.get(TransportManager.java:79)

 at com.ibm.rmi.iiop.GIOPImpl.locate(GIOPImpl.java:167)

 at com.ibm.CORBA.iiop.ClientDelegate.

 _createRequest(ClientDelegate.java:2088)

 at com.ibm.CORBA.iiop.ClientDelegate.

 createRequest(ClientDelegate.java:1264)

 at com.ibm.CORBA.iiop.ClientDelegate.

 createRequest(ClientDelegate.java:1177)

 at com.ibm.CORBA.iiop.ClientDelegate.

 request(ClientDelegate.java:1726)

 at org.omg.CORBA.portable.ObjectImpl._request(ObjectImpl.java:245)

 at com.ibm.WsnOptimizedNaming._NamingContextStub.

 get_compatibility_level(Unknown Source)

 at com.ibm.websphere.naming.DumpNameSpace.

 getIdlLevel(DumpNameSpace.java:300)

 at com.ibm.websphere.naming.DumpNameSpace.

 getStartingContext(DumpNameSpace.java:329)

 at com.ibm.websphere.naming.DumpNameSpace.

 main(DumpNameSpace.java:268)

 at java.lang.reflect.Method.invoke(Native Method)

 at com.ibm.ws.bootstrap.WSLauncher.main(WSLauncher.java:163)

Note: The reasons for the mismatch are explained in the exception. You can make

the corrections when you configure the outbound configuration for this server, or

when you configure the inbound configuration of the downstream server. If there

are multiple reasons for a failure, the reasons are explained as message text in the

exception.

Usage scenario

Typically, the outbound authentication configuration is for an upstream server to

communicate with a downstream server. Most likely, the upstream server is a

servlet server and the downstream server is an EJB server. On a servlet server, the

client authentication performed to access the servlet can be one of many different

types of authentication, including client certificate and basic authentication. When

receiving basic authentication data, whether through a prompt login or a form

based login, the basic authentication information is typically authenticated to form

a credential of the mechanism type that is supported by the server, such as

Lightweight Third Party Authentication (LTPA) or LocalOS. When LTPA is the

mechanism, a forwardable token exists in the credential. Choose the message layer

(BasicAuth) authentication to propagate the client credentials. If the credential was

created using a certificate login and you want to preserve sending the certificate

downstream, you might decide to go outbound with identity assertion.

254 IBM® WebSphere® Application Server, Version 5.0.2: Security

What to do next

Save the configuration and restart the server for the changes to take effect.

Common Secure Interoperability outbound authentication

settings

Use this page to specify the features that a server supports when acting as a client

to another downstream server.

To view this administrative console page, click Security > Authentication Protocol

> CSI Outbound Authentication.

Authentication features include three layers of authentication that you can use

simultaneously:

Transport layer

The transport layer, the lowest layer, might contain a Secure Sockets :Layer

(SSL) client certificate as the identity.

Message layer

The message layer might contain a user ID and password or authenticated

token.

Attribute layer

The attribute layer might contain an identity token, which is an identity

from an upstream server that is already authenticated. The identity layer

has the highest priority, followed by the message layer and then the

transport layer. If this server sends all three, only the identity layer is used

by the downstream server. The only way to use the SSL client certificate as

the identity is if it is the only information presented during the outbound

request.

Basic Authentication: Specifies whether to send a user ID and a password from

the client to the server for authentication.

This type of authentication occurs over the message layer. Basic authentication also

involves delegating a credential token from an already authenticated credential,

provided the credential type is forwardable (for example, Lightweight Third Party

Authentication (LTPA)). Basic authentication refers to any authentication over the

message layer and indicates user ID and password as well as token-based

authentication.

Selecting Basic Authentication determines whether it is required or supported.

Selecting Required indicates that when the server goes outbound to downstream

servers, the downstream server must support basic authentication for this server to

connect. Selecting Supported indicates that this server might or might not perform

basic authentication to a downstream server. Other methods of authentication can

occur if configured. Selecting Never, indicates that this server never sends a

message layer token outbound to a downstream server. If the downstream server

requires basic authentication, then the connection is not attempted.

 Data type: String

Client Certificate Authentication: Specifies whether a client certificate from the

configured keystore file is used to authenticate to the server when the SSL

connection is made between this server and a downstream server (provided that

the downstream server supports client certificate authentication).

Chapter 10. Managing security 255

Typically, client certificate authentication has a higher performance than message

layer authentication, but requires some additional setup steps. These additional

steps include verifying that this server has a personal certificate and the

downstream server has the signer certificate of this server.

If you select client certificate authentication, decide whether it is required or

supported. Selecting Required indicates that this server can only connect to

downstream servers with client certificate authentication also configured. Selecting

Supported indicates that this server performs client certificate authentication with

any downstream server, but might not use client certificate authentication

depending on whether it is supported by the downstream server. Selecting Never

indicates that this client does not perform client certificate authentication to any

downstream server. This limitation prevents access to any downstream server that

requires client certificate authentication.

 Data type: String

Identity Assertion: Specifies whether to assert identities from one server to

another during a downstream enterprise bean invocation.

The identity asserted is the invocation credential that is determined by the RunAs

mode for the enterprise bean. If the RunAs mode is Client, the identity is the client

identity. If the RunAs mode is System, the identity is the server identity. If the

RunAs mode is Specified, the identity is the identity specified. The receiving

server receives the identity in an identity token and also receives the sending

server identity in a client authentication token. The receiving server validates the

identity of the sending server to ensure a trusted identity.

When specifying identity assertion on the CSIv2 Authentication Outbound panel,

you must also select basic authentication as supported or required on the CSIv2

Authentication Outbound panel. This action allows the server identity to be

submitted, along with the identity token, so that the receiving server can trust the

sending server. Without specifying basic authentication as supported or required,

trust is not established and the identity assertion fails.

 Data type: String

Stateful Sessions: Specifies whether to reuse security information during

authentication. This option is usually used to increase performance.

The first contact between a client and server must fully authenticate. However, all

subsequent contacts with valid sessions, reuse the security information. The client

passes a context ID to the server, and that ID is used to look up the session. The

context ID is scoped to the connection, which guarantees uniqueness. Whenever

the security session is invalid and if authentication retry is enabled (it is enabled

by default), the client-side security interceptor invalidates the client-side session

and resubmits the request transparently. For example, if the session does not exist

on the server; the server fails and resumes operation.

When this value is disabled, every method invocation must re-authenticate.

 Data type: String

256 IBM® WebSphere® Application Server, Version 5.0.2: Security

Configuring inbound transports

Before you begin

Inbound transports refer to the types of listener ports and their attributes that are

opened to receive requests for this server. Both Common Secure Interoperability

Specification, Version 2 (CSIv2) and Secure Association Service (SAS) have the

ability to configure the transport. However, the following differences between the

two protocols exist:

v CSIv2 is much more flexible than SAS, which requires Secure Sockets Layer

(SSL); CSIv2 does not require SSL.

v SAS does not support SSL client certificate authentication, while CSIv2 does.

v CSIv2 can require SSL connections, while SAS only supports SSL connections.

v SAS always has two listener ports open: TCP/IP and SSL.

v CSIv2 can have as few as one listener port and as many as three listener ports.

You can open one for the cases of just TCP/IP or when SSL is required. You can

open two ports when SSL is supported and open three ports when SSL and SSL

client certificate authentication is supported.

There are some other combinations for CSIv2, but this just shows the flexibility of

the configuration.

Complete the following steps to configure the Inbound Transport panels in the

administrative console.

Steps for this task

1. Click Security > Authentication Protocol > CSIv2 Inbound Transport to select

the type of transport and the SSL settings.

 By selecting the type of transport, as noted previously, you choose which

listener ports you want to open. In addition, you disable the SSL client

certificate authentication feature if you choose TCP/IP as the transport.

2. Select the SSL settings that correspond to an SSL transport.

 These SSL settings are defined in the Security > SSL panel and define the SSL

configuration including keystore files, truststore files, file formats, security

level, ciphers, cryptographic token selections, and so on.

3. Consider fixing the listener ports you configured.

 You complete this action in a different panel, but this is the time to think about

it. Most end points are managed at a single location, which is why they do not

appear here. Managing end points at a single location helps you to avoid

conflicts in your configuration when you are assigning them. The location for

SSL end points is at each server. An End Points panel under Additional

Properties displays for that server.

 For example, for an application server, go to Servers > Application Servers >

server_name > End Points. For a node agent, go to System Administration >

Node Agents > node_name > End Points. The end points for the node agent

and deployment manager already are fixed, but you might consider reassigning

the ports. For the deployment manager, click System Administration >

Deployment Manager > End Points. The following port names are defined in

the End Points panels and are used for object request broker (ORB) security:

v CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS - CSIv2 Client

Authentication SSL Port

v CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS - CSIv2 SSL Port

v SAS_SSL_SERVERAUTH_LISTENER_ADDRESS - SAS SSL Port

Chapter 10. Managing security 257

v ORB_LISTENER_PORT - TCP/IP Port
4. Click Security > Authentication Protocol > SAS Inbound to select the SSL

settings used for inbound requests from SAS clients.

 Remember that the SAS protocol is used to interoperate with previous releases.

When configuring the keystore and truststore files in the SSL configuration,

these files need the right information for interoperating with previous releases

of WebSphere Application Server. For example, a previous release has a

different truststore file than the Version 5 release. If you use the Version 5

keystore file, add the signer to the truststore file of the previous release for

those clients connecting to this server.

Results

The inbound transport configuration is complete.

Usage scenario

With this configuration, you can configure a different transport for inbound

security versus outbound security. For example, if the application server is the first

server used by end users, the security configuration might be more secure. When

requests go to back-end enterprise bean servers, you might lighten up on the

security for performance reasons when you go outbound. This flexibility allows

you to design the right transport infrastructure to meet your needs.

What to do next

When you finish configuring security, perform the following steps to save,

synchronize and restart the servers.

1. Click Save in the administrative console to save any modifications to the

configuration.

2. Stop and restart all servers, once synchronized.

Common Secure Interoperability transport inbound settings

Use this page to specify which listener ports to open and which Secure Sockets

Layer (SSL) settings to use. These specifications determine which transport a client

or upstream server uses to communicate with this server for incoming requests.

To view this administrative console page, click Security > Authentication Protocol

> CSI Inbound Transport.

Transport: Specifies whether client processes connect to the server using one of its

connected transports.

You can choose to use either Secure Socket Layer (SSL), TCP/IP or both as the

inbound transport that a server supports. If you specify TCP/IP, the server only

supports TCP/IP and cannot accept SSL connections. If you specify SSL

Supported, this server can support either TCP/IP or SSL connections. If you

specify SSL-Required, then any server communicating with this one must use SSL.

If you specify SSL-Supported or SSL-Required, decide which set of SSL

configuration settings you want to use for the inbound configuration. This decision

determines which key file and trust file are used for inbound connections to this

server.

258 IBM® WebSphere® Application Server, Version 5.0.2: Security

By default, SSL ports for Common Secure Interoperability Version 2 (CSIv2) and

Security Authentication Service (SAS) are dynamically generated. In cases where

you need to fix the SSL ports on application servers, click Servers > Application

Servers > server_name > End Points. Configure the following ports to be fixed. A

zero port number indicates that a dynamic assignment is made at run time.

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS

CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS

SAS_SSL_SERVERAUTH_LISTENER_ADDRESS

v TCP/IP: Only a TCP/IP listener port is opened and all requests inbound do not

have SSL protection.

v SSL-Supported: Both a TCP/IP and SSL listener port are opened and most

requests come inbound by way of SSL.

v SSL-Required: Only an SSL listener port is opened, and all requests come

through SSL connections. If you choose SSL-Required, you must also choose

CSI as the active authentication protocol. If you choose CSI and SAS, SAS

requires an open TCP/IP socket for some special requests.

 Default: SSL-Supported

Range: TCP/IP, SSL Required, SSL-Supported

SSL settings: Specifies a list of predefined SSL settings to choose from for

inbound connections. These settings are configured at the SSL Repertoire panel.

 Data type: String

Default: DefaultSSLSettings

Range: Any SSL settings configured in the SSL Configuration Repertoire

Secure Association Service transport inbound settings

Use this page to specify transport settings for connections that are accepted by this

server using the Secure Association Service (SAS) authentication protocol. The SAS

protocol is used to communicate securely to enterprise beans with previous

releases of the WebSphere Application Server.

To view this administrative console page, click Security > Authentication Protocol

> SAS Inbound Transport.

SSL Settings: Specifies a list of predefined SSL settings to choose from for

inbound connections. These settings are configured at the SSL Repertoire panel.

 Data type: String

Default: DefaultSSLSettings

Configuring outbound transports

Before you begin

Outbound transports refers to the transport used to connect to a downstream server.

When you configure the outbound transport, you should consider the transports

the downstream servers support. If Secure Sockets Layer (SSL), consider including

the signers of the downstream servers in this server truststore file for the

handshake to succeed. When you select an SSL configuration, that configuration

points to keystore and truststore files that should contain the necessary signers. If

you have configured client certificate authentication for this server in the Security

Chapter 10. Managing security 259

> Authentication Protocols > CSIv2 Outbound Authentication panel, then the

downstream servers should contain the signer certificate belonging to the server

personal certificate.

Complete the following steps to configure the Outbound Transport panels.

Steps for this task

1. Select the type of transport and the SSL settings in the Security >

Authentication Protocol > CSIv2 Outbound Transport panel. By selecting the

type of transport, as noted previously, you are choosing the transport to use

when connecting to downstream servers. The downstream servers support the

transport you choose. If you choose SSL-Supported, the transport used is

negotiated during the connection. If both the client and server support SSL,

always choose SSL-Supported unless the request is considered a special

request that does not require SSL, such as if an ORB is a request.

2. Pick the SSL Settings that correspond to an SSL transport. These SSL settings

are defined in the Security > SSL panel, and include the SSL configuration of

keystore files, truststore files, file formats, security levels, ciphers, cryptographic

token selections, and so on. Ensure that the truststore file in the selected SSL

configuration contains the signers for any downstream servers. Also, ensure

that the downstream servers contain the server signer certificates when

outbound client certificate authentication is used.

3. Select the SSL settings used for outbound requests to downstream SAS servers

in the Security > Authentication Protocol > SAS Outbound panel. Remember

that the SAS protocol allows interoperability with previous releases. When

configuring the keystore and truststore files in the SSL configuration, these files

should have the correct information for interoperating with previous releases of

WebSphere Application Server. For example, a previous release has a different

personal certificate than the Version 5.0 release. If you use the keystore file

from the Version 5.0 release, you must add the signer to the truststore file of

the previous release. Also, you must extract the signer for the Version 5.0

release and imported that signer into the truststore file of the previous release.

Results

The outbound transport configuration is complete.

Usage scenario

With this configuration you can configure a different transport for inbound

security versus outbound security. For example, if the application server is the first

server used by end users, the security configuration might be more secure. When

requests go to back-end enterprise beans servers, you might lighten up on the

security for performance reasons when you go outbound. With this flexibility you

can design a transport infrastructure that meets your needs.

What to do next

Once you finish configuring all security, perform the following steps to save,

synchronize and restart the servers.

v Click Save in the administrative console to save any modifications to the

configuration.

v Stop and restart all servers, once synchronized.

260 IBM® WebSphere® Application Server, Version 5.0.2: Security

Common secure interoperability transport outbound settings

Use this page to specify which transports and Secure Sockets Layer (SSL) settings

this server uses when communicating with downstream servers for outbound

requests.

To view this administrative console page, click Security > Authentication Protocol

> CSI Outbound Transport.

Transport: Specifies whether the client processes connect to the server using one

of the server connected transports.

You can choose to use either SSL, TCP/IP or Both as the outbound transport

which a server supports. If you specify TCP/IP, the server only supports TCP/IP

and cannot initiate SSL connections with downstream servers. If you specify SSL

Supported, this server can initiate either TCP/IP or SSL connections. If you specify

SSL required, then this server must use SSL to initiate connections to downstream

servers. When you do specify SSL, decide which set of SSL configuration settings

you want to use for the outbound configuration. This decision determines which

key file and trust file to use for outbound connections to downstream servers. For

example, consider the following:

TCP/IP

This server only opens TCP/IP connections with downstream servers.

SSL Supported

This server opens SSL connections with any downstream servers

supporting them, and TCP/IP connections with any downstream servers

not supporting them.

SSL Required

This server always opens SSL connections with downstream servers.

 Default: SSL-Supported

Range: TCP/IP, SSL-Required, SSL-Supported

SSL settings: Specifies a list of predefined SSL settings for outbound connections.

These settings are configured at the SSL Configuration Repertoires panel.

 Data type: String

Default: DefaultSSLSettings

Range: Any SSL settings configured in the SSL Configuration Repertoires panel

Secure Association Service transport outbound settings

Use this page to specify transport settings for connections that are accepted by this

server using the Secure Association Service (SAS) authentication protocol. Use the

SAS protocol to communicate securely to enterprise beans with previous releases of

WebSphere Application Server.

To view this administrative console page, click Security > Authentication Protocol

> SAS Outbound Transport.

SSL Settings: Specifies a list of predefined Secure Sockets Layer (SSL) settings to

choose from for outbound connections. These settings are configured at the SSL

Repertoire panel.

 Data type: String

Default: DefaultSSLSettings

Chapter 10. Managing security 261

Example: Common Secure Interoperability Version 2 scenarios

The articles included in this section are intended to demonstrate how to configure

specific Common Secure Interoperability Version 2 (CSIv2) configuration examples.

Scenario 1: Basic authentication and identity assertion

bob/password

bob

Java Client

Invocation
credentials: bob

Received
credentials: bob

identity assertion layer

message layermessage layer

transport layer transport layer

SSL SSL

C S1 S2
server1/password

Enterprise beans Enterprise beans

This is an example of a pure Java client, C, accessing a secure enterprise bean on a

server, S1, through user ″bob.″ The enterprise bean code on S1 accesses another

enterprise bean on server, S2. This configuration uses identity assertion to

propagate the identity of ″bob″ to the downstream server, S2. S2 trusts that ″bob″

already is authenticated by S1 because it trusts S1. To gain this trust, the identity of

S1 also flows to S2 simultaneously and S2 validates the identity by checking the

trustedPrincipalList to verify it is a valid server principal. S2 also authenticates S1.

The following steps take you through the configuration of C, S1 and S2.

Configuring client, C: Client C requires message layer authentication with a

Secure Sockets Layer (SSL) transport. To accomplish this task:

Steps for this task

1. Point the client to the sas.client.props file using the property

com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props. All

further configuration involves setting properties within this file.

2. Enable SSL. In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3. Enable client authentication at the message layer. In this case, client

authentication is supported but not required:

com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=true

4. Use all of the remaining defaults in the sas.client.props file.

Configuring server, S1: In the administrative console, server S1 is configured for

incoming requests to support message layer client authentication and incoming

connections to support SSL without client certificate authentication. S1 is

configured for outgoing requests to support identity assertion.

Steps for this task

1. Configure S1 for incoming connections.

a. Disable identity assertion.

b. Enable user ID and password authentication.

262 IBM® WebSphere® Application Server, Version 5.0.2: Security

c. Enable SSL.

d. Disable SSL client certificate authentication.
2. Configure S1 for outgoing connections.

a. Enable identity assertion.

b. Disable user ID and password authentication.

c. Enable SSL.

d. Disable SSL client certificate authentication.

Configuring server, S2: In the administrative console, server S2 is configured for

incoming requests to support identity assertion and to accept SSL connections.

Complete the following steps to configure incoming connections. Configuration for

outgoing requests and connections are not relevant for this scenario.

Steps for this task

1. Enable identity assertion.

2. Disable user ID and password authentication.

3. Enable SSL.

4. Disable SSL client authentication.

Scenario 2: Basic authentication, identity assertion and client

certificates

bob/password

bob

Java Client

Invocation
credentials: bob

Received
credentials: bob

identity assertion layer

message layermessage layer

transport layer transport layer

SSL SSL

C S1 S2
server1/password

Enterprise beans Enterprise beans

transport layer

SSL: cn=”bob”, o=ibm, c=us

C2 S2

This scenario is the same as Scenario 1, except for the interaction from client C2 to

server S2. Therefore, the configuration of Scenario 1 still is valid, but you have to

modify server S2 slightly and add a configuration for client C2. There is no

modification of the configuration for C1 or S1.

Configuring client C2: Client C2 requires transport layer authentication (Secure

Sockets Layer (SSL) client certificates). To configure transport layer authentication:

Steps for this task

Chapter 10. Managing security 263

1. Point the client to the sas.client.props file using the property

com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props. All

further configuration involves setting properties within this file.

2. Enable SSL. In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3. Disable client authentication at the message layer.

com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=false

4. Enable client authentication at the transport layer. Here it is supported, but not

required: com.ibm.CSI.performTLClientAuthenticationRequired=false,

com.ibm.CSI.performTLClientAuthenticationSupported=true

Configuring server, S2: In the administrative console, server S2 is configured for

incoming requests to SSL client authentication and identity assertion. Configuration

for outgoing requests is not relevant for this scenario.

Steps for this task

1. Configure server S2 for incoming connections:

a. Enable identity assertion.

b. Disable user ID and password authentication.

c. Enable SSL.

d. Enable SSL client authentication.

 Note: You can mix and match these configuration options. However, there is a

precedence to which authentication features become the identity in the received

credential:

a. Identity assertion

b. Message layer client authentication (basic authentication or token)

c. Transport layer client authentication (SSL certificates)

Scenario 3: Client certificate authentication and RunAs system

server1/password

Java Client Enterprise beans

Invocation credentials: bob
RunAs System

message layer

transport layer transport layer

SSLSSL: cn=bob, o=ibm, c=us

C S1 S2

Received
credentials: server1

Enterprise beans

Scenario explanation: This example portrays a pure Java client, C, accessing a

secure enterprise bean on S1. C authenticates to S1 using Secure Sockets Layer

(SSL) client certificates. S1 maps the common name of the distinguished name

(DN) in the certificate to a user in the local registry. The user in this case is ″bob.″

The enterprise bean code on S1 accesses another enterprise bean on S2. Because the

RunAs mode is system, the invocation credential is set as ″server1″ for any

outbound requests.

264 IBM® WebSphere® Application Server, Version 5.0.2: Security

Configuring C1: C1 requires transport layer authentication (SSL client

certificates). To accomplish this:

Steps for this task

1. Point the client to the sas.client.props file using the property

com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props. All

further configuration involves setting properties within this file.

2. Enable SSL. In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3. Disable client authentication at the message

layer:com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=false

4. Enable client authentication at the transport layer. It is supported, but not

required: com.ibm.CSI.performTLClientAuthenticationRequired=false,

com.ibm.CSI.performTLClientAuthenticationSupported=true

Configuring S1: In the administrative console, S1 is configured for incoming

connections to support SSL with client certificate authentication. The S1 is

configured for outgoing requests to support message layer client authentication.

Steps for this task

1. Configure S1 for incoming connections:

a. Disable identity assertion.

b. Disable user ID and password authentication.

c. Enable SSL.

d. Enable SSL client certificate authentication.
2. Configure S1 for outgoing connections:

a. Disable identity assertion.

b. Disable user ID and password authentication.

c. Enable SSL.

d. Enable SSL client certificate authentication.

Configuring S2: In the administrative console, the S2 is configured for incoming

requests to support message layer authentication over SSL. Configuration for

outgoing requests is not relevant for this scenario.

Steps for this task

1. Disable identity assertion.

2. Enable user ID and password authentication.

3. Enable SSL.

4. Disable SSL client authentication.

Chapter 10. Managing security 265

Scenario 4: TCP/IP transport using VPN

tom/password

token

Java Client Enterprise
beans

VPN

Invocation
credentials: tom

Received
credentials: tom

message layer

message layer

transport layer

TCP/IP

C S1 S2

transport layer

SSL

Enterprise
beans

Scenario explanation: This scenario illustrates the ability to choose TCP/IP as the

transport when it is appropriate. In some cases, when two servers are on the same

VPN, it can be appropriate to select TCP/IP as the transport for performance

reasons bacause the VPN already encrypts the message.

Configuring C1: C1 requires message layer authentication with an SSL transport:

Steps for this task

1. Point the client to the sas.client.props file using the property

com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props. All

further configuration involves setting properties within this file.

2. Enable SSL. In this case, SSL is supported but not required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3. Enable client authentication at the message layer. In this case, client

authentication is supported but not required:

com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=true

4. Use the remaining defaults in the sas.client.props file.

Configuring S1: In the administrative console, S1 is configured for incoming

requests to support message layer client authentication and incoming connections

to support SSL without client certificate authentication. S1 is configured for

outgoing requests to support identity assertion.

Steps for this task

1. Configure S1 for incoming connections:

a. Disable identity assertion.

b. Enable user ID and password authentication.

c. Enable SSL.

d. Disable SSL client certificate authentication.
2. Configure S1 for outgoing connections:

266 IBM® WebSphere® Application Server, Version 5.0.2: Security

a. Disable identity assertion.

b. Enable user ID and password authentication.

c. Disable SSL.

 Note: It is possible to enable SSL for inbound connections and disable SSL for

outbound connections. The same is true in reverse.

Configuring S2: In the administrative console, S2 is configured for incoming

requests to support identity assertion and to accept SSL connections. Configuration

for outgoing requests and connections are not relevant for this scenario.

Steps for this task

1. Disable identity assertion.

2. Enable user ID and password authentication.

3. Disable SSL.

Scenario 5: Interoperability with WebSphere Application Server

Version 4.x

S2

WebSphere Application
Server Version 4

(SAS Only)

message layer:
bob/”password”

message layer:
bob/”password”

transport layer: SSL

transport layer: SSL

WebSphere Application
Server Version 5
(SAS and CSIv2)

S3

Interoperability with WebSphere
Application Server Version V4.x

WebSphere Application
Server Version 5
(SAS and CSIv2)

S1

Scenario Explanation: The purpose of this scenario is to show how secure

interoperability can occur between different releases simultaneously while using

multiple authentication protocols (Security Authentication Service (SAS) and

Common Secure Interoperability Version 2 (CSIv2)). For a WebSphere Application

Server Version 5 server to communicate with a WebSphere Application Server

Version 4 server, the WebSphere Application Server Version 5 server must support

either IBM or BOTH as the protocol choice. By choosing BOTH, that Version 5

server also can communicate with other Version 5 servers that support CSI. If the

only servers in your security domain are WebSphere Application Server Version 5,

it is recommended that you choose CSI as the protocol because this prevents the

Chapter 10. Managing security 267

IBM interceptors from loading. However, if there is a chance that any server will

need to communicate with a previous release of WebSphere Application Server,

select the protocol choice of BOTH.

Configuring S1: S1 requires message layer authentication with an SSL transport.

The protocol for S1 must be BOTH. Configuration for incoming requests for S1 is

not relevant for this scenario. To configure s1 for outgoing connections:

Steps for this task

1. Disable identity assertion.

2. Enable user ID and password authentication.

3. Enable Secure Sockets Layer (SSL).

4. Disable SSL client certificate authentication.

5. Set authentication protocol to BOTH in the global security settings.

Configuring S2: All previous releases of WebSphere Application Server only

support the SAS authentication protocol. There are no special configuration steps

needed other than enabling global security on server (S2).

Configuring S3: In the administrative console, S3 is configured for incoming

requests to message layer authentication and to accept SSL connections.

Configuration for outgoing requests and connections are not relevant for this

scenario.

Steps for this task

1. Enable identity assertion.

2. Disable user ID and password authentication.

3. Enable SSL.

4. Disable SSL client authentication.

5. Set authentication protocol to either CSI or BOTH.

Secure Sockets Layer

The Secure Sockets Layer (SSL) protocol provides transport layer security:

authenticity, integrity, and confidentiality, for a secure connection between a client

and server in the WebSphere Application Server. The protocol runs above TCP/IP

and below application protocols such as Hypertext Transfer Protocol (HTTP),

Lightweight Directory Access Protocol (LDAP), and Internet Inter-ORB Protocol

(IIOP), and provides trust and privacy for the transport data.

Depending upon the SSL configurations of both the client and server, various

levels of trust, data integrity, and privacy can be established. Understanding the

basic operation of SSL is very important to proper configuration and to achieve the

desired protection level for both client and application data.

Some of the security features provided by SSL are data encryption to prevent the

exposure of sensitive information while data flows across the wire. Data signing

prevents unauthorized modification of data while data flows across the wire.

Client and server authentication ensures that you talk to the appropriate person or

machine. SSL can be effective in securing an enterprise environment.

SSL is used by multiple components within WebSphere Application Server to

provide trust and privacy. These components are the built-in HTTP transport, the

Object Request Broker (ORB), and the secure LDAP client.

268 IBM® WebSphere® Application Server, Version 5.0.2: Security

Browser HTTP
transport

WebSphere
Application

Server

ORB

JSSE

ORB

Enterprise
beans Client

JSSE

IHS

Web Server

Plug-in

G SKit

LDAP
Client

LDAP
ClientG Skit

(A) HTTP/HTTPS
request/response
over SSL

(D) HTTP/HTTPS
request/response
over SSL

(C) RMI/IIOP
over SSL

(B) HTTP/HTTPS
request/response
over SSL

In this figure:

v The built-in HTTP transport in a WebSphere Application Server accepts HTTP

requests over SSL from a Web client like a browser.

v The Object Request Broker used in WebSphere Application Server can perform

Internet Inter-ORB Protocol (IIOP) over SSL to secure the message.

v The secure LDAP client uses LDAP over SSL to securely connect to an LDAP

user registry and is present only when LDAP is configured as the user registry.

WebSphere Application Server and the IBMJSSE provider

The SSL implementation used by the WebSphere Application Server is IBM Java

Secure Sockets Extension (IBMJSSE). The IBMJSSE provider contains a reference

implementation supporting SSL and TLS protocols and an application

programming interface (API) framework. The IBM JSSE provider also comes with a

standard provider, which supplies RSA support for the signature-related JCA

features of the Java 2 platform, common SSL and TLS cipher suites, hardware

cryptographic token device, X.509-based key and trust managers, and PKCS12

implementation for a JCA keystore. A graphical tool called Key Management Tool

(iKeyman) also is provided to manage digital certificates. With this tool, you can

create a new key database or a test digital certificate, add CA roots to the database,

copy certificates from one database to another, as well as request and receive a

digital certificate from a CA.

Configuring JSSE is very similar to configuring most other SSL implementations

(for example, GSKit); however, a couple of differences are worth noting.

v JSSE supports both signer and personal certificate storage in an SSL key file, but

it also supports a separate file called a trust file. A trust file can contain only

signer certificates. You can put all of your personal certificates in an SSL key file

and your signer certificates in a trust file. This might be desirable, for example,

if you have an inexpensive hardware cryptographic device with only enough

Chapter 10. Managing security 269

memory to hold a personal certificate. In this case, the key file refers to the

hardware device and the trust file to a file on disk containing all of the signer

certificates.

v JSSE does not recognize the proprietary SSL key file format, which is used by

the plug-in (.kdb files). Instead, it recognizes standard file formats such as Java

Key Store (JKS). SSL key files might not be shared between the plug-in and

application server. Furthermore, a different implementation of the key

management utility must be used to manage application server key and trust

files.

There are also certain limitations with using Java Secure Socket Extension (JSSE):

v Customer code using JSSE and Java Cryptography Extension (JCE) APIs must

reside within a WebSphere Application Server environment. This includes

applications deployed in WebSphere Application Server and client applications

in the J2EE application client environment.

v Only com.ibm.crypto.provider.IBMJCE, com.ibm.jsse.IBMJSSEProvider,

com.ibm.security.cert.IBMCertPath, and

com.ibm.crypto.pkcs11.provider.IBMPKCS11 are provided as the cryptography

package providers.

v Interoperability of the IBMJSSE implementation with other SSL implementations

by vendors is limited to tested implementations. The tested implementations

include Microsoft Internet Information Services (IIS), BEA WebLogic Server, IBM

z/OS, IBM AIX, and IBM AS/400.

v Hardware token support is limited to “Cryptographic token support” on page

315..

v The SSL protocol of Version 2.0 is not supported. In addition, the JSSE and JCE

APIs are not supported with Java applet applications.

 WebSphere Application Server and the Federal Information Processing

Standards for Java Secure Socket Extension and Java Cryptography Extension

providers

The Federal Information Processing Standards (FIPS)-approved Java Secure Socket

Extension (JSSE) and Java Cryptography Extension (JCE) providers are optional in

WebSphere Application Server. By default, the FIPS-approved JSSE and JCE

providers are disabled. When these providers are enabled, WebSphere Application

Server uses FIPS-approved cryptographic algorithms in the IBMJSSEFIPS and

IBMJCEFIPS provider packages only.

Authenticity

Authenticity of client and server identities during a Secure Sockets Layer (SSL)

connection is validated by both communicating parties using public key

cryptography or asymmetric cryptography, to prove the claimed identity from each

other.

