
IBM WebSphere Application Server Enterprise,
Version 5.0.2

System Administration

���

Note
Before using this information, be sure to read the general information under “Trademarks and service marks” on page v.

Compilation date: August 15, 2003

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Trademarks and service marks v

Chapter 1. Welcome to System
Administration 1

Chapter 2. Using the administrative
console 5
Starting and stopping the administrative console . . 5

Login settings 6
Administrative console areas 8

Taskbar 8
Navigation tree 8
WorkSpace 8
WebSphere Status 8
Administrative console buttons 8
Administrative console page features 11
Administrative console navigation tree actions . . 12
Administrative console taskbar actions 13
WebSphere status settings 14

Specifying console preferences 14
Preferences settings 15
Administrative console preference settings . . . 16
Administrative console filter settings 16
Administrative console scope settings 16

Accessing help 17
Administrative console: Resources for learning . . 17

Chapter 3. Deploying and managing
using scripting 19
Migrating from wscp V4.0 to wsadmin V5.0 . . . 19

Example: Migrating - Creating an application
server 21
Example: Migrating - Starting an application
server 22
Example: Migrating - Starting a server group . . 22
Example: Migrating - Installing an application . . 22
Example: Migrating - Installing a JDBC driver . . 24
Example: Migrating - Stopping a node 25
Example: Migrating - Stopping an application
server 25
Example: Migrating - Listing the running server
groups 25
Example: Migrating - Pinging running servers for
the current state 26
Example: Migrating - Listing configured server
groups 26
Example: Migrating - Regenerating the node
plug-in configuration 27
Example: Migrating - Testing the DataSource
object connection 27
Example: Migrating - Cloning a server group . . 28
Example: Migrating - Enabling security 29
Example: Migrating - Disabling security 29
Example: Migrating - Modifying the virtual host 29

Example: Migrating - Modifying and restarting
an application server 30
Example: Migrating - Stopping a server group . . 31
Example: Migrating - Removing an application
server 31
Example: Migrating - Modifying the embedded
transports in an application server 31

Launching scripting clients 32
Wsadmin tool 34
Jacl 37

Scripting objects 38
Help object for scripted administration 38
AdminApp object for scripted administration . . 47
AdminControl object for scripted administration 64
AdminConfig object for scripted administration 80

ObjectName, Attribute, and AttributeList 96
Modifying nested attributes with the wsadmin tool 96
Managing configurations with scripting 98

Creating configuration objects using the wsadmin
tool 98
Specifying configuration objects using the
wsadmin tool 99
Listing attributes of configuration objects using
the wsadmin tool 101
Modifying configuration objects with the
wsadmin tool 102
Removing configuration objects with the
wsadmin tool 104
Changing the WebSphere Application Server
configuration using wsadmin 104
Configuration management examples with
wsadmin 107

Managing running objects with scripting 161
Specifying running objects using the wsadmin
tool 161
Identifying attributes and operations for
running objects with the wsadmin tool 163
Performing operations on running objects using
the wsadmin tool 164
Modifying attributes on running objects with
the wsadmin tool 165
Operation management examples with wsadmin 166

Managing applications with scripting 180
Installing applications with the wsadmin tool 180
Installing stand-alone java archive and web
archive files with wsadmin 181
Listing applications with the wsadmin tool . . 182
Editing application configurations with the
wsadmin tool 182
Uninstalling applications with the wsadmin tool 183
Application management examples with
wsadmin 184

wsadmin scripting environment 198
wsadmin traces 199
Tracing operations with the wsadmin tool . . . 199
Profiles and scripting 200

© Copyright IBM Corp. 2002 iii

Properties used by scripted administration . . 200
Java Management Extensions connectors . . . 202
Security and scripting 203
Scripting management examples with wsadmin 204
wsadmin tool performance tips 206

Chapter 4. Managing using command
line tools 209
Example: Security and the command line tools . . 209
startServer command 210
stopServer command 211
startManager command 212
stopManager command 214
startNode command 215
stopNode command 216
addNode command 218
serverStatus command 221
removeNode command 222
cleanupNode command 223
syncNode command 224
backupConfig command 225
restoreConfig command 226
EARExpander command 227

Chapter 5. Deploying and managing
using programming 229
Creating a custom Java administrative client
program using WebSphere Application Server
administrative Java APIs 229

Developing an administrative client program 230
Extending the WebSphere Application Server
administrative system with custom MBeans . . . 235

Java 2 security permissions 237

Chapter 6. Working with server
configuration files 239
Configuration documents 239
Configuration document descriptions 241
Object names 243
Configuration repositories 243

Handling temporary configuration files resulting
from session timeout 244
Changing the location of temporary configuration
files 244
Changing the location of backed-up configuration
files 245
Changing the location of temporary workspace
files 245
Backing up and restoring administrative
configurations 246
Server configuration files: Resources for learning 246

Chapter 7. Managing administrative
agents 247
Cells 247
Configuring cells 247

Cell settings 248
Deployment managers 249
Configuring deployment managers 249

Running the deployment manager with a
non-root user ID 249
Deployment manager settings 250

Node 251
Managing nodes 251

Node collection 253
Administration service settings 254

Standalone 254
Preferred Connector 254
Extension MBean Providers collection 254

Repository service settings 255
Audit Enabled 255

Node agents 255
Managing node agents 256

Node agent collection 256
Remote file services 257
Configuring remote file services 258

File transfer service settings 258
File synchronization service settings 259

Administrative agents: Resources for learning . . 260

iv IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Trademarks and service marks

The following terms are trademarks of IBM Corporation in the United States, other
countries, or both:
v Cloudscape
v Everyplace
v iSeries
v IBM
v Redbooks
v ViaVoice
v WebSphere
v zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product and service names may be trademarks or service marks of
others.

© Copyright IBM Corp. 2002 v

vi IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Chapter 1. Welcome to System Administration

System administration provides a variety of tools for administering the WebSphere
Application Server product:
v Console

 The administrative console is a graphical interface that provides many features
to guide you through deployment and systems administration tasks. Use it to
explore available management options.

v Scripting

 The WebSphere administrative (wsadmin) scripting program is a powerful,
non-graphical command interpreter environment enabling you to execute
administrative operations in a scripting language. You can also submit scripting
language programs for execution. The wsadmin tool is intended for production
environments and unattended operations.

v Commands

 Command line tools) are simple programs that you run from an operating
system command line prompt to perform specific tasks, as opposed to general
purpose administration. Using the tools, you can start and stop application
servers, check server status, add or remove nodes, and complete similar tasks.

v Programming

 The product supports a Java programming interface for developing
administrative programs. All of the administrative tools supplied with the
product are written according to the API, which is based on the industry
standard Java Management Extensions (JMX) specification.

Data

Administrative tasks typically involve defining new configurations of the product
or performing operations on managed resources within the environment. IBM
WebSphere Application Server configuration data is kept in files. Because all
product configuration involves changing the content of those files, it is useful to
know the structure and content of the configuration files.

The WebSphere Application Server product includes an implementation of the JMX
specification. All operations on managed resources in the product go through JMX
functions. This means a more standard framework underlying your administrative
operations, as well as the ability to tap into the systems management infrastructure
programmatically.

Administrative agents

Servers, nodes and node agents, cells and the deployment manager are
fundamental concepts in the administrative universe of the product. It is also
important to understand the various processes in the administrative topology and
the operating environment in which they apply.

A base WebSphere Application Server (single server) installation includes only the
Application Server process. A single server installation can host one or more sets of
managed servers, known as nodes.. A managed server is a single WebSphere
Application Server JVM instance, running in its own process. A node cannot span
multiple machines, but a machine can have multiple nodes, each with multiple

© Copyright IBM Corp. 2002 1

managed servers. There is no node agent or network deployment manager
involved in this configuration. No coordination between application server
processes is supported in the single server environment. Administration is limited
to a single process at a time.

Node

= Application Server,
IBM HTTP Server CD

= Application Servers

IBM WebSphere Application Server
Package

A Network Deployment installation can support a network of computer systems
that are configured to run collaborating instances of a single server installation.
Each computer having a single server installation is known as a node. The
Network Deployment product provides centralized administration and workload
management for a set of nodes, known as a cell. A cell has a master administrative
repository that stores all of the cell’s configuration data.

One computer is designated as the central deployment manager machine. The
central deployment manager program (dmgr) oversees the cell.

In the Network Deployment product, each node has a node agent that serves as an
intermediary between the application servers on the node and the deployment
manager that oversees the entire cell.

2 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Node
Agent

Node

Cell

Adding a Node to a Cell

Node

Deployment
Manager

Node
Agent

Node
Node
Agent

Node

IBM WebSphere Application
Server Network Deployment
Package

= Deployment Manager
CD

= Application Server,
IBM HTTP Server
CD

= Application Servers

You establish a multiple machine environment (a cell) through a series of
installation and configuration steps.

Chapter 1. Welcome to System Administration 3

4 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Chapter 2. Using the administrative console

The administrative console is a Web-based tool that you use to manage the IBM
WebSphere Application Server product as well as the Network Deployment
product. The administrative console supports a full range of product
administrative activities.

Steps for this task
1. Start the server for the administrative console. For the Network Deployment

product, the administrative console belongs to the deployment manager (dmgr)
process, which you start with the startmanager command.

2. Access the administrative console.
3. After you point a Web browser at the URL for the administrative console, enter

your user ID and, if needed, a password on a Login page.
4. Browse the administrative console.
5. (Optional) Specify console preferences.
6. (Optional) Access help.

Starting and stopping the administrative console
To access the administrative console, you must start it and then log in. After you
finish working in the console, save your work and log out.

Steps for this task
1. Start the administrative console.

a. Verify that the application server for the administrative console is running.
For the Network Deployment product, the deployment manager (dmgr)
process for the administrative console must be running. Use the wasadmin
startManager command to start the deployment manager.

b. Enable cookies in the Web browser that you use to access the administrative
console. The administrative console requires that you enable cookies for it to
work correctly.

c. In the same Web browser, type http://your_server_name:9090/admin where
your_server_name is the short or fully qualified host name for the machine
containing the administrative server. When the administrative console is on
the local machine, your_server_name can be localhost. On Windows
platforms, use the actual host name if localhost is not recognized.
 For a listing of supported Web browsers, see (split for publication)
http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html
(http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html)

d. Wait for the console to load into the browser.

 If you cannot start the administrative console because the console port conflicts
with an application already running on the machine, change the port number
in the
install_root/config/cells/cell_name
/nodes/node_name/servers/server_name/server.xml

and

© Copyright IBM Corp. 2002 5

install_root/config/cells
/cell_name/virtualhosts.xml

files (split for publication). Change all occurrences of port 9090 (or whatever
port was selected during installation of WebSphere Application Server) to the
desired port for the console. Alternatively, shut down the other application that
uses the conflicting port before starting the WebSphere Application Server
product.

2. A Login page appears after the console starts. Log into the console.
a. Enter your user name (or user ID).

 Changes made to server configurations are saved to the user ID. Server
configurations also are saved to the user ID if there is a session timeout.
 A user ID lasts for the duration of the session for which it was used to log
in. If you enter an ID that is already in use (and in session), you are
prompted to do one of the following:
v Force the existing user ID out of session. The configuration file used by

the existing user ID is saved in the temp area.
v Wait for the existing user ID to log out or time out of the session.
v Specify a different user ID.

b. If the console is secured, you must also enter a password for the user name.
The console is secured if the following has been done for the console:
1) Specified security user IDs and passwords
2) Enabled global security

c. Click OK.
3. (Optional) Stop the administrative console. Click Save on the console taskbar

to save work that you have done and then click Logout to exit the console.
 Note that if you close the browser before saving your work, when you next log
in under the same user ID, you can recover any unsaved changes.

What to do next

Note to Linux users: If you have difficulty using the administrative console on
Linux, try using the Netscape Communicator 7.1 browser based on Mozilla 1.0.
The browser release is not officially supported by the WebSphere Application
Server product but users have been able to access the console successfully with it.

Login settings
Use this page to specify the user for the WebSphere Application Server
administrative console. If you are using global security, then you also specify a
password.

Specifying a user allows you to resume work done previously with the product.
After you type in a user ID, click OK to proceed to the next page and access the
administrative console.

To view this page, start the administrative console.

User ID
Specifies a string identifying the user. The user ID must be unique to the
administrative server.

6 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Work that you do with the product and then save before exiting the product will
be saved to a configuration identified by the user ID that you enter. To later access
work done under that user ID, specify the user ID in the Login page.

If you are logging in from a client machine that currently has a browser open on
the administrative console and you connect to the same server, your two
connections might share the same HTTP session object, whether or not you are
logging in under different user IDs. You must use two different types of browsers
(for example, Microsoft Internet Explorer and Netscape Communicator) to log in to
the administrative console from the same client machine in order to work from two
different HTTP session objects, whether or not you use the same user ID. That is, if
you need two concurrent sessions on the same client machine, access the
administrative console from two different browser types.

Note that you can use the same browser type to log in twice to the console, but
you must log in from different physical hosts and use different user IDs. For
example, suppose that Joe logs into the administrative console under the user ID
joe on the physical host myhost1 using an Internet Explorer browser. Joe can log
into the same console a second time using an Internet Explorer browser, but he
must use a different user ID (such as peggy) and a different physical host (such as
myhost2).

 Data type String

Another user is currently logged in with the same user name
Specifies whether to log out the user and continue work with the user ID specified
or to return to the Login page and specify a different user ID or wait for the user
to log out.

This field appears if the user closed a Web browser while browsing the
administrative console and did not first log out, then opened a new browser and
tried accessing the administrative console.

Work with the master configuration
When enabled, specifies that you want to use the default administrative
configuration and not use the configuration last used for the user’s session.
Changes made to the user’s session since the last saving of the administrative
configuration will be lost.

This field appears only if the user changed the administrative configuration and
then logged out without saving the changes.

 Data type Boolean
Default false

Recover changes made in prior session
When enabled, specifies that you want to use the same administrative
configuration last used for the user’s session. Recovers changes made by the user
since the last saving of the administrative configuration for the user’s session.

This field appears only if the user changed the administrative configuration and
then logged out without saving the changes.

 Data type Boolean
Default true

Chapter 2. Using the administrative console 7

Administrative console areas
Use the administrative console to create and manage resources, applications and
servers or to view product messages.

To view the administrative console, ensure that the application server for the
administrative console is running. Point a Web browser at the URL for the
administrative console, enter your user ID and, if needed, a password on a Login
page.

The console has the following main areas, which you can resize as desired:

Taskbar
The taskbar offers options for returning to the console Home page, saving changes
to administrative configurations, specifying console-wide preferences, logging out
of the console, and accessing product information.

Navigation tree
The navigation tree on the left side of the console offers links to console pages that
you use to create and manage components in a WebSphere Application Server
administrative cell.

Click on a + beside a tree folder or item to expand the tree for the folder or item.
Click on a - to collapse the tree for the folder or item. Double-click on an item in
the tree view to toggle its state between expanded and collapsed.

WorkSpace
The workspace on the right side of the console contains pages that you use to
create and manage configuration objects such as servers and resources. Click links
in the navigation tree to view the different types of configured objects. Within the
workspace, click on configured objects to view their configurations, run-time
status, and options. Click Home in the taskbar to display the workspace Home
page, which contains links to information on using the WebSphere Application
Server product.

WebSphere Status
The status messages area at the bottom of the console provides information on
messages returned by the WebSphere Application Server as to problems in your
administrative configuration as well as messages about run-time events. Click
Previous or Next to toggle among displays of configuration problems and run-time
events.

You can adjust the interval between automatic refreshes in the Preferences settings.

Administrative console buttons
The following button choices are available on various pages of the administrative
console, depending on which product features you have enabled.
v Abort. Aborts a transaction that is not yet in the prepared state. All operations

that the transaction completed are undone.
v Add. Adds the selected or typed item to a list, or produces a dialog for adding

an item to a list.
v Apply. Saves your changes to a page without exiting the page.

8 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

v Back. Displays the previous page or item in a sequence. Note that the
administrative console does not support using the Back and Forward buttons of
a browser. Using those buttons can cause intermittent problems. Use the Back or
Cancel buttons on the administrative console panels instead.

v Browse. Opens a dialog that enables you to look for a file on your system.
v Cancel. Exits the current page or dialog, discarding unsaved changes. Note that

the administrative console does not support using the Back and Forward buttons
of a browser. Using those buttons can cause intermittent problems. Use the
Cancel button on the administrative console panels instead.

v Change. In the context of security, lets you search the user registry for a user ID
for an application to run under. In the context of container properties, lets you
change the data source the container is using.

v Clear. Clears your changes and restores the most recently saved values.
v Clear Selections. Clears any selected cells in the tables on this tabbed page.
v Close. Exits the dialog.
v Commit. Releases all locks held by a prepared transaction and forces the

transaction to commit.
v Copy. Creates copies of the selected application servers.
v Create. Saves your changes to all tabbed pages in a dialog and exits the dialog.
v Delete. Removes the selected instance.
v Details. Shows the details about a transaction.
v Done. Saves your changes to all tabbed pages in a dialog and exits the dialog.
v Down. Moves downward through a list.
v Dump. Activates a dump of a traced application server.
v Edit. Lets you edit the selected item in a list, or produces a dialog box for

editing the item.
v Export. Accesses a page for exporting EAR files for an enterprise application.
v Export DDL. Accesses a page for exporting DDL files for an enterprise

application.
v Export Keys. Exports LTPA keys to other domains.
v Filter. Produces a dialog box for specifying the resources to view in the tables on

this tabbed page.
v Finish. Forces a transaction to finish, regardless of whether its outcome has been

reported to all participating applications.
v First. Displays the first record in a series of records.
v Full Resynchronize. Synchronizes the user’s configuration immediately. Click

this button on the Nodes page if automatic configuration synchronization is
disabled, or if the synchronization interval is set to a long time, and a
configuration change has been made to the cell repository that needs to be
replicated to that node. Clicking this button clears all synchronization
optimization settings and performs configuration synchronization anew, so there
will be no mismatch between node and cell configuration after this operation is
performed. This operation can take a while to perform.

v Generate Keys. Generates new LTPA keys. When security is turned on for the
first time with LTPA as the authentication mechanism, LTPA keys are
automatically generated with the password entered in the panel. If new keys
need to be generated, use this button after the server is back up with security
turned on. Clicking this button generates the keys and propagates them to all
active servers (cell, node, and application servers). The new keys can be used to

Chapter 2. Using the administrative console 9

encrypt and decrypt the LTPA tokens. Click Save on the console taskbar to save
the new keys and the password in the repository.

v Immediate Stop. Stops the server, but bypasses the normal server quiesce
process that would allow in-flight requests to complete before shutting down the
whole server process. This shutdown mode is faster than the normal server stop
processing, but some application clients may receive exceptions.

v Import Keys. Imports new LTPA keys from other domains. To support single
sign on (SSO) in WebSphere across multiple WebSphere domains (cells), LTPA
keys and a password should be shared among the domains. After exporting the
keys from one of the cells into a file, clicking this button imports the keys into
all active servers (cell, node and application servers). The new keys can be used
to encrypt and decrypt the LTPA token. Click Save on the console taskbar to
save the new keys and the password in the repository.

v Install. Displays the Preparing for application install page, which you use to
deploy an application or EJB or Web component onto an application server.

v Install RAR.The Install RAR button opens a dialog used to install a JCA
connector and create a resource adapter for it.

v Manage Transactions. Displays a list of active transactions running on a server.
You can forcibly finish any transaction that has stopped processing because a
transactional resource is not available.

v Modify. Opens a dialog used to change a specification.
v Move. Moves the selected application servers to a different location in the

administrative cell. When prompted, specify the target location.
v New. Displays a page which you use to define a new instance. For example,

clicking New on the Application Servers page displays a page on which can
configure a new application server.

v Next. Displays the next page, frame, or item in a sequence.
v OK. Saves your changes and exits the page.
v Ping. Attempts to contact selected application servers.
v Previous. Displays the previous page, frame, or item in a sequence.
v Quit. Exits a dialog box, discarding any unsaved changes.
v Refresh. Refreshes the view of data for instances currently listed on this tabbed

page.
v RegenerateKey. Regenerates a key for global data replication. If you are using

the DES or TRIPLE_DES encryption type, regenerate a key at regular intervals
(for example, monthly) to enhance security.

v Remove. Deletes the selected item.
v Remove Node. Deletes the selected node.
v Reset. Clears your changes on the tab or page and restores the most recently

saved values.
v Restart. Stops the selected objects and starts them again.
v Retrieve new. Retrieves a new record.
v Save. Saves the changes in your local configuration to the master configuration.
v Select. For resource analysis, lets you select a scope in which to monitor

resources.
v Set. Saves your changes to settings in a dialog.
v Settings. Displays a dialog for editing servlet-related resource settings.
v Settings in use. Displays a dialog showing the settings now in use.

10 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

v Start. In the context of application servers, starts selected application servers. In
the context of data collection, starts collecting data for the tables on this tabbed
page.

v Stop. In the context of server components such as application servers, stops the
selected server components. In the context of a data collection, stops collecting
data for the tables on a tabbed page.

v Synchronize. Synchronizes the user’s configuration immediately. Click this
button on the Nodes page if automatic configuration synchronization is disabled,
or if the synchronization interval is set to a long time, and a configuration
change has been made to the cell repository that needs to be replicated to that
node. Clicking this button requests that a node synchronization operation be
performed using the normal synchronization optimization algorithm. This
operation is fast but might not fix problems from manual file edits that occur on
the node. So it is possible for the node and cell configuration to be out of
synchronization after this operation is performed. If problems persist, use Full
Resynchronize.

v Test Connection After you have defined and saved a data source, you can click
this button to ensure that the parameters in the data source definition are
correct. On the collection panel, you can select multiple data sources and test
them all at once.

v Uninstall. Deletes a deployed application from the WebSphere Application
Server configuration repository. Also deletes application binary files from the file
system.

v Update. Replaces an application deployed on a server with an updated
application. As part of the updating, you might need to complete steps on the
Preparing for application install and Update Application pages.

v Update Resource List. Updates the data on a table. Discovers and adds new
instances to the table.

v Use Cell CSI. Enables OMG Common Secure Interoperability (CSI) protocol.
v Use Cell SAS. Enables IBM Secure Association Service (SAS).
v Use Cell Security. Enables cell security.
v View. Opens a dialog on a file.

Administrative console page features
This topic provides information about the basic elements of an administrative
console page, such as the various tabs one can expect to encounter.

Administrative console pages are arranged in a few basic patterns. Understanding
their layout and behavior will help you use them more easily.

Collection pages

Use collection pages to manage a collection of existing administrative objects. A
collection page typically contains one or more of the following elements:

Scope, Filter, and Preferences
These are described in ″Administrative console scope settings″,
″Administrative console filter settings″, and ″Administrative console
preference settings″.

Table of existing objects
The table displays existing administrative objects of the type specified by
the collection page. The table columns summarize the values of the key

Chapter 2. Using the administrative console 11

settings for these objects. If no objects exist yet, an empty table is
displayed. Use the available buttons to create a new object.

Buttons for performing actions
The available buttons are described in ″Administrative console buttons″. In
most cases, you need to select one or more of the objects in the table, then
click a button. The action will be applied to the selected objects.

Sort toggle buttons
Following column headings in the table are icons for sort ascending (^)
and sort descending (v). By default, items such as names are sorted in
descending order (alphabetically). To enable another sorting order, click on
the icons for the column whose items you want sorted.

 Detail pages

Use detail pages to configure specific administrative objects, such as an application
server. A detail page typically contains one or more of the following elements:

Configuration tabbed page
This tabbed page is for modifying the configuration of an administrative
object.

Runtime tabbed page
This tabbed page displays the configuration that is currently in use for the
administrative object. It is read-only in most cases.

Buttons for performing actions
The available buttons are described in ″Administrative console buttons″.

 Wizard pages

Use wizard pages to complete a configuration process comprised of several steps.
Be aware that wizards show or hide certain steps depending on the characteristics
of the specific object you are configuring.

Administrative console navigation tree actions
Use the navigation tree of the administrative console to access pages for creating
and managing servers, applications, resources, and other components.

To view the navigation tree, go to the WebSphere Application Server administrative
console and look at the tree on the left side of the console. The tree provides
navigation to configuration tasks and run-time information. The main topics
available on the tree are shown below. To use the tree, expand a main topic of
interest and select an item from the expanded list in order to display a page on
which you can complete your work.

Servers
Enables you to configure administrative servers and other types of servers such as
JMS servers.

Applications
Enables you to install applications onto servers and manage the installed
applications.

Resources
Enables you to configure resources and to view information on resources existing
in the administrative cell.

12 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Security
Accesses the Security Center, which you use to secure applications and servers and
to manage users of the administrative console.

Environment
Enables you to configure hosts, Web servers, variables and other components.

System Administration
Enables you to manage components and users of a Network Deployment product.

Troubleshooting
Enables you to check for and track configuration errors and problems.

Administrative console taskbar actions
Use the taskbar of the administrative console to return to the console Home page,
save changes that you have made to administrative configurations, specify console
preferences, log out of the console, and access product information.

To view the taskbar, go to the WebSphere Application Server administrative
console and look at the horizontal bar near the top of the console. The taskbar
provides several actions.

Home
Displays the administrative console Home page in the workspace. The workspace
is on the right side of the console. The Home page provides links to information
on using the WebSphere Application Server product.

Save
Displays the Save page, which you use to save work that you have done in the
administrative console.

Changes made to administrative configurations are saved to a master repository
comprised of .xml configuration files. To see what changes are saved, expand View
items with changes. Periodically save your work to ensure that you do not
inadvertently lose changes that you have made.

Preferences
Displays the Preferences page, in which you can specify whether you want the
administrative console workspace page to refresh automatically after changes,
confirmation dialogs to display, and the default scope to be the administrative
console node.

Logout
Logs you out of the administrative console session and displays the Login page. If
you have changed the administrative configuration since last saving the
configuration to the master repository, the Save page displays before returning to
the Login page. Click Save to save the changes to the master repository, Discard to
exit the session without saving changes, or Logout to exit the session without
saving changes but with the opportunity to recover your changes when you return
to the console.

Help
Opens a new Web browser on online help for the WebSphere Application Server
product.

Hide/Show Field and Page Descriptions toggle
Enables you to select whether information on console pages and fields within the
pages is shown. Icons on the right-hand side of the taskbar provide the toggle.

Chapter 2. Using the administrative console 13

WebSphere status settings
Use the WebSphere Status area of the administrative console to view error and
run-time event messages returned by WebSphere Application Server.

The WebSphere Status area displays along the bottom of the console and remains
visible as you navigate from the WebSphere Home page to other pages. The area
displays two frames: WebSphere Configuration Problems and WebSphere
Runtime Messages. Click Previous or Next to toggle between the frames.

Click the icon in the upper-right of the area to refresh the information displayed.
You can adjust the interval between automatic refreshes in the Preferences settings.

WebSphere Configuration Problems
Displays the number of workspace files. This frame also displays the number of
problems with the administrative configuration for the user ID.

Click on the number to view detailed information on the problems.

WebSphere Runtime Message
Displays the number of messages returned by WebSphere Application Server as
well as the number of error messages(x icon), warning messages (! icon), and
informational messages (i icon).

Click on the number of messages to view details.

Specifying console preferences
Throughout the administrative console are pages that have Preferences, Filter, and
Scope fields near the top of the pages. To customize how much data is shown,
select options in Preferences, Filter and Scope.

For example, examine the Preferences field for the Enterprise Applications page:

Steps for this task
1. Go to the navigation tree of the administrative console and select Applications

> Enterprise Applications.
2. Expand Preferences.
3. For the Maximum rows field, specify the maxiumum number of rows to be

displayed when the collection is large. The default is 25. Rows that exceed the
maximum number will appear on subsequent pages.

4. For the Filter history field, place a checkmark beside Retain filter criteria if
you want the last filter criteria entered in the filter function to be retained.
When you return to the Applications page, the page will initially use the
retained filter criteria to display the collection of applications in the table below.
Otherwise, remove the checkmark beside Retain filter criteria to not retain the
last filter criteria.
 The default is not to enable (not have a checkmark beside) Retain filter
criteria.

5. Click Apply to apply your selections or click Reset to return to the default
values.

Other pages have similar fields in which you specify console preferences. While
Preferences, Filter and Scope control how much data is shown in the console, the
Preferences taskbar option controls general behavior of the console. Click

14 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Preferences on the console taskbar to view the Preferences page. Additionally, you
can select whether information on console pages and fields within console pages is
shown using the Hide Field and Page Descriptions toggle. Icons on the
right-hand side of the taskbar provide the toggle.

Preferences settings
Use the Preferences page to specify whether you want the administrative console
workspace to refresh automatically after changes, the default scope to be the
administrative console node, confirmation dialogs to display, and the workspace
banner and descriptions to display.

To view this administrative console page, click Preferences on the console taskbar.

Enable WorkSpace Auto-Refresh
Specifies whether you want the administrative console workspace to redraw
automatically after the administrative configuration changes.

The default is for the workspace to redraw automatically. If you direct the console
to create a new instance of, for example, an application server, the Application
Servers page refreshes automatically and shows the new server’s name in the
collection of servers.

Specifying that the workspace not redraw automatically means that you must
re-access a page by clicking on the console navigation tree or links on collection
pages to see changes made to the administrative configuration.

 Data type Boolean
Default true

Do not confirm WorkSpace Discards
Specifies whether confirmation dialogs display after a request to delete an object.
The default is for confirmation dialogs not to display.

 Data type Boolean
Default false

Use Default Scope
Specifies whether the default scope is the administrative console node. The default
is for the scope not to be the console node.

 Data type Boolean
Default false

Hide/Show Banner
Specifies whether the WebSphere Application Server banner along the top of
administrative console displays. The default is for the banner to display.

 Data type Boolean
Default true

Chapter 2. Using the administrative console 15

Hide/Show Descriptions
Specifies whether information on console pages and fields within the pages is
shown. The Hide/Show Field and Page Descriptions icons on the right of the
taskbar provide the same function. The default is to show page and field
descriptions.

 Data type Boolean
Default true

Administrative console preference settings
Use the Preference settings to specify how you would like information to be
displayed on an administrative console page.

Maximum rows
Maximum number of rows to display per page when the collection is large.

Filter history
Whether to use the same filter criteria to display this page the next time
you visit it.

 Select the Retain filter criteria check box to retain the last filter criteria
entered. When you return to the page later, retained filter criteria control
the application collection that appears in the table.

Administrative console filter settings
Use the Filter settings to specify how to filter entries shown in a collection view.

Select the column to filter, then enter the filter criteria.

Column to filter
Use the drop-down list to select the column to filter. When you apply the
filter, the collection table is modified accordingly.

 For example, select Application Servers if you plan to enter criteria by
which to filter application server names.

Filter criteria
In the field beside the drop-down list, enter a string that must be found in
the name of a collection entry to qualify the entry to appear in the
collection table. The string can contain %, *, or ? symbols as wildcard
characters. For example, enter *App* to find any application server whose
name contains the string App.

 Prefix each of the characters () ̂ * % { } \ + $ with a \ so that the
regular expression engine performing the search correctly matches the
supplied search criteria. For example, to search for all JDBC providers
containing (XA) in the provider name, specify the following:
 *\(XA\)

Administrative console scope settings
Use Scope settings to filter the contents of an administrative console collection
table to a particular cell, node, or server, for example. Changing the value for
Scope allows you to see other variables that apply to an object and might change
the contents of the collection table.

16 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Click Browse next to a field to see choices for limiting the scope of the field. If a
field is read-only, you cannot change the scope. For example, if only one server
exists, you cannot switch the scope to a different server.

Cell Limits the visibility to all servers on the named cell.

Node Limits the visibility to all servers on the named node.

Server Limits the visibility to the named server.

 The server scope has precedence over the node and cell scopes, and the node scope
has precedence over the cell scope. Note that objects are created at only one scope,
though they might be visible at more than one scope.

Accessing help
The WebSphere Application Server product provides information on using the
product and information about specific pages and fields.

Steps for this task
1. To view information on console pages and fields within console pages, enable

the Hide Field and Page Descriptions toggle. Icons on the right-hand side of
the console taskbar provide the toggle. Click on the i icon beside a field or
page description to view help (reference) information.

2. Access product information.
v Click Home on the admininstrative console taskbar and select a link to

information on using the WebSphere Application Server product. The link to
the InfoCenter provides concept, task and reference information.

v Click Help on the administrative console taskbar and select from the list of
reference topics. This same information can be accessed by clicking on the i
icon beside a field or page description.

Administrative console: Resources for learning
Use the following links to find relevant supplemental information about the IBM
WebSphere Application Server administrative console. The information resides on
IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of
the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v Programming instructions and examples
v Administration

Programming instructions and examples

v

WebSphere Application Server education
(http://www.ibm.com/software/webservers/learn/)

Administration

Chapter 2. Using the administrative console 17

http://www.ibm.com/software/webservers/learn/

v

Listing of all IBM WebSphere Application Server Redbooks
(http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere)

v

System Administration for WebSphere Application Server V5 — Part 1:
Overview of V5 Administration
 (split for publication)
(http://www7b.software.ibm.com/wsdd/techjournal
/0301_williamson/williamson.html)

18 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www7b.software.ibm.com/wsdd/techjournal/0301_williamson/williamson.html
http://www7b.software.ibm.com/wsdd/techjournal/0301_williamson/williamson.html

Chapter 3. Deploying and managing using scripting

Scripting is a non-graphical alternative that you can use to configure and manage
the WebSphere Application Server. The WebSphere Application Server wsadmin
tool provides the ability to execute scripts. The wsadmin tool supports a full range
of product administrative activities.

To deploy and manage applications, you can also use the administrative console
which runs in the Deployment Manager for the cell. For more information about
using the administrative console, see (Deploying and managing with the GUI).
There are also several command line tools that can be used to start, stop, and
monitor WebSphere Application Server processes and nodes. These tools only work
on local servers and nodes. They cannot operate on a remote server or node. See
(Managing using command line tools) for more information.

Steps for this task
 1. Launch a scripting client.
 2. Install applications into runtime.
 3. Edit applications.
 4. Display installed applications.
 5. Uninstall applications.
 6. Identify attributes and operations for running objects.
 7. Modify and query running object attributes.
 8. Invoke operations on running objects.
 9. Modify the configurations.
10. Modify nested attributes.

Migrating from wscp V4.0 to wsadmin V5.0
The purpose of this section is to provide guidance for migrating from WebSphere
Application Server V4.0 wscp scripts to wsadmin in V5.0.

The wscp tool was a part of the WebSphere Application Server V4.0 administration
repository support. The repository no longer exists and the tools that manipulate it
are no longer needed. You can use the V5.0 scripting client program, wsadmin, to
do the same kinds of things wscp did, and more. You can use the JACL scripting
language for scripts, but the elements specific to wsadmin are different from those
available in wscp. This article shows how to create WebSphere Application Server
V5.0 scripts that perform actions similar to those performed by V4.0 wscp.
Automatic conversion of scripts between the two releases is difficult.

The wsadmin scripting client uses the Bean Scripting Framework (BSF), and is
based on Java Management Extensions (JMX).

In V4.0, wscp commands are used for both configuration queries or updates, and
operational commands. In V5.0, a distinction is made between configurational and
operational commands.

Steps for this task
1. Identify the wscp commands used in your script.

© Copyright IBM Corp. 2002 19

2. Determine if each command is used for configuration or operation.
v Configuration commands include the following: create, list, modify, remove,

show, showall, install, uninstall, all SecurityConfig commands, all
SecurityRoleAssignment commands, clone, and removeClone.

v Operation commands include the following: start, stop, show (if for a
run-time attribute), testConnection, all DrAdmin commands, and
regenPluginCfg.

v Other commands exist to provide help for configuration commands. These
commands include the following: attributes, containment, and help.

3. Find the corresponding configuration wsadmin V5.0 object type for each
configuration commands.
 Use the AdminConfig create, list, modify, remove, show, and showAttribute
commands to perform the same type of operations in V5.0 that you performed
in V4.0. Use the following table to determine the corresponding types:

 V4.0 wscp command V5.0 wsadmin configuration type
ApplicationServer Server
Context Not applicable
DataSource WAS40DataSource, DataSource
Domain Not applicable
EnterpriseApp ApplicationDeployment
GenericServer Server
J2CConnectionFactory J2CConnectionFactory
J2CResourceAdapter J2CResourceAdapter
JDBCDriver JDBCProvider
JMSConnectionFactory JMSConnectionFactory
JMSDestination JMSDestination
JMSProvider JMSProvider
MailSession MailSession
Module ModuleDeployment
Node Node
ServerGroup ServerCluster
URL URL
URLProvider URLProvider
VirtualHost VirtualHost

4. Determine the V5.0 attribute names by using the online help commands of the
AdminConfig object. For example: attributes, defaults, parents, required, or
types.

5. Convert application installation commands.
 For application installation, use the AdminApp object installInteractive
command to complete a successful installation. Then locate message WASX7278I
in the wsadmin.traceout log file and use the data in the message to construct
an installation command for your source.

6. Convert operational commands. Use the following table to determine how to
deal with operational commands in V5.0 wscp:

 wscp 4.0 wsadmin 5.0 wsadmin 5.0 wsadmin 5.0
action Object and command Mbean, if any Operation, if any
server start AdminControl

startServer
á á

server stop AdminControl
stopServer

á á

servergroup start AdminControl invoke Cluster start

20 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

servergroup stop AdminControl invoke Cluster stop
application start AdminControl invoke ApplicationManager startApplication
application stop AdminControl invoke ApplicationManager stopApplication
node stop AdminControl invoke <nodeagent> stopNode
check run-time
attribute

AdminControl
getAttribute

<mbean> <attribute>

check run-time
attributes

AdminControl
getAttributes

<mbean> <list of attributes>

regenPluginCfg AdminControl invoke PluginCfgGenerator generate
testConnection AdminControl

testConnection
á á

enable security securityon command
in securityProcs.jacl

á á

disable security securityoff command
in securityProcs.jacl

á á

7. Save configuration changes.
 In V5.0, configuration changes are made to a temporary workspace. These
changes are not committed to the WebSphere Application Server configuration
until you invoke the save command on the AdminConfig object. If your script
makes configuration changes, for example, creates, removes, or changes objects,
or installs or uninstalls applications, invoke the following command to commit
the change:
$AdminConfig save

Example: Migrating - Creating an application server
Creating an application server involves a configuration command. To do this task
in wscp V4.0 and wsadmin V5.0, you must know the hierarchical name of the
application server. The following examples demonstrate how to create an
application server in the WebSphere Application Server V4.0 and V5.0:
v wscp V4.0

 ApplicationServer create /Node:
mynode/
ApplicationServer:
myserv/
-attribute {{Stdout
myfile.out}}

v wsadmin V5.0
 Server objects are contained within nodes.
set node [$AdminConfig
getid /Node:
mynode/]
$AdminConfig create Server
$node {{name
myserv}
{outputStreamRedirect
{{fileName
myfile.out}}}}
$AdminConfig save

where Stdout is the name of the V4.0 ApplicationServer attribute that is replaced
by the fileName attribute, embedded within the outputStreamRedirect attribute
of the server.

Chapter 3. Deploying and managing using scripting 21

Example: Migrating - Starting an application server
The following examples demonstrate how to start an application server with
WebSphere Application Server V4.0 and V5.0:
v wscp V4.0

 ApplicationServer start
/Node:mynode
/ApplicationServer:
myserv/

v wsadmin V5.0
 If you are connected to a server in a base installation, you cannot request to start
another one. You can only start an application server if you have a Network
Deployment installation. In a Network Deployment installation, use the
following:
$AdminControl startServer
myserv
 mynode
 600

where 600 represents the wait time in seconds. The server name and node name
are required.

Example: Migrating - Starting a server group
The following examples demonstrate how to start a server group in the WebSphere
Application Server V4.0 and V5.0:
v wscp V4.0

 ServerGroup start
/ServerGroup:cluster1/

v wsadmin V5.0
 set clusterMgr
[$AdminControl
completeObjectName
WebSphere:type=ClusterMgr,*]
$AdminControl invoke
$clusterMgr
"retrieveClusters" ""
set cl1 [$AdminControl
completeObjectName
type=Cluster,name=cluster1,*]
$AdminControl
invoke $cl1 start

Example: Migrating - Installing an application
The following examples demonstrate how to install an application in the
WebSphere Application Server V4.0 and V5.0:
v wscp V4.0

– Construct the -modvirtualhosts option:
 set modhost1
[list mtcomps.war
default_host]
set modhosts
[list $modhost1]

– Construct the -resourcereferences option:
 set resref1 [list
mtcomps.war::mail
/MailSession9 mail
/DefaultMailSession]

22 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

set resref2 [list
deplmtest.jar::
MailEJBObject::mail/
MailSession9 mail/
DefaultMailSession]
set resrefs [list
$resref1 $resref2]

– Install the application:
 EnterpriseApp install
/Node:mynode/ c:/WebSphere
/AppServer/installableApps/
jmsample.ear
-appname MailSampleApp
-defappserver /
Node:$mynode/ApplicationServer
:myserv/ -modvirtualhosts
$modhosts -resourcereferences
$resrefs

v wsadmin V5.0
 The command sequence given below accomplishes approximately the same
thing as the 4.0 commands above, but simpler ways exist.
– Construct the -MapWebModToVH option:

 set modtovh1 [list "JavaMail
Sample WebApp" mtcomps.war,
WEB-INF/web.xml default_host]
set modtovh [list $modtovh1]

– Construct the -MapResRefToEJB option:
 set resreftoejb1
[list deplmtest.jar
MailEJBObject deplmtest.
jar,META-INF/ejb-jar.xml
 mail/MailSession9
javax.mail.Session mail/
DefaultMailSession]
set resreftoejb2 [list
"JavaMail Sample WebApp" ""
mtcomps.war,WEB-INF/web.xml
mail/MailSession9
javax.mail.Session
mail/bozo]
set resreftoejb
[list $resreftoejb1
$resreftoejb2]

– Construct the attribute string:
 set attrs [list -MapWebModToVH
 $modtovh -MapResRefToEJB
 $resreftoejb -node mynode
 -server myserv -appname
MailSampleApp]

– Install the application:
 $AdminApp install
c:/WebSphere/AppServer/
installableApps/jmsample.ear
$attrs

– Save your changes:
 $AdminConfig save

You can use the AdminApp taskInfo command to obtain information about each
task option. You can use the AdminApp interactiveInstall command to step
through all the installation tasks, one at a time. If you use the installInteractive

Chapter 3. Deploying and managing using scripting 23

command to successfully install an application, an option string logs in the
wsadmin.traceout file under the message ID WASX7278I. You can copy and paste
this option string into wsadmin scripts.

Example: Migrating - Installing a JDBC driver
The following examples demonstrate how to install a JDBC driver in the
WebSphere Application Server V4.0 and V5.0:
v wscp V4.0

 In the WebSphere Application Server V4.0, you must create the JDBC driver and
then install it.
JDBCDriver create
/JDBCDriver:mydriver/
 -attribute {{ImplClass
COM.ibm.db2.jdbc.
DB2ConnectionPoolDataSource}}
JDBCDriver install
/JDBCDriver:mydriver/
-node /Node:mynode/ -jarFile
 c:/SQLLIB/java/db2java.zip

v wsadmin V5.0
 In the WebSphere Application Server V5.0, there is no separate installation step.
The JAR file name in the V4.0 installation step is replaced by the classpath
attribute on the V5.0 JDBC provider object. In V5.0, resources can exist at the
server, node, or cell level of the configuration.
set node [$AdminConfig
getid /Node:mynode/]
$AdminConfig create
JDBCProvider $node
{{classpath c:/SQLLIB/
java/db2java.zip}
{implementationClassName
COM.ibm.db2.jdbc.
DB2ConnectionPoolDataSource}
{name mydriver}}
$AdminConfig save

<pre/> Example: Migrating - Creating a server group In the WebSphere
Application Server V5.0, ServerClusters have replaced V4.0 ServerGroups. The
members of a cluster are servers with identical application configurations. The
following examples demonstrate how to create a server group in the WebSphere
Application Server V4.0 and V5.0. They assume that an application server
named as1 already exists and is used as the first clone in a server group: wscp
V4.0 ServerGroup create /ServerGroup:sg1/ -baseInstance
/Node:mynode/ApplicationServer:as1/ -serverGroupAttrs {{EJBServerAttributes
{{SelectionPolicy roundrobin}}}}

v wsadmin V5.0
 set serverid
[$AdminConfig getid
/Node:mynode
/Server:as1/]
$AdminConfig convertToCluster
$serverid
 MyCluster

24 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Example: Migrating - Stopping a node
The WebSphere Application Server V4.0 wscp requires the name of the node. In
V4.0, if you stop a node, you bring down the administrative server on that node.
To take the equivalent action in V5.0, stop the node agent.

Note: If you bring down the server to which the wsadmin process is connected,
you are not able to issue any further commands against that server.
v wscp V4.0

 Node stop
/Node:
mynode/

v wsadmin V5.0
 set na [$AdminControl
queryNames type=NodeAgent,
node=mynode,*]
$AdminControl invoke $na stopNode

Stopping the node agent on a remote machine process is an asynchronous action
where the stop is initiated, and then control returns to the command line.

Example: Migrating - Stopping an application server
This is an operational command. WebSphere Application Server V4.0 wscp requires
that you know the hierarchical name of the application server in question (the
node name and server name). You need the same information in V5.0.

Note: You are stopping a server object, not an application server. Servers represent
logical processes on many platforms, for instance Windows or AIX, and are the
entity that is stopped and started. Application servers are contained within servers
v wscp V4.0

 ApplicationServer stop
{/Node:mynode
/ApplicationServer:
Default Server/}

v wsadmin V5.0
 $AdminControl stopServer
servername
[nodename
immediateFlag]

For a network deployment installation:
 $AdminControl stopServer
servername
 nodename
[immediateFlag]

Example: Migrating - Listing the running server groups
The following examples demonstrate how to list running server groups in the
WebSphere Application Server V4.0 and V5.0:
v wscp V4.0

 set groups [ServerGroups list]
 foreach sgroup $groups {
 set thestate [ServerGroup
 show $sgroup -attribute
 {Name CurrentState}
 puts $thestate
}

Chapter 3. Deploying and managing using scripting 25

v wsadmin V5.0
 set clusters [$AdminControl
 queryNames type=Cluster,*]
foreach scluster $clusters {
 set thestate [$AdminControl
getAttributes $scluster
{clusterName state}]
 puts $scluster $thestate
}

Example: Migrating - Pinging running servers for the current
state

The purpose of this task is to determine if a server is running. The following
examples demonstrate how to ping running servers in WebSphere Application
Server V4.0 and V5.0:
v wscp V4.0

 set servers
[ApplicationServer list]
foreach server $servers {
 set result
 ApplicationServer show
 $server -attribute
 {CurrentState}
 puts "state for
 server $server:
 $result"
}

v wsadmin V5.0
 In the WebSphere Application Server V5.0 configuration and control commands
are separate.
set servers [$AdminConfig
list Server]
foreach server $servers {
 set objName [$AdminConfig
 getObjectName $server]
 if {[llength $objName]
 == 0} {
 puts "server $server
 is not running"
 } else {
 set result
 [$AdminControl getAttribute
 $objName state]
 puts "state for server
 $server: $result"
 }
}

The first line of this example obtains a list of all servers defined in the
configuration. You can interrogate this data to determine the running servers. If
the server is not running, nothing is returned from the getObjectName command
on the AdminConfig object. If the server is running, ask for its state attribute. If
the Mbean is there, the server is running and the state is STARTED. It is possible,
however, for the state to be something other than STARTED, for example,
STOPPING.

Example: Migrating - Listing configured server groups
The following examples demonstrate how to list configured server groups in the
WebSphere Application Server V4.0 and V5.0:

26 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

v wscp V4.0
 ServerGroup list

You can put the result of this command into a Jacl list and invoke other
operations, such as show, or modify, on the members of the list.

v wsadmin V5.0
 $AdminConfig list
ServerCluster

You can put the result of this command into a Jacl list and invoke other
configuration commands, such as show, or modify, on the members of the list. To
invoke operational commands, such as stop, perform the following:
1. Obtain the configuration ID of the cluster:

 set myclust [$AdminConfig
 getid /ServerCluster:
mycluster/]

2. Use the returned name to obtain the ObjectName of the running cluster
MBean:
 set runningCluster
[$AdminConfig getObjectName
$myclust]

3. The runningCluster has the object name for the running instance of the
ServerCluster, or is empty if not running. You can use this object name for
control purposes, for example:
 $AdminControl invoke
$runningCluster stop

Example: Migrating - Regenerating the node plug-in
configuration

The following examples demonstrate how to regenerating the node plug-in
configuration in the WebSphere Application Server V4.0 and V5.0:
v wscp V4.0

 Node regenPluginCfg
/Node:mynode/

v wsadmin V5.0
 set generator [$AdminControl
completeObjectName
type=PluginCfgGenerator,
node=mynode,*]
$AdminControl invoke
$generator generate
"c:/WebSphere/DeploymentManager
c:/WebSphere/DeloymentManager/
config mycell mynode null
plugin-cfg.xml"

Example: Migrating - Testing the DataSource object
connection

The following examples demonstrate how to test the connection to a DataSource
object in the WebSphere Application Server V4.0 and V5.0:
v wscp V4.0

Chapter 3. Deploying and managing using scripting 27

set myds /JDBCDriver:
mydriver/DataSource:myds/
DataSource testConnection
$myds

v wsadmin V5.0
 The testConnection command is part of the AdminControl object because it is
an operational command. This particular type of operational command takes a
configuration ID as an argument, so you invoke the getid command on the
AdminConfig object:
set myds [$AdminConfig
getid /JDBCProvider:
mydriver/
DataSource:
mydatasrc/]
$AdminControl
testConnection $myds

In many cases, a user ID and password, or other properties are required to
complete the test connection. If this is the case, you receive the following
message, which describes the missing properties:
WASX7216E: 2 attributes
required for testConnection
 are missing: "[user,
password]" To complete
this operation, please
supply the missing attributes
 as an option, following
this example: {{user user_val}
 {password password_val}}

For this example, issue the following commands:
set myds [$AdminConfig getid
 /JDBCProvider:
mydriver/
DataSource:
mydatasrc/]
$AdminControl testConnection
$myds {{user
myuser}
{password
secret}}

Example: Migrating - Cloning a server group
The following examples demonstrate how to clone a server group in WebSphere
Application Server V4.0 and V5.0:
v wscp V4.0

 ServerGroup clone
/ServerGroup:
sg1/
-cloneAttrs {{Name
newServer}}
-node /Node:
mynode/

v wsadmin V5.0
 In the following example, the first command obtains the cluster ID, the second
command obtains the node ID, and the last command creates a new member of
an existing cluster:

28 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

set cluster1 [$AdminConfig
getid /ServerCluster:
mycluster/]
set n1 [$AdminConfig
getid /Node:
mynode/]
$AdminConfig createClusterMember
 $cluster1 $n1
{{memberName
newServer}}
$AdminConfig save

Example: Migrating - Enabling security
The following examples demonstrate how to enable security for WebSphere
Application Server V4.0 and V5.0:
v wscp V4.0

 SecurityConfig
setAuthenticationMechanism
LOCALOS -userid
{me secret}
SecurityConfig
enableSecurity

v wsadmin V5.0
 securityon
[user [password]]

This command turns on local security. The securityon function checks the
validity of the user and password combination, and fails the function if the
combination is invalid.

 Note: This action assumes that global security is fully configured before issuing
this command and that you are just switching the enabled flag on and off. If
global security is not yet fully configured, the command fails.

Example: Migrating - Disabling security
The following examples demonstrate how to disable security for WebSphere
Application Server V4.0 and V5.0:
v wscp V4.0

 SecurityConfig
disableSecurity

v wsadmin V5.0
 securityoff

This command turns off local security.

