
IBM WebSphere Application Server Enterprise,
Version 5.0.2

Applications

���

Note
Before using this information, be sure to read the general information under “Trademarks and service marks” on page xiii.

Compilation date: July 22, 2003

© Copyright International Business Machines Corporation 2003. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Trademarks and service marks xiii

Chapter 1. Welcome to Applications . . 1

Chapter 2. Using Web applications. . . 11
Web applications 11
web.xml file 12
Migrating Web application components 13
Default Application. 16

Snoop 16
HelloHTML 17
HitCount 17

Servlets 17
Developing servlets with WebSphere Application
Server extensions 18

Application lifecycle listeners and events . . . 18
Listener classes for servlet context and session
changes. 19
Example:
com.ibm.websphere.DBConnectionListener.java . 19
Servlet filtering 20
Filter, FilterChain, FilterConfig classes for servlet
filtering. 20
Example: com.ibm.websphere.LoggingFilter.java 20
Configuring page list servlet client configurations 21
autoRequestEncoding and autoResponseEncoding 25
autoRequestEncoding and autoResponseEncoding
encoding examples 25

JavaServer Pages files 26
Developing JavaServer Pages files with WebSphere
extensions 26

Tag libraries 27
tsx:dbconnect tag JavaServer Pages syntax . . . 27
dbquery tag JavaServer Pages syntax 28
dbmodify tag JavaServer Pages syntax 29
tsx:getProperty tag JavaServer Pages syntax and
examples 30
tsx:userid and tsx:passwd tag JavaServer Pages
syntax 31
tsx:repeat tag JavaServer Pages syntax 31
Example: Combining tsx:repeat and
tsx:getProperty JavaServer Pages tags. 32
Example: tsx:dbmodify tag syntax 32
Example: Using tsx:repeat JavaServer Pages tag
to iterate over a results set 32
JspBatchCompiler tool 35

Bean Scripting Framework 36
Developing Web applications 36

Disabling JavaServer Pages run-time compilation 37
Example: Converting JavaScript source to the Bean
Scripting Framework 38
Scenario: Creating a Bean Scripting Framework
application 39

Scenario description 39
Developing the BSF application. 40

Deploying the BSF application 44
Example: Bean Scripting Framework code example 45
Web modules 48
Assembling Web Modules 48

Context parameters 50
Security constraints 50
Servlet mappings 51
Invoker attributes 51
Error pages 51
File serving 51
Initialization parameters 51
Servlet caching 51
Web components 51
Web property extensions 52
Web resource collections 52
Welcome files. 52
Context parameter assembly settings 52
Initialization parameter assembly settings . . . 52
Filter assembly settings 53
JavaServer Pages attribute assembly settings . . 53
Multipurpose Internet Mail Extensions (MIME)
filter assembly settings 56
Page list assembly settings 57
Security constraint assembly settings 58
Servlet mapping assembly settings 59
Tag library assembly settings 59
Welcome file assembly settings 60
Servlet caching configuration assembly settings 60
Web components assembly settings 62
Web modules assembly settings 68
Assembly property extensions 71
File serving attribute assembly settings 72
Invoker attribute assembly settings 72
Error page assembly settings 72
Web resource collections security constraint
properties 73

Troubleshooting tips for Web application
deployment 74
Modifying the default Web container configuration 75

Web container 76
Web container settings. 76
Web module settings 77
Web Module Deployment settings 77
Web container custom property settings 78

Web applications: Resources for learning 79

Chapter 3. Managing HTTP sessions 81
Sessions 81
Migrating HTTP sessions 82
Developing session management in servlets . . . 83

SessionSample.java 84
Assembling so that session data can be shared . . 85

Servlet API Behavior 85
Session security support 85

Security integration rules for HTTP sessions . . 86

© Copyright IBM Corp. 2003 iii

Programmatic details and scenarios 86
Session management support 87
Configuring session management by level 88
Session tracking options 88

Session tracking with cookies 89
Session tracking with URL rewriting 89
Session tracking with SSL information 90

Configuring session tracking 90
Serializing access to session data 91
Session Management settings 91
Cookie settings 94

Configuring session tracking for Wireless
Application Protocol (WAP) devices 95

Session management custom properties 96
Distributed sessions 97
Session recovery support 97

Distributed Environment settings 97
Configuring for database session persistence . . . 98

Switching to a multirow schema 98
Configuring tablespace and page sizes for DB2
session databases 98
Database settings 99
Multirow schema considerations 100

Clustered session support 101
Tuning session management 102

Configuring scheduled invalidation 102
Configuring write contents 103
Configuring write frequency 104
Base in-memory session pool size 104
Controlling write operations 105
Tuning parameter settings 105

Best practices for using HTTP Sessions 107
Managing HTTP sessions: Resources for learning: 110

Chapter 4. Using enterprise beans in
applications 113
Enterprise beans 113
Developing enterprise beans 114

Migrating enterprise bean code to the supported
specification 115
WebSphere extensions to the Enterprise
JavaBeans specification 118
Best practices for developing enterprise beans 119

Using access intent policies 124
Access intent policies 124
Access intent service 127
Access intent design considerations 128
Applying access intent policies to methods . . 128
Using the AccessIntent API 129
Access intent exceptions 131
Access intent assembly settings 132
Access intent best practices 134
Frequently asked questions: Access intent . . . 134

EJB modules. 136
Assembling EJB modules 136

CMP field assembly settings 138
Container transactions 138
Container transaction assembly settings . . . 138
EJB module assembly settings 140
Entity bean assembly settings 141
Message-driven bean assembly settings. . . . 151

Method extensions 155
Method extension assembly settings 156
Method permissions 158
Method permission assembly settings 159
Query assembly settings. 159
References 160
EJB reference assembly settings 160
EJB local-reference assembly settings 161
EJB relation assembly settings 162
Exclude list assembly settings 162
Security role assembly settings 163
Session bean assembly properties. 164

EJB containers 169
Managing EJB containers 170

EJB container settings 170
EJB container system properties 171
EJB cache settings 172
Container interoperability 173

Deploying EJB modules 178
EJB module collection 178
EJB module settings 179

Enterprise beans: Resources for learning 179
EJB method Invocation Queuing 181

Chapter 5. Using extended messaging
in applications 185
Extended messaging - overview 185

Extended messaging - receiving messages . . . 186
Extended messaging - sending messages . . . 188
Extended messaging - data mapping 189
Extended messaging - handling late responses 189
Extended messaging - transactional support . . 190
Extended messaging - exception handling . . . 192

Extended messaging - application usage scenarios 193
Extended messaging - components 194
Designing an enterprise application to use
extended messaging 196
Developing an enterprise application to use
extended messaging 197
Deploying an enterprise application to use
extended messaging 198

Configuring deployment attributes for a receiver
bean 199
Configuring deployment attributes for a sender
bean 201

Configuring extended messaging service resources 202
Adding a new input port 202
Adding a new output port 203
Configuring an input port 203
Configuring an output port. 204
Extended messaging service settings. 204
Extended messaging provider settings 206

Troubleshooting extended messaging 214
Extended Messaging: Resources for learning . . . 215

Chapter 6. Using message-driven
beans in applications 217
Message-driven beans - an overview 217

Message-driven beans - components. 218
Message-driven beans - transaction support . . 220

iv IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Designing an enterprise application to use
message-driven beans 220
Developing an enterprise application to use
message-driven beans 222

Migrating a JMS listener application to use
message-driven beans 224

Deploying an enterprise application to use
message-driven beans 225

Configuring deployment attributes for a
message-driven bean 226

Configuring message listener resources for
message-driven beans 228

Configuring the message listener service . . . 228
Adding a new listener port 233
Configuring a listener port 234
Deleting a listener port 234
Configuring security for message-driven beans 235
Administering listener ports 235

Important files for message-driven beans and
extended messaging 237
Troubleshooting message-driven beans 237
Message-driven beans samples 238

Chapter 7. Using application clients 241
Application clients 241

Application client functions 243
ActiveX application clients 245
Applet clients 246
J2EE application clients 247
Pluggable application clients 248
Thin application clients 249

Example: Migrating application clients 251
Migration tips for application clients 252

Installing application clients 252
Installing application clients on Version 9 of the
Solaris Operating Environment 254

Developing ActiveX application client code . . . 256
Starting an ActiveX application 256
JClassProxy and JObjectProxy classes 259
Java virtual machine initialization tips 263
Example: Developing ActiveX to enterprise bean
bridge, using Java proxy objects 263
Example: Calling Java methods in the ActiveX
to enterprise bean bridge 264
Java field programming tips 266
ActiveX to Java primitive data type conversion
values 266
Array tips for ActiveX application clients . . . 268
Error handling codes for ActiveX application
clients 268
Threading tips 269
Example: Viewing System.out message 270
Example: Enabling logging and tracing for
application clients 271
ActiveX client programming best practices . . 272

Developing applet client code 275
Accessing secure resources using the TCP/IP
protocol for applet clients 276
Applet client tag requirements. 277
Applet client code requirements 277

Developing J2EE application client code 278

J2EE application client class loading 281
Developing pluggable application client code. . . 283
Developing thin application client code. 284

Developing thin application client code on a
client machine 284
Developing thin application client code on a
server machine 285

Assembling Application Client Modules 286
Application client modules 287
Application client assembly settings 288
Environment entries assembly properties . . . 289

Deploying application clients on workstation
platforms 290

Starting the Application Client Resource
Configuration Tool and opening an EAR file . . 291
Data sources for application clients 291
Configuring new data source providers (JDBC
providers) for application clients 291
Configuring new data sources for application
clients 294
Mail providers and mail sessions for the
Application Client Assembly Tool 295
Configuring mail providers and sessions for
application clients 295
Configuring new mail sessions for application
clients 297
URLs for application clients 298
URL providers for the Application Client
Resource Configuration Tool 298
Configuring new URL providers for application
clients 298
Configuring new URLs with the Application
Client Resource Configuration Tool 301
WebSphere asynchronous messaging using the
Java Message Service API for the Application
Client Resource Configuration Tool 301
Configuring Java messaging client resources . . 302
Configuring new connection factories for
application clients 332
Configuring new Java Message Service
destinations for application clients 332
Example: Configuring MQ Queue and Topic
connection factories and destination factories for
application clients 333
Example: Configuring WAS Queue and Topic
connection factories and destination factories for
application clients 334
Configuring new resource environment
providers for application clients 336
Configuring new resource environment entries
for application clients. 336

Managing application clients 337
Updating data source and data source provider
configurations with the Application Client
Resource Configuration Tool 338
Updating URLs and URL provider
configurations for application clients 338
Updating mail session configurations for
application clients 339

Contents v

Updating Jave Message Service provider,
connection factories, and destination
configurations for application clients 339
Updating MQ Java Message Service provider,
MQ connection factories, and MQ destination
configurations for application clients 340
Updating Resource Environment Entry and
Resource Environment Provider configurations
for application clients. 340
Removing application client resources 341

Running application clients. 342
launchClient tool 343
Example: Using a Java 2 security manager with
a J2EE application client 347
Example: Enabling Java 2 security prior to J2EE
application client runtime initialization 347

Application client troubleshooting tips 348

Chapter 8. Using Web services 353
Web services 354
Planning to use Web services 355

Setting up a Web services development
environment. 356

Migrating Apache SOAP Web services to Web
services for J2EE 357
Developing Web services 360

Developing a Web service using a Java bean . . 361
Developing a Web service using a stateless
session enterprise bean 381
Developing a new Web service with an existing
Web Services Description Language file using a
Java bean. 381
Developing a new Web service with an existing
Web Services Description Language file using a
stateless session enterprise bean 388
Web services development artifacts 389
Mapping between Java, Web Services
Description Language and XML 390

Developing a Web services client 414
Assembling a Web services-enabled client JAR
and EAR file 415
Testing Web services-enabled clients 417

Assembling Web services applications 417
Assembling a Web services-enabled EJB JAR file 418
Assembling Web services-enabled WAR file . . 421
Assembling a Web services-enabled EAR file 423
Web services assembly properties. 424
Enabling the EAR file 428

Deploying Web services 432
wsdeploy command 433

Using Java Messaging Service to transport Web
services requests 435

Java Messaging Service endpoint URL syntax 437
Securing Web services 438

Configuring client-side transport level security 439
Configuring HTTP basic authentication. . . . 441
Web Services: Default bindings for the Web
Services Security collection 442
Web Services: Server Security Bindings
collection 465
Web Services: Client Security Bindings collection 471

Tuning Web services applications 475
Troubleshooting Web services 475

Tracing Web services messages 476
Frequently asked questions about Web services
for J2EE 476

Web services: Resources for learning. 479
Web services implementation scope 482

Port 483
Service 483
URI 483
Scope 483

Web services client bindings 483
Web Service 483
URI 483
WSDL Filename 483
Default Port Mappings 483

Default Port Mapping Definitions collection . . . 484
Port Type Local Name 484
Port Type Namespace 484
Default Port Local Name 484
Default Port Namespace. 484

Default Port Type Mapping Properties settings . . 484
Port Type Local Name 484
Port Type Namespace 484
Default Port Local Name 485
Default Port Namespace. 485

Publish WSDL files settings 485
HTTP 485
Select HTTP URL prefix 485
Custom HTTP URL prefix 485
JMS 485

Using Apache SOAP Web services in Version 5.0
and 5.0.1 486

Developing an Apache SOAP client 486
Accessing enterprise beans with Apache SOAP 488
Assembling Apache SOAP Web services . . . 488
Apache SOAP deployment descriptor 489
Enabling Apache SOAP Web services in an
enterprise application 492
Deploying Apache SOAP Web services
applications 494
Administering deployed Apache SOAP Web
services (XML-SOAP administrative tool) . . . 494
Securing Apache SOAP Web services 495
UDDI4J specifications 499
Web services: Resources for learning. 499

Chapter 9. Web Services Invocation
Framework (WSIF): Enabling Web
services. 503
Goals of WSIF 503

WSIF - Web services are not just SOAP services 504
WSIF - tying client code to a particular protocol
implementation is restricting 504
WSIF - incorporating new bindings into client
code is hard 504
WSIF - multiple bindings can be used in flexible
ways 504
WSIF - a freer Web services environment
enables intermediaries 505

vi IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

An overview of WSIF 505
WSIF architecture 505
Using WSIF with Web services that offer
multiple bindings 506
WSIF and WSDL 506
WSIF usage scenarios. 507
Dynamic invocation 508

Using WSIF to invoke Web services 508
Using the WSIF providers 509
Developing a WSIF service 521
Using complex types 530
Using JNDI 531
Passing SOAP messages with attachments using
WSIF 533
Interacting with the WebSphere J2EE container 536
Running WSIF as a client 536

WSIF system management and administration . . 536
Maintaining the WSIF properties file 536
Enabling security for WSIF 537
WSIF troubleshooting tips 538

WSIF API 542
WSIF API reference: Creating a message for
sending to a port 543
WSIF API reference: Finding a port factory or
service. 544
WSIF API reference: Using ports 545

WSIF: Resources for learning 549

Chapter 10. IBM WebSphere UDDI
Registry. 551
UDDI Registry terminology 551

UDDI Registry definitions 552
An overview of IBM UDDI Registries 553
Migrating from the IBM WebSphere UDDI Registry
on WebSphere Application Server 4.0 554
Installing and setting up a UDDI Registry 555

Installing the UDDI Registry into a deployment
manager cell. 557
Setting up the UDDI Registry to use Cloudscape
within a deployment manager cell 560
Setting up the UDDI Registry to use DB2 within
a deployment manager cell 562
Installing the UDDI Registry into a single
appserver 565
Setting up the UDDI Registry to use Cloudscape
in a single appserver 566
Setting up the UDDI Registry to use DB2 in a
single appserver 568

Reinstalling the UDDI Registry application . . . 572
Applying Service to the UDDI Registry in a
Network Deployment and single Application
Server environment 572
Removing the UDDI Registry application from a
deployment manager cell 573
Removing the UDDI Registry application from a
single appserver 573
Configuring the UDDI Registry 574

Configuring global UDDI properties. 574
Modifying the database userid and password 576
Configuring security properties 577

Configuring the UDDI User Console (GUI) for
multiple language encoding support. 577
Customizing the UDDI User Console (GUI) . . 577
Configuring SOAP interface properties 578
Configuring SOAP properties with the AAT . . 578
Configuring SOAP properties in an
already-deployed application 579
Configuring WebSphere to use HTTPS and SSL 579

Administering the UDDI Registry 579
Running the UDDI Registry 579
Backing up and restoring the UDDI Registry
database 579

UDDI user console 580
Displaying the user console 584

Custom Taxonomy Support in the UDDI Registry 585
SOAP Application Programming Interface for the
UDDI Registry 593

Programming the UDDI SOAP API 594
SOAP API error handling tips in the UDDI
Registry 594

UDDI Registry Application Programming Interface 594
Inquiry API for the UDDI Registry 594
Browse pattern for the UDDI Registry 595
Drilldown pattern for the UDDI Registry . . . 595
Invocation pattern for the UDDI Registry . . . 595
Inquiry API functions in the UDDI Registry . . 596
Accessible query values in the UDDI Registry 597
Publish API for the UDDI Registry 598

UDDI EJB Interface for the UDDI Registry . . . 599
Datatypes package in the UDDI Registry . . . 605
EJB interface methods in the UDDI Registry . . 607

UDDI troubleshooting tips 608
Turning on UDDI trace 610

Messages 611
UDAI (Web Services UDDI) messages 612
UDCF (Web Services UDDI) messages 612
UDDA (Web Services UDDI) messages 613
UDDM (Web Services UDDI) messages 613
UDEJ (Web Services UDDI) messages 613
UDEX (Web Services UDDI) messages 613
UDIN (Web Services UDDI) messages 613
UDLC (Web Services UDDI) messages 639
UDPR (Web Services UDDI) messages 639
UDRS (Web Services UDDI) messages 639
UDSC (Web Services UDDI) messages 639
UDSP (Web Services UDDI) messages 639
UDUC (Web Services UDDI) messages 641
UDUU (Web Services UDDI) messages 643

Running the UDDI Samples 643
Installation Verification Program (IVP) 643
Reporting problems with the IBM WebSphere
UDDI Registry 645
Feedback 646

Chapter 11. Web services gateway:
Enabling Web services 647
Web services gateway - Frequently Asked
Questions 647

What are Web services? 648
What is the IBM Web services gateway? . . . 648
How does the Web services gateway work? . . 648

Contents vii

What problems are solved by the Web services
gateway? 648
Who should use the Web services gateway? . . 649
What is the difference between the Apache
SOAP channel and the SOAP/HTTP channel? . 649

Web services gateway - What is new in this release 649
Web services gateway - Completing the installation 650

Web services gateway - prerequisites and
constraints 651
Establishing requirements for using a database
with the gateway 652
Installing the gateway into a deployment
manager cell. 653
Installing the gateway into a stand-alone
application server 656
Testing the Web services gateway installation 659

Backing up and restoring a gateway configuration 660
Backing up and restoring UDDI publication
links 662
Creating and updating a gateway cluster . . . 663

Administering the Web services gateway 664
Setting the namespace URI and WSDL URI for
the Web services gateway 666
Working with channels 667
Working with filters 672
Working with UDDI references 674
Working with Web services 679

Running the Web services gateway samples . . . 690
Passing SOAP messages with attachments through
the Web services gateway 690

SOAP messages with attachments - a definition 691
Writing the WSDL extensions for SOAP
messages with attachments 691

Developing Web services gateway extensions. . . 692
Writing a filter for the Web services gateway 693
Using a filter to select a target service and port 701
Capturing Web service invocation information
from the Web services gateway 703
Handling exceptions for the Web services
gateway 704

Administering security for the Web services
gateway 705

Enabling Web Services Security (WS-Security)
for the gateway. 705
Enabling basic authentication and authorization
for the gateway. 715
Invoking Web services over HTTPS 720
Enabling proxy authentication for the gateway 720

Web services gateway troubleshooting tips . . . 722
Web services gateway messages 726

Web services gateway: Resources for learning . . 738

Chapter 12. Class loading 739
Class loaders 740
Class loader collection 743

Classloader ID 744
Classloader Mode 744
Class loader settings 744

Migrating the class-loader Module Visibility Mode
setting. 744
Class loading: Resources for learning 745

Chapter 13. Using EJB query 747
EJB query language 747

Example: EJB queries 748
FROM clause 750
Inheritance in EJB query. 751
Path expressions 752
WHERE clause 753
Scalar functions 760
Aggregation functions 763
SELECT clause 765
ORDER BY clause 765
Subqueries 766
EJB query restrictions. 766
EJB Query: Reserved words 767
EJB query: BNF syntax 768
Comparison of EJB 2.0 specification and
WebSphere query language. 770

Using the dynamic query service 770
Example: Dynamic query remote client 772
Example: Dynamic query from local client. . . 773
Dynamic query service performance
considerations 774

Chapter 14. Using the
internationalization service 777
Internationalization 778
Internationalization service: Overview 779

The internationalization service solution . . . 779
Internationalization challenges in distributed
applications 780

Migrating internationalized applications 781
Assembling internationalized applications 782

Setting the internationalization type for servlets 782
Configuring container internationalization for
servlets 783
Setting internationalization type for enterprise
beans 786
Configuring container internationalization for
enterprise beans 786

Using the internationalization context API 789
Gaining access to the internationalization
context API 790
Accessing caller locales and time zone 791
Accessing invocation locales and time zone . . 792
Example: Internationalization context in an EJB
client program 794
Example: Internationalization context in an EJB
servlet 795
Example: Internationalization context in a
session bean 797
Internationalization context API: Programming
reference 799

Managing the internationalization service 810
Enabling the internationalization service for
servlets and enterprise beans 811
Enabling the internationalization service for EJB
clients 812

Troubleshooting the internationalization service 813
Internationalization service errors 813
Internationalization service exceptions 816

viii IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Internationalization: Resources for learning . . . 816

Chapter 15. Application profiling . . . 819
Application profiling: Overview 819

Tasks 820
Application profiles 821
Application profiling performance
considerations 822

Assembling applications for application profiling 824
Applying access intent policies to entity beans 825
Creating a custom access intent policy 829
Configuring a component task policy 835
Configuring a container task policy 836
Creating an application profile 838
Configuring tasks on application profiles . . . 840
Dynamic query assembly settings 840

Managing application profiles 841
Application profiling exceptions 842
Application profiling service settings 842
Application profile collection 842

Using the TaskNameManager interface 844
TaskNameManager interface 845

Chapter 16. Using Business Rule
Beans 847
Advantages of externalizing business rules . . . 847
Overview of Business Rule Beans. 848

Externalized business rules 849
Types of business rules 850
Rule folders 851
Rule attributes 851
Rule states 853
Rule results 854
Dependent rules 854
BRBeans run-time environment 855
BRBeans run-time behavior. 855
BRBeans run-time exception handling 856
Rule implementors 857
Trigger point framework 858
Trigger points 859
As Of Date 863
Predefined strategy objects 863
Customized strategy objects 865
Customized rule implementors 867
Rule management command 868
Rule importer command. 869
Rule exporter command 870
BRBeans properties file 871
Database considerations for BRBeans 872
Rule Management Application. 874
Rule management APIs 875
BRBeans performance enhancements 876

Developing BRBeans 879
Determining where to place a trigger point . . 880
Placing a trigger point in the application code 881
Administering strategy objects to control
triggers 882
Implementing business rules 883

Assembling applications for use with BRBeans . . 884
Managing rules. 886

Starting the Rule Management Application . . 887
Copying or moving rules or rule folders . . . 887
Working with Quick Copy 888
Finding a rule 888
Deleting rules 889
Deleting rule folders 889
Changing the properties of a rule. 889
Importing a rule 890
Exporting a rule 890
Renaming rules. 891
Renaming rule folders 891
Specifying columns 891
Changing the date and time format 892

Rule Browser 892
File menu 893
Edit menu 909
View menu 912
Find Rules window 913

Business rule beans: Resources for learning . . . 918

Chapter 17. Using asynchronous
beans. 921
Asynchronous beans 921

Example: Asynchronous bean connection
management 923

Configuring work managers 924
Work managers. 925
Work manager collection 927
Work manager service settings 929

Assembling applications that use work managers 929
Developing work objects to run code in parallel 930

Work objects. 931
Example: Work object 932

Developing event listeners 933
Using the application notification service . . . 933
Example: Event listener 934

Developing Asynchronous scopes 935
Asynchronous scopes. 937
Alarms 938
Subsystem monitors 938
Asynchronous scopes: Dynamic message bean
scenario 939

Interoperating with asynchronous beans 940
Asynchronous beans interoperability issues . . 940

Chapter 18. Using object pools 943
Object pool managers 944
Object pool manager collection 946

Name 946
JNDI Name 946
Description 946
Category 946
Object pool manager settings 946

Object pool service settings 947
Startup 947

Object pools: Resources for learning 948
Object pool performance considerations 949

Chapter 19. Using startup beans . . . 951

Contents ix

Chapter 20. Using the scheduler
service 953
Managing the scheduler service 953

Creating the database for scheduler 953
Configuring a scheduler 958
Enabling the scheduler service. 962

Developing and scheduling tasks 963
Developing a task that calls a session bean . . 963
Developing a task that sends a JMS message 964
Receiving scheduler notifications 965
Submitting a task to a scheduler 966
Managing tasks with a scheduler 967
Scheduler interface 969

Interoperating with the Scheduler service 972
Recreating Scheduler tasks 973
Deleting Scheduler tasks. 974
Recreating Scheduler tables. 975

Chapter 21. Using shared work areas 977
WorkArea service - Overview 977

Work area property modes 978
Nested work areas 979
Distributed work areas 981
WorkArea service: Special considerations . . . 981
WorkArea service performance considerations 982

Developing applications that use work areas . . . 983
UserWorkArea interface 983
Example: WorkArea SimpleSample application 984
Accessing the WorkArea service 985
Beginning a new work area 985
Setting properties in a work area 986
Using a work area to manage local work . . . 987
Completing a work area 991

Managing the work area service 992
Enabling the WorkArea service 992
Managing the size of work areas 994

Chapter 22. Using the transaction
service 995
Transaction support in WebSphere Application
Server 995

Resource manager local transaction (RMLT) . . 996
Global transactions 997
Local transaction containment (LTC). 997
Local and global transaction considerations 1001

Developing components to use transactions . . . 1002
Setting transactional attributes in the
deployment descriptor 1002
Using bean-managed transactions 1004

Configuring transaction properties for an
application server 1005

Transaction service settings 1006
Managing active transactions 1007
Managing transaction logging for optimum server
availability 1008

Configuring transaction aspects of servers for
optimum availability 1009
Moving a transaction log from one server to
another 1011

Restarting an application server on a different
host 1012

Transactional interoperation with non-WebSphere
application servers 1012
Troubleshooting transactions 1012
Transaction service exceptions 1013
UserTransaction interface - methods available 1014
Coordinating access to 1-PC and 2-PC-capable
resources within the same transaction 1014

Coordinating access to 1-PC and 2-PC-capable
resources within the same transaction 1015
Enabling an application to coordinate access to
1-PC and 2-PC-capable resources within the
same transaction 1016
Configuring an application server to allow
logging for heuristic reporting 1017
Exceptions thrown for transactions involving
both single- and two-phase commit resources . 1017
Last Participant Support: Resources for
learning 1017

Chapter 23. Using the
ActivitySession service 1019
The ActivitySession service 1020

Using ActivitySessions with HTTP sessions 1021
ActivitySession and transaction contexts . . . 1023
Combining transaction and ActivitySession
container policies. 1024

Developing a J2EE application to use
ActivitySessions 1030
Developing an enterprise bean or J2EE client to
manage ActivitySessions 1032
Configuring ActivitySession deployment attributes
for an enterprise bean 1033

Container ActivitySession assembly properties
for EJB modules 1035

Configuring ActivitySession deployment attributes
for a Web application 1037
Disabling or enabling the ActivitySession service 1038

ActivitySession service settings 1039
Configuring the default ActivitySession timeout
for an application server 1040

ActivitySession service settings 1041
Troubleshooting ActivitySessions 1042
The ActivitySession service application
programming interfaces 1042
Samples: ActivitySessions 1043
ActivitySession service: Resources for learning 1044

Chapter 24. Using naming 1047
Naming 1048
New features for name space support 1048
Name space logical view 1049

Name space partitions 1050
Initial context support 1052

Initial contexts registered with the ORB as
initial references 1052
Default initial contexts 1053

Lookup names support in deployment descriptors
and thin clients 1053

x IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Relative names 1053
Qualified names 1054

JNDI support in WebSphere Application Server 1056
Developing applications that use JNDI 1056

Example: Getting the default initial context 1058
Example: Getting an initial context by setting
the provider URL property 1062
Example: Setting the provider URL property to
select a different root context as the initial
context 1064
Example: Looking up an EJB home with JNDI 1065
Example: Looking up a JavaMail session with
JNDI 1067
JNDI interoperability considerations 1068
JNDI caching 1069
JNDI cache settings 1070
Example: Controlling JNDI cache behavior
from a program 1072
JNDI name syntax 1073
INS name syntax 1073
JNDI to CORBA name mapping considerations 1073
Example: Setting the syntax used to parse
name strings 1074

Developing applications that use CosNaming
(CORBA Naming interface) 1074

Example: Getting an initial context with
CosNaming 1074
Example: Looking up an EJB home with
CosNaming 1077

Configured name bindings 1079
Configured binding types 1080

Name space federation 1081
Name space bindings 1083
Configuring and viewing name space bindings 1083

String binding settings 1083
CORBA object binding settings 1084
Indirect lookup binding settings 1085
EJB binding settings 1085
Name space binding collection 1086

Configuring name servers 1086
Name server settings 1087

Troubleshooting name space problems 1087
dumpNameSpace tool 1087
Example: Invoking the name space dump
utility 1090
Name space dump utility for java:, local:and
server name spaces 1090
Name space dump sample output 1092

Naming and directories: Resources for learning 1094

Chapter 25. Using the dynamic cache
service to improve performance . . . 1097
Dynamic cache 1097
Configuring cache replication 1098

Cache replication 1098
Internal messaging configuration settings. . . 1099
Cache replication 1100

Enabling the dynamic cache service 1100
Dynamic cache service settings 1100
Configuring servlet caching 1101
Configuring cache replication. 1102

Configuring the dynamic cache disk offload 1104
Configuring Edge Side Include caching . . . 1105
Configuring external cache groups 1107

Displaying cache information. 1112
Configuring cacheable objects with the
cachespec.xml file 1112

Verifying the cacheable page 1114
Cachespec.xml file 1114

Configuring command caching 1120
Command class 1121
CacheableCommandImpl class 1121
Example: Caching a command object 1122

Using the DistributedMap interface for the
dynamic cache 1123

Sharing cached objects in a clustered
environment 1125
Cache instance settings 1126
Cache instance collection 1127
Cache instance service settings 1127
Invalidation listeners 1128

Example: Caching Web services 1128
Example: Configuring the dynamic cache. . . . 1131
Cache monitor. 1133

Edge cache statistics 1134

Chapter 26. Managing user profiles 1137
User profile 1137
UserProfileManager class 1138
User profile development options 1138

Extending the data represented in user profiles 1138
Adding columns to the base user profile
implementation 1138
Extending the User Profile enterprise bean and
importing legacy databases 1139
UPServletExample.java 1139
UserProfileExtendedSample.java. 1141
UPServletExampleExtended.java. 1142
UserProfileExtended.java 1144
UPServletExtended.java 1145

userprofile.xml 1147

Chapter 27. Assembling applications 1149
Application assembly and J2EE applications . . . 1150
Archive support in Version 5.0 1151
Starting the Application Assembly Tool (AAT) 1151
Migrating application modules from J2EE 1.2 to
J2EE 1.3 1152

earconvert tool 1153
Assembling new or modifying existing modules 1154

Adding files to assembled modules. 1156
Resource environment reference assembly
settings 1157
Resource Adapter Archive file assembly
settings 1158

Saving applications after assembly 1161
Verifying archive files 1162
Application assembly performance checklist . . . 1163
Generating code for deployment 1163

ejbdeploy tool 1164

Contents xi

ejbdeploy syntax — relationship to Application
Assembly Tool options 1164

Application Assembly Tool: Resources for learning 1165

Chapter 28. Deploying and managing
applications 1167
Enterprise applications 1167
Installing a new application 1167

Preparing for application installation settings 1172
Example: Installing an EAR file using the
default bindings 1176

Enterprise application collection 1176

Name 1176
Status 1177
Enterprise application settings 1177

Starting and stopping applications 1179
Exporting applications 1180
Exporting DDL files 1180
Updating applications 1180

Hot deployment and dynamic reloading . . . 1182
Uninstalling applications 1190
Deploying and managing applications: Resources
for learning. 1191

xii IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Trademarks and service marks

The following terms are trademarks of IBM Corporation in the United States, other
countries, or both:
v AIX
v CICS
v Cloudscape
v DB2
v Everyplace
v iSeries
v IBM
v Informix
v iSeries
v MQSeries
v OS/390
v Redbooks
v SupportPac
v ViaVoice
v VisualAge
v WebSphere
v zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product and service names may be trademarks or service marks of
others.

© Copyright IBM Corp. 2003 xiii

xiv IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 1. Welcome to Applications

The following items comprise the application programming model, including
numerous services available to support deployed applications.

Web modules

Use Web components such as servlets and JavaServer Pages files to develop
dynamic Web sites. Product extensions to the open source servlet and JSP APIs
enhance standard features, and provide additional functionality.

Web modules consist of the following application components, each performing a
different function:
v HTML and JSP pages provide the user interface and program logic
v Servlets coordinate work between other components of the application
v Bean Scripting Framework enables users to implement JavaScript code in JSP

applications

HTTP sessions are a key area of product support for Web modules. By managing ()
sessions for your Web applications, you can personalize a Web site for individual
customers. A session is a series of requests to a servlet, originating from the same
user at the same browser. Managing HTTP sessions allows servlets running in a
Web container to keep track of individual users. For example, a servlet might use
sessions to provide ″shopping carts″ to on-line shoppers. Suppose the servlet is
designed to record the items each shopper indicates he or she will purchase from
the Web site. It is important that the servlet be able to associate incoming requests
with particular shoppers. Otherwise, the servlet might mistakenly add choices of
Shopper 1 to the cart of Shopper 2.

EJB modules

IBM WebSphere Application Server provides broad support for enterprise beans,
including the Enterprise JavaBeans (EJB) 2.0 specification. The EJB 2.0 specification
introduces a container-managed persistence (CMP) 2.0 component model, which
provides a number of improvements to aid developer productivity and application
performance. In addition, this product continues to fully support enterprise beans
written to the CMP 1.1 programming model and deployed in previous versions of
this product; applications can use CMP 1.1 beans, CMP 2.0 beans, or a mixture of
both. CMP 1.1 beans can be directly carried forward in an EJB 1.1 ejb-jar module or
may be repackaged and combined with CMP 2.0 beans in an EJB 2.0 module.

For EJB 2.0 modules, a feature introduced in Version 5 of this product, called
access intent policies, eases the management of interactions between CMP beans
and their underlying datastores. Each policy sets such data access characteristics
such as access type (read or update) and transaction isolation that affect the
locking of resources, letting you choose the level of data integrity and performance
for your application.The Enterprise Extensions product adds APIs to enable you to
further customize IBM-provided access intent policies for your particular
environment.

Several excellent trade books that cover EJB 2.0 and the CMP 2.0 persistence model
are already available. A good way to locate some of these is to visit your favorite

© Copyright IBM Corp. 2003 1

online bookstore and search on the term Enterprise JavaBeans. For a more basic
orientation, see (″Enterprise beans: Resources for learning″).

Your application development might include asynchronous messaging, which the
product supports as a method of communication based on the Java Message
Service (JMS) programming interface.

The base JMS support enables IBM WebSphere Application Server applications to
exchange messages asynchronously with other JMS clients by using JMS
destinations (queues or topics). An application can explicitly poll for messages on a
destination.

The product also provides a message listener service that applications can use to
automatically retrieve messages from JMS destinations for processing by
message-driven beans, without the application having to explicitly poll JMS
destinations.

The Enterprise Extensions product provides extended messaging, which uses the EJB
container to manage the messaging infrastructure, and provides more types of
messaging beans. This enables application developers to concentrate on the
business logic for enterprise beans and to leave the messaging usage to messaging
objects and configuration of the EJB container.

Referto:
v ″Asynchronous messaging with WebSphere - an overview″ (not in this

document)An overview of WebSphere asynchronous messaging.
v ″Using JMS and messaging in applications″ (not in this document)Implementing

WebSphere J2EE applications that use JMS.

Client modules

The Imaginary Buffer Line product provides a CD-ROM and installation program
for installing application clients without installing the entire application server.
This smaller footprint is useful if you want to run client applications on multiple
client machines. For more information, see (″Installing application clients″).

Application clients follow several programming models with unique requirements
and suitability for different types of applications. Most of these models are only
available when you install the product. Models include:

ActiveX application client
Supported Windows platforms only; Client only

Applet client
Supported Windows platforms only; Client only

J2EE application client
All supported server platforms; All supported client platforms

Pluggable application client
Supported Windows platforms only, Sun JRE 1.3.1_03 or later (but not 1.4);
Thin application client programming model only (no J2EE programming
model); Client only

Thin application client
All supported client platforms

Web services

2 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The Web services components included with this product version build upon the
Apache Simple Object Access Protocol (SOAP) 2.3-based capabilities delivered with
Version 4.0.x of the product.

Version 5.0 introduced an open source implementation for a Web Services
Invocation Framework (WSIF).

An additional Web services component, ″IBM WebSphere Web Services for J2EE
Technology Preview″ is available for use with Version 5. It is available as a
separate download from:
http://www7b.boulder.ibm.com/wsdd/downloads/techpreviews.html.

The Web Services Technology Preview supports emerging Java Web services
standards like JAX-RPC and Web services for J2EE. It is recommended that new
development efforts use the Web Services Technology Preview and follow these
standards.

Additional features, such as UDDI Registry, and Web Services Gateway are
described in ″Welcome to Servers″ (not in this document).

5.0.2

WebSphere Application Server supports Web services security functionality that is
based on standards included in the Web services security (WS-Security)
specification.

CORBA applications

The Enterprise Extensions product enables the creation of CORBA client and server
applications within a IBM WebSphere Application Server environment. You can use
the CORBA C++ SDK to build a lightweight WebSphere CORBA server to use with
new or existing C and C++ programs. You also can use the SDK to build a
WebSphere CORBA C++ client to use with a WebSphere EJB server or WebSphere
CORBA C++ server. See (″Implementing CORBA applications″)Implementing
CORBA applications

Application services

IBM WebSphere Application Server provides essential services to ease the building
of dynamic and flexible e-business applications. These services support and extend
the open standards of J2EE and Web services, with a focus on application reuse
and integration.

The Enterprise Extensions product takes application services to the next level,
providing a broad range of dynamic API extensions that address functional gaps in
the J2EE programming model.
v Class loading

The WebSphere Application Server product provides several class-loading
modes, policies, and features to enable you to deploy and run your applications
successfully. An application server provides an Application class-loader policy
that enables you to control the isolation of applications in a server. If you want
applications to share classes, choose the SINGLE policy; otherwise choose the
MULTIPLE policy, which isolates the class loaders for each application.
Similarly, at the application level, you can choose a (WAR class-loader policy)
that configures the isolation of Web modules within an application. If you

Chapter 1. Welcome to Applications 3

choose the policy APPLICATION, then each Web module in your application
can see the classes of other Web modules. A policy of MODULE creates a
separate class loader for each Web module, resulting in isolation for each the
classes of each Web module.
The class-loader mode setting, which you can configure at the server,
application, or Web module level depending on your class-loader policy, enables
you to control whether application class loaders override classes contained in
base run-time class loaders. By default, the WebSphere Application Server class
loaders have a class-loader mode of PARENT_FIRST, which is the standard JDK
mode and does not allow the application class loader to override classes. You
must take care when using the PARENT_LAST class-loader mode to make all
dependent classes available within the application or you might get
LinkageErrors or other class-loader exceptions. For example, if you provide a
newer version of the Xerces.jar file and your application is using XSLT, you must
also provide a xalan.jar file within your application.

v Shared library

Version 5.0 of WebSphere Application Server introduces the concept of a
″Managing shared libraries″ (not in this document). A shared library is a
CLASSPATH and a symbolic name for that classpath. You define shared libraries
at the cell, node, or server level and then associate the shared libraries either
with an application server (making the classes available to all applications in the
server) or with individual applications (making the classes available only to the
referencing application). This mechanism provides a convenient way to make
libraries of classes available to your applications outside of a standard J2EE
enterprise application (EAR) file for easier version management and space
efficiency.

v EJB query

The EJB query language is used to specify a query over container-managed
entity beans. WebSphere’s EJB query language is compliant with the EJB QL
defined in Sun’s EJB 2.0 specification, but adds additional support as described
in the topic (″Comparison of EJB 2.0 specification and WebSphere query
language ″).
EJB query can be used to define a finder or select method of an EJB entity bean.
Finder and select queries are specified in the bean deployment descriptor using
the <ejb-ql> tag. Queries specified in the deployment descriptor are compiled
into SQL during deployment. See (″Using EJB query″).
The Enterprise Extensions product includes the dynamic query service, an
additional API that enables you to dynamically specify a query in your
application by adding the executeQuery() method. See (″Using the dynamic
query service″).

v Internationalization support

The internationalization service manages the distribution of locale and time zone
information, or internationalization context, in applications that run on WebSphere
Application Server Enterprise installations. The internationalization service
solves the problem of mismatched locales and time zones by systematically
managing the distribution of internationalization context across the various
components of EJB applications.

5.0.2

The internalization service transparently propagates internationalization context
over requests that originate from J2EE-compliant Web service clients. The service
creates a SOAP header block that contains the invocation context scoped to the
current thread; this SOAP representation is then inserted into the outgoing Web

4 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

services request. For incoming requests, the service scopes the propagated
internationalization context, referred to as caller context, to the invocation of the
stateless session bean that is enabled as a Web service. The service also scopes
an invocation context as prescribed by the internationalization context
management policies that were assigned to the enterprise bean’s methods during
application assembly.

For more information about the internationalization service, see (″Using the
internationalization service″)

v Workarea service

The WorkArea service enables application developers to implicitly propagate
information beyond the information passed in remote calls. Applications can
create a work area, insert information into it, and make remote invocations. The
work area is propagated with each remote method invocation, eliminating the
need to explicitly include an appropriate argument in the definition of each
method. The methods on the server side can use or ignore the information in the
work area as appropriate. See (″Using shared work areas″)

v Application profiling

Application profiling enables you to configure multiple access intent policies on
the same method of an entity bean; and to configure multiple access intent
policies for dynamic query on the same entity bean.
To use application profiling, application developers identify named units of
work, or tasks. A task typically corresponds to the execution of a concrete and
high-level job within the application. The IBM WebSphere Application Server
run-time environment queries the task at the invocation of any entity bean, and
establishes the appropriate access intent policy under which the bean should
execute. An application profile is the set of access intent or query intent policies
that should be selectively applied, as well as the list of tasks for which the
policies should be applied. See (″Application profiling″)

v Scheduler service

The scheduler service enables J2EE work to be executed at a requested time or
interval. The scheduler API supports different implementations of the TaskInfo
interface, each of which can be used to schedule a particular type of work; for
example, you can develop a task that calls a session bean or a task that sends a
JMS message. You can set a notification sink on a task in order to receive the
notification events that are generated by a scheduler when it performs an
operation on the task. See (″Using the scheduler service″)

v Asynchronous beans

An asynchronous bean is a Java object or enterprise bean that can be executed
asynchronously by a J2EE application, using the J2EE context of the bean’s
creator. These beans also can run with copies of other J2EE contexts. For
example:
– Internationalization context
– Application profiles
– Work areas
– Access intent policies

Asynchronous beans enable the construction of stateful, ″active″ J2EE
applications. These applications address a segment of the application space that
J2EE has not previously addressed (that is, advanced applications that require
application threading, active agents within a server application, or distributed
monitoring capabilities). See (″Using asynchronous beans″).

Chapter 1. Welcome to Applications 5

v Object pools

Objects are frequently pooled by Java applications in order to avoid the cost of
creating new Java objects and the associated garbage collection delays that result
when these objects are reclaimed after use. An object pool keeps a number of
pre-allocated objects on behalf of its users. Applications can get an object from
the pool, use it, and later return it to the pool. This allows the individual object
instances to be reused and effectively limits the amount of garbage generated by
the application. (″Using object pools″)

v Startup beans

Startup beans are stateful session beans that enable J2EE applications to execute
business logic when an application starts or stops. The startup bean is loaded
when the application starts. The start() method is then invoked on the bean’s
remote interface. This method can execute any business logic needed by the
application at start time. Similarly, the bean’s stop() method is called on the
instance when the application is stopped and can execute any business logic
needed by the application at stop time. See (″Using startup beans″)
Startup beans are especially useful when used in combination with
asynchronous beans to develop an active J2EE server application.

v Business Rule Beans (BRBeans)

Business Rule Beans are used to separate business rules from an application’s
core behavior, allowing the application code to remain intact and untouched
even as business practices change. Each business rule is represented by an entity
bean that persistently stores information related to that rule. Each business rule
is assigned an appropriate rule name and stored in a rule folder. The application
developer identifies ″points of variability″ within an application and codes
trigger points at these locations. These trigger points invoke one or more
business rules. See (″Using Business Rule Beans″)

v Transactions

IBM WebSphere Application Server applications can use transactions to
coordinate multiple updates to resources as atomic units (as indivisible units of
work) such that all or none of the updates are made permanent. The way that
applications use transactions depends on the type of application component, as
follows:
– A session bean can either use container-managed transactions (where the bean

delegates management of transactions to the container) or bean-managed
transactions (where the bean manages transactions itself)

– Entity beans use container-managed transactions
– Web components (servlets) use bean-managed transactions

The product is a transaction manager that supports the coordination of resource
managers through their XAResource interface and participates in distributed
global transactions with other OTS 1.2 compliant transaction managers (for
example J2EE 1.3 application servers). Applications can also be configured to
interact with databases, JMS queues, and JCA connectors through their local
transaction support when distributed transaction coordination is not required.

Resource managers that offer transaction support can be categorized into those
that support 2-phase coordination (by offering an XAResource interface) and
those that support only 1-phase coordination (for example through a
LocalTransaction interface). The IBM WebSphere Application Server transaction
support provides coordination, within a transaction, for any number of 2-phase
capable resource managers. It also enables a single 1-phase capable resource
manager to be used within a transaction in the absence of any other resource

6 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

managers, although a WebSphere transaction is not necessary in this case. With
the Last Participant Support of Enterprise Extensions, you can coordinate the use
of a single 1-phase commit (1PC) capable resource with any number of 2-phase
commit (2PC) capable resources in the same global transaction. At transaction
commit, the 2-phase commit resources are prepared first using the 2-phase
commit protocol, and if this is successful the 1-phase commit-resource is then
called to commit(one_phase). The 2-phase commit resources are then committed
or rolled back depending on the response of the 1-phase commit resource.

The ActivitySession service of Enterprise Extensions provides an alternative
unit-of-work (UOW) scope to that provided by global transaction contexts. It is a
distributed context that can be used to coordinate multiple 1-phase resource
managers. The product EJB container and deployment tooling support
ActivitySessions as an extension to the J2EE programming model. Enterprise
beans can be deployed with lifecycles that are influenced by ActivitySession
context, as an alternative to transaction context. An application can then interact
with a resource manager through its LocalTransaction interface for the period of
a client-scoped ActivitySession rather than just the duration of an EJB method.

v Naming

Naming clients use (Naming Services) primarily to access objects, such as EJB
homes, associated with applications installed on IBM WebSphere Application
Server. Objects are made available to clients by being bound into a name space.
A name space is under the control of a name server. In this product, there are
potentially many name servers, and the name spaces controlled by the various
name servers are federated together to form the view of a single name space.
Each name server presents the same logical view of the federated name spaces.
Name servers provided by this product are a CORBA CosNaming
implementation. IBM WebSphere Application Server provides a CosNaming
JNDI plug-in which enables clients to access the name servers through the JNDI
interface. Clients to EJB applications typically use JNDI to perform Naming
operations. Clients may access the name servers directly through the CORBA
programming model. The CosNaming interface is part of the CORBA
programming model. CORBA clients which need to access EJB homes or some
other objects bound to the name space would typically use the CORBA
CosNaming interface to perform Naming operations.

v Dynamic cache

Dynamic cache improves application performance by caching outputs and
contents of outputs of Servlets, JavaServer Pages (JSP) files, Web Services, and
Commands. On subsequent client requests to the same applications, Dynamic
cache intercepts these calls and responds by serving the output or the contents
of output from the cache.
Dynamic cache in this product version includes:

Servlet/JSP files caching
This caches output of dynamic servlets and JSP files by working with
Java virtual machine of the application server by intercepting calls to
service methods and serving Web pages from the cache. This improves
server response time, throughput and scalability.

Command caching
Commands that are written to the Command Architecture encapsulate
business logic tasks and provide a standard way to invoke the business
logic request. Command objects need to implement CacheableCommand
interface instead of TargetableCommand interface to cache. Like in
servlets and JSP caching, requests to execute business logic in the

Chapter 1. Welcome to Applications 7

command is intercepted by the cache. If a command with the same
request attributes are available in cache, output properties are copied
from the cached instance to the requested instance and returned without
executing the business logic again.

Web Services caching
Web service responses can be cached just like servlet and JSP results.
These requests are intercepted and cache ID computed based on how the
cache ID rules are specified in the cache policy. Hash of the whole
SOAPEnvelope can be used as a cache ID or it can be parsed and
service, operation and parameters to these operations used as cache ID.
If a cache entry is not found for the computed cache id, the request is
forwarded to the SOAP engine and the result is cached.

Edge Side Include caching
This provides the ability to cache, assemble and deliver dynamic web
pages at the edge of the enterprise network. Edge Side Includes (ESI) is
a simple markup language which enables dynamic web pages (which by
themselves are not so cache efficient) to be broken down into cacheable
fragments. These fragments are then cached on the edge of the network
and assembled into a single page upon user requests.

Distributed caching
Cache contents can be shared and replicated among servers by Dynamic
Caching using an underlying JMS based message broker system, DRS
(Data Replication Service). Sharing characteristics of individual cache
entry is configured using the cache policy specification.

v User profiles

Managing (user profiles) allows a company to maintain database tables
containing fields for demographic data of individual customers or other users on
the company system. For example, when a user repeatedly logs onto a Web site
that supports user profiles, the Web site can display headlines and advertising
tailored to the shopping preferences of that user. The site can address the user
by his or her logon name. User profile API is deprecated in the current release.

Service choreography

The Enterprise Extensions product introduces service choreography, a feature that
enables you to plan and implement complex business processes (workflows). You
can use the Process Choreographer to model task-oriented business services as
processes. Refer to: (″Using Process Choreographer″).

Assembly tools

The Application Assembly Tool and a command line deployment tool are provided
for packaging your application code components into the needed modules for
deployment onto the server.

See (″Assembling applications″).

EAR files are comprised of the following archives:
v Enterprise bean (JAR) files (known as (″EJB modules″))
v Web application (WAR) files (known as (″Web modules″))
v Application client (JAR) files (known as (″Application clients″))
v Resource adapter (RAR) files (known as resource adapter modules)

8 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v Optionally, additional JAR files containing dependent classes or other
components required by the application

The standard file extension of an Enterprise application file is .ear.

For a discussion of archives and Web components supported by the Application
Assembly Tool in Version 5, see (″Archive support in Version 5.0″).

See the ″Assembling or packaging″ (not in this document) topic for more
information.

5.0.2

For the Windows and Linux Intel operating systems, the Assembly Toolkit replaces
the Application Assembly Tool (AAT). Visit http://www-
3.ibm.com/software/webservers/appserv/was/support/(http://www-
3.ibm.com/software/webservers/appserv/was/support/) to download the
Assembly Toolkit, which offers the Assembly Toolkit and other products. The
Assembly Toolkit consists of the J2EE Perspective of the WebSphere Studio
Application Developer product, without the code generation capabilities.

Deployment

Tools, such as the WebSphere Administrative Console, are provided for installing
your modules onto the application server, then managing the installed modules in
their respective containers.

Chapter 1. Welcome to Applications 9

10 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 2. Using Web applications

A developer creates the files comprising a Web application, and then assembles the
Web application components into a Web module. Next, the deployer (typically the
developer in a unit-testing environment or the administrator in a production
environment) installs the Web application on the server.

Steps for this task
1. (Optional) Migrate existing Web applications to run in the new version of

WebSphere.
2. Design the Web application and develop its code artifacts: Servlets, JavaServer

Pages (JSP) files, and static files, as for example, images and Hyper Text
Markup Language (HTML) files.
See the ″Resources for learning″ article for links to design documentation.

3. (Optional) Implement JavaScript within JSP tags using the Bean Scripting
Framework (BSF).

4. Develop the Web application, using WebSphere Application Server extensions
to enhance its functionality.

5. Assemble the Web application into a Web module.
Web module assembly properties might include the ability to:
v Configure servlet page lists
v Configure servlet filters
v Serve servlets by class name
v Enable file serving

6. Deploy the Web module or application module that contains the Web
application.
Following deployment, you might find it handy to use the tool that enables
batch compiling of the JSP files for quicker initial response times.

7. (Optional) Troubleshoot your Web application. (Refer to ″Web container
troubleshooting tips″ in WebSphere Application Server documentation on
monitoring and troubleshooting.)

8. (Optional) Modify the default Web container configuration in the application
server in which you deployed the Web module or application module
containing the Web application.

9. (Optional) Manage the deployed Web application..

Web applications
A Web application is comprised of one or more related servlets, JavaServer Pages
technology (JSP files), and Hyper Text Markup Language (HTML) files that you
can manage as a unit.

The files in a Web application are related in that they work together to perform a
business logic function.

For example, one of the WebSphere Application Server samples is a Simple
Greeting Web application. This application, comprised of a servlet and Web pages,
greets new users when the application is accessed.

© Copyright IBM Corp. 2003 11

The Web application is a concept supported by the Java Servlet Specification. Web
applications are typically packaged as .war files.

web.xml file
The web.xml file provides configuration and deployment information for the Web
components that comprise a Web application. Examples of Web components are
servlet parameters, servlet and JavaServer Pages (JSP) definitions, and Uniform
Resource Locators (URL) mappings.

The servlet 2.3 specification dictates the format of the web.xml file, which makes
this file portable among Java Two Enterprise Edition (J2EE) compliant products.

Location

The web.xml file must reside in the WEB-INF directory under the context of the
hierarchy of directories that exist for a Web application. For example, if the
application is client.war, then the web.xml file is placed in the install_root/client
war/WEB-INF directory.

Usage notes

v Is this file read-only?
No

v Is this file updated by a product component?
This file is updated by the Application Assembly Tool (AAT).

v If so, what triggers its update?
The AAT updates the web.xml file when you assemble Web components into a
Web module, or when you modify the properties of the Web components or the
Web module.

v How and when are the contents of this file used?
WebSphere Application Server functions use infomation in this file during the
configuration and deployment phases of Web application development.

Sample file entry
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">

<web-app id="WebApp_1">
<display-name>Persistence Manager Web Client</display-name>
<description>Peristence Manager Web Client</description>
<servlet id="Servlet_1">

<servlet-name>CustomerLocalServlet</servlet-name>
<description>Local Customer Servlet</description>
<servlet-class>CustomerLocalServlet</servlet-class>

</servlet>
<servlet id="Servlet_2">

<servlet-name>CustomerServlet</servlet-name>
<description>Remote Customer Servlet</description>
<servlet-class>CustomerServlet</servlet-class>

</servlet>
<servlet id="Servlet_3">

<servlet-name>CreditCardServlet</servlet-name>
<description>Credit Card Servlet - PM Verification</description>
<servlet-class>CreditCardServlet</servlet-class>

</servlet>
<servlet-mapping id="ServletMapping_1">
<servlet-name>CustomerLocalServlet</servlet-name>

12 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

<url-pattern>/CustomerLocal</url-pattern>
</servlet-mapping>
<servlet-mapping id="ServletMapping_2">

<servlet-name>CustomerServlet</servlet-name>
<url-pattern>/Customer</url-pattern>

</servlet-mapping>
<servlet-mapping id="ServletMapping_3">

<servlet-name>CreditCardServlet</servlet-name>
<url-pattern>/CreditCard</url-pattern>

</servlet-mapping>
<welcome-file-list id="WelcomeFileList_1">

<welcome-file>index.html</welcome-file>
</welcome-file-list>
<security-role id="SecurityRole_1">

<description>Everyone role</description>
<role-name>Everyone Role</role-name>

</security-role>
<security-role id="SecurityRole_2">

<description>AllAuthenticated role</description>
<role-name>All Role</role-name>

</security-role>
<security-role id="SecurityRole_3">

<description>Deny all access role</description>
<role-name>DenyAllRole</role-name>

</security-role>
</web-app>

Migrating Web application components
Supported open specification levels in WebSphere Application Server Version 5 are
documented in article, ″Migrating″ (not in this document).

Migration of Web applications deployed in WebSphere Application Server Version
4.x is not necessary; version 2.2 of the servlet specification and version 1.1 of the
JavaServerPages (JSP) specification are still supported. However, where there are
behavioral differences between the Java Two Enterprise Edition (J2EE) 1.2 and J2EE
1.3 specifications, bear in mind that J2EE 1.3 specifications are implemented in
WebSphere Application Server Version 5 and will override any J2EE 1.2 behaviors.

Servlet migration might be a concern if your application:
v implements a WebSphere internal servlet to bypass a WebSphere Application

Server Version 4.x single application path restriction.
v extends a PageListServlet that relies on configuration information in the servlet

configuration XML file.
v uses a servlet to generate Hyper Text Markup Language (HTML) output.
v calls the response.sendRedirect() method for a servlet using the

encodeRedirectURL function or executing within a non-context root.

JSP migration might be a concern if your application references JSP page
implementation classes in unnamed packages, or if you install WebSphere
Application Server Version 4.x EAR files (deployed in Version 4.x with the JSP
Precompile option), in Version 5.

Follow these steps if migration issues apply to your Web application:

Steps for this task
1. Use WebSphere Application Server Version 5 package names for any

WebSphere Application Server Version 4.x internal servlets, which are
implemented in your application.

Chapter 2. Using Web applications 13

In WebSphere Application Server Version 4.x, Web modules with a context root
setting of / are not supported. Accessing Web modules with this root context
results in HTTP 404 - File not Found errrors.
To bypass the errors, and to enable the serving of static files from the root
context, WebSphere Application Server Version 4.x users are advised to add the
servlet class, com.ibm.servlet.engine.webapp.SimpleFileServlet, to their Web
module.
The Version 4.x single path limitation does not exist in Version 5. However,
users who choose to use the
com.ibm.servlet.engine.webapp.SimpleFileServlet in Version 5 must do one
of the following:
v Rename com.ibm.servlet.engine.webapp.SimpleFileServlet to

com.ibm.ws.webcontainer.servlet.SimpleFileServlet.
v Open the EAR file in the Application Assembly Tool (AAT) and enable the

SimpleFileServlet static file setting.

The following list identifies the other internal servlets affected by the Version 5
package name change:
v DefaultErrorReporter
v AutoInvoker

Use the Version 5 package name,
com.ibm.ws.webcontainer.servlet.<<i>servlet class name</i>> for these
servlets.

2. Use the WASPostUpgrade tool to migrate servlets that extend PageListServlet
and rely on configuration information in the associated XML servlet
configuration file.
In Version 4.x, the XML servlet configuration file provides configuration data
for page lists and augments servlet configuration information. This file is
named as either <i>servlet_class_name</i>.servlet or
<i>servlet_name</i>.servlet, and is stored in the same directory as the servlet
class file.
The XML servlet configuration file is not supported in WebSphere Application
Server Version 5.

3. Set a content type if your servlet generates Hyper Text Markup Language
(HTML) output.
The default behavior of the Web container changed in WebSphere Application
Server Version 5. If the servlet developer does not specify a content type in the
servlet then the container is forbidden to set one automatically. Without an
explicit content type setting, the content type is set to null. The Netscape
browser displays HTML source as plain text with a null content type setting.
To resolve this problem, do one of the following:
v Explicitly set a content type in your servlet.
v Open the WAR file in the Application Assembly Tool (AAT) and enable the

autoResponseEncoding static file setting.
4. Set the Java environment variable,

com.ibm.websphere.sendredirect.compatibility, to true if you want your
URLs interpreted relative to the application root.
The default value of the Java environment variable
com.ibm.websphere.sendredirect.compatibility changed in WebSphere
Application Server Version 5. In Version 4, the default setting of this variable is
true. In Version 5, the setting is false.

14 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

When this variable is set to false, if a URL has a leading slash, the URL is
interpreted relative to the Web module/application root. However, if the URL
does not have a leading slash, it is interpreted relative to the Web container
root (also known as the Web server document root). Therefore, if an application
has a WAR file that has a context root of myPledge_app and a servlet that has a
servlet mapping of /Intranet/, a JSP file in the WAR file cannot access the
servlet when its encodeRedirectURL is set to /Intranet/myPledge. The JSP file
can access the servlet if the encodeRedirectURL is set to
myPledge_app/Intranet/myPlege, or if the
com.ibm.websphere.sendredirect.compatibility variable is set to true.
See the Setting the sendredirect variable article for more information.

5. Use the WASPostUpgrade tool to migrate WebSphere Version 4.x enterprise
applications to Version 5.
Note: The WebSphere Application Server Version 4.x JSP page implementation
class files are not compatible with the WebSphere Application Server Version 5
JSP container.
The WASPostUpgrade tool automatically precompiles JSP files, which ensures the
JSP page implementation class files are compatible with Version 5.
If you install Version 4.x EAR files, deployed with the JSP Precompile option,
in Version 5, and you choose not to follow the migration path, do one of the
following:
v Select the Pre-compile JSP option in the administrative console Install New

Application window.
See article Installing a new application for more information.

v Specify the -preCompileJSPs option when using the Wsadmin tool.
6. Import your classes if your application uses unnamed packages.

Section 8.2 of the JSP 1.2 specification states:
The JSP container creates a JSP page implementation class for each JSP page.
The name of the JSP page implementation class is implementation dependent.
The JSP page implementation object belongs to an implementation-dependent
named package. The package used may vary between one JSP and another, so
minimal assumptions should be made. The unnamed package should not be used
without an explicit import of the class.

For example, if myBeanClass is in the unnamed package, and you reference it in
a jsp:useBean tag, then you must explicitly import myBeanClass with the page
directive import attribute, as shown in the following example:

<%@page import="myBeanClass" %>
. . .

<jsp:useBean id="myBean" class="myBeanClass" scope="session"/>

In WebSphere Application Server Version 5, the JSP engine creates JSP page
implementation classes in the org.apache.jsp package. If a class in the
unnamed package is not explicitly imported, then the javac compiler assumes
the class is in package org.apache.jsp, and the compilation fails.

Note: Avoid using the unnamed package altogether because of a change made
in JDK 1.4 that will affect the JSP 2.0 specification. WebSphere Application
Server Version 5 ships with JDK 1.3.1, so this is not an issue with the Version 5
JSP engine, but it will become an issue in future releases.

The Incompatibilities section of the version 1.4.Java 2 Platform, Standard Edition
(J2SE) documentation states:

Chapter 2. Using Web applications 15

The compiler now rejects import statements that import a type from the
unnamed namespace. Previous versions of the compiler would accept such
import declarations, even though they were arguably not allowed by the
language (because the type name appearing in the import clause is not in
scope). The specification is being clarified to state clearly that you
cannot have a simple name in an import statement, nor can you import from
the unnamed namespace.

To summarize, the syntax:

import SimpleName;

is no longer legal. Nor is the syntax

import ClassInUnnamedNamespace.Nested;

which would import a nested class from the unnamed namespace.
To fix such problems in your code, move all of the classes from the unnamed
namespace into a named namespace.

What to do next

See ″Resources for learning″ for links to the J2SE, JSP, and Servlet specification
documentation.

Default Application
The IBM WebSphere Application Server provides a default configuration that
allows administrators to easily verify that the Application Server is running. When
the product is installed, it includes an application server called server1 and an
enterprise application called Default Application.

Default Application contains a Web Module called DefaultWebApplication and an
enterprise bean JAR file called Increment. The Default Application provides a number
of servlets, described below. These servlets are available in the product.

For additional code examples, visit the Samples Gallery. Learn how to locate and
install the Samples Gallery by viewing the Samples Gallery reference page.

The URL for accessing Samples is: http://localhost:9080/WSamples/

Snoop
Use the Snoop servlet to retrieve information about a servlet request. This servlet
returns the following information:
v Servlet initialization parameters
v Servlet context initialization parameters
v URL invocation request parameters
v Perferred client locale
v Context path
v User principal
v Request headers and their values
v Request parameter names and their values
v HTTPS protocol information
v Servlet request attributes and their values
v HTTP session information
v Session attributes and their values

16 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The Snoop servlet includes security configuration so that when WebSphere Security
is enabled, clients must supply a user ID and password to execute the servlet.

The URL for the Snoop servlet is: http://localhost:9080/snoop/.

HelloHTML
Use the HelloHTML pervasive servlet to exercise the PageList support provided by
the WebSphere Web container. This servlet extends the PageListServlet, which
provides APIs that allow servlets to call other Web resources by name or, when
using the Client Type detection support, by type.

You can invoke the Hello servlet from an HTML browser, speech client, or most
Wireless Application Protocol (WAP) enabled browsers using the URL:
http://localhost:9080/HelloHTML.jsp.

HitCount
Use the HitCount Demonstration application to demonstrate incrementing a
counter using a variety of methods, including:
v A servlet instance variable
v An HTTP session
v An enterprise bean

You can instruct the servlet to execute any of these methods within a transaction
that you can ommit or roll back. If the transaction is committed, the counter is
incremented. If the transaction is rolled back, the counter is not incremented.

The enterprise bean method uses a Container- Managed Persistence enterprise
bean that persists the counter value to a Cloudscape database. This enterprise bean
is configured to use the Default Datasource, which is set to the DefaultDB
database.

When using the enterprise bean method, you can instruct the servlet to look up the
enterprise bean, either in the WebSphere global namespace, or in the namespace
local to the application.

The URL for the HitCount application is: http://localhost:9080/HitCount.jsp.

Servlets
Servlets are Java programs that use the Java Servlet Application Programming
Interface (API). You must package servlets in a Web ARchive (WAR) file or Web
module for deployment to the application server.

Servlets run on a Java-enabled Web server and extend the capabilities of a Web
server, similar to the way applets run on a browser and extend the capabilities of a
browser.

Servlets can support dynamic Web page content, provide database access, serve
multiple clients at one time, and filter data.

For the purposes of IBM WebSphere Application Server, discussions of servlets
focus on Hyper Text Transfer Protocol (HTTP) servlets, which serve Web-based
clients.

Chapter 2. Using Web applications 17

Developing servlets with WebSphere Application Server extensions
Several WebSphere Application Server extensions are provided for enhancing your
servlets. This task provides a summary of the extensions that you can utilize.

Steps for this task
1. Review the supported specifications.

Create Java components, referring to the Servlet specifications from Sun
Microsystems.
See Resources for learning for links to coding specifications and examples.
The application server includes its own packages that extend and add to the
Java Servlet Application Programming Interface (API). These extensions and
additions make it easier to manage session states, create personalized Web
pages, generate better servlet error reports, and access databases. Locate the
Javadoc for the application server APIs in the product
install_root\web\apidocs directory.
All the public WebSphere Application Server APIs are located in the
com.ibm.websphere... packages.

2. Use your favorite integrated development environment (IDE), or a text editor,
to develop or migrate code artifacts that meet the specifications.

3. Test the code artifacts.

What to do next

Assemble your code artifacts into a Web module as a prerequisite to deploying the
code to the application server.

Application lifecycle listeners and events
Application lifecycle listeners and events, now part of the Servlet API, enable you
to notify interested listeners when servlet contexts and sessions change. For
example, you can notify users when attributes change and if sessions or servlet
contexts are created or destroyed.

The lifecycle listeners give the application developer greater control over
interactions with ServletContext and HttpSession objects. Servlet context listeners
manage resources at an application level. Session listeners manage resources
associated with a series of requests from a single client. Listeners are available for
lifecycle events and for attribute modification events. The listener developer creates
a class that implements the javax listener interface, corresponding to the desired
listener functionality.

At application startup time, the container uses introspection to create an instance
of your listener class and registers it with the appropriate event generator.

When a servlet context is created, the contextInitialized method of your listener
class is invoked, which creates the database connection for the servlets in your
application to use, if this context is for your application.

When the servlet context is destroyed, your contextDestroyed method is invoked,
which releases the database connection, if this context is for your application.

18 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Listener classes for servlet context and session changes
The following methods are defined as part of the
javax.servlet.ServletContextListener interface:
v void contextInitialized(ServletContextEvent) - Notification that the Web

application is ready to process requests.
Place code in this method to see if the created context is for your Web
application and if it is, allocate a database connection and store the connection in
the servlet context.

v void contextDestroyed(ServletContextEvent) -Notification that the servlet
context is about to shut down.
Place code in this method to see if the created context is for your Web
application and if it is, close the database connection stored in the servlet
context.

Two new listener interfaces are defined as part of the javax.servlet package:
v ServletContextListener
v ServletContextAttributeListener

One new filter interface is defined as part of the javax.servlet package:
v FilterChain interface - methods: doFilter()

Two new event classes are defined as part of the javax.servlet package:
v ServletContextEvent
v ServletContextAttributeEvent

Three new listener interfaces are defined as part of the javax.servlet.http package:
v HttpSessionListener
v HttpSessionAttributeListener
v HttpSessionActivationListener

One new event class is defined as part of the javax.servlet.http package:
v HttpSessionEvent

Example: com.ibm.websphere.DBConnectionListener.java
The following example shows how to create a servlet context listener:
package com.ibm.websphere;

import java.io.*;
import javax.servlet.*;

public class DBConnectionListener implements ServletContextListener
{

// implement the required context init method
void contextInitialized(ServletContextEvent sce)
{
}

// implement the required context destroy method
void contextDestroyed(ServletContextEvent sce)
{
}

}

Chapter 2. Using Web applications 19

Servlet filtering
Servlet filtering is an integral part of the Servlet 2.3 API. Servlet filtering provides
a new type of object called a filter that can transform a request or modify a
response.

You can chain filters together so that a group of filters can act on the input and
output of a specified resource or group of resources.

Filters typically include logging filters, image conversion filters, encryption filters,
and Multipurpose Internet Mail Extensions (MIME) type filters (functionally
equivalent to the servlet chaining). Although filters are not servlets, their lifecycle
is very similar.

Filters are handled in the following manner:
v The Web container determines whether it needs to construct a FilterChain

containing the LoggingFilter for the requested resource.
The FilterChain begins with the invocation of the LoggingFilter and ends with
the invocation of the requested resource.

v If other filters need to go in the chain, the Web container places them after the
LoggingFilter and before the requested resource.

v The Web container then instantiates and initializes the LoggingFilter (if it was
not done previously) and invokes its doFilter(FilterConfig) method to start
the chain.

v The LoggingFilter preprocesses the request and response objects and then
invokes the filter chain doFilter(ServletRequest, ServletResponse) method.
This method passes the processing to the next resource in the chain (in this case,
the requested resource).

v Upon return from the filter chain doFilter(ServletRequest, ServletResponse)
method, the LoggingFilter performs post-processing on the request and
response object before sending the response back to the client.

Filter, FilterChain, FilterConfig classes for servlet filtering
The following interfaces are defined as part of the javax.servlet package:
v Filter interface - methods: doFilter(), getFilterConfig(), setFilterConfig()
v FilterChain interface - methods: doFilter()
v FilterConfig interface - methods: getFilterName(), getInitParameter(),

getInitParameterNames(), getServletContext()

The following classes are defined as part of the javax.servlet.http package:
v HttpServletRequestWrapper - methods: See the Servlet 2.3 Specification
v HttpServletResponseWrapper - methods: See the Servlet 2.3 Specification

Example: com.ibm.websphere.LoggingFilter.java
The following example shows how to implement a filter:
package com.ibm.websphere;

import java.io.*;
import javax.servlet.*;

public class LoggingFilter implements Filter
{

File _loggingFile = null;

20 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html

// implement the required init method
public void init(FilterConfig fc)
{

// create the logging file
xxx;

}

// implement the required doFilter method...this is where most of the
work is done public void doFilter(ServletRequest request, ServletResponse
response, FilterChain chain)
{

try
{

// add request info to the log file
synchronized(_loggingFile)
{

xxx;
}

// pass the request on to the next resource in the chain
chain.doFilter(request, response);

}
catch (Throwable t)
{

// handle problem...
}

}

// implement the required destroy method
public void destroy()
{

// make sure logging file is closed
_loggingFile.close();

}
}

Configuring page list servlet client configurations
You can define PageListServlet configuration information in the IBM Web
Extensions file. The IBM Web Extensions file is created and stored in the Web
Applications archive (WAR) file by the IBM WebSphere Application Assembly Tool
(AAT)

To configure and implement page lists:

Steps for this task
1. Use the PageList Extensions tab in the Application Assembly Tool (AAT) to

configure page list information.
2. Add the callPage() method to your servlet to invoke a JavaServer Page (JSP)

file in response to a client request.
The PageListServlet has a callPage() method that invokes a JSP file in
response to the HTTP request for a page in a page list. The callPage() method
can be invoked in one of the following ways:
v callPage(String pageName, HttpServletRequest request,

HttpServletResponse response)

where the method arguments are:
– pageName - a page name defined in the PageListServlet configuration
– request - the HttpServletRequest object
– response - the HttpServletResponse object

Chapter 2. Using Web applications 21

v callPage(String mlName, String pageName, HttpServletRequest request,
HttpServletResponse response)

where the method arguments are:
– mlName - a markup language type
– pageName - a page name defined in the PageListServlet configuration
– request - the HttpServletRequest object
– response - the HttpServletResponse object

3. Use the PageList Servlet client type detection support to determine the markup
language type a calling client requires for the response.

Page lists
Page lists allow you to avoid hardcoding URLs in servlets and JSP files. A page list
specifies the location where a request is to be forwarded, but automatically tailors
that location depending on the MIME type of the servlet. These properties allow
you to specify a markup language and an associated MIME type. For the given
MIME type, you also specify a set of pages to invoke.

WebSphere Application Server supplies the PageListServlet, which you can use to
call a JavaServer Pages (JSP) file by name based on the configuration data in the
client_types.xml file. This file maps a JSP file to a Uniform Resource Identifier
(URI). When the URI is invoked, it specifies another JSP file in a Web module. This
support allows you to access multiple Uniform Resource Locators (URLs) without
hard-coding them in your servlets.

You can also logically group page lists according to the markup language type, as
for example, Hypertext Markup Language (HTML) or Wireless Markup Language
(WML). This allows applications, using servlets that extend the PageListServlet, to
call JSP files that return the proper markup-language type for the client request.
For example, if a request originates from a PDA device that requires WML data
and is sent to a servlet that extends the PageListServlet, the servlet can call a JSP
file that returns a WML response.

Client type detection support
In addition to providing the page list mapping capability, the PageListServlet also
provides Client Type Detection support. A servlet determines the markup language
type that a calling client needs in the response, using the configuration information
in the client_types.xml file.

Client type detection support allows a servlet, extending the PageListServlet, to call
an appropriate JavaServer Pages (JSP) file. The servlet invokes the callPage()
method, which calls a JSP file based on the markup-language type of the request.

client_types.xml
The client_types.xml file provides client type detection support for servlets
extending PageListServlet. Using the configuration data in the client_types.xml
file, servlets can determine the language type that calling clients require for the
response.

The client type detection support allows servlets to call appropriate JavaServer
Pages (JSP) files with the callPage() method. Servlets select JSP files based on the
markup-language type of the request.

Servlets must use the following version of the callPage() method to determine the
markup language type required by the client:

callPage(String mlName, String pageName, HttpServletRequest request, HttpServletResponse response)

22 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

where the arguments are:
v mlName - a markup language type
v pageName - a page name defined in the PageListServlet configuration
v request - the HttpServletRequest object
v response - the HttpServletResponse object

Review the Extending PageListServlet code example to see how the callPage()
method is invoked by a servlet.

In the example, the client type detection method,
getMLTypeFromRequest(HttpServletRequestrequest), provided by the
PageListServlet, inspects the HttpServletRequest object request headers, and
searches for a match in the client_types.xml file.

The client type detection method does the following:
v Uses the input HttpServletRequest and the client_types.xml file, to check for a

matching HTTP request name and value.
v Returns the markup-language value configured for the <client-type> element, if

a match is found.
If multiple matches are found, this method returns the markup-language for the
first <client-type> element for which a match is found.

v If no match is found, returns the value of the markup-language for the default
page defined in the PageListServlet configuration.

Location

The client_types.xml file is located in the <i>install_root</i>/properties
directory.

Usage notes

v Is this file read-only?
No

v Is this file updated by a product component?
No

v If so, what triggers its update?
This file is created and updated manually by users.

v How and when are the contents of this file used?
Servlets, extending PageListServlet, use this file to determine the language type
that calling clients require for the response.

Sample file entry
<?xml version="1.0" >
<!DOCTYPE clients [
<!ELEMENT client-type (description, markup-language,request-header+)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT markup-language (#PCDATA)>
<!ELEMENT request-header (name, value)>
<!ELEMENT clients (client-type+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT value (#PCDATA)>]>
<clients>

<client-type>
<description>IBM Speech Client</description>
<markup-language>VXML</markup-language>

Chapter 2. Using Web applications 23

<request-header>
<name>user-agent</name>
<value>IBM VoiceXML pre-release version 000303</value>

</request-header>
<request-header>

<name>accept</name>
<value>text/vxml</value>

</request-header>
</client-type>
<client-type>

<description>WML Browser</description>
<markup-language>WML</markup-language>

<request-header>
<name>accept</name>
<value>text/x-wap.wml</value>

</request-header>
<request-header>

<name>accept</name>
<value>text/vnd.wap.xml</value>

</request-header>
</client-type>

</clients>

Example: Extending PageListServlet
The following example shows how a servlet extends the PageListServlet class and
determines the markup-language type required by the client. The servlet then uses
the callPage() method to call an appropriate JavaServer Pages (JSP) file. In this
example, the JSP file that provides the the correct markup-language for the
response is Hello.page.
public class HelloPervasiveServlet extends PageListServlet implements Serializable
{

/*
* doGet -- Process incoming HTTP GET requests
*/
public void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException
{

// This is the name of the page to be called:
String pageName = "Hello.page";

// First check if the servlet was invoked with a queryString that contains a
// markup-language value.
// For example, if this is how the servlet is invoked:
// http://localhost/servlets/HeloPervasive?mlname=VXML
// then use the following method:
String mlname= getMLNameFromRequest(request);

// If no markup language type is provided in the queryString, then try to
// determine the client type from the request, and use the markup-language
// name configured in the client_types.xml file.
if (mlName == null)
{

mlName = getMLTypeFromRequest(request);
}
try
{

// Serve the request page.
callPage(mlName, pageName, request, response);
}
catch (Exception e)
{

handleError(mlName, request, response, e);
}

}
}

24 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

autoRequestEncoding and autoResponseEncoding
Two new WebSphere Application Server extensions are available in Version 5,
autoRequestEncoding and autoResponseEncoding.

In WebSphere Application Server Version 5, the Web container no longer
automatically sets request and response encodings, and response content types.
Programmers are expected to set these values using available methods in the
Servlet 2.3 Specification. If programmers choose not to use the character encoding
methods, they can specify the autoRequestEncoding and autoResponseEncoding
extensions, which enable the application server to set the encoding values and
content type.

The values of the autoRequestEncoding and autoResponseEncoding extensions are
either true or false. The default value for both extensions is false. If the value is
false for both autoRequestEncoding and autoResponseEncoding, then the request
and response character encoding is set to the Servlet 2.3 Specification default,
which is ISO-8859-1. Also, If the value is set to false for a response, the Web
container cannot set a response content type.

Use the Application Assembly Tool (AAT) to change the default values for the
autoRequestEncoding and autoResponseEncoding extensions.

Review the autoRequestEncoding and autoResponseEncoding encoding examples for
a description of Web container behavior when these values are set to true.

autoRequestEncoding and autoResponseEncoding encoding
examples

The default value of the autoRequestEncoding and autoResponseEncoding
extensions is false, which means that both the request and response character
encoding is set to the Servlet 2.3 Specification default of ISO-8859-1. Different
character encodings are possible if the client defines character encoding in the
request header, or if the code includes the setCharacterEncoding(String encoding)
method. Also, If the value is set to false for a response, the Web container cannot
set a response content type.

If the autoRequestEncoding value is set to true, and the client did not specify
character encoding in the request header, and the code does not include the
setCharacterEncoding(String encoding) method, the Web container tries to
determine the correct character encoding for the request parameters and data.

The Web container performs each step in the following list until a match is found:
v Looks at the character set (charset) in the Content-Type header.
v Attempts to map the servers locale to a character set using defined properties.
v Attempts to use the DEFAULT_CLIENT_ENCODING system property, if one is set.
v Uses the ISO-8859-1 character encoding as the default.

If the autoResponsetEncoding value is set to true, and the client did not specify
character encoding in the request header, and the code does not include the
setCharacterEncoding(String encoding) method, the Web container does the
following:
v Attempts to determine the response content type and character encoding from

information in the request header.
v Uses the ISO-8859-1 character encoding as the default.

Chapter 2. Using Web applications 25

JavaServer Pages files
JavaServer Pages (JSP) files are application building blocks coded to the Sun
Microsystems JavaServer Pages (JSP) Specification. JSP files enable the separation
of the Hypertext Markup Language (HTML) code from the business logic in Web
pages so that HTML programmers and Java programmers can more easily
collaborate in creating and maintaining pages.

The IBM extensions to the JSP Specification include JSP tags that resemble HTML
tags making it easy for HTML authors to add the power of Java technology to Web
pages, without being experts in Java programming.

JSP files support a division of roles:

HTML authors
Develop JSP files that access databases and reusable Java components, such
as servlets and beans.

Java programmers
Create the reusable Java components and provide the HTML authors with
the component names and attributes.

Database administrators
Provide the HTML authors with the name of the database access and table
information.

Developing JavaServer Pages files with WebSphere extensions
Several IBM WebSphere extensions are provided for enhancing your JavaServer
Pages (JSP) files. This task provides a summary of the extensions that you can
utilize.

Steps for this task
1. Review the supported specifications.

Create Java components, referring to the JSP specifications from Sun
Microsystems.
See Resources for learning for links to coding specifications and examples.
WebSphere Application Server Version 3.5 added IBM extensions to the base
Application Programming Interfaces (APIs). Since the JavaServer Pages (JSP) 1.1
and JSP 1.2 Specifications are backward compatible to the JSP 1.0 Specifications,
you can invoke the APIs with the IBM extensions without modification.
The extensions belong to these categories:

Syntax for variable data
Put variable fields in JSP files and have servlets and beans dynamically
replace the variables with values from a database when the JSP output
is returned to the browser.

Syntax for database access
Add a database connection to a Web page and then use that connection
to query or update the database. You can provide the user ID and
password for the database connection at request time, or you can hard
code the user ID and password within the JSP file.

2. Use your favorite integrated development environment (IDE), or a text editor,
to develop or migrate code artifacts that meet the specifications.

3. Test the code artifacts.

26 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

4. (Optional) Batch compile your JSP files if necessary.

Tag libraries
Java ServerPages (JSP) tag libraries contain classes for common tasks such as
processing forms and accessing databases from JSP files.

Tag libraries encapsulate, as simple tags, core functionality common to many Web
applications. The Java Standard Tag Library (JSTL) supports common
programming tasks such as iteration and conditional processing, and provides tags
for:
v manipulating XML documents
v supporting internationalization
v using Structured Query Language (SQL)

Tag libraries also introduce the concept of an expression language to simplify page
development, and include a version of the JSP expression language.

A tag library has two parts - a Tag Library Descriptor (TLD) file and a JAR file.

tsx:dbconnect tag JavaServer Pages syntax
Use the <tsx:dbconnect> tag to specify information needed to make a connection to
a Java Database Connectivity (JDBC) or an Open Database Connectivity (ODBC)
database.

The <tsx:dbconnect> syntax does not establish the connection. Use the
<tsx:dbquery> and <tsx:dbmodify> syntax instead to reference a <tsx:dbconnect>
tag in the same JavaServer Pages (JSP) file to establish the connection.

When the JSP file compiles into a servlet, the Java processor adds the Java coding
for the <tsx:dbconnect> syntax to the servlet service() method, which means a new
database connection is created for each request for the JSP file.

This section describes the syntax of the <tsx:dbconnect> tag.
<tsx:dbconnect id="connection_id"

userid="db_user" passwd="user_password"
url="jdbc:subprotocol:database"
driver="database_driver_name"
jndiname="JNDI_context/logical_name">

</tsx:dbconnect>

where:
v id

Represents a required identifier. The scope is the JSP file. This identifier is
referenced by the connection attribute of a <tsx:dbquery> tag.

v userid

Represents an optional attribute that specifies a valid user ID for the database
that you want to access. Specify this attribute to add the attribute and its value
to the request object.
Although the userid attribute is optional, you must provide the user ID. See
<tsx:userid> and <tsx:passwd> for an alternative to hard coding this information
in the JSP file.

v passwd

Chapter 2. Using Web applications 27

Represents an optional attribute that specifies the user password for the userid
attribute. (This attribute is not optional if the userid attribute is specified.) If you
specify this attribute, the attribute and its value are added to the request object.
Although the passwd attribute is optional, you must provide the password. See
<tsx:userid> and <tsx:passwd> for an alternative to hard coding this attribute in
the JSP file.

v url and driver

Respresents a required attribute if you want to establish a database connection.
You must provide the URL and driver.
The application server supports connection to JDBC databases and ODBC
databases.
– For a JDBC database, the URL consists of the following colon-separated

elements: jdbc, the subprotocol name, and the name of the database to access.
An example for a connection to the Sample database included with IBM DB2
is:
url="jdbc:db2:sample"
driver="COM.ibm.db2.jdbc.app.DB2Driver"

– For an ODBC database, use the Sun JDBC-to-ODBC bridge driver included in
their Java2 Software Developers Kit (SDK) or another vendor’s ODBC driver.
The url attribute specifies the location of the database. The driver attribute
specifies the name of the driver to use in establishing the database
connection.
If the database is an ODBC database, you can use an ODBC driver or the Sun
JDBC-to-ODBC bridge. If you want to use an ODBC driver, refer to the driver
documentation for instructions on specifying the database location with the
url attribute and the driver name.
If you use the bridge, the url syntax is jdbc:odbc:<i>database</i>. An
example follows:
url="jdbc:odbc:autos"
driver="sun.jdbc.odbc.JdbcOdbcDriver"

Note: To enable the application server to access the ODBC database, use the
ODBC Data Source Administrator to add the ODBC data source to the System
DSN configuration. To access the ODBC Administrator, click the ODBC icon
on the Windows NT Control Panel.

v jndiname

Represents an optional attribute that identifies a valid context in the application
server Java Naming and Directory Interface (JNDI) naming context and the
logical name of the data source in that context. The Web administrator
configures the context using an administrative client such as the WebSphere
Administrative Console.
If you specify the jndiname attribute, the JSP processor ignores the driver and
url attributes on the <tsx:dbconnect> tag.

An empty element (such as <url></url>) is valid.

dbquery tag JavaServer Pages syntax
Use the <tsx:dbquery> tag to establish a connection to a database, submit database
queries, and return the results set.

The <tsx:dbquery> tag does the following:

28 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

1. References a <tsx:dbconnect> tag in the same JavaServer Pages (JSP) file and
uses the information the tag provides to determine the database URL and
driver. You can also obtain the user ID and password from the <tsx:dbconnect>
tag if those values are provided in the <tsx:dbconnect> tag.

2. Establishes a new connection
3. Retrieves and caches data in the results object.
4. Closes the connection and releases the connection resource.

This section describes the syntax of the <tsx:dbquery> tag.
<%-- SELECT commands and (optional) JSP syntax can be placed within the tsx:dbquery. --%>
<%-- Any other syntax, including HTML comments, are not valid. --%>
<tsx:dbquery id="query_id" connection="connection_id" limit="value" >
</tsx:dbquery>

where:
v id

Represents the identifier of this query. The scope is the JSP file. Use id to
reference the query. For example, from the <tsx:getProperty> tag, use id to
display the query results.
The id becomes the name of a bean that contains the results set. The bean
properties are dynamic and the property names are the names of the columns in
the results set. If you want different column names, use the SQL keyword for
specifying an alias on the SELECT command. In the following example, the
database table contains columns named FNAME and LNAME, but the SELECT
statement uses the AS keyword to map those column names to FirstName and
LastName in the results set:
Select FNAME, LNAME AS FirstName, LastName from Employee where FNAME=’Jim’

v connection

Represents the identifier of a <tsx:dbconnect> tag in this JSP file. The
<tsx:dbconnect> tag provides the database URL, driver name, and optionally, the
user ID and password for the connection.

v limit

Represents an optional attribute that constrains the maximum number of records
returned by a query. If this attribute is not specified, no limit is used. In such a
case, the effective limit is determined by the number of records and the system
caching capability.

v SELECT command and JSP syntax
Represents the only valid SQL command, SELECT. The <tsx:dbquery> tag must
return a results set. Refer to your database documentation for information about
the SELECT command. See other articles in this section for a description of JSP
syntax for variable data and inline Java code.

dbmodify tag JavaServer Pages syntax
The <tsx:dbmodify> tag establishes a connection to a database and then adds
records to a database table.

The <tsx:dbmodify> tag does the following:
1. References a <tsx:dbconnect> tag in the same JavaServer Pages (JSP) file and

uses the information provided by that tag to determine the database URL and
driver.
Note: You can also obtain the user ID and password from the <tsx:dbconnect>
tag if those values are provided in the <tsx:dbconnect> tag.

Chapter 2. Using Web applications 29

2. Establishes a new connection.
3. Updates a table in the database.
4. Closes the connection and releases the connection resource.

This section describes the syntax of the <tsx:dbmodify> tag.
<%-- Any valid database update commands can be placed within the DBMODIFY tag. -->
<%-- Any other syntax, including HTML comments, are not valid. -->
<tsx:dbmodify connection="connection_id">
</tsx:dbmodify>

where:
v connection

Represents the identifier of a <tsx:dbconnect> tag in this JSP file. The
<tsx:dbconnect> tag provides the database URL, driver name, and (optionally)
the user ID and password for the connection.

v Database commands
Represents valid database commands. Refer to your database documentation for
details

tsx:getProperty tag JavaServer Pages syntax and examples
The <tsx:getProperty> tag gets the value of a bean to display in a JavaServer
Pages (JSP) file.

This IBM extension of the Sun JSP <jsp:getProperty> tag implements all of the
<jsp:getProperty> function and adds the ability to introspect a database bean
created using the IBM extension <tsx:dbquery> or <tsx:dbmodify>.

Note: You cannot assign the value from this tag to a variable. The value, generated
as output from this tag, displays in the browser window.

This section describes the syntax of the <tsx:getProperty> tag:
<tsx:getProperty name="bean_name"

property="property_name" />

where:
v name

Represents the name of the bean declared by the id attribute of a <tsx:dbquery>
syntax within the JSP file. See <tsx:dbquery> for an explanation. The value of
this attribute is case-sensitive.

v property

Represents the property of the bean to access for substitution. The value of the
attribute is case-sensitive and is the locale-independent name of the property.

Tag example:
<tsx:getProperty name="userProfile" property="username" />
<tsx:getProperty name="request" property=request.getParameter("corporation") />

In most cases, the value of the property attribute is just the property name.
However, to access the request bean or to access a property of a property (sub
property), specify the full form of the property attribute. The full form also gives
you the option to specify an index for indexed properties. You can specify the

30 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

optional index as a constant (such as 2), or an index like the one described in the
<tsx:repeat> tag. Some examples using the full form of the property attribute
follow:
<tsx:getProperty name="staffQuery" property=address(currentAddressIndex) />
<tsx:getProperty name="shoppingCart" property=items(4).price />
<tsx:getProperty name="fooBean" property=foo(2).bat(3).boo.far />

tsx:userid and tsx:passwd tag JavaServer Pages syntax
With the <tsx:userid> and <tsx:passwd> tags, you do not have to hard code a user
ID and password in the <tsx:dbconnect> tag.

Use the <tsx:userid> and <tsx:passwd> tags to accept user input for the values and
then add that data to the request object. You can access the request object with a
JavaServer Pages (JSP) file, such as the JSPEmployee.jsp example that requests the
database connection.

You must use <tsx:userid> and <tsx:passwd> tags within a <tsx:dbconnect> tag.

This section describes the syntax of the <tsx:userid> and <tsx:passwd> tags.
<tsx:dbconnect id="connection_id"

<userid>
<tsx:getProperty name="request" property=request.getParameter("userid")
/></userid>
<passwd>
<tsx:getProperty name="request" property=request.getParameter("passwd")
/></passwd>
url="protocol:database_name:database_table"
driver="JDBC_driver_name">

</tsx:dbconnect>

where:
v <tsx:getProperty>

Represents the syntax as a mechanism for embedding variable data.
v userid

Represents a reference to the request parameter that contains the user ID. You
must add the parameter to the request object that passes to this JSP file. You can
set the attribute and its value in the request object, using an HTML form or a
URL query string to pass the user-specified request parameters.

v passwd

Represents a reference to the request parameter that contains the password. Add
the parameter to the request object that passes to this JSP file. You can set the
attribute and its value in the request object, using an HTML form or a URL
query string, to pass user-specified values.

tsx:repeat tag JavaServer Pages syntax
The <tsx:getProperty> tag repeats a block of HTML tagging.

Use the <tsx:repeat> syntax to iterate over a database query results set. The
<tsx:repeat> syntax iterates from the start value to the end value until one of the
following conditions is met:
v The end value is reached.
v An exception is thrown.

Chapter 2. Using Web applications 31

The output of a <tsx:repeat> block is buffered until the block completes. If an
exception is thrown before a block completes, no output is written for that block.

This section describes the syntax of the <tsx:repeat> tag:
<tsx:repeat index=name start="starting_index" end="ending_index">
</tsx:repeat>

where:
v index

Represents an optional name used to identify the index of this repeat block. The
value is case-sensitive and its scope is the JSP file.

v start

Represents an optional starting index value for this repeat block. The default is
0.

v end

Represents an optional ending index value for this repeat block. The maximum
value is 2,147,483,647.
If the value of the end attribute is less than the value of the start attribute, the
end attribute is ignored.

Example: Combining tsx:repeat and tsx:getProperty
JavaServer Pages tags

The following code snippet shows you how to code these tags:
<tsx:repeat>
<tr>

<td><tsx:getProperty name="empqs" property="EMPNO" />
<tsx:getProperty name="empqs" property="FIRSTNME" />
<tsx:getProperty name="empqs" property="WORKDEPT" />
<tsx:getProperty name="empqs" property="EDLEVEL" />
</td>

</tr>
</tsx:repeat>

Example: tsx:dbmodify tag syntax
In the following example, a new employee record is added to a database. The
values of the fields are based on user input from this JavaServer Pages (JSP) file
and referenced in the database commands using the <tsx:getProperty> tag.
<tsx:dbmodify connection="conn" >
insert into EMPLOYEE

(EMPNO,FIRSTNME,MIDINIT,LASTNAME,WORKDEPT,EDLEVEL)
values
(’<tsx:getProperty name="request" property=request.getParameter("EMPNO") />’,
’<tsx:getProperty name="request" property=request.getParameter("FIRSTNME") />’,
’<tsx:getProperty name="request" property=request.getParameter("MIDINIT") />’,
’<tsx:getProperty name="request" property=request.getParameter("LASTNAME") />’,
’<tsx:getProperty name="request" property=request.getParameter("WORKDEPT") />’,
<tsx:getProperty name="request" property=request.getParameter("EDLEVEL") />)
</tsx:dbmodify>

Example: Using tsx:repeat JavaServer Pages tag to iterate
over a results set

The <tsx:repeat> tag iterates over a results set. The results set is contained within a
bean. The bean can be a static bean, for example, a bean created by using the IBM
WebSphere Studio database wizard, or a dynamically generated bean, for example,

32 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

a bean generated by the <tsx:dbquery> syntax. The following table is a graphic
representation of the contents of a bean called, myBean:

col1 col2 col3

row0 friends Romans countrymen

row1 bacon lettuce tomato

row2 May June July

Some observations about the bean:
v The column names in the database table become the property names of the bean.

The <tsx:dbquery> section describes a technique for mapping the column names
to different property names.

v The bean properties are indexed. For example, myBean.get(Col1(row2)) returns
May.

v The query results are in the rows. The <tsx:repeat> tag iterates over the rows,
beginning at the start row.

The following table compares using the <tsx:repeat> tag to iterate over a static
bean, versus a dynamically generated bean:

Static Bean Example <tsx:repeat> Bean Example

myBean.class

// Code to get a connection

// Code to get the data
Select * from myTable;

// Code to close the connection

JSP file

<tsx:repeat index=abc>
<tsx:getProperty name="myBean"

property="col1(abc)" />
</tsx:repeat>

Notes:

v The bean (myBean.class) is a static bean.

v The method to access the bean properties
is myBean.get(property(index)).

v You can omit the property index, in which
case the index of the enclosing
<tsx:repeat> tag is used. You can also
omit the index on the <tsx:repeat> tag.

v The <tsx:repeat> tag iterates over the bean
properties row by row, beginning with the
start row.

JSP file

<tsx:dbconnect id="conn"
userid="alice"passwd="test"
url="jdbc:db2:sample"
driver="COM.ibm.db2.jdbc.app.DB2Driver">
</tsx:dbconnect >

<tsx:dbquery id="dynamic"
connection="conn" >
Select * from myTable;

</tsx:dbquery>

<tsx:repeat index=abc>
<tsx:getProperty name="dynamic"

property="col1(abc)" />
</tsx:repeat>

Notes:

v The bean (dynamic) is generated by the
<tsx:dbquery> tag and does not exist until
the syntax executes.

v The method to access the bean properties
is dynamic.getValue(″property″, index).

v You can omit the property index, in which
case the index of the enclosing
<tsx:repeat> tag is used. You can also
omit the index on the <tsx:repeat> tag.

v The <tsx:repeat> tag syntax iterates over
the bean properties row by row, beginning
with the start row.

Chapter 2. Using Web applications 33

Implicit and explicit indexing
Examples 1, 2, and 3 show how to use the <tsx:repeat> tag. The examples produce
the same output if all indexed properties have 300 or fewer elements. If there are
more than 300 elements, Examples 1 and 2 display all elements, while Example 3
shows only the first 300 elements.

Example 1 shows implicit indexing with the default start and default end index. The
bean with the smallest number of indexed properties restricts the number of times
the loop repeats.

<table>
<tsx:repeat>

<tr><td><tsx:getProperty name="serviceLocationsQuery" property="city" /></tr></td>
<tr><td><tsx:getProperty name="serviceLocationsQuery" property="address" /></tr></td>
<tr><td><tsx:getProperty name="serviceLocationsQuery" property="telephone" /></tr></td>

</tsx:repeat>
</table>

Example 2 shows indexing, starting index, and ending index:
<table>
<tsx:repeat index=myIndex start=0 end=2147483647>

<tr><td><tsx:getProperty name="serviceLocationsQuery" property=city(myIndex) />
</tr></td>
<tr><td><tsx:getProperty name="serviceLocationsQuery" property=address(myIndex) />
</tr></td>
<tr><td><tsx:getProperty name="serviceLocationsQuery" property=telephone(myIndex) />
</tr></td>

</tsx:repeat>
</table>

Example 3 shows explicit indexing and ending index with implicit starting index.
Although the index attribute is specified, you can still implicitly index the indexed
property city because the (myIndex) tag is not required.

<table>
<tsx:repeat index=myIndex end=299>

<tr><td><tsx:getProperty name="serviceLocationsQuery" property="city" /t>
</tr></td>
<tr><td><tsx:getProperty name="serviceLocationsQuery" property="address(myIndex)" />
</tr></td>
<tr><td><tsx:getProperty name="serviceLocationsQuery" property="telephone(myIndex)" />
</tr></td>

</tsx:repeat>
</table>

Nesting <tsx:repeat> blocks
You can nest <tsx:repeat> blocks. Each block is separately indexed. This capability
is useful for interleaving properties on two beans, or properties that have
subproperties. In the example, two <tsx:repeat> blocks are nested to display the list
of songs on each compact disc in the user’s shopping cart.
<tsx:repeat index=cdindex>

<h1><tsx:getProperty name="shoppingCart" property=cds.title /></h1>
<table>
<tsx:repeat>

<tr><td><tsx:getProperty name="shoppingCart" property=cds(cdindex).playlist />
</td></tr>

</tsx:repeat>
</table>
</tsx:repeat>

34 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

JspBatchCompiler tool
As an IBM enhancement to JavaServer Pages support, IBM WebSphere Application
Server provides a batch JSP compiler. Use this function to batch compile your JSP
files and thereby enable faster responses to the initial client requests for the JSP
files on your production Web server.

Batch compiling makes the first request for a JSP file much faster because the JSP
file is translated and compiled into a servlet. Batch compiling is also useful as a
fast way to resynchronize all of the JSP files for an application.

To use the JSP batch compiler for JSP files, enter the following command on a
single line at an operating system command prompt:
JspBatchCompiler -enterpriseapp.name <name>

[-webmodule.name <name>]
[-cell.name <name>]
[-node.name <name>]
[-server.name <name>]
[-filename <jsp name>]
[-keepgenerated <true|false>]
[-verbose <true|false>]
[-deprecation <true|false>]

If the names specified for these arguments are comprised of two or more words
separated by spaces, you must add quotation marks around the names.

where:
v enterpriseapp.name

Represents the name of the enterprise application you want to compile.
v webmodule.name

Represents the name of the specific Web module that you want to compile. If
this argument is not set, all Web modules in the enterprise application are
compiled.

v cell.name

Represents the name of the cell in which the application is deployed. The default
is BaseApplicationServerCell.

v node.name

Represents the name of the node in which the application is deployed. The
default is DefaultNode.

v server.name

Represents the name of the server in which the application is deployed. The
default is server1.

v filename

Represents the name of a single JSP file that you want to compile. If this
argument is not set, all files in the Web module are compiled. Alternatively, if
filename is set to the name of a directory, only the JSP files in that directory are
compiled.

v keepgenerated

Represents the option to save or erase the generated files.
If set to yes, WebSphere Application Server saves the generated .java files used
for compilation on your server. By default, this argument is set to no and the
.java files are erased after the class files have compiled.

v verbose

Chapter 2. Using Web applications 35

Indicates the compiler should generate verbose output while compiling the
generated sources.

v deprecation

Indicates the compiler should generate deprecation warnings while compiling
the generated sources.

Bean Scripting Framework
The Bean Scripting Framework (BSF) enables you to use scripting language
functions in your Java server-side applications. This framework also extends
scripting languages so that you can use existing Java classes and Java beans in the
JavaScript language.

With BSF, you can write scripts that create, manipulate and access values from Java
objects, or you can write Java programs that evaluate and access results from
scripts.

WebSphere Application Server provides the Bean Scripting Framework, which
consists of a BSF manager, a BSF engine, and a scripting engine.

BSF provides an access mechanism to Java objects for the scripting languages it
supports, so that both the scripting language and theJava code can access code
exclusive functions. The access mechanism is implemented through a registry of
objects maintained by BSF.

BSF in WebSphere Application Server supports the Rhino ECMAScript.

The ″Resources for Learning″ article provides external BSF links that document
future supported languages.

Developing Web applications
Before you begin

Design a Web application and the components that it needs.

For general Web application design information, see ″Resources for learning.″

There are two basic approaches to selecting tools for developing Web applications:
v You can use one of the available integrated development environments (IDEs).

IDE tools automatically generate significant parts of the servlet and JavaServer
Pages (JSP) code, and Hypertext Markup Language (HTML) files. They also
contain integrated tools for packaging and testing the Web application
components. The IBM WebSphere Application Developer product is the
recommended IDE. For more information, see the documentation for that
product.

v If you decide to develop Web components without an IDE, you need at least an
ASCII text editor. You can also use tools available in the Java Software
Development Kit (SDK) and in this product to assemble, test, and deploy the
Web application components.

The following steps support the second approach, development without an IDE.

Steps for this task

36 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

1. If necessary, migrate any pre-existing code to the required version of the servlet
and JSP specification.

2. Write and compile the components of the Web application.
To access classes that were extended, compile your code using the -classpath
option on the javac compiler. This option allows you to reference the j2ee.jar
file in the product install_root\lib directory.
For example, to compile a servlet running on the Windows NT version of
WebSphere Application Server, specify:

javac -classpath D:\Program Files\WebSphere\AppServer\lib\j2ee.jar MyServlet.java

To compile that same servlet on the Windows NT version of WebSphere
Network Deployment, specify:

javac -classpath D:\Program Files\WebSphere\DeploymentManager\lib\j2ee.jar MyServlet.java

3. (Optional)Disable JavaServer Pages (JSP) runtime compilation, if necessary.

What to do next

Assemble the application components in one or more Web modules.

Disabling JavaServer Pages run-time compilation
By default, the JavaServer Pages (JSP) engine translates a requested JSP file,
compiles the .java file, and loads the compiled servlet into the run-time
environment. In previous releases of WebSphere Application Server, if a .class file
did not exist, the JSP engine always translated and compiled the JSP file. You had
to turn off the Web applications reload capability to prevent additional translations
and recompiles of the file.

With Version 5.0.1 of WebSphere Application Server, you can now change the JSP
engine default behavior by indicating a JSP file should never be translated or
compiled at run time, even when a .class file does not exist.

If run-time compilation is disabled, you must precompile the JSP files, which
provides the following advantages:
v Reduces compilation related disk operations.
v Minimizes disk storage requirements necessary for handling temporary .java

and .class files generated during a run-time compilation.
v Forces you to verify that a JSP file compiled successfully before deploying and

installing the application in WebSphere Application Server.

You can disable run-time JSP file compilation on a global or an individual Web
application basis:
v To disable the translation and compilation of JSP files for all Web applications,

set the Web container Custom property disableJspRuntimeCompilation to true.
Set this property through the Web container Custom properties panel in the
administrative console. To view this administrative console page, click Servers >
Application Servers > server_name > Web Container > Custom Properties >
property_name.
Valid values for this setting are true or false. If this property is set to true, then
translation and compilation of the JSP files is disabled at run time for all Web
applications.

v To disable the translation and compilation of JSP files for a specific Web
application, set the JSP engine initialization parameter

Chapter 2. Using Web applications 37

disableJspRuntimeCompilation to true. This setting, if enabled, determines the
run-time behavior of the JSP engine and overrides the Web container custom
property setting.
Set this parameter through the JavaServer Pages attribute assembly settings
panel in the Application Assembly Tool (AAT). To view this page, click Web
Modules > component_instance > Assembly Property Extensions.
Valid values for this setting are true or false. If this parameter is set to true,
then, for that specific Web application, translation and compilation of the JSP
files is disabled at run time, and the JSP engine only loads precompiled files.

v If neither the Web container custom property nor the JSP attribute assembly
parameter is set, the first request for a JSP file results in the translation and
compilation of the JSP file when the .class file does not exist. Subsequent
requests for the file also result in compilations and translations, but only if the
following conditions are met:
– Compilations and translations are required.
– Reloading is enabled for the Web module.
– Reload interval is exceeded.

If you disable run-time compilation and a request arrives for a JSP file that does
not have a matching .class file, the JSP engine returns HTTP error 501 (Not
implemented) to the browser. If the JSP file does not exist, the JSP engine returns
HTTP error 404 (File not found) to the browser. In both cases, an exception is
written to the System Out (SYSOUT) and First Failure Data Capture (FFDC) logs. If
a JSP file has a matching .class file but that file is out of date, the JSP engine still
loads the .class file into memory.

Perform the following steps to determine whether the
disableJspRuntimeCompilation option is enabled in WebSphere Application Server:
1. Enable the Diagnostic Trace Service and set the trace specification to

com.ibm.ws.webcontainer.jsp.servlet.*=all=enabled.
2. Request a JSP file.
3. Locate the string, disableJspRuntimeCompilation:true, in the trace.log file.
4. Ensure the jspUri: entry matches the requested JSP file.

If both the disableJspRuntimeCompilation:true string and the matching jspUri:
entry appear in the trace, the disableJspRuntimeCompilation setting is enabled for
the Web application.

Example: Converting JavaScript source to the Bean Scripting
Framework

JavaScript code is one of the most popular languages of Web developers. This
language supports the following base objects, plus additional objects from the
Document Object Model:
v array
v date
v math
v number
v string

Server-side JavaScript code supports the same base objects, and additional objects
that support user access to databases, file systems and e-mail systems.

38 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Like client-side JavaScript code, server-side JavaScript code is also platform,
browser, and language independent.

You can convert server-side JavaScript applications to the Bean Scripting
Framework. This article describes how to perform this conversion.

Server-side JavaScript source code

Suppose you have the following server-side JavaScript application:
<html>
<head>
<title>Hello World server-side JavaScript example</title>
</head>
<body>

</body>
</html>

<server>
function writePage()

write("<center>Hello World</center>");
</server>

Converting server-side JavaScript source code to the Bean Scripting Framework
(BSF)

Make the following changes to the JavaScript source code to enable BSF:
<%@ page language="javascript" %>
<html>
<head>
<title>Hello World server-side BSF/JavaScript example</title>
</head>
<body>

</body>
</html>

<%
out.println("<center>Hello World</center>");

%>

Review the other BSF reference articles for deployment information and additional
programming examples.

Scenario: Creating a Bean Scripting Framework application

Scenario description
Programming skills in JavaScript code are more prevalent than programming skills
using JavaServer Pages (JSP) tags. Using the Bean Scripting Framework, JavaScript
programmers can gradually introduce JSP tags in their JavaScript applications
without completely rewriting the source code. The BSF method not only reduces
the potential of programming errors, but also provides a painless way to learn a
new technology.

The following scenario illustrates how to implement a BSF application using
JavaScript within JSP tags.

Chapter 2. Using Web applications 39

Developing the BSF application
At ABC elementary school, John Doe teaches third grade mathematics. He wants to
help his students memorize their multiplication tables, and thinks a small
Web-based quiz could help meet his objective. However, John Doe only knows
JavaScript.

Using the Bean Scripting Framework to help leverage his JavaScript skills, John
Doe creates two JSP files, multiplication_test.jsp and
multiplication_scoring.jsp.

In the multiplication_test.jsp file, John Doe uses both client-side and server-side
JavaScript code to generate a test of 100 random multiplication questions,
displayed using a three minute timer. He then writes the
multiplication_scoring.jsp file to read the data submitted by the
multiplication_test.jsp file and to generate the scoring results.

John Doe creates the following two files:
multiplication_test.jsp:
<html>
<head>
<title>Multiplication Practice Test</title>
<script language="javascript">
var countMin=3;
var countSec=0;
function updateDisplay (min, sec) {

var disp;
if (min <= 9) disp = " 0";
else disp = " ";
disp += (min + ":");
if (sec <= 9) disp += ("0" + sec);
else disp += sec;
return(disp);

}
function countDown() {

countSec--;
if (countSec == -1) {

countSec = 59;
countMin--;

}
document.multtest.counter.value = updateDisplay(countMin, countSec);
if((countMin == 0) &&(countSec == 0)) document.multtest.submit();
else var down = setTimeout("countDown();", 1000);

}
</script>
</head>
<body bgcolor="#ffffff" onLoad="countDown();">
<%@ page language="javascript" %>
<h1>Three Minute Multiplication Drill</h1>
<hr>
<h2>Remember: this is an opportunity to excel!</h2>
<p>
<form method="POST" name="multtest" action="multiplication_scoring.jsp">
<div align="center">
<table>
<tr>
<td>
<h3>Time left:
<input type="text" name="counter" size="9" value="03:00" readonly>
</h3>
</td>
<td>
<input type="submit" value="Submit for scoring!">
</td>

40 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

</tr>
</table>
<table border="1">
<%
var newrow = 0;
var q_num = 0;
function addQuestion(num1, num2) {

if (newrow == 0) out.println("<tr>");
out.println("<td>");
out.println(num1 + " x " + num2 + " = ");
out.println("</td><td>");
out.print("<input name=\"" + q_num + "|" + num1 + ":" + num2 + "\" ");
out.println("type=\"text\" size=\"10\">");
out.println("</td>");
if (newrow == 3) {

out.println("</tr>");
newrow = 0;

}
else newrow++;
q_num++;

}
for (var i = 0; i < 100; i++) {

var rand1 = Math.ceil(Math.random() * 12);
var rand2 = Math.ceil(Math.random() * 12);
addQuestion(rand1, rand2);

}
%>
</table>
</div>
</form>
</body>
</html>

multiplication_scoring.jsp:
<html>
<head>
<title>Multiplication Practice Test Results</title>
</head>
<body bgcolor="#ffffff">
<%@ page language="javascript" %>
<h1>Multiplication Drill Score</h1>
<hr>
<div align="center">
<table border="1">
<tr><th>Problem</th><th>Correct Answer</th><th>Your Answer</th></tr>
<%
var total_score = 0;
function score (current, pos1, pos2) {

var multiplier = current.substring(pos1 + 1, pos2);
var multiplicand = current.substring(pos2 + 1, current.length());
var your_product = request.getParameterValues(current)[0];
var true_product = multiplier * multiplicand;
out.println("<tr>");
out.println("<td>" + multiplier + " x " + multiplicand + " = </td>");
out.println("<td>" + true_product + "</td>");
if (your_product == true_product) {

total_score++;
out.print("<td bgcolor=\"\#00ff00\">");

}
else {

out.print("<td bgcolor=\"\#ff0000\">");
}
out.println(your_product + "</td>");
out.println("</tr>");

}
var equations = request.getParameterNames();
while(equations.hasMoreElements()) {

var currElt = equations.nextElement();

Chapter 2. Using Web applications 41

var splitPos1 = currElt.indexOf("|");
var splitPos2 = currElt.indexOf(":");
if (splitPos1 >=0 && splitPos2 >= 0) score(currElt, splitPos1, splitPos2);

}
%>
</table>
<h2>Total Score: <%= total_score %></h2>
<h3>Try again?</h3>
</div>
</body>
</html>

Follow these steps to see how John Doe uses BSF to implement JavaScript in a JSP
application:

Steps for this task
1. Give your files a .jsp extension.
2. Use server-side JavaScript code in your application.

The multiplication_test.jsp file incorporates both client-side and server-side
JavaScript. Server-side JavaScript is similar to client-side JavaScript; the primary
difference consists of using a different set of objects. Whereas client-side
Javascript programmers invoke document and window objects, server-side
JavaScript programmers, using the Bean Scripting Framework, invoke a set of
objects provided by the JSP technology. Also, client-side scripts are enclosed in
<script> tags, but server-side scripts use JSP scriptlet and expression tags.
Examine the following blocks of code:
<script language="javascript">
var countMin=3;
var countSec=0;
function updateDisplay (min, sec) {

var disp;
if (min <= 9) disp = " 0";
else disp = " ";
disp += (min + ":");
if (sec <= 9) disp += ("0" + sec);
else disp += sec;
return(disp);

}
function countDown() {

countSec--;
if (countSec == -1) {

countSec = 59;
countMin--;

}
document.multtest.counter.value = updateDisplay(countMin, countSec);
if((countMin == 0) && (countSec == 0)) document.multtest.submit();
else var down = setTimeout("countDown();", 1000);

}
</script>
....
<body bgcolor="#ffffff" onLoad="countDown();">
...
<form method="POST" name="multtest" action="multiplication_scoring.jsp">
...
<input type="text" name="counter" size="9" value="03:00" readonly>
...

The JavaScript code contained in the <script> block implements a timer set
within the <input> field named counter. The onLoad event handler in the
<body> tag causes the browser to load and execute the code when the the page
is loaded.

42 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The document.multtest.submit() statement causes the form named multtest to
be submitted when the timer expires.

3. Identify the code to the BSF function.
The following code example, from the multiplication_test.jsp file, displays
the use of a JSP directive. This directive tells the WebSphere Application Server
BSF function that this file is using the JavaScript language, and that the
JavaScript code is enclosed by the <% ... %> scriptlet tags. The out implicit JSP
object in this code example, creates the body section of a table from 100
randomly generated questions.
...
<%@ page language="javascript" %>
...
<%
var newrow = 0;
var q_num = 0;

function addQuestion(num1, num2) {
if (newrow == 0) out.println("<tr>");

out.println("<td>");
out.println(num1 + " x " + num2 + " = ");
out.println("</td><td>");
out.print("<input name=\"" + q_num + "|" + num1 + ":" + num2 + "\" ");
out.println("type=\"text\" size=\"10\">");
out.println("</td>");

if (newrow == 3) {
out.println("</tr>");
newrow = 0;

}
else newrow++;

q_num++;
}

for (var i = 0; i < 100; i++) {
var rand1 = Math.ceil(Math.random() * 12);
var rand2 = Math.ceil(Math.random() * 12);

addQuestion(rand1, rand2);
}

%>
...

4. Read the results.
To score the results of the practice drill, John Doe uses the request implicit JSP
object in the multiplication_scoring.jsp file to obtain the POST data created
within the <form> tags in the multiplication_test.jsp file.
The multiplication_scoring.jsp file uses the POST data to build an output file
containing the original question, the student’s answer, and the correct answer,
and then prints the text in a table format using the out implicit object.
The following code example from the multiplication_scoring.jsp file
illustrates the use of the request and out JSP objects:
...
<%@ page language="javascript" %>
...
<%
var total_score = 0;
function score (current, pos1, pos2) {

var multiplier = current.substring(pos1 + 1, pos2);
var multiplicand = current.substring(pos2 + 1, current.length());

Chapter 2. Using Web applications 43

var your_product = request.getParameterValues(current)[0];
var true_product = multiplier * multiplicand;
out.println("<tr>");
out.println("<td>" + multiplier + " x " + multiplicand + " = </td>");
out.println("<td>" + true_product + "</td>");
if (your_product == true_product) {

total_score++;
out.print("<td bgcolor=\"\#00ff00\">");

}
else {

out.print("<td bgcolor=\"\#ff0000\">");
}
out.println(your_product + "</td>");
out.println("</tr>");

}
var equations = request.getParameterNames();
while(equations.hasMoreElements()) {

var currElt = equations.nextElement();
var splitPos1 = currElt.indexOf("|");
var splitPos2 = currElt.indexOf(":");
if (splitPos1 >=0 && splitPos2 >= 0) score(currElt, splitPos1, splitPos2);

}

%>
...
<h2>Total Score: <%= total_score %></h2>
...

Note: Although using separate scriptlet blocks of code for different portions of
a conditional expression is common in JSP files implemented in Java, it is
invalid for JSP files implemented using JavaScript through the Bean Scripting
Framework. The JavaScript code must be entirely contained within the scriptlet
tags.

The following code example illustrates invalid usage:
<% if (pass == 0) %>

<i>pass is true</i>
<% else %>

<i>pass is not true</i>

Deploying the BSF application
You assemble and deploy BSF applications in the same manner as JSP applications.
Review the (Assembling applications) article for more information.

Deploy the BSF code examples in WebSphere Application Server to view this
applications processing and output. Use the following quick steps to deploy the
application.

Note: The intent of these ″quick steps″ is to provide you with instant application
output. However, the supported method for deployment is the same as for
standard JSP files.

Steps for this task
1. Use the DefaultApplication to add your BSF files.

Copy your .jsp files to the DefaultApplication directory: <<i>app server
install directory</i>>/installedApps/<<i>node
name</i>>/DefaultApplication.ear/DefaultApplication.war

2. Start the application server.
3. Open a browser and request your BSF application

44 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Use the following URL to request your application:
http://hostName:9080/<<i>jspFileName</i>>.jsp

Example: Bean Scripting Framework code example
The following code examples show how to implement JavaScript using the Bean
Scripting Framework (BSF).

For a quick demonstration of the BSF function, copy these code examples into 2
separate files, and deploy them in WebSphere Application Server using the
instructions in the BSF scenario article.

Multiplication practice test
<html>
<head>
<title>Multiplication Practice Test</title>
<!--
This file and its companion, multiplication_score.jsp, illustrate the
use of ECMAScript within the BSF framework. The task is a simple
timed math quiz, which is 3 minutes in duration. When the quiz ends,
the score is computed and displayed. Users are then asked if they wish
to try the quiz again.
-->

<!--
This code fragment displays and updates the quiz
countdown in client side JavaScript code.
-->
<script language="javascript">
var countMin=3;
var countSec=0;

// This code computes the current countdown time.
function updateDisplay (min, sec) {

var disp;

if (min <= 9) disp = " 0";
else disp = " ";

disp += (min + ":");

if (sec <= 9) disp += ("0" + sec);
else disp += sec;

return(disp);
}

// This code fragment displays the current countdown time in the user’s browser
// window, and submits the results for scoring when the countdown ends.

function countDown() {
countSec--;
if (countSec == -1) {

countSec = 59;
countMin--;

}
document.multtest.counter.value = updateDisplay(countMin, countSec);
if((countMin == 0) && (countSec == 0)) document.multtest.submit();
else var down = setTimeout("countDown();", 1000);

}

</script>
</head>
<body bgcolor="#ffffff" onLoad="countDown();">

Chapter 2. Using Web applications 45

<!--
The body of the quiz runs as JavaServer Pages (JSP) code using BSF. The
code outputs the problems in table format using the POST method and invokes the
scoring module when the user chooses to end the quiz or when
the countdown ends.
-->
<%@ page language="javascript" %>

<h1>Three Minute Multiplication Drill</h1>
<hr>

<h2>Remember: this is an opportunity to excel!</h2>
<p>

<form method="POST" name="multtest" action="multiplication_scoring.jsp">
<div align="center">
<table>
<tr>
<td>
<h3>Time left:
<input type="text" name="counter" size="9" value="03:00" readonly>
</h3>
</td>
<td>
<input type="submit" value="Submit for scoring!">
</td>
</tr>
</table>
<table border="1">
<%
var newrow = 0;
var q_num = 0;

// This code generates a new random multiplication problem up to the number
// twelve, and enters it into the table of problems.

function addQuestion(num1, num2) {
if (newrow == 0) out.println("<tr>");

out.println("<td>");
out.println(num1 + " x " + num2 + " = ");
out.println("</td><td>");
out.print("<input name=\"" + q_num + "|" + num1 + ":" + num2 + "\" ");
out.println("type=\"text\" size=\"10\">");
out.println("</td>");

if (newrow == 3) {
out.println("</tr>");
newrow = 0;

}
else newrow++;

q_num++;
}

//This code obtains two random operands and formats 100 quiz problems.

for (var i = 0; i < 100; i++) {
var rand1 = Math.ceil(Math.random() * 12);
var rand2 = Math.ceil(Math.random() * 12);

addQuestion(rand1, rand2);
}

%>

46 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

</table>
</div>
</form>

</body>
</html>

Multiplication practice test results
<html>
<head>
<title>Multiplication Practice Test Results</title>
</head>
<body bgcolor="#ffffff">

<!--
This JSP code is invoked when the user submits a math quiz for scoring, or when the
quiz countdown expires. The JSP code tabulates the problem list, the correct answer,
the user’s answer, and scores the test. It then offers the user an
opportunity to try the quiz again.
-->
<%@ page language="javascript" %>

<h1>Multiplication Drill Score</h1>
<hr>

<div align="center">
<table border="1">
<tr><th>Problem</th><th>Correct Answer</th><th>Your Answer</th></tr>
<%
var total_score = 0;

// This code parses the submitted form, extracts the a problem generated by the
// multiplication_test.jsp file, outputs it, computes the correct answer,
// and displays this information and the user answer. The code scores
// the quiz using a running sum of correct answers.

function score (current, pos1, pos2) {
var multiplier = current.substring(pos1 + 1, pos2);
var multiplicand = current.substring(pos2 + 1, current.length());
var your_product = request.getParameterValues(current)[0];
var true_product = multiplier * multiplicand;

out.println("<tr>");
out.println("<td>" + multiplier + " x " + multiplicand + " = </td>");
out.println("<td>" + true_product + "</td>");

if (your_product == true_product) {
total_score++;
out.print("<td bgcolor=\"\#00ff00\">");

}
else {

out.print("<td bgcolor=\"\#ff0000\">");
}
out.println(your_product + "</td>");
out.println("</tr>");

}

// This is the main body of the scoring application. It parses the posted quiz,
// and calls the score() function to score remaining problems.

var equations = request.getParameterNames();
while(equations.hasMoreElements()) {

var currElt = equations.nextElement();
var splitPos1 = currElt.indexOf("|");
var splitPos2 = currElt.indexOf(":");

Chapter 2. Using Web applications 47

if (splitPos1 >=0 && splitPos2 >= 0) score(currElt, splitPos1, splitPos2);
}

%>
</table>

<h2>Total Score: <%= total_score %></h2>
<h3>Try again?</h3>
</div>

</body>
</html>

Web modules
A Web module represents a Web application. A Web module is created by
assembling servlets, JavaServer Pages (JSP) files, and static content such as
HyperText Markup Language (HTML) pages into a single deployable unit. Web
modules are stored in Web archive (WAR) files, which are standard Java archive
files.

A Web module contains:
v One or more servlets, JSP files, and HTML files.
v A deployment descriptor, stored in an Extensible Markup Language (XML) file.

The file, named web.xml, declares the contents of the module. It contains
information about the structure and external dependencies of Web components
in the module and describes how the components are used at run time.

You can create Web modules as stand-alone applications, or you can combine Web
modules with other modules to create J2EE applications. You install and run a Web
module in the Web container of an application server.

Assembling Web Modules
Before you begin

If you want to use existing Java 2 Enterprise Edition (J2EE) 1.2 Web modules in
your J2EE 1.3 application, migrate them to J2EE 1.3 first.

Assemble a Web module to contain servlets, JSP files, and related code artifacts.
(Group enterprise beans, client code, and resource adapter code in separate
modules).

A Web module can be installed as a stand-alone application or can be combined
with other modules into an enterprise application.

The Application Assembly Tool (AAT) provides flexibility in assembling Web
modules. Options described below include:
v Importing an existing Web module (WAR file)
v Creating a new Web module
v Copying code artifacts (such as servlets) from one Web module into a new Web

module

Although you can input various properties for Web archives, available properties
are specific to the Servlet, JSP, and J2EE specification level.

48 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Steps for this task
1. Start the AAT.
2. From the New tab, select Web Module. Click OK.

The navigation tree now displays various sets of properties for configuring the
new Web module.

3. (Optional) Use the property dialog shown in the AAT workspace to change the
default file name and location.
a. It is recommended that you change the display name so that it differs from

the file name.
b. If you like, change the temporary location of the Web module from the

default location, install_root/bin.
4. Add at least one Web component (servlet or JSP file) to the module.

You must add at least one Web component, using one of the following
methods.
v Import an existing WAR file containing Web components.

a. In the navigation tree, right-click the Web Components folder.
b. Select Import from its right-click menu.
c. Use the file browser to locate and select the archive file for the module.
d. Click Open. The Web applications in the selected archive are displayed.
e. Select a Web application. Its Web components are displayed in the

workspace.
f. Select the servlets or JSP files to be added and click Add. The components

are displayed in the Selected Components window.
g. Click OK. The properties associated with the archive are also imported.

The property dialog boxes in the workspace are populated automatically
with values.

h. Double-click the Web Components icon to verify that the servlets or JSP
files are included in the module.

i. Double-click the Web Components icon to verify that the servlets or JSP
files are included in the module.

j. Save the Web module.
v Copy and paste archive files from an existing module into the new Web

component.
v Create a new Web component.

a. In the navigation tree, right-click the Web Components folder.
b. Select New from its right-click menu.
c. When the new module is displayed, enter a component name and choose

a component type.
d. Use the file browser to locate and select the archive file for the module.
e. Click the plus sign (+) to verify its contents and enter assembly

properties.
f. In the New Web Component property dialog box, click OK.
g. Verify that the Web component has been added to the module by

double-clicking the Web components icon in the navigation tree.
h. Click the component to view its corresponding property dialog box in the

bottom portion of the pane.
5. Enter assembly properties for each Web component.

Chapter 2. Using Web applications 49

a. Click the plus sign (+) next to the each component to reveal its property
groups.

b. Right-click each property group icon and click New to display properties in
the workspace.

6. Specify additional properties for the Web module.
Right-click each property group’s icon. Choose New to add new values, or edit
existing values in the property pane. (Click Help for descriptions of the
settings).
Note that if you add a security constraint, you must add at least one Web
resource collection.

7. Add any other files needed by the application.
v In the navigation tree, click the plus sign (+) next to the Files icon.

Right-click Add Class Files, Add JAR Files, or Add Resource Files. Select
Add Files.

v Add files, using the Add Files dialog.
8. Save the application

What to do next

Assemble other new modules of your choice, if needed:
v Assembling EJB modules.
v Assembling application client modules.
v ″Assembling resource adapter modules″ (see WebSphere Application Server

documentation on resources).

You can also migrate existing modules.

Another option is to proceed directly to assembling a new application module.
While assembling an application module, you can create any new modules that
you need.

Context parameters
A servlet context defines a server’s view of the Web application within which the
servlet is running. The context also allows a servlet to access resources available to
it.

Using the context, a servlet can log events, obtain URL references to resources, and
set and store attributes that other servlets in the context can use. These properties
declare a Web application’s parameters for its context. They convey setup
information, such as a webmaster’s e-mail address or the name of a system that
holds critical data.

Security constraints
Security constraints declare how Web content is to be protected.

Security constraints declare how to protect Web content. These properties associate
security constraints with one or more Web resource collections. A constraint
consists of a Web resource collection, an authorization constraint and a user data
constraint.
v A Web resource collection is a set of resources (URL patterns) and HTTP

methods on those resources. All requests that contain a request path that

50 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

matches the URL pattern described in the Web resource collection is subject to
the constraint. If no HTTP methods are specified, then the security constraint
applies to all HTTP methods.

v An authorization constraint is a set of roles that users must be granted in order
to access the resources described by the Web resource collection. If a user who
requests access to a specified URI is not granted at least one of the roles
specified in the authorization constraint, the user is denied access to that
resource.

v A user data constraint indicates that the transport layer of the client or server
communications process must satisfy the requirement of either guaranteeing
content integrity (preventing tampering in transit) or guaranteeing
confidentiality (preventing reading while in transit).

Servlet mappings
A servlet mapping is a correspondence between a client request and a servlet.

Servlet containers use URL paths to map client requests to servlets, and follow the
URL path-mapping rules as specified in the Java Servlet specification. The
container uses the URI from the request, minus the context path, as the path to
map to a servlet. The container chooses the longest matching available context path
from the list of Web applications that it hosts.

Invoker attributes
Invoker attributes are used by the servlet that implements the invocation behavior.

Error pages
Error page locations allow a servlet to find and serve a URI to a client based on a
specified error status code or exception type.

These properties are used if the error handler is another servlet or JSP file. The
properties specify a mapping between an error code or exception type and the
path of a resource in the Web application. The container examines the list in the
order that it is defined, and attempts to match the error condition by status code or
by exception class. On the first successful match of the error condition, the
container serves back the resource defined in the Location property.

File serving
File serving allows a Web application to serve static file types, such as HTML.
File-serving attributes are used by the servlet that implements file-serving behavior.

Initialization parameters
Initialization parameters are sent to a servlet in its HttpConfig object when the
servlet is first started.

Servlet caching
Dynamic caching can be used to improve the performance of servlet and
JavaServer Pages (JSP) files by serving requests from an in-memory cache. Cache
entries contain the servlet’s output, results of the servlet’s execution, and metadata.

Web components
A web component is a servlet, Java Server Page (JSP), or HTML file. One or more
web components make up a web module.

Chapter 2. Using Web applications 51

Web property extensions
Web property extensions are IBM extensions to the standard deployment
descriptors for Web applications. These extensions include mime filtering and
servlet caching.

Web resource collections
A Web resource collection defines a set of URL patterns (resources) and HTTP
methods belonging to the resource.

HTTP methods handle HTTP-based requests, such as GET, POST, PUT, and
DELETE. A URL pattern is a partial Uniform Resource Locator that acts as a
template for matching the pattern with existing full URLs in an attempt to find a
valid file.

Welcome files
A Welcome file is an entry point file (for example, index.html) for a group of
related HTML files.

Welcome files are located by using a group of partial URIs. The Web container uses
the partial URIs to find a valid file when the initial URI is not found.