Public key cryptography is a cryptographic method that uses public and private keys

to encrypt and decrypt messages. The public key is distributed as a public key

certificate while the private key is kept private. The public key is also a

cryptographic inverse of the private key. Well known public key cryptographic

algorithms such as the Rivest Shamir Adleman (RSA) algorithm and

Diffie-Hellman (DH) algorithm are supported in the WebSphere Application Server.

270 IBM® WebSphere® Application Server, Version 5.0.2: Security

Public key certificates are either issued by a trusted organization like a Certificate

Authority (CA) or extracted from a self-signed personal certificate by using the

IBM Key Management Tool (iKeyman).

Note: A self-signed certificate is less secure and is not recommended for use in a

production environment.

The public key certificate includes the following information:

v Issuer of the certificate

v Expiration date

v Subject that the certificate represents

v Public key belonging to the subject

v Signature by the Issuer

You can link multiple key certificates into a certificate chain. In a certificate chain,

the client is always first, while the certificate for a root CA is last. In between, each

certificate belongs to the authority that issued the previous one.

During the Secure Sockets Layer (SSL) connection, a digital signature is also

applied to avoid forged keys. The digital signature is an encrypted hash and

cannot be reversed. It is very useful for validating the public keys.

SSL supports reciprocal authentication between the client and the server. This

process is optional during the handshake. By default, a WebSphere Application

Server client always authenticates its server during the SSL connection. For further

protection, you can configure a WebSphere application server for client

authentication.

Refer to the Transport Layer Security (TLS) specification at

http://www.ietf.org/rfc/rfc2246.txt for further information.

Confidentiality

Secure Sockets Layer (SSL) uses private or secret key cryptography or symmetric

cryptography to support message confidentiality or privacy. After an initial

handshake (a negotiation process by message exchange), the client and server

decide on a secret key and a cipher suite. Between the communicating parties, each

message encryption and decryption using the secret key occurs based on the cipher

suite.

Private key cryptography requires the two communicating parties to use the same

key for encryption and decryption. Both parties must have the key and keep the

key private. Well known secret key cryptographic algorithms include the Data

Encryption Standard (DES), triple-strength DES (3DES), and Rivest Cipher 4 (RC4),

which are all supported in WebSphere Application Server. These algorithms

provide excellent security and quick encryption.

A cryptographic algorithm is a cipher, while a set of ciphers is a cipher suite. A

cipher suite is a combination of cryptographic parameters that define the security

algorithms and the key sizes used for authentication, key agreement, encryption

strength and integrity protection.

The following cipher suites are supported in WebSphere Application Server:

v SSL_RSA_WITH_RC4_128_SHA

v SSL_RSA_WITH_RC4_128_MD5

Chapter 10. Managing security 271

v SSL_RSA_WITH_DES_CBC_SHA

v SSL_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_DSS_WITH_DES_CBC_SHA

v SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

v SSL_RSA_EXPORT_WITH_RC4_40_MD5

v SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

v SSL_RSA_WITH_NULL_MD5

v SSL_RSA_WITH_NULL_SHA

v SSL_DH_anon_WITH_RC4_128_MD5

v SSL_DH_anon_WITH_DES_CBC_SHA

v SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

v SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

v SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

All of the previously mentioned cipher suites provide data integrity protection by

using hash algorithms like MD5 and SHA-1. The cipher suite names ending with

_SHA indicate that the SHA-1 algorithm is used. SHA-1 is considered a stronger

hash, while MD5 provides better performance.

The SSL_DH_anon_xxx cipher suites (for example, those that begin with

SSL_DH_anon_, where, anon is anonymous) are not enabled on the product client side.

Since the Java Secure Socket Extension (JSSE) client trust manager does not allow

anonymous connections, the JSSE client must always establish trust in the server.

However, the SSL_DH_anon_xxx cipher suites are enabled on the server side to

support another type of client connection. That client might not require trust in the

server. These cipher suites are vulnerable to man-in-the-middle attacks and are

strongly discouraged.

Where:

 Name Description

SSL Secure Sockets Layer

RSA v Public key algorithm developed by Rivest,

Shamir and Adleman

v Requires RSA or DSS key exchange

DH v Diffie-Hellman public key algorithm

v Server certificate contains the

Diffie-Hellman parameters signed by the

certificate authority (CA)

DHE v Ephemeral Diffie-Hellman public key

algorithm

v Diffie-Hellman parameters are signed by a

DSS or RSA certificate, which is signed by

the certificate authority (CA)

DSS Digital Signature Standard, using the Digital

Signature Algorithm for digital signatures

DES v Data Encryption Standard, an symmetric

encryption algorithm

v Block cipher

v Performance cost is high when using

software without the support of a

hardware cryptographic device

272 IBM® WebSphere® Application Server, Version 5.0.2: Security

Name Description

3DES v Triple DES, increasing the security of DES

by encrypting three times with different

keys

v Strongest of the ciphers

v Performance cost is very high when using

software without the support of a

hardware cryptographic device support

RC4 v A stream cipher designed for RSA

v Variable key-size stream cipher with key

length from 40 bits to 128 bits

EDE Encrypt-decrypt-encrypt for the triple DES

algorithm

CBC v Cipher block chaining

v A mode in which every plain text block

encrypted with the block cipher is first

exclusive-ORed with the previous

ciphertext block

128 128-bit key size

40 40-bit key size

EXPORT Exportable

MD5 v Secure hashing function that converts an

arbitrarily long data stream into a digest of

fixed size

v Produces 128-bit hash

SHA v Secure Hash Algorithm, same as SHA-1

v Produces 160-bit hash

anon For anonymous connections

NULL No encryption

WITH The cryptographic algorithm is defined after

this key word

Refer to the Transport Layer Security (TLS) specification at

http://www.ietf.org/rfc/rfc2246.txt for further information.

Integrity

Secure Sockets Layer (SSL) uses a cryptographic hash function similar to

checksum, to ensure data integrity in transit. Use the cryptographic hash function

to detect accidental alterations in the data. This function does not require a

cryptographic key. Once a cryptographic hash is created, the hash is encrypted

with a secret key. The private key belonging to the sender encrypts the hash for

the digital signature of the message.

When secret key information is included with the cryptographic hash, the resulting

hash is known as a Key-Hashing Message Authentication Code (HMAC) value. HMAC

is a mechanism for message authentication that uses cryptographic hash functions.

Use this mechanism with any iterative cryptographic hash function, in combination

with a secret shared key.

In the product, both well known one-way hash algorithms, MD5 and SHA-1, are

supported. One-way hash is an algorithm that converts processing data into a

string of bits known as a hash value or a message digest. One-way means that it is

Chapter 10. Managing security 273

extremely difficult to turn the fixed string back into the original data. The

following explains both the MD5 and SHA-1 one-way hash algorithms:

v MD5 is a hash algorithm designed for a 32-bit machine. It takes a message of

arbitrary length as input and produces a 128-bit hash value as output. Although

this process is less secure than SHA-1, MD5 provides better performance.

v SHA-1 is a secure hash algorithm specified in the Secure Hash Standard. It is

designed to produce a 160-bit hash. Although it is slightly slower than MD5, the

larger message digest makes it more secure against attacks like brute-force

collision.

Refer to the Transport Layer Security (TLS) specification at

http://www.ietf.org/rfc/rfc2246.txt(http://www.ietf.org/rfc/rfc2246.txt) for further

information.

Configuring Secure Sockets Layer

Secure Sockets Layer (SSL) is used by multiple components within WebSphere

Application Server to provide trust and privacy. These components are the built-in

HTTP Transport, the Object Request Broker (ORB) (client and server), and the

secure Lightweight Directory Access Protocol (LDAP) client. Configuring SSL is

different between client and server with WebSphere Application Server.

Steps for this task

1. Use the sas.client.props file located in the install_root/properties

directory.

 The sas.client.props file is a configuration file that contains lists of

property-value pairs, using the syntax <property> = <value>. The property

names are case sensitive, but the values are not; the values are converted to

lowercase when the file is read. By default, the sas.client.props file is located in

the properties directory under the install_root of your WebSphere Application

Server installation. Specify the following properties for an SSL connection:

v For the CSI and Security Authentication Service (SAS) authentication

protocols:

– com.ibm.ssl.protocol

– com.ibm.ssl.keyStoreType

– com.ibm.ssl.keyStore

– com.ibm.ssl.keyStorePassword

– com.ibm.ssl.trustStoreType

– com.ibm.ssl.trustStore

– com.ibm.ssl.trustStorePassword

– com.ibm.ssl.enabledCipherSuites

– com.ibm.ssl.contextProvider

– com.ibm.ssl.keyStoreServerAlias

– com.ibm.ssl.keyStoreClientAlias

v For the SAS authentication protocol only:

– com.ibm.CORBA.standardPerformQOPModels

v For the cryptographic token device:

– com.ibm.ssl.tokenType

– com.ibm.ssl.tokenLibraryFile

– com.ibm.ssl.tokenPassword

274 IBM® WebSphere® Application Server, Version 5.0.2: Security

2. Use the administrative console to configure an application server that makes

SSL connections. To start the administrative console, specify URL:

http://<server_hostname>:9090/admin.

 Create an “Creating a secure sockets layer repertoire configuration entry” on

page 290 alias or entry. You can select the alias later when a component is

configured for SSL support. An SSL configuration repertoires entry contains the

following fields:

v Typical configuration settings:

– Alias

– Key file name

– Key file password

– Key file format

– Trust file name

– Trust file password

– Trust file format

– Client authentication

– Security level

– Cipher suites
v For the cryptographic token device:

– Cryptographic token (Create the alias first so you can configure these

fields).

- Token type

- Library file

- Password
v For additional Java properties:

– Custom properties (Create the alias first so you can configure these fields).

- com.ibm.ssl.contextProvider

- com.ibm.ssl.protocol

Configuring Secure Sockets Layer for Web client

authentication

Before you begin

To enable client-side certificate-based authentication, you must modify the

authentication method defined on the J2EE Web module that you want to manage.

It might be that the Web module already is configured to use the basic challenge

authentication method. In this case, modify the challenge type to client certificate.

This functionality is delivered to the WebSphere Application Server administrator

in the Application Assembly Tool (AAT). However, developers can use the

WebSphere Application Server Studio Application Development environment to

achieve the same result.

Steps for this task

1. Launch the WebSphere Application Assembly Tool (AAT).

 This step can be done either before an enterprise application archive .ear file is

deployed into the WebSphere Application Server or after deployment into the

product. The latter option is discouraged in a production environment because

it involves opening the expanded archive correlating to the enterprise

application archive, found in the installedApps directory.

Chapter 10. Managing security 275

2. Locate and expand the Web module package under the application for which

you wish to enable the client side certificate authentication method.

3. Select the appropriate Web application, and switch to the Advanced tab.

Modify the authentication method to client certificate. The realm name is the

scope of the login operation and is the same for all participating resources.

4. Click OK, and save the changes you made with AAT.

5. Stop and restart the associated application server containing the resource, so

that the security modification is included in the run time. Complete this action

if the modification was made to a resource already deployed in the WebSphere

Application Server.

Results

Now your enterprise application prompts the user for proof of identity with a

certificate.

Note: The Web server must also be configured to request a client certificate. If the

Web server is external, refer to the appropriate configuration documentation. If the

Web server is the Web container transport (for example, 9043) within WebSphere

Application Server, verify that the client authentication flag is selected in the

referenced SSL configuration.

Refer to the ″“Map certificates to users” on page 314″ article to determine how a

certificate is authenticated within the product.

Usage scenario

To enable user login with certificates.

Configuring secure sockets layer for the lightweight directory

access protocol client

This topic describes how to establish a Secure Sockets Layer (SSL) connection

between WebSphere Application Server and a Lightweight Directory Access

Protocol (LDAP) server. This page provides an overview. Refer to the linked pages

for more details. To understand SSL concepts, refer to “Secure Sockets Layer” on

page 268.

Setting up an SSL connection between WebSphere Application Server and an LDAP

server requires the following steps:

Steps for this task

1. Set up an LDAP server with users.

 The server configured in this example is IBM Directory Server. Other servers

are configured differently. Refer to the documentation of the directory server

you are using for details on SSL enablement. For product supported LDAP

directory server, see the article, “Supported directory services” on page 154.

2. Configure certificates for the LDAP Server using the key management utility

(iKeyman) that is shipped with the IBM HTTP Server product.

3. Click Key Database File > New.

4. Type LDAPkey.kdb as the file name and a proper path.

5. Click Personal Certificates > New Self-Signed Certificate. The Create New

Self-Signed Certificate panel appears. Type the following information in the

fields:

276 IBM® WebSphere® Application Server, Version 5.0.2: Security

Key Label

LDAP_Cert

Common Name

droplet.austin.ibm.com

 This common name is the host name where the WebSphere Application

Server plug-in runs.

Organization

ibm

Country

US

a. Click OK.
6. Return to the Personal Certificates panel and click Extract Certificate.

7. Click data type, Base64-encoded ASCII data. Type LDAP_cert.arm as the file

name and a proper path. Click OK.

8. Enable SSL on the LDAP server:

a. Copy the LDAPkey.kdb, LDAPkey.sth, LDAPkey.rdb, and LDAPkey.crl files

created previously to the LDAP server system, for example, the \Program

Files\IBM\LDAP\ssl\ directory.

b. Open the LDAP Web administrator from a browser

(http://secnt3.austin.ibm.com/ldap, for example). IBM HTTP Server is

running on secnt3.

c. Click SSL properties to open the SSL Settings window.

d. Click SSL On > Server Authentication and type an SSL port (636, for

example) and a full path to the LDAPkey.kdb file.

e. Click Apply, and restart the LDAP server.
9. Manage certificates for WebSphere Application Server using the default SSL key

files.

a. Open install_root\etc\DummyServerTrustFile.jks using the key

management utility that shipped with WebSphere Application Server. The

password is WebAS.

b. Click Personal Certificates with the pull-down tab. Click Import.

 The Import Key panel appears. Specify LDAP_cert.arm for the file name.

Complete this step for all the servers including the deployment manager.
10. Establish a connection between the WebSphere Application Server and the

LDAP server.

a. In the administrative console, click User Registry > LDAP User Registry >

LDAP Settings. Fill in the Server ID, Server Password, Type, Host, Port,

and Base Distinguished Name fields. Select the SSL Enabled check box.

The port is the one that the LDAP server is using for SSL (636, for

example). Then, click Apply.

b. Click Authentication Mechanisms > LTPA > Single SignOn (SSO). Type

in a domain name (austin.ibm.com, for example). Then click Apply.
11. Enable global security.

a. Click Security > Global Security. Select the Enabled check box. Choose

LTPA as the active authentication mechanism and LDAP as the active user

registry. Then click Apply and Save.

 Note: The default security level is HIGH (128-bit). Verify that the security

level for the LDAP server is set to HIGH. Check the file

Chapter 10. Managing security 277

LDAP_install_root\etc\slapd32.conf; verify that the parameter

ibm-slapdSSLCipherSpecs has the value, 15360, instead of 12288.

b. Restart the servers. Restarting the servers ensures that the security settings

are synchronized between the deployment manager and the application

servers.

Results

You can test the configuration by accessing

https://fully_qualified_host_name:9443/snoop. You are presented with a login

challenge.

Usage scenario

This can be beneficial when using LDAP as your user registry. Sensitive

information can flow between the WebSphere Application Server and the LDAP

server, including passwords. Using SSL to encrypt the data protects this sensitive

information.

What to do next

1. If you are enabling security, make sure you complete the remaining steps. As

the final step, validate this configuration by clicking OK or Apply in the

Global Security panel. Save, stop and start all WebSphere Application Servers.

Refer to the article, Configuring global security for detailed steps on enabling

global security.

2. For changes in this panel to become effective, save, stop and start all

WebSphere Application Servers (cells, nodes and all the application servers).

3. Once the server starts up, go through all the security related tasks (getting

users, getting groups, and so on) to make sure the changes to the filters are

functioning.

Configuring IBM HTTP Server for secure sockets layer mutual

authentication

Before you begin

IBM HTTP Server, version 1.3.24 and later, supports Secure Sockets Layer (SSL)

Version 2 and Version 3 and Transport Layer Security (TLS) Version 1. IBM HTTP

Server is based on the Apache Web server, but for SSL configuration it requires the

IBM-supplied SSL modules, rather than the OpenSSL modules. This document

describes configuration of IBM HTTP Server, although it is possible to use another

supported Web server.

SSL is disabled by default and it is necessary to modify a configuration file and

generate a server-side certificate using the key management utility (iKeyman)

provided with IBM HTTP Server to enable SSL.

Steps for this task

 1. For a single server, enable SSL on IBM HTTP Server (port 443,for example).

 2. To set up certificates complete the following:

 Start the key management utility by clicking Start > Programs > IBM HTTP

Server > Start Key Management Utility. Refer to “Requesting certificate

authority-signed personal certificates” on page 308, “Creating self-signed

278 IBM® WebSphere® Application Server, Version 5.0.2: Security

personal certificates” on page 307, “Receiving certificate authority-signed

personal certificates” on page 310, and “Extracting public certificates for

truststore files” on page 311.

 3. Create a key database and click Key Database File > New.

 4. Type a file name, serverkey.kdb, for example, and the location path. Click

OK.

 5. Type a password, select the Stash the password to a file check box and click

OK.

 6. Obtain a personal certificate for IBM HTTP Server: Click Personal Certificate

Requests in the key management utility menu. Click New. The Create New

Key and Certificate Request panel appears. Complete the following

information:

Key label

Server_Cert

Common name

droplet.austin.ibm.com

Organization

IBM

Country

US

File name

Server_certreq.arm

The Verisign Test CA Root Certificate is in the set of signer certificates shipped

with the IKeyMan for IBM HTTP Server.

 7. Go to URL http://www.verisign.com, click Get Free Trial SSL ID. Complete

the profile information, click Submit, and click Continue twice.

 8. Use your favorite text editor to edit the request file Server_certreq.arm, and

copy the entire contents of the file into the browser request panel. Click

Continue.

 VeriSign displays the Personal Certificate in the browser.

 9. Copy and paste this certificate into a file, for example Server_Cert.arm. Click

Personal Certificate from the menu in the key management utility. Click

Receive. Specify the file name, Server_Cert.arm, and click OK. Close the

serverkey.kdb file.

10. To allow IBM HTTP Server to support HTTPS, port 443, for example, enable

SSL on IBM HTTP Server. Modify the configuration file of IBM HTTP Server,

<IHS_HOME>/conf/httpd.conf. You also can enable SSL can be enabled through

the IBM HTTP Server administrative console also. Open the file

<IHS_HOME>/conf/httpd.conf and then add the following lines above the line

Alias /IBMWebAS/ ″install_root/web″:

LoadModule ibm_ssl_module modules/IBMModuleSSL128.dll

install_root/bin/mod_ibm_app_server_http.dll

Listen 443

<VirtualHost droplet.austin.ibm.com:443>

ServerName droplet.austin.ibm.com

DocumentRoot install_root\htdocs

SSLEnable

#SSLClientAuth required

SSLDisable

Keyfile <IHS_HOME>/serverkey.kdb

Chapter 10. Managing security 279

Note: Change the host name and the path for the key file accordingly. Modify

the Web server to support client certificates by uncommenting the

SSLClientAuth directive shown in the httpd.conf file.

 SSLClientAuth required

11. Restart IBM HTTP Server.

12. Test SSL between a browser and IBM HTTP Server by accessing the following

URL: https://droplet.austin.ibm.com.

 Welcome to the IBM HTTP Server appears on the browser.

13. Follow the prompts to select a personal certificate if the SSLClientAuth

directive is set to required.

14. To enable the application server to communicate with IBM HTTP Server using

port 443, add the host alias on the default_host. Click Environment > Virtual

Hosts > default host > Host Aliases > New.

 Enter the following information in the appropriate fields:

Host name

*

Port type

443

15. Click Apply and Save to write to the security.xml file.

16. Click Update Web Server Plugin, and then click OK.

17. Restart WebSphere Application Server.

18. Test your connection by accessing the following:

https://droplet.austin.ibm.com:443/snoop.

Results

You can connect to the Snoop servlet.

Usage scenario

Enable Secure Sockets Layer communication between IBM HTTP Server and the

WebSphere Application Server.

Configuring the IBM HTTP Server for distributed platforms and

the Web server plug-in for Secure Sockets Layer

Before you begin

This section documents the configuration necessary to instantiate a secure

connection between the Web server plug-in and the embedded HTTP server in the

WebSphere Application Server Web container on a distributed platform. By default,

this connection is not secure, even when global security is enabled. This document

discusses the configuration for the IBM HTTP Server Version 1.3.24; however, the

Web server related configuration in this situation is not specific to any distributed

platform Web server.

Steps for this task

1. “Creating self-signed personal certificates” on page 307.

 The Web server plug-in requires a key ring file to store its own private and

public key files and to store the public certificate from the Web container key

file. The following steps are required to generate a self-signed certificate for the

Web server plug-in.

280 IBM® WebSphere® Application Server, Version 5.0.2: Security

a. Create a directory on the Web server host for storing the key ring file

referenced by the plug-in and associated files, for example:

IHS_install_root\conf\keys.

b. Launch the key management utility (iKeyman) packaged with the IBM

HTTP Server.

c. From the iKeyman menu, click Key Database File > New.

d. Enter the following settings:

Key database file

CMS Key Database File

File name

WASplugin.kdb

Location

C:\http1324\conf\keys\(or file of your choice)
e. Click OK.

f. Set the password of your choice at the password prompt. Select the Stash

the Password to a File check box to save the password to a stash file. This

action allows the plug-in to use the password, which provides access to the

certificates contained in the key database.

g. From the iKeyman menu, click Create > New Self-Signed Certificate to

create a new self-signed certificate key pair. Specify the following options.

Optionally, you can choose to complete all of the remaining fields.

Key label

WASplugin

Version

X509 V3

Key size

1024

Common name

droplet.austin.ibm.com

Organization

IBM

Country

US

Validity period

365

h. Click OK.

i. Extract the public self-signed certificate key: this key is used later by the

embedded HTTP server peer to authenticate connections originating from

the plug-in.

j. Click Personal Certificates in the menu and select the WASplugin certificate

that you just created.

k. Click Extract Certificate. Extract the certificate to a file:

Data type

Base64-encoded ASCII data

Certificate file name

WASpluginPubCert.arm

Chapter 10. Managing security 281

Location

C:\http1324\conf\keys (or directory of your choice)
l. Click OK.

m. Close the key database and exit the iKeyman when you finish.
2. Generate a self-signed certificate for the Web container.

a. Launch the JKS capable iKeyman version located the product /bin directory.

b. Click Key Database File > New from the iKeyman menu.

c. Enter the following settings:

Key database file

JKS

File name

WASWebContainer.jks

Location

C:\WebSphere\AppServer\etc\ (or directory of your choice)
d. Click OK.

e. Enter the password of your choice at the password prompt window.

f. Click Create > New Self-Signed Certificate from the iKeyman menu. The

following values were used in this example:

Key Label

WASWebContainer

Version

X509 V3

Key size

1024

Common name

droplet.austin.ibm.com

Organization

IBM

Country

US

Validity Period

365

g. Click OK.

h. Extract the public self-signed certificate key: this key is used later by the

Web server plug-in peer to authenticate connections originating from the

embedded HTTP server in the product.

i. Click Personal Certificates from the list. Select the WASWebContainer

certificate that you just created. Click Extract Certificate. Extract the

certificate to a file:

 Data type

Base64-encoded ASCII data

Certificate file name

WASWebContainerPubCert.arm

Location

C:\WebSphere\AppServer\etc\

j. Click OK.

282 IBM® WebSphere® Application Server, Version 5.0.2: Security

k. Close the database and exit the key management utility.
3. Exchange the public certificates.

a. Copy the WASpluginPubCert.arm file from the Web server machine to the

WebSphere Application Server machine. The source directory in this case is

C:\http1324\conf\keys, while the destination is

C:\WebSphere\Appserver\etc.

b. Copy the WASWebContainerPubCert.arm file from the product machine to the

Web server machine. The source directory in this case is

C:\WebSphere\Appserver\etc, while the destination is

C:\http1324\conf\keys.
4. Import the certificate into the Web server plug-in key file.

a. On the Web server machine, launch the key management utility that

supports the CMS key database format.

b. From the iKeyman menu, click Key Database File > Open and select the

previously created key database file: WASplugin.kdb.

c. In the password prompt window, enter the password. Click OK.

d. Click Signer Certificates from the list and click Add. This action imports

the public certificate previously extracted from the embedded HTTP server

(Web container) keystore file.

Data type

Base64-encoded ASCII data

Certificate file name

WASWebContainerPubCert.arm

Location

C:\WebSphere\Appserver\etc\

e. Click OK.

 You are prompted for a label name that represents the trusted signer public

certificate.

f. Enter a label for the certificate: WASWebContainer.

g. Close the key database and exit IKeyman when you finish.
5. Import the certificate into the Web container keystore file.

a. On the WebSphere Application Server machine, launch the JKS capable

iKeyman version, located in the product /bin directory.

b. From the iKeyman menu, select Key Database File > Open. Select the

previously created WASWebContainer.jks file.

c. In the password prompt window, enter the password. Click OK.

d. Click Signer Certificates from the list. Click Add. This action imports the

public certificate previously extracted from the embedded HTTP server

(Web container) keystore file.

Data type

Base64-encoded ASCII data

Certificate file name

WASpluginPubCert.arm

Location

C:\WebSphere\Appserver\etc\

e. Click OK.

 You are prompted for a label name that represents the trusted signer public

certificate.

Chapter 10. Managing security 283

f. Enter a label for the certificate: WASplugin.

g. Close the key database and exit iKeyman when you finish.
6. Modify the Web server plug-in file.

 In a production environment, add the secure transport definition, port 9443, to

the plugin-key.kdb file. For example, your modified plugin-key.kdb file

contains the following lines:

<Transport Hostname="hpws07" Port="9080" Protocol="http"/>

<Transport Hostname="hpws07" Port="9443" Protocol="https"/>

7. Modify the Web container to support SSL.

 To complete the configuration between Web server plug-in and Web container,

modify the WebSphere Application Server Web container to use the previously

created self-signed certificates.

a. Start the WebSphere Application Server administrative console.

b. Click Security > SSL Configuration Repertoires.

c. Click New to create a new entry in the repertoire. Provide the following

values to complete the form:

Alias WebContainerSSLSettings

Key file name

C:\WebSphere\Appserver\etc\WASWebContainer.jks

Key file password

<key_file_password>

Key file format

JKS

Trust file name

C:\WebSphere\Appserver\etc\WASWebContainer.jks

Trust file password

<trust_file_password>

Trust file format

JKS

Client authentication

Security level

HIGH

d. Click OK.

e. If you want mutual SSL between the two parties, select the Client

Authentication check box.

f. Save the configuration in the administrative console.

g. Click Servers > Application Servers, server_name, in this example, server1.

h. Click the Web container located in the server navigation tree.

i. Click HTTP Transport located in the Web container navigation tree.

j. Select the entry for the transfer you want to secure. Click the item under the

Host column. Select the asterisk (*), in this case, in the line of port 9443.

k. On the configuration panel, select the Enable SSL check box. Click the

desired SSL entry from the SSL repertoire list. In this example, the

WebContainerSSLSettings.

l. Click OK.
8. Test the secure connection.

284 IBM® WebSphere® Application Server, Version 5.0.2: Security

Test the secure connection by accessing a Web application on the WebSphere

Application Server using port 9443. For example,

https://droplet.austin.ibm.com:9443/snoop.

9. Import the correct certificate with public and private keys into the browser to

test the secured connection, when client-side certification is required.

a. Launch the iKeyman utility that supports the CMS key database file, on the

Web server machine.

b. Open the key file for the plug-in, C:\http1324\conf\keys\WASplugin.kdb.

Provide the password when prompted.

c. Click WASplugin certificate, located under the Personal Certificates. Click

Export.

d. Save the certificate in PKCS12 format to a file, for example

C:\http1324\conf\keys\WASplugin.p12 . Provide a password to secure the

PKCS12 certificate file.

e. Close the key file and exit iKeyman.

f. Copy the saved WASplugin.p12 file to the client machine from where you

access the product server.

g. Import the PKCS12 file into your browser. Then access

https://droplet.austin.ibm.com:9443/snoop.

h. The browser asks which personal certificate to use for the connection. Select

the certificate, and continue connecting.

i. Once the browser test with direct product access is successful, test the

connection through the Web server using port 9443, and client certificate,

https://droplet.austin.ibm.com:443/snoop.

Results

The IBM HTTP Server plug-in and the internal Web server are configured for SSL.

Usage scenario

Enabling Secure Sockets Layer (SSL) communication between the IBM HTTP Server

plug-in and the embedded HTTP server (Web container) in the WebSphere

Application Server.

What to do next

Configuring Secure Sockets Layer for Java client

authentication

WebSphere Application Server supports Java client authentication using a digital

certificate when the client attempts to make a Secure Sockets Layer (SSL)

connection. The authentication occurs during an SSL handshake. The SSL

handshake is a series of messages exchanged over the SSL protocol to negotiate for

connection-specific protection. During the handshake, the secure server requests

the client to send back a certificate or certificate chain for the authentication.

Before you begin

To configure SSL for Java client authentication, consider the following questions:

v Have you enabled security with your WebSphere Application Server? Refer to

Configuring global security for more details.

Chapter 10. Managing security 285

v Have you configured CSI authentication protocol for your target application

server? Refer to “Configuring global security” on page 110 for more details.

 Note: The Security Authentication Service (SAS) authentication protocol does not

support Java client authentication with SSL transport.

v Have you configured your server to support secure transport for the inbound

CSI authentication protocol?

v Have you configured your server to support client authentication at the

transport layer for the inbound CSI authentication protocol?

v If you are using a self-signed personal certificate, have you exported the public

certificate from your client application Java keystore file or cryptographic token

device?

v If you are using a certificate authority (CA)-signed personal certificate, have you

received the root certificate of the CA?

v If you are using a self-signed personal certificate, have you imported the public

certificate into your target Java truststore file as a signer certificate?

v If you are using a CA-signed (certificate authority) personal certificate, have you

imported the CA root certificate into your target Java trustStore file as a signer

certificate?

v Does the common name (CN) specified in your personal certificate name exist in

your configured user registry?

If you answer yes to all these questions, you can configure SSL for Java client

authentication.

Note: Java client authentication using digital certificates is supported only by the

Common Secure Interoperability Version 2 (CSIv2) authentication protocol.

Steps for this task

1. “Configuring Common Secure Interoperability Version 2 for Secure Sockets

Layer client authentication.”

2. “Adding keystore files” on page 288.

3. “Adding truststore files” on page 289.

4. Save changes.

5. Restart the server if you have configured the server.

Usage scenario

Secure client connects to a secure Internet InterORB Protocol (IIOP) server that

requires client authentication at the transport layer.

What to do next

If a connection problem occurs, you can set a Java property, javax.net.debug=true,

before you run your client or your server to generate debugging information. See

(Troubleshooting security configurations) for further information about how to

debug an IBM JSSE problem.

Configuring Common Secure Interoperability Version 2 for

Secure Sockets Layer client authentication

Before you begin

Configure the Secure Sockets Layer (SSL) client authentication using the

sas.client.props configuration file or the administrative console. To configure a

286 IBM® WebSphere® Application Server, Version 5.0.2: Security

Java client application, use the sas.client.props configuration file. By default, the

sas.client.props file is located in the properties directory under the install_root

of your WebSphere Application Server installation.

To configure a WebSphere Application Server, use the administrative console. To

start the administrative console, specify URL: http://<server

host_name>:9090/admin.

To configure a Java client application, complete the following steps, which explain

how to edit the sas.client.props file.

Steps for this task

1. To require SSL client authentication, set property

com.ibm.CSI.performTLClientAuthenticationRequired=true.

 Do not set this property unless you know your target server also supports SSL

client authentication for the inbound CSI authentication protocol.

2. To support SSL client authentication, set the property

com.ibm.CSI.performTLClientAuthenticationSupported=true.

3. To specify the CSI protocol, set the property com.ibm.CSI.protocol=csiv2.

4. To match the SSL protocol configured with your server, set the property,

com.ibm.ssl.protocol, accordingly.

5. Specify the com.ibm.CORBA.ConfigURL property with the fully qualified path

of your Java property file when you run your application.

 For example,

-Dcom.ibm.CORBA.ConfigURL=file:/c:/WebSphere/AppServer/properties/sas.client.props

file:/WebSphere/V5R0M0/AppServer .

To configure a WebSphere Application Server, complete the following steps

Steps for this task

1. Start the administrative console.

2. Expand Security > Authentication Protocol.

3. Click CSIv2 Inbound Authentication.

4. Select Supported or Required for Client Certificate Authentication.

5. Click OK.

6. If you selected Required in step 4, configure the CSIv2 outbound

authentication as well to support the client certificate authentication. Otherwise,

you can skip this step. Click CSIv2 Outbound Authentication and select either

Supported or Required for Client Certificate Authentication.