Example: Migrating - Modifying the virtual host
The following examples demonstrate how to modify the virutal host in WebSphere
Application Server V4.0 and V5.0:
v wscp V4.0

 VirtualHost modify
/VirtualHost:
default_host/
-attribute {{Name
default_host}
{AliasList
{*:80 *:9080 *:9081}}

Chapter 3. Deploying and managing using scripting 29

v wsadmin V5.0
 set def_host [$AdminConfig
getid /VirtualHost:
default_host/]
$AdminConfig modify
$def_host {{aliases {{{port 80}
{hostname *}} {{port 9080}
{hostname *}} {{port 9081}
{hostname *}}}}}
$AdminConfig save

Example: Migrating - Modifying and restarting an application
server

In this task, you make a configuration change to an existing application server,
then stop and restart the server to pick up the change. In WebSphere Application
Server V5.0, you can only change the attributes in a running server that the server
supports explicitly, or by objects it contains. You can determine these attributes
online by using the Help attributes scripting command, or by referring to the
Mbean documentation. When you use this type of update, you change only the
current running state of the server. Your changes are not permanent. The updates
that you make to the server configuration do not take effect until you stop and
restart the server.

The enum attribute is changed. WebSphere Application Server V4.0 requires that
you find the corresponding integer to enum value by making changes with the
GUI, and examining the output. In V5.0, the string names of the enum literals are
available using online help, using the AdminConfig attributes command, and
displaying or updating an attribute.

The following examples demonstrate how to modify and restart an application
server in WebSphere Application Server V4.0 and V5.0:
v wscp V4.0

1. Stop the application server using the following command:
 ApplicationServer stop
/Node:mynode
/ApplicationServer:
myserver/

2. Modify the application server, for example:
 ApplicationServer modify
/Node:mynode/
ApplicationServer:
myserver/
-attribute {{ModuleVisibility 1}}

3. Restart the application server using the following command:
 ApplicationServer start
/Node:mynode
/ApplicationServer:
myserver/

v wsadmin V5.0
1. Stop the application server using the following command:

 $AdminControl stopServer
myserver
 mynode

2. Modify the application server, for example:

30 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

set s1 [$AdminConfig
getid /Node:
mynode
/Server:
myserver/]
set errStream
[$AdminConfig showAttribute
 $s1 errorStreamRedirect}
$AdminConfig modify $s1
{{rolloverPeriod 12}}
$AdminConfig save

3. Restart the application server using the following command:
 $AdminControl startServer
myserver
 mynode

Example: Migrating - Stopping a server group
Stopping a server group involves an operational command. The following
examples demonstrate how to stop a server group in WebSphere Application
Server V4.0 and V5.0:
v wscp V4.0

 ServerGroup stop
/ServerGroup:cluster1/

v wsadmin V5.0
 set clusterMgr [$AdminControl
 completeObjectName
WebSphere:type=ClusterMgr,*]
$AdminControl invoke
$clusterMgr "retrieveClusters" ""
set cl1 [$AdminControl
completeObjectName
type=Cluster,name=cluster1,*]
$AdminControl invoke $cl1 stop

Example: Migrating - Removing an application server
Removing an application server involves a configuration command:
v wscp V4.0

 ApplicationServer remove
/Node:mynode
/ApplicationServer:
myserv/

v wsadmin V5.0
 set serv [$AdminConfig
getid /Node:
mynode
/Server:myserv/]
$AdminConfig remove $serv
$AdminConfig save

Example: Migrating - Modifying the embedded transports in an
application server

The following examples demonstrate how to modify the embedded transports in
an application server in WebSphere Application Server V4.0 and V5.0:
v wscp V4.0

 ApplicationServer modify
/Node:mynode
/ApplicationServer:

Chapter 3. Deploying and managing using scripting 31

myserv/
-attribute
{{WebContainerConfig
{Transports {{{MaxKeepAlive 25}
{MaxReqKeepAlive 100}
{KeepAliveTimeout
5} {ConnectionTimeout 5}
{Host *} {Port 9080}
{BacklogConnections 511}
{HttpProperties {}}
{SSLEnabled true}
{SSLConfig {}}}}}}}

v wsadmin V5.0
 set server [$AdminConfig
getid /Node:
mynode/
Server:myserv/]
set web_container
[$AdminConfig list
WebContainer $server]
$AdminConfig modify
$web_container
{{transports:HTTPTransport
{{{sslEnabled true}
{sslConfig DefaultSSLSettings}
{address {{host *}
{port 9080}}}}}}}
$AdminConfig save

Launching scripting clients
You can run scripting commands in several different ways. The command for
invoking a scripting process is located in the WebSphere/AppServer/bin directory or
the WebSphere/DeploymentManager/bin directory. To invoke a scripting process, use
the wsadmin.bat file for a Windows system, and the wsadmin.sh file for a UNIX
system.

To specify the method for executing scripts, perform one of the following wsadmin
tool options:
v Run scripting commands interactively.

 Execute wsadmin with an option other than -f or -c.
 An interactive shell appears with a wsadmin prompt. From the wsadmin
prompt, enter any JACL command. You can also invoke commands on the
AdminControl, AdminApp, AdminConfig, or Help wsadmin objects. The
following example is a command invocation and sample output on Windows
systems:
wsadmin.bat

WASX7209I: Connected to
process server1 on node
Acmyhost using SOAP connector;
The type of process is:
UnManagedProcess
WASX7029I: For help, enter:
"$Help help"
wsadmin>$AdminApp list
adminconsole
DefaultApplication
ivtApp
wsadmin>exit

32 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

To leave an interactive scripting session, use the quit or exit commands. These
commands do not take any arguments.

v Run scripting commands as individual commands.
 Execute wsadmin with the -c option. For example, on Windows systems:
wsadmin -c "$AdminApp list"

For example, on UNIX systems:
wsadmin.sh -c "\$AdminApp list"

or
wsadmin.sh -c ’$AdminApp list’

Example output:
WASX7209I: Connected to
process "server1" on node
myhost using SOAP connector;
The type of process is:
UnManagedProcess
adminconsole
DefaultApplication
ivtApp

v Run scripting commands in a script.
 Execute wsadmin with the -f option, and place the commands you want to
execute into the file. For example:
wsadmin -f al.jacl

where the al.jacl file contains the following commands:
set apps [$AdminApp list]
puts $apps

Example output:
WASX7209I: Connected to
process "server1" on
node myhost using SOAP
connector; The type of
process is: UnManagedProcess
 adminconsole
 DefaultApplication
 ivtApp

v Run scripting commands in a profile.
 A profile is a script that runs before the main script, or before entering interactive
mode. You can use profiles to set up a scripting environment customized for the
user or the installation.
 To run scripting commands in a profile, execute the wsadmin tool with the
-profile option, and place the commands you want to execute into the profile.
For example:
wsadmin.bat
-profile alprof.jacl

where the alprof.jacl file contains the following commands:
set apps [$AdminApp list]
puts "Applications
currently installed:\n$apps"

Example output:

Chapter 3. Deploying and managing using scripting 33

WASX7209I: Connected to
process "server1" on node
myhost using SOAP connector;
The type of process is:
UnManagedProcess
 Applications
currently installed:
 adminconsole
 DefaultApplication
 ivtApp
 WASX7029I: For help,
enter: "$Help help"
 wsadmin>

What to do next

To customize the script environment, specify one or more profiles to run.

Wsadmin tool
The WebSphere Application Server wsadmin tool provides the ability to execute
scripts. You can use the wsadmin tool to manage a WebSphere Application Server
V5.0 installation. This tool uses the Bean Scripting Framework (BSF), which
supports a variety of scripting languages to configure and control your WebSphere
Application Server installation. The WebSphere Application Server only supports
the JACL scripting language only.

The wsadmin launcher makes Java objects available through language specific
interfaces. Scripts use these objects for application management, configuration,
operational control, and for communication with MBeans running in WebSphere
server processes.

Syntax

The command line invocation syntax for the wsadmin scripting client follows:
wsadmin [-h(help)]

[-?]

[-c <commands>]

[-p
<properties_file_name>]

[-profile
<profile_script_name>]

[-f <script_file_name>]

[-javaoption java_option]

[-lang language]

[-wsadmin_classpath classpath]

[-conntype SOAP
[-host
host_name]
[-port
port_number]
[-user
userid]
[password

34 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

password] |

 RMI [-host
 host_name]
[-port port_number]
[-user userid]
[-password password] |

 NONE
]

[script parameters]

Where script parameters represent any arguments other than the ones listed above.
The argc variable contains their number, and argv variable contains their contents

Options

-c command
Designates a single command to execute.

 Multiple -c options can exist on the command line. They run in the order
that you supply them.

-f scriptname
Designates a script to execute.

 Only one -f option can exist on the command line.

-javaoption

 Specifies a valid Java standard or non-standard option.

 Multiple -javaoption options can exist on the command line.

-lang Specifies the language of the script file, command, or interactive shell. In
WebSphere Application Server V5.0, Jacl is the only supported scripting
language.

 This argument is required if not determined from the script file name. It
overrides language determinations that are based on a script file name, or
the com.ibm.ws.scripting.defaultLang property. There is no default value
for the -lang argument. If the command line or the property does not
supply the script language, and the wsadmin tool cannot determine it, an
error message generates.

-p Specifies a properties file.

 The file listed after -p, represents a Java properties file that the scripting
process reads. Three levels of default properties files load before the
properties file you specify on the command line. The first level is the
installation default, wsadmin.properties, located in the WebSphere
Application Server properties directory. The second level is the user
default, wsadmin.properties, located in your home directory. The third
level is the properties file pointed to by the environment variable
WSADMIN_PROPERTIES.

 Multiple -p options can exist on the command line. They invoke in the
order that you supply them.

-profile
Specifies a profile script.

Chapter 3. Deploying and managing using scripting 35

The profile script runs before other commands, or scripts. If you specify -c,
the profile executes before it invokes this command. If you specify -f, the
profile executes before it runs the script. In interactive mode, you can use
the profile to perform any standard initialization that you want. You can
specify multiple -profile options on the command line, and they invoke
in the order that you supply them.

-? Provides syntax help.

-help Provides syntax help.

-conntype
Specifies the type of connection to use.

 This argument consists of a string that determines the type, for example,
SOAP, and the options that are specific to that connection type. Possible
types include: SOAP, RMI, and NONE.

 The options for -conntype include: host, port, user, and password.

 Use the -conntype NONE option to run in local mode. The result is that the
scripting client is not connected to a running server.

-wsadmin_classpath
Use this option to make additional classes available to your scripting
process.

 Follow this option with a classpath string. For example:
c:/MyDir/Myjar.jar;d:
/yourdir/yourdir.jar.

The classpath is then added to the classloader for the scripting process.

 You can also specify this option in a properties file that is used by the
wsadmin tool. The property is com.ibm.ws.scripting.classpath. If you
specify -wsadmin_classpath on the command line, the value of this
property overrides any value specified in a properties file. The classpath
property and the command line options are not concatenated.

 Examples

In the following syntax examples, mymachine is the name of the host in the
wsadmin.properties file, specified by com.ibm.ws.scripting.port:

SOAP connection to the local host
Use the options defined in the wsadmin.properties file.

SOAP connection to the mymachine host
wsadmin -f test1.jacl -profile setup.jacl -conntype SOAP -host
<i>mymachine</i>

Initial and maximum Java heap size

 wsadmin -javaoption -Xms128m -javaoption -Xmx256m -f test.jacl

RMI connection with security
wsadmin -connector RMI -userid <i>userid</i> -password
<i>password</i>

Local mode of operation to perform a single command
wsadmin -conntype NONE -c ″$AdminApp uninstall app″

36 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Jacl
Jacl is an alternate implementation of TCL, and is written entirely in Java code.

Jacl basic commandThe basic syntax for a Jacl command is:
Command arg1 arg2 arg3 ...

The command is either the name of a built-in command or a Jacl procedure. For
example:
puts stdout {Hello, world!}
 => Hello, World!

In this example, the command is puts, which takes two arguments: an I/O stream
identifier and a string. puts writes the string to the I/O stream along with a
trailing new line character. Arguments are interpreted by the command. In the
example, stdout is used to identify the standard output stream. The use of stdout
as a name is a convention employed by puts and the other I/O commands. Use
stderr to identify the standard error output, and use stdin to identify the standard
input.

Note: When writing Jacl scripts for windows systems, enclose directory paths that
include spaces with quotes. For example:
"C:\Program Files\WebSphere
\AppServer\InstallableApps
\somesample.ear"

On windows systems, special care must also be taken with path descriptions
because Jacl uses the backslach character as an escape character. To fix this, either
replace each backslash with a forward slash, or use double backslashes in
Windows path statements. For example: C:/ or C://

For more information about Jacl, see the Scripting: Resources for Learning article.

Scripting: Resources for learning
Use the following links to find relevant supplemental information about the Jacl
scripting language. The information resides on IBM and non-IBM Internet sites,
whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

Programming instructions and examples

v

Tcl for WebSphere Application Server administrators
(http://www7b.software.ibm.com/wsdd/techjournal/0203_laird/laird.html)

v

Jacl: A Tcl implementation in Java
(http://www.usenix.org/publications/library/proceedings/tcl97/full_papers/lam/lam.pdf)

Chapter 3. Deploying and managing using scripting 37

Scripting objects
The wsadmin tool operates on configurations and running objects through the
following set of management objects: AdminConfig, AdminControl, AdminApp,
and Help. Each of these objects has commands that you can use to perform
administrative tasks. The wsadmin tool requires that you specify a scripting object,
a command, and command arguments.

WebSphere Application Server System Management separates administrative
functions into two categories: functions that deal with the configuration of
WebSphere Application Server installations, and functions that deal with the
currently running objects in WebSphere Application Server installations.

Scripts deal with both categories of objects. For example, an application server is
divided into two distinct entities. One entity represents the configuration of the
server which resides persistently in a repository on permanent storage. You can
create, query, change, or remove this configuration without starting an application
server process. The AdminConfig and AdminApp objects handle configuration
functionality. You can invoke configuration functions with or without being
connected to a server.

The second entity represents the running instance of an application server by a Java
Management Extensions (JMX) MBean. This instance can have attributes that you can
interrogate and change, and operations that you can invoke. These operational
actions taken against a running application server do not have an effect on the
persistent configuration of the server. The attributes that support manipulation
from an MBean differ from the attributes the corresponding configuration
supports. The configuration can include many attributes that you cannot query or
set from the live running object. The WebSphere Application Server scripting
support provides functions to locate configuration objects, and live running objects.

Note: Objects in the configuration do not always represent objects that are
currently running. The AdminControl object manages running objects.

You can use the Help object to obtain information about the AdminConfig,
AdminApp and AdminControl objects, and to obtain interface information about
running MBeans.

Help object for scripted administration
The Help object provides general help and dynamic online information about the
currently running MBeans.

You can use the Help object as an aid in writing and running scripts with the
AdminControl object. Some methods include: attributes, operations, AdminConfig,
and AdminControl.

The following public methods are available for the Help object:

AdminApp
Provides a summary of all of the available methods for the AdminApp
object.

 Parameters none
Return type java.lang.String

 Example output:

38 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

WASX7095I: The AdminApp
object allows
application objects to
be manipulated --
this includes installing,
uninstalling, editing,
and listing.
The following commands
are supported by AdminApp:
edit Edit the properties
of an application
editInteractive Edit
the properties of an
application interactively
export Export application
to a file
exportDDL Extract DDL
from application
to a directory
help Show help information
install Installs an
application, given a
file name and an option string.
installInteractive
Installs an application
in interactive mode, given a
file name and an
option string.
list List all
installed applications
listModules List the modules
in a specified application
options Shows the options
available, either for
a given file, or in
general.
taskInfo Shows detailed
information pertaining
to a given install task
for a given file
uninstall Uninstalls an
application, given
an application name and
an option string

AdminConfig
Provides a summary of all of the available methods for the AdminConfig
object.

 Parameters none
Return type java.lang.String

 Example output:
WASX7053I: The following
functions are supported
by AdminConfig:

create Creates a
configuration object,
given a type, a parent, and

a list of attributes

Chapter 3. Deploying and managing using scripting 39

create Creates a
configuration object,
given a type, a parent, a

list of attributes,
and an attribute name
for the new object

remove Removes the
specified configuration
object

list Lists all configuration
 objects of a given type

list Lists all configuration
 objects of a given
type, contained

within the scope supplied

show Show all the attributes
of a given configuration object

show Show specified attributes
 of a given configuration object

modify Change specified
attributes of a given
configuration object

getId Show the configId of
an object, given a
string version of

its containment

contents Show the objects
which a given type contains

parents Show the objects
which contain a given type

attributes Show the
attributes for a given type

types Show the possible
types for configuration

help Show help information

AdminControl
Provides a summary of all of the available methods for the AdminControl
object.

 Parameters none
Return type java.lang.String

 Example output:
WASX7027I: The following
functions are supported
by AdminControl:

getHost returns String
representation of

40 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

connected host

getPort returns String
representation of
port in use

getType returns String
representation of
connection type in use

reconnect reconnects
with server

queryNames Given ObjectName
 and QueryExp, retrieves
set of ObjectNames

that match.

queryNames Given String
version of ObjectName,
retrieves String of

ObjectNames that match.

getMBeanCount returns
number of registered beans

getDomainName
returns "WebSphere"

getDefaultDomain
returns "WebSphere"

getMBeanInfo Given ObjectName,
returns MBeanInfo
structure for MBean

isInstanceOf Given ObjectName
and class name, true if
MBean is of that class

isRegistered true if
supplied ObjectName is
registered

isRegistered true if
supplied String version
of ObjectName is registered

getAttribute Given ObjectName
and name of attribute,
returns value of

attribute

getAttribute Given
String version
 of ObjectName and
name of attribute,

returns value of attribute

getAttributes Given
ObjectName and array of
attribute names, returns

Chapter 3. Deploying and managing using scripting 41

AttributeList

getAttributes Given String
version of ObjectName
and attribute names,

returns String of
name value pairs

setAttribute Given ObjectName
and Attribute object, set
attribute for MBean

specified

setAttribute Given String
version of ObjectName,
attribute name and

attribute value, set
attribute for MBean
specified

setAttributes Given
ObjectName
 and AttributeList object,
set attributes for

the MBean specified

invoke Given ObjectName,
name of method, array
of parameters and

signature, invoke method
on MBean specified

invoke Given String version
of ObjectName, name
of method, String version

of parameter list,
invoke method on
MBean specified.

invoke Given String version
 of ObjectName, name
of method, String version

of parameter list, and
String version of array
of signatures, invoke

method on MBean specified.

makeObjectName Return an
ObjectName built with
the given string

completeObjectName Return
a String version of an
object name given a

template name

42 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

trace Set the
wsadmin trace specification

help Show help information

all Provides a summary of the information that the MBean defines by name.

 Parameters name — java.lang.String
Return type java.lang.String

 Example output:
Name: WebSphere:cell=pongo,
name=TraceService,mbeanIdentifier
=cells/pongo/nodes/pongo/servers
/server1/server.xml#TraceService_1,
type=TraceService,node=pongo,
process=server1
 Description: null
 Class name: javax.management.
modelmbean.RequiredModelMBean

 Attribute Type Access
 ringBufferSize int RW
 traceSpecification java.lang.String RW

 Operation
 int getRingBufferSize()
 void setRingBufferSize(int)
 java.lang.String
 getTraceSpecification()
 void setTraceState
 (java.lang.String)
 void appendTraceString
 (java.lang.String)
 void dumpRingBuffer
 (java.lang.String)
 void clearRingBuffer()
 [Ljava.lang.String;
 listAllRegisteredComponents()
 [Ljava.lang.String;
 listAllRegisteredGroups()
 [Ljava.lang.String;
 listComponentsInGroup
 (java.lang.String)
 [Lcom.ibm.websphere.ras.
 TraceElementState;
 getTracedComponents()
 [Lcom.ibm.websphere.ras.
 TraceElementState;
 getTracedGroups()
 java.lang.String
 getTraceSpecification
 (java.lang.String)
 void processDumpString
 (java.lang.String)
 void checkTraceString
 (java.lang.String)
 void setTraceOutputToFile
 (java.lang.String, int, int,
 java.lang.String)
 void setTraceOutputToRingBuffer
 (int, java.lang.String)
 java.lang.String
 rolloverLogFileImmediate
 (java.lang.String,
 java.lang.String)

Chapter 3. Deploying and managing using scripting 43

Notifications
 jmx.attribute.changed

 Constructors

attributes
Provides a summary of all of the attributes that the MBean defines by
name.

 Parameters name — java.lang.String
Return type java.lang.String

 Example output:
Attribute Type Access

ringBufferSize
java.lang.Integer RW

traceSpecification
java.lang.String RW

classname
Provides a class name that the MBean defines by name.

 Parameters name — java.lang.String
Return type java.lang.String

 Example output:
javax.management.
modelmbean.RequiredModelMBean

constructors
Provides a summary of all of the constructors that the MBean defines by
name.

 Parameters name — java.lang.String
Return type java.lang.String

 Example output:
Constructors

description
Provides a description that the MBean defines by name.

 Parameters name — java.lang.String
Return type java.lang.String

 Example output:
Managed object for
overall server process.

help Provides a summary of all of the available methods for the help object.

 Parameters none
Return type java.lang.String

44 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

WASX7028I: The
following functions
are supported by Help:

attributes given an
MBean, returns help
for attributes

operations given an
MBean, returns
help for operations

given an MBean and
an operation name,
return signature

information

constructors given an
MBean, returns help
for constructors

description given an
MBean, returns help
for description

notifications given
an MBean, returns
help for notifications

class name given an
MBean, returns help
for class name

all given an MBean,
returns help for
all the above

help returns this
help text

AdminControl returns
general help text for
the AdminControl object

AdminConfig returns
general help text for
the AdminConfig object

AdminApp returns general
help text for the
AdminApp object

message
Displays information for a message ID.

 Parameters message ID
Return type java.lang.String

 Example usage:
$Help message CNTR0005W
 Example output:

Chapter 3. Deploying and managing using scripting 45

Explanation: The container
was unable to passivate
an enterprise bean due
to exception {2}
User action: Take action
based upon message
in exception {2}

notifications
Provides a summary of all the notifications that the MBean defines by
name.

 Parameters name — java.lang.String
Return type java.lang.String

 Example output:
Notification

websphere.messageEvent.
audit

websphere.messageEvent.
fatal

websphere.messageEvent.
error

websphere.seriousEvent.
info

websphere.messageEvent.
warning

jmx.attribute.changed

operations
Provides a summary of all of the operations that the MBean defines by
name.

 Parameters name — java.lang.String
Return type java.lang.String

 Example output:
Operation
int getRingBufferSize()
void setRingBufferSize(int)
java.lang.String
getTraceSpecification()
void setTraceState
(java.lang.String)
void appendTraceString
(java.lang.String)
void dumpRingBuffer
(java.lang.String)
void clearRingBuffer()
[Ljava.lang.String;
listAllRegisteredComponents()
[Ljava.lang.String;
listAllRegisteredGroups()
[Ljava.lang.String;
listComponentsInGroup
(java.lang.String)
[Lcom.ibm.websphere.
ras.TraceElementState;

46 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

getTracedComponents()
[Lcom.ibm.websphere.
ras.TraceElementState;
getTracedGroups()
java.lang.String
getTraceSpecification
(java.lang.String)
void processDumpString
(java.lang.String)
void checkTraceString
(java.lang.String)
void setTraceOutputToFile
(java.lang.String,
int, int, java.lang.String)
void setTraceOutput
ToRingBuffer
(int, java.lang.String)
java.lang.String
rolloverLogFileImmediate
(java.lang.String,
java.lang.String)

operations
Provides the signature of the opname operation for the MBean defined by
name.

 Parameters name — java.lang.String, opname — java.lang.String
Return type java.lang.String

 Example output:
void processDumpString
(java.lang.String)

Description: Write the
contents of the Ras
services Ring Buffer
to the specified file.

Parameters:

Type java.lang.String
Name dumpString
Description a String in the
 specified format
 to process or null.

AdminApp object for scripted administration
Use the AdminApp object to install, modify, and administer applications. The
AdminApp object interacts with the WebSphere Application Server management
and configuration services to make application inquiries and changes. This
includes installing and uninstalling applications, listing modules, exporting, and so
on.

You can start the scripting client when no server is running, if you want to use
only local operations. To run in local mode, use the -conntype NONE option to start
the scripting client. You will receive a message that you are running in the local
mode. If a server is currently running, it is not recommended to run the
AdminApp tool in local mode.

The following public methods are available for the AdminApp object:

Chapter 3. Deploying and managing using scripting 47

deleteUserAndGroupEntries
Deletes users or groups for all roles, and deletes userids and passwords for
all of the RunAs roles defined in the application.

 Parameters: appname
Return Type: none

 Example usage:
$AdminApp
deleteUserAndGroupEntries
myapp

edit Edits an application or module in interactive mode.

 Parameters: appname — java.lang.String options — java.lang.String
Return Type: java.lang.String

 Example usage:
$AdminApp edit
"JavaMail Sample"
{-MapWebModToVH {{"JavaMail
Sample WebApp"
mtcomps.war,WEB-INF/
web.xml newVH}}}
 Note: The edit command changes the application deployment. Specify
these changes in the options parameter. No options are required for the
edit command.

editInteractive
Edits an application or module in interactive mode.

 Parameters: appname — java.lang.String options — java.lang.String
Return Type: java.lang.String

 Example usage:
$AdminApp editInteractive
ivtApp
 Note: The editInteractive command changes the application deployment.
Specify these changes in the options parameter. No options are required for
the editInteractive command.

export Exports the application appname parameter to a file you specify by file
name.

 Parameters: appname, filename
Return Type: none

 Example usage:
$AdminApp export
"My App" /usr/me/myapp.ear

exportDDL
Extracts the data definition language (DDL) from the application appname
parameter to the directoryname parameter that a directory specifies. The
options parameter is optional.

 Parameters: appname, directoryname, options
Return Type: none

48 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Example usage:
$AdminApp exportDDL
"My App" /usr/me/DDL
{-ddlprefix myApp}

help Displays general help for the AdminApp object.

 Parameters: none
Return Type: none

 Example usage:
$AdminApp help
 Example output:
wsadmin>$AdminApp help
WASX7095I: The AdminApp
object allows application
objects to
be manipulated including
installing, uninstalling,
editing,
and listing. Most of the
commands supported by
AdminApp operate in two
modes: the default mode
is one in which AdminApp
communicates with the
WebSphere server to
accomplish its tasks.
A local mode is also
possible, in which no
server communication takes
place. The local
mode of operation is invoked
by including the "-conntype
NONE" flag in the
option string supplied to
the command.

The following commands are
supported by AdminApp;
more detailed
information about each of
these commands is available
by using the
"help" command of AdminApp
and supplying the name
of the command
as an argument.

edit Edit the
 properties of
 an application
editInteractive Edit the properties
 of an application
 interactively
export Export application
 to a file
exportDDL Extract DDL from
 application to
 a directory
help Show help information
install Installs an
 application, given a
 file name and an
 option string.

Chapter 3. Deploying and managing using scripting 49

installInteractive
 Installs an application
 in interactive mode,
 given a file name
 and an option string.
list List all installed
 applications
listModules List the modules in a
 specified application
options Shows the options
 available, either for
 a given file, or in
 general.
taskInfo Shows detailed
 information pertaining
 to a given install task
 for a given file
uninstall Uninstalls an application,
 given an application name and
 an option string

help Displays help for an AdminApp command or installation option.

 Parameters: operation name
Return Type: none

 Example usage:
$AdminApp help uninstall
 Example output:
wsadmin>$AdminApp
help uninstall
WASX7102I: Method:
uninstall
Arguments: application
name, options
Description: Uninstalls
application named by
"application name" using
the options supplied
by String 2.
Method: uninstall
Arguments: application name
Description: Uninstalls
the application specified by
"application name"
using default options.

install Installs an application in non-interactive mode, given a fully qualified file
name and a string of installation options. The options parameter is
optional.

 Parameters: earfile, options
Return Type: none

 Example usage:
$AdminApp install
c:/apps/myapp.ear

There are many options available for this command. You can obtain a list
of valid options for an EAR file with the following command:
 $AdminApp options
<earfilename>

50 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

You can also obtain help for each object with the following command:
$AdminApp help <
optionname>

installInteractive
Installs an application in interactive mode, given a fully qualified file name
and a string of installation options. The options parameter is optional.

 Parameters: earfile, options
Return Type: none

 Example usage:
$AdminApp installInteractive
c:/websphere/appserver/
installableApps/jmsample.ear

list Lists the applications installed in the configuration.

 Parameters: none
Return Type: java.lang.String

 Example usage:
$AdminApp list
 Example output:
wsadmin>$AdminApp list
adminconsole
DefaultApplication
ivtApp

listModules
Lists the modules in an application.

 Parameters: appname — java.lang.String options — java.lang.String
Return Type: java.lang.String

 The options parameter is optional. The valid option is -server. This option
lists the application servers on which the modules are installed.

 Example usage:
$AdminApp listModules
ivtApp
 Example output:
ivtApp#ivtEJB.jar+META-INF
/ejb-jar.xml
ivtApp#ivt_app.war+WEB-INF
/web.xml

This example is formed by the concatenation of appname, #, module URI, +,
and DD URI. You can pass this string to the edit and editInteractive
AdminApp commands.

Options
Displays a list of options for installing an EAR file.

 Parameters: earfile
Return Type: Information about the valid installation options for an EAR file.

 Example usage:

Chapter 3. Deploying and managing using scripting 51

$AdminApp options
c:/websphere/appserver/
installableApps/jmsample.ear

publishWSDL

 Publishes WSDL files for the application specified in the appname

parameter to the file specified in the filename parameter.

 Parameters: appname, filename
Return Type: none

 Example usage:
$AdminApp publishWSDL
JAXRPCHandlersServer
c:/temp/a.zip

publishWSDL

 Publishes WSDL files for the application specified in the appname

parameter to the file specified in the filename parameter using the soap
address prefixes specified in the soapAddressPrefixes parameter.

 Parameters: appname, filename, soapAddressPrefixes
Return Type: none

 Example usage:
$AdminApp publishWSDL
JAXRPCHandlersServer
c:/temp/a.zip
{{JAXRPCHandlersServerApp.war
{{http http://
localhost:9080}}}}

taskInfo
Provides information about a particular task option for an application file.

 Parameters: earfile, task name
Return Type: none

 Example usage:
$AdminApp taskInfo
c:/websphere/appserver/
installableApps/
jmsample.ear MapWebModToVH
 Example output:
MapWebModToVH: Selecting
 virtual hosts
for Web modules
Specify the virtual
host where you want
to install the Web
modules contained in
your application.
Web modules can be
installed on the same
virtual host or
dispersed among
several hosts.
Each element of the
MapWebModToVH task

52 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

consists of the following
3 fields: "webModule,"
"uri," "virtualHost."
Of these fields, the
following may be assigned
new values: "virtualHost"
and the following are
required: "virtualHost"

The current contents of
the task after running
default bindings are:
webModule: JavaMail
Sample WebApp
uri: mtcomps.war,
WEB-INF/web.xml
virtualHost:
default_host

updateAccessIDs
Updates the access id information for users and groups assigned to various
roles defined in the application. The access ids are read from the user
registry and saved in the application bindings. This operation improves
runtime performance of the application. You should call it after installing
an application or after editing security role specific information for an
installed application. This method cannot be invoked when -conntype is
set to NONE. You must be connected to server to invoke this command.

 The bAll boolean parameter retrieves and saves all access IDs for users
and groups in the application bindings. Specify false if you want to
retrieve access ids for users or groups that do not have an access id in the
application bindings.

 Parameters: appname, bALL
Return Type: none

 Example usage:
$AdminApp updateAccessIDs
myapp true

Installation options for the AdminApp object
You can specify the following installation options for the AdminApp object.

appname: Specifies the name of the application. The default is the display name
of the application.

BackendIdSelection: Specifies the backend ID for the enterprise bean jar modules
that have container managed persistence (CMP) beans. An enterprise bean jar
module can support multiple backend configurations as specified using the
Application Assembly Tool.

Use this option to change the backend ID during installation. This option is not
available in an edit command.

Example usage:
$AdminApp install
c:/myapp.ear
{-BackendIdSelection

Chapter 3. Deploying and managing using scripting 53

{{Annuity20EJB
Annuity20EJB.jar,META-INF
/ejb-jar.xml
DB2UDBNT_V72_1}}}

BindJndiForEJBMessageBinding: Binds enterprise beans to listener port names.

Ensure each message-driven enterprise bean in your application or module is
bound to a listener port name. Use this option to provide missing data or update a
task.

Example usage:
$AdminApp install
c:/myapp.ear
{-BindJndiFor
EJBMessageBinding
{{mymdb myMDB
mymdb.jar,META-INF
/ejb-jar.xml
myMDBListenPort}}}

Use the taskInfo command of the AdminApp object to obtain information about
the data needed for your application. You only need to provide data for rows or
entries that are missing information, or those where you want to update the
existing data.

BindJndiForEJBNonMessageBinding: Binds enterprise beans to Java Naming and
Directory Interface (JNDI) names.

Ensure each non message-driven enterprise bean in your application or module is
bound to a JNDI name. Use this option to provide missing data or update a task.

Example usage:
$AdminApp install
c:/myapp.ear
{-BindJndiForEJB
NonMessageBinding
{{"Increment Bean Jar"
Inc Increment.jar,META-INF
/ejb-jar.xml IncBean}}}

Use the taskInfo command of the AdminApp object to obtain information about
the data needed for your application. You only need to provide data for rows or
entries that are missing information, or those where you want to update the
existing data.

cell: Specifies the cell name for the AdminApp object installation functions.

cluster: Specifies the cluster name for the AdminApp object installation functions.

Note: This option only applies to a Network Deployment environment.

contextroot: Specifies the context root you use when installing a stand-alone WAR
file.

CorrectOracleIsolationLevel: Specifies the isolation level for the Oracle type
provider. Use this option to provide missing data or update a task.

Example usage:

54 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

$AdminApp install
c:/myapp.ear
{-CorrectOracleIsolationLevel
{{AsyncSender
jms/MyQueueConnectionFactory
jms/Resource1 2}}

The last field of each entry specifies the isolation level. Valid isolation level values
are 2 or 4.

Use the taskInfo command of the AdminApp object to obtain information about
the data needed for your application. You only need to provide data for rows or
entries that are missing information, or those where you want to update the
existing data.

CorrectUseSystemIdentity: Replaces RunAs System to RunAs Roles.

The enterprise beans you install contain RunAs system identity. You can optionally
change this identity to a RunAs role. Use this option to provide missing data or
update a task.

Example usage:
$AdminApp install
c:/myapp.ear
{-CorrectUseSystemIdentity
{{Inc "Increment Bean Jar"
Increment.jar,META-INF/
ejb-jar.xml getValue()
RunAsUser2 user2 password2}
{Inc "Increment
Bean Jar" Increment.jar,
META-INF/ejb-jar.xml
Increment() RunAsUser2
user2 password2}}}

Use the taskInfo command of the AdminApp object to obtain information about
the data needed for your application. You only need to provide data for rows or
entries that are missing information, or those where you want to update the
existing data.

DataSourceFor10CMPBeans: Specifies optional data sources for individual 1.x
container managed persistence (CMP) beans.

Mapping a specific data source to a CMP bean overrides the default data source
for the module that contains the enterprise bean. Use this option to provide
missing data or update a task.

Example usage:
$AdminApp install c:/myapp.ear
{-DataSourceFor10CMPBeans
{{"Increment Bean Jar" Inc
Increment.jar,META-INF/
ejb-jar.xml jdbc/
SampleDataSource user1
password1}}}

Use the taskInfo command of the AdminApp object to obtain information about
the data needed for your application. You only need to provide data for rows or
entries that are missing information, or those where you want to update the
existing data.

Chapter 3. Deploying and managing using scripting 55

DataSourceFor20CMPBeans: Specifies optional data sources for individual 2.x
container managed persistence (CMP) beans.

Mapping a specific data source to a CMP bean overrides the default data source
for the module that contains the enterprise bean. Use this option to provide
missing data or update a task.

Example usage:
$AdminApp install
c:/myapp.ear
{-DataSourceFor20CMPBeans
{{CustomerEjbJar CustomerEJB
customreEjb.jar,META-INF/
ejb-jar.xml ejb/customerEjb
"per connection factory"}
{SupplierEjbJar supplierEjb
supplierEjb.jar,META-INF/
ejb-jar.xml ejb/
supplierEjb container}}}

The last field in each entry of this task specifies the value for resource
authorization. Valid values for resource authorization are per connection factory
or container.

Use the taskInfo command of the AdminApp object to obtain information about
the data needed for your application. You only need to provide data for rows or
entries that are missing information, or those where you want to update the
existing data.

DataSourceFor10EJBModules: Specifies the default data source for the enterprise
bean module that contains 1.x container managed persistence (CMP) beans. Use
this option to provide missing data or update a task.

Example usage:
$AdminApp install
c:/myapp.ear
{-DataSourceFor10EJBModules
{{"Increment Bean Jar"
Increment.jar,META-INF/
ejb-jar.xml jdbc/
SampleDataSource user1
password1}}}

Use the taskInfo command of the AdminApp object to obtain information about
the data needed for your application. You only need to provide data for rows or
entries that are missing information, or those where you want to update the
existing data.

DataSourceFor20EJBModules: Specifies the default data source for the enterprise
bean 2.x module that contains 2.x container managed persistence (CMP) beans. Use
this option to provide missing data or update a task.

Example usage:
$AdminApp install
c:/myapp.ear
{-DataSourceFor20CMPBeans
{{CustomerEjbJar
CustomerEJB
customreEjb.jar,META-INF/

56 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

ejb-jar.xml ejb/customerEjb
"per connection factory"}
 {SupplierEjbJar supplierEjb
supplierEjb.jar,META-INF
/ejb-jar.xml ejb/supplierEjb
container}}}

The last field in each entry of this task specifies the value for resource
authorization. Valid values for resource authorization is per connection factory or
container.

Use the taskInfo command of the AdminApp object to obtain information about
the data needed for your application. You only need to provide data for rows or
entries that are missing information, or those where you want to update the
existing data.

defaultbinding.cf.jndi: Specifies the Java Naming and Directory Interface (JNDI)
name for the default connection factory

defaultbinding.cf.resauth: Specifies the RESAUTH for the connection factory.

defaultbinding.datasource.jndi: Specifies the Java Naming and Directory
Interface (JNDI) name for the default datasource.

defaultbinding.datasource.password: Specifies the password for the default
datasource.

defaultbinding.datasource.username: Specifies the user name for the default
datasource.

defaultbinding.ejbjndi.prefix: Specifies the prefix for the enterprise bean Java
Naming and Directory Interface (JNDI) name.

defaultbinding.force: Specifies that the default bindings should override the
current bindings.

defaultbinding.strategy.file: Specifies a custom default bindings strategy file.

defaultbinding.virtual.host: Specifies the default name for a virtual host.

depl.extension.reg: Specifies the location of the properties file for deployment
extensions.

deployejb: Specifies to run EJBDeploy during installation. This option does not
require a value.

The default value is nodeployejb.

deployejb.classpath: Specifies an extra class path for EJBDeploy.

deployejb.dbschema: Specifies the database schema for EJBDeploy.

deployejb.dbtype: Specifies the database type for EJBDeploy.

Possible values include the following:
CLOUDSCAPE_V5
 DB2UDB_V72
 DB2UDBOS390_V6

Chapter 3. Deploying and managing using scripting 57

DB2UDBISERIES
 INFORMIX_V73
 INFORMIX_V93
 MSSQLSERVER_V7
 MSSQLSERVER_2000
 ORACLE_V8
 ORACLE_V9I
 SYBASE_V1200

For a list of current supported database vendor types, run ejbdeploy -?.

deployejb.rmic: Specifies extra RMIC options to use for EJBDeploy.

deployws: Specifies to deploy WebServices during installation. This option does
not require a value.

The default value is: nodeployws.

deployws.classpath: Specifies the extra classpath to use when you deploy
WebServices.

deployws.jardirs: Specifies the extra extension directories to use when you deploy
WebServices.

distributeApp: Specifies that the application management component distributes
application binaries. This option does not require a value.

This is the default setting.

EnsureMethodProtectionFor10EJB: Selects method protections for unprotected
methods of 1.x enterprise beans. Specify to leave the method as unprotected, or
assign protection which denies all access. Use this option to provide missing data
or update to a task.

Example usage:
$AdminApp install
c:/myapp.ear
{-EnsureMethod
ProtectionFor10EJB
{{"Increment EJB Module"
 IncrementEJBBean.
jar,META-INF/
ejb-jar.xml ""}
{"Timeout EJB Module"
 TimeoutEJBBean.jar,
META-INF/ejb-jar.xml
methodProtection.
denyAllPermission}}}

The last field in each entry of this task specifies the value of the protection. Valid
protection values include: methodProtection.denyAllPermission. You can also
leave the value blank if you want the method to remain unprotected.

Use the taskInfo command of the AdminApp object to obtain information about
the data needed for your application. You only need to provide data for rows or
entries that are missing information, or those where you want to update the
existing data.

EnsureMethodProtectionFor20EJB: Selects method protections for unprotected
methods of 2.x enterprise beans. Specify to assign a security role to the unprotected

58 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

method, add the method to the exclude list, or mark the method as unchecked.
You can assign multiple roles for a method by separating roles names with
commas. Use this option to provide missing data or update to a task.

Example usage:
$AdminApp install
c:/myapp.ear
{-EnsureMethod
ProtectionFor20EJB
{{CustmerEjbJar
customerEjb.jar,META-INF/
ejb-jar.xml
methodProtection.uncheck}
{SupplierEjbJar
supplierEjb.jar,META-INF/
ejb-jar.xml
methodProtection.exclude}}}

The last field in each entry of this task specifies the value of the protection. Valid
protection values include: methodProtection.uncheck, methodProtection.exclude,
or a list of security roles separated by commas.

Use the taskInfo command of the AdminApp object to obtain information about
the data needed for your application. You only need to provide data for rows or
entries that are missing information, or those where you want to update the
existing data.

installdir: Specifies the directory to place the application binaries.

MapModulesToServers: Specifies the application server where you want to install
modules that are contained in your application. You can install modules on the
same server, or disperse them among several servers. Use this option to provide
missing data or update to a task.

Example usage:
$AdminApp install
c:/myapp.ear
{-MapModulesToServers
{{"Increment Bean Jar"
Increment.jar,META-INF/
ejb-jar.xml WebSphere:
cell=mycell,node=mynode
,server=server1}
{"Default Application"
default_app.war,WEB-INF/
web.xml WebSphere:cell=
mycell,node=mynode,server=
server1}
{"Examples Application"
examples.war,WEB-INF/
web.xml WebSphere:cell=
mycell,node=mynode,
server=server1}}}

Use the taskInfo command of the AdminApp object to obtain information about
the data needed for your application. You only need to provide data for rows or
entries that are missing information, or those where you want to update the
existing data.

Chapter 3. Deploying and managing using scripting 59

MapEJBRefToEJB: Maps enterprise Java references to enterprise beans. You must
map each enterprise bean reference defined in your application to an enterprise
bean. Use this option to provide missing data or update to a task.

Example usage:
$AdminApp install
c:/myapp.ear
{-MapEJBRefToEJB
{{"Examples Application" ""
examples.war,WEB-INF
/web.xml BeenThereBean
com.ibm.websphere.beenthere.
BeenThere IncBean}}}

Use the taskInfo command of the AdminApp object to obtain information about
the data needed for your application. You only need to provide data for rows or
entries that are missing information, or those where you want to update the
existing data.

MapResEnvRefToRes: Maps resource environment references to resources. You
must map each resource environment reference defined in your application to a
resource. Use this option to provide missing data or update to a task.

Example usage:
$AdminApp install
c:/myapp.ear
{-MapResEnvRefToRes
{{AsyncSender AsyncSender
asyncSenderEjb.jar,META-INF/
ejb-jar.xml jms/
ASYNC_SENDER_QUEUE
javax.jms.Queue jms/
Resource2}}}

Use the taskInfo command of the AdminApp object to obtain information about
the data needed for your application. You only need to provide data for rows or
entries that are missing information, or those where you want to update the
existing data.

MapResRefToEJB: Maps resource references to resources. You must map each
resource reference defined in your application to a resource. Use this option to
provide missing data or update to a task.

Example usage:
$AdminApp install
c:/myapp.ear
{-MapResRefToEJB
{{AsyncSender AsyncSender
asyncSenderEjb.jar,
META-INF/ejb-jar.xml
jms/MyQueueConnectionFactory
javax.jms.
QueueConnectionFactory
jms/Resource1}
{"Catalog Component"
TheCatalog
catalogEjb.jar,META-INF
/ejb-jar.xml jdbc/
CatalogDataSource
javax.sql.DataSource
jdbc/Resource2}}}

60 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Use the taskInfo command of the AdminApp object to obtain information about
the data needed for your application. You only need to provide data for rows or
entries that are missing information, or those where you want to update the
existing data.

MapRolesToUsers: Maps users to roles. You must map each role defined in the
application or module to a user or group from the domain user registry. You can
specify multiple users or groups for a single role by separating them with a |. Use
this option to provide missing data or update to a task.

Example usage:
$AdminApp install
\c:/myapp.ear
{-MapRolesToUsers
{{"All Role" No Yes
"" ""}
{"Every Role"
Yes No "" ""}
{DenyAllRole No
No user1 group1}}}

Use the taskInfo command of the AdminApp object to obtain information about
the data needed for your application. You only need to provide data for rows or
entries that are missing information, or those where you want to update the
existing data.

MapRunAsRolesToUsers: Maps RunAs Roles to users. The enterprise beans you
install contain predefined RunAs roles. Enterprise beans that need to run as a
particular role for recognition while interacting with another enterprise bean use
RunAs roles. Use this option to provide missing data or update to a task.

Example usage:
$AdminApp install
c:/myapp.ear
{-MapRunAsRolesToUsers
{{UserRole user1
password1}
{AdminRole administrator
administrator}}}

Use the taskInfo command of the AdminApp object to obtain information about
the data needed for your application. You only need to provide data for rows or
entries that are missing information, or those where you want to update the
existing data.

MapWebModToVH: Selects virtual hosts for Web modules. Specify the virtual
host where you want to install the Web modules contained in your application.
You can install Web modules on the same virtual host, or disperse them among
several hosts. Use this option to provide missing data or update to a task.

Example usage:
$AdminApp install
c:/myapp.ear
{-MapWebModToVH
{{"Default Application"
default_app.war,WEB-INF/

Chapter 3. Deploying and managing using scripting 61

web.xml default_host}
{"Examples Application"
examples.war,WEB-INF/
web.xml default_host}}}

Use the taskInfo command of the AdminApp object to obtain information about
the data needed for your application. You only need to provide data for rows or
entries that are missing information, or those where you want to update the
existing data.

node: Specifies the node name for the AdminApp installation functions.

nodeployejb: Specifies not to run EJBDeploy during installation. This option does
not require a value.

This value is the default setting.

nodeployws: Specifies to not deploy WebServices during installation. This option
does not require a value.

This value is the default setting.

nodistributeApp: Specifies that the application management component does not
distribute application binaries. This option does not require a value.

The default setting is distributeApp.

nopreCompileJSPs: Specifies not to precompile JavaServer Pages files. This option
does not require a value.

This is the default setting.

nouseMetaDataFromBinary: Specifies that the metadata used at run time, for
example, deployment descriptors, bindings, extensions, and so on, come from the
configuration repository. This option does not require a value.

This is the default setting. Use useMetaDataFromBinary to indicate that the
metadata used at run time comes from the EAR file.

nousedefaultbindings: Specifies not to use default bindings for installation. This
option does not require a value.

This is the default setting.

preCompileJSPs: Specifies to precompile JavaServer Pages files. This option does
not require a value.

The default is nopreCompileJSPs.

server: Specifies the server name for the AdminApp installation functions.

update: Updates the installed application with a new version of the EAR file. This
option does not require a value.

The application that is being updated, specified by the appname option, must
already be installed in the WebSphere Application Server configuration. The update
action merges bindings from the new version with the bindings from the old

62 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

version, uninstalls the old version, and installs the new version. The binding
information from new version of the EAR file is preferred over the corresponding
one from the old version. If any element of binding is missing in the new version,
the corresponding element from the old version is used.

update.ignore.old: Specifies that during the update action, bindings from the
installed version of the application are ignored. This option does not require a
value.

Applies only if you specify the update option.

update.ignore.new: Specifies that during the update action, bindings from the
new version of the application are ignored. This option does not require a value.

Applies only if you specify the update option.

useMetaDataFromBinary: Specifies that the metadata used at run time, for
example, deployment descriptors, bindings, extensions, and so on, come from the
EAR file. This option does not require a value.

The default value is nouseMetaDataFromBinary which means that the metadata used
at run time comes from the configuration repository.

usedefaultbindings: Specifies to use default bindings for installation. This option
does not require a value.

The default setting is nousedefaultbindings.

verbose: Causes additional messages to display during installation. This option
does not require a value.

Example: Obtaining information about task options for the
AdminApp install command
You can obtain information online about the AdminApp task options by using the
AdminApp taskInfo method.
v You can use the options method to see the requirements for an EAR file if you

construct installation command lines. The taskInfo command provides detailed
information for each task option with a default binding applied to the result.

v The options for the AdminApp install command can be complex if you specify
various types of binding information, for example, Java Naming and Directory
Interface (JNDI) name, data sources for enterprise bean modules, or virtual hosts
for Web modules. An easy way to specify command line installation options is
to use a feature of the installInteractive command that generates the options for
you. After you install the application interactively once and specify all the
updates that you need, look for message WASX7278I in the wsadmin output log.
The default output log for wsadmin is wsadmin.traceout. You can cut and paste
the data in this message into a script, and modify it. For example:
 WASX7278I: Generated
command line: install
c:/websphere/appserver/
installableapps/jmsample.ear
{-BindJndiForEJBNonMessageBinding
{{deplmtest.jar MailEJBObject
deplmtest.jar,META-INF/
ejb-jar.xml ejb/JMSampEJB1}}
-MapResRefToEJB
{{deplmtest.jar MailEJBObject
deplmtest.jar,META-INF/

Chapter 3. Deploying and managing using scripting 63

ejb-jar.xml mail/MailSession9
javax.mail.Session mail/
DefaultMailSessionX }
{"JavaMail Sample WebApp"
mtcomps.war,WEB-INF/web.xml
mail/MailSession9
javax.mail.Session mail/
DefaultMailSessionY }}
-MapWebModToVH
{{"JavaMail Sample WebApp"
mtcomps.war,WEB-INF/
web.xml newhost }}
-nopreCompileJSPs
-novalidateApp
-installed.ear.destination
c:/mylocation -distributeApp
-nouseMetaDataFromBinary}

AdminControl object for scripted administration
Use the AdminControl object to invoke operational commands that deal with
running objects in the WebSphere Application Server. Many of the AdminControl
methods have multiple signatures so that they can either invoke in a raw mode
using Parameters: specified by Java Management Extensions (JMX), or using
strings for Parameters:. In addition to operational commands, the AdminControl
object supports some utility methods for tracing, reconnecting with a server, and
converting data types.

completeObjectName
A convenience method that creates a string representation of a complete
ObjectName value based based on a fragment. This method does not
communicate with the server to find a matching ObjectName value. If it
finds several MBeans that match the fragment, the method returns the first
one.

 Parameters: name — java.lang.String
Return Type: java.lang.String

 Example usage:
set serverON [$AdminControl
completeObjectName
node=mynode,type=Server,*]

getAttribute
Returns the value of the attribute for the name you provide.

 Parameters: name — java.lang.String; attribute — java.lang.String
Return Type: java.lang.String

 Example usage:
set objNameString
[$AdminControl
completeObjectName
WebSphere:type=Server,*]
$AdminControl
getAttribute
$objNameString processType

getAttribute_jmx
Returns the value of the attribute for the name you provide.

64 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Parameters: name — ObjectName; attribute — java.lang.String
Return Type: java.lang.String

 Example usage:
set objNameString
[$AdminControl
completeObjectName
WebSphere:type=Server,*]
set objName [java::new
javax.management.ObjectName
$objNameString]
$AdminControl
getAttribute_jmx
$objNameString processType

getAttributes
Returns the attribute values for the names you provide.

 Parameters: name — String; attributes — java.lang.String
Return Type: java.lang.String

 Example usage:
set objNameString
[$AdminControl
completeObjectName
WebSphere:type=Server,*]
$AdminControl
getAttributes $objName
"cellName nodeName"

getAttributes_jmx
Returns the attribute values for the names you provide.