Context parameter assembly settings
A servlet context defines the server view of the Web application within which the
servlet is running. The context also allows a servlet to access resources available to
it. Using the context, a servlet can log events, obtain URL references to resources,
and set and store attributes that other servlets in the context can use.

Access this page by traversing the following path in the Application Assembly
Tool:
Web Modules > component_instance

Parameter name (Required, String)
Specifies the name of a parameter, for example, dataSourceName.

Data type String

Parameter value (Required, String)
Specifies the value of a parameter, for example, jdbc/sample.

Data type String

Description
Contains a description of the context parameter.

Data type String

Initialization parameter assembly settings
Use this page to specify the initialization parameters that are sent to a servlet in its
HttpConfig object when the servlet is first started.

Access this page by traversing the following path in the Application Assembly
Tool:

52 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Web Modules > component_instance > Web Components > component_instance >
Initialization Parameters

Parameter name (Required, String)
Specifies the name of an initialization parameter.

Data type String

Parameter value (Required, String)
Specifies the value of the initialization parameter.

Data type String

Description
Contains text describing the use of the parameter.

Data type String

Filter assembly settings
Use the Filter panel to configure your filter settings.

Access this page by traversing the following path in the Application Assembly
Tool:
Web Modules > component_instance

Filter name
Specifies the logical name of the filter. This name maps the filter.

Data type String

Class
Specifies the fully qualified classname of the filter.

Data type String

Description
Provides a description of the filter.

Data type String

JavaServer Pages attribute assembly settings
Use the JavaServer Pages (JSP) attributes page to set JSP attributes that are used by
servlets that implement JSP processing behavior.

Access this page by traversing the following path in the Application Assembly
Tool:
Web Modules > component_instance > Assembly Property Extensions

JSP Attribute (Name)
Specifies the name of an attribute.

Data type String

Chapter 2. Using Web applications 53

JSP Attribute (Value)
Specifies the value of an attribute.

Data type String

The WebSphere JSP container supports the following JSP attributes:

classdebuginfo
Indicates the compiler should include debugging information in the generated
classfile.

classdebuginfo true or false

Default is false.

classpath
Specifies an additional classpath for compiling the generated servlets.

classpath classpath or null

Default is null.

deprecation
Indicates the compiler should generate deprecation warnings when compiling the
generated Java source.

deprecation true or false

Default is false.

disableJspRuntimeCompilation
Indicates the runtime behavior of the JSP compiler. If this option is set to true, the
JSP compiler does not compile or translate the JSP files, and the JSP engine only
loads precompiled classfiles.

disableJspRuntimeCompilation true or false

Default is false.

ieClassID
Indicates the Java plugin COM class ID for Internet Explorer. The <jsp:plugin> tags
use this value.

ieClassID classid

Default is clsid:8AD9C840-044E-11D1-B3E9-00805F499D93.

javaEncoding
Indicates the Java platform encoding to use to generate the JSP page servlet.

javaEncoding encoding value

Default is UTF-8.

54 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

jspCompilerPath
Indicates the path of the compiler to use for compiling JSP pages.

jspCompilerPath path name or null

Default is null.

keepgenerated
Indicates the Java files generated by the JSP compiler during the translation phase
of the processing should be kept.

keepgenerated true or false

Default is false.

largefile
Specifies support for large files. When the Java code is generated, the HTML data
in a JSP file is stored separately instead of being saved as constant string data in
the generated servlet.

largefile true or false

Default is false.

mappedfile
Indicates the compiler should generate Java source that includes a print statement
for every line in the JSP file. Use this option for debugging purposes only. It is not
recommended for production environments because the mappedfile option
generates too many out.print() statements.

mappedfile true or false

Default is false.

scratchdir
Specifies the directory where the generated classfiles are created.

scratchdir directory name.

Default is [WAS_INSTALL_ROOT]/temp.

Note: The system property com.ibm.websphere.servlet.temp.dir can be used to
set the scratchdir option on a server-wide basis. This setting, if it is present,
overrides the system property.

usePageTagPool
Enables or disables the reuse of custom tag handlers on an individual JavaServer
Page basis.

usePageTagPool true or false

Default is false.

Chapter 2. Using Web applications 55

The note in the useThreadTagPool attribute description also applies to
theusePageTagPool attribute.

useThreadTagPool
Enables or disables the reuse of custom tag handlers on a per request thread basis.

useThreadTagPool true or false

Default is false.

The note in the useThreadTagPool attribute description also applies to
theusePageTagPool attribute.

Note: Enabling custom tag handler reuse might reveal problems in your tag
handler code regarding the tags ability to be reused. A custom tag handler should
always do two things:
1. The release() method of the tag handler should reset its state and release any

private resources that it might have used. The JSP engine guarantees the
release() method will be called before the tag handler is garbage collected.

2. In the doEndTag() method, all instance states associated with this instance must
be reset.

verbose
Indicates the compiler should generate verbose output when compiling the
generated Java source code.

verbose true or false

Default is false.

Multipurpose Internet Mail Extensions (MIME) filter assembly
settings

Use this page to configure Multipurpose Internet Mail Extensions (MIME) filters.

Access this page by traversing the following path in the Application Assembly
Tool:
Web Modules > component_instance > Assembly Property Extensions

Component name (Required, String)
Specifies the name of the servlet or JavaServer Pages(TM) (JSP) file. This name
must be unique within the Web module.

Data type String

Display name
Specifies a short name that is intended for display by GUIs.

Data type String

Description
Contains a description of the servlet or JSP file.

Data type String

56 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Component type
Specifies the type of Web component. Valid values are servlet or JSP file.

Data type String

Class name (Required, String)
Specifies the full path name for the servlet class.

Data type String

JSP file (Required, String)
Specifies the full path name for the JSP file.

Data type String

Load on startup
Indicates whether this servlet loads at the startup of the Web application.

The default is false (the check box is not selected). Also specifies a positive integer
indicating the order in which to load the servlet. Lower integers are loaded before
higher integers. If no value is specified, or if the value specified is not a positive
integer, the container is free to load the servlet at any time in the startup sequence.

Data type String

Small icon
Specifies a JPEG or GIF file containing a small image (16x16 pixels). Use the image
as an icon to represent the Web component in a GUI.

Data type JPEG, GIF

Large icon
Specifies a JPEG or GIF file containing a large image (32x32 pixels). Use the image
as an icon to represent the Web component in a GUI.

Data type JPEG, GIF

Page list assembly settings
Page lists allow you to avoid hardcoding URLs in servlets and JSP files.

Access this page by traversing the following path in the Application AssemblyTool:
Web Modules > component_instance > Web Components

Name
Specifies the name of the markup language—for example, Hypertext Markup
Language (HTML), Wireless Markup Language (WML), and Voice Extensible
Markup Language (VXML).

Data type String

MIME Type
Specifies the Multi-Purpose Internet Mail Extensions (MIME) type of the markup
language, for example, text/html and text/x-vxml.

Chapter 2. Using Web applications 57

Data type String

Error Page
Specifies the name of an error page.

Data type String

Default Page
Specifies the name of a default page.

Data type String

Pages - Name
Specifies the name of the page to serve, for example, StockQuoteRequest.page.

Data type String

Pages - URI
Specifies the URI of the page to serve, for example,
examples/StockQuoteHTMLRequest.jsp.

Data type String

Security constraint assembly settings
Use the Security constraints panel to configure security constraints.

To view this Application Assembly Tool (AAT) panel, open an existing or create a
new Web module. Right-click Security Constraints from the left navigation menu.
Click New.

If multiple security constraints are specified, the container uses the ″first match
wins″ rule when processing a request to determine what authentication method to
use, or what authorization to allow

Security constraint name
Specifies the name of the security constraint.

Data type String

Authorization Constraints - Roles
Specifies the user roles that are permitted access to this resource collection.

Data type String

Authorization Constraints - Description
Contains a description of the authorization constraints

Data type String

User Data Constraints - Transport guarantee
Indicates how data communicated between the client and the server is to be
protected.

58 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Specifies that the protection for communications between the client and server is
None, Integral, or Confidential.
v None means that the application does not require any transport guarantees.
v Integral means that the application requires that the data sent between the client

and the server must be sent in such a way that it cannot be changed in transit.
v Confidential means that the application requires that the data must be

transmitted in a way that prevents other entities from observing the contents of
the transmission.

In most cases, Integral or Confidential indicates that the use of SSL is required.

Data type String

User Data Constraints - Description
Contains a description of the user data constraints.

Data type String

Servlet mapping assembly settings
A servlet mapping is a correspondence between a client request and a servlet.

Access this page by traversing the following path in the Application Assembly
Tool:
Web Modules > component_instance

URL pattern (Required, String)
Specifies the URL pattern of the mapping.

The URL pattern must conform to the Servlet specification. Use the following
syntax:
v A string beginning with a slash character (/) and ending with the slash and

asterisk characters (/*) represents a path mapping.
v A string beginning with the characters *. represents an extension mapping.
v All other strings are used as exact matches only.
v A string containing only the slash character (/) indicates that the servlet

specified by the mapping becomes the default servlet of the application. In this
case, the servlet path is the request Uniform Resource Identifier (URI) minus the
context path, and the path information is null.

Data type String

Servlet (Required, String)
Specifies the name of the servlet associated with the URL pattern.

Data type String

Tag library assembly settings
Use this page to define the tag library parameters.

Access this page by traversing the following path in the Application Assembly
Tool:

Chapter 2. Using Web applications 59

Web Modules > component_instance

Java ServerPages (JSP) tag libraries contain classes for common tasks such as
processing forms and accessing databases from JSP files.

Tag library file name (Required, String)
Specifies a file name relative to the location of the web.xml document, identifying a
tag library used in the Web application.

Data type String

Tag library location (Required, String)
Contains the location, as a resource relative to the root of the Web application,
where you can find the Tag Library Definition file for the tag library.

Data type String

Welcome file assembly settings
Use this page to configure your welcome page.

Access this page by traversing the following path in the Application Assembly
Tool:
Web Modules > component_instance

Welcome file (Required, String)
The Welcome file list is an ordered list of partial URLs with no trailing or leading
slash characters (/).

The Web server appends each file in the order specified and checks whether a
resource in the Web archive (WAR) file is mapped to that request Uniform
Resource Identifier (URI). The container forwards the request to the first resource
in the WAR file that matches.

Data type String

Servlet caching configuration assembly settings
Use this page to configure your cache groups. Access this page by traversing the
following path in the Application AssemblyTool: Web Modules >
component_instance > Assembly Property Extensions

The properties on the General tab define a cache group and govern how long an
entry remains in the cache. The properties on the ID Generation tab define how
cache IDs are built and the criteria used to cache or invalidate entries. The
properties on the Advanced tab define external cache groups and specify custom
interfaces for handling servlet caching.

Caching group name
Specifies a name for the group of servlets or JavaServer Pages (JSP) files to cache.

Priority
Defines the default priority for cached servlets. Specify as an integer. The default
value is 1.

60 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Priority is an extension of the Least Recently Used (LRU) caching algorithm. It
represents the number of cycles through the LRU algorithm that an entry is
guaranteed to stay in the cache. The priority represents the length of time that an
entry remains in the cache before becoming eligible for removal. On each cycle of
the algorithm, the priority of an entry is decremented. When the priority reaches
zero, the entry is eligible for invalidation. If an entry is requested while in the
cache, its priority is reset to the priority value. Regardless of the priority value and
the number of requests, an entry is invalidated when its timeout occurs. Consider
increasing the priority of a servlet or JSP file when it is difficult to calculate the
output of the servlet or JSP file or when the servlet or JSP file is executed more
often than average. Priority values should be low. Higher values do not yield
much improvement but use extra LRU cycles. Use timeout to guarantee the
validity of an entry. Use priority to rank the relative importance of one entry to
other entries. Giving all entries equal priority results in a standard LRU cache that
increases performance significantly.

Timeout
Specifies the length of time, in seconds, that a created cache entry remains in the
cache.

When this time elapses, the entry is removed from the cache. If the timeout is zero
or a negative number, the entry does not time out. It is removed when the cache is
full or programmatically, from within an application.

Invalidate only
Specifies that invalidations for a servlet take place, but that no servlet caching is
performed.

For example, you can use this property to prevent caching of control servlets.
Control servlets treat HTTP requests as commands and execute those commands.
By default, this check box is not selected.

Caching group members
Specifies the names of the servlets or JSP files to cache. The URIs are determined
from the servlet mappings.

Use URIs for cache ID building
Specifies whether or not to use the URI of the requested servlet to create a cache
ID. By default, URIs are used.

Use specified string
Specifies a string representing a combination of request and session variables to
use for creating cache IDs. This property defines request and session variables, and
the cache uses the values of these variables to create IDs for the entries.

Variables - ID
Specifies the name of a request parameter, request attribute, session parameter, or
cookie.

Variables - Type
Specifies the type of variable inidcated in the ID field. The valid values are Request
parameter, Request attribute, Session parameter, or Cookie.

Variables - Method
Specifies the name of a method in the request attribute or session parameter. The
output of this method is used to generate cache entry IDs. If this value is not
specified, the toString method is used by default.

Chapter 2. Using Web applications 61

Variables - Data ID
Specifies a string that, combined with the value of the variable, generates a group
name for the cache entry. The cache entry is placed in this group. You can
invalidate this group.

Variables - Invalidate ID
Specifies a string that is combined with the value of the variable on the request or
session to form a group name. The cache invalidates the group name.

Required
Specifies whether a value must exist in the request. If this check box is selected,
and either the request parameter, request attribute, session parameter, or the
method is not specified, the request is not cached.

External cache groups - Group name
Specifies the name of the external cache group to which this servlet is published.

ID generator
Specifies a user-written interface for handling parameters, attributes, and sessions.

The value must represent a full package and class name of a class extending
com.ibm.websphere.servlet.cache.IdGenerator. The properties specified in the
Application Assembly Tool are used and passed to the IdGenerator in the initialize
method inside a com.ibm.websphere.servlet.cache.CacheConfig object.

Data type String

Meta data generator
Specifies a user-written interface for handling invalidation, priority levels, and
external cache groups.

The value must represent the full package and class name of a class extending
com.ibm.websphere.servlet.cache.MetaDataGenerator. The properties specified in
the Application Assembly Tool are used and passed to the MetaDataGenerator in
the initialize method inside a com.ibm.websphere.servlet.cache.CacheConfig object.

Data type String

Web components assembly settings
Use this page to set the assembly properties for the components that make up a
Web module.

Access this page by traversing the following path in the Application Assembly
Tool:
Web Modules > component_instance > Web Components

Component name
Specifies the name of the servlet or JavaServer Pages(TM) (JSP) file. This name
must be unique within the Web module.

Data type String

Display name
Specifies a short name that is intended for display by GUIs.

62 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Data type String

Description
Contains a description of the servlet or JSP file.

Data type String

Component type
Specifies the type of Web component. Valid values are servlet or JSP file.

Data type String

Class name
Specifies the full path name for the servlet class.

Data type String

JSP file
Specifies the full path name for the JSP file.

Data type String

Load on startup
Indicates whether this servlet loads at the startup of the Web application. The
default is false (the check box is not selected).

This field also specifies a positive integer indicating the order in which the servlet
is to load. Lower integers are loaded before higher integers. If no value is
specified, or if the value specified is not a positive integer, the container is free to
load the servlet at any time in the startup sequence.

Data type Boolean
Default False

Small icon
Specifies a JPEG or GIF file containing a small image (16x16 pixels). Use the image
as an icon to represent the Web component in a GUI.

Data type String

Large icon
Specifies a JPEG or GIF file containing a large image (32x32 pixels). Use the image
as an icon to represent the Web component in a GUI.

Data type String

Run as role name
Enter a role name that represents the user account under which the servlet
executes. The default role name is blank, which indicates the servlet runs under
the user that logged into the application server. The role name of ″all role″
indicates the servlet can execute under different users.

Data type String

Chapter 2. Using Web applications 63

Description
In this optional field, enter a description that explains the importance of the role,
and where and how the role can be used.

Data type String

Run as role mode
Indicates a security role that is defined in the enterprise application.

Data type String

Local Transactions - Unresolved action
Specifies the action the Web container must take if resources in a local transaction
are uncommitted by an application. This property is an IBM extension to the
standard J2EE deployment descriptor. A local transaction context is provided by
the container in the absence of a global transaction context.

Data type String
Default Rollback
Range valid values are Commit Rollback

Additional information about these settings follows:

Commit
At end of the local transaction context, the container instructs all the
unresolved local transactions to commit.

Rollback (default)
At end of the local transaction context, the container instructs all the
unresolved local transactions to rollback.

WebSphere Application Server Enterprise assembly settings for
Web components
Use this page to configure Enterprise functions for Web components (servlets and
JSPs).

Own task: A J2EE component’s own task defines the task that can be used to
identify a unit of work begun by this component to application profile-configured
policies on downstream requests.

Name: The name of the task to be propagated on requests from this J2EE
component.

Datatype String

Description: The description of the task.

An optional field provided as a convenience to the developer.

Datatype String

Task references: Task references enable developers to programmatically set the
current task under which a component is executing.

64 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Name: The name of the task reference. This name corresponds to the string that
the developer uses to set the current task.

Task: The task that the run-time environment will associate with execution of the
current component.

Name: The name of the task.

Programmatically setting the logical task name causes this task name to be
associated with requests from this J2EE component.

Description: A description of the task.

An optional field provided as a convenience for the developer.

ActivitySession control kind: The action to be taken by the TransactionControl
collaborator that runs in the web container.

Default None

Chapter 2. Using Web applications 65

Range
Application

Access to
UserActivitySessions is
provided. Any
HttpSession started by a
servlet does not have an
ActivitySession
automatically associated
with it by the container.
The container associates
any ActivitySession
started by the servlet
with an HttpSession
already available to the
servlet. An
ActivitySession started
before any HttpSession
is created is not
associated with any
HttpSession and must
be completed by the
application before
dispatch-end; otherwise
it is cleaned up by the
container. Servlets with
this attribute cannot be
included or forwaded
to.

Container
A servlet has no access
to UserActivitySessions.
Any HttpSession started
by the servlet has an
ActivitySession
automatically associated
with it by the container,
and this ActivitySession
is put onto the thread
of execution. If such a
servlet is dispatched by
a request that has an
HttpSession containing
no ActivitySession, then
the container starts an
ActivitySession and
associates it with the
HttpSession and the
thread.

None A servlet has no access
to UserActivitySessions,
and no participation in
an ActivitySession is
tolerated. Any
HttpSession containing
an ActivitySession that
is associated with a
request dispached on
such a servlet is rejected
with a ServletException.

66 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Internationalization type: The Internationalization type of a servlet indicates
whether the servlet or the hosting J2EE Web container will manage
internationalization context on lifecycle method invocations. For servlets, the
Internationalization type setting can be configured to Application or Container, and
defaults to Container. The setting applies to all lifecycle methods of a servlet.

Select whether the servlet will employ Application or Container
internationalization context management using the Internationalization type
drop-down menu.

Default Container

Chapter 2. Using Web applications 67

Range
Application

Under Application-managed
Internationalization (AMI) servlets are
responsible to manage (set) invocation
context elements using the
internationalization context API. The
container suspends internationalization
context imported from the calling process
on lifecycle method invocations, including
HTTP servlet requests; to continue
propagating this context on subsequent
business method requests, the method
must use the API to transfer caller context
elements to the invocation context scoped
to the method. Invocation context
elements not set using the API default to
the respective elements of the current
process when accessed using the API or
when propagated on outgoing business
method requests.

Specify Application-managed
Internationalization for servlets having
internationalization context management
requirements not supported by
Container-managed Internationalization.

Container

Under Container-managed
Internationalization (CMI) servlets have
read-only access to the
internationalization context API and rely
solely on the Web container to manage
invocation context in accordance with the
Run as field of the applicable Container
Internationalization attribute. On a service
method invocation, the container scopes
the context indicated by the Run as field
to the method; when the method has
completed, the container removes this
context from scope. If the servlet is not
indicated within a Container
Internationalization attribute, the
container scopes the caller context by
defualt. Invocation context elements
unavailable to the container default to the
respective elements of the server JVM
when accessed using the API or when
propagated on outgoing business method
requests.

Web modules assembly settings
Use this page to set the assembly properties for web modules. Web modules are
composed of one or more web components.

Access this page by traversing the following path in the Application AssemblyTool:
application_instance > Web Modules

68 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

File name
Specifies the file name of the Web module, relative to the top level of the
application package.

Alternative DD
Specifies the file name for an alternative deployment descriptor file to use instead
of the original deployment descriptor file in the module’s JAR file.

This file is the postassembly version of the deployment descriptor file. (The
original deployment descriptor file can be edited to resolve dependencies and
security information. Directing the use of the alternative deployment descriptor
allows you to keep the original deployment descriptor file intact). The value of the
Alternative DD property must be the full path name of the deployment descriptor
file relative to the module’s root directory. By convention, the file is in the ALT-INF
directory. If this property is not specified, the deployment descriptor file is read
directly from the module’s JAR file.

Context root
Specifies the context root of the Web application. The context root is combined
with the defined servlet mapping (from the WAR file) to compose the full URL
that users type to access the servlet.

For example, if the context root is /gettingstarted and the servlet mapping is
MySession, then the URL is http://host:port/gettingstarted/MySession.

Classpath
Specifies the class path for resources used by the Web application, relative to the
ear file..

If your Web application requires access to classes within an ear file, specify the
relative path of the classes in this field.

Display name
Specifies a short name that is intended to be displayed by GUIs.

Description
Contains a description of the Web module.

Distributable
Specifies that this Web application is programmed appropriately to deploy into a
distributed servlet container.

Small icon
Specifies a JPEG or GIF file containing a small image (16x16 pixels). The image is
used as an icon to represent the module in a GUI.

Large icon
Specifies a JPEG or GIF file containing a large image (32x32 pixels). The image is
used as an icon to represent the module in a GUI.

Session configuration
Indicates that session configuration information is present. Checking this box
makes the Session timeout property editable.

Session timeout
Specifies a time period, in seconds, after which a client is considered inactive. The
default value is zero, indicating that the session timeout never expires.

Chapter 2. Using Web applications 69

Login configuration — Authentication method
Specifies an authentication method to use. As a prerequisite to gaining access to
any Web resources protected by an authorization constraint, a user must
authenticate by using the configured mechanism.

A Web application can authenticate a user to a Web server by using one of the
following mechanisms: HTTP basic authentication, HTTP digest authentication,
HTTPS client authentication, and form-based authentication.
v HTTP basic authentication is not a secure protocol because the user password is

transmitted with a simple Base64 encoding and the target server is not
authenticated. In basic authentication, the Web server requests a Web client to
authenticate the user and passes a string called the realm of the request in which
the user is to be authenticated.

v HTTP digest authentication transmits the password in encrypted form.
v HTTPS client authentication uses HTTPS (HTTP over SSL) and requires the user

to possess a public key certificate.
v Form-based authentication allows the developer to control the appearance of

login screens.

The Login configuration properties are used to configure the authentication
method that should be used, the realm name that should be used for HTTP basic
authentication, and the attributes that are needed by the form-based login
mechanism. Valid values for this property are Unspecified, Basic, Digest, Form, and
Client certification.

Note:

HTTP digest authentication is not supported as a login configuration in this
product. Also, not all login configurations are supported in all of the product’s
global security authentication mechanisms (Local Operating system, LTPA, and
custom pluggable user registry). HTTP basic authentication and form-based login
authentication are the only authentication methods supported by the Local
Operating system user registry. LTPA and the custom pluggable user registry are
capable of supporting HTTP basic authentication, form-based login, and HTTPS
client authentication.

Login configuration — Realm name
Specifies the realm name to use in HTTP basic authorization. It is based on a user
name and password, sent as a string (with a simple Base64 encoding).

An HTTP realm is a string that allows URIs to be grouped together. For example, if
a user accesses a secured resource on a Web server within the ″finance realm,″
subsequent access to the same or different resource within the same realm does not
result in a repeat prompt for a user ID and password.

Login configuration — Login page
Specifies the location of the login form. If form-based authentication is not used,
this property is disabled.

Form Login Config — Error page
Specifies the location of the error page. If form-based authentication is not used,
this property is disabled.

Reload interval
Specifies a time interval, in seconds, in which the file system of the Web
application is scanned for updated files. The default is 3 seconds.

70 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Reloading enabled
Specifies whether file reloading is enabled. The default is true.

Default error page
Specifies a file name for the default error page. If no other error page is specified
in the application, this error page is used.

Additional classpath
Specifies the full class path that will be used to reference classes outside of those
specified in the archive.

If your Web application requires access to classes not contained in the archive file,
specify the full path for those classes in this field.

File serving enabled
Specifies whether file serving is enabled. File serving allows the application to
serve static file types, such as HTML and GIF. File serving can be disabled if the
application contains only dynamic components. The default value is true.

Directory browsing enabled
Specifies whether directory browsing is enabled. Directory browsing allows the
application to browse disk directories. Directory browsing can be disabled if, you
want to protect data. The default value is true.

Serve servlets by classname
Specifies whether a servlet can be served by requesting its class name.

Usually, servlets are served only through a URI reference. The class name is the
actual name of the servlet on disk. For example, a file named SnoopServlet.java
compiles into SnoopServlet.class. (This is the class name.) SnoopServlet.class is
normally invoked by specifying snoop in the URI. However, if Serve Servlets by
Classname is enabled, the servlet is invoked by specifying SnoopServlet. The
default value is true.

Virtual hostname
Specifies a virtual host name. A virtual host is a configuration enabling a single
host machine to resemble multiple host machines. This property allows you to
bind the application to a virtual host in order to enable execution on that virtual
host.

Filter mappings
Specifies the filter mapping declarations in this application. The container uses the
filter mapping declarations to decide on the type and order of filters to apply to a
request.

After the container matches the request URI to a servlet, for each filter mapping
element, it determines what filters to apply based on the servlet name or the URL
pattern, depending on the style specified. Filters are invoked in the same order as
the one specified in the list of filter mapping elements. The value that you specify
for the filter name must be the same value as that specified in the
<filter><filtername> sub-element declarations in the deployment descriptor.

Assembly property extensions
Use this panel to configure WebSphere Application Server specific Web module
extensions, or also referred to as assembly property extensions.

This panel lists the extensions that can be configured through the tool.

Chapter 2. Using Web applications 71

Reach the applicable extension panel by clicking on the panel name in the
navigation at the left, or by double-clicking the attribute name in the list provided.

Access this page by traversing the following path in the Application AssemblyTool:
Web Modules > component_instance > Assembly Property Extensions

Assembly properties for a Web module include:
v File serving attributes
v Invoker attributes
v JavaServer Pages (JSP) attributes
v Multipurpose Internet Mail Extensions (MIME) filters
v Servlet caching configurations

File serving attribute assembly settings
File serving allows a Web application to serve static file types, such as HTML.
File-serving attributes are used by the servlet that implements file-serving behavior.

Access this page by traversing the following path in the Application AssemblyTool:
Web Modules > component_instance > Assembly Property Extensions

File Serving Attribute (Name)
Specifies the name of an attribute.

Data type String

File Serving Attribute (Value)
Specifies the value of an attribute.

Data type String

Invoker attribute assembly settings
Invoker attributes are used by the servlet that implements the invocation behavior.

Access this page by traversing the following path in the Application Assembly
Tool:
Web Modules > component_instance > Assembly Property Extensions

Invoker Attribute (Name)
Specifies the name of an attribute.

Data type String

Invoker Attribute (Value)
Specifies the value of an attribute.

Data type String

Error page assembly settings
Error page locations allow a servlet to find and serve a URI to a client based on a
specified error status code or exception type. These properties are used if the error
handler is another servlet or JSP file.

72 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Access this page by traversing the following path in the Application Assembly
Tool:
Web Modules > component_instance

The error page properties specify a mapping between an error code or exception
type and the path of a resource in the Web application. The container examines the
list in the order that it is defined, and attempts to match the error condition by
status code or by exception class. On the first successful match of the error
condition, the container serves back the resource defined in the Location property.

Error code
Indicates that the error condition is a status code.

Data type Integer

Error Code (Required, String)
Specifies an HTTP error code, for example, 404.

Data type String

Exception
Indicates that the error condition is an exception type.

Data type String

Exception type name (Required, String)
Specifies an exception type.

Data type String

Location (Required, String)
Contains the location of the error-handling resource in the Web application.

Data type String

Web resource collections security constraint properties
A Web resource collection defines a set of URL patterns or resources and HTTP
methods belonging to the resource, which define the security constraints for a Web
component.

Access this page by traversing the following path in the Application Assembly
Tool:
Web Modules > component_instance

HTTP methods handle HTTP-based requests, such as GET, POST, PUT, and
DELETE. A URL pattern is a partial Uniform Resource Locator that acts as a
template for matching the pattern with existing full URLs in an attempt to find a
valid file.

Web resource name
Specifies the name of a Web resource collection.

Data type String

Chapter 2. Using Web applications 73

Web resource description
Contains a description of the Web resource collection.

HTTP methods
Specifies the HTTP methods to which the security constraints apply. If no HTTP
methods are specified, then the security constraint applies to all HTTP methods.
The valid values are GET, POST, PUT, DELETE, HEAD, OPTIONS, and TRACE.

Data type String

URL pattern
Specifies URL patterns for resources in a Web application. All requests that contain
a request path that matches the URL pattern are subject to the security constraint.

Data type String

Troubleshooting tips for Web application deployment
Deployment of a Web application is successful if you can access the application by
typing a Uniform Resource Locator (URL) in a browser, or if you can access the
application by following a link.

If you cannot access your application, follow these steps to eliminate some
common errors that can occur during migration or deployment.

Web module does not run in WebSphere Application Server Version 5.

Symptom Your Web module does not run when you migrate it to
Version 5

Problem In Version 4.x, the classpath setting that affected visibility
was Module Visibility Mode. In Version 5, you must use class
loader policies to set visibility.

Recommended response Reassemble an existing module, or change the visibility
settings in the class loader policies. in the class loader
policies.

See article (Migration of module visibility modes from
Version 4.x) for more information and examples.

Welcome page is not visible.

Symptom You cannot access an application with a Web path of:

/webapp/myapp
Problem The default welcome page for a Web application is assumed

to be index.html. You cannot access the default page of the
myapp application unless it is named index.html.

Recommended response To identify a different welcome page, modify the properties
of the Web module during assembly. See article Assembling
Web modules for more information.

HTML files are not found.

74 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Symptom Your Web application ran successfully on prior versions, but
now you encounter errors that the welcome page (typically
index.html), or referenced HTML files are not found:

Error 404: File not found: Banner.html
Error 404: File not found: HomeContent.html

Problem For security and consistency reasons, Web application URLs
are now case-sensitive on all operating systems.

Suppose the content of the index page is as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 5.0 Frameset//EN">
<HTML>
<TITLE>
Insurance Home Page
</TITLE>

<frameset rows="18,80">
<frame src="Banner.html" name="BannerFrame" SCROLLING=N
<frame src="HomeContent.html" name="HomeContentFrame">
</frameset>

</HTML>

However the actual file names in the
\WebSphere\AppServer\installedApps\... directory where
the application is deployed are:

banner.html
homecontent.html

Recommended response To correct this problem, modify the index.html file to change
the names Banner.html and HomeContent.html to banner.html
and homecontent.html to match the names of the files in the
deployed application.

Modifying the default Web container configuration
Before you begin

If you choose not to use the default application server, create an application server
instance.

An application server instance contains a single instance of a Web container, which
is created automatically when an application server is created.

The Web container is created initially with default properties values suitable for
simple Web applications. However, these values might not be appropriate for more
complex Web applications.

Your application is complex if it requires any of the following features:
v virtual host
v servlet caching
v special client request loads
v persistent HTTP session support
v special HTTP transport settings

Modify the following properties if you have a complex application:

Steps for this task

Chapter 2. Using Web applications 75

1. (Optional) Modify the Web container General Properties if your Web
application requires a virtual host, other than the default_host, or requires
servlet caching.

2. (Optional) Modify the Web Container Additional Properties Thread Pool
setting if your application handles special client request loads.

3. (Optional) Modify the Web Container Additional Properties Session
Management setting if your application requires persistent HTTP session support.

4. (Optional) Modify the Web Container Additional Properties HTTP transports
setting if your application requires one of the following HTTP transport
settings:
v Unique hostname and port for client access
v SSL enablement

5. (Optional) Modify the Web Container Additional Properties Custom
Properties setting if your application requires global settings for internal
servlets for WAR files packaged by third party tools.

Web container
A Web container handles requests for servlets, JavaServer Pages (JSP) files, and
other types of files that include server-side code. The Web container creates servlet
instances, loads and unloads servlets, creates and manages request and response
objects, and performs other servlet management tasks.

The Web server plug-ins, provided by the WebSphere Application Server, help
supported Web servers pass servlet requests to Web containers.

Web container settings
Use this page to configure the container settings.

Access this page by traversing the following path in the administrative console:
Servers > Application Servers > server_instance > Web container

Configuration - General Properties

Default virtual host
Specifies a virtual host is a configuration enabling a single host machine to
resemble multiple host machines. Resources associated with one virtual host
cannot share data with resources associated with another virtual host, even if the
virtual hosts share the same physical machine.

Select a virtual host option:

Default Host
The product provides a default virtual host with some common aliases,
such as the machine IP address, short host name, and fully qualified host
name. The alias comprises the first part of the path for accessing a resource
such as a servlet. For example, it is localhost:9080 in the request
http://localhost:9080/myServlet.

Admin Host
This is another name for the application server; also known as server1 in
the base installation. This process supports the use of the administrative
console.

76 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Servlet caching
Specifies that if a servlet is invoked once and it generates output to be cached, a
cache entry is created containing not only the output, but also side effects of the
invocation. These side effects can include calls to other servlets or Java Server
Pages (JSP) files, as well as metadata about the entry, including timeout and entry
priority information.

Enable servlet caching
Check this box to enable servlet caching.

Web module settings
Use this page to configure Web module settings.

Access this page by traversing the following path in the administrative console:
Applications > Enterprise Application > application_instance > Web Module

URI
Specifies a URI that, when resolved relative to the application URL, specifies the
location of the module archive contents on a file system. The URI must match the
ModuleRef URI in the deployment descriptor of an application if the module was
packaged as part of a deployed application or enterprise archive (EAR) file.

Name
Specifies the unique display name for the module.

Alternate DD
Specifies the file name for an alternative deployment descriptor file to use instead
of the original deployment descriptor file in the module JAR file.

This file is the post-assembly version of the deployment descriptor file. You can edit
the original deployment descriptor file to resolve dependencies and security
information. Specifying the use of the alternative deployment descriptor keeps the
original deployment descriptor file intact.

The value of the Alternate DD property must be the full path name of the
deployment descriptor file, relative to the module root directory. By convention,
the file is in the ALT-INF directory. If this property is not specified, the deployment
descriptor file is read from the module JAR file.

Starting weight
Specifies the order in which modules are started. Lower weighted modules are
started before higher weighted modules.

Prefer WEB-INF Classes
Specifies classes to load in WEB-INF before any other classes. Implementing the
application class loader is recommended so that classes and resources packaged
within the WAR file load before classes and resources residing in container-wide
library JAR files.

Initial State
Specifies the default state of this application at server startup.

Web Module Deployment settings
Use this page to configure an instance of Web module deployment.

Access this page by traversing the following path in the administrative console:

Chapter 2. Using Web applications 77

Applications > Enterprise Application > application_instance > Web Module >
Web Module_instance

URI
Specifies a URI that, when resolved relative to the application URL, specifies the
location of the module archive contents on a file system. The URI must match the
ModuleRef URI in the deployment descriptor of an application if the module was
packaged as part of a deployed application or enterprise archive (EAR) file.

Alternate DD
Specifies the file name for an alternative deployment descriptor file to use instead
of the original deployment descriptor file in the module JAR file.

This file is the post-assembly version of the deployment descriptor file. You can edit
the original deployment descriptor file to resolve dependencies and security
information. Specifying the use of the alternative deployment descriptor keeps the
original deployment descriptor file intact.

The value of the Alternate DD property must be the full path name of the
deployment descriptor file, relative to the module root directory. By convention,
the file is in the ALT-INF directory. If this property is not specified, the deployment
descriptor file is read from the module JAR file.

Starting weight
Specifies the order in which modules are started. Lower weighted modules are
started before higher weighted modules.

Classloader Mode
Specifies whether the class loader should search in the parent class loader or in the
application class loader first to load a class. The standard for JDK class loaders and
WebSphere class loaders is PARENT_FIRST. By specifying PARENT_LAST, your
application can override classes contained in the parent class loader, but this action
can potentially result in ClassCastException or LinkageErrors if you have mixed
use of overriden classes and non-overriden classes.

The options are PARENT_FIRST and PARENT_LAST. The default is to search in
the parent class loader before searching in the application class loader to load a
class.

Data type String
Default PARENT_FIRST

Web container custom property settings
Use this page to configure arbitrary name-value pairs of data, where the name is a
property key and the value is a string value that can be used to set internal system
configuration properties. Defining a new property enables you to configure a
setting beyond that which is available in the administrative console.

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > > Custom Properties >

Name
Specifies the name (or key) for the property.

Data type String

78 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Value
Specifies the value paired with the specified name.

Data type String

Description
Provides information about the name-value pair.

Data type String

WAR files packaged using third party tools cannot specify behavior for the services
exposed by the Web container internal servlets. You can globally enable/disable
internal servlets for all Web applications at the Web container level by creating
name/value pairs such as:

Name Value

fileServingEnabled true

directoryBrowsingEnabled true

serveServletsByClassnameEnabled true

Settings defined at the Application AssemblyTool level will take precedence over
the global settings set through the custom properties at the Web container level.

Web application deployment extensions will continue to hold configuration
information for the services provided by the internal servlets, and will take
precedence over the global settings set through the custom properties at the Web
container level.

Web applications: Resources for learning
Use the following links to find relevant supplemental information about Web
applications. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v Programming model and decisions
v Programming instructions and examples
v Programming specifications

Programming model and decisions

v J2EE BluePrints for Web applications

v Redbook on the design and implementation of Servlets, JSP files, and
enterprise beans

Programming instructions and examples

Chapter 2. Using Web applications 79

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications/web_tier/index.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245754.html?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245754.html?OpenDocument

v Redbook on Servlet and JSP file Programming

v Sun’s JavaTM Tutorial on Servlets

v Introduction to JavaServer Pages - Tutorial

v Bean Scripting Framework description

v Web delivered samples in the Samples Gallery

Programming specifications

v Java 2 Software Development Kit (SDK)

v Servlet 2.3 Specification

v JavaServer Pages 1.2 Specification

v Differences between JavaScript and ECMAScript

v ISO 8859 Specifications

80 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245755.html?OpenDocument
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets.html
http://www-4.ibm.com/software/webservers/appserv/education.html#online
http://www.mozilla.org/rhino/bsf.html
http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html
http://java.sun.com/j2se/1.3/
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://www.webstandards.org/learn/resources/javascript/index.html
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList

Chapter 3. Managing HTTP sessions

IBM WebSphere Application Server provides a service for managing HTTP
sessions: Session Manager. The key activities for session management are
summarized below.

Before you begin these steps, make sure you are familiar with the programming
model for accessing HTTP session support in the applications following the Servlet
2.3 API.

Steps for this task
1. Plan your approach to session management, which could include session

tracking, session recovery, and session clustering.
2. Create or modify your own applications to use session support to maintain

sessions on behalf of Web applications.
3. Assemble your application.
4. Deploy your application.
5. Ensure the administrator appropriately configures session management in the

administrative domain.
6. Adjust configuration settings and perform other tuning activities for optimal

use of sessions in your environment.

Sessions
A session is a series of requests to a servlet, originating from the same user at the
same browser.

Sessions allow applications running in a Web container to keep track of individual
users.

For example, a servlet might use sessions to provide ″shopping carts″ to online
shoppers. Suppose the servlet is designed to record the items each shopper
indicates he or she wants to purchase from the Web site. It is important that the
servlet be able to associate incoming requests with particular shoppers. Otherwise,
the servlet might mistakenly add Shopper_1’s choices to the cart of Shopper_2.

A servlet distinguishes users by their unique session IDs. The session ID arrives
with each request. If the user’s browser is cookie-enabled, the session ID is stored
as a cookie. As an alternative, the session ID can be conveyed to the servlet by
URL rewriting, in which the session ID is appended to the URL of the servlet or
JavaServer Pages (JSP) file from which the user is making requests. For requests
over HTTPS or Secure Sockets Layer (SSL), Another alternative is to use SSL
information to identify the session.

© Copyright IBM Corp. 2003 81

Migrating HTTP sessions
Note: In Version 5 default write frequency mode is TIME_BASED_WRITES, which
is different from Version 4.0 and 3.5 default mode of END_OF_SERVICE.

Migrating from Version 4.0

No programmatic changes are required to migrate from version 4.0 to version 5.

Migrating from Version 3.5

If you have Version 3.5 applications running in Servlet 2.1 mode, some of the
following Version 5 differences might influence how you choose to track and
manage sessions.

Steps for this task
1. During application development, modify session-related APIs as needed.

Some API changes are required in order to redeploy existing applications on
Version 5. These include changes to the HttpSession API itself as well as issues
associated with moving to support for the Servlet 2.3 specification. Certain
Servlet 2.1 API methods have been deprecated in Servlet 2.3 API . These
deprecated APIs still work in Version 5.0, but they may be removed in a future
version of the API. Changes are summarized in the following list:
v Replace instances of getValue() with getAttribute()
v Replace instances of getValueNames() with getAttributeNames()
v Replace instances of removeValue() with removeAttribute()
v Replace instances of putValue() with setAttribute()

2. During application development, modify Web application behavior as needed.
In accordance with the Servlet 2.3 specification, HttpSession objects must be
scoped within a single Web application context; they may not be shared
between contexts. This means that a session can no longer span Web
applications. Objects added to a session by a servlet or JSP in one Web
application cannot be accessed from another Web application. The same session
ID may be shared (because the same cookie is in use), but each Web application
will have a unique session associated with the session ID. Version 5 provides a
feature that can be used to extend scope of a session to enterprise application.

3. Use administrative tools to configure Session Manager security settings as
needed.
Relative to session security, the default Session Manager setting for Integrate
Security is now false. This is different from the default setting in some earlier
releases.

4. Use administrative tools to configure the JSP enabler and application server as
needed.
In Version 3.5 of the product, JSP files that contained the usebean tag with
scope set to session did not always work properly when session persistence
was enabled. Specifically, the JSP writer needed to write a scriplet to explicitly
set the attribute (that is, to call setAttribute()) if it was changed as part of JSP
processing.
Two new features in Version 5.0 help address this problem:
v You can set dosetattribute to true on the JSP InitParameter.
v You can set the Write Contents option to Write all.

82 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The differences between the two solutions are summarized in the following
table:

Applies to Configured at Action

dosetattribute set to
true

JSP JSP enabler Assures that JSP
session-scoped beans
always call
setAttribute()

Write Contents
option set to Write all

servlet or JSP application server All session data
(changed or
unchanged) is
written to the
external location

If session persistence is enabled and a class reload for the Web application
occurs, the sessions associated with the Web application are maintained in the
persistent store and will be available after the reload.

Developing session management in servlets
This information, combined with the coding example SessionSample.java, provides
a programming model for implementing sessions in your own servlets.

Steps for this task
1. Get the HttpSession object.

To obtain a session, use the getSession() method of the
javax.servlet.http.HttpServletRequest object in the Java Servlet 2.3 API.
When you first obtain the HttpSession object, the Session Management facility
uses one of three ways to establish tracking of the session: cookies, URL
rewriting, or Secure Sockets Layer (SSL) information.
Assume the Session Management facility uses cookies. In such a case, the
Session Management facility creates a unique session ID and typically sends it
back to the browser as a cookie. Each subsequent request from this user (at the
same browser) passes the cookie containing the session ID, and the Session
Management facility uses this ID to find the user’s existing HttpSession object.
In Step 1 of the code sample, the Boolean(create) is set to true so that the
HttpSession object is created if it does not already exist. (With the Servlet 2.3
API, the javax.servlet.http.HttpServletRequest.getSession() method with no
boolean defaults to true and creates a session if one does not already exist for
this user.)

2. Store and retrieve user-defined data in the session.
After a session is established, you can add and retrieve user-defined data to the
session. The HttpSession object has methods similar to those in
java.util.Dictionary for adding, retrieving, and removing arbitrary Java objects.
In Step 2 of the code sample, the servlet reads an integer object from the
HttpSession, increments it, and writes it back. You can use any name to identify
values in the HttpSession object. The code sample uses the name
sessiontest.counter.
Because the HttpSession object is shared among servlets that the user might
access, consider adopting a site-wide naming convention to avoid conflicts.

3. (Optional) Output an HTML response page containing data from the
HttpSession object.

Chapter 3. Managing HTTP sessions 83

4. Provide feedback to the user that an action has taken place during the session.
You may want to pass HTML code to the client browser indicating that an
action has occurred.
For example, in step 3 of the code sample, the servlet generates a Web page
that is returned to the user and displays the value of the sessiontest.counter
each time the user visits that Web page during the session.

5. (Optional) Notify Listeners.
Objects stored in a session that implement the
javax.servlet.http.HttpSessionBindingListener interface are notified when the
session is preparing to end and become invalidated. This notice enables you to
perform post-session processing, including permanently saving the data
changes made during the session to a database.

6. End the session.
You can end a session:
v Automatically with the Session Management facility if a session is inactive

for a specified time. The administrators provide a way to specify the amount
of time after which to invalidate a session.

v By coding the servlet to call the invalidate() method on the session object.

SessionSample.java
import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class SessionSample extends HttpServlet {
public void doGet (HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException {

// Step 1: Get the Session object

boolean create = true;
HttpSession session = request.getSession(create);

// Step 2: Get the session data value

Integer ival = (Integer)
session.getAttribute ("sessiontest.counter");
if (ival == null) ival = new Integer (1);
else ival = new Integer (ival.intValue () + 1);
session.setAttribute ("sessiontest.counter", ival);

// Step 3: Output the page

response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<html>");
out.println("<head><title>Session Tracking Test</title></head>");
out.println("<body>");
out.println("<h1>Session Tracking Test</h1>");
out.println ("You have hit this page " + ival + " times" + "
");
out.println ("Your " + request.getHeader("Cookie"));
out.println("</body></html>");

}
}

84 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Assembling so that session data can be shared
In accordance with the Servlet 2.3 API specification, by default the Session
Management facility supports session scoping by Web module. Only servlets in the
same Web module can access the data associated with a particular session.
WebSphere Application Server provides an option that you can use to extend the
scope of the session attributes to an enterprise application. Therefore, you can
share session attributes across all the Web modules in an enterprise application.
This option is provided as an IBM extension.

Restriction: To use this option, you must install all the Web modules in the
enterprise application on a given server. You cannot split up Web modules in the
enterprise application by servers. For example, with an enterprise application
containing two Web modules, you cannot use this option when one Web module is
installed on one server and second Web module is installed on a different server.
In such split installations, applications might share session attributes across Web
modules using distributed sessions, but session data integrity is lost when
concurrent access to a session is made in different Web modules. It also severely
restricts use of some Session Management features, like TIME_BASED_WRITES.
For enterprise applications on which this option is enabled, the Session
Management configuration on the Web module inside the enterprise application is
ignored. Then Session Management configuration defined on enterprise application
is used if Session Management is overwritten at the enterprise application level.
Otherwise, the Session Management configuration on the Web container is used.

Do the following to share session data across Web modules in an enterprise
application:

Steps for this task
1. Launch the Application Assembly Tool (AAT).
2. Click the application (EAR file) you want to share.
3. Click the IBM extension tab.
4. Click Shared httpsession context.
5. Click Apply.

Make sure the class definition of attributes put into session are available to all
the Web modules in the enterprise application.

6. Save the application (EAR) file.

Servlet API Behavior
If shared HttpSession context is turned on in an enterprise application, HttpSession
listeners defined in all the Web modules inside the enterprise application are
invoked for session events. The order of listener invocation is not guaranteed.

Session security support
You can integrate HTTP sessions and security in IBM WebSphere Application
Server. When security integration is enabled in the Session Management facility
and a session is accessed in a protected resource, you can access that session only
in protected resources from then on. You cannot mix secured and unsecured
resources accessing sessions when security integration is turned on. Security
integration in the Session Management facility is not supported in form-based
login with SWAM.

Chapter 3. Managing HTTP sessions 85

Security integration rules for HTTP sessions
Only authenticated users can access sessions created in secured pages and are
created under the identity of the authenticated user. Only this authenticated user
can access these sessions in other secured pages. To protect these sessions from
unauthorized users, you cannot access them from an unsecure page.

Programmatic details and scenarios
IBM WebSphere Application Server maintains the security of individual sessions.

An identity or user name, readable by the
com.ibm.websphere.servlet.session.IBMSession interface, is associated with a
session. An unauthenticated identity is denoted by the user name anonymous. IBM
WebSphere Application Server includes the
com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException class,
which is used when a session is requested without the necessary credentials.

The Session Management facility uses the WebSphere Application Server security
infrastructure to determine the authenticated identity associated with a client
HTTP request that either retrieves or creates a session. WebSphere Application
Server security determines identity using certificates, LPTA, and other methods.

After obtaining the identity of the current request, the Session Management facility
determines whether to return the session requested using a getSession() call or not.

The following table lists possible scenarios in which security integration is enabled
with outcomes dependent on whether the HTTP request is authenticated and
whether a valid session ID and user name was passed to the Session Management
facility.

(Scenario) Unauthenticated HTTP
request is used to retrieve a
session

HTTP request is
authenticated, with an
identity of ″FRED″ used to
retrieve a session

No session ID was passed in
for this request, or the ID is
for a session that is no longer
valid

A new session is created. The
user name is anonymous

A new session is created. The
user name is FRED

A session ID for a valid
session is passed in. The
current session user name is
″anonymous″

The session is returned. The session is returned.
Session Management changes
the user name to FRED

A session ID for a valid
session is passed in. The
current session user name is
FRED

The session is not returned.
An
UnauthorizedSessionRequest
Exception error is thrown*

The session is returned.

A session ID for a valid
session is passed in. The
current session user name is
BOB

The session is not returned.
An
UnauthorizedSessionRequestException
error is thrown*

The session is not returned.
An
UnauthorizedSessionRequestException
error is thrown*

* A com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException error
is thrown to the servlet.

86 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Session management support
WebSphere Application Server provides facilities, grouped under the heading
Session Management, that support the javax.servlet.http.HttpSession interface
described in the Servlet API specification.

In accordance with the Servlet 2.3 API specification, the Session Management
facility supports session scoping by Web module. Only servlets in the same Web
module can access the data associated with a particular session. Multiple requests
from the same browser, each specifying a unique Web application, result in
multiple sessions with a shared session ID. You can invalidate any of the sessions
that share a session ID without affecting the other sessions.

You can configure a session timeout for each Web application. A Web application
timeout value of 0 (the default value) means that the invalidation timeout value
from the Session Management facility is used.

When an HTTP client interacts with a servlet, the state information associated with
a series of client requests is represented as an HTTP session and identified by a
session ID. Session Management is responsible for managing HTTP sessions,
providing storage for session data, allocating session IDs, and tracking the session
ID associated with each client request through the use of cookies or URL rewriting
techniques. Session Management can store session-related information in several
ways:
v In application server memory (the default). This information cannot be shared

with other application servers.
v In a database. This storage option is known as database persistent sessions.

The last two options are referred to as distributed sessions. Distributed sessions are
essential for using HTTP sessions for failover facility. When an application server
receives a request associated with a session ID that it currently does not have in
memory, it can obtain the required session state by accessing the external store
(database or memory-to-memory). If distributed session support is not enabled, an
application server cannot access session information for HTTP requests that are
sent to servers other than the one where the session was originally created. Session
Management implements caching optimizations to minimize the overhead of
accessing the external store, especially when consecutive requests are routed to the
same application server.

Storing session states in an external store also provides a degree of fault tolerance.
If an application server goes offline, the state of its current sessions is still available
in the external store. This availability enables other application servers to continue
processing subsequent client requests associated with that session.

Saving session states to an external location does not completely guarantee their
preservation in case of a server failure. For example, if a server fails while it is
modifying the state of a session, some information is lost and subsequent
processing using that session can be affected. However, this situation represents a
very small period of time when there is a risk of losing session information.

The drawback to saving session states in an external store is that accessing the
session state in an external location can use valuable system resources. Session
Management can improve system performance by caching the session data at the
server level. Multiple consecutive requests that are directed to the same server can
find the required state data in the cache, reducing the number of times that the

Chapter 3. Managing HTTP sessions 87

actual session state is accessed in external store and consequently reducing the
overhead associated with external location access.

Configuring session management by level
When you configure session management at the Web container level, all
applications and the respective Web modules in the Web container normally inherit
that configuration, setting up a basic default configuration for the applications and
Web modules below it.

However, you can set up different configurations individually for specific
applications and Web modules that vary from the Web container default. These
different configurations override the default for these applications and Web
modules only.

Note: When you overwrite the default session management settings on the
application level, all the Web modules below that application inherit this new
setting unless they too are set to overwrite these settings.

Steps for this task
1. Open the Administrative console.
2. Select the level that this configuration applies to:

v For the web container level:
a. Click Servers > Application Servers.
b. Select a server from the list of application servers.
c. Under Additional Properties, click Web Container.

v For the enterprise application level:
a. Click Applications > Applications.
b. Select an applications from the list of applications.

v For the Web module level:
a. Click Applications > Enterprise Applications.
b. Select an applications from the list of applications.
c. Under Related Items, click Web Modules.
d. Select a Web module from the list of Web modules defined for this

application.
3. Under Additional Properties, click Session Management.
4. Make whatever changes you need to manage sessions
5. If you are working on the Web module or application level and want these

settings to override the inherited Session Management settings, under General
Properties, select Overwrite.

6. Click Apply and Save.

Session tracking options
There are several options for session tracking, depending on what sort of tracking
method you want to use:
v Session tracking with cookies
v Session tracking with URL rewriting
v Session tracking with SSL information

88 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Session tracking with cookies
Tracking sessions with cookies is the default. No special programming is required
to track sessions with cookies.

Session tracking with URL rewriting
An application that uses URL rewriting to track sessions must adhere to certain
programming guidelines. The application developer needs to do the following:
v Program servlets to encode URLs
v Supply a servlet or Java Server Pages (JSP) file as an entry point to the

application

Using URL rewriting also requires that you enable URL rewriting in the Session
Management facility.

Note: In certain cases, clients cannot accept cookies. Therefore, you cannot use
cookies as a session tracking mechanism. Applications can use URL rewriting as a
substitute.

Program session servlets to encode URLs

Depending on whether the servlet is returning URLs to the browser or redirecting
them, include either encodeURL() or encodeRedirectURL() in the servlet code.
Examples demonstrating what to replace in your current servlet code follow.

Rewrite URLs to return to the browser

Suppose you currently have this statement:
out.println("catalog<a>");

Change the servlet to call the encodeURL method before sending the URL to the
output stream:
out.println("<a href=\"");
out.println(response.encodeURL ("/store/catalog"));
out.println("\">catalog");

Rewrite URLs to redirect

Suppose you currently have the following statement:
response.sendRedirect ("http://myhost/store/catalog");

Change the servlet to call the encodeRedirectURL method before sending the URL
to the output stream:
response.sendRedirect (response.encodeRedirectURL ("http://myhost/store/catalog"));

The encodeURL() and encodeRedirectURL() methods are part of the
HttpServletResponse object. These calls check to see if URL rewriting is configured
before encoding the URL. If it is not configured, the calls return the original URL.

If both cookies and URL rewriting are enabled and response.encodeURL() or
encodeRedirectURL() is called, the URL is encoded, even if the browser making the
HTTP request processed the session cookie.

Chapter 3. Managing HTTP sessions 89

You can also configure session support to enable protocol switch rewriting. When
this option is enabled, the product encodes the URL with the session ID for
switching between HTTP and HTTPS protocols.

Supply a servlet or JSP file as an entry point

The entry point to an application (such as the initial screen presented) may not
require the use of sessions. However, if the application in general requires session
support (meaning some part of it, such as a servlet, requires session support), then
after a session is created, all URLs are encoded to perpetuate the session ID for the
servlet (or other application component) requiring the session support.

The following example shows how you can embed Java code within a JSP file:
<%
response.encodeURL ("/store/catalog");
%>

Session tracking with SSL information
No special programming is required to track sessions with Secure Sockets Layer
(SSL) information.

To use SSL information, turn on Enable SSL ID tracking in the Session
Management property page. Because the SSL session ID is negotiated between the
Web browser and HTTP server, this ID cannot survive an HTTP server failure.
However, the failure of an application server does not affect the SSL session ID if
an external HTTP Server is present between WebSphere Application Server and the
browser.

SSL tracking is supported for the IBM HTTP Server and iPlanet Web servers only.
You can control the lifetime of an SSL session ID by configuring options in the Web
server. For example, in the IBM HTTP Server, set the configuration variable
SSLV3TIMEOUT to provide an adequate lifetime for the SSL session ID. An
interval that is too short can cause a premature termination of a session. Also,
some Web browsers might have their own timers that affect the lifetime of the SSL
session ID. These Web browsers may not leave the SSL session ID active long
enough to serve as a useful mechanism for session tracking. Internal Http Server of
WebSphere also supports SSL Tracking.

When using the SSL session ID as the session tracking mechanism in a cloned
environment, use either cookies or URL rewriting to maintain session affinity. The
cookie or rewritten URL contains session affinity information that enables the Web
server to properly route a session back to the same server for each request.

Configuring session tracking
To configure session tracking, complete the following:

Steps for this task
1. Go to the appropriate level of Session Management.
2. Specify which session tracking mechanism you want to pass the session ID

between the browser and the servlet:
v To track sessions with cookies, click Enable Cookies.

To change the cookie settings, click Modify.
v To track sessions with URL rewriting, click Enable URL Rewriting.

90 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

If you want to enable protocol switch rewriting, click Enable protocol switch
rewriting.

v To track sessions with SSL information, click Enable SSL ID tracking.
3. Click Apply.
4. Click Save.
5. Define the session recovery characteristics.

Serializing access to session data
The Servlet API supports concurrent access to a session in a given server instance.
WebSphere Application Server provides an option to prevent the concurrent access
to a session in a given server instance so that concurrent modification of a session
does not occur in a given server instance. This prevention is achieved by
synchronizing the requests based on session. When this feature is turned on, a
session is obtained for the request before invoking the servlet and requests are
synchronized by locking the session for the servlet execution time. Note that
synchronization is based on the memory copy of session. So this feature cannot
serialize requests across servers based on session when session affinity fails.

Restriction: Use this feature only when concurrent modification of the same
session data is possible and is not desirable by the application. This feature has
overhead of serializing the requests based on a session.

Do the following to synchronize session access:

Steps for this task
1. Select the level of Session Management on which you want to serialize session

access.
2. Under Serialize Session access, click Allow serial access.
3. In the Maximum wait time box, type the amount of time, in milliseconds, a

servlet waits on a session before continuing execution. The default is 120000
milliseconds or two minutes.

4. (Optional) Select Allow access on timeout if you want the servlet to gain
access to the session and continue normal execution even if the session is still
locked by another servlet. If you do not select this box, the servlet execution
will abort when the session request times out.

5. Click Apply.
6. Click Save.

Session Management settings
Use this page to manage HTTP session support. This support includes specifying a
session tracking mechanism, setting maximum in-memory session count,
controlling overflow, and configuring session timeout.

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > Session Management.

Overwrite Session Management (application and Web module
level only)
Specifies whether or not these Session Management settings take precedence over
those normally inherited from a higher level for the current application or Web
module.

Chapter 3. Managing HTTP sessions 91

By default, Web modules inherit Session Management settings from the application
level above it, and applications inherit Session Management settings from the Web
container level above it.

Session tracking mechanism
Specifies a mechanism for HTTP session management.

Mechanism Function Default
Enable SSL ID Tracking Specifies that session tracking

uses Secure Sockets Layer
(SSL) information as a session
ID. Enabling SSL tracking
takes precedence over
cookie-based session tracking
and URL rewriting.

There are two parameters
available if you enable SSL
ID tracking: SSLV3Timeout
and Secure Association Server
(SAS). SSLV3Timeout
specifies the time interval
after which SSL sessions are
renegotiated. This is a high
setting and modification does
not provide any significant
impact on performance. The
SAS parameter establishes an
SSL connection only if it goes
out of the Java Virtual
Machine (JVM) to another
JVM. If all the beans are
co-located within the same
JVM, the SSL used by SAS
does not hinder performance.

These are set by editing the
sas.server.properties and
sas.client.props files
located in the
product_installation_root\properties
directory, where
product_installation_root is the
directory where WebSphere
Application Server is
installed.

9600 seconds

92 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Enable Cookies Specifies that session tracking
uses cookies to carry session
IDs. If cookies are enabled,
session tracking recognizes
session IDs that arrive as
cookies and tries to use
cookies for sending session
IDs. If cookies are not
enabled, session tracking uses
URL rewriting instead of
cookies (if URL rewriting is
enabled).

Enabling cookies takes
precedence over URL
rewriting. Do not disable
cookies in the Session
Management facility of the
application server that is
running the administrative
application because this
action causes the
administrative application not
to function after a restart of
the server. As an alternative,
run the administrative
application in a separate
process from your
applications.

Click Modify to change these
settings.

Enable URL Rewriting Specifies that the Session
Management facility uses
rewritten URLs to carry the
session IDs. If URL rewriting
is enabled, the Session
Management facility
recognizes session IDs that
arrive in the URL if the
encodeURL method is called
in the servlet.

Enable Protocol Switch
Rewriting

Specifies that the session ID
is added to a URL when the
URL requires a switch from
HTTP to HTTPS or from
HTTPS to HTTP. If rewriting
is enabled, the session ID is
required to go between HTTP
and HTTPS.

Overflow
Specifies that the number of sessions in memory can exceed the value specified by
the Max In Memory Session Count property. This option is valid only in
nondistributed sessions mode.

Maximum in-memory session count
Specifies the maximum number of sessions to maintain in memory.

Chapter 3. Managing HTTP sessions 93

The meaning differs depending on whether you are using in-memory or
distributed sessions. For in-memory sessions, this value specifies the number of
sessions in the base session table. Use the Allow Overflow property to specify
whether to limit sessions to this number for the entire Session Management facility
or to allow additional sessions to be stored in secondary tables. For distributed
sessions, this value specifies the size of the memory cache for sessions. When the
session cache has reached its maximum size and a new session is requested, the
Session Management facility removes the least recently used session from the cache
to make room for the new one.

5.0.2

Note: Do not set this value to a number less than the maximum thread pool size
for your server.

Session timeout
Specifies how long a session can go unused before it is no longer valid. Specify
either Set timeout or No timeout. Specify the value in minutes greater than or
equal to two.

The value of this setting is used as a default when the session timeout is not
specified in a Web module deployment descriptor. Note that to preserve
performance, the invalidation timer is not accurate to the second. When the Write
Frequency is time based, ensure that this value is least twice as large as the write
interval.

Security integration
Specifies that when security integration is enabled, the Session Management facility
associates the identity of users with their HTTP sessions

Serialize session access
Specifies that concurrent session access in a given server is not allowed.

Maximum wait time Specifies the maximum amount of time a
servlet request waits on an HTTP session
before continuing execution. This parameter
is optional and expressed in seconds. The
default is 120, or 2 minutes. Under normal
conditions, a servlet request waiting for
access to an HTTP session gets notified by
the request that currently owns the given
HTTP session when the request finishes.

Allow access on timeout Specifies whether the servlet is executed
normally or aborted in the event of a
timeout. If this box is checked, the servlet
executes normally. If this box is not checked,
the servlet execution aborts and error logs
are generated.

Cookie settings
Use this page to configure cookie settings for session management.

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > Session Management > Enable Cookies.

94 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Cookie name
Specifies a unique name for the session management cookie. The servlet
specification requires the name JSESSIONID. However, for flexibility this value can
be configured.

Secure cookies
Specifies that the session cookies include the secure field. Enabling the feature
restricts the exchange of cookies to HTTPS sessions only.

Cookie domain
Specifies the domain field of a session tracking cookie. This value controls whether
or not a browser sends a cookie to particular servers. For example, if you specify a
particular domain, session cookies are sent to hosts in that domain. The default
domain is the server.

Cookie path
Specifies that a cookie is sent to the URL designated in the path. Specify any string
representing a path on the server. ″/″ indicates root directory. Specify a value to
restrict the paths to which the cookie will be sent. By restricting paths, you prevent
the cookie from going to certain URLs on the server. If you specify the root
directory, the cookie is sent no matter which path on the given server is accessed.

Cookie maximum age
Specifies the amount of time that the cookie lives on the client browser. Specify
that the cookie lives only as long as the current browser session, or to a maximum
age. If you choose the maximum age option, specify the age in seconds. This value
corresponds to the Time to Live (TTL) value described in the Cookie specification.

Default is the current browser session which is equivalent to setting the value to
-1.

Configuring session tracking for Wireless Application Protocol (WAP)
devices

Most Wireless Application Protocol (WAP) devices do not support cookies. The
preferred way to track sessions for WAP devices is to use URL rewriting. However
on most WAP devices, the maximum allowed URL length is 128 characters. With
URL rewriting, a session indentifier is added to the URL itself, effectively
decreasing the space available for the actual URL and the number of parameters
that can be sent on a request.

To reduce the length of session identifier, you can configure key (jsessionid),
session ID length and clone ID. To make these configuration changes, complete the
following:

Steps for this task
1. Open the Administrative console.
2. Click Servers > Application Servers.
3. Select a server from the list of application servers.
4. Under Additional Properties, click Web Container

5. Under Additional Properties, click Custom Properties.
6. Add the appropriate properties from the following list:

v HttpSessionIdLength
v SessionRewriteIdentifier

Chapter 3. Managing HTTP sessions 95

v HttpSessionCloneId
v CloneSeparatorChange
v NoAdditionalSessionInfo
v SessionIdentifierMaxLength

7. Click Apply and Save.

Session management custom properties
Custom properties for session management:

CloneSeparatorChange
Use this property to maintain session affinity. The clone ID of the server is
appended to session identifier separated by colon. On some Wireless
Application Protocol (WAP) devices, a colon is not allowed. Set this
property to ″true″ to change clone separator to a plus sign (+).

HttpSessionCloneId
Use this property to change the clone ID of the cluster member. Within a
cluster, this name must be unique to maintain session affinity. When set,
this name overwrites the default name generated by WebSphere
Application Server. Default clone ID length: 8 or 9.

HttpSessionIdLength
Use this property to configure the session identifier length. Do not use an
extremely low value; using a low value results in reduced number of
combinations possible, thereby increasing risk of guessing the session
identifier. In a cluster, all cluster members should be configured with same
ID length. Allowed range: 8 to 128. Default length: 23.

HttpSessionReaperPollInterval
Use this property to set a wake-up interval for the process that removes
invalid sessions. Default is based on maximum inactive interval set in
Session Management. Allowed value: integer.

NoAdditionalSessionInfo
Set this value to ″true″ to force removal of information that is not needed
in session identifiers. In WebSphere Application Server base edition, a
clone ID of -1 is never used; therefore, a clone ID is not included in base
edition when this is set. Also, cache ID is not used with nonpersistent
sessions; so the cache ID is not included with nonpersistent sessions when
this value is set.

SessionIdentifierMaxLength
Use this value to set maximum length that a session identifier can grow. In
a cluster, because of fail-over when a request goes to new cluster member,
Session Management appends a new clone ID to the existing clone ID. In a
large cluster, if for some reason servers are failing more often, then it is
possible that the session identifier length can be more than expected
reducing room for URL. So this property helps to find out the condition
and take appropriate action to address servers fail-over. When this is
specified, message is logged when specified maximum length is reached.
Allowed value: integer.

SessionRewriteIdentifier
Use this property to change the key used with URL rewriting. Default key:
jsessionid.

96 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Distributed sessions
WebSphere Application Server provides the following session mechanisms in a
distributed environment:
v Database Session persistence, where sessions are stored in the database

specified.

When a session contains attributes that implement HttpSessionActivationListener,
notification occurs anytime the session is activated (that is, session is read to the
memory cache) or passivated (that is, session leaves the memory cache).
Passivation can occur because of a server shutdown or when the session memory
cache is full and an older session is removed from the memory cache to make
room for a newer session. It is not guaranteed that a session is passivated in one
application server prior to being activated in another.

Session recovery support
For session recovery support, WebSphere Application Server provides distributed
session support in the form of database sessions. Use session recovery support
under the following conditions:
v When the user’s session data must be maintained across a server restart
v When the user’s session data is too valuable to lose through an unexpected

server failure

All the attributes set in a session must implement java.io.Serializable if the session
requires external storage. In general, consider making all objects held by a session
serialized, even if immediate plans do not call for session recovery support. If the
Web site grows, and session recovery support becomes necessary, the transition
occurs transparently to the application if the sessions only hold serialized objects.
If not, a switch to session recovery support requires coding changes to make the
session contents serialized.

Distributed Environment settings
Use this page to specify a type for saving a session in a distributed environment.

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > Session Management > Distributed Environment
Settings.

Distributed Sessions
Specifies the type of distributed environment to be used for saving sessions.

None Specifies that the Session Management
facility discards the session data when the
server shuts down.

Database Specifies that the Session Management
facility stores session information in the data
source specified by the data source
connection settings. Click Database to change
these data source settings.

Chapter 3. Managing HTTP sessions 97

Configuring for database session persistence
To configure the Session Management facility for database session persistence,
complete the following:

Steps for this task
1. Define a JDBC provider.
2. Create a data source pointing to an existing database, using the JDBC provider

that you defined. Note the JNDI name of the data source.
Under Data Sources > datasource_name > Custom Properties, make sure the
correct DB2 database is entered for the value of the databaseName property. If
necessary, contact your DB2 Database Administrator to verify the correct
database name.

3. Go to the appropriate level of Session Management.
4. Click Distributed Environment Settings

5. Select and click Database.
6. Specify the Data Source JNDI name from step 2.
7. Specify the database user ID and password for accessing the database.
8. Retype the password for confirmation.
9. (Optional) Configure a table space and page sizes for DB2 session databases.

10. (Optional) Switch to a multirow schema.
11. Click OK.
12. (Optional) If you want to change the tuning parameters, click Custom Tuning

Parameters and select a setting or customize one.
13. Click Apply.
14. Click Save.

Switching to a multirow schema
By default, a single session maps to a single row in the database table used to hold
sessions. With this setup, there are hard limits to the amount of user-defined,
application-specific data that WebSphere Application Server can access.

Steps for this task
1. Modify the Session Management facility properties to switch from single to

multirow schema.
2. Manually drop the database table or delete all the rows in the database table

that the product uses to maintain HttpSession objects.
To drop the table:
a. Determine which data source configuration Session Management is using.
b. In the data source configuration, look up the database name.
c. Use the database facilities to connect to the database.
d. Drop the SESSIONS table.

Configuring tablespace and page sizes for DB2 session
databases

If you are using DB2 for session persistence, you can increase the page size to
optimize performance for writing large amounts of data to the database. Page sizes
of 8K, 16K, and 32K are supported.

98 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

To use a page size other than the default (4K), do the following:

Steps for this task
1. If the SESSIONS table already exists, drop it from the DB2 database.
2. Create a new DB2 buffer pool and table space, specifying the same page size

(8K, 16K or 32K) for both, and assign the new buffer pool to this table space.
DB2 Connect to session
DB2 CREATE BUFFERPOOL sessionBP SIZE 1000 PAGESIZE 8K
DB2 Connect reset
DB2 Connect to session
DB2 CREATE TABLESPACE sessionTS PAGESIZE 8K MANAGED BY SYSTEM

USING (’D:\DB2\NODE0000\SQL00005\sessionTS.0’) BUFFERPOOL sessionBP
DB2 Connect reset

Refer to DB2 product documentation for details.
3. Configure the correct table space name and page size in the Session

Management facility.
Page size is referred to as row size on the Session Management page.)

Results

When the product is restarted, the Session Management facility creates the new
SESSIONS table in the specified tablespace based on the indicated page size.

Database settings
Use this page to specify the settings for database session support.

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > Session Management > Distributed Environment
Settings > Database.

Datasource JNDI Name
Specifies the datasource description

The JNDI name of the non-XA enabled data source from which Session
Management obtains database connections. For example, if the JNDI name of the
datasource is ″jdbc/sessions″, specify ″jdbc/sessions.″ The data source represents a
pool of database connections and a configuration for that pool (such as the pool
size). The data source must already exist as a configured resource in the
environment.

User ID
Specifies the user ID for database access

Password
Specifies the password for database access

Confirm Password
Specifies the password a second time to ensure it recorded correctly.

DB2 Row Size
Specifies the tablespace page size configured for the sessions table, if using a DB2
database. Possible values are 4, 8, 16, and 32 kilobytes (K). The default row size is
4K.

Chapter 3. Managing HTTP sessions 99

The default row size is 4K. In DB2, it can be updated to a larger value. This can
help database performance in some environments. When this value is other than 4,
you must specify Table Space Name to use. For 4K pages, the Table Space Name is
optional.

Table Space Name
Specifies that tablespace to be used for the sessions table.

This value is required when the DB2 Page Size is other than 4K.

Use Multirow Sessions
Specifies that each instance of application data be placed in a separate row in the
database, allowing larger amounts of data to be stored for each session. This action
can yield better performance in certain usage scenarios. If using multirow schema
is not enabled, instances of application data can be placed in the same row.

Multirow schema considerations
IBM WebSphere Application Server supports the use of a multirow schema option
in which each piece of application specific data is stored in a separate row of the
database. With this setup, the total amount of data you can place in a session is
now bound only by the database capacities. The only practical limit that remains is
the size of the session attribute object.

The multirow schema potentially has performance benefits in certain usage
scenarios, such as when larger amounts of data are stored in the session but only
small amounts are specifically accessed during a given servlet processing of an
HTTP request. In such a scenario, avoiding unneeded Java object serialization is
beneficial to performance.

Understand that switching between multirow and single row is not a trivial
proposition.

In addition to allowing larger session records, using multirow schema can yield
performance benefits. However, it requires a little work to switch from single-row
to multirow schema, as shown in the instructions below.

Coding considerations and test environment
Consider configuring direct single-row usage to one database and multirow usage
to another database while you verify which option suits your application needs.
(Do this in code by switching the data source used; then monitor performance.)

Programming issue Application scenario

Reasons to use single-row v You can read or write all values with just
one record read and write.

v This takes up less space in a database
because you are guaranteed that each
session is only one record long.

Reasons not to use single-row 2-megabyte limit of stored data per session.

100 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Programming issue Application scenario

Reasons to use multirow v The application can store an unlimited
amount of data; that is, you are limited
only by the size of the database and a
2-megabyte-per-record limit.

v The application can read individual fields
instead of the whole record. When large
amounts of data are stored in the session
but only small amounts are specifically
accessed during servlet processing of an
HTTP request, multirow sessions can
improve performance by avoiding
unneeded Java object serialization.

Reasons not to use multirow If data is small in size, you probably do not
want the extra overhead of multiple row
reads when you can store everything in one
row.

In the case of multirow usage, design your application data objects not to have
references to each other, to prevent circular references. For example, suppose you
are storing two objects A and B in the session using HttpSession.put(..) method,
and A contains a reference to B. In the multirow case, because objects are stored in
different rows of the database, when objects A and B are retrieved later, the object
graph between A and B is different than stored. A and B behave as independent
objects.

Clustered session support
A clustered environment supports load balancing, where the workload is
distributed among the application servers that compose the cluster. In a cluster
environment, the same Web application must exist on each of the servers that can
access the session. You can accomplish this setup by installing an application onto
a cluster definition. Each of the servers in the group can then access the Web
application

In a clustered environment, the Session Management facility requires an affinity
mechanism so that all requests for a particular session are directed to the same
application server instance in the cluster. This requirement conforms to the Servlet
2.3 specification in that multiple requests for a session cannot coexist in multiple
application servers. One such solution provided by IBM WebSphere Application
Server is session affinity in a cluster; this solution is available as part of the
WebSphere Application Server plug-ins for Web servers. It also provides for better
performance because the sessions are cached in memory. In clustered environments
other than WebSphere Application Server clusters, you must use an affinity
mechanism (for example, IBM WebSphere Edge Server affinity).

If one of the servers in the cluster fails, it is possible for the request to reroute to
another server in the cluster. If distributed sessions support is enabled, the new
server can access session data from the database or another WebSphere Application
Server instance. You can retrieve the session data only if a new server has access to
an external location from which it can retrieve the session.

Chapter 3. Managing HTTP sessions 101

Tuning session management
IBM WebSphere Application Server session support has features for tuning session
performance and operating characteristics, particularly when sessions are
configured in a distributed environment. These options support the administrator
flexibility in determining the performance and failover characteristics for their
environment.

The table summarizes the features, including whether they apply to sessions
tracked in memory, in a database, with memory-to-memory replication, or all.
Click a feature for details about the feature. Some features are easily manipulated
using administrative settings; others require code or database changes.

Feature or option Goal Applies to sessions in
memory, database, or
memory-to-memory

Write frequency Minimize database write
operations.

Database and
Memory-to-Memory

Session affinity Access the session in the
same application server
instance.

All

Multirow schema Fully utilize database
capacities.

Database

Base in-memory session pool
size

Fully utilize system capacity
without overburdening
system.

All

Write contents Allow flexibility in
determining what session
data to write

Database and
Memory-to-Memory

Scheduled invalidation Minimize contention between
session requests and
invalidation of sessions by
the Session Management
facility. Minimize write
operations to database for
updates to last access time
only.

Database and
Memory-to-Memory

Tablespace and row size Increase efficiency of write
operations to database.

Database (DB2 only)

Configuring scheduled invalidation
You can set specific times for the Session Management facility to scan for
invalidated sessions in a distributed environment. When used with distributed
sessions, this feature has the following benefits:
v You can schedule the scan for invalidated sessions for times of low application

server activity, avoiding contention between invalidation scans of database or
another WebSphere Application Server instance and read and write operations to
service HTTP session requests.

v Significantly fewer external write operations can occur when running with the
End of Service Method write mode because the last access time of the session
does not need to be written out on each HTTP request. (Manual Update and
Time Based Write options already minimize the writing of the last access time.)

102 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Usage considerations
v With scheduled invalidation configured, HttpSession timeouts are not strictly

enforced. Instead, all invalidation processing is handled at the configured
invalidation times.

v HttpSessionBindingListener processing is handled at the configured invalidation
times unless the HttpSession.invalidate() method is explicitly called.

v The HttpSession.invalidate() method immediately invalidates the session from
both the session cache and the external store.

Configuring write contents
In Session Management, you can configure which session data is written to the
database or to another WebSphere instance, depending on whether you are using
database pesistent sessions or memory to memory replication. This flexibility
allows for fewer code changes for the JSP writer when the application will be
operating in a clustered environment. The following options are available in
Session Management for tuning what is to be written back:
v Write changed (the default) - Write only session data properties that have been

updated through setAttribute() and removeAttribute() method calls.
v Write all - Write all session data properties.

The Write all setting might benefit servlet and JSP writers who change Java
objects’ states that reside as attributes in HttpSession and do not call
HttpSession.setAttribute().

However, the use of Write all could result in more data being written back than is
necessary. If this situation applies to you, consider combining the use of Write all
with Time-based write to boost performance overall. As always, be sure to
evaluate the advantages and disadvantages for your installation.

With either Write Contents setting, when a session is first created, complete session
information is written, including all of the objects bound to the session. When
using database session persistence, in subsequent session requests, what is written
to the database depends on whether a single-row or multirow schema has been set
for the session database, as follows:

Write Contents setting Behavior with single-row
schema

Behavior with multirow
schema

Write changed If any session attribute is
updated, all objects bound to
the session are written.

Only the session data
modified through
setAttribute() or
removeAttribute() calls is
written.

Write all All bound session attributes
are written.

All session attributes that
currently reside in the cache
are written. If the session has
never left the cache, all
session attributes are written.

Steps for this task
1. Go to the appropriate level of Session Management.
2. Click Distributed Environment Settings
3. Click Custom Tuning Parameters.
4. Select Custom Settings, and click Modify.

Chapter 3. Managing HTTP sessions 103

5. Select the appropriate write contents setting.

Configuring write frequency
In the Session Management facility, you can configure the frequency for writing
session data to the database or to a WebSphere instance, depending on whether
you use database distributed sessions or memory-to-memory replication. This
flexibility enables you to weigh session performance gains against varying degrees
of failover support. The following options are available in the Session Management
facility for tuning write frequency:
v END_OF_SERVICE - Write session data at the end of the servlet service()

method call.
v MANUAL_UPDATE - Write session data only when the servlet calls the

IBMSession.sync() method.
v TIME_BASED_WRITE (the default) - Write session data at periodic intervals, in

seconds (called the write interval).

When a session is first created, session information is always written at the end of
the service() call.

Base in-memory session pool size
The base in-memory session pool size number has different meanings, depending
on session support configuration:
v With in-memory sessions, session access is optimized for up to this number of

sessions.
v With distributed sessions (meaning, when sessions are stored in a database or in

another WebSphere Application Server instance); it also specifies the cache size
and the number of last access time updates saved in manual update mode.

For distributed sessions, when the session cache has reached its maximum size and
a new session is requested, the Session Management facility removes the least
recently used session from the cache to make room for the new one.

General memory requirements for the hardware system, and the usage
characteristics of the e-business site, determines the optimum value.

Note that increasing the base in-memory session pool size can necessitate
increasing the heap sizes of the Java processes for the corresponding WebSphere
Application Servers.

Overflow in nondistributed sessions
By default, the number of sessions maintained in memory is specified by base
in-memory session pool size. If you do not wish to place a limit on the number of
sessions maintained in memory and allow overflow, set overflow to true.

Allowing an unlimited amount of sessions can potentially exhaust system memory
and even allow for system sabotage. Someone could write a malicious program
that continually hits your site and creates sessions, but ignores any cookies or
encoded URLs and never utilizes the same session from one HTTP request to the
next.

When overflow is disallowed, the Session Management facility still returns a
session with the HttpServletRequest getSession(true) method when the memory
limit is reached, and this is an invalid session that is not saved.

104 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

With the WebSphere Application Server extension to HttpSession,
com.ibm.websphere.servlet.session.IBMSession, an isOverflow() method returns
true if the session is such an invalid session. An application can check this status
and react accordingly.

Controlling write operations
You can manually control when modified session data is written out to the
database or to another WebSphere Application Server instance by using the sync()
method in the com.ibm.websphere.servlet.session.IBMSession interface, which
extends the javax.servlet.http.HttpSession interface. By calling the sync() method
from the service() method of a servlet, you send any changes in the session to the
external location. When MANUAL_UPDATE is selected as the write frequency
mode, session data changes are written to an external location only if the
application calls the sync() method. If the sync() method is not called, session data
changes are lost when a session object leaves the server cache. With
END_OF_SERVICE or TIME_BASE_WRITE is the write frequency mode, the
session data changes are written out whenever the sync() method is called. If the
sync() method is not called, changes are written out at the end of service method
or on a time interval basis based on the write frequency mode selected.

IBMSession iSession = (IBMSession) request.getSession();
iSession.setAttribute("name", "Bob");

//force write to external store
iSession.sync()

Tuning parameter settings
Use this page to set tuning parameters for distributed sessions.

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > Session Management > Distributed Environment
Settings > Custom Tuning Parameters.

Tuning Level
Specifies that the Session Management facility provides certain predefined settings
that affect performance.

Select one of these predefined settings or customize a setting. The default setting is
10 seconds.

To customize a setting, select one of the predefined settings that comes closest to
the setting you want, click Custom settings, make your changes, and then click
OK.

Predefined options and their settings follow:

Very high (optimize for performance):

Write frequency TIME_BASED_WRITES
Write interval 300 sec
Write Contents Only updated attributes
Schedule Sessions Clean up true
First Hour 00

High:

Chapter 3. Managing HTTP sessions 105

Write frequency TIME_BASED_WRITES
Write interval 300 sec
Write Contents All session attributes

Medium:

Write frequency END_OF_SERVICE
Write Contents Only updated attributes

Low (optimize for failover)

Write frequency END_OF_SERVICE
Write Contents All session attributes

Write frequency
Specifies when the session writes to the database or another WebSphere
Application Server instance happens.

End of servlet service A session writes to a database or another
WebSphere Application Server instance after
the servlet completes execution.

Manual update A programmatic sync on the IBMSession
object is required to write the session data to
the database or another WebSphere
Application Server instance.

Time based Session data writes to the database or
another WebSphere Application Server
instance based on the specified Write Interval
value.

Write contents
Specifies whether updated attributes are only written to the external location or all
of the session attributes are written to the external location, regardless of whether
or not they changed. The external location can be either a database or another
application server instance.

Schedule sessions cleanup
Specifies when to clean the invalid sessions from a database or another application
server instance.

Specify sessions cleanup schedule

Enables the scheduled invalidation process for cleaning up the invalidated HTTP
sessions from the external location. Enable this option to reduce the number of
updates to a database or another application server instance required to keep the
HTTP sessions alive. When this option is not enabled, the invalidator process runs
every few minutes to remove invalidated HTTP sessions.

When this option is enabled, specify the two hours of a day for the process to
clean up the invalidated sessions in the external location. Specify the times when
there is the least activity in the application servers. An external location can be
either a database or another application server instance.

First Time of Day

106 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Indicates the first hour, in Greenwich Mean Time (GMT), during which the
invalidated sessions are cleared from the external location. Specify this value as a
positive integer between 0 and 23. This value is valid only when schedule
invalidation is enabled.

Second Time of Day

Indicates the second hour, in Greenwich Mean Time (GMT), during which the
invalidated sessions are cleared from the external location. Specify this value as a
positive integer between 0 and 23. This value is valid only when schedule
invalidation is enabled.

Best practices for using HTTP Sessions
v Enable Security integration for securing HTTP sessions

HTTP sessions are identified by session IDs. A session ID is a pseudo-random
number generated at the runtime. Session hijacking is a known attack HTTP
sessions and can be prevented if all the requests going over the network are
enforced to be over a secure connection (meaning, HTTPS). But not every
configuration in a customer environment enforces this constraint because of the
performance impact of SSL connections. Due to this relaxed mode, HTTP session
is vulnerable to hijacking and because of this vulnerability, WebSphere
Application Server has the option to tightly integrate HTTP sessions and
WebSphere Application Server security. Enable security in WebSphere
Application Server so that, the sessions are protected in a manner that only users
who created the sessions are allowed to access them.

v Release HttpSession objects using
javax.servlet.http.HttpSession.invalidate() when finished.

HttpSession objects live inside the Web container until:
– The application explicitly and programmatically releases it using the

javax.servlet.http.HttpSession.invalidate() method; quite often,
programmatic invalidation is part of an application logout function.

– WebSphere Application Server destroys the allocated HttpSession when it
expires (default = 1800 seconds or 30 minutes). The WebSphere Application
Server can only maintain a certain number of HTTP sessions in memory
based on Session Management settings. In case of distributed sessions, when
maximum cache limit is reached in memory, the Session Management facility
removes the least recently used (LRU) one from cache to make room for a
session.

.
v Avoid trying to save and reuse the HttpSession object outside of each servlet

or JSP file.

The HttpSession object is a function of the HttpRequest (you can get it only
through the req.getSession() method), and a copy of it is valid only for the life of
the service() method of the servlet or JSP file. You cannot cache the HttpSession
object and refer to it outside the scope of a servlet or JSP file.

v Implement the Serializable class when developing new objects to be stored in
the HTTP session.

This action allows the object to properly serialize when using distributed
sessions. Without this extension, the object cannot serialize correctly and throws
an error. An example of this follows:
public class MyObject implements java.io.Serializable {...}

Chapter 3. Managing HTTP sessions 107

Make sure all instance variable objects that are not marked transient are
serializable.

v The HTTPSession API does not dictate transactional behavior for sessions.

Distributed HTTPSession support does not guarantee transactional integrity of
an attribute in a failover scenario or when session affinity is broken. Use
transactionally aware resources like enterprise Java beans to guarantee the
transaction integrity required by your application.

v Ensure the Java objects you add to a session are in the correct class path.

If you add Java objects to a session, place the class files for those objects in the
correct classpath (the Application Classpath if utilizing sharing across Web
modules in an enterprise application, or the WebModule Classpath if using the
Servlet 2.2-complaint session sharing) or in the directory containing other
servlets used in WebSphere Application Server. In the case of session clustering,
this action applies to every node in the cluster.
Because the HttpSession object is shared among servlets that the user might
access, consider adopting a site-wide naming convention to avoid conflicts.

v Avoid storing large object graphs in the HttpSession object.

In most applications each servlet only requires a fraction of the total session
data. However, by storing the data in the HttpSession object as one large object,
an application forces WebSphere Application Server to process all of it each time.

v Utilize Session Affinity to help achieve higher cache hits in the WebSphere
Application Server.

WebSphere Application Server has functionality in the HTTP Server plug-in to
help with session affinity. The plug-in will read the cookie data (or encoded
URL) from the browser and helps direct the request to the appropriate
application or clone based on the assigned session key. This functionality
increases use of the in-memory cache and reduces hits to the database or
another WebSphere Application Server instance

v Maximize use of session affinity and avoid breaking affinity.

Using session affinity properly can enhance the performance of the WebSphere
Application Server. Session affinity in the WebSphere Application Server
environment is a way to maximize the in-memory cache of session objects and
reduce the amount of reads to the database or another WebSphere Application
Server instance. Session affinity works by caching the session objects in the
server instance of the application with which a user is interacting. If the
application is deployed in multiple servers of a server group, the application can
direct the user to any one of the servers. If the users starts on server1 and then
comes in on server2 a little later, the server must write all of the session
information to the external location so that the server instance in which server2
is running can read the database. You can avoid this database read using session
affinity. With session affinity, the user starts on server1 for the first request; then
for every successive request, the user is directed back to server1. Server1 has to
look only at the cache to get the session information; server1 never has to make
a call to the session database to get the information.
You can improve performance by not breaking session affinity. Some suggestions
to help avoid breaking session affinity are:
– Combine all Web applications into a single application server instance, if

possible, and use modeling or cloning to provide failover support.
– Create the session for the frame page, but do not create sessions for the pages

within the frame when using multiframe JSP files. (See discussion later in this
topic.)

v When using multi-framed pages, follow these guidelines:

108 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

– Create a session in only one frame or before accessing any frame sets. For
example, assuming there is no session already associated with the browser
and a user accesses a multi-framed JSP file, the browser issues concurrent
requests for the JSP files. Because the requests are not part of any session, the
JSP files end up creating multiple sessions and all of the cookies are sent back
to the browser. The browser honors only the last cookie that arrives.
Therefore, only the client can retrieve the session associated with the last
cookie. Creating a session before accessing multi-framed pages that utilize JSP
files is recommended.

– By default, JSPs get a HTTPSession using request.getSession(true) method.
So by default JSPs create a new session if none exists for the client. Each JSP
page in the browser is requesting a new session, but only one session is used
per browser instance. A developer can use <% @ page session=″false″ %> to
turn off the automatic session creation from the JSP files that will not access
the session. Then if the page needs access to the session information, the
developer can use <%HttpSession session =
javax.servlet.http.HttpServletRequest.getSession(false); %> to get the
already existing session that was created by the original session creating JSP
file. This action helps prevent breaking session affinity on the initial loading
of the frame pages.

– Update session data using only one frame. When using framesets, requests
come into the HTTP server concurrently. Modifying session data within only
one frame so that session changes are not overwritten by session changes in
concurrent frameset is recommended.

– Avoid using multi-framed JSP files where the frames point to different Web
applications. This action results in losing the session created by another Web
application because the JSESSIONID cookie from the first Web application
gets overwritten by the JSESSIONID created by the second Web application.

v Secure all of the pages (not just some) when applying security to servlets or
JSP files that use sessions with security integration enabled, .

When it comes to security and sessions, it is all or nothing. It does not make
sense to protect access to session state only part of the time. When security
integration is enabled in the Session Management facility, all resources from
which a session is created or accessed must be either secured or unsecured. You
cannot mix secured and unsecured resources.
The problem with securing only a couple of pages is that sessions created in
secured pages are created under the identity of the authenticated user. Only the
same user can access sessions in other secured pages. To protect these sessions
from use by unauthorized users, you cannot access these sessions from an
unsecure page. When a request from an unsecure page occurs, access is denied
and an UnauthorizedSessionRequestException error is thrown.
(UnauthorizedSessionRequestException is a runtime exception; it is logged for
you.)

v Use manual update and either the sync() method or time-based write in
applications that read session data, and update infrequently.

With END_OF_SERVICE as write frequency, when an application uses sessions
and anytime data is read from or written to that session, the LastAccess time
field updates. If database sessions are used, a new write to the database is
produced. This activity is a performance hit that you can avoid using the
Manual Update option and having the record written back to the database only
when data values update, not on every read or write of the record.
To use manual update, turn it on in the Session Management Service. (See the
tables above for location information.) Additionally, the application code must
use the com.ibm.websphere.servlet.session.IBMSession class instead of the

Chapter 3. Managing HTTP sessions 109

generic HttpSession. Within the IBMSession object there is a method called
sync(). This method tells the WebSphere Application Server to write the data in
the session object to the database. This activity helps the developer to improve
overall performance by having the session information persist only when
necessary.
Note: An alternative to using the manual updates is to utilize the timed updates
to persist data at different time intervals. This action provides similar results as
the manual update scheme.

v Implement the following suggestions to achieve high performance:
– If your applications do not change the session data frequently, use Manual

Update and the sync() function (or timed interval update) to efficiently persist
session information.

– Keep the amount of data stored in the session as small as possible. With the
ease of using sessions to hold data, sometimes too much data is stored in the
session objects. Determine a proper balance of data storage and performance
to effectively use sessions.

– If using database sessions, use a dedicated database for the session database.
Avoid using the application database. This helps to avoid contention for JDBC
connections and allows for better database performance.

– If using memory to memory sessions, define replicators only on the servers
and have the client attach to server replicator.

– If using memory to memory sessions, employ partitioning (either group or
single replica) as your clusters grow in size and scaling decreases.

– Verify that you have the latest e-fixes for the WebSphere Application Server.
v Utilize the following tools to help monitor session performance.

– Run the com.ibm.servlet.personalization.sessiontracking.IBMTrackerDebug
servlet. - To run this servlet, you must have the servlet invoker running in the
Web application you want to run this from. Or, you can explicitly configure
this servlet in the application you want to run.

– Use the WebSphere Application Server Resource Analyzer which comes with
WebSphere Application Server to monitor active sessions and statistics for the
WebSphere Application Server environment.

– Use database tracking tools such as ″Monitoring″ in DB2. (See the respective
documentation for the database system used.)

Managing HTTP sessions: Resources for learning:
Use the following links to find relevant supplemental information about HTTP
sessions. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:

v Best practices

v HTTP Session Persistence Best Practices

v Improving session persistence performance with DB2

110 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://www7b.software.ibm.com/wsdd/zones/bp/
http://www7b.software.ibm.com/wsdd/library/techarticles/0209_draeger/draeger.html
http://www7b.software.ibm.com/dmdd/library/techarticle/0203kitchlu/0203kitchlu.html

v Persistent client state HTTP cookies specification

Programming instructions and examples

v Java Servlet documentation, tutorials, and examples site

Programming specifications

v Java Servlet 2.3 API specification download site

v J2EE 1.3 specification download site

Chapter 3. Managing HTTP sessions 111

http://java.sun.com/products/servlet/docs.html
http://java.sun.com/products/servlet/download.html
http://java.sun.com/j2ee/download.html

112 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 4. Using enterprise beans in applications

Steps for this task
1. Design a J2EE application and the enterprise beans that it needs.

See ″Resources for learning″ for links to design information that is specific to
enterprise beans.

2. Develop any enterprise beans that your application will use.
3. Prepare for assembly. For your EJB 2.x-compliant entity beans, decide on an

appropriate access intent policy.
4. Assemble the beans into one or more EJB modules. This includes ″Securing

enterprise bean applications″ (not in this document).
5. (Assemble the modules) into a J2EE application.
6. For a given application server, update the EJB container configuration if

needed for the application to be deployed, and determine if you want to
″Setting the run time for batched commands″ or ″Setting the run time for
deferred create″ for container managed persistence.

7. Deploy the application in an application server.
8. Test the modules.

v As needed, debug problems with the container.
v Debug access and deployment problems.

9. (Assemble the production application.)
10. Deploy the application to a production environment.
11. Manage the application:

a. Manage installed EJB modules.
After an application has been installed, you can manage its EJB modules
individually through administrative console settings.

b. (Manage other aspects of the J2EE application.)
12. (Update the module and redeploy it.)
13. Tune the performance of the application. See ″Best practices for developing

enterprise beans″.

Enterprise beans
An enterprise bean is a Java component that can be combined with other resources
to create J2EE applications. There are three types of enterprise beans, entity beans,
session beans, and message-driven beans.

All beans reside in EJB containers, which provide an interface between the beans
and the application server on which they reside.

Entity beans store permanent data. Entity beans with container-managed
persistence (CMP) require connections to a form of persistent storage. This storage
might be a database, an existing legacy application, a file, or other types of
persistent storage. Entity beans with bean-managed persistence manage permanent
data in whichever manner is defined in the bean code. This can include writing to
databases or XML files, for example.

© Copyright IBM Corp. 2003 113

Session beans do not require database access, although they can obtain it indirectly
as needed through entity beans. Session beans can also obtain direct access to
databases (and other resources) through the use of resource references. Session
beans can be either stateful or stateless.

New in the Enterprise JavaBeans (EJB) specification, version 2.0, message-driven
beans enable asynchronous message servicing. The EJB container and a Java
Message Service (JMS) provider work together to process messages. When a
message arrives from another application component through JMS, the EJB
container forwards it through an onMessage() call to a message-driven bean
instance, which then processes the message. In other respects, message-driven
beans are similar to stateless session beans.

Beans that require data access use data sources, which are administrative resources
that define pools of connections to persistent storage mechanisms.

For more information about enterprise beans, see ″Resources for learning.″

Developing enterprise beans
Before you begin

Design a J2EE application and the enterprise beans that it needs.
v For general design information, see ″Resources for learning.″
v Before developing entity beans with container-managed persistence (CMP), read

″Concurrency control.″

There are two basic approaches to selecting tools for developing enterprise beans:
v You can use one of the available integrated development environments (IDEs).

IDE tools automatically generate significant parts of the enterprise bean code
and contain integrated tools for packaging and testing enterprise beans. The IBM
WebSphere Application Developer product is the recommended IDE. For more
information, see the documentation for that product.

v If you have decided to develop enterprise beans without an IDE, you need at
least an ASCII text editor. You can also use a Java development tool that does
not support enterprise bean development. You can then use tools available in the
Java Software Development Kit (SDK) and in this product to assemble, test, and
deploy the beans.

The following steps primarily support the second approach, development without
an IDE.

Steps for this task
1. If necessary, migrate any pre-existing code to the required version of the

Enterprise JavaBeans (EJB) specification.
2. Write and compile the components of the enterprise bean.

v At a minimum, an EJB 1.1 session bean requires a bean class, a home
interface, and a remote interface. An EJB 1.1 entity bean requires a bean class,
a primary-key class, a home interface, and a remote interface.

v At a minimum, an EJB 2.0 session bean requires a bean class, a home or local
home interface, and a remote or local interface. An EJB 2.0 entity bean
requires a bean class, a primary-key class, a remote home or local home

114 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

interface, and a remote or local interface. The types of interfaces go together:
If you implement a local interface, you must define a local home interface as
well.

v Available only through EJB 2.0, a message-driven bean requires only a bean
class.

3. For each entity bean, complete work to handle persistence operations.
v Create a database schema for the entity bean’s persistent data.

– For entity beans with container-managed persistence(CMP), you must
store the bean’s persistent data in one of the supported databases. The
Application Assembly Tool automatically generates SQL code for creating
database tables for CMP entity beans. If your CMP beans require complex
database mappings, it is recommended that you use the IBM WebSphere
Studio Application Developer product to generate code for the database
tables.

– For entity beans with bean-managed persistence (BMP), you can create the
database and database table by using the database tools or use an existing
database and database table.

For more information on creating databases and database tables, consult your
database documentation.

v (CMP entity beans for EJB 2.0 only) (Define finder queries) with EJB Query
Language (EJB QL).
With EJB QL, you define finders in terms of CMP fields and
container-managed relationships, as follows:
– Public finders are visible in the bean’s home interface. Implemented in the

bean class, they return only remote interfaces and collection types.
– Private finders, expressed as SELECT statements, are used only within the

bean class. They can return both local and remote interfaces, dependent
values, other CMP field types, and collection types.

v (CMP entity beans for EJB 1.1 only: an IBM extension) Create a finder
helper interface for each CMP entity bean that contains specialized finder
methods (other than the findByPrimaryKey method).
The following logic is required for each finder method (other than the
findByPrimaryKey method) contained in the home interface of an entity bean
with CMP:
– The logic must be defined in a public interface named

<i>Name</i>BeanFinderHelper, where Name is the name of the enterprise
bean (for example, AccountBeanFinderHelper).

– The logic must be contained in a String constant named
<i>findMethodName</i> WhereClause, where findMethodName is the name
of the finder method. The String constant can contain zero or more
question marks (?) that are replaced from left to right with the value of
the finder method’s arguments when that method is called.

What to do next

Assemble the beans in one or more EJB modules.

Migrating enterprise bean code to the supported specification
Support for Version 2.0 of the Enterprise JavaBeans (EJB) specification is new for
Version 5 of this product. Migration of enterprise beans deployed in Version 4.0.x

Chapter 4. Using enterprise beans in applications 115

of this product is not generally necessary; Version 1.1 of the EJB specification is still
supported. Follow these steps as appropriate for your application deployment.

Steps for this task
1. Modify enterprise bean code for changes in the specification.

v For Version 1.0 beans, migrate at least to Version 1.1.
v As stated previously, migration from Version 1.1 to Version 2.0 of the EJB

specification is not required for redeployment on this version of the product.
However, if your application requires the capabilities of Version 2.0, migrate
your Version 1.1-compliant code.
Note: The EJB Version 2.0 specification mandates that prior to the EJB
container’s executing a findByMethod query, the state of all enterprise beans
enlisted in the current transaction be synchronized with the persistent store.
(This is so the query is performed against current data.) If Version 1.1 beans
are reassembled into an EJB 2.0-compliant module, the EJB container
synchronizes the state of Version 1.1 beans as well as that of Version 2.0
beans. As a result, you might notice some change in application behavior
even though the application code for the Version 1.1 beans has not been
changed.

2. Modify enterprise bean code for changes in deployment requirements.
If the enterprise beans were previously deployed in Version 3.0.x of this
product, modify import statements to match standard package names. In
Version 3.0.2.x, the following standard packages were present under
nonstandard names:
javax.sql.*
javax.transaction.*

Any code using WebSphere data sources, including BMP entity beans and
session beans that access databases, must be modified.

3. You might have to modify code for some EJB 1.1-compliant modules that were
not migrated to Version 2.0. Use the following information to help you decide.
v Some stub classes for deployed enterprise beans have changed in the Java 2

SDK, Version 1.3.
v The task of (generating deployment code) for enterprise beans changed

significantly for EJB 1.1-compliant modules relative to EJB 1.0-compliant
modules.

v If the CMP beans write to databases with mixed-case table or column names
and you used IBM VisualAge for Java, Version 3.5.x, to generate the original
deployment code, you cannot simply reassemble the beans in this product.
You must export the original EJB project from the VisualAge for Java product
as an EJB 1.1 JAR. This preserves the metadata needed to generate the correct
deployment code for mixed-case database tables and columns. For more
information, see the documentation for the Deployment Tool for Enterprise
JavaBeans(../../deploytool/tasks/index.htm).

For detailed information about source and binary compatibility between
deployed versions, see ″Resources for learning.″

4. (Reassemble) and (redeploy) all modules to incorporate migrated code.

Migrating enterprise bean code from Version 1.0 to Version 1.1
The following information generally applies to any enterprise bean that currently
complies with Version 1.0 of the Enterprise JavaBeans (EJB) specification. For more
information about migrating code for beans produced with the IBM WebSphere

116 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Studio Application Developer tool, see the documentation for that product. For
more information about migrating code in general, see ″Resources for learning.″

Steps for this task
1. In session beans, replace all uses of javax.jts.UserTransaction with

javax.transaction.UserTransaction. Entity beans may no longer use the
UserTransaction interface at all.

2. In finder methods for entity beans, include FinderException in the throws
clause.

3. Remove throws of java.rmi.RemoteException; throw javax.ejb.EJBException
instead.
However, continue to include RemoteException in the throws clause of home
and remote interfaces as required by the use of Remote Method Invocation
(RMI).

4. Remove uses of the finalize() method.
5. Replace calls to getCallerIdentity() with calls to getCallerPrincipal().

The use of getCallerIdentity() is deprecated.
6. Replace calls to isCallerInRole(Identity) with calls to isCallerinRole (String).

The use of isCallerInRole(Identity) and java.security.Identity is deprecated.
7. Replace calls to getEnvironment() in favor of JNDI lookup.

As an example, change the following code:
String homeName =

aLink.getEntityContext().getEnvironment().getProperty("TARGET_HOME_NAME");
if (homeName == null) homeName = "TARGET_HOME_NAME";

The updated code would look something like the following:
Context env = (Context)(new InitialContext()).lookup("java:comp/env");
String homeName = (String)env.lookup("ejb10-properties/TARGET_HOME_NAME");

8. In ejbCreate methods for an entity bean with container-managed persistence
(CMP), return the bean’s primary key class instead of void.

9. Add the getHomeHandle() method to home interfaces.
public javax.ejb.HomeHandle getHomeHandle() {return null;}

What to do next

Consider enhancements to match the following changes in the specification:
v Primary keys for entity beans can be of type java.lang.String.
v Finder methods for entity beans return java.util.Collection.
v Check the format of any JNDI names being used. Local name spaces are also

supported.
v Security is defined by role, and isolation levels are defined at the method level

rather than at the bean level.

Migrating enterprise bean code from Version 1.1 to Version 2.0
Enterprise JavaBeans (EJB) Version 2.0-compliant beans may be assembled only in
an EJB 2.0-compliant module, although an EJB 2.0-compliant module can contain a
mixture of Version 1.x and Version 2.0 beans.

The EJB Version 2.0 specification mandates that prior to the EJB container’s
executing a findByMethod query, the state of all enterprise beans enlisted in the
current transaction be synchronized with the persistent store. (This is so the query
is performed against current data.) If Version 1.1 beans are reassembled into an EJB

Chapter 4. Using enterprise beans in applications 117

2.0-compliant module, the EJB container synchronizes the state of Version 1.1 beans
as well as that of Version 2.0 beans. As a result, you might notice some change in
application behavior even though the application code for the Version 1.1 beans
has not been changed.

The following information generally applies to any enterprise bean that currently
complies with Version 1.1 of the EJB specification. For more information about
migrating code for beans produced with the IBM WebSphere Studio Application
Developer tool, see the documentation for that product. For more information
about migrating code in general, see ″Resources for learning.″

Steps for this task
1. In beans with container-managed persistence (CMP) version 1.x, replace each

CMP field with abstract get and set methods.
In doing so, you must make each bean class abstract.

2. In beans with CMP version 1.x, change all occurrences of this.<i>field</i> =
<i>value</i> to set<i>Field</i>(<i>value</i>).

3. In each CMP bean, create abstract get and set methods for the primary key.
4. In beans with CMP version 1.x, create an EJB Query Language statement for

each finder method.
5. In finder methods for beans with CMP version 1.x, return java.util.Collection

instead of java.util.Enumeration.
6. Update handling of non-application exceptions.

v To report non-application exceptions, throw javax.ejb.EJBException instead of
java.rmi.RemoteException.

v Modify rollback behavior as needed: In EJB versions 1.1 and 2.0, all
non-application exceptions thrown by the bean instance result in the rollback
of the transaction in which the instance is running; the instance is discarded.
In EJB 1.0, the container does not roll back the transaction or discard the
instance if it throws java.rmi.RemoteException.

7. Update rollback behavior as the result of application exceptions.
v In EJB versions 1.1 and 2.0, an application exception does not cause the EJB

container to automatically roll back a transaction.
v In EJB Version 1.1, the container performs the rollback only if the instance

has called setRollbackOnly() on its EJBContext object.
v In EJB Version 1.0, the container is required to roll back a transaction when

an application exception is passed through a transaction boundary started by
the container.

WebSphere extensions to the Enterprise JavaBeans
specification

This article outlines extensions to the Enterprise JavaBeans (EJB) specification that
IBM provides with this product:

Inheritance in enterprise beans

In the Java language, inheritance is the creation of a new class from an existing class
or a new interface from an existing interface. This product supports two forms of
inheritance: standard class inheritance and EJB inheritance.

118 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

In standard class inheritance, the home interface, remote interface, or enterprise
bean class inherits properties and methods from base classes that are not
themselves enterprise bean classes or interfaces.

By contrast in enterprise bean inheritance, an enterprise bean inherits properties
(such as container-managed persistence (CMP) fields and container-managed
relationship (CMR) fields), methods, and method-level control descriptor attributes
from another enterprise bean.

For more information, see the documentation for the IBM WebSphere Studio
Application Developer product.

Optimistic concurrency control for container-managed persistence

This product supports optimistic concurrency control of data access.

Access intents for EJB persistence

5.0.2

This product supports the application of named data-access policies.

Performance enhancements

Through the lifetime-in-cache settings, this product provides a way for you to
improve performance for beans that are only occasionally updated. For more
information, see ″Entity bean assembly settings.″

Some enterprise beans created with the IBM WebSphere Studio Application
Developer product can utilize read-ahead for loading a bean and its related beans in
a single database operation. An entire object graph or any part of the graph can be
preloaded by configuring a finder method to use read-ahead.

Assembly and deployment extensions

This product supports IBM extensions of assembly and deployment options. IBM
extensions are clearly marked in reference topics for assembly settings.

Best practices for developing enterprise beans
Use the following guidelines when designing and developing enterprise beans:
v Use a stateless session bean to act as the entry point for business logic. For more

information about using session facades, see ″Resources for learning.″
v Entity beans should use container-managed persistence.
v In an Enterprise JavaBeans (EJB) Version 2.0 environment, use local interfaces to

improve communication between enterprise beans in the same Java virtual
machine.
Local calls avoid the overhead of RMI/IIOP and use pass-by-reference semantics
instead of pass-by-value. For each call, the caller and callee beans share the state
of arguments. EJB 2.0 beans can have both a local and remote interface but more
typically have one or the other.

v For communicating with remote clients, provide remote and remote home
interfaces. For communicating with local clients like servlets, entity beans, and
message-driven beans, provide local and local home interfaces.

Chapter 4. Using enterprise beans in applications 119

Batch commands for container managed persistence
From JDBC 2.0 on, PreparedStatement objects can maintain a list of commands that
can be submitted together as a batch. Instead of multiple database round trips,
there can be only one database round trip for all the batched persistence requests.

The WebSphere Application Server version 5.0.2 enables you to take advantage of
this. You can turn this option on from the EJB CMP side. When you choose this
option, the run time defers ejbStore/ejbCreate/ejbRemove or the equivalent database
persistence requests (insert/update/delete) until they are needed. This can be at
the end of the transaction, or when a flush is needed for finders related to this EJB
type. When the persistence operation finally happens, run time accumulates the
database requests and uses JDBC PreparedStatement batch operation to make a
single JDBC call for multiple rows of the same operation.

Setting the run time for batched commands
Steps for this task
1. Open the administrative console.
2. Select Servers.
3. Select Application Servers.
4. Select the server you want to configure.
5. In the Additional Properties area, select Process Definition.
6. In the Additional Properties area, select Java Virtual Machine.
7. Update the Generic JVM arguments with Dcom.ibm.ws.pm.batch=true.

Deferred Create for container managed persistence
The specification for Enterprise Java Beans (EJB) 2.x states that for Container
Managed Persistence (CMP) during the ejbCreate, the container can create the
representation of the entity in the database immediately, or defer it to a later time.

The WebSphere Application Server version 5.0.2 enables you to take advantage of
this specification. You can turn this option on from the EJB CMP side. When you
choose this option, the runtime defers ejbCreate (or the equivalent database
persistence request) until it is needed. This can be at the end of the transaction, or
when a flush is needed for finders related to this EJB type. By doing this you can
reduce two round trips for the newly created entity (insert and update) to one
(insert).

Setting the run time for deferred create
Steps for this task
1. Open the administrative console.
2. Select Servers.
3. Select Application Servers.
4. Select the server you want to configure.
5. In the Additional Properties area, select Process Definition.
6. In the Additional Properties area, select Java Virtual Machine.
7. Update the Generic JVM arguments with Dcom.ibm.ws.pm.deferredcreate=true.

Explicit Invalidation in the Persistence Manager Cache
Container managed persistence (CMP) entity beans can be configured as
long-lifetime beans. A long-lifetime bean is one that is configured with Lifetime In
Cache Usage equal to a value other than the default OFF (refer to ″Entity bean
assembly settings″). A value other than OFF means that data for this bean is
cached beyond the end of the transaction in which the bean was obtained by a

120 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

finder or other method. The Lifetime In Cache Usage and Lifetime In Cache values
control the basic length of time the cached data remains valid. When the specified
time runs out, the cached data is no longer valid. See the LifetimeInCache help
sections of the Application Assembly Tool (AAT) for more details.

However, there is also an API that lets the client application code explicitly
invalidate the cached data of a bean on demand, superceding the basic lifetime of
the cache data as controlled by the Lifetime In Cache Usage and Lifetime In Cache
settings. This is useful where an application that does not use CMP beans modifies
the data that underlies a CMP bean (for example, it updates a database table to
which a CMP bean is mapped). Such an application can inform WebSphere
Application Server that any cached version of this bean data is stale and no longer
matches what is in the database. The data should be invalidated (in essence,
discarded). For CMP beans that cannot tolerate stale data, this is an important
feature.

Because the PM Cache Invalidation mechanism does consume resources in
exchange for its benefits, it is not enabled by default. To enable it refer to ″Setting
Persistence Manager Cache Invalidation ″.

Example: Explicit Invalidation in the Persistence Manager Cache
Usage Scenario

The scenario of use for this feature begins with configuring one or more bean types
to be long-lifetime beans (see ″Explicit Invalidation in the Persistence Manager
Cache ″, and configuring the necessary Java Message Service (JMS) resources
(described below). Once this is done, the server is started. The scenario continues
as follows:
1. Assume that a CMP entity bean of type Department has been configured to be a

long-lifetime bean.
2. Transaction 1 begins. Application code looks up Department’s home and calls a

finder method (such as findByPrimaryKey(″dept01″)). As this is the first finder to
return Department dept01, a trip is made to the database to obtain the data.
Transaction 1 ends.

3. Transaction 2 begins. Application code calls findByPrimaryKey(″dept01″) again.
Because this is not the first finder to return Department dept01, we get a cache
hit and no database trip is made. So far this is current WebSphere Application
Server behavior for long-lifetime beans. Transaction 2 ends.

4. Another application, which does not use the Department CMP bean, is executed.
This application might or might not be run on the WebSphere Application
Server; it could be a legacy application. The application updates the database
table that is mapped to the Department bean, altering the row for dept01. For
example, the budget column in the table (mapped to a Java double CMP
attribute in the Deparment bean) is changed from $10,000.00 to $50,000.00. This
application was designed to cooperate with WebSphere Application Server.
After performing the update, the application sends an invalidate request
message to invalidate the Department bean dept01.

5. Transaction 3 begins. Application code looks up Department’s home and calls a
finder method (such as findByPrimaryKey(″dept01″)). Because this is the first
finder after Department dept01 is invalidated, a new database trip is made to
obtain the data. Transaction 3 ends.

Persistence Manager cache invalidation API

Chapter 4. Using enterprise beans in applications 121

The PM cache invalidation API is in the form of a JMS message that the client
sends to a specially-named JMS topic using a connection from a specifically named
JMS TopicConnectionFactory. The JMS message must be an ObjectMessage created by
the client. The client code creates a PMCacheInvalidationRequest object that describes
the bean data to invalidate. Client code places the PMCacheInvalidationRequest
object in the ObjectMessage and publishes the ObjectMessage (for further details on
the JMS objects and terms used here, please see the Java Message Service
documentation).

The public class PMCacheInvalidationRequest is central to the API, so we include a
portion of its code here for illustration purposes (if you see any differences
between this illustration and the actual class, the class is to be considered correct):
packagecom.ibm.websphere.ejbpersistence;

/**
*An instance of this class represents a request to invalidate one or more
*CMP beans in the PMcache.When an invalidate occurs,cached datafor this
*bean is removed from the cache;the next time an application tries to find
*this bean,a fresh copy of the bean data is obtained from the data store.
*
*The ability to invalidate a bean means that a CMP bean may be configured
*as a long-lifetime bean and thus be cached across transactions for much
*greater performance on future attempts to find this bean.Yet when some
*outside mechanism updates the bean data,sending an invalidation request
*will remove stale data from the PMcache so applications do not behave falsely
*based on stale data.
*/
publicclassPMCacheInvalidationRequestimplementsSerializable{

. . .

/**
* Constructor used to invalidate a single bean
* @param beanHomeJNDIName the JNDI name of the bean home. This is the same value
* used to look up the bean home prior to calling findByPrimaryKey, for example.
* @param beanKey the primary key of the bean to be invalidated. The actual
* object type must be the primary key type for this bean type.
*/
public PMCacheInvalidationRequest(String beanHomeJNDIName, Object beanKey)
throws IOException {
. . .
}
/**
* Constructor used to invalidate a Collection of beans
* @param beanHomeJNDIName java.lang.String the JNDI name of the bean home.
* This is the same value used to look up the bean home prior to calling
* findByPrimaryKey, for example.
* @param beanKeys a Collection of the primary keys of the beans to be
* invalidated. The actual type of each object in the Collection must be the
* primary key type for this bean type.
*/
public PMCacheInvalidationRequest(String beanHomeJNDIName, Collection beanKeys)
throws IOException {
. . .
}
/**
* Constructor used to invalidate all beans of a given type
* @param beanHomeJNDIName java.lang.String the JNDI name of the bean home.
* This is the same value used to look up the bean home prior to calling
* findByPrimaryKey, for example.
*/
public PMCacheInvalidationRequest(String beanHomeJNDIName) {

122 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

. . .
}

}

If the client wants to perform the invalidation in a synchronous way, it can opt to
receive an acknowledgement JMS message when the invalidation is complete. To
ask for an acknowledgement (ACK) message, the client sets a Topic of its own
choosing in the JMSReplyTo field of the ObjectMessage for the invalidation request
(see JMS documentation for further details). The client then waits (using the
receive() method of JMS) on receipt of the acknowledgement message before
continuing execution.

An ACK message enables the caller to insure there is not even a brief (seconds or
less) window during which PM cache data is stale. The sending of an
acknowledgement for each request does, of course, take a bit more time and so is
recommended to be used only when needed.

The JMS resources used to make an invalidation request (TopicConnectionFactory,
TopicDestination, and so forth) must be configured by the user (using the
Administration console or other method) if they want to use PM Cache
Invalidation. In this way the user can chose whichever JMS provider they prefer
(as long as it supports pub-sub). The names that must be used for these resources
are defined as part of the API, and use names unique to the WebSphere
Application Server namespace to avoid name conflict with customer JMS resources.

The following are the names that must be used when the user configures the JMS
resources (shown as Java constants for clarity):
// The JNDI name of the TopicConnectionFactory
private static final String topicConnectionFactoryJNDIName =

"com.ibm.websphere.ejbpersistence.InvalidateTCF";
// The JNDI name of the TopicDestination
private static final String topicDestinationJNDIName =

"com.ibm.websphere.ejbpersistence.invalidate";
// The Topic name (part of the TopicDestination)
private static final String topicString =

"com.ibm.websphere.ejbpersistence.invalidate";

Here are examples of how these constants can be used in client code:
// Look up the TopicConnectionFactory...
InitialContext ic = new InitialContext();
TopicConnectionFactory topicConnectionFactory =

(TopicConnectionFactory) ic.lookup(topicConnectionFactoryJNDIName);
...
// Look up the Topic
Topic topic = (Topic) ic.lookup(topicDestinationJNDIName);

Note that JMS messages can be sent not only from J2EE application code (for
example, a SessionBean or BMP entity bean method) but also from non-J2EE
applications if your chosen JMS provider allows for this. For example, the IBM MQ
provider, available in WebSphere Application Server as the Embedded Messaging
feature (selectable during installation), supports the use of MQ classes (or
structures in other languages) to create a topic connection and topic that are
compatible with the TopicConnectionFactory and TopicDestination you configure using
WebSphere Application Server Application Console.

Setting Persistence Manager Cache Invalidation
Steps for this task
1. Open the administrative console.

Chapter 4. Using enterprise beans in applications 123

2. Select Servers.
3. Select Application Servers.
4. Select the server you want to configure.
5. In the Additional Properties area, select Process Definition.
6. In the Additional Properties area, select Java Virtual Machine.
7. Update the Generic JVM arguments with

-Dcom.ibm.ws.ejbpersistence.cacheinvalidation=true.

Using access intent policies

5.0.2

You can use access intent policies to help the product run-time environment
manage various aspects of Enterprise JavaBeans (EJB) persistence. You apply access
intent policies to EJB Version 2.0 entity beans and their methods by using the
Application Assembly Tool. This product provides a set of default access intent
policies. You can also create your own custom policies.

Steps for this task
1. Apply default access intent to CMP entity beans.

For more information, see Entity bean assembly settings.
2. Apply access intent policies to methods of CMP entity beans.
3. (Optional) (Create a custom access intent policy) by using the Application

Assembly Tool.
4. (Optional) Apply access intent policies to BMP entity bean methods by using

the AccessIntent API.
5. (Optional) Apply multiple access intent policies to methods by using

(application profiling).

Access intent policies
An access intent policy is a named set of properties (access intents) that governs
data access for Enterprise JavaBeans (EJB) persistence. You can assign policies to an
entity bean and to individual methods on an entity bean’s home, remote, or local
interfaces during assembly. If you have the WebSphere Application Server
Enterprise product installed, you can assign these during development as well.
Access intents are settable only within EJB Version 2.x-compliant modules for
entity beans with bean-managed persistence or with CMP Version 2.x.

This product supplies a number of access intent policies that specify permutations
of read intent and concurrency control; the pessimistic/update policy can be
qualified further. The selected policy determines the appropriate isolation level and
locking strategy used by the run-time environment.

Access intent policies are specifically designed to supplant the use of isolation level
and access intent method-level modifiers found in the extended deployment
descriptor for EJB version 1.1 enterprise beans. You cannot specify isolation level
and read-only modifiers for EJB version 2.0 enterprise beans.

5.0.2

Access intent can be controlled in a more precise way by using either application
profiling or by using method-level access intent policies. Application profiling is

124 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

only available in the WebSphere Application Server Enterprise product.
Method-level access intent policies are named and defined at the module level. A
module can have one or many such policies. Policies are assigned, and apply, to
individual methods of the declared interfaces of entity beans and their associated
home interfaces. A policy is acted upon by either the combination of the EJB
container and persistence manager (for entity beans with container-managed
persistence) or directly by entity beans with bean-managed persistence.

For entity beans that are backed by tables with nullable columns, use an optimistic
policy with caution. Nullable columns are automatically excluded from
overqualified updates at deployment time; concurrent changes to a nullable field
might result in lost updates. When used with the IBM WebSphere Studio
Application Developer product, this product provides support for selecting a
subset of the nonnullable columns that are to be reflected in the overqualified
update statement that is generated in the deployment code to support optimistic
policies.

5.0.2

An entity that is configured with a read-only policy that causes a bean to be
activated can cause problems if updates are attempted within the same transaction.
Those changes will not be committed, and an exception will be thrown because
data integrity might be compromised.

Concurrency control
Concurrency control is the management of contention for data resources. A
concurrency control scheme is considered pessimistic when it locks a given resource
early in the data-access transaction and does not release it until the transaction is
closed. A concurrency control scheme is considered optimistic when locks are
acquired and released over a very short period of time at the end of a transaction.

The objective of optimistic concurrency is to minimize the time over which a given
resource would be unavailable for use by other transactions. This is especially
important with long-running transactions, which under a pessimistic scheme
would lock up a resource for unacceptably long periods of time.

Under an optimistic scheme, locks are obtained immediately before a read
operation and released immediately afterwards. Update locks are obtained
immediately before an update operation and held until the end of the transaction.

To enable optimistic concurrency, this product uses an overqualified update scheme to
test whether the underlying data source has been updated by another transaction
since the beginning of the current transaction. With this scheme, the columns
marked for update and their original values are added explicitly through a
WHERE clause in the UPDATE statement so that the statement fails if the
underlying column values have been changed. As a result, this scheme can provide
column-level concurrency control; pessimistic schemes can control concurrency at
the row level only.

Optimistic schemes typically perform this type of test only at the end of a
transaction. If the underlying columns have not been updated since the beginning
of the transaction, pending updates to container-managed persistence fields are
committed and the locks are released. If locks cannot be acquired or if some other
transaction has updated the columns since the beginning of the current transaction,
the transaction is rolled back: All work performed within the transaction is lost.

Chapter 4. Using enterprise beans in applications 125

Pessimistic and optimistic concurrency schemes require different transaction
isolation levels. Enterprise beans that participate in the same transaction and
require different concurrency control schemes cannot operate on the same
underlying data connection.

Whether or not to use optimistic concurrency depends on the type of transaction.
Transactions with a high penalty for failure might be better managed with a
pessimistic scheme. (A high-penalty transaction is one for which recovery would
be risky or resource-intensive.) For low-penalty transactions, it is often worth the
risk of failure to gain efficiency through the use of an optimistic scheme. In
general, optimistic concurrency is more efficient when update collisions are
expected to be infrequent; pessimistic concurrency is more efficient when update
collisions are expected to occur often.

Read-ahead hints
Read-ahead schemes enable applications to minimize the number of database
roundtrips by retrieving a working set of container-managed persistence (CMP)
beans for the transaction within one query. Read-ahead involves activating the
requested CMP beans and caching the data for their related beans, which ensures
that data is present for the beans that are most likely to be needed next by an
application. A read-ahead hint is a canonical representation of the related beans that
are to be read. It is associated with the findByPrimaryKey method for the requested
bean type, which must be an EJB 2.x-compliant CMP entity bean.

5.0.2

Read-ahead hints can be set only using the WebSphere Application Server
Enterprise assembly tool or through the Add Access Intent wizard of the IBM
WebSphere Studio Application Developer product.

5.0.2

Read-ahead is only supported for access intent policies that can be applied by the
backend against which the application is deployed. Otherwise, the read-ahead hint
is disregarded.

5.0.2

Currently, only findByPrimaryKey methods can have read-ahead hints. Only beans
related to the requested beans by a container-managed relationship (CMR), either
directly or indirectly through other beans, can be read ahead. Beans that use EJB
inheritance should not be used in a read-ahead hint.

A read-ahead hint takes the form of a character string. You do not have to provide
the string; the wizard generates it for you based on CMRs defined for the bean.
The following example is provided as supplemental information only.

Suppose a CMP bean type A has a finder method that returns instances of bean A.
A read-ahead hint for this method is specified using the following notation:
<i>RelB</i>.<i>RelC</i>; <i>RelD</i>

Interpret the preceding notation as follows:
v Bean type A has a CMR with bean types B and D.
v Bean type B has a CMR with bean type C.

126 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

For each bean of type A that is retrieved from the database, its directly-related B
and D beans and its indirectly-related C beans are also retrieved. The order of the
retrieved bean data columns in each row of the result set is the same as their order
in the read-ahead hint: an A bean, a B bean (or null), a C bean (or null), a D bean
(or null). For hints in which the same relationship is mentioned more than once
(for example, <i>RelB</i>.<i>RelC</i>;<i>RelB</i>.<i>RelE</i>), a bean’s data
columns appear only once, at the position it first appears in the hint.

The tokens shown in the notation (RelB and so on) must be CMR field names for
the relationships as defined in the deployment descriptor for the bean. In indirect
relationships such as <i>RelB</i>.<i>RelC</i>, RelC is a CMR field name defined
in the deployment descriptor for bean type B.

A single read-ahead hint cannot refer to the same bean type in more than one
relationship. For example, if a Department bean has a relationship employees with
the Employee bean and also has a relationship manager with the Employee bean,
the read-ahead hint cannot specify both employees and manager.

For more information about how to set read-ahead hints, see the documentation
for the Websphere Studio Application Developer product.

Access intent service
Access intent is a WebSphere Application Server run-time service that enables you
to more precisely manage an application’s persistence. The access intent service
defines a set of declarative annotations used by the Enterprise JavaBeans (EJB)
container and its agents to make performance optimizations for entity bean access.
These annotations are organized into sets called access intent policies.

Access intent policies contain a set of annotations considered as hints by the EJB
container and its agents. Most access intent policies are hints representing
high-level abstractions that can be mapped to a specific backend resource manager.
It is the responsibility of the EJB persistence machinery to ensure the necessary
concurrency control, connection, and cache management when carrying out the
persistence details. The EJB persistence manager can use access intent hints to
make better performance decisions when carrying out its assigned task. A smaller
number of access intents are hints to the EJB container, influencing the
management of EJB collections.

You can apply access intent policies to methods within the scope of an EJB
module, in which case the policy becomes the default access intent for all requests
upon the configured methods.

You can also apply access intent policies to methods within the scope of
application profiles. Consequently, you can configure methods with multiple and
opposing access intent policies. The application profiling documentation explains
in more detail how to configure an application to apply a particular access intent
policy to a method for one request, then apply another access intent policy to the
same method for a different request.

Access intent with BMP entity beans
Access intent’s declarative functionality provides great power to you as a CMP
entity bean developer. You can provide hints on how WebSphere Application
Server is to manage the details of persistence without having to explicitly manage
any of the persistence logic from within the application.

Chapter 4. Using enterprise beans in applications 127

There are situations, however, in which you might need to develop BMP entity
beans. Because the only meaningful difference between BMP and CMP components
is who provides the persistence logic, BMP entity beans should be able to leverage
access intent hints just as WebSphere Application Server does on behalf of CMP
entity beans. BMP entity beans that use the access intent service participate in
application profiling; that is, the value of the access intent attributes can differ
from request to request, allowing the BMP entity bean to seamlessly modify its
persistence strategy.

You can apply access intent policies to BMP entity bean methods as well as CMP
entity bean methods. Because access intent hints are not contractual in nature,
there is no obligation for a BMP entity bean to exploit them. BMP entity beans are
expected to use only those access intent attributes that are important to that
particular bean.

The current access intent policy is bound into the java:comp namespace for a
particular BMP entity bean. That policy is current only for the duration of the
method call during which the access intent policy was retrieved. In a typical
scenario, you would cache the access type during invocation of the ejbLoad()
method so that appropriate actions can be taken during invocation of the ejbStore()
method.

Access intent design considerations
Use the access intent service to solve clear performance problems. Identify usage
patterns that lead to poor application performance and apply appropriate access
intent policies.

Refrain from over-tuning an application. You can introduce errors by incorrectly
using the access intent service. For example, misuse of the wsPessimisticUpdate-
NoCollision policy can result in lost updates; inappropriately setting the collection
increment value can introduce performance issues; and problem determination is
more difficult when an application is confusingly configured with multiple access
intent policies. Clarity and simplicity should be your guiding principles when
using the access intent service. This is even more important when applying access
intent polices within the scope of application profiles (a feature of WebSphere
Application Server Enterprise).

Even though access intent policies can be configured on any method of an entity
bean, some attributes of a policy can only be leveraged by the run-time
environment under certain conditions. For example, concurrency and access intent
are only used for CMP entity beans when the ejbLoad() method is driven to open a
connection to, and read data from, a given resource; that data is cached and used
to drive the proper queries during invocation of the ejbStore() method. Read-ahead
hints are only used during the execution of a finder for a bean. Finally, the
collection increment and resource manager prefetch increment are only used on
multi-object finders. Configuring policies on methods that will not use the policy is
not an error (only certain attributes of any policy are used, even when the policy is
appropriately applied to a method). However, configuring policies unnecessarily
throughout an application obscures the design of the application and complicates
the maintenance of the application.

Applying access intent policies to methods
You apply an access intent policy to a method, or set of methods, in an
application’s entity beans through the Application Assembly Tool (AAT).

128 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Steps for this task
1. (Start the AAT.)
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, select File >
Open, then select the EAR file.

3. Select EJB Modules > moduleName > Access Intent.
4. To configure a new access intent policy, right-click and select New.
5. On the New Access Intent panel, specify a name and a description.