7. Click CSIv2 Outbound Transport. Select an SSL setting from the SSLSettings

list for keystore, truststore, cryptographic token, SSL protocol, and ciphers use.

Create an alias from the SSL Configuration Repertoires panel for an SSL setting.

Update the SSL setting selected in CSIv2 Inbound Transport accordingly.

8. Save your configuration.

9. Restart the server for the changes to become effective.

Results

Client authentication using digital certificates is performed during SSL connection.

Usage scenario

Chapter 10. Managing security 287

A secure client connects using SSL to a secure Internet InterORB Protocol (IIOP)

server with client authentication at the transport layer.

What to do next

Specify the keystore and truststore files in your configuration.

Adding keystore files

A keystore file contains both public keys and private keys. Public keys are stored

as signer certificates while private keys are stored in the personal certificates. In

WebSphere Application Server, adding keystore files to the configuration is

different between client and server. For the client, a keystore file is added to a

property file like sas.client.props. For the server, a keystore file is added through

the WebSphere Application Server administration console.

Before you begin

Before you add the keystore file to your configuration, consider the following

questions:

v Is a self-signed or a certificate authority (CA)-signed personal certificate created

in the keystore file?

v If you configure for client authentication using digital certificates, is the public

key of the signed personal certificate imported as a signer certificate into the

server truststore file?

Steps for this task

1. Add a keystore file into a client configuration by editing the sas.client.props

file and setting the following properties:

v com.ibm.ssl.keyStoreType for the keystore format. Range: JKS (default),

PKCS12KS, JCEK.

v com.ibm.ssl.keyStore for a fully qualified path to the keystore file. The

keystore file contains private keys and sometimes public keys.

v com.ibm.ssl.keyStorePassword for the password to access the keystore file.

2. Add a keystore file into a server configuration:

a. Start the WebSphere administrative console by specifying the following

URL: http://<server hostname>>:9090/admin.

b. Click Security > SSL Configuration Repertoires.

c. Create a new Secure Sockets Layer (SSL) setting alias if one does not exist.

d. Select the alias that you want to add into the keystore file.

e. Type in the Key File Name for the path of the keystore file.

f. Type in the Key File Password for the password to access the keystore file.

g. Select the Key File Format for the keystore type. Range: JKS (default),

PKCS12KS, or JCEK.

h. Click OK and Save to save the configuration.

Results

The SSL configuration alias now has a valid keystore file for an SSL connection.

Note: If the Cryptographic Token field is selected and you only want to use

cryptographic tokens for your keystore file, leave the Key File Name field and the

Key File Password field blank.

288 IBM® WebSphere® Application Server, Version 5.0.2: Security

Usage scenario

v SSL connection for Internet InterORB Protocol (IIOP)

v SSL connection for Lightweight Directory Access Protocol (LDAP)

v SSL connection for Hypertext Transfer Protocol (HTTP)

Adding truststore files

Before you begin

A truststore file is a key database file that contains public keys. The public key is

stored as a signer certificate. The keys are used for a variety of purposes, including

authentication and data integrity. In WebSphere Application Server, adding

truststore files to the configuration is different between client and server. For the

client, a truststore file is added to a property file, like sas.client.props. For the

server, a truststore file is added through the WebSphere Application Server

administrative console.

Before you add the truststore file to your configuration, the following questions:

v If you configure for client authentication using digital certificate, has the public

key of the client personal certificate been imported as a signer certificate into the

server truststore file?

v Does the truststore file contain all the required signer certificates with respect to

the keystore files of the target servers?

Steps for this task

1. Add a truststore file into a client configuration, by editing the

sas.client.props file and set the following properties:

v com.ibm.ssl.trustStoreType for the truststore format. Range: JKS (default),

PKCS12KS, JCEK.

v com.ibm.ssl.trustStore for a fully qualified path to the truststore file. The

truststore file contains the public keys.

v com.ibm.ssl.trustStorePassword for the password to access the truststore file.

2. Add a truststore file into a server configuration:

a. Start the WebSphere administrative console by specifying the following

URL: http://<server host_name>:9090/admin.

b. Click Security > SSL.

c. Create a new Secure Sockets Layer (SSL) setting alias if one does not exist.

d. Select the alias that you want to add into the truststore file.

e. Type the Trust File Name for the path of the truststore file.

f. Type the Trust File Password for the password to access the truststore file.

g. Select the Trust File Format for the truststore type. JKS (Default),

PKCS12KS, JCEK.

h. Click OK and Save to save the configuration.

Results

The SSL configuration alias now contains a valid truststore file for an SSL

connection.

Usage scenario

v SSL connection for Internet InterORB Protocol (IIOP)

v SSL connection for Lightweight Directory Access Protocol (LDAP)

Chapter 10. Managing security 289

v SSL connection for Hypertext Transfer Protocol (HTTP)

Creating a secure sockets layer repertoire configuration entry

Before you begin

The first step in configuring Secure Sockets Layer (SSL) is to define an SSL

configuration repertoire. A repertoire contains the details necessary for building an

SSL connection, such as the location of the key files, their type and the available

ciphers. WebSphere Application Server provides a default repertoire called

DefaultSSLSettings. To view this page in the administrative console, click Security

> SSL to see the list of SSL repertoire settings.

The appropriate repertoire is referenced during the configuration of a service that

sends and receives requests encrypted using SSL, such as the Web and enterprise

beans containers. If an SSL configuration alias is referenced elsewhere, but the alias

is deleted from the SSL Configuration Repertoires panel, the SSL connection will

fail if the deleted alias is accessed.

With the SSL configuration repertoire, administrators can define SSL settings to use

for making Hypertext Transfer Protocol with SSL (HTTPS), Internet InterORB

Protocol with SSL (IIOPS) or Lightweight Directory Access Protocol with SSL

(LDAPS) connections. You can pick one of the SSL settings defined here from any

location within the administrative console, which supports SSL connections. This

simplifies the SSL configuration process because you can reuse many of these SSL

configurations by specifying the alias in multiple places.

Steps for this task

 1. From the SSL Configuration Repertoire window, click New. Type an alias for

the configuration.

 2. Enter the information needed to access the key file.

a. Type the name of the key file in the Key File Name field.

 The name must include the fully qualified path to the key file.

b. Type the password needed to access the key file in the Key File Password

field.

c. Select the format of the key file from the Key File Format menu.
 3. Enter the information needed to access the trust file.

a. Type the name of the trust file in the Trust File Name field.

 The name must include the fully qualified path to the trust file.

b. Type the password needed to access the trust file in the Trust File

Password field.

c. Select the format of the key file from the Trust File Format menu.
 4. Select the Client Authentication check box if this configuration supports

client authentication.

 This selection only affects HTTP and LDAP requests.

 5. Select the appropriate security level from the Security Level menu.

 Valid values are low, medium, and high. Low specifies only digital signing

ciphers (no encryption), medium specifies only 40-bit ciphers (including

digital signing), high specifies only 128-bit ciphers (including digital signing).

If you are using a FIPS-supported JSSE, you must select High from the

Security Level menu.

 6. (Optional) Select a cipher suite from the Cipher Suites menu.

290 IBM® WebSphere® Application Server, Version 5.0.2: Security

Manually add the cipher suite if the preset security level does not define the

required cipher.

 7. Select the Cryptographic Token check box if hardware or software

cryptographic support is available.

 See “Configuring to use cryptographic tokens” on page 316 details regarding

cryptographic support.

 8. Indicate which JSSE provider you are using by either selecting IBMJSSE or

IBMJSSEFIPS from the menu, or typing the name of the provider.

 WebSphere Application Server includes the following JSSE providers: IBMJSSE

and IBMJSSEFIPS. Use IBMJSSEFIPS only if you are using the Transport Layer

Security (TLS) protocol and not the Secure Sockets Layer (SSL) protocol. See

“Configuring Federal Information Processing Standard-approved Java Secure

Socket Extension files” on page 296 for more information. If you for more

information. If you are not using the pre-defined providers, configure the

custom provider by clicking Apply, then Custom Properties > New in the

Additional Properties section. After the custom provider is configured, return

to the SSL Configuration Repertoires window and continue with these

instructions.

 9. Select a SSL or TLS protocol version.

 If you are using a FIPS-approved JSSE, you must select a TLS protocol

version.

10. Click Apply to apply the changes.

11. If there are no errors, save the changes to the master configuration and restart

the WebSphere Application Server.

Results

You included additional SSL configuration repertoires in addition to the default

repertoire, DefaultSSLSettings.

Usage scenario

The appropriate repertoire is referenced during the configuration of a service that

sends and receives requests encrypted using SSL, such as the Web and enterprise

bean containers, and LDAP servers.

What to do next

For the changes to take effect, restart the server after saving the configuration.

Secure Sockets Layer configuration repertoire settings

Use this page to define a new Secure Sockets Layer (SSL) alias. Through the SSL

configuration repertoire, administrators can define any number of SSL settings to

use in configuring the Hypertext Transfer Protocol with SSL (HTTPS), Internet

InterORB Protocol with SSL (IIOPS) or Lightweight Directory Access Protocol with

SSL (LDAPS) connections. You can pick one of the SSL settings defined here from

any location within the administrative console that supports SSL connections. This

simplifies the SSL configuration process because you can reuse many of these SSL

configurations by specifying the alias in multiple places.

To view this administrative console page, click Security > SSL.

Click New to create a new SSL Configuration Repertoire alias.

Chapter 10. Managing security 291

Click Delete to remove an SSL Configuration Repertoire alias. If an SSL

configuration alias is referenced in the configuration, and is deleted here, then an

SSL connection fails when the deleted alias is accessed.

Alias: Specifies the name of the specific SSL setting.

Secure Sockets Layer settings

Use this page to configure Secure Sockets Layer (SSL) settings for the server.

To view this administrative console page, click Security > SSL > alias_name.

Alias: Specifies the name of the specific SSL setting

 Data type: String

Key File Name: Specifies the fully qualified path to the SSL key file that contains

public keys and private keys.

You can create an SSL key file with the key management utility, or this file can

correspond to a hardware device if one is available. In either case, this option

indicates the source for personal certificates and for signer certificates unless a

trust file is specified. The default SSL key files, DummyClientKeyFile.jks and

DummyServerKeyFile.jks, contais a self-signed personal test certificate expiring on

March 17, 2005. The test certificate is only intended for use in a test environment.

The default SSL key files should never be used in a production environment

because the private keys are the same on all the WebSphere Application Server

installations. Refer to the Managing certificates article in the InfoCenter for

information about creating and managing digital certificates for your WebSphere

Application Server domain.

 Data type: String

Key File Password: Specifies the password for accessing the SSL key file.

 Data type: String

Key File Format: Specifies the format of the SSL key file.

 Data type: String

Default: JKS

Range: JKS, JCEK, PKCS12

Trust File Name: Specifies the fully qualified path to a trust file containing the

public keys.

You can create a trust file with the key management utility included in the

WebSphere bin directory. Using the key management utility from Global Security

Kit (GSKit) (another SSL implementation) does not work with the Java Secure

Socket Extension (JSSE) implementation.

Unlike the SSL key file, no personal certificates are referenced; only signer

certificates are retrieved. The default SSL trust files, DummyClientTrustFile.jks and

DummyServerTrustFile.jks, contain multiple test public keys as signer certificates

that can expire. The public key for the WebSphere Application Server Version 4.0

292 IBM® WebSphere® Application Server, Version 5.0.2: Security

test certificates expires on January 15, 2004, and the public key for the WebSphere

Application Server Version 5 test certificates and WebSphere Application Server

CORBA C++ client expires on March 17, 2005. The test certificate is only intended

for use in a test environment.

If a trust file is not specified but the SSL key file is specified, then the SSL key file

is used for retrieval of signer certificates as well as personal certificates.

 Data type: String

Trust File Password: Specifies the password for accessing the SSL trust file.

 Data type: String

Trust File Format: Specifies the format of the SSL trust file.

 Data type: String

Default: JKS

Range: JKS, JCEK, PKCS12

Client Authentication: Specifies whether to request a certificate from the client

for authentication purposes when making a connection.

This attribute is only valid when used by the Web container HTTP transport. When

performing client authentication with the Internet InterORB Protocol (IIOP)

protocol (for EJB requests), you must click Security > Authentication Protocol >

CSIv2 Inbound or Outbound Authentication from the left navigation pane of the

administrative console. Click SSL Client Certificate Authentication to enable it for

these requests.

 Data type: Boolean

Default: Disabled

Range: Enabled or Disabled

Security Level: Specifies whether the server selects from a preconfigured set of

security levels.

 Data type: Valid values include Low, Medium or High.

v LOW specifies only digital signing ciphers

(no encryption)

v MEDIUM specifies only 40-bit ciphers

(including digital signing)

v HIGH specifies only 128-bit ciphers

(including digital signing).

To specify all ciphers or any particular range,

you can set the property

com.ibm.ssl.enabledCipherSuites.

See the SSL documentation in the InfoCenter.

Default: High

Range: Low, Medium or High

Chapter 10. Managing security 293

Cipher Suites: Specifies a list of supported cipher suites that can be selected for

use during the SSL handshake. If you select cipher suites individually here, you

override those cipher suites set in the Security Level field.

 Data type:

Default:

Range:

Cryptographic Token: Specifies whether the server enables or disables

cryptographic hardware and software support.

 Data type: Boolean

Default: Disabled

Range: Enabled or Disabled

V3 Timeout: Specifies the length of time that a browser can reuse a System SSL

Version 3 session ID without renegotiating encryption keys with the server.

The repertoires that you define for a server require the same V3 timeout value.

 Data type integer

Default 100

Range 1 to 86400

Provider: The provider refers to a package that supplies a concrete

implementation of a subset of the cryptography aspects of the Java Security API. If

you select the first button, select a provider from the menu. WebSphere

Application Server has the following pre-defined providers: IBMJSSE and

IBMJSSEFIPS. IBMJSSEFIPS is the Federal Information Processing Standard

(FIPS)-approved version of the IBMJSSE provider. If you select the second button,

enter a custom provider. For a custom provider, you first must enter the Cipher

Suites through Custom Properties under Additional Properties.Cipher suites and

protocol values depend on the Provider.

 Data type integer

Default 100

Range 1 to 86400

Protocol: Specifies the SSL protocol used. If you are using a FIPS-approved JSSE

such as IBMJSSEFIPS, you must select a TLS protocol. Because FIPS-approved

JSSEs are not backwards-compatible, a server that uses a TLS protocol cannot

communicate with a client that uses an SSL protocol.

Secure Sockets Layer settings for custom properties

Use this page to configure additional Secure Sockets Layer (SSL) settings for a

defined alias.

To view this administrative console page, click Security > SSL > alias_name >

Custom properties.

Custom Properties: Specifies the name-value pairs that you can use to configure

additional SSL settings beyond those available in the administrative interface

com.ibm.ssl.protocol.

294 IBM® WebSphere® Application Server, Version 5.0.2: Security

This is the SSL protocol used (including its version). The possible values are SSL,

SSLv2, SSLv3, TLS, or TLSv1. The default value, SSL, is backward-compatible with

the other SSL protocols.

com.ibm.ssl.keyStoreProvider

The name of the key store provider to use. Specify one of the security

providers listed in your java.security file, which has a keystore

implementation. The default value is IBMJCE.

com.ibm.ssl.keyManager

The name of the key management algorithm to use. Specify any key

management algorithm that is implemented by one of the security

providers listed in your java.security file. The default value is IbmX509.

com.ibm.ssl.trustStoreProvider

The name of the trust store provider to use. Specify one of the security

providers listed in your java.security file, which has a truststore

implementation. The default value is IBMJCE.

com.ibm.ssl.trustManager

The name of the trust management algorithm to use. Specify any trust

management algorithm that is implemented by one of the security

providers listed in your java.security file. The default value is IbmX509.

com.ibm.ssl.trustStoreType

The type or format of the truststore file. The possible values are JKS,

PKCS12, JCEK. The default value is JKS.

com.ibm.ssl.enabledCipherSuites

The list of cipher suites to enable. By default, this is not set and the set of

cipher suites used is determined by the value of the security level (high,

medium, or low). A cipher suite is a combination of cryptographic

algorithms used for an SSL connection. Enter a space-separated list of any

of the following cipher suites:

v SSL_RSA_WITH_RC4_128_MD5

v SSL_RSA_WITH_RC4_128_SHA

v SSL_RSA_WITH_DES_CBC_SHA

v SSL_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_RSA_WITH_DES_CBC_SHA

v SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

v SSL_DHE_DSS_WITH_DES_CBC_SHA

v SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

v SSL_RSA_EXPORT_WITH_RC4_40_MD5

v SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

v SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

v SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

v SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

v SSL_RSA_WITH_NULL_MD5

v SSL_RSA_WITH_NULL_SHA

v SSL_DH_anon_WITH_RC4_128_MD5

v SSL_DH_anon_WITH_DES_CBC_SHA

v SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

v SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

v SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

Chapter 10. Managing security 295

Data type: String

Cryptographic token: Specifies information about the cryptographic tokens

related to SSL support.

A cryptographic token is a hardware or software device that has a built-in keystore

implementation. Document the exact values for the following fields in the found in

the literature of your supported cryptographic device.

Configuring Federal Information Processing

Standard-approved Java Secure Socket Extension files

The Federal Information Processing Standard (FIPS)-approved Java Secure Socket

Extension (JSSE) provider has increased data encryption capabilities.

FIPS-approved JSEE providers support Data Encryption Standard (DES) or Triple

DES with at least 56-bits of encryption. Although this additional encryption

capability is available, you must use Transport Layer Security (TLS) and not Secure

Sockets Layer (SSL) as FIPS-approved JSSE files are not backwards-compatible and

SSL is not FIPS-approved. If the server uses TLS, a client using SSL cannot

communicate with the server. Thus, use FIPS-approved JSSE providers if your

servers and clients are using WebSphere Application Server, Version 5.0.2 or later

as this version supports FIPS. If you create your own encryption configurations

and enable FIPS, you must add a FIPS-approved JSSE to all of your server and

client configurations.

To configure the WebSphere Application Server to use a FIPS-approved IBMJSSE

and IBMJCE providers, complete the following steps using the Administrative

Console:

Steps for this task

 1. Click Security > Global Security.

 2. Select the Use FIPS checkbox and click OK.

 IBMJCEFIPS is enabled. However, IBMJSSEFIPS is not configured until you

complete the remaining steps.

 3. Click Security > SSL.

 4. Click the name of your SSL configuration or click New to create a new

configuration.

 For more information on SSL configurations, see “Creating a secure sockets

layer repertoire configuration entry” on page 290

 5. Select High from the Security Level menu.

 When you select HIGH from the Security Level menu, you are setting the

encryption strength to 56-bits and above.

 6. Indicate which JSSE FIPS provider you will use.

 To indicate which provide you will use, do either of the following:

v Select IBMJSSEFIPS from the Provider menu and click the button to the

left of the provider menu.For a list of providers that were previously

configured, click Custom Properties under Additional Properties.

v Type the name of your custom JSSE FIPS provider and click the button to

the left of the entry field. To create a custom JSSE FIPS provider, click

Custom Properties > New under Additional Properties. After configuring

296 IBM® WebSphere® Application Server, Version 5.0.2: Security

your custom FIPS-approved provider, return to the SSL Configuration

Repertoires panel for your SSL configuration and enter the name in the

Provider field.
 7. Select the TLS or TLSV1 option from the Protocol menu.

 To use a FIPS-approved JSSE, you must choose either the TLS or TLSV1

option. SSL protocol is not FIPS-approved. Once you select the protocol, the

corresponding custom property value is updated for com.ibm.ssl.protocol. You

can view this updated property value under Custom Properties after you

click Apply or OK.

 8. Click OK.

 9. If you have a Java client that must access enterprise beans, modify the

install_dir/properties/sas.client.props file to comment out the SSL

protocol and add the TLS protocol.

 To change the protocol to TLS, make the following changes to the

install_dir/properties/sas.client.props file:

#com.ibm.ssl.protocol=SSL

com.ibm.ssl.protocol=TLS

10. If the server uses a FIPS-approved provider for the CSIv2/SAS protocol, add

IBMJSSEFIPS as the contextProvider and TLS as the protocol to the

install_dir/properties/sas.client.props file on the application client.

 In the install_dir/properties/sas.client.props file, add the following:

com.ibm.ssl.contextProvider=IBMJSSEFIPS

com.ibm.ssl.protocol=TLS

11. If the server-side SOAP connector configuration uses a FIPS-approved

IBMJSSEFIPS provider, add com.ibm.fips.jsse.JSSESocketFactory as the

provider and IBMJSSEFIPS as the contextProvider in the

install_dir/properties/soap.client.props file on the administrative client.

 In the install_dir/properties/soap.client.props file, add the following:

 ssl.SocketFactory.provider=com.ibm.fips.jsse.JSSESocketFactory

com.ibm.ssl.contextProvider=IBMJSSEFIPS

12. Verify that a FIPS-approved configuration is specified correctly throughout the

administrative console.

 Verify the configuration settings in the following panels:

v Click Servers > Application Servers > <server_name>. Under Additional

properties, click Administration Services > JMX Connectors >

SOAPConnector > Custom Properties >sslConfig.

v Click Servers > Application Servers > <server_name>. Under Additional

properties, click Web Container > HTTP Transport.

v Click Environment > Virtual Hosts > <host_name>. Under Additional

properties, click Host Aliases > <alias_name>.

v Click Applications > Enterprise Applications > <application_name>. Under

Additional properties, click Map virtual hosts for web modules.

v Click Security > User Registries > LDAP.

v Click Enterprise Applications > <application_name>. Under Related Items,

click Web Module > <URI_file_name> > Web Services: Client Security

Bindings. Verify the configuration settings listed under HTTP Basic

Authentication and HTTP SSL Authentication.

Results

Chapter 10. Managing security 297

After completing these steps, a FIPS-approved JSSE will provide increased

encyption capabilities. However, when you use FIPS-approved providers, consider

the following:

v By default, Microsoft Internet Explorer Version 5.5 might not have TLS enabled.

To enable TLS, open the Internet Explorer browser and click Tools > Internet

Options. On the Advanced tab, select the Use TLS 1.0 checkbox.

v Netscape Version 4.7.x and prior versions might not support TLS.

v IBM Directory Server Version 4.1 and prior versions do not support TLS.

v If you select IBMJSSEFIPS from the Provider menu before changing the

Security Level to High and the Protocol menu to TLS or TLSV1, WebSphere

Application Server changes the Security Level and Protocol menu options

automatically. However, if you change the Provider menu option from

IBMJSSEFIPS to IBMJSSE, you must manually change the Protocol option to

the correct setting. The setting does not change automatically because IBMJSSE

supports both SSL and TLS.

v If you have an administrative client that uses a SOAP connector and you enable

FIPS, add the following lines to the install_dir/properties/soap.client.props

file:

 ssl.SocketFactory.provider=com.ibm.fips.jsse.JSSESocketFactory

com.ibm.ssl.contextProvider=IBMJSSEFIPS

v When you select the Use FIPS checkbox on the Security > Global Security

panel, LTPA token format is not backwards-compatible with prior releases of

WebSphere Application Server. However, you can continue to use the LTPA keys

configured using a previous version of WebSpere Application Server.

Warning: If you select the USE FIPS on the Global Security panel and select an

SSL configuration on the SSL Configuration Repertoires panel, the following error

message displays at the top of the Global Security panel:

The security policy is set to use only FIPS approved cryptographic algorithms.

However at least one SSL configuration may not be using a FIPS approved JSSE provider.

FIPS approved cryptographic algorithms may not be used in those cases.

Warning: If you use the FIPS-approved JSSE provided with WebSphere Application

Server, you must choose IBMJSSEFIPS from the Provider menu on the SSL

Configuration Repertoires panel. Otherwise, the following message displays at the

top of the panel:

"Use FIPS" is enabled, but the SSL provider is not IBMJSSEFIPS.

FIPS approved cryptographic algorithms may not be used.

Digital certificates

Certificates provide a way of authenticating users. Instead of requiring each

participant in an application to authenticate every user, third-party authentication

relies on the use of digital certificates.

A digital certificate is equivalent to an electronic ID card. It serves two purposes:

v To establish the identity of the owner of the certificate

v To distribute the owner’s public key

Certificates are issued by trusted parties, called certificate authorities (CAs). These

authorities can be commercial ventures or they can be local entities, depending on

the requirements of your application. Regardless, the CA is trusted to adequately

authenticate users before issuing them certificates. A CA issues certificates with

298 IBM® WebSphere® Application Server, Version 5.0.2: Security

digital signatures. When a user presents a certificate, the recipient of the certificate

validates it by using the digital signature. If the digital signature validates the

certificate, the certificate is recognized as intact and authentic. Participants in an

application only need to validate certificates; they do not need to authenticate

users themselves. The fact that a user can present a valid certificate proves that the

CA has authenticated the user. The descriptor, trusted third-party, indicates that the

system relies on the trustworthiness of the CAs.

Contents of a digital certificate

A certificate contains several pieces of information, including information about the

owner of the certificate and the issuing CA. Specifically, a certificate includes:

v The distinguished name (DN) of the owner. A DN is a unique identifier, a fully

qualified name including not only the common name (CN) of the owne,r but the

owner’s organization and other distinguishing information.

v The public key of the owner.

v The date on which the certificate was issued.

v The date on which the certificate expires.

v The distinguished name of the issuing CA.

v The digital signature of the issuing CA. (The message-digest function is run over

all the preceding fields.)

The core idea of a certificate is that a CA takes the owner’s public key, signs the

public key with its own private key, and returns this to the owner as a certificate.

When the owner distributes the certificate to another party, it signs the certificate

with its private key. The receiver can extract the certificate (containing the CA

signature) with the owner’s public key. By using the CA public key and the CA

signature on the extracted certificate, the receiver can validate the CA signature. If

it is valid, the public key used to extract the certificate is recognized as good. The

owner signature is then validated, and if the validation succeeds, the owner is

successfully authenticated to the receiver.

The additional information in a certificate allows an application to decide if it

should honor the certificate. With the expiration date, the application can

determine if the certificate is still valid. With the name of the issuing CA, the

application can check that the CA is considered trustworthy by the site.

A process that uses certificates must provide its personal certificate, the one

containing its public key, and the certificate of the CA that signed its certificate,

called a signer certificate. In cases where chains of trust are established, several

signer certificates can be involved.

Requesting certificates

To get a certificate, send a certificate request to the CA. The certificate request

includes the following:

v The distinguished name of the owner (the user for whom the certificate is being

requested).

v The public key of the owner.

v The digital signature of the owner.

The message-digest function is run over all these fields.

The CA verifies the signature with the public key in the request to ensure that the

request is intact and authentic. The CA then authenticates the owner. Exactly what

the authentication consists of depends on a prior agreement between the CA and

Chapter 10. Managing security 299

the requesting organization. If the owner in the request is successfully

authenticated, the CA issues a certificate for that owner.

Using certificates: Chain of trust and self-signed certificate

To verify the digital signature on a certificate, you must have the public key of the

issuing CA. Since public keys are distributed in certificates, you must have a

certificate for the issuing CA. That certificate is signed by the issuer. One CA can

certify other CAs, so there can be a chain of CAs issuing certificates for other CAs,

all of whose public keys you need. Eventually, you reach a root CA that issues

itself a self-signed certificate. To validate a user’s certificate, you need certificates

for all intervening participants, back to the root CA. Then you have the public keys

you need to validate each certificate, including the user’s.

A self-signed certificate contains the public key of the issuer and is signed with the

private key. The digital signature is validated like any other, and if the certificate is

valid, the public key it contains is used to check the validity of other certificates

issued by the CA. However, anyone can generate a self-signed certificate. In fact,

you can probably generate self-signed certificates for testing purposes before

installing production certificates. The fact that a self-signed certificate contains a

valid public key does not mean that the issuer is really a trusted certificate

authority. To ensure that self-signed certificates are generated by trusted CAs, such

certificates must be distributed by secure means (hand-delivered on floppy disks,

downloaded from secure sites, and so on).

Applications that use certificates store these certificates in a keystore file. This file

typically contains the necessary personal certificates, its signing certificates, and its

private key. The private key is used by the application to create digital signatures.

Servers always have personal certificates in their keystore files. A client requires a

personal certificate only if the client must authenticate to the server when mutual

authentication is enabled.

To allow a client to authenticate to a server, a server keystore file contains the

private key and the certificate of the server and the certificates of its CA. A client

truststore file must contain the signer certificates of the CAs of each server to

which the client must authenticate.

If mutual authentication is needed, the client keystore file must contain the client

private key and certificate. The server truststore file requires a copy of the

certificate of the client CA.

Digital signatures

A digital signature is a number attached to a document. For example, in an

authentication system that uses public-key encryption, digital signatures are used

to sign certificates.

This signature establishes two different things for you:

v The integrity of the message: Is the message intact? That is, has the message

been modified between the time it was digitally signed and now?

v The identity of the signer of the message: Is the message authentic? That is, was

the message actually signed by the user who claims to have signed it?

A digital signature is created in two steps. The first step distills the document into

a large number. This number is the digest code or fingerprint. The digest code is then

encrypted, resulting in the digital signature. The digital signature is appended to

the document from which the digest code was generated.

300 IBM® WebSphere® Application Server, Version 5.0.2: Security

There are several ways of generating the digest code. WebSphere Application

Server supports the MD5 message digest function and the SHA1 secure hash

algorithm, but these procedures reduce a message to a number. This process is not

encryption; but a sophisticated checksum. The message cannot regenerate from the

resulting digest code. The crucial aspect of distilling the document to a number is

this that if the message changes, even in a trivial way, a different digest code

results. When the recipient gets a message and verifies the digest code by

recomputing it, any changes in the document result in a mismatch between the

stated and the computed digest codes.

To stop someone from intercepting a message, changing it, recomputing the digest

code, and retransmitting the modified message and code, you need a way to verify

the digest code as well. To verify the digest code, reverse the use of the public and

private keys. For private communication, it makes no sense to encrypt messages

with your private key; these keys can be decrypted by anyone with your public

key. But this technique can be useful for proving that a message came from you.

No one else could have created it, since no one else has your private key. If some

meaningful message results from decrypting a document by using someone’s

public key, it verifies that the holder of the corresponding private key did encrypt

the message.

The second step in creating a digital signature takes advantage of this reverse

application of public and private keys. After a digest code is computed for a

document, the digest code is encrypted with the sender’s private key. The result is

the digital signature, which is attached to the end of the message.

When the message is received, the recipient follows these steps to verify the

signature:

1. Recomputes the digest code for the message.

2. Decrypts the signature by using the sender’s public key. This decryption yields

the original digest code for the message.

3. Compares the original and recomputed digest codes. If they match, the

message is both intact and authentic. If not, something has changed and the

message is not to be trusted.

Public key cryptography

All encryption systems rely on the concept of a key. A key is the basis for a

transformation, usually mathematical, of an ordinary message into an unreadable

message. For centuries, most encryption systems have relied on what is called

private-key encryption. Only within the last 30 years has a challenge to private-key

encryption appeared: public-key encryption.

Private key encryption: Private-key encryption systems use a single key that is

shared between the sender and the receiver. Both must have the key; the sender

encrypts the message by using the key, and the receiver decrypts the message with

the same key. Both must keep the key private to keep their communication private.

This kind of encryption has characteristics that make it unsuitable for widespread,

general use:

v It requires a key for every pair of individuals who need to communicate

privately. The necessary number of keys rises dramatically as the number of

participants increases.

v The fact that keys must be shared between pairs of communicators means the

keys must somehow be distributed to the participants. The need to transmit

secret keys makes them vulnerable to theft.

Chapter 10. Managing security 301

v Participants can communicate only by prior arrangement. There is no way to

send a usable encrypted message to someone spontaneously. You and the other

participant must have made arrangements to communicate by sharing keys.

Private-key encryption is also called symmetric encryption, because the same key is

used to encrypt and decrypt the message.

Public key encryption: Public-key encryption uses a pair of mathematically

related keys. A message encrypted with the first key must be decrypted with the

second key, and a message encrypted with the second key must be decrypted with

the first key.

Each participant in a public-key system has a pair of keys. One of these keys is

kept secret; this is the private key. The other key is distributed to anyone who

wants it; this key is the public key.

To send an encrypted message to you, the sender encrypts the message by using

your public key. When you receive the message, you decrypt it by using your

private key. To send a message to someone, you encrypt the message by using the

recipient’s public key. The message can be decrypted only with the recipient’s

private key. This kind of encryption has characteristics that make it very suitable

for general use:

v Public-key encryption requires only two keys per participant. The total number

of keys rises less dramatically as the number of participants increases, compared

to private-key encryption.

v The need for secrecy is more easily met. Only the private key needs to be kept

private and because it does not need to be shared, the private key is less

vulnerable to theft in transmission than the shared key in a private-key system.

v Public keys can be published, which eliminates the need for prior sharing of a

secret key before communication. Anyone who knows your public key can use it

to send you a message that only you can read.