 Parameters: name — ObjectName; attributes — java.lang.String[]
Return Type: javax.management.AttributeList

 Example usage:
set objectNameString
[$AdminControl
completeObjectName
WebSphere:type=Server,*]
set objName [java:;new
javax.management.ObjectName
$objectNamestring]
set attrs [java::new
{String[]} 2
{cellName nodeName}]
$AdminControl
getAttributes_jmx
$objName $attrs

getCell
Returns the name of the connected cell.

 Parameters: none
Return Type: java.lang.String

 Example usage:
$AdminControl getCell
 Example output:

Chapter 3. Deploying and managing using scripting 65

Mycell

getConfigId
A convenience method from an ObjectName or ObjectName fragment that
creates a configuration ID. Use this ID with the $AdminConfig method.
Not all Mbeans that run have configuration objects that correspond. If
there are several Mbeans that correspond to an ObjectName fragment, a
warning issues and a configuration ID builds for the first Mbean it finds.

 Parameters: name — java.lang.String
Return Type: java.lang.String

 Example usage:
set threadpoolCID
[$AdminControl
getConfigId
node=mynode,type=
ThreadPool,*]

getDefaultDomain
Returns the default domain name from the server.

 Parameters: none
Return Type: java.lang.String

 Example usage:
$AdminControl
getDefaultDomain
 Example output:
WebSphere

getDomainName
Returns the domain name from the server.

 Parameters: none
Return Type: java.lang.String

 Example usage:
$AdminControl getDomainName
 Example output:
WebSphere

getHost
Returns the name of your host.

 Parameters: none
Return Type: java.lang.String

 Example usage:
$AdminControl getHost
 Example output:
myhost

getMBeanCount
Returns the number of Mbeans registered in the server.

 Parameters: none
Return Type: java.lang.Integer

66 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Example usage:
$AdminControl getMBeanCount
 Example output:
114

getMBeanInfo_jmx
Returns the Java management extension MBeanInfo structure that
corresponds to an OjbectName value. There is no string signature for this
method, because the Help object displays most of the information available
from getMBeanInfo.

 Parameters: name — ObjectName
Return Type: javax.management.MBeanInfo

 Example usage:
set objName [java::new
javax.management.ObjectName
[$AdminControl
completeObjectName
type=Server,*]]
$AdminControl
getMBeanInfo_jmx
$objName
 Example output:
javax.management.
modelmbean.ModelMBean
InfoSupport@10dd5f35

getNode
Returns the name of the connected node.

 Parameters: none
Return Type: java.lang.String

 Example usage:
$AdminControl getNode
 Example output:
Myhost

getPort
Returns the name of your port.

 Parameters: none
Return Type: java.lang.String

 Example usage:
$AdminControl getPort
 Example output:
8877

getPropertiesForDataSource
Deprecated, no replacement.

 This command incorrectly assumes the availability of a configuration
service when running in connected mode.

 Parameters: configId — java.lang.String

Chapter 3. Deploying and managing using scripting 67

Return Type: java.lang.String

 Example usage:
set ds [lindex
[$AdminConfig list
DataSource] 0]
$AdminControl
getPropertiesForDataSource
$ds
 Example output:
WASX7389E: Operation
not supported -
getPropertiesForDataSource
command
is not supported.

getType
Returns the connection type.

 Parameters: none
Return Type: java.lang.String

 Example usage:
$AdminControl getType
 Example output:
SOAP

help Returns general help text for the AdminControl object.

 Parameters: none
Return Type: java.lang.String

 Example usage:
$AdminControl help
 Example output:
WASX7027I: The AdminControl
 object enables
 the manipulation
 of MBeans running
 in a WebSphere server
 process. The
 number and type
 of MBeans available
 to the scripting
 client depends on
 the server to
 which the client is
 connected. If the
 client is connected to a
 Deployment Manager,
 then all the MBeans
 running in the Deployment
 Manager are visible,
 as are all the MBeans
 running in the Node Agents
 connected to this
 Deployment Manager,
 and all the MBeans
 running in
 the application servers
 on those nodes.

68 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

The following commands
 are supported by
 AdminControl; more detailed
 information about each
 of these commands is
 available by using the
 "help" command of
 AdminControl and supplying
 the name of the command
 as an argument.

 Note that many of these
 commands support two
 different sets of
 signatures: one that
 accepts and returns
 strings, and one low-level
 set that works with JMX
 objects like ObjectName
 and AttributeList.
 In most situations, the
 string signatures are
 likely to be more useful,
 but JMX-object signature
 versions are supplied
 as well. Each of these
 JMX-object signature
 commands has "_jmx"
 appended to the
 command name.
 Hence there is an
 "invoke" command, as
 well as a "invoke_jmx"
 command.

completeObjectName
 Return a String
 version of an
 object name given a
 template name
getAttribute_jmx
 Given ObjectName
 and name of attribute,
 returns value of
 attribute
getAttribute Given String version
 of ObjectName and
 name of attribute,
 returns value
 of attribute
getAttributes_jmx
 Given ObjectName and
 array of attribute
 names, returns
 AttributeList
getAttributes Given String version
 of ObjectName and
 attribute names,
 returns String of
 name value pairs

getCell returns the cell
 name of the
 connected server
getConfigId Given String version
 of ObjectName, return

Chapter 3. Deploying and managing using scripting 69

a config id for
 the corresponding
 configuration object,
 if any.
getDefaultDomain
 returns "WebSphere"
getDomainName returns "WebSphere"

getHost returns String
 representation of
 connected host
getMBeanCount returns number of
 registered beans
getMBeanInfo_jmx
 Given ObjectName,
 returns MBeanInfo
 structure for MBean

getNode returns the node
 name of the
 connected server
getPort returns String
 representation of
 port in use
getType returns String
 representation of
 connection type
 in use
help Show help information
invoke_jmx Given ObjectName,
 name of method, array
 of parameters and
 signature, invoke
 method on MBean
 specified
invoke Invoke a method on
 the specified MBean
isRegistered_jmx
 true if supplied
 ObjectName is
 registered
isRegistered true if supplied
 String version of
 ObjectName is
 registered
makeObjectName Return an ObjectName
 built with the
 given string
queryNames_jmx Given ObjectName
 and QueryExp, retrieves
 set of ObjectNames
 that match.
queryNames Given String version
 of ObjectName,
 retrieves String of
 ObjectNames that match.
reconnect reconnects with server
setAttribute_jmx
 Given ObjectName
 and Attribute object,
 set attribute
 for MBean
 specified
setAttribute Given String version
 of ObjectName,
 attribute name and
 attribute value,

70 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

set attribute for
 MBean specified
setAttributes_jmx
 Given ObjectName and
 AttributeList object,
 set attributes for
 the MBean specified
startServer Given the name of a
 server, start that
 server.
stopServer Given the name of a
 server, stop that
 server.
testConnection Test the connection
 to a DataSource
 object
trace Set the wsadmin
 trace specification

help Returns help text for the specific method of the AdminControl object. The
method name is not case sensitive.

 Parameters: method — java.lang.String
Return Type: java.lang.String

 Example usage:
$AdminControl help getAttribute
 Example output:
WASX7043I: Method:
getAttribute
Arguments: object name,
attribute
Description: Returns
value of "attribute"
for the MBean described
by "object name."

invoke
Invokes the object operation without any parameter. Returns the result of
the invocation.

 Parameters: name — java.lang.String; operationName — java.lang.String
Return Type: java.lang.String

 Example usage:
set objNameString
[$AdminControl
completeObjectName
WebSphere:type=Server,*]
$AdminControl invoke
$objNameString stop

invoke
Invokes the object operation using the parameter list that you supply. The
signature generates automatically. The types of Parameters: are supplied by
examining the MBeanInfo that the MBean supplies. Returns the string
result of the invocation.

 Parameters: name — java.lang.String; operationName —
java.lang.String; params — java.lang.String

Return Type: java.lang.String

Chapter 3. Deploying and managing using scripting 71

Example usage:
set objNameString
[$AdminControl
completeObjectName
WebSphere:type=Server,*]
$AdminControl invoke
$objNameString
appendTraceString
com.ibm.*=all=enabled

invoke
Invokes the object operation by conforming the parameter list to the
signature. Returns the result of the invocation.

 Parameters: name — java.lang.String; operationName —
java.lang.String; params — java.lang.String;
sigs — java.lang.String

Return Type: java.lang.String

 Example usage:
set objNameString
[$AdminControl
completeObjectName
WebSphere:type=Server,*]
$AdminControl invoke
$objNameString
appendTraceString
com.ibm.*=all=enabled
java.lang.String

invoke_jmx
Invokes the object operation by conforming the parameter list to the
signature. Returns the result of the invocation.

 Parameters: name — ObjectName; operationName —
java.lang.String; params — java.lang.Object[];
signature — java.lang.String[]

Return Type: java.lang.Object

 Example usage:
set objNameString
[$AdminControl
completeObjectName
WebSphere:type=
TraceService,*]
set objName
[java::new
javax.management.
ObjectName
$objNameString]
set parms
[java::new
{java.lang.Object[]}
1 com.ibm.ejs.sm.
*=all=disabled]
set signature
[java::new
{java.lang.String[]}
1 java.lang.String]
$AdminControl invoke_jmx
$objName
appendTraceString
$parms $signature

72 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

isAlive

 Parameters: none
Return Type: session

 Example usage:
$AdminControl isAlive

isInstanceof
If the ObjectName value is a member of the class you provide, then the
value is true.

 Parameters: name — java.lang.String;class name — java.lang.String
Return Type: boolean

 Example usage:
set objNameString
[$AdminControl
completeObjectName
WebSphere:
type=Server,*]
$AdminControl
isInstanceOf
$objNameString
java.lang.Object

isInstanceof_jmx
If the ObjectName value is a member of the class you provide, then the
value is true.

 Parameters: name — ObjectName;class name — java.lang.String
Return Type: boolean

 Example usage:
set objName
[java::new
javax.management.
ObjectName WebSphere:
type=Server,*]
$AdminControl
isInstanceOf_jmx
$objName
java.lang.Object

isRegistered
If the ObjectName value is registered in the server, then the value is true.

 Parameters: name — java.lang.String
Return Type: boolean

 Example usage:
set objNameString
[$AdminControl
completeObjectName
WebSphere:type=Server,*]
$AdminControl
isRegistered
$objNameString

isRegistered_jmx
If the ObjectName value is registered in the server, then the value is true.

Chapter 3. Deploying and managing using scripting 73

Parameters: name — ObjectName
Return Type: boolean

 Example usage:
set objName
[java::new
javax.management.
ObjectName
WebSphere:type=
Server,*]
$AdminControl
isRegistered_jmx
$objName

makeObjectName
A convenience method that creates an ObjectName value based on the
strings input. This method does not communicate with the server, so the
ObjectName value that results might not exist. If the string you supply
contains an extra set of double quotes, they are removed. If the string does
not begin with a Java Management eXtensions (JMX) domain, or a string
followed by a colon, then the WebSphere string prepends to the name.

 Parameters: name — java.lang.String
Return Type: javax.management.ObjectName

 Example usage:
set objName
[$AdminControl
makeObjectName
WebSphere:type=
Server,node=mynode,*]

queryNames
Returns a string that lists all ObjectNames based on the name template.

 Parameters: name — java.lang.String
Return Type: java.lang.String

 Example usage:
$AdminControl
queryNames
WebSphere:type=Server,*
 Example output:
WebSphere:cell=
BaseApplicationServerCell
,name=server1,
mbeanIdentifier=server1,
type=Server,node=mynode,
process=server1

queryNames_jmx
Returns a set of ObjectName objects, based on the ObjectName and
QueryExp that you provide.

 Parameters: name — javax.management.ObjectName;query — javax.management.QueryExp
Return
Type:

java.util.Set

 Example usage:

74 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

set objName [java::new
javax.management.
ObjectName WebSphere:
type=Server,*]
set null [java::null]
$AdminControl
queryNames_jmx
$objName $null
 Example output:
[WebSphere:cell=
BaseApplicationServerCell,
name=server1,
mbeanIdentifier=server1,
type=Server,node=mynode,
process=server1]

reconnect
Reconnects to the server, and clears information out of the local cache.

 Parameters: none
Return Type: none

 Example usage:
$AdminControl reconnect
 Example output:
WASX7074I: Reconnect of
SOAP connector to host
myhost completed.

setAttribute
Sets the attribute value for the name you provide.

 Parameters: name — java.lang.String; attributeName —
java.lang.String; attributeValue —
java.lang.String

Return Type: none

 Example usage:
set objNameString
[$AdminControl
completeObjectName
WebSphere:type=
TraceService,*]
$AdminControl
setAttribute
$objNameString
traceSpecification
com.ibm.*=all=disabled

setAttribute_jmx
Sets the attribute value for the name you provide.

 Parameters: name — ObjectName; attribute — javax.management.Attribute
Return Type: none

 Example usage:
set objectNameString
[$AdminControl
completeObjectName
WebSphere:type=
TraceService,*]

Chapter 3. Deploying and managing using scripting 75

set objName [java:;
new javax.management.
ObjectName
$objectNamestring]
set attr [java::new
javax.management.
Attribute
traceSpecification
com.ibm.*=all=disabled]
$AdminControl
setAttribute_jmx
$objName $attr

setAttributes
Sets the attribute values for the names you provide and returns a list of
successfully set names.

 Parameters: name — String; attributes — java.lang.String
Return Type: java.lang.String

 Example usage:
set objNameString
[$AdminControl
completeObjectName
WebSphere:type=
TracesService,*]
$AdminControl
setAttributes
$objNameString
{{traceSpecification
com.ibm.ws.*=all=
enabled}}

setAttributes_jmx
Sets the attribute values for the names you provide and returns a list of
successfully set names.

 Parameters: name — ObjectName; attributes — javax.management.AttributeList
Return
Type:

javax.management.AttributeList

 Example usage:
set objectNameString
[$AdminControl
completeObjectName
WebSphere:type=
TraceService,*]
set objName
[java:;new
javax.management.
ObjectName
$objectNamestring]
set attr [java::new
javax.management.
Attribute
traceSpecification
com.ibm.ws.
*=all=enabled]
set alist [java::new
javax.management.
AttributeList]

76 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

$alist add $attr
$AdminControl
setAttributes_jmx
$objName $alist

startServer
Starts the specified application server by locating it in the configuration.
This command uses the default wait time. You can only use this command
if the scripting client is connected to a NodeAgent. It returns a message to
indicate if the server starts successfully.

 Parameters: server name — java.lang.String
Return Type: java.lang.String

 Example usage:
$AdminControl
startServer server1

startServer
Starts the specified application server by locating it in the configuration.
The start process waits the number of seconds specified by the wait time
for the server to start. You can only use this command if the scripting
client is connected to a NodeAgent. It returns a message to indicate if the
server starts successfully.

 Parameters: server name — java.lang.String, wait time - java.lang.String
Return Type: java.lang.String

 Example usage:
$AdminControl startServer
server1 100

startServer
Starts the specified application server by locating it in the configuration.
This command uses the default wait time. You can use this command
when the scripting client is either connected to a NodeAgent or
Deployment Manager process. It returns a message to indicate if the server
starts successfully.

 Parameters: server name — java.lang.String, node name — java.lang.String
Return Type: java.lang.String

 Example usage:
$AdminControl startServer
server1 myNode

startServer
Starts the specified application server by locating it in the configuration.
The start process waits the number of seconds specified by the wait time
for the server to start. You can use this command when the scripting client
is either connected to a NodeAgent or Deployment Manager process. It
returns a message to indicate if the server starts successfully.

 Parameters: server name — java.lang.String, node name
— java.lang.String, wait time —
java.lang.String

Return Type: java.lang.String

Chapter 3. Deploying and managing using scripting 77

Example usage:
$AdminControl startServer
server1 myNode 100

stopServer
Stops the specified application server. It returns a message to indicate if the
server stops successfully.

 Parameters: server name — java.lang.String
Return Type: java.lang.String

 Example usage:
$AdminControl stopServer
server1

stopServer
Stops the specified application server. If you set the flag to immediate, the
server stops immediately. Otherwise, a normal stop occurs. This command
returns a message to indicate if the server stops successfully.

 Parameters: server name — java.lang.String, immediate flag — java.lang.String
Return
Type:

java.lang.String

 Example usage:
$AdminControl stopServer
server1 immediate

stopServer
Stops the specified application server. It returns a message to indicate if the
server stops successfully.

 Parameters: server name — java.lang.String, node name — java.lang.String
Return Type: java.lang.String

 Example usage:
$AdminControl stopServer
server1 myNode

stopServer
Stops the specified application server. If you set the flag to immediate, the
server stops immediately. Otherwise, a normal stop occurs. This command
returns a message to indicate if the server stops successfully.

 Parameters: server name — java.lang.String, node name
— java.lang.String, immediate flag —
java.lang.String

Return Type: java.lang.String

 Example usage:
$AdminControl stopServer
server1 myNode immediate

testConnection
A convenience method communicates with the DataSourceCfgHelper
Mbean to test a DataSource connection. This command works with
DataSource resided in the configuration repository. If the DataSource to be
tested is in the temporary workspace that holds the update to the

78 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

repository, you have to save the update to the configuration repository
before running this command. Use this method with the configuration ID
that corresponds to the DataSource and the WAS40DataSource object types.
The return value is a message containing the message indicating a
successful connection or a connection with warning. If the connection fails,
an exception is thrown from the server indicating the error.

 Parameters: configId — java.lang.String
Return Type: java.lang.String

 Example usage:
set ds [lindex
[$AdminConfig
list DataSource] 0]
$AdminControl
testConnection $ds
 Example output:
WASX7217I: Connection
to provided datasource
was successful.

TestConnection
Deprecated.

 This command can give false results and does not work when connected to
a NodeAgent. As of V5.0.2, the preferred way to test a Datasource
connection is with the testConnection command passing in the DataSource
configId as the only parameter.

 Parameters: configId — java.lang.String; props — java.lang.String
Return Type: java.lang.String

 Example usage:
set ds [lindex
[$AdminConfig
list DataSource] 0]
$AdminControl
testConnection $ds
{{prop1 val1}}
 Example output:
WASX7390E: Operation
not supported -
testConnection command
with config id
and properties arguments
is not supported. Use
testConnection command with
config id argument only.

trace Sets the trace specification for the scripting process to the value that you
specify.

 Parameters: traceSpec — java.lang.String
Return Type: none

 Example usage:
$AdminControl trace
com.ibm.ws.scripting.
*=all=enabled

Chapter 3. Deploying and managing using scripting 79

Example: Collecting arguments for the AdminControl object
Ensure the arguments parameter is a single string. Each individual argument in the
string can contain spaces. Collect each argument that contains spaces in some way.
v An example of how to obtain an MBean follows:

 set am [$AdminControl
queryNames type=
ApplicationManager,
process=server1,*]

v There are three ways to collect arguments that contain spaces. Choose one of the
following alternatives:
– $AdminControl invoke $am startApplication {″JavaMail Sample″}

– $AdminControl invoke $am startApplication {{JavaMail Sample}}

– $AdminControl invoke $am startApplication ″\″JavaMail Sample\″″

AdminConfig object for scripted administration
Use the AdminConfig object to invoke configuration commands and to create or
change elements of the WebSphere Application Server configuration.

You can start the scripting client without a running server, if you only want to use
local operations. To run in local mode, use the -conntype NONE option to start the
scripting client. You will receive a message that you are running in the local mode.
If a server is currently running it is not recommended to run the AdminConfig tool
in local mode.

The following public methods are available for the AdminConfig object:

attributes
Returns a list of the top level attributes for a given type.

 Arguments: object type

Note: The name of the object type that you
input here is the one based on the XML
configuration files and does not have to be
the same name that the administrative
console displays.

Returns: a list of attributes

 Example usage:
$AdminConfig attributes
ApplicationServer
 Example output:
"properties Property*"
"serverSecurity
ServerSecurity" "server
Server@" "id Long"
"stateManagement
StateManageable"
"name String"
"moduleVisibility
EEnumLiteral(MODULE,
COMPATIBILITY, SERVER,
APPLICATION)" "services
Service*"
"statisticsProvider
StatisticsProvider"

80 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

checkin
Checks a file, that the document URI describes, into the configuration
repository.

 Note: This method only applies to deployment manager configurations.

 Arguments: document URI, filename, opaque object
Returns: none

 Example usage:
$AdminConfig checkin
cells/MyCell/Node/MyNode/
serverindex.xml
c:\\mydir\myfile $obj

The document URI is relative to the root of the configuration repository,
for example, c:\WebSphere\AppServer\config. The file specified by
filename is used as the source of the file to check. The opaque object is an
object that the extract command of the AdminConfig object returns by a
prior call.

contents
Obtains information about object types.

 Arguments: object type

Note: The name of the object type that you
input here is the one based on the XML
configuration files and does not have to be
the same name that the administrative
console displays.

Returns: a list of object types

 Example usage:
$AdminConfig contents
JDBCProvider
 Example output:
{DataSource DataSource}
{WAS40DataSource
WAS40DataSource}

convertToCluster
Converts a server so that it is the first member of a new ServerCluster.

 Arguments: server id, cluster name
Returns: the configuration id of the new cluster

 Example usage:
set serverid [$AdminConfig
getid /Server:myServer/]
$AdminConfig convertToCluster
$serverid myCluster
 Example output:
myCluster(cells/mycell/
clusters/myCluster:cluster.
xml#ClusterMember_2

create Creates configuration objects.

Chapter 3. Deploying and managing using scripting 81

Arguments: type, parent ID, attributes

Note: The name of the object type that you
input here is the one based on the XML
configuration files. It does not have to be the
same name that the administrative console
displays.

Returns: a string with configuration object names

 Example usage:
set jdbc1 [$AdminConfig
getid /JDBCProvider:jdbc1/]
$AdminConfig create
DataSource $jdbc1 {{name ds1}}
 Example output:
ds1(cells/mycell/nodes/
DefaultNode/servers/server1:
resources.xml#DataSource_6)

createClusterMember
Creates a new server as a member of an existing cluster.

 This method creates a new server object on the node that the node id
argument specifies. This server is created as a new member of the existing
cluster specified by the cluster id argument, and contains attributes
specified in the member attributes argument. The server is created using
the server template specified by the template id attribute, and contains the
name specified by the memberName attribute. The memberName attribute is
required.

 Arguments: cluster id, node id, member attributes

Note: The name of the object type that you
input here is the one based on the XML
configuration files. It does not have to be the
same name that the administrative console
displays.

Returns: the configuration id of the new cluster
member

 Example usage:
set clid [$AdminConfig
getid /ServerCluster:
myCluster/]
set nodeid [$AdminConfig
getid /Node:mynode/]
set template [$AdminConfig
getid /Node:mynode/
Server:myServer/]
$AdminConfig
createClusterMember
$clid $nodeid
{{memberName newMem1}
{weight 5
$template
 Example output:
myCluster(cells/mycell/
clusters/myCluster:cluster.
xml#ClusterMember_2)

82 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

createDocument
Creates a new document in the configuration repository.

 The documentURI argument names the document to create in the repository.
The filename argument must be a valid local file name where the contents
of the document exist.

 Arguments: documentURI, filename
Returns: none

 Example usage:
$AdminConfig createDocument
cells/mycell/myfile.xml
c:\\mydir\\myfile

createUsingTemplate
Creates a type of object with the given parent, using a template.

 Arguments: type, parent id, attributes, template ID
Returns: the configuration ID of a new object

 Example usage:
set node [$AdminConfig
getid /Node:
mynode/]
set templ [$AdminConfig
listTemplates JDBCProvider
"DB2 JDBC Provider (XA)"]
$AdminConfig
createUsingTemplate
JDBCProvider $node
{{name
newdriver}}
$templ

defaults
Displays the default values for attributes of a given type.

 This method displays all of the possible attributes contained by an object
of a specific type. If the attribute has a default value, this method also
displays the type and default value for each attribute.

 Arguments: type

Note: The name of the object type that you
input here is the one based on the XML
configuration files. It does not have to be the
same name that the administrative console
displays.

Returns: a string containing a list of attributes with its
type and value

 Example usage:
$AdminConfig defaults
TuningParams
 Example output:
Attribute Type Default
 usingMultiRowSchema Boolean false
 maxInMemorySessionCount Integer 1000
 allowOverflow Boolean true
 scheduleInvalidation Boolean false

Chapter 3. Deploying and managing using scripting 83

writeFrequency ENUM
 writeInterval Integer 120
 writeContents ENUM
 invalidationTimeout Integer 30
 invalidationSchedule InvalidationSchedule

deleteDocument
Deletes a document from the configuration repository.

 The documentURI argument names the document that will be deleted from
the repository.

 Arguments: documentURI
Returns: none

 Example usage:
$AdminConfig deleteDocument
cells/mycell/myfile.xml

existsDocument
Tests for the existence of a document in the configuration repository.

 The documentURI argument names the document to test in the repository.

 Arguments: documentURI
Returns: a true value if the document exists

 Example usage:
$AdminConfig existsDocument
cells/mycell/myfile.xml
 Example output:
1

extract Extracts a configuration repository file described by document URI and
places it in the file named by filename.

 Note: This method only applies to deployment manager configurations.

 Arguments: document URI, filename
Returns: an opaue java.lang.Object to use when checking in the file

 Example usage:
set obj [$AdminConfig
extract cells/MyCell/
Node/MyNode/
serverindex.xml
c:\\mydir\myfile]

The document URI is relative to the root of the configuration repository,
for example, c:\WebSphere\AppServer\config. If the file specified by
filename exists, the extracted file replaces it.

getCrossDocumentValidationEnabled
Returns a message with the current cross-document enablement setting.

 This method returns true if cross-document validation is enabled.

 Arguments: none
Returns: a string containing the message with the cross-document validation setting

 Example usage:

84 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

$AdminConfig
getCrossDocumentValidationEnabled
 Example output:
WASX7188I: Cross-document
validation enablement
set to true

getid Returns the configuration id of an object.

 Arguments: containment path
Returns: the configuration id for an object described by the given containment path

 Example usage:
$AdminConfig getid
/Cell:testcell/Node:
testNode/JDBCProvider:
Db2JdbcDriver/
 Example output:
Db2JdbcDriver(cells/
testcell/nodes/testnode/
resources.xml#
JDBCProvider_1)

getObjectName
Returns a string version of the object name for the corresponding running
MBean.

 This method returns an empty string if there is no corresponding running
MBean.

 Arguments: configuration id
Returns: a string containing the object name

 Example usage:
set server [$AdminConfig
getid /Node:mynode/
Server:server1/]
$AdminConfig
getObjectName $server
 Example output:
WebSphere:cell=mycell,
name=server1,mbeanIdentifier
=cells/mycell/nodes/mynode/
servers/server1/server.xml#
Server_1,type=Server,node=
mynode,process=server1,
processType=UnManagedProcess

getSaveMode
Returns the mode used when you invoke a save command.

 Possible values include the following:
v overwriteOnConflict - saves changes even if they conflict with other

configuration changes
v rollbackOnConflict - causes a save operation to fail if changes conflict

with other configuration changes. This value is the default.

 Arguments: none
Returns: a string containing the current save mode setting

Chapter 3. Deploying and managing using scripting 85

Example usage:
$AdminConfig getSaveMode
 Example output:
rollbackOnConflict

getValidationLevel
Returns the validation used when files are extracted from the repository.

 Arguments: none
Returns: a string containing the validation level

 Example usage:
$AdminConfig
getValidationLevel
 Example output:
WASX7189I: Validation
level set to HIGH

getValidationSeverityResult
Returns the number of validation messages with the given severity from
the most recent validation.

 Arguments: severity
Returns: a string indicating the number of validation messages of the given severity

 Example usage:
$AdminConfig
getValidationSeverityResult 1
 Example output:
16

hasChanges
Returns true if unsaved configuration changes exist.

 Arguments: none
Returns: a string indicating if unsaved configuration changes exist

 Example usage:
$AdminConfig hasChanges
 Example output:
1

help Displays static help information for the AdminConfig object.

 Arguments: none
Returns: a list of options

 Example usage:
$AdminConfig help
 Example output:
WASX7053I: The AdminConfig
 object communicates
 with the
 Config Service in
 a WebSphere server
 to manipulate
 configuration data
 for a WebSphere

86 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

installation.
 AdminConfig has
 commands to list,
 create, remove,
 display, and modify
 configuration data,
 as well as commands to
 display information
 about configuration
 data types.

 Most of the commands
 supported by AdminConfig
 operate in two modes:
 the default mode is one
 in which AdminConfig
 communicates with the
 WebSphere server to
 accomplish its tasks.
 A local mode is also
 possible, in which no
 server communication
 takes place. The local
 mode of operation is
 invoked by bringing up
 the scripting client with
 no server connected using
 the command line
 "-conntype NONE" option
 or setting the
 "com.ibm.ws.scripting.
 connectionType=NONE"
 property in
 the wsadmin.properties.

 The following commands
 are supported by
 AdminConfig; more
 detailed
 information about
 each of these commands
 is available by using the
 "help" command of
 AdminConfig and supplying
 the name of the command
 as an argument.

attributes Show the
 attributes for a
 given type
checkin Check a file into
 the the config
 repository.
convertToCluster
 converts a server
 to be the first
 member of a
 new ServerCluster
create Creates a
 configuration object,
 given a type, a
 parent, and
 a list of attributes,
 and optionally an
 attribute name
 for the
 new object

Chapter 3. Deploying and managing using scripting 87

createClusterMember
 Creates a new
 server that is
 a member of an
 existing cluster.
createDocument Creates a new document
 in the config
 repository.
installResourceAdapter
 Installs a J2C
 resource adapter
 with the given rar
 file name and an
 option string
 in the node.
createUsingTemplate
 Creates an object
 using a particular
 template type.
defaults Displays the default
 values for attributes
 of a given type.
deleteDocument Deletes a document
 from the config
 repository.
existsDocument Tests for the existence
 of a document in the
 config repository.
extract Extract a file from
 the config repository.
getCrossDocumentValidationEnabled
 Returns true if
 cross-document
 validation is enabled.
getid Show the configId
 of an object, given
 a string version of
 its containment
getObjectName Given a config id,
 return a string
 version of the
 ObjectName
 for the corresponding
 running MBean, if any.
getSaveMode Returns the mode
 used when "save"
 is invoked
getValidationLevel
 Returns the validation
 used when files are
 extracted from the
 repository.
getValidationSeverityResult
 Returns the number
 of messages of
 a given
 severity from
 the most recent
 validation.
hasChanges Returns true if
 unsaved configuration
 changes exist
help Show help information
list Lists all
 configuration objects
 of a given type
listTemplates Lists all available

88 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

configuration templates
 of a given
 type.
modify Change specified
 attributes of a given
 configuration object
parents Show the objects which
 contain a given type
queryChanges Returns a list of
 unsaved files
remove Removes the specified
 configuration object
required Displays the required
 attributes of a
 given type.
reset Discard unsaved
 configuration changes
save Commit unsaved changes
 to the configuration
 repository
setCrossDocumentValidationEnabled
 Sets the cross-document
 validation enabled mode.
setSaveMode Changes the mode used
 when "save" is invoked
setValidationLevel
 Sets the validation
 used when files are
 extracted from the
 repository.
show Show the attributes
 of a given
 configuration object
showall Recursively show the
 attributes of a given
 configuration
 object, and all the
 objects contained
 within each attribute.
showAttribute Displays only the value
 for the single
 attribute specified.
types Show the possible types
 for configuration
validate Invokes validation

installResourceAdapter
Installs a J2C resource adapter with the given RAR file name and an option
string in the node.

 The RAR file name is the fully qualified file name that resides in the node
that you specify. The valid options include the following:
v rar.name

v rar.desc

v rar.archivePath

v rar.classpath

v rar.nativePath

All options are optional. The rar.name option is the name for the
J2CResourceAdapter. If you do not specify this option, the display name in
the rar deployment descriptor is used. If that is not specified, the RAR file
name is used. The rar.desc option is a description of the
J2CResourceAdapter. The rar.archivePath is the name of the path where
the file is to be extracted. If you do not specify this option, the archive will

Chapter 3. Deploying and managing using scripting 89

be extracted to the $\{CONNECTOR_INSTALL_ROOT\} directory. The
rar.classpath is the additional class path.

 Arguments: rar file name, node, options
Returns: the configuration id of new J2CResourceAdapter object

 Example usage:
$AdminConfig
installResourceAdapter
c:/rar/mine.rar
{-rar.name myResourceAdapter
-rar.desc "My rar file"}
mynode
 Example output:
myResourceAdapter(cells/
mycell/nodes/mynode:
resources.xml#
J2CResourceAdapter_1)

list Returns a list of objects of a given type, possibly scoped by a parent.

 Arguments: object type

Note: The name of the object type that you
input here is the one based on the XML
configuration files and does not have to be
the same name that the administrative
console displays.

Returns: a list of objects

 Example usage:
$AdminConfig list
JDBCProvider
 Example output:
Db2JdbcDriver(cells/mycell
/nodes/DefaultNode/resources.
xml#JDBCProvider_1)
Db2JdbcDriver(cells/mycell/
nodes/DefaultNode/servers/
deploymentmgr/resources.xml#
JDBCProvider_1) Db2JdbcDriver
(cells/mycell/nodes/DefaultNode
/servers/nodeAgent/resources.
xml#JDBCProvider_1)

listTemplates
Displays a list of template object IDs.

 Arguments: object type

Note: The name of the object type that you
input here is the one based on the XML
configuration files and does not have to be
the same name that the administrative
console displays.

Returns: a list of template IDs

 Example usage:
$AdminConfig listTemplates
JDBCProvider

90 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

This example displays a list of all JDBCProvider templates available on the
system.

modify
Supports modification of object attributes.

 Argurments: object, attributes
Returns: none

 Example usage:
$AdminConfig modify
ConnFactory1(cells/mycell/
nodes/DefaultNode/servers/
deploymentmgr/resources.xml#
GenericJMSConnectionFactory_1)
{{userID newID}
{password newPW}}

parents
Obtains information about object types.

 Arguments: object type

Note: The name of the object type that you
input here is the one based on the XML
configuration files and does not have to be
the same name that the administrative
console displays.

Returns: a list of object types

 Example usage:
$AdminConfig parents
JDBCProvider
 Example output:
Cell
Node
Server

queryChanges
Returns a list of unsaved configuration files.

 Arguments: none
Returns: a string containing a list of files with unsaved changes

 Example usage:
$AdminConfig queryChanges
 Example output:
WASX7146I: The following
configuration files
contain unsaved changes:
cells/mycell/nodes/
mynode/servers/server1/
resources.xml

remove
Removes a configuration object.

 Arguments: object
Returns: none

Chapter 3. Deploying and managing using scripting 91

Example usage:
$AdminConfig remove
ds1(cells/mycell/nodes/
DefaultNode/servers/
server1:resources.xml#
DataSource_6)

required
Displays the required attributes contained by an object of a certain type.

 Argument: type

Note: The name of the object type that you
input here is the one based on the XML
configuration files. It does not have to be the
same name that the administrative console
displays.

Returns: a string containing a list of required
attributes with its type

 Example usage:
$AdminConfig required
URLProvider
 Example output:
Attribute Type
streamHandlerClassName String
protocol String

reset Resets the temporary workspace that holds updates to the configuration.

 Arguments: none
Returns: none

 Example usage:
$AdminConfig reset

save Saves changes in the configuration repository.

 Arguments: none
Returns: none

 Example usage:
$AdminConfig save

setCrossDocumentValidationEnabled
Sets the cross-document validation enabled mode. Values include true or
false.

 Argument: flag
Returns: none

 Example usage:
$AdminConfig
setCrossDocumentValidationEnabled
true

setSaveMode
Allows you to toggle the behavior of the save command. The default is
rollbackOnConflict. When a conflict is discovered while saving, the

92 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

unsaved changes are not committed. The alternative is
overwriteOnConflict which saves the changes to the configuration
repository even if there are conflicts.

 Arguments: mode
Returns: none

 Example usage:
$AdminConfig setSaveMode
overwriteOnConflict

setValidationLevel
Sets the validation used when files are extracted from the repository.

 There are five validation levels: none, low, medium, high, or highest.

 Argument: level
Returns: a string containing the validation level setting

 Example usage:
$AdminConfig
setValidationLevel
high
 Example output:
WASX7189I: Validation
level set to HIGH

show Returns the top level attributes of the given object.

 Arguments: object, attributes
Returns: a string containing the attribute value

 Example usage:
$AdminConfig show
Db2JdbcDriver(cells/
mycell/nodes/DefaultNode/
resources.xm#JDBCProvider_1)
 Example output:
{name "Sample Datasource"}
{description "Data source
for the Sample entity beans"}

showall
Recursively shows the attributes of a given configuration object.

 Arguments: object, attributes
Returns: a string containing the attribute value

 Example usage:
$AdminConfig showall
"Default Datasource
(cells/mycell/nodes/
DefaultNode/servers/
server1:resources.xml#
DataSource_1)
 Example output:
{authMechanismPreference
BASIC_PASSWORD}
{category default}

Chapter 3. Deploying and managing using scripting 93

{connectionPool
{{agedTimeout 0}
{connectionTimeout 1000}
{maxConnections 30}
{minConnections 1}
{purgePolicy
FailingConnectionOnly}
{reapTime 180}
{unusedTimeout 1800}}}
{datasourceHelperClassname
com.ibm.websphere.
rsadapter.
CloudscapeDataStoreHelper}
{description
"Datasource for the
WebSphere Default
Application"}
{jndiName
DefaultDatasource}
{name "Default Datasource"}
{propertySet
{{resourceProperties
{{{description "Location
of Cloudscape default
database."}
{name databaseName}
{type java.lang.String}
{value ${WAS_INSTALL_ROOT}
/bin/DefaultDB}}
{{name remoteDataSourceProtocol}
{type java.lang.String}
{value {}}}
{{name shutdownDatabase}
{type java.lang.String}
{value {}}}
{{name dataSourceName}
{type java.lang.String}
{value {}}}
{{name description}
{type java.lang.String}
{value {}}}
{{name connectionAttributes}
{type java.lang.String}
{value {}}} {{name createDatabase}
{type java.lang.String}
{value {}}}}}}}
{provider "Cloudscape JDBC
Driver(cells/pongo/nodes/
pongo/servers/server1:
resources.xml#
JDBCProvider_1)"}
{relationalResourceAdapter
"WebSphere Relational Resource
Adapter(cells/pongo/nodes/
pongo/servers/server1:
resources.xml#builtin_rra)"}
{statementCacheSize 0}

showAttribute
Displays only the value for the single attribute that you specify.

 The output of this command is different from the output of the show
command when a single attribute is specified. The showAttribute
command does not display a list that contains the attribute name and
value. It only displays the attribute value.

94 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Argument: config id, attribute
Returns: a string containing the attribute value

 Example usage:
set ns [$AdminConfig
getid /Node:mynode/]
$AdminConfig
showAttribute $n hostName
 Example output:
mynode

types Returns a list of the configuration object types that you can manipulate.

 Arguments: none
Returns: a list of object types

 Example usage:
$AdminConfig types
 Example output:
AdminService
Agent
ApplicationConfig
ApplicationDeployment
ApplicationServer
AuthMechanism
AuthenticationTarget
AuthorizationConfig
AuthorizationProvider
AuthorizationTableImpl
BackupCluster
CMPConnectionFactory
CORBAObjectNameSpaceBinding
Cell
CellManager
Classloader
ClusterMember
ClusteredTarget
CommonSecureInteropComponent

validate
Invokes validation.

 This command requests configuration validation results based on the files
in your workspace, the value of the cross-document validation enabled
flag, and the validation level setting. The scope of this request is the object
named by the config id argument.

 Argument: config id
Returns: a string containing results of validation

 Example usage:
$AdminConfig validate
 Example output:
WASX7193I: Validation
results are logged in
c:\WebSphere5\AppServer\
logs\wsadmin.valout:
Total number of

Chapter 3. Deploying and managing using scripting 95

messages: 16
WASX7194I: Number of
messages of
severity 1: 16

ObjectName, Attribute, and AttributeList
WebSphere Application Server scripting commands use the underlying Java
Management Extensions (JMX) classes, ObjectName, Attribute, and AttributeList, to
manipulate object names, attributes and attribute lists.

WebSphere Application Server ObjectNames uniquely identify running objects.
ObjectNames consist of the following:
v The domain name WebSphere.
v Several key properties, for example:

– type - Indicates the type of object that is accessible through the MBean. For
example, ApplicationServer, EJBContainer

– name - Represents the display name of the particular object. For example,
MyServer

– node - Represents the name of the node on which the object runs
– process - Represents the name of the server process in which the object runs
– mbeanIdentifier - Correlates the MBean instance with corresponding

configuration data

When ObjectNames classes are represented by strings, they have the following
pattern:
[domainName]:property=
value[,property=value]*

For example, you can specify WebSphere:name=My Server,
type=ApplicationServer,node=n1,* to specify an application server named My
Server on node n1. (The asterisk is a wild card character, used so that you do not
have to specify the entire set of key properties.) The AdminControl commands that
take strings as parameters expect strings that look like this example when
specifying running objects (MBeans). You can obtain the ObjectName for a running
object with the getObjectName command.

Attributes of these objects consist of a name and a value. You can extract the name
and value with the getName and getValue commands. You can also extract a list
of attributes.

Modifying nested attributes with the wsadmin tool
The attributes for a WebSphere Application Server configuration object are often
deeply nested. For example, a JDBCProvider object has an attribute factory, which
is a list of the J2EEResourceFactory type objects. These objects can be DataSource
objects that contain a connectionPool attribute with a ConnectionPool type that
contains a variety of primitive attributes.

Steps for this task
1. Invoke the AdminConfig object commands interactively, in a script, or use the

wsadmin -c commands from an operating system command prompt.
2. Obtain the configuration ID of the object, for example:

96 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

set t1 [$AdminConfig
getid /DataSource:
TechSamp/]

where:

 set is a Jacl command
t1 is a variable name
$AdminConfig is an object representing the WebSphere Application Server

configuration
getid is an AdminConfig command
DataSource is the object type
<i>TechSamp</i> is the name of the object that will be modified

3. Modify one of the object parents and specify the location of the nested attribute
within the parent, for example:
 $AdminConfig modify
$t1 {{connectionPool
{{reapTime
2003}}}}

where:

 $AdminConfig is an object representing the WebSphere Application Server
configuration

modify is an AdminConfig command
$t1 evaluates to the ID of host node specified in step number 2
connectionPool is an attribute
reapTime is a nested attribute within the connectionPool attribute
<i>2003</i> is the value of the reapTime attribute

4. Save the configuration by issuing an AdminConfig save command.
 For example:
$AdminConfig save
 Use the reset command of the AdminConfig object to undo changes that you
made to your workspace since your last save.

Usage scenario

An alternative way to modify nested attributes is to modify the nested attribute
directly, for example:
set techsamp [$AdminConfig
getid /DataSource:TechSamp/]
set poolattribute
[$AdminConfig show
$techsamp connectionPool]
set pool [lindex
[lindex $poolattribute 0] 1]
$AdminConfig modify $pool
{{reapTime 2003}}

In this example, the first command gets the configuration id of the DataSource,
and the second command gets the connectionPool attribute. You need the third
command because show returns a list of name and value pairs, and you need to
extract the actual value of the connectionPool attributes. The fourth command sets
the reapTime attribute on the ConnectionPool object directly.

Chapter 3. Deploying and managing using scripting 97

Managing configurations with scripting
Configuration management scripts use the AdminConfig object to access the
repository where configuration information is stored. You can use the
AdminConfig object to list configuration objects and their attributes, create
configuration objects, modify configuration objects, remove configuration objects,
and obtain help.

Steps for this task
1. Decide how you want to execute the script. If you want to run the script

immediately from the command line, enter it surrounded by quotes as a
parameter to the wsadmin -c command. To save the script for repeated use,
compose it in a file and execute it with the wsadmin -f command. If you want
to compose and run the script interactively, issue the wsadmin command
without the -c or -f flags. For more information about executing scripts, see
Launching scripting clients

2. Write an AdminConfig script command statement to perform a management
task, for example:
 $AdminConfig command

3. Save the configuration changes with the following command:
 $AdminConfig save
 Use the reset command of the AdminConfig object to undo changes that you
made to your workspace since your last save.

Creating configuration objects using the wsadmin tool
Perform this task if you want to create an object. To create new objects from the
default template, use the create command. Alternatively, you can create objects
using an existing object as a template with the createFromTemplate command.

Steps for this task
1. Invoke the AdminConfig object commands interactively, in a script, or use the

wsadmin -c command from an operating system command prompt.
2. Use the AdminConfig object listTemplates command to list available templates:

 $AdminConfig listTemplates
JDBCProvider

where:

 $AdminConfig is an object representing the WebSphere Application Server configuration
listTemplates is an $AdminConfig command
JDBCProvider is an object type

3. Assign the ID string that identifies the existing object to which the new object
is added. You can add the new object under any valid object type. The
following example uses a node as the valid object type:
 set n1 [$AdminConfig
getid /Node:
mynode/]

where:

 set is a Jacl command
n1 is a variable name

98 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

$AdminConfig is an object representing the WebSphere Application Server
configuration

getid is an $AdminConfig command
Node is the object type
<i>mynode</i> is the host name of the node where the new object is added

4. Specify the template that you want to use:
 set tl [$AdminConfig
listTemplates JDBCProvider
"DB2 JDBC Provider (XA)"]

 set is a Jacl command
tl is a variable name
listTemplates is an $AdminConfig command
JDBCProvider is an object type
<i>DB2 JDBC Provider (XA)</i> is the name of the template to use for the

new object

 If you supply a string after the name of a type, you get back a list of templates
with display names that contain the string you supplied. In this example, the
AdminConfig listTemplates command returns the JDBCProvider template
whose name matches DB2 JDBC Provider (XA).

5. Create the object with the following command:
 $AdminConfig
createUsingTemplate
JDBCProvider $n1
{{name
newdriver}}
$tl

where:

 createUsingTemplate is an AdminConfig command
JDBCProvider is an object type
$n1 evaluates the ID of the host node specified in step number 3
name is an attribute of JDBCProvider objects
<i>newdriver</i> is the value of the name attribute
$tl evaluates the ID of the template specified in step number 4

 Note: All create commands use a template unless there are no templates to use.
If a default template exists, the command creates the object.

6. Save the configuration changes with the following command:
 $AdminConfig save
 Use the reset command of the AdminConfig object to undo changes that you
made to your workspace since your last save.

Specifying configuration objects using the wsadmin tool
To manage an existing configuration object, you identify the configuration object
and obtain configuration ID of the object to be used for subsequent manipulation.

Steps for this task
1. Invoke the AdminConfig object commands interactively, in a script, or use the

wsadmin -c command from an operating system command prompt.

Chapter 3. Deploying and managing using scripting 99

2. Obtain the configuration ID with one of the following ways:
v Obtain the ID of the configuration object with the getid command, for

example:
 set var [$AdminConfig
getid /type:
name/]

 set is a Jacl command
n1 is a variable name
$AdminConfig is an object representing the WebSphere

Application Server configuration
getid is an $AdminConfig command
/type:<i>name</i>/ is the hierarchical containment path of the

configuration object
type is the object type

Note: The name of the object type that you
input here is the one based on the XML
configuration files and does not have to be
the same name that the administrative
console displays.

<i>name</i> is the optional name of the object

 You can specify multiple /type:name/ in the string, for example,
/type:name/type:name/type:name/. If you just specify the type in the
containment path without the name, include the colon, for example, /type:/.
The containment path must be a path containing the correct hierarchical
order. For example, if you specify /Server:server1/Node:node/ as the
containment path, you will not receive a valid configuration ID because Node
is parent of Server and should come before Server in the hierarchy.

 This command returns all the configuration IDs that match the representation
of the containment and assigns them to a variable.

 To look for all the server configuration IDs resided in mynode, use the
following example:
set nodeServers
[$AdminConfig getid
/Node:mynode/Server:/]

To look for server1 configuration ID resided in mynode, use the following
example:
set server1 [$AdminConfig
 getid /Node:mynode
/Server:server1/]

To look for all the server configuration IDs, use the following example:
set servers [$AdminConfig
getid /Server:/]

v Obtain the ID of the configuration object with the list command, for
example:
 set var [$AdminConfig
list type]

or

100 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

set var [$AdminConfig
list type scopeId]

where:

 set is a Jacl command
var is a variable name
$AdminConfig is an object representing the WebSphere

Application Server configuration
list is an $AdminConfig command
type is the object type

Note: The name of the object type that you
input here is the one based on the XML
configuration files and does not have to be
the same name that the administrative
console displays.

<i>scopeId</i> is the configuration ID of a cell, node, or
server object

This command returns a list of configuration object IDs of a given type. If
you specify the scopeId, the list of objects returned is within the scope
specified. The list returned is assigned to a variable.

 To look for all the server configuration IDs, use the following example:
set servers [$AdminConfig
list Server]

To look for all the server configuration IDs in mynode, use the following
example:
set scopeid [$AdminConfig
getid /Node:mynode/]
set nodeServers [$AdminConfig
list Server $scopeid]

3. If there are more than more configuration IDs returned from the getid or list
command, the IDs are returned in a list syntax. One way to retrieve a single
element from the list is to use the lindex command. The following example
retrieves the first configuration ID from the server object list:
 set allServers [$AdminConfig
getid /Server:/]
set aServer [lindex
$allServer 0]
 For other ways to manipulate the list and then perform pattern matching to
look for a specified configuration object, refer to the Jacl syntax.

Results

You can now use the configuration ID in any subsequent AdminConfig commands
that require a configuration ID as a parameter.

Listing attributes of configuration objects using the wsadmin
tool

Steps for this task
1. Invoke the AdminConfig object commands interactively, in a script, or use the

wsadmin -c command from an operating system command prompt.
2. List the attributes of a given configuration object type, using the attributes

command, for example:

Chapter 3. Deploying and managing using scripting 101

$AdminConfig
attributes type

where:

 $AdminConfig is an object representing the WebSphere Application Server configuration
attributes is an $AdminConfig command
type is an object type

This command returns a list of attributes and its data type.

 To get a list of attributes for the JDBCProvider type, use the following example
command:
$AdminConfig attributes
JDBCProvider

3. List the required attributes of a given configuration object type, using the
required command, for example:
 $AdminConfig required type

where:

 $AdminConfig is an object representing the WebSphere Application Server configuration
required is an $AdminConfig command
type is an object type

This command returns a list of required attributes.

 To get a list of required attributes for the JDBCProvider type, use the following
example command:
$AdminConfig required
JDBCProvider

4. List attributes with defaults of a given configuration object type, using the
defaults command, for example:
 $AdminConfig defaults
type

where:

 $AdminConfig is an object representing the WebSphere Application Server configuration
defaults is an $AdminConfig command
type is an object type

This command returns a list of all attributes, types, and defaults.

 To get a list of attributes with defaults displayed for the JDBCProvider type,
use the following example command:
$AdminConfig defaults
JDBCProvider

Modifying configuration objects with the wsadmin tool
Steps for this task
1. Invoke the AdminConfig object commands interactively, in a script, or use

wsadmin -c from an operating system command prompt.
2. Retrieve the configuration ID of the objects that you want to modify, for

example:

102 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

set jdbcProvider1
[$AdminConfig getid
/JDBCProvider:
myJdbcProvider/]

where:

 set is a Jacl command
jdbcProvider1 is a variable name
$AdminConfig is an object representing the WebSphere

Application Server configuration
getid is an $AdminConfig command
/JDBCProvider:<i>myJdbcProvider</i>/ is the hierarchical containment path of the

configuration object
JDBCProvider is the object type
<i>myJdbcProvider</i> is the optional name of the object

3. Show the current attribute values of the configuration object with the show
command, for example:
 $AdminConfig show
$jdbcProvider1

where:

 $AdminConfig is an object representing the WebSphere Application Server configuration
show is an AdminConfig command
$jdbcProvider1 evaluates to the ID of host node specified in step number 2

4. Modify the attributes of the configuration object, for example:
 $AdminConfig modify
$jdbcProvider1
{{description "
This is my new
description"}}

where:

 $AdminConfig is an object representing the WebSphere
Application Server configuration

modify is an AdminConfig command
$jdbcProvider1 evaluates to the ID of host node specified in

step number 3
description is an attribute of server objects
<i>This is my new description</i> is the value of the description attribute

 You can also modify several attributes at the same time. For example:
{{name1 val1} {name2 val2} {name3 val3}}

5. Save the configuration changes with the following command:
 $AdminConfig save
 Use the reset command of the AdminConfig object to undo changes that you
made to your workspace since your last save.