These attributes are provided as a convenience to the developer and are not
used at run time.

6. To select the methods to which the access intent policy should apply, click
Add beside the Methods table.

7. From the Applied access intent list, select an access intent policy.
8. (Optional) To override an attribute defined in the applied policy, click Add

beside the Access intent attribute overrides table.
9. Click OK to exit the New Access Intent panel.

10. Save your configuration by selecting File > Save.

Using the AccessIntent API
This task describes how to programmatically retrieve and call the AccessIntent API
during the execution of BMP entity bean methods.

Steps for this task
1. Look up the current access intent in the namespace.

For example:
InitialContext ic = new InitialContext();
AccessIntent ai = ic.lookup("java:comp/websphere/AppProfile/AccessIntent");

2. Call the necessary get() methods.
For example:
int concurrency = ai.getConcurrencyControl();
int accessType = ai.getAccessType();
if ((concurrency == AccessIntent.CONCURRENCY_CONTROL_PESSIMISTIC)

&& (accessType == AccessIntent.ACCESS_TYPE_UPDATE)) {
boolean exclusive = ai.getPessimisticUpdateHintExclusive();
// . . .

}
// . . .

Results

Note: The access intent object reference retrieved from the java:comp lookup is
current for the duration of the method in which the reference was looked up.
Depending on how you configured the application profile, subsequent calls of the
same method might not retrieve the same access intent reference. You can only
look up the object reference during the call of a BMP entity bean’s method; the
reference does not exist during a request on a CMP entity bean. Therefore, access
intent object references should not be cached beyond, or used outside of, the scope
of the execution of any given BMP method.

AccessIntent interface
The AccessIntent interface is available to BMP entity beans by the following JNDI
lookup:
java:comp/websphere/AppProfile/AccessIntent

Chapter 4. Using enterprise beans in applications 129

AccessIntent interface
package com.ibm.websphere.appprofile.accessintent;

/**
* This interface defines the essential access intents
* available at runtime.
*/
public interface AccessIntent {

/**
* Returns the concurrency control intent, which indicates
* the application prefers either pessimistic or optimistic
* concurrency control when accessing the current component
* in the context of the current transaction.
*/
public int getConcurrencyControl();
public final int CONCURRENCY_CONTROL_PESSIMISTIC = 1;
public final int CONCURRENCY_CONTROL_OPTIMISTIC = 2;

/**
* Returns access type intent, which indicates the application
* intends either update or read accesss of the current component
* in the context of the current transaction.
*/
public int getAccessType();
public final int ACCESS_TYPE_UPDATE= 1;
public final int ACCESS_TYPE_READ = 2;

/**
* Returns a boolean where true indicates that the runtime should
* assume that there will be no collision on retrieved rows.
*/
public boolean getPessimisticUpdateHintNoCollision();

/*
* Returns a boolean where true indicates that the runtime should
* assume that there will be collisions on retrieved rows.
*/
public boolean getPessimisticUpdateHintExclusive();

/**
* Returns the collection access intent, which indicates the
* application intends to access the objects returned by the
* currently executing finder in either serial or random fashion.
*/
public int getCollectionAccess();
public final int COLLECTION_ACCESS_RANDOM = 1;
public final int COLLECTION_ACCESS_SERIAL = 2;

/**
* Returns the collection scope, which indicates the maximum
* lifespan of a lazy collection.
*/
public int getCollectionScope();
public final int COLLECTION_SCOPE_TRANSACTION = 1;
public final int COLLECTION_SCOPE_ACTIVITYSESSION = 2;
public final int COLLECTION_SCOPE_TIMEOUT = 3;

/**
* Returns the timeout value in seconds when collectionScope is Timeout.
*/
public int getCollectionTimeout();

/**
* Returns the number of elements the application requests be contained
* in each segment of the element collection returned by the currently
* executing finder.

130 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

*/
public int getCollectionIncrement();

/**
* Returns the ReadAheadHint requested by the application for the currently
* executing finder.
*/
public ReadAheadHint getReadAheadHint();

/**
* Returns the number of elements the application requests be contained in
* each segment of a a query made on a database.
*/
public int getResourceManagerPreFetchIncrement();

}

Access intent exceptions
The following exceptions are thrown in response to the application of access intent
policies:

com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException
If the method that drives the ejbLoad() method is configured to be
read-only but updates are then made within the transaction that loaded the
bean’s state, an exception is thrown during invocation of the ejbStore()
method, and the transaction is rolled back. Likewise, the ejbRemove()
method cannot succeed in a transaction that is set as read-only. If an
update hint is applied to methods of entity beans with bean-managed
persistence, the same behavior and exception results. The forwarded
exception object contains the message string PMGR1103E: update instance
level read only bean <i>beanName</i>

This exception is also thrown if the applied access intent policy cannot be
honored because a finder, ejbSelect, or container-managed relationship
(CMR) accessor method returns an inherently read-only result. The
forwarded exception object contains the message string PMGR1001: No such
DataAccessSpec - <i>methodName</i>

The most common occurrence of this error is when a custom finder that
contains a read-only EJB Query Language (EJB QL) statement is called with
an applied access intent of wsPessimisticUpdate or wsPessimisticUpdate-
Exclusive. These policies require the use of a FOR UPDATE clause on the
SQL SELECT statement to be executed, but a read-only query cannot
support FOR UPDATE. Other examples of read-only queries include joins;
the use of ORDER BY, GROUP BY, and DISTINCT keywords.

To eliminate the exception, edit the EJB query so that it does not return an
inherently read-only result or change the access intent policy being
applied.
v If an update access is required, change the applied access intent setting

to wsPessimisticUpdate-WeakestLockAtLoad or wsOptimisticUpdate.
v If update access is not truly required, use wsPessimisticRead or

wsOptimisticRead.
v If connection sharing between entity beans is required, use

wsPessimisticUpdate-WeakestLockAtLoad or wsPessimisticRead.

com.ibm.websphere.ejb.container.CollectionCannotBeFurtherAccessed
If a lazy collection is driven after it is no longer in scope, and beyond what
has already been locally buffered, a CollectionCannotBeFurtherAccessed
exception is thrown.

Chapter 4. Using enterprise beans in applications 131

com.ibm.ws.exception.RuntimeWarning
If an application is configured incorrectly, a run-time warning exception is
thrown as the application starts; startup is ended. You can validate an
application’s configuration by choosing the verify function in the
WebSphere Application Assembly Tool. Some examples of misconfiguration
include:
v A method configured with two different access intent policies
v A method configured with an undefined access intent policy

javax.ejb.NoSuchEntityException

5.0.2

If an update fails under optimistic concurrency because fields changed
within another transaction between load and store requests, a
NoSuchEntityException is raised and the commit fails.

Access intent assembly settings
Access intent policies contain data-access settings for use by the persistence
manager. Default access intent policies are configured on the entity bean.
Optionally, you can associate access intent policies with one or more methods.

These settings are applicable only for EJB 2.x-compliant entity beans that are
packaged in EJB 2.x-compliant modules. Connection sharing between beans with
bean-managed persistence and those with container-managed persistence is
possible if they all use the same access intent policy.

Name
Specifies a name for a mapping between an access intent policy and one or more
methods.

Description
Contains text that describes the mapping.

Methods - Name
Specifies the name of an enterprise bean method, or the asterisk character (*). The
asterisk is used to denote all of the methods of an enterprise bean’s remote and
home interfaces.

Methods - Enterprise bean
Specifies which enterprise bean contains the methods indicated in the Name
setting.

Methods - Type
Used to distinguish between a method with the same signature that is defined in
both the home and remote interface. Use Unspecified if an access intent policy
applies to all methods of the bean.

Data type String
Range Valid values are Home, Remote,Local, LocalHome or Unspecified

Methods - Parameters
Contains a list of fully qualified Java type names of the method parameters. This
setting is used to identify a single method among multiple methods with an
overloaded method name.

132 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Applied access intent
Specifies how the container must manage data access for persistence. Configurable
both as a default access intent for an entity and as part of a method-level access
intent policy.

Data type String
Default wsPessimisticUpdate-WeakestLockAtLoad.

With Oracle, this is the same as
wsPessimisticUpdate.

Range Valid settings are wsPessimisticUpdate,
wsPessimisticUpdate-NoCollision,
wsPessimisticUpdate-Exclusive,
wsPessimisticUpdate-WeakestLockAtLoad,
wsPessimisticRead, wsOptimisticUpdate, or
wsOptimisticRead. Only wsPessimisticRead
and wsOptimisticRead are valid when
class-level caching is enabled in the EJB
container.

This product supports lazy collections. For each segment of a collection, iterating
through the collection (next()) does not trigger a remote method call to retrieve the
next remote reference. Two policies (wsPessimisticUpdate and
wsPessimisticUpdate-Exclusive) are extremely lazy; the collection increment size
is set to 1 to avoid overlocking the application. The other policies have a collection
increment size of 25.

5.0.2

If an entity is not configured with an access intent policy, the run-time
environment typically uses wsPessimisticUpdate-WeakestLockAtLoad by default. If,
however, the Lifetime in cache property is set on the bean, the default value of
Applied access intent is wsOptimisticRead; updates are not permitted.

Additional information about valid settings follows:

Profile name Concurrency control Access type Transaction isolation

wsPessimisticRead
(Note 1)

pessimistic read For Oracle, read
committed.
Otherwise, repeatable
read

wsPessimisticUpdate
(Note 2)

pessimistic update For Oracle, read
committed.
Otherwise, repeatable
read

wsPessimisticUpdate-
Exclusive (Note 3)

pessimistic update serializable

wsPessimisticUpdate-
NoCollision (Note 4)

pessimistic update read committed

wsPessimisticUpdate-
WeakestLockAtLoad
(Note 5)

pessimistic update Repeatable read

wsOptimisticRead optimistic read read committed

wsOptimisticUpdate
(Note 6)

optimistic update read committed

Chapter 4. Using enterprise beans in applications 133

Profile name Concurrency control Access type Transaction isolation

Notes:

1. Read locks are held for the duration of the transaction.

2. The generated SELECT FOR UPDATE query grabs locks at the beginning of the
transaction.

3. SELECT FOR UPDATE is generated; locks are held for the duration of the transaction.

4.

5.0.2

A plain SELECT query is generated. No locks are held, but updates are permitted. Use
cautiously. This intent enables execution without concurrency control.

5.

5.0.2

Where supported by the backend, the generated SELECT query does not include FOR
UPDATE; locks are escalated by the persistent store at storage time if updates were made.
Otherwise, the same as wsPessimisticUpdate.

6. Generated overqualified-update query forces failure if CMP column values have
changed since the beginning of the transaction.

5.0.2

Be sure to review the rules for forming overqualified-update query predicates. Certain
column types (for example, BLOB) are ineligible for inclusion in the
overqualified-update query predicate and might affect your design.

Access intent best practices
This topic outlines issues to consider when applying access intent policies to
Enterprise JavaBeans (EJB) methods.
v

5.0.2

Start by configuring the default access intent policy for an entity. After your
application is built and running, you can more finely tune certain access paths in
your application using application profiling or method-level access intent.

v

5.0.2

Don’t mix access types. Avoid using both pessimistic and optimistic policies in
the same transaction. For most databases, pessimistic and optimistic policies use
different isolation levels. This can result in multiple database connections, which
prevents you from taking advantage of the performance benefits possible
through connection sharing.

v Take care when applying wsPessimisticUpdate-NoCollision. This policy does
not ensure data integrity. No database locks are held, so concurrent transactions
can overwrite each other’s updates. Use this policy only if you can be sure that
only one transaction will attempt to update persistent store at any given time.

Frequently asked questions: Access intent
I have not applied any access intent policies at all. My application runs just fine
with a DB2 database, but it fails with an Oracle database with the following
message: com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException:
PMGR1001E: No such DataAccessSpec :FindAllCustomers. The backend datastore

134 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

does not support the SQLStatement needed by this AccessIntent: (pessimistic
update-weakestLockAtLoad)(collections: transaction/25) (resource manager
prefetch: 0) (AccessIntentImpl@d23690a). Why?

If you have not configured access intent, all of your data is accessed under
the default access intent policy (wsPessimisticUpdate-WeakestLockAtLoad).
On DB2 databases, the weakest lock is a shared one, and the query runs
without a FOR UPDATE clause. On Oracle databases, however, the
weakest lock is an update lock; this means that the SQL query must
contain a FOR UPDATE clause. However, not every SQL statement
necessarily supports FOR UPDATE; for example, if the query is being run
against multiple tables in a join, FOR UPDATE is not supported.

To avoid this problem, try either of the following:
v Modify your SQL query or reconfigure your application so that an

update lock is supported
v Apply an access intent policy that supports optimistic concurrency

I am calling a finder method and I get an InconsistentAccessIntentException at
run time. Why?

5.0.2

This can occur when you use method-level access intent policies to apply
more control over how a bean instance is loaded. This execption indicates
that the entity bean was previously loaded in the same transaction. This
could happen if you called a multifinder method that returned the bean
instance with access intent policy X applied; you are now trying to load
the second bean again by calling its findByPrimaryKey method with access
intent Y applied. Both methods must have the same access intent policy
applied.

Likewise, if the entity was loaded once in the transaction using an access
intent policy configured on a finder, you might have called a
container-managed relationship (CMR) accessor method that returned the
entity bean configured to load using that entity’s default access intent.

To avoid this problem, ensure that your code does not load the same bean
instance twice within the same transaction with different access intent
policies applied. Avoid the use of method-level access intent unless
absolutely necessary.

I have two beans in a container-managed relationship. I call findByPrimaryKey()
on the first bean and then call getBean2(), a CMR accessor method, on the
returned instance. At that point, I get an InconsistentAccessIntentException.
Why? You are probably using read-ahead. When you loaded the first bean, you

caused the second bean to be loaded under the access intent policy applied
to the finder method for the first bean. However, you have configured
your CMR accessor method from the first bean to the second with a
different access intent policy. CMR accessor methods are really finder
methods in disguise; the run-time environment behaves as if you were
trying to change the access intent for an instance you have already read
from persistent store.

To avoid this problem, beans configured in a read-ahead hint are all driven
to load with the same access intent policy as the bean to which the
read-ahead hint is applied.

I have a bean with a one-to-many relationship to a second bean. The first bean
has a pessimistic-update intent policy applied. When I try to add an instance of
the second bean to the first bean’s collection, I get an

Chapter 4. Using enterprise beans in applications 135

UpdateCannotProceedWithIntegrityException. Why?
The second bean probably has a read intent policy applied. When you add
the second bean to the first bean’s collection, you are not updating the first
bean’s state, you are implicitly modifying the second bean’s state. (The
second bean contains a foreign key to the first bean, which is modified.)

To avoid this problem, ensure that both ends of the relationship have an
update intent policy applied if you expect to change the relationship at run
time.

EJB modules
An EJB module is used to assemble one or more enterprise beans into a single
deployable unit. An EJB module is stored in a standard Java archive (JAR) file.

An EJB module contains the following:
v One or more deployable enterprise beans.
v A deployment descriptor, stored in an Extensible Markup Language (XML) file.

This file declares the contents of the module, defines the structure and external
dependencies of the beans in the module, and describes how the beans are to be
used at run time.

An EJB module can be used as a stand-alone application, or it can be combined
with other EJB modules, or with Web modules, to create a J2EE application. An EJB
module is installed and run in an enterprise bean container.

For more information about EJB modules, see ″Resources for learning.″

Assembling EJB modules
Before you begin

If you want to use existing Java 2 Platform, Enterprise Edition (J2EE) Version 1.2
modules in your J2EE Version 1.3 application, migrate them to the Version 1.3
specification first.

Assemble an Enterprise JavaBeans (EJB) module to contain enterprise beans and
related code artifacts. Group Web components, client code, and resource adapter
code in separate modules.

An EJB module is installed as a stand-alone application or is combined with other
modules into an enterprise application.

To increase performance, break CMP enterprise beans into several enterprise bean
modules during assembly. The load time for hundreds of beans is improved by
distributing the beans across several JAR files and packaging them to an EAR file.
Load time is faster when the administrative server attempts to start the beans, for
example, 8-10 minutes versus more than one hour when one JAR file is used.

The Application Assembly Tool (AAT) provides flexibility in assembling EJB
modules. Options described below include:
v Importing an existing EJB module (EJB JAR file)
v Creating a new EJB module
v Copying code artifacts (such as entity beans) from one EJB module into a new

EJB module

136 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Steps for this task
1. (Start the AAT).
2. From the New tab, select EJB Module. Click OK.

The navigation tree displays various sets of properties for configuring the new
EJB module.

3. (Optional) Use the property dialog shown in the AAT workspace to change the
default file name and location.
a. It is recommended that you change the display name so that it differs from

the file name.
b. If you like, change the temporary location of the EJB module from the

default location, install_root/bin.
4. Add at least one EJB component to the module.

v Add at least one enterprise bean to the EJB component.
– Import an existing JAR or EAR file containing EJB components.

a. In the Navigation pane, right-click the EJB Components icon.
b. Select Import from the pop-up menu.
c. Click Browse to locate the archive file to import.
d. Click Open to display the contents of the archive file. The applications

in the selected archive file display.
e. Select an EJB application from the archive file.
f. Select the servlets or JSP files to be added, and click Add to display the

components in the Selected Components window.
g. Click OK to add the selected components.

– Copy and paste values from an existing module.
– Create a new EJB component.

a. In the Navigation pane, right-click the EJB Components icon.
b. Select New from the pop-up menu.
c. Enter the component name and archive type.
d. Select the class files.
e. Click OK in the New EJB Component property dialog.
f. Enter properties for the EJB component as needed.

5. Enter assembly properties for each bean.
a. Click the plus sign (+) next to the component instance to show property

groups.
b. Right-click the icon for a property group.
c. Select New from the pop-up menu to add new values, or edit existing

values in the property pane.

If you change the session type (stateful or stateless) of a session bean, you
must click Apply before making any other changes to the same bean.
Otherwise, certain input fields on the GUI become inactive. (You will know
they are inactive because they are grayed out on the GUI.) After making all of
your changes, click Apply again to commit them.

6. Add any other files needed by the application.
a. Right-click the Files icon.
b. Select Add Files from the pop-up menu.
c. Select Browse to navigate the directory structure.
d. Click Select to open an archive.

Chapter 4. Using enterprise beans in applications 137

e. Select the files to add and click Add.
f. In the Selected Files window, click OK to add the files.

What to do next

Assemble any other new modules of your choice:
v EJB modules
v (Application client modules)
v Resource adapter modules

You can also (migrate existing modules).

Another option is to proceed directly to (assembling a new application module).
While assembling an application module, you can create any new modules that
you need.

CMP field assembly settings
In Enterprise JavaBeans (EJB) Version 1.1-compliant beans, container-managed
persistence (CMP) fields define the variables in the bean class for which the
container must handle persistence management. In EJB Version 2.0-compliant
beans, these are replaced by abstract get and set methods; generated code provides
the implementation of these abstract methods.

Name
Specifies a subset of public variables in the enterprise bean’s implementation class.

Container transactions
Container transaction properties specify how an EJB container is to manage
transaction scopes for the enterprise bean’s method invocations. A transaction
attribute is mapped to one or more methods.

Container transaction assembly settings
Container transaction settings specify how an EJB container is to manage
transaction scopes for the enterprise bean’s method invocations. Specify one or
more methods and associate a transaction attribute with each method.

Name
Specifies a name for the mapping between a transaction attribute and one or more
methods.

Description
Contains text that describes the mapping.

Transaction attribute
Specifies how the container must manage the transaction boundaries when
delegating a method invocation to an enterprise bean’s business method.

Data type String
Default Required
Range For all but message-driven beans, valid

values are Mandatory, Never, Not Supported,
Required, Requires New, Supports. For
session beans, Bean Managed is also valid. For
message-driven beans, only Bean Managed,
Not Supported, and Required are valid.

138 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Additional information about valid values follows:

Bean Managed
Notifies the container that the bean class directly handles transaction
demarcation. This setting can be specified for session beans and (in EJB 2.0
implementations only) for message-driven beans, and it cannot be specified
for individual bean methods.

Mandatory
Directs the container to always call the bean method within the transaction
context associated with the client. If the client attempts to invoke the bean
method without a transaction context, the container throws the
javax.jts.TransactionRequiredException exception to the client. The
transaction context is passed to any EJB object or resource accessed by an
enterprise bean method.

EJB clients that access these entity beans must do so within an existing
transaction. For other enterprise beans, the enterprise bean or bean method
must implement the Bean Managed value or use the Required or Requires
New value. For non-enterprise bean EJB clients, the client must access a
transaction by using the javax.transaction.UserTransaction interface.

Never Directs the container to invoke bean methods without a transaction
context.
v If the client calls a bean method from within a transaction context, the

container throws the java.rmi.RemoteException exception.
v If the client calls a bean method from outside a transaction context, the

container behaves in the same way as if the Not Supported transaction
attribute was set. The client must call the method without a transaction
context.

Not Supported
Directs the container to call the bean method without a transaction context.
If a client calls a bean method from within a transaction context, the
container suspends the association between the transaction and the current
thread before invoking the method on the enterprise bean instance. The
container then resumes the suspended association when the method
invocation returns. The suspended transaction context is not passed to any
enterprise bean objects or resources that are used by this bean method.

Required
Directs the container to call the bean method within a transaction context.
If a client calls a bean method from within a transaction context, the
container calls the bean method within the client transaction context. If a
client calls a bean method outside a transaction context, the container
creates a new transaction context and calls the bean method from within
that context. The transaction context is passed to any enterprise bean
objects or resources that are used by this bean method.

Requires New
Directs the container to always call the bean method within a new
transaction context, regardless of whether the client calls the method
within or outside a transaction context. The transaction context is passed to
any enterprise bean objects or resources that are used by this bean method.

Supports
Directs the container to call the bean method within a transaction context if
the client calls the bean method within a transaction. If the client calls the

Chapter 4. Using enterprise beans in applications 139

bean method without a transaction context, the container calls the bean
method without a transaction context. The transaction context is passed to
any enterprise bean objects or resources that are used by this bean method.

Methods - Name
Specifies the name of an enterprise bean method, or the asterisk character (*). The
asterisk is used to denote all methods of an enterprise bean’s remote and home
interfaces.

Methods - Enterprise bean
Specifies which enterprise bean contains the methods indicated in the Name
setting.

Methods - Type
Used to distinguish between a method with the same signature that is defined in
both the home and remote interface. Use Unspecified if a transaction attribute
applies to all methods of the bean.

Data type String
Range Valid values for EJB 1.1 implementations are

Home, Remote, or Unspecified. For EJB 2.0
implementations, Local and LocalHome are
also valid.

Methods - Parameters
Contains a list of fully qualified Java type names of the method parameters. This
setting is used to identify a single method among multiple methods with an
overloaded method name.

EJB module assembly settings
An EJB module is used to assemble enterprise beans into a single deployable unit.
An EJB module contains one or more enterprise beans and a deployment
descriptor.

File name
Specifies the file name of the EJB module, relative to the top level of the
application package.

Alternate DD
Specifies a deployment descriptor to be used at run time instead of the one
installed in the module.

Classpath
The path that contains additional classes required by the application that are not
contained in the module’s archive file. The class loader uses this path. Specify the
values relative to the root of the EAR file and separate the values with spaces.
Absolute values that refer to files or directories on the hard drive are ignored.

To specify classes that are not in JAR files but are in the root of the EAR file, use a
period and forward slash (./). Consider the following example directory structure
in which the file myapp.ear contains an EJB module named myejb.jar. Additional
classes reside in class1.jar and class2.zip. A class named xyz.class is not packaged
in a JAR file but is in the root of the EAR file.
myapp.ear/myejb.jar
myapp.ear/class1.jar
myapp.ear/class2.zip
myapp.ear/xyz.class

140 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Specify class1.jar class2.zip ./ as the value of the Classpath setting. (Name
only the directory for .class files.)

Display name
Specifies a short name that is intended to be displayed by GUIs.

Description
Contains text that describes the module.

EJB client JAR
Specifies the location of a JAR file that contains a subset of deployed classes
needed by the client.

Small icon
Specifies the name of a JPEG or GIF file that contains a small image (16x16 pixels).
The image is used as an icon to represent the module in a GUI.

Large icon
Specifies the name of a JPEG or GIF file that contains a large image (32x32 pixels).
The image is used as an icon to represent the module in a GUI.

Generalizations - Subtype
Information about this property is not available.

This property is an IBM extension to the standard J2EE deployment descriptor.

Generalizations - Supertype
Information about this property is not available.

This property is an IBM extension to the standard J2EE deployment descriptor.

EJB relationships - Name
The logical name for a container-managed relationship between EJB 2.0-compliant
entity beans.

Default data source - JNDI name
Specifies the default JNDI name for the data source. This default is used if binding
information is not specified in the deployment descriptor for an individual
enterprise bean.

Default CMP connection factory
Specifies the JNDI name for a CMP connection factory. This setting is applicable
only for EJB 2.x-compliant CMP beans.

Default authorization - User ID
Specifies the default user ID for connecting to an enterprise bean’s data store.

Default authorization - Password
Specifies the default password for connecting to an enterprise bean’s data store.

Entity bean assembly settings
An entity bean encapsulates persistent data, which is stored in a data source, and
associated methods to manipulate that data.

EJB name
Specifies a logical name for the enterprise bean. This name must be unique within
the EJB module. There is no relationship between this name and the JNDI name.

Chapter 4. Using enterprise beans in applications 141

Display name
Specifies a short name that is intended to be displayed by GUIs.

Description
Contains text that describes the entity bean.

EJB class
Specifies the full name of the enterprise bean class (for example,
com.ibm.ejs.doc.account.AccountBean).

Remote - Home
(Required for EJB 1.x) Specifies the full name of the enterprise bean’s home
interface class (for example, com.ibm.ejs.doc.account.AccountHome).

Remote - Interface
(Required for EJB 1.x) Specifies the full name of the enterprise bean’s remote
interface class (for example, com.ibm.ejs.doc.account.Account).

Local interface - Home
(Required for EJB 1.x) Specifies the full name of the enterprise bean’s local home
interface class (for example, com.ibm.ejs.doc.account.AccountLocalHome).

Local interface - Interface
(Required for EJB 1.x) Specifies the full name of the enterprise bean’s local
interface class (for example, com.ibm.ejs.doc.account.AccountLocal).

Persistence type
Specifies whether an entity bean manages its own persistent storage or whether
storage is managed by the container.

Data type String
Range Valid values are Bean managed and Container managed.

Reentrant
Specifies whether the entity bean is reentrant. If an enterprise bean is reentrant, it
can call methods on itself or call another bean that calls a method on the calling
bean. Only entity beans can be reentrant.

If an entity bean is not reentrant and a bean instance is executing a client request
in a transaction context and another client using the same transaction context
makes a request on the same bean instance, the EJB container throws the
java.rmi.RemoteException exception to the second client. If a bean is reentrant, the
container cannot distinguish this type of illegal loopback call from a legal
concurrent call, so the bean must be coded to detect illegal loopback calls.

Primary key class
Specifies the full name of the bean’s primary key class (for example,
com.ibm.ejs.doc.account.AccountKey). Composite primary keys map to multiple
fields in the entity bean class (or to data structures built from the primitive Java
data types) and must be encapsulated in a primary key class.

More complicated enterprise beans are likely to have composite primary keys, with
multiple instance variables representing the primary key. A subset of the
container-managed fields is used to define the primary key class associated with
each instance of an enterprise bean.

142 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Primary key field
Specifies the name of a simple primary key. Simple primary keys map to a single
field in the entity bean class and are made up of primitive Java data types (such as
integer or long). If exactly one CMP field is the primary key, it can be specified
here.

Data type String
Range Valid values are the name of any one CMP

field or Compound key, which appears when
the primary key class is set

Version
Specifies the version of EJB specification with which a container-managed
persistence (CMP) entity bean complies.

Data type String
Range Valid values are 1.x or 2.x

Abstract schema name
Specifies the name of the abstract schema type of an EJB Version 2.x CMP entity
bean. It is used in EJB Query Language (QL) queries.

For example, the abstract schema name might be Order for an entity bean whose
local interface is com.acme.commerce.Order.

Small icon
Specifies the name of a JPEG or GIF file that contains a small image (16x16 pixels).
The image is used as an icon to represent the entity bean in a GUI.

Large icon
Specifies the name of a JPEG or GIF file that contains a large image (32x32 pixels).
The image is used as an icon to represent the entity bean in a GUI.

Security identity
Specifies that a principal’s credential properties are to be handled as indicated in
the Run-As mode property. If this setting is enabled, the Run-As mode property
can be edited.

Run-As mode
Specifies the credential information to be used by the security service to determine
the permissions that a principal has on various resources.

At appropriate points, the security service determines whether the principal is
authorized to use a particular resource based on the principal’s permissions. If the
method call is authorized, the security service acts on the principal’s credential
properties according to the Run-As mode setting of the enterprise bean.

Data
type

Enumerated integer

Range Valid values are Use identity of caller and Use identity assigned to
specified role

Additional information about valid settings follows:

Use identity of caller
The security service makes no changes to the principal’s credential
properties.

Chapter 4. Using enterprise beans in applications 143

Use identity assigned to specified role
A principal that has been assigned to the specified security role is used for
the execution of the bean’s methods. This association is part of the
application binding in which the role is associated with a user ID and
password of a user who is granted that role.

Role name
Specifies the name of a security role. If Run-As mode is set to Use identity
assigned to specified role, a principal that has been granted this role is used.

Description
Contains further information about the security role.

Concurrency control
Specifies how the bean is to handle concurrent access to its data. This setting is
applicable only for EJB 1.x-compliant entity beans.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Range Valid values are Optimistic or Pessimistic

Inheritance root
Specifies whether the enterprise bean is at the root of an inheritance hierarchy.

This property is an IBM extension to the standard J2EE deployment descriptor.

Bean Cache - Activate at
Specifies the point at which an enterprise bean is activated and placed in the cache.
Removal from the cache and passivation is also governed by this setting.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Default Transaction
Range Valid values are Once, Transaction, and Activity session

More information about valid values follows:

Once Indicates that the bean activates when it is first accessed in the server
process, and passivates (and is removed from the cache) at the discretion
of the container, for example, when the cache becomes full.

Transaction
Indicates that the bean activates at the start of a transaction and passivates
(and is removed from the cache) at the end of the transaction.

Activity session
Indicates that the bean activates and passivates as follows:
v On an ActivitySession boundary, if an ActivitySession context is present

on activation
v On a transaction boundary, if a transaction context (but no

ActivitySession context) is present on activation
v Otherwise, on an invocation boundary

The values of the Activate at and Load at settings govern which commit options
are used, as follows:

144 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v For commit option A (implies exclusive database access), use Activate at =
Once and Load at = Activation.
This option reduces database I/O (avoids calls to the ejbLoad function) but
serializes all transactions accessing the bean instance. Option A can increase
memory usage by maintaining more objects in the cache, but can provide better
response time if bean instances are not generally accessed concurrently by
multiple transactions. To use Option A successfully, you must also set
Concurrency control to Pessimistic.
Note for Network Deployment users: When workload management is enabled,
you cannot use Option A. You must use settings that result in the use of options
B or C.

v For commit option B (implies shared database access), use Activate at = Once
and Load at = Transaction.
Option B can increase memory usage by maintaining more objects in the cache.
However, because each transaction creates its own copy of an object, there can
be multiple copies of an instance in memory at any given time (one per
transaction), requiring database access at each transaction. If an enterprise bean
contains a significant number of calls to the ejbActivate function, using Option B
is beneficial because the required object is already in the cache. Otherwise, this
option does not provide significant benefits over Option A.

v For commit option C (implies shared database access), use Activate at =
Transaction and Load at = Transaction.
This option reduces memory usage by maintaining fewer objects in the cache;
however, there can be multiple copies of an instance in memory at any given
time (one per transaction). This option can reduce transaction contention for
enterprise bean instances that are accessed concurrently but not updated.

Bean Cache - Load at
Specifies when the bean loads its state from the database. The value of this setting
implies whether the container has exclusive or shared access to the database.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Default Transaction
Range Valid values are Activation and Transaction

Additional information about valid values follows:

Activation
Indicates that the bean loads when it is activated (regardless of Activate at
setting) and implies that the container has exclusive access to the database.

Transaction
Indicates that the bean loads at the start of a transaction and implies that
the container has shared access to the database.

The Activate at and Load at settings govern which commit options are used. The
commit options are described in the Enterprise JavaBeans specification. For more
information about this setting and achieving a given commit behavior, see Bean
Cache - Activate at.

Commit option
Specifies which commit option is used as a result of bean cache settings. The
commit options are described in the Enterprise JavaBeans specification.

Chapter 4. Using enterprise beans in applications 145

Data type String
Range Valid values are A, B, and C

Local Transactions - Unresolved action
Specifies the action that the EJB container must take if resources are uncommitted
by an application in a local transaction.

This property is an IBM extension to the standard J2EE deployment descriptor.
This setting is applicable only when Resolution control is set to Application. A
local transaction context is created when a method runs in what the EJB
specification refers to as an unspecified transaction context.

Data type String
Default Rollback
Range Valid values are Commit and Rollback

Additional information about these settings follows:

Commit
At end of the local transaction context, the container instructs all
unresolved local transactions to commit.

Rollback
(Default) At end of the local transaction context, the container instructs all
unresolved local transactions to roll back.

Local Transactions - Resolution control
Specifies how the local transaction is to be resolved before the local transaction
context ends: by the application through user code or by the EJB container.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Range Valid values are Application and ContainerAtBoundary

Additional information about these settings follows:

Application
When this setting is used, your code must either commit or roll back the
local transaction. If this does not occur, the runtime environment logs a
warning and automatically commits or rolls back the connection as
specified by the Unresolved action setting.

ContainerAtBoundary
When this setting is used, the container takes responsibility for resolving
each local transaction. This provides you with a programming model
similar to global transactions in which your code simply gets a connection
and performs work within it. User code does not have to handle local
transactions.
v If the Boundary attribute is set to ActivitySession, then the local

transactions are enlisted as ActivitySession resources and directed to
complete by the ActivitySession.

v If the the Boundary attribute is set to BeanMethod, then the local
transactions are committed at method end by the container.

146 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Connections are never committed automatically by the resource adapter
when this value is configured for the bean Unresolved action is not used.
An application cannot call Connection.LocalTransaction.begin() when using
this policy and receives an exception from the resource adapter if it does
so.

When using a Resolution control of ContainerAtBoundary, applications
must get connection handles after the local transaction context boundary
has been started by the container. The application should close the
connection before the end of the boundary, although any work performed
on the connection is not committed or rolled back until the local
transaction context ends. This model of connection usage is sometimes
referred to as the ″get-use-close″ model.

This value is supported only for EJB components that use
container-managed transactions. It is not supported for web components or
for enterprise beans that use bean-managed transactions.

Local Transactions - Boundary
Specifies the duration of a local transaction context.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Default BeanMethod
Range Valid values are BeanMethod and ActivitySession

Additional information about valid settings follows:

BeanMethod
When this setting is used, the local transaction begins when the method
begins and ends when the method ends.

ActivitySession
When this setting is used, the local transaction must be resolved within the
scope of any ActivitySession in which it was started or, if no
ActivitySession context is present, within the same bean method in which
it was started.

Local Relationship Roles - Name
Within a local relationship between EJB 1.x-compliant entity beans, the logical
name for the view an entity bean presents to other beans in the relationship.

For example, in a relationship between Account and Customer beans, the role of
the Account instance relative to the Customer instance might be savingsAccount.

This property is an IBM extension to the standard J2EE deployment descriptor.
This is separate from the container-managed relationships defined in the Enterprise
JavaBeans specification, Version 2.0.

Local Relationship Roles - Source EJB Name
The name of the entity bean for which the role is defined.

This property is an IBM extension to the standard J2EE deployment descriptor.

Chapter 4. Using enterprise beans in applications 147

Local Relationship Roles - is Forward
Specifies how deployment code for navigating the relationship is generated. This
setting is applicable only for navigable relationships.

If isForward is enabled (set to true), deployment code is generated in the source
bean. That is, navigation of the relationship proceeds forward from the source to the
target.

Otherwise, deployment code is generated in the target bean. That is, navigation of
the relationship proceeds from the target to the source.

This property is an IBM extension to the standard J2EE deployment descriptor. For
more information, see the documentation for the Deployment Tool for Enterprise
JavaBeans.

Local Relationship Roles - is Navigable
Specifies whether data in related beans may be retrieved through queries to the
source bean.

This property is an IBM extension to the standard J2EE deployment descriptor.

Lifetime in cache
The lifetime, in seconds, of cached data for an instance of this bean type.

This value indicates how long the cached data is to exist beyond the end of the
transaction in which the data was retrieved. This might avoid another retrieval
from persistent storage if the same bean instance were to be used in later
transactions. How this value is interpreted depends on the value of Lifetime in
cache usage.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type Long
Units Seconds
Default 0
Range 0 to 261 - 1

Lifetime in cache usage
Indicates how the lifetime-in-cache setting is to be used by the caching mechanism.

This property is an IBM extension to the standard J2EE deployment descriptor.

If your application uses CMP beans in which the underlying data changes
infrequently, you might gain significantly better performance by using this setting
with Lifetime in cache. Typically, data read from persistent storage is held
temporarily in an internal cache until the state of the instance is restored. Cached
data normally does not persist beyond state restoration or the end of the
transaction in which the finder method was called. By setting Lifetime in cache
usage to a value other than Off, you indicate that the cached data is to be held for
a longer time, potentially hours or days, before invalidating the version of the data
in the cache and fetching a new version. Avoiding a trip to persistent storage
greatly speeds up access to such beans by applications.

148 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

In addition, the use of a value other than Off requires that finders on the bean
have an access type of Optimistic Read (if you are only reading instances of the
bean) or Optimistic Update (if you plan to occasionally update instances of the
bean).
v For EJB 1.x-compliant beans, see Access intent - access type.
v For EJB 2.x-compliant beans, see Applied access intent.

Setting Bean Cache - Activate at to activation and Bean Cache - Load at to Once
also minimizes retrievals from persistent storage. However, this settings
combination might not be supported by certain CMP beans because it results in the
ejbLoad() method being called once instead of at the beginning of each transaction
in which they are used. The lifetime-in-cache settings combination is independent
of CMP bean implementation, though it does incur the modest overhead of calling
ejbLoad() on each use.

Data type Enumerated int
Units Not applicable
Default 0 (Off)
Range Valid values are Clock Time, Elapsed Time, Week Time, or Off

Additional information about valid values follows:

Off When this value is used, the value of Lifetime in cache is ignored. Beans
of this type are cached only in a transaction-scoped cache. The cached data
for this instance expires after the transaction in which it was retrieved is
completed.

Elapsed Time
When this value is used, the value of Lifetime in cache is added to the
time at which the transaction in which the bean instance was retrieved is
completed. The resulting value becomes the time at which the cached data
expires. The value of Lifetime in cache can add up to minutes, hours,
days, and so on.

Clock Time
When this value is used, the value of Lifetime in cache represents a
particular time of day. The value is added to the immediately preceeding
or following midnight to calculate a future time value, which is then
treated as for Elapsed Time. Using Clock Time enables you to specify that
all instances of this bean type are to have their cached data invalidated at,
for example, 3 AM, no matter when they were retrieved. This is important
if, for example, the data underlying this bean type is batch-updated at 3
AM every day.

The selection of midnight (preceding or following) depends on the value of
Lifetime in cache. If Lifetime in cache plus the value that represents the
preceeding midnight is earlier than the current time, the following
midnight is used.

When you use Clock Time, the value of Lifetime in cache is not supposed
to represent more than 24 hours. If it does, the cache manager subtracts
24-hour increments from it until a value less than or equal to 24 hours is
achieved. To invalidate data at midnight, set Lifetime in cache to 0.

Week Time
Usage of this value is the same as for Clock Time, except that the value of
Lifetime in cache is added to the preceeding or following Sunday

Chapter 4. Using enterprise beans in applications 149

midnight (11:59 PM Saturday plus 1 minute). When Week Time is used, the
value of Lifetime in cache can represent more than 24 hours but not more
than 7 days.

Default Access Intent
Specifies the default access intent under which the entity should load.

Applicability of the following table: [Fix Pack 5.0.2 and later]

Data type String
Units Not applicable
Default Not applicable
Range Valid settings are wsPessimisticUpdate,

wsPessimisticUpdate-NoCollision,
wsPessimisticUpdate-Exclusive,
wsPessimisticUpdate-WeakestLockAtLoad,
wsPessimisticRead, wsOptimisticUpdate, or
wsOptimisticRead.

JNDI name
Specifies the JNDI name of the bean’s home interface. This is the name under
which the enterprise bean’s home interface is registered and therefore, is the name
that must be specified when an EJB client does a lookup of the home interface.

Data source - JNDI name
Specifies the JNDI name for the bean’s data source.

Default Authorization - User ID
Specifies the default user ID for connecting to a data source.

Default Authorization - Password
Specifies the default password for connecting to a data source.

CMP Resource - JNDI name
Specifies the JNDI name for the resource by which CMP data is stored.

CMP Resource - Resource authentication
Specifies the scope at which resources are to be authenticated: by the container or
by the resource.

WAS Enterprise assembly settings for entity beans
Use this page to configure Enterprise Application Server functions for entity beans.

Note: For entity beans, the internationalization type is always Container; it is not
configurable.

Task references: Task references enable developers to programmatically set the
current task under which a component is executing.

Name: The name of the task reference. This name corresponds to the string that
the developer uses to set the current task.

Task: The task that the run-time environment will associate with execution of the
current component.

Name: The name of the task.

150 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Programmatically setting the logical task name causes this task name to be
associated with requests from this J2EE component.

Description: A description of the task.

An optional field provided as a convenience for the developer.

Message-driven bean assembly settings
Use this page to configure the assembly properties of message-driven beans

For more information about the effect of JMS properties, such as message selectors
and message acknowledgement, see the WebSphere MQ Using Java book,
SC34-5456 or Sun’s Java Message Service (JMS) specification documentation
(http://developer.java.sun.com/developer/technicalArticles/Networking/
messaging/)

The following notebook pages are available:

General properties
Specify general assembly properties for the message bean.
v EJB name
v Display name
v Description
v EJB class
v Transaction type

Advanced properties
Specify advanced assembly properties for the message bean.
v Message selector
v Acknowledge mode
v Destination type

Bindings properties
Specify bindings assembly properties for the message bean.
v []

EJB name
The logical name for the message bean (as an enterprise bean)

The logical name for the message bean (as an enterprise bean). This name must be
unique within the EJB module. There is no relationship between this name and the
JNDI name.

Data type String

Display name
A short name that is intended to be displayed by graphical user interfaces

Data type String

Description
A description of the message bean, for administrive use

Data type String

Chapter 4. Using enterprise beans in applications 151

EJB class
The full package name of the message bean class

Specify the full package name of the message bean class, for example,
com.ibm.ejs.doc.account.MessageBean. You can either type the class name or click
Browse to locate an existing class file.

Data type String

Transaction type
Whether the message bean manages its own transactions or the container manages
transactions on behalf of the bean

Whether the message bean manages its own transactions or the container manages
transactions on behalf of the bean. All messages retrieved from a specific
destination have the same transactional behavior. To enable the transactional
behavior that you want, you must configure the JMS destination with the same
transactional behavior as you configure for the message bean.

Data type Enum
Default Bean
Range

Bean The message bean
manages its own
transactions

Container
The container
manages
transactions on
behalf of the bean

Message selector
The JMS message selector to be used to determine which messages the message
bean receives

The JMS message selector to be used to determine which messages the message
bean receives; for example:
JMSType=’car’ AND color=’blue’ AND weight>2500

The selector string can refer to fields in the JMS message header and fields in the
message properties. Message selectors cannot reference message body values.

Data type String
Range A String whose syntax is based on a subset of the SQL92 conditional syntax.

Acknowledge mode
How the session acknowledges any messages it receives.

This property applies only to message-driven beans that uses bean-managed
transaction demarcation (Transaction type is set to Bean).

Data type Enum
Default Auto Acknowledge

152 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Range
Auto Acknowledge

The session automatically acknowledges a
message when it has either successfully returned
from a call to receive, or the message listener it
has called to process the message successfully
returns.

Dups OK Acknowledge
The session lazily acknowledges the delivery of
messages. This is likely to result in the delivery
of some duplicate messages if JMS fails, so it
should be used only by consumers that are
tolerant of duplicate messages.

Destination type
Whether the message bean uses a queue or topic destination.

Data type Enum
Default Null
Range

Queue The message bean
uses a queue
destination.

Topic The message bean
uses a topic
destination.

Listener port name
The name of the listener port for this message bean.

The name of the listener port for this message bean (as defined on the WebSphere
administrative console).

Data type String

WAS Enterprise assembly settings for message-driven beans
Use this page to configure Enterprise Application Server functions for
message-driven beans.

Task references: Task references enable developers to programmatically set the
current task under which a component is executing.

Name: The name of the task reference. This name corresponds to the string that
the developer uses to set the current task.

Task: The task that the run-time environment will associate with execution of the
current component.

Name: The name of the task.

Programmatically setting the logical task name causes this task name to be
associated with requests from this J2EE component.

Description: A description of the task.

An optional field provided as a convenience for the developer.

Chapter 4. Using enterprise beans in applications 153

Internationalization type: The internationalization type of the message-driven
bean.

The internationalization type of a message-driven bean indicates whether the bean
or the hosting EJB container will manage internationalization context on business
method invocations. For message-driven beans the internationalization type setting
can be configured to Application or Container, and defaults to Container. The
setting applies to all business methods of a message-driven bean.

Select whether the message-driven bean will employ Application or Container
internationalization context management using the Internationalization Type
drop-down menu.

Note: In this release, messages received by message-driven bean onMessage()
invocations lack internationalization context, meaning that caller context elements
are unavailable and always default to the elements of the server JVM, regardless of
the internationalization type or applicable container internationalization attribute.

Default Container

154 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Range
Application

Under Application-managed
Internationalization (AMI) a
message-driven bean is responsible to
manage (set) invocation context using the
internationalization context API. The
container suspends internationalization
context imported from the calling process
on business method invocations; to
continue propagating this context on
subsequent business method requests, a
method must use the API to transfer
caller context elements to the invocation
context scoped to that method. Invocation
context elements not set using the API
default to the respective elements of the
current process when accessed using the
API or when propagated on outgoing
business method requests.

Specify Application-managed
Internationalization for message-driven
beans having internationalization context
management requirements not supported
by Container-managed
Internationalization.

Container

Under Container-managed
Internationalization (CMI) a
message-driven bean has read-only access
to the internationalization context API and
relies solely on the container to manage
invocation context in accordance with the
Run as field of the applicable Container
Internationalization attribute. On a
business method request, the container
scopes the context indicated by the Run
as field to the method; when the method
has completed, the container removes this
context from scope. If the bean method is
not indicated within a container
internationalization attribute, the
container scopes the caller context by
default. Invocation context elements
unavailable to the container default to the
respective elements of the current JVM
when accessed using the API or when
propagated on outgoing business method
requests.

Method extensions
Method extensions are IBM extensions to the standard deployment descriptors for
enterprise beans.

Method extension properties are used to define transaction isolation levels for
methods, to control the delegation of a principal’s credentials, and to define
custom finder methods.

Chapter 4. Using enterprise beans in applications 155

Method extension assembly settings
Method extensions are IBM extensions to the standard J2EE deployment
descriptors for Enterprise JavaBeans (EJB) Version 1.x-compliant beans. Method
extension settings define transaction isolation levels for methods and control the
delegation of a principal’s credentials.

Method type
Specifies the type of the enterprise bean method.

Data type String
Range Valid values are Home, Remote, and Unspecified.

Name
Specifies the name of an enterprise bean method, or the asterisk character (*). The
asterisk is used to denote all methods of an enterprise bean’s remote and home
interfaces.

Parameters
Contains a list of fully qualified Java type names of the method parameters. Used
to identify a single method among multiple methods with an overloaded method
name.

Isolation level attributes
The transaction isolation level determines how isolated one transaction is from
another. This can be set for individual methods in an enterprise bean or for all
methods in the enterprise bean. An asterisk is used to indicate all methods in the
bean. This setting is not applicable for EJB 2.x-compliant beans.

Within a transactional context, the isolation level associated with the first method
call becomes the required isolation level for all methods called within that
transaction. If a method is called with a different isolation level from that of the
first method, the java.rmi.RemoteException exception is thrown.

Isolation level
Specifies the level of transactional isolation.

The container uses the transaction isolation level attribute as follows:
v Session beans and entity beans with bean-managed persistence (BMP): For each

database connection used by the bean, the container sets the transaction isolation
level at the start of each transaction unless the bean explicitly sets the isolation
level on the connection.

v Entity beans with container-managed persistence (CMP): The container generates
database access code that implements the specified isolation level.

Data
type

String

Range Valid values are Serializable, Repeatable read, Read committed, and Read
uncommitted

Serializable
This level prohibits the following types of reads:
v Dirty reads, in which a transaction reads a database row containing

uncommitted changes from a second transaction.

156 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v Nonrepeatable reads, in which one transaction reads a row, a second
transaction changes the same row, and the first transaction rereads the
row and gets a different value.

v Phantom reads, in which one transaction reads all rows that satisfy an
SQL WHERE condition, a second transaction inserts a row that also
satisfies the WHERE condition, and the first transaction applies the same
WHERE condition and gets the row inserted by the second transaction.

Repeatable read
This level prohibits dirty reads and nonrepeatable reads, but it allows
phantom reads.

Read committed
This level prohibits dirty reads but allows nonrepeatable reads and
phantom reads.

Read uncommitted
This level allows dirty reads, nonrepeatable reads, and phantom reads.

Access intent - Intent type
Specifies whether to load the enterprise bean as read-only or for update. This
setting is applicable only for EJB 1.x-compliant beans.

This setting is applicable for the following types of beans:
v EJB 1.x-compliant entity beans
v Enterprise beans with CMP version 1.x that are packaged in EJB 2.x-compliant

modules

To specify the access intent for EJB 2.x-compliant beans, select an access intent
policy.

Data type String
Range Valid values are Read or Update

Finder descriptor - User
Specifies that the user has provided a finder helper class in the entity bean’s home
interface. The class contains specialized finder methods. This setting is applicable
only for EJB 1.x-compliant entity beans.

Finder descriptor - EJB QL
Describes the semantics of a finder method that uses EJB QL (Enterprise JavaBeans
query language). This setting is applicable only for EJB 1.x-compliant entity beans.

EJB QL is a declarative, SQL-like language that is intended to be compiled to the
target language of the persistent datastore used by a persistence manager. The
language is independent of the bean’s mapping to a relational datastore and is
therefore portable. The EJB query specifies a search based on the persistent
attributes and relationships of the bean. An EJB query can contain the following
clauses:
v SELECT (optional), which specifies the EJB objects to return
v FROM (required), which specifies the collections of objects to which the query is

to be applied
v WHERE (optional), which contains search predicates over the collections
v ORDER BY (optional), which specifies the ordering of the resulting collection

Chapter 4. Using enterprise beans in applications 157

Finder descriptor - Full SELECT
Describes the semantics of a finder method that uses an SQL SELECT clause. For
information on restrictions, see the documentation for the Deployment Tool for
Enterprise JavaBeans.

Finder descriptor - WHERE clause
Describes the semantics of a finder method that uses an SQL WHERE clause. This
clause restricts the results that are returned by the query. For information on
restrictions, see the documentation for the Deployment Tool for Enterprise
JavaBeans.

Security identity
Specifies whether a principal’s credential settings are to be handled as indicated in
the Run-As mode setting. If this is enabled, the Run-As mode setting can be
edited.

Description
Contains further information about the security instructions.

Run-As mode
Specifies the credential information to be used by the security service to determine
the permissions that a principal has on various resources.

At appropriate points, the security service determines whether the principal is
authorized to use a particular resource based on the principal’s permissions. If the
method call is authorized, the security service acts on the principal’s credential
settings according to the Run-As mode setting of the enterprise bean.

Data type Enumerated integer
Range Valid values are Use identity of caller, Use

identity of EJB server, and Use identity
assigned to specified role

Additional information about valid values for this setting follows:

Use identity of caller
The security service makes no changes to the principal’s credential settings.

Use identity of EJB server
The security service alters the principal’s credential settings to match the
credential settings associated with the EJB server.

Use identity assigned to specified role
A principal that has been assigned to the specified security role is used for
the execution of the bean’s methods. This association is part of the
application binding in which the role is associated with a user ID and
password of a user who is granted that role.

Role name
Specifies the name of a security role. If Run-As mode is set to Use identity
assigned to specified role, a principal that has been granted this role is used.

Description
Contains further information about the security role.

Method permissions
A method permission is a mapping between one or more security roles and one or
more methods that a member of the role can call.

158 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Method permission assembly settings
A method permission is a mapping between one or more security roles and one or
more methods that a member of the role can call. Assembly settings for method
permissions include an optional description, a list of security role names, and a list
of methods. The security roles must be defined, and the methods must be defined
in the enterprise bean’s remote or home interfaces.

Method permission name
Specifies a name for the mapping between method permissions and security roles.

Description
Contains text that describes the mapping between method permissions and
security roles.

Methods - Name
Specifies the name of an enterprise bean method, or the asterisk (*) character. The
asterisk is used to denote all the methods of an enterprise bean’s remote and home
interfaces.

Methods - Enterprise bean
Specifies the name of the enterprise bean that contains the method.

Methods - Type
Distinguishes between a method with the same signature that is defined in both
the home and remote interface. Use Unspecified if a method permission applies to
all methods of a bean.

Data type String
Range Valid values are Unspecified, Remote, or Home.

Methods - Parameters
Contains a list of fully qualified Java type names of the method parameters. This
setting is used to identify a single method among multiple methods with an
overloaded method name.

Unchecked
Specifies whether the method permission is checked before the method is run.

Roles - Role name
Specifies the name of the security role that must be granted in order to call the
method.

Query assembly settings
Use these to specify a finder or SELECT query.

A query element contains the following:
v Optional description of the query
v Name of the finder or SELECT method that uses the query
v The return type of mapping, if it is used
v Whether the query is for a SELECT method
v EJB query language (EJB QL) query string that defines the query

Queries that are expressed in EJB QL must use the ejb-ql element to specify the
query. If a query cannot be expressed in EJB QL, describe the semantics of the
query by using the description element and leave the ejb-ql element empty.

Chapter 4. Using enterprise beans in applications 159

Name
Contains the name of an enterprise bean method or the asterisk (*) character. An
asterisk in the method-name element denotes all methods of an enterprise bean’s
remote and home interfaces.

Parameters
Contains a list of the fully-qualified Java names of the method parameters.

Result type
Used in the query element to indicate whether a returned abstract schema type for
a SELECT method should be mapped to an EJBLocalObject or EJBObject type.

References
References are logical names used to locate external resources for enterprise
applications. References are defined in the application’s deployment descriptor file.
At deployment, the references are bound to the physical location (global JNDI
name) of the resource in the target operational environment.

This product supports the following types of references:
v An EJB reference is a logical name used to locate the home interface of an

enterprise bean.
v A resource reference is a logical name used to locate a connection factory object.

These objects define connections to external resources such as databases and
messaging systems. The container makes references available in a JNDI naming
subcontext. By convention, references are organized as follows:
v EJB references are made available in the java:comp/env/ejb subcontext.
v Resource references are made available as follows:

– JDBC DataSource references are declared in the java:comp/env/jdbc
subcontext.

– JMS connection factories are declared in the java:comp/env/jms subcontext.
– JavaMail connection factories are declared in the java:comp/env/mail

subcontext.
– URL connection factories are declared in the java:comp/env/url subcontext.

EJB reference assembly settings
An EJB reference is a logical name used to locate the home interface of an
enterprise bean used by an application.

At deployment, the EJB reference is bound to the enterprise bean’s home in the
target operational environment. The container makes the application’s EJB
references available in a JNDI naming context. It is recommended that references to
enterprise beans be organized in the ejb subcontext of the application’s
environment (in java:comp/env/ejb).

Name
Specifies the JNDI name of the enterprise bean’s home interface relative to the
java:comp/env context.

For example, if ejb/EmplRecord is specified, the referring code looks up the
enterprise bean’s home interface at java:comp/env/ejb/EmplRecord. This JNDI
name is an alias used by the code (the actual JNDI name is specified on the
Binding tab).

160 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Description
Contains text that describes the EJB reference.

Link
Used to link an EJB reference to an enterprise bean in the current module (the
same module as the one making the reference) or in another module within the
same J2EE application. This setting specifies the name of the target enterprise bean.

The target enterprise bean can be in any EJB module in the same J2EE application
as the referring module. To avoid having to rename enterprise beans to have
unique names within an J2EE application, specify the path name of the EJB archive
file that contains the referenced enterprise bean and append the target bean’s
name, separated by a # symbol (for example,
...products/product.jar#ProductEJB). The path name is relative to the referring
module’s archive file specification. If a link is not specified, the reference must be
resolved to a JNDI name during installation.

Home
Specifies the fully qualified name of the enterprise bean’s home interface (for
example, com.ibm.ejbs.EmplRecordHome).

Remote
Specifies the fully qualified name of the enterprise bean’s remote interface (for
example, com.ibm.ejbs.EmplRecord).

Type
Specifies the expected type of the referenced enterprise bean.

Data type String
Default None; must be set
Range Entity or Session

JNDI name
Binding information that is used by the run-time environment to resolve the
location of a resource.

For EJB references, the value of this setting must match the JNDI name of the
enterprise bean as it was specified on the Binding tab for the EJB module that
contains the bean.

EJB local-reference assembly settings
For EJB 2.0-compliant beans, the EJB local reference element declares a reference to
another enterprise bean’s local home interface.

Name
Specifies the name of an EJB reference.

This is the JNDI name that the servlet code uses to get a reference to the enterprise
bean. The following example illustrates how this element is specified in the
deployment descriptor:
<ejb-ref-name>ejb/Payroll</ejb-ref-name>

Description
Contains a description of the parent element.

Chapter 4. Using enterprise beans in applications 161

This can include any information that the EJB archive-file producer wants to
provide to the consumer of the EJB archive file.

Link
Used in the ejb-ref element to specify that an EJB reference is linked to an
enterprise bean in the encompassing web-application package.

The value of the link element must be the EJB name of an enterprise bean in the
same web-application package. The following example illustrates how this element
is specified in the deployment descriptor:
<ejb-link>EmployeeRecord</ejb-link>

Local interface
Specifies the fully-qualified name of the enterprise bean’s local interface.

Local home
Specifies the fully-qualified name of the enterprise bean’s local home interface.

Type
Specifies the expected type of the referenced enterprise bean.

EJB relation assembly settings
An EJB relation describes a relationship between two entity beans with
container-managed persistence.

The name of the relationship, if specified, is unique within an EJB archive file.

Description
Contains text to describe the EJB relationship role.

Source EJB
Specifies the source of the role that participates in a relationship.

Multiplicity
Specifies the multiplicity of the role that participates in a relation.

Cascade delete
Within a particular relationship, specifies that the lifetime of one or more entity
beans is dependent on the lifetime of another entity bean.

Cascade delete can be specified only for an EJB relationship role contained in an
EJB relation in which the other EJB relationship role specifies a multiplicity of one.

CMR field
Enables the declaration of a container-managed relationship (CMR) field.

The CMR field describes the bean provider’s view of a relationship. It consists of
an optional description and the name and class type of the source enterprise bean’s
role in a relationship.

Exclude list assembly settings
The exclude list indicates which methods in the enterprise beans may not be
called. You should also configure security for the enterprise bean so that access to
the listed methods is not permitted.

This capability applies only to Enterprise JavaBeans (EJB) Version 2.x-compliant
beans. For more information about exclude lists, see the EJB specification.

162 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Description
Provides additional information about this exclude list.

Methods - Name
Specifies the name of an enterprise bean method, or the asterisk (*) character. The
asterisk is used to denote all the methods of an enterprise bean’s remote and home
interfaces.

Methods - Enterprise bean
Specifies the name of the enterprise bean that contains the method.

Methods - Type
Distinguishes between a method with the same signature that is defined in both
the home and remote interface. Use Unspecified if the exclusion applies to all
methods of a bean.

Data type String
Range Valid values are Unspecified, Remote, or Home

Methods - Parameters
Contains a list of fully qualified Java type names of the method parameters. This
setting is used to identify a single method among multiple methods with an
overloaded method name.

Security role assembly settings
A security role is a logical grouping of principals. Access to operations (such as
enterprise-bean methods) is controlled by granting access to a role.

Role name
Specifies the name of a security role that is unique to an application. This setting
applies only when you are specifying security roles at the application level (EAR
file).

Description
Contains text that describes the application-specific security role. This setting
applies only when you are specifying security roles at the application level (EAR
file).

Binding - Groups - Name
Specifies the user groups that are granted the application-specific security role.
This setting applies only when you are specifying security roles at the application
level (EAR file).

Binding - Users - Name
Specifies the users that are granted the application-specific security role. This
setting applies only when you are specifying security roles at the application level
(EAR file).

Binding - Special Subjects - Name
Specifies one of two special categories of authenticate users to which
application-specific security roles can be granted: Everyone or All. This setting
applies only when you are specifying security roles at the application level (EAR
file).

If the special subject All is granted a role, any user who can authenticate by using
a valid user ID and password is considered to be granted that role.

Chapter 4. Using enterprise beans in applications 163

If the special subject Everyone is granted a role, all users, including those who did
not authenticate, are granted the role. In other words, a method on an enterprise
bean or a URI is unprotected if any of the required roles for that method are
granted to the special subject Everyone.

Data type String
Range Valid values are All or Everyone

Session bean assembly properties
A session bean encapsulates transient data that is associated with a particular EJB
client. Unlike data in an entity bean, the data in a session bean is not stored in a
persistent data source.

EJB name
Specifies a logical name for the enterprise bean. This name must be unique within
the EJB module. There is no relationship between this name and the JNDI name.

Display name
Specifies a short name that is intended to be displayed by GUIs.

Description
Contains text that describes the session bean.

EJB class
Specifies the full name of the enterprise bean class (for example,
com.ibm.ejs.doc.account.AccountBean).

Remote - Home
Specifies the full name of the enterprise bean’s home interface class (for example,
com.ibm.ejs.doc.account.AccountHome).

Remote - Interface
Specifies the full name of the enterprise bean’s remote interface class (for example,
com.ibm.ejs.doc.account.Account).

Local interface - Home
Specifies the full name of the enterprise bean’s home interface class (for example,
com.ibm.ejs.doc.account.AccountLocalHome).

Local interface - Interface
Specifies the full name of the enterprise bean’s local interface class (for example,
com.ibm.ejs.doc.account.AccountLocal).

Session type
Specifies whether the enterprise bean maintains a conversational state (is stateful)
or does not (is stateless).

Data type String
Range Valid values are Stateful and Stateless

Transaction type
Specifies whether the enterprise bean manages its own transactions or whether the
container manages transactions on behalf of the bean.

Data type String
Range Valid values are Container or Bean

164 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Small icon
Specifies the name of a JPEG or GIF file that contains a small image (16x16 pixels).
The image is used as an icon to represent the session bean in a GUI.

Large icon
Specifies the name of a JPEG or GIF file that contains a large image (32x32 pixels).
The image is used as an icon to represent the session bean in a GUI.

Security identity
Specifies whether a principal’s credential properties are to be handled as indicated
in the Run-As mode property. If this setting is enabled (that is, set to true), the
Run-As mode setting can be edited.

Description
Contains further information about the security instructions.

Run-As mode
Specifies the credential information to be used by the security service to determine
the permissions that a principal has on various resources.

At appropriate points, the security service determines whether the principal is
authorized to use a particular resource based on the principal’s permissions. If the
method call is authorized, the security service acts on the principal’s credential
properties according to the Run-As mode setting of the enterprise bean.

Data
type

Enumerated integer

Range Valid values are Use identity of caller and Use identity assigned to
specified role

Additional information about valid values for this setting follows:

Use identity of caller
The security service makes no changes to the principal’s credential
properties.

Use identity assigned to specified role
A principal that has been assigned to the specified security role is used for
the execution of the bean’s methods. This association is part of the
application binding in which the role is associated with a user ID and
password of a user who is granted that role.

Role name
Specifies the name of a security role. If Run-As mode is set to Use identity
assigned to specified role, a principal that has been granted this role is used.

Description
Contains further information about the security role.

Timeout
This property applies only to stateful session beans.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type Integer
Units Seconds

Chapter 4. Using enterprise beans in applications 165

Inheritance root
Specifies whether the enterprise bean is at the root of an inheritance hierarchy.

This property is an IBM extension to the standard J2EE deployment descriptor.

Bean Cache - Activate at
Specifies the point at which an enterprise bean is activated and placed in the cache.
Removal from the cache and passivation is also governed by this setting. This
setting applies to stateful session beans only (not to stateless beans).

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Default Once
Range Valid values are Once and Transaction

Additional information about valid values follows:

Once Indicates that the bean is activated when it is first accessed in the server
process, and passivated (and removed from the cache) at the discretion of
the container, for example, when the cache becomes full.

Transaction
Indicates that the bean is activated at the start of a transaction and
passivated (and removed from the cache) at the end of the transaction.

Local Transactions - Unresolved action
Specifies the action that the EJB container must take if resources are uncommitted
by an application in a local transaction.

This property is an IBM extension to the standard J2EE deployment descriptor.
This setting is applicable only when Resolution control is set to Application. A
local transaction context is created when a method runs in what the EJB
specification refers to as an unspecified transaction context.

Data type String
Default Rollback
Range Valid values are Commit and Rollback

Additional information about these settings follows:

Commit
At end of the local transaction context, the container instructs all
unresolved local transactions to commit.

Rollback
(Default) At end of the local transaction context, the container instructs all
unresolved local transactions to roll back.

Local Transactions - Resolution control
Specifies how the local transaction is to be resolved before the local transaction
context ends: by the application through user code or by the EJB container.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Range Valid values are Application and ContainerAtBoundary

166 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Additional information about these settings follows:

Application
When this setting is used, your code must either commit or roll back the
local transaction. If this does not occur, the runtime environment logs a
warning and automatically commits or rolls back the connection as
specified by the Unresolved action setting.

ContainerAtBoundary
When this setting is used, the container takes responsibility for resolving
each local transaction. This provides you with a programming model
similar to global transactions in which your code simply gets a connection
and performs work within it. User code does not have to handle local
transactions.
v

– If the Boundary attribute is set to ActivitySession, then the local
transactions are enlisted as ActivitySession resources and directed to
complete by the ActivitySession.

– If the the Boundary attribute is set to BeanMethod, then the local
transactions are committed at method end by the container.

Connections are never committed automatically by the resource adapter
when this value is configured for the bean Unresolved action is not
used. An application cannot call Connection.LocalTransaction.begin()
when using this policy and receives an exception from the resource
adapter if it does so.

When using a Resolution control of ContainerAtBoundary, applications
must get connection handles after the local transaction context boundary
has been started by the container. The application should close the
connection before the end of the boundary, although any work
performed on the connection is not committed or rolled back until the
local transaction context ends. This model of connection usage is
sometimes referred to as the ″get-use-close″ model.

This value is supported only for EJB components that use
container-managed transactions. It is not supported for web components
or for enterprise beans that use bean-managed transactions.

Local Transactions - Boundary
Specifies the duration of a local transaction context. This property does not apply
to stateless session beans.

This property is an IBM extension to the standard J2EE deployment descriptor.

Data type String
Default BeanMethod
Range Valid values are BeanMethod and ActivitySession

Additional information about valid settings follows:

BeanMethod
When this setting is used, the local transaction begins when the method
begins and ends when the method ends.

ActivitySession
When this setting is used, the local transaction must be resolved within the

Chapter 4. Using enterprise beans in applications 167

scope of any ActivitySession in which it was started or, if no
ActivitySession context is present, within the same bean method in which
it was started.

JNDI name
Specifies the JNDI name of the bean’s home interface. This is the name under
which the enterprise bean’s home interface is registered and therefore, is the name
that must be specified when an EJB client does a lookup of the home interface.

WAS Enterprise assembly settings for session beans
Use this page to configure Enterprise Application Server functions for session
beans.

Task references: Task references enable developers to programmatically set the
current task under which a component is executing.

Name: The name of the task reference. This name corresponds to the string that
the developer uses to set the current task.

Task: The task that the run-time environment will associate with execution of the
current component.

Name: The name of the task.

Programmatically setting the logical task name causes this task name to be
associated with requests from this J2EE component.

Description: A description of the task.

An optional field provided as a convenience for the developer.

Internationalization type: The Internationalization type of a session bean
indicates whether the bean or the hosting EJB container will manage
internationalization context on business method invocations. For session beans the
Internationalization type can be configured to Application or Container, and
defaults to Container. The setting applies to all business methods of a session bean.

Select whether the session bean will employ Application or Container
Internationalization context management using the Internationalization type
drop-down list.

Default Container

168 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Range
Application

Under Application-managed
Internationalization (AMI) session beans
are responsible to manage (set) invocation
context elements using the
internationalization context API. The
container suspends internationalization
context imported from the calling process
on business method invocations; to
continue propagating this context on
subsequent business method requests, a
method must use the API to transfer
caller context elements to the invocation
context scoped to that method. invocation
context elements not set using the API
default to the respective elements of the
current process when accessed using the
API or when propagated on outgoing
business method requests.

Specify Application-managed
Internationalization for session beans
having internationalization context
management requirements not supported
by Container-managed
Internationalization.

Container

Under Container-managed
Internationalization (CMI) session beans
have read-only access to the
internationalization context API and rely
solely on the container to manage
Invocation context in accordance with the
Run as field of the applicable Container
Internationalization attribute. On a
business method invocation, the container
scopes the context indicated by the Run
as field to the method implementation;
when the method has completed, the
container removes this context from
scope. If the method is not indicated
within a Container Internationalization
attribute, the container scopes the caller
context by default. Invocation context
elements unavailable to the container
default to the respective elements of the
server JVM when accessed using the API
or when propagated on outgoing business
method requests

EJB containers
An Enterprise JavaBeans (EJB) container provides a run-time environment for
enterprise beans within the application server. The container handles all aspects of
an enterprise bean’s operation within the application server and acts as an
intermediary between the user-written business logic within the bean and the rest
of the application server environment.

Chapter 4. Using enterprise beans in applications 169

One or more EJB modules, each containing one or more enterprise beans, can be
installed in a single container.

The EJB container provides many services to the enterprise bean, including the
following:
v Beginning, committing, and rolling back transactions as necessary.
v Maintaining pools of enterprise bean instances ready for incoming requests and

moving these instances between the inactive pools and an active state, ensuring
that threading conditions within the bean are satisfied.

v Most importantly, automatically synchronizing data in an entity bean’s instance
variables with corresponding data items stored in persistent storage.

By dynamically maintaining a set of active bean instances and synchronizing bean
state with persistent storage when beans are moved into and out of active state,
the container makes it possible for an application to manage many more bean
instances than could otherwise simultaneously be held in the application server’s
memory. In this respect, an EJB container provides services similar to virtual
memory within an operating system.

Between transactions, the state of an entity bean can be cached. The EJB container
supports option A, B, and C caching.

For more information about EJB containers, see ″Resources for learning.″

Managing EJB containers
Each application server can have a single EJB container; one is created
automatically for you when the application server is created. The following steps
are to be performed only as needed to improve performance after the EJB
application has been deployed.

Steps for this task
1. (Optional) Adjust EJB container settings.
2. (Optional) Adjust EJB cache settings.

What to do next

If adjustments do not improve performance, consider adjusting access intent
policies for entity beans, reassembling the module, and redeploying the module in
the application.

EJB container settings
Use this page to configure and manage a specific EJB container.

To view this administrative console page, click Servers > Application Servers >
serverName > EJB Container.

Passivation directory
Specifies the directory into which the container saves the persistent state of
passivated stateful session beans.

Beans are passivated when the number of active bean instances becomes greater
than the cache size specified in the container configuration. When a stateful bean is
passivated, the container serializes the bean instance to a file in the passivation

170 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

directory and discards the instance from the bean cache. If, at a later time, a
request arrives for the passivated bean instance, the container retrieves it from the
passivation directory, deserializes it, returns it to the cache, and dispatches the
request to it. If any step fails (for example, if the bean instance is no longer in the
passivation directory), the method invocation fails.

Inactive pool cleanup interval
Specifies the interval at which the container examines the pools of available bean
instances to determine if some instances can be deleted to reduce memory usage.

Data type Integer
Units Milliseconds
Range Greater than 0

Default datasource JNDI name
Specifies the JNDI name of a data source to use if no data source is specified
during application deployment. This setting is not applicable for EJB 2.x-compliant
CMP beans.

Servlets and enterprise beans use data sources to obtain these connections. When
configuring a container, you can specify a default data source for the container.
This data source becomes the default data source used by any entity beans
installed in the container that use container-managed persistence (CMP).

The default data source for a container is secure. When specifying it, you must
provide a user ID and password for accessing the data source.

Specifying a default data source is optional if each CMP entity bean in the
container has a data source specified in its configuration. If a default data source is
not specified and a CMP entity bean is installed in the container without
specifying a data source for that bean, applications cannot use that CMP entity
bean.

Initial state
Specifies the execution state requested when the server first starts.

Data type String
Default Started
Range Valid values are Started and Stopped

EJB container system properties
In addition to the settings accessible from the administrative console, you can set
the following system property by command-line scripting:

com.ibm.websphere.ejbcontainer.poolSize
Specifies the size of the pool for the specified bean type. This property
applies to stateless, message-driven and entity beans. If you do not specify
a default value, the container defaults of 50 and 500 are used.

Set the pool size for a given entity bean as follows:
beantype
=
min
,
max[:
beantype

Chapter 4. Using enterprise beans in applications 171

=
min
,
max...]

beantype is the J2EE name of the bean, formed by concatenating the
application name, the # character, the module name, the # character, and
the name of the bean (that is, the string assigned to the <ejb-name> field in
the bean’s deployment descriptor). min and max are the minimum and
maximum pool sizes, respectively, for that bean type. Do not specify the
square brackets shown in the previous prototype; they denote optional
additional bean types that you can specify after the first. Each bean-type
specification is delimited by a colon (:).

Use an asterisk (*) as the value of beantype to indicate that all bean types
are to use those values unless overridden by an exact bean-type
specification somewhere else in the string, as follows:
*=30,100

To specify that a default value be used, omit either min or max but retain
the comma (,) between the two values, as follows (split for publication):
SMApp#PerfModule#TunerBean=54,

:SMApp#SMModule#TypeBean=100,200

You can specify the bean types in any order within the string.

EJB cache settings
Use this page to configure and manage the cache for a specific EJB container. To
determine the cache absolute limit, multiply the number of enterprise beans active
in any given transaction by the total number of concurrent transactions expected.
Then, add the number of active session bean instances. You can use the Tivoli
Performance Viewer to view bean performance information.

To view this administrative console page, click Servers > Application Servers >
serverName > EJB Container > EJB Cache Settings.

Cleanup interval
Specifies the interval at which the container attempts to remove unused items from
the cache in order to reduce the total number of items to the value of the cache
size.

The cache manager tries to maintain some unallocated entries that can be allocated
quickly as needed. A background thread attempts to free some entries while
maintaining some unallocated entries. If the thread runs while the application
server is idle, when the application server needs to allocate new cache entries, it
does not pay the performance cost of removing entries from the cache. In general,
increase this parameter as the cache size increases.

Data type Integer
Units Milliseconds
Range Greater than 0
Default 3000

Cache size
Specifies the number of buckets in the active instance list within the EJB container.

172 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

A bucket can contain more than one active enterprise bean instance, but
performance is maximized if each bucket in the table has a minimum number of
instances assigned to it. When the number of active instances within the container
exceeds the number of buckets, that is, the cache size, the container periodically
attempts to reduce the number of active instances in the table by passivating some
of the active instances. For the best balance of performance and memory, set this
value to the maximum number of active instances expected during a typical
workload.

Data type Integer
Units Buckets in the hash table
Range Greater than 0. The container selects the next

largest prime number equal to or greater
than the specified value.

Default 2053

Container interoperability
Container interoperability describes the ability of WebSphere Application Server
clients and servers at different versions to successfully negotiate differences in
native Enterprise JavaBeans (EJB) Version 1.1 finder methods support and Java 2
Platform, Enterprise Edition (J2EE) Version 1.3 compliance.

At one time, there were significant interoperability problems among WebSphere
Application Server, versions 4.0.x and 3.5.x distributed, and Version 4.0.x for
zSeries. The introduction of interoperable versions of some class types solved these
problems for distributed versions 3.5.6, 4.0.3, and 5 as well as for zSeries Version
4.0.x.

Older 4.0.x and 3.5.x client and application server versions do not support the
interoperability classes, which makes them uninteroperable with versions that use
the classes. The system property com.ibm.websphere.container.portable remedies this
situation by enabling newer versions of the application server to turn off the
interoperability classes. This lets a more recent application server return class types
that are interoperable with an older client.

Depending on the value of com.ibm.websphere.container.portable, application
servers at versions 5, 4.0.3 and later, and 3.5.6 and later, return different classes for
the following:
v Enumerations and collections returned by EJB 1.1 finder methods
v EJBMetaData
v Handles to:

– Entity beans
– Session beans
– Home interfaces

If the property is set to false, application servers return the old class types, to
enable interoperability with versions 3.5.5 and earlier, and 4.0.2 and earlier. If the
property is set to true, application servers return the new classes.

Instructions for setting the com.ibm.websphere.container.portable property are in
the release notes for versions 3.5.6 and later, and 4.0.3 and later. The following
tables show interoperability characteristics for various version combinations of
application servers and clients as well as default property values for each
combination.

Chapter 4. Using enterprise beans in applications 173

Interoperability of Version 3.5.x client with Version 5 application server

Clients at Version 3.5.5 and earlier are not interoperable with Version 5 servers
when using:
v EJBMetaData
v Enumerations returned by EJB 1.x finder methods
v Handles to entity beans

If you would like to use updated Handle classes in EJB 2.x-compliant beans but
have one of the older clients (versions 3.5.5 and earlier) installed, set the system
property com.ibm.websphere.container.portable.finder to false. With this setting
in place, the Version 5 application server uses the updated handles but returns
the enumerations and collections that were used in the earlier clients.

To interoperate with Version 5 application servers, you must upgrade all Version
3.5.x clients to Version 3.5.6 or later.

Interoperability of Version 5 client with Version 3.5.x application server

Client at Version 5,
using this function

Application server at
Version 3.5.6,
property true

Application server at
Version 3.5.6,
property false
(default)

Application server at
Version 3.5.5 and
earlier

EJBMetaData Does not work across
domains

Works Does not work

Handle to session
bean

Works Works Does not work

Handle to entity bean Does not work across
domains

Does not work across
domains

Does not work across
domains

Enumeration
returned by EJB 1.x
finder method

Works Works Works

Interoperability of Version 4.0.x client with Version 5 application server

Ideally, all 4.0.x clients that use Version 5 application servers should be at Version
4.0.3 or later.

Version 5 application servers return the interoperability class types by default
(true). This can cause interoperability problems for distributed clients at versions
4.0.1 or 4.0.2. In particular, problems can occur with collections and enumerations
returned by EJB 1.1 finder methods.

Although it is strongly discouraged, you can set
com.ibm.websphere.container.portable to false on a Version 5 application server.
This causes the application server to return the old class types, providing
interoperability with clients at Version 4.0.2 and earlier. This is discouraged
because:
v The Version 5 application server instance would become non-J2EE 1.3 compliant

with regard to handles, home interface handles, and EJBMetaData.
v EJB 1.x finder methods return collection and enumeration objects that do not

originate from ejbportable.jar.
v Interoperability restrictions still exist with the property set to false.

174 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v Version 5 client handles to entity beans and home interfaces do not work across
domains for the server you set to false.
If you would like to use updated Handle classes in EJB 2.x-compliant beans but
have one of the older clients (versions 4.0.2 and earlier) installed, set the system
property com.ibm.websphere.container.portable.finder to false. With this setting
in place, the Version 5 application server uses the updated handles but returns
the enumerations and collections that were used in the earlier clients.

Interoperability of client at Version 4.0.2 and earlier with Version 5 application
server

Client at Version 4.0.2 and
earlier, using this function

Application server at
Version 5, property true
(default)

Application server at
Version 5, property false

EJBMetaData Does not work Works for 4.0.2 client

Handle to session bean Does not work Works

Handle to entity bean Does not work Does not work across cells

Enumeration returned by EJB
1.x finder method

Does not work Works

Collection returned by EJB
1.x finder method

Does not work Works

Handle to home interface Does not work Does not work across cells

If you would like to use updated Handle classes in EJB 2.x-compliant beans but
have one of the older clients (versions 3.5.5 and earlier, and 4.0.2 and earlier)
installed, set the system property com.ibm.websphere.container.portable.finder to
false. With this setting in place, the Version 5 server uses the new Handle classes
but returns the older enumeration and collection classes.

Interoperability of client at Version 4.0.3 and later with Version 5 application
server

Clients at Version 4.0.3 and later work well with Version 5 application servers.
However, if you set the com.ibm.websphere.container.portable to false, client
handles to entity beans and home interfaces do not work across domains for the
server you set to false.

Client at Version 4.0.3 and
later, using this function

Application server at
Version 5, property true
(default)

Application server at
Version 5, property false

EJBMetaData Works Works

Handle to session bean Works Works

Handle to entity bean Works Does not work across cells

Enumeration returned by EJB
1.x finder method

Works Works

Collection returned by EJB
1.x finder method

Works Works

Handle to home interface Works Does not work across cells

Interoperability of Version 5 client with Version 4.0.x application server

Chapter 4. Using enterprise beans in applications 175

Clients at Version 5 work well with Version 4.0.3 application servers if you set
com.ibm.websphere.container.portable to true. Client handles to entity beans and
home interfaces do not work across domains for any Version 4.0.3 server with
com.ibm.websphere.container.portable at the default value, false. Version 5 client
handles to application servers at Version 4.0.2 and earlier also have restrictions.

Client at Version 5,
using this function

Application server at
Version 4.0.3,
property true

Application server at
Version 4.0.3,
property false
(default)

Application server at
Version 4.0.2 or
earlier

EJBMetaData Works Works Works for 4.0.2 server
only

Handle to session
bean

Works Works Works

Handle to entity bean Works Does not work across
domains

Does not work across
domains

Enumeration
returned by EJB 1.x
finder method

Works Works Works

Collection returned
by EJB 1.x finder
method

Works Works Works

Handle to home
interface

Works Does not work across
domains

Does not work across
domains

Interoperability of zSeries Version 4.0.x client with Version 5 application server

The only valid configuration for container interoperability with zSeries Version
4.0.x clients is the default configuration for the Version 5 application server.

Interoperability of Version 5 client with zSeries Version 4.0.x application server

Version 5 clients should work with a zSeries Version 4.0.x application server with
the correct interoperability fixes described in the zSeries documentation. The
interoperability characteristics should be the same as for a Version 4.0.3 distributed
application server with the property set to true.

Client at Version 5, using this function zSeries application server at Version 4.0.x

EJBMetaData Works

Handle to session bean Works

Handle to entity bean Works

Enumeration returned by EJB 1.x finder
method

Works

Collection returned by EJB 1.x finder
method

Works

Handle to home interface Works

Interoperability of the handle formats in WebSphere Application Server, Version
5 and Version 5.0.1

5.0.2

176 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Applications that attempt to persist handles to enterprise beans and EJBHome
needed to subclass ObjectInputStream in WebSphere Application Server, Version 5.
This action was required so that the subclass ObjectInputStream could utilize the
context class loader to resolve the classes for enterprise beans and EJBHome stubs.

In addition, handles created and persisted in WebSphere Application Server,
Version 5 only work with objects that have an unchanged remote interface. If the
remote interface is changed, the handle is no longer valid because the stub is
serialized inside the handle and its serial Version UID changes if the remote
interface changes.

This release introduces a new handle persistence mechanism that avoids the
implementation drawbacks of the previous version. However, if handles are used
for this WebSphere Application Server deployment, you should consider the
following issues when applying this update, future WebSphere Application Server
Fix Packs and EJB Container cumulative fixes for WebSphere Application Server,
Version 5.

If a WebSphere Application Server, Version 5 persisted handle or home handle is
encountered by a WebSphere Application Server, Version 5.0.1 system, it can be
read and utilized. In addition, it will be converted to WebSphere Application
Server, Version 5.0.1 format if it is re-persisted. The WebSphere Application Server,
Version 5.0.1 format cannot be read by a WebSphere Application Server, Version 5
system unless PQ72184 is applied.

Problems arise when handles are persisted and shared across systems that are not
at the WebSphere Application Server, Version 5.0.1 level or later. However, a
Version 5 system can receive a handle from Version 5.0.1 remotely through a call to
get a handle on an enterprise bean or a getHomeHandle on an EJBHome. The
remote call will succeed, however, any attempt to persist it on the Version 5 system
will have the same limitations regarding the use of ObjectInputStream and changes
in remote interface invalidating the persisted handle.

When your application stores handles persistently and shares this persistence with
multiple clients or application servers, apply WebSphere Application Server,
Version 5.0.1 or PQ72184 to both the client and server systems at the same time.
Failure to do so can result in the inability of these systems to read the handle data
stored by upgraded systems. Also, handles stored by the WebSphere Application
Server, Version 5 can force the applications of the updated system to still subclass
ObjectInputStream. Applications using the WebSphere Application Server
Enterprise, Version 5 scheduler and process choreographer, are affected by these
changes. These users should update their Version 5 systems at the same time with
either Version 5.0.1 or PQ72184.

If the applications store handles in the session context, or locally in a file on the
same system, that is not shared by other applications, on different systems, they
might be able to update their systems individually, rather than all at once. If Client
Container and thin client applications do not share persisted handle data, they can
be updated as needed as well. However, handles created and persisted in
WebSphere Application Server, Version 5, Version 4.0.3 and later (with the property
flag set), or Version 3.5.7 and later (with the property flag set) are not usable if
either the home or the remote interface changes.

If any WebSphere Application Server, Version 3.5.7 or Version 4.0.3 and later
enables the system property com.ibm.websphere.container.portable to true, any
handles to objects on that server have the same interoperability limitations. In

Chapter 4. Using enterprise beans in applications 177

addition, if any WebSphere Application Server, Version 3.5.7 and later or Version
4.0.3 applications store a handle obtained from a WebSphere Application Server,
Version 5 or Version 5.0.1, the same restrictions apply, regarding the need to
subclass ObjectInputStream and the usability of handles after a change to the
remote interface is made.

Replication of the Http Session and Handles

This note applies to you if you place Handles to Homes or EJBs, or EJB or
EJBHome references in the Http Session in your application and you use Http
Session Replication. If you intend to replicate a mixed environment of Version 5.0.0
and Version 5.0.1 or 5.0.2 machines you should first apply the latest Version 5.0.0
container cumulative e-fix to the Version 5.0.0 machines before allowing the
Version 5.0.1 or 5.0.2 server into the typology. The reason for this is that Version
5.0.0 servers are not able to understand the persisted Handle format used on the
Version 5.0.1 and 5.0.2 server. This is similar to the case of Version 5.0.0 and
Version 5.0.1 or 5.0.2 systems trying to use a shared database, mentioned above.
But in this case, it is the Http Session object and not the database providing the
persistence.

Top Down Deployment Mapping

The size of the Handle objects has grown due to the fix put in to allow
serialization and deserialization to occur without the previous requirements of
subclassing the ObjectInputStream and so on. Top down deployment of an object
that contains EJB and EJBHome references create a database table ddl that has a
field of 1000 bytes of VARCHAR for BITDATA which will contain the Handle. It
might be that your object’s Handle does not fit in the 1000 byte default field, and
you might need to adjust this to a higher value. You might try increments of 250
bytes, that is, 1250, 1500, and so on.

Deploying EJB modules
Before you begin

Assemble one or more EJB modules, (assemble one or more Web modules), and
(assemble them into a J2EE application).

Steps for this task
1. Prepare the deployment environment.
2. (Deploy the application.)
3. Update the configuration for each EJB module as needed for the deployment

environment.
4. For information about the EJB deployment tool, see the [].

What to do next

The next step is to test and debug the module.

EJB module collection
Use this page to manage the EJB modules deployed in a specific application.

178 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

To view this administrative console page, click Applications > Enterprise
Applications > applicationName > EJB modules. Click the check boxes to select one
or more of the EJB modules in your collection.

URI
When resolved relative to the application URL, this specifies the location of the
module’s archive contents on a file system. The URI matches the <ejb> or <web>
tag in the <module> tag of the application deployment descriptor.

EJB module settings
Use this page to configure and manage a specific deployed EJB module.

To view this administrative console page, click Applications > Enterprise
Applications > applicationName > EJB modules > moduleName.

URI
When resolved relative to the application URL, this specifies the location of the
module archive contents on a file system. The URI must match the URI of a
ModuleRef URI in the deployment descriptor of the deployed application (EAR).

Alternate DD
Specifies a deployment descriptor to be used at run time instead of the one
installed in the module.

Starting weight
Specifies the order in which modules are started when the server starts. The
module with the lowest starting weight is started first.

Data type Integer
Default 5000
Range Greater than 0

Enterprise beans: Resources for learning
Use the following links to find relevant supplemental information about enterprise
beans. The information resides on IBM and non-IBM Internet sites, whose sponsors
control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
this product but is useful all or in part for understanding the product. When
possible, links are provided to technical papers and Redbooks that supplement the
broad coverage of the release documentation with in-depth examinations of
particular product areas.

View links to additional information about:
v Planning, business scenarios, and IT architecture
v Programming model and decisions
v Programming instructions and examples
v Programming specifications

Planning, business scenarios, and IT architecture

v

Chapter 4. Using enterprise beans in applications 179

Mastering Enterprise JavaBeans
(http://www.theserverside.com/books/masteringEJB/index.jsp)

A comprehensive treatment of Enterprise JavaBeans (EJB) programming in
nonprintable form (PDF). One must be registered to download the PDF, but
registration is free. Information about purchasing a hardcopy is available on the
Web site.

v Enterprise JavaBeans by Richard Monson-Haefel (O’Reilly and Associates, Inc.:
Third Edition, 2001)

Programming model and decisions

v

Read all about EJB 2.0 (http://www-
106.ibm.com/developerworks/java/library/j-jw-ejb20/)

A comprehensive overview of the specification.
v

The J2EE Tutorial (http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html)

This set of articles by Sun Microsystems covers several EJB-related topics,
including the basic programming models, persistence, and EJB Query Language.

Programming instructions and examples

v

Rules and Patterns for Session Facades
(http://www7b.boulder.ibm.com/wsdd/library/techarticles/0106_brown/
sessionfacades.html)

EJB programming practice: Fronting entity beans with a session-bean facade.
v

WebSphere Application Server Development Best Practices for Performance
and Scalability (http://www-
4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf)

Programming practice for enterprise beans and other types of J2EE components.
v

Optimistic Locking in IBM WebSphere Application Server 4.0.2
(http://www7b.boulder.ibm.com/wsdd/)

Examples of the effect of optimistic concurrency on application behavior.
Although the paper is based on a previous version of this product, the data
access issues discussed in it are current.

This paper does not seem to be available directly by URL. To view this paper,
visit the specified URL and search on ″optimistic locking″

180 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Programming specifications

v

What’s new in the Enterprise JavaBeans 2.0 Specification?
(http://java.sun.com/products/ejb/2.0.html)

You can also download the specification itself from this URL.
v

JavaTM 2 Platform: Compatibility with Previous Releases
(http://java.sun.com/products/jdk/1.3/compatibility.html)

This Sun Microsystems article includes both source and binary compatibility
issues.

EJB method Invocation Queuing
Method invocations to enterprise beans are only queued for remote clients, making
the method call. An example of a remote client is an enterprise Java bean (EJB)
client running in a separate Java virtual machine (JVM) (another address space)
from the enterprise bean. In contrast, no queuing occurs if the EJB client, either a
servlet or another enterprise bean, is installed in the same JVM on which the EJB
method runs and on the same thread of execution as the EJB client.

Remote enterprise beans communicate by using the Remote Method Invocation
over an Internet Inter-Orb Protocol (RMI-IIOP). Method invocations initiated over
RMI-IIOP are processed by a server-side object request broker (ORB). The thread
pool acts as a queue for incoming requests. However, if a remote method request is
issued and there are no more available threads in the thread pool, a new thread is
created. After the method request completes the thread is destroyed. Therefore,
when the ORB is used to process remote method requests, the EJB container is an
open queue, due to the use of unbounded threads. The following illustration
depicts the two queuing options of enterprise beans.

Chapter 4. Using enterprise beans in applications 181

EJB Queuing
WebSphere Application Server

REMOTE WebSphere
Application Server

WebSphere Application Server

REMOTE WebSphere
Application Server

I. Request queued
in the Servlet Engine
Threads

II. Request queued
in the ORB Thread Pool

Servlet Engine

EJB Client

Servlet

Servlet Engine

EJB ContainerEJB Container

ORB Thread PoolORB Thread Pool

EJB Client

Servlet

The following are two tips for queueing enterprise beans:
v Analyze the calling patterns of the EJB client.

When configuring the thread pool, it is important to understand the calling
patterns of the EJB client. If a servlet is making a small number of calls to
remote enterprise beans and each method call is relatively quick, consider setting
the number of threads in the ORB thread pool to a value lower than the Web
container thread pool size value.

Longer-lived

Short-lived

Longer-lived

Short-lived

EJB callsEJB calls

EJB callsEJB calls

Servlet service()

Servlet service()

Servlet service()

Servlet service()

BEGIN

BEGIN

END

END

execution timeline

execution timeline

Remote Call

Remote Call Remote Call

Remote Call

The degree to which the ORB thread pool value needs increasing is a function of
the number of simultaneous servlets, that is, clients, calling enterprise beans and
the duration of each method call. If the method calls are longer or the

182 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

applications spend a lot of time in the ORB, consider making the ORB thread
pool size equal to the Web container size. If the servlet makes only short-lived or
quick calls to the ORB, servlets can potentially reuse the same ORB thread. In
this case, the ORB thread pool can be small, perhaps even one-half of the thread
pool size setting of the Web container.

v Monitor the percentage of configured threads in use.
Tivoli Performance Viewer shows a metric called percent maxed, which is used to
determine how often the configured threads are used. A value that is
consistently in the double-digits, indicates a possible bottleneck a the ORB.
Increase the number of threads.

Chapter 4. Using enterprise beans in applications 183

184 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 5. Using extended messaging in applications

These topics provide information about implementing WebSphere enterprise
applications that use extended messaging.

WebSphere Application Server supports asynchronous messaging as a method of
communication based on the Java Message Service (JMS) programming interface.
Extended messaging extends the base JMS support, support for EJB 2.0
message-driven beans, and the Enterprise Java Bean (EJB) component model, to
use the existing container-managed persistence and transactional behavior.

Using extended messaging, you can build enterprise beans that can provide
messaging services along with methods that implement business logic. The
enterprise beans can use the standard JMS styles of messaging (point-to-point and
publish/subscribe). However, with extended messaging, the JMS usage is
simplified, because JMS support is managed by the extended messaging service.
This helps to effectively separate business logic from the messaging infrastructure.
The use of data mapping enables messages to drive existing or new enterprise
beans as though they were invoked from any EJB client.

You can use WebSphere Studio Application Developer Integration Edition to
develop applications that use extended messaging. You can use the WebSphere
Application Server runtime tools, like the administrative console, to deploy and
administer applications that use extended messaging.

For more information about implementing WebSphere enterprise applications that
use extended messaging, see the following topics:
v ″Extended messaging - overview″

v ″Extended messaging - application usage scenarios″

v ″Extended messaging - components″

v ″Designing an enterprise application to use extended messaging″

v ″Developing an enterprise application to use extended messaging″

v ″Deploying an enterprise application to use extended messaging″

v ″Configuring extended messaging service resources″

v ″Troubleshooting extended messaging″

Extended messaging - overview
Extended messaging extends the base JMS support, support for EJB 2.0
message-driven beans, and the Enterprise Java Bean (EJB) component model, to
use the existing container-managed persistence and transactional behavior.

In addition to providing such container-managed messaging, extended messaging
provides new types of enterprise beans and administrative objects for messaging,
and new functionality like data mapping and late response handling. (The
abbreviation, CMM, for the term container-managed messaging is sometimes used to
represent extended messaging.)

Extended messaging uses the bean-managed messaging implementation to provide
the JMS interfaces, which ensures that both bean-managed and extended
messaging use consistent JMS support.

© Copyright IBM Corp. 2003 185

An application that uses extended messaging can receive messages by using a
receiver bean, either by the onMessage() method of a message-driven bean or by a
stateless session bean that polls for a message from a named destination. With
extended messaging and a message-driven bean, code within the bean can use the
message to invoke business logic, as either a method within the same bean or
another enterprise bean. Both the incoming message and the invocation of the
receiver bean can be included within the scope of a transaction. For outbound
messages, an application calls a sender bean that turns a method call into a JMS
message that is then sent asynchronously. These message beans are implemented
as enterprise beans by WebSphere Application Server. Application developers can
create these message beans by using WebSphere Studio Application Developer
Integration Edition, although they can be created without the help of WebSphere
Studio.

With extended messaging, the JMS usage is simplified, because JMS support is
managed by the extended messaging service. This helps to effectively separate
business logic from the messaging infrastructure. Also, the use of data mapping
enables messages to drive existing or new enterprise beans as though they are
invoked from any EJB client. WebSphere Studio enables the types of message beans
that support extended messaging to be developed easily and hides the messaging
infrastructure from developers.

For more conceptual information about extended messaging, see the following
topics:
v ″Extended messaging - application usage scenarios″

v ″Extended messaging - components″

v ″Extended messaging - receiving messages″

v ″Extended messaging - sending messages″

v ″Extended messaging - data mapping″

v ″Extended messaging - handling late responses″

v ″Extended messaging - transactional support″
v ″Extended messaging - exception handling″

Extended messaging - receiving messages
To receive messages, applications that use extended messaging use a receiver bean,
which can be a message-driven bean or a session bean:
v A receiver bean (deployed as a message-driven bean) is invoked when a

message arrives at a JMS destination for which a listener is active.
v An application-callable receiver bean (deployed as a session bean) polls a JMS

destination until a message arrives, gets the parsed message as an object, and
can use getter methods to retrieve the message data.

Receiving messages with extended messaging. This figure shows an application
calling a receiver bean (as a session bean) to receive messages from the JMS
destination defined on an input port. The application also calls the ReplySender()
method of the receiver bean to send a reply to the original message received. For
more information about what is shown in this figure, see the text that accompanies
this figure.

186 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

JMS

destinations

Receiver bean

JMS Provider

Input port

WebSphere container

ReplySender()

method

Application

(Enterprise JavaBean)

When a receiver bean gets a message, it can invoke another method passing either
the JMS Message, or a set of parameters extracted from the message content. The
invoked method can be contained in the receiver bean or in another enterprise
bean (which is the preferred application structure). If data mapping is used, the
method invoked by a receiver bean is unaware of the original JMS message.

In addition to receiving messages, extended messaging enables applications to
reply to received messages in either of the following ways:
v Sending a synchronous reply. In this mode, which can be used by only receiver

beans deployed as message-driven beans, the reply from the method invoked by
the receiver bean is mapped to a JMS message and sent as a reply to the original
message, using the replyTo field in the JMS header as the target destination.

v Sending an asynchronous reply. In this mode, which cannot be used receiver
beans deployed as message-driven beans, the application calls the ReplySender()
method to send the reply message. If the reply is passed as a set of parameters
to the ReplySender() method, the reply is mapped to a JMS message before
being sent.

If a receiver bean gets a JMS message, then depending upon the programming
model (associated with the receiver bean by WebSphere Studio), one of the
following interactions occurs:
v Receive a request and send no reply.

The receiver bean provides an anonymous invocation in the form of a method
call. The data passed to the method is either the JMS message (if no data
mapping is invoked) or a set of parameters mapped from the JMS message. The
receiver bean cannot return a reply to this invocation. This mode of interaction
can be used with point-to-point or publish/subscribe messaging.

v Receive a request and send a synchronous reply.

If the receiver bean gets a message, it invokes another method either in the same
bean or another enterprise bean. When the method returns, the data returned
from that call is mapped to a JMS message and sent to the reply destination
specified in the original request message. The type of reply destination (queue or
topic) must be the same as the type used by the original request received.

v Receive a request and send an asynchronous reply.

For a receiver bean deployed as a message-driven bean, the reply is returned
(using the bean’s ReplySender method) to the replyTo destination specified in
the original request message.

Chapter 5. Using extended messaging in applications 187

For a receiver bean deployed as a session bean, the reply is returned to the
destination defined in the input port for the receiver bean.
In addition to the asynchronous model of this interaction, this mode of
interaction enables a method to send multiple replies to a single invocation.

Extended messaging - sending messages
To send messages, applications that use extended messaging call a method on a
sender bean. A sender bean turns its method invocation into a JMS message, then
passes that message to JMS. If needed, the sender bean can retrieve a response
message, then translate that message into a result value and return it to the caller.
If data mapping is used, the method that invokes a sender bean is unaware of the
original JMS message. The sender bean methods can use data mapping to build
JMS messages from data passed on the method call.

Sending messages with extended messaging. This figure shows an application
calling a sender bean to send messages to the JMS destination defined on an
output port. The application also calls the receiveResponse() method of the sender
bean to receive a reply to the original message sent. For more information about
what is shown in this figure, see the text that accompanies this figure.

JMS

destinations

Sender bean

JMS Provider

Output port

WebSphere container

receiveResponse()

method

Application

(Enterprise JavaBean)

A sender bean is an enterprise bean (stateless session bean) that can be built by
WebSphere Studio Application Developer. A sender bean should not contain any
application logic, to help preserve the separation between the messaging and
business logic.

Each method defined on a class that implements a sender bean has one of the
following modes of interaction (which is defined when the sender bean is built).
The interaction extends the sender interface to address the issue of synchronizing
anonymous invocations.
v Send a request and receive no response.

To send a JMS message, an application invokes the sender bean’s method. The
caller of the sender bean’s method cannot receive a response to the message
sent. This mode of interaction can be used with point-to-point or
publish/subscribe messaging.

v Send a request and receive a synchronous response.

To send a JMS message and wait for a synchronous response, an application
invokes the sender bean’s method. The sender bean uses the message sender (an
interface to JMS provided by extended messaging) to send the message and,

188 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

when the response is received, to return the response message to the caller of
the sender bean. This mode of interaction can be used with point-to-point
messaging only.

v Send a request and receive a deferred response.

To send a JMS message and wait for a deferred response, an application invokes
the sender bean’s method. The sender bean uses the message sender to send the
message, then returns to the caller without waiting for the response. The
response is returned by a generated receiveResponse() method. This mode of
interaction enables an application to receive more than one response message, as
the application is responsible for retrieving the responses. This mode of
interaction can be used with point-to-point messaging only.

Extended messaging - data mapping
A message bean can use data mapping to map between a JMS message and data as
arguments:
v With data mapping, the target method of a receiver bean for an anonymous

invocation receives the contents of an asynchronous message as arguments. The
extended messaging service parses the JMS message and maps from the JMS
message to the method arguments. Similarly, to send a message, an application
invokes a method on a sender bean with appropriate arguments. The extended
messaging service packs appropriate arguments into a JMS message then sends
the asynchronous request.

v Without data mapping, the target method of a receiver bean for an anonymous
invocation receives a JMS message; no data mapping is performed by extended
messaging. Similarly, to send a message, an application invokes a method of a
sender bean with a JMS message.

If a developer selects data mapping when creating a sender or receiver bean,
extended messaging uses the parameter properties specified on the sender or
receiver bean method signatures to perform the data mapping.

Extended messaging - handling late responses
If an application uses a sender bean to send a message, it can optionally retrieve a
response to the message. The sender bean can either wait for the response or defer
retrieval of the response. Sometimes a response is delayed within the messaging
infrastructure, and therefore the application cannot receive the response. Extended
messaging can retrieve such a response message (referred to as a late-response
message) when it does arrive and pass it to a message-driven bean provided by
the application to handle late responses. The message-driven bean used to handle
the late response is a standard EJB 2.0 message-driven bean or a receiver bean
deployed as a message-driven bean. The deployed message-driven bean can then
perform its processing on the message.

Late responses should not be considered normal application behaviour.

For extended messaging to handle late responses for an application, the sender
bean must be deployed with the Handle late responses option enabled.

Definition of a late response

A late response occurs when the application is no longer able to retrieve responses
to messages that it has sent, as follows:
v Send with deferred response.

Chapter 5. Using extended messaging in applications 189

The application (enterprise bean) repeatedly tries to retrieve a response until it
ends. When the application no longer wants to retry to get a response, it can
register a request for extended messaging to handle the late response, by calling
a registerLateResponse() method on the sender bean.

v Send with synchronous response handling.

When the sender bean sends a message, it waits for the response. The result of
this is that either the sender bean retrieves the response message or a timeout
error occurs. If the system raises a timeout error, the application can no longer
retrieve a response to the message. At this time the extended messaging service
registers the the message for a late response.

Handling responses

Extended messaging handles responses in the following stages:
1. Registering an interest in having a late response retrieved when it is available.

To request the system to handle late responses for a sender bean, you deploy
the sender bean with the Handle late responses extension to the deployment
Descriptor.
If selected, the Handle late responses option defines that extended messaging
should pass the response, when it becomes available, to the message-driven
bean provided by the application to handle late responses. When the sender
bean is deployed a specialized listener port is associated with the bean. This
listener port is known as a handle late response listener port.
If the option is not selected, then the system does not handle late responses,
and it is the application’s responsibility to handle any late responses.

2. Starting a JMS listener to retrieve the message when it is available, which then
drives the message bean to handle the JMS message.
The listener port must be defined with the following properties:
v The same JMS destination as specified as the JMS response destination on the

output port used by the sender bean.
v A listener port extension with Handle Late Responses enabled.

You cannot use a temporary destination for late responses.
3. If a request is made to handle a late response, the extended messaging service

immediately registers a LateResponse message request with the extended
message consumer for the given listener port. The message request is registered
independently of any transaction context that the sender bean has. A request
record (containing the MessageID of the late response) is added to the
AsyncMessageLog log. When the message is eventually received, it is passed to
the message-driven bean deployed against the specified late response
ListenerPort.

Extended messaging - transactional support
The global transaction context is not flowed on asynchronous (messaging) requests,
so the receipt of an asynchronous message cannot be part of some existing
remotely-established transaction. Reliability in an asynchronous environment is
built on the message provider’s ability to guarantee a once-and-once-only message
delivery.

Transactional support with extended messaging builds on, and extends, the
transactional support provided with bean-managed messaging, as follows:
v Transactional support for receiving messages (receiver beans)

190 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v Transactional support for sending messages (sender beans)

Transactional support for receiving messages (receiver beans)

The extended messaging transactional behaviour for receiver beans depends upon
whether the bean is a receiver bean or an application-callable receiver bean.
v For a receiver bean (deployed as a message-driven bean), incoming message

receipts are defined by the Transaction attribute of the onMessage() bean
method. Message-driven beans can use bean-managed transactions (BMT) or
container-managed transactions (CMT). For message-driven beans using CMT
there are only two supported transaction options: Not supported and Required.
If a message is to be received within a transaction, the message-driven bean
must be using CMT with the Transaction attribute set to Required.

v For a receiver bean as a session bean, the bean only supports container-managed
transactions, and the behaviour is defined by the Transaction attribute of the
receiver bean method.

Dealing with retries: In the asynchronous environment of transaction processing,
rolling back a message receipt means that the message is not removed from the
source destination. Although this behaviour is desirable and correct, it causes the
message retained on the source queue to be reprocessed until the transaction
commits. For receiver beans, you can control this behaviour as follows:
v Receiver bean.

To limit the number of times that a transaction is retried, you can either rely on
the facilities of the JMS provider or use the retry limit facility of the Message
Listener:
– WebSphere MQ JMS support provides the ability to move the message to a

backout queue and uses two queue attributes, the backout threshold and the
backout-requeue queue, to perform this.

– The Message Listener retry count can be used to stop the listener processing
the queue if the threshold is reached. The listener behaviour can be disabled
by setting the retry count value higher than the JMS provider threshold value.

v Application-callable receiver bean.

To limit the number of times that a transaction is retried depends on the
facilities of the JMS provider to move the message to a backout queue.

Transactional support for sending messages (sender beans)

The transactional behaviour for sending messages is defined by the Transaction
attribute on the send method within the sender bean.

If the send() method is part of a transaction, then the sending of an outgoing
message occurs within any currently active transaction. This means that the
message is not transmitted until the transaction is committed. If no transaction is
active when the request to send the message occurs, then the message is
transmitted immediately.

The transactional behaviour where the mode of interaction for a sender bean
method specifies a response (that is, either Send message and receive synchronous
response or Send message and receive deferred response) depends upon the type of
response, as follows:

Transactional behaviour for a synchronous response
The sending of the request message and the receipt of the response

Chapter 5. Using extended messaging in applications 191

message cannot be performed inside a transaction, because they are both
performed within the same method. Therefore, the send is always
non-transactional, regardless of the transactional setting for the method.
The receive is either transactional or not, depending upon the Transaction
setting of the method.

Transactional behaviour for a deferred response
The response message is received by a receiveResponse() method, which
can have a different transactional behaviour to the sender method inside
the sender bean. The transaction containing the send command must
commit before the response can be received. The transactional behaviour is
specified on the send and receive methods of the Sender bean.

Extended messaging - exception handling
Extended messaging provides the following exception handling for receiver beans
and sender beans:
v Error handling for receiver beans
v Error handling for sender beans

Error handling for receiver beans

The following error conditions can lead to extended messaging exceptions
v Formatting error parsing the message, when performing data mapping
v Exception thrown by the application method
v CMMException when sending the reply

Errors are always logged. If the application does not catch the exception, the
default behavior is to roll back any active transaction. If the received message is
rolled back, then it can be processed again. This can occur a number of times until
the message causing the error is removed from the queue by the JMS provider.
(For more information, see Dealing with retries in Transactional support with
extended messaging.

With data mapping, if a receiver bean is deployed as a message-driven bean and a
replyTo destination is configured, then error messages are sent as replies to that
destination.

Application enterprise beans that call receiver beans deployed as session beans
need to handle the CMMException exception. CMMException is an application
exception which is declared in the throws clause of the methods in the generated
receiver bean.

Error handling for sender beans

The following error conditions can lead to extended messaging exceptions
v Constructing the JMS message when data mapping from the parameters to the

message
v Creating a message sender and sending the message
v Getting the response and parsing the message content

Errors are always logged. If the application does not catch the exception, the
default behavior is to roll back any active transaction.

192 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Application enterprise beans that call sender beans need to handle the
CMMException exception, which is declared in the throws clause of the methods
in the generated sender bean.

Extended messaging - application usage scenarios
Applications can use extended messaging to receive and send messages in a
variety of ways:
v To receive messages, applications that use extended messaging use a receiver

bean(deployed as a message-driven bean) or an application-callable receiver bean
(deployed as a session bean):
– A receiver bean is invoked when a message arrives at a destination for which

a listener is active.
– An application-callable receiver bean polls a destination (defined by an input

port) until a message arrives or a timeout occurs.

In addition to receiving messages, extended messaging enables applications to
send replies in response to the received messages.

For more conceptual information about receiving messages, see ″Extended
messaging - receiving messages″.

v To send messages, applications that use extended messaging call sender bean
methods. The sender bean sends messages to the target destination defined by
an output port. The sender bean methods can be passed either a JMS message or
a number of parameters that are mapped by extended messaging into a JMS
message. Whether or not data mapping is used is specified when the application
is developed.
In addition to sending messages, applications can choose to receive a response to
the message, and can handle any responses either synchronously or
asynchronously. If a response is not received in time, then the system can handle
the late response by directing the message to a message-driven bean.
For more conceptual information about sending messages, see ″Extended
messaging - sending messages″.

v Applications can combine receiving and sending messages in a variety of
different ways. For example, a receiver bean deployed as a message-driven bean
can forward the message by calling a sender bean. The receiver bean can give
message data to sender bean in either of the following ways:
– The receiver bean can pass the JMS message to the sender bean, which

forwards that message.
– The receiver bean can extract data from the initial message and send that data

to the sender bean. The sender bean can then map the data values to a new
JMS message, which it forwards.

The application can receive a response to the message that it sent, and then can
send the message received or a new message built from data in the message
received, as a response to the original message.

Also, data mapping can be used to hide the JMS message structure from the
application logic. For more information about data mapping, see ″Extended
messaging - data mapping″

Chapter 5. Using extended messaging in applications 193

Extended messaging - components
Extended messaging builds on the base support for JMS messaging and
message-driven beans provided by WebSphere Application Server. The new
messaging components for extended messaging are referred to as the Message Bean
package.

Components for receiving messages

The following components, shown in the figure Components for receiving
messages, are used to receive messages:

Receiver bean
An application that uses extended messaging can receive messages by
using a receiver bean (using the onMessage() method of a message-driven
bean) or an application-callable receiver bean (a stateless session bean that
polls for a message from a named destination). Both receiver beans and
application-callable receiver beans can receive and process asynchronous
messages, and optionally return selected data as a response message.

Input port
An input port specifies the properties needed by receiver beans as session
beans, by defining the following information:
v Information about the source destination for the message to be received
v Information about how to select and handle the message received
v Optional information about a reply destination, which is used if a reply

is expected and replyTo information is not present in the JMSHeader of
the message received.

A receiver bean as a deployed message-driven bean uses the associated
listener port, so does not need an input port. For more information about
message-driven beans and listener ports, see ″Message-driven beans -
components″ (not in this document).

For more conceptual information about receiving messages, see ″Extended
messaging - receiving messages″.

Components for receiving messages. This figure shows an application calling a
receiver bean (as a session bean) to receive messages from the JMS destination
defined on an input port. The application also calls the ReplySender() method of
the receiver bean to send a reply to the original message received. For more
information about what is shown in this figure, see the text that accompanies this
figure.

194 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

JMS

destinations

Receiver bean

JMS Provider

Input port

WebSphere container

ReplySender()

method

Application

(Enterprise JavaBean)

Components for sending messages

The following components, shown in the figure Components for sending messages,
are used to send messages:

Sender bean
Bean instances of a sender bean (also known as a message sender bean) can
send asynchronous messages. The sender bean methods can be passed
either a JMS message or a number of parameters that are mapped by
extended messaging into a JMS message, which is then passed to JMS.

Output port
An output port specifies the properties needed by sender beans, to define
the destination for the message being sent, and other optional properties if
a response is expected. It is associated with the Sender Bean at deployment
time and contains the following information:
v Information about the target destination for the message to be sent
v Information about how to select and handle the message to be sent
v Information about the destination used for the response.

For more conceptual information about sending messages, see Sending messages
with extended messaging.

Components for sending messages. This figure shows an application calling a
sender bean to send messages to the JMS destination defined on an output port.
The application also calls the receiveResponse() method of the sender bean to
receive a reply to the original message sent. For more information about what is
shown in this figure, see the text that accompanies this figure.

Chapter 5. Using extended messaging in applications 195

JMS

destinations

Sender bean

JMS Provider

Output port

WebSphere container

receiveResponse()

method

Application

(Enterprise JavaBean)

Designing an enterprise application to use extended messaging
This topic describes things to consider when designing an enterprise application to
use extended messaging.

The design of JMS-usage for applications that use extended messaging is the same
as the design for JMS and message-driven beans, except that the JMS-usage is
simplified because JMS support is managed by the extended messaging service.
For design considerations related to JMS and message-driven beans, see the
following topics:
v Designing an enterprise application to use JMS
v Designing an enterprise application to use message-driven beans

The extra design consideration for applications that use extended messaging are as
follows. For more detail, see the related topics.

Steps for this task
1. For a receiver bean, decide whether to use a message-driven bean or stateless

session bean.

Message-driven bean
You can use a deployed message-driven bean as a receiver bean, to
automatically handle messages received at the associated listener port.
As with any message-driven bean, when a message is received on the
JMS destination monitored by the listener port, the message is passed
to the onMessage() method of the message-driven bean.

You need to develop and deploy the message-driven bean, and
configure its associated listener port, separately from the extended
messaging tasks.

Stateless session bean
You can use a stateless session bean as a receiver bean, to poll for
messages on a named destination associated with an input port.

You need to develop and deploy the session bean separately from the
extended messaging tasks, but configure the associated input port as
part of the extended messaging tasks.

2. Decide whether or not you want to use data mapping.

196 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

If you call the methods of sender and receiver beans with data arguments, you
need to use data mapping to construct the JMS messages needed. For data
mapping, you need to decide what data arguments need to be specified as
properties on the sender or receiver bean method signatures.
For a receiver bean deployed as a message-driven bean, you can define the
mapping behavior if a data exception is caught by extended messaging. That is,
you define whether a message should be flowed back if a ReplyTo destination
is defined in the JMS message header.

3. Decide whether or not you want to handle late responses.
A sender bean can optionally retrieve a response to messages sent. If a response
is delayed within the messaging infrastructure, the bean cannot receive the
response. Extended messaging can retrieve such a response message (referred
to as a late-response message) when it does arrive and pass it to a
message-driven bean provided by the application to handle late responses. To
handle late responses, you need to develop and deploy a standard EJB 2.0
message-driven bean that contains a registerLateResponse() method, and
associate it with a listener port to be used to receive late responses.

Developing an enterprise application to use extended messaging
This topic describes how to develop an enterprise application to use extended
messaging.

This task description assumes that developers are using the WebSphere Studio
Application Developer to develop the application code (receiver and sender beans).

To develop an enterprise application to use extended messaging, complete the
following steps:

Steps for this task
1. Creating the Enterprise Application project.

Because the sender and receiver beans used for extended messaging are EJB 2.0
enterprise beans, you must first have created a J2EE 1.3 Enterprise Application
project for which extended messaging beans will be created.
a. Ensure that you have selected 1.3 as the highest J2EE version that is to be

used in WebSphere Studio.
For example: Window-> Preferences... J2EE preferences-> Select the
highest J2EE version that is to be used-> 1.3

b. Create a J2EE 1.3 Enterprise Application project, as described in the
WebSphere Studio article ″Creating an Enterprise Application project″.

2. Creating the application code.
To create the application code, use WebSphere Studio to generate the sender
and receiver beans needed by the application, by completing one or more of
the following subtasks as described in the WebSphere Studio Extended
Messaging documentation:
v ″Creating a sender bean″

v ″Creating a receiver bean″

v ″Creating an application-callable receiver bean″

v ″Creating a sender bean and receiver bean″

v ″Creating a sender bean and application-callable receiver bean″

Chapter 5. Using extended messaging in applications 197

The result of this stage is an enterprise bean, containing code automatically
generated for extended messaging, that can be assembled into an .EAR file for
deployment.

3. Assembling and packaging the application for deployment.
You can use WebSphere Studio to assemble and package the application for
deployment.
The following aspects are specific to extended messaging:
a. (Optional) Configure a message selector for a receiver bean.
b. Associate the JNDI names for sender and receiver beans with output and

input ports.
c. (Optional) Specify the timeout for a sender bean response.
d. (Optional) Configure that a sender bean is to handle late responses and

identify the listener port to be used for late responses.

Results

The result of this task is an .EAR file, containing an application enterprise bean
with code for extended messaging, that can be deployed in WebSphere Application
Server.

What to do next

For information about deploying an application to use extended messaging, see
″Deploying an enterprise application to use extended messaging″

Deploying an enterprise application to use extended messaging
This topic describes how to deploy an enterprise application to use extended
messaging.

This task description assumes that you have an .EAR file, which contains an
application enterprise bean with code for extended messaging, that can be
deployed in WebSphere Application Server.

The Application Install task is also a standard WebSphere Application Server task.
As part of the install procedure you need to associate the Input and Output ports
defined in System Management with the installed .EAR.

To deploy an enterprise application to use extended messaging, complete the
following steps:

Steps for this task
1. Use the administrative console to define and configure the extended messaging

resources to be used by the application, as described in ″Configuring extended
messaging service resources″.
You should define the input ports for receiver beans, the output ports for
sender beans, and listener port extensions for any sender beans that are to
handle late responses.

2. Ensure that the deployment descriptor attributes for the sender and receiver
beans match those of the extended messaging resources that you configured
using the administrative console.

198 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The deployment descriptor values can be set when you generate the
deployment code for the application. You can change the deployment
descriptor values by using the application assembly tool, as described in the
following topics:
v ″Configuring deployment attributes for a receiver bean″

v ″Configuring deployment attributes for a sender bean″.
3. If a sender bean is to handle late responses, deploy the message-driven bean to

be used for late responses.
For more information about deploying message-driven beans, see ″Deploying
an enterprise application to use message-driven beans″ (not in this document).

4. Install the application into WebSphere Application Server.
This stage is a standard WebSphere Application Server task, as described in
″Installing a new application″ (not in this document).
When you install the application, you are prompted to specify the name of the
listener port that the application is to use for late responses. Select the listener
port, then click OK.

Configuring deployment attributes for a receiver bean
Use this task to configure the deployment attributes for a receiver bean for use
with the extended messaging service.

You can specify these deployment attributes on each EJB method, as part of the
deployment of the receiver bean. Changes to the deployment attributes override
the values defined when the receiver bean was developed and deployment code
was generated for the application.

Note: After deployment code has been generated for an application, the deployable
archive is renamed with the prefix Deployed_ . Any subsequent changes to the
archive from within the Application Assembly Tool are applied to the version of
the archive that existed prior to code generation. To see changes reflected in your
application, you must regenerate deployment code and re-install the deployable
archive.

To configure the deployment attributes for a receiver bean, you can use the
Application Assembly Tool to complete the following steps:

Steps for this task
1. Launch the Application Assembly Tool.
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, click File-> Open
then select the EAR file.

3. In the navigation pane, select the receiver bean instance; for example, expand
ejb_module_instance-> Extended messaging then select the bean instance.
A property dialog notebook for the receiver bean is displayed in the property
pane.

4. In the property pane, specify appropriate deployment attributes:

Input port
For an application-callable receiver bean, this is the name of the input
port to be used to receive messages.

Chapter 5. Using extended messaging in applications 199

Message selector
For an application-callable receiver bean, this is a string used to select
messages to be received.

For more information about the deployment attributes for receiver beans, see
Extended messaging assembly properties for enterprise beans.

5. To apply the changes and close the Application Assembly Tool, click OK.
Otherwise, to apply the values but keep the property dialog open for additional
edits, click Apply.

6. (Optional) To see changes reflected in your application, regenerate deployment
code and reinstall the deployable archive.

Extended messaging assembly properties for EJB modules
Use this page to configure extended messaging settings for methods of an
enterprise bean.

Name: Specifies a name for the mapping between extended messaging settings
and one or more methods.

Datatype String

Description: Contains text that describes the mapping

Datatype String

Methods: The methods to which these settings apply.

To add a new method, click Add. Expand the tree to select the method or methods
from the EJB module

Reply timeout: The time in milliseconds after which replies, delayed within the
messaging infrastructure, are considered as late.

Type the global reply timeout to be used if a reply timeout is not specified on a
sender method call. If you leave this field blank, no global timeout is defined.

This is the time in milliseconds after which replies, delayed within the messaging
infrastructure, are considered as late and therefore the application cannot receive
the response. The extended messaging service can retrieve such a response
message (referred to as a late-reply message) when it arrives and pass it to a
message bean provided by the application.

Data type Integer
Units Milliseconds
Default 0
Range An integer number of milliseconds, greater than or equal to 0 (0

indicates that reply messages never timeout).

Message selector: The JMS message selector to be used to determine which
messages the method handles.

For example:
JMSType=’car’ AND color=’blue’ AND weight>2500

200 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The selector string can refer to fields in the JMS message header and fields in the
message properties. Message selectors cannot reference message body values.

Data type String, whose syntax is based on a subset of the SQL92 conditional
expression syntax.

Handle late responses: Select this checkbox if you want to generate a method to
handle late responses.

Late response handler listener port name: The name of the input port used to
handle late responses.

This string must match the name of an input port defined in the Administrative
Console.

Data type String

Configuring deployment attributes for a sender bean
Use this task to configure the deployment attributes for a sender bean.

You can specify deployment attributes on each EJB method.

Changes to the deployment attributes override the values defined when the sender
bean was developed and deployment code was generated for the application.

Note: After deployment code has been generated for an application, the deployable
archive is renamed with the prefix Deployed_ . Any subsequent changes to the
archive from within the Application Assembly Tool are applied to the version of
the archive that existed prior to code generation. To see changes reflected in your
application, you must regenerate deployment code and re-install the deployable
archive.

To change the deployment attributes for a sender bean, you can use the
Application Assembly Tool to complete the following steps:

Steps for this task
1. Launch the Application Assembly Tool.
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, click File-> Open
then select the EAR file.

3. In the navigation pane, select the sender bean instance; for example, expand
ejb_module_instance-> Extended messaging then select the bean instance.
A property dialog notebook for the sender bean is displayed in the property
pane.

4. In the property pane, specify appropriate deployment attributes:

Output port
This is the name of the output port to be used to send messages.

Handle late responses
Select this checkbox if the sender bean is to handle late responses. If
you select this checkbox, also specify the following properties:
ReplyTimeout and Late response handler listener port name.

Chapter 5. Using extended messaging in applications 201

ReplyTimeout
For a sender bean that has been developed to handle late responses,
this is the time after which responses are considered late. This property
is used if a response timeout is not specified on a sender method call.

Late response handler listener port name
For a sender bean that has been developed to handle late responses,
this is the name of the listener port to be used for late responses.

For more information about the deployment attributes for sender beans, see
Extended messaging assembly properties for enterprise beans.

5. To apply the changes and close the Application Assembly Tool, click OK.
Otherwise, to apply the values but keep the property dialog open for additional
edits, click Apply.

6. (Optional) To see changes reflected in your application, regenerate deployment
code and reinstall the deployable archive.

Configuring extended messaging service resources
Use these tasks with the WebSphere Administrative console to configure resources
needed by the extended messaging service and applications that use extended
messaging.

You can use WebSphere Application Server system management to configure
resources needed by the extended messaging service and applications that use
extended messaging.

For more information about the tasks involved, see the following topics:
v Adding a new input port
v Adding a new output port
v Configuring an input port
v Configuring an output port
v Configuring a listener port to handle late responses

Adding a new input port
Use this task to add a new input port to WebSphere Application Server.

An input port is for use by an application that uses extended messaging.

During this task you configure the initial properties of the input port. You can later
change the properties of the port, as described in Configuring an input port.

To add a new input port, complete the following steps:

Steps for this task
1. Start the WebSphere Administrative console.
2. In the navigation pane, select Resources-> Extended messaging provider

This displays resources for extended messaging in the content pane.
3. In the Additional Properties table of the content pane, select Input ports

This displays a list of the input ports in the content pane.
4. Click New.
5. Specify appropriate properties of the input port.

202 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

6. Click OK.
7. To save your configuration, click Save on the task bar of the Administrative

console window.
8. (Optional) To have the changed configuration take effect, stop then restart the

application server.

Adding a new output port
Use this task to add a new output port to WebSphere Application Server, and
configure its properties, for use by an application that uses extended messaging.

During this task you configure the initial properties of the output port. You can
later change the properties of the port, as described in Configuring an output port.

To add a new output port, complete the following steps:

Steps for this task
1. Start the WebSphere Administrative console.
2. In the navigation pane, select Resources-> Extended messaging provider

This displays resources for extended messaging in the content pane.
3. In the Additional Properties table of the content pane, select Output ports

This displays a list of the output ports in the content pane.
4. Click New.
5. Specify appropriate properties of the output port.
6. Click OK.
7. To save your configuration, click Save on the task bar of the Administrative

console window.
8. (Optional) To have the changed configuration take effect, stop then restart the

application server.

Configuring an input port
Use this task to change the properties of an input port for use by an application
that uses extended messaging.

To change the properties of an input port, complete the following steps:

Steps for this task
1. Start the WebSphere Administrative console.
2. In the navigation pane, select Resources-> Extended messaging provider

This displays resources for extended messaging in the content pane.
3. In the Additional Properties table of the content pane, select Input ports

This displays a list of the input ports in the content pane.
4. Select the input port that you want to change.
5. Specify appropriate properties of the input port.
6. Click OK.
7. To save your configuration, click Save on the task bar of the Administrative

console window.
8. (Optional) To have the changed configuration take effect, stop then restart the

application server.

Chapter 5. Using extended messaging in applications 203

Configuring an output port
Use this task to change the properties of an output port for use by an application
that uses extended messaging.

To change the properties of an output port, complete the following steps:

Steps for this task
1. Start the WebSphere Administrative console.
2. In the navigation pane, select Resources-> Extended messaging provider

This displays resources for extended messaging in the content pane.
3. In the Additional Properties table of the content pane, select Output ports

This displays a list of the output ports in the content pane.
4. Select the output port that you want to change.
5. Specify appropriate properties of the output port.
6. Click OK.
7. To save your configuration, click Save on the task bar of the Administrative

console window.
8. (Optional) To have the changed configuration take effect, stop then restart the

application server.

Extended messaging service settings
Use this page to enable or disable the extended messaging service.

The Extended Messaging Service provides run-time service for the support of
extended messaging.

To view this administrative console page, click Servers > Application Servers >
server_name > Extended Messaging Service .

Startup
Specifies whether the server will attempt to start the extended messaging service.

Default Selected
Range

Selected
When the application server starts, it attempts to
start the extended messaging service automatically.

Cleared
The server does not try to start the extended
messaging service. If extended messaging is to be
used in applications that run on this server, the
system administrator must start the extended
messaging service manually or select this property
then restart the server.

Late response handling extension collection
Use this page to view the configuration properties of late response handling
extensions.

Late response handling extensions enable the handling of late responses with
extended messaging

204 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

To view this administrative console page, click Application Servers > server_name
> Extended Messaging Service > Listener Port Extensions .

Enabled: Specifies whether the handling of late responses is enabled.

Range
Selected

Handling of late responses is enabled.

Cleared
Handling of late responses is not enabled.

Request Interval: Specifies the interval that elaspes between checking for late
responses.

Data type Integer
Units milliseconds
Default 5
Range An integer number of milliseconds, greater than or equal to 0:

v 0 indicates that the late response handler continually checks for
requests

v Other values are an integer number of milliseconds between
checks for requests.

Request Timeout: Specifies the duration of time after which to give up waiting
for a response.

Data type Integer
Units seconds
Default 0
Range An integer number of milliseconds, greater than or equal to -1:

v -1 indicates that requests to handle late responses are never
discarded.

v Other values are an integer number of milliseconds after which
requests are discarded.

Listener Ports: Specifies the name of the listener port to be used to handle late
responses.

Late response handling extension settings
Use this page to configure late response handling extensions.

To view this administrative console page, click Application Servers > server_name
> Extended Messaging Service > Listener Port Extensions > extension_name .

Enabled: Specifies whether the handling of late responses is enabled.

Range
Selected

Handling of late responses is enabled.

Cleared
Handling of late responses is not enabled.

Chapter 5. Using extended messaging in applications 205

Request Interval: Specifies the interval that elaspes between checking for late
responses.

Data type Integer
Units milliseconds
Default 5
Range An integer number of milliseconds, greater than or equal to -1:

v -1 indicates that requests to handle late responses are never
discarded.

v Other values are an integer number of milliseconds after which
requests are discarded.

Request Timeout: Specifies the duration of time after which to give up waiting
for a response.

Data type Integer
Units seconds
Default 0
Range An integer number of milliseconds, greater than or equal to -1:

v -1 indicates that requests to handle late responses are never
discarded.

v Other values are an integer number of milliseconds after which
requests are discarded.

Listener Ports: Specifies the name of the listener port to be used to handle late
responses.

Extended messaging provider settings
Use this page to manage extended messaging providers.

The extended messaging provider manages resources defined for use with
extended messaging.

To view this administrative console page, click Resources > Extended Messaging
Providers .

Name
The name of the resource provider.

Data type String
Range 1 through 30 ASCII characters

Description
An optional description for the resource factory.

Data type String

Input port collection
Use this page to view the configuration properties of input ports..

206 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

An input port specifies the properties needed by receiver beans as session beans.
Receiver beans as message-driven beans do not need an input port, because the
properties needed are associated with the deployed message-driven bean and the
Message Listener service.

To view this administrative console page, click Resources > Extended Messaging
Providers > Input Port .

Name: The name by which the input port is known for administrative purposes.

Data type String
Units En_US ASCII characters

JNDI Name: The JNDI name for the resource.

Data type String

Description: A description of the input port, for administrative purposes.