Public-key encryption is also called asymmetric encryption, because the same key

cannot be used to encrypt and decrypt the message. Instead, one key of a pair is

used to undo the work of the other. WebSphere Application Server uses the RSA

public and private key-encryption algorithm.

With private-key encryption, you have to be careful of stolen or intercepted keys.

In public-key encryption, where anyone can create a key pair and publish the

public key, the challenge is in verifying that the owner of the public key is really

the person you think it is. There is nothing to stop a user from creating a key pair

and publishing the public key under a false name. The listed owner of the public

key cannot read messages encrypted with that key because the owner does not

have the private key. If the creator of the false public key can intercept these

messages, that person can decrypt and read messages intended for someone else.

To counteract the potential for forged keys, public-key systems provide

mechanisms for validating public keys and other information with digital

signatures and digital certificates.

Managing digital certificates

Before you begin

Secure Sockets Layer (SSL) connections rely on the existence of digital certificates. A

digital certificate reveals information about its owner, including their identity.

During the initialization of an SSL connection, the server must present its

302 IBM® WebSphere® Application Server, Version 5.0.2: Security

certificate to the client for the client to determine the server identity. The client can

also present the server with its own certificate for the server to determine the client

identity. SSL is therefore, a means of propagating identity between components.

Refer to “Configuring Secure Sockets Layer” on page 274 and “Creating a secure

sockets layer repertoire configuration entry” on page 290.

A client can trust the contents of a certificate if that certificate is digitally signed by

a trusted third party. A Certificate Authority (CA) acts as a trusted third party and

signs certificates on the basis of its knowledge of the certificate requestor. Different

approaches for generating certificates include:

Steps for this task

1. Use the supplied key management utility. Refer to “Starting the key

management utility (iKeyman)” on page 306. There are two options for creating

a new certificate.

a. Request that a CA generates the certificates on your behalf.

 The CA creates a new certificate, digitally signs it, and delivers it to the

requester. Popular Web browsers are preconfigured to trust certificates that

are signed by certain CAs. No further client configuration is necessary for a

client to connect to the server through an SSL connection. Therefore, CA

signed certificates are useful where configuration for each and every client

that accesses the server is impractical. Refer to “Requesting certificate

authority-signed personal certificates” on page 308, “Creating certificate

signing requests” on page 309, “Receiving certificate authority-signed

personal certificates” on page 310, and “Extracting public certificates for

truststore files” on page 311.

b. Generate a self-signed certificate.

 This option might be the quickest and require the fewest details to create

the certificate. However, the certificate is not signed by a CA. Any client

that connects to this server over an SSL connection needs configuration to

trust the signer of this certificate. Therefore, self-signed certificates are only

useful when you can configure each of the clients to trust the certificate. It

is possible in some cases to present a self-signed certificate to an untrusting

client. In some Web browsers, when the certificate is received and does not

match any of those listed in the client trust file, a prompt appears asking if

the certificate should be trusted for the connection and added to the trust

file. Refer to “Creating a keystore file” on page 306, “Creating truststore

files” on page 312, “Adding keystore files” on page 288, “Adding truststore

files” on page 289, “Creating self-signed personal certificates” on page 307,

and “Importing signer certificates” on page 313

c. Configure server-side options.

 The WebSphere Application Server stores the keystore information in the

repository and the keystore files are referred to in the security.xml file.

Therefore, complete all server-side configuration through the administration

console. For Java clients, refer to “Configuring Secure Sockets Layer for Java

client authentication” on page 285.

2. Use the command line Java utility called keytool. With keytool, you can create a

private and public self-signed certificate key pair.

 For this example, the first user is cn=rocaj.

a. Specify RSA for the private key to ensure that the MD5 with RSA signature

algorithm is used. Not all Web browsers support the DSA cryptograph

algorithm, which is the default when RSA is not specified. Set a password

Chapter 10. Managing security 303

of at least six characters to protect the private key. Finally, specify the

keystore file and keystore password (the option is storepass):

 (single line, split for publication:)

#keytool -genkey -keyalg RSA -dname "cn=rocaj, ou=users,

ou=uk, dc=internetchaos,dc=com" -alias rocaj -keypass websphere

-keystore testkeyring.jks -storepass websphere

b. Create the second private and public self-signed certificate key pair in the

same manner for the user cn=amorv.

 #keytool -genkey -keyalg RSA -dname "cn=amorv,

 ou=users, ou=uk, dc=internetchaos, dc=com" -alias amorv

-keypass websphere -keystore testkeyring.jks -storepass websphere

 Now the keystore testkeyring.jks contains two self-signed certificates with the

owner being the same as the issuer for each certificate.

c. Verify the integrity and authenticity of the certificates by getting each

certificate signed by the certificate authority.

v Generate the Certificate Signing Request, CSR-1 (for the first user

cn=rocaj).

 #keytool -v certreq -alias rocaj -file rocajReq.csr

-keypass websphere -keystore testkeyring.jks

-storepass websphere

v Generate the CSR-2 (for the second user cn=amorv).

 #keytool -v -certreq -alias amorv -file amorvReq.csr

-keypass websphere -keystore testkeyring.jks

-storepass websphere

d. Use the free Test SSL certificate program offered by Thawte Consulting to

sign the Certificate Signing Requests (CSRs) for this example. In each case,

select the Custom Cert option and set the certificate format to use the

default for your kind of certificate. The example also selects the Generate

an X.509v3 Certificate option and saves the two resulting files as

rocajRes.arm and amorvRes.arm, respectively.

e. Import the CA trusted root certificate into the keystore. Copy and paste the

Thawte test root certificate in BASE64-encoded ASCII data format to a file

called ThawteTestCA.arm. Add the test root CA certificate into the keystore

file with the following command:

 #keytool -import -alias "Thawte Test CA Root"

-file ThawteTestCA.arm -keystore testkeyring.jks

-storepass websphere

f. Import the two certificate responses from the CA into the keystore file using

the same alias name that was first given to the self-signed certificates. In this

example, these alias names are rocaj and amorv respectively. Using an

alternative alias name generates a new signer certificate and not a personal

certificate chain.

v Import the certificate response -1 (for the first user cn=rocaj).

 #keytool -import -trustcacerts -alias rocaj

-file rocajRec.arm -keystore testkeyring.jks

-storepass websphere.

Certificate reply was installed in keystore.

v Import the certificate response -2 (for the second user cn=amorv).

 #keytool -import -trustcacerts -alias amorv

-file amorvRec.arm -keystore testkeyring.jks

-storepass websphere.

Certificate reply was installed in keystore.

g. Launch the JSSE ikeyman utility, which supports the PKCS12 format and

the private key exporting associated with any certificate (the public key is

also exported).

304 IBM® WebSphere® Application Server, Version 5.0.2: Security

h. Open the testkeyring.jks keystore file and select the first certificate from the

Personal Certificates menu.

i. Click Export and name the file, rocajprivate.p12. Export the second personal

certificate and name it amorvprivate.p12.

j. Verify that the same root certificate of the authenticating CA is installed as a

trusted authority in the browser.

k. To install either of the personal certificates into Netscape Communicator,

click Communicator > Tools > Security Info > Certificates > Yours. Use the

Import a Certificate option.

l. Enter a password or PIN for the communicator certificate database, when

you attempt to import the certificate. Enter the password used when first

initializing your certificate database. Enter the password protecting the

PKCS#12 certificate file, as set when you exported the personal private and

public certificate key pair in iKeyman.

m. Click Verify to check integrity and validity of the certificate. If you did not

install the root CA certificate, your certificate fails the verification.

n. Verify that you modified your Web server to support client side certificate

requests.

o. Go to the following URL: https://server_name/snoop; the Web browser

prompts you to select a personal certificate when accessing a resource

protected by the SSLClientAuth directive.

p. Select the HTTPS information displayed by the snoop servlet; you see the

certificate SubjectDN matching the following: Subject: CN=amorv,

OU=users, OU=uk, DC=internetchaos, DC=com.
3. Refer to “Creating a secure sockets layer repertoire configuration entry” on

page 290 to create a new SSL definition entry for WebSphere Application Server

using the administrative console.

 Once a keystore file is configured, either by creating a self-signed certificate or

by creating a certificate request and importing the reply, you can configure

WebSphere Application Server to use the certificates. The product uses the

certificates to establish a secure connection with a client through SSL.

4. Set up the appropriate components to use the newly-defined SSL configuration.

 To ensure a secure connection, configure some non-WebSphere components,

such as a Web server. A digital certificate is created for each component. The

WebSphere Application Server owns a certificate and the Web server owns

another certificate. Refer to “Configuring IBM HTTP Server for secure sockets

layer mutual authentication” on page 278.

Usage scenario

Setting up SSL communication between the Web browser and WebSphere

Application Server. Using digital signatures, you can communicate securely from

the Web browser through the Web server to WebSphere Application Server.

What to do next

Once you finish configuring security, perform the following steps to save,

synchronize, and restart the servers:

1. Click Save in the administrative console to save any modifications to the

configuration.

2. Synchronize the configuration with all node agents (Network Deployment

only).

Chapter 10. Managing security 305

3. Once synchronized, stop all servers and restart them.

Starting the key management utility (iKeyman)

Before you begin

It is recommended to read the documentation located at

install_root/web/docs/ikeyman/ikmuserguide.pdf for further information.

WebSphere Application Server provides a graphical tool, the key management

utility (iKeyman), for managing keys and certificates. With the key management

utility, you can:

v Create a new key database

v Create a self-signed digital certificate

v Add certificate authority (CA) roots to the key database as a signer certificate

v Request and receive a digital certificate from a CA

To start the key management utility, complete the following steps:

Steps for this task

1. Move to the install_root/bin directory.

2. Issue one of the following commands:

v On Windows systems, ikeyman.bat

v On UNIX systems, ikeyman.sh

Results

A graphical user interface of the key management utility appears.

Usage scenario

Manage keys and digital certificates.

Creating a keystore file

The keystore file is a a key database file that contains both public keys and private

keys. Public keys are stored as signer certificates while private keys are stored in

the personal certificates. The keys are used for a variety of purposes, including

authentication and data integrity. You can use both the key management utility

(iKeyman) and the keytool utility to create keystore files.

Before you begin

Read the documentation located at

install_root/web/docs/ikeyman/ikmuserguide.pdf for further information.

Steps for this task

1. “Starting the key management utility (iKeyman),” if it is not already running.

2. Open a new key database file by clicking Key Database File > New from the

menu bar.

3. Select the Key Database Type: JKS (default), PKCS12, and JCEK. This is the key

file format (or the value of com.ibm.ssl.keyStoreType property in the

sas.client.props file) when you configure the SSL setting for your application.

306 IBM® WebSphere® Application Server, Version 5.0.2: Security

4. Type in the file name and location. The full path of this key database file is

used as the key file name (or the value of the com.ibm.ssl.keyStore property in

the sas.client.props file) when you configure the SSL setting for your

application.

5. Click OK to continue.

6. Then, type in password to restrict access to the file. This password is used as

the key file password (or the value of com.ibm.ssl.keyStorePassword property in

the sas.client.props file) when you configure the SSL setting for your

application. Do not set an expiration date on the password or save the

password to a file; you must then reset the password when it expires or protect

the password file. This password is used only to release the information stored

by the key management utility during run time.

7. Click OK to continue. The tool displays all of the available default signer

certificates. These certificates are the public keys of the most common certificate

authorities (CAs). You can add, view or delete signer certificates from this

panel.

Results

A new SSL keystore file is created.

What to do next

Prepare keystore files for an SSL connection.

Specify the keystore file in the configuration of WebSphere Application Server.

Create a truststore if one does not yet exist.

Creating self-signed personal certificates: A self-signed personal certificate is a

temporary digital certificate you issue to yourself, acting as the certificate authority

(CA). Creating a self-signed certificate creates a private key and a public key

within the key database file. The self-signed certificate is created in a keystore file

and it is useful when you develop and test your application. You can also create a

self-signed personal certificate from your cryptographic token device.

Before you begin

If you want to create a self-signed certificate for a keystore, you must have already

created the keystore file. You can later extract the public key and add the key as a

signer certificate to other truststore files.

Read the file install_root/web/docs/ikeyman/ikmuserguide.pdf for further

information about how to create a self-signed personal certificate within a key

database file.

Steps for this task

1. Start the key management utility, if it is not already running.

2. Click New Self-Signed from the tool bar or click Create > New Self-Signed

Certificate.

3. Select the X509 version and the key size that suits your application.

4. Enter the appropriate information for your self-signed certificate:

Key Label

Give the certificate a key label, which is used to uniquely identify the

certificate within the keystore file. If you have only one certificate in

Chapter 10. Managing security 307

each keystore file, you can assign any value to the label. However, it is

good practice to use a unique label related to the server name.

Common Name

Enter the common name. This name is the primary, universal identity

for the certificate; it should uniquely identify the principal that it

represents. In a WebSphere environment, certificates frequently

represent server principals, and the common convention is to use

common names of the form host_name and server_name. The common

name must be valid in the configured user registry for the secured

WebSphere environment.

Organization

Enter the name of your organization.

Optional fields

Enter the organization unit (a department or division), location (city),

state and province (if applicable), zip code (if applicable), and select the

two-letter identifier of the country in which the server belongs. For a

self-signed certificate, these fields are optional. However, commercial

CAs might require them.

Validity period

Specify the lifetime of the certificate in days, or accept the default.
5. Click OK.

Results

Your key database file now contains a self-signed personal certificate.

Usage scenario

Create a self-signed test certificate for testing purposes.

What to do next

If you need a test certificate signed by a certificate authority, follow the procedure

in “Creating certificate signing requests” on page 309.

Requesting certificate authority-signed personal certificates: In a production

environment, use a personal certificate signed by a certificate authority (CA). The

principal or the owner of the CA-signed personal certificate is authenticated by a

CA when the CA signs the principal certificate. Since the certificate authorities

(CAs) keep their private keys secure, the signed certificate is more trustworthy

than a self-signed certificate. Certificate authorities are entities that issue valid

certificates for other entities. Well-known CAs include VeriSign, Entrust, and GTE

CyberTrust. You can request a test certificate or a production certificate from some

of the CAs like VeriSign.

Before you begin

The authentication process by a CA can take time. Commercial CAs often require

up to a week to complete their authentication process. Even on-site CAs can take

several minutes, if not hours, or even days, to complete their authentication

process. Therefore, you must plan for the certificates that you need.

Considering the following points when you plan for the CA-signed certificate:

308 IBM® WebSphere® Application Server, Version 5.0.2: Security

v On the certificate signing request that you send to the CA, specify the common

name for the certificate. The common name is the primary, universal identity for

the certificate. It should uniquely identify the principal that it represents. Verify

that the common name is valid in the configured user registry for the

WebSphere domain.

v Check the formating of the address fields that your CA requires when planning

the address for a certificate request.

Steps for this task

1. Create and send a certificate signing request (CSR) to the CA.

2. Visit the CA Web site and follow the instructions to request a test or production

certificate.

Results

Once the request is accepted, the certificate authority verifies your identity and

finally issues a signed certificate to you. The certificate is usually sent through

e-mail.

Usage scenario

Request a production certificate from a trusted CA for the production WebSphere

environment.

What to do next

Once you receive the e-mail from the CA, follow the instructions to store your

signed certificate as a file. Receive or store the certificate into the keystore file as a

personal certificate.

Creating certificate signing requests: To obtain a certificate from a certificate

authority, submit a certificate signing request (CSR) using the key management

utility (iKeyman). You can request either production or test certificates from a CA

with a CSR. With the key management utility, generating a certificate signing

request also generates a private key for the application for which the certificate is

requested. The private key remains in the application keystore file, so it stays

private. The public key is included in the certificate requested.

Before you begin

Read the file install_root/web/docs/ikeyman/ikmuserguide.pdf for further

information about how to create a certificate signing request from a key database

file.

Steps for this task

1. “Starting the key management utility (iKeyman)” on page 306, if it is not

already running.

2. Open the key database file from which you want to generate the request.

3. Type the password and click OK.

4. Click Create > New Certificate Request. The Create New Key and Certificate

Request window displays.

5. Type a Key Label, a Common Name, and Organization; and select a Country.

Chapter 10. Managing security 309

For the remaining fields, accept the default value, type a value, or select new

values. The common name must be valid in the configured user registry for the

secured WebSphere environment.

6. Type in a name for the file, such as certreq.arm.

7. Click OK to complete.

8. Send the certreq.arm file to the certificate authority (CA) following the

instructions from the CA Web site for requesting a new certificate.

Results

The Personal Certificate Requests list shows the key label of the new digital

certificate request you just created. Send the file to a CA to request a new digital

certificate, or cut and paste the request into the request forms of the CA Web site.

Usage scenario

You need to request a certificate authority-signed digital certificate for your secure

WebSphere domain.

What to do next

Once you submit the certificate signing request, wait for the CA to accept the

request. After the CA has verified your identity, it sends back the signed certificate

usually through e-mail. Receive the signed certificate back to the keystore file from

which you generated the CSR.

Receiving certificate authority-signed personal certificates: Once the certificate

signing request (CSR) is accepted, a certificate authority (CA) processes the request

and verifies your identity. Once approved, the CA sends the signed certificate back

through e-mail. Store the signed certificate in a keystore database file. This

procedure describes how to receive the CA-signed certificate into a keystore file

using the key management utility (iKeyman). You use this utility the same way for

both test certificates and production certificates. The primary difference between

the two certificate types is the amount of time it takes for the CA to authenticate

the principal your certificate represents. Test certificates are authenticated

automatically based on some simple edit checks and returned to you within a few

hours. Production certificates may take several days or a week to authenticate and

return to you. If the CSR request is made for the cryptographic token, the

certificate must be received into that token. If the request is made for the

secondary key database of the token, the certificate must be received into that

database.

Before you begin

Receive the signed certificate from the CA through e-mail. Follow the instructions

from the CA to store the certificate into a file. Read the file

install_root/web/docs/ikeyman/ikmuserguide.pdf for further information about

how to receive a personal certificate into a key database file from the CA.

Steps for this task

1. “Starting the key management utility (iKeyman)” on page 306, if it is not

already running.

2. Open the key database file from which you generated the request.

3. Type the password and click OK.

310 IBM® WebSphere® Application Server, Version 5.0.2: Security

4. Select Personal Certificates from the pull-down list.

5. Click Receive.

6. Click Data type and select the data type of the new digital certificate, such as

Base64-encoded ASCII data.

 Select the data type that matches the CA-signed certificate. If the CA sends the

certificate as part of an E-mail message, you may first need to cut and paste the

certificate into a separate file.

7. Type the certificate file name and location for the new digital certificate, or click

Browse to locate the CA-signed certificate.

8. Click OK.

9. Type a label for the new digital certificate and click OK.

Results

The personal certificate list now displays the label you just gave for the new

CA-signed certificate.

Usage scenario

Needs digital certificate to support SSL for security over the WebSphere domain.

What to do next

Once the CA-signed certificate is successfully received, you can extract or export

the public key of the certificate to a file for distribution to the network.

Extracting public certificates for truststore files: Use this procedure to extract a

public certificate, which includes its public key, from a keystore file. If a target

truststore file already contains the signer certificate of the certificate authority (CA)

that signed the certificate, you do not need to extract and add the certificate to the

target truststore file. However, in general, you need to complete this procedure for

a self-signed certificate.

Before you begin

Extracting a certificate from one keystore file and adding it to a truststore file is

not the same as exporting the certificate and then importing it. Exporting a

certificate copies all the certificate information, including its private key, and is

normally only used if you want to copy a personal certificate into another keystore

file as a personal certificate.

If a certificate is self-signed, extract the certificate and its public key from the

keystore file and add it to the target truststore file.

If a certificate is CA-signed, verify that the CA certificate used to sign the

certificate is listed as a signer certificate in the target truststore file. The keystore

file must already exist and contain the certificate to be extracted.

Read the file install_root/web/docs/ikeyman/ikmuserguide.pdf for further

information about how to extract a public certificate from a key database file.

Steps for this task

1. “Starting the key management utility (iKeyman)” on page 306, if it is not

already running.

Chapter 10. Managing security 311

2. Open the keystore file from which the public certificate will be extracted.

3. Select Personal Certificates.

4. Click Extract Certificate.

5. Click Base64-encoded ASCII data under Data type.

6. Enter the Certificate File Name and Location.

7. Click OK to export the public certificate into the specified file.

Results

A certificate file that contains the public key of the signed personal certificate is

now available for the target truststore file.

Usage scenario

Prepare truststore files for distributing the public keys to support the secure

WebSphere domain using Secure Sockets Layer (SSL).

What to do next

Once the keystore and truststore files are ready, make them accessible by

specifying them in your client and server configurations.

Creating truststore files

A truststore file is a key database file that contains the public keys for target

servers. The public key is stored as a signer certificate. If the target uses a

self-signed certificate, extract the public certificate from the server keystore file.

Add the extracted certificate into the truststore file as a signer certificate. For a

commercial certificate authority (CA), the CA root certificate is added. The

truststore file can be a more publicly accessible key database file that contains all

the trusted certificates.

Before you begin

Read the documentation located at

install_root/web/docs/ikeyman/ikmuserguide.pdf for further information.

Steps for this task

1. “Starting the key management utility (iKeyman)” on page 306, if it is not

already running.

2. Open a new key database file by clicking Key Database File > New from the

menu bar.

3. Click the Key Database Type: JKS(Default), PKCS12, and JCEK.

 The key database type is the trust file format (or the value of the

com.ibm.ssl.trustStoreType property in the sas.client.props file) when you

configure the SSL setting for your application.

4. Type in the file name and location. The full path of this key database file is

used as the trust file name (or the value of com.ibm.ssl.trustStore property in

the sas.client.props) when you configure the SSL setting for your application.

5. Click OK to continue.

6. Type in a password to restrict access to the file. This password is used as the

trust file password (or the value of the com.ibm.ssl.trustStorePassword

property in the sas.client.props file) when you configure the SSL setting for

your application.

312 IBM® WebSphere® Application Server, Version 5.0.2: Security

Do not set an expiration date on the password or save the password to a file.

You must reset the password when it expires or protect the password file. This

password is used only to release the information stored by the key

management utility during run time.

7. Click OK to continue. The tool now displays all of the available default signer

certificates. These are the public keys of the most common CAs. You can add,

view or delete signer certificates from this screen.

Results

A new SSL truststore file is created.

Usage scenario

Prepare truststore files for an SSL connection.

What to do next

Specify the truststore file in the configuration of WebSphere Application Server.

Create a keystore file if one does not exist.

Importing signer certificates: A signer certificate is the trusted certificate entry that

is usually in a truststore file. You can import a certificate authority (CA) root

certificate from the CA, or a public certificate from the self-signed personal

certificate of the target into your truststore file, as a signer certificate.

Before you begin

Read the documentation located at

install_root/web/docs/ikeyman/ikmuserguide.pdf for further information.

Steps for this task

 1. “Starting the key management utility (iKeyman)” on page 306, if it is not

already running.

 2. Open the truststore file.

 The Password Prompt window displays.

 3. Type the password and click OK.

 4. Select Signer Certificates from the menu.

 5. Click Add.

 6. Click Data type and select a data type, such as Base64-encoded ASCII data.

 This data type must match the data type of the importing certificate.

 7. Type a certificate file name and location for the CA root digital certificate or

click Browse to select the name and location.

 8. Click OK.

 9. Type a label for the importing certificate.

10. Click OK.

Results

The Signer Certificates field now displays the label of the signer certificate you

just added.

Usage scenario

Chapter 10. Managing security 313

Receive a CA root certificate or the public key from your secure target.

Map certificates to users

Client-side certificates support access to secured resources from Web or Java

clients. A client presents an X.509-compliant digital certificate to perform mutual

authentication with a single sockets layer-enabled server. The product security run

time attempts to map the certificate to a known user in the associated Lightweight

Directory Access Protocol (LDAP) directory. If the certificate successfully maps to a

user, then the holder of the certificate is regarded as the user in the registry and is

authorized as this user.

After the single sockets layer-enabled server gets the client certificate, the server

needs to map the certificate to a user. WebSphere Application Server supports two

techniques for mapping certificates to entries in LDAP registries:

v By exact distinguished name

v By matching attributes in the certificate to attributes of LDAP entries

Steps for this task

1. Map by exact distinguished name (DN).

 This approach attempts to map the distinguished name (DN) associated with

the Subject field in the certificate to an entry in the LDAP directory. If the

mapping is successful, the user is authenticated and is authorized according to

the privileges granted to the identity in the LDAP directory.

 The mapping is case insensitive. For example, the following two DNs match on

a case-insensitive comparison:

 "cn=Smith, ou=NewUnit, o=NewCompany, c=us"

"cn=smith, ou=newunit, o=NewCompany, c=US"

 If a match is found, authentication succeeds; if no match is found,

authentication fails.

2. Map by filtering certificate attributes.

 This approach maps certificate attributes to attributes of entries in an LDAP

directory. For example, you can specify that the common name (CN) attribute

of the Subject field in the certificate must match the uid attribute of your

LDAP entry. If the mapping is successful, the user is authenticated and is

authorized according to the privileges granted to the identity in the LDAP

directory.

 If you are matching the Subject CN field in the certificate to the uid attribute of

the LDAP entry, a certificate with the Subject DN ″cn=Smith, ou=NewUnit,

o=NewCompany, c=us″ matches an LDAP user entry with uid=Smith.

 To use this mapping technique, you must request certificate mapping and set

up the certificate filter in the administrative console.

What to do next

This specification extracts the CN field from the Subject attribute in the certificate

(Smith) and creates a filter (user ID = Smith) from it. The LDAP directory is

searched for a user entry that matches the filter. If an entry matches the filter,

authentication succeeds.

Note: The search and match of the LDAP directory are based in part on how your

LDAP directory is configured.

314 IBM® WebSphere® Application Server, Version 5.0.2: Security

Cryptographic token support

A cryptographic token is a hardware or software device with a built-in key store

implementation. The cryptographic device is used to manage certificates stored on

the cryptographic tokens (also known as smartcards).

Both cryptographic accelerators, where the cryptographic hardware device has no

persistent key storage, and secure cryptographic hardware, where a cryptographic

token generates and securely stores the private key used for Secure Sockets Layer

(SSL) key exchange, are supported in the product.

The following token types are supported:

v PKCS#7

v PKCS#11

v PKCS#12

v MSCAPI (only on Windows platforms)

Cryptographic token support is limited to tested devices. These devices include

support tested for SSL clients:

v IBM 4758-23

v nCipher nForce

v Rainbow Cryptoswift

v IBM Security Kit Smartcard

v GemPlus Smartcards

v Rainbow iKey 1000/2000(USB ″Smartcard″ device)

v Eracom CSA8000

Cryptographic token support has also been tested for the following SSL clients and

servers:

v IBM 4758-23

v nCipher nForce

v Rainbow Cryptoswift

WebSphere Application Server uses IBMJSSE to support cryptographic token

devices. Refer to the document install_root\web\docs\jsse\readme.jsse.ibm.html

for further information

Opening a cryptographic token using the key management utility

(iKeyman)

Before you begin

Verify that your cryptographic token device is installed and functions properly.

Create a cryptographic token, following the instructions provided by the manual of

the cryptographic device.

From your cryptographic token device documentation, identify the token library.

For example, the IBM 4758 PCI Cryptographic Card uses CRYPTOKI.DLL as the

PKCS#11-type token library (see

http://www.ibm.com/security/cryptocards/html/library.shtml for details).

Chapter 10. Managing security 315

Read the documentation located at

install_root/web/docs/ikeyman/ikmuserguide.pdf for further information about

using the key management utility (iKeyman).

You can use the key management utility to open a cryptographic token. Once

opened, you can manage your keys and certificates just like you do with keystore

and truststore files:

v Create a self-signed digital certificate

v Add certificate authority (CA) roots as a signer certificate

v Request and receive a digital certificate from a CA

Steps for this task

1. Start the key management utility, if it is not already running.

2. Click Key DataBase File > Open.

3. Click Cryptographic Token from the list of key database types.

4. Fill in the information for File Name and Location, or browse for the

cryptographic device library.

5. Click OK to open the library.

6. Type in the slot number in the next panel.

 This is the number of the slot in which you previously created the

cryptographic token.

7. Enter the password.

 This is the password configured for the cryptographic token that you created.

Results

All of the personal and signer certificates are stored on the cryptographic token

card. With the token open, you can create or request digital certificates and receive

CA-signed certificates.

Usage scenario

Using a cryptographic token device as a key database to manage keys and

certificates for an SSL connection.

What to do next

Once the cryptographic token is open, you can add or delete keys and certificates.

Configure the cryptographic token settings in WebSphere Application Server.

Configuring to use cryptographic tokens

You can configure cryptographic token support in both client and server

configuration. To configure a Java client application, use the sas.client.props

configuration file. By default, the sas.client.props is located in the properties

directory under the install_root of your WebSphere Application Server

installation. To configure a WebSphere Application Server, use the administrative

console. To start the administrative console, specify URL:

http://server_hostname:9090/admin.

Before you begin

316 IBM® WebSphere® Application Server, Version 5.0.2: Security

To understand how to make WebSphere Application Server (both the run time and

the key management utility) work correctly with any cryptographic token device,

become familiar with the Java Secure Socket Extension (JSSE) documentation

available from the application server product installation

install_root/web/docs/jsse/readme.jsse.ibm.html and

install_root/web/docs/ikeyman/readme_jsse_ikeyman_ibm.htm.

Unzip the file install_root/web/docs/jsse/native-support.zip, and copy the

right libraries with respect to target operating system to the appropriate location.

Otherwise, link errors occur at run time, or the key management tool does not

work properly with the cryptographic device library.

Follow the documentation that accompanies your device to install your

cryptographic device. Installation instructions for IBM cryptographic hardware

devices can be found in the Administration section of Chapter 14, “Security:

Resources for learning,” on page 377.

Steps for this task

1. To configure a client to use a cryptographic token, edit the sas.client.props

file and set the following properties. Leave the KeyStore File Name and the

KeyStore File Password field in a Secure Sockets Layer (SSL) configuration

blank, if you want to use only cryptographic tokens as your keystore file.

com.ibm.ssl.tokenType

Specifies the type of built-in keystore file that is implemented in the

cryptographic token. (For example, com.ibm.ssl.tokenType=PKCS\#11).

The valid values are: PKCS\#7, PKCS\#11, PKCS\#12, and MSCAPI.

com.ibm.ssl.tokenLibraryFile

Specifies the token file name for PKCS#7 tokens, PKCS#12 tokens, and

the library name for PKCS#11, MSCAPI tokens. Make sure the

cryptographic token device is installed and functions properly with a

cryptographic token created. Unzip the native-support.zip file from

install_root/web/docs/jsse directory to copy the required libraries

with respect to the target operating system.

com.ibm.ssl.tokenPassword

Specifies the password to unlock the cryptographic token.
2. Configure your server to use cryptographic token. Leave the KeyStore File

Name and the KeyStore File Password field in an SSL configuration blank, if

you want to use only cryptographic tokens as your keystore file.

a. Specify http://<server_hostname>:9090/admin to start the administrative

console.

b. Click Security > SSL to open the SSL Configuration Repertoires panel.

Create a new SSL setting alias if one does not exist. Otherwise, click the

alias that you want to configure for the cryptographic token.

c. Click Cryptographic Token in the Additional Properties section to open the

Cryptographic Token Settings panel. Click SSL Configuration Repertoires >

(SSL alias) > Cryptographic Token.

d. Complete the information for Token Type to specify the type of built-in

keystore file that is implemented in the cryptographic token. The valid

values are: PKCS#7, PKCS#11, PKCS#12, MSCAPI.

e. Complete the information for Library File to specify the token and file

name for PKCS#7 tokens, PKCS#12 tokens and the library name for

PKCS#11, MSCAPI tokens. Make sure the cryptographic token device is

installed and functions properly with a new cryptographic token. Unzip the

Chapter 10. Managing security 317

native-support.zip file from install_root/web/docs/jsse directory to copy

the required libraries with respect to the target operating system.

f. Complete the information for Password to specify the password for

unlocking the cryptographic token.

g. Click Apply and OK to go back to the SSL Alias panel.

h. Select the box to enable Cryptographic Token.

i. Click Apply, OK, and Save to save the configuration.

Results

The configuration is enabled to support the specified cryptographic token for and

SSL connection.

Usage scenario

WebSphere Application Server uses the cryptographic token as a keystore file for

and SSL connection.

What to do next

If the server configuration has changed, restart the configured server.

Cryptographic token settings

Use this page to configure cryptographic token settings.

To view this administrative console page, click Security > SSL > alias_name >

Cryptographic Token.

Token Type

Specifies the type of built-in keystore file that is implemented in the cryptographic

token, such as PKCS#11.

The WebSphere Application Server uses an implementation of Java Secure Socket

Extension (JSSE) to support cryptographic token with Secure Sockets Layer (SSL).