Chapter 3. Deploying and managing using scripting 103

Removing configuration objects with the wsadmin tool
Use this task to delete a configuration object from the configuration repository.
This action only affects the configuration. If there is a running instance of a
configuration object when you remove the configuration, the change has no effect
on the running instance.

Steps for this task
1. Invoke the AdminConfig object commands interactively, in a script, or use the

wsadmin -c command from an operating system command prompt.
2. Assign the ID string that identifies the server you want to remove:

 set s1 [$AdminConfig
getid /Node:
mynode/
Server:
myserver/]

where:

 set is a Jacl command
s1 is a variable name
$AdminConfig is an object representing the WebSphere Application Server

configuration
getid is an $AdminConfig command
Node is an object type
<i>mynode</i> is the host name of the node from which the server is removed
Server is an object type
<i>myserver</i> is the name of the server to remove

3. Issue the following command:
 $AdminConfig remove $s1

where:

 remove is an AdminConfig command
$s1 evaluates the ID of the server specified in step number 2

4. Save the configuration changes with the following command:
 $AdminConfig save
 Use the reset command of the AdminConfig object to undo changes that you
made to your workspace since your last save.

Results

The WebSphere Application Server configuration no longer contains a specific
server object. Running servers are not affected.

Changing the WebSphere Application Server configuration
using wsadmin

Before you begin

For this task, the wsadmin scripting client must be connected to the deployment
manager server.

104 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

You can use the wsadmin AdminConfig and AdminApp objects to make changes
to the WebSphere Application Server configuration. The purpose of this article is to
illustrate the relationship between the commands used to change the configuration
and the files used to hold configuration data. This discussion assumes that you
have a network deployment installation, but the concepts are very similar for a
WebSphere Application Server installation.

Steps for this task
1. Invoke the AdminConfig object commands interactively, in a script, or use the

wsadmin -c commands from an operating system command prompt.
2. Set a variable for creating a server:

 set n1 [$AdminConfig
getid /Node:
mynode/]

where:

 set is a Jacl command
n1 is a variable name
$AdminConfig is an object representing the WebSphere Application Server

configuration
getid is an AdminConfig command
Node is the object type
<i>mynode</i> is the name of the object that will be modified

3. Create a server with the following command:
 set serv1 [$AdminConfig
create Server $n1
{{name myserv}}]

where:

 set is a Jacl command
serv1 is a variable name
$AdminConfig is an object representing the WebSphere Application Server

configuration
create is an AdminConfig command
Server is an AdminConfig object
$n1 evaluates to the ID of host node specified in step number 2
name is an attribute
<i>myserv</i> is the value of the name attribute

 After this command completes, some new files can be seen in a workspace
used by the deployment manager server on behalf of this scripting client. A
workspace is a temporary repository of configuration information that
administrative clients use. Any changes made to the configuration by an
administrative client are first made to this temporary workspace. For scripting,
only when a save command is invoked on the AdminConfig object, these
changes are transferred to the real configuration repository. Workspaces are
kept in the wstemp subdirectory of a WebSphere Application Server installation.

4. Make a configuration change to the server with the following command:
 $AdminConfig modify
$serv1 {{stateManagement
{{initialState STOP}}}}

Chapter 3. Deploying and managing using scripting 105

where:

 $AdminConfig is an object representing the WebSphere Application Server
configuration

modify is an AdminConfig command
$serv1 evaluates to the ID of host node specified in step number 3
stateManagement is an attribute
initialState is a nested attribute within the stateManagement attribute
<i>STOP</i> is the value of the initialState attribute

 This command changes the initial state of the new server. After this command
completes, one of the files in the workspace is changed.

5. Install an application on the server.
6. Save the configuration changes with the following command:

 $AdminConfig save
 Use the reset command of the AdminConfig object to undo changes that you
made to your workspace since your last save.

7. Set the variable for node synchronize.
 Note: This step only applies to network deployment installations.A node
synchronization is necessary in order to propagate configuration changes to the
affected node or nodes. By default this occurs periodically, as long as the node
can communicate with the deployment manager. It is possible to cause this to
happen explicitly by performing the following:
 set Sync1 [$AdminControl
completeObjectName
name]

where:

 set is a Jacl command
Sync1 is a variable name
$AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere server
process

completeObjectName is an $AdminControl command
<i>name</i> is a fragment of the object name. It is used to

find the matching object name. For example:
type=Server, name=serv1,*. It can be any
valid combination of domain and key
properties. For example, type, name, cell,
node, process, etc.

8. Synchronize by issuing the following command:
 Note: This step only applies to network deployment installations.
 $AdminControl invoke
$Sync1 sync

where:

 $AdminControl is an object that enables the manipulation of
MBeans running in a WebSphere server
process

invoke is an AdminControl command
$Sync1 evaluates to the ID of the server specified in

step number 7

106 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

sync is an attribute of modify objects

 When the synchronization is complete, the files created in the
c:/WebSphere/DeploymentManager/config directory now exist on the
<i>mynode</i> node, in the c:/WebSphere/AppServer/config directory.

Configuration management examples with wsadmin
There are examples that illustrate how to perform the important configuration
management tasks. These examples show how to use features such as templates,
and AdminConfig commands. They also show how to configure security, servers,
and other resources in your installation. Basic knowledge of the syntax for the Jacl
scripting language is helpful in order to understand and modify the examples.

Example: Finding available templates
Some configuration object types, for example, Server and other resource types,
have templates that you can use when you create an object. If you create a
JDBCProvider object using the create command, this object is built with the
default template. If you know that you need a particular type of JDBCProvider
object, you can use a template for that type.

Use the AdminConfig object listTemplates command to list available templates, for
example:
$AdminConfig listTemplates
JDBCProvider

v There is a variation of this command that makes it easier to locate a particular
template or set of templates. If you supply a string after the name of a type, you
only get back a list of templates display names that contain the supplied string,
for example:
 $AdminConfig listTemplates
JDBCProvider DB2

This command returns a list of templates with display names containing DB2.
v You can use the show command with any template like any other configuration

object, to see the attributes of the template object, for example:
 set jdbc [$AdminConfig
listTemplates JDBCProvider DB2]
set jdbc1 [lindex $jdbc 0]
$AdminConfig show $jdbc1

Example: Creating new virtual hosts using a template
Some configuration object types have templates that you can use when you create
a virtual host.
v Create a new virtual host template virtualhostname.xml in the following directory:

 <WAS-ROOT
>\config\templetes
\custom\

– Copy and paste the following file into the new virtual host template:
 <WAS-ROOT>\config
\templetes\default\
virtualhosts.xml

– Edit and customize the new virtualhostname.xml file.
v Use the reset command to recognize new templates, for example:

 $AdminConfig reset

Chapter 3. Deploying and managing using scripting 107

v Use the AdminConfig object listTemplates command to list available templates,
for example:
 $AdminConfig listTemplates
VirtualHost

Example output:
 default_host
(templates/default:
virtualhosts.xml#
VirtualHost_1)
my_host(templates/
default:virtualhosts.
xml#VirtualHost_1)
 Note: To list the new templates, restart DeploymentManager or use the
AdminConfig object reset command.

v Create a new virtual host using the custom template, for example:
 set cell [$AdminConfig
getid /Cell:
NetworkDeploymentCell/]
set vtempl [$AdminConfig
listTemplates
VirtualHost my_host]
$AdminConfig
createUsingTemplate
VirtualHost $cell
{{name newVirHost}} $vtempl

v Save the changes with the following command:
 $AdminConfig save
 Note: The administrative console does not support the use of custom templates.
The new template that you create will not be visible in the administrative
console panels.

Example: Interpreting the output of the AdminConfig attributes
command
The attributes command is a wsadmin tool on-line help feature. When you issue
the attributes command, the information that displays does not represent a
particular configuration object. It represents information about configuration object
types, or object metadata. This article discusses how to interpret the attribute type
display.
v Simple attributes

 $AdminConfig attributes
ExampleType1
"attr1 String"
 Types do not display as fully qualified names. For example, String is used for
java.lang.String. There are no ambiguous type names in the model. For
example, x.y.ztype and a.b.ztype. Using only the final portion of the name is
possible, and it makes the output easier to read.

v Multiple attributes
 $AdminConfig attributes
ExampleType2
"attr1 String" "attr2 Boolean"
"attr3 Integer"
 All input and output for the scripting client takes place with strings, but attr2
Boolean indicates that true or false are appropriate values. The attr3 Integer
indicates that string representations of integers (″42″) are needed. Some
attributes have string values that can take only one of a small number of
predefined values. The wsadmin tool distinguishes these values in the output by
the special type name ENUM, for example:

108 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

$AdminConfig attributes
ExampleType3
"attr4 ENUM(ALL, SOME, NONE)"
 where: attr4 is an ENUM type. When you query or set the attribute, one of the
values is ALL, SOME, or NONE. The value A_FEW results in an error.

v Nested attributes
 $AdminConfig attributes
ExampleType4
"attr5 String" "ex5 ExampleType5"
 The ExampleType4 object has two attributes: a string, and an ExampleType5 object.
If you do not know what is contained in the ExampleType5 object, you can use
another attributes command to find out. The attributes command displays only
the attributes that the type contains directly. It does not recursively display the
attributes of nested types.

v Attributes that represent lists
 The values of these attributes are object lists of different types. The * character
distinguishes these attributes, for example:
 $AdminConfig attributes
ExampleType5
"ex6 ExampleType6*"
 In this example, objects of the ExampleType5 type contain a single attribute, ex6.
The value of this attribute is a list of ExampleType6 type objects.

v Reference attributes
 An attribute value that references another object. You cannot change these
references using modify commands, but these references display because they
are part of the complete representation of the type. Distinguish reference
attributes using the @ sign, for example:
 $AdminConfig attributes
ExampleType6
"attr7 Boolean" "ex7
ExampleType7@"
 ExampleType6 objects contain references to ExampleType7 type objects.

v Generic attributes
 These attributes have generic types. The values of these attributes are not
necessarily this generic type. These attributes can take values of several different
specific types. When you use the AdminConfig attributes command to display
the attributes of this object, the various possibilities for specific types are shown
in parentheses, for example:
 In this example, the beast attribute represents an object of the generic
AnimalType. This generic type is associated with three specific subtypes. The
wsadmin tool gives these subtypes in parentheses after the name of the base
type. In any particular instance of ExampleType8, the beast attribute can have a
value of HorseType, FishType, or ButterflyType. When you specify an attribute
in this way, using a modify or create command, specify the type of AnimalType.
If you do not specify the AnimalType, a generic AnimalType object is assumed
(specifying the generic type is possible and legitimate). This is done by
specifying beast:HorseType instead of beast.

Example: Showing attributes with the AdminConfig object
In the wsadmin tool, the AdminConfig attributes object displays configuration
object types, or object metadata, and does not represent a particular configuration
object. This article discusses using the metadata information to show configuration
objects.
v Showing simple attributes

 Each attribute in a configuration object is represented as a {name value} list.

Chapter 3. Deploying and managing using scripting 109

$AdminConfig show
$myEndPoint {host port}
{host myHost} {port 1234}
 The example configuration object has two attributes. The value of the name
attribute is <i>myHost</i>. The value of the port attribute is 1234.

v Showing attributes with subtypes
 For example, this show command returns:
 $AdminConfig show
$myex8
{name Halibut}
{beast myfish(cells/
mycell/adocument.xml#
FishType_1)}
 The name of the second attribute displays as beast. The value of beast for this
particular ExampleType8 object has type FishType.

v Showing string list attributes
 Several attributes on various objects have type String*. The String* type is a
list of strings. These attributes can represent class paths, for example:
 $AdminConfig show
$obj1 classpath
{classpath c:/mine/
one.jar;c:/two.jar;f:/
myother/three.jar}

Example: Modifying attributes with the AdminConfig object
The modify command changes objects in the configuration. In the wsadmin tool,
the AdminConfig attributes command displays configuration object types, or object
metadata, and does not represent a particular configuration object. This article
discusses using the metadata information to modify configuration objects.
v Modifying simple attributes

 For example:
 $AdminConfig modify
$myex1 {{attr1
sampleStringValue}}

or
$AdminConfig modify
$myex1 "{attr1
sampleStringValue}"
 For multiple attributes:
 $AdminConfig attributes
ExampleType2
"attr1 String" "attr2 Boolean"
"attr3 Integer"
$AdminConfig modify $myex2
{{attr1 "new string"}
{attr2 false} {attr3 43}}
 In this example, you supply values for all three of the attributes that the
ExampleType2 defines. If you enter the following:
 $AdminConfig modify
$myex2 {{attr3 43}}
 The attr1 and attr2 attributes would not change.
 The following is an example that uses an attribute of ENUM type:
 $AdminConfig attributes
ExampleType3
"attr4 ENUM(ALL, SOME, NONE)"
$AdminConfig modify
$myex3 {{attr4 NONE}}

110 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

v Modifying nested attributes
 For example, you want to modify the ex10 attribute of an object of type
ExampleType9:
 $AdminConfig attributes
ExampleType9
"attr9a String" "ex10
ExampleType10"
$AdminConfig attributes
ExampleType10
"attr10a String"
 There are two ways to modify this object:
– Modify this attribute directly. Perform the following steps:

1. Obtain the configuration ID of the ex10 object:
 $AdminConfig show $myex9
{attr9a MyFavoriteStrings}
{ex10 MyEx10(cells/mycell/
adocument.xml#ExampleType10_1)}

2. Modify the ExampleType10 object:
 $AdminConfig modify
MyEx10(cells/mycell/
adocument.xml#
ExampleType10_1)
{{attr10a yetAnotherString}}

– Modify the nested attribute of its containing object. Use the nested attributes
syntax:
 $AdminConfig modify
$myex9 {{ex10
{{attr10a
yetAnotherString}}}}

v Modifying list attributes
 List attribute values represent a list of objects. For example, the ServerCluster
type has an attribute called BackupClusters which contains an object collection of
the BackupCluster type. The syntax for this type of attribute involves the
members of the collection containing an extra set of braces around them, for
example:
 $AdminConfig modify
$cluster1
{{backupClusters
{{{backupClusterName cell20}}
{{backupClusterName bc4}}}}}
 In this example, the modify command takes a string that represents a list of
attributes, a single attribute called backupClusters. The backupClusters attribute
contains a list of objects of of type BackupCluster. The list contains two objects,
and each object is represented by exactly one attribute. {{backupClusterName
cell20}} represents one object of the BackupCluster type, {{backupClusterName
bc4}} represents a second BackupCluster object, and {{{backupClusterName
cell20}} {{backupClusterName bc4}}} is the collection of these objects
associated with the backupClusters attribute. The same syntax is required even if
there is only a single object in the list. When supplying these list attributes, the
list is added to the existing list. Be aware that there is no way to delete from a
list. To remove the entire list, set the value of a list attribute to an empty string,
for example, (″″). The modify command given in the above example, results in
the addition of the backupClusters attribute to the existing contents.
 The following is an example of modifying a nested attribute:
 $AdminConfig modify
$cluster1
{{name "App Cluster #3"}

Chapter 3. Deploying and managing using scripting 111

{preferLocal false}
{enableDynamicWLM true}
{backupClusters
{{{backupClusterName
cell20}
{domainBootstrapAddress
{{port 555}
{host myhost}}}}
{{backupClusterName
rrkbc4}}}} {members
{{{weight 1}
{memberName name1}}
{{weight 2}
{memberName name2}}
{{weight 3}
{memberName name3}}}}}
 This example list has five attributes: name, preferLocal, enableDynamicWLM,
backupClusters, and members. The members attribute is a list of three objects, each
of which consists of two sub-attributes, weight and memberName. The
backupClusters attribute is a list of two objects. The first of these objects
contains one simple subattribute and one complex subattribute. The complex
subattribute contains two more subattributes, port and host.
 The final variation on specifying configuration objects relates to the fact that
some attributes represent generic objects that have different types of values.
When you use the AdminConfig attributes command to display the attributes of
an object, the various possibilities for specific types are shown in parentheses,
for example:
 $AdminConfig attributes
MyType
"name String"
"components Component
(SpecificType1,
SpecificType2, SpecificType3)*"
 In this example, the component attribute represents a list of objects. Each
member of the components attribute is the component type. Component is a
generic type with three specific subtypes. When you specify an attribute in a
modify or create command, specify the type of component. If you do not specify
the type of component, a generic component object is assumed. To specify a
particular component, use components:SpecificType1 instead of components, for
example:
 $AdminConfig modify
$myMyType
{{name name1}
{components:SpecificType2
{{{attr1 val1}
{attr2 val2}}
{{attr1 val1a}
{attr2 val2a}}}}}
 This command modifies two attributes of the myMyType object: name and
components.

v Modifying string list attributes
 String list attributes have several attributes on various objects. These objects
have the String* type, which is a list of strings. These attributes can represent
class paths, for example. To update this list of strings, separate the members of
the list by semi-colons. Use semi-colons with all platforms. The syntax for
modifying these attributes is a list of strings, and not lists of attribute or
name-value pairs, for example:

112 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

$AdminConfig modify
$obj1 {{classpath
c:/mine/one.jar;"
c:/Program Files/
two.jar";f:/myother/
three.jar"}}

Example: Listing configuration objects with wsadmin
List configuration objects with the list command:
v To get a list of all configuration objects of a specific type, use the following

example:
 $AdminConfig list Server
 Example output:
dmgr(cells/mycell/nodes/
mynode/servers/dmgr:
server.xml#Server_1)
nodeagent(cells/mycell/
nodes/mynode/servers/
nodeagent:server.xml#
Server_1)
server1(cells/mycell/
nodes/mynode/servers/
server1:server.xml#
Server_1)

v To list all configuration objects of a given type within a scope:
1. Obtain the ID of the configuration object to be used as the scope.

 To use the configuration ID as a scope, the configuration id must be the same
for a cell, node, or server object.
 To get a configuration ID for a cell object, use the following example:
 set scopeId [$AdminConfig
getid /Cell:mycell/]
 To get a configuration ID for a node object, use the following example:
 set scopeId [$AdminConfig
getid /Cell:mycell/Node:mynode/]
 To get a configuration ID for a server object, use the following example:
 set scopeId [$AdminConfig
getid /Cell:mycell/
Node:mynode/Server:server1/]

2. List the configuration objects within a scope.
 To look for all the server configuration IDs within the node, use one of the
following examples:
 set scopeId [$AdminConfig getid
/Cell:mycell/Node:mynode/]
$AdminConfig list Server
$scopeId

set scopeId [$AdminConfig
getid /Cell:mycell/
Node:mynode/]
set nodeServers
[$AdminConfig list
Server $scopeId]

The second example command assigns the returned list to a Jacl variable for
subsequent use.

Chapter 3. Deploying and managing using scripting 113

Example: Identifying valid configuration attributes for objects
You can determine valid attributes by using the AdminConfig attributes command.

The following example identifies the valid attributes for a node:
$AdminConfig attributes
Node

This example produces the following output:
"defaultAppBinariesDirectory
String"
"discoveryProtocol
ENUM(UDP, TCP, MULTICAST)"
"properties Property
(TypedProperty)*"
"appInstallWorkarea
String"
"name String"
"hostName String"

Example: Changing the location of the activity log
Change the location of the activity log by modifying the serviceLog attribute. The
RASLoggingService object contains the serviceLog attribute.

The following example modifies the serviceLog attribute:
set dmgr1 [$AdminConfig
getid /Server:dmgr/]
set rls [$AdminConfig
list RASLoggingService $dmgr1]
set logFile [list name
\${LOG_ROOT}/newlog.log]
set logAttr
[list $logFile]
set attr [list
[list serviceLog
$logAttr]]
$AdminConfig modify
$rls $attr

Example: Modifying port numbers in the serverindex file
This topic provides reference information about modifying port numbers in the
serverindex.xml file. The end points of the serverindex.xml file are part of
different objects in the configuration.

Use the following attributes to modify the serverindex.xml file:
v BOOTSTRAP_ADDRESS

 An attribute of the NameServer object that exists inside the server. It is used by
the naming client to specify the naming server to look up the initial context. To
modify its end point, obtain the ID of the NameServer object and issue a modify
command, for example:
 set s
[$AdminConfig getid /Server:
server1/]
set ns
[$AdminConfig list
NameServer $s]
$AdminConfig modify
$ns
{{BOOTSTRAP_ADDRESS
{{port 2810} {host
myhost}}}

114 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

v SOAP_CONNECTOR-ADDRESS

 An attribute of the SOAPConnector object that exists inside the server. It is the
port that is used by http transport for incoming SOAP requests. To modify its
end point, obtain the ID of the SOAPConnector object and issue a modify
command, for example:
 set s
[$AdminConfig getid
/Server:
server1/]
set soap
[$AdminConfig list
SOAPConnector $s]
$AdminConfig modify
$soap
{{SOAP_CONNECTOR_ADDRESS
{{host myhost}
{port 8881}}}}

v DRS_CLIENT_ADDRESS

 An attribute of the SystemMessageServer object that exists inside the server. It is
the port used to configure the Data Replication Service (DRS) which is a
JMS-based message broker system for dynamic caching. To modify its end point,
obtain the ID of the SystemMessageServer object and issue a modify command,
for example:
 set s
[$AdminConfig getid
/Server:
server1/]
set soap
[$AdminConfig list
SystemMessageServer $s]
$AdminConfig modify
$soap
{{DRS_CLIENT_ADDRESS
{{host myhost}
{port 7874}}}}

v JMSSERVER_QUEUED_ADDRESS and JMSSERVER_DIRECT_ADDRESS

 An attribute of the JMSServer object that exists inside the server. These are ports
used to configure the WebSphere Application Server JMS provifder topic
connection factory settings. To modify its end point, obtain the ID of the
JMSServer object and issue a modify command, for example:
 set s
[$AdminConfig getid
/Server:server1/]
set soap
[$AdminConfig list JMSServer $s]
$AdminConfig modify
$soap
{{JMSSERVER_QUEUED_ADDRESS
{{host myhost}
{port 5560}}}}
$AdminConfig modify
$soap
{{JMSSERVER_DIRECT_ADDRESS
{{host myhost}
{port 5561}}}}

v NODE_DISCOVERY_ADDRESS

 An attribute of the NodeAgent object that exists inside the server. It is the port
used to receive the incoming process discovery messages inside a node agent
process. To modify its end point, obtain the ID of the NodeAgent object and
issue a modify command, for example:

Chapter 3. Deploying and managing using scripting 115

set
nodeAgentServer
[$AdminConfig getid
/Server:
myhost/]
set
nodeAgent
[$AdminConfig list NodeAgent
$nodeAgentServer]
$AdminConfig modify
$nodeAgent
{{NODE_DISCOVERY_ADDRESS
{{host myhost}
{port 7272}}}}

v

CELL_DISCOVERY_ADDRESS
 An attribute of the deploymentManager object that exists inside the server. It is
the port used to receive the incoming process discovery messages inside a
deployment manager process. To modify its end point, obtain the ID of the
deploymentManager object and issue a modify command, for example:
 set netmgr
[$AdminConfig getid
/Server:
netmgr/]
set
deploymentManager
[$AdminConfig list CellManager
$netmgr]
$AdminConfig modify
$deploymentManager
{{CELL_MULTICAST_DISCOVERY_ADDRESS
{{host myhost} {port 7272}}}}
$AdminConfig modify
$deploymentManager
{{CELL_DISCOVERY_ADDRESS
{{host myhost}
{port 7278}}}}

Example: Disabling a component using wsadmin
An example of disabling the name server component of a configured server
follows. You can modify this example to disable a different component.
v Identify the server and assign it to the server variable.

 set server [$AdminConfig
getid /Cell:mycell
/Node:mynode/Server:
server1/]
 Example output:
server1(cells/mycell/nodes
/mynode/servers/server1:
server.xml#Server_1)

v List the components belonging to the server and assign them to the components
variable.
 set components [$AdminConfig
list Component $server]
 The components variable contains a list of components.
 Example output:
(cells/mycell/nodes/mynode/
servers/server1:server.xml#
ApplicationServer_1)
(cells/mycell/nodes/mynode/
servers/server1:server.xml#

116 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

EJBContainer_1)
(cells/mycell/nodes/mynode/
servers/server1:server.xml#
NameServer_1)
(cells/mycell/nodes/mynode/
servers/server1:server.xml#
WebContainer_1)

v Identify the name server component and assign it to the nameServer variable.
 Since the name server component is the third element in the list, retrieve this
element by using index 2.
 set nameServer
[lindex $components 2]
 Example output:
(cells/mycell/nodes/
mynode/servers/server1
:server.xml#NameServer_1)

v Disable the name server component by changing the nested initialState attribute
belonging to the stateManagement attribute.
 $AdminConfig modify
$nameServer
{{stateManagement
{{initialState STOP}}}}

v Save the changes with the following command:
 $AdminConfig save

Example: Disabling a service using wsadmin
An example disabling the trace service of a configured server follows. You can
modify this example to disable a different service.
v Identify the server and assign it to the server variable.

 set server [$AdminConfig
getid /Cell:mycell
/Node:mynode/Server:
server1/]
 Example output:
server1(cells/mycell/
nodes/mynode/servers
/server1:server.xml#
Server_1)

v List all the services belonging to the server and assign them to the services
variable.
 set services
[$AdminConfig
list Service
$server]
 This command returns a list of services.
 Example output:
(cells/mycell/nodes/
mynode/servers/
server1:server.xml#
AdminService_1)
(cells/mycell/nodes/
mynode/servers/server1:
server.xml#DynamicCache_1)
(cells/mycell/nodes
/mynode/servers/
server1:server.xml#
MessageListenerService_1)
(cells/mycell/nodes/
mynode/servers/server1

Chapter 3. Deploying and managing using scripting 117

:server.xml#
ObjectRequestBroker_1)
(cells/mycell/nodes/
mynode/servers/server1:
server.xml#PMIService_1)
(cells/mycell/nodes/mynode/
servers/server1:server.xml#
RASLoggingService_1)
(cells/mycell/nodes/mynode/
servers/server1:server.xml#
SessionManager_1)
(cells/mycell/nodes/mynode/
servers/server1:server.xml#
TraceService_1)
(cells/mycell/nodes/mynode/
servers/server1:server.xml#
TransactionService_1)

v Identify the trace service and assign it to the traceService variable.
 Since trace service is the 8th element in the list, retrieve this element by using
index 7.
 set traceService [lindex
$services 7]
 Example output:
(cells/mycell/nodes/mynode
/servers/server1:server.xml#
TraceService_1)

v Disable the trace service by modifying the enable attribute.
 $AdminConfig modify
$traceService {{enable false}}

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a trace using wsadmin
The following example sets the trace for a configured server:
v Identify the server and assign it to the server variable:

 set server [$AdminConfig getid
/Cell:mycell/Node:mynode/
Server:server1/]
 Example output:
server1(cells/mycell/nodes/
mynode/servers/server1:
server.xml#Server_1)

v Identify the trace service belonging to the server and assign it to the tc variable:
 set tc [$AdminConfig list
TraceService $server]
 Example output:
(cells/mycell/nodes/mynode/
servers/server1:server.xml#
TraceService_1)

v Set the trace string.
 The following example sets the trace string for a single component:
 $AdminConfig modify $ts
{{startupTraceSpecification
com.ibm.websphere.management.*
=all=enabled}}
 The following command sets the trace string for multiple components:

118 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

$AdminConfig modify
$ts {{startupTraceSpecification
com.ibm.websphere.management.
*=all=enabled:com.ibm.ws.
management.*=all=enabled:
com.ibm.ws.runtime.
*=all=enabled}}

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring the Java virtual machine using wsadmin
An example modifying the Java virtual machine (JVM) of a server to turn on
debug follows:
v Identify the server and assign it to the server1 variable.

 set server1 [$AdminConfig
getid /Cell:mycell/
Node:mynode/Server:server1/]
 Example output:
server1(cells/mycell/nodes/
mynode/servers/server1:
server.xml#Server_1)

v Identify the JVM belonging to this server and assign it to the jvm variable.
 set jvm [$AdminConfig list
JavaVirtualMachine $server1]
 Example output:
(cells/mycell/nodes/mynode/
servers/server1:server.xml#
JavaVirtualMachine_1)

v Modify the JVM to turn on debug.
 $AdminConfig modify $jvm
{{debugMode true} {debugArgs
"-Djava.compiler=NONE -Xdebug
-Xnoagent -Xrunjdwp:transport=
dt_socket,server=y,suspend=n,
address=7777"}}

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring an enterprise bean container using
wsadmin
An example of viewing and modifying an enterprise bean (EJB) container of an
application server follows:
v Identify the application server and assign it to the server variable.

 set server [$AdminConfig
getid /Cell:mycell/Node:
mynode/Server:server1/]
 Example output:
server1(cells/mycell/nodes/
mynode/servers/server1:
server.xml#Server_1)

v Identify the EJB container belonging to the server and assign it to the
ejbContainer variable.
 set ejbContainer [$AdminConfig
 list EJBContainer $server]
 Example output:

Chapter 3. Deploying and managing using scripting 119

(cells/mycell/nodes/mynode/
servers/server1:server.xml#
EJBContainer_1)

v View all the attributes of the EJB container.
 The following example command does not show nested attributes:
 $AdminConfig show $ejbContainer

Example output:
{cacheSettings (cells/mycell
/nodes/myode/servers/server1:
server.xml#EJBCache_1)}
{components {}}
{inactivePoolCleanupInterval
30000}
{parentComponent (cells/
mycell/nodes/myode/servers/
server1:server.xml#
ApplicationServer_1)
{passivationDirectory
${USER_INSTALL_ROOT}/temp}
{properties {}}
{services {(cells/mycell/
nodes/myode/servers/server1:
server.xml#MessageListenerService_1)}
{stateManagement (cells/
mycell/nodes/mynode/servers/
server1:server.xml#
StateManageable_10)}
 The following example command includes nested attributes:
 $AdminConfig showall $ejbContainer

Example output:
{cacheSettings
{{cacheSize 2053}
 {cleanupInterval 3000}}}
{components {}}
{inactivePoolCleanupInterval
30000}
{parentComponent (cells/mycell
/nodes/mynode/servers/
server1:server.xml#
ApplicationServer_1)}
{passivationDirectory
${USER_INSTALL_ROOT}/temp}
{properties {}}
{services {{{context
(cells/mycell/nodes/mynode
/servers/server1:server.xml#
EJBContainer_1)}
 {listenerPorts {}}
 {properties {}}
 {threadPool
{{inactivityTimeout 3500}
 {isGrowable false}
 {maximumSize 50}
 {minimumSize 10}}}}}}
{stateManagement
{{initialState START}
 {managedObject
(cells/mycell/nodes/mynode
/servers/server1:server.xml#
EJBContainer_1)}}}

v Modify the attributes.

120 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

The following example command modifies the EJB cache settings which are
nested attributes:
 &AdminConfig modify
$ejbContainer {{cacheSettings
{{cacheSize 2500}
{cleanupInterval 3500}}}}
 The following example command modifies the cleanup interval attribute:
 $AdminConfig modify
$ejbContainer
{{inactivePoolCleanupInterval
15000}}

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring HTTP transport using wsadmin
This example configures the Web container HTTP transport.
v Identify the application server and assign it to the server variable.

 set server [$AdminConfig
getid /Cell:mycell/
Node:mynode/Server:
server1/]
 Example output:
server1(cells/mycell/nodes
/mynode/servers/server1:
server.xml#Server_1)

v Identify the Web container belonging to the server and assign it to the wc
variable.
 set wc [$AdminConfig
list WebContainer
$server]
 Example output:
(cells/mycell/nodes/
mynode/servers/server1:
server.xml#WebContainer_1)

v List all the transports belonging to the Web Container and assign it to the
transports variable.
 set transportsAttr
[$AdminConfig showAttribute
$wc transports]
set transports
[lindex $transportsAttr 0]
 These commands return the transport objects from the transports attribute in a
list format.
 Example output:
(cells/mycell/nodes/mynode/
servers/server1:server.xml#
HTTPTransport_1)
(cells/mycell/nodes/mynode/
servers/server1:server.xml#
HTTPTransport_2)

v Identify the transport to be modified and assign it to the transport variable.
 set transport [lindex
$transports 0]
 Example output:
(cells/mycell/nodes/mynode
/servers/server1:server.xml#
HTTPTransport_1)

Chapter 3. Deploying and managing using scripting 121

v Modify the address attribute to change the host and port.
 $AdminConfig modify
$transport {{address
{{host {myHost}}
{port 9081}}}}

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a Performance Manager Infrastruture
service using wsadmin
Use the following example to configure the Performance Manager Infrastructure
(PMI) service for an application server:
v Identify the application server and assign it to the server variable, for example:

 set server [$AdminConfig
getid /Cell:mycell/Node:
mynode/Server:server1/]

Example output:
server1(cells/mycell/nodes/
mynode/servers/server1:
server.xml#Server_1)

v Identify the PMI service that belongs to the server and assign it to the pmi
variable, for example:
 set pmi [$AdminConfig
list PMIService $server]

Example output:
(cells/mycell/nodes/mynode/
servers/server1:server.xml#
PMIService_1)

v Modify the attributes, for example:
 $AdminConfig modify $pmi
{{enable true}
{initialSpecLevel
beanModule=H:cacheModule=
H:connectionPoolModule=H:
j2cModule=H:jvmRuntimeModul
e=H:orbPerfModule=H:servlet
SessionsModule=H:systemModule
=H:threadPoolModule=H:
transactionModule=H:
webAppModule=H:webServices
Module=H:wlmModule=H:
wsgwModule=H}}

This example enables PMI service and sets the specification levels for all of
components in the server. The following are the valid specification levels for the
components:

 N represents none
L represents low
M represents medium
H represents high
X represents maximum

v Save the changes with the following command:
 $AdminConfig save

122 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Example: Configuring a Java virtual machine log rotation policy
using wsadmin
Use the following example to configure the rotation policy settings for Java virtual
machine (JVM) logs:
v Identify the application server and assign it to the server variable, for example:

 set server [$AdminConfig
getid /Cell:mycell/Node:
mynode/Server:server1/]

Example output:
server1(cells/mycell/nodes
/mynode/servers/server1:
server.xml#Server_1)

v Identify the stream log and assign it to the log variable, for example:
 The following example identifies the output stream log:
 set log [$AdminConfig
showAttribute $server1
outputStreamRedirect]

The following example the error stream log:
set log [$AdminConfig
showAttribute $server1
errorStreamRedirect]

Example output:
(cells/mycell/nodes/mynode/
servers/server1:server.xml#
StreamRedirect_2)

v List the current values of the stream log, for example:
 $AdminConfig show $log

Example output:
{baseHour 24}
{fileName
${SERVER_LOG_ROOT}
/SystemOut.log}
{formatWrites true}
{maxNumberOfBackupFiles 1}
{messageFormatKind BASIC}
{rolloverPeriod 24}
{rolloverSize 1}
{rolloverType SIZE}
{suppressStackTrace false}
{suppressWrites false}

v Modify the rotation policy for the stream log:
 The following example sets the rotation log file size to two megabytes:
 $AdminConfig modify
$log {{rolloverSize 2}}

The following example sets the rotation policy to manage itself. It is based on
the age of the file with the rollover algorithm loaded at midnight, and the log
file rolling over every 12 hours:
$AdminConfig modify
$log {{rolloverType TIME}
{rolloverPeriod 12}
{baseHour 24}}

Chapter 3. Deploying and managing using scripting 123

The following example sets the log file to roll over based on both time and size:
$AdminConfig modify $log
{{rolloverType BOTH}
{rolloverSize 2}
{rolloverPeriod 12}
{baseHour 24}}

v Save the changes with the following command:
 $AdminConfig save

Example: Modifying datasource custom properties using
wsadmin
Use the following example to modify the existing custom properties of a
datasource:
v Identify the datasource and assign it to the ds variable, for example:

 set ds [$AdminConfig list
DataSource myDataSource]

Example output:
myDataSource(cells/mycell/
nodes/mynode/servers/server1:
resources.xml#DataSource_3)

v Obtain a list of existing custom properties, for example:
 set ps [$AdminConfig
showAttribute $ds
propertySet]
set rps [lindex
[$AdminConfig
showAttribute $ps
resourceProperties] 0]

Example output:
databaseName(cells/mycell
/nodes/mynode/servers/
server1:resources.xml#
J2EEResourceProperty_29)
remoteDataSourceProtocol
(cells/mycell/nodes/mynode
/servers/server1:resources.
xml#J2EEResourceProperty_30)
shutdownDatabase(cells/
mycell/nodes/mynode/servers
/server1:resources.xml#
J2EEResourceProperty_33)
dataSourceName(cells/mycell
/nodes/mynode/servers/server1
:resources.xml#
J2EEResourceProperty_34)
description(cells/mycell/
nodes/mynode/servers/
server1:resources.xml#
J2EEResourceProperty_35)
connectionAttributes
(cells/mycell/nodes/mynode
/servers/server1:resources.
xml#J2EEResourceProperty_36)
createDatabase(cells/
mycell/nodes/mynode/servers
/server1:resources.xml#
J2EEResourceProperty_37)

v Modify the property value, for example:

124 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

foreach rp $rps {
 if {[regexp
 databaseName
 $rp] == 1} {
 $AdminConfig
 modify $rp
 {{value
 newDatabaseName}}
 }
}

This example modifies the value of the databaseName property. To change the
other property values, modify the example.

v Save the changes:
 $AdminConfig save

Example: Configuring the message listener service using
wsadmin
An example configuring the message listener service for an application server
follows:
v Identify the application server and assign it to the server variable:

 set server [$AdminConfig
getid /Cell:mycell/
Node:mynode/Server:
server1/]
 Example output:
server1(cells/mycell/
nodes/mynode/servers/
server1:server.xml#
Server_1)

v Identify the message listener service belonging to the server and assign it to the
mls variable:
 set mls [$AdminConfig
list MessageListenerService
$server]
 Example output:
(cells/mycell/nodes/
mynode/servers/server1:
server.xml#Message
ListenerService_1)

v Modify various attributes.
 This example command changes the thread pool attributes:
 $AdminConfig modify
$mls {{threadPool
{{inactivityTimeout
4000} {isGrowable true}
{maximumSize 100}
{minimumSize 25}}}}
 This example modifies the property of the first listener port:
 set lports [$AdminConfig
showAttribute $mls
listenerPorts]
set lport [lindex
$lports 0]
$AdminConfig modify
$lport {{maxRetries 2}}
 This example adds a listener port:

Chapter 3. Deploying and managing using scripting 125

$AdminConfig create
ListenerPort $mls
{{name listenerPort1}
{connectionFactory
JNDIName cf/mycf}
{destinationJNDIName
ds/myds}}
 Example output:
listenerPort1(cells/
mycell/nodes/mynode/
servers/server1:
server.xml#
ListenerPort_2)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring an ORB service using wsadmin
The following example modifies the Object Request Broker (ORB) service for an
application server:
v Identify the application server and assign it to the server variable:

 set server [$AdminConfig
getid /Cell:mycell/Node:
mynode/Server:server1/]
 Example output:
server1(cells/mycell/
nodes/mynode/servers/
server1:server.xml#
Server_1)

v Identify the ORB belonging to the server and assign it to the orb variable:
 set orb [$AdminConfig
list ObjectRequestBroker
$server]
 Example output:
(cells/mycell/nodes/
mynode/servers/server1:
server.xml#
ObjectRequestBroker_1)

v Modify the attributes:
 $AdminConfig modify
$orb {{connectionCache
Maximum 252}
{noLocalCopies true}}

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring for database session persistence using
wsadmin
The following example configures the session management of a Web container for
database session persistence.

Before performing this task you have to create a JDBC provider and create a data
source that points to an existing database.
v Identify the application server and assign it to the server variable:

 set server [$AdminConfig
getid /Cell:mycell/Node:
mynode/Server:server1/]
 Example output:

126 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

server1(cells/mycell/nodes/
mynode/servers/server1:
server.xml#Server_1)

v Identify the session management belonging to the server and assign it to the
smgr variable:
 set smgr [$AdminConfig
list SessionManager
$server]
 Example output:
(cells/mycell/nodes/
mynode/servers/server1:
server.xml#SessionManager_1)

v Modify database session persistence:
 $AdminConfig modify $smgr
{{sessionDatabasePersistence
{{datasourceJNDIName
jdbc/mySession}
{userId myUser}
{password myPassword}}}}
 This command sets the minimum set of attributes to configure database session
persistence. You can optionally modify the db2RowSize and tableSpaceName
attributes too.

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring for serialization session access using
wsadmin
The following example configures session management of a Web container for
serialization session access.
v Idenitfy the application server and assign it to the server variable:

 set server [$AdminConfig
getid /Cell:mycell/
Node:mynode/Server:server1/]
 Example output:
server1(cells/mycell/nodes/
mynode/servers/server1:
server.xml#Server_1)

v Identify the session management belonging to the server and assign it to the
smgr variable:
 set smgr [$AdminConfig
list SessionManager
$server]
 Example output:
(cells/mycell/nodes/mynode
/servers/server1:server.xml#
SessionManager_1)

v Enable serialization session access.
– The following example sets the maximum wait time a servlet waits on a

session before continuing execution:
 $AdminConfig modify $smgr
{{allowSerializedSessionAccess
true} {maxWaitTime 20}}

– The following example allows servlet execution to abort when the session
request times out:

Chapter 3. Deploying and managing using scripting 127

$AdminConfig modify $smgr
{{allowSerializedSessionAccess
true} {maxWaitTime 20}
{accessSessionOnTimeout true}}

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring for session tracking using wsadmin
The following example configures the session management of a Web container for
session tracking:
v Identify the application server and assign it to the server variable:

 set server [$AdminConfig
getid /Cell:mycell/Node:
mynode/Server:server1/]
 Example output:
server1(cells/mycell/nodes
/mynode/servers/server1:
server.xml#Server_1)

v Identify the session management belonging to the server and assign it to the
smgr variable:
 set smgr [$AdminConfig list
SessionManager $server]
 Example output:
(cells/mycell/nodes/mynode
/servers/server1:server.xml
#SessionManager_1)

v Modify attributes related to session tracking:
– This example command enables cookies and modifies cookie setting:

 $AdminConfig modify $smgr
{{enableCookies true}
{defaultCookieSettings
{{maximumAge 10}}}}

– This example command enables protocol switch rewriting:
 $AdminConfig modify $smgr
{{enableProtocolSwitchRewriting
true} {enableUrlRewriting false}
{enableSSLTracking false}}

– This example command enables URL rewriting:
 $AdminConfig modify $smgr
{{enableUrlRewriting true}
{enableProtocolSwitchRewriting
false} {enableSSLTracking
false}}

– This example command enables SSL tracking:
 $AdminConfig modify $smgr
{{enableSSLTracking true}
{enableProtocolSwitchRewriting
false} {enableUrlRewriting
false}}

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring for processes using wsadmin
The following example modifies the process definition of a server:
v Identify the server and assign it to the server1 variable:

128 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

set server1 [$AdminConfig
getid /Cell:mycell/Node:
mynode/Server:server1/]
 Example output:
server1(cells/mycell/nodes
/mynode/servers/server1:
server.xml#Server_1)

v Identify the process definition belonging to this server and assign it to the
processDef variable:
 set processDef [$AdminConfig
list JavaProcessDef $server1]
set processDef [$AdminConfig
showAttribute $server1
processDefinition]
 Example output:
(cells/mycell/nodes/mynode/
servers/server1:server.xml#
JavaProcessDef_1)

v Change the attributes.
– This example changes the working directory:

 $AdminConfig modify $processDef
{{workingDirectory c:/temp/user1}}

– This example modifies the stderr file name:
 set errFile [list stderrFilename
\${LOG_ROOT}/server1/new_stderr.log]
set attr [list $errFile]
$AdminConfig modify $processDef
[subst {{ioRedirect {$attr}}}]

– This example modifies the process priority:
 $AdminConfig modify $processDef
{{execution {{processPriority 15}}}}

– This example changes the maximum startup attempts:
 $AdminConfig modify $processDef
{{monitoringPolicy
{{maximumStartupAttempts 1}}}}
 You can modify this example to change other attributes in the process
definition object.

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a shared library using wsadmin
The following example configures an application server to use a shared library.
v Identify the server and assign it to the server variable:

 set server [$AdminConfig
getid /Cell:mycell/
Node:mynode/Server:server1/]
 Example output:
server1(cells/mycell/nodes/
mynode/servers/server1:
server.xml#Server_1)

v Create the shared library in the server:
 $AdminConfig create Library
$server {{name
mySharedLibrary}
{classPath
c:/mySharedLibraryClasspath}}
 Example output:

Chapter 3. Deploying and managing using scripting 129

MyshareLibrary(cells/mycell/
nodes/mynode/servers/server1:
libraries.xml#Library_1)

v Identify the application server from the server and assign it to the appServer
variable:
 set appServer [$AdminConfig
list ApplicationServer $server]
 Example output:
server1(cells/mycell/nodes/
mynode/servers/server1:server.
xml#ApplicationServer_1

v Identify the class loader in the application server and assign it to the classLoader
variable.
 To use the existing class loader associated with the server, the following
commands use the first class loader:
 set classLoaders [$AdminConfig
showAttribute $appServer
classloaders]
set classLoader
[lindex $classLoaders 0]

Create a new class loader, by doing the following:
 set classLoader [$AdminConfig
create Classloader $appServer
{{mode PARENT_FIRST}}]
 Example output:
(cells/mycell/nodes/mynode/
servers/server1:server.xml#
Classloader_1)

v Associate the created shared library with the application server through the class
loader.
 $AdminConfig create LibraryRef
$classLoader {{libraryName
MyshareLibrary}
{sharedClassloader true}}
 Example output:
(cells/mycell/nodes/mynode/
servers/server1:server.xml#
LibraryRef_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a variable map using wsadmin
This example creates a variable map to an existing server.
v Idenitfy the server and assign it to the server variable.

 set server [$AdminConfig getid
/Cell:mycell/Node:mynode/
Server:server2/]
 Example output:
server2(cells/mycell/nodes/
mynode/servers/server2:server.
xml#Server_2)

v Create an empty variable map for the server and assign it to the varMap
variable.
 set varMap [$AdminConfig
create VariableMap
$server {}]

130 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Example output:
(cells/mycell/nodes/mynode/
servers/server2:variables.xml
#VariableMap_1)

This example is to create a variable map. If your server already has an existing
variable map, then you can use the following to get its configuration object:
 set varMap [$AdminConfig
getid /Cell:mycell/Node:mynode
/Server:server2/VariableMap:/]

v Set up variable map entry attributes.
 In the following example, you create variable map entries DB2_INSTALL_ROOT
and DB2_LIB_DIR. DB2_LIB_DIR is going to refer back to DB2_INSTALL_ROOT:
 set nameattr1 [list
symbolicName
DB2_INSTALL_ROOT]
set valattr1
[list value
"c:/db2/sqllib"]
set nameattr2
[list symbolicName
DB2_LIB_DIR]
set valattr2
[list value
"\${DB2_INSTALL_ROOT}/lib"]
set attr1 [list
$nameattr1 $valattr1]
set attr2 [list
$nameattr2 $valattr2]
set attrs [list
$attr1 $attr2]
 Example output:
{{symbolicName
DB2_INSTALL_ROOT}
{value c:/db2/sqllib}}
{{symbolicName
DB2_LIB_DIR} {value
{${DB2_INSTALL_ROOT}/lib}}}

v Modify the entries attribute in the variable map to add the two new entries.
 $AdminConfig modify
$varMap [subst
{{entries {$attrs}}}]

v To view the variable map:
 $AdminConfig showall
$varMap

Example output:
{entries {{{symbolicName
DB2_INSTALL_ROOT}
{value c:/db2/sqllib}}
{{symbolicName DB2_LIB_DIR}
{value ${DB2_INSTALL_ROOT}
/lib}}}}

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring name space bindings using wsadmin
This example configures name space binding on a cell.
v Identify the cell and assign it to the cell variable.

Chapter 3. Deploying and managing using scripting 131

set cell [$AdminConfig
getid /Cell:mycell/]
 Example output:
mycell(cells/mycell/
cell.xml#Cell_1)

You can change this example to configure on a node or server here.
v Add a new name space binding on the cell. There are four binding types to

choose from when configuring a new name space binding. They are string, EJB,
CORBA, and indirect.
– To configure a string type name space binding:

 $AdminConfig create
StringNameSpaceBinding
$cell {{name binding1}
{nameInNameSpace
myBindings/myString}
{stringToBind
"This is the String
value that gets bound"}}

Example output:
 binding1(cells/mycell:
namebindings.xml#
StringNameSpaceBinding_1)

– To configure an enterprise bean type name space binding:
 $AdminConfig create
EjbNameSpaceBinding
$cell {{name binding2}
{nameInNameSpace
myBindings/myEJB}
{applicationNodeName
mynode} {bindingLocation
SINGLESERVER}
{applicationServerName
server1} {ejbJndiName
ejb/myEJB}}
 This example is for an EJB located in a server. For EJB in a cluster, change the
configuration example to:
 $AdminConfig create
EjbNameSpaceBinding
$cell {{name binding2}
{nameInNameSpace
myBindings/myEJB}
{bindingLocation
SERVERCLUSTER}
{applicationServerName
cluster1} {ejbJndiName
ejb/myEJB}}
 Example output:
binding2(cells/
mycell:namebindings.xml
#EjbNameSpaceBinding_1)

– To configure a CORBA type name space binding:
 $AdminConfig create
CORBAObjectNameSpaceBinding
$cell {{name binding3}
{nmeInNameSpace myBindings/
myCORBA} {corbanameUrl

132 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

corbaname:iiop:somehost.
somecompany.com:2809#stuff
/MyCORBAOjbect}
{federatedContext false}}
 Example output:
binding3(cells/mycell:namebindings.xml#CORBAObjectNameSpaceBinding_1)

– To configure an indirect type name space binding:
 $AdminConfig create
IndirectLookupNameSpaceBinding
$cell {{name binding4}
{nameInNameSpace myBindings/
myIndirect} {providerURL
corbaloc::myCompany.com:9809/
NameServiceServerRoot}
{jndiName jndi/name/for/EJB}}
 Example output:
binding4(cells/mycell:
namebindings.xml#
IndirectLookupName
SpaceBinding_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Creating a cluster using wsadmin
An example creating a cluster using an existing server follows:
v Identify the server to convert to a cluster and assign it to the server variable:

 set server [$AdminConfig
getid /Cell:mycell/
Node:mynode/Server:server1/]

v Convert the existing server to a cluster by using the convertToCluster command
passing in the existing server and the cluster name:
 $AdminConfig convertToCluster
$server myCluster1

This command converts a cluster named myCluster with server1 as its member.

 An example of this output follows:
myCluster1(cells/mycell/cluster
/myCluster1:cluster.xml#
ClusterMember_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Creating a cluster member using wsadmin
An example creating a cluster member to an existing cluster follows:
v Identify the existing cluster and assign it to the cluster variable:

 set cluster [$AdminConfig
getid /ServerCluster:
mycluster1/]
 An example of this output follows:
myCluster1(cells/mycell/
cluster/myCluster1:cluster.xml
#ServerCluster_1)

v Identify the node to create the new server and assign it to the node variable:
 set node [$AdminConfig
getid /Node:mynode/]

Chapter 3. Deploying and managing using scripting 133

An example of this output follows:
 mynode(cells/mycell/
nodes/mynode:node.xml#
Node_1)

v (Optional) Identify the cluster member template and assign it to the
serverTemplate variable:
 set serverTemplate
[$AdminConfig listTemplates
Server]
 An example of this output follows:
server1(templates/default/
nodes/servers/server1:
server.xml#Server_1)

v Create the new cluster member, by using the createClusterMember command.
 The following example creates the new cluster member, passing in the existing
cluster configuration ID, existing node configuration ID, and the new member
attributes:
 $AdminConfig createClusterMember
$cluster $node {{memberName
clusterMember1}}
 The following example creates the new cluster member with a template, passing
in the existing cluster configuration ID, existing node configuration ID, the new
member attributes, and the template ID:
 $AdminConfig createClusterMember
$cluster $node {{memberName
clusterMember1}} $serverTemplate
 An example of this output follows:
clusterMember1(cells/mycell/
clusters/myCluster1:cluster.xml$
ClusterMember_2)

Example: Configuring a JDBC provider using wsadmin
An example configuring a new JDBC provider follows:
v Identify the parent ID and assign it to the node variable.

 set node [$AdminConfig getid
/Cell:mycell/Node:mynode/]

This example uses the node configuration object as the parent. You can modify
this example to use cell or server configuration object as the parent.