Data type String

Category: A string that can be used to classify or group the resource.

Data type String
Range 1 through 30 ASCII characters

JMS Connection Factory JNDI Name: The JNDI name for the JMS connection
factory to be used by the input port; for example, jms/connFactory1.

Data type String

JMS Destination JNDI Name: The JNDI name for the destination to be used by
the input port; for example, jms/destn1.

Data type String

JMS Acknowledgement Mode: JMS acknowledgment mode to be used for
acknowledging messages.

This property applies only to message-driven beans that use bean-managed
transaction demarcation (Transaction type is set to Bean).

Default Auto Acknowledge

Chapter 5. Using extended messaging in applications 207

Range
Auto Acknowledge

The session automatically acknowledges a message in
either of the following cases:

v When the session has successfully returned from a call to
receive a message.

v When the session has called a message listener to
process the message and received a successful response
from that listener.

Dups OK Acknowledge
The session acknowledges only the delivery of messages.
This is likely to result in the delivery of some duplicate
messages if JMS fails, so it should be used only by
consumers that are tolerant of duplicate messages.

Destination Type: The type of the JMS resource.

Default Queue
Range

Queue The receiver bean receives messages from a queue
destination.

Topic The receiver bean receives messages from a topic
destination.

Subscription durability: [Topic destinations only.] Specifies whether a JMS topic
subscription is durable or non-durable.

Default Durable
Range

Durable
A subscriber registers a durable subscription with a unique
identity that is retained by JMS. Subsequent subscriber
objects with the same identity resume the subscription in
the state it was left in by the earlier subscriber. If there is
no active subscriber for a durable subscription, JMS retains
the subscription’s messages until they are received by the
subscription or until they expire.

Nondurable
Nondurable subscriptions last for the lifetime of their
subscriber object. This means that a client sees the
messages published on a topic only while its subscriber is
active. If the subscriber is not active, the client is missing
messages published on its topic.

Reply JMS Connection Factory JNDI Name: JNDI name of the JMS Connection
Factory to be used for replies.

Data type String

Reply JMS Destination JNDI Name: JNDI name of the JMS Destination to be
used for replies.

Data type String

208 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Input port settings
Use this page to configure an input port.

To view this administrative console page, click Resources > Extended Messaging
Providers > Input Port > inputport_name .

Name: The name by which the input port is known for administrative purposes.

Data type String
Units En_US ASCII characters

JNDI Name: The JNDI name for the resource.

Data type String

Description: A description of the input port, for administrative purposes.

Data type String

Category: A string that can be used to classify or group the resource.

Data type String
Range 1 through 30 ASCII characters

JMS Connection Factory JNDI Name: The JNDI name for the JMS connection
factory to be used by the input port; for example, jms/connFactory1.

Data type String

JMS Destination JNDI Name: The JNDI name for the destination to be used by
the input port; for example, jms/destn1.

Data type String

JMS Acknowledgement Mode: JMS acknowledgment mode to be used for
acknowledging messages.

This property applies only to message-driven beans that use bean-managed
transaction demarcation (Transaction type is set to Bean).

Default Auto Acknowledge

Chapter 5. Using extended messaging in applications 209

Range
Auto Acknowledge

The session automatically acknowledges a message in
either of the following cases:

v When the session has successfully returned from a call to
receive a message.

v When the session has called a message listener to
process the message and received a successful response
from that listener.

Dups OK Acknowledge
The session acknowledges only the delivery of messages.
This is likely to result in the delivery of some duplicate
messages if JMS fails, so it should be used only by
consumers that are tolerant of duplicate messages.

Destination Type: The type of the JMS resource.

Default Queue
Range

Queue The receiver bean receives messages from a queue
destination.

Topic The receiver bean receives messages from a topic
destination.

Subscription durability: [Topic destinations only.] Specifies whether a JMS topic
subscription is durable or non-durable.

Default Durable
Range

Durable
A subscriber registers a durable subscription with a unique
identity that is retained by JMS. Subsequent subscriber
objects with the same identity resume the subscription in
the state it was left in by the earlier subscriber. If there is
no active subscriber for a durable subscription, JMS retains
the subscription’s messages until they are received by the
subscription or until they expire.

Nondurable
Nondurable subscriptions last for the lifetime of their
subscriber object. This means that a client sees the
messages published on a topic only while its subscriber is
active. If the subscriber is not active, the client is missing
messages published on its topic.

Reply JMS Connection Factory JNDI Name: JNDI name of the JMS Connection
Factory to be used for replies.

Data type String

Reply JMS Destination JNDI Name: JNDI name of the JMS Destination to be
used for replies.

Data type String

210 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Output port collection
Use this page to view the configuration properties of output ports.

The Output port defines the parameters required by the extended messaging
sender bean. These properties define the destination for the message being sent,
together with optional details if a response is expected.

To view this administrative console page, click Resources > Extended Messaging
Providers > Output Port .

Name: The name by which the output port is known for administrative purposes.

Data type String

JNDI Name: The JNDI name for the output port.

Data type String

Description: A description of the output port, for administrative purposes.

Data type String

Category: A string that can be used to classify or group the resource.

Data type String

JMS Connection factory JNDI name: The JNDI name for the JMS connection
factory to be used by the output port; for example, jms/connFactory1.

Data type String
Units En_US ASCII characters
Range 1 through 30 ASCII characters

JMS Destination JNDI name: The JNDI name for the destination to be used by
the output port; for example, jms/destn1.

Data type String

JMS Delivery Mode: Specifies whether all messages sent to the destination are
persistent or non-persistent.

Default Persistent
Range

Persistent
Messages put onto the destination are persistent.

Nonpersistent
Messages put onto the destination are not persistent.

JMS Priority: The message priority for this queue destination.

Data type Integer
Default 4
Range 0 to 9.

Chapter 5. Using extended messaging in applications 211

JMS Time To Live: The time in milliseconds after which messages on this queue
expire.

Data type Integer
Units Milliseconds
Default 0
Range 0 ton

0 messages never time out.

n messages time out in n milliseconds.

JMS Disable Message I.D.: Specifies that the system should not generate a JMS
message ID.

Default Cleared
Range

Selected
The system does not generate message IDs.

Cleared
The system generates message IDs automatically.

JMS Disabled Message Time Stamp: Specifies that the system should not
generate a JMS message timestamp.

Default Cleared
Range

Selected
Message time stamps are added automatically to messages
sent.

Cleared
Message time stamps are not added automatically to
messages sent.

Response JMS Connection Factory JNDI name: The JNDI name for the JMS
connection factory to be used for response messages handled by the output port;
for example, jms/connFactory1.

Data type String
Units En_US ASCII characters
Range 1 through 30 ASCII characters

Response JMS Destination JNDI name: The JNDI name for the destination to be
used for response messages handled by the output port; for example, jms/destn1.

Data type String

Output port settings
Use this page to configure an output port.

An output port specifies the properties needed by sender beans to define the
destination for the message being sent, and other optional properties if a response
is expected. The output port is associated with the sender bean at deployment
time.

212 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

To view this administrative console page, click Resources > Extended Messaging
Providers > Output Port > outputport_name .

Name: The name by which the output port is known for administrative purposes.

Data type String

JNDI Name: The JNDI name for the output port.

Data type String

Description: A description of the output port, for administrative purposes.

Data type String

Category: A string that can be used to classify or group the resource.

Data type String

JMS Connection factory JNDI name: The JNDI name for the JMS connection
factory to be used by the output port; for example, jms/connFactory1.

Data type String
Units En_US ASCII characters
Range 1 through 30 ASCII characters

JMS Destination JNDI name: The JNDI name for the destination to be used by
the output port; for example, jms/destn1.

Data type String

JMS Delivery Mode: Specifies whether all messages sent to the destination are
persistent or non-persistent.

Default Persistent
Range

Persistent
Messages put onto the destination are persistent.

Nonpersistent
Messages put onto the destination are not persistent.

JMS Priority: The message priority for this queue destination.

Data type Integer
Default 4
Range 0 to 9.

JMS Time To Live: The time in milliseconds after which messages on this queue
expire.

Data type Integer
Units Milliseconds

Chapter 5. Using extended messaging in applications 213

Default 0
Range 0 ton

0 messages never time out.

n messages time out in n milliseconds.

JMS Disable Message I.D.: Specifies that the system should not generate a JMS
message ID.

Default Cleared
Range

Selected
The system does not generate message IDs.

Cleared
The system generates message IDs automatically.

JMS Disabled Message Time Stamp: Specifies that the system should not
generate a JMS message timestamp.

Default Cleared
Range

Selected
Message time stamps are added automatically to messages
sent.

Cleared
Message time stamps are not added automatically to
messages sent.

Response JMS Connection Factory JNDI name: The JNDI name for the JMS
connection factory to be used for response messages handled by the output port;
for example, jms/connFactory1.

Data type String
Units En_US ASCII characters
Range 1 through 30 ASCII characters

Response JMS Destination JNDI name: The JNDI name for the destination to be
used for response messages handled by the output port; for example, jms/destn1.

Data type String

Troubleshooting extended messaging
Use this overview task to help resolve a problem that you think is related to the
extended messaging service.

The extended messaging service uses the standard WebSphere Application Server
RAS facilities. If you encounter a problem that you think might be related to the
extended messaging service, complete the following stages:

Steps for this task
1. Check for extended messaging service messages in the application server’s

SystemOut log at was_home\logs\server\SystemOut.

214 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Any error messages associated with the extended messaging service are
labelled with EMSG. The error message indicates the nature of the problem
and provides some detail. The extended messaging service issues EMSG error
messages if it fails to initialize, parse its configuration file, or encounters some
runtime error.

2. Check for more messages in the application server’s SystemOut log.
If the JMS server is running, but you have problems accessing JMS resources,
check the SystemOut log file, which should contain more error messages and
extra details about the problem.

3. Check the Release Notes for specific problems and workarounds
The section Possible Problems and Suggested Fixes of the Release Notes, available
from the WebSphere Application Server library web site, is updated regularly to
contain information about known defects and their workarounds. Check the
latest version of the Release Notes for any information about your problem. If
the Release Notes does not contain any information about your problem, you
can also search the Technotes database on the WebSphere Application Server
web site.

4. Check for problems with the WebSphere Messaging functions or
message-driven beans
For more information about troubleshooting WebSphere Messaging, see the
related topics listed at the bottom of this file.

5. (Optional) Get a detailed exception dump for extended messaging.
If the information obtained in the preceding steps is still inconclusive, you can
enable the application server debug trace for the ″Messaging″ group to provide
a detailed exception dump.

Extended Messaging: Resources for learning
Use the following links to find relevant supplemental information about Extended
Messaging. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v Programming model and decisions
v Programming specifications
v Other

Programming model and decisions

v Sun’s Java Message Service (JMS) specification documentation

Programming specifications

v Java Message Service API, 1.0.2

v Enterprise JavaBeans Technology Downloads & Specifications

Chapter 5. Using extended messaging in applications 215

http://www-3.ibm.com/software/webservers/appserv/infocenter.html
http://developer.java.sun.com/developer/technicalArticles/Networking/messaging/
http://java.sun.com/products/jms/
http://java.sun.com/products/ejb/docs.html

Other

v WebSphere Application Server Enterprise Version 5 Overview: Extended
J2EE Development Accelerators

v Listing of PDF files to learn about WebSphere Application Server Version 5

v Listing of all IBM WebSphere Application Server Redbooks

v Listing of all IBM WebSphere Application Server Whitepapers

v WebSphere Application Server Enterprise Edition 4.0: A Programmer’s
Guide

216 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=products/appserv_enterprise#extended
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=products/appserv_enterprise#extended
http://www-3.ibm.com/software/webservers/appserv/appserv_v5.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www-4.ibm.com/software/webservers/appserv/whitepapers.html
http://www.redbooks.ibm.com/redbooks/SG246504.html
http://www.redbooks.ibm.com/redbooks/SG246504.html

Chapter 6. Using message-driven beans in applications

WebSphere Application Server supports asynchronous messaging as a method of
communication based on the Java Message Service (JMS) programming interface.

Message-driven beans (a type of enterprise bean defined in the EJB 2.0
specification) extend the base JMS support and the Enterprise JavaBean component
model to provide automatic asynchronous messaging. When a message arrives on
a destination, a listener passes the message to a new instance of a user-developed
message-driven bean for processing.

You can use WebSphere Studio Application Developer to develop applications that
use message-driven beans. You can use the WebSphere Application Server runtime
tools, like the administrative console, to deploy and administer applications that
use message-driven beans.

For more information about implementing WebSphere enterprise applications that
use message-drive beans, see the following topics:
v An overview of message-driven beans
v Designing an enterprise application to use a message-driven bean
v Developing an enterprise application to use a message-driven bean
v Deploying an enterprise application to use a message-driven bean
v Configuring message listener resources for message-driven beans
v Troubleshooting problems with message-driven beans

Message-driven beans - an overview
WebSphere Application Server supports automatic asynchronous messaging with
message-driven beans (a type of enterprise bean defined in the EJB 2.0 specification).
Messaging with message-driven beans is shown in the figure Message-driven
beans and the message listener service.

The support for message-driven beans is based on the message listener service,
which comprises a listener manager that controls and monitors one or more listeners.
Each listener monitors a JMS destination for incoming messages. When a message
arrives on the destination, the listener passes the message to a new instance of a
user-developed message-driven bean (an enterprise bean) for processing. The
listener then looks for the next message without waiting for the bean to return.

Messages arriving at a destination being processed by a listener have no client
credentials associated with them; the messages are anonymous. Security depends
on the role specified by the RunAs Identity for the message-driven bean as an EJB
component. For more information about EJB security, see Enterprise bean
component security in the WebSphere Application Server version 5 Security PDF
document or information center.

You are recommended to develop a message-driven bean to delegate the business
processing of incoming messages to another enterprise bean, to provide clear
separation of message handling and business processing. This also enables the
business processing to be invoked by either the arrival of incoming messages or,
for example, from a WebSphere J2EE client.

© Copyright IBM Corp. 2003 217

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/ee/ae/csec_ejbsecurity.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/ee/ae/csec_ejbsecurity.html

Message-driven beans and the message listener service. This figure shows an
incoming message being passed by a JMS listener to a message-driven bean, which
passes the message on to a business logic bean for business processing. This
messaging is controlled by the listener manager. For more information, see the text
that accompanies this figure.

Message-driven beans - components
The WebSphere Application Server support for message-driven beans is based on
JMS message listeners and the message listener service, and builds on the base
support for JMS. The main components of WebSphere Application Server support
for message-driven beans are shown in the following figure and described after the
figure:

The main components for message-driven beans. This figure shows the main
components of WebSphere support for message-driven beans, from JMS provider
through a connection to a destination, listener port, then deployed message-driven
bean that processes the message retrieved from the destination. Each listener port
defines the association between a connection factory, destination, and a deployed
message-driven bean. The other main components are the message listener service,
which comprises a listener for each listener port, all controlled by the same listener
manager. For more information, see the text that accompanies this figure.

218 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The message listener service is an extension to the JMS functions of the JMS provider
and provides a listener manager, which controls and monitors one or more JMS
listeners.

Each listener monitors either a JMS queue destination (for point-to-point
messaging) or a JMS topic destination (for publish/subscribe messaging).

A connection factory is used to create connections with the JMS provider for a
specific JMS queue or topic destination. Each connection factory encapsulates the
configuration parameters needed to create a connection to a JMS destination.

A listener port defines the association between a connection factory, a destination,
and a deployed message-driven bean. Listener ports are used to simplify the
administration of the associations between these resources.

When a deployed message-driven bean is installed, it is associated with a listener
port and the listener for a destination. When a message arrives on the destination,
the listener passes the message to a new instance of a message-driven bean for
processing.

When an application server is started, it initializes the listener manager based on
the configuration data. The listener manager creates a dynamic session thread pool
for use by listeners, creates and starts listeners, and during server termination
controls the cleanup of listener message service resources. Each listener completes
several steps for the JMS destination that it is to monitor, including:
v Creating a JMS server session pool, and allocating JMS server sessions and

session threads for incoming messages.

Chapter 6. Using message-driven beans in applications 219

v Interfacing with JMS ASF to create JMS connection consumers to listen for
incoming messages.

v If specified, starting a transaction and requesting that it is committed (or rolled
back) when the EJB method has completed.

v Processing incoming messages by invoking the onMessage() method of the
specified enterprise bean.

Message-driven beans - transaction support
Message-driven beans can handle messages read from JMS destinations within the
scope of a transaction. If transaction handling is specified for a JMS destination, the
JMS listener starts a global transaction before it reads any incoming message from
that destination. When the message-driven bean processing has finished, the JMS
listener commits or rolls back the transaction (using JTA transaction control).

Note:

v All messages retrieved from a specific destination have the same transactional
behavior.

If messages are queued to be sent within a global transaction they are sent when
the transaction is committed. If the processing of a message causes the transaction
to be rolled back, then the message that caused the bean instance to be invoked is
left on the JMS destination.

You can configure the Maximum retries property of the listener port to define the
maximum number of times the listener attempts to read a message from a
destination. When the Max retries limit is reached, the listener for that destination
is stopped. When you have resolved the problem, you must then restart the
listener.

Designing an enterprise application to use message-driven beans
This topic describes things to consider when designing an enterprise application to
use message-driven beans.

The considerations in this topic are based on a generic enterprise application that
uses one message-driven bean to retrieve messages from a JMS queue destination
and passes the messages on to another enterprise bean that implements the
business logic.

To design an enterprise application to use message-driven beans, complete the
following steps:

Steps for this task
1. Identify the JMS resources that the application is to use.

This helps to identify the properties of resources that need to be used within
the application and configured as application deployment descriptors or within
WebSphere Application Server.

JMS resource type Properties

Queue connection
factory

Name: SamplePtoPQueueConnectionFactory
JNDI Name: Sample/JMS/QCF

Queue destination Name: Q1
JNDI Name: Sample/JMS/Q1

220 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

JMS resource type Properties

Listener port (for the
destination)

Name: SamplePtoPListenerPort
Connection Factory JNDI Name: Sample/JMS/QCF
Destination JNDI Name: Sample/JMS/Q1
Maximum Sessions: 5
Maximum Retries: 10
Maximum Messages: 1

Message-driven bean
(deployment
properties)

Name: JMSppSampleMDBBean
Transaction type: Container
Destination type: Queue
Listener port name: SamplePtoPListenerPort

Business logic bean Name: MyLogicBean

Ensure that you use consistent values where needed; for example, the JNDI
names for the connection factory and destination must be the same for both
those resources and the equivalent properties of the listener port.

2. Separation of business logic.
You are recommended to develop a message-driven bean to delegate the
business processing of incoming messages to another enterprise bean. This
provides clear separation of message handling and business processing. This
also enables the business processing to be invoked by either the arrival of
incoming messages or, for example, from a WebSphere J2EE client.

3. Security considerations.
Messages arriving at a destination being processed by a listener have no client
credentials associated with them; the messages are anonymous. Security
depends on the role specified by the RunAs Identity for the message-driven
bean as an EJB component. For more information about EJB security, see
Enterprise bean component security in the WebSphere Application Server
version 5 Security PDF document or information center.

4. General JMS considerations
For Publish/Subscribe messaging, choose the JMS server port to be used
depending on your needs for transactions or performance:

Queued port
The TCP/IP port number of the listener port used for all point-to-point
and Publish/Subscribe support.

Direct port
The TCP/IP port number of the listener port used for direct TCP/IP
connection (non-transactional, non-persistent, and non-durable
subscriptions only) for Publish/Subscribe support.

Note: Message-driven beans cannot use the direct listener port for
Publish/Subscribe support. Therefore, any topic connection factory
configured with Portset to Direct cannot be used with message-driven
beans.

A non-durable subscriber can only be used in the same transactional context
(for example, a global transaction or an unspecified transaction context) that
existed when the subscriber was created. For more information about this
context restriction, see The effect of transaction context on non-durable
subscribers in the WebSphere Application Server version 5 Resources PDF
document or information center.

Chapter 6. Using message-driven beans in applications 221

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/ee/ae/csec_ejbsecurity.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/ee/ae/rmj_durab.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/ee/ae/rmj_durab.html

Developing an enterprise application to use message-driven beans
Use this task to develop an enterprise application to use a message-driven bean.
The message-driven bean is invoked by a JMS listener when a message arrives on
the input queue that the listener is monitoring.

You are recommended to develop the message-driven bean to delegate the
business processing of incoming messages to another enterprise bean, to provide
clear separation of message handling and business processing. This also enables
the business processing to be invoked by either the arrival of incoming messages
or, for example, from a WebSphere J2EE client. Responses can be handled by
another enterprise bean acting as a sender bean, or handled in the message-driven
bean.

You develop an enterprise application to use a message-driven bean like any other
enterprise bean, except that a message-driven bean does not have a home interface
or a remote interface.

This topic describes how to develop a completely new message-driven bean class.
If you have a WAS 4.0 enterprise application that uses the JMS listener, you can
migrate that application to use message-driven beans, as described in Migrating a
WAS 4.0 JMS listener application to use message-driven beans.

For more information about writing the message-driven bean class, see Creating a
message-driven bean in the WebSphere Studio help bookshelf.

To develop an enterprise application to use a message-driven bean, complete the
following steps:

Steps for this task
1. Creating the Enterprise Application project, as described in the WebSphere

Studio article .
2. Creating the message-driven bean class.

You can use the New Enterprise Bean wizard of WebSphere Studio Application
Developer to create an enterprise bean with a bean type of Message-driven
bean. The wizard creates appropriate methods for the type of bean.
By convention, the message bean class is named nameBean, where name is the
name you assign to the message bean; for example:
public class MyJMSppMDBBean implements MessageDrivenBean, MessageListener

The message-driven bean class must define and implement the following
methods:
v onMessage(message), which must meet the following requirements:

– The method must have a single argument of type javax.jms.Message.
– The throws clause must not define any application exceptions.
– If the message-driven bean is configured to use bean-managed

transactions, it must call the javax.transaction.UserTransaction interface to
scope the transactions. Because these calls occur inside the onMessage()
method, the transaction scope does not include the initial message receipt.
This means the application server is given one attempt to process the
message.

222 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

To handle the message within the onMessage() method (for example, to pass
the message on to another enterprise bean), you use standard JMS. (This is
known as bean-managed messaging.)

v ejbCreate()
You must define and implement an ejbCreate method for each way in which
you want a new instance of an enterprise bean to be created.

v ejbRemove().
This method is invoked by the container when a client invokes the remove
method inherited by the enterprise bean’s home interface from the
javax.ejb.EJBHome interface. This method must contain any code that you
want to execute before an enterprise bean instance is removed from the
container (and the associated data is removed from the data source).

For example, the following code extract shows how to access the text and the
JMS MessageID, from a JMS message of type TextMessage:

Code example: The onMessage() method of a message bean. This figure
shows a code extract for a basic onMessage() method of a sample
message-driven bean. The method unpacks the incoming text message to
extract the text and message identifier and calls a private putMessage method
(defined within the same message bean class) to put the message onto another
queue.
public void onMessage(javax.jms.Message msg)
{

String text = null;
String messageID = null;

try
{

text = ((TextMessage)msg).getText();

System.out.println("senderBean.onMessage(), msg text2: "+text);

//
// store the message id to use as the Correlator value
//
messageID = msg.getJMSMessageID();

// Call a private method to put the message onto another queue
putMessage(messageID, text);

}
catch (Exception err)
{

err.printStackTrace();
}
return;

}

The result of this step is a message-driven bean that can be assembled into an
.EAR file for deployment.

3. Assembling and packaging the application for deployment.
You can use WebSphere Studio to assemble and package the application for
deployment.

Results

The result of this task is an .EAR file, containing an application message-driven
bean, that can be deployed in WebSphere Application Server.

Chapter 6. Using message-driven beans in applications 223

What to do next

After you have developed an enterprise application to use message-driven beans,
configure and deploy the application; for example, define the listener ports for the
message-driven beans and, optionally, change the deployment descriptor attributes
for the application. For more information about configuring and deploying an
application that uses message-driven beans, see ″Deploying an enterprise
application to use message-driven beans″

Migrating a JMS listener application to use message-driven
beans

Use this task to migrate an enterprise application that uses message beans with the
JMS Listener from WebSphere Application Server 4.0 to use EJB 2.0 message-driven
beans.

This task uses a command line utility, mb2mdb, that takes as its input either a
deployed MessageBean.jar module or a deployed Enterprise Application (.ear) that
contains a message bean, along with the JMS listener configuration XML file that
defines the WebSphere Application Server 4.0 message beans. The result is a new
.jar/.ear module that can then be deployed directly into a WebSphere Application
Server 5.0 application server.

You can display the usage help for the migration utility, by typing the command
mb2mdb at a command line.

To migrate a WebSphere Application Server 4.0 enterprise application that uses
message beans to use EJB 2.0 message-driven beans, type the following command
at an operating system command line:
mb2mdb inputMB.jar-ear jmsListenerConfig.xml workingDirectory outputMDB.jar-ear

options

Where:

inputMB.jar-ear
The name of the deployed WebSphere Application Server 4.0 jar or ear file
containing a stateless session message bean.

jmsListenerConfig.xml
The name of the XML configuration file used to configure the WebSphere
Application Server 4.0 JMS listeners.

workingDirectory
The name of a new or existing directory that is used to generate the new
message-driven bean and package the outputMDB.jar or .ear file.

Note: By default, the tool clears the working directory after it has
completed. If you want to preserve the contents of the working directory,
you must specify the -keep option.

outputMDB.jar-ear
The name of the output .jar or .ear file for the migrated message-driven
bean application.

options
An optional set of parameters that you can use to control the mb2mdb
utility.

-keep This prevents the tool from clearing out the working directory after
completion.

224 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

-verbose
This causes the tool to display informational messages as to the
progress of the migration and its parameters.

-map listenerHome=bindingHome
This option provides a mechanism to map between the
JNDIHomeName specified for a listener in the JMS listener
configuration XML file and the default binding home name
specified in the inputMB.jar-ear file.

If the jmsListenerConfig.xml file contains a deployed EJB home JNDI
name that is different to the default binding within the
inputMB.jar-ear, use this option to map between the two names.

This enables you to install the output .jar or .ear file for the
message-driven bean into an application server and bind the bean
with a different JNDIHomeName than is specified in the bean’s
bindings.xmi.

Results

The result of this task is a new .jar or .ear file for a message-driven bean that can
then be deployed directly into a WebSphere Application Server 5.0 application
server.

To successfully install the .jar or .ear file, you need to bind the message-driven
bean against a listener port defined to the message listener service of the
application server. You need to have used the WebSphere Application Server
administrative console to define the listener port, which defines the JMS connection
factory and destination that a message-driven bean bound to it listens on. For more
information about installing and configuring a .jar or .ear file for a message-driven
bean, see Deploying an enterprise application to use message-driven beans.

Deploying an enterprise application to use message-driven beans
Use this task to deploy an enterprise application to use message-driven beans.

This task description assumes that you have an .EAR file, which contains an
application enterprise bean with code for message-driven beans, that can be
deployed in WebSphere Application Server.

To deploy an enterprise application to use message-driven beans, complete the
following steps:

Steps for this task
1. Use the WebSphere administrative console to define the listener ports for the

application, as described in Adding a new listener port.
2. For each message-driven bean in the application, use the application assembly

tool to configure the deployment attributes to match the listener port
definitions, as described in ″Configuring deployment attributes for a
message-driven bean″.

3. Use the WebSphere administrative console to install the application
This stage is a standard WebSphere Application Server task, as described in
(″Installing a new application″).

Chapter 6. Using message-driven beans in applications 225

When you install the application, you are prompted to specify the name of the
listener port that the application is to use for late responses. Select the listener
port, then click OK.

Configuring deployment attributes for a message-driven bean
Use this task to configure the message-driven beans deployment attributes for an
enterprise bean, to override the deployment attributes defined within the
application EAR file.

This task description assumes that you have an EAR file, which contains an
application enterprise bean developed as a message-driven bean, that can be
deployed in WebSphere Application Server.

Note: After deployment code has been generated for an application, the deployable
archive is renamed with the prefix Deployed_ . Any subsequent changes to the
archive from within the Application Assembly Tool are applied to the version of
the archive that existed prior to code generation. To see changes reflected in your
application, you must regenerate deployment code and re-install the deployable
archive.

To configure the message-driven beans deployment attributes for an enterprise
bean, use the the application assembly tool to configure the deployment attributes
of the application to match the listener port definitions:

Steps for this task
1. Launch the Application Assembly Tool.
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, click File-> Open
then select the the EAR file.

3. In the navigation pane, select the message-driven bean instance; for example,
expand ejb_module_instance-> Message-driven beans then select the bean
instance.
A property dialog notebook for the message-driven bean is displayed in the
property pane.

4. Specify general deployment properties.
a. In the property pane, select the General tab.
b. Specify the following properties:

Transaction type
Whether the message bean manages its own transactions or the
container manages transactions on behalf of the bean. All messages
retrieved from a specific destination have the same transactional
behavior. To enable the transactional behavior that you want, you
must configure the JMS destination with the same transactional
behavior as you configure for the message bean.

Bean The message bean manages its own transactions

Container
The container manages transactions on behalf of the bean

5. Specify advanced deployment properties.
a. In the property pane, select the Advanced tab.
b. Specify the following properties:

226 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Message selector
The JMS message selector to be used to determine which messages
the message bean receives; for example:
JMSType=’car’ AND color=’blue’ AND weight>2500

The selector string can refer to fields in the JMS message header
and fields in the message properties. Message selectors cannot
reference message body values.

Acknowledge mode
How the session acknowledges any messages it receives.

This property applies only to message-driven beans that uses
bean-managed transaction demarcation (Transaction type is set to
Bean).

Auto Acknowledge
The session automatically acknowledges a message when it
has either successfully returned from a call to receive, or the
message listener it has called to process the message
successfully returns.

Dups OK Acknowledge
The session lazily acknowledges the delivery of messages.
This is likely to result in the delivery of some duplicate
messages if JMS fails, so it should be used only by
consumers that are tolerant of duplicate messages.

As defined in the EJB specification, clients cannot use using
Message.acknowledge() to acknowledge messages. If a value of
CLIENT_ACKNOWLEDGE is passed on the createxxxSession call,
then messages are automatically acknowledged by the application
server and Message.acknowledge() is not used.

Destination type
Whether the message bean uses a queue or topic destination.

Queue
The message bean uses a queue destination.

Topic The message bean uses a topic destination.

Subscription durability
Whether a JMS topic subscription is durable or non-durable.

Durable
A subscriber registers a durable subscription with a unique
identity that is retained by JMS. Subsequent subscriber
objects with the same identity resume the subscription in
the state it was left in by the earlier subscriber. If there is no
active subscriber for a durable subscription, JMS retains the
subscription’s messages until they are received by the
subscription or until they expire.

Nondurable
Non-durable subscriptions last for the lifetime of their
subscriber object. This means that a client sees the messages

Chapter 6. Using message-driven beans in applications 227

published on a topic only while its subscriber is active. If
the subscriber is not active, the client is missing messages
published on its topic.

A non-durable subscriber can only be used in the same
transactional context (for example, a global transaction or an
unspecified transaction context) that existed when the
subscriber was created. For more information about this
context restriction, see The effect of transaction context on
non-durable subscribers in the WebSphere Application
Server version 5 Resources PDF document or information
center.

6. Specify bindings deployment properties.
a. In the property pane, select the Bindings tab.
b. Specify the following property:

Listener port name
The name of the listener port for this message-driven bean.

7. To apply the changes and close the Application Assembly Tool, click OK.
Otherwise, to apply the values but keep the property dialog open for additional
edits, click Apply.

8. (Optional) To see changes reflected in your application, regenerate deployment
code and reinstall the deployable archive.

Configuring message listener resources for message-driven beans
Use the following tasks to configure resources needed by the message listener
service to support message-driven beans.
v Configuring the message listener service
v Adding a new listener port
v Configuring a listener port
v Configuring security for message-driven beans

Configuring the message listener service
Use this task to configure the properties of the message listener service for an
application server.

To configure the properties of the message listener service for an application server,
use the administrative console to complete the following steps:

Steps for this task
1. In the navigation pane, select Servers-> Application Servers

This displays a table of the application servers in the administrative domain.
2. In the content pane, click the name of the application server.

This displays the properties of the application server in the content pane.
3. In the Additional Properties table, select Message Listener Service

This displays the Message Listener Service properties in the content pane.
4. Specify appropriate properties of the message listener service.
5. Click OK.
6. Save your configuration.

228 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/ee/ae/rmj_durab.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/ee/ae/rmj_durab.html

7. (Optional) To have the changed configuration take effect, stop then restart the
Application Server.

Message listener service
The message listener service is an extension to the JMS functions of the JMS
provider. It provides a listener manager that controls and monitors one or more
JMS listeners, which each monitor a JMS destination on behalf of a deployed
message-driven bean.

This panel displays links to the Additional Properties pages for Listener Ports,
Thread Pool, and Custom Properties for the message listener service.

To view this administrative console page, click Servers-> application_server->
Message Listener Service

Name: The name by which the message listener service is known for
administrative purposes.

Data type String
Default MsgLService

Description: A description of the message listener service, for administrative
purposes

Data type String
Default Null

Thread pool: Controls the maximum number of threads the Message Listener
Service is allowed to run. Select this link to display the service thread pool
properties.

Adjust this parameter when multiple message-driven beans are deployed in the
same application server and the sum of their maximum session values exceeds the
default value of 10.

Data type Integer
Units Not applicable
Default Minimum: 10, maximum 50
Range Not applicable
Recommended Set the minimum to the sum of all message-driven beans maximum

session values. Set the maximum to anything equal or greater than
the minimum.

Custom Properties: Custom properties of the message listener service.The JMS
server has two modes of operation, Application Server Facilities (ASF) and
non-Application Server Facilities. ASF is meant to provide concurrency and
transactional support for applications. Non-ASF bypasses that support to
streamline the path length.

Use Non-ASF if:
v Message order is a strict requirement
v Concurrent PTP messages are desired
v The property non.asf.receive.timeout exists and has a value greater than 0

Chapter 6. Using message-driven beans in applications 229

Do not use Non-ASF if concurrent publications and subscriptions messages are
desired because ASF provides better throughput.

Data type Integer
Units Milliseconds
Default ASF mode (custom property not created)
Range
Recommended The value is the number of milliseconds it takes for a message to be

delivered. If a timeout occurs, it must recycle causing extra work.
This should be set to lower than the transaction timeout, but close
to it with several (10 or more) seconds to spare. The seconds to
spare should be more if under extreme loads in which threads are
waiting long periods of time to get CPU cycles.

MQJMS.POOLING.TIMEOUT: The number of milliseconds after which a
connection in the pool is destroyed if it has not been used.

An MQSimpleConnectionManager allocates connections on a most-recently-used
basis, and destroys connections on a least-recently-used basis. By default, a
connection is destroyed if it has not been used for five minutes.

Data type Integer
Units Milliseconds
Default 5 minutes
Range

MQJMS.POOLING.THRESHOLD: The maximum number of unused connections
in the pool.

An MQSimpleConnectionManager allocates connections on a most-recently-used
basis, and destroys connections on a least-recently-used basis. By default, a
connection is destroyed if there are more than ten unused connections in the pool.

Data type Integer
Units Number of connections
Default 10
Range

MAX.RECOVERY.RETRIES: The maximum number of times that the listener
service tries to get a message from a listener port before the associated listener is
stopped, in the range 0 through 2147483647.

Data type Integer
Units Retry attempts
Default 0 (no retries)
Range 0 (no retries) through 2147483647

RECOVERY.RETRY.INTERVAL: The time in seconds between retry attempts by
the listener service to get a message from a listener port.

Data type Integer
Units Seconds
Default 10
Range 1 through 2147483647

230 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Message listener port collection
The message listener ports configured in the administrative domain

This panel displays a list of the message listener ports configured in the
administrative domain. Each listener port is used with a message-driven bean to
automatically receive messages from an associated JMS destination. You can use
this panel to add new listener ports or to change the properties of existing listener
ports. For more information about the property fields for listener ports, see
Listener port properties.

To view this administrative console page, click Servers-> application_server->
Message Listener Service-> Listener Ports

Listener port settings
A listener port is used to simplify administration of the association between a
connection factory, destination, and deployed message-driven bean.

Use this panel to view or change the configuration properties of the selected
listener port.

To view this administrative console page, click Servers-> application_server->
Message Listener Service-> Listener Ports-> listener_port

Initial state: The state that you want the listener port to have when the
application server is next restarted

Data type Enum
Units Not applicable
Default Started
Range

Started When the application server is next started, the listener
port is started automatically.

Stopped
When the application server is next started, the listener
port is not started automatically. If message-driven beans
are to use this listener port on the application server, the
system administrator must start the port manually or select
the Started value of this property then restart the
application server.

Description: A description of the listener port, for administrative purposes within
IBM WebSphere Application Server.

Data type String
Default Null

Listener port: The name by which the listener port is known for administrative
purposes.

Data type String
Default Null

Connection factory JNDI name: The JNDI name for the JMS connection factory to
be used by the listener port; for example, jms/connFactory1.

Chapter 6. Using message-driven beans in applications 231

Data type String
Default Null

Destination JNDI name: The JNDI name for the destination to be used by the
listener port; for example, jms/destn1.

If the extended messaging service is to use this listener port to handle late
responses, the value of this property must match the JMS response destination on
the output port used by the sender bean. Also cannot use a temporary destination
for late responses.

Data type String
Default Null

Maximum sessions: Specifies the maximum number of concurrent JMS server
sessions used by a listener to process messages.

Each session corresponds to a single listener thread, but does not control the
number of concurrently processed messages. Adjust this parameter when the
machine running the process application does not realize the available capacity and
produces less throughput by running long processes.

This parameter helps to add some level of concurrency so that messages are
received concurrently before the synchronized part of receiving the message
occurs. A 40% increase in throughput is observed in a process application with
long running processes on a NetFinity 5500 500 MHz, 4-way, 4GB RAM system.

An alternative to making this change in the administrative console is to change the
maximum sessions value in the server.xml file under the listener ports stanza as
follows:
<listenerPorts xmi:id="ListenerPort_1" name="bpeIntListenerPort"
description="Internal Listener Port for Process Choreographer"
connectionFactoryJNDIName="jms/bpeCF" destinationJNDIName="jms/bpeIntQueue"
maxSessions="5" maxRetries="10" maxMessages="1">
<stateManagement xmi:id="StateManageable_5" initialState="START" />
</listenerPorts>

Data type Integer
Units Sessions
Default 1
Range 1 through 2147483647
Recommended If message concurrency, that is multiple messages processed

simultaneously, is desired, set the value to 2-4 sessions per system
processor. Keep the value as low as possible to eliminate client
thrashing. If a strict message order is desired, set the value to 4 so
there is always a thread waiting in a hot state, blocked on receiving
the message.

Maximum retries: The maximum number of times that the listener tries to deliver
a message before the listener is stopped, in the range 0 through 2147483647.

The maximum number of times that the listener tries to deliver a message to a
message-driven bean instance before the listener is stopped.

Data type Integer

232 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Units Retry attempts
Default 0 (no retries)
Range 0 (no retries) through 2147483647

Maximum messages: The maximum number of messages that the listener can
process in one JMS server session.

Adjust this parameter when message order is not a strict requirement. This
parameter controls the concurrency level in the listener service.

Data type Integer
Units Number of messages
Default 1
Range 1 through 2147483647
Recommended If message concurrency, that is multiple messages processed

simultaneously, is desired, set the value to 2-4 sessions per system
processor. Keep the value as low as possible to eliminate client
thrashing. If a strict message order is desired, set the value to 1.

Adding a new listener port
Use this task to add a new listener port to the message listener service, so that
message-driven beans can be associated with the port to retrieve messages.

To add a new listener port, use the administrative console to complete the
following steps:

Steps for this task
1. In the navigation pane, select Servers-> Application Servers

This displays a table of the application servers in the administrative domain.
2. In the content pane, click the name of the application server.

This displays the properties of the application server in the content pane.
3. In the Additional Properties table, select Message Listener Service

This displays the Message Listener Service properties in the content pane.
4. In the content pane, select Listener Ports.

This displays a list of the listener ports.
5. In the content pane, click New.
6. Specify appropriate properties for the listener port.
7. Click OK.
8. To save your configuration, click Save on the task bar of the Administrative

console window.
9. (Optional) To have the changed configuration take effect, stop then restart the

application server.

Results

If enabled, the listener port is started automatically when a message-driven bean
associated with that port is installed.

Chapter 6. Using message-driven beans in applications 233

Configuring a listener port
Use this task to change the properties of an existing listener port, used by
message-driven beans associated with the port to retrieve messages.

To configure the properties of a listener port, use the administrative console to
complete the following steps:

Steps for this task
1. In the navigation pane, select Servers-> Application Servers

This displays a table of the application servers in the administrative domain.
2. In the content pane, click the name of the application server.

This displays the properties of the application server in the content pane.
3. In the Additional Properties table, select Message Listener Service

This displays the Message Listener Service properties in the content pane.
4. In the content pane, click Listener Ports.

This displays a list of the listener ports.
5. Click the listener port that you want to modify.

This displays the properties of the listener port in the content pane.
6. Specify appropriate properties for the listener port.
7. Click OK.
8. To save your configuration, click Save on the task bar of the Administrative

console window.
9. (Optional) To have the changed configuration take effect, stop then restart the

application server.

Deleting a listener port
Use this task to delete a listener port from the message listener service, to prevent
message-driven beans associated with the port from retrieving messages.

To delete a listener port, use the administrative console to complete the following
steps:

Steps for this task
1. In the navigation pane, select Servers-> Application Servers

This displays a table of the application servers in the administrative domain.
2. In the content pane, click the name of the application server.

This displays the properties of the application server in the content pane.
3. In the Additional Properties table, select Message Listener Service

This displays the Message Listener Service properties in the content pane.
4. In the content pane, select Listener Ports.

This displays a list of the listener ports.
5. In the content pane, select the checkbox for the listener port that you want to

delete.
6. Click Delete. This action stops the port (needed to allow the port to be deleted)

then deletes the port.
7. To save your configuration, click Save on the task bar of the Administrative

console window.

234 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

8. (Optional) To have the changed configuration take effect, stop then restart the
application server.

Configuring security for message-driven beans
Use this task to configure resource security and security permissions for
message-driven beans.

Messages arriving at a listener port have no client credentials associated with
them. The messages are anonymous.

To call secure enterprise beans from a message-driven bean, the message-driven
bean needs to be configured with a RunAs Identity deployment descriptor.
Security depends on the role specified by the RunAs Identity for the
message-driven bean as an EJB component.

For more information about EJB security, see Enterprise bean component security
in the WebSphere Application Server version 5 Security PDF document or
information center. For more information about configuring security for your
application, see Assembling secured applications.

JMS connections used by message-driven beans can benefit from the added
security of using J2C container-managed authentication. To enable the use of J2C
container authentication aliases and mapping, define a J2C container-managed alias
on the JMS connection factory definition that the MDB is using to listen upon
(defined by the Connection factory JNDI name property of the listener port). If
defined, the listener uses the container-managed authentication alias for its
JMSConnection security credentials instead of any application-managed alias. To
set the container-managed alias, use the administrative console to complete the
following steps:

Steps for this task
1. To display the listener port settings, click Servers-> application_server->

Message Listener Service-> Listener Ports-> listener_port

2. To get the name of the JMS connection factory, look at the Connection factory
JNDI name property.

3. Display the JMS connection factory properties. For example, to display the
properties of a queue connection factory provided by the embedded WebSphere
JMS provider, click Resources-> WebSphere JMS Provider-> (In content pane,
under Additional Properties) WebSphere Queue Connection Factories->
connection_factory

4.

5. Set the Container-managed Authentication Alias property.

Administering listener ports
Use the following tasks to administer listener ports, which each define the
association between a connection factory, a destination, and a message-driven bean.

You can use the WebSphere administrative console to administer listener ports, as
described in the following tasks.
v Adding a new listener port

Chapter 6. Using message-driven beans in applications 235

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/ee/ae/csec_ejbsecurity.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/ee/ae/tsec_assemble.html

Use this task to create a new listener port, to specify a new association between
a connection factory, a destination, and a message-driven bean. This enables
deployed message-driven beans associated with the port to retrieve messages
from the destination.

v Configuring a listener port
Use this task to view or change the configuration properties of a listener port.

v Starting a listener port
Use this task to start a listener port manually.

v Stopping a listener port
Use this task to stop a listener port manually.

Note: If configured as enabled, a listener port is started automatically when a
message-driven bean associated with that port is installed. You do not normally
need to start or stop a listener port manually.

Starting a listener port
Use this task to start a listener port on an application server, to enable the listeners
for message-driven beans associated with the port to retrieve messages.

A listener is active, that is able to receive messages from a destination, if the
deployed message-driven bean, listener port, and message listener service are all
started. Although you can start these components in any order, they must all be in
a started state before the listener can retrieve messages.

If configured as enabled, a listener port is started automatically when a
message-driven bean associated with that port is installed. However, you can start
a listener port manually, as described in this topic.

When a listener port is started, the listener manager tries to start the listeners for
each message-driven bean associated with the port. If a message-driven bean is
stopped, the port is started but the listener is not started, and remains stopped. If
you start a message-driven bean, the related listener is started.

To start a listener port on an application server, use the administrative console to
complete the following steps:

Steps for this task
1. (Optional) If you want the listener for a deployed message-driven bean to be

able to receive messages at the port, check that the message-driven bean has
been started.

2. In the navigation pane, select Servers-> Application Servers

This displays a table of the application servers in the administrative domain.
3. In the content pane, click the name of the application server.

This displays the properties of the application server in the content pane.
4. In the Additional Properties table, select Message Listener Service

This displays the Message Listener Service properties in the content pane.
5. In the content pane, select Listener Ports.

This displays a list of the listener ports.
6. (Optional) Select the checkbox for the listener port that you want to start.
7. Click Start.
8. To save your configuration, click Save on the task bar of the Administrative

console window.

236 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Stopping a listener port
Use this task to stop a listener port on an application server, to prevent the
listeners for message-driven beans associated with the port from retrieving
messages.

When you stop a listener port as described in this topic, the listener manager stops
the listeners for all message-driven beans associated with the port.

To stop a listener port on an application server, use the administrative console to
complete the following steps:

Steps for this task
1. In the navigation pane, select Servers-> Application Servers

This displays a table of the application servers in the administrative domain.
2. In the content pane, click the name of the application server.

This displays the properties of the application server in the content pane.
3. In the Additional Properties table, select Message Listener Service

This displays the Message Listener Service properties in the content pane.
4. In the content pane, select Listener Ports.

This displays a list of the listener ports.
5. (Optional) In the content pane, select the listener port that you want to stop.
6. Click Stop.
7. To save your configuration, click Save on the task bar of the Administrative

console window.
8. (Optional) To have the changed configuration take effect, stop then restart the

application server.

Important files for message-driven beans and extended messaging
The following files in the WAS_HOME/temp directory are important for the
operation of the WebSphere Application Server messaging service, so should not be
deleted. If you do need to delete the WAS_HOME/temp directory or other files in
it, ensure that you preserve the following files.

server_name-durableSubscriptions.ser
You should not delete this file, because the messaging service uses it to
keep track of durable subscriptions for message-driven beans. If you
uninstall an application that contains a message-driven bean, this file is
used to unsubscribe the durable subscription.

server_name-AsyncMessageRequestLog.ser
You should not delete this file, because the messaging service uses it to
keep track of late responses that need to be delivered to the late response
message handler for the extended messaging provider.

Troubleshooting message-driven beans
Use this overview task to help resolve a problem that you think is related to
message-driven beans.

Message-driven beans support uses the standard WebSphere Application Server
troubleshooting facilities. If you encounter a problem that you think might be
related to the message-driven beans, complete the following stages:

Chapter 6. Using message-driven beans in applications 237

Steps for this task
1. Check for messages about message-driven beans in the application server’s

SystemOut log at was_home\logs\server\SystemOut.
Look in the SystemOut log for messages that indicate a problem with JMS
resources for message-driven beans, such as listener ports.

2. Check for more messages in the application server’s SystemOut log.
If the JMS server is running, but you have problems accessing JMS resources,
check the SystemOut log file, which should contain more error messages and
extra details about the problem.

3. Check the Release Notes for specific problems and workarounds
The section Possible Problems and Suggested Fixes of the Release Notes, available
from the WebSphere Application Server library web site, is updated regularly to
contain information about known defects and their workarounds. Check the
latest version of the Release Notes for any information about your problem. If
the Release Notes does not contain any information about your problem, you
can also search the Technotes database on the WebSphere Application Server
web site.

4. Check that message listener service has started.
The message listener service is an extension to the JMS functions of the JMS
provider. It provides a listener manager that controls and monitors one or more
JMS listeners, which each monitor a JMS destination on behalf of a deployed
message-driven bean.

5. Check your JMS resource configurations
If the WebSphere Messaging functions seem to be running properly (the JMS
server is running without problems), check that the JMS resources have been
configured correctly. For example, check that the listener ports have been
configured correctly and have been started.

6. Check for problems with the WebSphere Messaging functions
For more information about troubleshooting WebSphere Messaging, see the
related topics.

7. (Optional) Get a detailed exception dump for messaging.
If the information obtained in the preceding steps is still inconclusive, you can
enable the application server debug trace for the ″Messaging″ group to provide
a detailed exception dump.

Message-driven beans samples
The following examples are provided to illustrate use of the message-driven beans
support:
v Point-to-point samples:

– ″Tutorial: Creating JMS message sample″

This tutorial is designed to help you develop and deploy a JMS message
sample application that tests the WebSphere Application Server
message-driven beans support in a point-to-point scenario. This sample
illustrates how to develop and deploy an application that comprises the
following components:
- A Java/JMS program that writes a message to a queue.
- A message-driven bean that is invoked by a JMS listener when a message

arrives on a defined queue.

238 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://www-3.ibm.com/software/webservers/appserv/infocenter.html

For more information about this sample, see the samples article ″Tutorial:
Creating JMS message sample″ at
WAS_HOME/Enterprise/samples/messaging/doc/PtoP/wsbldPtoP.xml (if you
have installed the samples option).

– ″Sample: Message Listener (point-to-point)″
This sample is designed to demonstrate the use and behavior of
message-driven beans for a simple point-to-point scenario. This sample uses
the JMS message sample deployed in the sample above.
For more information about this sample, see the samples article ″Sample:
Message Listener (Point-to-Point)″ at
WAS_HOME/Enterprise/samples/messaging/doc/PtoP/wsrunPtoP.xml (if you
have installed the samples option).

v Publish/subscribe samples
– ″Tutorial: Creating JMS message publish/subscribe sample″

This tutorial is designed to help you develop and deploy a JMS message
sample application that tests the WebSphere Application Server
message-driven beans support in a publish/subscribe scenario. This sample
illustrates how to develop and deploy an application that comprises the
following components:
- A client program that starts the message sequence by publishing a message

to a selected topic.
- A message-driven bean that is invoked by a JMS listener when the broker

passes a message to the listener from a topic to which it has subscribed.

For more information about this sample, see the samples article ″Tutorial:
Creating JMS message publish/subscribe sample″ at
WAS_HOME/Enterprise/samples/messaging/doc/PubSub/wsbldPubSub.xml (if you
have installed the samples option).

– ″Sample: Message Listener (publish/subscribe)″
This sample is designed to demonstrate the use and behavior of
message-driven beans for a simple publish/subscribe scenario. This sample
uses the JMS message sample deployed in the publish/subscribe sample
above.
For more information about this sample, see the samples article ″Sample:
Message Listener (publish/subscribe)″ at
WAS_HOME/Enterprise/samples/messaging/doc/PubSub/wsrunPubSub.xml (if you
have installed the samples option).

Chapter 6. Using message-driven beans in applications 239

240 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 7. Using application clients

An application client module is a JAR (Java ARchive) file containing a client for
accessing a Java application.

Steps for this task
1. Decide on a type of application client.
2. Develop the application client code.

Develop ActiveX application client code.
Develop applet client code.
Develop J2EE application client code.
Develop pluggable application client code.
Develop thin application client code.

Usage scenario

View the Samples gallery for more information about application clients. Before
you run the basicCalculator Sample, ensure the JMS Server is started.

These samples do not include client applications that communicate with Enterprise
server-side examples.

Application clients
In a traditional client server environment, the client requests a service and the
server fulfills the request. Multiple clients use a single server. Clients can also
access several different servers. This model persists for Java clients except now
these requests make use of a client run-time environment.

In this model, the client application requires a servlet to communicate with the
enterprise bean, and the servlet must reside on the same machine as the
WebSphere Application Server.

With WebSphere Application Server V5.0, application clients now consist of the
following models:
v ActiveX application client
v Applet client
v J2EE application client
v Pluggable application client
v Thin application client

The ActiveX application client model, uses the Java Native Interface (JNI)
architecture to programmatically access the Java virtual machine (JVM) API.
Therefore the JVM code exists in the same process space as the ActiveX application
(Visual Basic, VBScript, or Active Server Pages (ASP)) and remains attached to the
process until that process terminates.

In the Applet client model, a Java applet embeds in a HyperText Markup Language
(HTML) document residing on a remote client machine from the WebSphere

© Copyright IBM Corp. 2003 241

Application Server. With this type of client, the user accesses an enterprise bean in
the WebSphere Application Server through the Java applet in the HTML document.

The J2EE application client is a Java application program that accesses enterprise
beans, Java Database Connectivity (JDBC), and Java Message Service message
queues. The J2EE application client program runs on client machines. This program
follows the same Java programming model as other Java programs; however, the
J2EE application client depends on the application client run time to configure its
execution environment, and uses the Java Naming and Directory Interface (JNDI)
name space to access resources.

The Pluggable and thin application clients provide a lightweight Java client
programming model. These clients are best suited in situations where a Java client
application exists but the application needs enhancements to use enterprise beans,
or where the client application requires a thinner, more lightweight environment
than the one offered by the J2EE application client. The difference between the thin
application client and the pluggable application client is that the thin application
client includes a Java virtual machine (JVM) API, and the pluggable application
client requires the user to provide this code. The pluggable application client uses
the Sun Java Development Kit, and the thin application client uses the IBM
Developer Kit For the Java Platform.

The J2EE application client programming model provides the benefits of the J2EE
platform for the Java client application. The J2EE application client offers the
ability to seamlessly develop, assemble, deploy and launch a client application. The
tooling provided with the WebSphere platform supports the seamless integration of
these stages to help the developer create a client application from start to finish.

When you develop a client application using and adhering to the J2EE platform,
you can put the client application code from one J2EE platform implementation to
another. The client application package can require redeployment using each J2EE
platform deployment tool, but the code that comprises the client application does
not change.

The application client run time supplies a container that provides access to system
services for the client application code. The client application code must contain a
main method. The application client run time invokes this main method after the
environment initializes and runs until the Java virtual machine code terminates.

The J2EE platform allows the application client to use nicknames or short names,
defined within the client application deployment descriptor. These deployment
descriptors identify enterprise beans or local resources (JDBC, Java Message Service
(JMS), JavaMail and URL APIs) for simplified resolution through JNDI use. This
simplified resolution to the enterprise bean reference and local resource reference
also eliminates changes to the client application code, when the underlying object
or resource either changes or moves to a different server. When these changes
occur, the application client can require redeployment.

The application client also provides initialization of the run-time environment for
the client application. The deployment descriptor defines this unique initialization
for each client application. The application client run time also provides support
for security authentication to the enterprise beans and local resources.

The application client uses the RMI-IIOP protocol. Using this protocol enables the
client application to access enterprise bean references and to use CORBA services
provided by the J2EE platform implementation. Use of the RMI-IIOP protocol and

242 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

the accessibility of CORBA services assist users in developing a client application
that requires access to both enterprise bean references and CORBA object
references.

When you combine the J2EE and CORBA environments or programming models in
one client application, you must understand the differences between the two
programming models to use and manage each appropriately.

View the Samples gallery for more information about application clients. Before
you run the basicCalculator Sample, ensure the JMS Server is started.

These samples do not include client applications that communicate with Enterprise
server-side examples.

Application client functions
Use the following table to identify the available functions in the different types of
clients.

Available
functions

ActiveX
client

Applet client J2EE client Pluggable
client

Thin client

Provides all
the benefits of
a J2EE
platform

Yes No Yes No No

Portable
across all
J2EE
platforms

No No Yes No No

Provides the
necessary
run-time to
support
communication
between
client and
server

Yes Yes Yes Yes Yes

Allows the
use of
nicknames in
the
deployment
descriptors

Yes No Yes No No

Supports use
of the
RMI-IIOP
protocol

Yes Yes Yes Yes Yes

Browser
based
application

No Yes No No No

Chapter 7. Using application clients 243

Enables
development
of client
applications
that can
access
enterprise
bean
references
and CORBA
object
references

Yes Yes Yes Yes Yes

Enables the
initialization
of the client
application
run-time
environment

Yes No Yes No No

Supports
security
authentication
to enterprise
beans

Yes Limited Yes Yes Yes

Supports
security
authentication
to local
resources

Yes No Yes No No

Requires
distribution
of application
to client
machines

Yes No Yes Yes Yes

Enables
access to
enterprise
beans and
other Java
classes
through
Visual Basic,
VBScript, and
Active Server
Pages (ASP)
code

Yes No No No No

Provides a
lightweight
client suitable
for download

No Yes No Yes Yes

Enables
access to Java
Naming and
Directory
Interface
(JNDI) for
enterprise
bean
resolution

Yes Yes Yes Yes Yes

244 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Runs on
client
machines that
use the Sun
Java Runtime
Environment

No No No Yes No

Supports
CORBA
services
(using
CORBA
services can
render the
application
client code
nonportable)

No No Yes No No

ActiveX application clients
WebSphere Application Server provides an ActiveX to EJB bridge that enables
ActiveX programs to access WebSphere Enterprise JavaBeans through a set of
ActiveX automation objects.

The bridge accomplishes this by loading the Java virtual machine (JVM) into any
ActiveX automation container such as Visual Basic, VBScript, and Active Server
Pages (ASP).

There are two main environments in which the ActiveX to EJB bridge runs:
v Client applications, such as Visual Basic and VBScript, are programs that a user

starts from the command line, desktop icon, or Start menu shortcut.
v Client services, such as Active Server Pages, are programs started by some

automated means like the Services control panel applet.

The ActiveX to EJB bridge uses the Java Native Interface (JNI) architecture to
programmatically access the JVM code. Therefore the JVM code exists in the same
process space as the ActiveX application (Visual Basic, VBScript, or ASP) and
remains attached to the process until that process terminates. To create JVM code,
an ActiveX client program calls the XJBInit() method of the XJB.JClassFactory
object. For more information about creating JVM code for an ActiveX program, see
ActiveX to EJB bridge, initializing JVM code.

After an ActiveX client program has initialized the JVM code, the program calls
several methods to create a proxy object for the Java class. When accessing a Java
class or object, the real Java object exists in the JVM code; the automation container
contains the proxy for that Java object. The ActiveX program can use the proxy
object to access the Java class, object fields, and methods. For more information
about using Java proxy objects, see ActiveX to EJB bridge, using Java proxy objects.
For more information about calling methods and access fields, see ActiveX to EJB
bridge, calling Java methods and ActiveX to EJB bridge, accessing Java fields.

The client program performs primitive data type conversion through the COM
IDispatch interface (use of the IUnknown interface is not directly supported).
Primitive data types are automatically converted between native Automation types
and Java types. All other types are handled automatically by the Proxy Objects For
more information about data type conversion, see ActiveX to EJB bridge,
converting data types.

Chapter 7. Using application clients 245

Any exceptions thrown in Java code are encapsulated and re-thrown as a COM
error, from which the ActiveX program can determine the actual Java exceptions.
For more information about handling exceptions, see ActiveX to EJB bridge,
handling errors.

The ActiveX to EJB bridge supports both free-threaded and apartment-threaded
access and implements the Free Threaded Marshaler to work in a hybrid
environment such as Active Server Pages. For more information about the support
for threading, see ActiveX to EJB bridge, using threading.

Applet clients
The applet client provides a browser-based Java run time capable of interacting
with enterprise beans directly, instead of indirectly through a servlet.

This client is designed to support users who want a browser-based Java client
application programming environment that provides a richer and more robust
environment than the one offered by the Applet > Servlet > enterprise bean
model.

The programming model for this client is a cross between the Java application thin
client and a servlet client. When accessing enterprise beans from this client, the
applet can consider the enterprise bean object references as CORBA object
references.

No tooling support exists for this client to develop, assemble or deploy the applet.
You are responsible for developing the applet, generating the necessary client
bindings for the enterprise beans and CORBA objects, and bundling these pieces
together to install or download to the client machine. The Java applet client
provides the necessary run time to support communication between the client and
the server.

Client side bindings generate using the Chapter 27, “Assembling applications”, on
page 1149. An applet can utilize these bindings, or you can generate client side
bindings using the rmic command that is part of the IBM Developer Kit, Java
edition, installed with the WebSphere Application Server.

The Applet client uses the RMI-IIOP protocol. Using this protocol enables the
applet to access enterprise bean references and CORBA object references, but the
applet is restricted in using some supported CORBA services.

If you combine the enterprise bean and CORBA environments in one applet, you
must understand the differences between the two programming models, and you
must use and manage each appropriately.

The applet client provides the run time to support the J2EE applet client. The
applet client does not have tooling support for developing, assembling or
deploying the applet. The applet client run time is provided through the Java
applet browser plug-in that you install on the client machine using the WebSphere
Application Server Client CD.

The applet environment restricts access to external resources from the browser
run-time environment. You can make some of these resources available to the
applet by setting the correct security policy settings in the WebSphere Application
Server client.policy file. If given the correct set of permissions, the applet client
must explicitly create the connection to the resource using the appropriate API.

246 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

This client does not perform initialization of any service that the client applet can
need. For example, the client application is responsible for the initialization of the
naming service, either through CosNaming or Java Naming and Directory Interface
(JNDI) APIs.

J2EE application clients
The J2EE application client programming model provides the benefits of Java TM 2
Platform for WebSphere Application Server Enterprise (J2EE).

The J2EE platform offers the ability to seamlessly develop, assemble, deploy and
launch a client application. The tooling provided with the WebSphere platform
supports the seamless integration of these stages to help the developer create a
client application from start to finish.

When you develop a client application using and adhering to the J2EE platform,
you can put the client application code from one J2EE platform implementation to
another. The client application package can require redeployment using each J2EE
platform deployment tool, but the code that comprises the client application does
not change.

The J2EE application client run time supplies a container that provides access to
system services for the application client code. The J2EE application client code
must contain a main method. The J2EE application client run time invokes this
main method after the environment initializes and runs until the Java virtual
machine application terminates.

Application clients can use nicknames or short names, defined within the client
application deployment descriptor with the J2EE platform. These deployment
descriptors identify enterprise beans or local resources (Java Database Connectivity
(JDBC), Java Message Service (JMS), JavaMail and URL APIs) for simplified
resolution through JNDI use. This simplified resolution to the enterprise bean
reference and local resource reference also eliminates changes to the application
client code, when the underlying object or resource either changes or moves to a
different server. When these changes occur, the application client can require
redeployment.

The J2EE application client also provides initialization of the run-time environment
for the client application. The deployment descriptor defines this unique
initialization for each client application. The J2EE application client run time also
provides support for security authentication to the enterprise beans and local
resources.

The J2EE application client uses the RMI-IIOP protocol. Using this protocol enables
the client application to access enterprise bean references and to use CORBA
services provided by the J2EE platform implementation. Use of the RMI-IIOP
protocol and the accessibility of CORBA services assist users in developing a client
application that requires access to both enterprise bean references and CORBA
object references.

When you combine the J2EE and the CORBA WebSphere Application Server
Enterprise environments or programming models in one client application, you
must understand the differences between the two programming models to use and
manage each appropriately.

Chapter 7. Using application clients 247

Pluggable application clients
The pluggable application client provides a lightweight, downloadable Java
application run time capable of interacting with enterprise beans.

The pluggable application client requires that you have previously installed the
Sun Java Runtime Environment (JRE) files. In all other aspects, the pluggable
application client, and the thin application client are similar.

Note: The pluggable client is only available on the Windows platform.

This client is designed to support those users who want a lightweight Java client
application programming environment, without the overhead of the J2EE platform
on the client machine. The programming model for this client is heavily influenced
by the CORBA programming model, but supports access to enterprise beans.

When accessing enterprise beans from this client, the client application can
consider the enterprise beans object references as CORBA object references.

Tooling does not exist on the client; however, tooling does exists on the server. You
are responsible for developing the client application, generating the necessary
client bindings for the enterprise bean and CORBA objects, and after bundling
these pieces together, installing them on the client machine.

The pluggable application client provides the necessary run time to support the
communication needs between the client and the server.

The pluggable application client uses the RMI-IIOP protocol. Using this protocol
enables the client application to access not only enterprise bean references and
CORBA object references, but the protocol also allows the client application to use
any supported CORBA services. Using the RMI-IIOP protocol along with the
accessibility of CORBA services can assist a user in developing a client application
that needs to access both enterprise bean references and CORBA object references.

When you combine the J2EE and CORBA environments in one client application,
you must understand the differences between the two programming models to use
and manage each appropriately.

The pluggable application client run time provides the necessary support for the
client application for object resolution, security, Reliability Availability and
Serviceability (RAS), and other services. However, this client does not support a
container that provides easy access to these services. For example, no support
exists for using nicknames for enterprise beans or local resource resolution. When
resolving to an enterprise bean (using either Java Naming and Directory Interface
(JNDI) or CosNaming) sources, the client application must know the location of the
name server and the fully qualified name used when the reference was bound into
the name space. When resolving to a local resource, the client application cannot
resolve to the resource through a JNDI lookup. Instead the client application must
explicitly create the connection to the resource using the appropriate API (JDBC,
Java Message Service (JMS), and so on). This client does not perform initialization
of any of the services that the client application might require. For example, the
client application is responsible for the initialization of the naming service, either
through CosNaming or JNDI APIs.

The pluggable application client offers access to most of the available client
services in the J2EE application client. However, you cannot access the services in

248 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

the pluggable client as easily as you can in the J2EE application client. The J2EE
client has the advantage of performing a simple Java Naming and Directory
Interface (JNDI) name space lookup to access the desired service or resource. The
pluggable client must code explicitly for each resource in the client application. For
example, looking up an enterprise bean Home requires the following code in a
J2EE application client:

java.lang.Object ejbHome = initialContext.lookup("java:/comp/env/ejb/MyEJBHome");
MyEJBHome = (MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, MyEJBHome.class);

However, you need more explicit code in a Java pluggable application client:
java.lang.Object ejbHome =

initialContext.lookup("the/fully/qualified/path/to/actual/home/in/namespace/MyEJBHome");
MyEJBHome = (MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, MyEJBHome.class);

In this example, the J2EE application client accesses a logical name from the
java:/comp name space. The J2EE client run time resolves that name to the
physical location and returns the reference to the client application. The pluggable
client must know the fully qualified physical location of the enterprise bean Home
in the name space. If this location changes, the pluggable client application must
also change the value placed on the lookup() statement.

In the J2EE client, the client application is protected from these changes because it
uses the logical name. A change can require a redeployment of the EAR file, but
the actual client application code remains the same.

The pluggable application client is a traditional Java application that contains a
main function. The WebSphere pluggable application client provides run time
support for accessing remote enterprise beans, and provides the implementation
for various services (security, Workload Management (WLM), and others). This
client can also access CORBA objects and CORBA based services. When using both
environments in one client application, you need to understand the differences
between the enterprise bean and CORBA programming models to manage both
environments.

For instance, the CORBA programming model requires the CORBA CosNaming
name service for object resolution in a name space. The enterprise beans
programming model requires the JNDI name service. The client application must
initialize and properly manage these two naming services.

Another difference applies to the enterprise bean model. Use the Java Naming and
Directory Interface (JNDI) implementation in the enterprise bean model to initialize
the Object Request Broker (ORB). The client application is unaware that an ORB is
present. The CORBA model, however, requires the client application to explicitly
initialize the ORB through the ORB.init() static method.

The pluggable application client provides a batch command that you can use to set
the CLASSPATH and JAVA_HOME environment variables to enable the pluggable
application client run time.

Thin application clients
The thin application client provides a lightweight, downloadable Java application
run time capable of interacting with enterprise beans.

This client is designed to support those users who want a lightweight Java client
application programming environment, without the overhead of the J2EE platform

Chapter 7. Using application clients 249

on the client machine. The programming model for this client is heavily influenced
by the CORBA programming model, but supports access to enterprise beans.

When accessing enterprise beans from this client, the client application can
consider the enterprise beans object references as CORBA object references.

Tooling does not exist on the client, it exists on the server. You are responsible for
developing the client application, generating the necessary client bindings for the
enterprise bean and CORBA objects, and bundling these pieces together to install
on the client machine.

The thin application client provides the necessary run-time to support the
communication needs between the client and the server.

The thin application client uses the RMI-IIOP protocol. Using this protocol enables
the client application to access not only enterprise bean references and CORBA
object references, but also allows the client application to use any supported
CORBA services. Using the RMI-IIOP protocol along with the accessibility of
CORBA services can assist a user in developing a client application that needs to
access both enterprise bean references and CORBA object references.

When you combine the J2EE and CORBA environments in one client application,
you must understand the differences between the two programming models, to use
and manage each appropriately.

The thin application client run time provides the necessary support for the client
application for object resolution, security, Reliability Availability and Servicability
(RAS), and other services. However, this client does not support a container that
provides easy access to these services. For example, no support exists for using
nicknames for enterprise beans or local resource resolution. When resolving to an
enterprise bean (using either Java Naming and Directory Interface (JNDI) or
CosNaming) sources, the client application must know the location of the name
server and the fully qualified name used when the reference was bound into the
name space. When resolving to a local resource, the client application cannot
resolve to the resource through a JNDI lookup. Instead the client application must
explicitly create the connection to the resource using the appropriate API (JDBC,
Java Message Service (JMS), and so on). This client does not perform initialization
of any of the services that the client application might require. For example, the
client application is responsible for the initialization of the naming service, either
through CosNaming or JNDI APIs.

The thin application client offers access to most of the available client services in
the J2EE application client. However, you cannot access the services in the thin
client as easily as you can in the J2EE application client. The J2EE client has the
advantage of performing a simple Java Naming and Directory Interface (JNDI)
name space lookup to access the desired service or resource. The thin client must
code explicitly for each resource in the client application. For example, looking up
an enterprise bean Home requires the following code in a J2EE application client:

java.lang.Object ejbHome = initialContext.lookup("java:/comp/env/ejb/MyEJBHome");
MyEJBHome = (MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, MyEJBHome.class);

However, you need more explicit code in a Java thin application client:
java.lang.Object ejbHome =

initialContext.lookup("the/fully/qualified/path/to/actual/home/in/namespace/MyEJBHome");
MyEJBHome = (MyEJBHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, MyEJBHome.class);

250 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

In this example, the J2EE application client accesses a logical name from the
java:/comp name space. The J2EE client run time resolves that name to the
physical location and returns the reference to the client application. The thin client
must know the fully qualified physical location of the enterprise bean Home in the
name space. If this location changes, the thin client application must also change
the value placed on the lookup() statement.

In the J2EE client, the client application is protected from these changes because it
uses the logical name. A change might require a redeployment of the EAR file, but
the actual client application code remains the same.

The thin application client is a traditional Java application that contains a main
function. The WebSphere thin application client provides run-time support for
accessing remote enterprise beans, and provides the implementation for various
services (security, Workload Management (WLM), and others). This client can also
access CORBA objects and CORBA based services. When using both environments
in one client application, you need to understand the differences between the
enterprise bean and CORBA programming models to manage both environments.

For instance, the CORBA programming model requires the CORBA CosNaming
name service for object resolution in a name space. The enterprise beans
programming model requires the JNDI name service. The client application must
initialize and properly manage these two naming services.

Another difference applies to the enterprise bean model. Use the Java Naming and
Directory Interface (JNDI) implementation in the enterprise bean model to initialize
the Object Request Broker (ORB). The client application is unaware that an ORB is
present. The CORBA model, however, requires the client application to explicitly
initialize the ORB through the ORB.init() static method.

The thin application client provides a batch command that you can use to set the
CLASSPATH and JAVA_HOME environment variables to enable the thin
application client run time.

Example: Migrating application clients
Use the ClientUpgrade command to migrate application clients.

The command file is located in the bin subdirectory of the
<i>WAS_install_root</i>, or the <i>ND_install_root</i> directory. By default, the
WAS_install_root for WebSphere Application Server and WebSphere Application
Server Enterprise is:
v Windows NT or Windows 2000 operating platforms -

<drive>\WebSphere\AppServer directory
v AIX or UNIX-based operating platforms - /usr/WebSphere/AppServer directory

By default, the ND_install_root for WebSphere Application Server Network
Deployment is:
v Windows NT or Windows 2000 operating platforms -

<drive>\WebSphere\DeploymentManager directory
v AIX or UNIX-based operating platforms - /usr/WebSphere/DeploymentManager

directory

The command uses the
com.ibm.websphere.migration.clientupgrade.ClientUpgrade class.

Chapter 7. Using application clients 251

Syntax
ClientUpgrade EAR_file [-clientJar client_jar]

[-traceString trace_spec [-traceFile file_name]]

Parameters

Supported arguments include the following:

EAR_file
Use this parameter to specify the fully qualified path to the EAR file that
contains client JAR files to process.

-clientJar
Use this optional parameter to specify a JAR file for processing. If not
specified, the program transforms all client JAR files in the EAR file.

-traceString -traceFile
Use these optional parameters to gather trace information for IBM Service
personnel. Specify a trace_spec of ″*=all=enabled″ (with quotation marks)
to gather all trace information.

Examples

The following example demonstrates correct syntax:
ClientUpgrade EAR_file -clientJar ejbJarFile

Migration tips for application clients
Tips for migrating thin application client code:
v The Java invocation used to run non-J2EE application clients has changed in

Version 5.0. You must specify -Xbootclasspath/p:%WAS_BOOTCLASSPATH% on
Windows systems or -Xbootclasspath/p:$WAS_BOOTCLASSPATH on Unix systems
when you invoke the Java command. Set the WAS_BOOTCLASSPATH environment
variable in one of the following:
– setupClient.bat for Windows systems or setupClient.sh for Unix systems

on a WebSphere Application Server client installation.
– setupCmdLine.bat for Windows systems or setupCmdLine.sh for Unix systems

on a WebSphere Application Server installation.

For more information about using -Xbootclasspath, view sample code at the
following path after you preform the application client installation:
install_root\samples\bin\ActiveXBridgeClients\VB\XJBExamples\modXJBHelpers.bas

Tips for migrating J2EE application client code:
v If your J2EE application client uses resource references and you have configured

those resources using the Application Client Resource Configuration Tool
(ACRCT), you must run the ClientUpgrade command to migrate the resource
configuration information in WebSphere Application Server V5.

Installing application clients
Before you begin

Application clients do not require the WebSphere Application Server base. They are
supported at the level of the operating system. If you want to run the Samples
gallery, however, you must provide the host name of the server.

252 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Before you install the pluggable application client, you must have one of the Sun
Java Runtime Environment (JRE) on your system. Similar Sun Java Development
Kit levels are required to install the pluggable application client Samples. Although
you can install the WebSphere Application Server on an HP_UX system, the
WebSphere application client is not supported on HP-UX systems. See the
Supported Prerequisites
(http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html)
page in the IBM external Web site for more information on supported product
platforms.

Note: The installation panel displays that the amount of storage needed to install
the J2EE/Thin application client is 40.4 megabytes. The actual amount of storage
needed is 75 megabytes.

Steps for this task
1. Insert the WebSphere Application Server Client CD, according to platform.
2. Change to the following directory, according to platform:

aix for AIX platform
sun for Solaris Operating Environment
linuxi386 for Linux platform
nt for Windows platform

3. Issue the following command, according to platform, at a command line:
./install for AIX platform
./install for Solaris platform
./install for Linux platform
install.exe for Windows platform
The WebSphere Application Server client installation wizard appears.

4. If the default language is not correct, select a language from the drop-down
menu and click OK.
If you have an earlier version of the WebSphere Application Server client
installed on your machine, an information window appears.

5. Click Yes to all to overwrite this older version. A Welcome panel displays.
6. Click Next.
7. Read the license agreement, and select the radio button next to I accept the

terms in the license agreement. Click Next.
8. Choose a setup type and click Next.
9. If you choose the Custom setup type, select the features you want to install

and click Next.
If you choose the Applet client (Windows systems only) and you have an
existing development kit or runtime environment installed, click Yes to
overwrite the existing development kit or runtime environment registry
entries. If you click No, you return to the Custom Features panel, where you
can clear Applet client. You must use the Applet client with the runtime
environment provided by WebSphere Application Server.

10. If you choose to install the Samples, click Yes, to install the Samples
development environment.

11. Click Next, to install the WebSphere Application Server client to the default
directory. Click Browse..., to install the WebSphere Application Server client to
a different directory.

12. Click Next.

Chapter 7. Using application clients 253

13. Enter the host name of the WebSphere Application Server machine.
Specify a port number if you are not using the default port. Click Next. A
verification panel displays.

14. Click Next, to install.
A progress window appears.

15. Click Finish to exit the wizard, after the WebSphere Application Server client
installs.

Results

Application clients are installed on your machine.

Installing application clients on Version 9 of the Solaris
Operating Environment

Before you begin

Follow this procedure when installing application clients with the embedded
messaging client feature on Version 9 of the Solaris Operating Environment. You
need not perform this procedure if you are not installing the embedded messaging
client feature. If you are installing from the CD-ROM labelled Application Clients
1.4, you need not perform this procedure because the CD is current.

Solaris, Version 9 requires an update to the wsmfuncs.SunOS file before you install
the application client from the Version 5 or Version 5.0.1 Application Clients
CD-ROM. IBM provides the mqpreinst.tar file that has the wsmfuncs.SunOS file, a
current prereqChecker.xml configuration file (that is not needed for client
installation), and the mq_preinstall.sh script. The script copies the installation
image from the product CD-ROM or a remote disk to a local directory where it
applies the updated wsmfuncs.SunOS file. When the script finishes its work, you can
begin the installation.

Manually updating the installation image

You can also download the wsmfuncs.SunOS file if you prefer to copy the
installation image and replace the file yourself.

When you copy the entire installation image from CD-ROM to a local directory,
you copy the messaging directory from the product CD-ROM to a temporary
directory, such as /tmp/WebSphereTemp, for example. Simply replace the
/tmp/WebSphereTemp/sun/messaging/wsmfuncs.SunOS file.

After updating the installation image, you can begin the installation.

Determining if you have a problem

If you do not complete this procedure but install the embedded messaging client
feature on the Solaris 9 platform, the installation appears to complete without
visible error but you cannot use any embedded messaging functionality.

Steps for this task
1. Download the mqpreinst.tar file from the [].

254 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Click Support downloads and limit the downloads search to Version 5.0.2 to
locate the article about installing WebSphere Application Server products and
clients on Version 9 of the Solaris Operating Environment. The article contains
the mqpreinst.tar file.

2. Unpack the mqpreinst.tar file.
Unpacking the file creates the /mqpreinstall directory.

3. Use the mq_preinstall.sh script to copy and update the installation image.
The basic syntax of the script is:

mq_preinstall.sh -orig originalImageLocation -temp tempImageLocation

The -orig parameter identifies the root location of the original WebSphere
Application Server client installation files.

The -temp parameter identifies the local target directory where the script copies
the original installation image. The target directory should not exist. The script
creates the target directory.

For example:
mq_preinstall.sh -orig /cdrom -temp /tmp/WebSphereTemp

The script copies the original installation image from the CD-ROM to the
/tmp/WebSphereTemp directory and updates the backlevel
/tmp/WebSphereTemp/sun/messaging/wsmfuncs.SunOS file.

4. Continue with the installation, by starting the installation wizard from the
target directory.

5. View the mq_prereq log in the /tmp directory to verify that the embedded
messaging feature installed successfully.
The return code from the installation program indicates success. Installation of
the embedded messaging feature is successful if the return code is zero. If the
installation program exited with a non-zero return code, the installation of the
embedded messaging feature is not successful. If unsuccessful, uninstall the
client and complete the procedure described above to reinstall.

Results

After installing the updated installation image, install Fix Pack 2.

Usage scenario

You can invoke the mq_preinstall.sh script with a relative or absolute file path, or
from within the mqpreinst directory:

Absolute addressing example
/tmp/mqpreinstall/mq_preinstall.sh -orig /cdrom -temp /tmp/WebSphereTemp

Relative addressing example
./mqpreinstall/mq_preinstall.sh -orig /cdrom -temp /tmp/WebSphereTemp

Example from within the /mqpreinst directory
cd mqpreinstall
./mq_preinstall.sh -orig /cdrom -temp /tmp/WebSphereTemp

Chapter 7. Using application clients 255

Developing ActiveX application client code
Before you begin

This topic provides an outline for developing an ActiveX program, such as Visual
Basic, VBScript, and Active Server Pages, to use the WebSphere ActiveX to EJB
bridge to access enterprise beans.

This topic assumes that you are familiar with ActiveX programming. You should
also consider the information given in ActiveX to EJB bridge, good programming
guidelines.

To use the ActiveX to EJB bridge to access a Java class, develop your ActiveX
program to complete the following steps:

Steps for this task
1. Create an instance of the XJB.JClassFactory object.
2. Create JVM code within the ActiveX program process, by calling the XJBInit()

method of the XJB.JClassFactory object.
After the ActiveX program has created an XJB.JClassFactory object and called
the XJBInit() method, the JVM code is initialized and ready for use.

3. Create a proxy object for the Java class, by using the XJB.JClassFactory
FindClass() and NewInstance() methods.
The ActiveX program can use the proxy object to access the Java class, object
fields, and methods.

4. Call methods on the Java class, using the Java method invocation syntax, and
access Java fields as required.

5. Use the helper functions to do the conversion in cases where automatic
conversion is not possible. You can convert between the following data types:
v Java Byte and Visual Basic Byte
v Visual Basic Currency types and Java 64-bit

6. Implement methods to handle any errors returned from the Java class. In Visual
Basic or VBScript, use the Err.Number and Err.Description fields to determine
the actual Java error.

What to do next

After you develop the ActiveX client code, start the ActiveX application.

Starting an ActiveX application
Before you begin

To run an ActiveX client application that is to use the ActiveX to EJB bridge, you
must perform some initial configuration to set appropriate environment variables
and to enable the ActiveX to EJB bridge to find its XJB.JAR file and the Java
run-time. This initial configuration sets up the environment within which the
ActiveX client application can run.

To perform the required configuration, complete one or more of the following
subtasks:

Steps for this task
1. Starting an ActiveX application and configuring service programs

256 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

2. Starting an ActiveX application and configuring non-service programs

Starting an ActiveX application and configuring service
programs

Before you begin

To run an ActiveX service program such as Active Server Page (ASP) that is to use
the ActiveX to EJB bridge, you must perform some initial configuration to set
appropriate environment variables and to enable the ActiveX to EJB bridge to find
its XJB.JAR file and the Java run-time. This configuration sets up the environment
within which the ActiveX service program can run.

The XJB.JClassFactory must find the Java run-time Dynamic Link Library (DLL)
when initializing. In a service program such as Internet Information Server you
cannot specify a path for its processes independently; you must set the process
paths in the system PATH variable. This limitation means that you can only have a
single JVM version available on a machine using ASP.

To add the JRE directories to your System path, complete one of the following
subtasks:

Steps for this task
1. On Windows 2000, complete the following substeps:

a. Open the Control Panel, then double-click the System icon.
b. Click the Advanced tab on the System Properties window.
c. Click Environment Variables.
d. Edit the Path variable in the System Variables window.
e. Add the following to the beginning of the path displayed in the Variable

Value input box:
C:\WebSphere\AppClient\Java\jre\bin;C:\WebSphere\AppClient\Java\jre\bin\classic;

where C:\WebSphere\AppClient is the directory in which you installed the
WebSphere Java client

f. Click OK in the Edit System Variable window to apply the changes.
g. Click OK in the Environment Variables window.
h. Click OK in the System Properties window.
i. Restart Windows 2000.

2. On Windows NT, complete the following substeps:
a. Open the Control Panel, then double-click the System icon.
b. Click the Environment tab on the System Properties window.
c. In the System Variables window, edit the Path variable.
d. Add the following to the beginning of the path displayed in the Value input

box:
C:\WebSphere\AppClient\Java\jre\bin;C:\WebSphere\AppClient\Java\jre\bin\classic;

Where C:\WebSphere\AppClient is the directory in which you installed the
WebSphere Java client

e. Click Set to apply the changes.
f. Click OK.
g. Restart Windows NT.

Chapter 7. Using application clients 257

What to do next

After you change the System PATH variable you must reboot the Internet
Information Server machine so that Internet Information Server can see the change.

Starting an ActiveX application and configuring non-service
programs
Before you begin

To run an ActiveX program initiated from an icon or command-line (a non-service
program) that is to use the ActiveX to EJB bridge, you must perform some initial
configuration to set appropriate environment variables and to enable the ActiveX
to EJB bridge to find its XJB.JAR file and the Java runtime. This uses a batch file to
set up the environment within which the ActiveX program can run.

To perform the required configuration, complete the following steps:

Steps for this task
1. (Optional) Edit the setupCmdLineXJB.bat file to specify appropriate values for

the environment variables required by the ActiveX to EJB bridge. For more
information about these environment variables, see ActiveX to EJB bridge,
environment and configuration.
For more information about creating a JVM for an ActiveX program, see
ActiveX to EJB bridge, initializing the JVM.
After the ActiveX program has created an XJB.JClassFactory object and called
the XJBInit() method, the JVM is initialized and ready for use.

2. Start the ActiveX client application by using one of the following methods:
v Use the launchClientXJB.bat file to start the application; for example:

launchClientXJB MyApplication.exe parm1 parm2

or
launchClientXJB MyApplication.vbp

v Use the setupCmdLineXJB.bat file to create an environment in which the
application can be run, then start the application from within that
environment.

setupCmdLineXJB.bat, launchClientXJB.bat, and other ActiveX
batch files
This topic provides reference information about the aids that client applications
and client services can use to access the ActiveX to EJB bridge. These enable the
ActiveX to EJB bridge to find its XJB.JAR file and the Java run-time.

Location

The include file is located in the <i>was_client_home</i>\aspIncludes directory.
You can include the file into your ASP application with the following syntax in
your ASP page:
<-- #include virtual ="/WSASPIncludes/setupASPXJB.inc" -->

This assumes that you have created a virtual directory in Internet Information
Server called WSASPIncludes that points to the
<i>was_client_home</i>\aspIncludes directory.

Usage notes

258 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The following batch files are provided for client applications to use the ActiveX to
EJB bridge:
v setupCmdLineXJB.bat

Sets the client environment variables.
v launchClientXJB.bat

Calls the setupCmdLineXJB.bat file and launches the application you specify as
its arguments; for example:
launchClientXJB.bat myapp.exe parm1 parm2

or
launchClientXJB MyApplication.vbp

v Active Server Pages (ASP) include file

An include file is provided for ASP users to automatically set the following
page-level (local) environment variables:
– com_ibm_websphere_javahome Path to the Java run-time directory installed

with the WebSphere Advanced Server Client.
– com_ibm_websphere_washome Path to the WebSphere Advanced Server

Client directory.
– com_ibm_websphere_namingfactory Sets the Java java.naming.factory.initial

system property.
– com_ibm_websphere_computername (Optional) Name of the computer

where the WebSphere Advanced Server Client is installed. If you intend to
talk to a single specific computer, you are recommended to change this value
to become the server name that you intend to access.

v System Settings

To enable the ActiveX to EJB bridge to access the Java run-time Dynamic Link
Library (DLL), the following directories must exist in the system PATH
environment variable:
was_client_home\java\jre\bin;was_client_home\java\jre\bin\classic

Where was_client_home is the name of the directory where you installed the
WebSphere Application Server Client (for example, C:\WebSphere\AppClient).

Note: This technique enables only one Java run-time to activate on a machine,
therefore all client services on that machine must use the same Java run-time.
Client applications do not have this limitation because they each have their own
private, non-system scope.

JClassProxy and JObjectProxy classes
This topic provides reference information about the object classes of the ActiveX to
EJB bridge.

JClassFactory is the object used to access the majority of JVM features. It handles
JVM initialization, accessing classes and creating class instances (objects). The
majority of tasks for accessing your Java classes and objects are handled with the
JClassProxy and JObjectProxy objects.
v XJBInit(String astrJavaParameterArray())

Initializes the JVM environment using an array of strings that represent the
command line parameters you would normally send to the java.exe file.
If you have invalid parameters in the XJBInit() string array, the following error
results:

Chapter 7. Using application clients 259

Error: 0x6002 "XJBJNI::Init() Failed to create VM" when calling XJBInit()

If you have C++ logging enabled, the activity log displays the invalid parameter.
v JClassProxy FindClass(String strClassName)

Uses the current thread class loader to load the specified fully qualified class
name and returns a JClassProxy object representing the Java Class object.

v JObjectProxy NewInstance()
Creates a Class instance for the specified JClassProxy object using the
parameters supplied to call the Class Constructor. For more information about
using JMethodArgs, see ActiveX to EJB bridge, calling Java methods.
JObjectProxy

NewInstance(JClassFactory obj, Variant vArg1, Variant vArg2, Variant vArg3,...)
JObjectProxy NewInstance(JClassFactory obj, JMethodArgs args)

v JMethodArgs GetArgsContainer()
Returns a JMethodArgs object (Class instance).
You can create a JClassProxy object from the JClassFactory.FindClass() method
and also from any Java method call that would normally return a Java Class
object. You can use this object as if you had direct access to the Java Class object.
All of the class static methods and fields are accessible as are the java.lang.Class
methods. In case of a clash between static method names of the reflected user
class and those of the java.lang.Class (for example, getName()), the reflected
static methods would execute first.
For example, the following is a static method called getName(). The
java.lang.Class object also has a method called getName():
– In Java:

class foo{
foo(){};
public static String getName(){return "abcdef";}
public static String getName2(){return "ghijkl";}
public String toString2(){return "xyz";}
}

– In Visual Basic:
...
Dim clsFoo as Object
set clsFoo = oXJB.FindClass("foo")
clsFoo.getName() ’ Returns "abcdef" from the static foo class
clsFoo.getName2() ’ Returns "ghijkl" from the static foo class
clsFoo.toString() ’ Returns "class foo" from the java.lang.Class object.
oFoo = oXJB.NewInstance(clsFoo)
oFoo.toString() ’ Returns some text from the java.lang.Object’s

’ toString() method which foo inherits from.
oFoo.toString2() ’ Returns "xyz" from the foo class instance

You can create a JObjectProxy object from the JClassFactory.NewInstance()
method, and can be created from any Java method call that would normally
return a Class instance object. You can use this object as if you had direct
access to the Java object and can access all the static methods and fields of the
object. All of object instance methods and fields are accessible (including
those accessible through inheritance).

The JMethodArgs object is created from the JClassFactory.GetArgsContainer()
method. Use this object as a container for method and constructor arguments.
You must use this object when overriding the object type when calling a
method (for example, when sending a java.lang.String JProxyObject to a
constructor that normally takes a java.lang.Object type).

260 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

There are two groups of methods to add arguments to the collection: Add
and Set. You can use Add to add arguments in the order that they are
declared. Alternatively, you can use Set to set an argument based on its
position in the argument list (where the first argument is in position 1).

For example, if you had a Java Object Foo that took a constructor of Foo(int,
String, Object), you could use a JMethodArgs object as shown in the
following code extract:
...
Dim oArgs as Object
set oArgs = oXJB.GetArgsContainer()

oArgs.AddInt(CLng(12345))
oArgs.AddString("Apples")
oArgs.AddObject("java.lang.Object", oSomeJObjectProxy)

Dim clsFoo as Object
Dim oFoo as Object
set clsFoo = oXJB.FindClass("com.mypackage.foo")
set oFoo = oXJB.NewInstance(clsFoo, oArgs)

’ To reuse the oArgs object, just clear it and use the add method
’ again, or alternatively, use the Set method to reset the parameters
’ Here, we will use Set
oArgs.SetInt(1, CLng(22222))
oArgs.SetString(2, "Bananas")
oArgs.SetObject(3, "java.lang.Object", oSomeOtherJObjectProxy)

Dim oFoo2 as Object
set oFoo2 = oXJB.NewInstance(clsFoo, oArgs)

v AddObject (String strObjectTypeName, Object oArg)
Adds an arbitrary object to the argument container in the next available position,
casting the object to the class name specified in the first parameter. Arrays are
specified using the traditional [] syntax; for example:
AddObject("java.lang.Object[][]", oMy2DArrayOfFooObjects)

or
AddObject("int[]", oMyArrayOfInts)

v AddByte (Byte byteArg)
Adds a primitive byte value to the argument container in the next available
position.

v AddBoolean (Boolean bArg)
Adds a primitive boolean value to the argument container in the next available
position.

v AddShort (Integer iArg)
Adds a primitive short value to the argument container in the next available
position.

v AddInt (Long lArg)
Adds a primitive int value to the argument container in the next available
position.

v AddLong (Currency cyArg)
Adds a primitive long value to the argument container in the next available
position.

v AddFloat (Single fArg)

Chapter 7. Using application clients 261

Adds a primitive float value to the argument container in the next available
position.

v AddDouble (Double dArg)
Adds a primitive double value to the argument container in the next available
position.

v AddChar (String strArg)
Adds a primitive char value to the argument container in the next available
position.

v AddString (String strArg)
Adds the argument in string form to the argument container in the next
available position.

v SetObject (Integer iArgPosition, String strObjectTypeName, Object oArg)
Adds an arbitrary object to the argument container in the specified position
casting it to the class name or primitive type name specified in the second
parameter. Arrays are specified using the traditional [] syntax; for example:
SetObject(1, "java.lang.Object[][]", oMy2DArrayOfFooObjects)

or
SetObject(2, "int[]", MyArrayOfInts)

v SetByte (Integer iArgPosition, Byte byteArg)
Sets a primitive byte value to the argument container in the position specified.

v SetBoolean (Integer iArgPosition, Boolean bArg)
Sets a primitive boolean value to the argument container in the position
specified.

v SetShort (Integer iArgPosition, Integer iArg)
Sets a primitive short value to the argument container in the position specified.

v SetInt (Integer iArgPosition, Long lArg)
Sets a primitive int value to the argument container in the position specified.

v SetLong (Integer iArgPosition, Currency cyArg)
Sets a primitive long value to the argument container in the position specified.

v SetFloat (Integer iArgPosition, Single fArg)
Sets a primitive float value to the argument container in the position specified.

v SetDouble (Integer iArgPosition, Double dArg)
Sets a primitive double value to the argument container in the position specified.

v SetChar (Integer iArgPosition, String strArg)
Sets a primitive char value to the argument container in the position specified.

v SetString (Integer iArgPosition, String strArg)
Sets a java.lang.String value to the argument container in the position specified.

v Object Item(Integer iArgPosition)
Returns the value of an argument at a specific argument position.

v Clear()
Removes all arguments from the container and resets the next available position
to one.

v Long Count()
Returns the number of arguments in the container.

262 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Java virtual machine initialization tips
Initialize the Java virtual machine (JVM) code with the ActiveX to enterprise
JavaBeans bridge. For an ActiveX client program (Visual Basic, VBScript, or ASP) to
access Java classes or objects, the first step that the program must do is to create
JVM code within its process. To create JVM code, the ActiveX program calls the
XJBInit() method of the XJB.JClassFactory object. When an XJB.JClassFactory object
is created and the XJBInit() method called, the JVM is initialized and ready to use.
v To enable the XJB.JClassFactory to find the Java run-time Description Definition

Language (DLL) when initializing, the JRE bin and bin\classic directories must
exist in the system path environment variable.

v The XJBInit() method accepts only one parameter; an array of strings. Each
string in the array represents a command line argument that for a Java program
you would normally specify on the Java.exe command line. This string interface
is used to set the classpath, stack size, heap size, and debug settings. You can get
a listing of these parameters by typing java -? from the command line.

v If you set a parameter incorrectly, you receive a 0x6002 ″Failed to initialize VM″
error message.

v Due to the current limitations of Java Native Interface (JNI), you cannot unload
or reinitialize JVM code after it has loaded. Therefore, after XJBInit() has been
called once, subsequent calls have no effect other than to create a duplicate
JClassFactory object for you to access. It is best to store your XJB.JClassFactory
object globally and continue to reuse that object.

v The following Visual Basic extract shows an example of initializing JVM code:
Dim oXJB as Object
set oXJB = CreateObject("XJB.JClassFactory")
Dim astrJavaInitProps(0) as String
astrJavaInitProps(0) = _

"-Djava.class.path=.;c:\myjavaclasses;c:\myjars\myjar.jar"
oXJB.XJBInit(astrJavaInitProps)

Example: Developing ActiveX to enterprise bean bridge, using
Java proxy objects

To use Java proxy objects with the ActiveX to enterprise JavaBeans bridge:
v After an ActiveX client program (Visual Basic, VBScript, or ASP) has initialized

the XJB.JClassFactory (and thereby the JVM), it can access Java classes and
initialize Java objects. To do this, the client program uses the XJB.JClassFactory
FindClass() and NewInstance() methods.

v In Java programming there are two ways to access Java classes: direct invocation
through the Java compiler, and through the Java Reflection interface. Because the
ActiveX to Java bridge needs no compilation and is a complete runtime interface
to Java, it depends on the latter Reflection interface to access its classes, objects,
methods, and fields. The XJB.JClassFactory FindClass() and NewInstance()
methods behave very similarly to the Java Class.forName() and the
Method.invoke() and Field.invoke() methods.

v XJB.JClassFactory.FindClass() takes the fully-qualified class name as its only
parameter and returns a Proxy Object (JClassProxy). You can use the returned
Proxy object like a normal Java Class object and call static methods and access
static fields. You can also create a Class Instance (or object) from it, as described
below. For example, the following Visual Basic code extract returns a Proxy
object for the Java class java.lang.Integer:
...
Dim clsMyString as Object
Set clsMyString = oXJB.FindClass("java.lang.Integer")

Chapter 7. Using application clients 263

v After the proxy is created, you can access its static information directly. For
example, you can use the following code extract to convert a decimal integer to
its hexadecimal representation.
...
Dim strHexValue as String
strHexValue = clsMyString.toHexString(CLng(255))

v The equivalent Java syntax is: static String toHexString(int i). Because ints
in Java programming are really 32-bits (which translates to Long in VB), the
CLng() function converts the value from the default int to a long. Also, even
though the toHexString() function returns a java.lang.String, the code extract
does not return an Object Proxy. Instead, the returned java.lang.String is
automatically converted to a native Visual Basic String.
To create an object from a class, you use the JClassFactory.NewInstance()
method. This method creates an Object Instance and takes whatever parameters
your Class Constructor needs. Once the object is created, you have access to all
of its public instance methods and fields. For example, you can use the
following Visual Basic code extract to create an instance of java.lang.Integer:
...
Dim oMyInteger as Object
set oMyInteger = oXJB.NewInstance(CLng(255))

Dim strMyInteger as String
strMyInteger = oMyInteger.toString

Example: Calling Java methods in the ActiveX to enterprise
bean bridge

In the ActiveX to EJB bridge, methods are called using the native language method
invocation syntax.
v The following are important differences between Java invocation and ActiveX

Automation invocation:
– Unlike Java methods, ActiveX does not support method (and constructor)

polymorphism; that is, you cannot have two methods in the same class with
the same name.

– Java methods are case-sensitive, but ActiveX Automation is not case-sensitive.
v You should take care when invoking Java methods through ActiveX Automation.

If you use the wrong case on a method call or use the wrong parameter type,
you get an Automation Error 438 ″Object doesn’t support this property or
method″ thrown.

v To compensate for Java polymorphic behavior, give the exact parameter types to
the method call. The parameter types determine the correct method to invoke.
For a listing of correct types to use, see ActiveX to EJB bridge, converting data
types.

v For example, the following Visual Basic code would fail if CLng() was not
present or toHexString was incorrectly typed as ToHexString:
...
Dim strHexValue as String
strHexValue = clsMyString.toHexString(CLng(255))

v Sometimes it is difficult to force some development environments to leave the
case of your method calls unchanged. For example, in Visual Basic if you want
to call a method close() (uncapitalized), Visual Basic would try to capitalize it
″Close()″. In Visual Basic, the only way to effectively get around this behavior is
to use the CallByName() method. For example:
o.Close(123) ’Incorrect...
CallByName(o, "close", vbMethod, 123) ’Correct...

264 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

or in VBScript, use the Eval function:
o.Close(123) ’Incorrect...
Eval("o.Close(123)") ’Correct...

v The return value of a function is always converted dynamically to the correct
type. However, you must take care to use the set keyword in Visual Basic. If you
expect a non-primitive data type to return, you must use set. (If you expect a
primitive data type to return, you do not need to use set.) For example:
Set oMyObject = o.getObject
iMyInt = o.getInt

v In some cases, you might not know the type of object returning from a method
call, because wrapper classes are converted automatically to primitives (for
example, java.lang.Integer returns an ActiveX Automation Long). In such cases,
you might need to use your language built-in exception handling techniques to
try to coerce the returnd type (for example, On Error and Err.Number in Visual
Basic).

v Methods with Character Arguments
Because ActiveX automation does not natively support character types
supported by Java methods, the ActiveX to EJB bridge uses strings (byte or
VT_I1 do not work, because characters have multiple bytes in Java). If you try to
call a method that takes a char or java.lang.Character type you must use the
JMethodArgs argument container to pass character values to methods or
constructors. For more information about how this argument container is used,
see Methods with ″Object″ Type as Argument and Abstract Arguments.

v Methods with ″Object″ Type as Argument and Abstract Arguments
Because of the polymorphic nature of Java programming, the ActiveX to Java
bridge uses direct argument type mapping to find a method. This works well in
most cases, but sometimes methods are declared with a Parent or Abstract Class
as an argument type (for example, java.lang.Object). You need the ability to send
an object of arbitrary type to a method. To acquire this ability, you must use the
XJB.JMethodArgs object to coerce your parameters to match the parameters on
your method. You can get a JMethodArgs instance by using the
JClassFactory.GetArgsContainer() method.
The JMethodArgs object is a container for method parameters or arguments.
This container enables you to add parameters to it one-by-one and then you can
send the JMethodArgs object to your method call. The JClassProxy and
JObjectProxy objects recognize the JMethodArgs object and attempt to find the
correct method and let the Java language coerce your parameters appropriately.
For example, to add an element to a Hashtable object the method syntax is
Object put(Object key, Object value). In Visual Basic, the method usage looks
like this:
Dim oMyHashtable as Object
Set oMyHashtable = _

oXJB.NewInstance(oXJB.FindClass("java.utility.Hashtable"))

’ This line will not work. The ActiveX to EJB bridge cannot find a method
’ called "put" that has a short and String as a parameter:
oMyHashtable.put 100, "Dogs"
oMyHashtable.put 200, "Cats"

’ You must use a XJB.JMethodArgs object instead:
Dim oMyHashtableArgs as Object
Set oMyHashtableArgs = oXJB.GetArgsContainer
oMyHashtableArgs.AddObject("java.lang.Object", 100)
oMyHashtableArgs.AddObject("java.lang.Object", "Dogs")

oMyHashtable.put oMyHashTableArgs

Chapter 7. Using application clients 265

’ Reuse the same JMethodArgs object by clearing it.
oMyHashtableArgs.Clear
oMyHashtableArgs.AddObject("java.lang.Object", 200)
oMyHashtableArgs.AddObject("java.lang.Object", "Cats")

oMyHashtable.put oMyHashTableArgs

Java field programming tips
Using the ActiveX to EJB bridge to access Java fields has the same case sensitivity
issue that it has when invoking methods. Field names must use the same case as
the Java field syntax.
v Visual Basic has the same problem with unsolicited case changing on fields as it

does with methods. For more information about this problem, see “Example:
Calling Java methods in the ActiveX to enterprise bean bridge” on page 264. You
might need to use the CallByName() function to set a field in the same way that
you would call a method in some cases. For Fields, you use VBLet for primitive
types and VBSet for Objects. For example:
o.MyField = 123 ’Incorrect...
CallByName(o, "MyField", vbLet, 123) ’Correct...

or in VBScript:
o.MyField = 123 ’Incorrect...
Eval("o.myField = 123") ’Correct...

ActiveX to Java primitive data type conversion values
All primitive Java data types are automatically converted to native ActiveX
Automation types. However, not all Automation data types are converted to Java
types (for example, VT_DATE). Variant data types are used for data conversion.
Variant data types are a requirement of any Automation interface, and are used
automatically by Visual Basic and VBScript. The tables below provide details about
how primitive data types are converted between Automation types and Java types.

ActiveX to Java primitive data type conversion

Visual Basic Type Variant Type Java Type Notes

Byte VT_I1 byte Byte in Visual Basic
is unsigned, but is
signed in Java data
type.

Boolean VT_BOOL boolean None

Integer VT_I2 short None

Long VT_I4 int None

Currency VT_CY long None

Single VT_R4 float None

Double VT_R8 double None

String VT_BSTR java.lang.String None

String VT_BSTR char None

Date VT_DATE N/A None

Example: Using helper methods for data type conversion
Generally, data type conversion between ActiveX (Visual Basic and VBScript) and
Java methods occurs automatically, as described in ActiveX to EJB bridge,

266 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

converting data types. However, the following helper functions are provided for
cases where automatic conversion is not possible:
v Byte helper function
v Currency helper function
v Byte helper function

Because the Java Byte data type is signed (-127 through 128) and the Visual Basic
Byte data type is unsigned (0 through 255), convert unsigned Bytes to a Visual
Basic Integers, which look like the Java signed byte. To make this conversion,
you can use the following helper function:
Private Function GetIntFromJavaByte(Byte jByte) as Integer

GetIntFromJavaByte = (CInt(jByte) + 128) Mod 256 - 128
End Function

v Currency helper function
Visual Basic 6.0 cannot properly handle 64-bit integers like Java methods can (as
the Long data type). Therefore, Visual Basic uses the Currency type, which is
intrinsically a 64-bit data type. The only side effect of using the Currency type
(the Variant type VT_CY) is that a decimal point is inserted into the type. To
extract and manipulate the 64-bit Long value in Visual Basic, use code like the
following example. For more details on this technique for converting Currency
data types, see Q189862, ″HOWTO: Do 64-bit Arithmetic in VBA″, on the
Microsoft Knowledge Base.
’ Currency Helper Types
Private Type MungeCurr

Value As Currency
End Type
Private Type Munge2Long

LoValue As Long
HiValue As Long

End Type

’ Currency Helper Functions
Private Function CurrToText(ByVal Value As Currency) As String

Dim Temp As String, L As Long
Temp = Format$(Value, "#.0000")
L = Len(Temp)
Temp = Left$(Temp, L - 5) & Right$(Temp, 4)
Do While Len(Temp) > 1 And Left$(Temp, 1) = "0"

Temp = Mid$(Temp, 2)
Loop
Do While Len(Temp) > 2 And Left$(Temp, 2) = "-0"

Temp = "-" & Mid$(Temp, 3)
Loop
CurrToText = Temp

End Function

Private Function TextToCurr(ByVal Value As String) As Currency
Dim L As Long, Negative As Boolean
Value = Trim$(Value)
If Left$(Value, 1) = "-" Then

Negative = True
Value = Mid$(Value, 2)

End If
L = Len(Value)
If L < 4 Then

TextToCurr = CCur(IIf(Negative, "-0.", "0.") & _
Right$("0000" & Value, 4))

Else
TextToCurr = CCur(IIf(Negative, "-", "") & _

Left$(Value, L - 4) & "." & Right$(Value, 4))
End If

End Function

Chapter 7. Using application clients 267

’ Java Long as Currency Usage Example
Dim LC As MungeCurr
Dim L2 As Munge2Long

’ Assign a Currency Value (really a Java Long)
’ to the MungeCurr type variable
LC.Value = cyTestIn

’ Coerce the value to the Munge2Long type variable
LSet L2 = LC

’ Perform some operation on the value, now that we
’ have it available in two 32-bit chunks
L2.LoValue = L2.LoValue + 1

’ Coerce the Munge value back into a currency value
LSet LC = L2
cyTestIn = LC.Value

Array tips for ActiveX application clients
Arrays are very similar between Java and Automation Containers like Visual Basic
and VBScript. Here are some important points to consider when passing arrays
back and forth between these containers:
v Java arrays cannot mix types. All Java arrays contain a single type, so when

passing arrays of Variants to a Java Array, you must make sure that all of the
elements in the Variant array are of the same base type. For example, in Visual
Basic:
...
Dim VariantArray(1) as Variant
VariantArray(0) = CLng(123)
VariantArray(1) = CDbl(123.4)
oMyJavaObject.foo(VariantArray) ’ Illegal!

VariantArray(0) = CLng(123)
VariantArray(1) = CLng(1234)
oMyJavaObject.foo(VariantArray) ’ This works

v Arrays of Primitive Types are converted using the rules defined in Primitive
Data Type Conversion.

v Arrays of Java Objects are handled through arrays of JObjectProxy objects.
v Arrays of JObjectProxy objects must be fully-initialized and of the correct

associated Java type. When initializing an array in Visual Basic (for example,
Dim oJavaObjects(1) as Object), you must set each object to a JObjectProxy
before you send the array to Java. The bridge is unable to determine the type of
null or empty Object values.

v When receiving an array from a Java method, the lower-bound is always zero.
Java methods only support zero-based arrays.

v Nested or multi-dimensional arrays are treated as zero-based multi-dimensional
arrays in Visual Basic and VBScript.

v Uninitialized arrays or Array Types are unsupported. When calling a Java
method that takes an array of objects as a parameter, you must fully initialize
the array of JObjectProxy objects.

Error handling codes for ActiveX application clients
All exceptions thrown in Java code are encapsulated and re-thrown as a COM
error through the ISupportErrorInfo interface and the EXCEPINFO structure of
IDispatch::Invoke(); the Err object in Visual Basic and VBScript. Because there are

268 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

no error numbers associated with Java exceptions, whenever a Java exception is
thrown, the entire stack trace is stored in the error description text and the error
number assigned is 0x6003.

In Visual Basic or VBScript, you need to use the Err.Number and Err.Description
fields to determine the actual Java error. Non-Java errors are thrown as you would
expect via the IDispatch interface; for example, if a method cannot be found, then
error 438 ″Object doesn’t support this property or method″ is thrown.

Error number Description

0x6001 Java Native Interface (JNI) error

0x6002 Initialization error

0x6003 Java exception. Error description is the Java Stack Trace.

0x6FFF General Internal Failure

Threading tips
The ActiveX to EJB bridge supports both free-threaded and apartment-threaded
access and implements the Free Threaded Marshaler to work in a hybrid
environment such as Active Server Pages. Each thread created in the ActiveX
process is mirrored in the Java environment when the thread communicates
through the ActiveX to EJB bridge. In addition, once all references to Java objects
(there are no JObjectProxy or JClassProxy objects) are loaded in an ActiveX thread,
the ActiveX to EJB bridge detaches the thread from the JVM code. Therefore, you
must be careful that any Java code that you access from a multi-threaded Windows
application is thread-safe. Visual Basic and VBScript applications are both
essentially single-threaded. Therefore, Visual Basic and VBScript applications do
not have threading issues in the Java programs they access. Active Server Pages
and multi-threaded C and C++ programs can have issues.

Consider the following scenario:
1. A multi-threaded Windows Automation Container (our ActiveX Process) starts.

It exists on Thread A.
2. The ActiveX Process initializes the ActiveX to EJB bridge, which starts the JVM

code. The JVM attaches to the same thread and internally calls it Thread1.
3. The ActiveX Process starts two threads: B and C.
4. Thread B in the ActiveX Process uses the ActiveX to EJB bridge to access an

object that was created in Thread A. The JVM attaches to thread B and calls it
Thread 2.

5. Thread C in the ActiveX Process never talks to the JVM code, so the VM never
needs to attach to it. This is a case where the JVM code does not have a
one-to-one relationship between ActiveX threads and Java threads.

6. Thread B later releases all of the JObjectProxy and JClassProxy objects that it
used. The Java Thread 2 is detached.

7. Thread B again uses the ActiveX to EJB bridge to access an object that was
created in Thread A. The JVM code attaches again to the thread and calls it
Thread 3.

ActiveX Process JVM Access by ActiveX Process

Thread A - Created in
1

Thread 1 - Attached in 2

Chapter 7. Using application clients 269

ActiveX Process JVM Access by ActiveX Process

Thread B - Created in
4

Thread 2 - Attached in 4, detached in 6 Thread 3 - Attached in 7

Thread C - Created in
4

Not available

Threads and Active Server Pages

Active Server Pages (ASP) in Microsoft’s Internet Information Server is a
multi-threaded environment. When you create the XJB.JClassFactory object, you
can store it in the Application collection as an Application-global object. All threads
within your ASP environment can now access the same ActiveX to EJB bridge
object. Active Server Pages by default creates 10 Apartment Threads per ASP
process per CPU. This means that when your ActiveX to EJB bridge object is
initialized any of the 10 threads can call this object, not just the thread that created
it.

If you need to simulate single-apartment behavior, you can create a
Single-Apartment Threaded ActiveX Dynamic Link Library (DLL) in Visual Basic
and encapsulate the ActiveX to EJB bridge object there. This encapsulation
guarantees that all access to the JVM object is on the same thread. You need to use
the <OBJECT> tag to assign the XJB.JClassFactory to an Application object and
must be aware of the consequences of introducing single-threaded behavior to a
Web application.

The Microsoft KnowlegeBase has several articles about ASP and threads, including:
v Q243543 INFO: Do Not Store STA Objects in Session or Application
v Q243544 INFO: Component Threading Model Summary Under Active Server

Pages
v Q243548 INFO: Design Guidelines for VB Components Under ASP

Example: Viewing System.out message
The ActiveX to EJB bridge does not have a console available to view Java
System.out messages. To view these messages when running a stand-alone client
program (such as Visual Basic), you need to redirect the output to a file. For
example:
launchClientXJB.bat MyProgram.exe > output.txt

v To view the System.out messages when running a Service program such as
Active Server Pages, you need to override the Java System.out OutputStream
object to FileOutputStream. For example, in VBScript:
’Redirect system.out to a file
’ Assume that oXJB is an initialized XJB.JClassFactory object
Dim clsSystem
Dim oOS
Dim oPS
Dim oArgs

’ Get the System class
Set clsSystem = oXJB.FindClass("java.lang.System")

’ Create a FileOutputStream object
’ Create a PrintStream object and assign to it our FileOutputStream

Set oArgs = oXJB.GetArgsContainer oArgs.AddObject "java.io.OutputStream", oOS

270 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Set oPS = oXJB.NewInstance(oXJB.FindClass("java.io.PrintStream"), oArgs)

’ Set our System OutputStream to our file
clsSystem.setOut oPS

Example: Enabling logging and tracing for application clients
The ActiveX to EJB bridge provides two logging and tracing formats: Windows
Application Event Log and Java Trace Log.
v Windows Application Event Log

The Windows Application Event Log shows JNI errors, Java console error
messages, and XJB initialization messages. This log is most useful for
determining XJBInit() errors and any unusual exceptions that do not come from
the Java environment. By default, critical error logging will be enabled and
debug and event logging will be disabled.
To enable or disable logging certain types of events to the Windows Application
Event Log, you need to specify one or more parameters to XJBInit(). If more
than one parameter is set, they will be processed in the order in which they
appear in the input string array to XJBInit(). Once XJBInit() is initialized,
these parameters can no longer be set/reset for the life of the process. Using
Java java.lang.System.setProperty() to set these values also will have no
effect.
– -Dcom.ibm.ws.client.xjb.native.logging.debug=enabled|disabled

Enables or disables debug level messages from appearing in the Windows
operating system event log. This level of logging is most useful and shows
most internal errors, user programming issues or configuration problems.

– -Dcom.ibm.ws.client.xjb.native.logging.event=enabled|disabled

Enables or disables event level messages from appearing in the Windows
operating system event log.

– -Dcom.ibm.ws.client.xjb.native.logging.*=enabled|disabled

Enables or disables both event and debug level messages from appearing in
the Windows operating system event log. It is not possible to disable some
critical error messages from being displayed in the error log. Only debug and
event level messages can be disabled.

Viewing the Windows application event log with the event viewer:

To open the event viewer in the Windows operating system, click Start >
Settings > Control Panel. Double-click Administrative Tools, and then
double-click Event Viewer. All ActiveX to EJB bridge events will have the text
″WebSphere XJB″ in the source column and will appear in the Application log.
For information about using Event Viewer, click the Action menu in Event
Viewer, and then click Help.

To open the even viewer in the Windows operating system, click Start >
Programs > Administrative Tools > Event Viewer. All ActiveX to EJB bridge
events have the text ″WebSphere XJB″ in the source column and display in the
Application log. For information about using Event Viewer, click the Help menu
in Event Viewer.

v Java Trace Log
The Java trace log displays information that you can use to debug method calls,
class lookups, and argument coercion problems. Since the Java portion of the
bridge mirrors the functionality of the COM IDispatch interface, the information

Chapter 7. Using application clients 271

in the trace log is similar to what you have come to expect from an IDispatch
interface. To understand the trace log, you need a fundamental understanding of
IDispatch.
To enable user-logging, add the following parameters to the XJBInit() input
string array:
"-DtraceString=com.ibm.ws.client.xjb.*=event=enabled"
"-DtraceFile=C:\MyTrace.txt"

ActiveX client programming best practices
In general, the best way to access Java components is to use the Java language. It is
recommended that you do as much programming as possible in the Java language
and use a small simple interface between your COM Automation container (for
example, Visual Basic) and the Java code. This interface avoids any overhead and
performance problems that can occur when moving across the interface.
v Visual Basic guidelines
v Active Server Pages guidelines
v J2EE guidelines

Visual Basic guidelines

The following guidelines are intended to help optimize your use of the ActiveX to
EJB bridge with Visual Basic:
v Launch the Visual Basic replication through the launchClientXJB.bat file. If you

want to run your Visual Basic application through the Visual Basic debugger,
run the Visual Basic Integrated Development Environment (IDE) within the
ActiveX to EJB bridge environment. After you create your Visual Basic project,
you can launch it from a command line; for example, launchClientXJB
MyApplication.vbp. You can also launch the Visual Basic application alone in the
ActiveX to EJB environment, by changing the Visual Basic shortcut on the
Windows Start menu so that the launchClientXJB.bat file precedes the call to
the VB6.EXE file.

v Exit the Visual Basic IDE before debugging programs.
Because the Java virtual machine (JVM) code attaches to the running process,
you must exit out of the Visual Basic editor before debugging your program. If
you run then exit your program within the Visual Basic IDE, the JVM code
continues to run and you reattach the same JVM code when XJBInit() is called
by the debugger. This causes problems if you try to update XJBInit() arguments
(for example, classpath) because the changes are not be applied until you restart
Visual Basic.

v Store the XJB.JClassFactory object globally.
Because you cannot unload or reinitialize the JVM code, cache the resulting
XJB.JClassFactory object as a global variable. The overhead of treating this object
as a global variable or passing a single reference around is much less than
recreating a new XJB.JClassFactory object and calling the XJBInit() argument
more than once.

CScript and Windows Scripting Host

The following guidelines intend to help optimize your use of the ActiveX to EJB
bridge with CScript and Windows Scripting Host (WSH):
v Launch in ActiveX to EJB environment.

Launch the VBScriptfiles in the ActiveX to EJB bridge environment, to run
VBScript files in .vbs files. Two common ways exist to launch your script:

272 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

– launchClientXJB MyScript.vbs

– launchClientXJB cscript MyScript.vbs

Active Server Pages guidelines

The following guidelines intend to help optimize your use of the ActiveX to EJB
bridge with Active Server Pages software:
v Use the ActiveX to EJB Helper functions from the Active Server Pages

Application.
Because Active Server Pages (ASP) code typically use VBScript, you can use the
included helper functions in any VBScript environment with minor changes. For
more information about these helper functions, see Helper functions for data
type conversion. To run outside of the ASP environment, remove or change all
references to the Server, Request, Response, Application and Session objects; for
example, change Server.CreateObject to CreateObject.

v Set JRE path globally in system.
The XJB.JClassFactory object must be able to find the Java run time Dynamic
Link Library (DLL) when initializing. In Internet Information Server, you cannot
specify a path for its processes independently; you must set the process paths in
the system PATH variable. You can only have a single JVM version available on
a machine using the ASP application. Also, remember that after you change the
system PATH variable you must reboot the Internet Information Server machine
so that Internet Information Server can see the change.

v Set the system TEMP environment variable.
If the system TEMP environment variable is not set, Internet Information Server
stores all temporary files in the WINNT directory, which is usually not desired.

v Use high isolation or an isolated process.
When using the ActiveX to Java bridge with Active Server Pages software,
creating your Web application in its own process is recommended. You can only
load one JVM instruction in a single process and if you want to have more than
one application running with different JVM environment options (for example,
different classpaths), then you need to have separate processes.

v Use the Application Unload option.
When debugging your application, use Unload when viewing your ASP
application properties in the Internet Information Server administration console
to unload the process from memory and thereby unload the JVM code.

v Run one process per application.
Use only one ASP application per J2EE application or JVM environment, in your
ASP environment. If you need separate classpaths or JVM settings you need
separate ASP applications (virtual directories with high isolation or an isolated
process).

v Store the XJB.JClassFactory object in application scope.
Because of the one-to-one relationship required between a JVM instruction and a
process, and because the JVM code can never detach or shut down from a
process independently, cache the XJB.JClassFactory object at application scope
and call the XJBInit() method only once.
Because the ActiveX to EJB bridge employs a free-threaded marshaler, take
advantage of the multi-threaded nature of Internet Information Server and the
ASP environment. If you choose to reinitialize the XJB.JClassFactory object at
Page scope (local variables), then the XJBInit() method can only initialize your
local XJB.JClassFactory variable. It is more efficient to use the XJBInit() method
once.

Chapter 7. Using application clients 273

v Use VBScript conversion functions.
Because VBScript code only supports variant data types, use the CStr(), CByte(),
CBool(), CCur(), CInt(), Clng(), CSng() and CDbl() functions to tell the activeX to
EJB bridge which data type you are using; for example
oMyObject.Foo(CDbl(1.234)).

J2EE guidelines

The following guidelines are intended to help optimize your use of the ActiveX to
EJB bridge with the J2EE environment;
v Store client container objects globally.

Because you can only have one JVM instruction per process, and a single J2EE
client container (com.ibm.websphere.client.applicationclient.launchClient) per
JVM instruction, initialize your J2EE client container only once and reuse it. For
ASP applications, store the J2EE client container in an application level variable
and initialize it only once (either on the Application_OnStart() event in the
global.asa file or by checking to see if it IsEmpty()).
A side effect to storing the client container object globally is that you cannot
change the client container parameters without destroying the object and
creating a new one. These parameters include the EAR file, BootstrapHost,
classpath, and so on. If you run a Visual Basic application and want to change
the client container parameters, you must end the application and restart it. If
you run an Active Server Pages application, you must first unload the
application from Internet Information Server (see ″Use the Application Unload
Button″ under Active Server Pages guidelines). Then load the Active Server
Pages application with the different client container parameters. The parameters
set the first time the Active Server Pages application loads. Since the client
container is stored on the Internet Information Server, all the browser clients
share the parameters using the Active Server Pages application. This behavior is
normal for Active Server Pages code, but can be confusing when you try to run
to different WebSphere Application Servers using the same Active Server Pages
applicatio, which is unsupported.

v Reuse custom temp directory for EAR file extraction.
By default, the client container launches and extracts the application EAR file to
your temp directory and then sets up the thread ClassLoader to use the extracted
EAR file directory and JAR files included in the client JAR manifest. This
process is time consuming and because of some limitations with JVM shutdown
through Java Native Interface (JNI) and file locking, these files are never cleaned
up.
Specifically, each time the client container launch() method is called, it extracts
the EAR file to a random directory name in your temporary directory on your
hard drive. The current Java thread class loader is then changed to point to this
extracted directory which in turn locks the files within. In a normal J2EE Java
client, these files automatically clean up after the application exits. This cleanup
occurs when the client container shutdown hook is called (which never happens
in the ActiveX to EJB bridge), which leaves the temporary directory there.
To avoid these problems, you can specify a directory to extract the EAR file by
setting the com.ibm.websphere.client.applicationclient.archivedir Java system
property before calling the client container launch() method. If the directory does
not exist or is empty, you extract the EAR file normaly. If the EAR file was
previously extracted, the directory is reused. This feature is particularly
important for server processes (for example, ASP), which can stop and restart,
potentially calling launchClient() several times.

274 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

If you need to update your EAR file, delete the temporary directory first. The
next time you create the client container object, it extracts the new EAR file to
the temporary directory. If you do not delete the temporary directory or change
the system property value to point to a different temporary directory, the client
container reuses the currently extracted EAR file, and does not use your changed
EAR file.
Note: When specifying the com.ibm.websphere.client.applicationclient.archivedir
property, make sure that the directory you specify is unique for each EAR file
you use. For example, do not point MyEar1.ear and MyEar2.ear files to the same
directory.
If you choose not to use this system property, go regularly to your Windows
temp directory and delete the WSTMP* subdirectories. Over a relatively short
period of time, these subdirectories can waste a very significant amount of space
on the hard drive.

Developing applet client code
Before you begin

Applet clients have the following setup requirements:
v These clients are currently available on the Windows NT or Windows 2000

platforms. Check the prerequisites page for information on new platform
support.

v They require one of these browsers:
– Internet Explorer version 5.0+
– Netscape Navigator 4.7+

v You must install the browser before installing the client code.

Unlike typical applets that reside on either Web servers or WebSphere Application
Servers and can only communicate using the HTTP protocol, applet clients are
capable of communciating over the HTTP protocol and the RMI-IIOP protocol. This
additional capability gives the applet direct access to enterprise beans.

Steps for this task
1. Run the application server client installation.
2. Select the applet client option.
3. Install an applet client.
4. Install the WebSphere Application Server Plug-in for the browser.

From the WebSphere Application Server Java Plug-in Control panel, enter the
following:

-Djava.security.policy=product_installation_dir\properties\client.policy
-Dwas.install.root=product_installation_dir
-Djava.ext.dirs=product_installation_dir\classes;product_installation_dir
\java\jre\lib\ext;product_installation_dir\java\jre\lib;product_installation_dir
\lib;product_installation_dir\properties
-Dcom.ibm.CORBA.securityEnabled=false
-Dcom.ibm.CORBA.ConfigURL=file:product_installation_dir\properties\sas.client.props
-classpath product_installation_dir\properties

Note: The above entries are automatically placed into the WebSphere
Application Server Java Plug-in control panel for the user who installed the
WebSphere Application Sever client. If this sample is being run by a user other
than the person who installed the client, the user must enter the entries.

Chapter 7. Using application clients 275

v The Java Run Time Parameters field is similar to the command prompt when
using command line options. Therefore, you can enter most options available
from the command prompt (for example, -cp, classpath, and others) in this
field as well.

v Access the control panel from the Start menu. Click start > Control panel >
WebSphere Java Plug-in.

v The applet container is the Web browser and the Java plug-in combination.
You must first install the WebSphere Application Server Applet client so that
the browser recognizes the IBM Java Plug-in.

View the Samples gallery for more information about application clients. Before
you run the basicCalculator Sample, ensure the JMS Server is started.

These samples do not include client applications that communicate with
Enterprise server-side examples.

Accessing secure resources using the TCP/IP protocol for
applet clients

You cannot use the WebSphere Application Server JSSE from an applet, and applets
cannot authenticate to WebSphere Application Sever using Secure Sockets Layer
(SSL). To access resources that are not secure, such as enterprise beans, applets are
configured with security disabled. Applets can access secure resources using
standard TCP/IP protocol. This will cause the userid and password to flow from
the client machine to the application server in the clear. This may compromise
your password should someone be monitoring the network. It is important to
understand the security implications before you modify the client configuration to
use the standard TCP/IP protocol to access secure resources on your application
server.

Steps for this task
1. Make a copy of the following file so that you can use it for an applet:

<product_install_directory>/properties/sas.client.props

It is recommended to use a copy of the sas.client.props file for your applet
because this file is used for all WebSphere Application Server client
applications.

2. Edit the copy of sas.client.props file that you made with the following
changes:
v Change com.ibm.CSI.protocol to com.ibm.CSI.protocol=csiv2.
v Change com.ibm.CSI.performTransportAssocSSLTLSSupported to

com.ibm.CSI.performTransportAssocSSLTLSSupported=false.
v Add com.ibm.CSI.claimTransportAssocSSLTLSSupported=false.

3. Click Start > Control panel > WebSphere Java Plug-in to open the WebSphere
Application Server Java control panel.
v Change -Dcom.ibm.CORBA.securityEnabled=false to

-Dcom.ibm.CORBA.securityEnabled=true.
v To use the file you created in step number 1, modify the value:

-Dcom.ibm.CORBA.ConfigURL=file:<product_install_directory>\properties
\sas.client.props

For more information on the sas.client.props file and WebSphere Application
Server security, view Security.

276 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Applet client security requirements
When code is loaded, it is assigned permissions based on the security policy in
effect. This policy specifies the permissions that are available for code from various
locations. You can initialize this policy from an external policy file. By default, the
client uses the <product_installation_dir>/properties/client.policy file. You
must update this file with the following permissions:
v The SocketPermission grants permission to open a port and make a connection

to a host machine, which is your WebSphere Application Server. In the following
example, yourserver.yourcompany.com is the complete hostname of your
WebSphere Application Server:
permission java.util.PropertyPermission "*", "read";
permission java.net.SocketPermission "yourserver.yourcompany.com ,"connect";

Applet client tag requirements
Standard applets require the HTML <APPLET> tag to identify the applet to the
browser. The <APPLET> tag invokes the Java Virtual Machine (JVM) of the browser.
v For applets to communicate with EJBs in the WebSphere Application Server

environment, the <APPLET> tag must be replaced with the following tags:
<OBJECT>
<EMBED>

v The classid and type attributes cannot be modified, and must be entered as
described in the applet client example. The codebase attribute on the <OBJECT>
tag must be excluded. Do not confuse the codebase attribute on the <OBJECT> tag
with the codebase attribute on the <PARM> tag. Although both are called
codebase, they are separate entities.

v The following code example illustrates the applet code. In this example,
MyApplet.class is the applet code, applet.jar is the file that contains the applet
code, and EJB.jar is the file that contains the enterprise bean code:
<OBJECT classid="clsid:8AE2D840-EC04-11D4-AC77-006094334AA9"
width="600" height="500">
<PARAM NAME=CODE VALUE=MyAppletClass.class>
<PARAM NAME="archive" VALUE=’Applet.jar, EJB.jar’>
<PARAM TYPE="application/x-java-applet;version=1.3">
<PARAM NAME="scriptable" VALUE="false">
<PARAM NAME="cache-option" VALUE="Plugin">
<PARAM NAME="cache-archive" VALUE="Applet.jar, EJB.jar">
<COMMENT>
<EMBED type="application/x-websphere-client" CODE=MyAppletClass.class
ARCHIVE="Applet.jar, EJB.jar" WIDTH="600" HEIGHT="500"
scriptable="false">
<NOEMBED>
</COMMENT>
</NOEMBED>WebSphere Java Application/Applet Thin Client for
Windows is required.
</EMBED>
</OBJECT>

v The value of the type attribute on the </EMBED> tag can also be, for example:
<EMBED type="application/x-websphere-client, version=4.0" ...

Applet client code requirements
The code used by an applet to talk to an enterprise bean is the same as that used
by a standalone Java program or a servlet, except for one additional property
called java.naming.applet. This property informs the InitialContext and the
Object Request Broker (ORB) that this client is an applet rather than a standalone
Java application or servlet.

Chapter 7. Using application clients 277

v When you initialize an instance of the InitialContext class, the first two lines in
this code snippet illustrate what both a standalone Java program and a servlet
issue to specify the computer name, domain, and port. In this example,
<yourserver.yourdomain.com> is the computer name and domain where
WebSphere Application Server resides, and 900 is the configured port. After the
bootstrap values (<yourserver.yourdomain.com>:900) are defined, the client to
server communications occur within the underlying infrastructure. In addition to
the first two lines, for applets, you must add the highlighted third line to your
code. That line identifies this program as an applet, for example:
prop.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
prop.put(Context.PROVIDER_URL, "iiop://<yourserver.yourdomain.com>:900)
prop.put(Context.APPLET, this);

Developing J2EE application client code
A J2EE application client program operates similarly to a standard J2EE program in
that it runs its own Java Virtual Machine code and is invoked at its main method.