Different cryptographic devices are supported. For an SSL server, the following

devices are supported:

v IBM 4758-23

v nCipher nForce

v Rainbow Cryptoswift

For an SSL client, the following devices are supported:

v IBM 4758-23

v nCipher nForce

v Rainbow Cryptoswift

v IBM Security Kit Smartcard

v GemPlus Smartcards

v Rainbow iKey 1000/2000 (USB ″Smartcard″ device)

v Eracom CSA8000

Follow the documentation that accompanies your device to install your

cryptographic token.

318 IBM® WebSphere® Application Server, Version 5.0.2: Security

Data type: String

Library File

Specifies the dynamic link library (DLL) or shared object that implements the

interface to the cryptographic token device.

 Data type: String

Password

Specifies the password for the cryptographic token device.

 Data type: String

Using Java Secure Socket Extension and Java Cryptography

Extension with Servlets and enterprise bean files

Java Secure Socket Extension

Java Secure Socket Extension (JSSE) provides the transport security for WebSphere

Application Server. It provides application programming interface (API) framework

and the implementation of the APIs, for Secure Sockets Layer (SSL) and Transport

Layer Security (TLS) protocols, including functionality for data encryption,

message integrity and authentication. With the JSSE APIs, other SSL or TLS

protocols, and Public Key Infrastructure (PKI), implementations can plug in.

IBM Java Secure Socket Extension

The WebSphere Application Server uses the IBMJSSE provider, which is

pre-installed and pre-registered with the Java Cryptography Architecture (JCA) of

the Java 2 platform. IBMJSSE supports the following cryptographic services:

v Rivest Shamir Adleman (RSA) public key cryptography support

v SSL and TLS security protocols and common cipher suites

v X.509-based key and trust managers

v PKCS12 as JCA keystore type

The IBMJSSE provider is pre-registered in the java.security properties file located

at <product_install>/java/jre/lib/security directory. It also supports

cryptographic token types PKCS#7, PKCS#11, PKCS#12 and MSCAPI (only on

Windows platforms) for cryptographic token support.

Note: The IBM Java Secure Socket Extension (JSSE) is currently not supported

within applets.

Customizing Java Secure Socket Extension

Note: Make sure you understand the implication to your application before you

begin customizing.

You can customize a number of aspects of JSSE by plugging in different

implementations of Cryptography Package Provider, X509Certificate and HTTPS

protocols, or specifying different default keystore files, key manager factories and

trust manager factories. A provided table summarizes which aspects can be

customized, what the defaults are, and which mechanisms are used to provide

customization. Some of the key customizable aspects follow:

Chapter 10. Managing security 319

Customizable item Default How to customize

X509Certificate X509Certificate

implementation from IBM

cert.provider.x509v1 security

property

HTTPS protocol Implementation from IBM java.protocol.handler.pkgs

system property

Cryptography Package

Provider

IBMJSSE A security.provider.n= line in

security properties file. See

description.

Default keystore None * javax.net.ssl.keyStore

system property

Default truststore jssecacerts, if it exists.

Otherwise, cacerts

* javax.net.ssl.trustStore

system property

Default key manager factory IbmX509 ssl.KeyManagerFactory.algorithm

security property

Default trust manager factory IbmX509 ssl.TrustManagerFactory.algorithm

security property

For aspects that you can customize by setting a system property, statically set the

system property by using the -D option of the Java command (you can set the

system property using the administrative console), or set the system property

dynamically by calling the java.lang.System.setProperty method in your code:

System.setProperty(propertyName,″propertyValue″).

For aspects that you can customize by setting a Java security property, statically

specify a security property value in the java.security properties file located in the

install_root/java/jre/lib/security directory. The security property is

propertyName=propertyValue. Dynamically set the Java security property by calling

the java.security.Security.setProperty method in your code.

Application Programming Interface

The JSSE provides a standard application programming interface (API) available in

packages of the javax.net file, javax.net.ssl file, and the javax.security.cert

file. The APIs cover:

v Sockets and SSL sockets

v Factories to create the sockets and SSL sockets

v Secure socket context that acts as a factory for secure socket factories

v Key and trust manager interfaces

v Secure HTTP UTL connection classes

v Public key certificate API

There is more information documented for the JSSE APIs in the jssedocs.jar file

located at install_root/web/docs/jsse directory. Unzip the Java archive (JAR) file

and open index.html file with your browser.

Samples using Java Secure Socket Extension

The Java Secure Socket Extension (JSSE) also provides samples to demonstrate its

functionality. The samples are included in

install_root/web/docs/jsse/samplejsse.jar. Unzip the file. The following files

display:

 Files Description

ClientJsse.java Demonstrates a simple client and server

interaction using JSSE. All enabled cipher

suites are used.

320 IBM® WebSphere® Application Server, Version 5.0.2: Security

Files Description

ClientJsseProvider.java Demonstrates a simple client and server

interaction using JSSE. All enabled cipher

suites are used.

ServerJsse.java

ServerJsseProvider.java

OldClientJsse.java

Demonstrates a simple client and server

interaction using JSSE. All enabled cipher

suites are used.

OldServerJsse.java Back-level samples

ServerPKCS12Jsse.java Demonstrates a simple client and server

interaction using JSSE with the PKCS12

keystore file. All enabled cipher suites are

used.

ClientPKCS12Jsse.java Demonstrates a simple client and server

interaction using JSSE with the PKCS12

keystore file. All enabled cipher suites are

used.

OldClientPKCS12Jsse.java Back-level samples

OldServerPKCS12Jsse.java Back-level samples

UseHttps.java Demonstrates accessing an SSL or non-SSL

Web server using the Java protocol handler

of the com.ibm.net.ssl.www.protocol class.

The URL is specified with the http or https

prefix. The HTML returned from this site

displays.

HTTPTest.java Demonstrates accessing an SSL or non-SSL

Web server using the Java protocol handler

of the com.ibm.net.ssl.www.protocol class.

The URL is specified with the http or https

prefix. The HTML returned from this site is

displayed.

HTTPSPanel.java

OldHTTPTest.java

Back-level sample

See more instructions in the source code. Follow these instructions before you run

the samples.

Permissions for Java 2 security

You might need the following permissions to run an application with JSSE: (This is

a reference list only.)

v java.util.PropertyPermission ″java.protocol.handler.pkgs″, ″write″

v java.lang.RuntimePermission ″writeFileDescriptor″

v java.lang.RuntimePermission ″readFileDescriptor″

v java.lang.RuntimePermission ″accessClassInPackage.sun.security.x509″

v java.io.FilePermission ″${user.install.root}${/}etc${/}.keystore″, ″read″

v java.io.FilePermission ″${user.install.root}${/}etc${/}.truststore″, ″read″

For the IBMJSSE provider:

v java.security.SecurityPermission ″putProviderProperty.IBMJSSE″

v java.security.SecurityPermission ″insertProvider.IBMJSSE″

For the SUNJSSE provider:

v java.security.SecurityPermission ″putProviderProperty.SunJSSE″

v java.security.SecurityPermission ″insertProvider.SunJSSE″

Chapter 10. Managing security 321

Debugging

By configuring through the javax.net.debug system property, JSSE provides the

following dynamic debug tracing: -Djavax.net.debug=true.

A value of true turns on the trace facility, provided that the debug version of JSSE

is installed. Use the administrative console to set the system property for

debugging the application server.

The debug version of JSSE, ibmjsse-debug.jar, is located in the

install_root/web/docs/jsse directory. To collect a trace complete the following

steps:

1. Stop your application.

2. Save the default version of JSSE (ibmjsse.jar) into a separate directory.

3. Locate the ibmjsse.jar file in the install_root/java/jre/lib/ext directory.

4. Replace the ibmjsse.jar file with the ibmjsse-debug.jar file in the

install_root/java/jre/lib/ext directory.

5. Specify the javax.net.debug system property.

6. Restart your application.

The trace is logged in the trace.log file for the application server or in the file

specified by a system property, DtraceFileName for a Java client application.

Documentation

See Chapter 14, “Security: Resources for learning,” on page 377 for documentation

references to JSSE.

JCE

Java Cryptography Extension (JCE) provides cryptographic, key and hash

algorithms for WebSphere Application Server. It provides a framework and

implementations for encryption, key generation, key agreement, and Message

Authentication Code (MAC) algorithms. Support for encryption includes

symmetric, asymmetric, block and stream ciphers.

IBMJCE

The IBM Java Cryptography Extension (JCE) is an implementation of the JCE

cryptographic service provider used in WebSphere Application Server. The IBMJCE

is similar to SunJCE, except that the IBMJCE offers more algorithms:

v Cipher algorithm

v Signature algorithm

v Message digest algorithm

v Message authentication code

v Key agreement algorithm

v Random number generation algorithm

v Key store

The IBMJCE is also moving com.sun.crypto.provider.* packages to

com.ibm.crypto.provider.* packages. Read

install_root/web/docs/jce/readme.jce.ibm.html for further details.

Implementing a Java Cryptography Extension cryptographic service provider: A

Cryptographic Service Provider, or provider, refers to a package (or a set of

packages) that supply a concrete implementation of a subset of the cryptography

aspects of the Java Security API. A provider can contain an implementation of one

322 IBM® WebSphere® Application Server, Version 5.0.2: Security

or more digital signature algorithms and one or more cipher algorithms. Complete

the following steps to implement and integrate a JCE provider:

Steps for this task

 1. Write your service implementation code.

 2. Give your provider a name.

 3. Write your Master Class, a subclass of your provider.

 4. Compile your code.

 5. Prepare for testing.

 6. Write and compile test programs.

 7. Run your test programs.

 8. Document your provider and its supported services.

 9. Prepare for production.

10. Run your test programs again.

11. Make your provider software and documentation available to clients.

What to do next

Refer to install_root/web/docs/jce/HowToImplAProvider.html for further

information.

Application Programming Interface: Java Cryptography Extension (JCE) has a

provider-based architecture. Providers can be plugged into the JCE framework by

implementing the APIs defined by the JCE. The JCE APIs covers:

v Symmetric bulk encryption, such as DES, RC2, and IDEA

v Symmetric stream encryption, such as RC4

v Asymmetric encryption, such as RSA

v Password-based encryption (PBE)

v Key Agreement

v Message Authentication Codes

Refer to install_root/web/docs/jce/api_users_guide.html and

install_root/web/docs/jce/CryptoSpec.html for more information about Java

Cryptography Extension technology. Locate Javadoc for the JCE APIs by unzipping

install_root/web/docs/jce/jcedocs.jar.

Samples using Java Cryptography Extension: There are samples provided in

SampleJCE.jar file located in the install_root/web/docs/jce directory. Unzip the

file. The following source code displays:

 File Description

SampleDSASignature.java Demonstrates how to generate a pair of DSA

keys (a public key and a private key) and

use the key to digitally sign a message using

the SHA1with DSA algorithm

SampleMarsCrypto.java Demonstrates how to generate a Mars secret

key, and how to do Mars encryption and

decryption

SampleMessageDigests.java Demonstrates how to use the message digest

for MD2 and MD5 algorithms

Chapter 10. Managing security 323

File Description

SampleRSACrypto.java Demonstrates how to generate an RSA key

pair, and how to do RSA encryption and

decryption

SampleRSASignatures.java Demonstrates how to generate a pair of RSA

keys (a public key and a private key) and

use the key to digitally sign a message using

the SHA1withRSA algorithm

SampleX509Verification.java Demonstrates how to verify X509 Certificates

Documentation: Refer to Chapter 14, “Security: Resources for learning,” on page

377 for documentation on JCE.

Java 2 security

Java 2 security provides a policy-based, fine-grain access control mechanism that

increases overall system integrity by checking for permissions before allowing

access to certain protected system resources. Java 2 security guards access to

system resources such as file I/O, sockets, and properties. J2EE security guards

access to Web resources such as servlets, JavaServer pages (JSPs) and EJB methods.

WebSphere global security includes J2EE role-based authorization, the Common

Secure Interoperability Version 2 (CSIv2) authentication protocol, and Secure

Sockets Layer (SSL) configuration.

Since Java 2 security is relatively new, many existing or even new applications

might not be prepared for the very fine-grain access control programming model

that Java 2 security is capable of enforcing. Administrators should understand the

possible consequences of enabling Java 2 security if applications are not prepared

for Java 2 security. Java 2 security places some new requirements on application

developers and administrators.

Java 2 security for deployers and administrators

Although Java 2 security is supported in WebSphere Application Server Version 5,

it is disabled by default. However, it is enabled automatically if you also enable

global security when configuring security. Although it becomes enabled

automatically when you enable WebSphere global security, you can choose to

disable it. You can configure Java 2 security and global security independently of

one another. Disabling global security does not disable Java 2 security

automatically. You need to explicitly disable it.

If your applications, or third-party libraries are not ready, having Java 2 security

enabled causes problems. You can identify these problems as Java 2 security

AccessControlExceptions in the SystemOut.log file, SystemError.log file, or the

trace log files. If you are unsure about the Java 2 security readiness of your

applications, disable Java 2 security initially to get your application installed and

verify that it is working properly.

There are implications if Java 2 Security is enabled; deployers or administrators are

required to make sure that all the applications are granted the required

permissions, otherwise, applications might fail to run. By default, applications are

granted the permissions recommended in the J2EE 1.3 Specification. For details of

default permissions granted to applications in the product, refer to the following

policy files:

v install_root/java/jre/lib/security/java.policy

324 IBM® WebSphere® Application Server, Version 5.0.2: Security

v install_root/properties/server.policy

v install_root/config/cells/cell name/nodes/node name/app.policy

Note: This policy embodied by these policy files cannot be made more restrictive

because the product might not have the necessary Java 2 security doPrivileged

APIs in place. The restrictive policy is the default policy. You can grant additional

permissions, but you cannot make the default more restrictive because

AccessControlExceptions is generated from within WebSphere Application Server.

The product does not support a more restrictive policy than the default defined in

the policy files previously mentioned.

There are several policy files used to define the security policy for the Java process.

These policy files are static (code base is defined in the policy file) and they are in

the default policy format provided by the JDK. For enterprise application resources

and utility libraries, WebSphere Application Server provides dynamic policy

support. The code base is dynamically calculated based on deployment

information and permissions are granted based on template policy files during run

time. Refer to the section of Java 2 security policy management.

Note: Syntax errors in the policy files cause the application server process to fail.

Edit these policy files carefully using the Policy Tool provided by the JDK for

editing the policy files (install_root/java/jre/bin/policytool).

If an application is not prepared for Java 2 security, if the application provider

does not provide a was.policy file as part of the application, or if the application

provider does not communicate the expected permissions the application is likely

to cause Java 2 security access control exceptions at run time. It might not be

obvious that an application is not prepared for Java 2 security. Several run-time

debugging aids help troubleshoot applications that might have access control

exceptions. See the Java 2 security debugging aids for more details. See page 327

for information and strategies for dealing with such applications.

It is important to note that when Java 2 Security is enabled in the Global Security

settings, the installed SecurityManager does not currently check modifyThread and

modifyThreadGroup permissions for non-system threads.Allowing Web and EJB

application code to create or modify a thread can have a negative impact on other

components of the container and can affect the capability of the container to

manage enterprise bean life cycles and transactions.

Java 2 security for application developers

Application developers must understand the permissions granted in the default

WebSphere policy and the permission requirements of the SDK APIs that their

application calls to know whether additional permissions are required. The

″Permissions in the Java 2 SDK″ reference in the resources section describes which

APIs require which permission.

Application providers can assume that applications have the permissions granted

in the default policy previously mentioned. Applications that access resources not

covered by the default WebSphere policy are required to grant the additional Java

2 security permissions to the application.

While it is possible to grant the application additional permissions in one of the

other dynamic WebSphere policy files or in one of the more traditional static policy

files, such as java.policy, the was.policy (which is embedded in the EAR file)

ensures the additional permissions are scoped to the exact application that requires

Chapter 10. Managing security 325

them. Scoping the permission beyond the application code that requires it can

permit code that normally does not have permission to access particular resources.

If an application component is being developed, like a library that might actually

be included in more than one .ear file, then the library developer should

document the required Java 2 permissions needed by the application assembler.

There is no was.policy file for library type components. The developer must

communicate the required permissions through Javadoc or some other external

documentation.

If the component library is shared by multiple enterprise applications, the

permissions can be granted to all enterprise applications on the node in the

app.policy file.

If the permission is only used internally by the component library and the

application should never be granted access to resources protected by the

permission, then it might be necessary to mark the code as privileged (inserting

doPrivileged). Refer to the article, “AccessControlException” on page 329, for more

details. However, improperly inserting a doPrivileged might open up security

holes. Understand the implication of doPrivileged to make a correct judgement

whether a doPrivileged should be inserted or not.

The section on “Java 2 security policy files” on page 335 describes how the

permissions in the was.policy files are granted at run time.

Developing an application with Java 2 security in mind might be a new skill and

impose a security awareness not previously required of application developers.

Describing the Java 2 security model and the implications on application

development is beyond the scope of this section.

Debugging Aids

There are two primary aids, the WebSphere SystemOut.log file and the

com.ibm.websphere.java2secman.norethrow property.

The WebSphere SystemOut.log File

The AccessControl exception logged in the SystemOut.log file contains the

permission violation that causes the exception, the exception call stack, and the

permissions granted to each stack frame. This information is usually enough to

determine the missing permission and the code requiring the permission.

The com.ibm.websphere.java2secman.norethrow Property

When Java 2 security is enabled in WebSphere Application Server, the security

manager component throws an java.security.AccessControl exception when a

permission violation occurs. This exception, if not handled, often causes a run-time

failure. This exception is also logged in the SystemOut.log file.

However, when the JVM com.ibm.websphere.java2secman.norethrow property is

set and has a value of true, the security manager does not throw the AccessControl

exception. This information is logged.

Note: This property is intended for a sandbox or debug environment because it

instructs the security manager not to throw the AccessControl exception. Java 2

security is not enforced. This property should not be used in a production

326 IBM® WebSphere® Application Server, Version 5.0.2: Security

environment where a relaxed Java 2 security environment weakens the integrity

that Java 2 security is intended to produce.

This property is valuable in a sandbox or test environment where the application

can be thoroughly tested and the where the SystemOut.log file can be inspected for

AccessControl exceptions. Since this property does not throw the AccessControl

exception , it does not propagate the call stack and does not cause a

failure.Without this property, you have to find and fix AccessControl exceptions

one at a time.

Handling applications that are not Java 2 security ready

If the increased system integrity that Java 2 security provides is important, then

contact the application provider to have the application support Java 2 security or

at least communicate the required additional permissions beyond the default

WebSphere policy that must be granted.

The easiest way to deal with such applications is to disable Java 2 security in

WebSphere Application Server. The downside is that this solution applies to the

entire system and the integrity of the system is not as strong as it might be.

Disabling Java 2 security might not be acceptable depending on the organization

security policies or risk tolerances.

Another approach is to leave Java 2 security enabled, but to grant either just

enough additional permissions or grant all permissions to just the problematic

application. Granting permissions however, might not be a trivial thing to do. If

the application provider has not communicated the required permissions in some

way, there is no easy way to determine what the required permissions are and

granting all permissions might be the only choice. You minimize this risk by

locating this application on a different node, which might help isolate it from

certain resources. Grant the java.security.AllPermission permission in the

was.policy file embedded in the application’s .ear file, for example:

grant codeBase "file:${application}" {

 permission java.security.AllPermission;

 };

install_root/properties/server.policy

This policy defines the policy for the WebSphere classes. At present, all the server

processes on the same installation share the same server.policy file. However, you

can configure this file so that each server process can have a separate

server.policy file. Define the desired policy file as the value of the Java system

properties java.security.policy. For details of how to define Java system

properties, Refer to the Process definition section of the Manage application servers

file.

The server.policy file is not a configuration file managed by the repository and

the file replication service. Changes to this file are local and do not get replicated

to other machines. Use the server.policy file to define Java 2 security policy for

server resources. Use the app.policy file (per node) or was.policy file (per

enterprise application) to define Java 2 security policy for enterprise application

resources.

WAS_HOME/java/jre/lib/security/java.policy

Chapter 10. Managing security 327

The file represents the default permissions granted to all classes. The policy of this

file applies to all the processes launched by the WebSphere Application Server

JVM.

Troubleshooting

 Symptom: Error message SECJ0314E: Current Java 2 security policy reported a

potential violation of Java 2 security permission. Refer to Problem

Determination Guide for further

information.{0}Permission\:{1}Code\:{2}{3}Stack Trace\:{4}Code

Base Location\:{5} Current Java 2 security policy reported a

potential violation of Java 2 Security Permission. Refer to Problem

Determination Guide for further

information.{0}Permission\:{1}Code\:{2}{3}Stack Trace\:{4}Code

Base Location\:{5}

Problem: The Java security manager checkPermission() reported a

SecurityException on the subject permission with debugging

information. The reported information can be different with respect

to the system configuration. This report is enabled by either

configuring RAS trace into debug mode or specifying a Java

property. Check the trace enabling section from the WebSphere

Application Server InfoCenter about how to configure RAS trace

into debug mode. Specify the following property in the JVM

Settings panel from the administrative console: java.security.debug.

Valid values include:

access Print all debug information including: required

permission, code, stack, and code base location.

stack Print debug information including: required permission,

code, and stack.

failure Print debug information including: required permission

and code.

Recommended

response:

The reported exception might be critical to the secure system. Turn

on security trace to determine the potential code that might have

violated the security policy. Once the violating code is determined,

verify if the attempted operation is permitted with respect to Java

2 security, by examining all applicable Java 2 security policy files

and the application code.

Note: If the application is running with Java Mail, this message

might be benign. User can update the was.policy file to grant the

following permissions to the application.

permission java.io.FilePermission ″${user.home}${/}.mailcap″,

″read″; permission java.io.FilePermission

″${user.home}${/}.mime.types″, ″read″; permission

java.io.FilePermission ″${java.home}${/}lib${/}mailcap″, ″read″;

permission java.io.FilePermission

″${java.home}${/}lib${/}mime.types″, ″read″;

Messages

 Message: SECJ0313E: Java 2 security manager debug

message flags are initialized\: TrDebug: {0},

Access: {1}, Stack: {2}, Failure: {3}

Problem: Configured values of the valid debug

message flags for security manager.

328 IBM® WebSphere® Application Server, Version 5.0.2: Security

Recommended response: None.

 Message: SECJ0307E: Unexpected exception is caught

when trying to determine the code base

location. Exception: {0}

Problem: An unexpected exception is caught when the

code base location is determined.

Recommended response: Contact an IBM representative.

AccessControlException

The Java 2 security behavior is specified by its security policy. The security policy is

an access-control matrix that specifies which system resources certain code bases

can access and who must sign them. The Java 2 Security policy is declarative and

it is enforced by the java.security.AccessController.checkPermission() method.

The following example depicts the algorithm for the

java.security.AccessController.checkPermission() method. For the complete algorithm,

refer to the Java 2 security check permission algorithm in Chapter 14, “Security:

Resources for learning,” on page 377.

i = m;

while (i > 0) {

 if (caller i’s domain does not have the permission)

 throw AccessControlException;

 else if (caller i is marked as privileged)

 return;

 i = i - 1;

};

The algorithm requires that all the classes or callers on the call stack have the

permissions when a java.security.AccessController.checkPermission() is performed

or the request is denied (a java.security.AccessControlException is thrown).

However, if the caller is marked as privileged and the class (caller) is granted the

said permissions, the algorithm returns and does not walk the entire call stack.

Subsequent classes (callers) do not need the required permission granted.

A java.security.AccessControlException exception is thrown as a result of certain

classes on the call stack missing the required permissions during a

java.security.AccessController.checkPermission() method. Two possible resolutions

to the java.security.AccessControlException exception:

v If the application is calling a Java 2 security-protected API, then grant the

required permission to the application Java 2 Security policy. If the application is

not calling a Java 2 security-protected API directly and the required permission

is because of the side-effect of the third-party APIs accessing Java 2

security-protected resources.

v If the application is granted the required permission, it gains more access than it

should. In this case, it is likely that the third party code that accesses the Java 2

Security protected resource is not properly mark as privileged.

Example call stack

This example of a call stack indicates where application code is using a third-party

API utility library to update the password. The following is only an example to

illustrate the point. The decision as to where to mark the code as privileged is

Chapter 10. Managing security 329

application-specific and is unique in every situation. This decision requires great

depth of domain knowledge and security expertise to make the correct judgement.

There are a number of well written publications and books on this topic.

Referencing these materials for more detailed information is recommended.

AccessController.checkPermission()

SecurityManager..checkPermission()

SecurityManager..checkWrite()

java.io.FileOutputStream()

PasswordUtil.updatePasswordFile()

Client Code ...

PasswordUtil.getPassword()

System Domain

Application Domain

Utility Library Domain

You can use the PasswordUtil utility to change the password of a user. The types

in the old password and the new password twice to ensure that the correct

password is entered. If the old password matches the one stored in the password

file, the new password is stored and the password file updates. Assume that none

of the stack frame is marked as privileged. According to the

java.security.AccessController.checkPermission() algorithm, the application

fails unless all the classes on the call stack are granted write permission to the

password file. The client application should not have permission to write to the

password file directly and update the password file at will.

However, if the PasswordUtil.updatePasswordFile() method marks the code that

accesses the password file as privileged, then the check permission algorithm does

not check for the required permission from classes that call the

PasswordUtil.updatePasswordFile() method for the required permission as long as

the PasswordUtil class is granted the permission. Then the client application can

successfully update a password without granting the permission to write to the

password file.

The ability to mark code privileged is very flexible and powerful. If this ability is

used incorrectly, the overall security of the system can be compromised and

security holes can be exposed. Use the ability to mark code privileged carefully.

Resolution to java.security.AccessControlException

As described previously, there are two possibilities to resolve a

java.security.AccessControlException exception. Judge these exceptions

individually to decide which of the following resolutions is best:

1. Grant the missing permission to the application.

2. Mark some code as privileged (considering the concerns and risks).

Configuring Java 2 security

Before you begin

Java 2 security is a new feature in WebSphere Application Server Version 5. It is a

new programming model that is very pervasive and has a huge impact on

application development. It is disabled by default, but is enabled automatically

330 IBM® WebSphere® Application Server, Version 5.0.2: Security

when global security is enabled. However, Java 2 security is orthogonal to J2EE

role-based security; you can disable or enable it independently of Global Security.

However, it does provide an extra level of access control protection on top of the

J2EE role-based authorization. It particularly addresses the protection of system

resources and APIs. Administrators should need to consider the benefits against

the risks of disabling Java 2 Security.

The following recommendations are provided to help enable Java 2 security in a

test or production environment:

1. Make sure the application is developed with the Java 2 security programming

model in mind. Developers have to know whether or not the APIs used in the

applications are protected by Java 2 security. It is very important that the

required permissions for the APIs used are declared in the policy file

(was.policy), or the application fails to run when Java 2 security is enabled.

Developers can reference the Web site for Development Kit APIs that are

protected by Java 2 security. See the Programming model and decisions section

of Chapter 14, “Security: Resources for learning,” on page 377 to visit this Web

site.

2. Make sure that migrated applications from previous releases are given the

required permissions. Since Java 2 security is not supported or partially

supported in previous WebSphere Application Server releases, applications

developed prior to Version 5 most likely are not using the Java 2 security

programming model. There is no easy way to find out all the required

permissions for the application. Following are activities you can perform to

determine the extra permissions required by an application:

v Code review and code inspection

v Application documentation review

v Sandbox testing of migrated enterprise applications with Java 2 security

enabled in a pre-production environment. Enable tracing in WebSphere Java

2 security manager to help determine the missing permissions in the

application policy file. The trace specification is

com.ibm.ws.security.core.SecurityManager=all=enabled.

v Use the com.ibm.websphere.java2secman.norethrow system property to aid

debuggging. This property should not be used in a production environment.

Refer to “Java 2 security” on page 324.

Note: The default permission set for applications is the recommended permission

set defined in the J2EE 1.3 Specification. The default is declared in the

config/cells/<<i>cell_name</i>>/nodes/<<i>node_name</i>>/app.policy policy

file with permissions defined in the Development Kit

(${JAVA_HOME}/lib/security/java.policy) policy file that grant permissions to

everyone. However, applications are denied permissions declared in the

config/cells/<cell_name>/filter.policy filter policy file. Permissions declared in

the filter.policy file are filtered for applications during the permission check.

Note: Define the required permissions for an application in a was.policy file and

embed the was.policy file in the application enterprise archive (EAR) file as

YOURAPP.ear/META-INF/was.policy (see “Configuring Java 2 security policy files”

on page 339 for details).

Steps for this task

1. Click Security in the navigation tree, then click Global Security. The Global

Security page appears.

Chapter 10. Managing security 331

2. Enable Java 2 security by selecting the check box labeled Enforce Java 2

Security (clear the check box for disabling Java 2 Security).

3. Click OK or Apply on the Global Security page.

4. Click Save to save the changes.

5. Restart the server for the changes to take effect.

Results

Java 2 security is enabled and enforced for the servers. Java 2 security permission

is selected when a Java 2 security protected API is called.

When to use Java 2 security.

1. To enable protection on system resources. For example, when opening or

listening to a socket connection, reading or writing to operating system file

systems, reading or writing Java Virtual Machine system properties, and so on.

2. To prevent application code calling destructive APIs. For example, calling the

System.exit() method brings down the application server.

3. To prevent application code from obtaining privileged information (passwords)

or gaining extra privileges (obtaining server credentials).

What to do next

The WebSphere Java 2 security manager is enhanced to dump the Java 2 security

permissions granted to all classes on the call stack when an application is denied

access to a resource (the java.security.AccessControlException exception is

thrown). However, this tracing capability is disabled by default. You can enable it

by specifying the server trace service with the

com.ibm.ws.security.core.SecurityManager=all=enabled trace specification. When

the exception is thrown, the trace dump provides hints to determine whether the

application is missing permissions or the product run time code or third party

libraries used are not properly marked as privileged when accessing Java 2

protected resources. See the Security Problem Determination Guide for details.

Enable or disable Java 2 Security for the cell

Steps for this task

1. Click Security > Global Security in the navigation tree. The Global Security

page appears.

2. Enable Java 2 Security by selecting the check box labeled Enforce Java 2

Security (clear the check box to disable Java 2 Security). This enables Java 2

Security for the cell.

3. Click OK or Apply on the Global Security page.

4. Save the changes and make sure a file sync is performed before restarting the

servers.

5. For the changes to take effect, restart all the servers, which include the

Network Deployment Manager, all Node Agents, and all application servers.

Enable or disable Java 2 Security for an application server

Steps for this task

1. Click Server > Application Servers in the navigation tree. The Application

Servers page appears.

332 IBM® WebSphere® Application Server, Version 5.0.2: Security

2. Click the application server name in the Name column of the Application

Server collection table. The configuration panel of the application server

selected appears.

3. Click Server Security in the Additional Properties section. The Server Security

panel of the application server appears.

4. Click Server Level Security in the Additional Properties section. The Server

Level Security panel of the application server appears.

5. Enable Java 2 Security by selecting the check box labeled Enforce Java 2

Security (clear the check box to disable Java 2 Security). This enables Java 2

Security for the selected application server.

6. Click OK or Apply on the Server Level Security page.

7. Save the changes and make sure a file sync is performed before restarting the

application server.

8. Restart the application server for the changes to take effect.

Results

Java 2 Security is enabled and enforced for the servers. Java 2 Security permission

is checked when a Java 2 Security protected API is called.

When to use Java 2 Security.

1. To enable protection on system resources. For example, when opening or

listening to a socket connection, reading or writing to operating system file

systems, reading or writing Java Virtual Machine system properties, and so on.

2. To prevent application code calling destructive APIs. For example, calling

System.exit() brings down the application server.

3. To prevent application code obtaining privileged information (passwords) or

gaining extra privileges (obtaining Server Credentials).

What to do next

The WebSphere Java 2 Security Manager is enhanced to dump the Java 2 Security

permissions granted to all classes on the call stack when an application is denied

access to a resource (the java.security.AccessControlException exception is

thrown). The trace information is dumped to the configured server log files. Check

the server log files to access debugging information when an

AccessControlException is thrown. In addition, the product Java 2 Security

Manager trace can be enabled with the trace string,

com.ibm.ws.security.core.SecurityManager=all=enabled. When the exception is

thrown, the trace dump provides hints to determine whether the application is

missing permissions or the product run time code or third party libraries used are

not properly marked as privileged when accessing Java 2 protected resources. See

the Security Problem Determination Guide for details.

Using PolicyTool to edit policy files

Before you begin

Java 2 security uses several policy files to determine the granted permission for

each Java program. See “Java 2 security policy files” on page 335 for the list of

available policy files. The Java Development Kit provides policytool to edit these

policy files. This tool is recommended for editing any policy file to verify the

syntax of its contents. Syntax errors in the policy file cause an

AccessControlException during application execution, including the server start.

Chapter 10. Managing security 333

Identifying the cause of this exception is not easy because the user might not be

familiar with the resource that has an access violation. Be careful when you edit

these policy files.

Steps for this task

1. Start policytool.

 Enter %{was.install.root}/java/jre/bin/policytool from a command

prompt.