 An example of this output follows:
mynode(cells/mycell/nodes
/mynode:node.xml#Node_1)

v Identify the required attributes:
 $AdminConfig required
JDBCProvider
 An example of this output follows:
Attribute Type
name String
implementationClassName String

v Set up the required attributes and assign it to the jdbcAttrs variable:
 set n1 [list name JDBC1]
set implCN [list
implementationClassName
myclass]
set jdbcAttrs [list
$n1 $implCN]

134 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

An example of this output follows:
{name {JDBC1}}
{implementationClassName
{myclass}}

You can modify the example to setup non-required attributes for JDBC provider.
v Create a new JDBC provider using node as the parent:

 $AdminConfig create
JDBCProvider $node $jdbcAttrs
 An example of this output follows:
JDBC1(cells/mycell/nodes/
mynode:resources.xml#
JDBCProvider_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new data source using wsadmin:

v Identify the parent ID:
 set newjdbc [$AdminConfig
getid /Cell:mycell/Node:
mynode/JDBCProvider:JDBC1/]
 Example output:
JDBC1(cells/mycell/nodes/
mynode:resources.xml#
JDBCProvider_1)

v Obtain the required attributes:
 $AdminConfig required
DataSource
 Example output:
Attribute Type
name String

v Setting up required attributes:
 set name [list name DS1]
set dsAttrs [list $name]

v Create a data source:
 set newds [$AdminConfig
create DataSource
$newjdbc $dsAttrs]
 Example output:
DS1(cells/mycell/nodes/
mynode:resources.xml#
DataSource_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new connection pool using wsadmin:

v Identify the parent ID:
 set newds [$AdminConfig
getid /Cell:mycell/
Node:mynode/JDBCProvider:
JDBC1/DataSource:DS1/]
 Example output:
DS1(cells/mycell/nodes/
mynode:resources.xml
$DataSource_1)

Chapter 3. Deploying and managing using scripting 135

v Creating connection pool:
 $AdminConfig create
ConnectionPool $newds {}
 Example output:
(cells/mycell/nodes/
mynode:resources.xml#
ConnectionPool_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new data source custom property using wsadmin:

v Identify the parent ID:
 set newds [$AdminConfig
getid /Cell:mycell/
Node:mynode/JDBCProvider:
JDBC1/DataSource:DS1/]
 Example output:
DS1(cells/mycell/nodes/
mynode:resources.xml
$DataSource_1)

v Create the J2EE resource property set:
 set newPropSet
[$AdminConfig create
J2EEResourcePropertySet
$newds {}]
 Example output:
(cells/mycell/nodes/
mynode:resources.xml#
J2EEResourcePropertySet_8)

v Get required attribute:
 $AdminConfig required
J2EEResourceProperty
 Example output:
Attribute Type
name String

v Set up attributes:
 set name [list name RP4]
set rpAttrs [list $name]

v Create a J2EE resource property:
 $AdminConfig create
J2EEResourceProperty
$newPropSet $rpAttrs
 Example output:
RP4(cells/mycell/nodes/
mynode:resources.xml#
J2EEResourceProperty_8)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new J2CAuthentication data entry using wsadmin:

v Identify the parent ID:
 set security [$AdminConfig
getid /Cell:mycell/Security:/]
 Example output:

136 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

(cells/mycell:security.xml#
Security_1)

v Get required attributes:
 $AdminConfig required
JAASAuthData
 Example output:
Attribute Type
alias String
userId String
password String

v Set up required attributes:
 set alias [list
alias myAlias]
set userid [list
userId myid]
set password [list
password secret]
set jaasAttrs [list
$alias $userid $password]
 Example output:
{alias myAlias} {userId myid}
{password secret}

v Create JAAS auth data:
 $AdminConfig create
JAASAuthData $security
$jaasAttrs
 Example output:
(cells/mycell:security.
xml#JAASAuthData_2)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new WAS40 data source using wsadmin:

v Identify the parent ID:
 set newjdbc [$AdminConfig
getid /JDBCProvider:JDBC1/]
 Example output:
JDBC1(cells/mycell/nodes/
mynode:resources.xml$
JDBCProvider_1)

v Get required attributes:
 $AdminConfig required
WAS40DataSource
 Example output:
Attribute Type
name String

v Set up required attributes:
 set name [list
name was4DS1]
set ds4Attrs
[list $name]

v Create WAS40DataSource:
 set new40ds [$AdminConfig
create WAS40DataSource
$newjdbc $ds4Attrs]
 Example output:

Chapter 3. Deploying and managing using scripting 137

was4DS1(cells/mycell/nodes/
mynode:resources.xml#
WAS40DataSource_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new WAS40 connection pool using wsadmin:

v Identify the parent ID:
 set new40ds [$AdminConfig
getid /Cell:mycell/Node:
mynode/JDBCProvider:JDBC1/
WAS40DataSource:was4DS1/]

was4DS1(cells/mycell/nodes
/mynodes:resources.xml$
WAS40DataSource_1)

v Get required attributes:
 $AdminConfig required
WAS40ConnectionPool
 Example output:
Attribute Type
minimumPoolSize Integer
maximumPoolSize Integer
connectionTimeout Integer
idleTimeout Integer
orphanTimeout Integer
statementCacheSize Integer

v Set up required attributes:
 set mps
[list minimumPoolSize 5]
set minps
[list minimumPoolSize 5]
set maxps
[list maximumPoolSize 30]
set conn
[list connectionTimeout 10]
set idle
[list idleTimeout 5]
set orphan
[list orphanTimeout 5]
set scs [list
statementCacheSize 5]
set 40cpAttrs
[list $minps $maxps
$conn $idle $orphan $scs]
 Example output:
{minimumPoolSize 5}
{maximumPoolSize 30}
{connectionTimeout 10}
{idleTimeout 5}
{orphanTimeout 5}
{statementCacheSize 5}

v Create was40 connection pool:
 $AdminConfig create
WAS40ConnectionPool
$new40ds $40cpAttrs
 Example output:
(cells/mycell/nodes/
mynode:resources.xml#
WAS40ConnectionPool_1)

v Save the changes with the following command:

138 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

$AdminConfig save

Example: Configuring a new WAS40 custom property using wsadmin:

v Identify the parent ID:
 set new40ds [$AdminConfig getid
/Cell:mycell/Node:mynode/
JDBCProvider:JDBC1/
WAS40DataSource:was4DS1/]
 Example output:
was4DS1(cells/mycell/nodes
/mynodes:resources.xml$
WAS40DataSource_1)

v Get required attributes:
 set newPropSet [$AdminConfig
create J2EEResourcePropertySet
$newds {}]
 Example output:
(cells/mycell/nodes/
mynode:resources.xml#
J2EEResourcePropertySet_9)

v Get required attribute:
 $AdminConfig required
J2EEResourceProperty
 Example output:
Attribute Type
name String

v Set up required attributes:
 set name
[list name RP5]
set rpAttrs
[list $name]

v Create J2EE Resource Property:
 $AdminConfig create
J2EEResourceProperty
$newPropSet $rpAttrs
 Example output:
RP5(cells/mycell/nodes/
mynode:resources.xml#
J2EEResourceProperty_9)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new JMS provider using wsadmin
v Identify the parent ID:

 set node [$AdminConfig
getid /Cell:mycell/
Node:mynode/]
 Example output:
mynode(cells/mycell/
nodes/mynode:node.xml#
Node_1)

v Get required attributes:
 $AdminConfig required
JMSProvider
 Example output:

Chapter 3. Deploying and managing using scripting 139

Attribute Type
name String
externalInitialContextFactory String
externalProviderURL String

v Set up required attributes:
 set name
[list name JMSP1]
set extICF
[list external
InitialContextFactory
"Put the external
initial context
factory here"]
set extPURL [list
externalProviderURL
"Put the external
provider URL here"]
set jmspAttrs
[list $name
$extICF $extPURL]
 Example output:
{name JMSP1}
{externalInitial
ContextFactory
{Put the external
initial context
factory here }}
{externalProviderURL
{Put the external
provider URL here}}

v Create the JMS provider:
 set newjmsp [$AdminConfig
create JMSProvider
$node $jmspAttrs]
 Example output:
JMSP1(cells/mycell/nodes
/mynode:resources.xml#
JMSProvider_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new JMS destination using wsadmin:

v Identify the parent ID:
 set newjmsp [$AdminConfig
getid /Cell:mycell/
Node:myNode/JMSProvider:
JMSP1]
 Example output:
JMSP1(cells/mycell/nodes/
mynode:resources.xml#
JMSProvider_1)

v Get required attributes:
 $AdminConfig required
GenericJMSDestination
 Example output:
Attribute Type
name String
jndiName String
externalJNDIName String

140 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

v Set up required attributes:
 set name [list
name JMSD1]
set jndi [list
jndiName jms/
JMSDestination1]
set extJndi [list
externalJNDIName
jms/extJMSD1]
set jmsdAttrs [list
$name $jndi $extJndi]
 Example output:
{name JMSD1} {jndiName
jms/JMSDestination1}
{externalJNDIName
jms/extJMSD1}

v Create generic JMS destination:
 $AdminConfig create
GenericJMSDestination
$newjmsp $jmsdAttrs
 Example output:
JMSD1(cells/mycell/nodes
/mynode:resources.xml#
GenericJMSDestination_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new JMS connection using wsadmin:

v Identify the parent ID:
 set newjmsp [$AdminConfig
getid /Cell:mycell/
Node:myNode/
JMSProvider:JMSP1]
 Example output:
JMSP1(cells/mycell/
nodes/mynode:resources.xml
#JMSProvider_1)

v Get required attributes:
 $AdminConfig required
GenericJMSConnectionFactory
 Example output:
Attribute Type
name String
jndiName String
externalJNDIName String

v Set up required attributes:
 set name
[list name JMSCF1]
set jndi
[list jndiName
jms/JMSConnFact1]
set extJndi
[list externalJNDIName
jms/extJMSCF1]
set jmscfAttrs
[list $name
$jndi $extJndi]
 Example output:

Chapter 3. Deploying and managing using scripting 141

{name JMSCF1}
{jndiName
jms/JMSConnFact1}
{externalJNDIName
jms/extJMSCF1}

v Create generic JMS connection factory:
 $AdminConfig create
GenericJMSConnectionFactory
$newjmsp $jmscfAttrs
 Example output:
JMSCF1(cells/mycell/nodes
/mynode:resources.xml#
GenericJMSConnectionFactory_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new WebSphere queue connection factory using
wsadmin:

v Identify the parent ID:
 set newjmsp [$AdminConfig
getid /Cell:mycell/
Node:mynode/
JMSProvider:JMSP1/]
 Example output:
JMSP1(cells/mycell/nodes
/mynode:resources.xml#
JMSProvider_1)

v Get required attributes:
 $AdminConfig required
WASQueueConnectionFactory
 Example output:
Attribute Type
name String
jndiName String

v Set up required attributes:
 set name
[list name WASQCF]
set jndi [list
jndiName jms/WASQCF]
set mqcfAttrs
[list $name $jndi]
 Example output:
{name WASQCF}
{jndiName jms/WASQCF}

v Create was queue connection factories:
 $AdminConfig create
WASQueueConnectionFactory
$newjmsp $mqcfAttrs
 Example output:
WASQCF(cells/mycell/nodes
/mynode:resources.xml#
WASQueueConnectionFactory_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new WebSphere topic connection factory using
wsadmin:

142 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

v Identify the parent ID:
 set newjmsp [$AdminConfig
getid /Cell:mycell/
Node:mynode/JMSProvider:
JMSP1/]
 Example output:
JMSP1(cells/mycell/nodes
/mynode:resources.xml#
JMSProvider_1)

v Get required attributes:
 $AdminConfig required
 WASTopicConnectionFactory
 Example output:
Attribute Type
name String
jndiName String
port ENUM(DIRECT, QUEUED)

v Set up required attributes:
 set name
[list name WASTCF]
set jndi
[list jndiName
jms/WASTCF]
set port
[list port QUEUED]
set mtcfAttrs
[list $name
$jndi $port]
 Example output:
{name WASTCF}
{jndiName jms/WASTCF}
{port QUEUED}

v Create was topic connection factories:
 $AdminConfig create
WASTopicConnectionFactory
$newjmsp $mtcfAttrs
 Example output:
WASTCF(cells/mycell/nodes
/mynode:resources.xml#
WASTopicConnectionFactory_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new WebSphere queue using wsadmin:

v Identify the parent ID:
 set newjmsp [$AdminConfig
getid /Cell:mycell/
Node:mynode/JMSProvider:
JMSP1/]
 Example output:
JMSP1(cells/mycell/
nodes/mynode:resources.xml#
JMSProvider_1)

v Get required attributes:
 $AdminConfig required
WASQueue
 Example output:

Chapter 3. Deploying and managing using scripting 143

Attribute Type
name String
jndiName String

v Set up required attributes:
 set name
[list name WASQ1]
set jndi
[list jndiName
jms/WASQ1]
set wqAttrs
[list $name $jndi]
 Example output:
{name WASQ1}
{jndiName jms/WASQ1}

v Create was queue:
 $AdminConfig create
WASQueue $newjmsp
$wqAttrs
 Example output:
WASQ1(cells/mycell/
nodes/mynode:
resources.xml#WASQueue_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new WebSphere topic using wsadmin:

v Identify the parent ID:
 set newjmsp [$AdminConfig
getid /Cell:mycell/
Node:mynode/JMSProvider:JMSP1/]
 Example output:
JMSP1(cells/mycell/nodes/
mynode:resources.xml#
JMSProvider_1)

v Get required attributes:
 $AdminConfig required
WASTopic
 Example output:
Attribute Type
name String
jndiName String
topic String

v Set up required attributes:
 set name
[list name WAST1]
set jndi
[list jndiName
jms/WAST1]
set topic
[list topic
"Put your topic here"]
set wtAttrs
[list $name
$jndi $topic]
 Example output:

144 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

{name WAST1}
{jndiName jms/WAST1}
{topic
{Put your topic here}}

v Create was topic:
 $AdminConfig create
WASTopic $newjmsp
$wtAttrs
 Example output:
WAST1(cells/mycell/
nodes/mynode:
resources.xml#WASTopic_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new MQ queue connection factory using wsadmin:

v Identify the parent ID:
 set newjmsp [$AdminConfig
getid /Cell:mycell/
Node:mynode/
JMSProvider:JMSP1/]
 Example output:
JMSP1(cells/mycell/
nodes/mynode:
resources.xml#
JMSProvider_1)

v Get required attributes:
 $AdminConfig required
MQQueueConnectionFactory
 Example output:
Attribute Type
name String
jndiName String

v Set up required attributes:
 set name
[list name MQQCF]
set jndi
[list jndiName
jms/MQQCF]
set mqqcfAttrs
[list $name $jndi]
 Example output:
{name MQQCF}
{jndiName
jms/MQQCF}

v Create was topic:
 $AdminConfig create
MQQueueConnectionFactory
$newjmsp $mqqcfAttrs
 Example output:
MQQCF(cells/mycell/nodes
/mynode:resources.xml#
MQQueueConnectionFactory_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new MQ topic connection factory using wsadmin:

Chapter 3. Deploying and managing using scripting 145

v Identify the parent ID:
 set newjmsp [$AdminConfig
getid /Cell:mycell/
Node:mynode/JMSProvider:
JMSP1/]
 Example output:
JMSP1(cells/mycell/
nodes/mynode:
resources.xml#JMSProvider_1)

v Get required attributes:
 $AdminConfig required
MQTopicConnectionFactory
 Example output:
Attribute Type
name String
jndiName String

v Set up required attributes:
 set name
[list name
MQTCF]
set jndi
[list jndiName
jms/MQTCF]
set mqtcfAttrs
[list $name $jndi]
 Example output:
{name MQTCF}
{jndiName jms/MQTCF}

v Create mq topic connection factory:
 $AdminConfig create
MQTopicConnectionFactory
$newjmsp $mqtcfAttrs
 Example output:
MQTCF(cells/mycell/nodes/
mynode:resources.xml#
MQTopicConnectionFactory_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new MQ queue using wsadmin:

v Identify the parent ID:
 set newjmsp [$AdminConfig
getid /Cell:mycell/
Node:mynode/JMSProvider:
JMSP1/]
 Example output:
JMSP1(cells/mycell/nodes
/mynode:resources.xml#
JMSProvider_1)

v Get required attributes:
 $AdminConfig required
MQQueue
 Example output:
Attribute Type
name String
jndiName String
baseQueueName String

146 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

v Set up required attributes:
 set name [list
name MQQ]
set jndi [list
jndiName jms/MQQ]
set baseQN [list
baseQueueName "Put
the base queue
name here"]
set mqqAttrs [list
$name $jndi $baseQN]
 Example output:
{name MQQ} {jndiName
jms/MQQ} {baseQueueName
{Put the base queue
name here}}

v Create mq queue factory:
 $AdminConfig create
MQQueue $newjmsp
$mqqAttrs
 Example output:
MQQ(cells/mycell/nodes
/mynode:resources.xml#
MQQueue_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new MQ topic using wsadmin:

v Identify the parent ID:
 set newjmsp [$AdminConfig
getid /Cell:mycell/Node:
mynode/JMSProvider:JMSP1/]
 Example output:
JMSP1(cells/mycell/nodes
/mynode:resources.xml#
JMSProvider_1)

v Get required attributes:
 $AdminConfig required MQTopic
 Example output:
Attribute Type
name String
jndiName String
baseTopicName String

v Set up required attributes:
 set name [list name MQT]
set jndi [list jndiName
jms/MQT]
set baseTN [list baseTopicName
"Put the base topic name here"]
set mqtAttrs [list $name
$jndi $baseTN]
 Example output:
{name MQT} {jndiName jms/MQT}
{baseTopicName {Put the
base topic name here}}

v Create mq topic factory:
 $AdminConfig create MQTopic
$newjmsp $mqtAttrs

Chapter 3. Deploying and managing using scripting 147

Example output:
MQT(cells/mycell/nodes/
mynode:resources.xml#
MQTopic_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new mail provider using wsadmin
v Identify the parent ID:

 set node [$AdminConfig
getid /Cell:mycell/
Node:mynode/]
 Example output:
mynode(cells/mycell/nodes
/mynode:node.xml#Node_1)

v Get required attributes:
 $AdminConfig required
MailProvider
 Example output:
Attribute Type
name String

v Set up required attributes:
 set name
[list name MP1]
set mpAttrs
[list $name]

v Create the mail provider:
 set newmp [$AdminConfig
create MailProvider
$node $mpAttrs]
 Example output:
MP1(cells/mycell/nodes/
mynode:resources.xml#
MailProvider_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new mail session using wsadmin:

v Identify the parent ID:
 set newmp [$AdminConfig
getid /Cell:mycell/Node:
mynode/MailProvider:MP1/]
 Example output:
MP1(cells/mycell/nodes/
mynode:resources.xml#
MailProvider_1)

v Get required attributes:
 $AdminConfig required
MailSession
 Example output:
Attribute Type
name String
jndiName String

v Set up required attributes:

148 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

set name
[list name MS1]
set jndi
[list jndiName mail/MS1]
set msAttrs
[list $name $jndi]
 Example output:
{name MS1} {jndiName
mail/MS1}

v Create the mail session:
 $AdminConfig create
MailSession $newmp
$msAttrs
 Example output:
MS1(cells/mycell/nodes/
mynode:resources.xml#
MailSession_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new protocol provider using wsadmin:

v Identify the parent ID:
 set newmp [$AdminConfig
getid /Cell:mycell/Node:
mynode/MailProvider:MP1/]
 Example output:
MP1(cells/mycell/nodes/
mynode:resources.xml#
MailProvider_1)

v Get required attributes:
 $AdminConfig required
ProtocolProvider
 Example output:
Attribute Type
protocol String
classname String

v Set up required attributes:
 set protocol [list
protocol "Put the
protocol here"]
set classname [list
classname "Put the
class name here"]
set ppAttrs [list
$protocol $classname]
 Example output:
{protocol protocol1}
{classname classname1}

v Create the protocol provider:
 $AdminConfig create
ProtocolProvider
$newmp $ppAttrs
 Example output:
(cells/mycell/nodes/
mynode:resources.xml#
ProtocolProvider_4)

v Save the changes with the following command:

Chapter 3. Deploying and managing using scripting 149

$AdminConfig save

Example: Configuring a new custom property using wsadmin:

v Identify the parent ID:
 set newmp [$AdminConfig
getid /Cell:mycell/
Node:mynode/
MailProvider:MP1/]
 Example output:
MP1(cells/mycell/nodes/
mynode:resources.xml#
MailProvider_1)

v Create J2EE resource property set:
 set newPropSet [$AdminConfig
create J2EEResourcePropertySet
$newmp {}]
 Example output:
(cells/mycell/nodes/mynode:
resources.xml#
J2EEResourcePropertySet_2)

v Get required attributes:
 $AdminConfig required
J2EEResourceProperty
 Example output:
Attribute Type
name String

v Set up the required attributes:
 set name [list
name CP1]
set cpAttrs
[list $name]
 Example output:
{name CP1}

v Create a J2EE resource property:
 $AdminConfig create
J2EEResourceProperty
$newPropSet $cpAttrs
 Example output:
CP1(cells/mycell/nodes/
mynode:resources.xml#
J2EEResourceProperty_2)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new resource environment provider
using wsadmin
An example configuring a new resource environment provider follows:
v Identify the parent ID and assign it to the node variable.

 set node [$AdminConfig
getid /Cell:mycell/
Node:mynode/]
 An example of this output follows:
mynode(cells/mycell/
nodes/mynode:node.xml#
Node_1)

v Identify the required attributes:

150 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

$AdminConfig required
ResourceEnvironmentProvider
 An example of this output follows:
Attribute Type
name String

v Set up the required attributes and assign it to the repAttrs variable:
 set n1 [list
name REP1]
set repAttrs
[list $name]

v Create a new resource environment provider:
 set newrep [$AdminConfig create
ResourceEnvironmentProvider
$node $repAttrs]
 An example of this output follows:
REP1(cells/mycell/nodes/
mynode:resources.xml#
ResourceEnvironmentProvider_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring custom properties for a resource environment provider
using wsadmin: An example configuring a new custom property for a resource
environment provider follows:
v Identify the parent ID and assign it to the newrep variable.

 set newrep [$AdminConfig getid
/Cell:mycell/Node:mynode/
ResourceEnvironmentProvider:REP1/]
 An example of this output follows:
REP1(cells/mycell/nodes/
mynode:resources.xml#
ResourceEnvironmentProvider_1)

v Identify the required attributes:
 $AdminConfig required
J2EEResourceProperty
 An example of this output follows:
Attribute Type
name String

v Set up the required attributes and assign it to the repAttrs variable:
 set name
[list name RP]
set rpAttrs
[list $name]

v Create a J2EE resource property set:
 set newPropSet [$AdminConfig
create J2EEResourcePropertySet
$newrep {}]
 An example of this output follows:
(cells/mycell/nodes/
mynode:resources.xml#
J2EEResourcePropertySet_1)

v Create a J2EE resource property:
 $AdminConfig create
J2EEResourceProperty
$newPropSet $rpAttrs
 An example of this output follows:

Chapter 3. Deploying and managing using scripting 151

RP(cells/mycell/nodes/
mynode:resources.xml#
J2EEResourceProperty_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new referenceable using wsadmin: An example
configuring a new referenceable follows:
v Identify the parent ID and assign it to the newrep variable.

 set newrep [$AdminConfig
getid /Cell:mycell/Node:
mynode/
ResourceEnvironmentProvider:
REP1/]
 An example of this output follows:
REP1(cells/mycell/nodes/
mynode:resources.xml#
ResourceEnvironmentProvider_1)

v Identify the required attributes:
 $AdminConfig required
Referenceable
 An example of this output follows:
Attribute Type
factoryClassname String
classname String

v Set up the required attributes:
 set fcn [list
factoryClassname REP1]
set cn [list
classname NM1]
set refAttrs
[list $fcn $cn]
 An example of this output follows:
{factoryClassname
{REP1}} {classname
{NM1}}

v Create a new referenceable:
 set newref [$AdminConfig
create Referenceable
$newrep $refAttrs]
 An example of this output follows:
(cells/mycell/nodes/
mynode:resources.xml#
Referenceable_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new resource environment entry using wsadmin: An
example configuring a new resource environment entry follows:
v Identify the parent ID and assign it to the newrep variable.

 set newrep [$AdminConfig
getid /Cell:mycell/
Node:mynode/
ResourceEnvironmentProvider:
REP1/]
 An example of this output follows:

152 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

REP1(cells/mycell/nodes/
mynode:resources.xml#
ResourceEnvironmentProvider_1)

v Identify the required attributes:
 $AdminConfig required
ResourceEnvEntry
 An example of this output follows:
Attribute Type
name String
jndiName String
referenceable Referenceable@

v Set up the required attributes:
 set name
[list name REE1]
set jndiName
[list jndiName myjndi]
set newref
[$AdminConfig getid
/Cell:mycell/
Node:mynode/Referenceable:/]
set ref [list
referenceable $newref]
set reeAttrs
[list $name
$jndiName $ref]

v Create the resource environment entry:
 $AdminConfig create
ResourceEnvEntry
$newrep $reeAttrs
 An example of this output follows:
REE1(cells/mycell/nodes/
mynode:resources.xml#
ResourceEnvEntry_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring custom properties for resource environment entries using
wsadmin: An example configuring a new custom property for a resource
environment entry follows:
v Identify the parent ID and assign it to the newree variable.

 set newree [$AdminConfig
getid /Cell:mycell/Node:
mynode/ResourceEnvEntry:REE1/]
 An example of this output follows:
REE1(cells/mycell/nodes/
mynode:resources.xml#
ResourceEnvEntry_1)

v Create the J2EE custom property set:
 set newPropSet [$AdminConfig
create J2EEResourcePropertySet
$newree {}]
 An example of this output follows:
(cells/mycell/nodes/
mynode:resources.xml#
J2EEResourcePropertySet_5)

v Identify the required attributes:
 $AdminConfig required
J2EEResourceProperty

Chapter 3. Deploying and managing using scripting 153

An example of this output follows:
Attribute Type
name String

v Set up the required attributes:
 set name [list
name RP1]
set rpAttrs
[list $name]

v Create the J2EE custom property:
 $AdminConfig create
J2EEResourceProperty
$newPropSet $rpAttrs
 An example of this output follows:
RPI(cells/mycell/nodes/
mynode:resources.xml#
J2EEResourceProperty_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new URL provider using wsadmin
An example configuring a new URL provider follows:
v Identify the parent ID and assign it to the node variable.

 set node [$AdminConfig
getid /Cell:mycell/
Node:mynode/]
 An example of this output follows:
mynode(cells/mycell/
nodes/mynode:node.xml#
Node_1)

v Identify the required attributes:
 $AdminConfig required
URLProvider
 An example of this output follows:
Attribute Type
streamHandlerClassName String
protocol String
name String

v Set up the required attributes:
 set name [list
name URLP1]
set shcn [list
streamHandlerClassName
"Put the stream
handler classname here"]
set protocol
[list protocol
"Put the protocol here"]
set urlpAttrs
[list $name $shcn
$protocol]
 An example of this output follows:
{name URLP1}
{streamHandlerClassName
{Put the stream handler
classname here}}
{protocol {Put the
protocol here}}

v Create a URL provider:

154 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

$AdminConfig create
URLProvider $node
$urlpAttrs
 An example of this output follows:
URLP1(cells/mycell/
nodes/mynode:
resources.xml#
URLProvider_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring custom properties for URL providers using wsadmin: An
example configuring a new custom property for URL providers follows:
v Identify the parent ID and assign it to the newurlp variable.

 set newurlp [$AdminConfig
getid /Cell:mycell/Node:
mynode/URLProvider:URLP1/]
 An example of this output follows:
URLP1(cells/mycell/nodes/
mynode:resources.xml#
URLProvider_1)

v Create a J2EE resource property set:
 $set newPropSet [$AdminConfig
create J2EEResourcePropertySet
$newurlp {}]
 An example of this output follows:
(cells/mycell/nodes/mynode:
resources.xml#
J2EEResourcePropertySet_7)

v Identify the required attributes:
 $AdminConfig required
J2EEResourceProperty
 An example of this output follows:
Attribute Type
name String

v Set up the required attributes:
 set name [list name RP2]
set rpAttrs [list $name]

v Create a J2EE resource property:
 $AdminConfig create
J2EEResourceProperty
$newPropSet $rpAttrs
 An example of this output follows:
RP2(cells/mycell/nodes/
mynode:resources.xml#
J2EEResourceProperty_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new URL using wsadmin: An example configuring a
new URL follows:
v Identify the parent ID and assign it to the newurlp variable.

 set newurlp [$AdminConfig
getid /Cell:mycell/Node:
mynode/URLProvider:URLP1/]
 An example of this output follows:

Chapter 3. Deploying and managing using scripting 155

URLP1(cells/mycell/nodes/
mynode:resources.xml#
URLProvider_1)

v Identify the required attributes:
 $AdminConfig required URL
 An example of this output follows:
Attribute Type
name String
spec String

v Set up the required attributes:
 set name [list
name URL1]
set spec [list
spec "Put the spec here"]
set urlAttrs
[list $name $spec]
 An example of this output follows:
{name URL1} {spec
{Put the spec here}}

v Create a URL:
 $AdminConfig create URL
$newurlp $urlAttrs
 An example of this output follows:
URL1(cells/mycell/nodes/
mynode:resources.xml#URL_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring custom properties for URLs using wsadmin: An example
configuring a new custom property for a URL follows:
v Identify the parent ID and assign it to the newurl variable.

 set newurl [$AdminConfig getid
/Cell:mycell/Node:mynode/
URLProvider:URLP1/URL:URL1/]
 An example of this output follows:
URL1(cells/mycell/nodes/
mynode:resources.xml#URL_1)

v Create a J2EE resource property set:
 set newPropSet [$AdminConfig
create J2EEResourcePropertySet
$newurl{}]
 An example of this output follows:
(cells/mycell/nodes/
mynode:resources.xml#
J2EEResourcePropertySet_7)

v Identify the required attributes:
 $AdminConfig required
J2EEResourceProperty
 An example of this output follows:
Attribute Type
name String

v Set up the required attributes:
 set name [list name RP3]
set rpAttrs [list $name]

v Create a J2EE resource property:

156 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

$AdminConfig create
J2EEResourceProperty
$newPropSet $rpAttrs
 An example of this output follows:
RP3(cells/mycell/nodes/
mynode:resources.xml#
J2EEResourceProperty_7)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new J2C resource adapter using
wsadmin
An example configuring a new J2C resource adapter follows:
v Identify the parent ID and assign it to the node variable.

 set node [$AdminConfig
getid /Cell:mycell/
Node:mynode/]
 An example of this output follows:
mynode(cells/mycell/
nodes/mynode:node.xml#
Node_1)

v Identify the required attributes:
 $AdminConfig required
J2CResourceAdapter
 An example of this output follows:
Attribute Type
name String

v Set up the required attributes:
 set rarFile
c:/currentScript/
cicseci.rar
set option
[list -rar.name
RAR1]

v Create a resouce adapter:
 set newra [$AdminConfig
installResourceAdapter
$rarFile mynode $option]
 An example of this output follows:
RAR1(cells/mycell/nodes/
mynode:resources.xml#
J2CResourceAdapter_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring custom properties for J2C resource adapters using
wsadmin: An example configuring a new custom property for a J2C resource
adapters follows:
v Identify the parent ID and assign it to the newra variable.

 set newra [$AdminConfig
getid /Cell:mycell/Node:mynode
/J2CResourceAdapter:RAR1/]
 An example of this output follows:
RAR1(cells/mycell/nodes/
mynode:resources.xml#
J2CResourceAdapter_1)

Chapter 3. Deploying and managing using scripting 157

v Create a J2EE resource property set:
 set newPropSet [$AdminConfig
create J2EEResourcePropertySet
$newra {}]
 An example of this output follows:
(cells/mycell/nodes/
mynode:resources.xml#
J2EEResourcePropertySet_8)

v Identify the required attributes:
 $AdminConfig required
J2EEResourceProperty
 An example of this output follows:
Attribute Type
name String

v Set up the required attributes:
 set name [list name RP4]
set rpAttrs [list $name]

v Create a J2EE resource property:
 $AdminConfig create
J2EEResourceProperty
$newPropSet $rpAttrs
 An example of this output follows:
RP4(cells/mycell/nodes/
mynode:resources.xml#
J2EEResourceProperty_8)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring a new J2C connection factory using wsadmin: An
example configuring a new J2C resource factory follows:
v Identify the parent ID and assign it to the newra variable.

 set newra [$AdminConfig getid
/Cell:mycell/Node:mynode/
J2CResourceAdapter:RAR1/]
 An example of this output follows:
RAR1(cells/mycell/nodes/
mynode:resources.xml#
J2CResourceAdapter_1)

v Identify the required attributes:
 $AdminConfig required
J2CConnectionFactory
 An example of this output follows:
Attribute Type
name String

v Set up the required attributes:
 set name [list
name J2CCF1]
set j2ccfAttrs
[list $name]

v Create a connection factory:
 $AdminConfig create
J2CConnectionFactory
$newra $j2ccfAttrs
 An example of this output follows:

158 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

J2CCF1(cells/mycell/
nodes/mynode:resources.xml#
J2CConnectionFactory_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring custom properties for J2C connection factories using
wsadmin: An example configuring a new custom property for a J2C resource
factories follows:
v Identify the parent ID and assign it to the newcf variable:

 set newcf [$AdminConfig
getid /J2CConnectionFactory:
J2CCF1/]
 An example of this output follows:
J2CCF1(cells/mycell/nodes/
mynode:resources.xml#
J2CConnectionFactory_1)

v Create a J2EE resource property set:
 set newPropSet [$AdminConfig
create J2EEResourcePropertySet
$newcf {}]
 An example of this output follows:
(cells/mycell/nodes/mynode:
resources.xml#
J2EEResourcePropertySet_8)

v Identify the required attributes:
 $AdminConfig required
J2EEResourceProperty
 An example of this output follows:
Attribute Type
name String

v Set up the required attributes:
 set name [list
name RP4]
set rpAttrs
[list $name]

v Create a J2EE resource property:
 $AdminConfig create
J2EEResourceProperty
$newPropSet $rpAttrs
 An example of this output follows:
RP4(cells/mycell/nodes/
mynode:resources.xml#
J2EEResourceProperty_8)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring new J2C authentication data entries using wsadmin: An
example configuring new J2C authentication data entries follows:
v Identify the parent ID and assign it to the security variable.

 set security [$AdminConfig
getid /Security:mysecurity/]

v Identify the required attributes:
 $AdminConfig required
JAASAuthData

Chapter 3. Deploying and managing using scripting 159

An example of this output follows:
Attribute Type
alias String
userId String
password String

v Set up the required attributes:
 set alias
[list alias myAlias]
set userid
[list userId myid]
set password
[list password secret]
set jaasAttrs
[list $alias
$userid $password]
 An example of this output follows:
{alias myAlias}
{userId myid}
{password secret}

v Create JAAS authentication data:
 $AdminConfig create
JAASAuthData $security
$jaasAttrs
 An example of this output follows:
(cells/mycell/nodes/
mynode:resources.xml#
JAASAuthData_2)

v Save the changes with the following command:
 $AdminConfig save

Example: Enabling and disabling global security with a profile
The default profile sets up procedures so that you can enable and disable global
security based on LocalOS registry.
v You can use the help command to find out the arguments that you need to

provide with this call, for example:
 securityon help

An example of this output follows:
Syntax: securityon
user password

v To enable global security based on the LocalOS registry, use the following
procedure call and arguments:
 securityon
user1
 password1

v To disable global security based on the LocalOS registry, use the following
procedure call:
 securityoff

Example: Enabling and disabling Java 2 security using wsadmin
An example of enabling and disabling Java 2 security follows:
v Identify the security configuration object and assign it to the security variable:

 set security
[$AdminConfig
list Security]
 An example of this output follows:

160 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

(cells/mycell:
security.xml#
Security_1)

v Modify the enforceJava2Security attribute.
 To enable Java 2 security:
$AdminConfig modify
$security
{{enforceJava2Security
true}}
 To disable Java 2 security:
$AdminConfig modify
$security
{{enforceJava2Security
false}}

v Save the changes with the following command:
 $AdminConfig save

Managing running objects with scripting
Operation management scripts use the AdminControl object to communicate with
the MBeans that represent running objects. You can use the AdminControl object to
list running objects and their attributes, invoke actions on running objects, obtain
help, and obtain dynamic information about running MBeans.

Steps for this task
1. Decide how you want to execute the script. If you want to run the script

immediately from the command line, enter it surrounded by quotes as a
parameter to the wsadmin -c command. To save the script for repeated use,
compose it in a file and execute it with the wsadmin -f command. If you want
to compose and run the script interactively, issue the wsadmin command
without the -c or -f flags. For more information about executing scripts, see
Launching scripting clients

2. Write an AdminControl script command statement to perform a management
task, for example:
 $AdminControl
command

Specifying running objects using the wsadmin tool
Steps for this task
1. Invoke the AdminContol object commands interactively, in a script, or use the

wsadmin -c command from an operating system command prompt.
2. Obtain the configuration ID with one of the following ways:
v Obtain the object name with the completeObjectName command, for

example:
 set var [$AdminControl
completeObjectName template]

where:

 set is a Jacl command
var is a variable name
$AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere server
process

Chapter 3. Deploying and managing using scripting 161

completeObjectName is an $AdminControl command
template is a string containing a segment of the object

name to be matched. The template has the
same format as an object name with the
following pattern:
[domainName]:property=value[,property=value]*.
See Object name, Attribute, Attribute list for
more information.

 If there are several MBeans that match the template, the
completeObjectName command only retuns the first match. The matching
MBean object name is then assigned to a variable.

 To look for server1 MBean in mynode, use the following example:
set server1
[$AdminControl
completeObjectName
node=mynode,server:
server1*]

v Obtain the object name with the queryNames command, for example:
 set var [$AdminControl
queryNames template]

where:

 set is a Jacl command
var is a variable name
$AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere Application
server process.

queryNames is an $AdminConfig command
template is a string containing a segment of the object

name to be matched. The template has the
same format as an object name with the
following pattern:
[domainName]:property=value[,property=value]*

The difference between querNames and completeObjectName commands is
the queryNames command returns a list of all the MBean object names that
matches the template.

 To look for all the MBeans, use the following example:
set allMbeans
[$AdminControl queryNames *]

To look for all the server MBeans, use the following example:
set servers
[$AdminControl
queryNames type=Server,*]

To look for all the server Mbeans in mynode, use the following example:
 set nodeServers
[$AdminControl
queryNames
node=mynode,
type=Server,*]

162 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

3. If there are more than one running objects returned from the queryNames
command, the objects are returned in a list syntax. One simple way to retrieve
a single element from the list is to use the lindex command. The following
example retrieves the first running object from the server list:
 set allServers
[$AdminControl
queryNames
type=Server,*]
set aServer
[lindex
$allServers 0]
 For other ways to manipulate the list and then perform pattern matching to
look for a specified configuration object, refer to the Jacl syntax.

Results

You can now use the running object in with other AdminControl commands that
require an object name as a parameter.

Identifying attributes and operations for running objects with
the wsadmin tool

Use the Help object attributes or operations commands to find information on a
running MBean in the server.

Steps for this task
1. Invoke the AdminControl object commands interactively, in a script, or use the

wsadmin -c tool from an operating system command prompt.
2. Specify a running object.
3. Use the attributes command to display the attributes of the running object:

 $Help attributes
MBeanObjectName

where:

 $Help is the object that provides general help and
information for running MBeans in the
connected server process

attributes is a $Help command
MBeanObjectName is the string representation of the MBean

object name obtained in step 2

4. Use the operations command to find out the operations supported by the
MBean:
 $Help operations
MBeanObjectname

or
$Help operations
MBeanObjectname
operationName

where:

 $Help is the object that provides general help and
information for running MBeans in the
connected server process

Chapter 3. Deploying and managing using scripting 163

operations is a $Help command
MBeanObjectname is the string representation of the MBean

object name obtained in step number 2
operationName (optional) is the specified operation for which

you want to obtain detailed information

If you do not provide the operationName, all operations supported by the
MBean return with the signature for each operation. If you specify
operationName, only the operation that you specify returns and it contains
details which include the input parameters and the return value.

 To display the operations for the server MBean, use the following example:
set server [$AdminControl
completeObjectName
type=Server,name=server1,*]
$Help operations $serv
 To display detailed information about the stop operation, use the following
example:
$Help operations
$server stop

Performing operations on running objects using the wsadmin
tool

Steps for this task
1. Invoke the AdminContol object commands interactively, in a script, or use the

wsadmin -c command from an operating system command prompt.
2. Obtain the object name of the running object with the following command:

 $AdminControl
completeObjectName
name

where:

 $AdminControl is an object that enables the manipulation of
MBeans running in a WebSphere server
process

completeObjectName is an $AdminControl command
<i>name</i> <samp/> </td> <td class=″base″ valign=″top″ align=″left″ rowspan=″1″
colstart=″″>is a fragment of the object name. It is used to find the matching object name. For
example: <samp>type=Server,name=serv1,*. It can be any valid combination of domain and
key properties. For example, type, name, cell, node, process, etc.

3. Issue the following command:
 set s1 [$AdminControl
completeObjectName
type=
Server,
name=server1,*]

where:

 set is a Jacl command
s1 is a variable name
$AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere server
process

completeObjectName is an $AdminControl command

164 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

type is the object name property key
<i>Server</i> is the name of the object
name is the object name property key
<i>server1</i> is the name of the server where the operation

will be invoked

4. Invoke the operation with the following command:
 $AdminControl invoke
$s1 stop

where:

 $AdminControl is an object that enables the manipulation of
MBeans running in a WebSphere server
process

invoke is an AdminControl command
$s1 is the ID of the server specified in step

number 3
stop is an attribute of invoke objects

Usage scenario

The following example is for operations that require parameters:
set traceServ [$AdminControl
completeObjectName
type=TraceService,
process=server1,*]
$AdminControl invoke
$traceServ appendTraceString
"com.ibm.ws.management.
*=all=enabled"

Modifying attributes on running objects with the wsadmin tool
Steps for this task
1. Invoke the AdminContol object commands interactively, in a script, or use the

wsadmin -c command from an operating system command prompt.
2. Obtain the name of the running object with the following command:

 $AdminControl
completeObjectName
name

where:

 $AdminControl is an object that enables the manipulation of
MBeans running in a WebSphere server
process

completeObjectName is an AdminControl command
<i>name</i> is a fragment of the object name. It is used to

find the matching object name. For example:
type=Server,name=serv1,*. It can be any
valid combination of domain and key
properties. For example, type, name, cell,
node, process, etc.

3. Issue the following command:

Chapter 3. Deploying and managing using scripting 165

set ts1 [$AdminControl
completeObjectName
name]

where:

 set is a Jacl command
ts1 is a variable name
$AdminControl is an object that enables the manipulation of

MBeans running in a WebSphere server
process

completeObjectName is an $AdminControl command
<i>name</i> is a fragment of the object name. It is used to

find the matching object name. For example:
type=Server,name=serv1,*. It can be any
valid combination of domain and key
properties. For example, type, name, cell,
node, process, etc.

4. Modify the running object with the following command:
 $AdminControl setAttribute
$ts1 ringBufferSize
10

where:

 $AdminControl is an object that enables the manipulation of
MBeans running in a WebSphere server
process

setAttribute is an AdminControl command
$ts1 evaluates to the ID of the server specified in

step number 3
ringBufferSize is an attribute of modify objects
<i>10</i> is the value of the ringBufferSize attribute

 You can also modify multiple attribute name and value pairs, for example:
set ts1 [$AdminControl
completeObjectName
type=TraceService,
process=server1,*]
$AdminControl
setAttributes $ts1
{{ringBufferSize
10}
{traceSpecification
com.ibm.
*=all=disabled}}
 The new attribute values are returned to the command line.

Operation management examples with wsadmin
There are examples that illustrate how to manage running objects using wsadmin.
Use these examples to identify running objects, modify them and invoke actions on
them with the AdminControl object. Basic knowledge of the syntax for the Jacl
scripting language is helpful in order to understand and modify the examples.

166 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Example: Representing lists and javax.management.AttributeList
objects with strings when scripting
Represent lists and javax.management.AttributeList objects using strings when
scripting. These objects have different syntax conventions depending on the
scripting language and whether the list or AttributeList object is input or output.
The Java Management Extensions (JMX) Specification says the following about the
Attribute and AttributeList classes:
v The Attribute class represents a single attribute-value pair
v The AttributeList class represents a list of attribute-value pairs

The Attribute and AttributeList objects are typically used for conveying the
attribute values of an MBean, as the result of a getter operation, or as the
argument of a setter operation.

Jacl

When using the Jacl interface, contruct lists using the standard Jacl list syntax. For
example, a list of two attribute names might look like: {passivationDirectory
inactivePoolCleanupInterval} On output, the wsadmin tool does not display the
enclosing brackets, and you can manipulate the result as a Jacl list. An
AttributeList object is represented by a Jacl lists. The outer, enclosing list
represents the entire AttributeList class, and can have any number of interior lists.
The interior lists each have a length of two, where the first element is the attribute
name, and the second element is a string representation of the attribute value. For
example, {{passivationDirectory c:/temp}} is an attribute list containing a single
attribute name and value, and {{traceSpecification com.ibm.*=all=enabled}
{ringBufferSize 0}} contains two attributes. Enter input (in a script) string
AttributeLists exactly like this. If the value of the attribute contains a space, then
enclose the value in another set of curly braces, or in double quotes:
{{passivationDirectory ″c:/My Folder/temp″}} On output, the outer set of
parenthesis does not display, which makes the output value a Jacl list that the
script can easily manipulate.

Example: Identifying running objects
In the WebSphere Application Server, MBeans represent running objects. You can
interrogate the MBean server to see the objects it contains. Use the AdminControl
object to interact with running MBeans.
v Use the queryNames command to see running MBean objects. For example:

 $AdminControl queryNames *

This command returns a list of all MBean types. Depending on the server to
which your scripting client attaches, this list can contain MBeans that run on
different servers:
– If the client attaches to a stand-alone WebSphere Application Server, the list

contains MBeans that run on that server.
– If the client attaches to a node agent, the list contains MBeans that run in the

node agent and MBeans that run on all application servers on that node.
– If the client attaches to a deployment manager, the list contains MBeans that

run in the deployment manager, all of the node agents communicating with
that deployment manager, and all application servers on the nodes served by
those node agents.

v The list that the queryNames command returns is a string representation of JMX
ObjectName objects. For example:

Chapter 3. Deploying and managing using scripting 167

WebSphere:cell=MyCell,
name=TraceService,
mbeanIdentifier=
TraceService,
type=TraceService,
node=MyNode,
process=server1

This example represents a TraceServer object that runs in server1 on MyNode.
v The single queryNames argument represents the ObjectName object for which

you are searching. The asterisk (″*″) in the example means return all objects, but
it is possible to be more specific. As shown in the example, ObjectName has two
parts: a domain, and a list of key properties. For MBeans created by the
WebSphere Application Server, the domain is WebSphere. If you do not specify a
domain when you invoke queryNames, the scripting client assumes the domain
is WebSphere. This means that the first example query above is equivalent to:
 $AdminControl queryNames
WebSphere:*

v WebSphere Application Server includes the following key properties for the
ObjectName object:
– name
– type
– cell
– node
– process
– mbeanIdentifier

These key properties are common. There are other key properties that exist. You
can use any of these key properties to narrow the scope of the queryNames
command. For example:
 $AdminControl queryNames
WebSphere:type=Server,
node=myNode,*

This example returns a list of all MBeans that represent server objects running
the node myNode. The, * at the end of the ObjectName object is a JMX wildcard
designation. For example, if you enter the following:
$AdminControl queryNames
WebSphere:type=Server,
node=myNode

you get an empty list back because the argument to queryNames is not a
wildcard. There is no Server MBean running that has exactly these key
properties and no others.

v If you want to see all the MBeans representing applications running on a
particular node, invoke the following example:
 $AdminControl queryNames
WebSphere:type=Application,
node=myNode,*

Example: Turning traces on and off in a server process with the
wsadmin tool
The following example turns on tracing in a server process:
v Identify the object name for the TraceService MBean running in the process:

168 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

$AdminControl completeObjectName
type=Server,
name=server1,*

v Obtain the name of the object and set it to a variable:
 set ts [$AdminControl
completeObjectName type=
TraceService,
process=server1,*]

v Turn on traces for the server:
 $AdminControl setAttribute
$ts traceSpecification
com.ibm.*=all=enabled

Example: Dumping threads in a server process
Use the AdminControl object to dump the Java threads of a running server.
v For example, in Jacl:

 set jvm [$AdminControl
completeObjectName
type=JVM,process=server1,*]
$AdminControl invoke
$jvm dumpThreads

This example produces a Java core file. You can use this file for problem
determination.

Example: Setting up profiles to make tracing easier when
scripting
Set up a profile to make tracing easier. The following profile example turns tracing
on and off:
proc ton {} {
 global AdminControl
 set ts [lindex
[$AdminControl queryNames
 type=TraceService,*] 0]
 $AdminControl setAttribute
 $ts traceSpecification
com.ibm.=all=enabled]
}

proc toff {} {
 global AdminControl
 set ts [lindex
[$AdminControl
queryNames
type=TraceService,*] 0]
 $AdminControl
setAttribute $ts
traceSpecification
com.ibm.*=all=disabled
}

proc dt {} {
 global AdminControl
 set jvm [lindex
[$AdminControl queryNames
type=JVM,*] 0]
 $AdminControl invoke
$jvm dumpThreads
}

If you start the wsadmin tool with this profile, you can use the ton command to
turn on tracing in the server, the toff command to turn off tracing, and the dt

Chapter 3. Deploying and managing using scripting 169

command to dump the Java threads. For more information about running scripting
commands in a profile, see the Launching Scripting Clients article.

Example: Starting a server using wsadmin
The following example starts an application server with the node specified.
v The following command starts server1 in mynode node:

 $AdminControl startServer
server1 mynode
 Example output:
WASX7319I: The
serverStartupSyncEnabled
attribute is set to
false. A start
will be attempted for
server "server1" but
the configuration
information for
node "mynode" may
not be current.
WASX7262I: Start
completed for server
"server1" on node "mynode"

v The startServer command has several command syntax options. If you have
Network Deployment installation, you have to use one of following:
 $AdminControl startServer
serverName nodeName

$AdminControl startServer
serverName nodeName waitTime

v If you have an application server base installation, you can use the following
syntax in addition to the previous syntax:
 $AdminControl startServer
serverName

$AdminControl startServer
serverName waitTime

Example: Stopping a server using wsadmin
The following example stops an application server with the node specified.
v The following command stops server1 in node mynode.

 $AdminControl stopServer
server1 mynode
 Example output:
WASX7337I: Invoked stop
for server "server1"
Waiting for stop completion.
WASX7264I: Stop completed
for server "server1"
on node "mynode"

v The stop command has serveral command syntaxes.
 If you have Network Deployment installation, use the one of following
command syntax:
$AdminControl stopServer
serverName nodeName

$AdminControl stopServer
serverName nodeName immediate
 If you have application server base installation, you can use the following
syntax, in addition to the previous syntax:

170 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

$AdminControl stopServer
serverName

$AdminControl stopServer
serverName immediate

Example: Querying the server state using the wsadmin tool
The following example queries the server state.
v Identify the server and assign it to the server variable.

 set server [$AdminControl
completeObjectName
cell=mycell,node=mynode,
name=server1,type=Server,*]

This command returns the server MBean that matches the partial object name
string.

 Example output:
WebSphere:cell=mycell,
name=server1,mbeanIdentifier
=server.xml#Server_1,
type=Server,node=mynode,
process=server1,
processType=ManagedProcess

v Query for the state attribute.
 $AdminControl getAttribute
$server state

The getAttribute command returns the value of a single attribute.