The Java Virtual Machine application client program differs from a standard Java
program because it uses the Java Naming and Directory Interface (JNDI) name
space to access resources. In a standard Java program, the resource information is
coded in the program.

Storing the resource information separately from the client application program
makes the client application program portable and more flexible.

Steps for this task
1. Writing the client application program

Write the J2EE application client program on any development machine. At this
stage, you do not require access to the WebSphere Application Server.
Using the javax.naming.InitialContext class, the client application program
uses the lookup operation to access the Java Naming and Directory Interface
(JNDI) name space. The InitialContext class provides the lookup method to
locate resources.
The following example illustrates how a client application program uses the
InitialContext class:
import javax.naming.*

public class myAppClient
{

public static void main(String argv[])
{

InitialContext initCtx = new InitialContext();
Object homeObject = initCtx.lookup("java:comp/env/ejb/BasicCalculator");
BasicCalculatorHome bcHome =

(BasicCalculatorHome) javax.rmi.PortableRemoteObject
.narrow(homeObject, BasicCalculatorHome.class);

BasicCalculatorHome bc = bcHome.create();
...

}
}

In this example, the program looks up an enterprise bean called
BasicCalculator. The BasicCalculator EJB reference is located in the client
JNDI name space at java:comp/env/ejb/BasicCalculator . Since the actual

278 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

enterprise bean runs on the server, the application client run time returns a
reference to the BasicCalculator home interface.

If the client application program lookup was for a resource reference or an
environment entry, then lookup returns an instance of the configured type as
defined by the client application deployment descriptor. For example, if the
program lookup was a JDBC datasource, the lookup would return an instance
of javax.sql.DataSource.

2. Assemble the application client using the Application Assembly Tool
The JNDI name space knows what to return on a lookup because of the
information assembled by the Application Assembly Tool (AAT).
Assemble the J2EE application client on any development machine with the
AAT installed.
When you use the Application Assembly Tool to assemble your application
client, you provide the application client run time with the required information
to initialize the execution environment for your client application program.
Refer to the Application Assembly Tool description for implementation details.
Following is a list of things to keep in mind when you configure resources
used by your client application program:
v When configuring resource references, resource environment references, and

EJB references in the Application Assembly Tool, the General tab contains a
required Name field. This field specifies where the application client run time
binds the reference to the real object in the java:comp/env portion of the
JNDI name space. The application client run time always binds these
references relative to java:comp/env. For the programming example above,
specify ejb/BasicCalculator in the Name field on the General tab of the
Application Assembly Tool, which requires the program to perform a lookup
of java:comp/env/ejb/BasicCalculator. If the Name field is set to myString,
the resulting lookup is java:comp/env/myString.

v When configuring Resource references in the Application Assembly Tool, the
Name field on the General tab is used for:
– Binding a reference of that object type into the JNDI name space.
– Retrieving client specific resource configuration information that was

configured using the Application Client Resource Configuration Tool.
v When configuring a resource reference in the Application Assembly Tool, the

value in the Name field on the General tab must match the value in the JNDI
Name field on the General tab for the resource in the Application Client
Resource Configuration Tool.

v When configuring URL resources using the Application Client Resource
Configuration Tool, the URL provider panel enables you to specify a protocol
and a class to handle that protocol. If you want to use the default protocols,
such as HTTP, you can leave those fields blank.

v When configuring resource references using the Application Assembly Tool,
the General tab contains a field called Authorization. You can set this field to
either Container or Application. If you set the field to Container, then the
application client run time uses authorization information configured in the
Application Client Resource Configuration tool for the resource. If the field is
set to Application, then the application client run time expects the user
application to provide authorization information for the resource. The
application client run time ignores any authorization information configured
with the Application Client Resource Configuration tool for that resource.

v When configuring resource environment references using the Application
Assembly Tool, you must specify the location of the actual object in the

Chapter 7. Using application clients 279

server JNDI namespace using the Binding tab. A resource environment
reference maps a logical name (the Name field on the general tab) used by the
client application to the phyiscal name of an object (the JNDI Name field on
the Bindings tab). Not all objects bound into the server JNDI namespace are
intended for use by an application client. For example, the WebSphere
Application Server client run-time does not support the use of Java 2
Connector (J2C) objects on the client. The object needs to be remotable, and
the client-side implementations must be made available on the application
client run-time classpath.

v Resource environment references are different than resource references.
Resource environment references allow your application client to use a
logical name to look-up a resource bound into the server JNDI namespace. A
resource reference allows your application to use a logical name to look-up a
local J2EE resource. The J2EE specification does not specify a particular
implementation of a resource. The following is a table of the supported
resource types and identifies the resources to which the WebSphere
Application Server provides a client implementation.

Resource Type Client Configuration Notes Client implementation
provided by WebSphere
Application Server

javax.sql.DataSource Supports specification of any
Datasource implementation
class

No

java.net.URL Supports specification of
custom protocol handlers

Provided by Java Runtime
Environment files

javax.mail.Session Supports custom protocol
configuration

Yes - POP3, SMTP, IMAP

javax.jms.QueueConnection
Factory, javax.jms
.TopicConnectionFactory,
javax.jms.Queue, javax.jms
.Topic

Supports configuration of
WebSphere Embedded
Messaging, IBM MQ Series
and other JMS providers

Yes - WebSphere Embedded
Messaging

3. Assembling the Enterprise Archive (EAR)
The application is contained in an enterprise archive or .ear file. The .ear file
is composed of:
v Enterprise bean, application client, and user-defined modules or .jar files
v Web applications or .war files
v Metadata describing the applications or application .xml files

You must assemble the .ear file on the server machine.
4. Distribute the EAR file

The client machines configured to run this client must have access to the .ear
file.
If all the machines in your environment share the same image and platform,
run the Application Client Resource Configuration Tool (ACRCT) on one
machine to configure the external resources, and then distribute the configured
.ear file to the other machines.
If your environment is set up with a variety of client installations and
platforms, run the ACRCT for each unique configuration.
You can either distribute the .ear files to the correct client machines, or make
them available on a network drive.

280 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Distributing the .ear files is the responsibility of the system and network
administrator.

5. Deploy the application client.
6. Configure the application client resources

If the client application defines the local resources, run the ACRCT
(clientConfig command) on the local machine to reconfigure the .ear file. Use
the ACRCT to change the configuration. For example, the .ear file can contain
a DB2 resource, configured as C:\DB2. If, however, you installed DB2 in the
D:\Program Files\DB2 directory, use the ACRCT to create a local version of the
.ear file.

What to do next

After developing the J2EE application client code, launch the application client.

J2EE application client class loading
When you run your J2EE application client, a hierarchy of class loaders is created
to load classes used by your application.

The following list describes the hierarchy of class loaders:
v The topmost class loader, the bootstrap class loader, contains the JAR files

that make up the Java Virtual Machine code, such as rt.jar, plus those JAR files
defined by the -Xbootclasspath parameter on the Java command. The
WebSphere Application client run time sets this value to the WAS_BOOTCLASSPATH
environment variable.

v The extensions class loader class loader is a child to the bootstrap class loader. This
class loader contains JAR files in the java/jre/lib/ext directory or those JAR
files defined by the -Djava.ext.dirs parameter on the Java command. The
WebSphere Application Client run time does not set -Djava.ext.dirs
parameters, so it uses the JAR files in the java/jre/lib/ext directory.

v The system class loader class loader contains JAR files and classes that are defined
by the -classpath parameter on the java command. The Application Client run
time sets this parameter to the WAS_CLASSPATH environment variable.

v The WebSphere class loader class loader loads the WebSphere Application Client
run time and any classes placed in the WebSphere Application Client user
directories. The directories used by this class loader are defined by the
WAS_EXT_DIRS environment variable. The WAS_BOOTCLASSPATH, WAS_CLASSPATH, and
the WAS_EXT_DIRS environment variables are set in the
installation_root/bin/setupCmdLine command shell for WebSphere Application
Server server installations, or in the installation_root/bin/setupClient
command shell for client installations.

As the J2EE application client run time initializes, additional class loaders are
created as children of the WebSphere class loader. If your client application uses
resources such as Java Database Connectivity (JDBC) API, Java Message Service
(JMS) API, or Uniform Resource Locator (URL), a different class loader is created
to load each of those resources. Finally, the application client run time sets the
WebSphere class loader to load classes within the .ear file by processing the client
JAR manfest repeatedly. The system classpath, defined by the CLASSPATH
environment variable is never used and is not part of the hierarchy of class
loaders.

To package your client application correctly, you must understand which class
loader loads your classes. When Java loads a class, the class loader used to load

Chapter 7. Using application clients 281

that class is assigned to it. Any classes subsequently loaded by that class will use
that class loader or any of its parents, but it will not use children class loaders.

In some cases the WebSphere Application Client run time can detect when your
client application class is loaded by a different class loader from the one created
for it by the WebSphere Application Client run time. When this detection occurs,
you see the following message:
WSCL0205W: The incorrect class loader was used to load [0]

This message occurs when your client application class is loaded by one of the
parent class loaders in the hierarchy. This situation is typically caused by having
the same classes in the .ear file and on the hard drive. If one of the parent class
loaders locates a class, that class loader loads it before the application client run
time class loader. In some cases, your client application will still function correctly.
In most cases, however, you receive ″class not found″ exceptions.

Configuring the classpath fields

When packaging your J2EE client application, you must configure various
classpath fields. Ideally, you should package everything required by your
application into your .ear file. This is the easiest way to distribute your J2EE client
application to your clients. However, you should not package such resources as
JDBC APIs, JMS APIs, or URLs. In the case of these resources, use classpath
references to access those classes on the hard drive. You might also have other
classes installed on your client machines that you do not need to redistribute. In
this case, you also want to use classpath references to access the classes on the
hard drive, as described below.

Referencing classes within the EAR file

WebSphere J2EE applications do not use the system class path. Use the MANIFEST
Classpath entry to refer to other JARs within the .ear file. Configure these values
using the module Classpath fields in the Application Assembly Tool. For example,
if your client application needs to access the path of the enterprise bean JAR, add
the deployed enterprise bean module name to your application client Classpath
field in the Application Assembly Tool. The format of the Classpath field for each
of the different modules (Application Client, enterprise bean, Web) is the same:
v The values must refer to .jar and .class files that are contained within the .ear

file.
v The values must be relative to the root of the .ear file.
v The values cannot refer to absolute paths in the file systems.
v Multiple values must be separated by spaces, not colons or semi-colons.

Note: This is the Java method for allowing applications to function
platform-independent.

Typically, you add modules (.jar files) to the root of the .ear file. In this case, you
only need to specify the name of the module (.jar file) in the Classpath field. If
you choose to add a module with a path, you need to specify the path relative to
the root of the .ear file.

For referencing .class files, you must specify the directory relative to the root of
the .ear file. With the Application Assembly Tool you can add individual class
files to the .ear file. It is recommended that these additional class files are
packaged in a .jar file. Add this .jar file to the module Classpath fields. If you

282 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

add .class files to the root of the .ear file, add ./ to the module Classpath fields.
Consider the following example directory structure in which the file myapp.ear
contains an application client JAR file named client.jar and a mybeans.jar EJB
module. Additional classes reside in class1.jar and utility/class2.zip files. A class
named xyz.class is not packaged in a JAR file but is in the root of the EAR file.
Specify ./ mybeans.jar utility/class2.zip class1.jar as the value of the Classpath
property. The search order is: myapp.ear/client.jar myapp.ear/xyz.class
myapp.ear/mybeans.jar myapp.ear/utility/class2.zip myapp.ear/class1.jar

Referencing classes that are not in the EAR file

Use the launchClient -CCclasspath parameter. This parameter is specified at run
time and takes platform-specific classpath values, which means multiple values are
separated by semi-colons or colons. There are many similarities between the client
and the server in this respect.

Resource classpaths

When you configure resources used by your client application using the
Application Client Resource Configuration Tool, you can specify classpaths that are
required by the resource. For example, if your application is using a JDBC to a DB2
database, add db2java.zip to the classpath field of the database provider. These
classpath values are platform-specific and require semi-colons or colons to separate
multiple values.

Using the launchClient API

If you use the launchClient shell and bat command, the WebSphere class loader
hierarchy is created for you. However, if you use the launchClient API, you must
perform this setup yourself. You should mimic the launchClient shell command in
defining the Java system properties.

Developing pluggable application client code
Before you begin

As you prepare to install the pluggable application client, remember that pluggable
clients are only available on Windows systems.

Steps for this task
1. Install the pluggable application client from the WebSphere Application Client

CD by selecting option Pluggable Application Client from the Custom client
installation panel.

2. Set the Java application pluggable client environment by using the setupClient
shell, located in:
install_root\AppClient\bin\setupClient.bat

3. Add your specific Java client application JAR files to the CLASSPATH and start
your Java client application from this environment, after setting the
environment variables.

4. Run the following Java command to invoke your client application:
%JAVA_HOME%/bin/java -Xbootclasspath/p:%WAS_BOOTCLASSPATH%
-classpath list_of_your_application_jars_and_classes
-Djava.ext.dirs= %WAS_EXT_DIRS%

Chapter 7. Using application clients 283

-Djava.naming.provider.url=iiop://your_WebSphere_server_machine_name
-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory
%SERVER_ROOT% %CLIENTSAS% fully_qualified_class_name_to_run

$JAVA_HOME/bin/java -Xbootclasspath/p:$WAS_BOOTCLASSPATH
-classpath list_of_your_application_jars_and_classes
-Djava.ext.dirs=$WAS_EXT_DIRS
-Djava.naming.provider.url=iiop://your_WebSphere_server_machine_name
-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory
$SERVER_ROOT $CLIENTSAS fully_qualified_class_name_to_run

Usage scenario

View the Samples gallery for more information about application clients. Before
you run the basicCalculator Sample, ensure the JMS Server is started.

These samples do not include client applications that communicate with Enterprise
server-side examples.

Developing thin application client code
You can develop and run Java thin client applications on machines installed with
either a client or a server. The client provides a setup command shell which sets
up your environment for either a thin client application or a J2EE client
application. The server provides a command shell which sets up your environment
for J2EE application clients only. The Java invocation to run a thin application
client varies between a client and a server. If your thin client application needs to
run on both a client installation and a server installation, follow the steps for
developing thin application clients on a server machine.

Steps for this task
1. Install the Java application thin client from the WebSphere Application Client

CD by selecting option J2EE/Thin application client for the WebSphere
Application Client.

2. Perform one of the following:
v Develop thin application client code for a client machine.
v Develop thin application client code for a server machine.

Usage scenario

View the Samples gallery for more information about application clients.

These samples do not include client applications that communicate with Enterprise
server-side examples.

Developing thin application client code on a client machine
Before you begin

You must install the thin application client from the WebSphere Application Client
CD before performing this task. For more information, see Developing thin
application client code.

Steps for this task
1. Set the Java application thin client environment by using the setupClient shell,

located in:

284 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

install_root\AppClient\bin\setupClient.bat (on Windows)
install_root/AppClient/bin/setupClient.sh (on UNIX platforms)

2. Run the following Java command to invoke your client application:
On Windows:

"%JAVA_HOME%\bin\java" "-Xbootclasspath/p:%WAS_BOOTCLASSPATH%"
-Djava.security.auth.login.config="%WAS_HOME%\properties\wsjaas_client.conf"
-classpath "%WAS_CLASSPATH%;<list of your application jars and classes>"
-Djava.ext.dirs=%WAS_EXT_DIRS% -Djava.naming.provider.url=<an iiop URL
or a corbaloc URL to your Websphere server machine name>
-Djava.naming.factory.initial=
com.ibm.websphere.naming.WsnInitialContextFactory
"%SERVER_ROOT%" "%CLIENTSAS%" <fully qualified class name to run><your application parameters>

On Unix:
$JAVA_HOME/bin/java -Xbootclasspath/p:$WAS_BOOTCLASSPATH
-classpath "$WAS_CLASSPATH:<list of your application jars and classes>"
-Djava.ext.dirs=$WAS_EXT_DIRS -Djava.naming.provider.url=<an iiop URL
or a corbaloc URL to your Websphere server machine name>
-Djava.naming.factory.initial=
com.ibm.websphere.naming.WsnInitialContextFactory
"$SERVER_ROOT" "$CLIENTSAS" <fully qualified class name to run><your application parameters>

For more information on iiop and corbaloc URLs, see “Developing applications
that use JNDI” on page 1056.

Usage scenario

View the Samples gallery for more information about application clients.

These samples do not include client applications that communicate with Enterprise
server-side examples.

Developing thin application client code on a server machine
Before you begin

You must install the thin application client from the WebSphere Application Client
CD before performing this task. For more information, see Developing thin
application client code.

Steps for this task
1. Set the Java application thin client environment by using the setupCmdLine

shell, located in:
install_root\bin\setupCmdLine.bat (on Windows)
install_root/bin/setupCmdLine.sh (on UNIX platforms)

2. Run the application client. Perform one of the following methods:
v Use Java to call your main class directly:

On Windows:
"%JAVA_HOME%\bin\java" "-Xbootclasspath/p:%WAS_BOOTCLASSPATH%"
-Djava.security.auth.login.config="%WAS_HOME%\properties\wsjaas_client.conf"
-Djava.ext.dirs="%JAVA_HOME%\jre\lib\ext;%WAS_EXT_DIRS%"
-Djava.naming.provider.url=<an iiop URL or a corbaloc URL to your
Websphere server machine name>
-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory
-Dserver.root="%WAS_HOME%" "%CLIENTSAS%" %USER_INSTALL_PROP%
-classpath "%WAS_CLASSPATH%;<list of your application jars and classes>"
<fully qualified class name to run><your application parameters>

Chapter 7. Using application clients 285

On Unix:
"$JAVA_HOME/bin/java" "-Xbootclasspath/p:$WAS_BOOTCLASSPATH"
-Djava.security.auth.login.config="$WAS_HOME/properties/wsjaas_client.conf"
-Djava.ext.dirs="$JAVA_HOME/jre/lib/ext;%WAS_EXT_DIRS%"
-Djava.naming.provider.url=<an iiop URL or a corbaloc URL to your
Websphere server machine name>
-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory
-Dserver.root="$WAS_HOME" $USER_INSTALL_PROP "$CLIENTSAS"
-classpath "$WAS_CLASSPATH;<list of your application jars and classes>
<fully qualified class name to run><your application parameters>

v Use the WebSphere Application Server launcher:
On Windows:

"%JAVA_HOME%\bin\java" "-Xbootclasspath/p:%WAS_BOOTCLASSPATH%"
-Djava.security.auth.login.config="%WAS_HOME%\properties\wsjaas_client.conf"
"-Dws.ext.dirs=<list of your application jars and classes;
%WAS_EXT_DIRS%;%WAS_USER_DIRS%">

-Djava.naming.provider.url=<an iiop URL or a corbaloc URL to your
Websphere server machine name>
-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory
"-Dserver.root=%WAS_HOME%"
"%CLIENTSAS%" %USER_INSTALL_PROP% -classpath "%WAS_CLASSPATH%" com.ibm.ws.bootstrap
.WSLauncher
<fully qualified class name to run><your application parameters>

On Unix:
"$JAVA_HOME/bin/java" "-Xbootclasspath/p:$WAS_BOOTCLASSPATH"
-Djava.security.auth.login.config="$WAS_HOME/properties/wsjaas_client.conf"
"-Dws.ext.dirs=<list of your application jars and classes
>$WAS_EXT_DIRS;$WAS_USER_DIRS"
-Djava.naming.provider.url=<an iiop URL or a corbaloc URL to your
Websphere server machine name>
-Djava.naming.factory.initial=com.ibm.websphere.naming.WsnInitialContextFactory
"-Dserver.root=$WAS_HOME"
"$CLIENTSAS" $USER_INSTALL_PROP -classpath "$WAS_CLASSPATH" com.ibm.ws.bootstrap
.WSLauncher
<fully qualified class name to run><your application parameters>

For more information on iiop and corbaloc URLs, see “Developing applications
that use JNDI” on page 1056.

Usage scenario

View the Samples gallery for more information about application clients.

These samples do not include client applications that communicate with Enterprise
server-side examples.

Assembling Application Client Modules
Before you begin

If you want to use existing J2EE 1.2 Web modules in your J2EE 1.3 application,
migrate them to J2EE 1.3 first.

Note: This task only applies to J2EE application clients.

Assemble a client module to contain application client code. (Group enterprise
beans, Web components, and resource adapter code in separate modules).

Steps for this task

286 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

1. Start the Application Assembly Tool.
2. From the New tab, select Application Client. Click OK.

The navigation tree now displays various sets of properties for configuring the
new application client.

3. (Optional) Use the property dialog shown in the AAT workspace to change the
default file name and location.
a. It is recommended that you change the display name so that it differs from

the file name.
b. If you like, change the temporary location of the application client from the

default location, install_root/bin.
4. Enter the main class filename and location.

a. Click Browse to locate the class file.
b. Select the archive containing the class files, and click Select.
c. Select the files you need from the archive, and click OK.

5. Define the assembly properties for the application client.
a. Right-click the assembly property in the navigation pane.
b. Select New in the right-click menu.
c. Enter values in the property dialog box.
d. Click OK.

6. Add files for the application client.
a. Right-click Files in the navigation pane.
b. Select Add Files from the right-click menu.
c. Locate the directory where the files are located and click Select.
d. Select the files to add and click Add.
e. In the Selected files window, click OK.

7. “Saving applications after assembly” on page 1161.

What to do next

Assemble other new modules of your choice, if needed:
v “Assembling EJB modules” on page 136
v ″Assembling Resource Adapter modules″ (not in this document).

You can also “Migrating application modules from J2EE 1.2 to J2EE 1.3” on
page 1152.

Another option is to proceed directly to assembling the module. While assembling
an application module, you can create any new modules that you need.

Application client modules
An application client module is a JAR (Java ARchive) file containing a client for
accessing a Java application.

The J2EE (Java TM 2 Platform for WebSphere Application Server Enterprise)
Application Client and the Java Application Thin Client are supported by this
product. Both clients provide first tier client support where Web applications are
enabled with Java technologies.

The Java Application Thin Client provides users a lightweight, downloadable Java
application run time that is capable of interacting with enterprise beans. This client

Chapter 7. Using application clients 287

is designed to support those users who want a Java client application
programming environment without the overhead of the J2EE platform on the client
machine.

Application client assembly settings
Use this page to specify assembly properties for J2EE application clients.

File name (Required, String)
Specifies the file name of the application client module, relative to the top level of
the Enterprise Archive (EAR) file.

If this is a stand-alone module, the file name is the full path name of the archive.

Alternative DD
Specifies the file name for an alternative deployment descriptor file to use instead
of the original deployment descriptor file in the module Java Archive (JAR) file.

This file is the postassembly version of the deployment descriptor file. (You can
edit the original deployment descriptor file to resolve dependencies and security
information. Directing the use of the alternative deployment descriptor allows you
to keep the original deployment descriptor file intact). The value of the Alternative
DD property must be the full path name of the deployment descriptor file relative
to the module root directory. By convention, the file is in the ALT-INF directory. If
this property is not specified, the deployment descriptor file is read directly from
the module JAR file.

Classpath
Specifies the full classpath containing the dependent code that is not contained in
the application client JAR file.

Specify the values relative to the root of the EAR file and separate the values with
spaces. Absolute values that reference files or directories on the hard drive are
ignored. To specify classes that are not in JAR files but are in the root of the EAR
file, use a period and forward slash (./). Consider the following example directory
structure in which the file myapp.ear contains an application client JAR file named
client.jar. Additional classes reside in class1.jar and class2.zip files. A class
named xyz.class is not packaged in a JAR file but is in the root of the EAR file
myapp.ear/client.jar myapp.ear/class1.jar myapp.ear/class2.zip
myapp.ear/xyz.class. Specify class1.jar class2.zip ./ as the value of the Classpath
property. (Name only the directory for .class files.)

Display name (Required, String)
Specifies a short name that is intended for display by GUIs.

Small icon
Specifies a JPEG or GIF file containing a small image (16x16 pixels).

The image is used as an icon to represent the application client in a GUI.

Large icon
Specifies a JPEG or GIF file containing a large image (32x32 pixels).

The image is used as an icon to represent the application client in a GUI

Description
Contains text describing the application client.

288 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Main class (Required, String)
Specifies the full path name of the main class for this application client.

WebSphere Application Server Enterprise Edition assembly
settings for application clients
Use this page to configure Enterprise Application Server functions for application
clients.

Own task: A J2EE component’s own task defines the task that can be used to
identify a unit of work begun by this component to application profile-configured
policies on downstream requests.

Name: The name of the task to be propagated on requests from this J2EE
component.

Datatype String

Description: The description of the task.

An optional field provided as a convenience to the developer.

Datatype String

Task references: Task references enable developers to programmatically set the
current task under which a component is executing.

Name: The name of the task reference. This name corresponds to the string that
the developer uses to set the current task.

Task: The task that the run-time environment will associate with execution of the
current component.

Name: The name of the task.

Programmatically setting the logical task name causes this task name to be
associated with requests from this J2EE component.

Description: A description of the task.

An optional field provided as a convenience for the developer.

Environment entries assembly properties
Use the assembly properties to change the settings for environment entries.

Environment entries define variables for use at run-time. The container makes the
application environment entries available in a JNDI naming context
(java:comp/env). An example environment entry is maxExceptions, describing the
maximum number of tax exemptions that are allowed. The expected type of the
environment entry is java.lang.Integer and its value is 15.

To view the settings for environment entries in the Application Assembly Tool,
click on an application client (.jar file) in the navigation tree and then double-click
on Environment Entries in the Name list.

Chapter 7. Using application clients 289

Name
(Required) Specifies the name of the environment entry, relative to the
java:comp/env context.

Data type String

Value
Specifies the value of the environment entry. The value must be a string that is
valid for the constructor of the specified type that takes a single string parameter.

Data type String

Type
(Required) Specifies the Java type of the environment entry value that is expected
by the module’s code.

Valid values for this field include classes such as java.lang.Boolean,
java.lang.String, java.lang.Integer, java.lang.Double, java.lang.Byte, java.lang.Short,
java.lang.Long, and java.lang.Float.

Data type String
Units Class names
Default String

Description
Describes the environment entries.

Data type String

Deploying application clients on workstation platforms
Before you begin

After developing an application client, deploy this application on client machines.
Deployment consists of pulling together the various artifacts that the application
client requires.

The Application Client Resource Configuration Tool (ACRCT) defines resources for the
application client. These configurations are stored in the application client .ear file.
The application client run time uses these configurations for resolving and creating
an instance of the resources for the application client.

Note: This task only applies to J2EE application clients. Only perform this task if
you configured your J2EE application client to use resource references.

Steps for this task
1. Start the ACRCT and open an EAR file.
2. Configure new data source providers.
3. Configure mail providers and sessions.
4. Configure URL providers and sessions.
5. Configure Java messaging client resources.
6. Configure new environment entries.
7. (Optional) Remove application client resources.

290 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

8. “Saving applications after assembly” on page 1161

Starting the Application Client Resource Configuration Tool
and opening an EAR file

Before you begin

Note: This task only applies to J2EE application clients.

Steps for this task
1. Open a command prompt and change to the install_root\bin directory.
2. Run the clientConfig.bat file for a Windows system or the clientConfig.sh

file for a UNIX system.
3. Open an EAR file within the Application Client Resource Configuration Tool

(ACRCT):
v Click File > Open.
v Select the file and click Open.

4. Save your changes to the file and close the tool:
v Click File > Save.
v Click File > Exit.

Data sources for application clients
The J2EE application client does not support looking up or directly accessing data
source resources that have been configured on the WebSphere Application Server
because the J2EE application client does not support Java 2 Connection Factories.
To use a data source directly from the client application, you must configure your
data source using the ACRCT. In addition, WebSphere Application Server and
WebSphere Application Server clients do not provide client database drivers to be
used directly from a J2EE application client. If your application client uses a
database directly, you must provide the database drivers on the client machine.
This can involve contacting your database vendor to acquire client database driver
code and licenses. Instead of accessing the database directly, it is recommended
that your client application use an enterprise bean. Accessing a database through
an enterprise bean eliminates the need to have database drivers on the client
machine, since the database access is handled by the enterprise bean running on
the WebSphere Application Server. For a current list of providers that are
supported on the WebSphere Application Server go the following site:

Supported Prerequisites page.

Configuring new data source providers (JDBC providers) for
application clients

Before you begin

During this task, you create new data source providers, also known as JDBC
providers, for your application client. In a separate administrative task, install the
Java code for the required data source provider on the client machine on which the
application client resides.

Steps for this task
1. Start the tool and open the EAR file for which you want to configure the new

data source provider. The EAR file contents display in a tree view.

Chapter 7. Using application clients 291

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

2. Select the JAR file in which you want to configure the new data source
provider from the tree.

3. Expand the JAR file to view its contents.
4. Click the Data Source Providers folder. Do one of the following:

v Right-click the folder and click New Provider.
v Click Edit > New on the menu bar.

5. Configure the data source provider properties in the resulting property dialog.
6. Click OK when you finish.
7. Click File > Save on the menu bar to save your changes.

Configuring new data source providers
During this task, you will create new data source providers, also known as JDBC
drivers, for your application client. In a separate administrative task, install the
Java code for the required data source provider on the client machine where the
application client resides.

Steps for this task
1. Start the ACRCT, click File > Open, and select the EAR file for which you want

to configure the new data source provider. The EAR file contents display in a
tree view.

2. Select the JAR file in which you want to configure the new data source
provider from the tree.

3. Expand the JAR file to view its contents.
4. Right click the Data Source Providers folder and select New Provider.
5. Configure the data source provider properties in the resulting property dialog.
6. Click OK.
7. Click File > Save to save your changes.

Example: Configuring data source provider and data source
settings
The purpose of this article is to help you to configure data source provider and
data source settings.
v Required fields:

– Data Source Provider Properties page: name
– Data Source Properties page: name, jndiName

v Special cases:
– The user name and password fields have no equivalant xmi tags. You must

specify these fields in the custom properties.
– The password is encrypted when you use the Application Client Resource

Configuration Tool (ACRCT). If you do not use the ACRCT, the field cannot
be encrypted.

v Example (shown here on multiple lines for publication):
<resources.jdbc:JDBCProvider xmi:id="JDBCProvider_1" name="jdbcProvider:name"

description="jdbcProvider:description" implementationClassName="jdbcProvider:ImplementationClass">
<classpath>jdbcProvider:classPath</classpath>
<factories xmi:type="resources.jdbc:WAS40DataSource" xmi:id="WAS40DataSource_1" name="jdbcFactory:name"

jndiName="jdbcFactory:jndiName" description="jdbcFactory:description"
databaseName="jdbcFactory:databasename">

<propertySet xmi:id="J2EEResourcePropertySet_13">
<resourceProperties xmi:id="J2EEResourceProperty_13" name="jdbcFactory:customName"

value="jdbcFactory:customValue"/>
<resourceProperties xmi:id="J2EEResourceProperty_14" name="user" value="jdbcFactory:user"/>
<resourceProperties xmi:id="J2EEResourceProperty_15" name="password"

292 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

value="{xor}NTs9PBk+PCswLSZlMT4yOg=="/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_14">
<resourceProperties xmi:id="J2EEResourceProperty_16" name="jdbcProvider:customName"

value="jdbcProvider:customeValue"/>
</propertySet>
</resources.jdbc:JDBCProvider>

Data source provider settings for application clients
Use this page to create a data source under a JDBC provider which provides the
specific JDBC driver implementation class.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file. Right-click Data Source Providers > and click New. The following fields
appear on the General tab:

Name: Specifies the display name for the data source.

For example you can set this field to Test Data Source.

Data type String

Description: Specifies a text description for the resource.

Data type String

Class Path: A list of paths or jarfile names which together form the location for
the resource provider classes.

Implementation class: Use this setting to perform database specific functions.

Data type String
Default Dependent on JDBC driver implementation class

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The acceptable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

Data source properties for application clients
Use this page to create or modify the V5.0 data sources.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > Data Source Providers > Data source provider instance. Right-click Data
Sources and click New. The following fields appear on the General tab:

Name: Specifies the display name of this data source.

Data type String

Chapter 7. Using application clients 293

Description: Specifies a text description of the data source.

Data type String

JNDI Name: The application client run-time uses this field to retrieve
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

Database Name: The name of the database to which you want to connect.

User: Use the user ID with the Password property, for authentication if the calling
application does not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for
the Password property. The connection factory User ID and Password properties
are used if the calling application does not provide a userid and password
explicitly.

Password: Use the password with the User ID property, for authentication if the
calling application does not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for
the Password property.

Re-Enter Password: Confirms the password.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The acceptable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

Configuring new data sources for application clients
Before you begin

During this task, you create new data sources for your application client.

Steps for this task
1. Click the data source provider for which you want to create a data source in

the tree. Do one of the following:
v Configure a new data source provider.
v Click an existing data source provider.

2. Expand the data source provider to view its Data Sources folder.
3. Click the folder. Do one of the following:

v Right-click the folder and click New Factory.
v Click Edit > New on the menu bar.

4. Configure the data source properties in the resulting property dialog.
5. Click OK when you finish.
6. Click File > Save on the menu bar to save your changes.

294 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Mail providers and mail sessions for the Application Client
Assembly Tool

A JavaMail service provider is a driver that allows a JavaMail API to interact with
mail servers running on a particular mail protocol. WebSphere Application Server
includes service providers, also known as protocol providers, for mail protocols
including Simple Mail Transfer Protocol (SMTP), Internet Message Access Protocol
(IMAP), and Post Office Protocol 3 (POP3).

Mail provider encapsulates a collection of protocol providers. For example,
WebSphere Application Server has a built-in mail provider that encompasses the
three protocol providers: SMTP, IMAP and POP3. These protocol providers are
installed as the default and are sufficient for most applications.

If you have a particular application that requires custom protocol providers, you
must first follow the steps outlined in ″JavaMail API Design Specification, V1.2,
Chapter 5 - The Mail Session″ to install your own protocol providers. See JavaMail:
Resources for learning, for a link to this documentation.

Ensure every mail session is defined under a parent mail provider. Select a mail
provider first and then create your new mail session.

Configuring mail providers and sessions for application
clients

Before you begin

Use the Application Client Resource Configuration Tool (ACRCT) to edit the
configurations of JavaMail sessions and providers for your application clients to
use.

Steps for this task
1. Open the ACRCT.
2. Open an EAR file.
3. Locate the JavaMail objects in the tree that displays.

For example, if your file contains JavaMail sessions, expand Resources >
application.jar > JavaMail Providers > java_mail_provider_instance >
JavaMail Sessions.
In this example, java_mail_provider_instance is a particular JavaMail provider.

Results

The JavaMail session instances are located in the JavaMail Sessions folder.

Mail provider settings for application clients
Use this page to implement the JavaMail API and create mail sessions.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file. Right-click Mail Providers > and click New. The following fields appear
on the General tab:

Name: The name of the JavaMail resource provider.

Description: An optional description for the resource provider.

Chapter 7. Using application clients 295

Class Path: Specifies a list of paths or JAR file names which together form the
location for the resource provider classes.

Protocol: Specifies the name of the protocol.

Classname: Specifies the name of the class implementing the protocol. Leave this
field blank if you want to use the default implementation.

Type: This menu contains the following two values: TRANSPORT or STORE.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The acceptable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

Mail session settings for application clients
Use this page to configure mail session properties.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > Mail Providers > mail provider instance. Right-click Mail Sessions and
click New. The following fields appear on the General tab:

Name: Represents the administrative name of the JavaMail session object.

Description: Provides an optional description for your administrative records.

JNDI Name: The application client run-time uses this field to retrieve
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

Mail Transport Host: Specifies the server to connect to when sending mail.

Mail Transport Protocol: Specifies the transport protocol to use when sending
mail.

Mail Transport User: Specifies the user ID to use when the mail transport host
requires authentication.

Mail Transport Password: Specifies the password to use when the mail transport
host requires authentication.

Re-Enter Password: Confirms the password.

Mail From: Specifies the mail originator.

Mail Store Host: Mail account host (or ″domain″) name.

Mail Store User: The user ID of the mail account.

Mail Store Password: The password of the mail account.

Re-Enter Password: Confirms the password.

296 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Mail Store Protocol: Specifies the protocol to be used when receiving mail.

Mail Debug: When true, JavaMail interaction with mail servers, along with these
mail session properties will be printed to stdout.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The acceptable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

Example: Configuring JavaMail provider and JavaMail session
settings for application clients
The purpose of this article is to help you configure JavaMail provider and JavaMail
session settings.
v Required fields:

– JavaMail Provider Properties page: name, and at least one protocol provider
– JavaMail Session Properties page: name, jndiName, mail transport protocol,

mail store protocol
v Special cases:

– The password is encrypted when using the ACRCT tool. Without the tool,
you cannot encrypt this field.

v Example:
<resources.mail:MailProvider xmi:id="MailProvider_1" name="Default Mail Provider"
description="IBM JavaMail Implementation">
<classpath>mailProvider:classpath</classpath>
<factories xmi:type="resources.mail:MailSession" xmi:id="MailSession_1" name=
"mailSession:name" jndiName="mailSession:jndiName" description="mailSession:description"
mailTransportHost="mailSession:mailTransportHost" mailTransportUser=
"mailSession:mailTransportUser" mailTransportPassword="{xor}Mj42Mww6LCw2MDFlMT4yOg=="
mailFrom="mailSession:mailFrom" mailStoreHost="mailSession:mailStoreHost" mailStoreUser=
"mailSession:mailStoreUser" mailStorePassword="{xor}Mj42Mww6LCw2MDFlMT4yOg==" debug="true"
mailTransportProtocol="ProtocolProvider_1" mailStoreProvider="ProtocolProvider_1">
<propertySet xmi:id="J2EEResourcePropertySet_1">
<resourceProperties xmi:id="J2EEResourceProperty_1" name="mailSession:customName" value=
"mailSession:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_2">
<resourceProperties xmi:id="J2EEResourceProperty_2" name="mailProvider:customName" value=
"mailProvider:customValue"/>
</propertySet>
<protocolProviders xmi:id="ProtocolProvider_1" protocol="smtp" classname="smtp:className"
/>
<protocolProviders xmi:id="ProtocolProvider_2" protocol="pop3" classname="pop3:className"
/>
<protocolProviders xmi:id="ProtocolProvider_3" protocol="imap" classname="imap:className"
/>
</resources.mail:MailProvider>

Configuring new mail sessions for application clients
Before you begin

During this task, you configure new mail sessions for your application client. The
mail sessions are associated with the preconfigured default mail provider supplied
by the product.

Chapter 7. Using application clients 297

Steps for this task
1. Start the tool and open the EAR file for the new JavaMail session.

The EAR file contents display in a tree view.
2. Select the JAR file in which you want to configure the new JavaMail session.
3. Expand the JAR file to view its contents.
4. Click JavaMail Providers > MailProvider > JavaMail Sessions. Do one of the

following:
v Right-click the JavaMail Sessions folder and select New Factory.
v Click Edit > New on the menu bar.

5. Configure the JavaMail session properties in the resulting property dialog.
6. Click OK when you finish.
7. Click File > Save on the menu bar to save your changes.

URLs for application clients
A Uniform Resource Locator (URL) is an identifier that points to an electronically
accessible resource, such as a directory file on a machine in a network, or a
document stored in a database.

URLs appear in the format scheme:scheme_information.

You can represent a scheme as http, ftp, file, or another term that identifies the
type of resource and the mechanism by which you can access the resource.

In a World Wide Web browser location or address box, a URL for a file available
using HyperText Transfer Protocol (HTTP) starts with http:. An example is
http://www.ibm.com. Files available using File Transfer Protocol (FTP) start with
ftp:. Files available locally start with file:.

The scheme_information commonly identifies the Internet machine making a
resource available, the path to that resource, and the resource name. The
scheme_information for HTTP, FTP and File generally starts with two slashes (//),
then provides the Internet address separated from the resource path name with
one slash (/). For example,

http://www-4.ibm.com/software/webservers/appserv/library.html.

For HTTP and FTP, the path name ends in a slash when the URL points to a
directory. In such cases, the server generally returns the default index for the
directory.

URL providers for the Application Client Resource
Configuration Tool

A URL provider implements the functionality for a particular URL protocol, such
as Hyper Text Transfer Protocol (HTTP). This provider, comprised of a pair of
classes, extends the java.net.URLStreamHandler and java.net.URLConnection
classes.

Configuring new URL providers for application clients
Before you begin

298 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

During this task, you create URL providers and URLs for your client application.
In a separate administrative task, you must install the Java code for the required
URL provider on the client machine on which the client application resides.

Steps for this task
1. Start the tool and open the EAR file for which you want to configure the new

URL provider. The EAR file contents display in a tree view.
2. Select the JAR file in which you want to configure the new URL provider from

the tree.
3. Expand the JAR file to view its contents.
4. Click the folder called URL Providers. Do one of the following:

v Right-click the folder and click New Provider.
v Click Edit -> New on the menu bar.

5. Configure the URL provider properties in the resulting property dialog.
6. Click OK when you finish.
7. Click File -> Save on the menu bar to save your changes.

Configuring URL providers and sessions using the Application
Client Resource Configuration Tool
Before you begin

Use the Application Client Resource Configuration Tool (ACRCT) to edit the
configurations of URL providers and URLs to be used by your application clients.

Steps for this task
1. Open the ACRCT.
2. Open an EAR file.
3. Locate the URL objects in the tree that displays.

For example, if your file contains URL providers and URLs, expand Resources
-> application.jar -> URL Providers -> url_provider_instance

where url_provider_instance is a particular URL provider.
4. If you expand the tree further, you will also see the URLs folders containing

the URL instances for each URL provider instance.

URL settings for application clients
Use this page to implement the functionality for a particular URL protocol, such as
Hyper Text Transfer Protocol (HTTP).

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > URL Providers > URL provider instance. Right-click URLs and click New.
The following fields appear on the General tab.

This provider, comprised of classes, extends the java.net.URLStreamHandler and
java.net.URLConnection classes.

Name: Administrative name for the URL

Description: Optional description of the URL, for your administrative records

Chapter 7. Using application clients 299

JNDI Name: The application client run-time uses this field to retrieve
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

URL: A Uniform Resource Locator (URL) name that points to an internet or
intranet resource. For example: http://www.ibm.com

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The acceptable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

URL provider settings for application clients
Use this page create new URLs..

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file. Right-click URL Providers > and click New. The following fields appear
on the General tab.

A URL provider implements the functionality for a particular URL protocol, such
as Hyper Text Transfer Protocol (HTTP). This provider, comprised of classes,
extends the java.net.URLStreamHandler and java.net.URLConnection classes.

Name: Administrative name for the URL

Description: Optional description of the URL, for your administrative records

Class Path: A list of paths or jarfile names which together form the location for
the resource provider classes.

Protocol: Protocol supported by this stream handler. For example, ″nntp″, ″smtp″,
″ftp″, etc.

To use the default protocol, leave this field blank.

Stream handler class: Fully qualified name of a User-defined Java class that
extends java.net.URLStreamHandler for a particular URL protocol, such as ftp.

To use the default stream handler, leave this field blank.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The acceptable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

Example: Configuring URL and URL provider settings for
application clients
The purpose of this article is to help you to configure URL and URL provider
settings.

300 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v Required fields:
– URL Properties page: name, jndiName, url
– URL Provider Properties page: name

v Example:
<resources.url:URLProvider xmi:id="URLProvider_1" name="urlProvider:name" description=
"urlProvider:description" streamHandlerClassName="urlProvider:streamHandlerClass" protocol=
"urlProvider:protocol">
<classpath>urlProvider:classpath</classpath>
<factories xmi:type="resources.url:URL" xmi:id="URL_1" name="urlFactory:name" jndiName=
"urlFactory:jndiName" description="urlFactory:description" spec="urlFactory:url">
<propertySet xmi:id="J2EEResourcePropertySet_18">
<resourceProperties xmi:id="J2EEResourceProperty_20" name="urlFactory:customName" value=
"urlFactory:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_19">
<resourceProperties xmi:id="J2EEResourceProperty_21" name="urlProvider:customName" value=
"urlProvider:customValue"/>
</propertySet>
</resources.url:URLProvider>

Configuring new URLs with the Application Client Resource
Configuration Tool

Before you begin

During this task, you create URLs for your client application.

Steps for this task
1. Click the URL provider for which you want to create a URL in the tree. Do one

of the following:
v Configure a new URL provider.
v Click an existing URL provider.

2. Expand the URL provider to view the URLs folder.
3. Click the folder. Do one of the following:

v Right-click the folder and click New Factory.
v Click Edit -> New on the menu bar.

4. Configure the URL properties in the resulting property dialog.
5. Click OK when you finish.
6. Click File -> Save in the menu bar to save your changes.

WebSphere asynchronous messaging using the Java Message
Service API for the Application Client Resource Configuration
Tool

WebSphere Application Server supports asynchronous messaging as a method of
communication based on the Java Message Service (JMS) programming interface.
The JMS interface provides a common way for Java programs (clients and J2EE
applications) to create, send, receive, and read asynchronous requests, as JMS
messages.

This topic provides an overview of asynchronous messaging using JMS support
provided by the WebSphere Application Server.

Chapter 7. Using application clients 301

The base support for asynchronous messaging using the JMS API provides the
common set of JMS interfaces and associated semantics that define how a JMS
client can access the facilities of a JMS provider. This support enables WebSphere
J2EE applications, as JMS clients, to exchange messages asynchronously with other
JMS clients, by using JMS destinations (queues or topics). An J2EE application can
use JMS queue destinations for point-to-point messaging and JMS topic
destinations for Pub and Sub messaging. A J2EE application can explicitly poll for
messages on a destination then retrieve messages for processing by business logic
beans (enterprise beans).

With the base JMS/XA support, the J2EE application uses standard JMS calls to
process messages, including any responses or outbound messaging. An enterprise
bean can handle responses acting as a sender bean, or within the enterprise bean
that receives the incoming messages. Optionally, this process can use two-phase
commit within the scope of a transaction. This level of functionality for
asynchronous messaging is called bean-managed messaging, and gives an enterprise
bean complete control over the messaging infrastructure; for example, connection
and session pool management. The common container has no role in bean-managed
messaging.

WebSphere Application Server also supports automatic asynchronous messaging
using message-driven beans (a type of enterprise bean defined in the EJB 2.0
specification) and JMS listeners (part of the JMS application server facilities).
Messages are automatically retrieved from JMS destinations, optionally within a
transaction, then sent to the message-driven bean in a J2EE application, without
the application having to explicitly poll JMS destinations.

Configuring Java messaging client resources
Before you begin

In a separate administrative task, install the Java Message Service (JMS) client on
the client machine where the application client resides. The messaging product
vendor must provide an implementation of the JMS client. For more information,
see your messaging product documentation.

During this task, you create new JMS provider configurations for your application
client. The application client can use a messaging service through the Java Message
Service APIs. A JMS provider provides two kinds of J2EE factories. One is a JMS
connection factory, and the other is a JMS destination factory.

Steps for this task
1. Start the ACRCT, click File > Open, and select the EAR file for which you want

to configure the new JMS provider. The EAR file contents display in a tree
view.

2. Select the JAR file in which you want to configure the new JMS provider from
the tree.

3. Expand the JAR file to view its contents.
4. Click the JMS Providers folder and click New Provider.
5. Configure the JMS provider properties in the resulting property dialog.
6. Click OK.
7. Click File > Save.

302 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Configuring new JMS providers with the Application Client
Resource Configuration Tool
Before you begin

During this task, you will create new JMS provider configurations for your
application client. The application client can make use of a messaging service
through the Java Message Service APIs. A JMS provider provides two kinds of
J2EE factories. One is a JMS Connection factory, and the other is a JMS destination
factory.

In a separate administrative task, you must install the JMS client on the client
machine where the application client resides. The messaging product vendor must
provide an implementation of the JMS client. For more information, see your
messaging product documentation.

Steps for this task
1. Start the tool and open the EAR file for which you want to configure the new

JMS provider. The EAR file contents will be displayed in a tree view.
2. From the tree, select the JAR file in which you want to configure the new JMS

provider.
3. Expand the JAR file to view its contents.
4. Click the folder called JMS Providers. Do one of the following:

v Right-click the folder and select New Provider.
v On the menu bar, click Edit -> New.

5. In the resulting property dialog, configure the JMS provider properties.
6. When finished, click OK.
7. On the menu bar, click File -> Save to save your changes.

JMS provider settings for application clients
Use this page to configure properties of the JMS provider, if you want to use a JMS
provider other than the internal WebSphere JMS provider or the MQSeries JMS
provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file. Right-click JMS Providers > click New. The following fields appear on
the General tab.

Name: The name by which the JMS provider is known for administrative
purposes.

Data type String

Description: A description of the JMS provider, for administrative purposes

Data type String

Class Path: A list of paths or jarfile names which together form the location for
the resource provider classes.

Context factory class: The Java classname of the initial context factory for the JMS
provider.

Chapter 7. Using application clients 303

For example, for an LDAP service provider the value has the form:
com.sun.jndi.ldap.LdapCtxFactory.

Data type String

Provider URL: The JMS provider URL for external JNDI lookups.

For example, an LDAP URL for a JMS provider has the form:
ldap://hostname.company.com/contextName.

Data type String

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The acceptable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

WebSphere queue connection factory settings for application
clients
Use this panel to view or change the configuration properties of the selected queue
connection factory for use with the internal WebSphere JMS provider that is
installed with WebSphere Application Server. These configuration properties
control how connections are created to the associated JMS queue destination.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > JMS Providers > JMS provider instance. Right-click WAS Queue
Connection Factories and click New. The following fields appear on the General
tab.

A queue connection factory is used to create JMS connections to queue
destinations. The queue connection factory is created by the internal WebSphere
JMS provider. A queue connection factory for the internal WebSphere JMS provider
has the following properties:

Name: The name by which this queue connection factory is known for
administrative purposes within IBM WebSphere Application Server. The name
must be unique within the JMS connection factories across the WebSphere
administrative domain.

Data type String

Description: A description of this connection factory for administrative purposes
within IBM WebSphere Application Server.

Data type String
Default Null

304 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

JNDI Name: The application client run-time uses this field to retrieve
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

User: The user ID used, with the Password property, for authentication if the
calling application does not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for
the Password property.

The connection factory User ID and Password properties are used if the calling
application does not provide a userid and password explicitly; for example, if the
calling application uses the method createQueueConnection(). The JMS client flows
the userid and password to the JMS server.

Data type String

Password: The password used, with the User ID property, for authentication if
the calling application does not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for
the Password property.

Data type String
Default Null

Re-Enter Password: Confirms the password.

Node: The WebSphere node name of the administrative node where the JMS
server runs for this connection factory. Connections created by this factory connect
to that JMS server.

Data type String

Application Server: Enter the name of the application server. This name is not the
host name of the machine, but the name of the configured application server.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The acceptable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

WebSphere topic connection factory settings for application
clients
Use this panel to view or change the configuration properties of the selected topic
connection factory for use with the internal WebSphere JMS provider. These
configuration properties control how connections are created to the associated JMS
topic destination.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected

Chapter 7. Using application clients 305

JAR file > JMS Providers > JMS provider instance. Right-click WAS Topic
Connection Factories and click New. The following fields appear on the General
tab.

A topic connection factory is used to create JMS connections to topic destinations.
The topic connection factory is created by the associated JMS provider. A topic
connection factory for the internal WebSphere JMS provider has the following
properties.

Name: The name by which this queue connection factory is known for
administrative purposes within IBM WebSphere Application Server. The name
must be unique within the JMS connection factories across the WebSphere
administrative domain.

Data type String

Description: A description of this topic connection factory for administrative
purposes within IBM WebSphere Application Server.

Data type String
Default Null

JNDI Name: The application client run-time uses this field to retrieve
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

User: The user ID used, with the Password property, for authentication if the
calling application does not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for
the Password property.

The connection factory User ID and Password properties are used if the calling
application does not provide a userid and password explicitly; for example, if the
calling application uses the method createTopicConnection(). The JMS client flows
the userid and password to the JMS server.

Data type String

Password: The password used, with the User ID property, for authentication if
the calling application does not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for
the Password property.

Data type String
Default Null

Re-Enter Password: Confirms the password.

Node: The WebSphere node name of the administrative node where the JMS
server runs for this connection factory. Connections created by this factory connect
to that JMS server.

306 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Data type Enum
Default Null
Range Pull-down list of nodes in the WebSphere administrative domain.

Application Server: Enter the name of the application server. This name is not the
host name of the machine, but the name of the configured application server.

Port: Which of the two ports that connections use to connect to the JMS Server.
The QUEUED port is for full-function JMS publish/subscribe support, the DIRECT
port is for non-persistent, non-transactional, non-durable subscriptions only.

Note: Message-driven beans cannot use the direct listener port for
publish/subscribe support. Therefore, any topic connection factory configured with
Port set to Direct cannot be used with message-driven beans.

Data type Enum
Units Not applicable
Default QUEUED
Range

QUEUED
The listener port used for full-function
JMS-compliant, publish/subscribe support.

DIRECT
The listener port used for direct TCP/IP
connection (non-transactional, non-persistent,
and non-durable subscriptions only) for
publish/subscribe support.

The TCP/IP port numbers for these ports are defined
on the WebSphere Internal JMS Server.

Client Id: The JMS client identifier used for connections to the MQSeries queue
manager.

Data type String

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The acceptable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

WebSphere queue destination settings for application clients
Use this panel to view or change the configuration properties of the selected queue
destination for use with the WebSphere JMS provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > JMS Providers > JMS provider instance. Right-click WAS Queue
Destinations and click New. The following fields appear on the General tab.

A queue destination is used to configure the properties of a JMS queue.
Connections to the queue are created by the associated queue connection factory

Chapter 7. Using application clients 307

for the internal WebSphere JMS provider. A queue for use with the internal
WebSphere JMS provider has the following properties.

Name: The name by which the queue is known for administrative purposes
within IBM WebSphere Application Server.

Data type String

Description: A description of the queue, for administrative purposes

Data type String
Default Null

JNDI Name: The application client run-time uses this field to retrieve
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

Persistence: Whether all messages sent to the destination are persistent,
non-persistent, or have their persistence defined by the application

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range

Application defined
Messages on the destination have their persistence
defined by the application that put them onto the
queue.

Queue defined
[WebSphere MQ destination only] Messages on the
destination have their persistence defined by the
WebSphere MQ queue definition properties.

Persistent
Messages on the destination are persistent.

Non persistent
Messages on the destination are not persistent.

Priority: Whether the message priority for this destination is defined by the
application or the Specified priority property

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED

308 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Range
Application defined

The priority of messages on this destination is
defined by the application that put them onto the
destination.

Queue defined
[WebSphere MQ destination only] Messages on the
destination have their persistence defined by the
WebSphere MQ queue definition properties.

Specified
The priority of messages on this destination is
defined by the Specified priority property.If you
select this option, you must define a priority on the
Specified priority property.

Specified Priority: If the Priority property is set to Specified, type here the
message priority for this queue, in the range 0 (lowest) through 9 (highest)

If the Priority property is set to Specified, messages sent to this queue have the
priority value specified by this property.

Data type Integer
Units Message priority level
Default Null
Range 0 (lowest priority) through 9 (highest priority)

Expiry: Whether the expiry timeout for this queue is defined by the application or
the Specified expiry property, or messages on the queue never expire (have an
unlimited expiry timeout)

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range

Application defined
The expiry timeout for messages on this queue is
defined by the application that put them onto the
queue.

Specified
The expiry timeout for messages on this queue is
defined by the Specified expiry property.If you select
this option, you must define a timeout on the Specified
expiry property.

Unlimited
Messages on this queue have no expiry timeout, so
those messages never expire.

Specified Expiry: If the Expiry timeout property is set to Specified, type here the
number of milliseconds (greater than 0) after which messages on this queue expire

Data type Integer
Units Milliseconds
Default Null

Chapter 7. Using application clients 309

Range Greater than or equal to 0

v 0 indicates that messages never timeout

v Other values are an integer number of milliseconds

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The acceptable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

WebSphere topic destination settings for application clients
Use this panel to view or change the configuration properties of the selected topic
destination for use with the internal WebSphere JMS provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > JMS Providers > JMS provider instance. Right-click WAS Topic
Destinations and click New. The following fields appear on the General tab.

A topic destination is used to configure the properties of a JMS topic for the
associated JMS provider. Connections to the topic are created by the associated
topic connection factory. A topic for use with the internal WebSphere JMS provider
has the following properties.

Name: The name by which the topic is known for administrative purposes.

Data type String

Description: A description of the topic, for administrative purposes within IBM
WebSphere Application Server.

Data type String
Default Null

JNDI Name: The application client run-time uses this field to retrieve
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

Topic Name: The name of the topic as defined to the JMS provider.

Data type String

Persistence: Whether all messages sent to the destination are persistent,
non-persistent, or have their persistence defined by the application

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED

310 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Range
Application defined

Messages on the destination have their persistence
defined by the application that put them onto the
queue.

Queue defined
[WebSphere MQ destination only] Messages on the
destination have their persistence defined by the
WebSphere MQ queue definition properties.

Persistent
Messages on the destination are persistent.

Non persistent
Messages on the destination are not persistent.

Priority: Whether the message priority for this destination is defined by the
application or the Specified priority property

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range

Application defined
The priority of messages on this destination is
defined by the application that put them onto the
destination.

Queue defined
[WebSphere MQ destination only] Messages on the
destination have their persistence defined by the
WebSphere MQ queue definition properties.

Specified
The priority of messages on this destination is
defined by the Specified priority property.If you
select this option, you must define a priority on the
Specified priority property.

Specified Priority: If the Priority property is set to Specified, type here the
message priority for this queue, in the range 0 (lowest) through 9 (highest)

If the Priority property is set to Specified, messages sent to this queue have the
priority value specified by this property.

Data type Integer
Units Message priority level
Default Null
Range 0 (lowest priority) through 9 (highest priority)

Expiry: Whether the expiry timeout for this queue is defined by the application or
the Specified expiry property, or messages on the queue never expire (have an
unlimited expiry timeout)

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED

Chapter 7. Using application clients 311

Range
Application defined

The expiry timeout for messages on this queue is
defined by the application that put them onto the
queue.

Specified
The expiry timeout for messages on this queue is
defined by the Specified expiry property.If you select
this option, you must define a timeout on the Specified
expiry property.

Unlimited
Messages on this queue have no expiry timeout, so
those messages never expire.

Specified Expiry: If the Expiry timeout property is set to Specified, type here the
number of milliseconds (greater than 0) after which messages on this queue expire

Data type Integer
Units Milliseconds
Default Null
Range Greater than or equal to 0

v 0 indicates that messages never timeout

v Other values are an integer number of milliseconds

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The acceptable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

MQSeries queue connection factory settings for application
clients
Use this panel to view or change the configuration properties of the selected queue
connection factory for use with the MQSeries JMS provider. These configuration
properties control how connections are created to the associated JMS queue
destination.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > JMS Providers > JMS provider instance. Right-click MQ Queue
Connection Factories and click New. The following fields appear on the General
tab.

A queue connection factory is used to create JMS connections to queue
destinations. The queue connection factory is created by the MQSeries JMS
provider. A queue connection factory for the MQSeries JMS provider has the
following properties.

Note:

v The property values that you specify must match the values that you specified
when configuring MQSeries for JMS resources. For more information about
configuring MQSeries JMS resources, see the MQSeries Using Java book.

312 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v In MQSeries, names can have a maximum of 48 characters, with the exception of
channels which have a maximum of 20 characters.

Name: The name by which this queue connection factory is known for
administrative purposes within IBM WebSphere Application Server. The name
must be unique within the JMS connection factories across the WebSphere
administrative domain.

Data type String

Description: A description of this connection factory for administrative purposes
within IBM WebSphere Application Server.

Data type String
Default Null

JNDI Name: The application client run-time uses this field to retrieve
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

User: The user ID used, with the Password property, for authentication if the
calling application does not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for
the Password property.

The connection factory User ID and Password properties are used if the calling
application does not provide a userid and password explicitly; for example, if the
calling application uses the method createQueueConnection(). The JMS client flows
the userid and password to the JMS server.

Data type String

Password: The password used, with the User ID property, for authentication if
the calling application does not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for
the Password property.

Data type String
Default Null

Re-Enter Password: Confirms the password.

Queue Manager: The name of the MQSeries queue manager for this connection
factory.

Connections created by this factory connect to that queue manager.

Data type String

Host: The name of the host on which the WebSphere MQ queue manager runs,
for client connection only.

Chapter 7. Using application clients 313

Data type String
Default Null
Range A valid TCP/IP hostname

Port: The TCP/IP port number used for connection to the WebSphere MQ queue
manager, for client connection only.

This port must be configured on the WebSphere MQ queue manager.

Data type Integer
Default Null
Range A valid TCP/IP port number, configured on the WebSphere MQ queue manager.

Channel: The name of the channel used for connection to the WebSphere MQ
queue manager, for client connection only.

Data type String
Default Null
Range 1 through 20 ASCII characters

Transport type: Specifies whether the WebSphere MQ client connection or JNI
bindings are used for connection to the WebSphere MQ queue manager. The
external JMS provider controls the communication protocols between JMS clients
and JMS servers. Tune the transport type when you are using non-ASF
nonpersistent, nondurable, nontransactional messaging or when you want to
satisfy security issues and the client is local to the queue manager node.

Data type Enum
Units Not applicable
Default BINDINGS
Range

BINDINGS
JNI bindings are used to connect to the
queue manager. BINDINGS is a shared
memory protocol and can only be used
when the queue manager is on the same
node as the JMS client and comes at
some security risks that should be
addressed through the use of EJB roles.

CLIENT
WebSphere MQ client connection is
used to connect to the queue manager.
CLIENT is a typical TCP-based protocol.

DIRECT
For WebSphere MQ Event Broker using
DIRECT mode. DIRECT is a lightweight
sockets protocol used in
nontransactional, nondurable and
nonpersistent Publish/Subscribe
messasging. DIRECT is only works for
clients and message-driven beans using
the non-ASF protocol.

QUEUED
QUEUED is a standard TCP protocol.

314 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Data type Enum
Recommended

Queue connection factory transport type
BINDINGS is faster by 30% or more,
but it lacks security. When you have
security concerns, BINDINGS is more
desirable than CLIENT.

Topic connection factory transport type
DIRECT is the fastest and should be
used where possible. Use BINDINGS
when you want to satisfy additional
security tasks and the queue manager is
local to the JMS client. QUEUED is
fallback for all other cases. Note,
WebSphere MQ 5.3 before CSD2 with
the DIRECT setting can lose messages
when used with message-driven beans
and under load. This also happens with
client-side based applications unless the
broker’s maxClientQueueSize is set to 0.
You can set this to 0 with the command
#wempschangeproperties
WAS_nodeName_server1 -e default -o
DynamicSubscriptionEngine -n
maxClientQueueSize -v 0 -x
executionGroupUUID, where
executionGroupUUID can be found by
starting the broker and looking in the
Event Log/Applications for event 2201.
This value is usually
ffffffff-0000-0000-000000000000.

Client ID: The JMS client identifier used for connections to the MQSeries queue
manager.

Data type String

CCSID: The coded character set identifier for use with the WebSphere MQ queue
manager.

This coded character set identifier (CCSID) must be one of the CCSIDs supported
by WebSphere MQ.

Data type String

For more information about supported CCSIDs, and about converting between
message data from one coded character set to another, see the WebSphere MQ
System Administration and the WebSphere MQ Application Programming Reference
books. These are available from the WebSphere MQ messaging multiplatform and
platform-specific books Web pages, the IBM Publications Center (), or from the
WebSphere MQ collection kit, SK2T-0730.

Message Retention: Select this tick box to specify that unwanted messages are to
be left on the queue. Otherwise, unwanted messages are dealt with according to
their disposition options.

Chapter 7. Using application clients 315

http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html
http://www-3.ibm.com/software/ts/mqseries/library/manualsa/manuals/platspecific.html
http://www.elink.ibmlink.ibm.com/public/applications/publications/cgibin/pbi.cgi

Data type Enum
Units Not applicable
Default Cleared
Range

Selected
Unwanted messages are left on the queue.

Cleared
Unwanted messages are dealt with according
to their disposition options.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The acceptable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

MQSeries topic connection factory settings for application
clients
Use this panel to view or change the configuration properties of the selected topic
connection factory for use with the MQSeries JMS provider. These configuration
properties control how connections are created to the associated JMS topic
destination.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > JMS Providers > JMS provider instance. Right-click MQ Topic
Connection Factories and click New. The following fields appear on the General
tab.

A topic connection factory is used to create JMS connections to topic destinations.
The topic connection factory is created by the MQSeries JMS provider. A topic
connection factory for the MQSeries JMS provider has the following properties.

Note:

v The property values that you specify must match the values that you specified
when configuring MQSeries JMS resources. For more information about
configuring MQSeries JMS resources, see the MQSeries Using Java book.

v In MQSeries, names can have a maximum of 48 characters, with the exception of
channels which have a maximum of 20 characters.

Name: The name by which this topic connection factory is known for
administrative purposes within IBM WebSphere Application Server. The name
must be unique within the JMS provider.

Data type String

Description: A description of this topic connection factory for administrative
purposes within IBM WebSphere Application Server.

Data type String
Default Null

316 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

JNDI Name: The JNDI name that is used to bind the topic connection factory into
the application server’s name space.

As a convention, use the fully qualified JNDI name; for example, in the form
jms/Name, where Name is the logical name of the resource.

This name is used to link the platform binding information. The binding associates
the resources defined by the deployment descriptor of the module to the actual
(physical) resources bound into JNDI by the platform.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 45 ASCII characters

User: The user ID used, with the Password property, for authentication if the
calling application does not provide a userid and password explicitly.

If you specify a value for the User property, you must also specify a value for the
Password property.

The connection factory User and Password properties are used if the calling
application does not provide a userid and password explicitly; for example, if the
calling application uses the method createTopicConnection(). The JMS client flows
the userid and password to the JMS server.

Data type String

Password: The password used, with the User ID property, for authentication if
the calling application does not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for
the Password property.

Data type String
Default Null

Re-Enter Password: Confirms the password.

Queue Manager: The name of the MQSeries queue manager for this connection
factory. Connections created by this factory connect to that queue manager.

Data type String

Host: The name of the host on which the WebSphere MQ queue manager runs,
for client connection only.

Data type String
Default Null
Range A valid TCP/IP hostname

Port: The TCP/IP port number used for connection to the WebSphere MQ queue
manager, for client connection only.

Chapter 7. Using application clients 317

This port must be configured on the WebSphere MQ queue manager.

Data type Integer
Default Null
Range A valid TCP/IP port number, configured on the WebSphere MQ queue manager.

Channel: The name of the channel used for connection to the WebSphere MQ
queue manager, for client connection only.

Data type String
Default Null
Range 1 through 20 ASCII characters

Transport Type: Whether MQSeries client connection or JNDI bindings is used for
connection to the MQSeries queue manager.

Data type Enum
Units Not applicable
Default BINDINGS
Range

CLIENT
MQSeries client connection is used to connect
to the MQSeries queue manager.

BINDINGS
JNDI bindings are used to connect to the
MQSeries queue manager.

Client Id: The JMS client identifier used for connections to the MQSeries queue
manager.

Data type String

CCSID: The coded character set identifier for use with the WebSphere MQ queue
manager.

This coded character set identifier (CCSID) must be one of the CCSIDs supported
by WebSphere MQ.

Data type String

Broker Control Queue: The name of the broker control queue, to which all
command messages (except publications and requests to delete publications) are
sent

The name of the broker control queue. Publisher and subscriber applications, and
other brokers, send all command messages (except publications and requests to
delete publications) to this queue.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 48 ASCII characters

318 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Broker Queue Manager: The name of the MQSeries queue manager that provides
the Pub/Sub message broker.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 48 ASCII characters

Broker Pub Queue: The name of the broker’s input queue that receives all
publication messages for the default stream

The name of the broker’s input queue (stream queue) that receives all publication
messages for the default stream. Applications can also send requests to delete
publications on the default stream to this queue.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 48 ASCII characters

Broker Sub Queue: The name of the broker queue from which non-durable
subscription messages are retrieved

The name of the broker’s queue from which non-durable subscription messages are
retrieved. The subscriber specifies the name of the queue when it registers a
subscription.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 48 ASCII characters

Broker CCSubQ: The name of the broker’s queue from which non-durable
subscription messages are retrieved for a ConnectionConsumer. This property
applies only for use of the Web container.

The name of the broker queue from which non-durable subscription messages are
retrieved for a ConnectionConsumer. This property applies only for use of the Web
container.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 48 ASCII characters

Broker Version: Whether the message broker is provided by the MQSeries MA0C
Supportpac or newer versions of WebSphere message broker products

Data type Enum
Units Not applicable
Default Advanced

Chapter 7. Using application clients 319

Range
Advanced

The message broker is provided by newer
versions of WebSphere message broker
products (MQ Integrator and MQ Publish and
Subscribe)

Basic The message broker is provided by the
MQSeries MA0C SupportPac (MQSeries -
Publish/Subscribe)

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The accectable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

MQSeries queue destination settings for application clients
Use this panel to view or change the configuration properties of the selected queue
destination for use with the MQSeries JMS provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > JMS Providers > JMS provider instance. Right-click MQ Queue
Destinations and click New. The following fields appear on the General tab.

A queue destination is used to configure the properties of a JMS queue.
Connections to the queue are created by the associated queue connection factory
for the MQSeries JMS provider. A queue for use with the MQSeries JMS provider
has the following properties.

Note:

v The property values that you specify must match the values that you specified
when configuring MQSeries JMS resources. For more information about
configuring MQSeries JMS resources, see the MQSeries Using Java book.

v In MQSeries, names can have a maximum of 48 characters, with the exception of
channels which have a maximum of 20 characters.

Name: The name by which the queue is known for administrative purposes
within IBM WebSphere Application Server.

Data type String

Description: A description of the queue, for administrative purposes

Data type String
Default Null

JNDI Name: The application client run-time uses this field to retrieve
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

320 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Persistence: Whether all messages sent to the destination are persistent,
non-persistent, or have their persistence defined by the application

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range

Application defined
Messages on the destination have their persistence
defined by the application that put them onto the
queue.

Queue defined
[WebSphere MQ destination only] Messages on the
destination have their persistence defined by the
WebSphere MQ queue definition properties.

Persistent
Messages on the destination are persistent.

Non persistent
Messages on the destination are not persistent.

Priority: Whether the message priority for this destination is defined by the
application or the Specified priority property

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range

Application defined
The priority of messages on this destination is
defined by the application that put them onto the
destination.

Queue defined
[WebSphere MQ destination only] Messages on the
destination have their persistence defined by the
WebSphere MQ queue definition properties.

Specified
The priority of messages on this destination is
defined by the Specified priority property.If you
select this option, you must define a priority on the
Specified priority property.

Specified Priority: If the Priority property is set to Specified, type here the
message priority for this queue, in the range 0 (lowest) through 9 (highest)

If the Priority property is set to Specified, messages sent to this queue have the
priority value specified by this property.

Data type Integer
Units Message priority level
Default Null
Range 0 (lowest priority) through 9 (highest priority)

Expiry: Whether the expiry timeout for this queue is defined by the application or
the Specified expiry property, or messages on the queue never expire (have an
unlimited expiry timeout)

Chapter 7. Using application clients 321

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range

Application defined
The expiry timeout for messages on this queue is
defined by the application that put them onto the
queue.

Specified
The expiry timeout for messages on this queue is
defined by the Specified expiry property.If you select
this option, you must define a timeout on the Specified
expiry property.

Unlimited
Messages on this queue have no expiry timeout, so
those messages never expire.

Specified Expiry: If the Expiry timeout property is set to Specified, type here the
number of milliseconds (greater than 0) after which messages on this queue expire

Data type Integer
Units Milliseconds
Default Null
Range Greater than or equal to 0

v 0 indicates that messages never timeout

v Other values are an integer number of milliseconds

Base Queue Name: The name of the queue to which messages are sent, on the
queue manager specified by the Base queue manager name property

Data type String

Base Queue Manager Name: The name of the MQSeries queue manager to which
messages are sent

This queue manager provides the queue specified by the Base queue name
property.

Data type String
Units En_US ASCII characters
Default Null
Range A valid MQSeries Queue Manager name, as 1 through 48 ASCII characters

CCSID: The coded character set identifier for use with the WebSphere MQ queue
manager.

This coded character set identifier (CCSID) must be one of the CCSIDs supported
by WebSphere MQ.

Data type String

Integer encoding: If native encoding is not enabled, select whether integer
encoding is normal or reversed.

322 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Data type Enum
Units Not applicable
Default NORMAL
Range

NORMAL
Normal integer encoding is used.

REVERSED
Reversed integer encoding is used.

For more information about encoding properties, see
the WebSphere MQ Using Java document.

Decimal encoding: If native encoding is not enabled, select whether decimal
encoding is normal or reversed.

Data type Enum
Units Not applicable
Default NORMAL
Range

NORMAL
Normal decimal encoding is used.

REVERSED
Reversed decimal encoding is used.

For more information about encoding properties, see
the WebSphere MQ Using Java document.

Floating point encoding: If native encoding is not enabled, select the type of
floating point encoding.

Data type Enum
Units Not applicable
Default IEEENORMAL
Range

IEEENORMAL
IEEE normal floating point encoding is used.

IEEEREVERSED
IEEE reversed floating point encoding is used.

S390 S390 floating point encoding is used.

For more information about encoding properties, see
the WebSphere MQ Using Java document.

Native encoding: Select this checkbox to indicate that the queue destination
should use native encoding (appropriate encoding values for the Java platform).

Data type Enum
Units Not applicable
Default Cleared

Chapter 7. Using application clients 323

Range
Cleared

Native encoding is not used, so specify the
properties below for integer, decimal, and
floating point encoding.

Selected
Native encoding is used (to provide
appropriate encoding values for the Java
platform).

For more information about encoding properties, see
the MQSeries Using Java document.

Target client: Whether the receiving application is JMS-compliant or is a
traditional WebSphere MQ application

Data type Enum
Units Not applicable
Default MQSeries
Range

MQSeries
The target is a non-JMS, traditional
WebSphere MQ application.

JMS The target is a JMS-compliant application.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The acceptable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

MQSeries topic destination settings for application clients
Use this panel to view or change the configuration properties of the selected topic
destination for use with the MQSeries JMS provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > JMS Providers > JMS provider instance. Right-click MQ Topic
Destinations and click New. The following fields appear on the General tab.

A topic destination is used to configure the properties of a JMS topic for the
associated JMS provider. Connections to the topic are created by the associated
topic connection factory. A topic for use with the MQSeries JMS provider has the
following properties.

Note:

v The property values that you specify must match the values that you specified
when configuring MQSeries JMS resources. For more information about
configuring MQSeries JMS resources, see the MQSeries Using Java book.

v In MQSeries, names can have a maximum of 48 characters, with the exception of
channels which have a maximum of 20 characters.

Name: The name by which the topic is known for administrative purposes.

324 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Data type String

Description: A description of the topic, for administrative purposes within IBM
WebSphere Application Server.

Data type String
Default Null

JNDI Name: The application client run-time uses this field to retrieve
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

Persistence: Whether all messages sent to the destination are persistent,
non-persistent, or have their persistence defined by the application

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range

Application defined
Messages on the destination have their persistence
defined by the application that put them onto the
queue.

Queue defined
[WebSphere MQ destination only] Messages on the
destination have their persistence defined by the
WebSphere MQ queue definition properties.

Persistent
Messages on the destination are persistent.

Non persistent
Messages on the destination are not persistent.

Priority: Whether the message priority for this destination is defined by the
application or the Specified priority property

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range

Application defined
The priority of messages on this destination is
defined by the application that put them onto the
destination.

Queue defined
[WebSphere MQ destination only] Messages on the
destination have their persistence defined by the
WebSphere MQ queue definition properties.

Specified
The priority of messages on this destination is
defined by the Specified priority property.If you
select this option, you must define a priority on the
Specified priority property.

Chapter 7. Using application clients 325

Specified Priority: If the Priority property is set to Specified, type here the
message priority for this queue, in the range 0 (lowest) through 9 (highest)

If the Priority property is set to Specified, messages sent to this queue have the
priority value specified by this property.

Data type Integer
Units Message priority level
Default Null
Range 0 (lowest priority) through 9 (highest priority)

Expiry: Whether the expiry timeout for this queue is defined by the application or
the Specified expiry property, or messages on the queue never expire (have an
unlimited expiry timeout)

Data type Enum
Units Not applicable
Default APPLICATION_DEFINED
Range

Application defined
The expiry timeout for messages on this queue is
defined by the application that put them onto the
queue.

Specified
The expiry timeout for messages on this queue is
defined by the Specified expiry property.If you select
this option, you must define a timeout on the Specified
expiry property.

Unlimited
Messages on this queue have no expiry timeout, so
those messages never expire.

Specified Expiry: If the Expiry timeout property is set to Specified, type here the
number of milliseconds (greater than 0) after which messages on this queue expire

Data type Integer
Units Milliseconds
Default Null
Range Greater than or equal to 0

v 0 indicates that messages never timeout

v Other values are an integer number of milliseconds

Base Topic Name: The name of the topic to which messages are sent

Data type String

CCSID: The coded character set identifier for use with the WebSphere MQ queue
manager.

This coded character set identifier (CCSID) must be one of the CCSIDs supported
by WebSphere MQ.

Data type String

326 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Integer encoding: If native encoding is not enabled, select whether integer
encoding is normal or reversed.

Data type Enum
Units Not applicable
Default NORMAL
Range

NORMAL
Normal integer encoding is used.

REVERSED
Reversed integer encoding is used.

For more information about encoding properties, see
the WebSphere MQ Using Java document.

Decimal encoding: If native encoding is not enabled, select whether decimal
encoding is normal or reversed.

Data type Enum
Units Not applicable
Default NORMAL
Range

NORMAL
Normal decimal encoding is used.

REVERSED
Reversed decimal encoding is used.

For more information about encoding properties, see
the WebSphere MQ Using Java document.

Floating point encoding: If native encoding is not enabled, select the type of
floating point encoding.

Data type Enum
Units Not applicable
Default IEEENORMAL
Range

IEEENORMAL
IEEE normal floating point encoding is used.

IEEEREVERSED
IEEE reversed floating point encoding is used.

S390 S390 floating point encoding is used.

For more information about encoding properties, see
the WebSphere MQ Using Java document.

Native encoding: Select this checkbox to indicate that the queue destination
should use native encoding (appropriate encoding values for the Java platform)..

Data type Enum
Units Not applicable
Default Cleared

Chapter 7. Using application clients 327

Range
Cleared

Native encoding is not used, so specify the
properties above for integer, decimal, and
floating point encoding.

Selected
Native encoding is used (to provide
appropriate encoding values for the Java
platform).

For more information about encoding properties, see
the MQSeries Using Java document.

BrokerDurSubQueue: The name of the broker queue from which durable
subscription messages are retrieved

The name of the broker queue from which durable subscription messages are
retrieved. The subscriber specifies the name of the queue when it registers a
subscription.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 48 ASCII characters

BrokerCCDurSubQueue: The name of the broker queue from which durable
subscription messages are retrieved for a ConnectionConsumer. This property
applies only for use of the Web container.

The name of the broker queue from which durable subscription messages are
retrieved for a ConnectionConsumer. This property applies only for use of the Web
container.

Data type String
Units En_US ASCII characters
Default Null
Range 1 through 48 ASCII characters

Target Client: Whether the receiving application is JMS-compliant or is a
traditional MQSeries application

Data type Enum
Units Not applicable
Default MQSeries
Range

MQSeries
The target is a non-JMS, traditional MQSeries
application.

JMS The target is a JMS-compliant application.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.

328 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The acceptable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

Generic JMS connection factory settings for application clients
Use this panel to view or change the configuration properties of the selected JMS
connection factory for use with the associated JMS provider. These configuration
properties control how connections are created to the associated JMS destination.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > JMS Providers > new JMS Provider instance. Right click JMS Connection
Factories > click New. The following fields appear on the General tab.

A JMS connection factory is used to create connections to JMS destinations. The
JMS connection factory is created by the associated JMS provider. A JMS
connection factory for a generic JMS provider (other than the internal WebSphere
JMS provider or the MQSeries JMS provider) has the following properties:

Name: The name by which this JMS connection factory is known for
administrative purposes within IBM WebSphere Application Server. The name
must be unique within the associated JMS provider.

Data type String

Description: A description of this connection factory for administrative purposes
within IBM WebSphere Application Server.

Data type String
Default Null

JNDI Name: The application client run-time uses this field to retrieve
configuration information. The name must match the value of the Name field on
the General tab in the Application Client Resource Reference section of the
Application Assembly Tool.

User: The user ID used, with the Password property, for authentication if the
calling application does not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for
the Password property.

The connection factory User ID and Password properties are used if the calling
application does not provide a userid and password explicitly; for example, if the
calling application uses the method createQueueConnection(). The JMS client flows
the userid and password to the JMS server.

Data type String

Password: The password used, with the User ID property, for authentication if
the calling application does not provide a userid and password explicitly.

If you specify a value for the User ID property, you must also specify a value for
the Password property.

Data type String

Chapter 7. Using application clients 329

Default Null

Re-Enter Password: Confirms the password entered in the Password field.

External JNDI Name: The JNDI name that is used to bind the queue into the
application server’s name space.

As a convention, use the fully qualified JNDI name; for example, in the form
jms/Name, where Name is the logical name of the resource.

This name is used to link the platform binding information. The binding associates
the resources defined by the deployment descriptor of the module to the actual
(physical) resources bound into JNDI by the platform.

Data type String

Connection Type: Whether this JMS destination is a queue (for point-to-point) or
topic (for pub/sub).

Select one of the following options:

Queue
A JMS queue destination for point-to-point messaging.

Topic A JMS topic destination for pub/sub messaging.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The acceptable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

Generic JMS destination settings for application clients
Use this panel to view or change the configuration properties of the selected JMS
destination for use with the associated JMS provider.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > JMS Providers > new JMS Provider instance. Right click JMS
Destinations > click New. The following fields appear on the General tab.

A JMS destination is used to configure the properties of a JMS destination for the
associated generic JMS provider. Connections to the JMS destination are created by
the associated JMS connection factory. A JMS destination for use with a generic
JMS provider (not the internal WebSphere JMS provider or MQSeries JMS
provider) has the following properties.

Name: The name by which the queue is known for administrative purposes
within IBM WebSphere Application Server.

Data type String

Description: A description of the queue, for administrative purposes

330 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

JNDI Name: The JNDI name of the actual (physical) name of the JMS destination
bound into JNDI.

External JNDI Name: The JNDI name that is used to bind the queue into the
application server’s name space.

As a convention, use the fully qualified JNDI name; for example, in the form
jms/Name, where Name is the logical name of the resource.

This name is used to link the platform binding information. The binding associates
the resources defined by the deployment descriptor of the module to the actual
(physical) resources bound into JNDI by the platform.

Data type String

Destination Type: Whether this JMS destination is a queue (for point-to-point) or
topic (for pub/sub).

Select one of the following options:

Queue
A JMS queue destination for point-to-point messaging.

Topic A JMS topic destination for pub/sub messaging.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The acceptable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

Example: Configuring JMS Provider, JMS Connection Factory
and JMS Destination settings for application clients
The purpose of this article is to help you to configure JMS Provider, JMS
Connection Factory and JMS Destination settings.
v Required fields:

– JMS Provider Properties page: name, and at least one protocol provider
– JMS Connection Factory Properties page: name, jndiName, destination type
– JMS Destination Properties page: name, jndiName, destination type

v Special cases:
– The destination type must be QUEUE, or TOPIC.

v Example:
<resources.jms:JMSProvider xmi:id="JMSProvider_3" name="genericJMSProvider:name"
description="genericJMSProvider:description" externalInitialContextFactory=
"genericJMSProvider:contextFactoryClass" externalProviderURL="genericJMSProvider:providerUrl"
>
<classpath>genericJMSProvider:classpath</classpath>
<factories xmi:type="resources.jms:GenericJMSDestination" xmi:id="GenericJMSDestination_1"
name="jmsDestination:name" jndiName="jmsDestination:jndiName" description=
"jmsDestination:description" externalJNDIName="jmsDestination:externalJndiName" type="QUEUE">
<propertySet xmi:id="J2EEResourcePropertySet_15">
<resourceProperties xmi:id="J2EEResourceProperty_17" name="jmsDestination:custonName"
value="jmsDestination:customValue"/>
</propertySet>
</factories>

Chapter 7. Using application clients 331

<factories xmi:type="resources.jms:GenericJMSConnectionFactory" xmi:id=
"GenericJMSConnectionFactory_1" name="jmsCF:name" jndiName="jmsCF:jndiName"
description="jmsCF:description" userID="jmsCF:user" password="{xor}NTIsHBllMT4yOg==
" externalJNDIName="jmsCF:externalJndiName" type="QUEUE">
<propertySet xmi:id="J2EEResourcePropertySet_16">
<resourceProperties xmi:id="J2EEResourceProperty_18" name="jmsCF:customName"
value="jmsCF:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_17">
<resourceProperties xmi:id="J2EEResourceProperty_19" name="genericJMSProvider:customName"
value="genericJMSProvider:customValue"/>
</propertySet>
</resources.jms:JMSProvider>

Configuring new connection factories for application clients
Before you begin

During this task, you create a new JMS connection factory configuration for your
application client.

Steps for this task
1. Click the JMS provider for which you want to create a connection factory in the

tree. Do one of the following:
v Configure a new JMS provider.
v Click an existing JMS provider.

2. Expand the JMS provider to view its JMS Connection Factories folder.
3. Click the folder. Do one of the following:

v Right-click the folder and click New Factory.
v Click Edit > New on the menu bar.

4. Configure the JMS connection factory properties in the resulting property
dialog.

5. Click OK when you finish.
6. Click File > Save on the menu bar to save your changes.

Configuring new Java Message Service destinations for
application clients

Before you begin

During this task, you create new Java Message Service (JMS) destination
configuration for your application client.

Steps for this task
1. Click the JMS provider in the tree for which you want to create a destination.

Do one of the following:
v Configure a new JMS provider.
v Click an existing JMS provider.

2. Expand the JMS provider to view its JMS Destinations folder.
3. Click the folder. Do one of the following:

v Right-click the folder and click New Factory.
v Click Edit > New on the menu bar.

4. Configure the JMS destination properties in the resulting property dialog.

332 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

5. Click OK when you finish.
6. Click File > Save on the menu bar to save your changes.

Example: Configuring MQ Queue and Topic connection
factories and destination factories for application clients

The purpose of this article is to help you configure MQ Queue connection factory,
MQ Topic connection factory, MQ Queue destination factory, and MQ Topic
destination factory settings.
v Required fields:

– MQ Queue Connection Factory Properties page: name, jndiName, transport
type

– MQ Topic Connection Factory Properties page: name, jndiName, broker
version

– MQ Queue Factory Properties page: name, jndiName, persistence, priority,
expiry, baseQueueName, targetClient

– MQ Topic Factory Properties page: name, jndiName, persistence, priority,
expiry, baseQueueName, targetClient

v Special cases:
– The transport type must be CLIENT, or BINDINGS.
– The Broker Version must be MA0C, or MQSI.
– The port must be a numerical value between -2417483648 and 2417483647.
– The CCSID must be a numerical value between -2417483648 and 2417483647.
– The persistence value must be APPLICATION_DEFINED, QUEUE_DEFINED,

PERSISTENT or, NONPERSISTENT.
– The priority must be APPLICATION_DEFINED, QUEUE_DEFINED, or SPECIFIED.
– The expiry must be APPLICATION_DEFINED, UNLIMITED, or SPECIFIED.
– The integer encoding must be Normal, or Reversed.
– The decimal encoding must be Normal, or Reversed.
– The floating encoding must be IEEENormal, IEEEReversed, S390.
– The target client must be JMS or MQ.
– On the MQ Queue Connection Factory Properites page, only set the

queueManager, host, and portWhen (required) fields if the transport type is
CLIENT.

– On the MQ Topic Connection Factory Properites page, only set the
queueManager, host, and port (required) fields if the transport type is CLIENT.

– On the the MQ Topic Factory Properties, and the MQ Queue Factory
Properties pages, only set the Integer encoding, decimal encoding, and
floating point encoding (required) fields if you do not set nativeEncoding.

– On the MQ Topic Factory Properties, and the MQ Queue Factory Properties
pages, the specified priority entry field must be an integer between 0 and 9 if
priority is set to SPECIFIED .

– On the the MQ Topic Factory Properties, and the MQ Queue Factory
Properties pages, the specified expiry entry field must be a value greater than
0 if expiry is set to SPECIFIED.

v Example:
<resources.jms:JMSProvider xmi:id="JMSProvider_1" name="MQ JMS Provider"
description="mqJMSProvider:description" externalInitialContextFactory=
"mqJMSProvider:contextFactoryClass" externalProviderURL="mqJMSProvider:providerUrl"
>
<classpath>mqJMSProvider:classpath</classpath>

Chapter 7. Using application clients 333

<factories xmi:type="resources.jms.mqseries:MQQueueConnectionFactory"
xmi:id="MQQueueConnectionFactory_1" name="mqQCF:name" jndiName="mqQCF:jndiName"
description="mqQCF:description" userID="mqQCF:user" password="{xor}Mi4OHBllMT4yOg==
" queueManager="mqQCF:queueManager" host="mqQCF:host" port="1" channel="mqQCF:channel"
transportType="CLIENT" clientID="mqQCF:clientId" CCSID="2">
<propertySet xmi:id="J2EEResourcePropertySet_3">
<resourceProperties xmi:id="J2EEResourceProperty_3" name="mqQCF:customName"
value="mqQCF:customValue"/>
</propertySet>
</factories>
<factories xmi:type="resources.jms.mqseries:MQTopicConnectionFactory"
xmi:id="MQTopicConnectionFactory_1" name="mqTCF:name" jndiName="mqTCF:jndiName"
description="mqTCF:description" userID="mqTCF:user" password="{xor}Mi4LHBllNTE7NhE+Mjo="
host="mqTCF:host" port="1" transportType="CLIENT" channel="mqTCF:channel" queueManager=
"mqTCF:queueManager" brokerControlQueue="mqTCF:brokerControlQueue" brokerQueueManager=
"mqTCF:brokerQueueManager" brokerPubQueue="mqTCF:brokerPubQueue" brokerSubQueue=
"mqTCF:brokerSubQueue" brokerCCSubQ="mqTCF:brokerCCSubQ" brokerVersion="MA0C"
clientID="mqTCF:clientId" CCSID="2">
<propertySet xmi:id="J2EEResourcePropertySet_4">
<resourceProperties xmi:id="J2EEResourceProperty_4" name="mqTCF:customName"
value="mqTCF:customValue"/>
</propertySet>
</factories>
<factories xmi:type="resources.jms.mqseries:MQQueue" xmi:id="MQQueue_1" name="mqQ:name"
jndiName="mqQ:jndiName" description="mqQ:description" persistence="APPLICATION_DEFINED"
priority="SPECIFIED" specifiedPriority="1" expiry="SPECIFIED" specifiedExpiry="1"
baseQueueName="mqQ:baseQueueName" baseQueueManagerName="mqQ:baseQueueManagerName" CCSID="1"
integerEncoding="Normal" decimalEncoding="Normal" floatingPointEncoding="IEEENormal"
targetClient="JMS">
<propertySet xmi:id="J2EEResourcePropertySet_5">
<resourceProperties xmi:id="J2EEResourceProperty_5" name="mqQ:customName"
value="mqQ:customValue"/>
</propertySet>
</factories>
<factories xmi:type="resources.jms.mqseries:MQTopic" xmi:id="MQTopic_1" name="mqT:name"
jndiName="mqT:jndiName" description="mqT:description" persistence="APPLICATION_DEFINED"
priority="SPECIFIED" specifiedPriority="1" expiry="SPECIFIED" specifiedExpiry="2"
baseTopicName="mqT:baseTopicName" CCSID="3" integerEncoding="Normal" decimalEncoding="Normal"
floatingPointEncoding="IEEENormal" targetClient="JMS" brokerDurSubQueue="mqT:brokerDurSubQueue"
brokerCCDurSubQueue="mqT:brokerCCDurSubQueue">
<propertySet xmi:id="J2EEResourcePropertySet_6">
<resourceProperties xmi:id="J2EEResourceProperty_6" name="mqT:customName"
value="mqT:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_7">
<resourceProperties xmi:id="J2EEResourceProperty_7" name="mqJMSProvider:customName"
value="mqJMSProvider:customValue"/>
</propertySet>
</resources.jms:JMSProvider>

Example: Configuring WAS Queue and Topic connection
factories and destination factories for application clients

The purpose of this article is to help you to configure WAS Queue connection
factory, WAS Topic connection factory, WAS Queue destination factory, and WAS
Topic destination factory settings.
v Required fields:

– JMS Provider Properties page: name
– WAS Queue Connection Factory Properties page: name, jndiName, node
– WAS Topic Connection Factory Properties page: name, jndiName, node, port
– WAS Queue Factory Properties page: name, jndiName, node, persistence,

priority, expiry

334 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

– WAS Topic Factory Properties page: name, jndiName, topic name, persistence,
priority, expiry

v Special cases:
– The port must be QUEUED or DIRECT.
– The CCSID must be a numerical value between -2417483648 and 2417483647.
– The persistence value must be APPLICATION_DEFINED, PERSISTENT, or

NONPERSISTENT.
– The priority must be APPLICATION_DEFINED, or SPECIFIED.
– The expiry must be APPLICATION_DEFINED, UNLIMITED, or SPECIFIED.
– On the WAS Topic Factory Properties, and the WAS Queue Factory Properties

pages, the specified priority entry field must be an integer between 0 and 9 if
priority is set to SPECIFIED .

– On the WAS Topic Factory Properties, and the WAS Queue Factory Properties
pages, the specified expiry entry field must be an value greater than 0 if
expiry is set to SPECIFIED.

v Example:
<resources.jms:JMSProvider xmi:id="JMSProvider_2" name="WebSphere JMS Provider"
description="wasJMSProvider:description" externalInitialContextFactory=
"wasJMSProvider:contextfactoryclass" externalProviderURL="wasJMSProvider:providerUrl">
<classpath>wasJMSProvider:classpath</classpath>
<factories xmi:type="resources.jms.internalmessaging:WASQueueConnectionFactory"
xmi:id="WASQueueConnectionFactory_1" name="wasQCF:name" jndiName="wasQCF:jndiName"
description="wasQCF:description" userID="wasQCF:user" password="{xor}KD4sDhwZZSosOi0="
node="wasQCF:Node">
<propertySet xmi:id="J2EEResourcePropertySet_8">
<resourceProperties xmi:id="J2EEResourceProperty_8" name="wasQCF:customName"
value="wasQCF:customValue"/>
</propertySet>
</factories>
<factories xmi:type="resources.jms.internalmessaging:WASTopicConnectionFactory"
xmi:id="WASTopicConnectionFactory_1" name="wasTCF:name" jndiName="wasTCF:jndiName"
description="wasTCF:description" userID="wasTCF:user" password="{xor}KD4sCxwZZTE+Mjo="
node="wasTCF:node" port="QUEUED" clientID="wasTCF:clientId">
<propertySet xmi:id="J2EEResourcePropertySet_9">
<resourceProperties xmi:id="J2EEResourceProperty_9" name="wasTCF:customName"
value="wasTCF:customValue"/>
</propertySet>
</factories>
<factories xmi:type="resources.jms.internalmessaging:WASQueue" xmi:id="WASQueue_1"
name="wasQ:name" jndiName="wasQ:jndiName" description="wasQ:description" node="wasQ:node"
persistence="APPLICATION_DEFINED" priority="SPECIFIED" specifiedPriority="1" expiry="SPECIFIED"
specifiedExpiry="1">
<propertySet xmi:id="J2EEResourcePropertySet_10">
<resourceProperties xmi:id="J2EEResourceProperty_10" name="wasQ:customName"
value="wasQ:customValue"/>
</propertySet>
</factories>
<factories xmi:type="resources.jms.internalmessaging:WASTopic" xmi:id="WASTopic_1"
name="wasT:name" jndiName="wasT:jndiName" description="wasT:description" topic="wasT:topicName"
persistence="APPLICATION_DEFINED" priority="SPECIFIED" specifiedPriority="1" expiry="SPECIFIED"
specifiedExpiry="1">
<propertySet xmi:id="J2EEResourcePropertySet_11">
<resourceProperties xmi:id="J2EEResourceProperty_11" name="wasT:customName"
value="wasT:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_12">
<resourceProperties xmi:id="J2EEResourceProperty_12" name="wasJMSProvider:customName"
value="wasJMSProvider:customValue"/>
</propertySet>
</resources.jms:JMSProvider>

Chapter 7. Using application clients 335

Configuring new resource environment providers for
application clients

Before you begin

During this task, you create new resource environment provider configurations for
your application client.

To configure a new resource environment provider, perform the following steps:

Steps for this task
1. Start the tool and open the EAR file for which you want to configure the new

JMS provider. The EAR file contents display in a tree view.
2. Select from the tree the JAR file in which you want to configure the new JMS

provider.
3. Expand the JAR file to view its contents.
4. Click the folder called Resource Environment Providers. Do one of the

following:
v Right-click the folder and click New Provider.
v Click Edit > New on the menu bar.

5. Configure the JMS provider properties in the resulting property dialog.
6. Click OK when finished.
7. Click File > Save on the menu bar to save your changes.

Resource environment provider settings for application clients
Use this page to specify resource environment entry properties.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file. Right-click Resource Environment Providers > and click New. The
following fields appear on the General tab:

Name: Specifies the administrative name for the resource environment provider.

Description: Specifies a description of the resource environment provider for your
administrative records.

Class Path: Specifies the path to the JAR file that contains the implementation
classes for the resource environment provider.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The acceptable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

Configuring new resource environment entries for application
clients

Before you begin

During this task, you create new resource environment entries for your client
application.

336 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Steps for this task
1. Click the resource environment provider in the tree, for which you want to

create a resource environment entry. Do one of the following:
v Configure a new resource environment provider.
v Click an existing resource environment provider.

2. Expand the resource environment provider to view the resource environment
entries folder.

3. Click the folder. Do one of the following:
v Right-click the folder and select New Factory.
v Click Edit > New on the menu bar.

4. Configure the data source properties in the resulting property dialog.
5. Click OK when you finish.
6. Click File > Save on the menu bar to save your changes.

Resource environment entry settings for application clients
Use this page to specify resource environment entry properties.

To view this Application Client Resource Configuration Tool (ACRCT) page, click
File > Open. After you browse for an EAR file, click Open. Expand the selected
JAR file > Resource Environment Providers > resource environment instance.
Right-click Resource environment entry > and click New. The following fields
appear on the General tab:

Name: Specifies the administrative name for the resource environment entry.

Description: Specifies a description of the URL for your administrative records.

JNDI Name: Specifies the Java Naming and Directory Interface (JNDI) name for
the resource, including any naming subcontexts.

Use this name to link to the binding information of the platform. The binding
associates the resources defined in the deployment descriptor of the module to the
actual (physical) resources bound into JNDI by the platform.

Custom Properties: Specifies name-value pairs for setting additional properties on
the object that is created at runtime for this resource.

You must enter a name that is a public property on the object and a value that can
be converted from a string to the type required by the set method of the property.
The acceptable properties and values depend on the object that is created. Refer to
the object documentation for a list of valid properties and values.

Managing application clients
Before you begin

Perform the following tasks after deploying application clients.

Note: This task only applies to J2EE application clients.

Steps for this task
1. Update data source and data source provider configurations.
2. Update URLs and URL provider configurations.

Chapter 7. Using application clients 337

3. Update mail session configurations.
4. Update JMS provider, connection factories, and destination configurations.
5. Update MQ JMS provider, MQ connection factories, and MQ destination

configurations.
6. Update Resource Environment Entry and Resource Environment Provider

configurations.
7. (Optional) Remove application client resources.

Updating data source and data source provider configurations
with the Application Client Resource Configuration Tool

Before you begin

During this task, you update the configuration of an existing data source or data
source provider.

Steps for this task
1. Start the tool and open the EAR file containing the data source or data source

provider. The EAR file contents display in a tree view.
2. Select from the tree the JAR file containing the data source or data source

provider to update.
3. Expand the JAR file to view its contents until you locate the particular data

source or data source provider to update. Do one of the following:
v Right-click the object and click Properties.
v Click Edit > Properties on the menu bar.

4. Update the properties in the resulting property dialog. For detailed field help,
go to:
v Data source provider properties
v Data source properties

5. Click OK when finished.
6. Click File > Save on the menu bar to save your changes.

Updating URLs and URL provider configurations for
application clients

Steps for this task
1. Start the tool and open the EAR file containing the URL or URL provider. The

EAR file contents display in a tree view.
2. Select from the tree the JAR file containing the URL or URL provider to update.
3. Expand the JAR file to view its contents.
4. Keep expanding the JAR file contents until you locate the particular URL or

URL provider to update. Do one of the following:
a. Right-click the object and click Properties

b. Click Edit > Properties on the menu bar.
5. Update the properties in the resulting property dialog.
6. Click OK when finished.
7. Click File > Save to save your changes on the menu bar.

338 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Updating mail session configurations for application clients
Before you begin

During this task, you update the configuration of an existing JavaMail session.

Note:

You cannot update the name of the default JavaMail provider. Also, you cannot
delete the default JavaMail provider from the tree.

Steps for this task
1. Start the tool and open the EAR file containing the JavaMail session.

The EAR file contents display in a tree view.
2. Select from the tree the JAR file containing the JavaMail session to update.
3. Expand the JAR file to view its contents.
4. Keep expanding the JAR file contents until you locate the particular JavaMail

session to update. Do one of the following:
a. Right-click the object and click Properties

b. Click Edit > Properties from the menu bar.
5. Update the properties in the resulting property dialog.
6. Click OK when finished.
7. Select File > Save from the menu bar to save your changes.

Updating Jave Message Service provider, connection
factories, and destination configurations for application
clients

Before you begin

During this task, you update the configuration of an existing Java Message Service
(JMS) provider, connection factory, or destination.

Steps for this task
1. Start the tool and open the EAR file containing the JMS provider, connection

factory, or destination. The EAR file contents display in a tree view.
2. Select from the tree the JAR file containing the JMS provider, connection

factory, or destination to update.
3. Expand the JAR file to view its contents until you locate the particular JMS

provider, connection factory, or destination to update. When you find it, do one
of the following:
v Right-click the object and click Properties.
v Click Edit > Properties on the menu bar.

4. Update the properties in the resulting property dialog. For detailed field help,
see:
v JMS provider properties
v WAS Queue connection factory properties
v WAS Topic connection factory properties
v WAS Queue destination properties
v WAS Topic destination properties

5. Click OK.

Chapter 7. Using application clients 339

6. Click File > Save to save your changes.

Updating MQ Java Message Service provider, MQ connection
factories, and MQ destination configurations for application
clients

Before you begin

During this task, you will update the configuration of an existing MQ JMS
provider, MQ connection factory, or MQ destination.

Steps for this task
1. Start the tool and open the EAR file containing the MQ JMS provider, MQ

connection factory, or MQ destination. The EAR file contents will be displayed
in a tree view.

2. Select from the tree the JAR file containing the MQ JMS provider, MQ
connection factory, or MQ destination to update.

3. Expand the JAR file to view its contents until you locate the particular MQ JMS
provider, MQ connection factory, or MQ destination that you want to update.
Do one of the following:
v Right-click the object and click Properties.
v Click Edit > Properties on the menu bar.

4. Update the properties in the resulting property dialog. For detailed field help,
see:
v JMS provider properties
v MQ Queue connection factory properties
v MQ Topic connection factory properties
v MQ Queue destination properties
v MQ Topic destination properties

5. Click OK.
6. Click File > Save to save your changes.

Updating Resource Environment Entry and Resource
Environment Provider configurations for application clients

Before you begin

During this task, you update the configuration of an existing Resource
Environment Entry or Resource Environment Provider.

Steps for this task
1. Start the tool and open the EAR file containing the Resource Environment

Entry or Resource Environment Provider. The EAR file contents display in a
tree view.

2. Select from the tree the JAR file containing the Resource Environment Entry or
Resource Environment provider to update.

3. Expand the JAR file to view its contents until you locate the Resource
Environment Entry or Resource Environment Provider to update. Do one of the
following:
v Right-click the object and click Properties.
v Click Edit > Properties on the menu bar.

340 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

4. Update the properties in the resulting property dialog. For detailed field help,
see:
v Resource environment provider properties
v Resource environment entry properties

5. Click OK when you finish.
6. Click File > Save on the menu bar to save your changes.

Example: Configuring Resource Environment settings
The purpose of this article is to help you configure Resource Environment settings.
v Required fields:

– Resource Environment Provider page: name
– Resource Environment Entry page: name, jndiName

v Example:
<resources.env:ResourceEnvironmentProvider xmi:id="ResourceEnvironmentProvider_1"
name="resourceEnvProvider:name" description="resourceEnvProvider:description">
<classpath>resourceEnvProvider:classpath</classpath>
<factories xmi:type="resources.env:ResourceEnvEntry" xmi:id="ResourceEnvEntry_1"
name="resourceEnvEntry:name" jndiName="resourceEnvEntry:jndiName" description="resourceEnvEntry:
description">
<propertySet xmi:id="J2EEResourcePropertySet_20">
<resourceProperties xmi:id="J2EEResourceProperty_22" name="resourceEnvEntry:customName"
value="resourceEnvEntry:customValue"/>
</propertySet>
</factories>
<propertySet xmi:id="J2EEResourcePropertySet_21">
<resourceProperties xmi:id="J2EEResourceProperty_23" name="resourceEnvProvider:customName"
value="resourceEnvProvider:customValue"/>
</propertySet>
</resources.env:ResourceEnvironmentProvider>

Example: Configuring Resource Environment custom settings for
application clients
The purpose of this article is to help you configure Resource Environment custom
settings.
v The custom page applies to every resource type. You can specify as many

custom names and values as you need.
v Example:

<propertySet xmi:id="J2EEResourcePropertySet_20">
<resourceProperties xmi:id="J2EEResourceProperty_22"
name="resourceEnvEntry:customName"
value="resourceEnvEntry:customValue"/>
</propertySet>

Removing application client resources
Before you begin

Note: This task only applies to J2EE application clients.

Steps for this task
1. Start the Application Client Resource Configuration Tool (ACRCT) and open

the EAR file from which you want to remove an object. The EAR file contents
display in a tree view.
If you already have an EAR file open, and have made some changes, click File
> Save to save your work before preceding to delete an object.

2. Locate the object that you want to remove in the tree.

Chapter 7. Using application clients 341

3. Right-click the object, then click Delete.
4. Click File > Save.

What to do next

The option to delete an item does not offer a confirmation dialog. As a safeguard,
consider saving your work right before you begin this task. If you change your
mind after removing an item, you can close the EAR file without saving your
changes, canceling your deletion. Remember to close the EAR file immediately
after the deletion, or you also lose any unsaved work that you performed since the
deletion.

Running application clients
The J2EE specification requires support for a client container that runs stand-alone
Java applications (known as J2EE application clients) and provides J2EE services to
the applications. J2EE services include naming, security, and resource connections.

You are ready to run your application client using this tool after you have:
1. Written the application client program.
2. Assembled and installed an application module (.ear file) in the application

server run time.
3. Deployed the application using the Application Client Resource Configuration

Tool (ACRCT).

Note: This task only applies to J2EE application clients.

Steps for this task
1. Open a command window and invoke the following script to launch J2EE

application clients using the launchClient shell:
install_root/bin/launchClient.bat

The launchClient batch command starts the application client run time, which:
v Initializes the client run time.
v Loads the class that you designated as the main class with the Application

Assembly Tool (AAT).
v Runs the main method of the application client program.

When your program terminates, the application client run time cleans up the
environment and the Java Virtual Machine code ends.

2. Pass parameters to the launchClient command. You can pass parameters to
your application client program as well. The launchClient command allows you
to do both.
The launchClient command requires that the first parameter is either:
v An EAR file specifying the application client to launch.
v A request for launchClient usage information.

All other parameters intended for the launchClient command must begin with
the -CC prefix.

Parameters that are not EAR files, or usage requests, or that do not begin with
the -CC prefix, are ignored by the application client run time, and are passed
directly to the application client program.

342 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The launchClient command retrieves parameters from three places:
a. The command line
b. A properties file
c. System properties

The parameters are resolved in the order listed above, with command line
values having the highest priority and system properties the lowest. This
prioritization allows you to set and override default values.

3. Specify the server name.
By default, the launchClient command uses the environment variable
COMPUTERNAME for the BootstrapHost property value. This setting is effective for
testing your application client when it is installed on the same computer as the
server. However, in other cases override this value with the name of your
server.
You can override the BootstrapHost value by invoking launchClient with the
following parameters:
launchClient myapp.ear -CCBootstrapHost=abc.midwest.mycompany.com

You can also override the default by specifying the value in a properties file
and passing the file name to the launchClient shell.

Note: Security is controlled by the server. You do not need to configure security
on the client because the client assumes that security is enabled. If security is
not enabled, the server ignores the security request, and the application client
works as expected.

Usage scenario

You can store launchClient values in a properties file, a good method for
distributing default values. You can then override one or more values on the
command line. The format of the file is one launchClient -CC parameter per line
without the -CC prefix. For example:
verbose=true
classpath=c:\mydir\util.jar;c:\mydir\harness.jar;c:\production\G19\global.jar
BootstrapHost=abc.westcoast.mycompany.com tracefile=c:\WebSphere\mylog.txt

launchClient tool
Syntax

This section describes the command line syntax for the Java TM2 Platform,
WebSphere Application Server Enterprise (J2EE) launchClient tool.

The command line invocation syntax for the launchClient tool follows:
launchClient [<userapp.ear> |-help|-?] [-CCname=
value] [app args]

where userapp.ear is the path and the name of the EAR file that contains the
application client, name is the name of the parameter, value is the value to which
the parameter ID is set, and app args are arguments that pass to the application
client.

To print the usage information, the first parameter must be a path and a name to
an EAR file, -help, or -?. All other parameters are optional and can appear in any

Chapter 7. Using application clients 343

order. The application client run time ignores any optional parameters that do not
begin with a -CC prefix, and passes them to the application client.

Parameters

Supported arguments include:

-CCsoapConnectorPort
The soap connector port. If you do not specify this argument, the
WebSphere Application Server default value is used.

-CCverbose
This option displays additional information messages. The default is false.

-CCclasspath
A class path value. When you launch an application, the system class path
is not used. If you want to access classes that are not in the EAR file or
part of the resource class paths, specify the appropriate class path here.
Multiple paths can be concatenated.

-CCjar
The name of the client JAR file that resides within the EAR file for the
application you wish to launch. Use this argument when you have
multiple client JAR files in the EAR file.

-CCadminConnectorHost
Specifies the host name of the server from which configuration information
is retrieved. The default is the value of the -CCBootstrapHost parameter or
the value of the local host if the -CCBootstrapHost parameter is not
specified.

-CCadminConnectorPort
Indicates the port number that the administrative client function should
use. The default value is 8880 for SOAP connections and 2809 for RMI
connections.

-CCadminConnectorType
Specifies how the administrative client should connect to the server.
Specify RMI to use the RMI connection type or specify SOAP to use the
SOAP connection type. The default value is SOAP.

-CCadminConnectorUser
Administrative clients use this user name when a server requires
authentication. If the connection type is SOAP, and security is enabled on
the server, this parameter is required. The SOAP connector does not
prompt for authentication.

-CCadminConnectorPassword
The password for the user name that the -CCadminConnectorUser parameter
specifies.

-CCaltDD
The name of an alternate deployment descriptor. This parameter is used
with the -CCjar parameter to specify the deployment descriptor to use. Use
this argument when a client jar file is configured with more than one
deployment descriptor. Set the value to null to use the client JAR file
standard deployment descriptor.

-CCBootstrapHost
The name of the host server you want to connect to initially. The format is:
<i>your.server.ofchoice.com</i>

344 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

-CCBootstrapPort
The server port number. If you do not specify this argument, the
WebSphere Application Server default value is used.

-CCproviderURL
Provides bootstrap server information that the initial context factory can
use to obtain an initial context. WebSphere Application Server initial
context factory can use either a CORBA object URL or an IIOP URL.
CORBA object URLs are more flexible than IIOP URLs and are the
recommended URL format to use. This value can contain more than one
bootstrap server address. This feature can be used when attempting to
obtain an initial context from a server cluster. You can specify bootstrap
server addresses, for all servers in the cluster, in the URL. The operation
will succeed if at least one of the servers is running, eliminating a single
point of failure. The address list does not process in a particular order. For
naming operations, this value overrides the -CCBootstrapHost and
-CCBootstrapPort parameters. An example of a CORBA object URL
specifying multiple systems follows:
-CCproviderURL=

corbaloc:iiop:myserver.mycompany.com:9810,:mybackupserver.mycompany
.com:2809

This value is mapped to the java.naming.provider.url system property.

-CCinitonly
Use this option to initialize application client run time for ActiveX
application clients without launching the client application. The default is
false.

-CCtrace
Use this option to obtain debug trace information. You might need this
information when reporting a problem to IBM Service. The default is
false.

-CCtracefile
The name of the file to write trace information. The default is to output to
the console.

-CCpropfile
Name of a properties file that contains launchClient properties. Specify the
properties without the -CC prefix in the file. For example: verbose=true.

-CCsecurityManager
Enables and runs the WebSphere Application Server with a security
manager. The default is disable.

-CCsecurityMgrClass
The fully qualified name of a class that implements a security manager.
Only use this argument if the -CCsecurityManager parameter is set to
enable. The default is java.lang.SecurityManager.

-CCsecurityMgrPolicy
The name of a security manager policy file. Only use this argument if the
-CCsecurityManager parameter is set to enable. When you enable this
parameter, the java.security.policy system property is set. The default is
<install_root>/ properties/client.policy.

-CCD Use this option to have the WebSphere Application Server set the specified
system property during initialization. Do not use the = character after the
-CCD. For example: -CCDcom.ibm.test.property=testvalue. You can specify

Chapter 7. Using application clients 345

multiple -CCD parameters. The general format of this parameter is
-CCD<property key>=<property value>.

-CCexitVM
Use this option to have the WebSphere Application Server call
System.exit() after the client application completes. The default is false.

-CCdumpJavaNameSpace
Prints out the Java portion of the WebSphere Application Server Java
Naming and Directory Interface (JNDI) name space. The true value uses
the short format which prints out the binding name and the type of the
object bound at that location. The long value uses the long format which
prints out the binding name, bound object type, local object, type, and
string representation of the local object, for example: IORs, and string
values. The default value is false.

Examples

The following examples demonstrate correct syntax.

On the Windows operating system:
launchClient c:\earfiles\myapp.ear -CCBootstrapHost=myWASServer
-CCverbose=true app_parm1 app_parm2

On the UNIX operating system:
./launchClient.sh /usr/earfiles/myapp.ear
-CCBootstrapHost=myWASServer -CCverbose=true app_parm1 app_parm2

Specifying the directory for an expanded EAR file
Before you begin

Each time launchClient is called, it extracts the EAR file to a random directory
name in the temporary directory on your hard drive. Then it sets up the thread
ClassLoader to use the extracted EAR file directory and JAR files included in the
Manifest.mf client JAR file. In a normal J2EE Java client, these files are
automatically cleaned up after the application exits. This cleanup occurs when the
client container shutdown hook is called. To avoid extracting the EAR file (and
removing the temporary directory) each time launchClient is called, complete the
following steps:

Steps for this task
1. Specify a directory to extract the EAR file by setting the

com.ibm.websphere.client.applicationclient.archivedir Java system
property. If the directory does not exist or is empty, the EAR file is extracted
normally. If the EAR file was previously extracted, the launchClient tool reuses
the directory.

2. Delete the directory before running the launchClient tool again, if you need to
update your EAR file.
When you call the launchClient command, it extracts the new EAR file to the
directory. If you do not delete the directory or change the system property
value to point to a different directory, launchClient reuses the currently
extracted EAR file, and does not use your changed EAR file.
Note: When specifying the
com.ibm.websphere.client.applicationclient.archivedir property, make sure
that the directory you specify is unique for each EAR file you use. For example,
do not point MyEar1.ear and MyEar2.ear files to the same directory.

346 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Example: Using a Java 2 security manager with a J2EE
application client

The launchClient command provides several parameters to control the use of a
Java 2 security manager. By default the launchClient command does not enable nor
run with a Java 2 security manager. To enable the Java 2 security manager, add the
following parameter to your launchClient command:
-CCsecurityManager=enable

For example:
launchClient myear.ear -CCsecurityManager=enable

v When the security manager is enabled, the launchClient uses by default the
java.lang.SecurityManager class and the <WAS_HOME>
/properties/client.policy policy file. This policy file is configured to provide
the standard permissions as described in the J2EE specification for J2EE
application clients and applets. If your application receives a
java.security.AccessControlException, you must add additional permissions to
the client.policy file. For more information on adding additional permissions,
see configuring client.policy files and AccessControlException.

v You can override the default security manager class by specifying the
-CCsecurityMgrClass parameter and the default policy file using the
-CCsecurityMgrPolicy parameter. For more information, see launchClient tool.

v If you invoke Java to start the launchClient class, it is recommended that you do
not use the -Djava.security.manager parameter to enable the Java 2 security
manager. Using this parameter causes the Java 2 security manager to be enabled
prior to initialization of the J2EE application client runtime. The necessary
permissions are not granted and your application may receive
java.security.AccessControlExceptions.

v When the J2EE application client runtime is initialized, the Enterprise Archive
(EAR) file that you specified is extracted to a random subdirectory in your users
temporary directory location.
Note: If the EAR file is a set of directories and subdirectories, then it is used in
place and not expanded.The J2EE application client runtime sets the
com.ibm.websphere.client.applicationclient.archivedir system property to
the directory location of the EAR file. The client.policy file uses this system
property to inform the security manager of the location of your application
client codebase and to assign the configured permissions to that codebase. This
occurs when the security manager is enabled. If the security manager is enabled
at the time Java is started, then this system property is not set, the codebase is
unknown, and the permissions can not be granted.

v It is recommended that you enable the security manager with the J2EE
application client runtime. Use the following parameter:
-CCsecurityManager=enable.

Example: Enabling Java 2 security prior to J2EE application
client runtime initialization

To enable the Java 2 security prior to the J2EE application client runtime
initialization, set the com.ibm.websphere.client.applicationclient.archivedir
system property. Perform the following steps:
1. Set the system property to directory where the Enterprise Archive (EAR)

should be expanded to, for example:
-Dcom.ibm.websphere.client.applicationclient.archivedir=c:\myear1 (windows)

-Dcom.ibm.websphere.client.applicationclient.archivedir=/usr/mrear1 (Unix)

Chapter 7. Using application clients 347

2. Set the java.security.policy system property to use the
<WAS_HOME>/properties/client.policy file, for example:
-Djava.security.policy=%WAS_HOME%\properties\client.policy (Windows)

-Djava.security.policy=$WAS_HOME/properties/client.policy (Unix)

v Setting the com.ibm.websphere.client.applicationclient.archivedir has the
following effects:
– If the directory does not exist or it is empty, the EAR file is extracted to that

directory.
– The EAR file is reused if it was previously extracted. This occurs even if the

EAR file specified on the command line is different.
– The security manager will grant the permissions from the client.policy file

to that directory and all its subdirectories.
v There are two types of EAR files. The first type of EAR file is a single file that

contains all the enterprise application files. The second type is a set of directories
and subdirectories. The following only applies if you are using the single file
form:
– If you need to update your EAR file, delete the directory first.
– The new EAR file will be extracted to the directory the next time you run. If

you do not delete the directory or change the system property value to point
to a different temporary directory, the currently extracted EAR file will be
reused, and your changed EAR file will not be used.

v When specifying the com.ibm.websphere.client.applicationclient.archivedir
property, ensure that the directory you specify is unique for each EAR file that
you use. For example, do not point MyEar1.ear and MyEar2.ear files to the same
directory. You also must create all directories up to, but not including, the last
directory. For example, if you set the following:
com.ibm.websphere.client.applicationclient.archivedir=/usr/myears/myear1

then <i>usr</i> and <i>myears</i> must exist, but <i>myear1</i> does not have
to exist prior to running the launchClient class.

Application client troubleshooting tips
This section provides some debugging tips for resolving common J2EE application
client problems. To use this troubleshooting guide, review the trace entries for one
of the J2EE application client exceptions, and then locate the exception in the
guide. Some of the errors in the guide are samples; the actual error you receive can
be slightly different than what is shown here. Also, it can be useful to rerun the
launchClient command specifying the -CCverbose=true option. This option
provides additional information when the J2EE application client run time is
initializing

Error: java.lang.NoClassDefFoundError

Explanation This exception is thrown when Java code cannot load the
specified class.

Possible causes v Invalid or non-existent class

v Classpath problem

v Manifest problem

348 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Recommended response Check to determine if the specified class exists in a JAR file
within your EAR file. If it does, make sure the path for the
class is correct. For example, if you get the exception:

java.lang.NoClassDefFoundError:
WebSphereSamples.HelloEJB.HelloHome

ensure the class HelloHome exists in one of the JAR files in
your EAR file. If it exists, ensure the path for the class is
WebSphereSamples.HelloEJB.

If both the class and path are correct, then it is a classpath
issue. Most likely, you do not have the failing class JAR file
specified in the client JAR file manifest. To verify this
situation, perform the following steps:

1. Open your EAR file with the Application Assembly Tool
and click on the Application Client.

2. Add the names of the other JAR files in the EAR file to
the Classpath field.

This exception is generally caused by a missing EJB module
name from the Classpath field.

If you have multiple JAR files to enter in the Classpath field,
be sure to separate the JAR names with spaces.

If you still have the problem, you have a situation where a
class is loaded from the file system instead of the EAR file.
This is a very difficult situation to debug because the
offending class is not the one specified in the exception.
Instead, another class is loaded from the file system before
the one specified in the exception. To correct this problem,
review the classpaths specified with the -CCclasspath option
and the classpaths configured with the Application Client
Resource Configuration Tool. Look for classes that also exist
in the EAR file. You must resolve the situation where one of
the classes is found on the file system instead of in the .ear
file. Remove entries from the classpaths, or include the .jar
files and classes in the .ear file instead of referencing them
from the file system.

If you use the -CCclasspath parameter or resource classpaths
in the Application Client Resource Configuration Tool, and
you have configured multiple JAR files or classes, verify
they are separated with the correct character for your
operating system. Unlike the classpath field in the
Application Assembly Tool, these classpath fields use
platform-specific separator characters, usually a colon (on
UNIX platforms) or a semi-colon (on Windows systems).

Note: The system classpath is not used by the Application
Client run time if you use the launchClient batch or shell
files. In this case, the system classpath would not cause this
problem. However, if you load the launchClient class
directly, you do have to search through the system classpath
as well.

Error: com.ibm.websphere.naming.CannotInstantiateObjectException: Exception
occurred while attempting to get an instance of the object for the specified
reference object. [Root exception is javax.naming.NameNotFoundException:
xxxxxxxxxx]

Chapter 7. Using application clients 349

Explanation This exception occurs when you perform a lookup on an
object that is not installed on the host server. Your program
can look up the name in the local client Java Naming and
Directory Interface (JNDI) name space, but received a
NameNotFoundException exception because it is not located
on the host server. One typical example is looking up an
enterprise bean that is not installed on the host server that
you access. This exception might also occur if the JNDI
name you configured in your Application Client module
does not match the actual JNDI name of the resource on the
host server.

Possible causes v Incorrect host server invoked

v Resource is not defined

v Resource is not installed

v Application server is not started

v Invalid JNDI configuration
Recommended response If you are accessing the wrong host server, run the

launchClient command again with the -CCBootstrapHost
parameter specifying the correct host server name. If you are
accessing the correct host server, use the WebSphere
dumpnamespace command line tool to see a listing of the
host server JNDI name space. If you do not see the failing
object name, the resource is either not installed on the host
server or the appropriate application server is not started. If
you determine the resource is already installed and started,
your JNDI name in your client application does not match
the global JNDI name on the host server. Use the
Application Assembly Tool to compare the JNDI bindings
value of the failing object name in the client application to
the JNDI bindings value of the object in the host server
application. They must match.

Error: javax.naming.ServiceUnavailableException: A communication failure
occurred while attempting to obtain an initial context using the provider url:
″iiop://[invalidhostname]″. Make sure that the host and port information is
correct and that the server identified by the provider URL is a running name
server. If no port number is specified, the default port number 2809 is used.
Other possible causes include the network environment or workstation network
configuration. Root exception is org.omg.CORBA.INTERNAL: JORB0050E: In
Profile.getIPAddress(), InetAddress.getByName[invalidhostname] threw an
UnknownHostException. minor code: 4942F5B6 completed: Maybe

Explanation This exception occurs when you specify an invalid host
server name.

Possible causes v Incorrect host server invoked

v Invalid host server name
Recommended response Run the launchClient command again and specify the

correct name of your host server with the -CCBootstrapHost
parameter.

Error: javax.naming.CommunicationException: Could not obtain an initial
context due to a communication failure. Since no provider URL was specified,
either the bootrap host and port of an existing ORB was used, or a new ORB
instance was created and initialized with the default bootstrap host of
″localhost″ and the default bootstrap port of 2809. Make sure the ORB bootstrap

350 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

host and port resolve to a running name server. Root exception is
org.omg.CORBA.COMM_FAILURE: WRITE_ERROR_SEND_1 minor code:
49421050 completed: No

Explanation This exception occurs when you run the launchClient
command to a host server that does not have the
Application Server started. You also receive this exception
when you specify an invalid host server name. This situation
might occur if you do not specify a host server name when
you run launchClient. The default behavior is for
launchClient to run to localhost, because WebSphere
Application Server does not know the name of your host
server. This default behavior only works when you are
running the client on the same computer with WebSphere
Application Server is installed.

Possible causes v Incorrect host server invoked

v Invalid host server name

v Invalid reference to localhost

v Application server is not started

v Invalid bootstrap port
Recommended response If you are not running to the correct host server, run the

launchClient command again and specify the name of your
host server with the -CCBootstrapHost parameter.
Otherwise, start the Application Server on the host server
and run the launchClient command again.

Error: javax.naming.NameNotFoundException: Name comp/env/ejb not found in
context ″java:″

Explanation This exception is thrown when the Java code cannot locate
the specified name in the local JNDI name space.

Possible causes v No binding information for the specified name

v Binding information for the specified name is incorrect

v Wrong class loader was used to load one of the program
classes

v A resource reference does not include any client
configuration information

v A client container on the deployment manager is trying to
use enterprise extensions (not supported)

Recommended response Open the EAR file with the Application Assembly Tool and
check the bindings for the failing name. Ensure this
information is correct. If you are using Resource References,
open the EAR file with the Application Client Resource
Configuration Tool, and make sure the Resource Reference
has client configuration information and the name of the
Resource Reference exactly matches the JNDI name of the
client configuration. If it is correct, you might have a class
loader issue.

Error: java.lang.ClassCastException: Unable to load class:
org.omg.stub.WebSphereSamples.HelloEJB._HelloHome_Stub at
com.ibm.rmi.javax.rmi.PortableRemoteObject.narrow(
portableRemoteObject.java:269)

Chapter 7. Using application clients 351

Explanation This exception occurs when the application program
attempts to narrow to the EJB home class and the class
loaders cannot find the EJB client side bindings.

Possible causes v The files, *_Stub.class and _Tie.class, are not in the EJB
.jar file

v Class loader could not find the classes
Recommended response Look at the EJB .jar file located in the .ear file and verify

the class contains the EJB client side bindings. These are
class files whose names end in _Stub and _Tie. If these files
are not present, then use the Application Assembly Tool to
generate the binding classes. For more information, see
article Generating deployment code for modules. If the
binding classes are in the EJB .jar file, then you might have
a class loader issue.

Error: WSCL0210E: The Enterprise archive file [EAR file name] could not be
found. com.ibm.websphere.client.applicationclient.ClientContainerException:
com.ibm.etools.archive.exception.OpenFailureException

Explanation This error occurs when the application client run time
cannot read the Enterprise Archive (EAR) file.

Possible causes The most likely cause of this error is that the system cannot
find the EAR file cannot be found in the path specified on
the launchClient command.

Recommended response Verify that the path and file name specified on the
launchclient command are correct. If you are running on the
Windows operating system and the path and file name are
correct, use a short version of the path and file name (8
character file name and 3 character extension).

The launchClient command appears to hang and does not return to the
command line when the client application has finished.

Explanation When running your application client using the
launchClient command the WebSphere Application Server
run time might need to display the security login dialog. To
display this dialog the WebSphere Application Server run
time creates an Abstract Window Toolkit (AWT) thread.
When your application returns from its main method to the
application client run time, the application client run time
attempts to return to the operating system and end the Java
Virtual Machine code. However, since there is an AWT
thread, the Java Virtual Machine code will not end until
System.exit is called.

Possible causes The Java Virtual Machine code does not end because there is
an AWT thread. Java code requires that System.exit() be
called to end AWT threads.

Recommended response v Modify your application to call System.exit(0) as the last
statement.

v Use the -CCexitVM=true parameter when you call the
launchClient command.

352 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 8. Using Web services

Before you begin

Decide whether you need a Web service solution for your application.

Use Web services when operating across a variety of platforms, including the Java
2, Enterprise Edition (J2EE) 1.3 and non-J2EE platforms. Web services benefit your
e-business solution by integrating these enterprise systems, especially systems that
have developed over a long period of time.

Using Web services makes most sense if your application’s clients are non-J2EE
applications, unless you have J2EE applications spread across the Web. It is
recommended that you use J2EE technologies if all your clients are J2EE
applications because performance can decrease when you use a Web service in a
J2EE exclusive environment.

Because Web services are easily applied to existing applications and information
technology assets, new solutions can be deployed quickly and recomposed to
address new opportunities. As Web services become more popular, the pool of
services grows, promoting development of more robust models of just-in-time
application and business integration over the Internet.

To use Web services applications with WebSphere Application Server:

Steps for this task
1. Plan to use Web services.

If you are not yet using Version 5.0.2 see Using Apache SOAP Web services in
Version 5 and 5.0.1. Although the documentation remains in this release,
support for Apache SOAP 2.x is deprecated and the function will be removed
in a future release.

2. Migrate existing Web services.
3. Develop Web services.
4. Assemble Web services.
5. Deploy Web services.
6. Secure Web services.
7. Tune Web services.
8. Troubleshoot Web services.

Usage scenario

The following is an example of how a business might use Web services.

The owner of a flower shop wants to start receiving orders from customers
through the Web. She starts her venture by finding wholesale flower suppliers,
pricing their product, and completing contracts for future flower orders.

Using Web services, the flower shop owner can find wholesale flower suppliers.
One way she finds new suppliers is to use a Universal Description, Discovery, and

© Copyright IBM Corp. 2003 353

Integration (UDDI) registry to search for potential suppliers. She chooses the
suppliers and the registry sends back information on how to contact the flower
distributors that meet her criteria.

The flower shop owner can request price lists from each of the suppliers by
obtaining a Web Services Description Language (WSDL) file for each potential
supplier. The WSDL can be downloaded from the supplier’s Web page, received
through email, or retrieved from the supplier’s UDDI registry entry.

The WSDL describes the procedure call. When using WebSphere Application
Server, the procedure call is a Java API for XML-based remote procedure call
(JAX-RPC), which helps her get price lists. The WSDL file also specifies the
Universal Resource Locator (URL) where the request is to be sent.

The flower shop owner now has to compare the prices she received back from each
supplier, decide which suppliers she is going to do business with, and make
arrangements for future orders to be filled. The ground work has been laid for the
flower shop to sell merchandise through the Web by using Web services to
communicate with suppliers for the best prices and complete the ordering
processes. The merchandise price lists need to be published to her Web site and
she needs to provide a mechanism for customers to order flowers.

The flower supplier’s Web services clients are deployed on the flower shop server.
When a customer makes a transaction to purchase flowers through the Web, the
order is sent to the supplier through JAX-RPC. The supplier responds by sending a
confirmation with the order number and shipping date. The suppliers maintain the
inventory and the flower shop owner handles billing and customer order
management.

Similarly, the flower shop catalog can be composed automatically from the catalogs
of all the suppliers. If the supplier ships directly to the customer, the order tracking
inquiries can pass directly to the supplier’s order tracking system. Web services can
also be used by the supplier to send invoices for orders and by the flower shop to
pay the supplier’s invoices. Processes that previously required forms to be filled
out manually, and faxed or mailed, can now be done automatically, saving labor
costs for both the flower shop and the supplier.