 The PolicyTool window opens. PolicyTool looks for the .java.policy file in

your home directory. If it does not exist, an Error message displays. Click OK.

2. Click File > Open.

3. Navigate the directory tree in the Open window to pick up the policy file that

you need to update. After selecting the policy file, click Open. The code base

entries are listed in the window.

4. Create or modify the code base entry.

a. Modify the existing code base entry by double-clicking the code base, or

click the code base and click Edit Policy Entry. The Policy Entry window

opens with the permission list defined for the selected code base.

b. Create a new code base entry by clicking Add Policy Entry. The Policy

Entry window opens. At the code base column, enter the code base

information as a URL format, for example,

/WebSphere/AppServer/InstalledApps/testcase.ear.
5. Modify or add the permission specification

a. Modify the permission specification by double-clicking the entry you want

to modify, or by selecting the permission and clicking Edit Permission.

 The Permissions window opens with the selected permission information.

b. Add a new permission by clicking Add Permission.

 The Permissions window opens. In the Permissions, window there are four

rows for Permission, Target Name, Actions, and Signed By.
6. Select the permission from the Permission list. The selected permission

displays. After a permission is selected, the Target Name, Actions, and Signed

By fields automatically show the valid choices or they enable text input in the

right text input area.

a. Select Target Name from the list, or enter the target name in the right text

input area.

b. Select Actions from the list.

c. Input Signed By if it is needed.
7. Click OK to close the Permissions window.

 Modified permission entries of the specified code base display.

8. Click Done to close the window. Modified code base entries are listed. Repeat

steps 4 through 8 until you complete editing.

9. Click File > Save after you finish editing the file.

Results

A policy file is updated. If any policy files need editing, use the policytool. Do not

edit the policy file manually. Syntax errors in the policy files can potentially cause

application servers or enterprise applications to not start or function incorrectly.

For the changes in the updated policy file to take effect, restart the Java processes.

334 IBM® WebSphere® Application Server, Version 5.0.2: Security

Java 2 security policy files

The J2EE 1.3 specification has a well-defined programming model of

responsibilities between the container providers and the application code. Using

Java 2 security manager to help enforce this programming model is recommended.

There are certain operations that are not allowed in the application code because

such operations interfere with the behavior and operation of the containers. The

Java 2 security manager is used in the product to enforce responsibilities of the

container and the application code.

This product provides support for policy file management. There are a number of

policy files in the product, which are either static or dynamic. Dynamic policy is a

template of permissions for a particular type of resource. There is no relative

codebase defined in the dynamic policy template. The codebase is dynamically

calculated from the deployment and run-time data.

Static policy files

 Policy file Location

java.policy install_root/java/jre/lib/security/java.policy

. Default permissions granted to all classes.

The policy of this file applies to all the

processes launched by the WebSphere

Application Server.

server.policy install_root/properties/server.policy

Default permissions granted to all the

product servers.

client.policy install_root/properties/client.policy

Default permissions for all of the product

client containers and applets on a node.

The static policy files are not managed by configuration and file replication

services. Changes made in these files are local and are not replicated to other

nodes in the Network Deployment cell.

Dynamic policy files

 Policy file Location

spi.policy install_root/config/cells/

cell_name/nodes/nodename/spi.policy

This template is for the Service Provider Interface (SPI) or

third-party resources embedded in the product. Examples of

SPI are Java Messaging Service (JMS) (MQSeries) and JDBC

drivers. The codebase for the embedded resources are

dynamically worked out from the configuration

(resources.xml file) and run-time data, and permissions

defined in the spi.policy files are automatically applied to

these resources. The default permission of spi.policy file is

java.security.AllPermissions.

library.policy install_root/config/cells/cell_name/nodes/node_name/library.policy.

This template is for the library (Java library classes). You can

define a shared library to use in multiple product

applications. The default permission of the library.policy

is empty.

Chapter 10. Managing security 335

Policy file Location

app.policy install_root/config/cells/cell_name/nodes/node_name/app.policy.

The app.policy file defines the default permissions granted

to all enterprise applications running on node_name in

cell_name.

was.policy install_root/config/cells/cell_name/applications/

ear_file_name/deployments/application_name;/META-
INF/was.policy

Type the previous location on one continuous line.

This template is for application-specific permissions. The

was.policy is embedded in the Enterprise Archive (EAR) file.

ra.xml rar_file_name/META-INF/was.policy.RAR

This file can have a permission specification defined in the

ra.xml file. The ra.xml file is embedded in the RAR file.

Note: Grant entry specified in the app.policy and was.policy files must have a

code base defined. If there are grant entries specified without a code base, the

policy files are not loaded properly and the application can fail. If the intent is to

grant the permissions to all applications, then use file:${application} as a code base

in the grant entry.

Syntax of the policy file

A policy file contains several policy entries. The following example depicts each

policy entry format:

<>grant [codebase Codebase] {<>

permission Permission;<>

 permission Permission;<>

permission Permission;

};

<>

CodeBase: A URL.

 For example, "file:${java.home}/lib/tools.jar"<>

 When [codebase Codebase] is not specified, listed

 permissions are applied to everything.

 If URL ends with a JAR file name, only the classes in the

 JAR file belong to the codebase.

 If URL ends with "/", only the class files in the specified

 directory belong to the codebase.

 If URL ends with "*", all JAR and class files in the specified

 directory belong to the codebase.

 If URL ends with "-", all JAR and class files in the specified

 directory and its subdirectories belong to the codebase.<>

Permissions: Consists from

 Permission Type : class name of the permission

 Target Name : name specifying the target

 Actions : actions allowed on target

 For example,

 java.io.FilePermission "/tmp/xxx", "read,write"

Please refer to developer kit specifications for the details of each permission.

Syntax of dynamic policy

336 IBM® WebSphere® Application Server, Version 5.0.2: Security

You can define permissions for specific types of resources in dynamic policy files

for an enterprise application. This action is achieved by using product-reserved

symbols. The reserved symbol scope depends on where it is defined. If you define

the permissions in the app.policy file, the symbol applies to all the resources on

all of the< enterprise applications running on nodename>. If you define the

permissions in the META-INF/was.policy file, it only applies to the specific

enterprise application. Valid symbols for codebase are listed in the following table:

 Symbol Meaning

file:${application} Permissions apply to all resources within the

application

file:${jars} Permissions apply to all utility Java archive

(JAR) files within the application

file:${ejbComponent} Permissions apply to EJB resources within

the application

file:${webComponent} Permissions apply to Web resources within

the application

file:${connectorComponent} Permissions apply to connector resources

within the application

Other than these entries specified by the codebase symbols, you can specify the

module name for a granular setting. For example:

"file:DefaultWebApplication.war" {

 permission java.security.SecurityPermission "printIdentity";

 };

grant codeBase "file:IncCMP11.jar" {

 permission java.io.FilePermission "${user.install.root}${/}bin${/}

 DefaultDB${/}-", "read,write,delete"; // (split for publication)

};

You can use a relative codebase only in the META-INF/was.policy file.

Several product-reserved symbols are defined to associate the permission lists to a

specific type of resources.

 Symbol Meaning

file:${application} Permissions apply to all resources within the

application

file:${jars} Permissions apply to all utility JAR files

within the application

file:${ejbComponent} Permissions apply to enterprise beans

resources within the application

file:${webComponent} Permissions apply to Web resources within

the application

file:${connectorComponent} Permissions apply to connector resources

both within the application and stand-alone

connector resources.

There are five embedded symbols provided to specify the path and name for

java.io.FilePermission. These symbols enable flexible permission specification. The

absolute file path is fixed after the installation of the application.

 Symbol Meaning

${app.installed.path} Path where the application is installed

${was.module.path} Path where the module is installed

${current.cell.name} Current cell name

${current.node.name} Current node name

Chapter 10. Managing security 337

Symbol Meaning

${current.server.name} Current server name

Note: You must not use the ${was.module.path} in the ${application} entry.

Carefully determine where to add a new permission. An incorrectly specified

permission causes an AccessControlException exception. Since dynamic policy

resolves the codebase at run time, determining which policy file has a problem is

difficult. Add a permission only to the necessary resources. For example, use

${ejbcomponent}, and etc instead of ${application}, and update the was.policy

file instead of the app.policy file, if possible.

Static policy filtering

Limited static policy filtering support exists. If the app.policy file and the

was.policy file have permissions defined in the filter.policy file with the

keyword, filterMask, the run time removes the permissions from the applications

and an audit message is logged. However, if the permissions defined in the

app.policy and was.policy are compound permissions, for example,

java.security.AllPermission, the permission is not removed, rather an warning

message is written to the log file. The policy filtering only supports Developer Kit

permissions, (the permissions package name begins with java or javax).

Run time policy filtering support is provided to force stricter filtering. If the

app.policy file and was.policy file have permissions defined in the filter.policy

file with the keyword, runtimeFilterMask, the run time removes the permissions

from the applications no matter what permissions are granted to the application.

For example, even if a was.policy file has java.security.AllPermission granted to on

of its modules, specified permissions such as runtimeFilterMask are removed from

the granted permission during run time.

If the Issue Permission Warning flag in the Global Security panel is enabled and if

the app.policy file and the was.policy file contain custom permissions

(non-Developer Kit permissions, where the permissions package name begins with

java or javax), a warning message logs. The permission is not removed. If the

permission, AllPermission, is listed in the app.policy file and the was.policy file, a

warning message logs.

Policy file editing

Using the policy tool provided by the Developer Kit

(install_root/java/jre/bin/policytool), to edit the previous policy files is

recommended. For Network Deployment, extract the policy files from the

repository before editing. After the policy file is extracted, use the policy tool to

edit the file. Check the modified policy files into the repository and synchronized

them with other nodes.

Note: If there are syntax errors in the policy files, the enterprise application or

server process might fail to start. Be very cautious when editing these policy files.

Troubleshooting

To debug the dynamic policy, there are three ways to generate the detail report of

the exception, AccessControlException.

338 IBM® WebSphere® Application Server, Version 5.0.2: Security

v Trace (Configured by RAS trace). Enables traces with the trace specification(on

one line):

com.ibm.ws.security.policy.*=all=enabled:

com.ibm.ws.security.core.SecurityManager=all=enabled

v Trace (Configured by property). Specifies a java property java.security.debug.

Valid values for the java.security.debug property are:

– Access. Print all debug information including, required permission, code,

stack and code base location.

– Stack. Print debug information including, required permission, code, and

stack.

– Failure. Print debug information including, required permission and code.
v ffdc. Enable ffdc, modify the ffdcRun.properties file by changing Level=4 and

LAE=true. Look for a keyword Access Violation in the log file.

Configuring Java 2 security policy files

Before you begin

Java 2 security uses several policy files to determine the granted permissions for

each Java programs. See the “Java 2 security policy files” on page 335 article for

the list of available policy files supported by WebSphere Application Server

Version.

There are two types of policy files supported by WebSphere Application Server:

dynamic policy files and static policy files. Static policy files provide the default

permissions. Dynamic policy files provide application permissions. There are six

dynamic policy files:

 Policy file Description

app.policy file Contains default permissions for all of the

enterprise applications in the cell.

was.policy file Contains application-specific permissions for

an WebSphere Application Server enterprise

application. This file is packaged in an

enterprise archive (EAR) file.

ra.xml file Contains connector application specific

permissions for a WebSphere Application

Server enterprise application. This file is

packaged in a resource adapter archive

(RAR) file.

spi.policy file Contains permissions for Service Provider

Interface (SPI) or third-party resources

embedded in WebSphere Application Server.

The default contents grant everything.

Update this file carefully when the cell

requires more protection against SPI in the

cell. This file is applied to all of the SPIs

defined in the resources.xml file.

library.policy file Contains permissions for the shared library

of enterprise applications.

filter.policy file Contains the list of permissions that require

filtering from the was.policy file and the

app.policy file in the cell. This filtering

mechanism only applies to the was.policy

and app.policy files.

Steps for this task

Chapter 10. Managing security 339

1. Identify the policy file to update.

v If the permission is required by an application, update the static policy file.

Refer to “Configuring static policy files” on page 350.

v If the permission is required by all of the WebSphere Application Server

enterprise applications in the node, refer to “Configuring spi.policy files”

on page 346.

v If the permission is required only by specific WebSphere Application Server

enterprise applications and the permission is required only by connector,

update the ra.xml file. Refer to Assembling Resource adapter modules.

Otherwise update the was.policy file. Refer to “Configuring was.policy” on

page 344 and “Adding the was.policy file to applications” on page 348.

v If the permission is required by shared libraries, refer to “Configuring

library.policy files” on page 347.

v If the permission is required by SPI libraries, refer to “Configuring

spi.policy files” on page 346.

 Note: It is recommended to pick up the policy file with the smallest scope. You

can avoid giving an extra permission to the Java programs and protect the

resources. You can update the ra.xml file or the was.policy file rather than the

app.policy file. Use specific component symbols ($(ejbcomponent),

${webComponent},${connectorComponent} and ${jars}) than ${application}

symbols. Update dynamic policy files than static policy files.

 Add any permission that should never be granted to the WebSphere

Application Server enterprise application in the cell to the filter.policy file.

Refer to “Configuring filter.policy files” on page 343.

2. Restart the WebSphere Application Server enterprise application.

Results

The required permission is granted for the specified WebSphere Application Server

enterprise application.

Usage scenario

If an WebSphere Application Server enterprise application in a cell requires

permissions, some of the dynamic policy files need updating. The symptom of the

missing permission is the exception, java.security.AccessControlException. The

missing permission is listed in the exception data, for example(split for

publication):

java.security.AccessControlException: access denied

 (java.io.FilePermission C:\WebSphere\AppServer\

 java\jre\lib\ext\mail.jar read)

When a Java program receives this exception and adding this permission is

justified, add a permission to an adequate dynamic policy file, for example (split

onto multiple lines for publication):

<>grant codeBase "file:user client installed location"

{ permission java.io.FilePermission

"C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar", "read";};

To decide whether to add a permission, refer to the article

“AccessControlException” on page 329.

340 IBM® WebSphere® Application Server, Version 5.0.2: Security

Configuring app.policy files: Before you begin

Java 2 security uses several policy files to determine the granted permissions for

each Java program. See the “Java 2 security policy files” on page 335 article for the

list of available policy files supported by WebSphere Application Server. The

app.policy file is a default policy file shared by all of the WebSphere Application

Server enterprise applications. The union of the permissions contained in the

app.policy file, the server.policy file, the app.policy file, the application

was.policy file and the permission specification of the ra.xml file are applied to

the WebSphere Application Server enterprise application. The app.policy files are

managed by configuration and file replication services.Cchanges made in these

files are replicated to other nodes in the Network Deployment cell.

If the default permissions for enterprise applications (the union of the permissions

defined in the app.policy file, the server.policy file and the app.policy file) are

enough, no action is required. The default app.policy file is used automatically. If

a specific change is required to all of the enterprise applications in the cell, update

the app.policy file. Syntax errors in the policy files cause start failures in the

application servers. Edit these policy files carefully.

Steps for this task

“Using PolicyTool to edit policy files” on page 333. Changes to the app.policy file

are local for the node.

Results

The default Java 2 security policies have been changed for the enterprise

application.

Usage scenario

Several product-reserved symbols are defined to associate the permission lists to a

specific type of resource.

 Symbol Meaning

file:${application} Permissions apply to all resources within the

application

file:${jars} Permissions apply to all utility Java archive

(JAR) files within the application

file:${ejbComponent} Permissions apply to enterprise bean

resources within the application

file:${webComponent} Permissions apply to Web resources within

the application

file:${connectorComponent} Permissions apply to connector resources

both within the application and within

stand-alone connector resources.

There are five embedded symbols provided to specify the path and name for

java.io.FilePermission. These symbols enable flexible permission specifications. The

absolute file path is fixed after the installation of the application.

 Symbol Meaning

${app.installed.path} Path where the application is installed

${was.module.path} Path where the module is installed

${current.cell.name} Current cell name

Chapter 10. Managing security 341

Symbol Meaning

${current.node.name} Current node name

${current.server.name} Current server name

Note: You cannot use the ${was.module.path} in the ${application} entry.

The app.policy file supplied by WebSphere Application Server resides at

install_root/config/cells/cell_name/nodes/node_name/app.policy, which

contains the following default permissions:

grant codeBase "file:${application}" {

 // The following are required by Java mail

 permission java.io.FilePermission "${was.install.root}${/}java${/}jre${/}lib$

 {/}ext${/}mail.jar", "read"; // (preceding line split for publication)

 permission java.io.FilePermission "${was.install.root}${/}java${/}jre${/}lib$

 {/}ext${/}activation.jar", "read"; // (preceding line split for publication)

};

grant codeBase "file:${jars}" {

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

grant codeBase "file:${connectorComponent}" {

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

grant codeBase "file:${webComponent}" {

 permission java.io.FilePermission "${was.module.path}${/}-", "read, write";

 permission java.lang.RuntimePermission "loadLibrary.*";

 permission java.lang.RuntimePermission "queuePrintJob";

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

grant codeBase "file:${ejbComponent}" {

 permission java.lang.RuntimePermission "queuePrintJob";

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

If all of the WebSphere Application Server enterprise applications in a cell require

permissions that are not defined as defaults in the app.policy file, the

server.policy file and the app.policyfile, then update the app.policy file. The

symptom of a missing permission is the exception,

java.security.AccessControlException. The missing permission is listed in the

exception data, for example, java.security.AccessControlException: access

denied (java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read).

When a Java program receives this exception and adding this permission is

justified, add a permission to the server.policy file, for example (split for

publication):

<>grant codeBase "file:user client installed location" {

 permission java.io.FilePermission

 "C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar", "read";

 };

To decide whether to add a permission, refer to the article AccessControlException.

342 IBM® WebSphere® Application Server, Version 5.0.2: Security

What to do next

Restart all WebSphere Application Server enterprise applications to ensure that the

updated app.policy file takes effect.

Configuring filter.policy files: Java 2 security uses several policy files to

determine the granted permission for each Java program. Java 2 security policy

filtering is only in effect when Java 2 security is enabled. Refer to “Configuring

Java 2 security” on page 330. The filtering policy defined in the filter.policy file

is cell wide. Refer to the article, “Java 2 security policy files” on page 335, for the

list of available policy files supported by WebSphere Application Server. The

filter.policy file is the only policy file used when restricting the permission

instead of granting permission. The permissions listed in the filter policy file are

filtered out from the app.policy file and the was.policy file. Permissions defined

in the other policy files are not affected by the filter.policy file.

When a permission is filtered out, an audit message is logged. However, if the

permissions defined in the app.policy file and the was.policy file are compound

permissions like java.security.AllPermission, for example, the permission is not

removed. A warning message is logged. If the Issue Permission Warning flag is

enabled (default) and if the app.policy file and the was.policy file contain custom

permissions (non-JDK permission, the permission package name begins with

characters other than java or javax), then a warning message is logged and the

permission is not removed. You can change the value of the Issue Permission

Warning flag from the administrative console in the Global Security panel. It is not

recommended that you use AllPermission for the enterprise application.

There are some default permissions defined in the filter.policy file. These

permissions are the minimal ones recommended by the product. If more

permissions are added to the filter.policy file, certain operations can fail for

enterprise applications. Add permissions to the filter.policy file carefully.

Note: If there are syntax errors in the filter.policy file, this file is not loaded by

the product security run time, which implies that there is no filter in place. If there

is no filter, then enterprise applications can access resources normally not allowed.

Use extreme care editing the filter.policy file. In Version 5, there is no tool

support for editing the filter.policy file.

Steps for this task

1. You cannot use the Policy Tool to edit the filter.policy file. Editing must be

completed in a text editor. Be careful and verify that there are no syntax errors

in the filter.policy file. If there are any syntax errors in filter.policy file, it

will not be loaded by the product security run time, which implies that filtering

is disabled.

Results

An updated filter.policy file is applied to all of the WebSphere Application

Server enterprise application after the servers are restarted.

Usage scenario

The filter.policy file is managed by configuration and file replication services.

Changes made in the file are replicated to other nodes in the Network Deployment

cell.

Chapter 10. Managing security 343

The filter.policy file supplied by WebSphere Application Server resides at:

install_root/config/cells/cell_name/filter.policy.

It contains these permissions as defaults:

filterMask {

permission java.lang.RuntimePermission "exitVM";

permission java.lang.RuntimePermission "setSecurityManager";

permission java.security.SecurityPermission "setPolicy";

permission javax.security.auth.AuthPermission "setLoginConfiguration"; };

runtimeFilterMask {

permission java.lang.RuntimePermission "exitVM";

permission java.lang.RuntimePermission "setSecurityManager";

permission java.security.SecurityPermission "setPolicy";

permission javax.security.auth.AuthPermission "setLoginConfiguration"; };

The permissions defined in filterMask are for static policy filtering. The security

run time tries to remove the permissions from applications during application

startup. Compound permissions are not removed but are issued with a warning,

and application deployment is stopped if applications contain permissions defined

in filterMask, and if scripting was used (wsadmin tool). The runtimeFilterMask

defines permissions used by the security run time to deny access to those

permissions to application thread. Do not add more permissions to the

runtimeFilterMask. Application start failure or incorrect functioning might result.

Be careful when adding more permissions to the runtimeFilterMask. Usually, you

only need to add permissions to the filterMask stanza.

WebSphere Application Server relies on the filter policy file to restrict or disallow

certain permissions that could compromise the integrity of the system. For

instance, WebSphere Application Server considers the exitVM and

setSecurityManager permissions as those permissions that most applications

should never have. If these permissions are granted, then the following scenarios

are possible:

v exitVM— A servlet, JSP file, enterprise bean, or other library used by the

aforementioned could call the System.exit() API and cause the entire WebSphere

Application Server process to terminate.

v setSecurityManager— An application could install its own SecurityManager that

could either grant more permissions or bypass the default policy the WebSphere

Application Server SecurityManager enforces.

What to do next

For the updated filter.policy file to take effect, restart related Java processes.

Configuring was.policy: Before you begin

Java 2 security uses several policy files to determine the granted permission for

each Java program. See “Java 2 security policy files” on page 335 for the list of

available policy files supported by WebSphere Application Server Version 5. The

was.policy file is an application-specific policy file for WebSphere Application

Server enterprise applications. It is embedded in the enterprise archive (EAR) file

(META-INF/was.policy). The was.policy file is located in

install_root/config/cells/cell_name/applications/ear_file_name
/deployments/application_name/META-INF/was.policy.

The union of the permission contained in the java.policy file, the server.policy

file, the app.policy file, application was.policy file and the permission

344 IBM® WebSphere® Application Server, Version 5.0.2: Security

specification of the ra.xml file are applied to the WebSphere Application Server

enterprise application. Configuration and file replication services manage

was.policy files. Changes made in these files are replicated to other nodes in the

Network Deployment cell.

Several product-reserved symbols are defined to associate the permission lists to a

specific type of resources.

 Symbol Definition

file:${application} file:${application}

file:${jars} Permissions apply to all utility Java archive

(JAR) files within the application

file:${ejbComponent} Permissions apply to enterprise bean

resources within the application

file:${webComponent} Permissions apply to Web resources within

the application

file:${connectorComponent} Permissions apply to connector resources

within the application

Other than these blocks, you can specify the module name for granular settings.

For example,

"file:DefaultWebApplication.war" {

 permission java.security.SecurityPermission "printIdentity";

 };

grant codeBase "file:IncCMP11.jar" {

 // (The following line split for publication)

 permission java.io.FilePermission "${user.install.root}${/}bin$

 {/}DefaultDB${/}-", "read,write,delete";

};

There are five embedded symbols provided to specify the path and name for the

java.io.FilePermission. These symbols enable flexible permission specification.

The absolute file path is fixed after the application is installed.

 Symbol Definition

${app.installed.path} Path where the application is installed

${was.module.path} Path where the module is installed

${current.cell.name} Current cell name

${current.node.name} Current node name

${current.server.name} Current server name

If the default permissions for the enterprise application (union of the permissions

defined in the java.policy file, the server.policy file and the app.policy file) are

enough, no action is required. If an application has specific resources to access,

update the was.policy file. The first two steps assume that you are creating a new

policy file.

Note: Syntax errors in the policy files cause the application server to fail. Use care

when editing these policy files.

Steps for this task

1. “Using PolicyTool to edit policy files” on page 333.

2. “Adding the was.policy file to applications” on page 348.

a. Start the Application Assembly Tool (AAT).

Chapter 10. Managing security 345

b. Click >File Open.

c. Navigate through the directory tree to find and update the application EAR

file.

d. Click Open. The EAR file loads.

e. In left panel, click Files. A list of the files displays in the right panel.

f. Right-click the was.policy file in the right panel, if the was.policy file

already exists. Click Delete to remove the existing was.policy file.

g. Right-click Files in the left panel. Select Add Files.

h. Click Browse. Navigate to the was.policy file.

i. Click Select. The directory contents display in the Add Files window.

j. Navigate to the was.policy file. Click Add. The selected was.policy file

displays in the right panel.

k. Click File> Verify to verify the EAR file. Verify that the was.policy file is

validated.

l. Click File> Save to save the updated EAR file.

3. Update an existing installed application, if one already exists.

a. “Using PolicyTool to edit policy files” on page 333.

Results

The updated was.policy file is applied to the application after the application

restarts.

Usage scenario

If an application must access a specific resource that is not defined as a default in

the java.policy file, the server.policy file and the app.policy, then delete the

was.policy file for that application. The symptom of the missing permission is that

the exception, java.security.AccessControlException. The missing permission is

listed in the exception data, java.security.AccessControlException: access

denied (java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read).

When a Java program receives this exception and adding this permission is

justified, add a permission to the was.policy file:

<>grant codeBase "file:user client installed location"

 { permission java.io.FilePermission

"C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar", "read"; };

To determine whether to add a permission, refer to the article,

“AccessControlException” on page 329.

What to do next

Restart all applications for the updated app.policy file to take effect.

Configuring spi.policy files: Java 2 security uses several policy files to

determine the granted permission for each Java program. See Dynamic policy for

the list of available policy files supported by WebSphere Application Server

Version 5.

346 IBM® WebSphere® Application Server, Version 5.0.2: Security

Since the default permissions for Service Provider Interface (SPI) is AllPermission,

the only reason to update the spi.policy file is a restricted SPI permission. When

a change in the spi.policy is required, complete the following steps.

Syntax errors in the policy files cause the application server to fail. Edit these

policy files carefully.

Steps for this task

1. “Using PolicyTool to edit policy files” on page 333.

Results

The updated spi.policy is applied to the SPI libraries after the Java process is

restarted.

Usage scenario

The spi.policy file is the template for SPIs (Service Provider Interface) or

third-party resources embedded in the product. Example of SPIs are Java Message

Services (JMS) (MQSeries) and Java database connectivity (JDBC) drivers. They are

specified in the resources.xml file. The dynamic policy grants the permissions

defined in the spi.policy file to the class paths defined in the resources.xml file.

The union of the permission contained in the java.policy file and the spi.policy

file are applied to the SPI libraries. The spi.policy files are managed by

configuration and file replication services. Changes made in these files are

replicated to other nodes in the Network Deployment cell.

The spi.policy file supplied by WebSphere Application Server resides at

install_root/config/cells/cellname/nodes/nodename/spi.policy. It contains the

following default permission:

grant {

 permission java.security.AllPermission;

};

What to do next

Restart the related Java processes for the changes in the spi.policy file to become

effective.

Configuring library.policy files: Java 2 security uses several policy files to

determine the granted permission for each Java programs. See “Java 2 security

policy files” on page 335 for the list of available policy files supported by

WebSphere Application Server Version 5. The library.policy file is the template

for shared libraries (Java library classes). Multiple enterprise applications can

define and use shared libraries. Refer to Managing shared libraries for information

on how to define and manage the shared libraries.

If the default permissions for a shared library (union of the permissions defined in

the java.policy file, the app.policy file and the library.policy file) are enough,

no action is required. The default library policy is picked up automatically. If a

specific change is required to share a library in the cell, update the library.policy

file.

Syntax errors in the policy files cause the application server to fail. Edit these

policy files carefully.

Chapter 10. Managing security 347

Steps for this task

1. “Using PolicyTool to edit policy files” on page 333.

Results

An updated library.policy is applied to shared libraries after the servers restart.

Usage scenario

The union of the permission contained in the java.policy file, the app.policy file,

and the library.policy file are applied to the shared libraries. The library.policy

file is managed by configuration and file replication services. Changes made in the

file are replicated to other nodes in the Network Deployment cell.

The library.policy file supplied by WebSphere Application Server resides at:

install_root/config/cells/cell_name/nodes/node_name/library.policy, contains

an empty permission entry as a default. For example,

 grant {

 };

If the shared library in a cell requires permissions that are not defined as defaults

in the java.policy file, app.policy file and the library.policy file, update the

library.policy file. The missing permission causes the exception,

java.security.AccessControlException. The missing permission is listed in the

exception data, for example:

 java.security.AccessControlException: access denied

 (java.io.FilePermission C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

When a Java program receives this exception and adding this permission is

justified, add a permission to the library.policy file, for example: <grant

codeBase ″file:user> client installed location″ { permission

java.io.FilePermission ″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″,

″read″; };

To decide whether to add a permission, refer to “AccessControlException” on page

329..

What to do next

Restart the related Java processes for the changes in the library.policy file to

become effective.

Adding the was.policy file to applications: When Java 2 security is enabled for a

WebSphere Application Server, all the applications that run on that WebSphere

Application Server undergo a security check before accessing system resources. An

application might need a was.policy file if it accesses resources that require more

permissions than those granted in the default app.policy file. By default, the

product security reads an app.policy file that is located in each node and grants

the permissions in the app.policy file to all the applications. Include any

additional required permissions in the was.policy file. The was.policy file is only

required if an application requires additional permissions.

348 IBM® WebSphere® Application Server, Version 5.0.2: Security

The default policy file for all applications is specified in the app.policy file. This

file is provided by the product security, is common to all applications, and should

not be changed. Add any new permissions required for an application in the

was.policy file.

The app.policy file is located in the

install_root/config/cells/cell_name/nodes/node_name directory. The contents of

the app.policy file follow:

// The following permissions apply to all the components under the application.

grant codeBase "file:${application}" {

 // The following are required by JavaMail

 permission java.io.FilePermission "${was.install.root}${/}java${/}jre${/}

 lib${/}ext${/}mail.jar", "read";

 permission java.io.FilePermission "${was.install.root}${/}java${/}jre${/}

 lib${/}ext${/}activation.jar", "read";

};

 // The following permissions apply to all utility .jar files

//(other than enterprise beans jar files) in the application.

grant codeBase "file:${jars}" {

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

// The following permissions apply to connector resources

// within the application

grant codeBase "file:${connectorComponent}" {

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

// The following permissions apply to all the Web modules (.war files)

// within the application.

grant codeBase "file:${webComponent}" {

 permission java.io.FilePermission "${was.module.path}${/}-", "read, write";

 // where "was.module.path" is the path where the Web module is installed.

 // Refer to Dynamic policy concepts for other symbols.

 permission java.lang.RuntimePermission "loadLibrary.*";

 permission java.lang.RuntimePermission "queuePrintJob";

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

//The following permissions apply to all the EJB modules

//within the application.

grant codeBase "file:${ejbComponent}" {

 permission java.lang.RuntimePermission "queuePrintJob";

 permission java.net.SocketPermission "*", "connect";

 permission java.util.PropertyPermission "*", "read";

};

If additional permissions are required for an application or for one or more

modules of an application, use the was.policy file for that application. For

example, use codeBase of ${application} and add required permissions to grant

additional permissions to the entire application. Similarly, use codeBase of

${webComponent} and ${ejbComponent} to grant additional permissions to all the

Web modules and all the enterprise bean (EJB) modules in the application. You can

assign additional permissions to each module (.war file or .jar file) as shown in

the following example.

An example of adding extra permissions for an application in the was.policy file:

Chapter 10. Managing security 349

// grant additional permissions to a Web module

grant codeBase " file:aWebModule.war" {

 permission java.security.SecurityPermission "printIdentity";

};

// grant additional permission to an EJB module

grant codeBase "file:aEJBModule.jar" {

 permission java.io.FilePermission

 "${user.install.root}${/}bin${/}DefaultDB${/}-" ."read.write,delete";

 //(previous line split for publication)

 // where, ${user.install.root} is the system property whose value is located

 //in the install_root directory.

 };

Steps for this task

1. Create a was.policy file using the policy tool located in the /java/jre/bin

directory.

2. Add the required permissions in the was.policy file using the policy tool.

3. Place the was.policy file in the application enterprise archive (EAR) file under

the META-INF directory. Update the application EAR file with the newly created

was.policy file by using the jar command.

4. Verify that the was.policy file is inserted, and start the Application Assembly

Tool (AAT).

a. Open the application EAR file.

b. Click File> Verify. The verification process ensures that the was.policy file

in the application is syntactically correct.

Results

An application EAR file is now ready to run when Java 2 security is enabled.