 Example output:
STARTED

Example: Querying the product identification using wsadmin
The following example queries the product version information.
v Identify the server and assign it to the server variable.

 set server [$AdminControl
completeObjectName
type=Server,name=server1,
node=mynode,*]
 Example output:
WebSphere:cell=mycell,
name=server1,
mbeanIdentifier=server.xml#
Server_1,type=Server,
node=mynode,process=server1,
processType=ManagedProcess

v Query the server version. The product information is stored in the serverVersion
attribute. The getAttribute command returns the attribute value of a single
attribute, passing in the attribute name.
 $AdminControl getAttribute
$server1 serverVersion
 Example output for a Network Deployment installation follows:
IBM WebSphere Application
Server Version Report

 Platform Information

Chapter 3. Deploying and managing using scripting 171

Name: IBM WebSphere
 Application Server
 Version: 5.0

 Product Information

 ID: BASE
 Name: IBM WebSphere
 Application Server
 Build Date: 9/11/02
 Build Level: r0236.11
 Version: 5.0.0

 Product Information

 ID: ND
 Name: IBM WebSphere
 Application Server for
 Network Deployment
 Build Date: 9/11/02
 Build Level: r0236.11
 Version: 5.0.0

 End Report

Example: Starting a listener port using wsadmin
The following example starts a listener port on an application server.
v Identify the listener port MBeans for the application server and assign it to the

lPorts variable.
 set lPorts [$AdminControl
queryNames type=ListenerPort,
cell=mycell,node=mynode,
process=server1,*]

This command returns a list of listener port MBeans.

 Example output:
WebSphere:cell=mycell,
name=ListenerPort,
mbeanIdentifier=server.xml#
ListenerPort_1,type=
ListenerPort,node=
mynode,process=server1
WebSphere:cell=mycell,
name=listenerPort,
mbeanIdentifier=
ListenerPort,
type=server.xml#
ListenerPort_2,node=
mynode,process=server1

v Start the listener port if it is not started with the following example:
 foreach lPort $lPorts {
 set state
[$AdminControl getAttribute
$lport started]
 if {$state ==
"false"} {

172 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

$AdminControl
invoke $lPort start
 }
 }

This piece of Jacl code loops through the listener port MBeans. For each listener
port MBean, get the attribute value for the started attribute. If the attribute value
is set to false, then start the listener port by invoking the start operation on the
MBean.

Example: Testing data source connection using wsadmin to call
a method on the MBean
The following example tests a dataSource, to ensure a connection to the database.

Note: While this method still works for Version 5.0.1, it might not work in future
releases of the product.
v Identify the DataSourceCfgHelper MBean and assign it to the dshelper variable.

 set dshelper [$AdminControl
queryNames
type=DataSourceCfgHelper,
process=server1*,]
 Example output:
WebSphere:cell=mycell,
name=DataSourceCfgHelper,
mbeanIdentifier=
DataSourceCfgHelper,
type=DataSourceCfgHelper,
node=mynode,process=server1

v Test the connection.
 $AdminControl invoke
$dshelper
testConnectionToDataSource
"COM.ibm.db2.jdbc.
DB2XADataSource db2admin
db2admin {{databaseName
sample}} c:/sqllib/java/
db2java.zip en US"

This example command invokes the testConnectionToDataSource operation on
the MBean, passing in the classname, userid, password, database name, JDBC
driver class path, language, and country.

 Example output:
DSRA8025I: Successfully
connected to DataSource

The Preferred Method

Instead of using the method testConnectionToDataSource , use the method
testConnection and pass in the configuration ID of the data source.
set myds [$AdminConfig getid
"/JDBCProvider:Sybase 12.0
JDBC Driver/DataSource:
sybaseds/"]

Chapter 3. Deploying and managing using scripting 173

$AdminControl invoke
$dshelper testConnection
$myds

To aid in making a batch program, the command returns a value instead of a
message. A return value of 0 means success. A return value of 1 - n means success,
but with a number of warnings. If the process fails, you receive an exception
message.

Example: Configuring transaction properties for a server using
wsadmin
The following example configures the run-time transaction properties for an
application server.
v Identify the transaction service MBean for the application server.

 set ts [$AdminControl
completeObjectName
cell=mycell,node=mynode,
process=server1,
type=TransactionService,*]

This command returns the transaction service MBean for server1

 Example output:
WebSphere:cell=mycell,
name=TransactionService,
mbeanIdentifier=
TransactionService,
type=TransactionService,
node=mynode,process=server1

v Modify the attributes. The following example is for the Windows operating
system:
 $AdminControl invoke $ts
{{transactionLogDirectory
c:/WebSphere/AppServer/
tranlog/server1}
{clientInactivityTimeout 30}
{totalTranLifetimeTimeout
180}}

The clientInactivityTimeout is in seconds. The totalTranLifetimeTimeout is in
milliseconds. A value of 0 in either attribute means no timeout limit.

Example: Starting a cluster using wsadmin
The following example starts a cluster:
v Identify the ClusterMgr MBean and assign it to the clusterMgr variable.

 set clusterMgr [$AdminControl
completeObjectName
cell=mycell,type=ClusterMgr,*]

This command returns the ClusterMgr MBean.

 Example output:
WebSphere:cell=mycell,
name=ClusterMgr,
mbeanIdentifier=
ClusterMgr,type=ClusterMgr,
process=dmgr

v Refresh the list of clusters.

174 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

$AdminControl invoke
$clusterMgr retrieveClusters

This command calls the retrieveClusters operation on the ClusterMgr MBean.
v Identify the Cluster MBean and assign it to the cluster variable.

 set cluster [$AdminControl
completeObjectName cell=mycell,
type=Cluster,name=cluster1]

This command returns the Cluster MBean.

 Example output:
WebSphere:cell=mycell,
name=cluster1,mbeanIdentifier=
Cluster,type=Cluster,
process=cluster1

v Start the cluster.
 $AdminControl invoke
$cluster start

This command invokes the start operation on the Cluster MBean.

Example: Stopping a cluster using wsadmin
The following example stops a cluster:
v Identify the Cluster MBean and assign it to the cluster variable.

 set cluster [$AdminControl
completeObjectName cell=mycell,
type=Cluster,name=cluster1]

This command returns the Cluster MBean.

 Example output:
WebSphere:cell=mycell,
name=cluster1,mbeanIdentifier=
Cluster,type=Cluster,
process=cluster1

v Stop the cluster.
 $AdminControl invoke
$cluster stop

This command invokes the stop operation on the Cluster MBean.

Example: Querying cluster state using wsadmin
The following example queries the state of the cluster:
v Identify the Cluster MBean and assign it to the cluster variable.

 set cluster
[$AdminControl
completeObjectName
cell=mycell,
type=Cluster,
name=cluster1]

This command returns the Cluster MBean.

 Example output:

Chapter 3. Deploying and managing using scripting 175

WebSphere:cell=mycell,
name=cluster1,
mbeanIdentifier=
Cluster,type=Cluster,
process=cluster1

v Query the cluster state.
 $AdminControl getAttribute
$cluster state

This command returns the value of the run-time state attribute.

Example: Listing running applications on running servers using
wsadmin
The following example lists all the running applications on all the running servers
on each node of each cell.
v Provide this example as a Jacl script file and run it with the ″-f″ option:

 1 #-------------------------
2 # lines 4 and 5 find all the
 cell and process them one
at a time
3 #---------------------------
4 set cells [$AdminConfig list Cell]
5 foreach cell $cells {
6 #------------------------
7 # lines 10 and 11 find all
the nodes belonging to the cell and
8 # process them at a time
9 #----------------------------
10 set nodes [$AdminConfig
list Node $cell]
11 foreach node $nodes {
12 #-------------------------
13 # lines 16-20 find all the
running servers belonging
to the cell
14 # and node, and process
them one at a time
15 #-------------------------
16 set cname [$AdminConfig
showAttribute $cell name]
17 set nname [$AdminConfig
showAttribute $node name]
18 set servs [$AdminControl
queryNames type=Server,cell=$cname,
node=$nname,*]
19 puts "Number of running
servers on node $nname: [llength $servs]"
20 foreach server $servs {
21 #--------------------
22 # lines 25-31 get some
attributes from the server to display;
23 # invoke an operation on
the server JVM to display a property.
24 #---------------------
25 set sname [$AdminControl
getAttribute $server name]
26 set ptype [$AdminControl
getAttribute $server processType]
27 set pid [$AdminControl
getAttribute $server pid]
28 set state [$AdminControl
getAttribute $server state]
29 set jvm [$AdminControl
queryNames type=JVM,cell=$cname,

176 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

node=$nname,process=$sname,*]
30 set osname [$AdminControl
invoke $jvm getProperty os.name]
31 puts " $sname ($ptype)
has pid $pid; state: $state; on $osname"
32
j3 #-------------------------
34 # line 37-42 find the
applications running on this server and
35 # display the application name.
35 #-----------------------
37 set apps [$AdminControl
queryNames type=Application,cell=$cname,
node=$nname,process=$sname,*]
38 puts " Number of applications
running on $sname: [llength $apps]"
39 foreach app $apps {
40 set aname [$AdminControl
getAttribute $app name]
41 puts " $aname"
42 }
43 puts "---------------------"
44 puts ""
45
46 }
47 }
48 }

v Example output:
 Number of running servers
on node mynode: 2
 mynode (NodeAgent)
has pid 3592; state:
STARTED; on Windows 2000
 Number of applications
running on mynode: 0

 server1 (ManagedProcess)
has pid 3972; state: STARTED;
on Windows 2000
 Number of applications
running on server1: 0

 Number of running servers
on node mynodeManager: 1
 dmgr (DeploymentManager)
has pid 3308; state: STARTED;
on Windows 2000
 Number of applications
running on dmgr: 2
 adminconsole
 filetransfer
 --

Example: Starting an application using wsadmin
The following example starts an application:
v Identify the application manager MBean for the server where the application

resides and assign it the appManager variable.
 set appManager [$AdminControl
queryNames cell=mycell,node=mynode,
type=ApplicationManager,
process=server1,*]

Chapter 3. Deploying and managing using scripting 177

This command returns the application manager MBean.

 Example output:
WebSphere:cell=mycell,
name=ApplicationManager,
mbeanIdentifier=
ApplicationManager,
type=ApplicationManager,
node=mynode,process=server1

v Start the application.
 $AdminControl invoke
$appManager startApplication
myApplication

This command invokes the startApplication operation on the MBean, passing in
the application name to start.

Example: Stopping running applications on a server using
wsadmin
The following example stops all running applications on a server:
v Identify the application manager MBean for the server where the application

resides, and assign it to the appManager variable.
 set appManager
[$AdminControl
queryNames cell=mycell,
node=mynode,
type=ApplicationManager,
process=server1,*]

This command returns the application manager MBean.

 Example output:
WebSphere:cell=mycell,
name=ApplicationManager,
mbeanIdentifier=
ApplicationManager,
type=ApplicationManager,
node=mynode,process=server1

v Query the running applications belonging to this server and assign the result to
the apps variable.
 set apps [$AdminControl
queryNames cell=mycell,
node=mynode,type=Application,
process=server1,*]

This command returns a list of application MBeans.

 Example output:
WebSphere:cell=mycell,
name=adminconsole,
mbeanIdentifier=deployment
.xml#ApplicationDeployment_1,
type=Application,node=mynode,
Server=server1,process=server1,
J2EEName=adminconsole
WebSphere:cell=mycell,
name=filetransfer,
mbeanIdentifier=deployment.xml#

178 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

ApplicationDeployment_1,
type=Application,node=mynode,
Server=server1,process=server1,
J2EEName=filetransfer

v Stop all the running applications.
 foreach app $apps {
 set appName [$AdminControl
getAttribute $app name]
 $AdminControl invoke
$appManager stopApplication
$appName
 }

This command stops all the running applications by invoking the
stopApplication operation on the MBean, passing in the application name to
stop.

Example: Querying application state using wsadmin
The following examples queries for the presence of Application MBean to find out
whether the application is running.
$AdminControl completeObjectName
type=Application,name=myApplication,*

If myApplication is running, then there should be an MBean created for it.
Otherwise, the command returns nothing. If myApplication is running, the
following is the example output:
WebSphere:cell=mycell,
name=myApplication,
mbeanIdentifier=cells/
mycell/applications/
myApplication.ear/
deployments/myApplication/
deployment.xml#
ApplicationDeployment_1,
type=Application,
node=mynode,Server=dmgr,
process=dmgr,J2EEName=
myApplication

Example: Updating the Web server plug-in configuration files
using wsadmin
This examples regenerates the web serer plugin configuration file.
v Identify the web server plugin configuraiton file generator MBean and assign it

to the pluginGen variable.
 set pluginGen
[$AdminControl
completeObjectName
type=PluginCfgGenerator,*]
 Example output:
WebSphere:cell=pongoNetwork,
name=PluginCfgGenerator,
mbeanIdentifier=
PluginCfgGenerator,
type=PluginCfgGenerator,
node=pongoManager,process=dmgr

v Generate the updated plugin configuration file.
 $AdminControl invoke
$pluginGen generate
"c:/WebSphere/
DeploymentManager

Chapter 3. Deploying and managing using scripting 179

c:/WebSphere/
DeploymentManager/
config mycell null
null plugin-cfg.xml"

This example command assumes a Windows system install. It invokes the
generate operation on the MBean, passing in the install root directory,
configuration root directory, cell name, node name, server name, and output file
name. To pass in null as the value of an argument, enter null as given in the
example. This is provided for operation that allows null as the value of its
argument and processes null differently from an empty string. In this example,
both node and server are set to null. The generate operation generates plugin
configuration for all the nodes and servers resided in the cell. The output file
plugin-cfg.xml is created in the config root directory.

 You can modify this example command to generate plugin configuration for a
particular node or server by specifying the node and server names.

Managing applications with scripting
Application management scripts use the AdminApp object to manage applications
in the application server configuration. You can use the AdminApp object to install
and uninstall applications, list installed applications, edit application configurations
and obtain help. It is important to save application configuration changes because
the application configuration information is part of the server configuration.

Steps for this task
1. Decide how you want to execute the script. If you want to run the script

immediately from the command line, enter it surrounded by quotes as a
parameter to the wsadmin -c command. To save the script for repeated use,
compose it in a file and execute it with the wsadmin -f command. If you want
to compose and run the script interactively, issue the wsadmin command
without the -c or -f flags. For more information about executing scripts, see
Launching scripting clients.

2. Write an AdminApp script command statement to perform a task, for example:
 $AdminApp command

3. Save the configuration changes with the following command:
 $AdminConfig save
 Use the reset command of the AdminConfig object to undo changes that you
made to your workspace since your last save.

Installing applications with the wsadmin tool
Steps for using the AdminApp object commands to install an application into the
run time follow:

Steps for this task
1. Invoke the AdminApp object commands interactively, in a script, or use the

wsadmin -c command from an operating system command prompt.
2. Issue one of the following commands:

 The following command uses the EAR file and the command option
information to install the application:
$AdminApp install
c:/MyStuff/application1.ear
{-server serv2}

180 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

where:

 $AdminApp is an object allowing application objects to be managed
install is an AdminApp command
c:/MyStuff/application1.ear is the name of the application to install
server is an installation option
<i>serv2</i> is the value of the server option

 The following command changes the application information by prompting you
through a series of installation tasks:
$AdminApp installInteractive
c:/MyStuff/application1.ear

where:

 $AdminApp is an object allowing application objects to be managed
installInteractive is an AdminApp command
c:/MyStuff/application1.ear is the name of the application to install

 In a Network Deployment environment only, the following command uses the
EAR file and the command option information to install the application on a
cluster:
$AdminApp install
c:/MyStuff/
application1.ear
{-cluster
cluster1}

where:

 $AdminApp is an object allowing application objects to be managed
install is an AdminApp command
c:/MyStuff/application1.ear is the name of the application to install
cluster is an installation option
<i>cluster1</i> is the value of the server option

3. Save the configuration changes with the following command:
 $AdminConfig save
 Use the reset command of the AdminConfig object to undo changes that you
made to your workspace since your last save.

Installing stand-alone java archive and web archive files with
wsadmin

Use the AdminApp object commands to install java archive (JAR) and web archive
(WAR) files. The archive must end in .jar or .war for the wsadmin tool to be able
to install. The wsadmin tool uses these extensions to figure out the archive type.

Steps for this task
1. Invoke the AdminApp object commands interactively, in a script, or use

wsadmin -c from an operating system command prompt.
2. Issue one of the following commands:

 The following command uses the EAR file and the command option
information to install the application:

Chapter 3. Deploying and managing using scripting 181

$AdminApp install
c:/MyStuff/
mymodule1.jar {-server
serv2}

where:

 $AdminApp is an object allowing application objects to be managed
install is an AdminApp command
c:/MyStuff/mymodule1.jar is the name of the application that will be installed
server is an installation option
<i>serv2</i> is the value of the server option

 The following command allows you to change the application information by
prompting you through a series of installation tasks:
$AdminApp installInteractive
c:/MyStuff/mymodule1.jar

where:

 $AdminApp is an object allowing application objects to be managed
installInteractive is an $AdminApp command
c:/MyStuff/mymodule1.jar is the name of the application that will be installed

3. Save the configuration changes with the following command:
 $AdminConfig save
 Use the reset command of the AdminConfig object to undo changes that you
made to your workspace since your last save.

Listing applications with the wsadmin tool
Before you begin

Use the AdminApp object commands to create a list of installed applications.

Steps for this task
1. Invoke the AdminApp object commands interactively, in a script, or use the

wsadmin -c command from an operating system command prompt.
2. Query the configuration and create a list, by issuing the following command:

 $AdminApp list

where:

 $AdminApp is an object allowing application objects management
list is an AdminApp command

Usage scenario

The following is example output:
DefaultApplication
SampleApp
app1serv2

Editing application configurations with the wsadmin tool
Steps for this task

182 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

1. Invoke the AdminApp object commands interactively, in a script, or use the
wsadmin -c command from an operating system command prompt.

2. Issue one of the following commands:
 The following command uses the installed application and the command
option information to edit the application:
$AdminApp edit
app1 {options}

where:

 $AdminApp is an object allowing application objects
management

edit is an AdminApp command
<i>app1</i> is the name of the application to edit
{options} is a list of edit options and tasks similar to

the ones for the install command

 The following command changes the application information by prompting you
through a series of editing tasks:
$AdminApp editInteractive
app1

where:

 $AdminApp is an object allowing application objects management
editInteractive is an AdminApp command
<i>app1</i> is the name of the application to edit

3. Save the configuration changes with the following command:
 $AdminConfig save
 Use the reset command of the AdminConfig object to undo changes that you
made to your workspace since your last save.

Uninstalling applications with the wsadmin tool
Steps for this task
1. Invoke the AdminApp object commands interactively, in a script, or use the

wsadmin -c command from an operating system command prompt.
2. Issue the following command:

 $AdminApp uninstall
application1

where:

 $AdminApp is an object supporting application objects management
uninstall is an AdminApp command
<i>application1</i> is the name of the application to uninstall

 Note: Specify the name of the application you want to uninstall, not the name
of the Enterprise ARchive (EAR) file.

3. Save the configuration changes with the following command:
 $AdminConfig save

Chapter 3. Deploying and managing using scripting 183

Use the reset command of the AdminConfig object to undo changes that you
made to your workspace since your last save.

Results

Uninstalling an application removes it from the WebSphere Application Server
configuration and from all the servers that the application was installed on. The
application binaries (EAR file contents) are deleted from the installation directory.
This occurs when the configuration is saved for single server WebSphere
Application Server editions or when the configuration changes are synchronized
from deployment manager to the individual nodes for network deployment
configurations.

Application management examples with wsadmin
There are examples that illustrate how to manage applications using wsadmin. Use
these examples to see how to install, identify, configure and deinstall applications
and application modules with the AdminApp object. Basic knowledge of the
syntax for the Jacl scripting language is helpful in order to understand and modify
the examples.

Example: Listing the modules in an installed application
Use the AdminApp object listModules command to list the modules in an
installed application. For example, invoke the following command interactively in
a script, or use wsadmin -c from an operating system command prompt:
$AdminApp listModules DefaultApplication -server

This example produces the following output:
wsadmin>$AdminApp listModules
DefaultApplication -server
DefaultApplication#IncCMP11.
jar+META-INF/ejb-jar.xml#
WebSphere:cell=mycell,
node=mynode,server=myserver
DefaultApplication#
DefaultWebApplication.
war+WEB-INF/web.xml#
WebSphere:cell=mycell,
node=mynode,server=myserver

Example: Listing the modules in an application server: The following example
lists all modules on all enterprise applications installed on server1 in node1:

Note: * means that the module is installed on server1 node node1 and other node
and/or server.

+ means that the module is installed on server1 node node1 only means that the
module is not installed on server1 node node1.
 1 #------------------------------
 2 # setting up variables to
keep server name and node name
 3 #-------------------------
 4 set serverName server1
 5 set nodeName node1
 6 #------------------------
 7 # setting up 2 global
lists to keep the modules
 8 #------------------------
 9 set ejbList {}
 10 set webList {}

184 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

11
12 #--------------------------------
13 # gets all deployment objects and
assigned it to deployments variable
14 #---------------------------------
15 set deployments [$AdminConfig
getid /Deployment:/]
16
17 #--------------------------------
18 # lines 22 thru 148 Iterates through
all the deployment objects
o get the modules
19 # and perform filtering to list
application that has at
east one module installed
20 # in server1 in node myNode
21 #-----------------------------------
22 foreach deployment $deployments {
23
24 # ------------------------------
25 # reset the lists that hold
modules for each application
26 #-------------------------------
27 set webList {}
28 set ejbList {}
29
30 #-------------------------------
31 # get the application name
32 #-------------------------------
33 set appName [lindex
[split $deployment (] 0]
34
35 #--------------------------------
36 # get the deployedObjects
37 #---------------------------------
38 set depObject [$AdminConfig
showAttribute $deployment deployedObject]
39
40 #-----------------------------------
41 # get all modules in the application
42 #----------------------------------
43 set modules [lindex [$AdminConfig
showAttribute $depObject modules] 0]
44
45 #---------------------------------
46 # initialize lists to save all the
modules in the appropriate list
to where they belong
47 #----------------------------
48 set modServerMatch {}
49 set modServerMoreMatch {}
50 set modServerNotMatch {}
51
52 #---------------------------
53 # lines 55 to 112 iterate
through all modules to get the targetMappings
54 #-----------------------------
55 foreach module $modules {
56 #---------------------------
57 # setting up some flag to do
some filtering and get modules for server1 on node1
58 #--------------------------
59 set sameNodeSameServer "false"
60 set diffNodeSameServer "false"
61 set sameNodeDiffServer "false"
62 set diffNodeDiffServer "false"
63

Chapter 3. Deploying and managing using scripting 185

64 #------------------------------
65 # get the targetMappings
66 #------------------------------
67 set targetMaps [lindex
[$AdminConfig showAttribute $module
targetMappings] 0]
68
69 #--------------------------------
70 # lines 72 to 111
iterate through
all targetMappings to get the target
71 #----------------------------
72 foreach targetMap $targetMaps {
73 #------------------------
74 # get the target
75 #------------------------------
76 set target [$AdminConfig
showAttribute $targetMap target]
77
78 #--------------------------
79 # do filtering to skip
ClusteredTargets
80 #-------------------------------

81 set targetName [lindex
[split $target #] 1]
82 if {[regexp "ClusteredTarget"
$targetName] != 1} {
83 set sName [$AdminConfig
showAttribute $target name]
84 set nName [$AdminConfig
showAttribute $target nodeName]
85
86 #---------------------------
87 # do the server name match
88 #---------------------------
89 if {$sName == $serverName} {
90 if {$nName == $nodeName} {
91 set sameNodeSameServer "true"
92 } else {
93 set diffNodeSameServer "true"
94 }
95 } else {
96 #--------------------
97 # do the node name match
98 #--------------------
99 if {$nName == $nodeName} {
100 set sameNodeDiffServer "true"
101 } else {
102 set diffNodeDiffServer
"true"
103 }
104 }
105
106 if {$sameNodeSameServer ==
"true"} {
107 if {$sameNodeDiffServer ==
"true" || $diffNodeDiffServer == "true" ||
$diffNodeSameServer == "true"} {
108 break
109 }
110 }
111 }
112 }
113
114 #---
115 # put it in the appropriate list

186 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

116 #---
117 if {$sameNodeSameServer == "true"} {
118 if {$diffNodeDiffServer == "true" ||
$diffNodeSameServer == "true" ||
$sameNodeDiffServer == "true"} {
119 set modServerMoreMatch [linsert
$modServerMoreMatch end [$AdminConfig showAttribute
$module uri]]
120 } else {
121 set modServerMatch [linsert
$modServerMatch end [$AdminConfig showAttribute
$module uri]]
122 }
123 } else {
124 set modServerNotMatch [linsert
$modServerNotMatch end [$AdminConfig showAttribute
$module uri]]
125 }
126 }
127
128
129 #---
130 # print the output with some notation as a mark
131 #--
132 if {$modServerMatch != {} ||
$modServerMoreMatch != {}} {
133 puts stdout "\tApplication name: $appName"
 134 }
 135
 136 #--
 137 # do grouping to appropriate module and print
 138 #---------------------------------------
 139 if {$modServerMatch != {}} {
 140 filterAndPrint $modServerMatch "+"
 141 }
 142 if {$modServerMoreMatch != {}} {
 143 filterAndPrint $modServerMoreMatch "*"
 144 }
 145 if {($modServerMatch != {} ||
$modServerMoreMatch != {}) ""
$modServerNotMatch != {}} {
 146 filterAndPrint $modServerNotMatch ""
 147 }
 148}
 149
 150
 151 proc filterAndPrint {lists flag} {
 152 global webList
 153 global ejbList
 154 set webExists "false"
 155 set ejbExists "false"
 156
 157 #-----------------------------------
 158 # If list already exists, flag it so
as not to print the title more then once
 159 # and reset the list
 160 #-------------------------------------
 161 if {$webList != {}} {
 162 set webExists "true"
 163 set webList {}
 164 }
 165 if {$ejbList != {}} {
 166 set ejbExists "true"
 167 set ejbList {}
 168 }
 169
 170 #-------------------------------------

Chapter 3. Deploying and managing using scripting 187

171 # do some filtering for web modules
and ejb modules
 172 #-------------------------------------
 173 foreach list $lists {
 174 set temp [lindex [split $list .] 1]
 175 if {$temp == "war"} {
 176 set webList [linsert
$webList end $list]
 177 } elseif {$temp == "jar"} {
 178 set ejbList [linsert
$ejbList end $list]
 179 }
 180 }
 181
 182 #---------------------------------------
 183 # sort the list before printing
 184 #---------------------------------------
 185 set webList [lsort -dictionary $webList]
 186 set ejbList [lsort -dictionary $ejbList]
 187
 188 #--
 189 # print out all the web modules
installed in server1
 190 #---
 191 if {$webList != {}} {
 192 if {$webExists == "false"} {
 193 puts stdout "\t\tWeb Modules:"
 194 }
 195 foreach web $webList {
 196 puts stdout "\t\t\t$web $flag"
 197 }
 198 }
 199
 200 #--------------------------------
 201 # print out all the ejb modules
installed in server1
 202 #---------------------------------
 203 if {$ejbList != {}} {
 204 if {$ejbExists == "false"} {
 205 puts stdout
"\t\tEJB Modules:"
 206 }
 207 foreach ejb $ejbList {
 208 puts stdout
"\t\t\t$ejb $flag"
 209 }
 210 }
 211}

Example output for server1 on node node1:
 Application name: TEST1
 EJB Modules:
 deplmtest.jar +
 Web Modules:
 mtcomps.war *
 Application name: TEST2
 Web Modules:
 mtcomps.war +
 EJB Modules:
 deplmtest.jar +
 Application name: TEST3
 Web Modules:
 mtcomps.war *
 EJB Modules:
 deplmtest.jar *
 Application name: TEST4

188 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

EJB Modules:
 deplmtest.jar *
 Web Modules:
 mtcomps.war

Example: Obtaining task information while installing applications
The installInteractive command of the AdminApp object prompts you through a
series of tasks when you install an application. You are presented with the title of
the task, a description of the task, and the current contents of the task that you can
modify.
v Use the install command instead of the installInteractive command, provide

updates for each task, but you must provide all of the information on the
command line. The task name specifies each task and the information you need
to update the task. You can treat the task information as a two-dimensional
array of string data. For example:
 -taskname {{item1a
tem2a item3a}
{item1b item2b item3b} ...}

This example is a linear representation of rows and columns, where {item1a
item2a item3a} represents the first row, and each row for the task name has
three columns.

 The number and type of the columns in this list depend on the task you specify.
v Obtain information about the data needed for each task using the taskInfo

command of the AdminApp object. For example, there is a task called
MapWebModToVH used to map Web modules to virtual hosts. To specify this
task as part of the option string on the command line, enter the following:
 -MapWebModToVH
{"JavaMail
Sample WebApp"
tcomps.war,
WEB-INF/web.xml
efault_host}}

Using the taskInfo command, you can see which of the items you can change
for a task. Supply the columns for each row you modify, and the columns that
you are not allowed to change must match one of the existing rows. In this case,
taskInfo tells you that there are three items in each row, called webModule, uri,
and virtualHost and the current column values for every row.

v Obtain help while creating complex installation commands, by using a feature of
the installInteractive command. Install the application interactively once and
specify the updates that you need. Then look for message WASX7278I in the
output log for the wsadmin tool. You can cut and paste the data in this message
into a script, and modify it. For example:
 WASX7278I: Generated
ommand
line: install
:/websphere/
appserver/
nstallableapps/
jmsample.ear
{-BindJndiFor
JBNonMessageBinding
{{deplmtest.jar
ailEJBObject
deplmtest.jar,
ETA-INF/
ejb-jar.xml

Chapter 3. Deploying and managing using scripting 189

jb/JMSampEJB1 }}
-MapResRefToEJB
{deplmtest.jar
MailEJBObject
eplmtest.jar,
META-INF/
jb-jar.xml mail/
MailSession9
avax.mail.
Session mail/
efaultMailSessionX }
{"JavaMail
ample WebApp"
mtcomps.war,
EB-INF/web.xml
mail/MailSession9
avax.mail.
Session mail/
efaultMailSessionY }}
-MapWebModToVH
{"JavaMail
Sample WebApp"
tcomps.war,
WEB-INF/web.xml
ewhost }}
-nopreCompileJSPs
novalidateApp
-installed.ear.
estination
c:/mylocation
distributeApp
-nouseMetaDataFromBinary}

Example: Identifying supported tasks and options for an
Enterprise Archive file
The AdminApp object install command takes a set of options and tasks. The
following examples use the AdminApp object to obtain a list of supported tasks
and options for an Enterprise Archive (EAR) file:
v To identify supported options and tasks, use the AdminApp object options

command:
 $AdminApp options
c:/MyStuff/
yapp1.ear

This command displays a list of tasks and options.
v To identify supported options only, use the following command:

 $AdminApp options
v To learn more about any of the tasks or options, use the AdminApp object help

command. For example:
 $AdminApp help
deployejb

Example: Configuring applications for enterprise bean modules
using the wsadmin tool
You can use the AdminApp object to set configurations in an application. Some
configuration settings are not available through the AdminApp object. This
example uses the AdminConfig object to configure enterprise bean modules for all
the JARs in the application.
v Get the deployment object for the application and assign it to the deployments

variable:

190 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

set deployments
$AdminConfig
getid /Deployment:
yApp/]
 Example output:
myApp(cells/mycell/
applications/myApp.ear/
deployments/myApp:
deployment.xml#Deployment_1)

v Get all the modules in the application and assign it to the modules variable:
 set deploymentObject
[$AdminConfig showAttribute
$deployments deployedObject]
set modules [lindex
[$AdminConfig showAttribute
$deploymentObject modules] 0]
 Example output:
(cells/mycell/applications/
myApp.ear/deployments/
myApp:deployment.xml#
WebModuleDeployment_1)
(cells/mycell/applications/
myApp.ear/deployments/myApp:
deployment.xml#
JBModuleDeployment_1)
(cells/mycell/applications/
myApp.ear/deployments/myApp:
deployment.xml#
JBModuleDeployment_2)

v Create an enterprise bean module configuration object for each JAR and set the
timeout attribute:
 foreach module $modules {
 if ([regexp
EJBModuleDeployment
module] == 1} {
 $AdminConfig create
EJBModuleConfiguration $module
{{name myejbModuleConfig}
{description "EJB Module
Config post created"}
{enterpriseBeanConfigs:
StatefulSessionBeanConfig
{{{ejbName myejb}
{timeout 10000}}}}}
 }
 }

You can modify this example to set other attributes for the enterprise bean
module configuration.

 Example output:
myejbModuleConfig(cells/
mycell/applications/
myApp.ear/deployments/
myApp:deployment.xml#
EJBModuleConfiguration_1)

v Save the changes with the following command:
 $AdminConfig save

Chapter 3. Deploying and managing using scripting 191

Example: Disabling application loading in deployed targets using
wsadmin
The following example uses the AdminConfig object to disable application loading
in deployed targets:
v Obtain the deployment object for the application and assign it to the

deployments variable, for example:
 set deployments
[$AdminConfig getid
/Deployment:myApp/]

Example output:
myApp(cells/mycell/
applications/myApp.ear/
deployments/myApp:
deployment.xml#Deployment_1)

v Obtain the target mappings in the application and assign them to the
targetMappings variable, for example:
 set deploymentObject
[$AdminConfig showAttribute
$deployments deployedObject]
set targetMappings [lindex
[$AdminConfig showAttribute
$deploymentObject
targetMappings] 0]

Example output:
(cells/mycell/applications/
ivtApp.ear/deployments/
ivtApp:deployment.xml#
DeploymentTargetMapping_1)

v Disable the loading of the application on each deployed target, for example:
 foreach tm $targetMappings {
 $AdminConfig modify
$tm {{enable false}}
 }
}

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring applications for session management
using the wsadmin tool
You can use the AdminApp object to set configurations in an application. Some
configuration settings are not available through the AdminApp object. This
example uses the AdminConfig object to configure session manager for the
application.
v Identify the deployment configuration object for the application and assign it to

the deployment variable:
 set deployment
$AdminConfig
getid /Deployment:
yApp/]
 Example output:
myApp(cells/mycell
applications
/myApp.ear/deployments/
myApp:deployment.xml#
eployment_1)

v Retrieve the applicaton deployment and assign it to the appDeploy variable:

192 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

set appDeploy
$AdminConfig
showAttribute
deployment
deployedObject]
 Example output:
(cells/mycell/
pplications/
myApp.ear/
eployments/
myApp:deployment.
ml#
ApplicationDeployment_1)

v To obtain a list of attributes you can set for session manager, use the attributes
command:
 $AdminConfig attributes
SessionManager
 Example output:
"accessSessionOnTimeout
Boolean"
"allowSerializedSessionAccess
Boolean"
"context ServiceContext@"
"defaultCookieSettings
Cookie"
"enable Boolean"
"enableCookies Boolean"
"enableProtocolSwitchRewriting
Boolean"
"enableSSLTracking Boolean"
"enableSecurityIntegration
Boolean"
"enableUrlRewriting Boolean"
"maxWaitTime Integer"
"properties Property
(TypedProperty)*"
"sessionDRSPersistence
DRSSettings"
"sessionDatabasePersistence
SessionDatabasePersistence"
"sessionPersistenceMode
ENUM(DATABASE,
DATA_REPLICATION, NONE)"
"tuningParams TuningParams"

v Set up the attributes for the session manager:
 set attr1 [list
enableSecurityIntegration true]
set attr2 [list
maxWaitTime 30]
set attr3 [list
sessionPersistenceMode NONE]
set attrs [list
$attr1 $attr2 $attr3]
set sessionMgr
[list sessionManagement $attrs]

This example sets three top level attributes in the session manager. You can
modify the example to set other attributes of session manager including the
nested attributes in Cookie, DRSSettings, SessionDataPersistence, and
TuningParms object types. To list the attributes for those object types, use the
attribute command in AdminConfig object.

Chapter 3. Deploying and managing using scripting 193

Example output:
sessionManagement
{{enableSecurityIntegration
true} {maxWaitTime 30}
{sessionPersistenceMode
NONE}}

v Create the session manager for the application:
 $AdminConfig create
ApplicationConfig
$appDeploy
list $sessionMgr]
 Example output:
(cells/mycell/applications/
myApp.ear/deployments/
myApp:deployment.xml#
ApplicationConfig_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Configuring applications for session management in
Web modules using the wsadmin tool
You can use the AdminApp object to set configurations in an application. Some
configuration settings are not available through the AdminApp object. This
example uses the AdminConfig object to configure session manager for Web
module in the application.
v Identify the deployment configuration object for the application and assign it to

the deployment variable:
 set deployment [$AdminConfig
etid /Deployment:myApp/]
 Example output:
myApp(cells/mycell/applications/
yApp.ear/deployments/myApp:
eployment.xml#Deployment_1)

v Get all the modules in the application and assign it to the modules variable:
 set appDeploy [$AdminConfig
howAttribute $deployments
eployedObject]
set modules [lindex
$AdminConfig showAttribute
appDeploy modules] 0]
 Example output:
(cells/mycell/applications/
yApp.ear/deployments/myApp:
eployment.xml#WebModule
eployment_1)
(cells/mycell/applications/
yApp.ear/deployments/myApp:
eployment.xml#EJBModule
eployment_1)
(cells/mycell/applications/
yApp.ear/deployments/myApp:
eployment.xml#WebModule
eployment_2)

v To obtain a list of attributes you can set for session manager, use the attributes
command.:
 $AdminConfig attributes
essionManager
 Example output:

194 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

"accessSessionOnTimeout
oolean"
"allowSerializedSessionAccess
oolean"
"context ServiceContext@"
"defaultCookieSettings
ookie"
"enable Boolean"
"enableCookies Boolean"
"enableProtocolSwitch
ewriting Boolean"
"enableSSLTracking
oolean"
"enableSecurityIntegration
oolean"
"enableUrlRewriting
oolean"
"maxWaitTime Integer"
"properties Property
TypedProperty)*"
"sessionDRSPersistence
RSSettings"
"sessionDatabasePersistence
essionDatabasePersistence"
"sessionPersistenceMode
NUM(DATABASE,
ATA_REPLICATION, NONE)"
"tuningParams TuningParams"

v Set up the attributes for session manager:
 set attr1 [list
nableSecurityIntegration
rue]
set attr2
list maxWaitTime 30]
set attr3 [list
essionPersistenceMode
ONE]
set attr4 [list
nabled true]
set attrs [list
attr1 $attr2 $attr3
attr4]
set sessionMgr
list sessionManagement
attrs]

This example sets four top level attributes in the session manager. You can
modify the example to set other attributes in the seesion manager including the
nested attributes in Cookie, DRSSettings, SessionDataPersistence, and
TuningParms object types. To list the attributes for those object types, use the
attribute command in AdminConfig object.

 Example output:
sessionManagement
{enableSecurityIntegration
rue} {maxWaitTime 30}
sessionPersistenceMode NONE}
enabled true}}

v Set up the attributes for Web module:
 set nameAttr
list name
yWebModuleConfig]
set descAttr

Chapter 3. Deploying and managing using scripting 195

list description
Web Module config
ost create"]
set webAttrs
list $nameAttr
descAttr $sessionMgr]
 Example output:
{name myWebModuleConfig}
description {Web Module
onfig post create}}
{sessionManagement
{enableSecurityIntegration
rue} {maxWaitTime 30}
{sessionPersistenceMode
ONE} {enabled true}}}

v Create the session manager for each Web module in the application:
 foreach module $modules {
 if ([regexp
ebModuleDeployment
module] == 1} {
 $AdminConfig create
ebModuleConfig $module $webAttrs
 }
 }

You can modify this example to set other attributes of session manager in Web
module configuration.

 Example output:
myWebModuleConfig
cells/mycell
applications/myApp.ear
deployments/myApp:
eployment.xml#
ebModuleConfiguration_1)

v Save the changes with the following command:
 $AdminConfig save

Example: Exporting applications using the wsadmin tool
Exporting applications enables you to back them up and preserve their binding
information. You can export your applications before you update installed
applications or before you migrate to a different version of the WebSphere
Application Server product.
v Export an enterprise application to a location of your choice, for example:

 $AdminApp export
app1
 C:/mystuff/exported.ear

where app1 is the name of the application that will be exported and
C:/mystuff/exported.ear is the name of the file where the exported application will
be stored.

v Export Data Definition Language (DDL) files in the enterprise bean module of
an application to a destination directory, for example:
 $AdminApp exportDDL app1 C:/mystuff

where app1 is the name of the application whose DDL files will be exported and
C:/mystuff is the name of the directory where the DDL files export from the
application.

196 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Example: Configuring a shared library for an application
You can use the AdminApp object to set certain configurations in the application.
This example uses the AdminConfig object to configure a shared library for an
application.
v Identify the shared library and assign it to the library variable.

– To create a new shared library, perform the following steps:
1. Idenitfy the node and assign it to a variable, for example:

 set node [$AdminConfig
etid /Cell:mycell/
ode:mynode/]

Example output:
mynode(cells/mycell
nodes/mynode:node.xml#Node_1)

2. Create the shared library in the node, for example:
 set library [$AdminConfig
reate Library $node
{name mySharedLibrary}
classPath
:/mySharedLibraryClasspath}}]

Example output:
MySharedLibrary
cells/mycell/nodes
mynode:libraries.xml#
ibrary_1)

This example creates a new shared library in the node scope. You can
modify it to use the cell or server scope.

– To use an existing shared library, issue the following command:
 set library [$AdminConfig
etid /Library:mySharedLibrary/]

Example output:
MySharedLibrary
cells/mycell/nodes/
ynode:libraries.xml#
ibrary_1)

v Identify the deployment configuration object for the application and assign it to
the deployment variable:
 set deployment [$AdminConfig
etid /Deployment:myApp/]

Example output:
myApp(cells/mycell/
pplications/myApp.ear/
eployments/myApp:
eployment.xml#Deployment_1)

v Retrieve the applicaton deployment and assign it to the appDeploy variable:
 set appDeploy [$AdminConfig
howAttribute $deployment
eployedObject]

Example output:

Chapter 3. Deploying and managing using scripting 197

(cells/mycell/applications/
yApp.ear/deployments/
yApp:deployment.xml#
pplicationDeployment_1)

v Idenitfy the class loader in the application deployment and assign it to the
classLoader variable:
 set classLoader
$AdminConfig
howAttribute
appDeploy classloader]

Example output:
(cells/mycell/applications
myApp.ear/deployments/
yApp:deployment.xml#
lassloader_1)

v Associate the shared library in the application through the class loader:
 $AdminConfig create
ibraryRef $classLoader
{libraryName MyshareLibrary}
sharedClassloader true}}

Example output:
(cells/mycell/applications/
yApp.ear/deployments/myApp:
eployment.xml#LibraryRef_1)

v Save the changes:
 $AdminConfig save

wsadmin scripting environment
The wsadmin tool contains facilities so that you can manage and customize the
scripting environment. You can make temporary alterations to the scripting
environment with the following wsadmin command options:
v -profile - Use this option to run one or more script files after you start the

scripting tool.
 Profile files are wsadmin scripts that initialize variables and define functions for
the mainline scripts executed with the wsadmin tool. You can specify multiple
profile options. They are executed in the order listed.

v -p - Use this option to specify scripting properties defined in a file.
 Edit one or more properties files to make more persistent alterations to the
scripting environment. The wsadmin tool loads the following levels of properties
files:
– The properties in the $WAS_ROOT/properties/wsadmin.properties file.
– The properties in the $user_home/wsadmin.properties file.
– The properties indicated by the WSADMIN_PROPERTIES file.
– Any properties files specified on the command line.

The properties files load in this order. The properties file loaded last takes
precedence over the one loaded before it.

 The properties files include specifications for the connection type, the port and
host used when attempting a connection, the location where trace and logging
output are directed, the temporary directory to access files while installing

198 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

applications and modules, class path information to append to the list of paths
to search for classes and resources, and so on.

v -wsadmin_classpath - Use this option to add class path information to the
wsadmin class path.

v -conntype - Use this option to specify the type of connection between the
scripting client and the server.

v

-javaoption - Use this option to pass Java standard or non-standard options to
start the scripting tool.

wsadmin traces
The default properties file, wsadmin.properties, specifies that the tracing and
logging information goes to the wsadmin.traceout file in the WebSphere logs
directory.

It is recommended that trace output go to this or some other file. In the event of a
script problem, you can examine this file for errors, or foward the file to IBM
Support if necessary. The wsadmin tool also creates a log entry for each command
you issue interactively or with the -c option, and logs the script names that the -f
option invokes. If the com.ibm.ws.scripting.traceString property is set in the
properties file, diagnostic information also logs to this file. If the
com.ibm.ws.scripting.traceFile property is not set in the properties file, this
information goes to the console. You can turn on traces of the WebSphere
Application Server code running inside the scripting process by either specifying
the com.ibm.ws.scripting.traceString property, or by using the AdminControl
object trace method. If IBM Support personnel direct you to turn on such a trace,
the output also goes to the file specified by the com.ibm.ws.scripting.traceFile
property, or to the console, if that property is not in effect. You should use the
trace command and the traceString property for setting up client traces only.

Tracing operations with the wsadmin tool
Steps for this task
1. Invoke the AdminControl object commands interactively, in a script, or use the

wsadmin -c command from an operating system command prompt.
2. Enable tracing with the following command:

 $AdminControl trace
om.ibm.*=all=enabled

where:

 $AdminControl is an object that enables the manipulation of
MBeans running in a WebSphere server
process

trace is an AdminControl command
com.ibm.*=all=enabled indicates to turn on tracing

 The following command disables tracing:
$AdminControl trace
om.ibm.*=all=disabled

Chapter 3. Deploying and managing using scripting 199

where:

 $AdminControl is an object that enables the manipulation of
MBeans running in a WebSphere server
process

trace is an AdminControl command
com.ibm.*=all=disabled indicates to turn off tracing

 The trace command changes the trace settings for the current session. You can
change this setting persistently by editting the wsadmin.properties file. The
property com.ibm.ws.scripting.traceString is read by the launcher during
initialization. If it has a value, the value is used to set the trace.

 A related property, com.ibm.ws.scripting.traceFile, designates a file to
receive all trace and logging information. The wsadmin.properties file contains
a value for this property. Run the wsadmin tool with a value set for this
property. It is possible to run without this property set, where all logging and
tracing goes to the administrative console.

Profiles and scripting
Scripting provides the capability to customize the environment in which scripts
run by using the profile script. You can specify a profile in the following ways:
v Specify the -profile command option with wsadmin. You can specify more than

one profile with the use of the multiple -profile option. The profile is invoked in
the order given. An example on the Windows system follows:
 wsadmin -profile c:\myprofile1.jacl
profile c:\myprofile2.jacl

myprofile1.jacl is run before myprofile2.jacl
v Specify the profile scripts using the com.ibm.ws.scripting.profiles property in the

properties file. You can specify multiple profiles by separating each profile script
with a ;. The profiles are invoked in the order given. An example of this
property in the Windows system follows:
 com.ibm.ws.scriptng.profiles=c:/
yprofile1.jacl;c:/myprofile2.jacl

If profile is set in both the -profile option and as a property in the properties file,
the profiles listed in the property file are invoked before the profiles in the
command option.

If profile is specified, the profile is run when the scripting process starts. Any
command specified with the -c command option and script file specified with the
-f command option runs after the profiles are executed. In this way, the command
and script file can use anything set up by the profiles. If the scripting process
brings up an interactive session, then any procedures and variables defined in the
profiles are available to the interactive session.

Properties used by scripted administration
Specifies the Java properties used by scripting administration.

There are three levels of default property files that load before any property file
specified on the command line. The first level represents an installation default,
located in the WebSphere Application Server properties directory called
wsadmin.properties. The second level represents a user default, and is located in

200 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

the Java user.home property just as .wscprc was in the WebSphere Application
Server V4.0. This properties file is also called wsadmin.properties. The third level
is a properties file pointed to by the WSADMIN_PROPERTIES environment variable.
This environment variable is defined in the environment where the wsadmin tool
starts. If one or more of these property files is present, they are interpreted before
any properties file present on the command line. These three levels of property
files load in the order that they are specified. The properties file loaded last,
overrides the ones loaded earlier.

The following Java properties are used by scripting:

com.ibm.ws.scripting.classpath
Searches for classes and resources, and is appended to the list of paths.

com.ibm.ws.scripting.connectionType
Determines the connector to use. This value can either be SOAP, RMI, or NONE. The
wsadmin.properties file specifies SOAP as the connector.

com.ibm.ws.scripting.host
Determines the host to use when attempting a connection. If not specified, the
default is the local machine.

com.ibm.ws.scripting.port
Specifies the port to use when attempting a connection. The wsadmin.properties
file specifies 8879 as the SOAP port for a single server installation.

com.ibm.ws.scripting.defaultLang
Indicates the language to use when executing scripts. The wsadmin.properties file
specifies Jacl as the scripting language.

The supported scripting language is Jacl. Other scripting languages that the Bean
Scripting Framework (BSF) supports might work, but have not been tested.

com.ibm.ws.scripting.traceString
Turns on tracing for the scripting process. Tracing turned off is the default.

com.ibm.ws.scripting.traceFile
Determines where trace and log output is directed. The wsadmin.properties file
specifies the wsadmin.traceout file located in the WebSphere Application Server
properties directory as the value of this property.

If multiple users work with the wsadmin tool simultaneously, set different
traceFile properties in the user properties files. If the file name contains double
byte character set (DBCS) characters, use unicode format, such as \uxxxx, where
xxxx is a number.

com.ibm.ws.scripting.validationOutput
Determines where the validation reports are directed. The default file is
wsadmin.valout located in the WebsSphere Application Server logs directory.

If multiple users work with the wsadmin tool simultaneously, set different
validationOutput properties in the user properties files. If the file name contains
double byte character set (DBCS) characters, use unicode format, such as \uxxxx,
where xxxx is a number.

com.ibm.ws.scripting.emitWarningForCustomSecurityPolicy
Controls whether message WASX7207W is emitted when custom permissions are
found.

Chapter 3. Deploying and managing using scripting 201

The possible values are true and false. The default value is true.

com.ibm.ws.scripting.tempdir
Determines the directory to use for temporary files when installing applications.

The Java virtual machine API uses java.io.temp as the default value.

com.ibm.ws.scripting.validationLevel
Determines the level of validation to use when configuration changes are made
from the scripting interface.

Possible values are: NONE, LOW, MEDIUM, HIGH, HIGHEST. The default is HIGHEST.

com.ibm.ws.scripting.crossDocumentValidationEnabled
Determines whether the validation mechanism examines other documents when
changes are made to one document.

Possible values are true and false. The default value is true.

com.ibm.ws.scripting.profiles
Specifies a list of profiles to run automatically before running user commands,
scripts, or an interactive shell.

The wsadmin.properties file specifies securityProcs.jacl and
LTPA_LDAPSecurityProcs.jacl as the values of this property. Use the default to
make security configuration easier.

Java Management Extensions connectors
Use this page to view and change the configuration for Java Management
Extensions (JMX) connectors.

To view this administrative console page, click one of the following paths:
v Servers > Application Servers > server_name > Administration Services > JMX

Connectors

v Servers > JMS Servers > server_name > Administration Services > JMX
Connectors

Java Management Extensions (JMX) connectors communicate with WebSphere
Application Server when you invoke a scripting process. There is no default for the
type and parameters of a connector. The wsadmin.properties file specifies the
Simple Object Access Protocol (SOAP) connector and an appropriate port number.
You can also use the Remote Method Invocation (RMI) connector.

Use one of the following methods to select the connector type and attributes:
v Specify properties in a properties file.
v Indicate options on the command line.

Type
Specifies the type of the JMX connector.

 Data type Enum
Default SOAPConnector

202 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Range
SOAPConnector

For JMX connections using Simple Object
Access Protocol (SOAP).

RMIConnector
For JMX connections using Remote Method
Invocation (RMI).

HTTPConnector
For JMX connections using HTTP.

JMSConnector
For JMX connections using Java Messaging
Service (JMS).

JMX connector settings
Use this page to view the configuration for a Java Management Extensions (JMX)
connector.