Using Web services is beneficial because a much larger inventory is made available
to the flower shop. There is no merchandise maintenance overhead, but the flower
shop can offer their customers products that they otherwise might not have. Selling
flowers through the Web increases capital for the flower shop without overhead of
another store or money invested into additional product.

What to do next

After you decide to use Web services, design the model that best fits your
e-business solution. You can learn more about Web services models in Planning to
use Web services.

Web services
Web services are self-contained, modular applications that you can describe, publish,
locate, and invoke over a network.

A typical Web services scenario is a business application requesting a service from
a given URL using Simple Object Access Protocol (SOAP) over a HyperText

354 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Transport Protocol (HTTP) or Java Messaging Service (JMS) transport. The service
receives the request, processes it, and returns a response. Examples of a simple
Web service include weather reports and stock quotes. The method call is
synchronous, that is, it waits until the result is available. Transaction Web services,
supporting quotes, business-to-business (B2B) or business-to-client (B2C) operations
include airline reservations or purchase orders.

Web services used by business operations are more complex, processing multiple
requests or transactions at the same time. The time required to return the response
depends on the complexity of the routing, therefore, the response is sent as an
operation that is separate from the request.

Web services reflect a new, service-oriented approach to programming. This
approach is based on the idea of building applications by discovering and
implementing network-available services, or by invoking available applications to
accomplish some task. This service-oriented approach is independent of specific
programming languages or operating systems. Web services delivers
interoperability; the ability for components created in different programming
languages to work together as if they were created using the same language. Web
services rely on existing transport technologies, such as HTTP, and standard data
encoding techniques, such as Extensible Markup Language (XML), for invoking the
implementation.

The key components of a Web service are:
v Simple Object Access Protocol (SOAP)
v Web Services Description Language (WSDL)
v Universal Description, Discover and Integration Protocol (UDDI)

There are four locations where a Java Web services client can reside:
v As an unmanaged stand-alone Java application
v Within an application client container
v As a Java bean or a servlet running in a Web container that is acting as a client
v As a Java bean or enterprise bean running in an enterprise Java bean (EJB)

container that is acting as a client

You can review the Web services client programming model in the Web services for
J2EE specification available through Web services: Resources for learning. The
programming model is similar to the EJB client programming model. There is a
remote interface that the client uses to interact with the service. A Java Naming
and Directory Interface (JNDI) lookup method can locate the service for a client
running in a Web container, EJB container, or client container. The client obtains a
stub that implements the remote interface and makes calls to invoke operations on
the remote service.

Planning to use Web services
Before you begin

Plan your use of Web services and design an approach that best fits your
e-business solution.

To plan to use Web services:

Steps for this task

Chapter 8. Using Web services 355

1. Design Web services to fit your e-business solution.
Consider what you want to accomplish by using Web services, how Web
services fit into your current topology, applications and programming model.
Decide how the Web services process requests on the server and how the
clients manage and use the Web service.
Design your Web services for reliability, availability, manageability and security.
For example, you want your Web services to process a transaction in a
reasonable time at all hours of the day and provide users with good security
characteristics, such as authentication for buyers. Planning to use Web services
to work with WebSphere Application Server helps to meet these requirements.
To support Web services, extend WebSphere Application Server to support Web
services standards. For interoperable Web services running on platforms
supplied by multiple vendors, standards are essential.

2. Install WebSphere Application Server.
3. Review Web services Samples.
4. Set up a Web services development environment.

What to do next

Develop a Web service.

Setting up a Web services development environment
Before you begin

WebSphere Application Server provides command-line tools to develop Web
services clients and implementations. This topic describes how to set up a
development environment to use these command-line tools.

WebSphere Application Server also includes the Assembly Toolkit
(http://www-3.ibm.com/software/webservers/appserv/was/support/) that can
be used for Web services assembly and deployment operations.

Websphere Studio Application Developer Version 5.1 has GUI-based development
tools to develop Web services that integrate with Websphere Application Server
5.0.2.

Before you can set up a Web services development environment within WebSphere
Application Server, you must Install WebSphere Application Server.

To set up a Web services development environment:

Steps for this task
1. Configure the path.

You can add the bin directory to your path by typing:
set PATH=install_root\bin;%PATH%

for Windows platforms, or
export PATH=install_root/bin:$PATH

for UNIX.

To use Java commands from the command shell, add the Java bin directory to
your path by typing:

356 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

set PATH=install_root\java\bin;%PATH%

for Windows platforms, or
export PATH=install_root/java/bin:$PATH

for UNIX.Where:

install_root is the fully qualified path to the WebSphere Application Server
installation directory. The examples in this document assume the path includes
both of these directories.

2. Configure the class path.
You must configure your CLASSPATH environment variable appropriately to
compile your classes and execute Web services clients.
To configure the CLASSPATH, use the files listed in the following table. You
can add the files from the WebSphere run time to your CLASSPATH,
depending on the requirements of your code. Typically, only the j2ee.jar file is
required to compile Web services implementations, while the other files are
required to compile and run clients.

File (Use forward slashes for UNIX) Contents

install_root\lib\j2ee.jar J2EE classes, including Extendable Markup
Language (XML) processing APIs

install_root\lib\xerces.jar XML manipulation classes needed by the
client run time

install_root\lib\commons-logging-api.jar Client run time logging support

install_root\lib\wsdl4j.jar Client run time Web Services Description
Language (WSDL) file utilities

install_root\lib\webservices.jar Client run time

install_root\lib\qname.jar XML classes

install_root\lib\commons-discovery.jar Client run time support

What to do next

Develop Web services.

Migrating Apache SOAP Web services to Web services for J2EE
Before you begin

If you have used the Apache SOAP support to create Web services client
applications in WebSphere Application Server Versions 4.0 or 5.0, and want use
Web services for J2EE, also known as JSR 109, you need to migrate your Version
4.0 and 5.0 client applications.

To migrate these client applications to the JSR 109 Web services standards:

Steps for this task
1. Plan your migration strategy.

There are two ways you can port an Apache SOAP client to Java API for
XML-based RPC (JAX-RPC) Web services client:
v If you have, or can create, a Web Services Description Language (WSDL)

document for the service, consider using the WSDL2Java command tool to

Chapter 8. Using Web services 357

generate bindings for the Web service. It is more work to adapt an Apache
SOAP client to use the generated JAX-RPC bindings, but the resulting client
code is more robust and easier to maintain. To follow this path, see
Developing a Web services client.

v If you do not have a WSDL document for the service, do not expect the
service to change, and you want to port the Apache SOAP client with a
minimal work, you can convert the code to use the JAX-RPC dynamic
invocation interface (DII), which is similar to the Apache SOAP APIs. The
DII APIs do not use WSDL or generated bindings.

You should be aware that since JAX-RPC does not specify a framework for
user-written serializers, the JAX-RPC does not support the use of custom
serializers. If your application cannot conform to the default mapping between
Java, WSDL, and XML supported by WebSphere Application Server, you should
not attempt to migrate the application.

The remainder of this topic assumes that you have decided to use the JAX-RPC
DII APIs.

2. Review the GetQuote sample.
There is a Web services migration sample in the Samples Gallery. This sample
is located in the GetQuote.java file, originally written for Apache SOAP, and
includes an explanation about the changes needed to migrate to the JAX-RPC
DII interfaces.

3. Convert the client application from Apache SOAP to JAX-RPC DII
The Apache SOAP API and JAX-RPC DII API structures are similar. You can
instantiate and configure a call object, set up the parameters, invoke the
operation, and process the result in both.
You can create a generic instance of a Service object with
javax.xml.rpc.Service service =
ServiceFactory.newInstance().createService(new QName(""));

in JAX-RPC.
a. Create the call object.

An instance of the call object is created by
org.apache.soap.rpc.Call call = new org.apache.soap.rpc.Call ()

in Apache SOAP.

An instance of the call object is created by
java.xml.rpc.Call call = service.createCall();

in JAX-RPC.
b. Set the endpoint URI.

The target URI for the operation is passed as a parameter to
call.invoke: call.invoke("http://...", "");

in Apache SOAP.

The setTargetEndpointAddress method is used as a parameter to
parametcall.setTargetEndpointAddress("http://...");

in JAX-RPC.

358 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Apache SOAP has a setTargetObjectURI method on the call object that
contains routing information for the request. JAX-RPC has no equivalent
method. The information in the targetObjectURI is included in the
targetEndpoint URI for JAX-RPC.

c. Set the operation name.
The operation name is configured on the call object by
call.setMethodName("opName");

in Apache SOAP.

The setOperationName method, which accepts a QName instead of a String
parameter, is used in JAX-RPC as follows:
call.setOperationName(new javax.xml.namespace.Qname("namespace", "opName"));

d. Set the encoding style.
The encoding style is configured on the call object by
call.setEncodingStyleURI(org.apache.soap.Constants.NS_URI_SOAP_ENC);

in Apache SOAP.

The encoding style is set by a property of the call object
call.setProperty(javax.xml.rpc.Call.ENCODINGSTYLE_URI_PROPERTY,

"http://schemas.xmlsoap.org/soap/encoding/");

in JAX-RPC.
e. Declare the parameters and set the parameter values.

Apache SOAP parameter types and values are described by parameter
instances, which are collected into a Vector and set on the call object before
the call, for example:
Vector params = new Vector ();
params.addElement(

new org.apache.soap.rpc.Parameter(name, type, value, encodingURI));
// repeat for additional parameters... call.setParams (params);

For JAX-RPC, the call object is configured with parameter names and types
without providing their values, for example:
call.addParameter(name, xmlType, mode);
// repeat for additional parameters call.setReturnType(type);

Where
v name (type java.lang.String) is the name of the parameter
v xmlType (type javax.xml.namespace.QName) is the XML type of the

parameter
v mode (type javax.xml.rpc.ParameterMode) the mode of the parameter, for

example, IN, OUT, or INOUT
f. Make the call.

The operation is invoked on the call object by
org.apache.soap.Response resp = call.invoke(endpointURI, "");

in Apache SOAP.

The parameter values are collected into an array and passed to call.invoke
as follows:
Object resp = call.invoke(new Object[] {parm1, parm2,...});

Chapter 8. Using Web services 359

in JAX-RPC.
g. Check for faults.

You can check for a SOAP fault on the invocation by checking the
Response:
if resp.generatedFault then {
org.apache.soap.Fault f = resp.getFault;
f.getFaultCode();
f.getFaultString(); }

in Apache SOAP.

A java.rmi.RemoteException is thrown in JAX-RPC if a SOAP fault occurs
on the invocation.
try
... call.invoke(...)
catch (java.rmi.RemoteException) ...

h. Retrieve the result.
In Apache SOAP, if the invocation was successful and returns a result, it can
be retrieved from the Response object:
Parameter result = resp.getReturnValue(); return result.getValue();

In JAX-RPC, the result of invoke is the returned object when no exception is
thrown:
Object result = call.invoke(...);
...
return result;

What to do next

Develop a Web services client.

Test the Web services-enabled clients.

Developing Web services
Before you begin

WebSphere Application Server uses Web services standards developed for the Java
language under the Java Community Process (JCP). These standards include the
Java API for XML-based remote procedure call (JAX-RPC (JSR-101)) and Web
services for J2EE (JSR-109).

The JAX-RPC standard covers the programming model and bindings for using
Web Services Description Language (WSDL) for Web services in the Java language.
The Web services standard for J2EE covers the use of JAX-RPC in a J2EE
environment, as well as the deployment of Web services implementations in a J2EE
server. Both standards are part of the J2EE 1.4 release.

For more information on JAX-RPC, JSR-109, tutorials and other Web services and
J2EE information, see Web services: Resources for learning.

You can also use the WebSphere Studio Application Developer Version 5.1
graphical user interface development tools to develop Web services that integrate
with WebSphere Application Server.

360 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Before you develop Web services, see the topic Setting up a Web services
development environment.

You can develop a J2EE Web service application in one of four ways:

Steps for this task
1. Develop a Web service using a Java bean.
2. Develop a Web service using a stateless session enterprise bean.
3. Develop a Web service with an existing WSDL file using a Java bean.
4. Develop a Web service with an existing WSDL file using a stateless session

enterprise bean.

What to do next

Assemble the Web service.

Developing a Web service using a Java bean
Before you begin

Set up a Web service development environment.

To develop a Web service using a Java bean:

Steps for this task
1. Access an existing Java bean Web archive (WAR) file.
2. Develop a Service Endpoint Interface.
3. Develop a Web Services Description Language (WSDL) file.
4. Develop Web service deployment descriptor templates when starting with

WSDL file.
a. Configure the webservices.xml deployment descriptor with command-line

tools.
b. Configure the webservices.xml deployment descriptor with the Assembly

Toolkit.
c. Configure the ibm-webservices-bnd.xmi deployment descriptor with

command-line tools.
d. Configure the ibm-webservices-bnd.xmi deployment descriptor with the

Assembly Toolkit.
5. Assemble a Web services-enabled WAR file when starting from Java.
6. Assemble a Web services-enabled enterprise archive (EAR) file.
7. Deploy the EAR file into WebSphere Application Server.

What to do next

Assemble the Web service.

Developing a Service Endpoint Interface
Before you begin

The Service Endpoint Interface defines the Web services methods. The Web service
implementation, whether an enterprise bean or a Java bean, must implement
methods having the same signature as the methods on the Service Endpoint
Interface. There are a number of restrictions on which types to use as parameters

Chapter 8. Using Web services 361

and results of Service Endpoint Interface methods. These restrictions are
documented in the Java API for XML remote procedure call (JAX-RPC)
specification, which is available through Web services: Resources for learning.

It is easiest to develop the Service Endpoint Interface from an enterprise JavaBean
(EJB) remote interface when the Web service implementation is an enterprise bean.
When the Web service implementation is a Java bean, the bean or an interface it
implements can be a basis for the Service Endpoint Interface.

To develop a Service Endpoint Interface:

Steps for this task
1. Create a Java interface containing the methods to include in the Service

Endpoint Interface.
The interface should extend the java.rmi.Remote interface. Each method throws
the exception, java.rmi.RemoteException. If you start with an existing Java
interface, remove any methods that do not conform to JAX-RPC.

2. Compile the interface.
You need, install_root\lib\j2ee.jar, in your CLASSPATH to compile the
interface.

Results

A Service Endpoint Interface which you can use to develop a Web service.

Usage scenario

This example uses a Java interface called AddressBook. The following example
depicts the AddressBook interface:
package addr;
public interface AddressBook extends java.rmi.Remote {

/**
* Retrieve an entry from the AddressBook.
*
*@param name the name of the entry to look up.
*@return the AddressBook entry matching name or null if none.
*@throws java.rmi.RemoteException if communications failure.
*/
public addr.Address getAddressFromName(java.lang.String name)
throws java.rmi.RemoteException;

}

You use the AddressBook Java interface to create the Service Endpoint Interface:
1. Begin with the remote interface, AddressBook_RI.java:

package addr;
import java.rmi.RemoteException;
import javax.ejb.EJBObject;
public interface AddressBook_RI extends EJBObject {

/**
* Retrieve an entry from the AddressBook.
*
*@param name the name of the entry to look up.
*@return the AddressBook entry matching name or null if none.
*@throws java.rmi.RemoteException if communications failure.
*/
public addr.Address getAddressFromName(java.lang.String name)
throws java.rmi.RemoteException;

}

362 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

2. Make a copy of the remote interface named AddressBook.java and use it as a
template for the Service Endpoint Interface.

3. Change the interface to extend the java.rmi.Remote interface, instead of the
EJBObject interface.

4. Compile the interface.

What to do next

Use the Service Endpoint Interface to Develop a Web Services Description
Language (WSDL) file.

Developing a Web Services Description Language file
Before you begin

Develop a Service Endpoint Interface. You must configure the Service Endpoint
Interface class file and the classes in your CLASSPATH.

You need a Web Services Description Language (WSDL) file to use Web services.
You can develop your own WSDL file or get one from a Web service provider
through E-mail, downloading or through a Uniform Resource Locator (URL). This
documentation assumes you are creating your own.

To develop a WSDL file:

Steps for this task
1. Run the Java2WSDL seiInterface command.

a. Move the WSDL file to the META-INF/wsdl subdirectory if you are using
enterprise JavaBeans (EJB).

b. Move the WSDL file to the WEB-INF/wsdl subdirectory if you are using a
Java bean.

A WSDL file named seiInterface.wsdl is created.
2. Edit the generated WSDL file and inspect the part names.

The WSDL parts have names like arg_0_0. Modify the WSDL file to use the
actual names of the Java parameters.

3. (Optional) Use the Java2WSDL command tool to generate the correct part
names of WSDL file.
You can automatically generate and set the correct part names by using the
Java2WSDL command tool. Generating and setting the part names is done by
providing additional information to the Java2WSDL command in the form of a
Java implementation class that implements the same methods as the Service
Endpoint Interface and is compiled with debug information on (javac -g).
Parameter names are stored in the .class file with the debug information. If
your implementation class was compiled with debug on, you can use the
Java2WSDL -implClass seiImpl seiInterface command to generate a WSDL file
having the proper part names.

Results

A WSDL file that defines the Web service described by the Service Endpoint
Interface.

Usage scenario

Chapter 8. Using Web services 363

This example uses a JAR file named AddressBook.jar containing a class named
AddressBook.class file.

You must add the AddressBook.jar file to your CLASSPATH to create the WSDL
file. The JAR file contains an enterprise JavaBean (EJB) implementation class that
was compiled with debugging information on. Run the Java2WSDL -implClass
addr.AddressBookBean addr.AddressBook command to create a WSDL file named
AddressBook.wsdl.

What to do next

Develop Web services deployment descriptor templates from a WSDL file.

Publishing Web Services Description Language files
Before you begin

You need an enterprise application, also known as an enterprise archive (EAR) file,
that contains a Web services-enabled module and has been configured and enabled
for Web services. See Deploying Web services.

The Web Services Description Language (WSDL) files for each Web
services-enabled module are published to the file system location you specify. You
can provide these WSDL files to clients that want to invoke your Web services.

You can publish WSDL files for the deployed EAR file in one of three ways:

Steps for this task
1. Publish a WSDL file with the administrative console.
2. Publish a WSDL file with the wsadmin command tool.
3. Publish a WSDL file through a URL.

Publishing Web Services Description Language files with the
administrative console
Before you begin

When publishing Web Services Description Language (WSDL) files with the
administrative console, you can specify default or custom HTTP URL prefixes. You
can also specify a Java Message Service (JMS) URL prefix.

To publish a WSDL file with the administrative console:

Steps for this task
1. Open the administrative console.
2. Click Applications> Enterprise Applications > application. Under Additional

Properties, click Publish WSDL which brings you to the Publish WSDL files
for Web Services panel.

3. Specify the default URL prefixes for the Web service.
a. Select HTTP URL prefix.
b. Select an entry from the drop down list.

If you have multiple application modules, select the application module’s
checkbox on the module table.

c. Click Apply.
The URL prefix is copied to the selected module HTTP URL prefix field.

364 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

d. Click OK.
e. Click the exported WSDL_zip_file listed on the Export WSDL Zip file panel.
f. Download the zip file.

Follow your browser’s instructions to download the zip file.
4. Specify custom URL prefixes for the Web service.

a. Select Custom HTTP URL prefix.
b. Type the name of the URL prefix in the Custom HTTP URL prefix field.

The entry must be of the form http|https://<host_name>:<port_number>.
For example:
http://myHost:999

If you have multiple application modules, select the application module’s
checkbox on the module table.

c. Click Apply.
The URL prefix is copied to the selected module HTTP URL prefix field.

d. Click OK.
e. Click the exported WSDL_zip_file listed on the Export WSDL Zip file panel.
f. Download the zip file.

Follow your browser’s instructions to download the zip file.
5. Specify a JMS URL prefix.

a. Select the application module.
b. Type the JMS URL prefix into the JMS URL prefix field.

The entry must be of the form: jms:/[queue|topic]?destination=<queue or
topic_jndi_name>&connectionFactory=<connection_factory_jndi_name>. For
example:
jms:/queue?destination=jms/Q1&connectionFactory=jms/QCF1

c. Click OK.
d. Click the exported WSDL_zip_file listed on the Export WSDL Zip file panel.
e. Download the zip file.

Follow your browser’s instructions to download the zip file.

Publishing Web Services Description Language files with the
wsadmin command tool
Before you begin

The Web Services Description Language (WSDL) files in each Web services-enabled
module are published to the file system location you specify. You can provide these
WSDL files to the clients that want to invoke your Web services.

The scripting client (wsadmin) can publish the WSDL files in either local, for
example, -conntype NONE, or remote mode. However, in local mode, the target
application should be located at the same node where the wsadmin command is
invoked.

The steps below assume that the application server is running.

To publish a WSDL file with the wsadmin command:

Steps for this task

Chapter 8. Using Web services 365

1. From a command prompt, start install_root\bin\wsadmin if you are using
Windows or install_root/bin/wsadmin if you are using UNIX.

2. At the wsadmin command prompt, enter one of the two commands:
v $AdminApp publishWSDL app_Name path_Name

v $AdminApp publishWSDL app_Name path_Name {{module {{binding
url-prefix}}}}

Where
v app_Name is the application name
v path_Name is the absolute path to the zip file that will contain the published

WSDL files. The zip file is saved in the server side, therefore, if the server is
running on a different machine, you need to obtain the zip file from that
machine. The directory structure of the resulting zip file is based on the
following information:
Application file name

module file name
META-INF/ or WEB-INF/

wsdl/
WSDL file name

See the usage scenario for an example of this directory structure.
v binding is either http or jms (both are in lower case)
v url-prefix is the partial SOAP address for the associated SOAP binding. For

an HTTP binding the form is http://host:port/ or
https://host:port.<pre/>For Java Message Service (JMS) bindings, the form
is jms:/queue?destination=dest&connectionFactory=cf or
jms:/topic?destination=dest&connectionFactory=cf The $AdminApp
publishWSDL app_Name path_Name command updates the WSDL Simple
Object Access Protocol (SOAP) address prefixes using the default values. If
you do not want to update the WSDL SOAP address prefixes, use the other
command, instead of the default values. The $AdminApp publishWSDL
app_Name path_Name {{module {{binding url-prefix}}}} command allows you
to customize the WSDL SOAP address for each module. You can specify a
different address prefix for each SOAP binding. Results The WSDL files from
Web services are published to a specified zip file. You can hand the zip file to
the client and the client can use the published WSDL files to create a Web
services client that accesses the deployed service. Usage scenario The
command to publish WSDL files for a Web service named
WebServicesSamples could be $AdminApp publishWSDL
WebServicesSamples c:/temp/samplesWsdl.zip or $AdminApp
publishWSDL WebServicesSamples c:/temp/sampleswsdl.zip {
{AddressBookJ2WB.war {{http http://localhost:9080}}} {StockQuote.jar {{http
https://localhost:9443}}} } The directory structure for this created zip files is
WebServicesSamples.ear/StockQuote.jar/META-
INF/wsdl/StockQuoteFetcher.wsdl
WebServicesSamples.ear/AddressBookW2JE.jar/META-
INF/wsdl/AddressBookW2JE.wsdl
WebServicesSamples.ear/AddressBookJ2WE.jar/META-
INF/wsdl/AddressBookJ2WE.wsdl
WebServicesSamples.ear/AddressBookJ2WB.war/WEB-
INF/wsdl/AddressBookJ2WB.wsdl
WebServicesSamples.ear/AddressBookW2JB.war/WEB-
INF/wsdl/AddressBookW2JB.wsdl

366 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Publishing Web Services Description Language files through a
URL
Before you begin

The Web services-enabled application should be installed and running.

The files referenced by the <wsdl-file> element in the webservices.xml file can or
cannot import other Web Services Description Language (WSDL) or XSD files.
Typically, all WSDL or XSD files are originally placed into the META-INF/wsdl
directory when using enterprise JavaBeans (EJBs) or the WEB-INF/wsdl directory
when using Java beans. If your WSDL or XSD files are not placed in one of these
directories, the file referenced by the <wsdl-file> and its imported files are located
at the same directory and copied to the wsdl/ directory for publishing purposes.

Note: EJB-based Web service applications must have an HTTP router or a Web
module. The publishing URL supported is of HTTP type.

To publish a WSDL file through a URL:

Steps for this task
1. Retrieve the outer-most WSDL file.

The outer-most WSDL file is the WSDL file defined by the <wsdl-file> element
in the webservices.xml file.
Each Web service has an endpoint address, like
http://example.com/services/stockquote. You can retrieve the outer-most
WSDL file (defined by the <wsdl-file> element within the webservices.xml file)
by appending the string ″/wsdl″ or ″/wsdl/″ to the endpoint address, for
example,http://example.com/services/stockquote/wsdl.

2. Retrieve the imported WSDL files.
When the outer-most WSDL file imports other WSDL or XSD files, these
imported files can be retrieved by appending the relative path to the URL,
which is used to retrieve the outer-most WSDL file. This is also true for WSDL
files that import other files. This process is similar to typical HTTP protocol. If
an HTML document contains a hyperlink to other documents, the relative path
is appended to create the URL to access the hyperlinked documents.

Usage scenario

Suppose you have an application with the following directory structure:
<module-root>/
META-INF/
WEB-INF/
webservices.xml
/* define Foo service, the <wsdl-file> element points to "/wsdl/fooImpl.wsdl" */
web.xml
ibm-webservices-bnd.xml
<jaxrpc-mapping-file>
wsdl/
fooImpl.wsdl/* importing foo.wsdl which is an interface wsdl */
foo.wsdl /* importing type definition for the interface */
fooTypes.xsd

If the SOAP address for the foo service is
http://examples.com:9080/services/foo, the simple way to retrieve the foo’s
outer-most WSDL, is with the following form
http://examples.com:9090/services/foo/wsdl or

Chapter 8. Using Web services 367

http://examples.com:9090/services/foo/wsdl/. The URL is redirected to
http://examples.com:9090/services/foo/wsdl/fooImpl.wsdl, where fooImpl.wsdl
is the name of the outer-most WSDL file.

Since the fooImpl.wsdl file has the import <import
namespace=″http://examples.com/foo″ location=″a/b/foo.wsdl>, use the URL
http://examples.com:9090/services/foo/wsdl/a/b/foo.wsdl to obtain the
foo.wsdl file.

Multipart Web Services Description Language file best practices
WebSphere Application Server supports deployment of Web services using a
multipart Web Services Description Language (WSDL) file. That is, WSDL files
import other WSDL files when the WSDL file listed in the <wsdl-file> element of
the webservices.xml deployment descriptor contains all <wsdl:service> and
<wsdl:port> elements. The WSDL file is divided into an implementation WSDL
and an interface WSDL.

The <wsdl:import> element indicates a reference to another WSDL file. If the
<wsdl:import> element location attribute does not contain a URL, that is, it
contains only a file name, and does not begin with http://, https:// or file://,
the imported file must be located in the same directory and must not contain a
relative path component. For example, if META-INF/A_Impl.wsdl is in your module
and contains the import statement <wsdl:import=″A.wsdl″ namespace=″...″/> , the
file, A.wsdl must also be located in the module META-INF directory.

It is recommended that all WSDL files be placed in either the META-INF/wsdl
directory, if you are using enterprise JavaBEans (EJBs), or the WEB-INF/wsdl
directory, if you are using Java beans, even if there are relative imports within the
WSDL files. Otherwise, there are implications when the WSDL publication is
involved with <location=″. ./interfaces/A_Interface.wsdl″ namespace=″...″/>.
Using a path like this fails due to the presence of the relative path, regardless of
whether the file is located at that path or not. If the location is a URL, it must be
readable at both deployment and server startup.

WSDL publication

The files located in the META-INF/wsdl or WEB-INF/wsdl directory can be published
through either a URL or file, including WSDL or XSD files. For example, if the file
referenced in the <wsdl:file> element of the webservices.xml deployment
descriptor is located in the META-INF/wsdl or WEB-INF/wsdl directory, it is
publishable. If the files imported by the <wsdl:file> are located in the wsd/
directory or its subdirectory, they are publishable.

If the WSDL file referenced by the <wsdl:file> element is located in a directory
other than wsdl/, or its subdirectories, the file and its imported files, either WSDL
or XSD files, which are in the same directory, are copied to the wsdl/ directory
without modification when the application is installed. These types of files can also
be published.

If the <wsdl:file> imports a file located in a different directory, the file is not
copied to the wsdl/ directory and not available for publishing.

Developing Web services deployment descriptor templates from
a Web Services Description Language file
Before you begin

368 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

To develop the deployment descriptor templates from a Web Services Description
Language (WSDL) file, you must obtain the Uniform Resource Locator (URL) of
the WSDL file to use.

If it is a local file and you are running the Windows platform, the URL looks like
this: file:drive:\path\file_name.wsdl. If you are using the UNIX platform, the URL
looks like this: file:/path/file_name.wsdl. You can also specify local files using the
absolute or relative file system path.

The client deployment descriptors, webservicesclient.xml and
ibm-webservicesclient-bnd.xmi, are generated when the WSDL2Java -role
argument specifies a client role. The server deployment descriptors,
webservices.xml and ibm-webservices-bnd.xmi are generated when the -role
argument is a server role.

To develop deployment descriptor templates:

Steps for this task
1. Run the WSDL2Java -verbose -role develop-client -container type -genJava No

wsdlURL command or WSDL2Java -verbose -role develop-server -container
type -genJava No wsdlURL command to generate the client and server
deployment descriptor templates into the META-INF or WEB-INF subdirectory.
Where:
type is EJB for an enterprise JavaBean (EJB)-based implementation or Web for a
Java bean-based implementation. wsdlURL is the URL of the WSDL file to use.
The -container option that you choose to run determines to which subdirectory
the templates are generated.
The Java API for XML-based remote procedure call (JAX-RPC) mapping file is
needed for both server and client use, and is always generated. When the
WSDL2Java -container EJB argument is specified, all deployment descriptors
and the JAX-RPC mapping file are generated into the META-INF subdirectory of
the output directory. When -container Web argument is specified, all
deployment descriptors and the JAX-RPC mapping file are generated into the
WEB-INF subdirectory of the output directory. To generate the deployment
descriptors only, and not any Java classes, specify the -genJava No argument
with the WSDL2Java command tool.
If the -verbose option is specified, a list of all generated files displays when the
command runs.

Results

Deployment descriptor templates that are required to implement or use a Web
service.

Usage scenario

The following example uses a WSDL file named AddressBookJ2WB.wsdl:
1. Generate the template files:

v WSDL2Java -verbose -role develop-client -container Web -genJava No
META-INF\AddressBookJ2WB.wsdl

v WSDL2Java -verbose -role develop-server -container Ejb -genJava No
META-INF\AddressBookJ2WB.wsdl

Chapter 8. Using Web services 369

The deployment descriptor templates are generated into the WEB-INF for client
and META-INF for EJB server subdirectories as follows:
Parsing XML file: META-INF/AddressBookJ2WB.wsdl
Generating: WEB-INF\webservicesclient.xml
Generating: WEB-INF\ibm-webservicesclient-bnd.xmi
Generating: WEB-INF\AddressBookJ2WB_mapping.xml
Generating: META-INF\webservices.xml
Generating: META-INF\ibm-webservices-bnd.xmi
Generating: META-INF\AddressBookJ2WB_mapping.xml

What to do next

Configure the deployment descriptors.

Configuring the webservices.xml deployment descriptor with
command-line tools
Before you begin

Develop implementation templates and bindings for the webservices.xml
deployment descriptor from the Web Services Description Language (WSDL) file.

This topic explains how to configure the webservices.xml deployment descriptor
with command-line tools. You can also configure the webservices.xml deployment
descriptor using the Assembly Toolkit (http://www-
3.ibm.com/software/webservers/appserv/was/support/). See Configuring the
webservices.xml deployment descriptor with the Assembly Toolkit.

To configure the webservices.xml deployment descriptor using command-line
tools:

Steps for this task
1. Open the webservices.xml deployment descriptor in a text editor.
2. Inspect and complete the file elements.

The file elements contain default values. The following steps identify each
element and its contents. Inspect the values for accuracy and fill in default
values that do not exist. Elements that do not have default values are flagged
with ″??″ in the XML file. To set the elements:
a. Locate the <webservice-description-name> attribute.

This name must be unique within the XML file if there are multiple
webservice-description elements. This name is used as part of the
directory structure for naming published WSDL files when publishing files
during deployment.

b. Locate the <wsdl-file> element.
Change the tag element from the full path within the Java archive (JAR) or
Web archive (WAR) file to the WSDL file defining the Web service being
implemented. By convention, the WSDL file is placed in the META-INF/wsdl
subdirectory for EJB modules and the WEB-INF/wsdl subdirectory for Web
modules.

c. Locate the <jaxrpc-mapping-file> element.
Set this element to the full path within the JAR or WAR file to the generated
Java API for XML-based remote procedure call (JAX-RPC) mapping file. By
convention, the mapping file is placed in the META-INF subdirectory for EJB
modules and the WEB-INF subdirectory for Web modules.

d. Locate the <port-component-name> element.

370 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Change the element to a string that uniquely identifies the port within the
module.

e. Locate the <wsdl-port> element.
This identifies the port in the WSDL file that corresponds to this
deployment descriptor port. The <namespaceURI> subelement indicates the
namespace portion of the WSDL port name. Set this element to the
namespace of the matching port in the WSDL file identified by the
<wsdl-file> element. This namespace is typically the target namespace in
the WSDL file. The <localpart> subelement indicates the local portion of
the WSDL port name. Set this element to the name of the matching WSDL
port.

f. Locate the <service-endpoint-interface> element.
Set this element to the class name, including package, of the Java interface
that is the Service Endpoint Interface for the Web service.

g. Locate the <ejb-link> element if the Web service implementation is an
enterprise bean.
Set this element to the <ejb-name> element of ejb-jar.xml file for the
corresponding enterprise bean. This link informs the Web service port
component which enterprise bean implements it.

h. Locate the <service-impl-bean> tag if the Web service implementation is a
Java bean in a Web module.
Set the <servlet-link> element to reference the bean that implements the
methods of the Service Endpoint Interface.

Results

The webservices.xml deployment descriptor is configured for the Web service
implementation module. To learn more about the assembly properties for the
webservices.xml deployment descriptor see the Web services for J2EE specification
available through Web services: Resources for learning.

What to do next

Configure the ibm-webservices-bnd.xmi deployment descriptor.

Configuring the webservices.xml deployment descriptor with the
Assembly Toolkit
Before you begin

Create an enterprise JavaBean (EJB) Java archive (JAR) file or Web archive (WAR)
file containing webservices.xml.

This topic explains how to configure the webservices.xml deployment descriptor
with the Assembly Toolkit (http://www-
3.ibm.com/software/webservers/appserv/was/support/). For more information
about completing tasks with the Assembly Toolkit, click Help > Help in the
Assembly Toolkit graphical user interface (GUI).

You can also configure the webservices.xml deployment descriptor with
command-line tools. See Configuring the webservices.xml deployment descriptor
with command-line tools.

To configure the webservices.xml deployment descriptor with the Assembly
Toolkit:

Chapter 8. Using Web services 371

Steps for this task
1. Start the Assembly Toolkit (http://www-

3.ibm.com/software/webservers/appserv/was/support/).
2. Click File > Import to import the EJB JAR file or WAR file into the Assembly

Toolkit.
3. Right-click the webservices.xml file in the navigator pane.

You might have to switch to the Java perspective for the webservices.xml file
to be visible in the navigator pane.

4. Select Open.
The Web Services editor opens.

5. Expand the Web service descriptions section.
a. Select the service you want to configure.

6. Expand the Web service description implementation details section.
a. Verify the Web service description name field is unique among all the Web

service descriptions in the editor.
b. Verify that the WSDL file field indicates there is an existing WSDL file in

the module.
This file, by convention, should be located in the META-INF/wsdl directory
for an enterprise bean JAR file and in the WEB-INf/wsdl directory for a WAR
file.

c. Verify the JAX-RPC mapping file field indicates an existing mapping file
within the module.
This file, by convention, should be located in the META-INF directory for an
enterprise bean JAR file and in the WEB-INF directory for a WAR file.

7. Expand the Port components section.
a. Verify there are port component entries corresponding to the used WSDL

ports in the Port components section.
8. Select a port_component to open the editor for that port component.

The Port Components editor opens.
9. Expand the Port component implementation details section.

a. Verify the WSDL Port Namespace URL and WSDL Port Local part fields
are set to the namespace and local name of the corresponding port in the
WSDL file.
These fields are configured by the WSDL2Java command tool when the
webservices.xml file is generated.

10. Verify the Service endpoint interface field names the fully qualified Service
Endpoint Interface class.
This field is configured by the WSDL2Java command when the
webservices.xml file is generated.

11. Locate the Service implementation bean field.
a. Configure this field to indicate the EJB or servlet that implements the Web

service. Configure by selecting EJB link for an enterprise bean module or
Servlet link for a Web module. Use the drop down list in the Service
implementation bean field to select the enterprise bean or servlet used to
implement the Web service.
The choices in the drop down menu come from the enterprise beans
defined in the ejb-jar.xml file for an enterprise bean module or the
servlets defined in the web.xml file for a Web module.

372 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Configuring the ibm-webservices-bnd.xmi deployment descriptor
with command-line tools
Before you begin

Develop implementation templates and bindings for the ibm-webservices-bnd.xmi
from the Web Services Description Language (WSDL) file.

This topic explains how to configure bindings using command-line tools. You can
also configure the bindings with the Assembly Toolkit (http://www-
3.ibm.com/software/webservers/appserv/was/support/). See Configuring the
ibm-webservices-bnd.xmi deployment descriptor with the Assembly Toolkit

To configure the ibm-webservices-bnd.xmi deployment descriptor with
command-line tools:

Steps for this task
1. Open the ibm-webservices-bnd.xmi deployment descriptor in a text editor.
2. Inspect and complete the file elements.

The file elements contain default values. The following steps identify each
element and its contents. Inspect the values for accuracy.
To set the elements:
a. Locate the <wsdescBindings> element.

Set the wsDescNameLink attribute to the value of the <webservice-
description-name> element in the webservices.xml deployment descriptor.
Set the pcNameLink attribute to the value of the <port-component-name> of
the corresponding port in the webservices.xml deployment descriptor.

Results

The ibm-webservices-bnd.xmi deployment descriptor is configured for the Web
service implementation module.

What to do next

Do one of the following based on whether your implementation is an EJB Java
archive (JAR) file or Web module Web archive (WAR) file:
v Assemble a Web services-enabled JAR file when starting from Java.
v Assemble a Web services-enabled JAR file when starting from WSDL.

Configuring the ibm-webservices-bnd.xmi deployment descriptor
with the Assembly Toolkit
Before you begin

Develop implementation templates and bindings for the ibm-webservices-bnd.xmi
from the Web Services Description Language (WSDL) file.

Do one of the following based on whether your implementation is an EJB Java
archive (JAR) file or Web module Web archive (WAR) file:
v Assemble a Web services-enabled JAR file when starting from Java.
v Assemble a Web services-enabled JAR file when starting from WSDL.

This topic explains how to configure bindings using the Assembly Toolkit
(http://www-3.ibm.com/software/webservers/appserv/was/support/). For more

Chapter 8. Using Web services 373

information about completing tasks with the Assembly Toolkit, click Help > Help
in the Assembly Toolkit graphical user interface.

You can also configure the bindings with command-line tools. See Configuring the
ibm-webservices-bnd.xmi deployment descriptor with command-line tools.

To configure the ibm-webservices-bnd.xmi deployment descriptor with the
Assembly Toolkit:

Steps for this task
1. Start the Assembly Toolkit (http://www-

3.ibm.com/software/webservers/appserv/was/support/).
2. Click File > Import to import the EJB JAR file or WAR file into the Assembly

Toolkit.
3. Righ-click the webservices.xml file in the Navigator pane.

You might have to switch to the Java perspective for the webservices.xml file
to be visible in the Navigator pane.

4. Select Open.
The Web Services editor opens.

5. Click the Bindings tab located at the bottom of the editor pane.
The Web Services Bindings editor opens.

6. Verify the wsdescNameLink element settings.
a. Expand the Web services description bindings section. Verify that the value

of the <webservice-description-name> element in the webservices.xml
deployment descriptor is listed in the section.
If the value is not listed:

b. (Optional) Click Add, choose the correct Web services name and click OK.
You do not need to complete this step is you have verified that the correct
Web services name is listed in the Web Services Description Bindings tab.

7. Verify the pcnameLink attribute settings.
a. Expand the Web Service Description Bindings section. Verify that the

correct service is selected in the
If the correct service is not listed:

b. (Optional) Expand Port Component Binding.
Verify the correct Web services name is selected in the Web Service
Description Bindings section.
This selection is a prerequisite to creating a pcnameLink attribute.

c. In the Port Component Binding section, click Add.
You need to make a selection in the Web Service Description Bindings
section before you can create the port component binding in the Port
Component Binding section. The Port Component Bindings Dialog opens.

d. Select the desired port from the drop down list in the PC Name Link field.
e. Click OK.
f. Click the Binding Configurations tab to view the bindings for your port.
g. Save the bindings file.

8. Click File > Export to export the JAR file, or continue using the Assembly
Toolkit for configuration and assembly tasks.

Results

374 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The ibm-webservices-bnd.xmi deployment descriptor is configured for the Web
service implementation module.

Configuring the webservicesclient.xml deployment descriptor
with command-line tools
Before you begin

You should have generated the template for webservicesclient.xml from the Web
Services Description Language (WSDL) file.

If the default values set in the template are acceptable, you do not need to modify
the file further.

If the Web services client is in an enterprise JavaBean (EJB) Java archive (JAR) file,
you must manually add the <component-scoped-refs> element as described in step
7 of this topic.

If the Web service is implemented by an EJB in the same module as the client, you
can add the <port-component-link> element as described in step 8 of this topic, to
optimize access to the service.

The following steps explain how to set the fields if you choose to.

You can also configure the webservicesclient.xml deployment descriptor with the
Assembly Toolkit (http://www-
3.ibm.com/software/webservers/appserv/was/support/). See Configuring the
webservicesclient.xml deployment descriptor with the Assembly Toolkit.

To configure the webservicesclient.xml deployment descriptor with
command-line tools:

Steps for this task
1. Open the webservicesclient.xml deployment descriptor in a text editor.
2. Locate the <description> tag in the <service-ref> element.

a. Fill in this element with a descriptive name for the service the client
accesses.

3. Locate the <service-ref-name> tag in the <service-ref> element.
a. Fill in this element with the name the Java Naming Directory Interface

(JNDI) uses to locate the service.
The JNDI lookup string for this service is
java:comp/env/service-ref-name

by convention, service-ref-name always begins with service/.
4. Locate the <service-interface> tag in the <service-ref> element.

a. Set this element to the class name, including package, of the generated
Java interface that is the Service Interface for this Web service.

5. In the <service-ref> element, locate the <wsdl-file> tag.
a. Set this element to the WSDL file name used by this client relative to the

root of the module.
6. Locate the <jaxrpc-mapping-file> tag in the <service-ref> element.

a. Set this element to the file name of the generated Java mapping file
relative to the root of the module.

Chapter 8. Using Web services 375

7. In the <port-component-ref> element, locate the <service-endpoint-
interface> tag.
a. Set this element to the class name, including package, of the Java interface

that is the Service Endpoint Interface for this Web service.
8. (Optional) Repeat the <service-ref> entry as many times as needed, filling in

the elements listed in the previous steps, if your client uses more than one
Web service.

9. (Optional) Define the <service-ref> element witin the <component-scoped-
refs> element if the service reference is being defined within an EJB JAR file,
so that the service reference can be associated with the EJB.
This association is made by using ejb-name from the ejb-jar.xml file as the
value of the component-name in the component-scoped-refs element. For more
information, see section 7.2.2 of the Web services for J2EE specification
available through Web services: Resources for learning.

10. (Optional) Add the <port-component-link> to optimize access to the service if
the service reference is defined in an EJB JAR file that also contains the EJB
that implements the service.
The <port-component-link> value is set to the <port-component-name> defined
in webservices.xml in the same module.

Results

The webservicesclient.xml deployment descriptor is configured.

Usage scenario

For the AddressBook samples, the following edits are made to
webservicesclient.xml:
1. Set the <description> element.
2. The default values are used for the remaining elements.

The resulting file contains :
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE webservicesclient PUBLIC "-//IBM Corporation, Inc.//DTD J2EE Web services client 1.0//EN"

"http://www.ibm.com/webservices/dtd/j2ee_web_services_client_1_0.dtd">
<webservicesclient>
<service-ref>
<description>WSDL Service AddressBookService <description>WSDL Service AddressBookService</description>
<service-ref-name>service/AddressBookService

<service-ref-name>service/AddressBookService</service-ref-name>
<service-interface>com.ibm.websphere.samples.webservices.addr.AddressBookService</service-interface>
<wsdl-file>META-INF/wsdl/AddressBook.wsdl</wsdl-file>
<jaxrpc-mapping-file>META-INF/AddressBook_mapping.xml</jaxrpc-mapping-file>
<port-component-ref>
<service-endpoint-interface>com.ibm.websphere.samples.webservices.addr.AddressBook</

service-endpoint-interface>
</port-component-ref>
</service-ref>
</webservicesclient

What to do next

Assemble a Web services-enabled client.

Configuring the webservicesclient.xml deployment descriptor
with the Assembly Toolkit
Before you begin

376 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

You should have an enterprise JavaBean (EJB) Java archive (JAR) file, Web archive
(WAR) file or an application client file that you can import into the Assembly
Toolkit.

This topic explains how to configure the webservicesclient.xml deployment
descriptor with the Assembly Toolkit (http://www-
3.ibm.com/software/webservers/appserv/was/support/). For more information
about completing tasks with the Assembly Toolkit, click Help > Help in the
Assembly Toolkit graphical user interface (GUI).

You can also configure the webservicesclient.xml deployment descriptor with
command-line tools. See Configuring the webservicesclient.xml deployment
descriptor with command-line tools.

To configure the webservicesclient.xml deployment descriptor with the Assembly
Toolkit:

Steps for this task
1. Start the Assembly Toolkit (http://www-

3.ibm.com/software/webservers/appserv/was/support/).
2. Click File > Import to import the EJB JAR file, WAR file or application client

file into the Assembly Toolkit.
3. Right-click on the webservicesclient.xml file in the Navigator pane.

You might have to switch to the Java perspective for the
webservicesclient.xml file to be visible in the Navigator pane.

4. Select Open.
The Web Services Client editor opens.

5. Expand the Service references section.
6. Select the service_reference that you want to configure.
7. Expand the Service reference overview section.
8. Type the name of the service for which the client accesses in the Description

field.
9. Expand the Service reference implementation details section.

a. Type the name that the Java Naming Directory Interface (JNDI) uses to
locate the service in the Service references name field.
The JNDI lookup string for this service is java:comp/env/service-ref-name.
By convention, the service reference name always begins with service/.

b. Type the class name, including package, of the generated Java interface that
is the Service Interface for this Web service in the Service interface name
field.

c. Type the WSDL file name used by the client, relative to the root of the
module, in the WSDL file field.

d. Type the file name of the Java mapping file, relative to the root of the
module, in the JAX RPC mapping file field.

Results

The webservicesclient.xml deployment descriptor is configured using the
Assembly Toolkit.

What to do next

Chapter 8. Using Web services 377

Java2WSDL command
The Java2WSDL command tool maps a Java class to a Web Services Description
Language (WSDL) file by following the Java API for XML-based remote procedure
call (JAX-RPC) specification. The Java2WSDL command accepts a Java class as
input and produces a WSDL file representing the input class. If there is an existing
file at the output location, it is overwritten. The WSDL file generated by the
Java2WSDL command contains WSDL and XML schema constructs that are
automatically derived from the input class. You can override these default values
with command-line arguments.

The WSDL file generated by the Java2WSDL command can contain unexpected
elements. Review Mapping between Java, WSDL and XML and the JAX-RPC
specification available through Web services: Resources for learning, for more
information on the transformations performed. You can create WSDL files that
cannot be compiled when regenerated into Java code using the WSDL2Java
command because the JAX-RPC mapping from Java to WSDL is not reversible back
to the original Java code. Inspect and modify the WSDL file if you encounter this
problem.

Command line syntax and arguments

The command line syntax is:
Java2WSDL [argument...] class

The following command-line arguments are supported:

Required arguments

v class

Represents the fully qualified name of one of the following Java classes:
– Stateless session EJB remote interface that extends the javax.ejb.EJBObject

class
– Service Endpoint Interface that extends the java.rmi.Remote class
– Java bean

The Java2WSDL command locates the class in CLASSPATH.

Important arguments

v -bindingName name

Specifies the name to use for the binding element. If not specified, the binding
name is the portTypeName.

v -help

Displays the help message.
v -helpX

Displays the help message for extended options.
v HelpXoptions

– -debug

Displays debug messages.
– -outputImpl impl-wsdl

Specifies if you want an interface and implementation WSDL file emitted.
– -locationImport location-uri

Specifies the location of the interface WSDL file if you use the -outputImpl
argument specified.

378 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

– -MIMEStyle

Specifies a style representing Multipurpose Internet Mail Extensions (MIME)
information. Valid arguments are:
- Axis

- WSDL11 (default)
– -soapAction

Valid arguments are:
- DEFAULT

Sets the soapAction field according to deployment information.
- NONE

Sets the soapAction field to ″″.
- OPERATION

Sets the soapAction field to the operation name.
– -stopClasses parent [, parent]

If the -all argument is specified, the Java2WSDL command searches inherited
classes and interfaces to construct the list of methods for WSDL file
operations. The Java2WSDL command searches inherited classes and
interfaces when generating extended complexTypes. The search stops when a
class or interface is found within a package that begins with java or javax.
The -stopClasses argument can be used to define additional classes that cause
the search to stop.

– -namespaceImpl namespace

Specifies the target namespace for the implementation WSDL if -outputImpl
specified.

– -voidReturn

Valid arguments are:
- ONEWAY

Methods with void returns are one-way. This is the default for JMS
transport.

- TWOWAY

Methods with void returns are two-way. This the default for HTTP
transport.

– -wrapped boolean

Specifies if the WSDL file should be generated according to wrapped rules.
This is only valid if use is literal. The option defaults to true.

v -extraClasses classes

Specifies other classes that should be represented in the WSDL file.
v -input wsdl-uri

Specifies the input WSDL file used to build an output WSDL file. Information
from an existing WSDL file, whose name is specified in this option, is used with
the input Java class to generate the desired output.

v -implClass impl-class

The Java2WSDL command uses method parameter names to construct the
WSDL file message part names. The command automatically obtains the
message names from the debug information in the class. If the class is compiled
without debug information, or if the class is an interface, the method parameter
names are not available. In this case, you can use the -implClass argument to
provide an alternative class from which to obtain method parameter names. The

Chapter 8. Using Web services 379

impl-class does not need to implement the class if the class is an interface, but it
must implement the same methods as class.

v -location location

Provides the location or Uniform Resource Locator (URL) of the service.
Typically, this value fills automatically when the Web service deploys. Use this
argument to specify the location if you want to generate a WSDL file containing
a location URL without deploying. A warning displays to remind you that the
generated WSDL file should not be published if the final location is not yet been
determined. The name after the last slash or backslash is the name of the service
port, unless the name is overridden by the -servicePortName argument. The
service port address location attribute is assigned the specified value.

v -namespace targetNamespace

Indicates the target namespace for the WSDL file being generated. See Mapping
between Java, WSDL and XML for the algorithm used to obtain the default
namespace.

v -output wsdl-uri

Indicates the path and file name of the output WSDL file. If not specified, the
default file, class.wsdl, is written into the current directory.

v -PkgtoNS package namespace

Specifies the mapping of a Java package to a namespace. If there is a package
without a namespace, the Java2WSDL command generates a namespace name.
This argument can be repeated to specify mappings for multiple packages.

v -portTypeName name

Specifies the name to use for the portType element. If not specified, the class
name is used.

v -serviceElementName name

Specifies the name of the service element.
v -servicePortName name

Specifies the name of the service. If not specified, the service name is derived
from the -location argument.

v -style RPC | DOCUMENT

Specifies the WSDL style to use in the generated WSDL file. For more
information about styles, see Mapping between Java, WSDL and XML. This
argument is used with the -use argument.
If RPC is specified with -use ENCODED, or omitting use, a
style=rpc/use=encoded WSDL file is generated. If RPC is specified with -use
LITERAL, a style=rpc/use=literal WSDL file is generated. If DOCUMENT is
specified with -use LITERAL or omitting use, a style=document/use=literal
WSDL file is generated.

v -transport http | jms

Generates Simple Object Access Protocol (SOAP) bindings for either Hyper Text
Transport Protocol (HTTP) (default) or Java Messaging Service (JMS). If jms is
specified, the characters ″jms″ are appended to the WSDL file name to prevent
overwriting an existing WSDL file for another transport. The transport option
can only be specified once.

v -use LITERAL | ENCODED

Specifies which style and use combinations are generated into the WSDL file
when used with the -style argument. The combinations are rpc and encoded, rpc
and literal, or doc and literal. For more information, see the Mapping between
Java, WSDL and XML.

380 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v -verbose

Displays verbose messages.

Developing a Web service using a stateless session enterprise
bean

Before you begin

To use an enterprise bean as the basis for a Web service implementation, follow
these requirements:
v The enterprise bean must be a stateless session bean.
v Web service method parameters must be serializable and cannot be object

references.
v Web service method parameters must be one of the supported Java API for

XML-based remote procedure call (JAX-RPC) types.

These requirements are documented in the JAX-RPC specification available through
Web services: Resources for learning

.

Create the artifacts that enable the enterprise bean to be a Web service and
assemble the artifacts into the enterprise application as follows:

Steps for this task
1. Access an existing Java archive (JAR) file to be used as a Web service.

Make sure that the enterprise bean meets the requirements.
2. Develop a Service Endpoint Interface.

The Service Endpoint Interface defines which enterprise bean methods should
be made available as a Web service.

3. Develop a Web Services Description Language (WSDL) file.
4. Develop Web service deployment descriptor templates from the WSDL file.

a. Configure the webservices.xml deployment descriptor.
b. Configure the ibm-webservices-bnd.xmi deployment descriptor.

5. Assemble a Web services-enabled JAR file.
6. Assemble a Web services-enabled enterprise archive (EAR) file.
7. Enable the EAR file.

If the EAR file contains EJB modules, it must have the Web services endpoint
Web archive (WAR) file added with the endptEnabler tool before it is deployed.

8. Deploy the EAR file into WebSphere Application Server.

Results

A Web service from a stateless session enterprise bean.

Developing a new Web service with an existing Web Services
Description Language file using a Java bean

Before you begin

Chapter 8. Using Web services 381

Locate the Web Services Description Language (WSDL) file that defines the Web
service to be implemented. You can develop a WSDL or obtain one from an
existing Web service through Email, downloading or a Uniform Resource Locator
(URL).

To develop a new Web service with an existing WSDL file using a Java bean:

Steps for this task
1. Develop implementation templates and bindings from a WSDL file.
2. Complete the Java bean implementation.
3. Configure the webservices.xml deployment descriptor.
4. Configure the ibm-webservices-bnd.xmi deployment descriptor.
5. Assemble a Web services-enabled Web archive (WAR) file when starting from a

WSDL file.
6. Assemble a Web services-enabled enterprise archive (EAR) file.
7. Deploy the EAR file into WebSphere Application Server.

Developing implementation templates and bindings from a Web
Services Description Language file
Before you begin

To develop the implementation templates and bindings from a Web Services
Description (WSDL) file, you must obtain the Uniform Resource Locator (URL) of
the WSDL file to use.

If it is a local file and you are running the Windows platform, the URL looks like
this: file:drive:\path\file_name.wsdl. If you are using the UNIX platform, the URL
looks like this: file:/path/file_name.wsdl. You can also specify local files using the
absolute or relative file system path.

Implementation templates are generated using the -role develop-server option in
combination with the -container option of the WSDL2Java command. This option
takes the following parameters:
v -container EJB

Generates templates for an EJB implementation in an EJB module.
v -container Web

Generates templates for a Java bean implementation in a Web module.

Templates are generated for an EJB implementation for the following:
v EJB
v EJB remote interface
v EJB Home

The WSDL2Java command also generates bindings and deployment descriptors.

To develop implementation templates and bindings from a WSDL file:

Steps for this task
1. Run the WSDL2Java -verbose -role develop-server -container type wsdlURL

command.
Where: type is EJB for an enterprise JavaBean (EJB)-based implementation or
Web for a Java bean-based implementation.

382 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Since the verbose option is specified, a list of all generated files is displayed
when the command runs.

Results

Templates for the implementation and deployment descriptors required to
implement a Web service, as well as bindings files. These templates are partially
filled with information from the WSDL file.

Usage scenario

The following example uses an enterprise bean named AddressBook and a WSDL
file named AddressBook.wsdl. After generating the template files from the
WSDL2Java -verbose -role develop-server -container EJB AddressBook.wsdl
command, the following files are generated:
Parsing XML file: file:e:/example/app/topdown/step1/AddressBook.wsdl
WSWS3185I: Info: Parsing XML file: AddressBookW2JB.wsdl
WSWS3282I: Info: Generating addr\Address.java.
WSWS3282I: Info: Generating addr\Phone.java.
WSWS3282I: Info: Generating addr\StateType.java.
WSWS3282I: Info: Generating addr\AddressBook.java.
WSWS3282I: Info: Generating addr\AddressBookSoapBindingImpl.java.
WSWS3282I: Info: Generating addr\AddressBook_RI.java.
WSWS3282I: Info: Generating addr\AddressBookHome.java.
WSWS3282I: Info: Generating META-INF\webservices.xml.
WSWS3282I: Info: Generating META-INF\ibm-webservices-bnd.xmi.
WSWS3282I: Info: Generating META-INF\AddressBookW2JB_mapping.xml.
WSWS3282I: Info: Generating META-INF\ibm-webservices-ext.xmi.

If you are using a Java bean, you can generate the files with the WSDL2Java
-verbose -role develop-server -container Web AddressBook.wsdl command.

What to do next

Complete the EJB implementation.

Complete the Java bean implementation.

Completing the enterprise bean implementation
Before you begin

Develop implementation templates and bindings from a Web Services Description
Language (WSDL) file.

To complete the enterprise bean implementation:

Steps for this task
1. Inspect the enterprise JavaBean (EJB) remote interface template,

portType_RI.java.
If necessary, modify the template. portType is the name of the <wsdl:portType>
element in the WSDL file.

2. Inspect the EJB home interface template, portTypeHome.java.
If necessary, modify the template.

3. Edit the EJB implementation template, bindingImpl.java.
binding is the name of the <wsdl:binding> element in the WSDL file.
a. Complete the implementation of the methods in the template.

Chapter 8. Using Web services 383

b. (Optional) Make changes if necessary.
c. (Optional) Change the class name if the binding name is not acceptable.

4. Compile all the Java classes.
5. Assemble an EJB Java archive (JAR) file.

Assemble all the Java classes into an EJB JAR file using the typical EJB
assembly tools. Include all of the classes generated from running the
WSDL2Java command tool when developing implementation templates and
bindings from a WSDL file.

Results

An EJB JAR file containing an EJB and supporting classes created from a WSDL
file.

What to do next

Run the WSDL2Java command tool generated templates for the Web services
deployment descriptors. Configure the webservices.xml deployment descriptor.

Completing the Java bean implementation
Before you begin

Develop implementation templates and bindings from a Web Services Description
Language (WSDL) file.

Steps for this task
1. Edit the enterprise JavaBean (EJB) implementation template, bindingImpl.java.

binding is the name of the <wsdl:binding> element in the WSDL file.
a. Complete the implementation of the methods in the template.
b. (Optional) Make changes if necessary.
c. (Optional) Change the class name if the binding name is not acceptable.

2. Compile all the Java classes.
3. Assemble a Web archive (WAR) file.

Assemble all the Java classes into a WAR file using typical Web module
assembly tools. Include all of the classes generated from running the
WSDL2Java command tool when developing implementation templates and
bindings from a WSDL file.

Results

A Java archive (JAR) file containing a Java bean and supported classes created
from the WSDL file.

What to do next

Run the WSDL2Java command and generate templates for the Web services
deployment descriptors. Configure the webservices.xml deployment descriptor

WSDL2Java command
The WSDL2Java command tool creates Java classes and deployment descriptor
templates from a Web Services Description Language (WSDL) file using the Java
API for XML-based remote procedure call (JAX-RPC) 1.0 specification. See
Mapping between Java, WSDL and XML for more information.

384 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Classes and files generated

The following kinds of classes and files are generated:
v For each portType in the WSDL document (<wsdl:portType> element tag) use

a:

– Service Endpoint Interface
v For each service in the WSDL document (<wsdl:service> element tag) use a:

– Service Interface when the -role develop-client argument is specified.
– ServiceLocator when the -role deploy-client argument is specified.

This class is a WebSphere product-specific implementation of the service
interface, and is not used directly.

– webservices.xml deployment descriptor template when the -role
develop-server argument is specified

– ibm-webservices-bnd.xmi deployment descriptor template when the -role
develop-server argument is specified.

– ibm-webservices-ext.xmi deployment descriptor template when the -role
develop-server argument is specified.

– wsdlfile_mapping.xml JAX-RPC mapping file when the -role develop-client or
-role develop-server is specified.

– webservicesclient.xml deployment descriptor template when the -role
develop-client argument is specified.

– ibm-webservicesclient-bnd.xmi deployment descriptor template when the
-role develop-client argument is specified.

– ibm-webservicesclient-ext.xmi deployment descriptor template when the
-role develop-client argument is specified.

When the role is a server role, the container argument specifies which J2EE
container the implementation uses. When the -role develop-server -container ejb
arguments are specified, the webservices.xml, ibm-webservices-bnd.xmi,
ibm-webservicesclient-ext.xmi and the mapping file are generated into the
META-INF subdirectory. When the -role develop-server -container web arguments
are specified, the files are generated into the WEB-INF directory.

v For each binding in the WSDL file (<wsdl:binding> element tag):

– A stub generates that implements the Service Endpoint Interface(deploy-client
role)

– An implementation template for an enterprise bean and templates for the EJB
remote interface and home generate when the -role develop-server and
-container-ejb arguments are specified.

– An implementation template for the Java bean generates when the -role
develop-server and -container-web arguments are specified.

v Other classes and files:

– A Java bean representing the structure of the type when the -role
develop-server or -role develop-client arguments are specified for each
complexType or simpleType.

– Three classes, *_Ser.java, *_Deser.java, and *_Helper.java, generate for each
complexType to assist in converting the bean to Simple Object Access Protocol
(SOAP) and back when the -role deploy-server or -role deploy-client
argument is specified.

– A *Holder.java class generates when the -role develop-server or -role
develop-client arguments are specified for each out and inout parameter.

Chapter 8. Using Web services 385

Command line syntax

The command line syntax is:
WSDL2Java [arguments] WSDL-URI

Required arguments

v WSDL-URI

Specifies the location of the input WSDL document using a Universal Resource
Identifier (URI). You can also use a regular file path if the WSDL file is on the
local file system.

Important arguments

v -container j2ee-container

Indicates the J2EE container to be used. Valid arguments are:
– client

Indicates client container.
– ejb

Indicates enterprise JavaBean (EJB) container.
– none

Indicates no container.
– web

Indicates Web container.

If client is role, the default argument is none. If server is role, the container must
be ejb or web. The same container option must be used for both development
and deployment.

v -deployScope argument

Indicates how to deploy the server implementation. Valid arguments are:
– Application

Uses one instance of the implementation class for all requests.
– Request

Creates a new instance of the implementation class for each request.
– Session

Creates a new instance of the implementation class for each session.
v -genResolver

Generates an absolute-import resolver class. The purpose of this class is to
record the contents of the imported WSDL files used by the WSDL URI. This
class is used by the runtime. It can also be used for future WSDL2Java
command runs. This is desirable when the imported WSDL files are remote and
can be inaccessible or slow to access. It also eliminates the possibility that a
remote WSDL file might have different contents at run time than it did at
development time. The generated class is named _AbsoluteImportResolver.java.
You should compile and package this class with the other Java classes generated
by the WSDL2Java command.

v -help

Displays a help message and exits.
v -helpX

Displays a help message for extended options and exits. The options are:
– -all

386 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Generates Java files for all types, even those that are not referenced.
– -debug

Prints debugging information.
– -fileNStoPkg filename

Specifies the file of namespace to package mappings. The default is
NStoPKG.properties.

– -genJava argument

Generates Java files. Valid arguments are:
- IfNotExists, default
- Overwrite

- No

– -genXML argument

Generates the .xml and .xmi files. Valid arguments are:
- IfNotExists, default
- Overwrite

- No

– -password password

Specifies the login user password to access the WSDL URI.
– -testCase

Generates the template for a JUnit test case for testing a Web service.
– -user id

Specifies the login user name to access the WSDL URI.
v -inputMappingFile mapping file

Specifies the file name of the Java to WSDL mapping file.
v -NStoPkg namespace=package

By default, package names are automatically derived from the namespace strings
in the WSDL file. For example, if the namespace is of the form http://x.y.com or
urn:x.y.com, the corresponding package is com.y.x.
You can provide your own mapping by using the -NStoPkg argument, which
you can repeat as often as necessary, once for each unique namespace mapping.
For example, if there is a namespace in the WSDL file called
urn:AddressFetcher2, and you want files generated from the objects in this
namespace to reside in the package samples.addr, provide the -NStoPkg
urn:AddressFetcher2=samples.addr argument to the WSDL2Java command.

v -output directory
Sets the root directory for emitted files.

v -role j2ee role

Specifies the J2EE development role that identifies which files to generate. Valid
arguments are:
– client

Combination of develop-client and deploy-client.
– deploy-client

Generates binding files for client deployment.
– deploy-server

Generates binding files for server deployment.
– develop-client (default)

Generates files for client development.

Chapter 8. Using Web services 387

– develop-server

Generates files for server development.
– server

Combination of develop-server and deploy-server.
v -timeout seconds

Specifies how long the WSDL2Java command should wait, in seconds, for the
WSDL-URI to respond before giving up. The default is 45 seconds, -1 disables
the timeout.

v -useResolver resolver-class

Specifies an absolute-import resolver class to use during parsing. This class
must have been created during a previous execution of the WSDL2Java
command using the -genResolver option. The class must be available in
CLASSPATH.

v -verbose

Displays processing information, including the names of the generated files.

Troubleshooting

The default XML namespace to Java package mapping does not take the context
root into account. If two namespaces are the same up to the first slash, they are
mapped to the same Java package. For example, the XML namespaces
http://www.ibm.com/foo and http://www.ibm.com/bar both map to the Java
package com.ibm.www. Use the -NStoPkg option to specify the package for the fully
qualified namespace.

Developing a new Web service with an existing Web Services
Description Language file using a stateless session enterprise
bean

Before you begin

Locate the Web Services Description Language (WSDL) file that defines the Web
service to implement. The Simple Object Access Protocol (SOAP) address URI is
not required because it is updated when your new implementation is deployed.

Create the enterprise bean and artifacts that enable the enterprise bean to be a Web
service and assemble those artifacts into the enterprise application as follows:

Steps for this task
1. Develop implementation templates and bindings from a WSDL file.
2. Complete the enterprise bean implementation.
3. Configure the webservices.xml deployment descriptor.
4. Configure the ibm-webservices-bnd.xmi deployment descriptor
5. Assemble a Web services-enabled enterprise JavaBean (EJB) Java archive (JAR)

file.
6. Assemble a Web services-enabled enterprise archive (EAR) file.
7. Enable the EAR file.

If the EAR file contains EJB modules, it must have the Web services endpoint
Web archive (WAR) file added with the endptEnabler tool before deployment.

8. Deploy the EAR file into WebSphere Application Server.

388 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Results

An EJB implementation of a Web service defined in the WSDL file.

Web services development artifacts
Development artifacts enable an enterprise bean or a Java bean module to be a Web
service. To create a Web service from an enterprise bean or a Java bean module, the
following files are added to the respective Java archive (JAR) or Web archive
(WAR) modules at assembly time:
v Web Services Description Language (WSDL) XML

The WSDL XML file describes the Web service being implemented.
v Service Endpoint Interface

A Service Endpoint Interface is the Java interface corresponding to the Web
service port type implemented. The Service Endpoint Interface is defined by the
WSDL 1.1 W3C Note.

v webservices.xml

The webservices.xml file contains the J2EE Web service deployment descriptor
specifying how the Web service is implemented. The webservices.xml file is
defined in the Web services for J2EE specification available through Web
services: Resources for learning

v ibm-webservices-bnd.xmi

This file contains WebSphere product-specific deployment information and is
defined in Web services assembly properties.

v Java API for XML-based remote procedure call (JAX-RPC) mapping file

The JAX-RPC mapping deployment descriptor specifies how Java elements are
mapped to and from WSDL file elements. The JAX-RPC mapping file is defined
in the Web services assembly properties.

The following files are added to the application client module at assembly,
allowing a J2EE application client to access Web services:
v WSDL

The WSDL file is provided by the Web service implementer.
v Java interfaces for the Web service

The Java interfaces are generated from the WSDL file as specified by the
JAX-RPC. These bindings are the Service Endpoint Interface based on the WSDL
port type, or the service interface, which is based on the WSDL service.

v webservicesclient.xml

The webservicesclient.xml file is the client-side deployment descriptor
describing the services being accessed. The webservicesclient.xml file is defined
in the Web services for J2EE specification, available through Web services:
Resources for learning.

v ibm-webservicesclient-bnd.xmi

This file contains WebSphere product-specific deployment information such as
security information. The ibm-webservicesclient-bnd.xmi file is defined in the
Web services assembly properties.

v Other JAX-RPC binding files Additional JAX-RPC binding files that support the
client application in mapping Simple Object Access Protocol (SOAP) to Java
language are generated from WSDL by the WSDL2Java command tool.

Chapter 8. Using Web services 389

Mapping between Java, Web Services Description Language
and XML

This topic contains the mappings between Java and XML technologies, including
XML Schema, Web Services Description Language (WSDL) and Simple Object
Access Protocol (SOAP), supported by WebSphere Application Server. Most of
these mappings are specified by Java API for XML-based remote procedure call
(JAX-RPC). Some mappings optional or unspecified in JAX-RPC are also
supported.

There are references to the JAX-RPC specification through this topic. You can
review the JAX-RPC specification through Web services: Resources for learning.

Notational conventions

The following table specifies the namespace prefixes and corresponding
namespaces used.

Namespace prefix Namespace

xsd http://www.w3.org/2001/XMLSchema

xsi http://www.w3.org/2001/XMLSchema-instance

soapenc http://schemas.xmlsoap.org/soap/encoding/

wsdl http://schemas.xmlsoap.org/wsdl/

wsdlsoap http://schemas.xmlsoap.org/wsdl/soap/

ns user defined namespace

apache http://xml.apache.org/xml-soap

wasws http://websphere.ibm.com/webservices/

Detailed mapping information

The following sections identify the supported mappings, including:
v Java-to-WSDL mapping
v WSDL-to-Java mapping
v Mapping between WSDL and SOAP messages

Java-to-WSDL mapping

This section summarizes the Java-to-WSDL mapping rules. The Java-to-WSDL
mapping rules are used by the Java2WSDL command tool for bottom-up
processing. In bottom-up processing, an existing Java service implementation is
used to create a WSDL file defining the Web service. The generated WSDL file can
require additional manual editing for the following reasons:
v Not all Java classes and constructs have mappings to WSDL. For example, Java

classes that do not comply with the Java bean specification rules might not map
to a WSDL construct.

v Some Java classes and constructs have multiple mappings to WSDL. For
example, a java.lang.String class can be mapped to either an xsd:string or
soapenc:string. The Java2WSDL command chooses one of these mappings, but
the WSDL file must be edited if a different mapping is desired.

390 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v There are multiple ways to generate WSDL constructs. For example, the part
element in the wsdl:message can be generated with a type or element attribute.
The Java2WSDL command makes an informed choice based on the settings of
the -style and -use options.

v The WSDL file describes the instance data elements sent in the SOAP message.
If you want to modify the names or format used in the message, the WSDL file
must be edited. For example, write a bean property value as an attribute instead
of an element.

v The WSDL file requires editing if header or attachment support is desired.
v The WSDL file requires editing if a multipart WSDL, one using wsdl:import, is

desired.

For simple services, the generated WSDL file is sufficient. For complicated services,
the generated WSDL file is a good starting point.

General issues

v Package to namespace mapping

The JAX-RPC does not specify the default mapping of Java package names to
XML namespaces. The JAX-RPC does specify that each Java package must map
to a single XML namespace, and likewise. A default mapping algorithm is
provided that constructs the namespace by reversing the names of the Java
package and adding an http:// prefix. For example, a package named,
com.ibm.webservice, is mapped to the namespace http://webservice.ibm.com.
The default mapping between XML namespaces and Java package names can be
overridden using the -NStoPkg and -PkgtoNS options of the WSDL2Java and
Java2WSDL commands.

v Identifier mapping

Java identifiers are mapped directly to WSDL file and XML identifiers.
Java bean property names are mapped to the WSDL file and XML identifiers.
For example, a Java bean, with getInfo and setInfo methods, maps to an XML
construct with the name, info.
The Service Endpoint Interface method parameter names, if available, are
mapped directly to the XML identifiers. See the WSDL2Java command
-implClass option for more details.

v WSDL construction summary

The following table summarizes the mapping from a Java construct to the
related WSDL and XML construct.

Java construct

Service Endpoint Interface wsdl:portType

Method wsdl:operation

Parameters wsdl:input, wsdl:message, wsdl:part (1)

Return wsdl:output, wsdl:message, wsdl:part (1)

Throws wsdl:fault, wsdl:message, wsdl:part (1)

Primitive types xsd and soapenc simple types

Java beans xsd:complexType

Java bean properties Nested xsd:elements of xsd:complexType

Arrays JAX-RPC defined array xsd:complexType

User defined exceptions xsd:complexType

Chapter 8. Using Web services 391

Note: The generated WSDL file is affected by the -style and -use options. A
wsdl:binding that conforms to the generated wsdl:portType is generated. The
style and use constructs of the wsdl:binding are determined from the -style and
-use options. A wsdl:service containing a port that references the generated
wsdl:binding is generated. The names and values of the wsdl:service are
controlled by the Java2WSDL command options.

v Style and use

Use the -style and -use options to generate different kinds of WSDL files. The
four supported combinations are:
– -style RPC -use ENCODED
– -style DOCUMENT -use LITERAL
– -style RPC -use LITERAL
– -style DOCUMENT -use LITERAL -wrapped false

The -use LITERAL option affects the generated WSDL file in the following ways:
– The soap:body elements in the wsdl:binding are specified as use=″literal″.
– The soap:fault elements in the wsdl:binding are specified as use=″literal″.
– The soap encoded types are not used.
– The soap encoded array style is not used. The maxOccurs attribute is used to

indicate arrays.

The -use ENCODED option affects the generated WSDL file in the following
ways:
– The soap:body elements in the wsdl:binding are specified as use=″encoded″

and the encodingStyle is set.
– The soap:fault elements in the wsdl:binding are specified as use=″encoded″

and the encodingStyle is set.

The -style RPC option affects the generated WSDL file in the following ways:
– The wsdl:part elements use the type attribute to reference XML types.
– The wsdl:binding is specified as style=″rpc″.

The -style DOCUMENT -wrapped false option affects the generated WSDL file
in the following ways:
– The wsdl:part elements use the type attribute to reference simple types. The

element attribute is used to reference the root xsd:elements for everything
that is not a simple type.

– The wsdl:binding is specified as style=″document″.

The -style DOCUMENT -wrapped true option generates a WSDL file that
conforms to the .NET WSDL file format:
– A request xsd:element is generated for each method in the Service Endpoint

Interface as follows:
- The name of the xsd:element is the same as the name of the

wsdl:operation.
- The xsd:element contains an xsd:sequence that contains xsd:elements

defining each parameter.
- The request wsdl:message references the wrapper xsd:element using a

single part:
v The name of the part is parameters.
v The element attribute is used to reference the wrapper xsd:element.

– A response xsd:element is generated for each method in the Service Endpoint
Interface as follows:

392 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

- The name of the xsd:element is the same as the name of the
wsdl:operation appended with Response

- The xsd:element contains an xsd:sequence that contains xsd:elements
defining the return value.

- The request wsdl:message references this wrapper xsd:element using a
single part.
v The element attribute is used to reference the wrapper xsd:element.

– The wsdl:binding is specified as style=″document″.

Mapping of standard XML types from Java types

Some Java types map directly to standard XML types. These types do not require
additional XML definitions in the wsdl:types section.
v JAX-RPC Java primitive type mapping

The following table describes the mapping from the Java primitive and standard
types to XML standard types. For more information see the JAX-RPC
specification.

Java type XML type

int xsd:int

long xsd:long

short xsd:short

float xsd:float

double xsd:double

boolean xsd:boolean

byte xsd:byte

byte[] xsd:base64Binary

Note: The default mapping for byte[] is
xsd:base64Binary. The data in byte[] is
passed over the wire as a text string
encoded in the base64 format. An alternative
format is xsd:hexBinary. To use the
xsd:hexBinary format:

– Edit the WSDL file and change
xsd:base64Binary to xsd:hexBinary, or

– Change your implementation to use the
specialized
com.ibm.ws.webservices.engine.types.HexBinary
class.

java.lang.String xsd:string

java.math.BigInteger xsd:integer

java.math.BigDecimal xsd:decimal

java.util.Calendar xsd:dateTime

java.util.Date

Note: This mapping is not covered by the
JAX-RPC.

xsd:date

java.lang.Boolean xsd:boolean xsi:nillable=true

java.lang.Float xsd:float xsi:nillable=true

Chapter 8. Using Web services 393

java.lang.Double xsd:double xsi:nillable=true

java.lang.Integer xsd:int xsi:nillable=true

java.lang.Short xsd:short xsi:nillable=true

java.lang.Byte xsd:byte xsi:nillable=true

Note: The java.lang wrapper classes in the last six lines of the table map to the
same XML construct as the corresponding Java primitive type. In addition, the
xsi:nillable attribute is generated to indicate that such elements can be null.

v Additional Java class mappings

In addition to the standard JAX-RPC mapping, the following classes are mapped
directly to XML types:

Java type XML type

com.ibm.ws.webservices.engine.types.HexBinaryxsd:hexBinary

— —

javax.xml.namespace.QName xsd:qname

— —

com.ibm.ws.webservices.engine.types.Token xsd:token

com.ibm.ws.webservices.engine.types.NormalizedStringxsd:normalizedString

com.ibm.ws.webservices.engine.types.Name xsd:Name

com.ibm.ws.webservices.engine.types.NCNamexsd:NCName

com.ibm.ws.webservices.engine.types.NMTokenxsd:NMTOKEN

com.ibm.ws.webservices.engine.types.URI xsd:anyURI

— —

com.ibm.ws.webservices.engine.types.UnsignedLongxsd:unsignedLong

com.ibm.ws.webservices.engine.types.UnsignedIntxsd:unsignedInt

com.ibm.ws.webservices.engine.types.UnsignedBytexsd:unsignedByte

com.ibm.ws.webservices.engine.types.NonNegativeIntegerxsd:nonNegativeInteger

com.ibm.ws.webservices.engine.types.PositiveIntegerxsd:positiveInteger

com.ibm.ws.webservices.engine.types.NonPositiveIntegerxsd:nonPositiveInteger

— —

com.ibm.ws.webservices.engine.types.Time xsd:time

com.ibm.ws.webservices.engine.types.YearMonthxsd:gYearMonth

com.ibm.ws.webservices.engine.types.Year xsd:gYear

com.ibm.ws.webservices.engine.types.Month xsd:gMonth

com.ibm.ws.webservices.engine.types.Day xsd:gDay

com.ibm.ws.webservices.engine.types.MonthDayxsd:gMonthDay

com.ibm.ws.webservices.engine.types.Durationxsd:duration

— —

java.util.Map

Note: Any classes that implement
java.util.Map are also mapped to
apache:Map.

apache:Map

394 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

java.util.Collection

Note: Each Java array, except byte[], and
every class that implements
java.util.Collection is mapped to a
JAX-RPC defined soapenc:Array type.

soapenc:Array

org.w3c.dom.Element apache:Element

java.util.Vector apache:Vector

java.awt.Image

Note: Used for attachment support.

apache:Image

javax.mail.internet.MimeMultiPart

Note: Used for attachment support.

apache:Multipart

javax.xml.transform.Source

Note: Used for attachment support.

apache:Source

javax.activation.DataHandler

Note: Used for attachment support.

apache:DataHandler

Generation of wsdl:types

Java types that cannot be mapped directly to standard XML types are generated in
the wsdl:types section.
v Java arrays

Java arrays for the -use ENCODED option, with the exception of byte[], are
generated using the following format. See the JAX-RPC specification for more
details. Alternative mappings can be found in Table 18.1 of the JAX-RPC
specification.
Java:

Item[]

Mapped to:

<xsd:complexType name="ArrayOfItem">

<xsd:complexContent>
<xsd:restriction base="soapenc:Array">
<xsd:attribute ref="soapenc:arrayType" wsdl:arrayType="ns:Item" />
</xsd:restriction>
</xsd:complexContent

</xsd:complexType>

v JAX-RPC value type and bean mapping

A Java class that matches the Java value type or bean pattern is mapped to an
xsd:complexType. In order for a Java class to be mapped to XML, follow these
conditions:
– The class must have a public default constructor.
– The class must not implement, directly or indirectly, java.rmi.Remote.
– Public, nonstatic, nonfinal, nontransient fields are mapped. The class can

contain other fields and methods, but they are not mapped.

Chapter 8. Using Web services 395

– If the class follows the Java bean pattern and has public getter and setter
methods, the property is mapped.

Additional mapping rules can be found in the JAX-RPC specification. The
following example indicates the mapping for sample base and derived Java
classes:
Java:

public abstract class Base {
public Base() {}
public int a; // mapped
private int b; // mapped via setter/getter
private int c; // not mapped
private int[] d; // mapped via indexed setter/getter

public int getB() { return b;} // map property b
public void setB(int b) {this.b = b;}

public int[] getD() { return d;} // map indexed property d
public void setD(int[] d) {this.d = d;}
public int getD(int index) { return d[index];}
public void setB(int index, int value) {this.d[index] = value;}

public void someMethod() {...} // not mapped
}

public class Derived extends Base {
public int x; // mapped
private int y; // not mapped

}

Mapped to:

<xsd:complexType name="Base" abstract="true">
<xsd:sequence>
<xsd:element name="a" type="xsd:int" />
<xsd:element name="b" type="xsd:int" />
<xsd:element name="d" minOccurs="0" maxOccurs="unbounded" type="xsd:int"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Derived">
<xsd:complexContent>
<xsd:extension base="ns:Base">
<xsd:sequence>
<xsd:element name="x" type="xsd:int" />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Inheritance and abstract classes

The example contains two optional JAX-RPC features that are supported by
WebSphere Application Server:
1. An abstract class is mapped to an xsd:complexType with abstract=″true″.
2. An indexed bean property (see the methods for d in Base) are mapped to a

nested element specified with maxOccurs=″unbounded″. This format is similar
to an XML array, but the SOAP message is different. An XML array defines
an element for the array and nested elements for each item in the array. An

396 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

element defined with maxOccurs indicates a series of items without the
surrounding array wrapper element. Both formats are popular.

v JAX-RPC enumeration class mapping

Section 4.2.4 of the JAX-RPC specification defines the mapping from an XML
enumeration to a Java class. Though not specifically required by the JAX-RPC,
the Java2WSDL command performs the reverse mapping. If you have a class
that has the same format as a JAX-RPC enumeration class, it is mapped to an
XML enumeration.

v Holder classes

The JAX-RPC specification defines Holder classes in section 4.3.5. A Holder class
is used to support in and out parameter passing. Every Holder class implements
thejavax.xml.rpc.holders.Holder interface. The Java2WSDL command maps
Holder classes to the same XML type as the held type. In addition, references to
Holder classes affect the generation of wsdl:messages.

v Exception classes

If a class extends the exception, java.lang.Exception, it is mapped to an
xsd:complexType similar to the Java bean mapping. The getter methods of the
exception are mapped as nested xsd:elements of the xsd:complexType. See
section 5.5.5 of the JAX-RPC specification for more details.
Note: You need to generate implementation specific exception classes by
invoking the WSDL2Java command on the resulting WSDL file.

v Unsupported classes

If a class cannot be mapped to an XML type, the Java2WSDL command issues a
message and an xsd:anyType reference is generated in the WSDL file. In these
situations, modify the Web service implementation to use the JAX-RPC
compliant classes.

v Generation of root elements

If the Java2WSDL command generates an xsd:complexType or xsd:simpleType
for a parameter reference, a corresponding xsd:element is also generated. The
xsd:element has the same name as the xsd:complexType/xsd:simpleType and
uses the type attribute to reference the xsd:complexType/xsd:simpleType. The
wsdl:message part can use the element attribute or the type attribute to reference
the xsd:element or type. This choice is determined by the -style and -use
options.

Generation from the interface or implementation class

The class passed to the Java2WSDL command represents the interface of the
wsdl:service. The wsdl:portType and wsdl:message elements generate from this
interface or implementation class.
v Generation of the wsdl:portType

The name of the wsdl:portType is the name of the class unless overridden by the
-portTypeName option.

v Generation of wsdl:operation

A wsdl:operation generates for each public method in the interface that throws
the exception, java.rmi.RemoteException.
– The name of the wsdl:operation is the name of the method.
– The wsdl:operation has a parameterOrder attribute, which defines the order

of the parameters in the signature. Specifically, the parameterOrder lists the
order of the parts of the request or response wsdl:messages.

Chapter 8. Using Web services 397

– The wsdl:operation has a nested wsdl:input element that references the
request wsdl:message using the message attribute.

– The wsdl:operation has a nested wsdl:output element that references the
response wsdl:message using the message attribute.

– The wsdl:operation has a nested wsdl:fault element that references the
default wsdl:message using the message attribute.

See sections 5.5.4 and 5.5.5 of the JAX-RPC specification for more information.
v Generation of wsdl:message

Generating the wsdl:message is directly related to the -style and -use options.
The following is the default mapping (-style RPC -use ENCODED):
– A wsdl:message is created to represent the request.

- A wsdl:part representing each parameter is added to the wsdl:message.
v The wsdl:part has the same name as the parameter.
v The wsdl:part uses the type attribute to locate the XML type of the

parameter.
– A wsdl:message is created to represent the response:

- A wsdl:part representing the method return is created.
v The wsdl:part has the same name as the method with Return appended.

Note: The name of the part is not specified by the JAX-RPC and is
typically not checked by SOAP engines.

v The wsdl:part has the same name as the parameter.
v The wsdl:part uses the type attribute to locate the XML type of the

parameter.
v A wsdl:part is created for each parameter that is a Holder.
v The wsdl:part has the same name as the parameter.
v A wsdl:message is created to represent the fault if the operation has a

wsdl:fault.
v A wsdl:part representing the fault is created.
v The wsdl:part has the same name as the exception.
v The wsdl:part uses the type attribute to locate the complexType

representing the exception.

The same mapping is used as described if you use the -style RPC and -use
LITERAL options. It is also valid to use the wsdl:part element attribute
instead of the type attribute to reference the XML schema. If you use the -style
DOCUMENT -wrapped false and -use LITERAL options, the same mapping is
used as described except the wsdl:part element attribute is used to reference the
XML schema. If the XML schema is a primitive type, like xsd:string, the type
attribute is used to reference the XML type. The -style DOCUMENT, -wrapped
true and -use LITERAL options result in completely different mappings for the
request and response messages. For example:
– A request xsd:element is generated for each method in the Service Endpoint

Interface.
- The name of the xsd:element is the same as the name of the

wsdl:operation.
- The xsd:element contains an xsd:sequence that contains xsd:elements

defining each parameter.
- The request wsdl:message references the wrapper xsd:element using a

single part.
v The name of the part is parameters.

398 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v The element attribute is used to reference the wrapper xsd:element.
– A response xsd:element is generated for each method in the Service Endpoint

Interface.
- The name of the xsd:element is the same as the name of the

wsdl:operation appended with Response.
- The xsd:element contains an xsd:sequence that contains xsd:elements

defining the return value.
- The request wsdl:message references this wrapper xsd:element using a

single part.
v The element attribute is used to reference the wrapper xsd:element.

v Generation of wsdl:binding

Generate a wsdl:binding with a name defined by the Java2WSDL
-bindingName command.
– The wsdlsoap:binding style attribute is set to rpc if you use the -style RPC

option; otherwise it is set to document.
– A wsdl:operation generates for each wsdl:operation defined in the

wsdl:portType.
– Each wsdl:operation has corresponding wsdl:input, wsdl:output and

wsdl:fault elements.
– The wsdl:input, wsdl:output and wsdl:fault elements each contain a

wsdlsoap:body element.
– The wsdlsoap:body use attribute is set to literal or encoded according to the

-use argument. Set the encodingStyle attribute to
http://schemas.xmlsoap.org/soap/encoding/ when use is encoded.

v Generation of the wsdl:service

Generate a wsdl:service with a name defined by the Java2WSDL
-serviceElement command. For example:
– The wsdl:service contains a port with a name defined by the Java2WSL

-servicePortName command.
– The port references the generated wsdl:binding with the binding attribute.
– The port contains a wsdlsoap:address element with a
– The location attribute is set to the value of the Java2WSDL -location

command.

WSDL-to-Java mapping

The WSDL2Java command tool uses the following rules to generate Java classes
when developing your Web services client and server. In addition, implementation
specific Java classes are generated that assist in the serialization and
deserialization, and invocation of the Web service.

General issues

v Mapping of namespace to package

The JAX-RPC does not specify the mapping of XML namespaces to Java package
names. The JAX-RPC does specify that each Java package map to a single XML
namespace, and likewise. A default mapping algorithm omits any protocol from
the XML namespace and reverses the names. For example, an XML namespace
http://websphere.ibm.com becomes a Java package with the name
com.ibm.websphere.
The default mapping of XML namespace to Java package disregards the
context-root. If two namespaces are the same up until the first slash, they map to

Chapter 8. Using Web services 399

the same Java package. For example, the XML namespaces
http://websphere.ibm.com/foo and http://websphere.ibm.com/bar map to the
Java package com.ibm.websphere. The default mapping between XML
namespaces and Java package names can be overridden using the -NStoPkg and
-PkgtoNS options of WSDL2Java and Java2WSDL commands.

v Identifier mapping

XML names are much richer than Java identifiers. They can include characters
that are not permitted in Java identifiers. See section 20 of the JAX-RPC
specification for the rules to map an XML name to a Java identifier.
The mapping rules attempt to follow accepted Java coding conventions. Class
names always begin with an uppercase letter. Method names begin with a
lowercase letter. The WSDL2Java command generates metadata in the _Helper
class so that the values are serialized or deserialized using the XML names
specified in the WSDL file.

v Java construction summary

WSDL and XML Java

xsd:complexType (struct)

Note: The xsd:complexType can also
represent a Java exception if referenced by a
wsdl:message for a wsdl:fault .

Java Bean Class

Note: The classes, _Helper, _Ser, and
_Deser, generate for each Java bean class.
These implementation classes aid
serialization and deserialization.

nested xsd:element/xsd:attribute Java bean property

xsd:complexType (array) Java array

xsd:simpleType (enumeration) JAX-RPC enumeration class

xsd:complexType (wrapper)The method
parameter signature typically is determined
by the wsdl:message. However, if the WSDL
file is a .NET wrapped style, the method
parameter signature is determined by the
wrapper xsd:element

Service Endpoint Interface method
parameter signature

Note: If a parameter is out or inout, a
Holder class generates.

— —

wsdl:messageThe method parameter
signature typically is determined by the
wsdl:message. However, if the WSDL file is a
.NET wrapped style, the method parameter
signature is determined by the wrapper
xsd:element

Service Endpoint Interface method signature

Note: If a parameter is out or inout, a
Holder class generates.

wsdl:portType Service Endpoint Interface

wsdl:operation Service Endpoint Interface method

wsdl:binding Stub

Note: The Stub and ServiceLocator classes
are implementation specific.

wsdl:service Service Interface and ServiceLocator

Note: The Stub and ServiceLocator classes
are implementation specific.

wsdl:port Port accessor method in Service Interface

Mapping standard XML types

400 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v JAX-RPC simple XML types mapping

The following mappings are XML types to Java types. For more information
about these mappings, see section 4.2.1 of the JAX-RPC specification.

XML type Java type

xsd:string java.lang.String

xsd:integer java.math.BigInteger

xsd:int

Note: If an element with this type has the
xsi:nillable attribute set to true, it is
mapped to the Java wrapper class of the
primitive type.

int

xsd:long

Note: If an element with this type has the
xsi:nillable attribute set to true, it is
mapped to the Java wrapper class of the
primitive type.

long

xsd:short

Note: If an element with this type has the
xsi:nillable attribute set to true, it is
mapped to the Java wrapper class of the
primitive type.

short

xsd:decimal java.math.BigDecimal

xsd:float

Note: If an element with this type has the
xsi:nillable attribute set to true, it is
mapped to the Java wrapper class of the
primitive type.

float

xsd:double

Note: If an element with this type has the
xsi:nillable attribute set to true, it is
mapped to the Java wrapper class of the
primitive type.

double

xsd:boolean

Note: If an element with this type has the
xsi:nillable attribute set to true, it is
mapped to the Java wrapper class of the
primitive type.

boolean

xsd:byte

Note: If an element with this type has the
xsi:nillable attribute set to true, it is
mapped to the Java wrapper class of the
primitive type.

byte

xsd:dateTime java.util.Calendar

xsd:date

Note: This mapping is not supported by the
JAX-RPC.

java.util.Date

xsd:base64Binary byte[]

Chapter 8. Using Web services 401

xsd:hexBinary byte[]

— —

soapenc:base64 byte[]

soapenc:base64Binary byte[]

soapenc:string java.lang.String

soapenc:boolean java.lang.Boolean

soapenc:float java.lang.Float

soapenc:double java.lang.Double

soapenc:decimal java.math.BigDecimal

soapenc:int java.lang.Integer

soapenc:integer

Note: This mapping is not supported by the
JAX-RPC.

java.math.BigInteger

soapenc:short java.lang.Short

soapenc:long

Note: This mapping is not supported by the
JAX-RPC.

java.lang.Long

soapenc:byte java.lang.Byte

v JAX-RPC optional simple XML type mapping

The WSDL2Java command supports the following JAX-RPC optional simple
XML types.

XML type Java type

xsd:qname javax.xml.namespace.QName

xsd:time com.ibm.ws.webservices.engine.types.Time

xsd:gYearMonth com.ibm.ws.webservices.engine.types.YearMonth

xsd:gYear com.ibm.ws.webservices.engine.types.Year

xsd:gMonth com.ibm.ws.webservices.engine.types.Month

xsd:gDay com.ibm.ws.webservices.engine.types.Day

xsd:gMonthDay com.ibm.ws.webservices.engine.types.MonthDay

xsd:token com.ibm.ws.webservices.engine.types.Token

xsd:normalizedString com.ibm.ws.webservices.engine.types.NormalizedString

xsd:unsignedLong com.ibm.ws.webservices.engine.types.UnsignedLong

xsd:unsignedInt com.ibm.ws.webservices.engine.types.UnsignedInt

xsd:unsignedShort com.ibm.ws.webservices.engine.types.UnsignedShort

xsd:unsignedByte com.ibm.ws.webservices.engine.types.UnsignedByte

xsd:nonNegativeInteger com.ibm.ws.webservices.engine.types.NonNegativeInteger

xsd:negativeInteger com.ibm.ws.webservices.engine.types.NegativeInteger

xsd:positiveInteger com.ibm.ws.webservices.engine.types.PositiveInteger

xsd:nonPositiveInteger com.ibm.ws.webservices.engine.types.NonPositiveInteger

xsd:Name com.ibm.ws.webservices.engine.types.Name

xsd:NCName com.ibm.ws.webservices.engine.types.NCName

402 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

xsd:NMTOKEN com.ibm.ws.webservices.engine.types.NMTOKEN

xsd:duration com.ibm.ws.webservices.engine.types.Duration

xsd:anyURI com.ibm.ws.webservices.engine.types.URI

v JAX-RPC xsd:anyType mapping

The WSDL2Java command maps an xsd:anyType to a java.lang.Object. This is
an optional feature of the JAX-RPC specification. The xsd:anyType can be used
to store any XML type other than the XML primitive type. An xsd:anyType is
always serialized along with an xsi:type that specifies the actual type.

v Additional supported mappings

The following mappings are also supported by the WSDL2Java command. These
mappings are not defined by the JAX-RPC specification.

XML type Java type

apache:PlainText

Note: For MIME attachments.

java.lang.String

apache:Map java.util.Map

apache:Element org.w3c.dom.Element

wasws:SOAPElement com.ibm.ws.webservices.xmlsoap.SOAPElement

apache:Vector java.util.Vector

apache:Image

Note: For MIME attachments.

java.awt.Image

apache:Multipart

Note: For MIME attachments.

javax.mail.internet.MimeMultipart

apache:Source

Note: For MIME attachments.

javax.xml.transform.Source

apache:octetStream

Note: For MIME attachments.

javax.activation.DataHandler

apache:DataHandler

Note: For MIME attachments.

javax.activation.DataHandler

Mapping XML defined in the wsdl:types section

The WSDL2Java command generates Java types for the XML schema constructs
defined in the wsdl:types section. The XML schema language is broader than the
required or optional subset defined by the JAX-RPC specification. The WSDL2Java
command supports all required mappings and most optional mappings. In
addition, the command supports some XML schema mappings that are outside the
JAX-RPC specification. In general, the WSDL2Java command ignores constructs
that it does not support. For example, the WSDL2Java command does not support
the default attribute. If an xsd:element is defined with the default attribute, the
default attribute is ignored. In some cases it maps unsupported constructs to
wasws:SOAPElement.
v Mapping of xsd:complexType to Java bean

The most common mapping is from an xsd:complexType to a Java bean class.

Chapter 8. Using Web services 403

– Standard Java bean mapping

The standard Java bean mapping is defined in section 4.2.3 of the JAX-RPC
specification The xsd:complexType defines the type. The nested xsd:elements
within the xsd:sequence or xsd:all groups are mapped to Java bean
properties. For example:
XML:

<xsd:complexType name="Sample">
<xsd:sequence>
<xsd:element name="a" type="xsd:string"/>
<xsd:element name="b" maxOccurs="unbounded" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>

Java:

public class Sample {
// ..
public Sample() {}

// Bean Property a
public String getA() {...}
public void setA(String value) {...}

// Indexed Bean Property b
public String[] getB() {...}
public String getB(int index) {...}
public void setB(String[] values) {...}
public void setB(int index, String value) {...}

}

– Methods equals() and hashCode()

The generated Java bean classes contain an implementation of the equals()
method. The generation of this method is outside the JAX-RPC specification.
The equals() method returns true if equals() is true for each contained bean
property. The implementation accounts for self-referencing loops. This version
of the equals() method is typically more useful than the ″identity″ equals
provided by java.lang.Object.
A corresponding hashCode() method is also generated in the Java bean class.

– Properties and indexed properties

In the standard Java bean mapping example, the nested xsd:element for
property a is mapped to a Java bean property. In addition, the WSDL2Java
command maps a nested xsd:element with maxOccurs > 1 to a Java bean
indexed property.

– Attributes

The WSDL2Java command also supports the xsd:attribute element, as
shown in the following example.
Attribute a is mapped as a Java bean property, which is exactly the same
mapping as a nested xsd:element. Implementation specific metadata is
generated in the Sample2_Helper class to ensure that property a is serialized
and deserialized as an attribute, and not as a nested element. For example:
XML:

<xsd:complexType name="Sample2">
<xsd:sequence>
<xsd:attribute name="a" type="xsd:string"/>
</xsd:sequence>

</xsd:complexType>

404 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Java:

public class Sample2 {
// ..
public Sample2() {}

// Bean Property a
public String getA() {...}
public void setA(String value) {...}

}

– Qualified versus unqualified names

The WSDL2Java command supports the elementForm and attributeForm
schema attributes.
This support is not specified in the JAX-RPC specification. These attributes
are used to indicate whether an element or attribute is serialized and
deserialized with a qualified or unqualified name. The default setting for
elementForm is qualified and the default setting for attributeForm is
unqualified. These settings do not affect the Java bean class that is generated,
but the information is captured in the _Helper class metadata.

– Extension and the abstract attribute

The WSDL2Java command supports extension of an xsd:complexType through
the xsd:extension element. This support is required by the JAX-RPC
specification.
The WSDL2Java command supports the abstract attribute. This feature is
listed as optional by the JAX-RPC specification.
The following example shows the accepted use of the extension and abstract
constructs. WebSphere Application Server uses the extension and abstract
constructs to support polymorphism.
XML:

<xsd:complexType name="Base" abstract="true">
<xsd:sequence>
<xsd:element name="a" type="xsd:int" />
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="Derived">
<xsd:complexContent>
<xsd:extension base="ns:Base">
<xsd:sequence>
<xsd:element name="b" type="xsd:int" />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>

Java:
public abstract class Base {

// ...
public Base() {}

public int getA() {...}
public void setA(int a) {...}

}

public class Derived extends Base {
// ...
public Derived() {}

Chapter 8. Using Web services 405

public int getB() {...}
public void setB(int b) {...}

}

– Support for xsd:any

The WSDL2Java command supports xsd:anyelement, which is different than
xsd:anyType. This feature is not defined within the JAX-RPC specification and
is subject to change.
If an <xsd:any/> element is defined within xsd:sequence or xsd:all group,
SOAP values that do match one of the xsd:elements are stored in the Java
bean as com.ibm.ws.webservices.engine.xmlsoap.SOAPElement objects.
Values can be accessed from the Java bean using the get_any() and set_any()
methods.

v Mapping of xsd:element

An xsd:element is a construct that has a name or name attribute, and a type
defined by a complexType or primitive type. There are two different kinds of
xsd:elements:
– Root: Defined directly underneath the schema elements and referenced by

other constructs.
– Nested: Nested underneath group elements and are not referenced by other

constructs.

Root elements are referenced by the WSDL file constructs, especially if the
WSDL file is used to describe a literal service. Typically, root elements and types
have the same names, which is allowed in the schema language. Under most
circumstances the WSDL2Java command can produce Java artifacts without
name collisions.
– Four ways to reference a type

There are four ways that a nested or root xsd:element can reference a type:
- Use the type attribute:

This is the most common way to reference a type, for example:
<xsd:element name="one" type="ns:myType" />

The WSDL2Java command recognizes the type attribute as a reference to a
complexType or simpleType named, myType. The WSDL2Java command
generates a Java type based on the characteristics of myType. Support for the
type attribute is required by the JAX-RPC specification.

- Use the ref attribute: For example:
<xsd:element ref="ns:myElement" />

The WSDL2Java command recognizes the ref attribute as a reference to
another root element named myElement. The name of the element is
obtained from the referenced element, such as myElement. The type of the
element is the type of the referenced element. The WSDL2Java command
generates a Java type based on the characteristics of the referenced type.
The ref attribute is an optional feature of the JAX-RPC specification.

- Use no attribute:

For example:
<xsd:element name="three" />

406 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

When you do not use an attribute, the WSDL2Java command recognizes a
reference to the xsd:anyType as defined by the XML schema specification.
The xsd:anyType is an optional type of the JAX-RPC specification.

- Use an anonymous type:

For example:
<xsd:element name="four">

<xsd:complexType>
<xsd:sequence>
<xsd:element name="foo" type="xsd:string" />
</xsd:sequence>
</xsd:complexType>
</ xsd:element>

When you use an anonymous type, the WSDL2Java command recognizes a
reference to the type defined within the element.

Note: The complexType does not have a name. The WSDL2Java command
generates a Java type based on the characteristics of this type. Since the
anonymous type does not have a name, the WSDL2Java command uses the
name of the container element, which can result in collisions with defined
types and other anonymous types. The WSDL2Java command
automatically detects and renames classes to avoid collisions. Support for
anonymous types is not defined by the JAX-RPC specification, however
using anonymous types is common.

Note: An xsd:attribute is like an xsd:element; it contains a name and
refers to a type. An xsd:attribute can refer to its type with the type
attribute or using an anonymous type.

– Element specific attributes

Some attributes can be applied to xsd:elements and not to XML types.
The maxOccurs attribute indicates the maximum number of occurrences of the
element in the SOAP message. The default value is 1. If the value is greater
than 1, or unbounded, the WSDL2Java command maps the construct to a
Java array or bean indexed property. Metadata is also generated to properly
serialize and deserialize a series of elements versus a normal XML array. The
maxOccurs attribute is an optional feature of the JAX-RPC specification.
The minOccurs attribute indicates the minimum number of occurrences of the
element in the SOAP message. The default value is 1. The xsi:nillable
attribute indicates whether the element can have a nil value. The minOccurs
and xsi:nillable settings affect how a null value is serialized in a SOAP
message. If minOccurs=0, the null value is not serialized. If
xsi:nillable=true, the value is serialized with the xsi:nil=true attribute.

v Mapping of xsd:complexType to Java array

The WSDL2Java command maps the following three kinds of XML formats to
Java arrays:
XML:

<xsd:element name="array1" type="soapenc:Array" />

Java:

Object[] array1;

XML:

<xsd:complexType name="arrayOfInt">
<xsd:complexContent>

Chapter 8. Using Web services 407

<xsd:restriction base:"soapenc:Array">
<xsd:attribute ref:"soapenc:arrayType" wsdl:arrayType="xsd:int[]" />
</xsd:restriction>
</xsd:complexContext>
</xsd:complexType>

<xsd:element name="array2" type="ns:arrayOfInt" />

Java:

int[] array2;

XML:

<xsd:complexType name="arrayOfInt">
<xsd:complexContent>
<xsd:restriction base:"soapenc:Array">
<xsd:sequence>
<xsd:element name="item" type="xsd:int" maxOccurs="unbounded" />
</xsd:sequence>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>

<xsd:element name="array3" type="ns:arrayOfInt" />

Java:

int[] array3;

v Mapping of xsd:simpleType enumeration

The WSDL2Java command maps the following XML enumeration to a JAX-RPC
specified enumeration class. See section 4.2.4 of the JAX-RPC specification for
more details.
<xsd:simpleType name="EyeColorType" >

<xsd:restriction base="xsd:string">
<xsd:enumeration value="brown"/>
<xsd:enumeration value="green"/>
<xsd:enumeration value="blue"/>
</xsd:restriction>
</xsd:simpleType>

v Mapping of xsd:complexType to exception class

If a complexType is referenced in a wsdl:message for a wsdl:fault, the
complexType is mapped to a class that extends the exception,
java.lang.Exception. This mapping is similar to the mapping of a complexType
to a Java bean class, except a full constructor is generated, and only getter
methods are generated. See section 4.3.6 of the JAX-RPC specification for more
details.

v Other mappings

The WSDL2Java command supports the mapping of xsd:simpleType and
xsd:complexTypes that extend xsd:simpleTypes. These constructs are mapped to
Java bean classes. The simple value is mapped to a Java bean property named,
value. This is an optional feature of the JAX-RPC specification.

Mapping of wsdl:portType

The wsdl:portType construct is mapped to the Service Endpoint Interface. The
name of the wsdl:portType is mapped to the name of the class of the Service
Endpoint Interface.

Mapping of wsdl:operation

408 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

A wsdl:operation within a wsdl:portType is mapped to a method of the Service
Endpoint Interface. The name of the wsdl:operation is mapped to the name of the
method. The wsdl:operation contains wsdl:input and wsdl:output elements that
reference the request and response wsdl:message constructs using the message
attribute. The wsdl:operation can contain a wsdl:fault element that references a
wsdl:message describing the fault. These faults are mapped to Java classes that
extend the exception, java.lang.Exception as discussed in section 4.3.6 of the
JAX-RPC specification.
v Effect of document literal wrapped format

If the WSDL file uses the .NET document and literal wrapped format, the
method parameters are mapped from the wrapper xsd:element. The .NET
document and literal format is automatically detected by the WSDL2Java
command. The following criteria must be met:
– The WSDL file must have style=″document″ in its wsdl:binding constructs.
– The WSDL file must have use=″literal″ in its wsdl:binding constructs.
– The wsdl:message referenced by the wsdl:operation input construct must

have a single part.
– The part must use the element attribute to reference an xsd:element.
– The referenced xsd:element, or wrapper element, must have the same name

as the wsdl:operation.
– The wrapper element must not contain any xsd:attributes.

In such cases, each parameter name is mapped from a nested xsd:element
contained within wrapper element. The type of the parameter is mapped from
the type of the nested xsd:element. For example:
XML:

<xsd:element name="myMethod" >
<xsd:complexType>
<xsd:sequence>
<xsd:element name="param1" type="xsd:string" />
<xsd:element name="param2" type="xsd:int" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
...
<wsdl:message name="response" />
<part name="parameters" element="ns:myMethod" />
</wsdl:message name="response" />

<wsdl:message name="response" />
...
<wsdl:operation name="myMethod">
<input name="input" message="request" />
<output name="output" message="response" />
</wsdl:operation>

Java:

void myMethod(String param1, int param2) ...

v Parameter mapping

If the document and literal wrapped format is not detected, the parameter
mapping follows the normal JAX-RPC mapping rules set in section 4.3.4 of the
JAX-RPC specification.
Each parameter is defined by a wsdl:message part referenced from the input and
output elements.
– A wsdl:part in the request wsdl:message is mapped to an input parameter.

Chapter 8. Using Web services 409

– A wsdl:part in the response wsdl:message is mapped to the return value. If
there are multiple wsdl:parts in the response message, they are mapped to
output parameters.
- A Holder class is generated for each output parameter as discussed in

section 4.3.5 of the JAX-RPC specification.
– A wsdl:part that is both the request and response wsdl:message is mapped to

an inout parameter.
- A Holder class is generated for each inout parameter as discussed in

section 4.3.5 of the JAX-RPC specification.
- The wsdl:operation parameterOrder attribute defines the order of the

parameters.

The WSDL2Java command supports overloaded methods, but confirm that the
part names of the overloaded methods are unique. For example:
XML:

<wsdl:message name="request" >
<part name="param1" type="xsd:string" />
<part name="param2" type="xsd:int" />
</wsdl:message name="response" />

<wsdl:message name="response" />
...
<wsdl:operation name="myMethod" parameterOrder="param1, param2">
<input name="input" message="request" />
<output name="output" message="response" />
</wsdl:operation>

Java:

void myMethod(String param1, int param2) ...

Mapping of wsdl:binding

The WSDL2Java command uses the wsdl:binding information to generate an
implementation specific client side stub. WebSphere Application Server uses the
wsdl:binding information on the server side to properly deserialize the request,
invoke the Web service, and serialize the response. The information in the
wsdl:binding should not affect the generation of the Service Endpoint Interface,
but it can when the document and literal wrapped format is used or when there
are MIME attachments.
v MIME attachments

For a WSDL 1.1 compliant WSDL file, a part of an operation message, which is
defined in the binding to be a MIME attachment, becomes a parameter of the
type of the attachment regardless of the part declared. For example:
XML:
<wsdl:types>
<schema ...>
<complexType name="ArrayOfBinary">
<restriction base="soapenc:Array">

<attribute ref="soapenc:arrayType" wsdl:arrayType="xsd:binary[]" />
</restriction>
</complexType>
</schema>
</wsdl:types>

<wsdl:message name="request">
<part name="param1" type="ns:ArrayOfBinary" />
<wsdl:message name="response" />

410 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

<wsdl:message name="response" />
...

<wsdl:operation name="myMethod">
<input name="input" message="request" />
<output name="output" message="response" />
</wsdl:operation>
...

<binding ...
<wsdl:operation name="myMethod">
<input>
<mime:multipartRelated>
<mime:part>
<mime:content part="param1" type="image/jpeg"/>
</mime:part>
</mime:multipartRelated>
</input>
...

</wsdl:operation>

Java:

void myMethod(java.awt.Image param1) ...

The JAX-RPC requires support for the following MIME types:

MIME type Java type

image/gif java.awt.Image

image/jpeg java.awt.Image

text/plain java.lang.String

multipart/* javax.mail.internet.MimeMultipart

text/xml javax.xml.transform.Source

application/xml javax.xml.transform.Source

There are a number of problems with MIME attachments as they are defined in
WSDL 1.1, including:
– The semantics of the mime:multipartRelated clause are not fully defined
– The semantics do not allow for arrays of MIME attachments

Because of these problems, several types are not specified by the JAX-RPC for
MIME attachments. These types are defined in the supported mappings
previously discussed.

v Headers

A wsdl:binding can also define SOAP headers, for example:
XML:

<wsdl:message name="request">
<part name="param1" type="xsd:string" />
</wsdl:message/>

<wsdl:message name="response" />
...

<wsdl:operation name="myMethod">
<input name="input" message="request" />
<output name="output" message="response" />
</wsdl:operation>
...

Chapter 8. Using Web services 411

<binding ...
<wsdl:operation name="myMethod">
<input>
<soap:header message="request" part="param1" use="literal" />
</input>
...
</wsdl:operation>

Java:

void myMethod(String param1) ...

This is an example of an explicit header or a header with a value determined
from a method parameter. Instead of appearing in the soap:body SOAP message,
the value of param1 now appears in the soap:header SOAP message. The
WSDL2Java command supports explicit headers and does not support implicit
headers. Implicit headers have a value not determined by a parameter. For
example, you could replace the soap:header clause in the example with:

<soap:header message="someOtherMsgNotAppearingInthePortType" part="someOtherPart" use="literal"/>

Note: The WSDL2Java command supports explicit headers, but it is not
considered good programming practice to use them. Headers are typically used
for middleware logic, not business logic. Explicit headers place parameters used
in business logic into the header.

Mapping of wsdl:service

The wsdl:service element is mapped to a Generated Service interface. The
Generated Service interface contains methods to access each of the ports in the
wsdl:service. The Generated Service interface is discussed in sections 4.3.9, 4.3.10,
and 4.3.11 of the JAX-RPC specification.

In addition, the wsdl:service element is mapped to the implementation-specific
ServiceLocator class, which is an implementation of the Generated Service
interface.

Mapping between WSDL and SOAP messages

The WSDL file defines the format of the SOAP message that is sent over the wire.
The WSDL2Java command and the WebSphere Application Server run time use
the information in the WSDL file to confirm that the SOAP message is properly
serialized and deserialized.

Document versus RPC, literal versus encoded

If a wsdl:binding indicates a message is sent using an RPC format, the SOAP
message contains an element defining the operation. If a wsdl:binding indicates
the message is sent using a document format, the SOAP message does not contain
the operation element.

If the wsdl:part is defined using the type attribute, the name and type of the part
are used in the message. If the wsdl:part is defined using the element attribute,
the name and type of the element are used in the message. The element attribute is
not allowed by the JAX-RPC specification when use=″encoded″.

412 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

If a wsdl:binding indicates a message is encoded, the values in the message are
sent with xsi:type information. If a wsdl:binding indicates that a message is
literal, the values in the message are typically not sent with xsi:type information.
For example:
WSDL:

<xsd:element name="c" type="xsd:int" />
...
<wsdl:message name="request">
<part name="a" type="xsd:string" />
<part name="b" element="ns:c" />
</wsdl:message>
...
<wsdl:operation name="method" >
<input message="request" />
...

RPC/ENCODED:
<soap:body>

<ns:method>
<a xsi:type="xsd:string">ABC
<element attribute is not allowed in rpc/encoded mode>
</ns:method>
</soap:body>

DOCUMENT/LITERAL:
<soap:body>
<a>ABC
<c>123
</soap:body>

DOCUMENT/LITERAL wrapped:
<soap:body>
<ns:method_wrapper>
<a>ABC
<c>123
<ns:method_wrapper>
</soap:body>

The document and literal wrapped mode is the same as the document and literal
mode. However, in the document and literal wrapped mode, there is only a single
element within the body, and the element has the same name as the operation.

Multi-ref processing

If use=encoded, XML types that are not simpleTypes are passed in the SOAP
message using the multi-ref attributes, href and id. The following example
assumes that parameters one and two reference the same Java bean named, info
containing fields a and b:

Note:

Deserialization produces a single instance of the info class for the encoded case
and two instances are created for the literal case.
RPC/ENCODED:
<soap:body>
<ns:method>
<param1 href="#id1" />
<param2 href="#id2" />
<ns:method>
<multiref id="id1" xsi:type="ns:info">

Chapter 8. Using Web services 413

<a xsi:type="xsi:string">hello<a>
<b xsi:type="xsi:string">world
</multiref>
</soap:body>

RPC/LITERAL:
<soap:body>
<ns:method>
<param1>
<a>hello
world
</param1>
<param2>
<a>hello
world
</param2>
<ns:method>
</soap:body>

XML arrays and the maxOccurs attribute

A SOAP message is affected by whether the element is defined by an XML array or
using the maxOccurs attribute.
WSDL:
<element name="foo" type="ns:ArrayOfString" />

Literal Instance:

<foo>
<item>A</item>
<item>B</item>
<item>C</item>
</foo>

WSDL:
<element name="foo" maxOccurs="unbounded" type="xsd:string"/>

Literal Instance:

<foo>A</foo>
<foo>B</foo>
<foo>C</foo>

minOccurs and nillable attributes

An element specified with minOccurs=0 that has a null value is not serialized in
the SOAP message. An element specifying nillable=″true″ has a null value and is
serialized into a SOAP message with the xsi:nil=true attribute. For example:
<a xsi:nil="true" />

Qualified versus unqualified

The XML schema attributeForm and elementForm attributes indicate whether the
attributes and nested elements are serialized with qualified or unqualified names.
If a part name is serialized, it is always serialized as an unqualified name.

Developing a Web services client
Before you begin

Locate the Web Services Description Language (WSDL) file that defines the Web
service to access.

414 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

To create the client code and artifacts that enable the application client to access a
Web service:

Steps for this task
1. Develop implementation templates and bindings from a WSDL file.

Follow the steps in this task, but use the -role client -container client option
with the WSDL2Java command tool. The client-side bindings and artifacts are
generated.

2. Complete the client implementation.
3. (Optional) Configure the webservicesclient.xml deployment descriptor.

Complete this step if you are developing a managed client that runs in the J2EE
client container.

4. (Optional) Configure the ibm-webservices-bnd.xmi deployment descriptor.
Complete this step if you are deploying a managed client that runs in the J2EE
client container and you want to override the default client settings. See Web
services assembly properties for more information about the
ibm-webservicesclient-bnd.xmi deployment descriptor.

5. (Optional) Assemble a Web services-enabled client Java archive (JAR) file.
Complete this step if you are developing a managed client that runs in the J2EE
client container.

6. Test the Web services-enabled client application.

Results

You have created and tested a Web services client application.

Assembling a Web services-enabled client JAR and EAR file
Before you begin

You need the following artifacts:
v Assembled client module, containing the implementation, all classes generated

by the WSDL2Java command, MANIFEST.MF and deployment descriptor. This
module can be:
– An application client module containing META-INF/application-client.xml

– A Web module containing WEB-INF/web.xml

– An enterprise JavaBean (EJB) module containing META-INF/ejb-jar.xml

v Web Services Description Language (WSDL) file used to develop the client
v Configured webservicesclient.xml and ibm-webservicesclient-bnd.xmi(if used)

deployment descriptors
v Generated JAX-RPC mapping deployment descriptor

The steps in this topic explain how to use the command-line tools to assemble a
Web service-enabled client application. You can also use the Assembly Toolkit
(http://www-3.ibm.com/software/webservers/appserv/was/support/) to
assemble Web service-enabled client applications.

To create the client code and artifacts that enable the application client to access a
Web service:

Steps for this task

Chapter 8. Using Web services 415

1. For a Web services client in an application client Java archive (JAR) or EJB JAR
file, arrange the following files:
a. Expand the JAR file in the root directory.
b. Place the WSDL file in the META-INF/wsdl subdirectory.

The WSDL file is indicated by the <wsdl-file> element in the
webservicesclient.xml file.

c. Place the webservicesclient.xml and the JAX-RPC mapping file in the
META-INF subdirectory.
The JAX-RPC mapping file is indicated by the <jaxrpc-mapping-file>
element in the webservicesclient.xml file.

d. (Optional) Place the ibm-webservicesclient-bnd.xmi file in the META-INF
subdirectory, if used.

2. Add these files to the existing JAR file with the appropriate command for your
platform.
For UNIX platforms use jar -uvf existing.jar META-INF/*. For Windows
platforms use jar -uvf existing.jar META-INF*

3. Assemble the JAR file into an EAR file using typical assembly techniques if the
client runs in a container.

4. For a Web services client in a Web archive (WAR) file, arrange the following
files:
a. Expand the WAR file in the root directory.
b. Place the WSDL file in the WEB-INF/wsdl subdirectory.
c. Place the webservicesclient.xml and JAX-RPC mapping files in the WEB-INF

subdirectory.
d. (Optional) Place the ibm-webservicesclient-bnd.xmi file in the WEB-INF

subdirectory, if used.
5. Add these files to the existing WAR file with the appropriate command for

your platform.
For UNIX platforms use jar -uvf existing.war WEB-INF/*. For Windows
platforms use jar -uvf existing.war WEB-INF*

Results

The artifacts required to enable the client module to use Web services for J2EE are
added to the JAR file.

Usage scenario

This example uses a JAR file named AddressBookClient.jar and an EAR file
named AddressBookClient.ear:

After running the jar -u command, the AddressBookClient.jar file contains the
following files. The files added in this task are in bold:
META-INF/MANIFEST.MF
META-INF/application-client.xml
META-INF/wsdl/AddressBook.wsdl
META-INF/webservicesclient.xml
META-INF/AddressBook_mapping.xml
com/ibm/websphere/samples/webservices/addr/Address.class
com/ibm/websphere/samples/webservices/addr/AddressBook.class
com/ibm/websphere/samples/webservices/addr/AddressBookClient.class
com/ibm/websphere/samples/webservices/addr/AddressBookService.class
...other generated classes...

416 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

After assembling the AddressBookClient.jar file into the AddressBookClient.ear
file, the AddressBookClient.ear file contains the following files:
META-INF/MANIFEST.MF
AddressBookClient.jar
META-INF/application.xml

What to do next

Test the client JAR or EAR file.

Testing Web services-enabled clients
Before you begin

Before testing your Java client, confirm that the server endpoint specified in the
client Web Services Description Language (WSDL) file is running and available.

The following steps and examples assume that you are testing a system that has
WebSphere Application Server installed, and that the WAS_HOME environment
variable is set in the WebSphere Application Server installation directory.

Tests are run differently depending on whether the client module has client
container deployment information, which consists of the application-client.xml
and webservicesclient.xml files, as well as the JAX-RPC mapping file and WSDL
file. The client enterprise archive (EAR) files discussed in this topic are referred to
as managed because they contain the deployment information. The client Java
archive (JAR) files discussed are referred to as unmanaged because they that do
not contain the deployment information.

To test Web services-enabled clients:

Steps for this task
1. Test an unmanaged client JAR file.

a. Set your CLASSPATH when you Set up a Web services development
environment.

b. Add your client JAR file to CLASSPATH.
c. Execute your application with the java command.

The unmanaged client application runs.
2. Test a managed client EAR file.

a. Execute your client application with the launchClient command.
An example of using the command is as follows:
launchClient clientEar

Results

Web services-enabled clients that have been tested.

What to do next

Troubleshoot your Web services application.

Assembling Web services applications
Before you begin

Chapter 8. Using Web services 417

You must assemble either an enterprise JavaBean (EJB) Java archive (JAR) file or an
EJB Web archive (WAR) file before assembling the Web services-enabled enterprise
archive (EAR) file.

The steps in this topic explain how to use the command-line tools to assemble Web
service J2EE modules. You can also assemble Web service J2EE modules with the
Assembly Toolkit (http://www-
3.ibm.com/software/webservers/appserv/was/support/).

To assemble Web services applications:

Steps for this task
1. Assemble a Web services-enabled EJB JAR file.
2. Assemble a Web services-enabled WAR file.
3. Access a Web Services Description Language (WSDL) file
4. Assemble a Web services-enabled EAR file.
5. (Optional) Enable the EAR file.

If the EAR file contains EJB modules, it must have the Web services endpoint
WAR file added with the endptEnabler command before deployment.

Results

A Web services-enabled EAR file that you can deploy into WebSphere Application
Server.

What to do next

Deploy the Web services-enabled EAR file into WebSphere Application Server.

Assembling a Web services-enabled EJB JAR file
You can assemble a Web services-enabled enterprise JavaBean (EJB) Java archive
(JAR) file in one of two ways:

Steps for this task
1. Assemble a Web services-enabled EJB JAR file when starting from Java code
2. Assemble a Web services-enabled EJB JAR file when starting from Web Services

Description Language (WSDL)

Results

An assembled Web services-enabled EJB JAR file.

What to do next

Deploy Web services.

Assembling a Web services-enabled EJB JAR file when starting
from Java code
Before you begin

You need the following artifacts:
v Assembled enterprise JavaBean (EJB) Java archive (JAR) file (not enabled for

Web services)

418 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v Compiled Java class for the Service Endpoint Interface
v Web Services Description Language (WSDL) file
v Compiled Java classes for all classes emitted by the WSDL2Java command tool.

A compiled Java class is a result of developing an enterprise bean starting with
WSDL.

v Complete webservices.xml,ibm-webservices-bnd.xmi and Java API for
XML-based remote procedure call (JAX-RPC) mapping deployment descriptors.

The steps in this topic explain how to use the command-line tools to assemble a
Web service-enabled EJB JAR file. You can also use the Assembly Toolkit
(http://www-3.ibm.com/software/webservers/appserv/was/support/) to
assemble a Web service-enabled EJB JAR file.

To assemble an Web services-enabled EJB JAR file when starting from Java code:

Steps for this task
1. Place the JAR file in the root directory.
2. Place the WSDL file specified by the deployment descriptor <wsdl-file>

element in the META-INF/wsdl subdirectory.
3. Place the JAX-RPC mapping file as specified by the deployment descriptor

<jaxrpc-mapping-file> element in the META-INF subdirectory.
4. Place the webservices.xml and ibm-webservices-bnd.xmi files in the META-INF

subdirectory.
5. Place the Service Endpoint Interface class in a subdirectory corresponding to its

Java package.
6. Add these files to the EJB JAR file.

Assuming that the Service Endpoint Interface class is under the com
subdirectory, and the WSDL file is in the META-INF/wsdl subdirectory, execute
the jar -uvf JAR_file com META-INF/* command.

Results

The artifacts required to Web service-enable an EJB module for Web services are
added to the JAR file.

Usage scenario

After running the jar -u command on a JAR file named AddressBook.jar, the JAR
file contains the following files. The files added in this task are in bold:
META-INF/MANIFEST.MF
META-INF/ejb-jar.xml
addr/Address.class
addr/AddressBook_RI.class
addr/AddressBookBean.class
addr/AddressBookHome.class
addr/Phone.class
addr/StateType.class
addr/AddressBook.class
META-INF/wsdl/AddressBook.wsdl
META-INF/ibm-webservices-bnd.xmi
META-INF/webservices.xml
META-INF/AddressBook_mapping.xml

What to do next

Chapter 8. Using Web services 419

Assemble a Web services-enabled EAR file.

Assembling Web services-enabled EJB JAR file when starting
from Web Services Description Language
Before you begin

You need the following artifacts:
v An assembled enterprise JavaBean (EJB) Java archive (JAR) file containing the

EJB implementation and all classes generated by the WSDL2Java command tool
when the role argument is develop-server and the container argument is EJB.

v A Web Services Description Language (WSDL) file
v Complete webservices.xml, ibm-webservices-bnd.xmi, and Java API for

XML-based remote procedure call (JAX-RPC) mapping deployment descriptors.

This topic explains how to assemble a Web services-enabled JAR file with
command-line tools. You can also use the Assembly Toolkit (http://www-
3.ibm.com/software/webservers/appserv/was/support/) to assemble Web
services-enabled JAR files.

To assemble a Web services-enabled EJB JAR file when starting from WSDL:

Steps for this task
1. Place the JAR file in the root <samp/> directory.
2. Place the WSDL file as specified by the deployment descriptor

<samp><wsdl-file> element in the META-INF/wsdl subdirectory.
3. Place the JAX-RPC mapping file as specified by the deployment descriptor

<jaxrpc-mapping-file> element in the META-INF subdirectory.
4. Place the webservices.xml and ibm-webservices-bnd.xmi files in the META-INF

subdirectory.
5. Add these files to the EJB JAR file.

Assuming that the WSDL file is in the META-INF subdirectory, execute the jar
-uvf EAR_file META-INF/* command.

Results

The artifacts required to enable an EJB module for Web services are added to the
JAR file.

Usage scenario

After running the jar -u command, a JAR file named AddressBook.jar contains the
following files. The files added in this task are in bold:
META-INF/MANIFEST.MF
META-INF/ejb-jar.xml
addr/Address.class
addr/AddressBook_RI.class
addr/AddressBookSoapBindingImpl.class
addr/AddressBookHome.class
addr/Phone.class
addr/StateType.class
addr/AddressBook.class
META-INF/wsdl/AddressBook.wsdl
META-INF/ibm-webservices-bnd.xmi
META-INF/webservices.xml
META-INF/AddressBook_mapping.xml

420 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

What to do next

Assemble a Web services-enabled enterprise archive (EAR) file.

Assembling Web services-enabled WAR file
You can assemble a Web services-enabled Web archive (WAR) file in one of two
ways:

Steps for this task
1. Assemble a Web services-enabled WAR file when starting from Java code.
2. Assemble a Web services-enabled WAR file when starting from Web Services

Description Language (WSDL).

Results

A Web services-enabled WAR file is assembled.

What to do next

Assemble a Web services-enabled EAR file

Assembling a Web services-enabled WAR file when starting from
Java code
Before you begin

You need the following artifacts:
v An assembled Web archive (WAR) file containing web.xml, but not Web

services-enabled
v Compiled Java class for the Service Endpoint Interface
v A Web Services Description Language (WSDL) file
v Complete webservices.xml,ibm-webservices-bnd.xmi and Java API for

XML-based remote procedure call (JAX-RPC) mapping deployment descriptors.

The steps in this topic explain how to use the command-line tools to assemble a
Web service-enabled WAR file. You can also use the Assembly Toolkit
(http://www-3.ibm.com/software/webservers/appserv/was/support/) to
assemble a Web service-enabled WAR file.

To assemble a Web services-enabled WAR file when starting from Java code:

Steps for this task
1. Expand the WAR file into a directory.
2. Confirm that the WEB-INF/web.xml descriptor for the Web module contains a

<servlet-class> element indicating the Java bean class that is implementing
the service.

3. Place the WSDL file as specified by the deployment descriptor <wsdl-file>
element of webservices.xml file in the WEB-INF/wsdl subdirectory.

4. Place the JAX-RPC mapping file as specified by the deployment descriptor
<jaxrpc-mapping-file> element of webservices.xml in the WEB-INF
subdirectory.

5. Place the webservices.xml and ibm-webservices-bnd.xmi deployment
descriptors in the WEB-INF subdirectory.

Chapter 8. Using Web services 421

6. Place the Service Endpoint Interface class in a subdirectory corresponding to its
Java package.

7. Add these files to the WAR file.
Assuming that the Service Endpoint Interface class is under the com
subdirectory, and the WSDL and mapping files are in WEB-INF, execute the jar
-uvf WAR_file com WEB-INF/* command.

Results

The artifacts required to Web service-enable the Web module are added to the
WAR file.

What to do next

Assemble a Web services-enabled enterprise archive (EAR) file

Assembling a Web services-enabled WAR file when starting from
Web Services Description Language
Before you begin

You need the following artifacts:
v Assembled Web archive (WAR) file containing the enterprise JavaBean (EJB)

implementation, all classes generated by the WSDL2Java command tool and a
Web deployment descriptor, web.xml

v A Web Services Description Language (WSDL) file
v Complete webservices.xml, ibm-webservices-bnd.xmi, and Java API for

XML-based remote procedure call (JAX-RPC) mapping deployment descriptors.

This topic explains how to assemble a Web services-enabled WAR file with
command-line tools. You can also use the Assembly Toolkit (http://www-
3.ibm.com/software/webservers/appserv/was/support/) to assemble Web
services-enabled WAR files.

To assemble a Web services-enabled WAR file when starting from WSDL:

Steps for this task
1. Expand the WAR file into a directory.
2. Confirm that the WEB-INF/web.xml deployment descriptor for the Web module

contains a <servlet> element including the <servlet-name> element.
The <servlet-name> element can be any string and <servlet-class> element
indicating the Java bean class that is implementing the service.