Usage scenario

This step is required for applications to run properly when Java 2 security is

enabled. If the was.policy file is not created and it does not contain required

permissions, the application might not access system resources.

The symptom of the missing permissions is the exception,

java.security.AccessControlException. The missing permission is listed in the

exception data, for example (split for publication):

java.security.AccessControlException: access denied

(java.io.FilePermission C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

When an application program receives this exception and adding this permission is

justified, include the permission in the was.policy file, for example (split for

publication):

grant codeBase "file:${application}" { permission

java.io.FilePermission "C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar", "read"; };

What to do next

Install the application.

Configuring static policy files

Before you begin

350 IBM® WebSphere® Application Server, Version 5.0.2: Security

Java 2 security uses several policy files to determine the granted permission for

each Java program. See the “Java 2 security policy files” on page 335 article for the

list of available policy files supported by WebSphere Application Server Version 5.

There are two types of policy files supported by WebSphere Application Server

Version 5, dynamic policy files and static policy files. Static policy files provide the

default permissions. Dynamic policy files provide application’s permissions.

 Policy file Description

java.policy file Contains default permissions for all of the

Java programs on the node. This file seldom

changes.

server.policy file Contains default permissions for all of the

WebSphere Application Server programs on

the node. This files is rarely updated.

client.policy file Contains default permissions for all of the

applets and client containers on the node.

The static policy file is not a configuration file managed by the repository and the

file replication service. Changes to this file are local and do not get replicated to

the other machine.

Steps for this task

1. Identify the policy file to update.

v If the permission is required only by an application, update the dynamic

policy file. Refer to “Configuring Java 2 security policy files” on page 339.

v If the permission is required only by applets and client containers, update

the client.policy file. Refer to “Configuring client.policy files” on page 355.

v If the permission is required only by WebSphere Application Server (servers,

agents, managers and application servers), update the server.policy file.

Refer to “Configuring server.policy files” on page 353.

v If the permission is required by all of the Java programs running on the Jave

Virtual Machine (JVM), update the java.policy file. Refer to “Configuring

java.policy files” on page 352.
2. Stop and restart the WebSphere Application Server.

Results

The required permission is granted for all of the Java programs running with the

restarted JVM.

Usage scenario

If Java programs on a node require permissions, the policy file needs updating. If

the Java program that required the permission is not part of an enterprise

application, update the static policy file. The missing permission causes the

exception, java.security.AccessControlException. The missing permission is listed in

the exception data, for example (split for publication):

java.security.AccessControlException: access denied

(java.io.FilePermission C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

When a Java program receives this exception and adding this permission is

justified, add a permission to an adequate policy file, for example:

Chapter 10. Managing security 351

<>grant codeBase "file:user client installed location" {

 permission java.io.FilePermission "C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar", "read";

};

To decide whether to add a permission, refer to “AccessControlException” on page

329..

Configuring java.policy files: Java 2 security uses several policy files to

determine the granted permission for each Java program. See “Java 2 security

policy files” on page 335 for the list of available policy files supported by

WebSphere Application Server Version 5. The java.policy file is a global default

policy file shared by all of the Java programs running in the Java Virtual Machine

(JVM) on the node. Modifying this file is not recommended.

Steps for this task

1. If a specific change is required to some of the Java programs on a node and the

java.policy file requires updating, “Using PolicyTool to edit policy files” on

page 333. A change to the java.policy file is local for the node.

 The default Java policy is picked up automatically. Syntax errors in the policy

files cause the application server to fail. Edit these policy files carefully.

Results

An updated java.policy file is applied to all the Java programs running in all the

JVMs on the local node. Restart the programs for the updates to take effect

Usage scenario

The java.policy file is not a configuration file managed by the repository and the

file replication service. Changes to this file are local and do not get replicated to

the other machine. The java.policy file supplied by WebSphere Application Server

is located at install_root/java/jre/lib/security/java.policy. It contains these

default permissions.

// Standard extensions get all permissions by default

grant codeBase "file:${java.home}/lib/ext/*" {

 permission java.security.AllPermission;

};

// default permissions granted to all domains

grant {

 // Allows any thread to stop itself using the java.lang.Thread.stop()

 // method that takes no argument.

 // Note that this permission is granted by default only to remain

 // backwards compatible.

 // It is strongly recommended that you either remove this permission

 // from this policy file or further restrict it to code sources

 // that you specify, because Thread.stop() is potentially unsafe.

 // See "http://java.sun.com/notes" for more information.

 // permission java.lang.RuntimePermission "stopThread";

 // allows anyone to listen on un-privileged ports

 permission java.net.SocketPermission "localhost:1024-", "listen";

 // "standard" properties that can be read by anyone

 permission java.util.PropertyPermission "java.version", "read";

 permission java.util.PropertyPermission "java.vendor", "read";

 permission java.util.PropertyPermission "java.vendor.url", "read";

 permission java.util.PropertyPermission "java.class.version", "read";

352 IBM® WebSphere® Application Server, Version 5.0.2: Security

permission java.util.PropertyPermission "os.name", "read";

 permission java.util.PropertyPermission "os.version", "read";

 permission java.util.PropertyPermission "os.arch", "read";

 permission java.util.PropertyPermission "file.separator", "read";

 permission java.util.PropertyPermission "path.separator", "read";

 permission java.util.PropertyPermission "line.separator", "read";

 permission java.util.PropertyPermission "java.specification.version", "read";

 permission java.util.PropertyPermission "java.specification.vendor", "read";

 permission java.util.PropertyPermission "java.specification.name", "read";

 permission java.util.PropertyPermission "java.vm.specification.version","read";

 permission java.util.PropertyPermission "java.vm.specification.vendor","read";

 permission java.util.PropertyPermission "java.vm.specification.name", "read";

 permission java.util.PropertyPermission "java.vm.version", "read";

 permission java.util.PropertyPermission "java.vm.vendor", "read";

 permission java.util.PropertyPermission "java.vm.name", "read";

 };

If some Java programs on a node require permissions that are not defined as

defaults in the java.policy file, then consider updating the java.policy file. Most

of the time, other policy files are updated instead of the java.policy file. The

missing permission causes the exception, java.security.AccessControlException. The

missing permission is listed in the exception data, for example (split for

publication):

java.security.AccessControlException: access denied

(java.io.FilePermission C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

When a Java program receives this exception and adding this permission is

justified, add a permission to the java.policyfile, for example (split for

publication):

<>grant codeBase "file:user client installed location" {

permission java.io.FilePermission "C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar", "read"; };

To decide whether to add a permission, refer to “AccessControlException” on page

329..

What to do next

Restart all of the Java processes for the updated java.policy file to take effect.

Configuring server.policy files: Java 2 security uses several policy files to

determine the granted permission for each Java program. See “Java 2 security

policy files” on page 335 for the list of available policy files supported by

WebSphere Application Server Version 5. The server.policy file is a default policy

file shared by all of the WebSphere servers on a node. The server.policy file is not

a configuration file managed by the repository and the file replication service.

Changes to this file are local and do not replicate to the other machine.

Steps for this task

1. If the default permissions for a server (the union of the permissions defined in

the server.policy file and the server.policy file) are enough, no action is

required. The default server policy is picked up automatically. If a specific

change is required to some of the server programs on a node, update the

server.policy file with the Policy Tool.

Chapter 10. Managing security 353

Refer to the “Using PolicyTool to edit policy files” on page 333 article to edit

policy files. Changes to the server.policy file are local for the node. Syntax

errors in the policy files cause the application server to fail. Edit these policy

files carefully.

Results

An updated server.policy file is applied to all the server programs on the local

node. Restart the servers for the updates to take effect.

Usage scenario

If you want to add permissions to an application, use the app.policy file and the

was.policy file.

When you do need to modify the server.policy file, locate this file at:

install_dir/properties/server.policy. This file contains these default

permissions:

// Allow to use sun tools

grant codeBase "file:${java.home}/../lib/tools.jar" {

 permission java.security.AllPermission;

};

// WebSphere system classes

grant codeBase "file:${was.install.root}/lib/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${was.install.root}/classes/-" {

 permission java.security.AllPermission;

};

// Allow the WebSphere deploy tool all permissions

grant codeBase "file:${was.install.root}/deploytool/-" {

 permission java.security.AllPermission;

};

If some server programs on a node require permissions that are not defined as

defaults in the server.policy file and the server.policy file, update the

server.policy file. The missing permission causes the exception,

java.security.AccessControlException. The missing permission is listed in the

exception data, for example (split for publication):

java.security.AccessControlException: access denied

(java.io.FilePermission C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

.

When a Java program receives this exception and adding this permission is

justified, add a permission to the server.policy file, for example (split for

publication):

<>grant codeBase "file:user client installed location" {

permission java.io.FilePermission "C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar", "read"; };

To decide whether to add a permission, refer to “AccessControlException” on page

329..

What to do next

354 IBM® WebSphere® Application Server, Version 5.0.2: Security

Restart all of the Java processes for the updated server.policy file to take effect.

Configuring client.policy files: Before you begin

Java 2 security uses several policy files to determine the granted permission for

each Java program. See “Java 2 security policy files” on page 335 for the list of

available policy files supported by WebSphere Application Server Version 5. The

client.policy file is a default policy file shared by all of the WebSphere

Application Server client containers and applets on a node. The union of the

permissions contained in the client.policy file and the client.policy file are

given to all of the WebSphere client containers and applets running on the node.

The client.policy file is not a configuration file managed by the repository and

the file replication service. Changes to this file are local and do not replicate to the

other machine. The client.policy file supplied by WebSphere Application Server

is located at install_dir/properties/client.policy. It contains these default

permissions:

grant codeBase "file:${java.home}/lib/ext/*" {

 permission java.security.AllPermission;

};

// JDK classes

grant codeBase "file:${java.home}/lib/ext/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${java.home}/../lib/tools.jar" {

 permission java.security.AllPermission;

};

// WebSphere system classes

grant codeBase "file:${was.install.root}/lib/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${was.install.root}/classes/-" {

 permission java.security.AllPermission;

};

grant codeBase "file:${was.install.root}/installedConnectors/-" {

 permission java.security.AllPermission;

};

// J2EE 1.3 permissions for client container WAS applications in $WAS_HOME/installedApps

grant codeBase "file:${was.install.root}/installedApps/-" {

 //Application client permissions

 permission java.awt.AWTPermission "accessClipboard";

 permission java.awt.AWTPermission "accessEventQueue";

 permission java.awt.AWTPermission "showWindowWithoutWarningBanner";

 permission java.lang.RuntimePermission "exitVM";

 permission java.lang.RuntimePermission "loadLibrary";

 permission java.lang.RuntimePermission "queuePrintJob";

 permission java.net.SocketPermission "*", "connect";

 permission java.net.SocketPermission "localhost:1024-", "accept,listen";

 permission java.io.FilePermission "*", "read,write";

 permission java.util.PropertyPermission "*", "read";

};

// J2EE 1.3 permissions for client container - expanded ear file code base

grant codeBase "file:${com.ibm.websphere.client.applicationclient.archivedir}/-"

 {

 permission java.awt.AWTPermission "accessClipboard";

 permission java.awt.AWTPermission "accessEventQueue";

 permission java.awt.AWTPermission "showWindowWithoutWarningBanner";

 permission java.lang.RuntimePermission "exitVM";

 permission java.lang.RuntimePermission "loadLibrary";

 permission java.lang.RuntimePermission "queuePrintJob";

 permission java.net.SocketPermission "*", "connect";

 permission java.net.SocketPermission "localhost:1024-", "accept,listen";

 permission java.io.FilePermission "*", "read,write";

 permission java.util.PropertyPermission "*", "read";

Chapter 10. Managing security 355

};

// For MQ Series

grant codeBase "file:${mq.install.root}/java/*" {

 permission java.security.AllPermission;

};

Steps for this task

1. If the default permissions for a client (union of the permissions defined in the

client.policy file and the client.policy file) are enough, no action is

required. The default client policy is picked up automatically.

2. If a specific change is required to some of the client containers and applets on a

node, modify the client.policy file with the policy tool. Refer to “Using

PolicyTool to edit policy files” on page 333, to edit policy files. Changes to the

client.policy file are local for the node.

Results

All of the client containers and applets on the local node are granted the updated

permissions at the time of execution.

Usage scenario

If some client containers or applets on a node require permissions that are not

defined as defaults in the client.policy file and the default client.policy file,

update the client.policy file. The missing permission causes the exception,

java.security.AccessControlException. The missing permission is listed in the

exception data, for example (split for publication:,

java.security.AccessControlException: access denied

(java.io.FilePermission C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar read)

When a client program receives this exception and adding this permission is

justified, add a permission to the client.policy<> file, for example: grant

codebase ″file:user client installed location″ { permission java.io.FilePermission

″C:\WebSphere\AppServer\java\jre\lib\ext\mail.ja″, ″read″; };.

To decide whether to add a permission, refer to “AccessControlException” on page

329..

What to do next

Close and restart the browser. You also must restart the client application if you

have one.

Migrating Java 2 security policy

Background Previous WebSphere Releases

Starting from Version 3.x, WebSphere Application Server installed a Java 2 security

manager in the server run time to prevent enterprise applications from calling the

System.exit() and the System.setSecurityManager() methods. These two Java

APIs have undesirable consequences if called by enterprise applications. The

System.exit() API, for example, causes the Java virtual machine (application

server process) to exit prematurely, which is an undesirable operation for an

application server.

356 IBM® WebSphere® Application Server, Version 5.0.2: Security

However, Java 2 security was not a fully supported feature prior to Version 5. To

support Java 2 security properly, all the server run time must be marked as

privileged (with doPrivileged() API calls inserted in the correct places), and

identify the default permission sets or policy. Application code is not privileged

and subject to the permissions defined in the policy files. The doPrivileged

instrumentation is important and necessary to support Java 2 security. Without it,

the application code must be granted the permissions required by the server run

time. This is due to the design and algorithm used by Java 2 security to enforce

permission checks. Please refer to the Java 2 security check permission algorithm.

The following two permissions are enforced by the WebSphere Java 2 security

manager (hard coded):

v java.lang.RuntimePermission(exitVM)

v java.lang.RuntimePermission(setSecurityManager)

Application code is denied access to these permissions regardless of what is in the

Java 2 security policy. However, the server run time is granted these permissions.

All the other permission checks are not enforced.

Partial support was introduced since the version 4.02 product release. Prior to

version 4.0.2, Java 2 security was not supported. From version 4.02 and later, only

two permissions are supported:

v java.net.SocketPermission

v java.net.NetPermission

However, not all the product server run time is properly marked as privileged.

You must grant the application code all the other permissions besides the two

listed previously or the enterprise application can potentially fail to run. This Java

2 security policy for enterprise applications is liberal.

What changed

Java 2 Security is fully supported in version 5, which means all permissions are

enforced. The default Java 2 security policy for enterprise application is the

recommended permission set defined by the J2EE 1.3 specification. Refer to the

install_root/config/cells/cellname/nodes/nodename/app.policy file for the

default Java 2 security policy granted to enterprise applications. This is a much

more stringent policy compared to previous releases.

All policy is declarative. The product security manager honors all policy declared

in the policy files. There is an exception to this rule: enterprise applications are

denied access to permissions declared in the install_root/config/cells/cellname

filter.policy file.

Note: Enterprise applications that run on Version 4.0.x with Java 2 security enabled

are not guaranteed to run successfully when migrating to Version 5 (when Java 2

security is enabled), even if the Java 2 security policy is migrated properly. The

default Java 2 security policy for enterprise applications is much more stringent

and all permissions are enforced in Version 5. It might fail because the application

code does not have the necessary permissions granted where system resources

(such as file I/O for example) can be programmatically accessed and are now

subject to the permission checking.

Chapter 10. Managing security 357

Migrating System Properties

The following system properties are used in previous releases in relation to Java 2

security:

v java.security.policy. The absolute path of the policy file (action required). It

contains both system permissions (permissions granted to the Java Virtual

Machine (JVM) and the product server run time) and enterprise application

permissions. Migrate the Java 2 security policy of the enterprise application to

Version 5. For Java 2 security policy migration, see the steps for migrating Java 2

security policy.

v enableJava2Security. Used to enable Java 2 security enforcement (no action

required). This is deprecated; a flag in the WebSphere common configuration

model (WCCM) is used to control whether to enabled Java 2 security. Enable this

option through the administrative console.

v was.home. Expanded to the installation directory of the WebSphere Application

Server (action might be required). This is deprecated; superseded by

${user.install.root} and ${was.install.root} properties. If the directory

contains instance specific data then ${user.install.root} is used; otherwise

${was.install.root} is used. Use these properties interchangeably for the

WebSphere Application Server or the Network Deployment environments. See

the steps for migrating Java 2 security policy.

Java 2 Security Policy

There is no easy way of migrating the Java policy file from Version 4.0.x

automatically because there is a mixture of system permissions and application

permissions in the same policy file. Manually copy the Java 2 security policy for

enterprise applications to a was.policy or app.policy file. However, migrating the

Java 2 security policy to a was.policy file is preferable because symbols or relative

codebase is used instead of absolute codebase. There are many advantages to this

process. The permissions defined in the was.policy file should only be granted to

the specific enterprise application, while permissions in the app.policy file apply

to all the enterprise applications running on the node where the app.policy file

belongs. Refer to the “Java 2 security policy files” on page 335 article for more

details on policy management.

The following example illustrates the migration of a Java 2 security policy from a

previous release. The contents include the Java 2 security policy file (the default is

install_root/properties/java.policy) for the app1.ear enterprise application and

the system permissions (permissions granted to the JVM and product server run

time). Default permissions are omitted for clarity:

// For product Samples

 grant codeBase "file:install_root/installedApps/app1.ear/-" {

 permission java.security.SecurityPermission "printIdentity";

 permission java.io.FilePermission "install_root${/}temp${/}somefile.txt", "read";

 };

For clarity of illustration, all the permissions are migrated as the application level

permissions in this example. However, you can grant permissions at a more

granular level at the component level (Web, enterprise beans, connector or utility

Java archive (JAR) component level) or you can grant permissions to a particular

component.

Steps for this task

1. Ensure that Java 2 security is disabled on the application server.

358 IBM® WebSphere® Application Server, Version 5.0.2: Security

2. Create a new was.policy file (if one is not present) or update the was.policy

for migrated applications in the configuration repository in

(config/cells/cell_name/applications/app.ear/deployments/app/META-
INF/was.policy) with the following contents:

grant codeBase "file:${application}" {

 permission java.security.SecurityPermission "printIdentity";

 permission java.io.FilePermission "${user.install.root}$

 {/}temp${/}somefile.txt", "read"; // (preceding line split for publication)

 };

3. Use the Application Assembly Tool (AAT) to attach the was.policy to the

enterprise archive (EAR) file. You can use the AAT or the policy tool provided

by the Software Developer Kit to validate the contents of the was.policy file.

This step is only required for re-deploying enterprise applications prior to J2EE

1.3.

4. Validate that the enterprise application does not require additional permissions

to the migrated Java 2 Security permissions and the default permissions set

declared in the

${was.install.root}/config/cells/cell_name/nodes/node_name/app.policy

file. This requires code review, code inspection, application documentation

review, and sandbox testing of migrated enterprise applications with Java 2

security enabled in a pre-production environment. Refer to developer kit APIs

protected by Java 2 security for information about which APIs are protected by

Java 2 security. If you use third party libraries, consult the vendor

documentation for APIs that are protected by Java 2 security. Verify that the

application is granted all the required permissions, or it might fail to run when

Java 2 security is enabled.

5. Perform pre-production testing of the migrated enterprise application with Java

2 security enabled.

 Hint: Enable trace for the WebSphere Application Server Java 2 security

Mmnager in the pre-production testing environment (with trace string:

com.ibm.ws.security.core.SecurityManager=all=enabled). This can be helpful

in debugging the AccessControlException exception thrown when an application

is not granted the required permission or some system code is not properly

marked as privileged. The trace dumps the stack trace and permissions granted

to the classes on the call stack when the exception is thrown.

 Note: Because the Java 2 security policy is much more stringent compared with

previous releases, it is strongly advised that the administrator or deployer

review their enterprise applications to see if extra permissions are required

before enabling Java 2 security. If the enterprise applications are not granted the

required permissions, they fail to run.

Chapter 10. Managing security 359

360 IBM® WebSphere® Application Server, Version 5.0.2: Security

Chapter 11. Troubleshooting security configurations

Refer to Security components troubleshooting tips for instructions on how to

troubleshoot errors related to security.

The following topics explain how to troubleshoot specific problems related to

configuring and enabling security configurations:

v Errors when configuring or enabling security

v Errors or access problems after enabling security

v Errors after enabling Secure Sockets Layer (SSL) or SSL-related error messages

© Copyright IBM Corp. 2003 361

362 IBM® WebSphere® Application Server, Version 5.0.2: Security

Chapter 12. Tuning security configurations

Before you begin

Performance issues typically involve tradeoffs between function and speed.

Usually, the more function and the more processing involved, the slower the

performance. Consider what type of security is necessary and what you can

disable in your environment. For example, if your application servers are running

in a Virtual Private Network (VPN), consider whether you must disable Single

Sockets Layer (SSL). If you have a lot of users, can they be mapped to groups and

then associated to your J2EE roles? These questions are things to consider when

designing your security infrastructure.

The following steps for general security tuning:

Steps for this task

1. Consider disabling Java 2 Security Manager, if you know exactly what code is

put onto your server and you do not need to protect process resources.

Remember that in doing so, you put your local resources at some risk.

2. Disable security for the specific application server that does not require

resource protection because some application servers do not have protected

resources. If the application server needs to go downstream with credentials,

however, this action might not be feasible.

3. Consider propagating new security settings to all nodes before restarting the

deployment manager and node agents to change the new security policy.

 If your security configurations are not consistent across all servers, you get

access denied errors. Therefore, you must propagate new security settings when

enabling or disabling global security in a Network Deployment environment.

 Configuration changes are generally propagated using configuration

synchronization. If auto-synchronization is enabled, you can wait for the

automatic synchronization interval to pass, or you can force synchronization

before the synchronization interval expires. If you are using manual

synchronization, you must synchronize all nodes.

 If the cell is in a configuration state (the security policy is mixed with nodes

that have security enabled and disabled) you can use the syncNode utility to

synchronize the nodes where the new settings are not propagated.

 Refer to “Enabling and disabling global security” on page 112 in the WebSphere

Application Server Network Deployment package for more detailed

information about enabling security in a distributed environment.

4. Consider increasing the cache and token time-out if you feel your environment

is secure enough. By doing so, you have to re-authenticate less often. This

action supports subsequent requests to reuse the credentials that already are

created. The downside of increasing the token time-out is the exposure of

having a token hacked and providing the hacker more time to hack into the

system before the token expires. You can use security cache properties to

determine the initial size of the primary and secondary hashtable caches, which

affect the frequency of rehashing and the distribution of the hash algorithms.

See the article “Security cache properties” on page 366 for a list of these

properties.

5. Consider changing your administrative connector from Simple Object Access

Protocol (SOAP) to Remote Method Invocation (RMI) because RMI uses stateful

© Copyright IBM Corp. 2003 363

connections while SOAP is completely stateless. Run a benchmark to determine

if the performance is improved in your environment.

6. Use the wsadmin script to complete the access IDs for all the users and or

groups to speed up the application startup. Complete this action if applications

contain many users, or groups, or if applications are stopped and started

frequently.

7. Consider tuning the Object Request Broker (ORB) because it is a factor in

enterprise bean performance with or without security enabled. Refer to the

article, ORB tuning guidelines.

Tuning CSIv2

Steps for this task

1. Consider using SSL client certificates instead of a user ID and password to

authenticate Java clients. Since you are already making the SSL connection,

using mutual authentication adds little overhead while removing the service

context containing the user ID and password completely.

2. If you send a large amount of data that is not very security sensitive, reduce

the strength of your ciphers. The more data you have to bulk encrypt and the

stronger the cipher, the longer this action takes. If the data is not sensitive, do

not waste your processing with 128-bit ciphers.

3. Consider putting just an asterisk (*) in the trusted server ID list (meaning trust

all servers) when you use Identity Assertion for downstream delegation. Use

SSL mutual authentication between servers to provide this trust. Adding this

extra step in the SSL handshake performs better than having to fully

authenticate the upstream server and check the trusted list. When an asterisk is

used, we simply trust the identity token. The SSL connection trusts the server

by way of client certificate authentication.

4. Ensure that stateful sessions are enabled for Common Secure Interoperability

Version 2 (CSIv2). This is the default, but only requires authentication on the

first request and any subsequent token expirations.

5. If you are only communicating with WebSphere Application Server Version 5

servers, make the Active Authentication Protocol CSI, instead of CSI and SAS.

This action removes an interceptor invocation for every request on both the

client and server sides.

Tuning LDAP authentication

Steps for this task

1. Select the Ignore Case check box in the WebSphere Application Server LDAP

User Registry configuration, when case-sensitivity is not important.

2. Select Reuse Connections in the WebSphere Application Server LDAP User

Registry configuration.

3. Check to see which caches your LDAP server has and take advantage of them.

This action is best with LDAP servers that do not change frequently.

4. Choose the directory type of either IBM_Directory_Server or SecureWay, if you

are using an IBM Directory Server. The IBM Directory Server yields improved

performance because it is programmed to use the new group membership

attributes to improve group membership searches. However, it is required that

authorization is case insensitive to use IBM Directory Server.

364 IBM® WebSphere® Application Server, Version 5.0.2: Security

5. Choose either iPlanet Directory Server (also known as Sun ONE) or Netscape

as the directory if you are an iPlanet Directory user. Using the iPlanet Directory

Server directory increases performance in group membership lookup. However,

only use Role for group mechanisms.

Tuning Web authentication

Steps for this task

1. Consider increasing the cache and token time-out if you feel your environment

is secure enough. The Web authentication information is stored in these caches

and as long as the authentication information is in the cache, the login module

is not invoked to authenticate the user. This supports subsequent requests to

reuse the credentials already created. The downside of increasing the token

time-out is the exposure of having a token stolen and providing the thief more

time to hack into the system before the token expires. See the article “Security

cache properties” on page 366 for a list of these properties.

2. Consider enabling single singon (SSO). SSO is only available when you select

LTPA as the authentication mechanism in the Global Security panel. When you

select SSO, a single authentication to one application server is enough to make

requests to multiple application servers in the same SSO domain. There are

some situations where SSO is not desirable and should not be used in those

situations.

Tuning authorization

Steps for this task

1. Consider mapping your users to groups in the user registry. Then associate the

groups with your J2EE roles. This association greatly improves performance as

the number of users increases.

2. Judiciously assign method-permissions for enterprise beans. For example, you

can use an asterisk (*) to indicate all methods in the method-name element.

When all the methods in enterprise beans require the same permission, use an

asterisk (*) for the method-name to indicate all methods. This indication

reduces the size of deployment descriptors and reduces the memory required to

load the deployment descriptor. It also reduces the search time during

method-permission match for the enterprise beans method.

3. Judiciously assign security-constraints for servlets. For example, you can use

the URL pattern *.jsp to apply the same authentication data constraints to

indicate all JSP files. For a given URL, the exact match in the deployment

descriptor takes precedence over the longest path match. Use the extension

match (*.jsp, *.do, *.html) if there is no exact match and longest path match

for a given URL in the security constraints.

Results

There is always a trade off between performance, feature and security. Security

typically adds more processing time to your requests, but for a good reason. Not

all security features are required in your environment. When you decide to tune

security, you should create a benchmark before making any change to ensure the

change is improving performance.

Usage scenario

Chapter 12. Tuning security configurations 365

In a large scale deployment, performance is very important. Running benchmark

measurements with different combinations of features can help you to determine

the best performance versus the benefit configuration for your environment.

What to do next

Continue to run benchmarks if anything changes in your environment, to help

determine the impact of these changes.

Security cache properties

The following system properties determine the initial size of the primary and

secondary hashtable caches, which affect the frequency of rehashing and the

distribution of the hash algorithms. The larger the number of available hash

values, the less likely a hash collision occurs, and the more likely a slower retrieval

time. If several entries compose a hashtable cache, creating the table in a larger

capacity supports more efficient hash entries than letting automatic rehashing

determine the growth of the table. Rehashing causes every entry to move each

time.

com.ibm.websphere.security.util.authCacheSize

This cache stores basic authentication credentials at the security server.

Whenever a Lightweight Third Party Authentication (LTPA) token expires,

a new token generates from the basic authorization credentials in this

cache. If no basic authorization credentials exist, the requesting browser

must send the basic authorization credentials to the security server. The

browser prompts the user for a user ID and password if no cookie exists

containing the credentials.

com.ibm.websphere.security.util.tokenCacheSize

This cache stores LTPA credentials in the cache using the LTPA token as a

lookup value. When using an LTPA token to log in, the LTPA credential is

created at the security server for the first time. This cache prevents the

need to go to the security server on subsequent logins using an LTPA

token.

com.ibm.websphere.security.util.CredentialCacheSize

Given the user ID and password for login, this cache returns the concrete

credential object, either Local OS or LTPA, without the need to repeat

authentication at the security server. If the credential object has expired,

repeat authentication is required.

com.ibm.websphere.security.util.LTPAValidationCacheSize

Given the credential token for login, this cache returns the concrete LTPA

credential object, without the need to revalidate at the security server. If

the token has expired, revalidation is required.

Secure Sockets Layer performance tips

The following are two types of Secure Sockets Layer (SSL) performance:

v Handshake

v Bulk encryption and decryption

When an SSL connection is established, an SSL handshake occurs. After a

connection is made, SSL performs bulk encryption and decryption for each

read-write. The performance cost of an SSL handshake is much larger than that of

bulk encryption and decryption.

366 IBM® WebSphere® Application Server, Version 5.0.2: Security

To enhance SSL performance, decrease the number of individual SSL connections

and handshakes.

Decreasing the number of connections increases performance for secure

communication through SSL connections, as well as non-secure communication

through simple TCP/IP connections. One way to decrease individual SSL

connections is to use a browser that supports HTTP 1.1. Decreasing individual SSL

connections can be impossible if you cannot upgrade to HTTP 1.1.

Another common approach is to decrease the number of connections (both TCP/IP

and SSL) between two WebSphere Application Server components. The following

guidelines help to verify the HTTP transport of the application server is configured

so that the Web server plug-in does not repeatedly reopen new connections to the

application server:

v Verify that the maximum number of keep alives are, at minimum, as large as the

maximum number of requests per thread of the Web server (or maximum

number of processes for IBM HTTP Server on UNIX). Make sure that the Web

server plug-in is capable of obtaining a keep alive connection for every possible

concurrent connection to the application server. Otherwise, the application server

closes the connection after a single request is processed. Also, the maximum

number of threads in the Web container thread pool should be larger than the

maximum number of keep alives, to prevent the keep alive connections from

consuming the Web container threads.

v Increase the maximum number of requests per keep alive connection. The

default value is 100, which means the application server closes the connection

from the plug-in after 100 requests. The plug-in then has to open a new

connection. The purpose of this parameter is to prevent denial of service attacks

when connecting to the application server and preventing continuous send

requests to tie up threads in the application server.

v Use a hardware accelerator if the system performs several SSL handshakes.

 Hardware accelerators currently supported by WebSphere Application Server

only increase the SSL handshake performance, not the bulk encryption and

decryption. An accelerator typically only benefits the Web server because Web

server connections are short-lived. All other SSL connections in WebSphere

Application Server are long-lived.

v Use an alternative cipher suite with better performance.

 The performance of a cipher suite is different with software and hardware. Just

because a cipher suite performs better in software does not mean a cipher suite

will perform better with hardware. Some algorithms are typically inefficient in

hardware (for example, DES and 3DES), however, specialized hardware can

provide efficient implementations of these same algorithms.

 The performance of bulk encryption and decryption is affected by the cipher

suite used for an individual SSL connection. The following chart displays the

performance of each cipher suite. The test software calculating the data was Java

Secure Socket Extension (JSSE) for both the client and server software, which

used no crypto hardware support. The test did not include the time to establish

a connection, but only the time to transmit data through an established

connection. Therefore, the data reveals the relative SSL performance of various

cipher suites for long running connections.

 Before establishing a connection, the client enables a single cipher suite for each

test case. After the connection is established, the client times how long it takes to

write an integer to the server and for the server to write the specified number of

bytes back to the client. Varying the amount of data had negligible effects on the

relative performance of the cipher suites.