To view this administrative console page, click one of the following paths:
v Servers > Application Servers > server_name > Administration Services > JMX

Connectors > connector_type

v Servers > JMS Servers > server_name > Administration Services > JMX
Connectors > connector_type

Type: Specifies the type of the JMX connector.

 Data type Enum
Default SOAPConnector
Range

SOAPConnector
For JMX connections using Simple Object
Access Protocol (SOAP).

RMIConnector
For JMX connections using Remote Method
Invocation (RMI).

HTTPConnector
For JMX connections using HTTP.

JMSConnector
For JMX connections using Java Messaging
Service (JMS).

Security and scripting
v Enabling and disabling security:

 The wsadmin tool has two security related profiles by default that make security
configuration easier. These profiles set up procedures that you can call to enable
and disable security. The available procedures are:

 securityon turns global security on using LocalOS security
securityoff turns global security off
LTPA_LDAPSecurityOn turns LTPA/LDAP global security on using the LDAP user registry
LTPA_LDAPSecurityOff turns LTPA/LDAP global security off

Chapter 3. Deploying and managing using scripting 203

Enter the securityon help command or LTPA_LDAPSecurityOn help command
to find out the parameters required for these procedures. For the procedures that
turn security off, no parameters are required.

v Supplying user and password information:
 If you enable security for a WebSphere Application Server cell, you need to
supply authentication information in order to communicate with servers.
 You can specify user and password information on a wsadmin command line or
the sas.client.props file located in the properties directory.
 Use the -user and -password command options on the wsadmin tool to specify
the user and password information.
 The properties file updates required for running in secure mode will depend on
whether a Remote Method Invocation (RMI) or Simple Object Access Protocol
(SOAP) connector is being used to connect.
 If you are using a Remote Method Invocation (RMI) connector, set the following
properties in the sas.client.props file with the appropriate values:
com.ibm.CORBA.loginUserid=
com.ibm.CORBA.loginPassword=
 Change the value of the following property from prompt to properties:
com.ibm.CORBA.loginSource=properties
 The default value for this property is prompt in the sas.client.props file. If you
leave the default value, a dialog box appears with a password prompt. If the
script is running unattended, if will appear to hang.
 If you are using a Simple Object Access Protocol (SOAP) connector, set the
following properties in the soap.client.props file with the appropriate values:
com.ibm.SOAP.loginUserid=
com.ibm.SOAP.loginPassword=
com.ibm.SOAP.securityEnabled=true

There is no corresponding com.ibm.SOAP.loginSource property for a SOAP
connector.

 If you specify user and password information on a command line and in the
properties file, the command line information will override the information in
the properties file.

Scripting management examples with wsadmin
There are examples that illustrate how to customize the scripting environment
using wsadmin. Basic knowledge of the syntax for the Jacl scripting language is
helpful in order to understand and modify the examples.

Example: Using the wsadmin tool in a secure environment
If you enable security for a WebSphere Application Server cell, supply
authentication information to communicate with servers.

The nature of the properties file updates required for running in secure mode
depend on whether you connect with a Remote Method Invocation (RMI)
connector, or a Simple Object Access Protocol (SOAP) connector:
v If you use a Remote Method Invocation (RMI) connector, set the following

properties in the sas.client.props file with the appropriate values:
 com.ibm.CORBA.loginUserid=
com.ibm.CORBA.loginPassword=

Also, set the following property:
com.ibm.CORBA.loginSource=properties

204 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

The default value for this property is prompt in the sas.client.props file. If you
leave the default value, a dialog box appears with a password prompt. If the
script is running unattended, it appears to hang.

v If you use a Simple Object Access Protocol (SOAP) connector, set the following
properties in the soap.client.props file with the appropriate values:
 com.ibm.SOAP.securityEnabled=true
com.ibm.SOAP.loginUserid=
com.ibm.SOAP.loginPassword=

To specify user and password information, choose one of the following methods:
v Specify user name and password on a command line, using the -user and

-password commands. For example:
 wsadmin -conntype RMI -port
809 -user u1 -password secret1

v Specify user name and password in the sas.client.props file for a RMI
connector or the soap.client.props file for a SOAP connector.

If you specify user and password information on a command line and in the
sas.client.props file or the soap.client.props file, the command line information
overrides the information in the props file.

Example: Enabling and disabling LTPA_LDAP security with a
profile using wsadmin
The following example calls the procedures set up by the default profile to enable
and disable LTPA/LDAP security, based on single sign-on using LDAP user
registry.

Enabling LTPA/LDAP global security:
v Use help to find out what arguments you need to provide:

 LTPA_LDAPSecurityOn help
 Example output:
Syntax: LTPA_LDAPSecurityOn
erver user password
ort domain

v Issue the call with the arguments provided to turn on LTPA/LDAP security:
 LTPA_LDAPSecurityOn
dpaServer1 user1
assword1 660 ibm.com
 Example output:
PLEASE READ BELOW:
Done with LTPA/LDAP
ecurity turning on
rocess, now you need
o restart all the
processes to make it
ffected. Then you can
tart using the client with
SOAP or RMI connector.

– If you use the SOAP connector to connect to the server, you need to modify
the soap.client.props file in your <install_root>/properties directory.
Update as below for SOAP connector:
 com.ibm.SOAP.
ecurityEnabled=true
com.ibm.SOAP.
oginUserid=user1
com.ibm.SOAP.
oginPassword=password1

Chapter 3. Deploying and managing using scripting 205

– If you use the RMI connector to connect to the server, you are prompted to
enter the user ID and the password. If you want to bypass the login process,
you can modify sas.client.props file in your <install_root>/properties
directory. Update as below for RMI connector:
 com.ibm.CORBA.
oginSource=properties
com.ibm.CORBA.
oginUserid=user1
com.ibm.CORBA.
oginPassword=password1

Disabling LTPA/LDAP global security:
v Issue the following call to turn off LTPA/LDAP global security

 LTPA_LDAPSecurityOff
 Example output:
LTPA/LDAP security is off
ow but you need to restart
ll the processes to
make it affected.

wsadmin tool performance tips
The following performance tips are for the wsadmin tool:
v When you launch a script using the wsadmin.bat or wsadmin.sh files, a new

process is created with a new Java virtual machine (JVM) API. If you use
scripting with multiple wsadmin -c commands from a batch file or a shell script,
these commands execute slower than if you use a single wsadmin -f command.
The -f option runs faster because only one process and JVM API are created for
installation and the Java classes for the installation only load once.
 The following example executes multiple application installation commands
from a batch file:
wsadmin -c "$AdminApp
nstall c:\\myApps\App1.ear
-appname appl1}"
wsadmin -c "$AdminApp
nstall c:\\myApps\App2.ear
-appname appl2}"
wsadmin -c "$AdminApp
nstall c:\\myApps\App3.ear
-appname appl3}"

Or, for example, you can create the following file, appinst.jacl, that contains the
commands:
$AdminApp install
:\\myApps\App1.ear
-appname appl1}
$AdminApp install
:\\myApps\App2.ear
-appname appl2}
$AdminApp install
:\\myApps\App3.ear
-appname appl3}

Then invoke this file using: wsadmin -f <i>appinst.jacl</i>
v Use the AdminControl queryNames and completeObjectName commands carefully

with a large installation. For example, if there are only a few beans on a single
machine, the $AdminControl queryNames * command performs well. If a
scripting client connects to the deployment manager in a multiple machine
environment, use a command only if it is necessary for the script to obtain a list

206 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

of all the Mbeans in the system. If you need the Mbeans on a node, it is easier to
invoke ″$AdminControl queryNames node=mynode,*″. The JMX system
management infrastructure forwards requests to the system to fulfill the first
query, *. The second query, node=mynode,* is targeted to a specific machine.

v The WebSphere Application Server is a distributed system, and scripts perform
better if you minimize remote requests. If some action or interrogation is
required on several items, for example, servers, it is more efficient to obtain the
list of items once and iterate locally. This procedure applies to actions that the
AdminControl command performs on running MBeans, and actions that the
AdminConfig command performs on configuration objects.

Chapter 3. Deploying and managing using scripting 207

208 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Chapter 4. Managing using command line tools

There are several command line tools that you can use to start, stop, and monitor
WebSphere server processes and nodes. These tools only work on local servers and
nodes. They cannot operate on a remote server or node. To administer a remote
server, you can use the wsadmin scripting program connected to the deployment
manager for the cell in which the target server or node is configured. See
Deploying and managing using scripting for more information about using the
wsadmin scripting program. You can also use the V5 administrative console which
runs in the deployment manager for the cell. For more information about using the
administrative console, see Deploying and managing with the GUI.

To manage using command line tools, perform the following steps:

Steps for this task
1. Open a system command prompt.
2. Change to the bin directory.
3. Run the command.

Results

The command executes the requested function and produces a log file that records
useful information about the parameters passed to the command and the output
produced by the command. When you use the -trace option for the command, the
additional trace data is captured in the command log file. The directory location
for the log files is under the default system log root directory except for commands
related to a specific server instance, in which case the log directory for that server
is used. You can override the default location for the command log file using the
-logfile option for the command.

Example: Security and the command line tools
If you want enable WebSphere Application Server security, you need to provide the
command line tools with authentication information. Without authentication
information, the command line tools will receive an AccessDenied exception when
you attempt to use them with security enabled. There are multiple ways to provide
authentication data:
v Most command line tools support a -username and -password option for

providing basic authentication data. The userid and password that you specify
should be an administrative user. For example, you can use a member of the
administrative console users with operator or administrator privileges, or the
administrative userid configured in the user registry. The following example
demonstrates the stopNode command which specifies command line parameters:
 stopNode -username adminuser -password adminpw

v You can place the authentication data in a properties file that the command line
tools read. The default file for this data is the sas.client.props file in the
properties directory for the WebSphere Application Server.

© Copyright IBM Corp. 2002 209

startServer command
The startServer command reads the configuration file for the specified server
process and starts the server. Depending on the options you specify, you can
launch a new Java virtual machine (JVM) API to run the server process, or write
the launch command data to a file. You can run this command from the
install_root/bin directory of a WebSphere Application Server installation, or a
Network Deployment installation.

Syntax
startServer <server> [options]

where server is the name of the configuration directory of the server you want to
start. This argument is required.

Parameters

The following options are available for the startServer command:

-nowait
Tells the startServer command not to wait for successful initialization of
the launched server process.

-quiet Suppresses the progress information that the startServer command prints
in normal mode.

-logfile <fileName>
Specifies the location of the log file to which information is written.

-replacelog
Replaces the log file instead of appending to the current log.

-trace Generates trace information to the log file for debugging purposes.

-timeout <seconds>
Specifies the waiting time before server initialization times out and returns
an error.

-statusport <portNumber>
Specifies that an administrator can set the port number for server status
callback.

-script [<script fileName>]
Generates a launch script with the startServer command instead of
launching the server process directly. The launch script name is an optional
argument. If you do not supply the launch script name, the default script
file name is start_<server> based on the <server> name passed as the first
argument to the startServer command.

-J <java_option>
Specifies options to pass through to the Java interpreter.

-username <name>
Specifies the user name for authentication if security is enabled in the
server. Acts the same as the -user option.

-user <name>
Specifies the user name for authentication if security is enabled in the
server. Acts the same as the -username option.

210 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

-password <password>
Specifies the password for authentication if security is enabled in the
server.

-help Prints a usage statement.

-? Prints a usage statement.

 Examples

The following examples demonstrate correct syntax:
startServer server1

startServer server1 -script (produces the start_server1.bat or .sh files)

startServer server1 -trace (produces the startserver.log file)

stopServer command
The stopServer command reads the configuration file for the specified server
process. This command sends a Java Management Extensions (JMX) command to
the server telling it to shut down. By default, the stopServer command does not
return control to the command line until the server completes the shut down
process. There is a -nowait option to return immediately, as well as other options
to control the behavior of the stopServer command. You can run this command
from the install_root/bin directory of a WebSphere Application Server
installation or a Network Deployment installation.

Syntax
stopServer <server> [options]

where server is the name of the configuration directory of the server you want to
stop. This argument is required.

Parameters

The following options are available for the stopServer command:

-nowait
Tells the stopServer command not to wait for successful shutdown of the
server process.

-quiet Suppresses the progress information that the stopServer command prints
in normal mode.

-logfile <fileName>
Specifies the location of the log file to which information is written.

-replacelog
Replaces the log file instead of appending to the current log.

-trace Generates trace information into a file for debugging purposes.

-timeout <seconds>
Specifies the time to wait for server shutdown before timing out and
returning an error.

-statusport <portNumber>
Supports an administrator in setting the port number for server status
callback.

Chapter 4. Managing using command line tools 211

-port <portNumber>
Specifies the server Java Management Extensions (JMX) port to use
explicitly, so that you can avoid reading the configuration files to obtain
the information.

-username <name>
Specifies the user name for authentication if security is enabled in the
server. Acts the same as the -user option.

-user <name>
Specifies the user name for authentication if security is enabled in the
server. Acts the same as the -username option.

-password <password>
Specifies the password for authentication if security is enabled in the
server.

 Note: If you are running in a secure environment but have not provided a
user ID and password, you will receive the following error message:
ADMN0022E: Access denied for the stop operation on Server MBean due
to insufficient or empty credentials.

To work around this problem, provide the user ID and password
information.

-conntype <type>
Specifies the Java Management Extensions (JMX) connector type to use for
connecting to the deployment manager. Valid types are Simple Object
Access Protocol (SOAP), or Remote Method Invocation (RMI).

-help Prints a usage statement.

-? Prints a usage statement.

 Examples

The following examples demonstrate correct syntax:
stopServer server1

stopServer server1 -nowait

stopServer server1 -trace (produces the stopserver.log file)

startManager command
The startManager command reads the configuration file for the Network
Deployment manager process and constructs a launch command. Depending on
the options you specify, the startManager command launches a new Java virtual
machine (JVM) API to run the manager process, or writes the launch command
data to a file. You must run this command from the install_root/bin directory of
a Network Deployment installation.

Syntax
startManager [options]

Parameters

The following options are available for the startManager command:

212 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

-nowait
Tells the startManager command not to wait for successful initialization of
the deployment manager process.

-quiet Suppresses the progress information that the startManager command
prints in normal mode.

-logfile <fileName>
Specifies the location of the log file to which information gets written.

-replacelog
Replaces the log file instead of appending to the current log.

-trace Generates trace information into a file using the startManager command
for debugging purposes.

-timeout <seconds>
Specifies the waiting time before deployment manager initialization times
out and returns an error.

-statusport <portNumber>
Specifies that an administrator can set the port number for deployment
manager status callback.

-script [<script fileName>]
Generates a launch script with the startManager command instead of
launching the deployment manager process directly. The launch script
name is an optional argument. If you do not provide the launch script
name, the default script file name is <start_dmgr>.

-J-<java_option>
Specifies options to pass through to the Java interpreter.

-username <name>
Specifies the user name for authentication if security is enabled in the
server. Acts the same as the -user option.

-user <name>
Specifies the user name for authentication if security is enabled in the
server. Acts the same as the -username option.

-password <password>
Specifies the password for authentication if security is enabled in the
server.

-help Prints a usage statement.

-? Prints a usage statement.

 Examples

The following examples demonstrate correct syntax:
startManager

startManager -script (produces the start_dmgr.bat or .sh file)

startManager -trace (produces the startmanager.log file)

Chapter 4. Managing using command line tools 213

stopManager command
The stopManager command reads the configuration file for the Network
Deployment manager process. It sends a Java Management Extensions (JMX)
command to the manager telling it to shut down. By default, the stopManager
command waits for the manager to complete the shutdown process before it
returns control to the command line. There is a -nowait option to return
immediately, as well as other options to control the behavior of the stopManager
command. You must run this command from the install_root/bin directory of a
Network Deployment installation.

Syntax
stopManager [options]

Parameters

The following options are available for the stopManager command:

-nowait
Tells the stopManager command not to wait for successful shutdown of
the deployment manager process.

-quiet Suppresses the progress information that the stopManager command
prints in normal mode.

-logfile <fileName>
Specifies the location of the log file to which information is written.

-replacelog
Replaces the log file instead of appending to the current log.

-trace Generates trace information to a file for debugging purposes.

-timeout <seconds>
Specifies the waiting time for the manager to complete shutdown before
timing out and returning an error.

-statusport <portNumber>
Specifies that an administrator can set the port number for server status
callback.

-port <portNumber>
Specifies the deployment manager JMX port to use explicitly, so that you
can avoid reading the configuration files to obtain information.

-username <name>
Specifies the user name for authentication if security is enabled in the
deployment manager. Acts the same as the -user option.

-user <name>
Specifies the user name for authentication if security is enabled in the
deployment manager. Acts the same as the -username option.

-password <password>
Specifies the password for authentication if security is enabled in the
deployment manager.

 Note: If you are running in a secure environment but have not provided a
user ID and password, you receive the following error message:
ADMN0022E: Access denied for the stop operation on Server MBean due
to insufficient or empty credentials.

214 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

To work around this problem, provide the user ID and password
information.

-conntype <type>
Specifies the Java Management Extensions (JMX) connector type to use for
connecting to the deployment manager. Valid types are Simple Object
Access Protocol (SOAP) or Remote Method Invocation (RMI).

-help Prints a usage statement.

-? Prints a usage statement.

 Examples

The following examples demonstrate correct syntax:
stopManager

stopManager -nowait

stopManager -trace (produces the stopmanager.log file)

startNode command
The startNode command reads the configuration file for the node agent process
and constructs a launch command. Depending on the options that you specify, the
startNode command creates a new Java virtual machine (JVM) API to run the
agent process, or writes the launch command data to a file. You must run this
command from the install_root/bin directory of a WebSphere Application Server
installation.

Syntax
startNode [options]

Parameters

The following options are available for the startNode command:

-nowait
Tells the startNode command not to wait for successful initialization of the
node agent process.

-quiet Suppresses the progress information that the startNode command prints in
normal mode.

-logfile <fileName>
Specifies the location of the log file to which information gets written.

-replacelog
Replaces the log file instead of appending to the current log.

-trace Generates trace information into a file for debugging purposes.

-timeout <seconds>
Specifies the waiting time before node agent initialization times out and
returns an error.

-statusport <portNumber>
Specifies that an administrator can set the port number for node agent
status callback.

-script [<script fileName>]
Generates a launch script with the startNode command instead of

Chapter 4. Managing using command line tools 215

launching the node agent process directly. The launch script name is an
optional argument. If you do not provide the launch script name, the
default script file name is start_<nodeName>, based on the name of the
node.

-J-<java_option>
Specifies options to pass through to the Java interpreter.

-username <name>
Specifies the user name for authentication if security is enabled in the
server. Acts the same as the -user option.

-user <name>
Specifies the user name for authentication if security is enabled in the
server. Acts the same as the -username option.

-password <password>
Specifies the password for authentication if security is enabled in the
server.

-help Prints a usage statement.

-? Prints a usage statement.

 Examples

The following examples demonstrate correct syntax:
startNode

startNode -script (produces the start_node.bat or .sh file)

startNode -trace (produces the startnode.log file)

stopNode command
The stopNode command reads the configuration file for the network deployment
node agent process. It sends a Java Management Extensions (JMX) command to the
node agent telling it to shut down. By default, the stopNode utility waits for the
node agent to complete shutdown before it returns control to the command line.
There is a -nowait option to return immediately, as well as other options to control
the behavior of the stopNode command. You must run this command from the
install_root/bin directory of a WebSphere Application Server installation.

Syntax
stopNode [options]

Parameters

The options for the stopNode command follow:

-nowait
Tells the stopNode command not to wait for successful shutdown of the
node agent process.

-quiet Suppresses the progress information the stopNode command prints in
normal mode.

-logfile <filename>
Specifies the location of the log file to which information gets written.

216 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

-replacelog
Replaces the log file instead of appending to the current log.

-trace Generates trace information into a file for debugging purposes.

-timeout <seconds>
Specifies the waiting time for the agent to shut down before timing out
and returning an error.

-statusport <portnumber>
Specifies that an administrator can set the port number for server status
callback.

-stopservers
Stops all application servers on the node before stopping the node agent.

-port <portnumber>
Specifies the node agent JMX port to use explicitly, so that you can avoid
reading configuration files to obtain the information.

-username <name>
Specifies the user name for authentication if security is enabled in the node
agent. Acts the same as the -user option.

-user <name>
Specifies the user name for authentication if security is enabled in the node
agent. Acts the same as the -username option.

-password <password>
Specifies the password for authentication if security is enabled in the node
agent.

 Note: If you are running in a secure environment but have not provided a
user ID and password, you will receive the following error message:
ADMN0022E: Access denied for the stop operation on Server MBean due
to insufficient or empty credentials.

To work around this problem, provide the user ID and password
information.

-conntype <type>
Specifies the Java Management Extensions (JMX) connector type to use for
connecting to the deployment manager. Valid types are Simple Object
Access Protocol (SOAP) or Remote Method Invocation (RMI).

-help Prints a usage statement.

 Note: When requesting help for the usage statement for the stopNode
command, a reference to the stopServer command displays. All of the
options displayed for this usage statement apply for the stopNode
command.

-? Prints a usage statement.

 Note: When requesting help for the usage statement for the stopNode
command, a reference to the stopServer command displays. All of the
options displayed for this usage statement apply for the stopNode
command.

 Examples

The following examples demonstrate correct syntax:

Chapter 4. Managing using command line tools 217

stopNode

stopNode -nowait

stopNode -trace (produces stopnode.log file)

addNode command
The addNode command incorporates a WebSphere Application Server installation
into a cell. You must run this command from the install_root/bin directory of a
WebSphere Application Server installation. Depending on the size and location of
the new node you incorporate into the cell, this command can take a few minutes
to complete.

Note: If you recycle the system that hosts an application server node, and did not
set up the node agent to be an operating system daemon, you must issue a
startNode command to re-establish the node as a member of the deployment cell.

Syntax
addNode <deploymgr host> <deploymgr port> [options]

where the first two arguments are required. The default port number is 8879.

Parameters

The options for the addNode command follow:

-nowait
Tells the addNode command not to wait for successful initialization of the
launched node agent process.

-quiet Suppresses the progress information that the addNode command prints in
normal mode.

-logfile <filename>
Specifies the location of the log file to which information gets written.

-replacelog
Replaces the log file instead of appending to the current log.

-trace Generates trace information into a file for debugging purposes.

-newtracefile
By default the addNode program appends to the existing trace file. This
option causes the addNode command to overwrite the trace file.

-noagent
Tells addNode not to launch the node agent process for the new node.

-username <name>
Specifies the user name for authentication if security is enabled. Acts the
same as the -user option.

-user <name>
Specifies the user name for authentication if security is enabled. Acts the
same as the -username option.

-password <password>
Specifies the password for authentication if security is enabled.

-conntype <type>
Specifies the Java Management Extensions (JMX) connector type to use for

218 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

connecting to the deployment manager. Valid types are Simple Object
Access Protocol (SOAP) or Remote Method Invocation (RMI).

-includeapps
By default the addNode program does not carry over applications from the
stand-alone servers on the new node to the cell. This option tells addNode
to attempt to include applications from the new node. If the application
already exists in the cell, a warning is printed and the application is not
installed into the cell.

 By default, during application installation, application binaries are
extracted in the install_root/installedApps/cellName directory. After
addNode, the cell name of the configuration on the node that you added
changes from the base cell name to the deployment manager cell name.
The application binaries are located where they were before addNode was
performed, for example, install_root/installedApps/old_cellName.

 If the application was installed by explicitly specifying the location for
binaries as the following:
${APP_INSTALL_ROOT}/${CELL}

where variable ${CELL} specifies current cell name, then upon addNode the
binaries are moved to the following directory:
${APP_INSTALL_ROOT}/currentCellName
 Note: You have to use the -includeApps option to migrate all the
applications to the new cell. Federating the node to a cell using addNode
command does not merge any cell level configuration including
virtualHost information. If the virtual Host and aliases for the new cell
does not match WebSphere Application Server, you will not be able to
access the applications running on the servers. You have to manually add
all the virtualHost and host aliases to the new cell using the administrative
console running on the deployment manager.

-startingport <portnumber>
Allows you to specify a port number to use as the base port number for all
node agent and jms server ports created during addNode. This allows you
to control which ports are defined for these servers, rather than using the
default port values. The starting port number is incremented in order to
calculate the port number for every node agent port and jms server port
configured during addNode.

-help Prints a usage statement.

-? Prints a usage statement.

 Examples

This program does the following:
v It copies the base WebSphere Application Server cell configuration to a new cell

structure. This new cell structure matches the structure of deployment manager.
v It creates a new node agent definition for the node that the cell incorporates.
v It sends commands to the deployment manager to add the documents from the

new node to the cell repository.
v It performs the first configuration synchronization for the new node (ensures it

is in sync with the cell).
v It launches the node agent process for the new node.

Chapter 4. Managing using command line tools 219

For information about port numbers, see port number settings in WebSphere
Application Server versions.

Note: The default Red Hat installation creates an association between the hostname
of the machine and the loopback address — 127.0.0.1. In addition, the
/etc/nsswitch.conf file is set up to use /etc/hosts before trying to look up the
server using a name server. This can cause failures when trying to add or
administrate nodes when the deployment manager or application server is running
on Red Hat.

If your deployment manager or your application server is running on Red Hat,
perform the following operations on your Red Hat machines to ensure that you
can successfully add and administrate nodes:
v Remove the 127.0.0.1 mapping to the local host in /etc/hosts
v Edit /etc/nsswitch.conf so that the hosts line reads:

 hosts: dns files

The following examples demonstrate correct syntax:
addNode testhost 8879

addNode deploymgr 8879 -trace (produces addNode.log file)

addNode host25 8879 -nowait (does not wait for node agent process)

where 8879 is the default port.

Example output:
D:\WebSphere\AppServer\bin>addnode <dmgr_host>
ADMU0116I: Tool information is being logged in file
 D:\WebSphere\AppServer\logs\addNode.log
ADMU0001I: Begin federation of node <node_name> with Deployment Manager at
 <dmgr_host>:8879.
ADMU0009I: Successfully connected to Deployment Manager Server: <dmgr_host>:8879.
ADMU0505I: Servers found in configuration:
ADMU0506I: Server name: server1
ADMU2010I: Stopping all server processes for node <node_name>
ADMU0512I: Server server1 cannot be reached. It appears to be stopped.
ADMU0024I: Deleting the old backup directory.
ADMU0015I: Backing up the original cell repository.
ADMU0012I: Creating Node Agent configuration for node: <node_name>
ADMU0014I: Adding node <node_name> configuration to cell: <cell_name>
ADMU0016I: Synchronizing configuration between node and cell.
ADMU0018I: Launching Node Agent process for node: <node_name>
ADMU0020I: Reading configuration for Node Agent process: nodeagent
ADMU0022I: Node Agent launched. Waiting for initialization status.
ADMU0030I: Node Agent initialization completed successfully. Process id is:
 2340
ADMU0523I: Creating Queue Manager for node <node_name> on server jmsserver
ADMU0525I: Details of Queue Manager creation may be seen in the file:
 createMQ.<node_name>_jmsserver.log
ADMU9990I:
ADMU0300I: Congratulations! Your node <node_name> has been successfully
 incorporated into the <cell_name> cell.
ADMU9990I:
ADMU0306I: Be aware:
ADMU0302I: Any cell-level documents from the stand-alone <node_name>
configuration have not been migrated to the new cell.
ADMU0307I: You might want to:
ADMU0303I: Update the configuration on the <cell_name> Deployment Manager
 with values from the old cell-level documents.
ADMU9990I:

220 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

ADMU0306I: Be aware:
ADMU0304I: Because -includeapps was not specified, applications installed on
 the stand-alone node were not installed on the new cell.
ADMU0307I: You might want to:
ADMU0305I: Install applications onto the <cell_name> cell using wsadmin
 $AdminApp or the Administrative Console.
ADMU9990I:
ADMU0003I: Node <node_name> has been successfully federated.

serverStatus command
Use the serverStatus command to obtain the status of one or all of the servers
configured on a node. You can run this command from the install_root/bin
directory of a WebSphere Application Server installation or a network deployment
installation.

Syntax
serverStatus <server>|-all [options]

The first argument is required. The argument is either the name of the
configuration directory of the server for which status is desired, or the -all
keyword which requests status for all servers defined on the node.

Parameters

The options for the serverStatus command follow:

-quiet Suppresses the progress information that serverStatus prints in normal
mode.

-logfile <filename>
Specifies the location of the log file to which information gets written.

-replacelog
Replaces the log file instead of appending to the current log.

-trace Generates trace information into a file for debugging purposes.

-username <name>
Specifies the user name for authentication if security is enabled. Acts the
same as the -user option.

-user <name>
Specifies the user name for authentication if security is enabled. Acts the
same as the -username option.

-password <password>
Specifies the password for authentication if security is enabled.

-help Prints a usage statement.

-? Prints a usage statement.

 Examples

The following examples demonstrate correct syntax:
serverStatus server1

serverStatus -all (returns status for all defined servers)

serverStatus -trace (produces serverStatus.log file)

Chapter 4. Managing using command line tools 221

removeNode command
The removeNode command returns a node from a network deployment
distributed administration cell to a base WebSphere Application Server installation.
You must run this command from the install_root/bin directory of a WebSphere
Application Server installation.

The removeNode command only removes the node specific configuration from the
cell. It does not uninstall any applications that were installed as the result of
executing an addNode command, because such applications may subsequently be
deployed on additional servers in the network deployment cell. As a consequence,
an addNode command with -includeapps executed after a removeNode command
will not move the applications into the cell because they already exist from the first
addNode command. The resulting application servers on the node being added
will not contain any applications. To deal with this situation, add the node and use
the deployment manager to manage the applications. Add the applications to the
servers on the node after it has been incorporated into the cell.

Note: Depending on the size and location of the new node you remove from the
cell, this command can take a few minutes to complete.

Syntax
removeNode [options]

All arguments are optional.

Parameters

The options for the removeNode command follow:

-quiet Suppresses the progress information the removeNode command prints in
normal mode.

-logfile <filename>
Specifies the location of the log file to which information is written.

-replacelog
Replaces the log file instead of appending to the current log.

-trace Generates trace information into a file for debugging purposes.

-timeout <seconds>
Specifies the waiting time before node agent shutdown times out and
returns an error.

-statusport <portnumber>
Specifies that an administrator can set the port number for node agent
status callback.

-username <name>
Specifies the user name for authentication if security is enabled. Acts the
same as the -user option.

-user <name>
Specifies the user name for authentication if security is enabled. Acts the
same as the -username option.

-password <password>
Specifies the password for authentication if security is enabled.

222 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

-force Cleans up the local node configuration regardless of whether you can
reach the deployment manager for cell repository cleanup.

-help Prints a usage statement.

-? Prints a usage statement.

 Examples

This program does the following:
v It stops all of the running server processes in the node, including the node agent

process.
v It removes the configuration documents for the node from the cell repository by

sending commands to the deployment manager.
v It copies the original application server cell configuration into the active

configuration.

The following examples demonstrate correct syntax:
removeNode -quiet

removeNode -trace (produces removeNode.log file)

cleanupNode command
The cleanupNode command cleans up a node configuration from the cell
repository. Only use this command to clean up a node if you have a node defined
in the cell configuration, but the node no longer exists. You must run this
command from the install_root/bin directory of a network deployment
installation.

Syntax
cleanupNode <node name> <deploymgr host> <deploymgr port> [options]

where the first argument is required.

Parameters

The options for the cleanupNode command follow:

-quiet Suppresses the progress information that the cleanupNode command
prints in normal mode.

-trace Generates trace information into a file for debugging purposes.

 Examples

The following examples demonstrate correct syntax:
cleanupNode myNode
cleanupNode myNode -trace

Chapter 4. Managing using command line tools 223

syncNode command
The syncNode command forces a configuration synchronization to occur between
the node and the deployment manager for the cell in which the node is configured.
Only use this command when you cannot run the node agent because the node
configuration does not match the cell configuration. You must run this command
from the install_root/bin directory of a WebSphere Application Server
installation.

Syntax
syncNode <deploymgr host> <deploymgr port> [options]

where the first two arguments are required.

Parameters

The options for the syncNode command follow:

-stopservers
Tells the syncNode program to stop all servers on the node, including the
node agent, before performing configuration synchronization with the cell.

-restart
Tells the syncNode command to launch the node agent process after
configuration synchronization completes.

-nowait
Tells the syncNode command not to wait for successful initialization of the
launched node agent process.

-quiet Suppresses the progress information that the syncNode command prints in
normal mode.

-logfile <filename>
Specifies the location of the log file to which information gets written.

-replacelog
Replaces the log file instead of appending to the current log.

-trace Generates trace information into a file for debugging purposes.

-timeout <seconds>
Specifies the waiting time before node agent initialization times out and
returns an error.

-statusport <portnumber>
Specifies that an administrator can set the port number for node agent
status callback.

-username <name>
Specifies the user name for authentication if security is enabled. Acts the
same as the -user option.

-user <name>
Specifies the user name for authentication if security is enabled. Acts the
same as the -username option.

-password <password>
Specifies the password for authentication if security is enabled.

-conntype <type>
Specifies the Java Management Extensions (JMX) connector type to use for

224 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

connecting to the deployment manager. Valid types are Simple Object
Access Protocol (SOAP) or Remote Method Invocation (RMI).

-help Prints a usage statement.

-? Prints a usage statement.

 Examples

The following examples demonstrate correct syntax:

(split for publication)
syncNode testhost 8879

syncNode deploymgr 8879 -trace (produces syncNode.log file)

syncNode host25 4444 -stopservers
-restart (assumes that the deployment manager JMX port is 4444)

backupConfig command
The backupConfig command is a simple utility to back up the configuration of
your node to a file. By default, all servers on the node stop before the backup is
made so that partially syncronized information is not saved. You can run this
command from the install_root/bin directory of a WebSphere Application Server
installation or a network deployment installation.

Syntax
backupConfig <backup_file> [options]

where backup_file specifies the file to which the backup is written. If you do not
specify one, a unique name is generated.

Parameters

The options for the backupConfig command are:

-nostop
Tells the backupConfig command not to stop the servers before backing
up the configuration.

-quiet Suppresses the progress information that the backupConfig command
prints in normal mode.

-logfile <filename>
Specifies the location of the log file to which information gets written.

-replacelog
Replaces the log file instead of appending to the current log.

-trace Generates trace information into the log file for debugging purposes.

-username <name>
Specifies the user name for authentication if security is enabled in the
server. Acts the same as the -user option.

-user <name>
Specifies the user name for authentication if security is enabled in the
server. Acts the same as the -username option.

Chapter 4. Managing using command line tools 225

-password <password>
Specifies the password for authentication if security is enabled in the
server.

-help Prints a usage statement.

-? Prints a usage statement.

 Examples

The following example demonstrates correct syntax:
backupConfig

This example creates a new file that includes the current date. For example:
WebSphereConfig_2003-04-22.zip

backupConfig myBackup.zip -nostop

This example creates a file called myBackup.zip and does not stop any servers
before beginning the backup.

restoreConfig command
The restoreConfig command is a simple utility to restore the configuration of your
node after backing up the configuration using the backupConfig command. By
default, all servers on the node stop before the configuration restores so that a
node syncronization does not occur during the restoration. If the configuration
directory already exists, it will be renamed before the restoration occurs. You can
run this command from the install_root/bin directory of a WebSphere
Application Server installation or a network deployment installation.

Syntax
restoreConfig <backup_file> [options]

where backup_file specifies the file the backup is written to. If you do not specify
one, a unique name is generated.

Parameters

The options for the restoreConfig command follow:

-nostop
Tells the restoreConfig command not to stop the servers before backing up
the configuration.

-quiet Suppresses the progress information that the restoreConfig command
prints in normal mode.

-location
Specifies the location where the backup files should be restored. The
location defaults to the WAS_HOME/config directory.

-location<directory_name>
Specifies the directory where the backup file should be restored. The
location defaults to the WAS_HOME/config directory.

-logfile <filename>
Specifies the location of the log file to which information gets written.

226 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

-replacelog
Replaces the log file instead of appending to the current log.

-trace Generates trace information into the log file for debugging purposes.

-username <name>
Specifies the user name for authentication if security is enabled in the
server. Acts the same as the -user option.

-user <name>
Specifies the user name for authentication if security is enabled in the
server. Acts the same as the -username option.

-password <password>
Specifies the password for authentication if security is enabled in the
server.

-help Prints a usage statement.

-? Prints a usage statement.

 Examples

The following example demonstrates correct syntax:
restoreConfig WebSphereConfig_2003-04-22.zip

This example restores the given file to the WAS_HOME/config directory.
restoreConfig WebSphereConfig_2003-04-22.zip -location /tmp -nostop

This example creates a file called myBackup.zip and does not stop any servers
before beginning the backup.

EARExpander command
The EARExpander command allows you to expand an EAR file into a directory to
run the application in that EAR file. It also allows you to collapse a directory
containing application files into a single EAR file. You can type EARExpander with
no arguments to learn more about its options.

Syntax
EarExpander -ear earName -operationDir dirName -operation
<expandcollapse> [-expansionFlags <all|war>]

Parameters

The options for the EARExpander command are:

-ear Specifies the name of the input ear file for expand operation or name of
the output ear file for collapse operation.

-operationDir
Specifies the directory where the EAR file is expanded or specifies the
directory from where files are collapsed.

-operation <expand | collapse>
The expand value expands an EAR file into a directory structure requred by
the WebSphere Application Server run time. The collapse value creates an
EAR file from an expanded directory structure.

Chapter 4. Managing using command line tools 227

-expansionFlags <all | war>
(Optional) The all value expands all files from all of the modules. The war
value only expands the files from WAR modules.

 Examples

The following examples demonstrate correct syntax:
EARExpander -ear C:\WebSphere\AppServer\installableApps\DefaultApplication.ear
-operationDir C:\MyApps -operation expand -expansionFlags war

EARExpander -ear C:\backup\DefaultApplication.ear
-operationDir C:\MyAppsDefaultApplication.ear -operation collapse

228 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Chapter 5. Deploying and managing using programming

This section describes how to use Java administrative APIs for customizing the
WebSphere Application Server administrative system. WebSphere Application
Server supports access to the administrative functions through a set of Java classes
and methods. You can write a Java program that performs any of the
administrative features of the WebSphere Application Server administrative tools.
You can also extend the basic WebSphere Application Server administrative system
to include your own managed resources. For more information, view the JMX
Javadoc.

Steps for this task
1. Decide that you want to write a Java administrative program.

 Instead of writing a Java administrative program, consider several other
options that you can use to manage WebSphere Application Server processes.
These options include: wsadmin, the administrative console, or the
administrative command line tools. The administrative tools provide most of
the functions you might need to manage the product and the applications that
run in the WebSphere Application Server. You can use the command line tools
from automation scripts to control the servers. Scripts written for the wsadmin
scripting tool offer a wide range of possible custom solutions that you can
develop quickly.
 You might have management features for your application or operating
environment that are not implemented in the basic WebSphere Application
Server administrative system. In this case, you can use the administrative
classes and methods to add newly managed objects to the administrative
system. You can also incorporate WebSphere Application Server administration
into other Java programs by using the Java administrative APIs.

2. Create a custom Java admininstrative client program using the Java
administrative APIs. (Optional)

3. Extend the WebSphere Application Server administrative system with custom
MBeans. (Optional)

Creating a custom Java administrative client program using
WebSphere Application Server administrative Java APIs

This section describes how to develop a Java program using the WebSphere
Application Server administrative APIs for accessing the WebSphere administrative
system. For more information, view the JMX Javadoc.

Steps for this task
1. Develop an administrative client program.
2. Build the administrative client program by compiling it with javac and

providing the location of the necessary JAR files in the classpath argument.
 For example, if your installation directory is w:\DeploymentManager a typical
command would look like the following example: (split for publication)
javac -classpath
w:\DeploymentManager\lib\admin.jar;w:\DeploymentManager\lib
\wsexception.jar;w:\DeploymentManager\lib\jmxc.jar
MyAdminClient.java

© Copyright IBM Corp. 2002 229

3. Run the administrative client program by setting up the run-time environment
so that the program can find all of the prerequisites.
 Many of the batch or script files in the bin directory under the installation root
perform a similar function. An example of a batch file that runs an
administrative client program named MyAdminClient follows: (split for
publication)
@echo off

call "%~dp0setupCmdLine.bat"

"%JAVA_HOME%\bin\java" "%CLIENTSAS%"
"-Dwas.install.root=%WAS_HOME%"
"-Dwas.repository.root=%CONFIG_ROOT%"
-Dcom.ibm.CORBA.BootstrapHost=%COMPUTERNAME%
-classpath "%WAS_CLASSPATH%;w:\DeploymentManager
\classes;w:\DeploymentManager\lib\admin.jar;
w:\DeploymentManager\lib\wasjmx.jar" MyAdminClient %*

Developing an administrative client program
This page contains examples of key features of an administrative client program
that utilizes WebSphere Application Server administrative APIs and Java
Management Extentions (JMX). WebSphere Application Server administrative APIs
provide control of the operational aspects of your distributed system as well as the
ability to update your configuration. This page also demonstrates examples of
operational control. For information, view the Administrative Javadoc, theJMX
Javadoc, or the MBean Javadoc.

Steps for this task
1. Create an AdminClient instance.

 An administrative client program needs to invoke methods on the
AdminService object that is running in the deployment manager (or the
application server in the base installation). The AdminClient class provides a
proxy to the remote AdminService object through one of the supported Java
Management Extensions (JMX) connectors. The following example shows how
to create an AdminClient instance: (split for publication)
Properties connectProps = new Properties();
connectProps.setProperty(AdminClient.CONNECTOR_TYPE,
AdminClient.CONNECTOR_TYPE_SOAP);

connectProps.setProperty(AdminClient.CONNECTOR_HOST,
"localhost");
connectProps.setProperty(AdminClient.CONNECTOR_PORT, "8879");
AdminClient adminClient = null;
try
{
 adminClient = AdminClientFactory.createAdminClient(connectProps);
}
catch (ConnectorException e)
{
 System.out.println("Exception creating admin client: " + e);
}

2. Find an MBean
 Once you obtain an AdminClient instance, you can use it to access managed
resources in the administration servers and application servers. Each managed
resource registers an MBean with the AdminService through which you can
access the resource. The MBean is represented by an ObjectName instance that
identifies the MBean. An ObjectName consists of a domain name followed by
an unordered set of one or more key properties. For the WebSphere Application

230 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Server, the domain name is WebSphere and the key properties defined for
administration are as follows:

 type The type of MBean. For example: Server,
TraceService, Java Virtual Machine (JVM).

name The name identifier for the individual
instance of the MBean.

cell The name of the cell that the MBean is
executing.

node The name of the node that the MBean is
executing.

process The name of the process that the MBean is
executing.

 You can locate an MBean by querying for them with ObjectNames that match
desired key properties. The following example shows how to find the MBean
for the NodeAgent of node MyNode:
String nodeName = "MyNode";
String query = "WebSphere:type=NodeAgent,node=" + nodeName + ",*";
ObjectName queryName = new ObjectName(query);
ObjectName nodeAgent = null;
Set s = adminClient.queryNames(queryName, null);
if (!s.isEmpty())
 nodeAgent = (ObjectName)s.iterator().next();
else
 System.out.println("Node agent MBean was not found");

3. Use the MBean.
 What a particular MBean allows you to do depends on that MBean’s
management interface. It may declare attributes that you can obtain or set. It
may declare operations that you can invoke. It may declare notifications for
which you can register listeners. For the MBeans provided by the WebSphere
Application Server, you can find information about the interfaces they support
in the MBean javadoc.
 The following example invokes one of the operations available on the
NodeAgent MBean that we located above. The following example will start the
MyServer application server:
String opName = "launchProcess";
String signature[] = { "java.lang.String" };
String params[] = { "MyServer" };
try
{
 adminClient.invoke(nodeAgent, opName, params, signature);
}
catch (Exception e)
{
 System.out.println("Exception invoking launchProcess: " + e);
}

4. Register for events.
 In addition to managing resources, the Java Management Extensions (JMX) API
also supports application monitoring for specific administrative events. Certain
events produce notifications, for example, when a server starts. Administrative
applications can register as listeners for these notifications. The WebSphere
Application Server provides a full implementation of the JMX notification
model, and provides additional function so you can receive notifications in a
distributed environment.
 For a complete list of the notifications emitted from WebSphere Application
Server MBeans, refer to the
com.ibm.websphere.management.NotificationConstants class in the Javadoc.

Chapter 5. Deploying and managing using programming 231

The following is an example of how an object can register itself for event
notifications emitted from an MBean using the node agent ObjectName:
adminClient.addNotificationListener(nodeAgent, this, null, null);

In this example, the null value will result in receiving all of the node agent
MBean event notifications. You can also use the null value with the handback
object.

5. Handle the events.
 Objects receive JMX event notifications via the handleNotification method
which is defined by the NotificationListener interface and which any event
receiver must implement. The following example is an implementation of
handleNotification that reports the notifications that it receives: (split for
publication)
public void handleNotification(Notification n, Object handback)
{
 System.out.println("***************
************************************");
 System.out.println("* Notification
received at " + new Date().toString());
 System.out.println("* type =
" + ntfyObj.getType());
 System.out.println("* message =
" + ntfyObj.getMessage());

 System.out.println("* source =
" + ntfyObj.getSource());
 System.out.println("* seqNum =
" + Long.toString(ntfyObj.getSequenceNumber()));
 System.out.println("* timeStamp =
" + new Date(ntfyObj.getTimeStamp()));
 System.out.println("* userData =
 " + ntfyObj.getUserData());
 System.out.println("*************
**************************************");
}

Administrative client program example
The following example is a complete administrative client program. Copy the
contents to a file named MyAdminClient.java. After changing the node name and
server name to the appropriate values for your configuration, you can compile and
run it using the instructions from Creating a custom Java administrative client
program using WebSphere Application Server administrative Java APIs (split for
publication)
import java.util.Date;
import java.util.Properties;
import java.util.Set;

import javax.management.InstanceNotFoundException;
import javax.management.MalformedObjectNameException;
import javax.management.Notification;
import javax.management.NotificationListener;
import javax.management.ObjectName;

import com.ibm.websphere.management.AdminClient;
import com.ibm.websphere.management.AdminClientFactory;
import com.ibm.websphere.management.exception.ConnectorException;

public class AdminClientExample implements NotificationListener
{

 private AdminClient adminClient;
 private ObjectName nodeAgent;

232 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

private long ntfyCount = 0;

 public static void main(String[] args)
 {
 AdminClientExample ace = new AdminClientExample();

 // Create an AdminClient
 ace.createAdminClient();

 // Find a NodeAgent MBean
 ace.getNodeAgentMBean("ellington");

 // Invoke launchProcess
 ace.invokeLaunchProcess("server1");

 // Register for NodeAgent events
 ace.registerNotificationListener();

 // Run until interrupted
 ace.countNotifications();
 }

 private void createAdminClient()
 {
 // Set up a Properties object for the JMX
connector attributes
 Properties connectProps = new Properties();
 connectProps.setProperty(AdminClient.CONNECTOR_TYPE,
AdminClient.CONNECTOR_TYPE_SOAP);
 connectProps.setProperty(AdminClient.CONNECTOR_HOST,
 "localhost");
 connectProps.setProperty(AdminClient.CONNECTOR_PORT,
"8879");

 // Get an AdminClient based on the connector properties
 try
 {
 adminClient = AdminClientFactory.
createAdminClient(connectProps);
 }
 catch (ConnectorException e)
 {
 System.out.println("Exception creating
admin client: " + e);
 System.exit(-1);
 }

 System.out.println("Connected to DeploymentManager");
 }

 private void getNodeAgentMBean(String nodeName)
 {
 // Query for the ObjectName of the NodeAgent
MBean on the given node
 try
 {
 String query = "WebSphere:type=NodeAgent,
node=" + nodeName + ",*";
 ObjectName queryName = new ObjectName(query);
 Set s = adminClient.queryNames(queryName, null);
 if (!s.isEmpty())
 nodeAgent = (ObjectName)s.iterator().next();
 else
 {
 System.out.println("Node agent MBean
was not found");

Chapter 5. Deploying and managing using programming 233

System.exit(-1);
 }
 }
 catch (MalformedObjectNameException e)
 {
 System.out.println(e);
 System.exit(-1);
 }
 catch (ConnectorException e)
 {
 System.out.println(e);
 System.exit(-1);
 }

 System.out.println("Found NodeAgent MBean
for node " + nodeName);
 }

 private void invokeLaunchProcess(String serverName)
 {
 // Use the launchProcess operation on the
NodeAgent MBean to start
 // the given server
 String opName = "launchProcess";
 String signature[] = { "java.lang.String" };
 String params[] = { serverName };
 boolean launched = false;
 try
 {
 Boolean b = (Boolean)adminClient.invoke
(nodeAgent, opName, params, signature);
 launched = b.booleanValue();
 if (launched)
 System.out.println(serverName +
" was launched");
 else
 System.out.println(serverName +
" was not launched");

 }
 catch (Exception e)
 {
 System.out.println("Exception invoking
launchProcess: " + e);
 }
 }

 private void registerNotificationListener()
 {
 // Register this object as a listener
for notifications from the
 // NodeAgent MBean. Don’t use a filter
and don’t use a handback
 // object.
 try
 {
 adminClient.addNotificationListener
(nodeAgent, this, null, null);
 System.out.println("Registered for
event notifications");
 }
 catch (InstanceNotFoundException e)
 {
 System.out.println(e);
 }
 catch (ConnectorException e)
 {

234 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

System.out.println(e);
 }
 }

 public void handleNotification(Notification
ntfyObj, Object handback)
 {
 // Each notification that the NodeAgent
MBean generates will result in
 // this method being called
 ntfyCount++;
 System.out.println("********************
*******************************");
 System.out.println("* Notification received
at " + new Date().toString());
 System.out.println("* type =
" + ntfyObj.getType());
 System.out.println("* message =
" + ntfyObj.getMessage());
 System.out.println("* source =
" + ntfyObj.getSource());
 System.out.println("* seqNum =
" + Long.toString(ntfyObj.getSequenceNumber()));
 System.out.println("* timeStamp =
" + new Date(ntfyObj.getTimeStamp()));
 System.out.println("* userData =
" + ntfyObj.getUserData());
 System.out.println("**************
*************************************");

 }

 private void countNotifications()
 {
 // Run until killed
 try
 {
 while (true)
 {
 Thread.currentThread().sleep(60000);
 System.out.println(ntfyCount +
" notification have been received");
 }
 }
 catch (InterruptedException e)
 {
 }
 }

}

Extending the WebSphere Application Server administrative system
with custom MBeans

You can extend the WebSphere Application Server administration system by
supplying and registering new Java Management Extensions (JMX) MBeans (see
JMX 1.0 Specification for details) in one of the WebSphere processes. JMX MBeans
represent the management interface for a particular piece of logic. All of the
managed resources within the standard WebSphere 5.0 infrastructure are
represented as JMX MBeans.There are a variety of ways in which you can create
your own MBeans and register them with the JMX MBeanServer running in any
WebSphere process. For more information, view the MBean Javadoc.

Steps for this task

Chapter 5. Deploying and managing using programming 235

1. Create custom JMX MBeans.
 You have some alternatives to select from, when creating MBeans to extend the
WebSphere administrative system. You can use any existing JMX MBean from
another application. You can register any MBean that you tested in a JMX
MBeanServer outside of the WebSphere Application Server environment in a
WebSphere Application Server process. Including Standard MBeans, Dynamic
MBeans, Open MBeans, and Model MBeans.
 In addition to any existing JMX MBeans, and ones that were written and tested
outside of the WebSphere Application Server environment, you can use the
special distributed extensions provided by WebSphere and create a WebSphere
ExtensionMBean provider. This alternative provides better integration with all
of the distributed functions of the WebSphere administrative system. An
ExtensionMBean provider implies that you supply an XML file that contains an
MBean Descriptor based on the DTD shipped with the WebSphere Application
Server. This descriptor tells the WebSphere system all of the attributes,
operations, and notifications that your MBean supports. With this information,
the WebSphere system can route remote requests to your MBean and register
remote Listeners to receive your MBean event notifications.
 All of the internal WebSphere MBeans follow the Model MBean pattern (see
WebSphere Application Server administrative MBean documentation for
details). Pure Java classes supply the real logic for management functions, and
the WebSphere MBeanFactory class reads the description of these functions
from the XML MBean Descriptor and creates an instance of a ModelMBean that
matches the descriptor. This ModelMBean instance is bound to your Java
classes and registered with the MBeanServer running in the same process as
your classes. Your Java code now becomes callable from any WebSphere
Application Server administrative client through the ModelMBean created and
registered to represent it.