3. Place the WSDL file as specified by the webservices.xml deployment descriptor
<wsdl-file> element in the WEB-INF/wsdl subdirectory.

4. Place the JAX-RPC mapping file as specified by the webservices.xml
deployment descriptor <jaxrpc-mapping-file> element in the WEB-INF
subdirectory.

5. Place the webservices.xml and ibm-webservices-bnd.xmi deployment
descriptors in the WEB-INF subdirectory.

6. Add these files to the WAR file.
Assuming that the WSDL and mapping files are in WEB-INF, execute the jar -uvf
WAR_file com WEB-INF/* command.

Results

422 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The artifacts required to Web service-enable the Web module is added to the WAR
file.

What to do next

Assemble a Web services-enabled enterprise archive (EAR) file

Assembling a Web services-enabled EAR file
Before you begin

Before assembling a Web services-enabled enterprise archive (EAR) file, one of
these three tasks should be complete:
v Assemble a Web services-enabled EJB Java archive (JAR) file.
v Assemble a Web services-enabled EJB Web archive (WAR) file.

This topic explains how to assemble a Web services-enabled EAR file with
command-line tools. You can also assemble a Web services-enabled EAR file with
the Assembly Toolkit (http://www-
3.ibm.com/software/webservers/appserv/was/support/).

To assemble a Web services-enabled EAR file:

Steps for this task
1. Assemble the Web services-enabled JAR or WAR file into an EAR file.

Now assemble the EAR file that contains the JAR or WAR files. The EAR file
can contain an enterprise bean or application client JAR files; Web applications
or WAR files; and metadata describing the applications or application.xml
files.

Results

A Web services-enabled EAR file.

Usage scenario

In the following example, there is an application.xml deployment descriptor
packaged with a Web services-enabled JAR file called AddressBook.jar that is
packaged into an EAR file called AddressBook.ear. The EAR file contains:
META-INF/MANIFEST.MF
META-INF/application.xml
AddressBook.jar

An example of the application.xml deployment descriptor is as follows:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE application PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application 1.3//EN"

"http://java.sun.com/dtd/application_1_3.dtd">
<application id="Application_ID">
<display-name>AddressBookJ2WEE</display-name>
<description>AddressBook EJB Example from Java</description>
<module id="EjbModule_1">
<ejb>AddressBook.jar</ejb>
</module>
</application>

What to do next

Chapter 8. Using Web services 423

If the EAR file contains EJB modules, Run the endptEnabler. Then, deploy the EAR
file into WebSphere Application Server.

Web services assembly properties
ibm-webservices-bnd.xmi properties

The ibm-webservices-bnd.xmi file is a deployment descriptor for a Web
Services-enabled Web module or enterprise JavaBean (EJB) module. It contains
information for the Web services runtime that is either WebSphere product-specific
or was not specified by Web services for J2EE.

You can edit these properties using the Assembly Toolkit (http://www-
3.ibm.com/software/webservers/appserv/was/support/):
1. Locate the webservices.xml file in the module.
2. Double-click the webservices.xml file to open the Web Services editor.
3. Access the Web Services Bindings editor through the Bindings tab at the

bottom of the editor pane.
4. Access the Web Services Binding Configurations editor through the Binding

Configurations tab at the bottom of the editor pane.
5. After editing the properties, type ctrl-s on your keyboard to save the changes.

The following user-definable assembly properties are supported:
v wsDescNameLink

Attribute of the wsdescBindings element that specifies the link to the
corresponding <webservice-description-name> in webservices.xml.
You can use the Assembly Toolkit to set this property:
1. Open the Web Service Bindings editor.
2. Expand the Web Service Description Bindings section.
3. Click Add and choose the Web services description binding properties for

which you want to apply the change.
4. Click OK.

v pc-name-link

Attribute of the pcBindings element that specifies the link to the
<port-component-name> in the webservices.xml file.
You can edit these properties in the Assembly Toolkit:
1. Open the Web Services Bindings editor.
2. Expand the Port Component Binding section.
3. Click Add.
4. Select the port_ component_ name from the drop down list in the PC Name

Link field.
v scope

Attribute of the pcBindings element that specifies when new instances of
implementation beans are created. Possible values are Request, Session, and
Application.
You can edit these properties in the Assembly Toolkit:
1. Open the Web Services Bindings editor.
2. Expand the Port Component Binding section.
3. Click Add.

424 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

4. Select the implementation_scope_ name from the drop down list in the Scope
field.

The value of scope for a deployed Web service can be changed using the
administrative console. Using application management, navigate to the Web
module of the Web service application and select Web Services Implementation
Scope.

ibm-webservicesclient-bnd.xmi properties

The ibm-webservicesclient-bnd.xmi file contains information for the Web Services
runtime that is WebSphere product-specific.

You can edit these properties using the Assembly Toolkit:
1. Locate the webservicesclient.xml file in the module.
2. Double-click the webservices.xml file to open the Web Services Client editor.
3. Access the Web Services Client Bindings editor through the Client Binding

tab at the bottom of the editor pane.
4. Access the Web Services Client Port Bindings editor through the Port

Bindings tab at the bottom of the editor pane.
5. After editing the properties, type ctrl-s on your keyboard to save the changes.

Assembly properties

The following user-definable assembly properties are supported:
v componentNameLink

Attribute of the componentScopedRefs element that specifies the link to the
corresponding <component-scoped-refs> element in webservicesclient.xml file.
You can edit this property in the Assembly Toolkit:
1. Open the Web Services Client Bindings editor.
2. Expand the Component scoped references section.
3. Click Add.
4. Select the component scoped references defined in the

webservicesclient.xml file from the list.
v serviceRefLink

Attribute of the serviceRefs element that specifies the link to the
<service-ref-name> in the webservicesclient.xml file.
You can edit this property in the Assembly Toolkit:
1. Open the Web Services Client Bindings editor.
2. Click the Services References tab.
3. Click Add.
4. Select the service references defined in the webservicesclient.xml file from

the list.
v deployedWSDLFile

Attribute of the serviceRefs element is optional and permits an alternate WSDL
file to be used other than that specified in the <wsdl-file> element of
webservicesclient.xml file. If this attribute is specified, the alternate WSDL file
must be packaged in the same module and must be compatible with the
development WSDL file. The deployedWSDLFile property is used to supply a
new WSDL file containing a different endpoint URL than the original WSDL file.

Chapter 8. Using Web services 425

You can edit this property in the Assembly Toolkit:
1. Open the Web Services Client Bindings editor.
2. Select the service references or component scoped reference desired.
3. Expand the Service reference details section.
4. Click Browse on the Deployed WSDL file field.
5. Select the new WSDL file.
6. Click OK.

v defaultMappings element
Identifies which port should be used for a given portType when none is
explicitly selected by the client. This element has the following attributes:
portTypeNamespace, portTypeLocalName, portNamespace, portLocalName. These
attributes identify which wsdl:port should be used for a wsdl:portType.
You can edit this property in the Assembly Toolkit:
1. Open the Web Services Client Bindings editor.
2. Click Default Mappings.
3. Click Add.
4. Edit the entries in the newly added row to establish a mapping between a

portType and port in the WSDL file. There can only be one entry for each
portType.

5. Click OK.
v syncTimeout

Attribute of the portQnameBindings element that specifies how long, in seconds,
to wait for a response from a synchronous call.
You can edit this property in the Assembly Toolkit:
1. Create a Port Qualified Name Bindings for the port.

a. Open the Web Services Client Bindings editor.
b. Confirm that a service reference is selected in either the Component

scoped references or Service references section.
c. Expand the Port qualified name bindings section.
d. Click Add. A new entry is now added to the Port qualified name

bindings list.
2. Click the new Port qualified name bindings entry. The Web Services Client

Port Bindings editor opens.
3. Expand the Port qualified name bindings details section.
4. Type the namespace of the WSDL file port you want to configure, in the Port

Namespace Link field.
5. Type the local_name of the WSDL file port you want to configure in the Port

Local Name Linkfield. The name displayed in the Port qualified name
bindings list is the local name of the WSDL file port.

6. Click OK.

To configure the syncTimeout property, locate the Synchronization timeout field
and enter the desired value.

v basicAuth

Element of the portQnameBindings element that can be used to authenticate a
service client to the service endpoint, independent of the underlying transport
that includes, HTTP, HTTPS, and JMS. Set the user ID and password attributes
as needed.
You can edit this property in the Assembly Toolkit:

426 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

1. Open the Web Services Client Bindings editor.
2. Expand the Basic authentication section.
3. Type the desired value in the User ID and Password fields.
4. Click OK.

v sslConfig

Element of the portQnameBindings element that specifies the Secure Sockets
Layer (SSL) configuration of an HTTPS outbound request. The name attribute is
the name of a SSL configuration entry or alias defined in the SSL Configuration
Repertoire.
Note: This attribute is only used when the client is running in the WebSphere
Application Server.
You can edit this property in the Assembly Toolkit:
1. Open the Web Services Client Bindings editor.
2. Expand the SSL Configuration section.
3. Type the desired value in the Name field.
4. Click OK.

The values of deployedWSDLFile and the defaultMappings of a deployed Web
service can also be changed using the administrative console. Using application
management, navigate to the Web module or EJB module of the Web service
application and select Web Services Client Bindings.

Example bindings files

The following examples demonstrate the spelling and position of the various
attributes. You cannot cut and paste these examples because they do not contain
the required ID attributes. If you add elements to a binding file template generated
by the WSDL2Java command, you must confirm that each element has an ID
attribute whose value is a unique string. Review the template xmi files generated
by the WSDL2Java command for examples of ID strings.

Example ibm-webservices-bnd.xmi file
<com.ibm.etools.webservice.wsbnd:WSBinding xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"
xmlns:com.ibm.etools.webservice.wsbnd=

"http://www.ibm.com/websphere/appserver/schemas/5.0.2/wsbnd.xmi">
<wsdescBindings wsDescNameLink="AddressBookService">
<pcBindings pcNameLink="AddressBook" scope="Application"/>
</ wsdescBindings>
</com.ibm.etools.webservice.wsbnd:WSBinding>

Example ibm-webservicesclient-bnd.xmi file
<com.ibm.etools.webservice.wscbnd:ClientBinding xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"
xmlns:com.ibm.etools.webservice.wscbnd=

"http://www.ibm.com/websphere/appserver/schemas/5.0.2/wscbnd.xmi">

<componentScopedRefs componentNameLink="myComponent ref"/>

<serviceRefs serviceRefLink="myService ref"
deployedWSDLFile="META-INF/wsdl/alternate.wsdl">

<defaultMappings portTypeLocalName="AddressBook"
portTypeNamespace="http://www.com.ibm"

portLocalName="AddressBookPort" portNamespace="http://www.com.ibm"/>
<portQnameBindings portQnameNamespaceLink="http://www.com.ibm"

portQnameLocalNameLink="AddressBookPort" syncTimeout="99">

Chapter 8. Using Web services 427

<basicAuth userid="myId" password="myPassword"/>
<sslConfig name="mynode/DefaultSSLSettings"/>
</portQnameBindings>
</serviceRefs>
</com.ibm.etools.webservice.wscbnd:ClientBinding>

Enabling the EAR file
Before you begin

The endptEnabler command is used to add router modules to your Web
services-enabled application, also known as an enterprise archive (EAR) file. A
router module provides an endpoint for the Web services in a particular enterprise
JavaBean (EJB) Java archive (JAR) module. The endptEnabler command adds one
or more router modules to the EAR file for each EJB JAR module within the EAR
file.

Each router module supports a specific transport such as HyperText Transport
Protocol (HTTP) or Java Messaging Service (JMS). If there are no EJB JAR modules
in the EAR file, it is not necessary to run the endptEnabler command.

You are prompted for various input values for each Web services-enabled EJB JAR
module in the EAR file. Typically, you should accept the defaults for each prompt.
See endptEnabler prompts and commands for more information about
endptEnabler command prompts.

To run the command:

Steps for this task
1. Invoke the endptEnabler command from the install_root\bin directory.

If you are using UNIX, invoke the command from the install_root/bin
directory.

2. Enter the name of the EAR file, when prompted.
3. Enter various input values as they are requested by the endptEnabler

command.

Results

An HTTP router module is added to the EAR file for each Web services-enabled
EJB JAR module contained in the EAR file. A context-root is configured for the
application so the Web service can be invoked through a URL. The URL used to
invoke the Web service is:
http://host[:port]/context-root/services/port-component-name

What to do next

Deploy the EAR file into WebSphere Application Server.

endptEnabler command
The endptEnabler enables a set of Web services within an enterprise archive (EAR)
file. You can add one or more router modules to the EAR file that include a Web
service-enabled EJB JAR file.

Each router module provides a Web service endpoint for a particular transport. For
example, an Hyper Text Transport Protocol (HTTP) router module can be added so
that the Web service can receive requests over the HTTP transport, and a Java

428 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Messaging Service (JMS) router module can be added so that the Web service can
receive requests from a JMS queue or topic.

In its interactive mode, the endptEnabler guides you through the required steps to
enable one or more services within an application. The endptEnabler tool makes a
backup copy of your original EAR file in the event that you need to remove or add
services at a later time. If your EAR file contains a Web service-enabled EJB JAR
file, you must run endptEnabler before the EAR file is deployed. Otherwise, you
do not need to run endptEnabler.

endptEnabler usage syntax

Invoke the endptEnabler from the WebSphere Application Server bin directory. The
command syntax is as follows:
endptEnabler

[-verbose|-v]
[-quiet|-q]
[-help|-h|-?]
[-properties|-p <properties-filename>]
[-transport|-t <default-transports>]
[-enableHttpRouterSecurity]
[<ear-filename>]

All parameters are optional and described as follows:
v -verbose, -v

Detailed progress messages are displayed as the tool processes the EAR file. This
command-line option is mapped to the verbose global property.

v -quiet, -q

No per-module progress messages are displayed as the tool processes the EAR
file. This command-line option is mapped to the quiet global property.

v -help, -h, -?

A brief help message is displayed explaining the various options.
v -properties, -p <properties-filename>

Properties from the file <properties-filename> are read and used to control the
behavior of the tool.

v -transport, -t <default-transports>

Specifies the default list of transports for which router modules should be
created for each EJB JAR file contained in the EAR file. This command-line
option is mapped to the defaultTransports global property. Examples are:
-transport http (the default)
-transport jms
-t http,jms

v -enableHttpRouterSecurity

Enables you to add a security policy for all authenticated users to protect the
HTTP router module if all the EJB’s are secured in the EJB JAR file. This
command-line option is mapped to the http.enableRouterSecurity global
property.

v <ear-filename>

Specifies the name of the EAR file to be processed.
If the <ear-filename> parameter is not entered on the command line, the
interactive mode is used. In interactive mode, you are prompted for the EAR file

Chapter 8. Using Web services 429

name, router module names and other important values as the processing
occurs. The following dialog is an example of the endptEnabler interactive
mode:
Note: In this dialog, user input is in fixed width font, and endptEnabler output
is in bold.

endptEnabler<enter>
WSWS2004I: IBM WebSphere Application Server Release 5
WSWS2005I: Web Services Enterprise Archive Endpoint Enabler Tool.
WSWS2007I: (C) COPYRIGHT International Business Machines Corp. 1997, 2003
WSWS2006I: Please enter the name of your EAR file: AddressBook.ear

<enter>

WSWS2003I: Backing up EAR file to: AddressBook.ear~

WSWS2016I: Loading EAR file: AddressBook.ear
WSWS2017I: Found EJB Module: AddressBookEJB.jar

WSWS2029I: Enter http router name for EJB Module AddressBookEJB [AddressBookEJB_HTTPRouter.war]:
<enter>

WSWS2030I: Enter http context root for EJB Module AddressBookEJB [/AddressBookEJB]:
<enter>

WSWS2024I: Adding http router for EJB Module AddressBookEJB.jar.
WSWS2036I: Saving EAR file AddressBook.ear...
WSWS2037I: Finished saving the EAR file.
WSWS2018I: Finished processing EAR file AddressBook.ear.

If the <ear-filename> parameter is entered on the command line, the
non-interactive mode is used. In non-interactive mode, router module names
and other important values are determined from user-specified properties or
default values.

endptEnabler properties

The endptEnabler tool allows you to control its run time behavior by specifying a
set of properties with the -properties command-line option. These properties fall
into two categories: global and per-module. Global properties affect the overall
behavior of the tool as it processes multiple EJB JAR modules within the EAR file.
Per-module properties affect the processing of a particular EJB JAR module.

Global properties

The following table describes the global properties supported by endptEnabler:

Property name Description Default value

verbose Displays detailed progress
messages.

False

quiet Displays only brief progress
messages.

False

http.enableRouterSecurity Enables you to add a
security policy for all
authenticated users to protect
the HTTP router module if
all the EJB’s are secured in
the EJB JAR file.

False

430 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http.routerModuleNameSuffix Specifies the suffix used to
construct default HTTP
router module names. The
.war extension is added by
endptEnabler.

_HTTPRouter

jms.routerModuleNameSuffix Specifies the suffix used to
construct default JMS router
module names. The .jar
extension is added by
endptEnabler.

_JMSRouter

jms.listenerInputPortNameSuffixSpecifies the suffix used to
construct default Listener
Input Port names.

_ListenerPort

jms.defaultDestinationType Specifies the default
destination type to use for all
JMS router modules added
to the EAR file. This should
be either queue or topic.

queue

defaultTransports Specifies the default list of
transports for which router
modules should be created.
The list can contain the
values http and jms. Multiple
values are separated by a
comma. Examples are: http,
jms and http,jms.

http

Per-module properties

The following table describes the per-module properties supported by the
endptEnabler. <ejbJarName> refers to the name of an EJB JAR module within the
EAR file, without the .jar extension.

Property name Description Default value

<ejbJarName>.transports Lists the transports for which
router modules should be
created for a particular EJB
JAR file. The list can contain
the values http and jms.
Multiple values are separated
by a comma. Examples are:
http, jms and http,jms.

http

<ejbJarName>.http.skip Specifies the flag which
bypasses the addition of an
HTTP router module even if
it would otherwise be added
(based on other properties).
Valid values are true and
false.

False

<ejbJarName>.http.routerModuleNameSpecifies the name of the
HTTP router module for a
particular EJB JAR file.

<ejbJarName>_HTTPRouter

Chapter 8. Using Web services 431

<ejbJarName>.http.contextRootSpecifies the context root
associated with the HTTP
router module for a
particular EJB JAR file.

/<ejbJarName>

<ejbJarName>.jms.skip Specifies the Flag which
bypasses the addition of an
HTTP router module even if
it would otherwise be added
(based on other properties).
Valid values are true and
false.

false

<ejbJarName>.jms.routerModuleNameSpecifies the name of the
JMS router module for a
particular EJB JAR file.

<ejbJarName>_JMSRouter

<ejbJarName>.jms.listenerInputPortNameSpecifies the name of the
Listener Input Port to be
associated with the JMS
router module.

<ejbJarName>_ListenerPort

<ejbJarName>.ejbJarName>.jms.destinationTypeSpecifies the JMS destination
type associated with the JMS
router. Valid values are
queue and topic.

queue

Properties example

Suppose an EAR file contains an EJB JAR file named, StockQuoteEJB.jar that
contains Web services. The following set of properties might be used to control the
endptEnabler runtime behavior as it processes the EAR file:
StockQuoteEJB.transports=http,jms

StockQuoteEJB.http.routerModuleName=StockQuoteEJB_HTTP

StockQuoteEJB.http.contextRoot=/StockQuote

StockQuoteEJB.jms.routerModuleName=StockQuoteEJB_JMS

StockQuoteEJB.jms.listenerInputPortName=StockQuote_LP

StockQuoteEJB.jms.destinationType=queue

endptEnabler examples

The following commands are examples of how the endptEnabler can be used:
endptEnabler MyApp.ear

endptEnabler -t jms,http MyApp.ear

endptEnabler -v -properties MyApp.props MyApp.ear

endptEnabler -q -t jms MyApp.ear

Deploying Web services
Before you begin

432 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

You need an enterprise application, also known as an enterprise archive (EAR) file,
that has been configured and enabled for Web services. You can use either the
administrative console or the wsadmin scripting interface to deploy an EAR file.

If you are installing an application containing Web services by using the wsadmin
command, specify the deployment option. If you are installing an application
containing Web services by using the administrative console, select Deploy
WebServices during step 1 of the Install New Application wizard.

Note:

If the Web services in the application is previously deployed with the wsdeploy
command, it is not necessary to specify Web services deployment during
installation.

Use the following steps to deploy the EAR file with the wsadmin command:

Steps for this task
1. Start install_root\bin\wsadmin from a command prompt.

If you are using UNIX start install_root/bin/wsadmin.
2. Enter the $AdminApp install EARfile ″-usedefaultbindings -deployejb

-deployws″ command at the wsadmin prompt.

Results

The Web service is installed into the application server.

What to do next

Secure Web services.

wsdeploy command
The wsdeploy command line tool adds Websphere product-specific Web services
deployment classes to a Web services for J2EE (JSR-109) compatible enterprise
application enterprise archive (EAR) file or an application client Java archive (JAR)
file. These classes include:
v Stubs
v Serializers and deserializers
v Implementations of service interfaces

This deployment step must be performed at least once, and can be performed
more than once. Deployment can be performed separately using the wsdeploy
command, the Assembly Toolkit (http://www-
3.ibm.com/software/webservers/appserv/was/support/), or when the application
is installed. When using the wsadmin command for installation, specify the
-deployws option. When using the administrative console for installation, select the
Deploy Web services check box. When using the Assembly Toolkit, Right-click the
module and select Deploy Web Services from the pop-up menu.

The wsdeploy command operates as follows:
v Each module in the enterprise application or JAR file is examined

Chapter 8. Using Web services 433

v If the module contains Web services implementations, indicated by the presence
of the webservices.xml deployment descriptor, the associated Web Services
Description Language (WSDL) files are located and the WSDL2Java command is
run with the role deploy-server.

v If the module contains Web services clients, indicated by the presence of the
webservicesclient.xml deployment descriptor, the associated WSDL files are
located and the WSDL2Java command is run with the role deploy-client.

v The files generated by the WSDL2Java command are compiled and repackaged.

See WSDL2Java command for more information about the files that are generated
for deployment.

When the generated files are compiled, they can reference application-specific
classes outside the EAR or JAR file if the EAR or JAR file is not self-contained. In
this case, use either the -jardir or -cp option to specify additional JAR or zip files to
be added to CLASSPATH when the generated files are compiled.

wsdeploy command syntax

The command syntax is as follows:
wsdeploy Input_filename Output_filename [options]

Required options:

v Input_filename

Specifies the path to the EAR or JAR file to be deployed.
v Output_filename

Specifies the path of the deployed EAR or JAR file. If output_filename already
exists, it is silently overwritten. The output_filename can be the same as the
input_filename.

Other options:

v -jardir directory

Specifies a directory containing JAR or zip files. All JAR and zip files in this
directory are added to the CLASSPATH used to compile the generated files. This
option can be specified zero or more times.

v -cp entries

Specifies entries to be added to CLASSPATH when the generated classes are
compiled. Multiple entries are separated the same as they would be in the
CLASSPATH environment variable, with a semicolon on Windows platforms and
a colon for UNIX platforms.

v -codegen

Specifies that deployment code is to be generated, but not compiled. This option
implicitly specifies the -keep option.

v -debug

Includes debugging information when compiling, that is, use javac -g to compile.
v -help

Displays a help message and exit.
v -ignoreerrors

Do not stop deployment if validation or compilation errors are encountered.
v -keep

434 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Do not delete working directories containing generated classes. A message is
displayed indicating the name of the working directory that is retained.

v -novalidate

Do not validate the Web services deployment descriptors in the input file.
v -trace

Displays processing information, including the names of the generated files.

Example
wsdeploy x.ear x_deployed.ear -trace -keep
Processing web service module x_client.jar.
Keeping directory: f:\temp\Base53383.tmp for module: x_client.jar.
Parsing XML file:f:\temp\Base53383.tmp\WarDeploy.wsdl
Generating f:\temp\Base53383.tmp\generatedSource\com\test\WarDeploy.java
Generating f:\temp\Base53383.tmp\generatedSource\com\test\WarDeployLocator.java
Generating f:\temp\Base53383.tmp\generatedSource\com\test\HelloWsBindingStub.java
Compiling f:\temp\Base53383.tmp\generatedSource\com\test\WarDeploy.java.
Compiling f:\temp\Base53383.tmp\generatedSource\com\test\WarDeployLocator.java.
Compiling f:\temp\Base53383.tmp\generatedSource\com\test\HelloWsBindingStub.java.
Done processing module x_client.jar.

Messages

v Flag -f is not valid
Option f was not recognized as being a valid option.

v Flag -c is ambiguous
Options may be abbreviated, but the abbreviation must be unique. In this case,
the wsdeploy command can not determine which option was intended.

v Flag -c is missing parameter -p

A required parameter for an option was omitted.
v Missing p parameter

A required option was omitted.

Using Java Messaging Service to transport Web services requests
Before you begin

WebSphere Application Server offers support for using a Java Messaging Service
(JMS) transport layer, in addition to the existing HTTP transport. Using JMS
transport allows your Web service clients and servers to communicate through JMS
queues and topics instead of HTTP connections. One-way and synchronous
two-way requests are supported.

Note: A Web service must be implemented as an enterprise JavaBean (EJB) to be
accessed through the JMS transport.

The benefits of using JMS as an alternative to HTTP, include:
v Request and response messages are sent through reliable messaging.
v One-way requests allow clients and servers to be more loosely-coupled. For

example, the server does not have to be active when the client sends the
one-way request.

v One-way requests can be sent to multiple servers simultaneously through the
use of a topic.

To use JMS as a transport for Web services requests:

Chapter 8. Using Web services 435

Steps for this task
1. Add a JMS binding and a Simple Object Access Protocol (SOAP) address to the

Web Services Description Language (WSDL) file.
The WSDL file of a Web service must include a JMS binding and a SOAP
address, which specifies a JMS endpoint URL string, in order to be accessible
on the JMS transport. A JMS binding is a wsdl:binding element containing a
wsdlsoap:binding element whose transport attribute ends in soap/jms, rather
than the typical soap/http value.
In addition to the JMS binding, a wsdl:port element referencing the JMS
binding must be included in the wsdl:service element within the WSDL file.
The wsdl:port element should contain a wsdlsoap:address element whose
location attribute specifies a JMS endpoint URL string.
Note: The specification of the actual JMS endpoint URL string can be deferred
until you publish the WSDL file. When you develop the Web service, a
placeholder such as file:/unspecified_location can be used for the endpoint
URL string.

2. Decide on the names and types of JMS objects that your application uses
Before your application can be installed, you need to:
a. Decide whether your Web service receives its requests from a queue or a

topic.
b. Decide whether to use a secure destination (queue or topic) or a nonsecure

destination.
c. Decide on the names for your destination, connection factory and listener

port.
The following list provides examples of the names that might be used for
the mythical StockQuote Web service:
v Queue: StockQuote_Q (JNDI name: jms/StockQuote_Q)
v Connection factory: StockQuote_CF (JNDI name: jms/StockQuote_CF)
v Listener port: StockQuoteEJB_ListenerPort

3. Define the JMS administered objects.
Once you have decided on the names and types of the JMS objects, use the
administrative console or the wsadmin scripting interface to define the JMS
objects.

4. Add the JMS endpoints to your EAR file using the endptEnabler command
tool.
You must run the endptEnabler command to add a JMS endpoint or router
module for each Web service-enabled EJB JAR file contained in the EAR file. By
default, the endptEnabler command adds only HTTP endpoints, but the
-transport jms option can be used to request the addition of JMS endpoints.

5. Deploy the Web services application.
During the install process you are prompted for two types of information for
each Web service-enabled EJB JAR contained in your EAR file:
v The Java Naming and Directory Interface (JNDI) name of the connection

factory to be used by the EJB JAR file message driven bean (MDB) listener
for sending reply messages.
If your Web service contains two-way operations, the MDB listener, defined
inside the JMS endpoint added by endptEnabler command, needs to access a
queue connection factory in order to add a reply message to the reply queue.
The MDB listener uses a resource environment reference of
java:comp/env/jms/WebServicesReplyQCF. Therefore, during the application

436 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

install process, you must provide the actual JNDI name of the queue
connection factory that should be used by the MDB listener for that Web
service. You might want to use the same connection factory that you defined
for use by clients in step 2.

v The name of the listener port to be used by the MDB listener.
A listener port is an object used to associate a JMS connection factory with a
JMS destination (queue or topic). When deployed, an MDB is configured
with the correct listener port so that messages from the desired queue or
topic are properly delivered to the MDB. During deployment, you can
modify the name of the listener port associated with each MDB listener. The
listener port name contained in the input EAR file displays as a default
value. If you specify the correct listener port name to the endptEnabler
command, perhaps through the use of properties, during step 3, you can
accept the default value. Otherwise, enter the correct listener port name.
Hint: By default, the endptEnabler command produces listener port names
of the form <ejb-jar-name>_ListenerPort. To simplify this step, define the
listener ports that follow this naming convention during step 2.

6. Publish the WSDL file.
In this step, you enter the JMS endpoint URL string to use for each Web
service-enabled EJB JAR file belonging to the application. The JMS endpoint
URLs are then written to the published WSDL files for use by clients.
For example, suppose that an application called StockQuoteService contains an
EJB JAR file named StockQuoteEJB, which contains one or more Web services
accessible on the JMS transport. Suppose that, in step 2, you defined a queue
with the JNDI name jms/StockQuote_Q and a connection factory with the JNDI
name jms/StockQuote_CF to be used by your application. In this example, you
would specify the following string as the JMS URL prefix within the Publish
WSDL user interface:
jms:/queue?destination=jms/StockQuote_Q&connectionFactory=jms/StockQuote_CF

The WSDL publisher uses this partial URL string to produce the actual JMS
URL for each port component defined in the EJB JAR file. The published WSDL
file can be used by clients needing to invoke the Web service.

Java Messaging Service endpoint URL syntax
A Java Messaging Service (JMS) endpoint URL is used to access a Web service with
the JMS transport. This URL specifies the JMS destination and connection factory,
as well as the port component name for the Web service request. This is similar to
the HTTP endpoint URL, which specifies the host and port, as well as the context
root and port component name.

A JMS endpoint URL has the following general form:
jms:/[queue|topic]?<property>=<value>&<property=<value>&...

The URL consists of the transport type, jms:, followed by either /queue or /topic
to indicate the JMS destination type, followed by the query string containing a list
of property and value pairs used to specify the JMS endpoint information.

The properties supported in the URL string are described as follows:

Destination-related properties (required)

Property name Description

Chapter 8. Using Web services 437

destination Specifies the Java Naming and Directory
Interface (JNDI) name of the destination
queue or topic.

connectionFactory Specifies the JNDI name of the connection
factory.

targetService Specifies the name of the port component to
which the request is dispatched.

JNDI-related properties (optional)

Property name Description

initialContextFactory Specifies the name of the initial context
factory to use which is mapped to the
java.naming.factory.initial property.

jndiProviderURL Specifies the JNDI provider URL which is
mapped to the java.naming.provider.url
property.

JMS-related properties (optional)

Property name Description

deliveryMode Indicates whether the request message
should be persistent or not. The valid values
are 1 for nonpersistent and 2 for persistent.
The default value is 1.

timeToLive Specifies the lifetime, in milliseconds, of the
request message. A value of 0 indicates an
infinite lifetime.

priority Specifies the JMS priority associated with
the request message. Valid values are
between 0 to 9. The default value is 4.

The required properties, destination, connectionFactory, and targetService, must
appear in the JMS endpoint URL string. The rest of the properties are optional.

You can set any of the properties on the client Stub object. This means that the
various properties can be specified by including them as part of the endpoint URL
or they can be set programmatically by the client on the Stub object. Properties
specified on the client Stub object take precedence over properties specified as part
of a JMS endpoint URL string.

Securing Web services
Before you begin

Web services security for WebSphere Application Server, Version 5.0.2 and above is
based on standards included in the Web services security (WS-Security)
specification. Web services security is a message-level standard, based on securing
Simple Object Access Protocol (SOAP) messages through XML digital signature,
confidentiality through XML encryption and credential propagation through
security tokens.

438 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Use the deprecated Securing Apache SOAP services topics if you are still using
Apache SOAP 2.3.

The movement to streamline secured Web services leads to a standards-based
architecture that is comprehensive, yet flexible enough to meet the Web services
security needs of real businesses. These standards are a set of Web service security
specifications that address how to provide protection for messages exchanged in a
Web service environment. Web services security defines the core facilities for
protecting the integrity and confidentiality of a message and provides mechanisms
for associating security-related claims with the message.

In the real world of e-business, qualities of services are required to provide
security, reliable messaging, and management for each layer of the Web services
stack. To secure Web services, you must consider a broad set of security
requirements, including authentication, authorization, privacy, trust, integrity,
confidentiality, secure communications channels, federation, delegation, and
auditing across a spectrum of application and business topologies. One of the key
requirements for the security model in today’s business environment is the ability
to interoperate between formerly incompatible security technologies (such as public
key infrastructure, Kerberos and and so on.) in heterogeneous environments (such
as .NET and J2EE). The complete Web services security protocol stack and
technology roadmap is described in ″Security in a Web Services World: A Proposed
Architecture and Roadmap″, which is available at the following address:
http://www.ibm.com/developerworks/webservices/library/ws-secmap/
(http://www.ibm.com/developerworks/webservices/library/ws-secmap/).

The Web services security specification, which is available at
http://www.ibm.com/developerworks/library/ws-secure/
(http://www.ibm.com/developerworks/library/ws-secure/), proposes a standard
set of Simple Object Access Protocol (SOAP) extensions that you can use to build
secure Web services. These standards confirm integrity and confidentiality, which
are generally provided with digital signature and encryption technologies. In
addition, Web services security provides a general purpose mechanism for
associating security tokens with messages. A typical example of the security token
is a user name and password token, in which a user name and password are
included as text. Web services security defines how to encode binary security
tokens such as X.509 certificates and Kerberos tickets.

For an explanation of Web services security and for instructions on how to
configure your WebSphere Application Server, see Web services security for
WebSphere Application Server, Version 5.0.2.

Configuring client-side transport level security
Before you begin

The server-side, or service endpoint, transport level security is based on the
Secured Sockets Layer (SSL) configuration of the WebSphere Application Server
Web container. Review Configuring Secure Sockets Layer for more information.

To configure the client-side transport level security:

Steps for this task
1. Create a SSL repertoire configuration entry for an existing service endpoint

acting as a service client.

Chapter 8. Using Web services 439

OR, you can use an existing configuration alias from the SSL configuration
repertoire using the Application Assembly Tool (AAT).

2. Define the attribute sslConfig with the value of the alias name in the
ibm-webservicesclient-bnd.xmi file.
For example:
<sslConfig name="default/DefaultSSLSettings"/>

Note: If the attribute is not defined, the default SSL setting is used for JSSE.
3. Locate the property file <install_root>\properties\sas.client.props for the

service clients or create a new property file that includes:
com.ibm.ssl.protocol
com.ibm.ssl.keyStoreType
com.ibm.ssl.keyStore
com.ibm.ssl.keyStorePassword
com.ibm.ssl.trustStoreType
com.ibm.ssl.trustStore
com.ibm.ssl.trustStorePassword

4. Set the system property, com.ibm.webservices.sslConfigURL to the property file.
For example:

Dcom.ibm.webservices.sslConfigURL=<installation_root>\properties\sas.client.props

Note: If the property sslConfigURL is not defined, the default SSL setting is
used for JSSE.

5. (Optional) Set the system properties of an unmanaged service client by using
the -D option of the Java command or by calling the System.setProperty
(propertyName, ″<samp> propertyValue ″) with the following properties:
java.protocol.handler.pkgs
java.net.ssl.keyStore
javax.net.ssl.keyStorePassword
javax.net.ssl.trustStore
javax.net.ssl.trustStorePassword

See Using Java Secure Socket Extension (JSSE) and Java Cryptography
Extension (JCA) with servlets and enterprise bean files for more information
about customizing the JSSE.

6. Access the service endpoints in a Federal Information Processing Standard
(FIPS)-enabled WebSphere Application Server.
a. Check for the required properties defined in the WebSphere Application

Server security documentation.
7. (Optional) Redirect the Simple Object Access Protocol (SOAP) request from a

client to service endpoint to be over HTTPS.
Complete this step if a transport guarantee of CONFIDENTIAL or INTEGRAL
is configured for a secured Web application. To redirect the request:
a. Specify a system property, com.ibm.ws.webservices.HttpRedirectEnabled, to

true for the entired Java Virtual Machine (JVM) or set the property,
com.ibm.wsspi.webservices.Constants.HTTP_REDIRECT_ENABLED, to true,
in the stub or call instance, before the method is invoked.

Transport level security
Transport level security is based on Secured Sockets Layer (SSL) or Transport Layer
Security (TLS) that runs beneath the HTTP protocol.

440 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

SSL and TLS provide security features including authentication, data protection,
and cryptographic token support for secure HTTP connections. To run with
HTTPS, the service endpoint address must be in the form of https://.

The integrity and confidentiality of transport data, including Simple Object Access
Protocol (SOAP) messages and HTTP basic authentication, is confirmed when you
use SSL and TLS. See Secured Sockets Layer for more information. Web services
applications can also use Federal Information Processing Standard (FIPS) approved
ciphers for more secure TLS connections.

WebSphere Application Server uses Java Secure Sockets Extension (JSSE) to support
SSL and TLS.

Configuring HTTP basic authentication
Before you begin

You can configure the username and password for HTTP basic authentication with
the ibm-webservicesclient-bnd.xmi deployment descriptor, or using the properties
mechanism for the configuration of a stub or call instance at run time.

To configure the HTTP basic authentication:

Steps for this task
1. Using the ibm-webservicesclient-bnd.xmi deployment descriptor: Specify the

attribute basicAuth for each portQNameBindings of each serviceRef. For
example:
<basicAuth userid="myID" password="myPassword"\>

2. Using the properties mechanism: Change the following properties:
javax.xml.rpc.Call.USERNAME_PROPERTY
javax.xml.rpc.Call.PASSWORD_PROPERTY
javax.xml.rpc.Stub.USERNAME_PROPERTY
javax.xml.rpc.Stub.PASSWORD_PROPERTY

Note: The values set by the properties mechanism take precedence over the
values defined by the ibm-webservicesclient-bnd.xmi deployment
descriptor.You can also configure Proxy data using the properties mechanism
described by using the following properties to configure your Web services
application:

For HTTP:
com.ibm.wsspi.webservices.HTTP_PROXYHOST_PROPERTY
com.ibm.wsspi.webservices.HTTP_PROXYPORT_PROPERTY
com.ibm.wsspi.webservices.HTTP_PROXYUSER_PROPERTY
com.ibm.wsspi.webservices.HTTP_PROXYPASSWORD_PROPERTY

For HTTPS:
com.ibm.wsspi.webservices.HTTPS_PROXYHOST_PROPERTY
com.ibm.wsspi.webservices.HTTPS_PROXYPORT_PROPERTY
com.ibm.wsspi.webservices.HTTPS_PROXYUSER_PROPERTY
com.ibm.wsspi.webservices.HTTPS_PROXYPASSWORD_PROPERTY

HTTP basic authentication
HTTP basic authentication uses a username and password to authenticate a service
client to a secure endpoint.

Chapter 8. Using Web services 441

WebSphere Application Server can have several resources, including Web services,
protected by a J2EE security model.

A simple way to provide authentication data for the service client is to authenticate
to the protected service endpoint to the HTTP basic authentication. The basic
authentication is located in the HTTP header that carries the Simple Object Access
Protocol (SOAP) request. When the application server receives the HTTP request,
the username and password are retrieved and verified using the authentication
mechanism specific to the server.

Although the basic authentication data is base64-encoded, it is recommended that
the data is sent over HTTPS. The integrity and confidentiality of the data can be
protected by the Secured Sockets Layer (SSL) protocol.

In come cases, a firewall is present using the PASS-THRU HTTP proxy server. The
HTTP proxy server forwards the basic authentication data into the J2EE application
server. The proxy server can also be protected. Applications can specify the proxy
data by setting properties in a stub object.

Web Services: Default bindings for the Web Services Security
collection

Use this page to manage the default bindings for trust anchors, the collection
certificate store, key locators, trusted ID evaluators, and login mappings. The
default binding configuration provides a central location where reusable binding
information is defined. The application binding file can reference the information
contained in the default binding configuration.

To view this administrative console page, click Servers > Application Servers >
server_name > Web Services: Default bindings for Web Services Security.

Read the Web Services documentation in the InfoCenter before you begin defining
the default bindings for Web Services Security.

Define the server bindings file by clicking Enterprise Applications >
application_name. Under Related Items, click Web Module > URI_file_name > Web
Services: Server Security Bindings.

Define the client bindings file by clicking Enterprise Applications >
application_name. Under Related Items, click Web Module > URI_file_name > Web
Services: Client Security Bindings.

Trust Anchors
Specifies a list of key store objects that contain the trusted root certificates,
self-signed or issued by a certificate authority (CA).

The certificate authority authenticates a user and issues a certificate. After the
certificate is issued, the key store objects, which contain these certificates, use the
certificate for certificate path or certificate chain validation of incoming
X.509-formatted security tokens.

Collection Certificate Store
Specifies a list of the untrusted, intermediate certificate files.

The collection certificate store contains a chain of untrusted, intermediate
certificates.The CertPath API attempts to validate these certificates, which are
based on the trust anchor.

442 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Key Locators
Specifies a list of key locator objects that retrieve the keys for digital signature and
encryption from a key store file or a repository. The key locator maps a name or
logical name to an alias or maps an authenticated identity to a key. This is the
logical name used to locate a key in a key locator implementation.

Trusted ID Evaluators
Specifies a list of trusted ID evaluators that determine whether to trust the
identity-asserting authority or message sender.

The trusted ID evaluators are used to authenticate additional identities from one
server to another server. For example, a client sends the identity of user A to server
1 for authentication. Server 1 calls downstream to server 2, asserts the identity of
user A, and includes the user ID and password of server 1. Server 2 attempts to
establish trust with server 1 by authenticating its user ID and password and
checking the trust based on the TrustedIDEvaluator implementation. If the
authentication process and the trust check are successful, server 2 trusts that server
1 authenticated user A and a credential is created for user A on server 2 to invoke
the request.

Login Mappings
Specifies a list of configurations for validating tokens within incoming messages.

Login mappings map the authentication method to the Java Authentication and
Authorization Service (JAAS) configuration.

To configure JAAS, use the administrative console and click Security > JAAS
Configuration.

Trust Anchors collection
Use this page to view a list of key store objects that contain trusted root
certificates. These objects are used for certificate path validation of incoming
X.509-formatted security tokens. Key store objects within trust anchors contain
trusted root certificates used by the CertPath API to validate the trust of a
certificate chain.

To create the key store file, use the key tool located in the
%install_dir%\java\jre\bin\keytool directory.

To view this administrative console page, click Servers > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Trust Anchors.

Click New to create a new trust anchor.

Click Delete to a delete trust anchor.

Click Update runtime to update the Web services security run time with the
default binding information, contained in the ws-security.xml file, that was
previously saved. However, prior to clicking Update runtime, you must save your
changes by clicking Save at the top of the Administrative console. When you click
Save, you are returned to the Administrative console home panel. To update the
run time, return to the Trust Anchors collection panel and click Update runtime.
When you click Update runtime, the configuration changes made to the other Web
services also are updated in the Web services security run time.

Trust Anchor Name: Specifies the unique name used to identify the trust anchor.

Chapter 8. Using Web services 443

Key Store Path: Specifies the location of the key store file that contains the trust
anchors.

Key Store Type: Specifies the type of key store.

The value for this field is either JKS or JCEKS.

Trust Anchor configuration settings
Use this page to configure a trust anchor. Trust anchors point to key stores that
contain trusted root or self-signed certificates. This page enables you to specify a
name for the trust anchor and the information needed to access a key store. The
name is used by the application binding to reference a pre-defined trust anchor
definition in the binding file or the default binding.

To view this administrative console page, click Servers > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Trust Anchors > New.

Trust Anchor Name: Specifies the unique name used by the application binding
to reference a pre-defined trust anchor definition in the default binding.

Key Store Password: Specifies the password needed to access the key store file.

Key Store Path: Specifies the location of the key store file.

Use ${USER_INSTALL_ROOT} as this path expands to the WebSphere Application
Server path on your machine.

Key Store Type: Specifies the type of key store file.

The value in this field is either JKS or JCEKS. The following is an explanation of
these two options:

JKS Specify this option if you are not using Java Cryptography Extensions
(JCE).

JCEKS
Specify this option if you are using Java Cryptography Extensions.
Although the JCEKS key store format is more secure, it decreases
performance.

Data type String
Default JKS
Range JKS, JCEKS

Collection Certificate Store collection
Use this page to view a list of certificate stores containing untrusted, intermediary
certificate files awaiting validation. Validation might consist of checking to see if
the certificate is on a certificate revocation list (CRL), checking that the certificate
has not expired, and checking that the certificate was issued by a trusted signer.

To view this administrative console page, click Servers > Application Servers
server_name. Under Related Items, click Web Services: Default bindings for Web
Services Security > Collection Certificate Store.

Click New to specify a store name and provider for a new certificate store.

444 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Click Delete to delete a certificate store.

Click Update runtime to update the Web services security run time with the
default binding information, contained in the ws-security.xml file, that was
previously saved. However, prior to clicking Update runtime, you must save your
changes by clicking Save at the top of the Administrative console. When you click
Save, you are returned to the Administrative console home panel. To update the
run time, return to the Collection Certificate Store collection panel and click
Update runtime. When you click Update runtime, the configuration changes made
to the other Web services also are updated in the Web services security run time.

Certificate Store Name: Specifies the name of the certificate store.

Certificate Store Provider: Specifies the provider of the certificate store.

Collection Certificate Store configuration settings
Use this page to specify the name and provider of a certificate store.

To view this administrative console page, click Servers > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Collection Certificate Store > New.

Certificate Store Name: Specifies the name for the certificate store. The
application binding uses the certificate store name to reference a pre-defined
binding.

Certificate Store Provider: Specifies the provider for the certificate store
implementation.

Data type String
Default IBM CertPath

X.509 certificates collection
Use this page to view a list of X.509 certificates.

To view this administrative console page, click Servers > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Collection Certificate Store. On the Collection Certificate
Store page, click X.509 Certificates under Additional Properties.

Click New to create a new path to an X.509 certificate.

Click Delete to delete a path to a X.509 certificate.

X509 Certificate Path: Specifies the location of the X.509 certificate.

X.509 Certificate configuration settings
Use this page to specify the location of your X.509 certificates.

To view this administrative console page, click Servers > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Collection Certificate Store. On the Collection Certificate
Store page, under Additional Properties, click X.509 Certificates > New.

X509 Certificate Path: Specifies the location of the X.509 certificate.

Chapter 8. Using Web services 445

Key Locator collection
Use this page to view a list of available key locators. Key locators identify the keys
needed for digital signature and encryption. A key locator must implement the
com.ibm.wsspi.wssecurity.config.KeyLocator interface. The two default
implementations are:
com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator and
com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator.

To view this administrative console page, click Servers > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Key Locators.

Click New to create a key locator.

Click Delete to delete a key locator.

Click Update runtime to update the Web services security run time with the
default binding information, contained in the ws-security.xml file, that was
previously saved. However, prior to clicking Update runtime, you must save your
changes by clicking Save at the top of the Administrative console. When you click
Save, you are returned to the Administrative console home panel. To update the
run time, return to the Key Locator collection panel and click Update runtime.
When you click Update runtime, the configuration changes made to the other Web
services also are updated in the Web services security run time.

Note: Once you define key locators, click the key locator name to specify
additional properties and keys under Additional Properties.

Key Locator Name: Specifies the unique name of the key locator.

Key Locator Classname: Specifies the class name of the key locator in the key
store file.

Key Locator configuration settings
Use this page to specify the settings for key locators.

To view this administrative console page, click Servers > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Key Locators > New.

Key Locator Name: Specifies the name of the key locator.

Data type String
Units N/A
Default N/A
Range N/A

Key Locator Classname: Specifies the name for the key locator class
implementation.

WebSphere Application Server has the following default key locator class
implementations:

com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator
This class, used by the response sender, maps an authenticated identity to
a key. If encryption is used, this class is used to locate a key to encrypt the

446 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

response message. The
com.ibm.wsspi.wssecurity.config.WSldKeyStoreMapKeyLocator class has
the capability to map an authenticated identity from the invocation
credential of the current thread to a key that is used to encrypt the
message. If an authenticated identity is present on the current thread, the
class maps the ID to the mapped name. For example, user1 is mapped to
mappedName_1. Otherwise, name=″default″. When a matching key is not
found, the authenticated identity is mapped to the default key specified in
the binding file.

com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator
This class, used by the response receiver, request sender, and request
receiver, maps a name to an alias. Encryption uses this class to obtain a
key to encrypt a message and digital signature uses this class to obtain a
key to sign a message. The
com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator class maps a logical
name to a key alias in the key store file. For example, key #105115176771 is
mapped to CN=Alice, O=IBM, c=US.

Data type String
Defaults com.ibm.wsspi.wssecurity.config.KeyStoreKeyLocator,

com.ibm.wsspi.wssecurity.config.WSldKeyStoreMayKeyLocat

Key Store Password: Specifies the password used to access the key store file.

Key Store Path: Specifies the location of the key store file.

Use ${USER_INSTALL_ROOT} as this path expands to the WebSphere Application
Server path on your machine.

Key Store Type: Specifies the type of the key store file.

The value for this field is either JKS or JCEKS. The following is an explanation of
these two options:

JKS Use this option if you are not using Java Cryptography Extensions (JCE).

JCEKS
Use this option if you are using Java Cryptography Extensions.

Default JKS
Range JKS, JCEKS

Key collection
Use this page to view a list of logical names that are mapped to a key alias in the
key store file.

To view this administrative console page, click Servers > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Key Locators > key_locator_name. Under Additional
Properties, click Keys.

Click New to create a new key object in the key store file.

Click Delete to a delete a mapping of a key object within the key store file.

Chapter 8. Using Web services 447

Key Name: Specifies the name of the key object found in the key store file.

Key Alias: Specifies an alias for the key object.

The alias is used when the key locator searches for the key objects in the key store.

Key configuration settings
Use this page to define a mapping of a logical name to a key alias in a key store
file.

To view this administrative console page, click Servers > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Key Locators > key_locator_name. Under Additional
Properties, click Keys > New.

Key Name: Specifies the name of the key object. This name is used by the key
locater to find the key within the key store file.

Key Alias: Specifies the alias for the key object contained in the key store file.

Key Password: Specifies the password needed to access the key object within the
key store file.

Trusted ID Evaluator collection
Use this page to view a list of trusted identity (ID) evaluators. The trusted ID
evaluator determines whether to trust the identity-asserting authority. Once the ID
is trusted, the WebSphere Application Server issues the proper credentials, which
are used in a downstream call for invoking resources. The trusted ID evaluator
implements the com.ibm.wsspi.wssecurity.id.TrustedIDEvaluator interface.

To view this administrative console page, click Servers > Application Servers >
server_name. Under Additional Services, click Web Services: Default bindings for
Web Services Security > Trusted ID Evaluators.

Click New to create a trusted ID evaluator.

Click Delete to a delete a trusted ID evaluator.

Click Update runtime to update the Web services security run time with the
default binding information, contained in the ws-security.xml file, that was
previously saved. However, prior to clicking Update runtime, you must save your
changes by clicking Save at the top of the Administrative console. When you click
Save, you are returned to the Administrative console home panel. To update the
run time, return to the Trusted ID Evaluator collection panel and click Update
runtime. When you click Update runtime, the configuration changes made to the
other Web services also are updated in the Web services security run time.

Trusted ID Evaluator Name: Specifies the unique name of the trusted ID
evaluator.

Trusted ID Evaluator Classname: Specifies the class name of the trusted ID
evaluator.

Trusted ID Evaluator configuration settings
Use this page to configure trust identity (ID) evaluators.

448 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

To view this administrative console page, click Servers > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Trust ID Evaluators> New.

You must specify the name and value properties for the default trusted ID
evaluator to create the trusted ID list for evaluation.

Trusted ID Evaluator Name: Specifies the unique name used by the application
binding to refer to a trusted identity (ID) evaluator defined in the default binding.

You must sepcify the trusted ID evaluator name in the form, trustedId_n, where
_n is an integer from 0 to n.

Trusted ID Evaluator Class Name: Specifies the class name of the trusted ID
evaluator.

Default com.ibm.wsspi.wssecurity.id.TrustedIDEvaluatorImpl

Login Mappings collection
Use this page to view a list of configurations for validating security tokens within
incoming messages. Login mappings map an authentication method to a Java
Authentication and Authorization Service (JAAS) login configuration to validate
the security token. There are four authentication methods pre-defined in the
WebSphere Application Server: BasicAuth, Signature, IDAssertion, and LTPA

To view this administrative console page, click Server > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Login Mappings.

Click New to create a login mapping.

Click Delete to delete a login mapping.

Click Update runtime to update the Web services security run time with the
default binding information, contained in the ws-security.xml file, that was
previously saved. However, prior to clicking Update runtime, you must save your
changes by clicking Save at the top of the Administrative console. When you click
Save, you are returned to the Administrative console home panel. To update the
run time, return to the Login Mappings collection panel and click Update runtime.
When you click Update runtime, the configuration changes made to the other Web
services also are updated in the Web services security run time.

Authentication Method: Specifies the authentication method used for validating
the security tokens.

The following authentication methods are available:

Basic Auth
Basic authentication includes both a user name and password in the
security token. The information in the token is authenticated by the
receiving server and used to create a credential.

Signature
Used when the authentication method is signature where an X.509
certificate is sent as a security token. For Lightweight Directory Access
Protocol (LDAP) registries, the distinguished name (DN) is mapped to a
credential, which is based on the LDAP certificate filter settings. For Local

Chapter 8. Using Web services 449

OS registries, the first attribute of the certificate, usually the common name
(CN) is mapped directly to a user ID in the registry.

IDAssertion
Identity assertion maps a trusted identity (ID) to a WebSphere credential.
This authentication method only includes a user name in the security
token. An additional token is included in the message for trust purposes.
Once the additional token is trusted, the IDAssertion token user name is
mapped to a credential. Used when the authentication method is
IDAssertion.

LTPA Light-weight Third Party Authentication validates an LTPA token.

JAAS Configuration Name: Specifies the name of the Java Authentication and
Authorization Service (JAAS) configuration.

Callback Handler Factory Class Name: Specifies the name of the factory for the
CallbackHandler class.

Login Mapping configuration settings
Use this page to specify the Java Authentication and Authorization Service (JAAS)
login configuration settings used to validate security tokens within incoming
messages.

To view this administrative console page, click Servers > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Login Mappings > New.

Authentication Method: Specifies the method of authentication.

You can use any string, but the string must match the element in the service-level
configuration. The following three words are reserved and have special meanings:
″BasicAuth″: uses both a user name and a password; ″IDAssertion″: uses only a
user name, but requires that additional trust is established on the receiving server
using a TrustedIDEvaluator; and ″Signature″: uses the distinguished name (DN) of
the signer.

JAAS Configuration Name: Specifies the name of the Java Authentication and
Authorization Service (JAAS) configuration.

Specify your JAAS configurations using the Administrative Console by clicking
Security > JAAS Configuration > Application.

Callback Handler Factory Class Name: Specifies the name of the factory for the
CallbackHandler class.

Use must implement the
com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory class in this
field.

Default com.ibm.wsspi.wssecurity.auth.callback.CallbackHandlerFactory

Token Type URI: Specifies the namespace URI, which denotes the type of the
security token accepted.

If binary security tokens are accepted, the value should denote the ValueType
attribute in element. The ValueType element identifies the type of security token

450 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

and its namespace. If XML tokens are accepted, the value should denote the
top-level element name of the XML token.

If the reserved words are specified previously in the Authentication Method field,
this field is ignored.

Data type Unicode characters except for non-ASCII
characters, but including the number sign (#),
percent sign (%), and the square brackets ([
]).

Token Type Local Name: Specifies the local name of the security token type, for
example, X509v3.

Web Services Security property collection
Use this page to a view a list of additional properties for the configuration.

To view this administrative console page, click Servers > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Key Locators > key_locator_name. Under Additional
Properties, click Properties.

Click New to create a new property.

Click Delete to a delete a property that you specified previously.

Name: Specifies the name of the property.

Value: Specifies the value for the property.

Web Services: Client Security Bindings collection
Use this page to view a list of client-side binding configurations for Web Services
Security. These bindings are used when a Web service is a client to another Web
service.

To view this administrative console page, click Enterprise Applications >
application_name. Under Related Items, click Web Module > URI_file_name > Web
Services: Client Security Bindings.

Port: Specifies the port used to send and receive messages from a server.

Web Service: Specifies the name of the Web service.

Request Sender Binding: Specifies the binding configuration used to send request
messages to the request receiver.

Click Edit to configure the signing information, encryption information, and the
login bindings for the request sender and view a listing of key locators in the key
store.

The request sender binding information specified for the client must match the
request receiver binding information specified for the server.

Response Receiver Binding: Specifies the binding configuration used to receive
response messages from response sender.

Chapter 8. Using Web services 451

Click Edit to configure the signing and encryption information, and to view a list
of trust anchors, intermediate certificates found in the collection certificate store,
and the key locator objects for the response receiver.

The response receiver binding information specified for the client must match the
response sender binding information specified for the server.

Request Sender Binding collection
Use this page to specify the binding configuration to send request messages for
Web Services Security.

To view this administrative console page, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Modules >
URI_file_name > Web Services: Client Security Bindings. Under Request Sender
Binding, click Edit.

Signing Information: Specifies the configuration for the signing parameters.
Signing information is used to sign and validate parts of the message including the
body and time stamp.

These parameters also can be used for X.509 certificate validation when
″Authentication Method″ is ″IDAssertion″ and ″ID Type″ is ″X509Certificate″ in the
server-level configuration. In such cases, you must fill-in the ″Certificate Path″
fields only.

Encryption Information: Specifies the configuration for the encrypting and
decrypting parameters. Encryption information is used for encrypting and
decrypting various parts of a message including the body and user name token.

Key Locators: Specifies a list of key locator objects that retrieve the keys for
digital signature and encryption from a key store file or a repository. The key
locator maps a name or logical name to an alias or maps an authenticated identity
to a key. This is the logical name used to locate a key in a key locator
implementation.

Login Mappings: Specifies a list of configurations for validating tokens within
incoming messages.

Login mappings map the authentication method to the Java Authentication and
Authorization Service (JAAS) configuration.

To configure JAAS, use the administrative console and click Security > JAAS
Configuration.

Login Bindings configuration settings
Use this page to configure the encryption and decryption parameters.

The pluggable token uses the Java Authentication and Authorization Service
(JAAS) CallBackHandler (javax.security.auth.callback.CallBackHandler) interface to
generate the token that is inserted into the message. The following is a listing of
CallBack support implementations:

com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback
This implementation is used for generating binary tokens inserted as
<wsse:BinarySecurityToken/@ValueType> in the message.

452 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

javax.security.auth.callback.NameCallback and
javax.security.auth.callback.NameCallback

This implementation is used for generating user name tokens inserted as
<wsse:UsernameToken> in the message.

com.ibm.wsspi.wssecurity.auth.callback.XMLTokenSenderCallback
This implementation is used to generate XML tokens and is inserted as the
<SAML: Assertion> element in the message.

com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback
This implementation is used to obtain properties specified in the binding
file.

To view this administrative console page, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Module >
URI_file_name > Web Services: Client Security Bindings >. Under Request Sender
Bindings, click Edit > Login Binding.

If the encryption information is not available, select None.

If the encryption information is available, select Dedicated Login Binding and
specify the configuration in the following fields:

Authentication Method: Specifies the unique name for the authentication method.

Callback Handler: Specifies the name of the callback handler.The callback handler
must implement the javax.security.auth.callback.CallbackHandler interface.

Basic Auth User ID: Specifies the user name for basic authentication. Basic Auth
provides the capability to define a user ID and password in the binding file.

Basic Auth Password: Specifies the password for basic authentication.

Token Type URI: Specifies the URI for the token type. This information is
inserted as <wsse:BinarySecurityToken>/ValueType for the XML token <SAML:
Assertion>.

Token Type Local Name: Specifies the local name for the token type. This
information is inserted as <wsse:BinarySecurityToken>/ValueType for the XML
token <SAML: Assertion>.

Signing Information configuration settings
Use this page to configure new signing parameters.

To view this administrative console page, click Enterprise Applications >
application_name. Under Related Items, click Web Modules > URI_file_name> Web
Services: Client Security Bindings . In the Request Sender Binding column, click
Edit > Signing Information.

If the signing information is not available, select None.

If the signing information is available, select Dedicated Signing Information and
specify the configuration in the following fields:

Signature Method: Specifies the algorithm URI of the signature method. This
method contains the actual value of the digital signature encoded using base64.

The following algorithms are supported:

Chapter 8. Using Web services 453

v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

Digest Method: Specifies the algorithm URI of the digest method.

The http://www.w3.org/2000/09/xmldsig#sha1 algorithm is supported.

Canonicalization Method: Specifies the algorithm URI of the canonicalization
method.

The following algorithms are supported:
v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

Signing Key: Specifies the key information that is used for signing. These fields
are ignored in receiver-side configuration.

If the signing key is not available, select None.

Certificate Path: Specifies the settings for the certificate path validation. When
you select Trust Any, this validation is skipped and all the incoming certificates
are trusted. These fields are ignored in sender-side configuration.

If there is not a certificate path, select None.

If there is a certificate path, select Trust Any or select a Trust Anchor and a
Certificate Store.

Trust Anchor

The selections available for Trust Anchor are specified by clicking Servers >
Application Servers > server_name. Under Additional Properties, click Web
Services: Default bindings for Web Services Security > Trust Anchors.

Certificate Store

The selections available for the Collection Store are specified by clicking Servers >
Application Servers server_name. Under Related Items, click Web Services: Default
bindings for Web Services Security > Collection Certificate Store.

Response Receiver Binding collection
Use this page to specify the binding configuration for receiver response messages
for Web Services Security.

To view this administrative console page, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Modules >
URI_file_name > Web Services: Server Security Bindings. Under Response Sender
Binding, click Edit.

Signing Information: Specifies the configuration for the signing parameters.
Signing information is used to sign and validate parts of the message including the
body and time stamp.

454 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

These parameters also can be used for X.509 certificate validation when
″Authentication Method″ is ″IDAssertion″ and ″ID Type″ is ″X509Certificate″ in the
server-level configuration. In such cases, you must fill-in the ″Certificate Path″
fields only.

Encryption Information: Specifies the configuration for the encrypting and
decrypting parameters. Encryption information is used for encrypting and
decrypting various parts of a message including the body and user name token.

Trust Anchors: Specifies a list of key store objects that contain the trusted root
certificates, self-signed or issued by a certificate authority (CA).

The certificate authority authenticates a user and issues a certificate. After the
certificate is issued, the key store objects, which contain these certificates, use the
certificate for certificate path or certificate chain validation of incoming
X.509-formatted security tokens.

Collection Certificate Store: Specifies a list of the untrusted, intermediate
certificate files.

The collection certificate store contains a chain of untrusted, intermediate
certificates.The CertPath API attempts to validate these certificates, which are
based on the trust anchor.

Key Locators: Specifies a list of key locator objects that retrieve the keys for
digital signature and encryption from a key store file or a repository. The key
locator maps a name or logical name to an alias or maps an authenticated identity
to a key. This is the logical name used to locate a key in a key locator
implementation.

Web Services: Server Security Bindings collection
Use this page to view a list of server-side binding configurations for Web Services
Security.

To view this administrative console page, click Enterprise Applications >
<application_name>. Under Related Items, click Web Module > <URI_file_name> >
Web Services: Server Security Bindings.

Port: Specifies the port in which messages are received from the request sender. .

Web Service: Specifies the name of the Web service.

Request Receiver Binding: Specifies the binding configuration used to receive
request messages from the request sender.

Click Edit to configure the signing information and encryption information and
view a listing of trust anchors, intermediate certificates in the collection certificate
store, key locators, trusted ID evaluators, and login mappings.

The request receiver binding information specified for the server must match the
request sender binding information specified for the client.

Response Sender Binding: Specifies the binding configuration used to send
request messages to the response receiver.

Click Edit to configure the signing and encryption information, and to view a list
of key locator objects for the response sender.

Chapter 8. Using Web services 455

The response sender binding information specified for the server must match the
response receiver binding information specified for the client.

Request Receiver Binding collection
Use this page to specify the binding configuration to receive request messages for
Web Services Security.

To view this administrative console page, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Modules >
URI_file_name > Web Services: Server Security Bindings. Under Request Receiver
Binding, click Edit.

Signing Information: Specifies the configuration for the signing parameters.
Signing information is used to sign and validate parts of a message including the
body, time stamp, and user name token.

These parameters also can be used for X.509 certificate validation when
Authentication Method is IDAssertion and ID Type is X509Certificate in the
server-level configuration. In such cases, you must fill-in the ″Certificate Path″
fields only.

Encryption Information: Specifies the configuration for the encrypting and
decrypting parameters. This configuration is used to encrypt and decrypt parts of
the message include the body and user name token.

Trust Anchors: Specifies a list of key store objects that contain the trusted, root
certificates issued by a certificate authority (CA).

The certificate authority authenticates a user and issues a certificate. The CertPath
API uses the certificate to validate the certificate chain of incoming,
X.509-formatted security tokens or trusted, self-signed certificates.

Collection Certificate Store: Specifies a list of the untrusted, intermediate
certificate files.

The collection certificate store contains a chain of untrusted, intermediate
certificates.The CertPath API attempts to validate these certificates, which are
based on the trust anchor.

Key Locators: Specifies a list of key locator objects that retrieve the keys for
digital signature and encryption from a key store file or a repository. The key
locator maps a name or logical name to an alias or maps an authenticated identity
to a key. This is the logical name used to locate a key in a key locator
implementation.

Trusted ID Evaluators: Specifies a list of trusted ID evaluators that determine
whether to trust the identity-asserting authority or message sender.

The trusted ID evaluators are used to authenticate additional identities from one
server to another server. For example, a client sends the identity of user A to server
1 for authentication. Server 1 calls downstream to server 2, asserts the identity of
user A, and includes the user ID and password of server 1. Server 2 attempts to
establish trust with server 1 by authenticating its user ID and password and
checking the trust based on the TrustedIDEvaluator implementation. If the
authentication process and the trust check are successful, server 2 trusts that server
1 authenticated user A and a credential is created for user A on server 2 to invoke
the request.

456 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Login Mappings: Specifies a list of configurations for validating tokens within
incoming messages.

Login mappings map the authentication method to the Java Authentication and
Authorization Service (JAAS) configuration.

To configure JAAS, use the administrative console and click Security > JAAS
Configuration.

Signing Information collection
Use this page to view a list of signing parameters. Signing information is used to
sign and validate parts of a message including the body, time stamp, and user
name token. These parameters also can be used for X.509 certificate validation
when Authentication Method is IDAssertion and ID Type is X509Certificate in the
server-level configuration. In such cases, you must fill-in the ″Certificate Path″
fields only.

To view this administrative console page, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Modules >
URI_file_name > Web Services: Server Security Bindings . In the Request Receiver
Binding column, click Edit > Signing Information.

Click New to create a signing parameter.

Click Delete to delete a signing parameter.

Signature Method: Specifies the unique name of the signature method.

Signing Information configuration settings
Use this page to configure new signing parameters.

The specifications listed on this page for the signature method, digest method, and
canonicalization method are located in the W3C document entitled, ″XMLSignature
Syntax and Specification: W3C Recommendation 12 Feb 2002″.

To view this administrative console page, click Enterprise Applications >
application_name. Under Related Items, click Web Modules > URI_file_name > Web
Services: Server Security Bindings . In the Request Receiver Binding column, click
Edit > Signing Information > New.

Click New to create a signing parameter.

Click Delete to delete a signing parameter.

Signature Method: Specifies the algorithm URI of the signature method. This
method contains the actual value of the digital signature encoded using base64.

The following algorithms are supported:
v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

Digest Method: Specifies the algorithm URI of the digest method.

The http://www.w3.org/2000/09/xmldsig#sha1 algorithm is supported.

Chapter 8. Using Web services 457

Canonicalization Method: Specifies the algorithm URI of the canonicalization
method.

The following algorithms are supported:
v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

Signing Key: Specifies the key information that is used for signing. These fields
are ignored in receiver-side configuration.

If you specify a Key Name and a Key Locator Reference, select None for the
Certificate Path.

Certificate Path: Specifies the settings for the certificate path validation. When
you select Trust Any, this validation is skipped and all the incoming certificates
are trusted. These fields are ignored in sender-side configuration.

If you click Trust Any or select a Trust Anchor and a Certificate Store, select
None for the Signing Key in the previous field.

Trust Anchor

The selections available for Trust Anchor are specified by clicking Servers >
Application Servers > server_name. Under Additional Properties, click Web
Services: Default bindings for Web Services Security > Trust Anchors.

Certificate Store

The selections available for the Collection Store are specified by clicking Servers >
Application Servers > server_name. Under Related Items, click Web Services:
Default bindings for Web Services Security > Collection Certificate Store.

Encryption Information collection
Use this page to specify the configuration for the encrypting and decrypting
parameters. This configuration is used to encrypt and decrypt parts of the message
including the body and user name token.

To view this administrative console page, click Enterprise Applications>
application_name. Under Related Items, Click Web Module. Under Additional
Properties, click Web Services: Server Security Bindings. Under Request Receiver
Binding, click Edit > Encryption Information.

Click New to create an encryption method.

Click Delete to delete an encryption method.

Encryption Information: Specifies the name of the encryption information.

Encryption information configuration settings
Use this page to configure the encryption and decryption parameters. You can use
these parameters to encrypt and decrypt various parts of the message including
the body and user name token.

458 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

To view this administrative console page, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Module >
URI_file_name > Web Services: Server Security Bindings. Under Request Receiver
Binding, click Edit > Encryption Information > New.

Encryption Information Name: Specifies the name for the encryption information.

Key Locator Reference: Specifies the name used to reference the key locator.

To specify key locator references, click Servers > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Key Locators.

Encryption Key Name: Specifies the name of the encryption key, which is
resolved to the actual key by the specified key locator.

Key Encryption Algorithm: Specifies the algorithm URI of the key encryption
method.

The following algorithms are supported:
v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

Data Encryption Algorithm: Specifies the algorithm URI of the data encryption
method.

The http://www.w3.org/2001/04/xmlenc#tripledes-cbc algorithm is supported.

Response Sender Binding collection
Use this page to specify the binding configuration for sender response messages
for Web Services Security.

To view this administrative console page, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Modules >
URI_file_name > Web Services: Server Security Bindings. Under Response Sender
Binding, click Edit.

Signing Information: Specifies the configuration for the signing parameters.

These parameters also can be used for X.509 certificate validation when
″Authentication Method″ is ″IDAssertion″ and ″ID Type″ is ″X509Certificate″ in the
server-level configuration. In such cases, you must fill-in the ″Certificate Path″
fields only.

Encryption Information: Specifies the configuration for the encrypting and
decrypting parameters.

Key Locators: Specifies a list of key locator objects that retrieve the keys for
digital signature and encryption from a key store file or a repository. The key
locator maps a name or logical name to an alias or maps an authenticated identity
to a key. This is the logical name used to locate a key in a key locator
implementation.

Encryption information configuration settings
Use this page to configure the encryption and decryption parameters.

Chapter 8. Using Web services 459

The specifications listed on this page for the signature method, digest method, and
canonicalization method are located in the W3C document entitled, ″XML
Encryption Syntax and Processing: W3C Recommendation 10 Dec 2002″.

To view this administrative console page, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Module >
URI_file_name > Web Services: Server Security Bindings. Under Response Sender
Binding, click Edit > Encryption Information.

If the encryption information is not available, select None.

If the encryption information is available, select Dedicated Encryption Information
and specify the configuration in the following fields:

Encryption Information Name: Specifies the name for the encryption information.

Key Locator Reference: Specifies the name used to reference the key locator.

To specify key locator references, click Servers > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Key Locators.

Encryption Key Name: Specifies the name of the encryption key, which is
resolved to the actual key by the specified key locator.

Key Encryption Algorithm: Specifies the algorithm URI of the key encryption
method.

The following algorithms are supported:
v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

Data Encryption Algorithm: Specifies the algorithm URI of the data encryption
method.

The http://www.w3.org/2001/04/xmlenc#tripledes-cbc algorithm is supported.

View Web Services Server Deployment Descriptor
Use this page view your server deployment descriptor settings.

To view this administrative console page, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Modules >
URI_file_name > View Web Services Server Deployment Descriptor.

WebSphere Application Server, Version 5.02 has two levels of bindings:
application-level and server-level. WebSphere Application Server Network
Deployment, Version 5.02 has three levels of bindings: application-level,
server-level, and cell-level. The information in the following implementation
descriptions indicate how to configure your application-level bindings. To
configure the server-level bindings, which are the defaults, click Servers >
Application Servers > server_name. Under Related Items, click Web Services:
Default bindings for Web Services Security. To configure the cell-level bindings,
click Security > Web Services.
v Request digital signature verification
v Request decryption

460 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v BasicAuth authentication
v Identity (ID) Assertion authentication with the BasicAuth TrustMode
v Identity (ID) Assertion authentication with the Signature TrustMode
v Response signing
v Response encryption

Request digital signature verification

If the integrity constraints (signature required) are defined, verify that you have
configured the signing information in the binding files.

To configure the signing parameters, click Applications > Enterprise Applications
> application_name. Under Related Items, click Web Modules > <URI_file_name>
Web Services: Server Security Bindings . In the Request Receiver Binding column,
click Edit > Signing Information.

To configure the trust anchor, click Servers > Application Servers > server_name.
Under Additional Properties, click Web Services: Default bindings for Web
Services Security > Trust Anchors.

To configure the collection certificate store, click Servers > Application Servers
server_name. Under Related Items, click Web Services: Default bindings for Web
Services Security > Collection Certificate Store.

To configure the key locators, click Servers > Application Servers > server_name.
Under Additional Properties, click Web Services: Default bindings for Web
Services Security > Key Locators.

Request decryption

If the confidentiality constraints (encryption) are specified, verify that the
encryption information is defined.

To configure the encryption information parameters, click Enterprise Applications
> application_name. Under Related Items, Click Web Module. Under Additional
Properties, click Web Services: Server Security Bindings. Under Request Receiver
Binding, click Edit > Encryption Information.

To configure the key locators, click click Servers > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Key Locators.

BasicAuth authentication

If BasicAuth is configured as the required security token, specify the
CallbackHandler in the binding file to collect the basic authentication data. The
following is a listing of CallBack support implementations:

com.ibm.wsspi.wssecurity.auth.callback.GuiPromptCallbackHandler
The implementation prompts for BasicAuth information (user name and
password) in a GUI panel.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler
This implementation reads the BasicAuth information from the binding
file.

Chapter 8. Using Web services 461

com.ibm.wsspi.wssecurity.auth.callback.StdPromptCallbackHandler
This implementation prompts for a user name and password using
standard in (stdin).

To configure the login mapping information, click Server > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Login Mappings.

Identity (ID) Assertion authentication with the BasicAuth TrustMode

Configure a login binding in the bindings file with a
com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler
implementation. Specify a BasicAuth user ID and password that a
TrustedIDEvaluator on a downstream server will trust.

To configure the login mapping information, click Server > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Login Mappings.

Identity (ID) Assertion authentication with the Signature TrustMode

Configure the signing information in the bindings file with a signing key pointing
to a key locator. The key locator contains the X.509 certificate that will be trusted
by the downstream server.

To configure the login mapping information, click Server > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Login Mappings.

WSLogin is the name of the login configuration used by the Java Authentication and
Authorization Service (JAAS). To configure JAAS, click Security > JAAS
Configuration > Application Logins.

The value of the <TrustedIDEvaluatorRef> tag in the binding must match the value
of the <TrustedIDEvaluator> name.

To configure the trusted ID evaluators, click Servers > Application Servers >
server_name. Under Additional Services, click Web Services: Default bindings for
Web Services Security > Trusted ID Evaluators.

Response signing

If the integrity constraints (digital signature) are defined, verify that you have the
signing information configured in the binding files.

To specify the signing information, click Applications > Enterprise Applications >
application_name. Under Related Items, click Web Modules > URI_file_name Web
Services: Server Security Bindings . In the Request Receiver Binding column, click
Edit > Signing Information.

To configure the key locators, click click Servers > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Key Locators.

Response encryption

462 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

If the confidentiality constraints (encryption) are specified, verify that the
encryption information is defined.

To specify the encryption information, click Enterprise Applications>
application_name. Under Related Items, Click Web Module. Under Additional
Properties, click Web Services: Server Security Bindings. Under Request Receiver
Binding, click Edit > Encryption Information.

To configure the key locators, click Servers > Application Servers > server_name.
Under Additional Properties, click Web Services: Default bindings for Web
Services Security > Key Locators.

View Web Services Client Deployment Descriptor
Use this page view your client deployment descriptor.

To view this administrative console page, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Modules >
URI_file_name > View Web Services Client Deployment Descriptor.

WebSphere Application Server, Version 5.02 has two levels of bindings:
application-level and server-level. WebSphere Application Server Network
Deployment, Version 5.02 has three levels of bindings: application-level,
server-level, and cell-level. The information in the following implementation
descriptions indicate how to configure your application-level bindings. To
configure the server-level bindings, which are the defaults, click Servers >
Application Servers > server_name. Under Related Items, click Web Services:
Default bindings for Web Services Security. To configure the cell-level bindings,
click Security > Web Services.

Note: If the Web server is acting as a client, the default bindings are used.

If you are using any of the following configurations, verify that the deployment
descriptor is configured properly:
v Request signing
v Request encryption
v BasicAuth authentication
v Identity (ID) Assertion authentication with the BasicAuth TrustMode
v Identity (ID) Assertion authentication with the Signature TrustMode
v Response digital signature verification
v Response decryption

Request signing

If the Integrity constraints (digital signature) are specified, verify that you have
configured the signing information in the binding files.

To configure the signing parameters, click Applications > Enterprise Applications
> application_name. Under Related Items, click Web Modules > URI_file_name Web
Services: Client Security Bindings . In the Response Receiver Binding column,
click Edit > Signing Information > New.

To configure the key locators, click Servers > Application Servers > server_name.
Under Additional Properties, click Web Services: Default bindings for Web
Services Security > Key Locators.

Chapter 8. Using Web services 463

Request encryption

If the confidentiality constraints (encryption) are specified, verify that you have
configured the encryption information in the binding files.

To configure the encryption parameters, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Modules >
URI_file_name Web Services: Client Security Bindings . In the Response Receiver
Binding column, click Edit > Encryption Information > New.

To configure the key locators, click click Servers > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Key Locators.

BasicAuth authentication

If BasicAuth is configured as the required security token, specify the
CallbackHandler in the binding file to collect the basic authentication data. The
following is a listing of CallBack support implementations:

com.ibm.wsspi.wssecurity.auth.callback.GuiPromptCallbackHandler
The implementation prompts for BasicAuth information (user name and
password) in a GUI panel.

com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler
This implementation reads the BasicAuth infromation from the binding file.

com.ibm.wsspi.wssecurity.auth.callback.StdPromptCallbackHandler
This implementation prompts for a user name and password using
standard in (stdin).

To configure the login binding information, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Module >
URI_file_name Web Services: Client Security Bindings. Under Request Sender
Bindings, click Edit > Login Binding.

Identity (ID) Assertion authentication with BasicAuth TrustMode

Configure a login binding in the bindings file with a
com.ibm.wsspi.wssecurity.auth.callback.NonPromptCallbackHandler
implementation. Specify a BasicAuth user ID and password that a
TrustedIDEvaluator on a downstream server will trust.

To configure the login binding information, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Module >
URI_file_name Web Services: Client Security Bindings. Under Request Sender
Bindings, click Edit > Login Binding.

Identity (ID) Assertion authentication with the Signature TrustMode

Configure the signing information in the bindings file with a signing key pointing
to a key locator. The key locator contains the X.509 certificate that will be trusted
by the downstream server.

To configure ID assertion, click Servers > Application Servers > server_name.
Under Additional Properties, click Web Services: Default bindings for Web
Services Security > Login Mappings > IDAssertion.

464 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

To configure the login binding information, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Module >
URI_file_name Web Services: Client Security Bindings. Under Request Sender
Bindings, click Edit > Login Binding.

Response digital signature verification

If the integrity constraints (signature required) are defined, verify that you have
configured the signing information in the binding files.

To configure the signing parameters, click Applications > Enterprise Applications
> application_name. Under Related Items, click Web Modules > URI_file_name> Web
Services: Client Security Bindings . In the Response Receiver Binding column,
click Edit > Signing Information > New.

To configure the trust anchors, click Servers > Application Servers > server_name.
Under Additional Properties, click Web Services: Default bindings for Web
Services Security > Trust Anchors > New.

To configure the collection certificate store, click click Servers > Application
Servers > server_name. Under Additional Properties, click Web Services: Default
bindings for Web Services Security > Collection Certificate Store > New.

Response decryption

If the confidentiality constraints (encryption) are specified, verify that the
encryption information is defined.

To configure the encryption information, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Modules >
<URI_file_name> Web Services: Client Security Bindings . In the Response
Receiver Binding column, click Edit > Encryption Information > New.

To configure the key locators, click Servers > Application Servers > server_name.
Under Additional Properties, click Web Services: Default bindings for Web
Services Security > Key Locators.

Web Services: Server Security Bindings collection
Use this page to view a list of server-side binding configurations for Web Services
Security.

To view this administrative console page, click Enterprise Applications >
<application_name>. Under Related Items, click Web Module > <URI_file_name> >
Web Services: Server Security Bindings.

Port
Specifies the port in which messages are received from the request sender. .

Web Service
Specifies the name of the Web service.

Request Receiver Binding
Specifies the binding configuration used to receive request messages from the
request sender.

Chapter 8. Using Web services 465

Click Edit to configure the signing information and encryption information and
view a listing of trust anchors, intermediate certificates in the collection certificate
store, key locators, trusted ID evaluators, and login mappings.

The request receiver binding information specified for the server must match the
request sender binding information specified for the client.

Response Sender Binding
Specifies the binding configuration used to send request messages to the response
receiver.

Click Edit to configure the signing and encryption information, and to view a list
of key locator objects for the response sender.

The response sender binding information specified for the server must match the
response receiver binding information specified for the client.

Request Receiver Binding collection
Use this page to specify the binding configuration to receive request messages for
Web Services Security.

To view this administrative console page, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Modules >
URI_file_name > Web Services: Server Security Bindings. Under Request Receiver
Binding, click Edit.

Signing Information: Specifies the configuration for the signing parameters.
Signing information is used to sign and validate parts of a message including the
body, time stamp, and user name token.

These parameters also can be used for X.509 certificate validation when
Authentication Method is IDAssertion and ID Type is X509Certificate in the
server-level configuration. In such cases, you must fill-in the ″Certificate Path″
fields only.

Encryption Information: Specifies the configuration for the encrypting and
decrypting parameters. This configuration is used to encrypt and decrypt parts of
the message include the body and user name token.

Trust Anchors: Specifies a list of key store objects that contain the trusted, root
certificates issued by a certificate authority (CA).

The certificate authority authenticates a user and issues a certificate. The CertPath
API uses the certificate to validate the certificate chain of incoming,
X.509-formatted security tokens or trusted, self-signed certificates.

Collection Certificate Store: Specifies a list of the untrusted, intermediate
certificate files.

The collection certificate store contains a chain of untrusted, intermediate
certificates.The CertPath API attempts to validate these certificates, which are
based on the trust anchor.

Key Locators: Specifies a list of key locator objects that retrieve the keys for
digital signature and encryption from a key store file or a repository. The key

466 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

locator maps a name or logical name to an alias or maps an authenticated identity
to a key. This is the logical name used to locate a key in a key locator
implementation.

Trusted ID Evaluators: Specifies a list of trusted ID evaluators that determine
whether to trust the identity-asserting authority or message sender.

The trusted ID evaluators are used to authenticate additional identities from one
server to another server. For example, a client sends the identity of user A to server
1 for authentication. Server 1 calls downstream to server 2, asserts the identity of
user A, and includes the user ID and password of server 1. Server 2 attempts to
establish trust with server 1 by authenticating its user ID and password and
checking the trust based on the TrustedIDEvaluator implementation. If the
authentication process and the trust check are successful, server 2 trusts that server
1 authenticated user A and a credential is created for user A on server 2 to invoke
the request.

Login Mappings: Specifies a list of configurations for validating tokens within
incoming messages.

Login mappings map the authentication method to the Java Authentication and
Authorization Service (JAAS) configuration.

To configure JAAS, use the administrative console and click Security > JAAS
Configuration.

Signing Information collection
Use this page to view a list of signing parameters. Signing information is used to
sign and validate parts of a message including the body, time stamp, and user
name token. These parameters also can be used for X.509 certificate validation
when Authentication Method is IDAssertion and ID Type is X509Certificate in the
server-level configuration. In such cases, you must fill-in the ″Certificate Path″
fields only.

To view this administrative console page, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Modules >
URI_file_name > Web Services: Server Security Bindings . In the Request Receiver
Binding column, click Edit > Signing Information.

Click New to create a signing parameter.

Click Delete to delete a signing parameter.

Signature Method: Specifies the unique name of the signature method.

Signing Information configuration settings
Use this page to configure new signing parameters.

The specifications listed on this page for the signature method, digest method, and
canonicalization method are located in the W3C document entitled, ″XMLSignature
Syntax and Specification: W3C Recommendation 12 Feb 2002″.

To view this administrative console page, click Enterprise Applications >
application_name. Under Related Items, click Web Modules > URI_file_name > Web
Services: Server Security Bindings . In the Request Receiver Binding column, click
Edit > Signing Information > New.

Chapter 8. Using Web services 467

Click New to create a signing parameter.

Click Delete to delete a signing parameter.

Signature Method: Specifies the algorithm URI of the signature method. This
method contains the actual value of the digital signature encoded using base64.

The following algorithms are supported:
v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

Digest Method: Specifies the algorithm URI of the digest method.

The http://www.w3.org/2000/09/xmldsig#sha1 algorithm is supported.

Canonicalization Method: Specifies the algorithm URI of the canonicalization
method.

The following algorithms are supported:
v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

Signing Key: Specifies the key information that is used for signing. These fields
are ignored in receiver-side configuration.

If you specify a Key Name and a Key Locator Reference, select None for the
Certificate Path.

Certificate Path: Specifies the settings for the certificate path validation. When
you select Trust Any, this validation is skipped and all the incoming certificates
are trusted. These fields are ignored in sender-side configuration.

If you click Trust Any or select a Trust Anchor and a Certificate Store, select
None for the Signing Key in the previous field.

Trust Anchor

The selections available for Trust Anchor are specified by clicking Servers >
Application Servers > server_name. Under Additional Properties, click Web
Services: Default bindings for Web Services Security > Trust Anchors.

Certificate Store

The selections available for the Collection Store are specified by clicking Servers >
Application Servers > server_name. Under Related Items, click Web Services:
Default bindings for Web Services Security > Collection Certificate Store.

Encryption Information collection
Use this page to specify the configuration for the encrypting and decrypting
parameters. This configuration is used to encrypt and decrypt parts of the message
including the body and user name token.

468 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

To view this administrative console page, click Enterprise Applications>
application_name. Under Related Items, Click Web Module. Under Additional
Properties, click Web Services: Server Security Bindings. Under Request Receiver
Binding, click Edit > Encryption Information.

Click New to create an encryption method.

Click Delete to delete an encryption method.

Encryption Information: Specifies the name of the encryption information.

Encryption information configuration settings
Use this page to configure the encryption and decryption parameters. You can use
these parameters to encrypt and decrypt various parts of the message including
the body and user name token.

To view this administrative console page, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Module >
URI_file_name > Web Services: Server Security Bindings. Under Request Receiver
Binding, click Edit > Encryption Information > New.

Encryption Information Name: Specifies the name for the encryption information.

Key Locator Reference: Specifies the name used to reference the key locator.

To specify key locator references, click Servers > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Key Locators.

Encryption Key Name: Specifies the name of the encryption key, which is
resolved to the actual key by the specified key locator.

Key Encryption Algorithm: Specifies the algorithm URI of the key encryption
method.

The following algorithms are supported:
v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

Data Encryption Algorithm: Specifies the algorithm URI of the data encryption
method.

The http://www.w3.org/2001/04/xmlenc#tripledes-cbc algorithm is supported.

Response Sender Binding collection
Use this page to specify the binding configuration for sender response messages
for Web Services Security.

To view this administrative console page, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Modules >
URI_file_name > Web Services: Server Security Bindings. Under Response Sender
Binding, click Edit.

Signing Information: Specifies the configuration for the signing parameters.

Chapter 8. Using Web services 469

These parameters also can be used for X.509 certificate validation when
″Authentication Method″ is ″IDAssertion″ and ″ID Type″ is ″X509Certificate″ in the
server-level configuration. In such cases, you must fill-in the ″Certificate Path″
fields only.

Encryption Information: Specifies the configuration for the encrypting and
decrypting parameters.

Key Locators: Specifies a list of key locator objects that retrieve the keys for
digital signature and encryption from a key store file or a repository. The key
locator maps a name or logical name to an alias or maps an authenticated identity
to a key. This is the logical name used to locate a key in a key locator
implementation.

Encryption information configuration settings
Use this page to configure the encryption and decryption parameters.

The specifications listed on this page for the signature method, digest method, and
canonicalization method are located in the W3C document entitled, ″XML
Encryption Syntax and Processing: W3C Recommendation 10 Dec 2002″.

To view this administrative console page, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Module >
URI_file_name > Web Services: Server Security Bindings. Under Response Sender
Binding, click Edit > Encryption Information.

If the encryption information is not available, select None.

If the encryption information is available, select Dedicated Encryption Information
and specify the configuration in the following fields:

Encryption Information Name: Specifies the name for the encryption information.

Key Locator Reference: Specifies the name used to reference the key locator.

To specify key locator references, click Servers > Application Servers >
server_name. Under Additional Properties, click Web Services: Default bindings for
Web Services Security > Key Locators.

Encryption Key Name: Specifies the name of the encryption key, which is
resolved to the actual key by the specified key locator.

Key Encryption Algorithm: Specifies the algorithm URI of the key encryption
method.

The following algorithms are supported:
v http://www.w3.org/2001/04/xmlenc#rsa-1_5

v http://www.w3.org/2001/04/xmlenc#kw-tripledes

Data Encryption Algorithm: Specifies the algorithm URI of the data encryption
method.

The http://www.w3.org/2001/04/xmlenc#tripledes-cbc algorithm is supported.

470 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Web Services: Client Security Bindings collection
Use this page to view a list of client-side binding configurations for Web Services
Security. These bindings are used when a Web service is a client to another Web
service.

To view this administrative console page, click Enterprise Applications >
application_name. Under Related Items, click Web Module > URI_file_name > Web
Services: Client Security Bindings.

Port
Specifies the port used to send and receive messages from a server.

Web Service
Specifies the name of the Web service.

Request Sender Binding
Specifies the binding configuration used to send request messages to the request
receiver.

Click Edit to configure the signing information, encryption information, and the
login bindings for the request sender and view a listing of key locators in the key
store.

The request sender binding information specified for the client must match the
request receiver binding information specified for the server.

Response Receiver Binding
Specifies the binding configuration used to receive response messages from
response sender.

Click Edit to configure the signing and encryption information, and to view a list
of trust anchors, intermediate certificates found in the collection certificate store,
and the key locator objects for the response receiver.

The response receiver binding information specified for the client must match the
response sender binding information specified for the server.

Request Sender Binding collection
Use this page to specify the binding configuration to send request messages for
Web Services Security.

To view this administrative console page, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Modules >
URI_file_name > Web Services: Client Security Bindings. Under Request Sender
Binding, click Edit.

Signing Information: Specifies the configuration for the signing parameters.
Signing information is used to sign and validate parts of the message including the
body and time stamp.

These parameters also can be used for X.509 certificate validation when
″Authentication Method″ is ″IDAssertion″ and ″ID Type″ is ″X509Certificate″ in the
server-level configuration. In such cases, you must fill-in the ″Certificate Path″
fields only.

Chapter 8. Using Web services 471

Encryption Information: Specifies the configuration for the encrypting and
decrypting parameters. Encryption information is used for encrypting and
decrypting various parts of a message including the body and user name token.

Key Locators: Specifies a list of key locator objects that retrieve the keys for
digital signature and encryption from a key store file or a repository. The key
locator maps a name or logical name to an alias or maps an authenticated identity
to a key. This is the logical name used to locate a key in a key locator
implementation.

Login Mappings: Specifies a list of configurations for validating tokens within
incoming messages.

Login mappings map the authentication method to the Java Authentication and
Authorization Service (JAAS) configuration.

To configure JAAS, use the administrative console and click Security > JAAS
Configuration.

Login Bindings configuration settings
Use this page to configure the encryption and decryption parameters.

The pluggable token uses the Java Authentication and Authorization Service
(JAAS) CallBackHandler (javax.security.auth.callback.CallBackHandler) interface to
generate the token that is inserted into the message. The following is a listing of
CallBack support implementations:

com.ibm.wsspi.wssecurity.auth.callback.BinaryTokenCallback
This implementation is used for generating binary tokens inserted as
<wsse:BinarySecurityToken/@ValueType> in the message.

javax.security.auth.callback.NameCallback and
javax.security.auth.callback.NameCallback

This implementation is used for generating user name tokens inserted as
<wsse:UsernameToken> in the message.

com.ibm.wsspi.wssecurity.auth.callback.XMLTokenSenderCallback
This implementation is used to generate XML tokens and is inserted as the
<SAML: Assertion> element in the message.

com.ibm.wsspi.wssecurity.auth.callback.PropertyCallback
This implementation is used to obtain properties specified in the binding
file.

To view this administrative console page, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Module >
URI_file_name > Web Services: Client Security Bindings >. Under Request Sender
Bindings, click Edit > Login Binding.

If the encryption information is not available, select None.

If the encryption information is available, select Dedicated Login Binding and
specify the configuration in the following fields:

Authentication Method: Specifies the unique name for the authentication method.

Callback Handler: Specifies the name of the callback handler.The callback handler
must implement the javax.security.auth.callback.CallbackHandler interface.

472 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Basic Auth User ID: Specifies the user name for basic authentication. Basic Auth
provides the capability to define a user ID and password in the binding file.

Basic Auth Password: Specifies the password for basic authentication.

Token Type URI: Specifies the URI for the token type. This information is
inserted as <wsse:BinarySecurityToken>/ValueType for the XML token <SAML:
Assertion>.

Token Type Local Name: Specifies the local name for the token type. This
information is inserted as <wsse:BinarySecurityToken>/ValueType for the XML
token <SAML: Assertion>.

Signing Information configuration settings
Use this page to configure new signing parameters.

To view this administrative console page, click Enterprise Applications >
application_name. Under Related Items, click Web Modules > URI_file_name> Web
Services: Client Security Bindings . In the Request Sender Binding column, click
Edit > Signing Information.

If the signing information is not available, select None.

If the signing information is available, select Dedicated Signing Information and
specify the configuration in the following fields:

Signature Method: Specifies the algorithm URI of the signature method. This
method contains the actual value of the digital signature encoded using base64.

The following algorithms are supported:
v http://www.w3.org/2000/09/xmldsig#rsa-sha1

v http://www.w3.org/2000/09/xmldsig#dsa-sha1

Digest Method: Specifies the algorithm URI of the digest method.

The http://www.w3.org/2000/09/xmldsig#sha1 algorithm is supported.

Canonicalization Method: Specifies the algorithm URI of the canonicalization
method.

The following algorithms are supported:
v http://www.w3.org/2001/10/xml-exc-c14n#

v http://www.w3.org/2001/10/xml-exc-c14n#WithComments

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315

v http://www.w3.org/TR/2001/REC-xml-c14n-20010315#WithComments

Signing Key: Specifies the key information that is used for signing. These fields
are ignored in receiver-side configuration.

If the signing key is not available, select None.

Certificate Path: Specifies the settings for the certificate path validation. When
you select Trust Any, this validation is skipped and all the incoming certificates
are trusted. These fields are ignored in sender-side configuration.

Chapter 8. Using Web services 473

If there is not a certificate path, select None.

If there is a certificate path, select Trust Any or select a Trust Anchor and a
Certificate Store.

Trust Anchor

The selections available for Trust Anchor are specified by clicking Servers >
Application Servers > server_name. Under Additional Properties, click Web
Services: Default bindings for Web Services Security > Trust Anchors.

Certificate Store

The selections available for the Collection Store are specified by clicking Servers >
Application Servers server_name. Under Related Items, click Web Services: Default
bindings for Web Services Security > Collection Certificate Store.

Response Receiver Binding collection
Use this page to specify the binding configuration for receiver response messages
for Web Services Security.

To view this administrative console page, click Applications > Enterprise
Applications > application_name. Under Related Items, click Web Modules >
URI_file_name > Web Services: Server Security Bindings. Under Response Sender
Binding, click Edit.

Signing Information: Specifies the configuration for the signing parameters.
Signing information is used to sign and validate parts of the message including the
body and time stamp.

These parameters also can be used for X.509 certificate validation when
″Authentication Method″ is ″IDAssertion″ and ″ID Type″ is ″X509Certificate″ in the
server-level configuration. In such cases, you must fill-in the ″Certificate Path″
fields only.

Encryption Information: Specifies the configuration for the encrypting and
decrypting parameters. Encryption information is used for encrypting and
decrypting various parts of a message including the body and user name token.

Trust Anchors: Specifies a list of key store objects that contain the trusted root
certificates, self-signed or issued by a certificate authority (CA).

The certificate authority authenticates a user and issues a certificate. After the
certificate is issued, the key store objects, which contain these certificates, use the
certificate for certificate path or certificate chain validation of incoming
X.509-formatted security tokens.

Collection Certificate Store: Specifies a list of the untrusted, intermediate
certificate files.

The collection certificate store contains a chain of untrusted, intermediate
certificates.The CertPath API attempts to validate these certificates, which are
based on the trust anchor.

Key Locators: Specifies a list of key locator objects that retrieve the keys for
digital signature and encryption from a key store file or a repository. The key

474 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

locator maps a name or logical name to an alias or maps an authenticated identity
to a key. This is the logical name used to locate a key in a key locator
implementation.

Tuning Web services applications
Before you begin

Since a Web service application is a regular J2EE application, the performance
considerations are primarily the same as they are for any J2EE application. See
Tuning performance for more information about analyzing and tuning J2EE
applications.

You can use the Performance Monitoring Infrastructure (PMI) to measure the time
required to process Web services requests. To monitor Web services application
performance:

Steps for this task
1. Enable PMI services in application server through the administrative console.

Select the Web Service module, named webServicesModule, in step 7.
2. Monitor performance with Tivoli Performance Viewer

In the left-hand pane of the performance view, expand the host and server and
select Web Services. Run the Web services client application.

Results

Measurements are available for the following items:
v Number of Web services loaded by the application server
v Number of requests received
v Number of requests dispatched to an implementation bean
v Number of requests dispatched with successful replies
v Average time in milliseconds between receiving the request and returning the

reply
v Average time in milliseconds between receiving the request and dispatching it to

the bean
v Average time in milliseconds between dispatch and receipt of reply from the

bean
v Average time in milliseconds between receipt of reply from bean to return of

result to client
v Average size of request and reply
v Average size of request
v Average size of reply

Troubleshooting Web services
To work through problems with Web services, you can:

Steps for this task
1. Trace Web services messages.

Chapter 8. Using Web services 475

Tracing Web services messages
Before you begin

You can trace the XML messages exchanged between a client and the server using
the TCPMon command tool. The TCPMon command redirects messages from one
port to another and records them. The WebSphere Application Server listens on
port 9080. To trace messages sent to the application server, the TCPMon command
is configured to listen on port 9088 and redirect them to 9080. The client is
redirected to use port 9088 to access the Web service. You should confirm that the
server providing the Web service is running. The following task is performed on
the machine providing the Web service.

To trace error messages in Web services:

Steps for this task
1. Set the CLASSPATH to include the install_root/lib/webservices.jar file.
2. Run the java com.ibm.ws.webservices.engine.utils.tcpmon command.

A window labeled TCPMonitor displays.
3. Configure the TCPMonitor to listen on port 9088 and forward messages to port

9080.
a. In the Listen Port # field, enter 9088.
b. Click Listener

c. In the TargetHostname field, enter localhost.
d. In the Target Port # field, enter 9080.
e. Click Add.
f. Click on the Port 9088 tab that displays on the top of the page.

Results

The messages exchanged between the client and server appear in the TCPMonitor
Request and Response pane.

What to do next

Save the message data and analyze it.

Frequently asked questions about Web services for J2EE
v What IBM development tools work with Web services for J2EE?
v Is Web services for J2EE part of the J2EE specification?
v What is the relationship between Web services for J2EE and the Web Service

Invocation Framework (WSIF)?
v What is the relationship between Apache Simple Object Access Protocol (SOAP)

2.3 and Web services for J2EE?
v What is the relationship between the Apache Axis component of the Web

services technology preview available with WebSphere Application Server 5.0
and Web services for J2EE?

v What standards does the Web services for J2EE component of WebSphere
Application Server 5.0. support?

v Does Web services for J2EE interoperate with other SOAP implementations, like
.NET?

476 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v Why can I not use a JavaBean to implement a SOAP Java Messaging Service
(JMS) service?

v Does the SOAP JMS support interoperate with other vendors?
v How does two-way messaging with SOAP JMS work? Can it support multiple

clients making simultaneous requests?
v When running the WSDLJava command tool on a Web Services Description

Language (WSDL) document that contains a JMS-style endpoint URL, for
example, jms:/..., the following error displays: java.io.IOException: WSWS3099E:
Error: Emitter failer. Invalid endpoint address in port <x> in service <y>:
<jms-url-string>. How can the problem be resolved?

v The malformed URL exception displays when running a client that uses a JMS
endpoint URL. How can the problem be resolved?

What IBM development tools work with Web services for J2EE?

WebSphere Studio Application Developer Version 5.1 and the Assembly Toolkit
Version 5.1 both support the use of Web services for J2EE. The Application
Assembly Tool, included with Websphere Application Server and Websphere
Studio Application Developer Versions 5.1 and earlier, do not support Web services
for J2EE.

Is Web services for J2EE part of the J2EE specification?

For WebSphere Application Server 5.0.2, the Web services for J2EE Version 1.0
specification is an addition to J2EE 1.3. J2EE 1.4 requires support for Web services
for J2EE Version 1.1. There are minor differences between the J2EE 1.3 Version
(JSR-109 Version 1.0) and the J2EE 1.4 Version (JSR-109 Version 1.1).

What is the relationship between Web services for J2EE and the Web Service
Invocation Framework (WSIF)?

Web services for J2EE and WSIF represent two different programming models for
accessing Web services. Web services for J2EE is standard, Java-centric, and more
statically bound to WSDL documents due to the use of generated stubs. WSIF
directly models Web Services Description Language (WSDL) documents. WSIF is
more suitable when dynamically interpreting WSDL. Future versions of WebSphere
Application server will leverage both technologies to achieve dynamic, high
performing standards-based Web services implementations.

What is the relationship between Apache Simple Object Access Protocol (SOAP)
2.3 and Web services for J2EE?

Apache SOAP shipped with WebSphere Application Server Versions 4.0 and 5.0. It
continues to co-exist with Web services for J2EE. Apache SOAP is a proprietary
API and applications written for it are not portable to other SOAP
implementations. Applications written for Web services for J2EE should be portable
to any vendor’s implementation that supports Web services for J2EE.

What is the relationship between the Apache Axis component of the Web
services technology preview available with WebSphere Application Server 5.0
and Web services for J2EE?

The Web services technology preview leveraged the work that IBM contributed to
the Apache Axis code base. The Web services for J2EE support included with
WebSphere Application Server 5.0.2 is derived from Apache Axis, but has diverged

Chapter 8. Using Web services 477

and contains many IBM-specific features to enhance performance, scalability,
reliability, interoperability, and integration with the WebSphere Application Server.

What standards does the Web services for J2EE component of WebSphere
Application Server 5.0. support?

The following standards are supported by the Web services for J2EE component of
WebSphere Application Server 5.0:
v SOAP Version 1.1
v Web Services Description Language (WSDL) Version 1.1
v Web services for J2EE (JSR-109) Version 1.0
v Java API for XML-Based RPC (JAX-RPC) Version 1.0
v SOAP with attachments API for Java (SAAJ) Version 1.1

Does Web services for J2EE interoperate with other SOAP implementations, like
.NET?

Web services for J2EE intends to conform to the WS-I Basic Profile 1.0, and should
interoperate with any other vendor conforming to this specification. At the time of
the writing, the Basic Profile 1.0 had not been completed, so it is possible that
minor incompatibilities exist.

Why can I not use a JavaBean to implement a SOAP Java Messaging Service
(JMS) service?

The SOAP JMS support uses Message Driven Beans (MDB) to implement the JMS
endpoint. MDBs can only be used in the EJB container and delegate to an
enterprise bean. If you want to use a Java bean instead of an enterprise bean to
implement the service endpoint, you must create a ″facade″ enterprise bean that
delegates to the Java bean.

Does the SOAP JMS support interoperate with other vendors?

No. There is currently no specification for SOAP JMS, therefore each vendor
chooses its own implementation technique.

How does two-way messaging with SOAP JMS work? Can it support multiple
clients making simultaneous requests?

Before a client issues a two-way request, it creates a temporary JMS queue to
receive the response. This temporary queue is specified as the replyTo destination
in the outgoing JMS request message. After the server processes the request, it
directs the response to the replyTo destination specified in the request message.
The client deletes the temporary queue after the response has been received. The
server is able to handle simultaneous requests from multiple clients since each
incoming request message contains the destination to which the reply should be
sent.

When running the WSDLJava command tool on a Web Services Description
Language (WSDL) document that contains a JMS-style endpoint URL, for
example, jms:/..., the following error displays: java.io.IOException: WSWS3099E:
Error: Emitter failer. Invalid endpoint address in port <x> in service <y>:
<jms-url-string>. How can the problem be resolved?

478 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

This error most likely occurred because the urlprotocols.jar file was not in the
CLASSPATH when the WSDL2Java command ran. The urlprotocols.jar file
contains the custom protocol handler for the JMS protocol, and it must be in the
CLASSPATH when the WSDL2Java command runs, if your WSDL document
contains a JMS URL. To resolve this problem, edit the
<WAS_HOME>/bin/setupCmdLine.bat (Windows) or <WAS_HOME>/bin/setupCmdLine.sh
(UNIX) file, and locate the line which sets the WAS_CLASSPATH environment
variable. Add %WAS_HOME%/lib/urlprotocols.jar (Windows) or
$WAS_HOME/lib/urlprotocols.jar (UNIX) to the end of that line. Make sure to use
the proper delimiter character for your platform, a ″;″ (semi-colon) for Windows
platforms and a ″:″ (colon) for UNIX platforms.

The malformed URL exception displays when running a client that uses a JMS
endpoint URL. How can the problem be resolved?

If you are running a managed client with the launchClient command, edit the
intstall_root\bin\setupCmdLine.bat file on Windows platforms or
install_root/bin/setupCmdLine.sh file on UNIX platforms, so that the
WAS_CLASSPATH environment variable contains the
$WAS_HOME/lib/urlprotocols.jar file for UNIX platforms or
%WAS_HOME%\lib\urlprotocols.jar on Windows platforms. See the answer to the
question ″When running the WSDLJava command tool on a Web Services
Description Language (WSDL) document that contains a JMS-style endpoint URL...
″ for more details. If you are running an unmanaged client, make sure that the
$WAS_HOME/lib/urlprotocols.jar file on UNIX platforms, or the
%WAS_HOME%\lib\urlprotocols.jar file on Windows platforms, is in the
CLASSPATH when you run your client.

Web services: Resources for learning
Use the following links to find relevant supplemental information about getting
started with Web services. The information resides on IBM and non-IBM Internet
sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas. The following sections are
covered in this reference:

View links to additional information about:
v Web services overview: Purpose, planning and designing to use Web services
v Developing Web services Java API for XML-based remote procedure call

(JAX-RPC) and the J2EE programming model
v Security
v Administration
v Samples
v Other references

Web services overview: Purpose, planning and designing to use Web services

v IBM Web Services architecture debuts
(http://www.ibm.com/developerworks/webservices/library/w-
int.html?dwzone=webservices)

Chapter 8. Using Web services 479

http://www.ibm.com/developerworks/webservices/library/w-int.html?dwzone=webservices
http://www.ibm.com/developerworks/webservices/library/w-int.html?dwzone=webservices

Introducing IBM Web services, a distributed software architecture of service
components. This brief overview and in-depth interview on IBM
DeveloperWorks cover the fundamental concepts of Web services architecture
and what they mean for developers. The interview with IBM professional Rod
Smith explores which types of developers Web services targets, how Web
services reduces development time, what developers could be doing with Web
services now, and takes a glance at the economics of dynamically discoverable
services.

v Web services (r)evolution, Part 1 (http://www-
106.ibm.com/developerworks/library/ws-peer1.html)
This article focuses on the benefits and challenges of building Web services
applications. Web services might be an evolutionary step in designing
distributed applications, however, they are not without their problems. Outlined
are the difficulties developers face in creating a truly workable distributed
system of Web services. This article also outlines author Grahm Glass’ plan for
building peer-to-peer Web applications.

Developing Web services

v JSR 109: Implementing Enterprise Web Services
(http://jcp.org/en/jsr/detail?id=109)
This document describes the J2EE specification model.

v Java API for XML-based RPC (JAX-RPC): Core Web Services API in the
Java platform (http://java.sun.com/xml/jaxrpc/)
This document reviews the JAX-RPC which enables Java technology developers
to develop SOAP based interoperable and portable Web services.

v SOAP (http://www.w3.org/TR/SOAP)
This article is a detailed overview of SOAP, which includes programming
specifications.

v Web Services Description Language (http://www.w3.org/TR/wsdl)
This article is a detailed overview of Web Services Description Language
(WSDL), which includes programming specifications.

v Universal Description, Discovery and Integration
(http://www.uddi.org/about.html)
This article is a detailed overview of Universal Description, Discovery and
Integration (UDDI).

v UDDI4J: Matchmaking for Web services (http://www-
106.ibm.com/developerworks/library/ws-uddi4j)
Reviewed in this article are the basics of UDDI, the Java API to UDDI, and how
you can use this technology to start building, testing, and deploying your own
Web services.

Security

v Security in a Web Services World: A Proposed Architecture and Roadmap
(http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/)
This document describes a proposed model for addressing security within a Web
service environment. It defines a comprehensive Web Services Security model
that supports, integrates, and unifies several popular security models,
mechanisms, and technologies, including both symmetric and public key
technologies, in a way that enables a variety of systems to securely interoperate

480 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://www-106.ibm.com/developerworks/library/ws-peer1.html
http://www-106.ibm.com/developerworks/library/ws-peer1.html
http://jcp.org/en/jsr/detail?id=109
http://java.sun.com/xml/jaxrpc/
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/wsdl
http://www.uddi.org/about.html
http://www-106.ibm.com/developerworks/library/ws-uddi4j
http://www-106.ibm.com/developerworks/library/ws-uddi4j
http://www-106.ibm.com/developerworks/webservices/library/ws-secmap/

in a platform and language-neutral manner. It also describes a set of
specifications and scenarios that show how these specifications can be used
together.

v Web Services Security (WS-Security) (http://www-
106.ibm.com/developerworks/library/ws-secure/)
The Web Services Security specifications describe enhancements to SOAP
messaging to provide quality of protection through message integrity, message
confidentiality, and single message authentication. These mechanisms can be
used to accommodate a wide variety of security models and encryption
technologies. Web Services Security also provides a general-purpose mechanism
for associating security tokens with messages. Additionally, Web Services
Security describes how to encode binary security tokens. Specifically, the
specification describes how to encode X.509 certificates and Kerberos tickets, as
well as how to include opaque encrypted keys. It also includes extensibility
mechanisms that can be used to further describe the characteristics of the
credentials that are included with a message.

v Web Services Security Addendum (http://www-
106.ibm.com/developerworks/library/ws-secureadd.html)
This document describes clarifications, enhancements, best practices, and errata
of the Web Services Security specification.

v WS-Security Profile of the OASIS Security Assertion Markup Language
(SAML) Working Draft 04, 10 September 2002 (http://www.oasis-
open.org/committees/security/docs/draft-sstc-ws-sec-profile-04.pdf)
This document proposes a set of standards for SOAP extentions used to increase
message confidentiality.

v Web Services Security: Soap Message Security Working Draft 12, Monday
21 April 2003 (http://www.oasis-open.org/committees/download.php/1686/
WSS-SOAPMessageSecurity-12-04021.pdf)
This document describes the support for multiple token formats, trust domains,
signature formats, and encyrption technologies.

v JSR 55:Certification Path API (http://jcp.org/en/jsr/detail?id=55)
This document provides a short description of the certification path API.

v XML-Signature Syntax and Processing (http://www.w3.org/TR/xmldsig-
core/)
This document specifies XML digital signature processing rules and syntax. XML
signatures provide integrity, message authentication, or signer authentication
services for data of any type, whether located within the XML that includes the
signature or elsewhere.

v Canonical XML Version 1.0 (http://www.w3.org/TR/xml-c14n)
This specification describes a method for generating a physical representation,
the canonical form, of an XML document that accounts for the permissible
changes.

v Exclusive XML Canonicalization Version1.0 (http://www.w3.org/TR/xml-
exc-c14n/)
Canonical XML [XML-C14N] specifies a standard serialization of XML that,
when applied to a subdocument, includes the subdocument’s ancestor context
including all of the namespace declarations and attributes in the
″xml:″namespace.

v XML Encryption Syntax and Processing (http://www.w3.org/TR/xmlenc-
core/)

Chapter 8. Using Web services 481

http://www-106.ibm.com/developerworks/library/ws-secure/
http://www-106.ibm.com/developerworks/library/ws-secure/
http://www-106.ibm.com/developerworks/library/ws-secureadd.html
http://www-106.ibm.com/developerworks/library/ws-secureadd.html
http://www-106.ibm.com/developerworks/library/ws-secureadd.html
http://www-106.ibm.com/developerworks/library/ws-secureadd.html
http://www.oasis-open.org/committees/download.php/1686/WSS-SOAPMessageSecurity-12-04021.pdf
http://www.oasis-open.org/committees/download.php/1686/WSS-SOAPMessageSecurity-12-04021.pdf
http://jcp.org/en/jsr/detail?id=55
http://www.w3.org/TR/xml-c14n
http://www.w3.org/TR/xml-exc-c14n/
http://www.w3.org/TR/xml-exc-c14n/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlenc-core/

This document specifies a process for encrypting data and representing the
result in XML.

v Decryption Transform for XML Signature
(http://www.w3.org/TR/xmlenc-decrypt)
This document specifies an XML Signature ″decryption transform″ that enables
XML Signature applications to distinguish between those XML Encryption
structures that were encrypted before signing, and must not be decrypted, and
those that were encrypted after signing, and must be decrypted, for the
signature to validate.

v WS-Security (http://schemas.xmlsoap.org/ws/2002/04/secext/)
This document specifies resources for the April 2002 Web Services Security
Specification. The following addendums and drafts are available:

– http://schemas.xmlsoap.org/ws/2002/07/secext/
(http://schemas.xmlsoap.org/ws/2002/07/secext/)

– http://schemas.xmlsoap.org/ws/2002/07/utility/
(http://schemas.xmlsoap.org/ws/2002/07/utility/)

– OASIS draft 12 for secext
(http://schemas.xmlsoap.org/ws/2003/06/secext/)

– OASIS draft 12 for utility
(http://schemas.xmlsoap.org/ws/2003/06/utility/)

Administration

v SOAP Security Extensions: Digital Signature
(http://www.w3.org/TR/SOAP-dsig)
This document specifies the syntax and processing rules of a SOAP header entry
to carry digital signature information within a SOAP 1.1 Envelope

v Apache Software Foundation (http://www.apache.org)

Samples

v Two SOAP samples are available. The samples include information about
implemeting SOAP services and SOAP security. Refer to the Samples
Gallery
(http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html) for
these samples.

Other references

v Web services insider, Part 1: Reflections on SOAP (http://www-
106.ibm.com/developerworks/webservices/library/ws-ref1)
What is the current state of the Web services revolution? Find out at this Web site
that features the column Web services insider, Part 1. The author answers this
question by reviewing the tools and technologies that have emerged over the
past year, highlighting their differences and similarities.

v The Web services insider, Part 2: A summary of the W3C Web Services
Workshop (http://www-106.ibm.com/developerworks/webservices/library/ws-
ref2)
This is a brief summary of a W3C Web services workshop.

Web services implementation scope
Use this page to view and manage the scope of the ports of a Web Service bean.

482 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://www.w3.org/TR/xmlenc-decrypt
http://schemas.xmlsoap.org/ws/2002/04/secext/
http://schemas.xmlsoap.org/ws/2002/07/secext/
http://schemas.xmlsoap.org/ws/2002/07/utility/
http://schemas.xmlsoap.org/ws/2003/06/secext/
http://schemas.xmlsoap.org/ws/2003/06/utility/
http://www.w3.org/TR/SOAP-dsig
http://www.apache.org
http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html
http://www-106.ibm.com/developerworks/webservices/library/ws-ref1
http://www-106.ibm.com/developerworks/webservices/library/ws-ref1
http://www-106.ibm.com/developerworks/webservices/library/ws-ref2
http://www-106.ibm.com/developerworks/webservices/library/ws-ref2

To view this administrative console page, click Applications >Enterprise
Applications > application_instance > Web Module > module_instance >Web
Services Implementation Scope.

Port
Specifies a port name for a Web service. A module can contain one or more Web
services, each of which can contain one or more ports.

Service
Specifies the name of the Web service.

URI
Specifies the Uniform Resource Identifier (URI) of the binding file that defines the
scope. The URI is relative to the Web module.

Scope
Specifies the scope of a port.

The scope determines when a new instance of a service implementation is created
for the Web service ports in a module. An application scope causes the same
instance of the implementation to be used for all requests on the application. A
session scope causes the same instance to be used for all requests on each session.
A request scope causes a new instance to be used on every request.

Web services client bindings
Use this page to specify the Web Service Descriptive Language (WSDL) file name
and default port type mappings for the Web services in a module.

To view this page, click Applications >Enterprise Applications >
application_instance > Web Module > module_instance >Web Services Client
Bindings.

For EJB modules, click Applications >Enterprise Applications >
application_instance > EJB Module > module_instance >Web Services Client
Bindings

Web Service
Specifies the name of this Web service.

URI
Specifies the Uniform Resource Identifier (URI) of the binding file that defines the
scope. The URI is relative to the module.

WSDL Filename
Specifies the the WSDL file name, which is relative to the module.

Default Port Mappings
Specifies and manages the default port type mapping for a Web service.

Chapter 8. Using Web services 483

Default Port Mapping Definitions collection
Use this page to view and manage a default port type mapping for a Web service.

To view this page this page of the Administrative Console, click Applications
>Enterprise Application > application_instance > Web Module > module_instance
>Web Services Client Bindings > Edit > default_port_instance.

For EJB modules, click Applications >Enterprise Application > application_instance
> EJB Module > module_instance >Web Services Client Bindings > Edit >
default_port_instance.

Specify the default port of a service when a particular port type is requested. The
port type is described by its local name and namespace. A getPort method
specifying only the port type gets the port named by the default port local name
and namespace.

Port Type Local Name
Specifies the name of this Web service.

Port Type Namespace
Specifies the local name describing the port type to be mapped.

Default Port Local Name
Specifies the namespace describing the port type to be mapped.

Default Port Namespace
Specifies the namespace of the port to map to.

Default Port Type Mapping Properties settings
Use this page to view and manage a default port type mapping for a Web service.

To view this page of the Administrative Console, click Applications >Enterprise
Application > application_instance > Web Module > module_instance >Web Services
Client Bindings > Edit > default_port_instance.

For EJB modules, click Applications >Enterprise Application > application_instance
> EJB Module > module_instance >Web Services Client Bindings > Edit >
default_port_instance.

Specify the default port of a service when a particular port type is requested. The
port type is described by its local name and namespace. A getPort method
specifying only the port type gets the port named by the default port local name
and namespace.

Port Type Local Name
Specifies the name of this Web service.

Port Type Namespace
Specifies the local name describing the port type to be mapped.

484 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Default Port Local Name
Specifies the namespace describing the port type to be mapped.

Default Port Namespace
Specifies the namespace of the port to map to.

Publish WSDL files settings
Use this page to publish Web Services Descriptive Language (WSDL) files.

To view this page, click Applications >Enterprise Applications >
application_instance > Publish WSDL.

When you click OK, a zip file of the application’s Web services-enabled modules is
produced. The name of the published zip file is application_name_WSDLFiles.zip.
In the published zip file, the directory structure is
application_name/module_name/[META-INF|WEB-INF]/wsdl/wsdl_file_name.

In a published WSDL file, the location attribute of a service soap:address stanza
contains the URL through which the Web service is accessed. You can specify the
portion of the URL to be used for the Web services in each module. You can access
the Web services in a module through a HTTP transport or JMS transport, or both.
You can specify URL information for both types of transports.

HTTP
Specifies the the protocol (either http or https), host_name, and port_number to be
used in the URL.

The URL prefix format is protocol://host_name:port_number, for example,
http://myHost:9045. The actual URL that appears in a published WSDL file
consists of the prefix prepended to the module’s context-root and the Web service
url-pattern, for example, http://myHost:9045/services/myService .

Select HTTP URL prefix
Specifies the drop down list associated with a default list of URL prefixes. This list
is the intersection of the set of ports for the module’s virtual host and the set of
ports for the module’s application server. Use items from this list if the Web
services application server is accessed directly.

Custom HTTP URL prefix
Specifies the protocol, host, and port_number of the intermediate service if the Web
services in a module are accessed through an intermediate node, for example the
Web Services Gateway or an IHS server.

JMS
Specifies the JMS URL prefix string used for each module.

The URL prefix specified must contain the destination and connectionFactory
properties. It can contain other property-value pairs, but it must not contain the
targetService property, which is added by the system when the published WSDL
files are created. The format of the JMS URL prefix is jms:/[
queue|topic]?destination=target_queue_or_topic|connectionFactory=factory_name, for
example, jms:/queue?destination=jms/Q1|connectionFactory=jms/QCF. The actual

Chapter 8. Using Web services 485

URL that appears in a published WSDL file consists of the prefix prepended to the
Web service targetService, for example, jms:/queue?destination=jms/
Q1|connectionFactory=jms/QCF|targetService=StockQuote.

Using Apache SOAP Web services in Version 5.0 and 5.0.1
Before you begin

This topic and the topics linking to it describe how to use Apache SOAP 2.3
support for WebSphere Application Server Version 5.0 and 5.01. This support will
be deprecated in a future release. If you are planning a new Web services project, it
is recommended that you use Web services for J2EE.

Version 5.02 introduces support for Web services for J2EE, which replaces the ″IBM
WebSphere Web Services for J2EE Technology Preview″ available as a separate
download from
http://www7b.boulder.ibm.com/wsdd/downloads/techpreviews.html. This
supports emerging Java Web services standards like JAX-RPC and Web services for
J2EE. It is recommended that new development efforts use the and follow these
standards.

You can find more information about working with Web services by visiting the
Internet sites listed in Web services: Resources for learning.

Developing and managing Apache Simple Object Access Protocol (SOAP) 2.3-based
Web services explains how to work with Web services that are written directly to
Apache SOAP, Version 2.3 API. To develop and manage an Apache SOAP 2.3-based
Web service:

Steps for this task
1. Develop an Apache SOAP client.
2. Assemble Apache SOAP Web services.
3. Deploy Apache SOAP Web services applications.
4. Administer deployed Apache SOAP Web services (SOAP-XML administrative

tool).
5. Deploy Web services.
6. Secure Apache SOAP services.

Developing an Apache SOAP client
Before you begin

Develop a client that has a Web Services Description Language (WSDL) file or
service implementation.

Creating clients to access the Simple Object Access Protocol (SOAP) services
published in WebSphere Application Server is a straightforward process. The
Apache SOAP implementation, integrated with WebSphere Application Server,
contains a client API to assist in SOAP client application development.

The SOAP API documentation is available in WebSphere Application Server Java
documentation.

To create a client that interacts with a SOAP Remote Procedure Call (RPC) service:

486 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Steps for this task
1. Obtain the interface description of the SOAP service.

This description provides the signatures of the methods that you want to
invoke. You can either look at a Web Services Description Language (WSDL)
file for the service, or view the service itself to see its implementation.

2. Create the call object.
The SOAP call object is the main interface to the underlying SOAP RPC code.

3. Set the target Uniform Resource Identifier (URI) in the call object using the
setTargetObjectURI() method.
Pass the Uniform Resource Name (URN), a type of URI, that the service uses
for its identifier, in the deployment descriptor.

4. Set the method name that you want to invoke in the call object using the
setMethodName() method.
This method must be one of the methods exposed by the service located at the
URN from the previous step.

5. Create the necessary parameter objects for the RPC call and then set them in
the call object using the setParams() method.
Ensure you have the same number and same type of parameters as those
required by the service.

6. Execute the call object invoke() method and retrieve the response object.
Remember the RPC call is synchronous, so it can take some time to complete.

7. Check the response for a fault using the getFault() method, and then extract
any results or returned parameters.
While most of the providers only return a result, the DB2 stored procedure
provider can also return output parameters.

What to do next

Interacting with a document-oriented SOAP service requires you to use lower-level
Apache SOAP API calls. You must first construct an envelope object containing the
contents of the message, including the body and any headers, that you wish to
send. Then create a message object where you invoke the send() method to
perform the actual transmission.

To create a secure SOAP service, do the following:
1. Create a simple object.
2. Define an envelope editor.
3. Specify a pluggable envelope editor.
4. Define the transports.

Your code can look like the following example:
EnvelopeEditor editor=
new PluggableEnvelopeEditor(new InputSource(conf), home);
SOAPTransport transport =
new FilterTransport(editor, new SOAPHTTPConnection());
call.setSOAPTransport(transport);

The characteristics of the secure session are specified by the conf configuration file.

Chapter 8. Using Web services 487

Accessing enterprise beans with Apache SOAP
Using Apache Simple Object Access Protocol (SOAP) to call enterprise beans is
done in the same manner as calling Java bean methods using Apache SOAP.

A Web service can be a simple stateless session bean that performs number
processing and returns a data value. When the client code makes a call to the data
processing method of this service and an instance of the stateless session is not
available, the Apache SOAP run time does the following:
v Calls the enterprise bean create method to obtain a stateless session
v Calls the requested method

Assembling Apache SOAP Web services
Use the Simple Object Access Protocol (SOAP) EAR Enabler tool to assemble
Apache SOAP Web services. The following tasks comprise assembling Web
services:

Steps for this task
1. Create or locate the software resource to be exposed as a service.

To expose the service, create a programming artifact, one of the supported
types, or locate an existing piece of code of the supported type.

2. (Archive (EAR) file).
Package the code artifact into an EAR file. This step is a deployment packaging
requirement of WebSphere Application Server. Use the Application Assembly
Tool (AAT) to package the artifact.

3. Create the Apache SOAP deployment descriptor for the desired service.
In order to deploy an artifact as a SOAP service, create a Apache SOAP
deployment descriptor that describes the service you are creating. This step
exposes the programming artifact as a service. The descriptor describes and
defines the parts of the code that will be invoked with the SOAP calls.
The information contained in the deployment descriptor varies, depending on
the type of artifact you are exposing. For more information about various
deployment descriptor types see the article Simple Object Access Protocol
deployment descriptor. For example, the following deployment descriptor
might be used with the StockQuoteSample:

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
id="urn:service-urn" [type="message"]>
<isd:provider type="java"
scope="Request | Session | Application"
methods="exposed-methods">
<isd:java class="implementing-class" [static="true|false"]/>
</isd:provider>

<isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>
</isd:service>

4. Execute the SoapEarEnabler tool to enable your Web service.
Your code artifact must first be packaged into an EAR file. Next, using the
deployment descriptor as input, add the necessary pieces to the EAR file to
enable the artifact as a Web service. To facilitate this process, use the Java based
tool called SoapEarEnabler. Depending on whether you secure the Web service,
this tool will add two Web modules: soap.war and soap-sec.war to the EAR
file. These Web modules include the SOAP deployment descriptors, plus the
necessary parts to deploy the service into the WebSphere Application Server
run time.

488 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The service does not become available until the soap-enabled EAR file is
installed, and the server is restarted.

Apache SOAP deployment descriptor
Apache SOAP utilizes XML documents called deployment descriptors to provide
the SOAP run-time with information on client services.

Deployment descriptors provide a variety of information including:
v Service Uniform Resource Name (URN) used to route the request when it

arrives
v Method and class details, if the service is being provided by a Java class
v User ID and password information, if the service provider must connect to a

database

There are four types of deployment descriptors that you can be use in WebSphere
Application Server.
v Standard Java class
v Enterprise bean
v Bean Scripting Framework (BSF)
v DB2 stored

The contents of the deployment descriptor depend on the type of artifact that is
being exposed using SOAP. Samples of these deployment descriptors are available
in the SOAP 2.3 sample. You can link to the sample from the article Web services:
Resources for Learning.

Standard Java class deployment descriptor

A deployment descriptor that exposes a service implemented with a standard Java
class, including a normal Java bean. An example of the standard Java class
deployment descriptor follows:

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
id="urn:service-urn" [type="message"]>
<isd:provider type="java"
scope="Request | Session | Application"
methods="exposed-methods">
<isd:java class="implementing-class" [static="true|false"]/>
</isd:provider>

<isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>
</isd:service>

where:
v service-urn is the uniform resource name (URN) given to a service. All services

deployed within a single EAR file must have URNs that are unique within that
EAR file.

v exposed-methods is a list of methods, separated by spaces, which are being
exposed.

v implementing-class is a fully-qualified class name (that is, a
packagename.classname) that provides the methods that are being exposed.

v type is an optional attribute on the service <element>. Type is set to the value
″message″ if the service is document-oriented instead of RPC-invoked.

Chapter 8. Using Web services 489

v static is an optional attribute called on the java> element, which may be set to
either ″true″ or ″false″, depending on whether the methods are exposed or not
exposed. If exposed, this attribute indicates whether the method is static or not
static.

v scope is an attribute on the <provider> element, which indicates the lifetime of
the instantiation of the implementing class.

v ″Request″ indicates the object is removed after the request completes.
v ″Session″ indicates the object lasts for the current lifetime of the HTTP session.
v ″Application″ indicates the object lasts until the servlet, which is servicing the

requests, is terminated.

EJB deployment descriptor

A deployment descriptor that exposes a service implemented with an Enterprise
Java Bean. An example of an EJB deployment descriptor is as follows:

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
id="urn:service-urn">
<isd:provider type="provider-class"
scope="Application"
methods="exposed-methods">
<isd:option key="JNDIName" value="jndi-name"/>
<isd:option key="FullHomeInterfaceName" value="home-name" />
</isd:provider>

<isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>
</isd:service>

where:
v service-urn and exposed-methods have the same meaning as in the standard Java

class deployment descriptor
v provider-class with a stateless session bean follows:

com.ibm.soap.providers.WASStatelessEJBProvider

v jndi-name is the registered JNDI name of the enterprise bean
v home-name is the fully-qualified class name of the enterprise bean’s home.

The default values for the iiop URL and context provider keys are:
<isd:option key="ContextProviderURL" value="iiop://localhost:2809" />
<isd:option key="FullContextFactoryName" value="com.ibm.websphere.naming.WsnInitialContextFactory" />

To use your own values, you must specify:
<isd:option key="ContextProviderURL" value="<URL to the JNDI provider>" />
<isd:option key="FullContextFactoryName" value="<Context factory full class name>" />

Bean Scripting Framework (BSF) script deployment descriptor

A deployment descriptor that exposes a service implemented with a BSF script. An
example follows:

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
id="urn:service-urn">
<isd:provider type="script"
scope="Request | Session | Application"
methods="exposed-methods">
<isd:script language="language-name" [source="source-filename"]>[script-body]
</isd:script>
</isd:provider>
<isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>
</isd:service>

490 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

where:
v service-urn, exposed-methods, and scope have the same meaning as in the

standard Java class deployment descriptor.
v language-name is the name of the BSF-supported language that is used to write

the script.
v source or script-body is an attribute that is mandatory for the <script> element.