Chapter 12. Tuning security configurations 367

0

100

200

300

400

SSL_R8A_WITH_RC4_128_MD6
SSL_R8A_WITH_RC4_128_SHA
SSL_R8A_WITH_DE8_CBC_SHA
SSL_R8A_WITH_8DE8_EDE_CBC_SHA
SSL_DHE_R8A_WITH_DE8_CBC_SHA
SSL_DHE_R8A_WITH_8DE8_EDE_CBC_SHA
SSL_DHE_D88_WITH_DE8_CBC_SHA
SSL_DHE_D8_WITH_8DE8_EDE_CBC_SHA
SSL_R8A_EXPORT_WITH_RC4_40_MD5
SSL_R8A_EXPORT_WITH_DE840_CBC_SHA
SSL_R8A_EXPORT_WITH_RC2_CBC_40_MD5
SSL_DHE_T8A_EXPORT_WITH_DE840_CBC_SHA
SSL_DHE_D88_EXPORT_WITH_DE840_CBC_SHA
SSL_RSA_WITH_NULL_MDS
SSL_RSA_WITH_NULL_SHA
NONE(TCP/ no SSL

An analysis of the above data reveals the following:

v Bulk encryption performance is only affected by what follows the WITH in the

cipher suite name. This is expected since the portion before the WITH identifies

the algorithm used only during the SSL handshake.

v MD5 and SHA are the two hash algorithms used to provide data integrity. MD5

is 25% faster than SHA, however, SHA is more secure than MD5.

v DES and RC2 are slower than RC4.Triple DES is the most secure, but the

performance cost is high when using only software.

v The cipher suite providing the best performance while still providing privacy is

SSL_RSA_WITH_RC4_128_MD5. Even though

SSL_RSA_EXPORT_WITH_RC4_40_MD5 is cryptographically weaker than

RSA_WITH_RC4_128_MD5, the performance for bulk encryption is the same.

Therefore, as long as the SSL connection is a long-running connection, the

difference in the performance of high and medium security levels is negligible. It

is recommended that a security level of high be used, instead of medium, for all

components participating in communication only among WebSphere Application

Server products. Make sure that the connections are long running connections.

368 IBM® WebSphere® Application Server, Version 5.0.2: Security

Chapter 13. Integrating IBM WebSphere Application Server

security with existing security systems

WebSphere Application Server plays an integral part of the multiple-tier enterprise

computing framework. WebSphere Application Server adopts the open architecture

paradigm and provides many plug-in points to integrate with enterprise software

components to provide end-to-end security. WebSphere Application Server plug-in

points are based on standard J2EE specifications wherever applicable. WebSphere

Application Server is actively involved in various standard bodies to externalize

and to standardize plug-in interfaces.

In the following example, several typical multiple-tier enterprise network

configurations are discussed. In each case, various WebSphere Application Server

plug-in points are used to integrate with other business components. The

discussion starts with a basic multiple-tier enterprise network configuration:

WebSphere
Application Server Version 5

Security Server
(Authentication)

Access Manager
(Authorization)

UserRegistry
Interface

Security Role based
Authorization Engine

Principal/
Credential
Mapping

J2EE
Connector

Credential
Mapping

Trust
Association
Interceptor

CSIv2 Security Protocol

Application
Server

Enterprise
Information

System

Secure Reverse
Proxy Server

JAAS
Login Module

User Registry

JAAS
Login Module

A list of terms used in this discussion follows:

Protocol firewall

Prevents unauthorized access from the Internet to the demilitarized zone.

The role of this node is to provide the Internet traffic access only on certain

ports and to block other IP ports.

WebSphere Application Server plug-in

Redirects all the requests for servlets and JSP pages. Also referred to in

WebSphere Application Server literature as Web server redirector was

introduced to separate Web server from application server. The advantage

of using Web server redirector is that you can move an application server

and all the application business logic behind the domain firewall.

© Copyright IBM Corp. 2003 369

Domain firewall

Prevents unauthorized access from the demilitarized zone to an internal

network. The role of this firewall is to allow the network traffic originating

from the demilitarized zone and note from the Internet.

Directory

Provides information about the users and their rights in the Web

application. The information can contain user IDs, passwords, certificates,

access groups, and so forth. This node supplies the information to the

security services like authentication and authorization service.

Enterprise Information System

Represents existing enterprise applications and business data in back-end

databases.

 WebSphere Application Server provides the infrastructure to run application

business logic and communicate with internal back-end systems and databases

Web applications and enterprise beans can access. WebSphere Application Server

has a built in HTTPS server that can accept client requests. A typical configuration,

however, places WebSphere Application Server behind the domain firewall for

better protection. A WebSphere Application Server plug-in to Web server

configuration can redirect Web requests to WebSphere Application Server.

WebSphere Application Server provides plug-ins for many popular Web servers.

You can configure WebSphere Application Server and the Web server plug-in to

communicate through secure SSL channels. You can configure a WebSphere

Application Server HTTP server to open communication channels only with a

restricted set of Web server plug-ins. You can configure the HTTP server to require

client certificate authentication with self-signed certificates and to trust only the

signer certificate. For instructions on how to generate self-signed certificates and

how to set up secure communications channels between an HTTP server and the

WebSphere Application Server plug-in, refer to Configuring IHS plug-in and the

Internal Web Server for SSL and Configuring IHS for SSL Mutual Authentication.

Browser

In
te

rn
et

Web
Server

WebSphere
Application

Server plug-in

Demilitarized Zone
(DMZ)

WebSphere
Application

Server

DataBase
DB2 V7.1 etc.

MQ
CICS

IBM Directory
(LDAP)

Internet Enterprise
information

systems

D
om

ai
n

F
ire

w
al

l

P
ro

to
co

l F
ire

w
al

l

370 IBM® WebSphere® Application Server, Version 5.0.2: Security

The WebSphere Application Server plug-in routes HTTP requests according to the

virtual host and port configuration and the URL pattern matching. Client

authentication and finer grained access control are handled by WebSphere

Application Server behind the firewall.

In cases where the Web server can contain sensitive data and direct access is not

desirable, the following configuration uses Tivoli WebSEAL to shield a Web server

from unauthorized requests. WebSEAL is a Reverse Proxy Security Server (RPSS)

that uses Tivoli Access Manager to perform coarse-grained access control to filter

out unauthorized requests before they reach the domain firewall. WebSeal uses

Tivoli Access Manager to perform access control as illustrated in the picture.

WebSphere Application Server supports various user registry implementations

through the pluggable user registry interface. WebSphere Application Server ships

Local OS user registry implementation for Windows NT, AIX, AS400, and

Lightweight Directory Access Protocol (LDAP).

WebSphere Application Server also supports users in developing their own custom

registry and plug-in through the pluggable user registry interface. When integrated

with a third party security provider, WebSphere Application Server can share the

user registry with the third-party security provider. In the particular example of

integrating with WebSEAL, you can configure WebSphere Application Server to

use the LDAP user registry, which can be shared with WebSEAL and Tivoli Access

Manager. Moreover, you can configure WebSphere Application Server to use the

Light Weight Third Party (LTPA) authentication mechanism, which supports the

Trust Association Interceptor plug-in point.

Basically, the RPSS performs authentication and adds proper authentication data

into the request header and then redirects the request to Web server. A trust

relationship is formed between an RPSS and WebSphere Application Server, and

the RPSS can assert client identity to WebSphere Application Server to achieve

single signon between RPSS and WebSphere Application Server. When the request

is forward to WebSphere Application Server, WebSphere Application Server uses

the TAI plug-in for the particular RPSS server to evaluate the trust relationship and

to extract the authenticated client identity. WebSphere Application Server then

maps the client identity to a WebSphere Application Server security credential. For

instructions on setting up a trust association interceptor, refer to “Trust

Associations” on page 131 and “Configuring trust association interceptors” on page

135..

Chapter 13. Integrating IBM WebSphere Application Server security with existing security systems 371

Browser

In
te

rn
et

Reverse
Proxy
Security
Server
(WebSeal,
etc)

Demilitarized Zone
(DMZ)

DataBase
DB2 V7.1 etc.

MQ
CICS

IBM Directory
(LDAP)

Internet Enterprise
information

systems

D
om

ai
n

F
ire

w
al

l

P
ro

to
co

l F
ire

w
al

l

WebSphere
Application

Server

Web
Server

WebSphere
Application

Server plug-in TAI

Third Party
Security
Provider

(TAM, etc)

When configured to use the LDAP user registry, WebSphere Application Server

uses LDAP to perform authentication. The client ID and password are passed from

WebSphere Application Server to the LDAP server. You can configure WebSphere

Application Server to set up an SSL connection to LDAP so that passwords are not

passed in plain text. To set up an SSL connection from WebSphere Application

Server to the LDAP server, refer to “Configuring Lightweight Directory Access

Protocol user registries” on page 160. WebSphere Application Server Version 5

supports the J2EE Connector Architecture (JCA). The connector architecture defines

a standard interface for WebSphere Application Server to connect to heterogeneous

Enterprise Information Systems (EIS). Examples of EIS includes database systems,

transaction processing such as CICS, and messaging such as Message Queue (MQ).

The EIS implementation can perform authentication and access control to protect

business data and resources. Resource Adapters authenticate EIS. The

authentication data can be provided either by application code or by WebSphere

Application Server. WebSphere Application Server provides a principal mapping

plug-in point. A principal mapping module plug-in maps the authenticated client

principal to a password credential, (that is, user ID and password, for the EIS

security domain). WebSphere Application Server ships a default principal mapping

module, which maps any authenticated client principal to a configured pair of user

IDs and passwords.

Each connector can be configured to use a different set of IDs and passwords. For

a description on how to configure JCA principal mapping user IDs and passwords,

refer to Managing J2C Authentication Data Entries. A principal mapping module is

a special purpose Java Authentication and Authorization Service (JAAS) login

module. You can develop your own principal mapping module to fit your

particular business application environment. For detailed steps on developing and

configuring a custom principal mapping module, refer to “Developing your own

J2C principal mapping module” on page 60.

372 IBM® WebSphere® Application Server, Version 5.0.2: Security

Security and WebSphere MQseries

It is important to note that security logging information on UNIX systems is not

protected because of the world-writeable files in the /var file system of MQseries.

MQseries ships the following files with its product:

v -rw-rw-rw- /var/mqm/errors/AMQERR01.LOG

v -rw-rw-rw- /var/mqm/errors/AMQERR02.LOG

v -rw-rw-rw- /var/mqm/errors/AMQERR03.LOG

The previously mentioned files are world-writeable and enable any users on the

system to fill up the /var file system where all the security logging information is

stored. This leaves the security information unprotected because anyone can access

the logging information without being tracked.

To work around this problem, create a file system for the embedded messaging

component working data on UNIX. Before you install the embedded messaging

component of WebSphere Application Server on UNIX platforms, consider creating

and mounting a journalized file system called /var/mqm. Use a partition strategy

with a separate volume for the WebSphere MQ data. This means that other system

activity is not affected if a large amount of WebSphere MQ work builds up.

To determine the size of the /var/mqm file system for a server installation, consider

the following:

v Maximum number of messages in the system at one time

v Contingency for message buildups, if there is a system problem

v Average size of the message data, plus 500 bytes for the message header

v Number of queues

v Size of log files and error messages

Allow 50MB as a minimum for a WebSphere MQ server. You need less space in the

/var/mqm file system for a WebSphere MQ client (typically 15MB).

Interoperability issues for security

To have interoperability of Security Authentication Service (SAS) between C++ and

WebSphere Application Server, use the Common Secure Interoperability Version 2

(CSIv2) authentication protocol over Remote Method Invocation over the Internet

Inter-ORB Protocol (RMI-IIOP). To have interoperability of SAS between

WebSphere Application Server and WebSphere Application Server for z/OS use the

SAS authentication protocol over RMI-IIOP.

For more information on these topics, refer to “Interoperating with a C++ common

object request broker architecture client” on page 374.

Interoperability with C++ common object request broker

architecture client support and limitations

In addition to the WebSphere base installation, you can choose from two types of

C++ common object request broker architecture (CORBA) client support, IBM

WebSphere Application Server Enterprise, Version 5 or WebSphere Application

Server Client Version 5. If you plan to develop or rebuild your own C++ client

applications, then the Enterprise version is required. It installs tools, libraries, and

include files for the build environment in selecting C++ CORBA client software

development kit (SDK). Otherwise, a client installation suffices to run your C++

Chapter 13. Integrating IBM WebSphere Application Server security with existing security systems 373

client applications with security. In Version 5, WebSphere Application Server

supports the C++ CORBA client on the Windows 2000, Windows NT, Linux, and

AIX operating systems and the Solaris operating environment.

Secure Sockets Layer Version 2 (SSLV2) cipher suites are not supported. In Version

5, only the most commonly used ciphers among Java Secure Socket Extension

(JSSE) and Global Security Kit (GSkit) are supported.

Since the WebSphere Enterprise CORBA C++ Client has only implemented security

on the transport layer, other authentication mechanisms such as user ID and

password (Basic Authentication) are not supported.

Interoperating with a C++ common object request broker architecture

client

You can achieve interoperability of Security Authentication Service between the

C++ Common Object Request Broker Architecture (CORBA) client and WebSphere

Application Server using Common Secure Interoperability Version 2 (CSIv2)

authentication protocol over Remote Method Invocation over the Internet

Inter-ORB Protocol (RMI-IIOP). The CSIv2 security service protocol has

authentication, attribute and transport layers. Among the three layers, transport

authentication is conceptually simple, however, cryptographically based transport

authentication is the strongest. WebSphere Application Server Enterprise has

implemented the transport authentication layer, so that C++ secure CORBA clients

can use it effectively in making CORBA clients and protected enterprise bean

resources work together.

Security authentication from non-Java based C++ client to enterprise beans.

WebSphere Application Server supports security in the CORBA C++ client to

access protected enterprise beans. If configured, C++ CORBA clients can access

protected enterprise bean methods using client certificate to achieve mutual

authentication on WebSphere Application Server Enterprise applications.

To support the C++ CORBA client in accessing protected enterprise beans:

Steps for this task

1. Obtain a valid certificate to represent the client and export its public key to the

target enterprise bean server.

 A valid certificate is needed to represent the C++ client. Request a certificate

from the certificate authority (CA) or create a self-signed certificate for testing

purposes.

 Use the Key Management Utility from the Global Security Kit (GSKit) to extract

the public key from the personal certificate and save it in the .arm format.

2. Prepare a truststore file for WebSphere Application Server.

 Add the extracted client public key in the .arm file from the client to the server

key truststore file. The server can now authenticate the client.

 Note: This is done by invoking the Key Management Utility through

ikeyman.bat or ikeyman.sh from WebSphere Application Server installation.For

details, see “Adding truststore files” on page 289.

3. Configure WebSphere Application Server to support SSL as the authentication

mechanism.

a. Start the administrative console.

374 IBM® WebSphere® Application Server, Version 5.0.2: Security

b. Locate the application server that has the target enterprise bean deployed

and configure it to use SSL client certificate authentication.

 If it is a base installation, go to Security > Authentication Protocol > CSIv2

Inbound Authentication then select Supported for Basic Authentication

and Client Certificate Authentication and leave the rest as defaults. Go to

the CSIv2 Inbound Transport and make sure SSL-Supported is selected.

 If it is a Network Deployment setting, go to Server > Application Server >

server_name_where_EJB_resides > Server Security > CSI Authentication

Inbound. Then select Supported for Basic Authentication and Client

Certificate Authentication. Leave the rest as defaults. Go to CSI Transport >

Inbound to make sure SSL-Supported is selected.

 For details, see the security InfoCenter articles Configuring CSIv2 inbound

authentication and Configuring CSIv2 inbound transport.

c. Restart the application server.

 The WebSphere Application Server is ready to take a C++ CORBA security

client and a mutually authenticated server and client by using SSL in the

transport layer.
4. Configure the C++ CORBA client to use a certificate in performing the mutual

authentication.

 Client users are accustomed to using property files in their applications because

they are helpful in specifying configuration settings. The following list presents

important C++ security settings:

 C++ security setting Description

com.ibm.CORBA.bootstrapHostName=

ricebella.austin.ibm.com

Specifies the target host name.

com.ibm.CORBA.securityEnabled=yes Enables security.

com.ibm.CSI.performTLClient

AuthenticationSupported=yes

Ensures client is supporting mutual

authentication by certificate

com.ibm.CSI.performTransportAssoc

SSLTLSSupported=yes

Ensures SSL is used, not TCP/IP

com.ibm.ssl.keyFile=C:/ricebella/etc

/DummyKeyRingFile.KDB

Specifies which key database file to use.

com.ibm.ssl.keyPassword=WebAS Specifies the password for opening the key

database file. WebSphere Application Server

supports a utility called PasswordEncode4cpp

to encode the plain password.

com.ibm.CORBA.translationEnabled=1 Enables the valueType conversion.

To use the property files in running a C++ client, an environment variable

WASPROPS, is used to indicate where a property file or a list of property files

exist.

 For the complete set of C++ client properties, see the sample property file

scclient.props, which is shipped with the product located in the

install_root\etc directory.

Interoperating with previous product versions

Before you begin

IBM WebSphere Application Server, Version 5 interoperates with the previous

product versions (such as Version 4 and Version 3.5). Interoperability is achieved

only when the Lightweight Third Party Authentication (LTPA) authentication

Chapter 13. Integrating IBM WebSphere Application Server security with existing security systems 375

mechanism and Lightweight Directory Access Protocol (LDAP) user registry are

used. Credentials derived from Simple WebSphere Authentication Mechanisms

(SWAM) are not forwardable.

Steps for this task

1. Enable security with the LTPA authentication mechanism and the LDAP user

registry.

 Make sure that the same LDAP user registry is shared by all the product

versions.

2. Extract and add Version 5 server certificates into the server key ring file of the

previous version.

a. Open the Version 5 server key ring file using the key management utility

(iKeyman) and extract the server certificate to a file.

b. Open the server key ring of the previous product version, using the key

management utility and add the certificate extracted from product Version

5.
3. Extract and add Version 5 trust certificates into the trust key ring file of the

previous product version.

a. Open the Version 5 trust key ring file using the key management utility and

extract the trust certificate to a file.

b. Open the trust key ring file of the previous product version using the key

management utility and add the certificate extracted from Version 5.
4. If single signon (SSO) is enabled, export keys from the Version 5 product and

import them into the previous product version.

 The Version 4 product requires the fix, PQ61779, and the Version 3.5 product

requires the fix, PQ59667, for SSO to function.

5. Verify that the application uses the correct JNDI name.

 In Version 5, the enterprise beans are registered with long JNDI names like,

(top)/nodes/<node_name>/servers/<server_name>/HelloHome. Whereas in

previous releases, enterprise beans are registered under a root like,

(top)/HelloHome. Therefore, EJB applications from previous versions perform a

lookup on the Version 5 enterprise beans.

 You can also create EJB name bindings in Version 5 that are compatible with

the previous version. To create an EJB name binding at the root Version 5, start

the administrative console and click Environment > Naming > Naming Space

Bindings > New > EJB > Next. Complete all the fields and enter a short name

(for example, -HelloHome) as the JNDI Name. Click Next and Finish.

6. Stop and restart all the servers.

7. Make sure that the correct naming bootstrap port is used to perform naming

lookup.

 In previous product versions, the naming bootstrap port is 900. In Version 5,

the bootstrap port is 2809.

376 IBM® WebSphere® Application Server, Version 5.0.2: Security

Chapter 14. Security: Resources for learning

Use the following links to find relevant supplemental information about Securing

applications and their environment. The information resides on IBM and non-IBM

Internet sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to

the IBM WebSphere Application Server product, but is useful all or in part for

understanding the product. When possible, links are provided to technical papers

and Redbooks that supplement the broad coverage of the release documentation

with in-depth examinations of particular product areas.

View links to additional information about:

v Planning, business scenarios and IT architecture.

v Programming model and decisions

v Programming specifications

v Administration

Planning, business scenarios and IT architecture

v

WebSphere Application Server Library (http://www-
3.ibm.com/software/webservers/appserv/library.html)

v

WebSphere Application Server Support (http://www-
3.ibm.com/software/webservers/appserv/support.html)

v

WebSphere Application Server Version 5 Security Redbook

(http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246573.pdf)

Programming model and decisions

v JSSE Documentation.

 Refer to <product_install>/web/docs/jsse/jssedocs.jar for the javadoc of the

APIs.

– For other JSSE information refer to

<product_install>/web/docs/jsse/API_users_guide.html and

<product_install>/web/docs/jsse/readme.jsse.ibm.html.

– For sample JSSE applications refer to

<product_install>/web/docs/jsse/samplejsse.jar.
v iKeyman Documentation.

 Look in {was_install_root}/web/docs/ikeyman/ikmuserguide.pdf for the SSL

Introduction and iKeyman.

v JCE Documentation.

– For the JCA spec and JCE API usage refer to

<install_root>/web/docs/jce/api_users_guide.html.

– For JCE sample applications refer to

<was_install_root>/web/docs/jce/SampleJCE.jar.

– For Java Cryptography Architecture Reference refer to

<install_root>/web/docs/jce/CryptoSpec.html.

– For how to implement a JCE provider refer to

<install_root>/web/docs/jce/HowToImplAProvider.html.

© Copyright IBM Corp. 2003 377

– For the javadoc of JCE APIs refer to

<install_root>/web/docs/jce/jcedocs.jar.

– For overview of IBM JCE refer to

<install_root>/web/docs/jce/readme.jce.ibm.html.
v Application Assembly Tool (AAT) Documentation.

 Refer to {was_install_root}/web/docs/aat/en/index.html for AAT

documentation. This can help when securing J2EE enterprise applications.

v

Java 2 Platform Security for IBM Application Developer Kit 1.3

(http://java.sun.com/j2se/1.3/docs/guide/security/index.html)

– Refer to Java 2 Security check permission algorithm.

Programming specifications

v

J2EE Specifications (http://java.sun.com/j2ee/download.html)

v

EJB Specifications (http://java.sun.com/products/ejb/docs.html)

v

Servlet Specifications

(http://java.sun.com/products/servlet/download.html)

v

Common Secure Interoperability Version 2 (CSIv2) Specification

(http://www.omg.org/technology/documents/corba_spec_catalog.htm#CSIv2)

v JAAS Specification.

 For programming and usage in JAAS, refer to the specification located at

{was_install_root}/web/docs/jaas/JaasDocs.jar. This document contains the

following when unpacked:

– login.html - LoginModule Developer’s Guide

– api.html - Developer’s Guide (JAAS JavaDoc)

– HelloWorld.tar - Sample JAAS Application
v

Java 2 Platform, Standard Edition, v1.3.1 API Specification

(http://java.sun.com/j2se/1.3/docs/api/index.html)

Administration

v

WebSphere Application Server Version 4.0 Security Redbook: WebSphere

Security Model (http://www.redbooks.ibm.com/pubs/pdfs/redbooks

/sg246520.pdf?#M10.8.newlink.WebSphereSecurityModel)

v

IBM HTTP Server Support and Documentation (http://www-
3.ibm.com/software/webservers/httpservers/support.html)

v

IBM Directory Server Support and Documentation (http://www-
3.ibm.com/software/network/directory/support/)

v (IBM Application Developer Kit Readme)

– For IBM Application Developer Kit refer to

{was_install_root}/java/docs/readme.devkit.ibm.html

– For IBM Application Developer Kit Installation and Configuration Readme

refer to {was_install_root}/java/docs/readme.install.ibm.html

v IBM cryptographic hardware devices (http://www-
3.ibm.com/security/cryptocards/html/library.shtml)

v Supported hardware, software and APIs prerequisite Web site

(http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html)

378 IBM® WebSphere® Application Server, Version 5.0.2: Security

Chapter 15. Notices

This information was developed for products and services offered in the U.S.A.

IBM might not offer the products, services, or features discussed in this document

in other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in

this document. The furnishing of this document does not give you any license to

these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the information. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

information at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003 379

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

Department LZKS

11400 Burnet Road

Austin, TX 78758

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject

to change without notice. Dealer prices may vary.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written.

These examples have not been thoroughly tested under all conditions. IBM,

therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any

form without payment to IBM for the purposes of developing, using, marketing, or

distributing application programs conforming to IBM’s application programming

interfaces.

380 IBM® WebSphere® Application Server, Version 5.0.2: Security

Trademarks

The following terms are trademarks of International Business Machines

Corporation in the United States, or other countries, or both:

v AIX

v AS/400

v CICS

v DB2

v Domino

v IBM

v iSeries

v Lotus Notes

v MQSeries

v OS/390

v OS/400

v Redbooks

v SecureWay

v Tivoli

v WebSphere

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product, and service names may be trademarks or service marks

of others.

Chapter 15. Notices 381

	Contents
	Chapter 1. Welcome to Security
	Chapter 2. Securing applications and their environments
	Chapter 3. Planning to secure your environment
	Security considerations when adding a Base Application Server node to Network Deployment

	Chapter 4. Implementing security considerations during installation
	Securing your environment before installation
	Securing your environment after installation
	Protecting plain text passwords

	Chapter 5. Migrating security configurations from previous releases
	Migrating custom user registries
	Migrating trust association interceptors
	Migrating Common Object Request Broker Architecture programmatic login to Java Authentication and Authorization Service
	Migrating from the CustomLoginServlet class to servlet filters

	Chapter 6. Developing secured applications
	Developing with programmatic security APIs for Web applications
	Example: Web applications code
	Developing servlet filters for form login processing
	Configuring servlet filters
	Example: Servlet filters

	Developing form login pages
	Example: Form login

	Developing with programmatic APIs for EJB applications
	Example: Enterprise bean application code
	

	Developing with the Java Authentication and Authorization Service to log in programmatically
	Example: JAAS programmatic login

	Developing your own J2C principal mapping module
	Developing custom user registries
	Example: Custom user registries
	UserRegistry interface methods

	Developing a custom interceptor for trust associations

	Chapter 7. Assembling secured applications
	Enterprise bean component security
	Securing enterprise bean applications
	Security permissions assembly settings
	Specification
	Description
	Security permissions

	Security settings
	Security role references
	Security role references assembly settings

	Web component security
	Securing Web applications
	Role-based authorization
	Admin roles
	Naming roles

	Adding users and groups to roles
	Mapping users to RunAs roles

	Chapter 8. Deploying secured applications
	Assigning users and groups to roles
	Security role to user and group mappings
	Users
	Groups
	Roles
	Everyone
	All Authenticated

	Security role to user and group selections
	Look up users
	Look up groups

	Delegations
	Assigning users to RunAs roles
	User and group selection settings
	Unprotected EJB 2.0 methods protection settings
	Exclude
	Uncheck
	Specify role
	Module name
	Protection

	EJB 1.0 method protection level settings
	EJB Module
	Module URI
	Method protection

	RunAs roles to users mapping
	User name
	Password

	Updating and redeploying secured applications

	Chapter 9. Testing security
	Chapter 10. Managing security
	Global security
	Configuring global security
	Enabling and disabling global security
	Disabling global security
	Global security settings

	Administrative console and naming service authorization
	Assigning users to administrator roles
	Console users settings
	User
	Role

	Console groups
	Group
	Role

	Assigning users to naming roles
	CORBA Naming Service users settings
	User
	Role

	CORBA Naming Service groups
	Group
	Role

	Authentication mechanisms
	Configuring authentication mechanisms
	Simple WebSphere authentication mechanism
	Lightweight Third Party Authentication
	Configuring Lightweight Third Party Authentication
	Configuring Lightweight Third Party Authentication keys
	Lightweight Third Party Authentication settings

	Trust Associations
	Configuring trust association interceptors
	Trust association settings
	Trust association interceptor collection

	Single Sign-On
	Prerequisites and conditions

	Configuring single signon
	Single signon settings
	Troubleshooting single signon configurations

	User registries
	Configuring user registries
	Local operating system user registries
	Using Windows operating system registries

	Configuring local operating system user registries
	Local operating system user registry settings

	Lightweight Directory Access Protocol
	Supported directory services
	Lightweight Directory Access Protocol settings
	Lightweight Directory Access Protocol advanced settings
	Using specific directory servers as the LDAP server

	Configuring Lightweight Directory Access Protocol user registries
	Configuring Lightweight Directory Access Protocol search filters

	Custom user registries
	Configuring custom user registries
	UserRegistry.java files
	FileRegistrySample.java file for WebSphere Application Server Version 5 and Version 5.0.1
	FileRegistrySample.java file for WebSphere Application Server Version 5.0.2
	Result.java file
	Custom user registry settings
	users.props file
	groups.props file

	Java Authentication and Authorization Service
	Java Authentication and Authorization Service authorization

	Configuring Java Authentication and Authorization Service login
	Java Authentication and Authorization Service login configuration
	Java Authentication and Authorization service configuration entry settings
	ClientContainer
	DefaultPrincipalMapping
	WSLogin

	Java Authentication Authorization Service login module settings
	Module Class Name
	Authentication Strategy

	Application login configuration settings
	Alias

	Java 2 Connector security
	Managing J2EE Connector Architecture authentication data entries
	Java 2 Connector authentication data entry settings

	Programmatic login
	Getting the Caller Subject from the Thread
	Getting the RunAs Subject from the Thread
	Overriding the RunAs Subject on the Thread
	User revocation from a cache

	Java Authentication and Authorization Service custom login module

	Authentication protocol for EJB security
	Connection and request interceptors
	Authentication policy for each request
	Common Secure Interoperability Version 2 features
	Identity assertion
	Message layer authentication
	Configuring authentication retries
	Immediate validating of a basic authentication login

	Secure Sockets Layer client certificate authentication
	Supported IBM protocols: Secure Association Service and Common Secure Interoperability Version 2

	Configuring Common Secure Interoperability Version 2 and Security Authentication Service authentication protocols
	Common Secure Interoperability Version 2 and Security Authentication Service client configuration
	Security Authentication Service and Common Secure Interoperability Version 2 authentication protocol common settings for a client configuration
	CSIv2 authentication protocol client settings
	Security Authentication Service Authentication Protocol client settings

	Configuring Common Secure Interoperability Version 2 inbound authentication
	Common Secure Interoperability inbound authentication settings

	Configuring common secure interoperability version 2 outbound authentication
	Configuring session management
	Common Secure Interoperability outbound authentication settings

	Configuring inbound transports
	Common Secure Interoperability transport inbound settings
	Secure Association Service transport inbound settings

	Configuring outbound transports
	Common secure interoperability transport outbound settings
	Secure Association Service transport outbound settings

	Example: Common Secure Interoperability Version 2 scenarios
	Scenario 1: Basic authentication and identity assertion
	Scenario 2: Basic authentication, identity assertion and client certificates
	Scenario 3: Client certificate authentication and RunAs system
	Scenario 4: TCP/IP transport using VPN
	Scenario 5: Interoperability with WebSphere Application Server Version 4.x

	Secure Sockets Layer
	Authenticity
	Confidentiality
	Integrity

	Configuring Secure Sockets Layer
	Configuring Secure Sockets Layer for Web client authentication
	Configuring secure sockets layer for the lightweight directory access protocol client
	Configuring IBM HTTP Server for secure sockets layer mutual authentication
	Configuring the IBM HTTP Server for distributed platforms and the Web server plug-in for Secure Sockets Layer
	Configuring Secure Sockets Layer for Java client authentication
	Configuring Common Secure Interoperability Version 2 for Secure Sockets Layer client authentication
	Adding keystore files
	Adding truststore files

	Creating a secure sockets layer repertoire configuration entry
	Secure Sockets Layer configuration repertoire settings
	Secure Sockets Layer settings
	Secure Sockets Layer settings for custom properties

	Configuring Federal Information Processing Standard-approved Java Secure Socket Extension files
	Digital certificates
	Contents of a digital certificate
	Requesting certificates
	Using certificates: Chain of trust and self-signed certificate
	Digital signatures
	Public key cryptography

	Managing digital certificates
	Starting the key management utility (iKeyman)
	Creating a keystore file
	Creating truststore files
	Map certificates to users

	Cryptographic token support
	Opening a cryptographic token using the key management utility (iKeyman)
	Configuring to use cryptographic tokens
	Cryptographic token settings
	Token Type
	Library File
	Password

	Using Java Secure Socket Extension and Java Cryptography Extension with Servlets and enterprise bean files
	Java Secure Socket Extension
	IBM Java Secure Socket Extension
	Customizing Java Secure Socket Extension
	Application Programming Interface
	Samples using Java Secure Socket Extension
	Permissions for Java 2 security
	Debugging
	Documentation
	JCE
	IBMJCE

	Java 2 security
	Troubleshooting
	Messages
	AccessControlException

	Configuring Java 2 security
	Enable or disable Java 2 Security for the cell
	Enable or disable Java 2 Security for an application server
	Using PolicyTool to edit policy files
	Java 2 security policy files
	Configuring Java 2 security policy files
	Configuring static policy files

	Migrating Java 2 security policy
	Migrating System Properties

	Chapter 11. Troubleshooting security configurations
	Chapter 12. Tuning security configurations
	Tuning CSIv2
	Tuning LDAP authentication
	Tuning Web authentication
	Tuning authorization
	Security cache properties
	Secure Sockets Layer performance tips

	Chapter 13. Integrating IBM WebSphere Application Server security with existing security systems
	Security and WebSphere MQseries
	Interoperability issues for security
	Interoperability with C++ common object request broker architecture client support and limitations

	Interoperating with a C++ common object request broker architecture client
	Interoperating with previous product versions

	Chapter 14. Security: Resources for learning
	Chapter 15. Notices
	Trademarks