2. Register the new MBeans.
 There are several ways to register your MBean with the MBeanServer in a
WebSphere Application Server process. The following list describes the
available options:
v Go through the AdminService interface. You can call the registerMBean()

method on the AdminService interface and the invocation is delegated to the
underlying MBeanServer for the process, after appropriate security checks.
You can obtain a reference to the AdminService using the getAdminService()
method of the AdminServiceFactory class.

v Get MBeanServer instances directly. You can get a direct reference to the JMX
MBeanServer instance running in any WebSphere Application Server process,
by calling the getMBeanServer() method of the MBeanFactory class. You get a
reference to the MBeanFactory class by calling the getMBeanFactory()
method of the AdminService interface. Registering the MBean directly with
the MBeanServer instance can result in that MBean not participating fully in
the distributed features of the WebSphere Application Server administrative
system.

v Go through the MBeanFactory class. If you want the greatest possible
integration with the WebSphere Application Server system, then use the
MBeanFactory class to manage the life cycle of your MBean through the
activateMBean and deactivateMBean methods of the MBeanFactory class. Use
these methods, by supplying a subclass of the RuntimeCollaborator abstract
superclass and an XML MBean descriptor file. Using this approach, you
supply a pure Java class that implements the management interface defined

236 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

in the MBean descriptor. The MBeanFactory class creates the actual
ModelMBean and registers it with the WebSphere Application Server
administrative system on your behalf.

v Use the JMXManageable and CustomService interface. You can make the
process of integrating with WebSphere administration even easier, by
implementing a CustomService interface, that also implements the
JMXManageable interface. Using this approach, you can avoid supplying the
RuntimeCollaborator. When your CustomService interface is initialized, the
WebSphere MBeanFactory class reads your XML MBean descriptor file and
creates, binds, and registers an MBean to your CustomService interface
automatically. After the shutdown method of your CustomService is called,
the WebSphere Application Server system automatically deactivates your
MBean.

Results

Regardless of the approach used to create and register your MBean, you must set
up proper Java 2 security permissions for your new MBean code. The WebSphere
AdminService and MBeanServer are tightly protected using Java 2 security
permissions and if you do not explicitly grant your code base permissions, security
exceptions are thrown when you attempt to invoke methods of these classes. If you
are supplying your MBean as part of your application, you can set the permissions
in the was.policy file that you supply as part of your application metadata. If you
are using a CustomService interface or other code that is not delivered as an
application, you can edit the library.policy file in the node configuration, or even
the server.policy file in the properties directory for a specific installation.

Java 2 security permissions
You must grant Java 2 security permissions to application scoped code for JMX
and WebSphere Application Server administrative privileges in order to allow the
code to call WebSphere Application Server administrative and JMX methods.
v To invoke JMX class and interface methods, at least one of the following

permissions are required: (split for publication)
 permission com.tivoli.jmx.MBeanServerPermission "MBeanServer.*"
permission com.tivoli.jmx.MBeanServerPermission
"MBeanServerFactory.*"

where the individual target names are:
MBeanServer.addNotificationListener
MBeanServer.createMBean
MBeanServer.deserialize
MBeanServer.getAttribute
MBeanServer.getDefaultDomain
MBeanServer.getMBeanCount
MBeanServer.getMBeanInfo
MBeanServer.getObjectInstance
MBeanServer.instantiate
MBeanServer.invoke
MBeanServer.isRegistered
MBeanServer.queryMBeans
MBeanServer.queryNames
MBeanServer.registerMBean
MBeanServer.removeNotificationListener
MBeanServer.setAttribute
MBeanServer.unregisterMBean

Chapter 5. Deploying and managing using programming 237

MBeanServerFactory.createMBeanServer
MBeanServerFactory.newMBeanServer
MBeanServerFactory.findMBeanServer
MBeanServerFactory.releaseMBeanServer

v For WebSphere Application Server administrative APIs, the permissions are the
following: (split for publication)
 permission com.ibm.websphere.security.WebSphereRuntimePermission
"AdminPermission";

238 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Chapter 6. Working with server configuration files

Application server configuration files define the available application servers, their
configurations, and their contents.

You should periodically save changes to your administrative configuration. You
can change the default locations of configuration files, as needed.

Steps for this task
1. Edit configuration files. The master repository is comprised of .xml

configuration files. You can edit configuration files using the administrative
console,scripting, wsadmin commands, programming, or by editing a
configuration file directly.

2. Save changes made to configuration files. Using the console, you can save
changes as follows:
a. Click Save on the taskbar of the administrative console.
b. (Optional) Put a checkmark in the Synchronize changes with Nodes check

box.
c. On the Save page, click Save.

3. Handle temporary configuration files resulting from a session timing out.
4. (Optional) Change the location of temporary configuration files.
5. (Optional) Change the location of backed-up configuration files.
6. (Optional) Change the location of temporary workspace files.
7. Back up and restore configurations.

Configuration documents
WebSphere Application Server stores configuration data for servers in several
documents in a cascading hierarchy of directories. The configuration documents
describe the available application servers, their configurations, and their contents.
Most configuration documents have XML content.

Hierarchy of directories of documents

The cascading hierarchy of directories and the documents’ structure support
multi-node replication to synchronize the activities of all servers in a cell. In a
Network Deployment environment, changes made to configuration documents in
the cell repository, are automatically replicated to the same configuration
documents that are stored on nodes throughout the cell.

At the top of the hierarchy is the cells directory. It holds a subdirectory for each
cell. The names of the cell subdirectories match the names of the cells. For
example, a cell named cell1 has its configuration documents in the subdirectory
cell1.

On the Network Deployment node, the subdirectories under the cell contain the
entire set of documents for every node and server throughout the cell. On other
nodes, the set of documents is limited to what applies to that specific node. If a

© Copyright IBM Corp. 2002 239

configuration document only applies to node1, then that document exists in the
configuration on node1 and in the Network Deployment configuration, but not on
any other node in the cell.

Each cell subdirectory has the following files and subdirectories:
v The cell.xml file, which provides configuration data for the cell
v Files such as security.xml, virtualhosts.xml, resources.xml, and

variables.xml, which provide configuration data that applies across every node
in the cell

v The clusters subdirectory, which holds a subdirectory for each cluster defined in
the cell. The names of the subdirectories under clusters match the names of the
clusters.
 Each cluster subdirectory holds a cluster.xml file, which provides configuration
data specifically for that cluster.

v The nodes subdirectory, which holds a subdirectory for each node in the cell.
The names of the nodes subdirectories match the names of the nodes.
 Each node subdirectory holds files such as variables.xml and resources.xml,
which provide configuration data that applies across the node. Note that these
files have the same name as those in the containing cell’s directory. The
configurations specified in these node documents override the configurations
specified in cell documents having the same name. For example, if a particular
variable is in both cell- and node-level variables.xml files, all servers on the
node use the variable definition in the node document and ignore the definition
in the cell document.
 Each node subdirectory holds a subdirectory for each server defined on the
node. The names of the subdirectories match the names of the servers. Each
server subdirectory holds a server.xml file, which provides configuration data
specific to that server. Server subdirectories might hold files such as
security.xml, resources.xml and variables.xml, which provide configuration
data that applies only to the server. The configurations specified in these server
documents override the configurations specified in containing cell and node
documents having the same name.

v The applications subdirectory, which holds a subdirectory for each application
deployed in the cell. The names of the applications subdirectories match the
names of the deployed applications.
 Each deployed application subdirectory holds a deployment.xml file that contains
configuration data on the application deployment. Each subdirectory also holds
a META-INF subdirectory that holds a J2EE application deployment descriptor
file as well as IBM deployment extensions files and bindings files. Deployed
application subdirectories also hold subdirectories for all .war and entity bean
.jar files in the application. Binary files such as .jar files are also part of the
configuration structure.

An example file structure is as follows:
cells
 cell1
 cell.xml resources.xml virtualhosts.xml variables.xml security.xml
 nodes
 nodeX
 node.xml variables.xml resources.xml serverindex.xml
 serverA
 server.xml variables.xml
 nodeAgent
 server.xml variables.xml
 nodeY

240 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

node.xml variables.xml resources.xml serverindex.xml
 applications
 sampleApp1
 deployment.xml
 META-INF
 application.xml ibm-application-ext.xml ibm-application-bnd.xml
 sampleApp2
 deployment.xml
 META-INF
 application.xml ibm-application-ext.xml ibm-application-bnd.xml

Changing configuration documents

You can use one of the administrative tools (console, wsadmin, Java APIs) to
modify configuration documents or edit them directly. It is preferable to use the
administrative console because it validates changes made to configurations.
″″Configuration document descriptions″″ states whether you can edit a document
using the administrative tools or must edit it directly.

Configuration document descriptions
Most configuration documents have XML content. The table below describes the
documents and states whether you can edit them using an administrative tool or
must edit them directly.

If possible, edit a configuration document using the administrative console because
it validates any changes that you make to configurations. You can also use one of
the other administrative tools (wsadmin or Java APIs) to modify configuration
documents. Using the administrative console or wsadmin scripting to update
configurations is less error prone and likely quicker and easier than other methods.

However, you cannot edit some files using the administrative tools. Configuration
files that you must edit manually have an X in the Manual editing required
column in the table below.

Document descriptions

 Configuration file Locations Purpose Manual editing
required

admin-authz.xml config/cells/
cell_name/

Define a role for
administrative
operation
authorization.

X

app.policy config/cells/
cell_name/nodes/
node_name/

Define security
permissions for
application code.

X

cell.xml config/cells/
cell_name/

Identify a cell.

cluster.xml config/cells/
cell_name /clusters/
cluster_name/

Identify a cluster and
its members and
weights.

This file is only
available with the
Network Deployment
product.

Chapter 6. Working with server configuration files 241

deployment.xml config/cells/
cell_name
/applications/
application_name/

Configure application
deployment settings
such as target servers
and
application-specific
server configuration.

filter.policy config/cells/
cell_name/

Specify security
permissions to be
filtered out of other
policy files.

X

integral-jms-
authorizations.xml

config/cells/
cell_name/

Provide security
configuration data
for the integrated
messaging system.

X

library.policy config/cells/
cell_name/nodes/
node_name/

Define security
permissions for
shared library code.

X

multibroker.xml config/cells/
cell_name/

Configure a data
replication message
broker.

namestore.xml config/cells/
cell_name/

Provide persistent
name binding data.

X

naming-authz.xml config/cells/
cell_name/

Define roles for a
naming operation
authorization.

X

node.xml config/cells/
cell_name/nodes/
node_name/

Identify a node.

pmirm.xml config/cells/
cell_name/

Configure PMI
request metrics.

X

resources.xml config/cells/
cell_name/
config/cells/
cell_name/nodes/
node_name/
config/cells/
cell_name/nodes/
node_name/servers/
server_name/

Define operating
environment
resources, including
JDBC, JMS, JavaMail,
URL, JCA resource
providers and
factories.

security.xml config/cells/
cell_name/

Configure security,
including all user ID
and password data.

server.xml config/cells/
cell_name/nodes/
node_name/servers/
server_name/

Identify a server and
its components.

serverindex.xml config/cells/
cell_name/nodes/
node_name/

Specify
communication ports
used on a specific
node.

242 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

spi.policy config/cells/
cell_name/nodes/
node_name/

Define security
permissions for
service provider
libraries such as
resource providers.

X

variables.xml config/cells/
cell_name/
config/cells/
cell_name/nodes/
node_name/
config/cells/
cell_name/nodes/
node_name/servers/
server_name/

Configure variables
used to parameterize
any part of the
configuration
settings.

virtualhosts.xml config/cells/
cell_name/

Configure a virtual
host and its MIME
types.

Object names
When you create a new object using the administrative console or a wsadmin
command, you often must specify a string for a name attribute. Most characters are
allowed in the name string. However, the name string cannot contain the following
characters:

 / forward slash
\ backslash
* asterisk
, comma
: colon
; semi-colon
= equal sign
+ plus sign
? question mark
| vertical bar
< left angle bracket
> right angle bracket
& ampersand (and sign)
% percent sign
’ single quote mark
″ double quote mark
]]>
. period (not valid if first character; valid if a

later character)

Configuration repositories
A configuration repository stores configuration data. By default, configuration
repositories reside in the config subdirectory of the product installation root
directory.

A cell-level repository stores configuration data for the entire cell and is managed
by a file repository service that runs in the deployment manager. The deployment
manager and each node have their own repositories. A node-level repository stores

Chapter 6. Working with server configuration files 243

configuration data needed by processes on that node and is accessed by the node
agent and application servers on that node.

When you change a WebSphere Application Server configuration by creating an
application server, installing an application, changing a variable definition or the
like, and then save the changes, the cell-level repository is updated. The file
synchronization service distributes the changes to the appropriate nodes.

Handling temporary configuration files resulting from session timeout
If the console is not used for 15 minutes or more, the session times out. The same
thing happens if you close the browser window without saving the configuration
file. Changes to the file are saved to a temporary file when the session times out,
after 15 minutes.

When a session times out, the configuration file in use is saved under the
userid/timeout directory under the ServletContext’s temp area. This is value of the
javax.servlet.context.tempdir attribute of the ServletContext. By default, it is:
install_root/temp/hostname/Administration/admin/admin.war

You can change the temp area by specifying it as a value for the tempDir
init-param of the action servlet in the deployment descriptor (web.xml) of the
administrative application.

The next time you log on to the console, you are prompted to load the saved
configuration file. If you decide to load the saved file:
1. If a file with the same name exists in the install_root/config directory, that file is

moved to the userid/backup directory in the temp area.
2. The saved file is moved to the install_root/config directory.
3. The file is then loaded.

If you decide not to load the saved file, it is deleted from the userid/timeout
directory in the temp area.

The configuration file is also saved automatically when the same user ID logs into
the non-secured console again, effectively starting a different session. This process
is equivalent to forcing the existing user ID out of session, similar to a session
timing out.

Changing the location of temporary configuration files
The configuration repository uses copies of configuration files and temporary files
while processing repository requests. It also uses a back-up directory while
managing the configuration. You can change the default locations of these files
from the configuration directory to a directory of your choice using system
variables or the administrative console.

The default location for the configuration temporary directory is
CONFIG_ROOT/temp. Change the location by doing either of the following:
v Set the system variable was.repository.temp to the location you want for the

repository temporary directory. Set the system variable when launching a Java
process using the -D option. For example, to set the default location of the
repository temporary directory, use the following option:
 -Dwas.repository.temp=%CONFIG_ROOT%/temp

244 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

v Use the administrative console to change the location of the temporary
repository file location for each server configuration. For example, on the
Network Deployment product, to change the setting for a deployment manager,
do the following:
1. Click System Administration > Deployment Manager in the navigation tree

of the administrative console. Then, click Administration Services,
Repository Service, and Custom Properties.

2. On the Properties page, click New.
3. On the settings page for a property, define a property for the temporary file

location. The key for this property is was.repository.temp. The value can
include WebSphere Application Server variables such as
${WAS_TEMP_DIR}/config. Then, click OK.

The system property set using the first option takes precedence over the
configuration property set using the second option.

Changing the location of backed-up configuration files
During administrative processes like adding a node to a cell or updating a file,
configuration files are backed up to a back-up location. The default location for the
back-up configuration directory is CONFIG_ROOT/backup. Change the location
by doing either of the following:
v Set the system variable was.repository.backup to the location you want as the

repository back-up directory. Set the system variable when launching a Java
process using the -D option. For example, to set the default location of the
repository back-up directory, use the following option:
 -Dwas.repository.backup=%CONFIG_ROOT%/backup

v Use the administrative console to change the location of the repository back-up
directory for each server configuration. For example, on the Network
Deployment product, do the following to change the setting for a deployment
manager:
1. Click System Administration > Deployment Manager in the navigation tree

of the administrative console. Then, click Administration Services,
Repository Service, and Custom Properties.

2. On the Properties page, click New.
3. On the settings page for a property, define a property for the back-up file

location. The key for this property is was.repository.backup. The value can
include WebSphere Application Server variables such as
${WAS_TEMP_DIR}/backup. Then, click OK.

The system property set using the first option takes precedence over the
configuration property set using the second option.

Changing the location of temporary workspace files
The administrative console workspace allows client applications to navigate the
configuration. Each workspace has its own repository location defined either in the
system property or the property passed to a workspace manager when creating the
workspace: workspace.user.root or workspace.root, which is calculated as
%workspace.root%/user_ID/workspace/wstemp.

The default workspace root is calculated based on the user installation root:
%user.install.root%/wstemp. You can change the default location of temporary
workspace files by doing either of the following:

Chapter 6. Working with server configuration files 245

v Change the setting for the system variable workspace.user.root or workspace.root so
its value is no longer set to the default location. Set the system variable when
launching a Java process using the -D option. For example, to set the default
location the full path of the root of all users’ directories, use the following
option:
 -Dworkspace.user.root=full_path_for_root_of_all_user_directories

v Change the setting it at the user level with the programming APIs. When you
create the workspace, set the WorkSpaceManager.WORKSPACE_USER_ROOT
property on the API.

Backing up and restoring administrative configurations
WebSphere Application Server represents its administrative configurations as XML
files. You should back up configuration files on a regular basis.

Steps for this task
1. Synchronize administrative configuration files.

a. Click System Administration > Nodes in the console navigation tree to
access the Nodes page.

b. Click Full Resynchronize. The resynchronize operation resolves conflicts
among configuration files and can take several minutes to run.

2. Run the backupConfig command to back up configuration files.
3. Run the restoreConfig commandto restore configuration files. Specify backup

files that do not contain invalid or inconsistent configurations.

Server configuration files: Resources for learning
Use the following links to find relevant supplemental information about
administering WebSphere Application Server server configuration files. The
information resides on IBM and non-IBM Internet sites, whose sponsors control the
technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v Programming instructions and examples
v Administration

Programming instructions and examples

v

WebSphere Application Server education
(http://www.ibm.com/software/webservers/learn/)

Administration

v

Listing of all IBM WebSphere Application Server Redbooks
(http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere)

v

System Administration for WebSphere Application Server V5 — Part 1:
Overview of V5 Administration (split for publication)
(http://www7b.software.ibm.com/wsdd/techjournal
/0301_williamson/williamson.html)

246 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

http://www.ibm.com/software/webservers/learn/
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www7b.software.ibm.com/wsdd /techjournal/0301_williamson/williamson.html
http://www7b.software.ibm.com/wsdd /techjournal/0301_williamson/williamson.html

Chapter 7. Managing administrative agents

After you install and set up the Network Deployment product, you probably will
not need to change the configuration of its components much, if at all. You might
want to manage configuration data stored in files by configuring a file
synchronization service (part of managing nodes in step 5). However, you will
mainly need to monitor and control incorporated nodes, and the resources on
those nodes, using the administrative console or other administrative tools.

Steps for this task
1. (Optional) Use the settings page for an administrative service to configure

administrative services.
2. (Optional) Use the settings page for a repository service to configure

administrative repositories.
3. (Optional) Configure cells.
4. (Optional) Configure deployment managers.
5. Manage nodes.
6. Manage node agents.
7. Configure remote file services.

Cells
Cells are arbitrary, logical groupings of one or more nodes in a WebSphere
Application Server distributed network.

A cell is a configuration concept, a way for administrators to logically associate
nodes with one another. Administrators define the nodes that make up a cell
according to whatever criteria make sense in their organizational environments.

Administrative configuration data is stored in XML files. A cell retains master
configuration files for each server in each node in the cell. Each node and server
also have their own local configuration files. Changes to a local node or server
configuration file are temporary, if the server belongs to the cell. While in effect,
local changes override cell configurations. Changes at the cell level to server and
node configuration files are permanent. Synchronization occurs at designated
events, such as when a server starts.

Configuring cells
When you installed the WebSphere Application Server Network Deployment
product, a cell was created. A cell provides a way to group one or more nodes of
your Network Deployment product. You probably will not need to reconfigure the
cell. To view information about and manage a cell, use the settings page for a cell.

Steps for this task
1. Access the settings page for a cell. Click System Administration > Cell from

the navigation tree of the administrative console.
2. (Optional) If the protocol that the cell uses to retrieve information from a

network is not appropriate for your system, select the appropriate protocol. By
default, a cell uses Transmission Control Protocol (TCP). If you want the cell to

© Copyright IBM Corp. 2002 247

use User Diagram Protocol, select UDP from the drop-down list for Cell
Discovery Protocol on the settings page for the cell. It is unlikely that you will
need to change the cell’s protocol configuration from TCP.

3. (Optional) Specify an end point to hold the discovery address. An end point
designates a host name and port. You can specify any string; for example,
my_cell_endpoint. It is unlikely that you will need to change the cell’s end
point configuration.

4. (Optional) Click Properties and define any name-value pairs needed by your
deployment manager.

5. (Optional) When you installed the WebSphere Application Server Network
Deployment product, a node was added to the cell. You can add additional
nodes on the Node page. Click Nodes to access the Node page, which you use
to manage nodes.

Cell settings
Use this page to set the discovery protocol and address end point for an existing
cell. A cell is a configuration concept, a way for an administrator to logically
associate nodes according to whatever criteria make sense in the administrator’s
organizational environment.

To view this administrative console page, click System Administration > Cell.

Name
Specifies the name of the existing cell.

 Data type String

Short Name
Specifies the short name of the cell. The name is 1-8 characters, alpha-numeric or
national language. It cannot start with a numeric.

The short name property is read only. It was defined during installation and
customization.

Cell Discovery Protocol
Specifies the protocol that the cell follows to retrieve information from a network.

Select from one of two protocol options:

UDP User Datagram Protocol (UDP)

TCP Transmission Control Protocol (TCP)

 Data type String
Default TCP

Discovery Address Endpoint Name
Specifies the name of the end point that contains the discovery address.

 Data type String

248 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Deployment managers
Deployment managers are administrative agents that provide a centralized
management view for all nodes in a cell, as well as management of clusters and
workload balancing of application servers across one or several nodes in some
editions. WebSphere Application Server for z/OS uses WLM as the primary vehicle
for workload balancing

A deployment manager hosts the administrative console. A deployment manager
provides a single, central point of administrative control for all elements of the
entire WebSphere Application Server distributed cell.

Configuring deployment managers
When you installed the WebSphere Application Server Network Deployment
product, a deployment manager was created. A deployment manager provides a
single, central point of administrative control for all elements in a WebSphere
Application Server distributed cell. You probably will not need to reconfigure the
deployment manager. To view information about and manage a deployment
manager, use the settings page for a deployment manager.

Steps for this task
1. Access the settings page for a deployment manager. Click System

Administration > Deployment Manager from the navigation tree of the
administrative console.

2. (Optional) Change the default name as desired in the Name field, and click
OK.

3. (Optional) Configure the deployment manager as desired by clicking on a
property such as Custom Services and specifying settings on the resulting
pages. A deployment manager is like an application server and you can
configure a deployment manager in a manner similar to the way you configure
an application server.

Running the deployment manager with a non-root user ID
By default, the Network Deployment product on Linux and UNIX platforms uses
the root user to run the deployment manager, which is the dmgr process. You can
use a non-root user to run the deployment manager.

If global security is enabled, the user registry must not be Local OS. Using the
Local OS user registry requires the dmgr process to run as root.

For the steps that follow, assume that:
v wasadmin is the user to run all servers
v wasnode is the node name
v wasgroup is the user group
v dmgr is the deployment manager
v /opt/WebSphere/DeploymentManager is the installation root

To configure a user to run the deployment manager, complete the following steps:

Steps for this task
 1. Log on as root.
 2. Create user wasadmin with primary group wasgroup.

Chapter 7. Managing administrative agents 249

3. Reboot the machine.
 4. Start the deployment manager process using the startManager command:

 startmanager

 5. Define the dmgr to run as a wasadmin process.
 Click System Administration > DeploymentManager > Process Definition >
Process Execution and change these values:

 Property Value

Run As User wasadmin

Run As Group wasgroup

UMASK 002

 6. Save the configuration.
 7. Stop the deployment manager with the stopManager command:

 stopmanager

 8. As root, use operating system tools to change file permissions:
 chgrp wasgroup /opt/WebSphere
 chgrp wasgroup /opt/WebSphere/DeploymentManager
 chgrp -R wasgroup /opt/WebSphere/DeploymentManager/config
 chgrp -R wasgroup /opt/WebSphere/DeploymentManager/logs
 chgrp -R wasgroup /opt/WebSphere/DeploymentManager/wstemp
 chgrp -R wasgroup /opt/WebSphere/DeploymentManager/installedApps
 chgrp -R wasgroup /opt/WebSphere/DeploymentManager/temp
 chgrp -R wasgroup /opt/WebSphere/DeploymentManager/tranlog
 chmod g+w /opt/WebSphere
 chmod g+w /opt/WebSphere/DeploymentManager
 chmod -R g+w /opt/WebSphere/DeploymentManager/config
 chmod -R g+w /opt/WebSphere/DeploymentManager/logs
 chmod -R g+w /opt/WebSphere/DeploymentManager/wstemp
 chmod -R g+w /opt/WebSphere/DeploymentManager/installedApps
 chmod -R g+w /opt/WebSphere/DeploymentManager/temp
 chmod -R g+w /opt/WebSphere/DeploymentManager/tranlog

 9. Log in as wasadmin.
 10. From wasadmin, start the deployment manager process with the startManager

command:
 startmanager

Results

You can start a deployment manager process from a non-root user.

Deployment manager settings
Use this page to name a deployment manager, to stop its running, and to link to
other pages which you can use to define additional properties for the deployment
manager. A deployment manager provides a single, central point of administrative
control for all elements of the entire WebSphere Application Server distributed cell.

To view this administrative console page, click System Administration >
Deployment Manager.

Name
Specifies a logical name for the deployment manager. The name must be unique
within the cell.

 Data type String

250 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Process ID
Specifies a string identifying the process.

 Data type String

Cell Name
Specifies the name of the cell for the deployment manager. The default is the name
of the host computer on which the deployment manager is installed with Network
appended.

 Data type String
Default host_nameNetwork

Node Name
Specifies the name of the node for the deployment manager. The default is the
name of the host computer on which the deployment manager is installed with
Manager appended.

 Data type String
Default host_nameManager

State
Indicates the state of the deployment manager. The state is Started when the
deployment manager is running and Stopped when it is not running.

 Data type String
Default Started

Node
A node is a logical grouping of managed servers.

A node usually corresponds to a physical computer system with a distinct IP host
address. Node names usually are identical to the host name for the computer.

A node agent manages all WebSphere Application Server servers on a node. The
node agent represents the node in the management cell.

Managing nodes
A node is a grouping of managed servers. To view information about and manage
nodes, use the Nodes page. To access the Nodes page, click System
Administration > Nodes in the console navigation tree.

Steps for this task
1. Add a node.

a. Ensure that an application server is running on the remote host for the node
that you are adding. Also ensure that the application server has a SOAP
connector on the port for the host.

b. Go to the Nodes page and click Add Node. On the Add Node page, specify
a host name and SOAP connector port for the deployment manager, then
click OK.

Chapter 7. Managing administrative agents 251

The node is added to the WebSphere Application Server environment and the
name of the node appears in the collection on the Nodes page.

2. (Optional) If the discovery protocol that a node uses is not appropriate for the
node, select the appropriate protocol. On the Nodes page, click on the node to
access the settings for the node. Select a value for Discovery Protocol. By
default, a node uses Transmission Control Protocol (TCP). You will likely not
need to change a node’s protocol configuration from TCP. However, if you do
need to change the discovery protocol value, here are some guidelines:
v For a managed process, use multicast. A ManagedProcess supports multicast

only because multicasting allows all application servers in one node to listen
to one port instead of to one port for each server. A benefit of using multicast
is that you do not have to configure the discovery port for each application
server or prevent conflicts in ports. A drawback of using multicast is that
you must ensure that your machine is connected to the network when
application servers (not including the node agent) launch because a multicast
address is shared by the network and not by the local machine. If your
machine is not connected to the network when application servers launch,
the multicast address will not be shared with the application servers.

v For a node agent or deplyment manager, use TCP or UDP. Do not use
multicast.

3. (Optional) Define a custom property for a node.
a. On the Nodes page, click on the node for which you want to define a

custom property.
b. On the settings for the node, click Custom Properties.
c. On the Property collection page, click New.
d. On the settings page for a property instance, specify a name-value pair and

a description for the property, then click OK.
4. If you added a node or changed a node’s configuration, synchronize the node’s

configuration. On the Node Agents page, ensure that the node agent for the
node is running. Then, on the Nodes page, put a checkmark in the check box
beside the node whose configuration files you want to synchronize and click
Synchronize or Full Resynchronize.
 Clicking either button sends a request to the node agent for that node to
perform a configuration synchronization immediately, instead of waiting for the
periodic synchronization to occur. This is important if automatic configuration
synchronization is disabled, or if the synchronization interval is set to a long
time, and a configuration change has been made to the cell repository that
needs to be replicated to that node. Settings for automatic synchronization are
on the File Synchronization Service page.
 Synchronize requests that a node synchronization operation be performed
using the normal synchronization optimization algorithm. This operation is fast
but might not fix problems from manual file edits that occur on the node. So it
is still possible for the node and cell configuration to be out of synchronization
after this operation is performed.
 Full Resynchronize clears all synchronization optimization settings and
performs configuration synchronization anew, so there will be no mismatch
between node and cell configuration after this operation is performed. This
operation can take longer than the Synchronize operation.

5. (Optional) Stop servers on a node. On the Nodes page, put a checkmark in the
check box beside the node whose servers you want to stop running and click
Stop.

252 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

6. (Optional) Remove a node. On the Nodes page, put a checkmark in the check
box beside the node you want to delete and click Remove Node.

Node collection
Use this page to manage nodes in the WebSphere environment. Nodes group
managed servers.

To view this administrative console page, click System Administration > Nodes.

Name
Specifies a name for a node that is unique within the cell.

A node name usually is identical to the host name for the computer. That is, a
node usually corresponds to a physical computer system with a distinct IP host
address.

Node settings
Use this page to view or change the configuration or topology settings for a node
instance.

To view this administrative console page, click System Administration > Nodes >
node_name.

Name: Specifies a logical name for the node. The name must be unique within the
cell.

A node name usually is identical to the host name for the computer.

 Data type String

Short Name: Specifies the name of a node. The name is 1-8 characters,
alpha-numeric or national language. It cannot start with a numeric.

The short name property is read only. It was defined during installation and
customization.

Discovery Protocol: Specifies the protocol used by servers to discover the
presence of other servers.

Select from one of three protocol options:

UDP User Datagram Protocol (UDP)

TCP Transmission Control Protocol (TCP)

multicast
IP multicast protocol

 Data type String
Default TCP
Range Valid values are UDP, TCP, or multicast.

Chapter 7. Managing administrative agents 253

Administration service settings
Use this page to view and change the configuration for an administration service.

To view this administrative console page, click one of the following paths:
v Servers > Application Servers > server_name > Administration Services

v Servers > JMS Servers > server_name > Administration Services

Standalone
Specifies whether the server process is a participant in a Network Deployment cell
or not. If true, the server does not participate in distributed administration. If false,
the server participates in the Network Deployment system.

The default value for base WebSphere Application Server installations is true.
When addNode runs to incorporate the server into a Network Deployment cell, the
value switches to false.

 Data type Boolean
Default true

Preferred Connector
Specifies the preferred JMX Connector type. Available options, such as
SOAPConnector or RMIConnector, are defined using the JMX Connectors page.

 Data type String

Extension MBean Providers collection
Use this page to view and change the configuration for JMX extension MBean
providers.

You can configure JMX extension MBean providers to be used to extend the
existing WebSphere managed resources in the core administrative system. Each
MBean provider is a library containing an implementation of a JMX MBean and its
MBean XML Descriptor file.

To view this administrative console page, click one of the following paths:
v Servers > Application Servers > server_name > Administration Services >

Extension MBean Providers

v Servers > JMS Servers > server_name > Administration Services > Extension
MBean Providers

Classpath
The classpath within the provider library where the MBean Descriptor can
be located.

Description
An arbitrary descriptive text for the Extension MBean Provider
configuration.

Name The name used to identify the Extension MBean provider library.

Extension MBean Provider settings
Use this page to view and change the configuration for a JMX extension MBean
provider.

254 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

You can configure a library containing an implementation of a JMX MBean, and its
MBean XML Descriptor file, to be used to extend the existing WebSphere managed
resources in the core administrative system

To view this administrative console page, click one of the following paths:
v Servers > Application Servers > server_name > Administration Services >

Extension MBean Providers > provider_library_name

v Servers > JMS Servers > server_name > Administration Services > Extension
MBean Providers > provider_library_name

Classpath: The classpath within the provider library where the MBean Descriptor
can be located. The class loader needs this information to load and parse the
Extension MBean XML Descriptor file.

 Data type String

Description: An arbitrary descriptive text for the Extension MBean Provider
configuration. Use this field for any text that helps identify or differentiate the
provider configuration.

 Data type String

Name: The name used to identify the Extension MBean provider library.

 Data type String

Repository service settings
Use this page to view and change the configuration for an administrative service
repository.

To view this administrative console page, click one of the following paths:
v Servers > Application Servers > server_name > Administration Services >

Repository Service

v Servers > JMS Servers > server_name > Administration Services > Repository
Service

Audit Enabled
Specifies whether to audit repository updates in the log file. The default is to audit
repository updates.

 Data type Boolean
Default true

Node agents
Node agents are administrative agents that route administrative requests to
servers.

A node agent is a server that runs on every host computer system that participates
in the WebSphere Application Server Network Deployment product. It is purely an
administrative agent and is not involved in application serving functions. A node

Chapter 7. Managing administrative agents 255

agent also hosts other important administrative functions such as file transfer
services, configuration synchronization, and performance monitoring.

Managing node agents
Node agents are administrative agents that represent a node to your system and
manage the servers on that node. Node agents monitor application servers on a
host system and route administrative requests to servers. A node agent is created
automatically when a node is added to a cell.

Steps for this task
1. View information about a node agent. Use the Node Agents page. Click System

Administration > Node Agents in the console navigation tree. To view
additional information about a particular node agent or to further configure a
node agent, click on the node agent’s name under Name.

2. (Optional) Stop and then restart the processing of a node agent. On the Node
Agents page, place a checkmark in the check box beside the node agent you
want to restart, then click Restart. It is important to keep a node agent running
because a node agent must be running in order for application servers on the
node managed by the node agent to run.

3. (Optional) Stop and then restart all application servers on the node managed
by the node agent. On the Node Agents page, place a checkmark in the check
box beside the node agent that manages the node whose servers you want to
restart, then click Restart all Servers on Node. Note that the node agent for the
node must be processing (step 2) in order to restart application servers on the
node.

4. (Optional) Stop the processing of a node agent. On the Node Agents page,
place a checkmark in the check box beside the node agent you want to stop
processing, then click Stop.

Node agent collection
Use this page to view information about node agents. Node agents are
administrative agents that monitor application servers on a host system and route
administrative requests to servers. A node agent is the running server that
represents a node in a Network Deployment environment.

To view this administrative console page, click System Administration > Node
Agents > node_agent.

Name
Specifies a logical name for the node agent server.

Node
Specifies a name for the node. The node name is unique within the cell.

A node name usually is identical to the host name for the computer. That is, a
node usually corresponds to a physical computer system with a distinct IP host
address.

Status
Indicates whether the node agent server is started or stopped.

Note that if the status of servers such application servers is Unavailable, the node
agent is not running in the servers’ node and you must restart the node agent
before you can start the servers.

256 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

Node agent server settings
Use this page to view information about and configure a node agent. A node agent
coordinates administrative requests and event notifications among servers on a
machine. A node agent is the running server that represents a node in a Network
Deployment environment.

To view this administrative console page, click System Administraton > Node
Agents > node_agent_name.

The Configuration tab provides editable fields and the Runtime tab provides
read-only information. The Runtime tab is available only when the node agent
server is running.

A node agent must be started on each node in order for the deployment manager
node to be able to collect and control servers configured on that node. If you use
configuration synchronization support, a node agent coordinates with the
deployment manager server to synchronize the node’s configuration data with the
master copy managed by the deployment manager.

Name: Specifies a logical name for the node agent server.

 Data type String
Default NodeAgent Server

Process ID: Specifies a string identifying the process.

 Data type String

Cell Name: Specifies the name of the cell for the node agent server.

 Data type String
Default host_nameNetwork

Node Name: Specifies the name of the node for the node agent server.

 Data type String

State: Indicates whether the node agent server is started or stopped.

 Data type String
Default Started

Remote file services
Configuration documents describe the available application servers, their
configurations, and their contents. Two file services manage configuration
documents: the file transfer service and the file synchronization service.

The file services do the following:

File transfer service
The file transfer service enables the moving of files between the network
manager and the nodes. It uses the HTTP protocol to transfer files. When
you enable security in the WebSphere Application Server product, the file

Chapter 7. Managing administrative agents 257

transfer service uses certificate-based mutual authentication. You can use
the default key files in a test environment. Ensure that you change the
default key file to secure your system.

 The ports used for file transfer are defined in the Network Deployment
server configuration under its WebContainer HTTP transports.

File synchronization service
The file synchronization service ensures that a file set on each node
matches that on the deployment manager node. This service promotes
consistent configuration data across a cell. You can adjust several
configuration settings to control file synchronization on individual nodes
and throughout a system.

 This service runs in the deployment manager and node agents, and
ensures that configuration changes made to the cell repository are
propagated to the appropriate node repositories. The cell repository is the
master repository, and configuration changes made to node repositories are
not propagated up to the cell. During a sychronization operation a node
agent checks with the deployment manager to see if any configuration
documents that apply to the node have been updated. New or updated
documents are copied to the node repository, and deleted documents are
removed from the node repository.

 The default behavior is for each node agent to periodically run a
synchronization operation. You can configure the interval between
operations or disable the periodic behavior. You can also configure the
synchronization service to synchronize a node repository before starting a
node on the server.

Configuring remote file services
Configuration data for the WebSphere Application Server product resides in files.
Two services help you reconfigure and otherwise manage these files: the file
transfer service and file synchronization service.

By default, the file transfer service is always configured and enabled at a node
agent, so you do not need to take additional steps to configure this service.
However, you might need to configure the file synchronization service.

Steps for this task
1. Go to the File Synchronization Service page. Click System Administration >

Node Agents in the console navigation tree. Then, click the node agent for
which you want to configure a synchronization server and click File
Synchronization Service.

2. On the File Synchronization Service page, customize the service that helps
make configuration data consistent across a cell by moving updated
configuration files from the deployment manager to the node.
 Change the values for properties on the File Synchronization Service page. The
file synchronization service is always started, but you can control how it runs
by changing the values.

File transfer service settings
Use this page to configure the service that transfers files from the deployment
manager to individual remote nodes.

258 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

To view this administrative console page, click System Administration > Node
Agents > node_agent_name > File Transfer Service.

Startup
Specifies whether the server attempts to start the specified service. Some services
are always enabled and disregard this property if set. The default has a checkmark
in the check box, and is enabled.

 Data type Boolean
Default true

Retries count
Specifies the number of times you want file transfer service to retry sending or
receiving a file after a communication failure occurs.

 Data type Integer
Default 3

Retry wait time
Specifies the number of seconds to wait between retrying a failed file transfer.

 Data type Integer
Default 10

File synchronization service settings
Use this page to specify that a file set on one node matches that on the central
deployment manager node and to ensure consistent configuration data across a
cell.

You can synchronize files on individual nodes or throughout your system.

To view this administrative console page, click System Administration > Node
Agents > node_agent_name > File Synchronization Service.

Startup
Specifies whether the server attempts to start the specified service. Some services
are always enabled and disregard this property if set. The default has a checkmark
in the check box, and is enabled.

 Data type Boolean
Default true

Synchronization Interval
Specifies the number of minutes that elapse between synchronizations. The default
is 1 minute. Increase the time interval to synchronize files less often.

 Data type Integer
Units Minutes
Default 1

Automatic Synchronization
Specifies whether to synchronize files automatically after a designated interval.
When enabled, the node agent automatically contacts the deployment manager

Chapter 7. Managing administrative agents 259

every synchronization interval to attempt to synchronize the node’s configuration
repository with the master repository owned by the deployment manager.

Remove the checkmark from the check box if you want to control when files are
sent to the node.

 Data type Boolean
Default true

Startup Synchronization
Specifies whether the node agent attempts to synchronize the node configuration
with the latest configurations in the master repository prior to starting an
application server.

The default is not to synchronize files prior to starting an application server.
Enabling the setting ensures that the node agent has the latest configuration but
increases the amount of time it takes to start the application server.

Note that this setting has no effect on the startServer command. The startServer
command launches a server directly and does not use the node agent.

 Data type Boolean
Default false

Synchronize Application Binaries
Specifies whether to synchronize configuration data in application binary files.
When enabled, changes to application binary files at the Deployment Manager are
copied to the nodes on which the applications run.

The default is to synchronize application binary files.

 Data type Boolean
Default true

Exclusions
Specifies files or patterns that should not be part of the synchronization of
configuration data. Files in this list are not copied from the master configuration
repository to the node, and are not deleted from the repository at the node.

The default is to have no files specified.

You only need to specify files to exclude from synchronization when the
synchronization is enabled. To specify a file, type in a file name and then press
Enter. Each file name appears on a separate line.

 Data type String
Units Files names or patterns

Administrative agents: Resources for learning
Use the following links to find relevant supplemental information about
WebSphere Application Server administrative agents and distributed
administration. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

260 IBM WebSphere Application Server Enterprise, Version 5.0.2: System Administration

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v Programming instructions and examples
v Administration

Programming instructions and examples

v

WebSphere Application Server education
(http://www.ibm.com/software/webservers/learn/)

Administration

v

Listing of all IBM WebSphere Application Server Redbooks
(http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere)

v

System Administration for WebSphere Application Server V5 — Part 1:
Overview of V5 Administration (split for publication)
(http://www7b.software.ibm.com/wsdd/techjournal
/0301_williamson/williamson.html)

Chapter 7. Managing administrative agents 261

http://www.ibm.com/software/webservers/learn/
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www7b.software.ibm.com/wsdd/techjournal/0301_williamson/williamson.html
http://www7b.software.ibm.com/wsdd/techjournal/0301_williamson/williamson.html

	Contents
	Trademarks and service marks
	Chapter 1. Welcome to System Administration
	Chapter 2. Using the administrative console
	Starting and stopping the administrative console
	Login settings
	User ID
	Another user is currently logged in with the same user name
	Work with the master configuration
	Recover changes made in prior session

	Administrative console areas
	Taskbar
	Navigation tree
	WorkSpace
	WebSphere Status
	Administrative console buttons
	Administrative console page features
	Administrative console navigation tree actions
	Servers
	Applications
	Resources
	Security
	Environment
	System Administration
	Troubleshooting

	Administrative console taskbar actions
	Home
	Save
	Preferences
	Logout
	Help
	Hide/Show Field and Page Descriptions toggle

	WebSphere status settings
	WebSphere Configuration Problems
	WebSphere Runtime Message

	Specifying console preferences
	Preferences settings
	Enable WorkSpace Auto-Refresh
	Do not confirm WorkSpace Discards
	Use Default Scope
	Hide/Show Banner
	Hide/Show Descriptions

	Administrative console preference settings
	Administrative console filter settings
	Administrative console scope settings

	Accessing help
	Administrative console: Resources for learning

	Chapter 3. Deploying and managing using scripting
	Migrating from wscp V4.0 to wsadmin V5.0
	Example: Migrating - Creating an application server
	Example: Migrating - Starting an application server
	Example: Migrating - Starting a server group
	Example: Migrating - Installing an application
	Example: Migrating - Installing a JDBC driver
	Example: Migrating - Stopping a node
	Example: Migrating - Stopping an application server
	Example: Migrating - Listing the running server groups
	Example: Migrating - Pinging running servers for the current state
	Example: Migrating - Listing configured server groups
	Example: Migrating - Regenerating the node plug-in configuration
	Example: Migrating - Testing the DataSource object connection
	Example: Migrating - Cloning a server group
	Example: Migrating - Enabling security
	Example: Migrating - Disabling security
	Example: Migrating - Modifying the virtual host
	Example: Migrating - Modifying and restarting an application server
	Example: Migrating - Stopping a server group
	Example: Migrating - Removing an application server
	Example: Migrating - Modifying the embedded transports in an application server

	Launching scripting clients
	Wsadmin tool
	Jacl
	Scripting: Resources for learning

	Scripting objects
	Help object for scripted administration
	AdminApp object for scripted administration
	Installation options for the AdminApp object
	Example: Obtaining information about task options for the AdminApp install command

	AdminControl object for scripted administration
	Example: Collecting arguments for the AdminControl object

	AdminConfig object for scripted administration

	ObjectName, Attribute, and AttributeList
	Modifying nested attributes with the wsadmin tool
	Managing configurations with scripting
	Creating configuration objects using the wsadmin tool
	Specifying configuration objects using the wsadmin tool
	Listing attributes of configuration objects using the wsadmin tool
	Modifying configuration objects with the wsadmin tool
	Removing configuration objects with the wsadmin tool
	Changing the WebSphere Application Server configuration using wsadmin
	Configuration management examples with wsadmin
	Example: Finding available templates
	Example: Creating new virtual hosts using a template
	Example: Interpreting the output of the AdminConfig attributes command
	Example: Showing attributes with the AdminConfig object
	Example: Modifying attributes with the AdminConfig object
	Example: Listing configuration objects with wsadmin
	Example: Identifying valid configuration attributes for objects
	Example: Changing the location of the activity log
	Example: Modifying port numbers in the serverindex file
	Example: Disabling a component using wsadmin
	Example: Disabling a service using wsadmin
	Example: Configuring a trace using wsadmin
	Example: Configuring the Java virtual machine using wsadmin
	Example: Configuring an enterprise bean container using wsadmin
	Example: Configuring HTTP transport using wsadmin
	Example: Configuring a Performance Manager Infrastruture service using wsadmin
	Example: Configuring a Java virtual machine log rotation policy using wsadmin
	Example: Modifying datasource custom properties using wsadmin
	Example: Configuring the message listener service using wsadmin
	Example: Configuring an ORB service using wsadmin
	Example: Configuring for database session persistence using wsadmin
	Example: Configuring for serialization session access using wsadmin
	Example: Configuring for session tracking using wsadmin
	Example: Configuring for processes using wsadmin
	Example: Configuring a shared library using wsadmin
	Example: Configuring a variable map using wsadmin
	Example: Configuring name space bindings using wsadmin
	Example: Creating a cluster using wsadmin
	Example: Creating a cluster member using wsadmin
	Example: Configuring a JDBC provider using wsadmin
	Example: Configuring a new JMS provider using wsadmin
	Example: Configuring a new mail provider using wsadmin
	Example: Configuring a new resource environment provider using wsadmin
	Example: Configuring a new URL provider using wsadmin
	Example: Configuring a new J2C resource adapter using wsadmin
	Example: Enabling and disabling global security with a profile
	Example: Enabling and disabling Java 2 security using wsadmin

	Managing running objects with scripting
	Specifying running objects using the wsadmin tool
	Identifying attributes and operations for running objects with the wsadmin tool
	Performing operations on running objects using the wsadmin tool
	Modifying attributes on running objects with the wsadmin tool
	Operation management examples with wsadmin
	Example: Representing lists and javax.management.AttributeList objects with strings when scripting
	Example: Identifying running objects
	Example: Turning traces on and off in a server process with the wsadmin tool
	Example: Dumping threads in a server process
	Example: Setting up profiles to make tracing easier when scripting
	Example: Starting a server using wsadmin
	Example: Stopping a server using wsadmin
	Example: Querying the server state using the wsadmin tool
	Example: Querying the product identification using wsadmin
	Example: Starting a listener port using wsadmin
	Example: Testing data source connection using wsadmin to call a method on the MBean
	Example: Configuring transaction properties for a server using wsadmin
	Example: Starting a cluster using wsadmin
	Example: Stopping a cluster using wsadmin
	Example: Querying cluster state using wsadmin
	Example: Listing running applications on running servers using wsadmin
	Example: Starting an application using wsadmin
	Example: Stopping running applications on a server using wsadmin
	Example: Querying application state using wsadmin
	Example: Updating the Web server plug-in configuration files using wsadmin

	Managing applications with scripting
	Installing applications with the wsadmin tool
	Installing stand-alone java archive and web archive files with wsadmin
	Listing applications with the wsadmin tool
	Editing application configurations with the wsadmin tool
	Uninstalling applications with the wsadmin tool
	Application management examples with wsadmin
	Example: Listing the modules in an installed application
	Example: Obtaining task information while installing applications
	Example: Identifying supported tasks and options for an Enterprise Archive file
	Example: Configuring applications for enterprise bean modules using the wsadmin tool
	Example: Disabling application loading in deployed targets using wsadmin
	Example: Configuring applications for session management using the wsadmin tool
	Example: Configuring applications for session management in Web modules using the wsadmin tool
	Example: Exporting applications using the wsadmin tool
	Example: Configuring a shared library for an application

	wsadmin scripting environment
	wsadmin traces
	Tracing operations with the wsadmin tool
	Profiles and scripting
	Properties used by scripted administration
	com.ibm.ws.scripting.classpath
	com.ibm.ws.scripting.connectionType
	com.ibm.ws.scripting.host
	com.ibm.ws.scripting.port
	com.ibm.ws.scripting.defaultLang
	com.ibm.ws.scripting.traceString
	com.ibm.ws.scripting.traceFile
	com.ibm.ws.scripting.validationOutput
	com.ibm.ws.scripting.emitWarningForCustomSecurityPolicy
	com.ibm.ws.scripting.tempdir
	com.ibm.ws.scripting.validationLevel
	com.ibm.ws.scripting.crossDocumentValidationEnabled
	com.ibm.ws.scripting.profiles

	Java Management Extensions connectors
	Type
	JMX connector settings

	Security and scripting
	Scripting management examples with wsadmin
	Example: Using the wsadmin tool in a secure environment
	Example: Enabling and disabling LTPA_LDAP security with a profile using wsadmin

	wsadmin tool performance tips

	Chapter 4. Managing using command line tools
	Example: Security and the command line tools
	startServer command
	stopServer command
	startManager command
	stopManager command
	startNode command
	stopNode command
	addNode command
	serverStatus command
	removeNode command
	cleanupNode command
	syncNode command
	backupConfig command
	restoreConfig command
	EARExpander command

	Chapter 5. Deploying and managing using programming
	Creating a custom Java administrative client program using WebSphere Application Server administrative Java APIs
	Developing an administrative client program
	Administrative client program example

	Extending the WebSphere Application Server administrative system with custom MBeans
	Java 2 security permissions

	Chapter 6. Working with server configuration files
	Configuration documents
	Configuration document descriptions
	Object names
	Configuration repositories
	Handling temporary configuration files resulting from session timeout
	Changing the location of temporary configuration files
	Changing the location of backed-up configuration files
	Changing the location of temporary workspace files
	Backing up and restoring administrative configurations
	Server configuration files: Resources for learning

	Chapter 7. Managing administrative agents
	Cells
	Configuring cells
	Cell settings
	Name
	Short Name
	Cell Discovery Protocol
	Discovery Address Endpoint Name

	Deployment managers
	Configuring deployment managers
	Running the deployment manager with a non-root user ID
	Deployment manager settings
	Name
	Process ID
	Cell Name
	Node Name
	State

	Node
	Managing nodes
	Node collection
	Name
	Node settings

	Administration service settings
	Standalone
	Preferred Connector
	Extension MBean Providers collection
	Extension MBean Provider settings

	Repository service settings
	Audit Enabled

	Node agents
	Managing node agents
	Node agent collection
	Name
	Node
	Status
	Node agent server settings

	Remote file services
	Configuring remote file services
	File transfer service settings
	Startup
	Retries count
	Retry wait time

	File synchronization service settings
	Startup
	Synchronization Interval
	Automatic Synchronization
	Startup Synchronization
	Synchronize Application Binaries
	Exclusions

	Administrative agents: Resources for learning