The script-body attribute contains the actual script that is used to provide the
service.

v source-filename refers to the file which contains the service implementation if
the deployment descriptor has the source attribute.

DB2 stored procedure deployment descriptor

A deployment descriptor that exposes one or more DB2 stored procedures as a
service. An example follows:

<isd:service xmlns:isd="http://xml.apache.org/xml-soap/deployment"
id="urn:service-urn">
<isd:provider type="com.ibm.soap.providers.WASDB2SPProvider"
scope="Application"
methods="* | exposed-methods">
<isd:option key="userID" value="db-userid"/>
<isd:option key="password" value="db-password"/>
[<isd:option key="fullContextFactoryName" value="context-factory"/>
<isd:option key="datasourceJNDI" value="jndi-name"/>]
[<isd:option key="dbDriver" value="db-driver"/>
<isd:option key="dbURL" value="db-url"/>]
</isd:provider>
<isd:faultListener>org.apache.soap.server.DOMFaultListener</isd:faultListener>
</isd:service>

where:
v service-urn and exposed-methods have the same meaning as in the standard Java

class deployment descriptor.
v db-userid is a valid user ID used to access the database where the stored

procedures reside.
v db-password is a valid password for the specified user ID

The db-userid and db-password entries are optional. These entries can be set in
the datasource. In WebSphere Application Server, the preferred way for
administering the db-userid and db-password entries is with a datasource.
Changing the user ID and password is easier when the information is located in
a datasource rather than in a separate deployment descriptor file.

v context-factory is the name of the context factory used to access the database
v jndi-name is the datasource used to access the database
v db-driver is the database driver used to access the database.

A db-driver is not required if a data source JNDI name is specified.
v db-url is the URL that specifies the database to access.

The methods attribute on the <provider> element can contain a list of
space-separated procedure names to expose, or an * (asterisk). An asterisk indicates
all available stored procedures should be exposed.

Chapter 8. Using Web services 491

Enabling Apache SOAP Web services in an enterprise
application

The Simple Object Access Protocol (SOAP) EAR enabler tool is a Java application
that enables a set of SOAP services within an enterprise archive (EAR) file.

The SoapEAREnabler (SEE)tool guides you through the required steps to enable
one or more services within an application. The tool makes a backup copy of your
original EAR file in the event you need to remove or add services at a later time.

Before invoking the SEE tool, create an SOAP deployment descriptor for each
service to be enabled.

Follow these steps to enable a Web service:

Steps for this task
1. Invoke the SEE tool from was_install/bin directory using one of the following

commands:
v Use the command SoapEarEnabler on the Windows platform
v Use the command SoapEarEnabler.sh on UNIX platforms.

2. Start with an existing EAR file, either one created with the Application
Assembly Tool (AAT), or a previously-created, valid, J2EE-compliant EAR file.
The SEE tool will not accept a SOAP-enabled EAR file as input.

3. After you enable Web services, install the EAR file in WebSphere Application
Server.

4. You will be prompted as to whether you wish to add the administration client
to the EAR. This is a Web-based client that will allow you to list all active
services for a specific context from a browser window. With this interface, you
can stop and start existing services. You might choose to not add this interface
for security reasons, or you might want to secure the interface before making a
service available.

What to do next

You have invoked the SEE from the WebSphere Application Server bin directory
and now you should know how the tool operates and its prompts and commands.

The tool operates in two modes:
1. Interactive
2. Silent

Specify all required command line arguments to use the tool in silent mode.

In interactive mode, the SEE tool prompts all required information. The following
dialog is an example of using the tool in interactive mode.

Note: In this dialog, user input is in italics, and tool output is in bold.
SoapEarEnabler (On Windows NT)
SoapEarEnabler.sh (On UNIX platforms)

Please enter the name of your ear file:
..\work\stockquote.ear

How many services would you like your application
to contain (1...n)?

492 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

1

Now prompting for info for service #1:

Please enter the file name of the SOAP deployment
descriptor xml file:

..\work\StockQuoteDD.xml
Is this service an EJB (y=yes / n=no)?
n

If there are additional jar files that need to be added to the classpath,
specify the number to add (answer 0 for none) (0...n)?
1

Classpath addition 1: Here are all the archive files found, please choose
one to add to the classpath: ([1] samples.jar, [2] stockquote.war):

1

Should this service be secured ("y/n" versus "y= yes, n= no)?
n

Please enter a context root for your non-secured
services (e.g. /soap):
/soapsamples

Do you wish to install the administration client?

Warning! You should not install this client in a production ear unless you
intend to secure the URI to it.

Install the administration client ("y/n" versus "y= yes, n= no)?
y

In Silent mode, supply the arguments in the same order as for the interactive
prompts.

Note: In silent mode, the SOAP administrative GUI will not install. Also, you will
not be prompted for the SOAP administrative GUI.

The following example describes how to to use the tool in silent mode:
soapearenabler [args]
where the arguments
must be specified in the following order:
<ear-file-name>
<number-of-services>
The following block is repeated based on
the number of services specified.
<deployment-descriptor-file-name>
<service-is-an-ejb-(y/n)>
The following argument should be supplied
only if service-is-an-ejb-(y/n) is y.
<ejb-jar-file-uri-(already-in-ear)>
<number-of-additional-jar-files
(0, 1, 2...)>
The following argument is repeated number-of-additional-jar-files
times.
<classpath-entry-uri-(already-in-ear)>
<secure-this-service-(y/n)>
This following argument is supplied only
if secure-this-service-(y/n) is n for any
service.
<context-root-for-non-secured-services,
ex: /soap>
This following argument is supplied only

Chapter 8. Using Web services 493

if secure-this-service-(y/n) is y for any
service.
<context-root-for-secured-services, ex:
/soapsec>

Examples

Silent mode example

The following is an example of deploying one enterprise bean as a non-secured
service:
soapearenabler soap.ear 1

d:\xml-soap\java\samples\ejbadder\deploymentdescriptor.xml
y adderservice-ejb.jar 1 samples.jar n /soap

The following is an example of deploying one enterprise bean as a non-secured
service, and one Java class as a secured service:
soapearenabler soap.ear 2

d:\xml-soap\java\samples\ejbadder\deploymentdescriptor.xml
y adderservice-ejb.jar 1 samples.jar n

d:\xml-soap\java\samples\stockquote\deploymentdescriptor.xml
n 1 samples.jar y /soap /soap-sec

Deploying two Java classes as non-secured services example
soapearenabler soap.ear 2

d:\xml-soap\java\samples\stockquote\deploymentdescriptor.xml
n 1 samples.jar n

d:\xml-soap\java\samples\addressbook\deploymentdescriptor.xml
n 1 samples.jar n /soap

The line breaks in the above examples have been modified for this documentation.
Typically, commands are issued on a single line.

Deploying Apache SOAP Web services applications
To deploy a programming artifact as a Simple Object Access Protocol
(SOAP)-accessible Web service in WebSphere Application Server:

Steps for this task
1. Install the service-enabled EAR file.

Use the SOAP-enabled EAR file that you created and install it in WebSphere
Application Server.

2. Update the Web server plug-in configuration.
Run the GenPluginCfg.bat file on Windows NT, or the GenPluginCfg.sh script
on UNIX platforms, to regenerate the plug-in configuration.

3. Restart the application server.

Administering deployed Apache SOAP Web services
(XML-SOAP administrative tool)

Administer the deployed Apache SOAP Web service with the XML-SOAP
administrative tool.

Use the SOAPEarEnabler tool to add administrative interfaces to your EAR files.
Then, use the XML-SOAP administrative tool with these EAR files to do the
following tasks for each context root:
v List configured services, showing active and stopped services

494 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v Stop a service
v Start a service
v View the Apache SOAP deployment descriptor for a service

Access the XML-SOAP administrative tool through a Web browser by specifying:
http://localhost/<contextroot>/admin/index.html

where context root is the context specified when installing the SOAP-enabled .ear
file.

What to do next

You cannot use the XML-SOAP administrative tool to add or remove a service. Use
the SoapEarEnabler tool to add or remove services. A stopped service is persisted
across starts and stops of the application server. Therefore, if you stop a service, it
remains stopped until the next time you use the XML-SOAP administrative tool to
start it again.

You can add the XML-SOAP administrative tool interface to an enterprise
application when you SOAP-enable the EAR file. In interactive mode, you are
asked whether you want to add the XML-SOAP administrative tool interface.
Replying yes will add the necessary Java Server Pages (JSP) files and bindings
allowing access to the XML-SOAP administrative tool interface for the application.
The interface is an optional addition because you might not want to expose it in a
production environment. Optionally, secure the XML-SOAP administrative tool
using the Application Assembly Tool (AAT) to assign roles.

Securing Apache SOAP Web services
The Simple Object Access Protocol (SOAP) security extension, included with
WebSphere Application Server, is a security architecture based on the Apache
SOAP security specification, and widely-accepted security technologies such as
Secure Sockets Layer (SSL).

There are three options for security when using HTTP as the transport protocol:
v HTTP basic authentication
v SSL (HTTPS)
v SOAP signature

You can combine these security options according to your specific security
requirements.

Because the SOAP specification does not address all security issues, several
proposals evolved to bridge the security gaps. See Web services: Resources for
Learning for more information about additional documentation.

Migrating Apache SOAP security
You can use the following steps when migrating a WebSphere Application Server,
Version 4.0 application that uses Apache SOAP 2.2 security, to a WebSphere
Application Server, Version 5.0 application that uses Apache SOAP 2.3 security.

Steps for this task
1. If you have any scripts or .bat files that set up the CLASSPATH before running

your application, make sure that the j2ee.jarfile, located in the WebSphere
V5<WebSphere/AppServer>/install root directory is in the CLASSPATH.

Chapter 8. Using Web services 495

2. (Optional)Replace security key files, if needed.
You might need new security key files if you get the following error:
"conf/cl-sig-config.xml" javax.security.cert.CertPathBuilderException:
No end-entity certificate matching the selection criteria could be found

The three security key files are named SOAPclient, SOAPserver, and
sslserver.p12. To locate the key files:
a. If the application is already installed these files are found in the directory

<WebSphere/AppServer>/installedApps/<yourAppName>.ear/soapsec.war/
key/

b. If the application is not yet installed, these files are found by expanding
<yourAppName.ear>. Then, expand the soapsec.war. The files are in the
key/directory.

3. Stop and restart the server if you made any updates or replaced the key files.

Securing Apache SOAP services with HTTP basic authentication
Many applications require users to provide identifying information. You cannot
provide access control for individual services. You can only provide access control
for the router servlets, for example, the rpcrouter servlet URI. If you can get to a
servlet, you can access any of the Web services served through the servlet.
Therefore, if you have a set of secure services, you have to partition them
differently so that they are accessed through a URI that is secured, for example,
/secureRPCRouter. An example of a service that is not secure or accessible to
everyone is /uprotectedRCPRouter.

Using the (Application Assembly Tool (AAT)), you can set authorization levels by
assigning roles to HTTP methods and by assigning users to roles. You can then
authenticate users, verifying they are authorized to view specific information. There
are many ways to prompt users for authentication data.

Securing Apache SOAP services on Secured Sockets Layer
To make a request over HTTPS using the Secured Socket Layer support of Apache
SOAP, you need a separate Java Secure Socket Extension (JSSE) provider.

WebSphere Application Server includes the ibmjsse.jar in the IBM Developer Kit
for Windows, Java Technology Edition.

The SOAP on SSL scenario is useful for many business-to-business (B2B)
applications because:
v The data in transit is protected from eavesdropping or forgery by SSL.
v The client identity is authenticated through user ID and password, which are

encrypted by the SSL transport.

For example, if an inventory application is configured as a Web service, the service
provider has the following two SOAP service entries:
v https://foo.com/inventory/inquiry

v https://foo.com/inventory/update

Each SOAP service entry should be deployed as a separate enterprise application
(EAR) because each service has a different access control policy, which is: anyone
can inquire about the inventory but only the inventory clerks can update the
contents.

496 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The SOAP enablement model limits you to one context root for the unsecured
services and another for the secured services. In this example, you want to make
the inquiry service unsecured and the update service secured. If you want different
levels of security for a secured service, then you must deploy the entries in the
secured service as separate EAR files.

To enable the SOAP on SSL scenario:

Steps for this task
1. Configure the Web server (httpd.conf) so that it only allows SSL access to these

servlets.
2. Configure the security role for the RPCRouterServlet in the inquiry services

EAR file.
By doing this step, the RPCRouterServlet for the inquiry service is accessible by
everyone, while the RPCRouterServlet for the update service requires
authentication based on the HTTP basic authentication (userID and password).
In this case, the update application does not know the identity of the requester;
it only knows that access is granted. In other words, the update application is
not concerned with the identity of the user because it knows WebSphere
Application Server is ensuring that only authenticated users have access.

Securing Apache SOAP services on Secured Sockets Layer with
SOAP Signature
Applications might need non-repudiable proof of exchanged messages. One
example is a Web service that accepts part orders. The business partners establish a
form of trust relationship based on public keys. This can be done using the public
key infrastructure (PKI) through a third party certificate authority (CA), or by
exchanging public keys with a secure channel. The following service is deployed
with a signature verification function:

https://foo.com/partorder

Configure signature verification with the following information:
v Scope of signature (indicates the portion of the Simple Object Access Protocol

(SOAP) envelope that must be authenticated. The default is the content of
SOAP-ENV:Body).

v Trusted keys or trusted root keys.
v Default key to verify signature if no KeyInfo is specified.
v Other policies regarding signature validation.
v Behavior when signature verification fails.
v Additional requirements on signature (as for example, specific requirements on

hash/C14N algorithms to be used, timestamp validity, and so forth).

If the signature is missing or if signature verification fails, the signature verification
function can be configured so that the servlet returns a SOAP fault.

To send part orders to the https://foo.com/partorder service, the service
requester should sign his SOAP messages with a signature component. The
signature component is initialized using two templates:
1. <ds:SignedInfo> template
2. <ds:KeyInfo> template

The <ds:SignedInfo> template controls the following:
v What parts of the SOAP envelope must be signed

Chapter 8. Using Web services 497

v What algorithms (canonicalization, transformation, digest, sign) should be used

The <ds:KeyInfo> template controls the following:
v Whether or not to include the entire certificate chain in <ds:KeyInfo>
v Decision to include only certificate and serial number
v Public key value
v Decision to provide no key information (so that the default key must be used for

verification).

You can combine the service request with HTTP basic authentication, if necessary.

Apache SOAP signature architecture
An overview of the Apache SOAP signature architecture is illustrated in the figure
below.

Transport Hook and Security Components

SOAPTransport RPCRRouterServlet

EnvelopeEditor EnvelopeEditor

Sign

SignVerify+Log

Verify+Log

C
lie

nt
 A

pp
lic

at
io

n

S
er

ve
r

A
pp

lic
at

io
n

Using the SOAP transport hook, you can plug-in the following security
components:
v Signer
v Verifier, with logging capability

The transport hook is called the EnvelopeEditor. A PluggableEnvelopeEditor is also
provided, which allows you to plug in your security components. As illustrated,

498 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

the EnvelopeEditor is encapsulated in the SOAPTransport on the client side. On the
server side, EnvelopeEditor is encapsulated in RPC/MessageRouterServlet. The same
components can be used on either side.

When a client application sends a request, the request is signed and transmitted to
the server. At the server side, the request is verified and delivered to a server
application or, in the case of a Remote Procedure Call (RPC), to a Java object. The
response is processed in the same manner. The verifier component also has a
logging function to log the verified messages in a file. Signatures and verifier
components are configurable. You can specify encryption, digest message
algorithm, certificate path policy, and other security technologies.

For more information about EnvelopeEditor, Signature header handler and
Verification header handler, see Web services: Resources for Learning.

UDDI4J specifications
The following considerations are specific to the support for UDDI4J provided by
WebSphere Application Server, Version 5:
v UDDI4J class libraries provided.

WebSphere Application Server provides two UDDI4J class libraries:

uddi4jv2.jar
This class library contains classes which support Version 2 of the UDDI
specification.

uddi4j.jar
This class library is provided for compatibility with WebSphere
Application Server, Version 5, and supports Version 1 of the UDDI
specification. The classes in this library are deprecated.

v UDDI4J error handling

When invoking UDDIProxy inquiry methods, UDDIException is thrown if errors
are received from the UDDI proxy. UDDIException can contain a
DispositionReport with information about the error. APIs that do not return a
data object, provide the disposition report. SOAPException is thrown if a
communication error occurs or if the resulting data cannot be parsed as a valid
SOAP message.

See the article Web services: Resources for Learning, to learn more about the use of
Simple Object Access Protocol (SOAP), Universal Description, Discovery and
Integration (UDDI) Registry, UDDI4J, programming specifications and examples.

Web services: Resources for learning
Use the following links to find relevant supplemental information about getting
started with Web services. The information resides on IBM and non-IBM Internet
sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas. The following sections are
covered in this reference:

View links to additional information about:
v Web services overview: Purpose, planning and designing to use Web services

Chapter 8. Using Web services 499

v Developing and using Web services applications and clients
v Programming instructions and examples
v Administration
v Samples
v Other references

Web services overview: Purpose, planning and designing to use Web services

v IBM Web Services architecture debuts
(http://www.ibm.com/developerworks/webservices/library/w-
int.html?dwzone=webservices)
Introducing IBM Web services, a distributed software architecture of service
components. This brief overview and in-depth interview on IBM
DeveloperWorks cover the fundamental concepts of Web services architecture
and what they mean for developers. The interview with IBM professional Rod
Smith explores which types of developers Web services targets, how Web
services reduces development time, what developers could be doing with Web
services now, and takes a glance at the economics of dynamically discoverable
services.

v Web services (r)evolution, Part 1 (http://www-
106.ibm.com/developerworks/library/ws-peer1.html)
This article focuses on the benefits and challenges of building Web services
applications. Web services might be an evolutionary step in designing
distributed applications, however, they are not without their problems. Outlined
are the difficulties developers face in creating a truly workable distributed
system of Web services. This article also outlines author Grahm Glass’ plan for
building peer-to-peer Web applications.

Developing and using Web services applications and clients

v SOAP (http://www.w3.org/TR/SOAP)
This article is a detailed overview of SOAP, which includes programming
specifications.

v Building a SOAP client (http://www-
106.ibm.com/developerworks/library/x-soapcl/index)
This article describes a simple, general purpose SOAP client in Java that uses no
specialized SOAP libraries. Instead of creating the SOAP request XML document
for you under the hood, this client lets you create your own request with any
XML or text editor. Instead of merely giving you the remote method return
values, the client shows you the actual SOAP response XML document. The
short Java program shows exactly what SOAP is all about: opening up an HTTP
connection, sending the appropriate XML to invoke a remote method, and then
reading the XML response returned by the server.

v Web Services Description Language (http://www.w3.org/TR/wsdl) This
article is a detailed overview of Web Services Description Language (WSDL),
which includes programming specifications.

v Universal Description, Discovery and Integration
(http://www.uddi.org/about.html) This article is a detailed overview of
Universal Description, Discovery and Integration (UDDI).

v UDDI4J: Matchmaking for Web services (http://www-
106.ibm.com/developerworks/library/ws-uddi4j) Reviewed in this article are
the basics of UDDI, the Java API to UDDI, and how you can use this technology
to start building, testing, and deploying your own Web services.

500 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://www-106.ibm.com/developerworks/library/x-soapcl/index
http://www-106.ibm.com/developerworks/library/x-soapcl/index

Programming instructions and examples

v Web Services Description Language (http://www.w3.org/TR/wsdl) This
article is a detailed overview of Web Services Description Language (WSDL),
which includes programming specifications.

v Universal Description, Discovery and Integration
(http://www.uddi.org/about.html) This article is a detailed overview of
Universal Description, Discovery and Integration (UDDI).

v UDDI4J: Matchmaking for Web services (http://www-
106.ibm.com/developerworks/library/ws-uddi4j) Reviewed in this article are
the basics of UDDI, the Java API to UDDI, and how you can use this technology
to start building, testing, and deploying your own Web services.

Administration

v SOAP Security Extensions: Digital Signature
(http://www.w3.org/TR/SOAP-dsig) This document specifies the syntax and
processing rules of a SOAP header entry to carry digital signature information
within a SOAP 1.1 Envelope

v Simple Object Access Protocol (SOAP) 1.1 (http://www.w3.org/TR/SOAP-
dsig) This site offers detailed information about SOAP Signature, including
Envelope Editor, Signature Header Handler and Verification Header Handler.

v Apache Software Foundation (http://www.apache.org)

Samples

v Two SOAP samples are available. The samples include information about
implemeting SOAP services and SOAP security. Refer to the Samples
Gallery
(http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html) for
these samples.

Other references

v Web services insider, Part 1: Reflections on SOAP (http://www-
106.ibm.com/developerworks/webservices/library/ws-ref1) What is the current
state of the Web services revolution? Find out at this Web site that features the
column Web services insider, Part 1. The author answers this question by
reviewing the tools and technologies that have emerged over the past year,
highlighting their differences and similarities.

v The Web services insider, Part 2: A summary of the W3C Web Services
Workshop (http://www-106.ibm.com/developerworks/webservices/library/ws-
ref2) This is a brief summary of a W3C Web services Workshop.

Chapter 8. Using Web services 501

502 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 9. Web Services Invocation Framework (WSIF):
Enabling Web services

Use this topic to learn how to invoke Web services to use the Web Services
Invocation Framework

The Web Services Invocation Framework (WSIF) is a WSDL-oriented Java API that
allows you to invoke Web services dynamically, regardless of what format (for
example EJB) the service is implemented in, or what mechanism (for example JMS)
is used to access it.

WSIF enables you, as a Web services developer, to move away from the usual Web
services programming model of working directly with the SOAP APIs, towards a
model where you interact with representations of the services. So you can work
with the same programming model regardless of how the service is implemented
and accessed.

If you want to know more about the issues that WSIF addresses, see Goals of
WSIF.

If you want to know how WSIF addresses these issues, see An overview of WSIF.

To use WSIF, see the following topics:
v Using WSIF to invoke Web services.
v WSIF system management and administration.
v WSIF API.

For more information about working with WSIF, visit the Internet sites listed in
WSIF: Resources for Learning.

Goals of WSIF
SOAP bindings for Web services are part of the WSDL specification. So when most
developers think of using a Web service, they immediately think of assembling a
SOAP message and sending it across the network to the service endpoint, using
some SOAP client API. For example: with Apache SOAP the client creates and
populates a Call object which encapsulates the service endpoint, the identification
of the SOAP operation to be invoked, the parameters that have to be sent, and so
on.

While this works for SOAP, it is limited in its use as a general model for invoking
Web services for the following reasons:
v Web services are not just SOAP services.
v Tying client code to a particular protocol implementation is restricting.
v Incorporating new bindings into client code is hard.
v Multiple bindings can be used in flexible ways.
v A freer Web services environment enables intermediaries.

The goals of WSIF are therefore:
v To give a binding-independent mechanism for Web service invocation.

© Copyright IBM Corp. 2003 503

v To free client code from the complexities of any particular protocol used to
access a Web service.

v To enable dynamic selection between multiple bindings to a Web service.
v To help the development of Web service intermediaries.

WSIF - Web services are not just SOAP services
You can deploy as a Web service any program with a WSDL description of its
functional aspects and access protocols; and in the J2EE environment, the same
component is available over multiple transports and protocols.

For example, you can have a database stored procedure, which is then exposed as
a stateless session bean, and then deployed into a SOAP router to become a SOAP
service. At each stage, the fundamental service is the same. All that changes is the
access mechanism: from JDBC to RMI-IIOP and then to SOAP.

The WSDL specification defines a SOAP binding for Web services, but you can add
binding extensions to the WSDL so that, for example, you can offer an enterprise
bean as a Web service using RMI/IIOP as the access protocol. You can even treat a
single Java class as a Web service, with in-thread Java method invocations as the
access protocol. With this broader definition of a Web service, you need a
binding-independent mechanism for service invocation.

WSIF - tying client code to a particular protocol
implementation is restricting

If your client code is tightly bound to a client library for a particular protocol
implementation, it can become hard to maintain. For example if you move from
Apache SOAP to JMS or enterprise bean, the process can take a lot of time and
effort. To avoid these problems, you need a protocol implementation-independent
mechanism for service invocation.

WSIF - incorporating new bindings into client code is hard
As is explained in Web services are not just SOAP services, if you want to make an
application that uses a custom protocol work as a Web service, you can add
extensibility elements to WSDL to define the new bindings. But in practice,
achieving this is hard. For example you have to design the client APIs for using
this protocol; and if your application uses just the abstract interface of the Web
service, you have to write tools to generate the stubs that enable an abstraction
layer. These are tasks that can take a lot of time and effort. What you need is a
service invocation mechanism that allows bindings to be updated or new bindings
to be plugged in easily.

WSIF - multiple bindings can be used in flexible ways
Imagine that you have successfully deployed an application that uses a Web
service offering multiple bindings. For example, imagine that you have a SOAP
binding for the service and a local Java binding that lets you to treat the local
service implementation (a Java class) as a Web service.

The local Java binding for the service can only be used if the client is deployed in
the same environment as the service itself, and if this is the case it is far more
efficient to communicate with the service by making direct Java calls than using
the SOAP binding.

504 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

If your clients could switch the actual binding used based on run-time information,
they could choose the most efficient available binding for each situation. In order
to take advantage of Web services that offer multiple bindings, you need a service
invocation mechanism that allows you to switch between the available service
bindings at runtime, without having to generate or recompile a stub.

WSIF - a freer Web services environment enables
intermediaries

Web services offer application integrators a loosely-coupled paradigm. In such
environments, intermediaries can be very powerful. Intermediaries are applications
that intercept the messages that flow between a service requester and a target Web
service, and perform some mediating task (for example logging, high-availability
or transformation) before passing on the message. They can be as small as a simple
Web service, or as large as the Web services gateway. WSIF is designed to make
building intermediaries both possible and simple. Using WSIF, intermediaries can
add value to the service invocation without needing transport-specific
programming.

An overview of WSIF
WSIF provides a Java API for invoking Web services, independent of the format of
the service or the transport protocol through which it is invoked. It addresses all of
the issues identified in the goals of WSIF.

WSIF provides the following features:
v It has an API that provides binding-independent access to any Web service.
v It is closely based on WSDL, so it can invoke any service that can be described

in WSDL.
v It allows stubless (completely dynamic) invocation of a Web service.
v You can plug a new or updated implementation of a binding into WSIF at

runtime.
v You can defer the choice of a binding until runtime.

WSIF is designed to work both in an unmanaged environment (stand-alone) and
inside a managed container. You can use JNDI to find the WSIF service, or else
read in the WSDL definition.

For more conceptual information about WSIF and WSDL, see the following topics:
v WSIF and WSDL
v WSIF architecture
v Using WSIF with Web services that offer multiple bindings
v WSIF usage scenarios
v Dynamic invocation

WSIF architecture
The WSIF architecture is shown in the following figure. The components of this
architecture are described after the figure.

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 505

WSIF provider
A WSIF provider is an implementation of a WSDL binding that can run a
WSDL operation through a binding-specific protocol. WebSphere
Application Server includes WSIF providers for SOAP over HTTP, SOAP
over JMS, Java, enterprise beans, and Native JMS. For more information,
see Using the WSIF providers.

WSIFOperation
The runtime representation of an operation, called WSIFOperation is
responsible for invoking a service based on a particular binding. For more
information, see WSIF API reference: Using ports.

WSIFService
The WSIFService is responsible for generating an instance of
WSIFOperation to be used for a particular invocation of a service
operation.For more information, see Finding a port factory or service

WSDL documents
The Web service WSDL document contains the location of the Web service.
The binding document defines the protocol and format for operations and
messages defined by a particular portType.

Using WSIF with Web services that offer multiple bindings
Using WSIF, a client application can dynamically choose the optimal binding to
use to invoke Web service operations.

For example, a Web service provider could offer a SOAP binding for the service
and a local Java binding that allows you to treat the local service implementation
(a Java class) as a Web service. If the client is deployed in the same environment as
the service, the local Java binding for the service can be used and provides more
efficient communication with the service by making direct Java calls rather than
using the SOAP binding.

For more information on how to configure a client to dynamically select between
multiple bindings, see Developing a WSIF service.

WSIF and WSDL
WSDL is the acronym for Web Services Description
Language(http://www.w3.org/TR/wsdl).

In WSDL a service is defined in three distinct parts:
v The PortType. The PortType defines the abstract interface offered by the service.

A PortType defines a set of Operations. Each operation can be In-Out
(request-response), In-Only, Out-Only and Out-In (Solicit-Response). Each

506 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

operation defines the input and/or output Messages. A message is defined as a
set of Parts and each part has a schema-defined type.

v The Binding. A binding defines how to map between the abstract PortType and
a real service format and protocol. For example the SOAP binding defines the
encoding style, the SOAPAction header, the namespace of the body (the
targetURI), and so on.

v The Port. This defines the actual location (endpoint) of the available service - for
example, the HTTP URL on which a SOAP service is available.

Currently in WSDL, each Port has one and only one binding, and each binding has
a single PortType. But (more importantly) each Service (PortType) can have
multiple Ports, each of which represents an alternative location and binding for
accessing that service.

WSIF follows the semantics of WSDL as much as possible:
v The WSIF dynamic invocation API directly exposes runtime equivalents of the

model from WSDL. For example, invocation of an operation involves executing
an ″Operation″ with an Input Message.

v WSDL has extension points that allow new ports and bindings to be added so
that WSDL can describe new systems. The equivalent concept in WSIF is a
provider, that allows WSIF to understand a class of extensions and therefore
support new service implementation types.

As a metadata-based invocation framework, WSIF follows the design of the
metadata. As WSDL is extended, WSIF is updated to follow.

Note: The implicit and primary type system of WSIF is XML Schema, not Java.
WSIF supports invocation using dynamic proxies, which support Java type
systems, but when you use the WSIFMessage interface it is your responsibility to
populate WSIFMessage objects with data based on the XML Schema types as
defined in the WSDL document. So you should define types of objects by a
canonical and fixed mapping from Schema types into the runtime.

For more information on WSDL, see WSIF: Resources for learning.

WSIF usage scenarios
This topic describes two brief scenarios that illustrate the role WSIF plays in the
emerging Web services environment.

Scenario: Redevelopment and redeployment

If you are implementing Web services today you are probably working with simple
prototypes. As your Web services move into production, you will need to
reimplement and redeploy them. WSIF uses the same API calls with different
underlying technologies. So if you use WSIF you can reimplement and redeploy
your services without changing the client code, and you can use existing highly
reliable and high-performance infrastructures like RMI-IIOP and JMS without
sacrificing the location-independence that the Web service model offers.

Scenario: Service Flow composition

A service flow typically invokes a Web service, then passes the response from one
Web service into the next Web service, perhaps performing some transformation in
the middle.

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 507

There are two key aspects to this that WSIF provides:
v A representation of the service invocation based on the metadata in WSDL.
v The ability to build invocations based on the portType only, which can be used

on any implementation.

For example, imagine that you build a ″meta-service″ that uses a number of
services to build a process. Initially several of those services are simple JavaBean
prototypes that are written and exposed through SOAP, but you plan to
reimplement some of them as EJB components, and to out-source others.

If you use SOAP, it ties up multiple threads for every onward invocation, as they
pass through the webserver and servlet engine into the SOAP router. If you use
WSIF to call the beans directly, you get much better performance compared to
SOAP and you don’t lose access or location transparency. Using WSIF, you can
move the JavaBean implementations to EJB implementations without changing the
client code, and to move some of the Web services from local implementations to
external SOAP services you just update the WSDL.

Dynamic invocation
In WSIF, dynamic invocation means providing the following levels of support
when invoking Web services:
1. Support for WSDL extensions and bindings that were not known at build time.
2. Support for Web services that were not known at build time.

WSIF supports (1) above through the use of providers.

The providers support (2) above by using the WSDL description to access the
target service.

Using WSIF to invoke Web services
You invoke a Web service dynamically by using the WSIF API directly. You only
specify the location of the WSDL file for the service, the name of the operation to
be invoked, and any operation arguments needed. All the information needed to
access the Web service is available through WSDL; the abstract interface, the
binding, and the service endpoint.

This kind of invocation does not require stub classes and does not need a separate
compilation cycle.

More information on using WSIF to invoke Web services is given in the following
topics:
v Using the WSIF providers.
v Developing a WSIF service.
v Using complex types.
v Using JNDI.

v
5.0.2 Passing SOAP messages with attachments using WSIF.

v Interacting with the WebSphere J2EE container.
v Running WSIF as a client.

508 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Using the WSIF providers
A WSIF provider is an implementation of a WSDL binding that can run a WSDL
operation through a binding-specific protocol.

Providers implement the interface between the WSIF API and the actual
implementation of a service. Providers are pluggable within the WSIF framework,
and are registered based upon the namespace of the WSDL extension that they
implement.

WebSphere Application Server includes the following WSIF providers:
v SOAP (over HTTP) provider.
v JMS providers (SOAP over JMS, and Native JMS).
v Java provider.
v EJB provider.

Note:

v Some providers use the J2EE programming model to utilize J2EE services.
v If a provider is available, but its required class libraries are not, the provider is

disabled.

Using the SOAP provider
The SOAP provider allows WSIF stubs and dynamic clients to invoke SOAP
services. The provider supports SOAP 1.1 (http://www.w3.org/TR/SOAP/) over
HTTP. The WSIF SOAP Provider utilizes Apache SOAP 2.3 for parsing and creating
SOAP messages, but is not limited to invoking services served by Apache SOAP.

The WSIF SOAP provider supports:
v SOAP-ENC encoding.

v
5.0 + 5.0.1 + RPC style SOAP messages.

v
5.0.2 RPC style and Document style SOAP messages.

v
5.0.2 SOAP messages with attachments.

The SOAP provider is not transactional.

Note: Before you deploy to WebSphere Application Server a Web service that you
expect to be used by multiple clients connecting over SOAP, you must set up your
application’s deployment descriptor file (dds.xml) to handle multiple connections
correctly. For more information see WSIF troubleshooting tips.

What to do next

For an example of the sort of code changes that need to be made in the WSDL file
for a SOAP provider, see the following topics:
v The SOAP over JMS provider - writing the WSDL extension.

v
5.0.2 SOAP messages with attachments - writing the WSDL extensions.

Using the JMS providers
JMS is an API for transport technology. The mapping to a JMS destination is
defined during deployment and maintained by the container.

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 509

The JMS Destination Web service endpoint may be realized in any of the following
ways:
v The JMS destination for the queue can be the Web service implementation.
v The JMS destination can be (but is not required to be) associated with a Message

Driven Bean by the EJB container, thereby allowing the Message Driven Bean to
be the Web service implementation.

v (For SOAP over JMS) The JMS Destination can unwrap the JMS message and
route the SOAP message to a stateless session bean Web service implementation.

The JMS Destination must respect the interaction model expected by the client and
defined by the WSDL. It must return a response if one is required.

When the JMS Destination creates the JMS response message the following rules
must be adhered to:
v The response message must be sent to the JMSReplyTo from the incoming

request.
v The JMSCorrelationID of the response message must be set to the value of the

JMSMessageID from the request message.
v The response must be sent with a deliveryMode equal to the JMSDeliveryMode

of the request message.
v The response must be sent with a priority equal to the JMSPriority of the

request message.
v The timetolive/JMSExpiration must be set a value equal to the JMSExpiration

of the request message.

The client does not see any of these headers. The container receives the JMS
message and (for SOAP over JMS) removes the SOAP message to send to the
client.

What to do next

See also the following topics:
v Using the SOAP over JMS provider
v Using the native JMS provider
v (The JMS providers - configuring the client and server)

Using the SOAP over JMS provider
Before you begin

For information on working with the JMS API, see Using the JMS providers.

The SOAP message, including the SOAP envelope, is wrapped with a JMS message
and put on the appropriate Queue. The container receives the JMS message and
removes the SOAP message to send to the client.

What to do next

For detailed implementation information, see the following topics:
v The SOAP over JMS provider - writing the WSDL extension
v (The JMS providers - configuring the client and server)

510 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The SOAP over JMS provider - writing the WSDL extension
SOAP protocol messages are carried on the JMS transport with the JMS body type
TextMessage if the message is strictly XML.

Usage scenario

WSDL Extensions

WSDL Binding

The WSDL Binding for SOAP over JMS varies only slightly from the SOAP
over HTTP binding. The transport element under the soap:binding
indicates that JMS is being used.

RPC style: If the style is set to ″rpc″, then it is assumed that an operation
is being invoked on the Web service endpoint. The Java parameters and
response holders are encoded in the same way as for the standard WSIF
SOAP binding:
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/jms"/>

When a SOAP/JMS binding is being used, the <wsdl:port> must contain a
<jms:address> element to identify the JMS Queue to be used.

Address:
The address within the port within the service within the WSDL provides
the information required for a client to correctly connect to the Web service
using the JMS programming model. Typically, it will be the stubs
generated to support the SOAP/JMS binding that will act as the JMS
client. This does not preclude the Web service client from using the JMS
programming model directly. The address element under the service and
port must take this form:

<jms:address

destinationStyle="queue"
jmsVendorURI="http://ibm.com/ns/mqseries"?
initialContextFactory="com.ibm.NamingFactory"?
jndiProviderURL="iiop://something:900/wherever"?
jndiConnectionFactoryName="orange"
jndiDestinationName="fred"

/>

where ″?″ means ″optional″.

The vendor URI is a string which uniquely identifies the JMS
implementation. WSIF ignores this URI, which is used by the client
developer and perhaps the client implementation to determine if it has
access to the correct JMS provider in the client runtime.

The connectionFactory attribute gives the name of a JMS
ConnectionFactory object, which can be looked up within the JNDI context
given by the jndiContext attribute. This ConnectionFactory can be used to
create a JMS connection to the JMS provider instance that owns the Queue.
In a simple configuration this ConnectionFactory is the actual
ConnectionFactory used by the server message listener, and by the clients.
However both server and clients can use different ConnectionFactories,
provided that they all create Connections to the same JMS provider
instance.

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 511

The JNDI usage pattern is this:
<jms:address destinationStyle="queue"

jndiConnectionFactoryName="orange"
jndiDestinationName="fred"

>

This usage pattern requires the runtime to have a default JNDI provider
configured. The provider URL and context factory can also be added to
this:
<jms:address destinationStyle="queue"

initialContextFactory="com.ibm.Naming"
jndiProviderURL="iiop://server:900/"

jndiConnectionFactoryName="orange"
jndiDestinationName="fred"

>

Headers and Properties

JMS headers and properties can be set using the <jms:property> extension
within the binding. This maps a part of a message into a JMS property. For
example:

<jms:property name="Priority" {part="requestPriority" | value="fixedValue"}/>

The header can also be set in the jms:address component with a literal
value:
<jms:property name="Priority" value="fixedValue"/>

This binding extension is shared with the Native JMS binding.

WSDL Binding example

Here is an example of a WSDL that defines a SOAP over JMS binding:
<!-- Example: SOAP over JMS Text Message -->

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions

name="StockQuoteInterfaceDefinitions"
targetNamespace="urn:StockQuoteInterface"
xmlns:tns="urn:StockQuoteInterface"
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<wsdl:message name="GetQuoteInput">
<part name="symbol" type="xsd:string"/>

</wsdl:message>
<wsdl:message name="GetQuoteOutput">

<part name="value" type="xsd:float"/>
</wsdl:message>

<wsdl:portType name="StockQuoteInterface">
<wsdl:operation name="GetQuote">

<wsdl:input message="tns:GetQuoteInput"/>
<wsdl:output message="tns:GetQuoteOutput"/>

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="StockQuoteSoapJMSBinding" type="tns:StockQuoteInterface">
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/jms"/>
<wsdl:operation name="GetQuote">

<soap:operation soapAction="urn:StockQuoteInterface#GetQuote"/>
<wsdl:input>

512 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

<soap:body use="encoded" namespace="urn:StockQuoteService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</wsdl:input>
<wsdl:output>

<soap:body use="encoded" namespace="urn:StockQuoteService"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:service name="StockQuoteService">

<wsdl:port name="StockQuoteServicePort"
binding="sqi:StockQuoteSoapJMSBinding">

<jms:address destinationStyle="queue"
jndiConnectionFactoryName="myQCF"
jndiDestinationName="myQ"
initialContextFactory="com.ibm.NamingFactory"
jndiProviderURL="iiop://something:900/"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Using the native JMS provider
Before you begin

For information on working with the JMS API, see Using the JMS providers.

The native JMS provider allows WSIF clients to treat a JMS destination as a Web
service.

What to do next

For detailed implementation information, see the following topics:
v The native JMS provider - writing the WSDL extension
v (The JMS providers - configuring the client and server)

The native JMS provider - writing the WSDL extension
The WSDL extensions for JMS are identified with the namespace prefix ″jms″. For
example <jms:binding>.

Operations

The supported operations are either One-way operations (send for JMS
point-to-point messaging or publish for JMS publish/subscribe messaging) or
Request-Reponse operations (send/receive for JMS point-to-point messaging).

The WSDL operations therefore specify an input message only, or a WSDL input
and output message.

Message Header Data

JMS does not make assumptions about message headers. If the JMS provider is
MQSeries, then each JMS message carries an RFH2 header, however, data in this
message header is only accessed indirectly by getting and setting JMS message
properties.

Quality of Service Attributes

The Native JMS binding of WSDL operations provides the capability to set
message properties. See ″JMS Message Header Fields and Properties″ below.

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 513

JMS Message Types

JMS message body types are specified in the WSDL binding using the jms:binding
WSDL extension:
<wsdl:binding ... >

<jms:binding type="messageBodyType"/>
...

</wsdl:binding>

where messageBodyType is either ObjectMessage or TextMessage.

Input and Output Messages

Input and output messages are used in the WSDL input and output sections of the
WSDL binding, respectively:
<wsdl:input ... >

<jms:input parts="part1 part2 ..."/>
</wsdl:input>

<wsdl:output ... >
<jms:output parts="part1 part2 ..."/>

</wsdl:output>

For JMS Text messages and JMS Object messages created from one or more WSDL
message parts, the jms:input and jms:output WSDL extension specifies the message
parts to be used for the JMS message. If no parts are defined, then all message
parts will be used. This is used in the WSDL input and output sections of the
WSDL binding.

The WSDL message has one part that contains the complete message body. This
message body might be the result of a mapping from some other representation
(see ″Data Mapping″ below).
<wsdl:input ... >

<jms:input parts="part1"/>
</wsdl:input>

Fault Messages

Operations that describe message interfaces with a native JMS binding do not have
fault messages. No assumptions are made about the message schema or the
semantics of message properties, so no distinction can be made between output
and fault messages.

Data Mapping

Mapping of data types is specified using the WSDL format binding extension:
<wsdl:binding ... >

<jms:binding type="..."/>

<format:typeMapping encoding="Java" style="Java">
<format:typeMap typeName="..." formatType="targetType"/>

</format:typemapping>
...

</wsdl:binding>

The value of targetType is dependent on the JMS message type (discussed above) as
follows:
v For JMS Object messages, the target data type implements java.io.Serializable.

514 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v For JMS Text messages, the target data type is always java.lang.String.

Note that the format binding is also used in other bindings that deal with Java
interfaces.

JMS Message Header Fields and Properties

You can set JMS Properties in the WSDL. When you want your application to pass
a property into WSIF as a part on the WSIF message, use a <jms:property>. When
you want to hard code an actual property value into the WSDL, use a
<jms:propertyValue>. You can put <jms:property> and <jms:propertyValue> in
the <input> and <output> in the binding operation, and in the <jms:address>.
<jms:property> takes precedence over <jms:propertyValue> and properties in the
binding operation take precedence over properties in the <jms:address>.

For the association with WSDL parts, the <jms:property> and
<jms:propertyValue> WSDL extensions are used as shown below:
<wsdl:input ... >

<jms:property name="propertyName" part="partName"/>

<jms:propertyValue name="propertyName"
type="xsdType" value="actualValue"/>

</wsdl:input>

<wsdl:output ... >

<jms:property name="propertyName" part="partName"/>

</wsdl:output>

where propertyName identifies the JMS property that is associated with the header
field, and partName identifies the message part that is associated with the property.

The propertyName is the name of one of the predefined JMS message header fields
or a user-defined property. Possible values and Java types for the predefined
message header fields are shown in the following table:

Value Java type
JMSMessageId java.lang.String
JMSTimeStamp long
JMSCorrelationId byte [] or java.lang.String
JMSReplyTo javax.jms.Destination
JMSDestination javax.jms.Destination
JMSDeliveryMode int
JMSRedelivered boolean
JMSType java.lang.String
JMSExpiration long

See the JMS specification for restrictions that apply for setting JMS header field
values. Attempts to set such restricted values are ignored.

For application-defined JMS message properties, the Java types used in the Native
JMS binding implementation (used for calls to the corresponding JMS methods) is
derived from the XML schema type in the abstract interface (wsdl:part) and the
type mapping information in the format binding (format:typemap).

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 515

The jms:propertyValue contains a specification of a literal value and its associated
XML schema type.

For wsdl:output, only jms:property can be specified.

Transactions

Independent of other quality of service attributes, the asynchronous processing of
request-response operations has implications for callers running in a transaction
scope. The send request part and the receive response part must be separated into
two transactions as the send needs to be committed in order for the request
message to become visible.

So implementations that process WSDL for asynchronous request-response
operations (such as WSIF) must take the following additional actions:
v They must return a correlation id to the user, and provide a callback that allows

users to pass in the response message in order to process the ″second half″ of
the operation.

v (Optionally) They might implement their own response message ″listener″ in
order to recognize the arrival of response messages, and to manage the
correlation to the request message.

Usage scenario

WSDL Examples

Example 1: JMS Text Message (Request-Response)

The JMS text message contains a java.lang.String. In this example, the WSDL
message contains only one part that represents the whole message body.
<!-- Example 1: JMS Text Message -->

<wsdl:definitions ... >

<!-- simple or complex types for input and output message -->
<wsdl:types> ... </wsdl:types>

<wsdl:message name="JmsOperationRequest"> ... </wsdl:message>
<wsdl:message name="JmsOperationResponse"> ... </wsdl:message>

<wsdl:portType name="JmsPortType">
<wsdl:operation name="JmsOperation">

<wsdl:input name="Request"
message="tns:JmsOperationRequest"/>

<wsdl:output name="Response"
message="tns:JmsOperationResponse"/>

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="JmsBinding" type="JmsPortType">
<jms:binding type="TextMessage"/>

<format:typemapping style="Java" encoding="Java">
<format:typemap name="xsd:String" formatType="String"/>

</format:typemapping>

<wsdl:operation name="JmsOperation">
<wsdl:input message="JmsOperationRequest">

<jms:input parts="requestMessageBody"/>
</wsdl:input>

516 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

<wsdl:output message="JmsOperationResponse">
<jms:output parts="responseMessageBody"/>

</wsdl:output>
</wsdl:operation>

</wsdl:binding>

<wsdl:service name="JmsService">
<wsdl:port name="JmsPort" binding="JmsBinding">

<jms:address destinationStyle="queue"
jndiConnectionFactoryName="myQCF"
jndiDestinationName="myDestination"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

Example 2: JMS Message with Accessing Application-Defined JMS Properties
(Request-Response)

As an extension of the previous JMS message example, the following WSDL
describes a request-response operation where specific JMS property values of the
request and response message are set for the request message and retrieved from
the response message.

The JMS properties in the request message are set according to the values in the
input message. Likewise, selected JMS properties of the response message are
copied to the corresponding values of the output message. The direction of the
mapping is determined by the appearance of the jms:property tag in the input or
output section, respectively.
<!-- Example 2: JMS Message with JMS Properties -->

<wsdl:definitions ... >

<!-- simple or complex types for input and output message -->
<wsdl:types> ... </wsdl:types>

<wsdl:message name="JmsOperationRequest">
<wsdl:part name="myInt" type="xsd:int"/>
...

</wsdl:message>

<wsdl:message name="JmsOperationResponse">
<wsdl:part name="myString" type="xsd:String"/>
...

</wsdl:message>

<wsdl:portType name="JmsPortType">
<wsdl:operation name="JmsOperation">

<wsdl:input name="Request"
message="tns:JmsOperationRequest"/>

<wsdl:output name="Response"
message="tns:JmsOperationResponse"/>

</wsdl:operation>
</wsdl:portType>

<wsdl:binding name="JmsBinding" type="JmsPortType">
<!-- the JMS message type may be any of the above -->
<jms:binding type="..."/>

<format:typemapping style="Java" encoding="Java">
<format:typemap name="xsd:int" formatType="int"/>
...

</format:typemapping>

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 517

<wsdl:operation name="JmsOperation">
<wsdl:input message="JmsOperationRequest">

<jms:property message="tns:JmsOperationRequest" parts="myInt"/>
<jms:propertyValue name="myLiteralString"

type="xsd:string" value="Hello World"/>
...

</wsdl:input>
<wsdl:output message="JmsOperationResponse">

<jms:property message="tns:JmsOperationResponse" parts="myString"/>
...

</wsdl:output>
</wsdl:operation>

</wsdl:binding>

<wsdl:service name="JmsService">
<wsdl:port name="JmsPort" binding="JmsBinding">

<jms:address destinationStyle="queue"
jndiConnectionFactoryName="myQCF"
jndiDestinationName="myDestination"/>

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

The JMS providers - configuring the client and server
To enable a service to be invoked through JMS by a WSIF client application,
complete the following steps:
1. Create a JMS queue for WSIF to send to the request message to.

Note: This can be done using MQSeries Explorer, or an equivalent tool from
your JMS implementation package.

2. Create a JNDI definition for that JMS queue, and a JNDI queue connection
factory.
Note: If you are using MQSeries, this can be done using the jmsadmin tool.

3. Put the JNDI names of the queue and queue connection factory, as well as your
JNDI configuration, in the WSDL file.

You should also be aware of the following specific ways in which WSIF interacts
with JMS:
v Only input JMS properties are supported.
v WSIF needs two queues when invoking an operation: one for the request

message and one for the reply. The replyTo queue is by default a temporary
queue which WSIF creates on behalf of the application. You can specify a
permanent queue by setting the JMSReplyTo property to the JNDI name of a
queue.

v WSIF uses the default values for properties set by the JMS implementation.
However in MQSeries and some other JMS implementations, messages are by
default persistent, and the default temporary queue is temporary dynamic and
so cannot have persistent messages written to it. So your JMS listener may fail to
write a persistent response message to the temporary replyTo queue.
Note: If you are using MQSeries, you need to create a temporary model queue
which is permanent dynamic, then pass this model as the tempmodel of your
queue connection factory. This will ensure that persistent messages can be
written to the permanent dynamic temporary replyTo queue.

Using the Java provider
The WSIF Java Provider allows WSIF to invoke Java classes and JavaBeans. This
means that, in a ″thin-client″ environment such as a JVM or Tomcat test runtime,
you can define ″shortcuts″ to local Java code.

518 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The WSIF Java Provider is not intended to be used in a J2EE environment. There is
a difference between a client using the WSIF Java Provider to invoke a Java
component, and implementing a Web service as a Java component on the server
side.

The Java binding exploits the format binding for type mapping. The format
binding allows WSDL to define the mapping between XML Schema types and Java
types.

The Java provider requires the targeted Java classes to be in the class path of the
client. The Java method is invoked synchronously, in-process, in-thread, with the
current thread and ORB contexts.

The Java provider is not transactional.

What to do next

For examples of the code changes that need to be made in the WSDL file, see The
Java provider - writing the WSDL extension.

The Java provider - writing the WSDL extension
The Java provider allows the invocation of a method on a local Java object. In
order to use the Java provider you require the following binding specified in the
WSDL:

Usage scenario
<!-- Java binding -->
<binding >

<java:binding />
<format:typeMapping style="Java" encoding="Java"/>?

<format:typeMap name="qname" formatType="nmtoken"/>*
</format:typeMapping>
<operation>*

<java:operation
methodName="nmtoken"
parameterOrder="nmtoken"
returnPart="nmtoken"?
methodType="instance|constructor"/>

<input name="nmtoken"? />?
<output name="nmtoken"? />?
<fault name="nmtoken"? />?

</operation>
</binding>

where ″?″ means ″optional″ and ″*″ means ″0 or more″.

Note:

v The format:typeMap name attribute is a qualified name of a simple or complex
type used by one of the Java operations.

v The format:typeMap formatType attribute is the fully qualified Class name for
the Java Class that the element specified by name maps to.

v The java:operation methodName attribute is the name of the method on the Java
object that is called by the operation.

v The java:operation parameterOrder attribute contains a whitespace-separated list
of part names that define the order in which they are passed to the Java Object’s
method.

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 519

v The java:operation methodType attribute must be set to either ″instance″ or
″constructor″. The value specifies whether the method being invoked on the
object is an instance method or a constructor for the object.
<service ... >

<port>*
<java:address

className="nmtoken"/>
</port>

</service>

Note: The java:address className attribute specifies the fully qualified class name
of the object containing the method to invoke.

Using the EJB provider
The EJB Provider allows WSIF clients to invoke enterprise beans. The EJB client
JAR must be available in the client runtime with the current provider. The
enterprise bean is invoked using normal EJB invocation methods, using RMI-IIOP,
with the current security and transaction contexts. If the EJB provider is invoked
within a transaction then the transaction is passed to the onward service and the
standard EJB transaction attribute applies.

If there are multiple implementations of the service, it is up to the provider of the
service to make sure that they offer the same semantics. For example, in the case of
transactionality the bean deployer should specify TX_REQUIRES_NEW to force a
new transaction.

What to do next

For examples of the sort of code changes that need to be made in the WSDL file,
see The EJB provider - writing the WSDL.

The EJB provider - writing the WSDL extension
The EJB provider allows the invocation of an enterprise bean through RMI/IIOP. In
order to use the EJB provider you require the following binding specified in the
WSDL:

Usage scenario
<!-- EJB binding -->
<binding >

<ejb:binding />
<format:typeMapping style="Java" encoding="Java"/>?

<format:typeMap name="qname" formatType="nmtoken"/>*
</format:typeMapping>
<operation>*

<ejb:operation
methodName="nmtoken"
parameterOrder="nmtoken"
returnPart="nmtoken"?
interface="remote|home"/>

<input name="nmtoken"? />?
<output name="nmtoken"? />?
<fault name="nmtoken"? />?

</operation>
</binding>

where ″?″ means ″optional″ and ″*″ means ″0 or more″.

Note:

520 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v The format:typeMap name attribute is a qualified name of a simpleType or
complexType used by one of the EJB operations.

v The format:typeMap formatType attribute is the fully qualified Class name for
the Java Class that the element specified by name maps to.

v The ejb:operation methodName attribute is the name of the method on the
enterprise bean that will be called by the operation.

v The ejb:operation parameterOrder attribute contains a whitespace-separated list
of part names which define the order in which they are passed to the EJB
method.

v The ejb:operation interface attribute must be set to either ″remote″ or ″home″.
The value specifies the interface of the enterprise bean on which the method
named by the method attribute is accessible.
<service ... >

<port>*
<ejb:address

className="nmtoken"
jndiName="nmtoken"
initialContextFactory="nmtoken" ?
jndiProviderURL="nmtoken" ? />

</port>
</service>

Note:

v The ejb:address className attribute specifies the fully qualified class name
home interface class of the enterprise bean.

v The ejb:address jndiName attribute specifies the full JNDI name which is used
to look up the enterprise bean.

v The ejb:address initialContextFactory attribute is optional and specifies the
initial context factory class.

v The ejb:address jndiProviderURL attribute is optional and specifies the jndi
provider URL

Developing a WSIF service
A WSIF service is a Web service that uses WSIF. To develop a WSIF service, you
first develop the Web service (or use an existing Web service), then develop the
WSIF client based on the WSDL document for that Web service.

There are also two pre-built WSIF samples available for download from the
Samples Central
(http://www.ibm.com/websphere/developer/library/samples/AppServer.html)
page of the IBM WebSphere Developer Domain Web site. These are as follows:
v The Address Book sample.
v The Stock Quote sample.

For more information on using the pre-built samples, see the documentation that is
included in the download package.

To develop a WSIF service, complete the following steps:

Steps for this task
1. Develop the Web service.

Use Web services tools to discover, create, and publish the Web service. You can
develop Java bean, enterprise bean, and URL Web services. You can use Web
service tools to create a skeleton Java bean and a sample application from a

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 521

WSDL document. For example, an enterprise bean can be offered as a Web
service, using RMI/IIOP as the access protocol. Or you can use a Java class as a
Web service, with native Java invocations as the access protocol.
You can use the WebSphere Studio Application Developer to create a Web
service from a Java bean, as described in its StockQuote service tutorial. The
bean that you use in this scenario returns the last trading price from the
Internet Web site www.xmltoday.com given a stock symbol. Using the Web
Service wizard, you generate a binding WSDL document named
StockQuoteService-binding.wsdl and a service WSDL document named
StockQuoteService-service.wsdl from the bean StockQuoteService.java. You then
deploy the Web service to a Web server, generate a client proxy to the Web
service, and generate a sample application that accesses the StockQuoteService
through the client proxy. You test the StockQuote Web service, publish it using
the IBM UDDI Explorer, and then discover the StockQuote Web service in the
IBM UDDI Test Registry.

2. Develop the WSIF client.
The information you need to develop a WSIF client is given in the following
topics:
v Developing the WSIF client - the Address Book sample gives example code

to show how you define a Web service in WSDL.
v Using the WSIF providers describes the available providers, and gives

example code of how their WSDL extensions are coded.
v WSIF API defines the main interfaces that your client uses to support the

invocation of Web services defined in WSDL.

Note: The Address Book sample is written for synchronous interaction. If you
are using a JMS provider, your WSIF client might need to act asynchronously.
WSIF provides two main features that meet this requirement:
v A correlation service that assigns identifiers to messages so that the request

can be matched up with the (eventual) response.
v A response handler that picks up the response from the Web service at a

later time.

For more information see the WSIF API topic WSIFOperation - Asynchronous
interactions reference.

Developing the WSIF client - the Address Book sample
The following code fragments show you how to use the WSIF API to invoke the
AddressBook sample Web service dynamically.

Usage scenario

This is example code for dynamic invocation of the AddressBook sample Web
service using WSIF:

try {
String wsdlLocation="clients/addressbook/AddressBookSample.wsdl";

// The starting point for any dynamic invocation using wsif is a
// WSIFServiceFactory. We create ourselves one via the newInstance
// method.
WSIFServiceFactory factory = WSIFServiceFactory.newInstance();

// Once we have a factory, we can use it to create a WSIFService object
// corresponding to the AddressBookService service in the wsdl file.
// Note: since we only have one service defined in the wsdl file, we
// do not need to use the namespace and name of the service and can pass
// null instead. This also applies to the port type, although values have

522 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

// been used below for illustrative purposes.
WSIFService service = factory.getService(

wsdlLocation, // location of the wsdl file
null, // service namespace
null, // service name
"http://www.ibm.com/namespace/wsif/samples/ab", // port type namespace
"AddressBookPT" // port type name

);

// The AddressBook.wsdl file contains the definitions for two complexType
// elements within the schema element. We will now map these complexTypes
// to Java classes. These mappings are used by the Apache SOAP provider
service.mapType(

new javax.xml.namespace.QName(
"http://www.ibm.com/namespace/wsif/samples/ab/types",
"address"),

Class.forName("com.ibm.www.namespace.wsif.samples.ab.types.WSIFAddress"));
service.mapType(

new javax.xml.namespace.QName(
"http://www.ibm.com/namespace/wsif/samples/ab/types",
"phone"),

Class.forName("com.ibm.www.namespace.wsif.samples.ab.types.WSIFPhone"));
// We now have a WSIFService object. The next step is to create a WSIFPort
// object for the port we wish to use. The getPort(String portName) method
// allows us to generate a WSIFPort from the port name.

WSIFPort port = null;

if (portName != null) {
port = service.getPort(portName);

}
if (port == null) {

// If no port name was specified, attempt to create a WSIFPort from
// the available ports for the port type specified on the service
port = getPortFromAvailablePortNames(service);

}

// Once we have a WSIFPort, we can create an operation. We are going to execute
// the addEntry operation and therefore we attempt to create a WSIFOperation
// corresponding to it. The addEntry operation is overloaded in the wsdl ie.

// there are two versions of it, each taking different parameters (parts).
// This overloading requires that we specify the input and output message
// names for the operation in the createOperation method so that the correct
// operation can be resolved.

// Since the addEntry operation has no output message, we use null for its name.
WSIFOperation operation =

port.createOperation("addEntry", "AddEntryWholeNameRequest", null);

// Create messages to use in the execution of the operation. This should
// be done by invoking the createXXXXXMessage methods on the WSIFOperation.
WSIFMessage inputMessage = operation.createInputMessage();
WSIFMessage outputMessage = operation.createOutputMessage();
WSIFMessage faultMessage = operation.createFaultMessage();

// Create a name and address to add to the addressbook
String nameToAdd="Chris P. Bacon";
WSIFAddress addressToAdd =

new WSIFAddress (1,
"The Waterfront",
"Some City",
"NY",
47907,
new WSIFPhone (765, "494", "4900"));

// Add the name and address to the input message
inputMessage.setObjectPart("name", nameToAdd);
inputMessage.setObjectPart("address", addressToAdd);

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 523

// Execute the operation, obtaining a flag to indicate its success
boolean operationSucceeded =

operation.executeRequestResponseOperation(
inputMessage,
outputMessage,
faultMessage);

if (operationSucceeded) {
System.out.println("Successfully added name and address to addressbook\n");

} else {
System.out.println("Failed to add name and address to addressbook");

}

// Start from fresh
operation = null;
inputMessage = null;
outputMessage = null;
faultMessage = null;

// This time we will lookup an address from the addressbook.
// The getAddressFromName operation is not overloaded in the
// wsdl and therefore we can simply specify the operation name
// without any input or output message names.
operation = port.createOperation("getAddressFromName");

// Create the messages
inputMessage = operation.createInputMessage();
outputMessage = operation.createOutputMessage();
faultMessage = operation.createFaultMessage();

// Set the name to find in the addressbook
String nameToLookup="Chris P. Bacon";
inputMessage.setObjectPart("name", nameToLookup);

// Execute the operation
operationSucceeded =

operation.executeRequestResponseOperation(
inputMessage,
outputMessage,
faultMessage);

if (operationSucceeded) {
System.out.println("Successful lookup of name ’"+nameToLookup+"’ in addressbook");

// We can obtain the address that was found by querying the output message
WSIFAddress addressFound = (WSIFAddress) outputMessage.getObjectPart("address");
System.out.println("The address found was:");
System.out.println(addressFound);

} else {
System.out.println("Failed to lookup name in addressbook");

}

} catch (Exception e) {
System.out.println("An exception occurred when running the sample:");
e.printStackTrace();

}
}

The code above refers to the following sample method:
WSIFPort getPortFromAvailablePortNames(WSIFService service)

throws WSIFException {
String portChosen = null;

// Obtain a list of the available port names for the service
Iterator it = service.getAvailablePortNames();
{

524 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

System.out.println("Available ports for the service are: ");
while (it.hasNext()) {

String nextPort = (String) it.next();
if (portChosen == null)

portChosen = nextPort;
System.out.println(" - " + nextPort);

}
}
if (portChosen == null) {

throw new WSIFException("No ports found for the service!");
}
System.out.println("Using port " + portChosen + "\n");

// An alternative way of specifying the port to use on the service
// is to use the setPreferredPort method. Once a preferred port has
// been set on the service, a WSIFPort can be obtained via getPort
// (no arguments). If a preferred port has not been set and more than
// one port is available for the port type specified in the WSIFService,
// an exception is thrown.
service.setPreferredPort(portChosen);
WSIFPort port = service.getPort();
return port;

}

The web service itself uses the following classes:

WSIFAddress:
public class WSIFAddress implements Serializable {

//instance variables
private int streetNum;
private java.lang.String streetName;
private java.lang.String city;
private java.lang.String state;
private int zip;
private WSIFPhone phoneNumber;

//constructors
public WSIFAddress () { }

public WSIFAddress (int streetNum,
java.lang.String streetName,
java.lang.String city,
java.lang.String state,
int zip,
WSIFPhone phoneNumber) {

this.streetNum = streetNum;
this.streetName = streetName;
this.city = city;
this.state = state;
this.zip = zip;
this.phoneNumber = phoneNumber;

}

public int getStreetNum() {
return streetNum;

}

public void setStreetNum(int streetNum) {
this.streetNum = streetNum;

}

public java.lang.String getStreetName() {
return streetName;

}

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 525

public void setStreetName(java.lang.String streetName) {
this.streetName = streetName;

}

public java.lang.String getCity() {
return city;

}

public void setCity(java.lang.String city) {
this.city = city;

}

public java.lang.String getState() {
return state;

}

public void setState(java.lang.String state) {
this.state = state;

}

public int getZip() {
return zip;

}

public void setZip(int zip) {
this.zip = zip;

}

public WSIFPhone getPhoneNumber() {
return phoneNumber;

}

public void setPhoneNumber(WSIFPhone phoneNumber) {
this.phoneNumber = phoneNumber;

}
}

WSIFPhone:
public class WSIFPhone implements Serializable {

//instance variables
private int areaCode;
private java.lang.String exchange;
private java.lang.String number;

//constructors
public WSIFPhone () { }

public WSIFPhone (int areaCode,
java.lang.String exchange,
java.lang.String number) {

this.areaCode = areaCode;
this.exchange = exchange;
this.number = number;

}

public int getAreaCode() {
return areaCode;

}

public void setAreaCode(int areaCode) {
this.areaCode = areaCode;

}

public java.lang.String getExchange() {
return exchange;

526 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

}

public void setExchange(java.lang.String exchange) {
this.exchange = exchange;

}

public java.lang.String getNumber() {
return number;

}

public void setNumber(java.lang.String number) {
this.number = number;

}
}

WSIFAddressBook:
public class WSIFAddressBook {

private Hashtable name2AddressTable = new Hashtable();

public WSIFAddressBook() {
}

public void addEntry(String name, WSIFAddress address)
{

name2AddressTable.put(name, address);
}

public void addEntry(String firstName, String lastName, WSIFAddress address)
{

name2AddressTable.put(firstName+" "+lastName, address);
}

public WSIFAddress getAddressFromName(String name)
throws IllegalArgumentException

{

if (name == null)
{

throw new IllegalArgumentException("The name argument must not be " +
"null.");

}
return (WSIFAddress)name2AddressTable.get(name);

}

}

And here’s the corresponding WSDL file for the Web service:
<?xml version="1.0" ?>

<definitions targetNamespace="http://www.ibm.com/namespace/wsif/samples/ab"
xmlns:tns="http://www.ibm.com/namespace/wsif/samples/ab"
xmlns:typens="http://www.ibm.com/namespace/wsif/samples/ab/types"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:format="http://schemas.xmlsoap.org/wsdl/formatbinding/"
xmlns:java="http://schemas.xmlsoap.org/wsdl/java/"
xmlns:ejb="http://schemas.xmlsoap.org/wsdl/ejb/"
xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>
<xsd:schema

targetNamespace="http://www.ibm.com/namespace/wsif/samples/ab/types"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:complexType name="phone">
<xsd:element name="areaCode" type="xsd:int"/>

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 527

<xsd:element name="exchange" type="xsd:string"/>
<xsd:element name="number" type="xsd:string"/>

</xsd:complexType>

<xsd:complexType name="address">
<xsd:element name="streetNum" type="xsd:int"/>
<xsd:element name="streetName" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:int"/>
<xsd:element name="phoneNumber" type="typens:phone"/>

</xsd:complexType>

</xsd:schema>
</types>

<message name="AddEntryWholeNameRequestMessage">
<part name="name" type="xsd:string"/>
<part name="address" type="typens:address"/>

</message>

<message name="AddEntryFirstAndLastNamesRequestMessage">
<part name="firstName" type="xsd:string"/>
<part name="lastName" type="xsd:string"/>
<part name="address" type="typens:address"/>

</message>

<message name="GetAddressFromNameRequestMessage">
<part name="name" type="xsd:string"/>

</message>

<message name="GetAddressFromNameResponseMessage">
<part name="address" type="typens:address"/>

</message>

<portType name="AddressBookPT">
<operation name="addEntry">

<input name="AddEntryWholeNameRequest"
message="tns:AddEntryWholeNameRequestMessage"/>

</operation>
<operation name="addEntry">

<input name="AddEntryFirstAndLastNamesRequest"
message="tns:AddEntryFirstAndLastNamesRequestMessage"/>

</operation>
<operation name="getAddressFromName">

<input name="GetAddressFromNameRequest"
message="tns:GetAddressFromNameRequestMessage"/>
<output name="GetAddressFromNameResponse"

message="tns:GetAddressFromNameResponseMessage"/>
</operation>

</portType>

<binding name="SOAPHttpBinding" type="tns:AddressBookPT">
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="addEntry">

<soap:operation soapAction=""/>
<input name="AddEntryWholeNameRequest">

<soap:body use="encoded"
namespace="http://www.ibm.com/namespace/wsif/samples/ab"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
</operation>
<operation name="addEntry">

<soap:operation soapAction=""/>
<input name="AddEntryFirstAndLastNamesRequest">

<soap:body use="encoded"

528 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

namespace="http://www.ibm.com/namespace/wsif/samples/ab"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
</operation>
<operation name="getAddressFromName">

<soap:operation soapAction=""/>
<input name="GetAddressFromNameRequest">

<soap:body use="encoded"
namespace="http://www.ibm.com/namespace/wsif/samples/ab"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</input>
<output name="GetAddressFromNameResponse">

<soap:body use="encoded"
namespace="http://www.ibm.com/namespace/wsif/samples/ab"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>

<binding name="JavaBinding" type="tns:AddressBookPT">
<java:binding/>
<format:typeMapping encoding="Java" style="Java">

<format:typeMap typeName="typens:address"
formatType="com.ibm.www.namespace.wsif.samples.ab.types.WSIFAddress"/>

<format:typeMap typeName="xsd:string" formatType="java.lang.String"/>
</format:typeMapping>
<operation name="addEntry">

<java:operation
methodName="addEntry"
parameterOrder="name address"
methodType="instance"/>

<input name="AddEntryWholeNameRequest"/>
</operation>
<operation name="addEntry">

<java:operation
methodName="addEntry"
parameterOrder="firstName lastName address"
methodType="instance"/>

<input name="AddEntryFirstAndLastNamesRequest"/>
</operation>
<operation name="getAddressFromName">

<java:operation
methodName="getAddressFromName"
parameterOrder="name"
methodType="instance"
returnPart="address"/>

<input name="GetAddressFromNameRequest"/>
<output name="GetAddressFromNameResponse"/>

</operation>
</binding>

<binding name="EJBBinding" type="tns:AddressBookPT">
<ejb:binding/>
<format:typeMapping encoding="Java" style="Java">

<format:typeMap typeName="typens:address"
formatType="com.ibm.www.namespace.wsif.samples.ab.types.WSIFAddress"/>

<format:typeMap typeName="xsd:string" formatType="java.lang.String"/>
</format:typeMapping>
<operation name="addEntry">

<ejb:operation
methodName="addEntry"
parameterOrder="name address"
interface="remote"/>

<input name="AddEntryWholeNameRequest"/>
</operation>
<operation name="addEntry">

<ejb:operation

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 529

methodName="addEntry"
parameterOrder="firstName lastName address"
interface="remote"/>

<input name="AddEntryFirstAndLastNamesRequest"/>
</operation>
<operation name="getAddressFromName">

<ejb:operation
methodName="getAddressFromName"
parameterOrder="name"
interface="remote"
returnPart="address"/>

<input name="GetAddressFromNameRequest"/>
<output name="GetAddressFromNameResponse"/>

</operation>
</binding>
<service name="AddressBookService">

<port name="SOAPPort" binding="tns:SOAPHttpBinding">
<soap:address
location="http://localhost/wsif/samples/addressbook/soap/servlet/rpcrouter"/>

</port>
<port name="JavaPort" binding="tns:JavaBinding">

<java:address className="services.addressbook.WSIFAddressBook"/>
</port>
<port name="EJBPort" binding="tns:EJBBinding">

<ejb:address className="services.addressbook.ejb.AddressBookHome"
jndiName="ejb/samples/wsif/AddressBook"

classLoader="services.addressbook.ejb.AddressBook.ClassLoader"/>
</port>

</service>

</definitions>

Using complex types
WSIF supports the use of user-defined complex types through the mapping of
complex types to Java classes. This mapping can be specified manually or
automatically as described in the sections below:
v “Manual mapping of complex types”

v
5.0.2 “Automatic mapping of complex types” on page 531

Note: Any calls to the WSIFService mapType and mapPackage methods used for
manual mapping will override any equivalent mapping information that is
produced automatically. This helps to maintain backwards compatibility, and also
allows for less standard mappings.

Manual mapping of complex types
The method to use to create these mappings by hand depends on the provider
being used. For the Java and EJB providers, the mappings are specified in the wsdl
file in the binding element. The syntax for specifying the mapping is as follows:

<binding >
<ejb:binding|java:binding/>

<format:typeMapping style="Java" encoding="Java"/>?
<format:typeMap name="qname" formatType="nmtoken"/>*

</format:typeMapping>
...
</binding>

where ″?″ means ″optional″ and ″*″ means ″0 or more″.

The format:typeMap name attribute is a qualified name of a complex type or
simple type used by one of the operations.

530 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The format:typeMap formatType attribute is the fully qualified Class name for the
Java Class that the element specified by name maps to.

If using the Apache SOAP provider then the mapping of a complex type to a Java
Class is specified in the client code through two methods on the
org.apache.wsif.WSIFService interface:
public void mapType(QName elementType, Class javaType)

and
public void mapPackage(String namespaceURI, String packageName)

The mapType allows the user to specify a mapping between a WSDL element and
method takes a QName representing the complex type or simple type and the
corresponding Java Class it maps to.

The mapPackage method allows the user to specify a more general mapping
between a namespace and a Java package. Any custom complex or simple types
whose namespace matches that of the mapping will be mapped to a Java Class in
the corresponding package. The name of the actual class is derived from the name
of the complex type using standard xml to Java naming conventions.

Automatic mapping of complex types
5.0.2

For complex types defined in the WSDL, where a generated bean is used to
represent this in Java, the WSIF programming model requires that a call is made to
WSIFService.mapType(). This call tells WSIF the package and class name of the
bean representing the XML schema type that is identified with a QName. To make
things easier, WSIFService.mapPackage() provides a mechanism to specify a
wildcard version of this, where any class within a specified package is mapped to
the namespace of a QName. This is a mechanism for manually mapping an XML
schema type to a Java class and back again (one mapping entry provides a
bi-directional mapping).

There are many ways of converting a QName representing an XML schema type
name to a Java package name and class. By default, the WSIFServiceFactory does
not automatically map types. To enable this feature, set the
WSIF_FEATURE_AUTO_MAP_TYPES feature on the WSIFServiceFactory instance:
WSIFServiceFactory factory = WSIFServiceFactory.newInstance();
factory.setFeature(WSIFConstants.WSIF_FEATURE_AUTO_MAP_TYPES, new Boolean(true));

WSIF maps types by converting the XML Schema type QName URI part to a
package name, and localpart to a class name. It does this using the WSIFUtils
methods getPackageNameFromNamespaceURI and getJavaClassNameFromXMLName.

Using JNDI
This example task shows you how to use WSIF to bind a reference to a Web
service, then look up the reference using JNDI.

You access a Web service through information given in the WSDL document for
the service. If you don’t know where to find the WSDL document for the service,
but you know that it has been registered in a UDDI registry, you look it up in the
registry. Java programs access java objects and resources in a similar manner, but
using a JNDI interface.

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 531

The following example shows how, using WSIF, you can bind a reference to a Web
service then look up the reference using JNDI.

Usage scenario

Specifying the argument values for the Web service

The Web service is represented in WSIF by an instance of the
org.apache.wsif.naming.WSIFServiceRef class. This simple Referenceable object
has the following constructor:
public WSIFServiceRef(

String WSDL,
String sNS,
String sName,
String ptNS,
String ptName)

{
[...]

}

where
v WSDL is the location of the WSDL file containing the definition of the service.
v sNS is the full namespace for the service definition (null can be specified if only

one service is defined in the WSDL file).
v sName is the local name for the service definition (null can be specified if only

one service is defined in the WSDL file).
v ptNS is the full namespace for the port type within the service that you want to

use (null can be specified if only one port type is available for the service).
v ptName is the local name for the port type (null can be specified if only one port

type is available for the service).

For example, if the WSDL file for the Web service is available from the URL
http://localhost/WSDL/Example.WSDL and contains the following service and port
type definitions -

<definitions targetNamespace="http://hostname/namespace/example"
xmlns:abc="http://hostname/namespace/abc"

[...]
<portType name="ExamplePT">

<operation name="exampleOp">
<input name="exampleInput" message="tns:ExampleInputMsg"/>

</operation>
</portType>

[...]
<service name="abc:ExampleService">

[...]
</service>

[...]
</definitions>

- then you specify the following argument values for WSIFServiceRef:
v WSDL is http://localhost/WSDL/Example.WSDL

v sNS is http://hostname/namespace/abc

v sName is ExampleService

v ptNS is http://hostname/namespace/example

v ptName is ExamplePT

Binding the service using JNDI

532 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

To bind the service reference in the naming directory using JNDI, you can use the
WebSphere Application Server JndiHelper com.ibm.websphere.naming.JndiHelper
class as follows:
[...]

import com.ibm.websphere.naming.JndiHelper;
import org.apache.wsif.naming.*;

[...]
try {

Context startingContext = new InitialContext();
WSIFServiceRef ref = new WSIFServiceRef("http://localhost/WSDL/Example.WSDL,

"http://localhost/WSDL/Example.WSDL",
"http://hostname/namespace/abc"
"ExampleService",
"http://hostname/namespace/example",
"ExamplePT");

JndiHelper.recursiveRebind(startingContext,
"myContext/mySubContext/myServiceRef", ref);

}
catch (NamingException e) {

// Handle error.
}

[...]

Looking up the service using JNDI

The following code fragment shows the lookup of a service using JNDI:
[...]

try {
[...]

InitialContext ic = new InitialContext();
WSIFService myService =
(WSIFService) ic.lookup("myContext/mySubContext/myServiceRef");

[...]
}
catch (NamingException e) {

// Handle error.
}

[...]

Passing SOAP messages with attachments using WSIF
The W3C SOAP Messages with Attachments(http://www.w3.org/TR/SOAP-
attachments) document describes a standard way to associate a SOAP message
with one or more attachments in their native format (for example GIF or JPEG) by
using a multipart MIME structure for transport. It defines specific usage of the
Multipart/Related MIME media type, and rules for the usage of URI references to
refer to entities bundled within the MIME package. It thereby outlines a technique
for a SOAP 1.1 (http://www.w3.org/TR/SOAP/) message to be carried within a
MIME multipart/related message in such a way that the SOAP processing rules for
a standard SOAP message are not changed.

WSIF supports passing attachments in a MIME message using the SOAP provider.
The attachment is a javax.activation.DataHandler. The mime:multipartRelated,
mime:part and mime:content tags are used to describe the attachment in the WSDL.

For more information, see the following topics:
v SOAP messages with attachments - writing the WSDL extensions.
v SOAP messages with attachments - passing attachments to WSI.
v SOAP messages with attachments - types and type mappings.

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 533

Note: The following scenarios are not supported:
v Using DIME.
v Passing in javax.xml.transform.Source and

javax.mail.internet.MimeMultipart.
v Using the mime:mimeXml WSDL tag.
v Nesting a mime:multipartRelated inside a mime:part.
v Using types that extend DataHandler, Image, and so forth.
v Using types that contain DataHandler, Image, and so forth.
v Using Arrays or Vectors of DataHandlers, Images, and so forth.
v Using multiple in/out or output attachments.

The MIME headers from the incoming message are not preserved for referenced
attachments. The outgoing message contains new MIME headers for Content-Type,
Content-Id and Content-Transfer-Encoding that are created by WSIF.

SOAP messages with attachments - writing the WSDL extensions
Usage scenario

The following WSDL illustrates a simple operation that has one attachment called
attch:
<binding name="MyBinding" type="tns:abc" >

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="MyOperation">

<soap:operation soapAction=""/>
<input>

<mime:multipartRelated>
<mime:part>

<soap:body use="encoded" namespace="http://mynamespace"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding"/>

</mime:part>
<mime:part>

<mime:content part="attch" type="text/html"/>
</mime:part>

</mime:multipartRelated>
</input>

</operation>
</binding>

Note:

v There must be a part (in this example attch) on the input message for the
operation (in this example MyOperation). There can be other input parts to
MyOperation that are not attachments.

v In the binding input there must either be a <soap:body tag or a
<mime:multipartRelated tag, but not both.

v For MIME messages, the soap:body is inside a mime:part. There must only be
one mime:part that contains a soap:body in the binding input and that must not
contain a mime:content as well, because a content type of text/xml is assumed
for the soap:body.

v There can be multiple attachments in a MIME message, each described by a
mime:part.

v Each mime:part (that is not a soap:body) contains a mime:content that describes
the attachment itself. The type attribute inside the mime:content is not checked
or used by WSIF. It is there to suggest to the application using WSIF what the
attachment contains. Multiple mime:contents inside a single mime:part means

534 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

that the backend service will expect a single attachment with a type specified by
one of the mime:contents inside that mime:part.

v The parts=″...″ attribute (optional) inside the soap:body is assumed to contain
the names of all the MIME parts as well as the names of all the SOAP parts in
the message.

SOAP messages with attachments - passing attachments to
WSIF
Usage scenario

The following code fragment could invoke the service described by the example
WSDL given in writing the WSDL extensions:
import javax.activation.DataHandler;
. . .
DataHandler dh = new DataHandler(new FileDataSource("myimage.jpg"));
WSIFServiceFactory factory = WSIFServiceFactory.newInstance();
WSIFService service =

factory.getService("my.wsdl",null,null,"http://mynamespace","abc");
WSIFOperation op = service.getPort().createOperation("MyOperation");
WSIFMessage in = op.createInputMessage();
in.setObjectPart("attch",dh);
op.executeInputOnlyOperation(in);

The associated type mapping in the DeploymentDescriptor.xml file depends upon
your SOAP server. For example if you use Tomcat with SOAP 2.3, then
DeploymentDescriptor.xml contains the following type mapping:
<isd:mappings>
<isd:map encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:x="http://mynamespace"
qname="x:datahandler"
javaType="javax.activation.DataHandler"
java2XMLClassName="org.apache.soap.encoding.soapenc.MimePartSerializer"
xml2JavaClassName="org.apache.soap.encoding.soapenc.MimePartSerializer"/>
</isd:mappings>

In this case, the backend service is invoked with the following signature:
public void MyOperation(DataHandler dh);

Attachments can also be passed in to WSIF using stubs:
DataHandler dh = new DataHandler(new FileDataSource("myimage.jpg"));
WSIFServiceFactory factory = WSIFServiceFactory.newInstance();
WSIFService service =

factory.getService("my.wsdl",null,null,"http://mynamespace","abc");
MyInterface stub = (MyInterface)service.getStub(MyInterface.class);
stub.MyOperation(dh);

Attachments can also be returned from an operation, but at present only one
attachment can be returned as the return parameter.

SOAP messages with attachments - types and type mappings
By default, attachments are passed into WSIF as DataHandlers. If the part on the
message which is the DataHandler maps to a mime:part in the WSDL, then WSIF
will automatically map the fully qualified name of the WSDL type to
DataHandler.class and set up that type mapping with the SOAP provider.

In your WSDL, you might have defined a schema for the attachment (for instance
as a binary[]). Whether or not you have done this, WSIF silently ignores this
mapping and treats the attachment as a DataHandler, unless you have explicitly

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 535

issued mapType(). WSIF lets the SOAP provider set the MIME content type based
on the type of the DataHandler, instead of the mime:content type specified in the
WSDL.

Interacting with the WebSphere J2EE container
Interaction with a container is limited to the following aspects:

Steps for this task
1. The WebSphere Application Server administrative console and WCCM allow

users to define Web services to WebSphere. This is described in Using JNDI
and WSIF system management and administration. As part of the definition of
a service, the administrator may define a ″Preferred Port″.

2. WSIF makes log and trace calls to the WebSphere Server JRAS services, as
described in Trace and logging for WSIF.

3. Some providers use the J2EE programming model to utilize J2EE services. The
EJB provider uses JNDI and calls to remote EJBs.

4. WSIF wraps the use of container services so that when WSIF is run in an
unmanaged (thin) environment, the operation can succeed.

Running WSIF as a client
WSIF runs in the WebSphere Application Server application client container, and in
similar clients from other suppliers.

To simplify the process of launching client applications in the WebSphere
Application Server application client, use the launchClient tool as described in
(Running application clients).

WSIF system management and administration
WSIF is provided as a stand-alone JAR file called wsif.jar. The JAR file contains
the core WSIF classes, and the Java, EJB, SOAP over HTTP and SOAP over JMS
providers. Additional providers are packaged as separate JAR files.

When you install WebSphere Application Server, wsif.jar is put on the WebSphere
or JVM class path.

WSIF requires no further configuration. WSIF is a thin abstraction layer between
application code and the relevant invocation infrastructure.

For specific information on other aspects of managing your WSIF system, see the
following topics:
v Maintaining the WSIF properties file.
v Enabling security for WSIF.
v Trace and logging for WSIF.
v WSIF troubleshooting tips.
v WSIF (Web Services Invocation Framework) messages.

Maintaining the WSIF properties file
WSIF properties are stored in a properties file (in wsif.jar) called wsif.properties.
This file is kept on the class path, so that WSIF can find it and the client
administrator can use it to configure WSIF.

536 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The initial contents of wsif.properties are printed out below. All the possible
properties are listed and described.

Usage scenario
Two properties are used to override which WSIFProvider is selected when there
exists multiple providers supporting the same namespace URI. These properties are:
#
wsif.provider.default.CLASSNAME=N
wsif.provider.uri.M.CLASSNAME=URI
#
CLASSNAME is the WSIFProvider class name
N is the number of following default wsif.provider.uri.M.CLASSNAME properties
M is a number from 1 to N to uniquely identify each wsif.provider.uri.M.CLASSNAME
property key.
For example the following two properties would override the default SOAP provider
to be the Apache SOAP provider:
#
wsif.provider.default.org.apache.wsif.providers.soap.ApacheSOAP.WSIFDynamicProvider_ApacheSOAP=1
wsif.provider.uri.1.org.apache.wsif.providers.soap.ApacheSOAP.WSIFDynamicProvider_ApacheSOAP=\
http://schemas.xmlsoap.org/wsdl/soap/
#

maximum number of milliseconds to wait for a response to a synchronous request.
Default value if not defined is to wait forever.
wsif.syncrequest.timeout=10000

maximum number of seconds to wait for a response to an async request.
if not defined on invalid defaults to no timeout
wsif.asyncrequest.timeout=60

Enabling security for WSIF
WSIF interacts with a security manager as follows:
v WSIF runs in the current J2EE security context without modifying it.
v When WSIF is run under a J2EE container, Port implementations can utilize

security context to pass on security tokens or credentials as necessary.
v WSIF implementations can automatically convert J2EE security context into

appropriate context for onward services.

For WSIF to interact effectively with the WebSphere Application Server’s security
manager, the following permissions must be set in the server.policy file:
v FilePermission to load the WSDL (this is only required when a WSDL file is

referred to using the file:/// protocol)
v RuntimePermission ″getClassLoader″ for the current thread’s context class loader

(this is not required by the EJB portion).
v RuntimePermission ″accessDeclaredMembers″ (this is required by both portions

for handling enterprise beans)
v PropertyPermission for system properties (this is required by SOAP and many

others; read and write access is required for the SOAP and Java portion, only
write access is required for the EJB portion)

v NetPermission ″specifyStreamHandler″ (this must be in either the SOAP and
Java portion, or the EJB portion, but it need not be in both).

v SocketPermission ″host_name″, ″resolve″ (this is not required by the SOAP and
Java portion)

v SocketPermission ″host_name:port_no″, ″connect″ (this is required by both
portions)

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 537

where host_name is your host name (for example localhost), and port_no is your
port number (for example 9080).

WSIF troubleshooting tips
For information on resolving WebSphere-level problems, see (Diagnosing and
fixing problems).

To identify and resolve WSIF-related problems, you can use the standard
WebSphere Application Server trace and logging facilities. If you encounter a
problem that you think might be related to WSIF, you can check for error messages
in the WebSphere Application Server administrative console, and in the application
server’s stdout.log file. You can also enable the application server debug trace to
provide a detailed exception dump.

A list of the WSIF runtime system messages, with details of what each message
means, is given in Message reference for WSIF.

Here is a checklist of major WSIF activities, with advice on common problems
associated with each activity:

Create service
Handcrafted WSDL can cause numerous problems. To help ensure that
your WSDL is valid, use a tool such as WebSphere Studio Application
Developer (WSAD) to create your service.

Define transport mechanism
For JMS, check that you have set up JNDI correctly, and created all the
necessary queues.

For SOAP, make sure that the deployment descriptor (dds.xml) is correct -
preferably by creating it using WSAD or similar tooling.

Create client - Java code
Follow the correct format for creating a WSIF service, port, operation and
message. For examples of correct code, see the Address Book sample.

Compile code (client and service)
Check that the build path against code is correct, and that it contains the
correct levels of JAR files.

Create a valid EAR file for your service in preparation for deployment to a
web server.

Deploy service
When you install and deploy the service EAR file, check carefully any
messages given when the service is deployed.

Server setup and start
Make sure that the WebSphere Application Server file server.policy (in
the /properties directory) has the correct security settings within it. For
more information see Enabling security for WSIF.

WSIF setup
Check that file wsif.properties is correctly set up. For more information
see Maintaining the WSIF properties file.

Run client
Either check that you have defined the class path correctly to include

538 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

references to your client classes, WSIF JAR files and any other necessary
JARs, or (preferably) run your client using the WebSphere Application
Server (launchClient) tool.

Here is a list of common errors, and information on their probable causes:

″No class definition″ errors received when running client code
This is likely to be a problem with the class path setup. Check that the
relevant JAR files are included.

″Can’t find WSDL″ error

Some likely causes are:
v The application server is not running.
v The server location and port number in the WSDL are not correct.
v The WSDL is badly formed (check the error messages in the application

server’s stdout.log file).
v The application server has not been restarted since the service was

installed.

You might also try the following checks:
v Can you load the WSDL into your Web browser from the location

specified in the error message?
v Can you load the corresponding WSDL binding files into your Web

browser?

Your Web service’s EAR file does not install correctly onto the application
server. It is likely that the EAR file is badly formed. Verify the installation by

completing the following steps:
v For an EJB binding, run the WebSphere Application Server tool

\bin\dumpnamespace. This tool lists the current contents of the JNDI
directory.

v For a SOAP over HTTP binding, open
http://pathToServer/WebServiceName/admin/list.jsp (if you have the
SOAP administration pages installed). This page lists all currently
installed Web services.

v For a SOAP over JMS binding, complete the following checks:
– Check that the Queue Manager is running.
– Check that the necessary queues are defined.
– Check the JNDI setup.
– Use the jmsadmin tool’s ″display context″ option to list the current

JNDI definitions.
– Check that the RPCrouter is running.

There is a permissions problem or security error.
Check that the WebSphere Application Server file server.policy (in the
/properties directory) has the correct security settings within it. For more
information see Enabling security for WSIF.

Using WSIF with multiple clients causes a SOAP parsing error.
Before you deploy a Web service to WebSphere Application Server, you
must decide on the Web service’s scope. The application’s deployment
descriptor file (dds.xml) includes the following line:

<isd:provider type="java" scope="Application"

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 539

You can set Scope to ″Application″ or ″Session″. The default setting is
″Application″, and this is correct if each request to the Web service does
not require objects to be maintained for longer than a single instance. If
Scope is set to ″Application″ the objects are not available to another request
during the execution of the single instance, and they are released on
completion. If your Web service needs objects to be maintained for
multiple requests, and to be unique within each request, you must set the
scope to ″Session″. If Scope is set to ″Session″, the objects are not available
to another request during the life of the session, and they are released on
completion of the session. If scope is set to ″Application″ but it should be
set to ″Session″, you might get the following SOAP error:
SOAPException: SOAP-ENV:ClientParsing error, response was:
FWK005 parse may not be called while parsing.;
nested exception is:

[SOAPException: faultCode=SOAP-ENV:Client; msg=Parsing error, response was:

FWK005 parse may not be called while parsing.;
targetException=org.xml.sax.SAXException:

FWK005 parse may not be called while parsing.]

Trace and logging for WSIF
If you want to enable trace for the WSIF API within WebSphere Application Server,
and have trace, stdout and stderr for the application server written to a
well-known location, see (Enabling trace).

WSIF offers tracepoints at opening and closing of Ports, invocation of services, and
responses from services.

To trace the WSIF API, you need to specify the following trace string:
wsif=all=enabled

WSIF also includes a SimpleLog utility through which you can run trace when
using WSIF outside of WebSphere Application Server. To enable this, complete the
following steps:

Steps for this task
1. Create the file commons-logging.properties with the following contents:

org.apache.commons.logging.LogFactory=org.apache.commons.logging.impl.LogFactoryImpl
org.apache.commons.logging.Log=org.apache.commons.logging.impl.SimpleLog

2. create file simplelog.properties with the following contents:
org.apache.commons.logging.simplelog.defaultlog=trace
org.apache.commons.logging.simplelog.showShortLogname=true
org.apache.commons.logging.simplelog.showdatetime=true

3. Put both these files, and commons-logging.jar, on the class path.

Results

The SimpleLog mechanism writes trace to file System.err.

WSIF (Web Services Invocation Framework) messages
WebSphere system messages are logged from a variety of sources, including
application server components and applications. Messages logged by application
server components and associated IBM products start with a unique message
identifier that indicates the component or application that issued the message. For
more information about the message identifier format, see the topic (Message
Format).

540 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The rest of this topic contains a list of the WSIF runtime system messages, with
details of what each message means.

WSIF0001E: An extension registry was not found for the element type ″{0}″
Explanation: Parameters: {0} element type. No extension registry was
found for the element type specified.

User Response: Add the appropriate extension registry to the port factory
in your code.

WSIF0002E: A failure occurred in loading WSDL from ″{0}″
Explanation: Parameters: {0} location of the WSDL file. The WSDL file
could not be found at the location specified or did not parse correctly

User Response: Check that the location of the WSDL file is correct. Check
that any network connections required are available. Check that the WSDL
file contains valid WSDL.

WSIF0003W: An error occurred finding pluggable providers: {0}
Explanation: Parameters: {0} specific details about the error. There was a
problem locating a WSIF pluggable provider using the J2SE 1.3 JAR file
extensions to support service providers architecture. The WSIF trace file
will contain the full exception details.

User Response: Verify that a META-
INF/services/org.apache.wsif.spi.WSIFProvider file exists in a provider jar,
that each class referenced in the META-INF file exists in the class path, and
that each class implements org.apache.wsif.spi.WSIFProvider. The class in
error will be ignored and WSIF will continue locating other pluggable
providers.

WSIF0004E: WSDL contains an operation type ″{0}″ which is not supported for
″{1}″ Explanation: Parameters: {0} name of the operation type specified. {1}

name of the portType for the operation. An operation type which is not
supported has been specified in the WSDL.

User Response: Remove any operations of the unsupported type from the
WSDL. If the operation is required then make sure all messages have been
correctly specified for the operation.

WSIF0005E: An error occurred when invoking the method ″{1}″ . (″{0}″)
Explanation: Parameters: {0} name of communication type. For example
EJB or Apache SOAP. {1} name of the method that failed. An error was
encountered when invoking a method on the web service using the
communication shown in brackets.

User Response: Check that the method exists on the web service and that
the correct parts have been added to the operation as described in the
WSDL. Network problems might be a cause if the method is remote and so
check any required connections.

WSIF0006W: Multiple WSIFProvider found supporting the same namespace URI
″{0}″ . Found (″{1}″)

Explanation: Parameters: {0} the namespace URI. {1} a list of the
WSIFProvider found.. There are multiple org.apache.wsif.spi.WSIFProvider
classes in the service provider path that support the same namespace URI.

User Response: A following WSIF0007I message will be issued notifying
which WSIPFProvider will be used. Which WSIFProvider is chosen is
based on settings in the wsif.properties file, or if not defined in the
properties, the last WSIFProvider found will be used. See the

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 541

wsif.properties file for more details on how to define which provider
should be used to support a namespace URI.

WSIF0007I: Using WSIFProvider ″{0}″ for namespaceURI ″{1}″
Explanation: Parameters: {0} the classname of the WSIFProvider being
used. {1} the namespaceURI the provider will be used to support.. Either a
previous WSIF0006W message has been issued or the
SetDynamicWSIFProvider method has been used to override the provider
used to support a namespaceURI.

User Response: None. See also WSIF0006W.

WSIF0008W: WSIFDefaultCorrelationService removing correlator due to timeout.
ID:″{0}″

Explanation: Parameters: {0} the id of the correlator being removed from
the correlation service. A stored correlator is being removed from the
correlation service due to its timeout expiring.

User Response: Determine why no response has been received for the
asynchronous request within the timeout period. The
wsif.asyncrequest.timeout property of the wsif.properties file defines the
length of the timeout period.

WSIF0009I: Using correlation service - ″{0}″
Explanation: Parameters: {0} the name of the correlation service being
used. This identifies the name of the correlation service that will be used to
prccess asynchronous requests.

User Response: None. If a correlation service other than the default WSIF
supplied one is required, ensure that it is correctly registered in the JNDI
java:comp/wsif/WSIFCorrelationService namespace.

WSIF0010E: Exception thrown while processing asynchronous response - ″{0}″
Explanation: Parameters: {0} the error message string of the exception.
While processing the response from an executeRequestResponseAsync call
an exception was thrown.

User Response: Use the exception error message string to determine the
cause of the error. The WSIF trace will have more details on the error
including the exception stack trace.

WSIF0011I: Preferred port ″{0}″ was not available
Explanation: Parameters: {0} the user’s preferred port. The preferred port
set by the user on org.apache.wsif.WSIFService is not available

User Response: None unless this message appears for long periods of time
in which case the user might want to pick a different port as their
preferred port.

WSIF API
The WSIF API supports the invocation of Services defined in WSDL. WSIF is
intended to be used in both WSIF clients and also in Web service intermediaries.

The WSIF API is driven by the abstract service description in WSDL; it is
completely independent of the actual binding used. This makes the API more
natural to work with, because it uses WSDL terms to refer to message parts,
operations, and so on.

The WSIF API was designed for the WSDL usage model; to pick a port that
supports the port type needed, then invoke the operation by providing the

542 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

necessary abstract input message consisting of the required parts, without
worrying about how the message is mapped to a specific binding protocol.

Other Web service APIs, for example SOAP APIs, are not designed on WSDL, but
for a specific binding protocol with its associated syntax; for example, target URIs
and encoding styles.

The WSIF API’s main interfaces are described in the following topics:
v Creating a message for sending to a port (the WSIFMessage interface).
v WSIF API reference: Finding a port factory or service (the WSIFService interface

and the WSIFServiceFactory class).
v WSIF API reference: Using ports (the WSIFPort interface and the WSIFOperation

interface).

Note: You must ensure that your application uses only one thread to call WSIF.

For additional technical details of the WSIF API, see the WSIF Javadoc.

WSIF API reference: Creating a message for sending to a port
For message management (that is, message construction and parsing) the
underlying API is modeled on WSDL semantics. There is a simple and direct
mapping from the WSDL model to WSIF classes.

In WSDL, a Message describes the abstract type of the input or output to an
operation. The corresponding WSIF class is WSIFMessage, which represents in
memory the actual input or output of an operation. A WSIFMessage is a container
for a set of named parts. The WSIFMessage interface separates the actual
representation of the data from the abstract type defined by WSDL. WSDL defines
Messages as XML Schema types. There are two natural ways to represent a WSDL
message in a runtime environment:
v The generated Java class based on a WSDL to Java mapping such as that

provided by JAX-RPC.
v The XML representation of the data, for example using SOAP Encoding.

Each option offers benefits in different scenarios. The Java class is the natural
approach when WSIF is being used in a standard Java client. However, in other
scenarios where WSIF is being used in an intermediary, it may be more efficient to
keep a WSDL Message in the SOAP encoded format.

The style used to define messages must be consistent within the message, so all the
parts in one message must be consistent. A string - getRepresentationStyle() -
always returns null. This indicates that parts on this WSIFMessage are represented
as Java objects.

Parts are added to a WSIFMessage with setObjectPart or setTypePart. Each part is
named. Part names within a message are unique. If a part is set multiple times, the
last time is the one that stands.

Parts are retrieved from a WSIFMessage by name with getObjectPart or
getTypePart. If the named part does not exist, the getXXXXPart method returns a
WSIFException.

Parts can be retrieved from the Message by use of Iterators through the getParts()
and getPartNames() methods.

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 543

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/javadoc/wsi/index.html

The order in which parts are set is not currently important, but the Message
implementation may be more efficient if the parts are set in the parameter order
specified by WSDL.

WSIFMessages are cloneable and serializable. If the parts set are not cloneable, the
implementation should try to clone them using serialization. If the parts are not
serializable either, then a CloneNotSupportedException will be thrown if cloning is
attempted.

WSIFMessages can be sent between JVMs.

In addition to the containing parts, a WSIFMessage also has a message name. This
is required for operation overloading - which is supported by WSDL and WSIF.

Here is the Javadoc for the WSIFMessage interface.

WSIF API reference: Finding a port factory or service
To find a port you use WSIFService, which is a factory for ports. The port factory
models and supports the WSDL approach in which a service is available on one or
more ports. The factory hides the implementation of the port from the user. WSIF
supports ″dynamic″ ports that are based on a particular protocol/transport and
configured using the WSDL at runtime. For example, the dynamic SOAP port can
invoke any SOAP service based on the WSDL description of that service. The
Service allows you to hide and modify this at runtime.

Here is the WSIFService interface.

To find a service from a WSDL document at a URL, or from a code-generated
codebase, you can use the WSIFServiceFactory class.

WSIFService interface
The WSIFService is responsible for generating an instance of WSIFOperation to be
used for a particular invocation of a service operation.

The WSIF service stores a list of providers that can each generate a WSIF operation
for a particular WSDL binding. This service looks up providers by the provider
type, so, for example, it knows about one provider that handles SOAP ports, and
other providers that handle Java ports that you define. In a managed environment,
the container can configure WSIFService.

Here is the Javadoc for the WSIFService interface.

A WSIFService implementation can choose a preferred port based on a number of
criteria. The WSIFService implementation can set the preferred port, or it can be set
by calling setPreferredPort.

The getPort method returns an instance of WSIFPort that is used to invoke a
service on the port. Variants of the getPort method are used to define the
characteristics of the port to be created. getPort with no arguments returns the
″preferred″ port. getPort with a string argument returns the port named by the
string containing the WSDL identifier for the selected port. The return value is
null if the port name is not valid.

If a port is chosen (either by WSIFService default behavior, or by setPreferredPort),
then the WSIFService implementation validates that the relevant provider exists
and is configured. If the provider fails this validation check, WSIFService chooses

544 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/javadoc/wsi/org/apache/wsif/WSIFMessage.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/javadoc/wsi/org/apache/wsif/WSIFService.html

any other port whose provider is defined. For example, if the preferred port is
SOAP over JMS, but the JMS libraries are not available, WSIF chooses another port.
If no preferred port is set, or the preferred port is not available, the WSIF
implementation chooses the first available port listed in the WSDL.

The method getAvailablePortNames() returns an Iterator of Strings which is the
list names of WSDL ports, filtered by the set of available providers.

The getDefinition() method returns the WSDL definition that was used to provide
the Service. If the WSDL definition is not available, this returns a null.

WSIFServiceFactory class
To find a service from a WSDL document at a URL, or from a code-generated
codebase, you can use the WSIFServiceFactory class.

Note: When creating a WSIFService from a WSIFServiceFactory you can specify a
ClassLoader object to use in locating the WSDL file. You need to do this when the
WSDL file is in a JAR file. In such a case, the location of the WSDL file is specified
relative to the root of the JAR file, using forward slashes with the preceeding slash
removed.

For example:
com/myCompany/wsdl/MyWSDLFile.wsdl

rather than
/com/myCompany/wsdl/MyWSDLFile.wsdl

Here is the Javadoc for the WSIFServiceFactory class.

The WSIFServiceFactory returns a null if no service is found with that identifier.

WSIF API reference: Using ports
A WSIFPort handles the details of invoking an operation. The port provides access
to the actual implementation of the service. A WSDL can provide many different
WSDL Bindings, and these bindings can drive multiple Ports. The client can choose
a Port, the service stub can choose a Port, or WSIF can choose a default Port.

The Port offers an interface to retrieve an Operation object. A WSIFOperation offers
the ability to execute the given operation.

Note:

If the Port is serialized and deserialized at a later time, then WSIF ensures that the
client provides the correct information to the server to identify the instance. If the
server instance is no longer available, then it is up to the server to decide whether
to throw a fault or provide a new instance. That behavior can depend on the type
of service.

For example, for an enterprise bean the WSIFPort stores the EJB Home, and uses it
to ″select″ the bean before each invocation. It is the responsibility of the client to
serialize or maintain the Port instance if it wants instance support. The client must
create a new operation and messages for each invocation.

Here is the WSIFPort interface.

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 545

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/javadoc/wsi/org/apache/wsif/WSIFServiceFactory.html

Here is the WSIFOperation interface.

WSIFPort interface
The port implements a factory method for WSIFOperations.

Here is the Javadoc for the WSIFPort interface.

The createOperation(String) method returns a new instance of a WSIFOperation
object. If the operationName is not valid, it will throw an exception. If the
operation is overloaded, it will throw an exception. The createOperation(String,
String, String) allows WSIF to support overloaded WSDL operations.

Note: You can overload based on the input parameters, but not on the output
parameters.

It is the duty of the client to call the close method when a Port is no longer in use.
In many cases, where the transport is sessionless, like HTTP, this will have no
effect. However, if the Port is using a session-based protocol such as MQSeries,
JMS, or ECI, this allows the Port to cache an open connection to the server and
then close it as required. Responsibly-written applications will call the close
method if appropriate.

WSIFOperation interface
WSIFOperation is the runtime representation of an operation. It is responsible for
invoking a service based on a particular binding. It provides methods to create
input, output and fault messages, and to invoke the operation.

Here is the Javadoc for the WSIFOperation interface.

The createInputMessage, createOutputMessage, and createFaultMessage methods
are factory methods to create the messages required by the invocation methods. All
invocation methods require an input message.

The executeRequestResponseOperation invokes ″In Out″ operations.

The executeInputOnlyOperation invokes ″In only″ operations.

If the invocation method is executeRequestResponseOperation then an output and
a fault message are instantiated and passed on the call to the
executeRequestResponseOperation method. The output message contains the
response message when the executeRequestResponseOperation returns true. If
executeRequestResponseOperation returns false, then a fault occurred and is
returned in the fault message.

All of these executeNnnn methods fail with an exception if there is an error in
processing the request in the WSIF provider.

The executeRequestResponseAsync is a feature that allows ″In Out″ operations to
be invoked with the reply handled using an alternate thread.

Use of the setContext and getContext methods is discussed in WSIFOperation -
Context.

Use of the executeRequestResponseAsync feature is discussed further in
WSIFOperation - Asynchronous interactions.

546 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/javadoc/wsi/org/apache/wsif/WSIFPort.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/javadoc/wsi/org/apache/wsif/WSIFOperation.html

Setting the timeouts for synchronous and asynchronous operations is discussed in
WSIFOperation - Synchronous and asynchronous timeouts.

WSIFOperation - Context
Although WSDL does not define context, a number of uses of WSIF require the
ability to pass context to the Port that is invoking the service. For example, a
SOAP/HTTP port may require an HTTP username and password. This information
is specific to the invocation, but not a parameter of the service. In general, context
is defined as a set of name-value pairs. However, because Web services tend to
define the types of data using XML Schema types, WSIF represents the name-value
pairs of the context using the same representation that WSIFMessages use; that is a
set of named Parts, each of which equates to an instance of an XML Schema type.

The WSIFOperation methods setContext and getContext allow you to pass context
information to the binding. The Port implementation can use this context - for
example to update a SOAP header. There is no definition of how a Port can utilize
the context.

The parameter of the setContext and getContext methods is a WSIFMessage, and
this has named parts defining the context information. The WSIFConstants class
defines constants for the part names that can be set in a context WSIFMessage.

The following code shows how to set the user name and password to be used for
HTTP basic authentication:
// set a basic authentication header

WSIFMessage headers = new WSIFDefaultMessage();
headers.setObjectPart(WSIFConstants.CONTEXT_HTTP_USER, "username");
headers.setObjectPart(WSIFConstants.CONTEXT_HTTP_PSWD, "password");
operation.setContext(headers);

The WSIFOperation will ignore context parts that it does not support, for example,
the above code would be ignored by the WSIF Java provider.

The WSIFConstants class includes the following constants which can be used for
context part names:
v CONTEXT_HTTP_USER
v CONTEXT_HTTP_PSWD
v CONTEXT_SOAP_HEADERS

The HTTP header values are expected to have a type String, and the SOAP header
value is expected to have a type of java.util.List which should contain entries of
type org.w3c.dom.Element.

WSIFOperation - Asynchronous interactions reference
WSIF allows asynchronous operation. In this mode of operation, the client puts the
request message as part of one transaction, and carries on with the thread of
execution. The response message is then handled by a different thread, with a
separate transaction. The SOAP/JMS and Native JMS providers are the only WSIF
providers that currently support asynchronous operation.

The WSIFPort has method supportsAsync to test if asynchronous operation is
supported.

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 547

An asynchronous operation is initiated with the WSIFOperation method
executeRequestResponseAsync. This method is designed to let an RPC method be
invoked asynchronously. The method returns before the operation has completed,
and the thread of execution continues.

The response to the asynchronous request is processed by one of the
WSIFOperation methods fireAsyncResponse or processAsyncResponse.

To initiate the request, there are two forms of the executeRequestResponseAsync
method:
public WSIFCorrelationId executeRequestResponseAsync

(WSIFMessage input, WSIFResponseHandler handler)

and
public WSIFCorrelationId executeRequestResponseAsync (WSIFMessage input)

The first of these takes an input message and a WSIFResponseHandler. The
WSIFResponseHandler is invoked on another thread when the operation
completes. When using this method the client listener would call the
fireAsyncResponse method which will call the WSIFResponseHandler
executeAsyncResponse method.

Here is the Javadoc for the WSIFResponseHandler interface.

The other form of executeRequestResponseAsync that only takes a WSIFMessage
input message does not use a response handler, and the client listener should
process the response by calling the WSIFOperation method
processAsyncResponse. This will update the WSIFMessage output and fault
messages with the result of the request.

WSIF supports correlation between the request and response in the asynchronous
request-response case. When the request is sent, the WSIFOperation is serialized
into the WSIFCorrelationService. The executeRequestResponseAsync methods
returns a WSIFCorrelationId object which identifies the serialized WSIFOperation.
The client listener can use this to match a response to a particular request.

The correlation service is located with the getCorrelationService() method of the
WSIFCorrelationServiceLocator class in the org.apache.wsif.utils package.

In a managed container a default correlation service is defined in the default JNDI
namespace using the name: java:comp/wsif/WSIFCorrelationService . If this is not
available, then WSIF will use the WSIFDefaultCorrelationService.

Here is the Javadoc for the WSIFCorrelationService interface.

and this is the correlator id:
public interface WSIFCorrelator extends Serializable {

public String getCorrelationId();
}

The client must implement their own response message ″listener″ or MDB in order
to recognize the arrival of response messages themselves. This would manage the
correlation of the response message to the request and call of one of the
asynchronous response processing methods. As an example of the type of thing
required of a client listener, the following code fragment shows what could be in
the onMessage method of a JMS listener:

548 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/javadoc/wsi/org/apache/wsif/WSIFResponseHandler.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/javadoc/wsi/org/apache/wsif/WSIFCorrelationService.html

public void onMessage(Message msg) {
WSIFCorrelationService cs = WSIFCorrelationServiceLocator.getCorrelationService();

WSIFCorrelationId cid = new JmsCorrelationId(msg.getJMSCorrelationID());
WSIFOperation op = cs.get(cid);
op.fireAsyncResponse(msg);

}

WSIFOperation - Synchronous and asynchronous timeouts
reference
When using WSIF with JMS there are timeouts that can be set for synchronous and
asynchronous operations.

Default values for these timeouts are defined in the WSIF properties file as follows:
maximum number of milliseconds to wait for a response to a synchronous request.
Default value if not defined is to wait forever.
wsif.syncrequest.timeout=10000

maximum number of seconds to wait for a response to an async request.
if not defined on invalid defaults to no timeout
wsif.asyncrequest.timeout=60

The defaults mean a synchronous request (such as a WSIFOperation
executeRequestResponseOperation method call) will timeout after ten seconds,
and an asynchronous request (such as a WSIFOperation
executeRequestResponseAsync method call) will timeout after sixty seconds.

Note:

The WSIFProperties class getAsyncTimeout method multiplies the
wsif.asyncrequest.timeout value by 1000. This converts the value from seconds in
the properties file, to milliseconds used for the timeout value.

These default values can be overridden for a given request by setting a JMS
property on the operation request with the jms:property and jms:propertyValue
WSDL elements. The name of the property to set should be the name of the
timeout from the WSIF properties file.

For example the following sets synchronous requests to timeout after two minutes
(120 seconds):

<jms:propertyValue name="wsif.syncrequest.timeout" type="xsd:string" value="120000"/>

and the following line disables asynchronous timeouts (a value of zero means wait
for ever):
<jms:propertyValue name="wsif.asyncrequest.timeout" type="xsd:string" value="0"/>

Note: When an asynchronous timeout expires, no listener or MDB waiting for the
response is notified. The asynchronous timeout is only used to tell the correlation
service that the stored WSIFOperation may be deleted.

WSIF: Resources for learning
Use the following links to find supplementary information about getting started
with WSIF. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers

Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services 549

and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.
v WebSphere Version 5 Web services Handbook. This Redbook illustrates with

suitable demonstration applications how Web services can be implemented using
the IBM product portfolio, especially WebSphere Application Server Version 5
and WebSphere Studio Application Developer Version 5. It includes a chapter on
WSIF.

v SOAP. This article is a detailed overview of SOAP, which includes programming
specifications.

v Web Services Description Language. This article is a detailed overview of Web
services Description Language (WSDL), which includes programming
specifications.

v The Apache Software Foundation. The Apache Software Foundation provides
support for the Apache community of open-source software projects. Of
particular interest is the Apache Web services project. The WSIF source code has
been donated by IBM to the Apache Software Foundation, and is maintained
here as an Apache project.

v JSR109. This is the Java Community Process specification for implementing Web
services in Java.

See also the set of Web services links given in (services: Resources for learning).

550 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246891.html?Open
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/wsdl
http://www.apache.org
http://jcp.org/jsr/detail/109.jsp

Chapter 10. IBM WebSphere UDDI Registry

Welcome to the IBM WebSphere UDDI Registry.

Use the table of contents (on the left and below)to view the various topics for a
specific product or technology. Select the topic you are interested in to either open
documentation locally or find information about how to locate documentation.
v ″UDDI Registry terminology″

v ″UDDI Registry definitions″

v ″An overview of IBM UDDI Registries″

v ″Migrating from the IBM WebSphere UDDI Registry on WebSphere Application
Server 4.0″

v ″Installing and setting up a UDDI Registry″

v ″Applying Service to the UDDI Registry in a Network Deployment and single
Application Server environment″

v ″Reinstalling the UDDI Registry application″

v ″Removing the UDDI Registry application from a deployment manager cell″
v ″Removing the UDDI Registry application from a single appserver″

v ″Configuring the UDDI Registry″

v ″Administering the UDDI Registry″

v ″UDDI user console″

v
5.0.2 ″Custom Taxonomy Support in the UDDI Registry″

v ″SOAP Application Programming Interface for the UDDI Registry″

v ″UDDI Registry Application Programming Interface″

v ″UDDI EJB Interface for the UDDI Registry″

v ″UDDI troubleshooting tips″

v ″Messages″

v ″Running the UDDI Samples″

v ″Installation Verification Program (IVP)″
v ″Reporting problems with the IBM WebSphere UDDI Registry″

v ″Feedback″

UDDI Registry terminology
Syntax

When reference is made to the directory location of the WebSphere Application
Server it is referred to as <WebSphere-install-dir> and , the directory location of
the WebSphere Deployment manager as <DeploymentManager-install-dir>. These
translate, by default, to the following locations:

Windows

<WebSphere-install-dir>
C:\Progra~1\WebSphere\AppServer\

<DeploymentManager-install-dir>
C:\Progra~1\WebSphere\DeploymentManager\

© Copyright IBM Corp. 2003 551

5.0 + Linux/Solaris Platforms

5.0.1 Linux/Solaris/HP Platforms

<WebSphere-install-dir>
/opt/WebSphere/AppServer/

<DeploymentManager-install-dir>
/opt/WebSphere/DeploymentManager/

AIX Platform

<WebSphere-install-dir>
/usr/WebSphere/AppServer/

<DeploymentManager-install-dir>
/usr/WebSphere/DeploymentManager/

z/OS Platform

<WebSphere-install-dir>
/WebSphere390/V5R0M0/AppServer/

<DeploymentManager-install-dir>
/WebSphere390/V5R0M0/DeploymentManager/

UDDI Registry definitions
Syntax

bindingTemplate
Technical information about a service entry point and construction
specifications.

businessEntity
Information about the party who publishes information about a family of
services.

businessService
Descriptive information about a particular service.

publisherAssertion
Information about a relationship between two parties, asserted by one or
both.

tModel
Short for technical model.

A tModel is a data structure representing a reusable concept, such as a
Web service type, a protocol used by Web services, or a category system.

tModel keys within a service description are a technical fingerprint that
can be used to trace the compatibility origins of a given service. They
provide a common point of reference that allows compatible services to be
easily identified.

tModels are used to establish the existence of a variety of concepts and to
point to their technical definitions. tModels that represent value sets such
as category, identifier, and relationship systems are used to provide
additional data to the UDDI core entities to facilitate discovery along a
number of dimensions. This additional data is captured in keyedReferences
that reside in category Bags, identifierBags, or publisherAssertions. The

552 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

tModelKey attributes in these keyedReferences refer to the value set that
related to the concept or namespace being represented. The keyValues
contain the actual values from that value set. In some cases keyNames are
significant, such as for describing relationships and when using the general
keywords value set. In all other cases, however, keyNames are used to
provide a human readable version of what is in the keyValue.

An overview of IBM UDDI Registries
The Universal Description, Discovery and Integration (UDDI) specification defines
a way to publish and discover information about Web Services. The term ’Web
service’ describes specific business functionality exposed by a company, usually
through an Internet connection, to allow another company, or its subsidiaries, or
software program to use the service.

Universal Business Registries (IBM UBR)

The IBM Universal Business Registry is one of a group of web-based registries that
expose information about a business or other entity and its technical interfaces (or
APIs). These registries are run by multiple Operator Sites, and can be used by
anyone who wants to make information available about one or more businesses or
entities, as well as anyone that wants to find that information. Although there are
Universal Business Registries (sometimes referred to as ’public UDDI registries’)
hosted worldwide, including one hosted by IBM, enterprises may wish to host
their own internal registries behind their firewall to better manage their internal
implementation of Web Services.

For more detailed information about UDDI in general visit []

IBM WebSphere UDDI Registry

The IBM WebSphere UDDI Registry is a directory for Web Services that is
implemented using the UDDI specifications. In contrast with the IBM UBR, this
component of WebSphere Network Deployment is a product offering for
companies or industries to implement.

A critical component of IBM’s dynamic e-business infrastructure, IBM WebSphere
UDDI Registry solves the problem of discovery of technical components for an
enterprise and its partners by:
v Providing control, flexibility and confidentiality so that an enterprise can protect

its e-business investments
v Increasing efficiency by making it easier to identify technical assets
v Leveraging existing infrastructures

For example, the IBM WebSphere UDDI Registry could be used in the following
way within a large enterprise:

A company has a legacy application that provides phone numbers and Human
Resources (HR) information of employees. This is turned into a Web Service and
published to the registry. A developer in the same company needs to write an
application for a procurement function that also needs to provide HR information
to the supplier. The application should allow the supplier to have access to the
employee account codes once the employee provides his name or serial number.
Before Web Services, the developer had three choices:
1. Would not have known about the similar application

Chapter 10. IBM WebSphere UDDI Registry 553

2. Knew about it but could not reuse due to technical barriers
3. Knew about it and reused only after significant time and negotiation

With UDDI, the developer can search for the ″web service″ and reuse the existing
technical component in his new application for the supplier in a matter of minutes.
The developer saves time and gets the application up and running sooner than he
would have otherwise — increasing efficiency and saving the company time and
money. The IBM WebSphere UDDI Registry is the first version 2
standard-compliant UDDI registry for private enterprise work. The IBM WebSphere
UDDI Registry:
v Supports the public UDDI V2.0 standard
v Leverages the proven, reliable WebSphere Application Server technology
v Uses a relational database, such as DB2, for its persistent store.

Migrating from the IBM WebSphere UDDI Registry on WebSphere
Application Server 4.0

Before you begin

If you have previously installed the IBM WebSphere UDDI Registry V1.1 (or later
refreshes) on WebSphere Application Server V4.0, then you should take the
following steps in order to migrate to the UDDI Registry that is available as part of
WebSphere Application Server for Network Deployment V5.0.
1. If you have made any changes to the configuration properties in the file

uddi.properties, which is located in the properties subdirectory of your
WebSphere AppServer install tree, then you should make a copy of this file (or
make a note of all the changes), so that you will be able to reapply the changes
to the file after you have installed WebSphere Application Server V5.0.

2. If you have made any other configuration changes, for example to the GUI
style sheets or to the SOAP interface properties, you should make a note of
them, and re-apply them after upgrading to the new UDDI version.

3. Uninstall the IBM WebSphere UDDI Registry using Add/Remove Programs on
Windows platforms, or rpm -e IBMWebSphere-UDDI on Unix Platforms. This
will remove the application, but will preserve the UDDI Registry database.

4. Please note that, if you wish to continue using DB2 as the persistence store for
the UDDI Registry, and if you have any data in the UDDI Registry which you
wish to preserve, then you should not run the DB2 setup wizard to create the
DB2 version of the UDDI Registry database, but will instead be able to
continue using the database that you already have. However, if you do run the
wizard, you will be prompted whether you wish to keep the database or
overwrite it.

5. You can now follow the instructions on installing (or upgrading) IBM
WebSphere Application Server V5 and ″Installing the UDDI Registry
component″.

6. After completing the install procedure, you should edit the uddi.properties file
to reflect any changes that you require to the configuration properties. You
should not replace this file with your previous copy from the IBM WebSphere
UDDI Registry V1.1 or later refreshes. You can also re-apply any other
configuration changes as necessary.

7. If you are migrating from version 1.1 of the IBM WebSphere UDDI registry,
then there have been a few minor changes to the EJB interface which means
that you may need to modify your EJB client applications. If you are migrating

554 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

from later refreshes of the IBM WebSphere UDDI Registry (such as version
1.1.1), then you should not need to make any changes to your EJB clients.
The changes for version 1.1 are when saving a new service through the EJB
interface either using saveBusiness or saveService, you should not set the
serviceKey before calling saveBusiness or saveService.

In the IBM WebSphere UDDI Registry V1.1 the term ’service type’ was used to
refer to a ’technical model’ or ’tModel’, for example, in various of the panels in the
User Console. This term has now been replaced by the term ’technical model’.

Installing and setting up a UDDI Registry
Before you begin

If you wish to use the UDDI User Console using Internet Explorer as your web
browser, and using SSL, then you must use Internet Explorer V5.5 with SP2 and
security fix Q321232 (which must be applied in that order), or later.

If you are migrating from the IBM WebSphere UDDI Registry product that was
available to run on WebSphere Application Server 4.0, then you need to read the
section Migrating from the IBM WebSphere UDDI Registry on WebSphere
Application Server 4.0 before installing the new product.

Choice of database product to be used as the persistence store

The UDDI Registry application can use either DB2 or Cloudscape as the
persistence store for the registry data.
v If you plan to use the UDDI Registry in production then you must use DB2 as

your persistence store.
v If you plan to use the UDDI Registry for development and testing purposes,

then you can choose to use Cloudscape as your persistence store. Please note
that Cloudscape is not intended for production purposes.

Steps for this task

As part of the installation of the IBM WebSphere Application Server with Network
Deployment option, you are given the option to install the ″UDDI Registry″, which
is shown under Web Services. Having selected the UDDI Registry and installed the
various files that make up the application, you have two choices as to the
environment in which you run it:
1. Install the UDDI Registry application into the deployment manager cell using

DB2 or Cloudscape as the database in which the UDDI Registry data will be
held, selecting one of the application servers within the cell in which to run the
UDDI Registry.

2. Install the UDDI Registry application directly into an application server using
DB2 or Cloudscape as the database in which the UDDI Registry data will be
held. Please note that, if you choose this option, then the application server on
which you run the UDDI Registry must not be added into a deployment
manager cell, as this would cause the file synchronization within the cell to
remove the application.

In most cases you will probably choose option 1, and install the UDDI Registry
into a deployment manager cell, but you might find that option 2, to install the
UDDI Registry into a standalone application server, is useful for development or
test purposes.

Chapter 10. IBM WebSphere UDDI Registry 555

Note:

1. Several WebSphere commands are used during the following procedures, some
of which must execute on the DeploymentManager and some of which must
execute on the target Application server. The instructions below will distinguish
which is appropriate for each command. The WebSphere commands will be
found in the bin subdirectory of the appropriate WebSphere install tree. In
order to ensure correct operation of these commands, you will need to do one
of the following:
v Ensure that the appropriate bin subdirectory is in your path prior to

executing the command
v Change directory to the appropriate bin subdirectory
v Fully qualify the path to the commands

2. It is recommended that you use the version of java shipped with WebSphere
found in the java/bin subdirectory.

The following table lists the UDDI Registry files, and the locations into which they
are placed by the install. The ″Location″ column shows the subdirectory under the
WebSphere DeploymentManager install directory. For example, if you had installed
IBM WebSphere Application Server with Network Deployment option onto a
machine running Windows, and had used the default directory, then a location of
″installableApps″ would mean that the file had been placed into the
C:\Progra~1\WebSphere\DeploymentManager\installableApps directory. For
Windows platforms, read the ″/″ directory separator in the location column as a
″\″ directory separation character.

Files Purpose Location

uddi.ear The UDDI Registry
application itself, which is
packaged and runs as an
Enterprise Application

installableApps

uddi.properties Provides configuration
properties for the UDDI
Registry application

properties

uddiresourcebundles.jar Contains system messages
for the UDDI Registry
application

lib

uddicloudscapeuserfunc.jar Contains functions that are
used by Cloudscape if the
Cloudscape database is used
with the UDDI Registry

lib

setupuddi.jacl Admin script to create a
JDBC driver and datasource
for the UDDI Registry, and
to install the UDDI Registry
application in a
DeploymentManager Cell

UDDIReg/scripts

setupuddimessages.jar Contains setup and install
messages for the UDDI
Registry application

lib

removeuddi.jacl Admin script to undo the
effects of setupuddi.jacl

UDDIReg/scripts

appserverremoveuddi.jacl Admin script to undo the
effects of
appserversetupuddi.jacl

UDDIReg/scripts

556 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

appserversetupuddi.jacl Admin script to create a
JDBC driver and datasource
for the UDDI Registry, and
to install the UDDI Registry
application in a single,
standalone, application
server

UDDIReg/scripts

SetupDB2UDDI.jar The ’UDDI DB2 Setup
Wizard’, to create and
pre-load the UDDI Registry
database if DB2 is to be used
as the persistence store

UDDIReg/scripts

UDDI20 (directory) Cloudscape directory
containing the UDDI
Registry tables and
pre-loaded data

bin

uddiejbclient.jar Class library for use when
writing an EJB client to
access the UDDI Registry

UDDIReg/ejb

Various javadoc files JAVADOC to describe the
EJB interface to the UDDI
Registry

UDDIReg/ejb/javadoc

UDDITaxonomyTools.jar Provides tools for supporting
custom taxonomies with the
UDDI Registry

UDDIReg/scripts

CustomTaxonomy.properties Provides configuration
properties to be used the the
UDDITaxonomyTools

UDDIReg/scripts

If you intend to run in a Deployment Manager Cell then complete the following
task - Installing the UDDI Registry into a deployment manager cell

If you intend to run in a single WebSphere Application server, then complete the
following task - Installing the UDDI Registry into a single WebSphere
Application Server

What to do next

Continue with Configuring the UDDI Registry.

Installing the UDDI Registry into a deployment manager cell
These instructions assume that the installation has been performed into a clean
environment. If you are installing into an existing Deployment Manager cell, then
steps 1 to 5 must be omitted, i.e. skip to bullet 6 immediately.

Steps for this task
1. Install the WebSphere Application Server for Network Deployment package,

and select the UDDI Registry option under Web Services.
2. Install one or more base application servers which will form the cell of

servers. One of these should be the application server in which you plan to
run an instance of the UDDI Registry. You can run more than one instance of
the UDDI Registry within a cell of servers: the UDDI Registry application
name will be suffixed with the target node and server names to make it

Chapter 10. IBM WebSphere UDDI Registry 557

unique within the cell (See also ″Advanced use of setupuddi.jacl″), but you
can only run one UDDI instance within each application server.

3. Ensure that the target application server is stopped.
4. Run startManager (startManager.sh on Unix Platforms) on the deployment

manager node to start the deployment manager.
START dmgr_proc_name,JOBNAME=server_short_name,

ENV=cell_short_name.node_short_name.server_short_name

Note: This command must be entered on a single line. It is split here for
display purposes.

On Unix platforms you must remember to run the db2profile script before
issuing the startManager.sh command. This script is located within the DB2
instance’s home directory under SQLLIB and can be invoked, for example, by
typing:
". /home/db2inst1/sqllib/db2profile"

5. Run addNode (addNode.sh on Unix Platforms) on each of the base application
server(s) to add it as a node into the cell. (How to run addNode is described
elsewhere in the InfoCenter). For example, addnode myriad - where myriad is
the name of your deployment manager host.

6. Copy the uddiejbclient.jar file and the EJB javadoc directory tree from the
UDDIReg/ejb subdirectory of the deployment manager install tree onto any
machine(s) where you will be creating EJB clients to access the UDDI Registry.

7. If you have any global configuration properties that will be common to any
UDDI Registries that you install into this cell, then you can edit the
uddi.properties file in the properties subdirectory of the deployment manager
install tree to set them up. (See the section on Configuring global UDDI
properties for more details about the global configuration properties).

8. The UDDI Registry application is supplied with the security permissions that
it requires to execute. This step explains how you can see the permissions that
have been set, and change them if you feel that it is appropriate to do so. It is
recommended that you only do this if you have a thorough understanding of
Java 2 security issues, and the way in which security permissions are used by
WebSphere.

The permissions for the UDDI Registry application are set within a file
was.policy which is part of the uddi.ear application file. To see and change the
contents of this file you should:
a. On the deployment manager, copy the uddi.ear file from the

installableApps subdirectory of the deployment manager install tree into a
temporary directory.

b. Un-jar the uddi.ear file (i.e. unpack uddi.ear using the ’jar -x’ command).
For example,
jar -x uddi.ear

(This uses the jar command in the bin subdirectory of the deployment
manager, so you might need to fully qualify the path to the jar command.)

c. You will find the was.policy file under the META-INF subdirectory that is
created.
This will allow you to see the permissions which have been granted to the
UDDI Registry application, and to make any changes that are necessary.
Please note that if you make any errors in changing this file, then the
UDDI Registry application might either fail to start, or will encounter
errors when trying to execute UDDI requests.

558 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

d. Re-jar the uddi.ear file using the jar command.
For example,
jar -cf uddi.ear .

Note: NOTE the space and the dot after uddi.ear)

(This uses the jar command in the <install_root>\java\bin subdirectory of
the deployment manager, so you might need to fully qualify the path to
the jar command.)

e. Copy the new uddi.ear back to the installableApps directory.
9. Please note that if the target application server is running, then this step will stop

and restart it. If you are planning to use Cloudscape for the database in which
the UDDI Registry will be held, please read the section ″Setting up the UDDI
Registry to use Cloudscape within a deployment manager cell″ and then
return to this point. If however, you plan to use DB2, then please refer to the
section ″Setting up the UDDI Registry to use DB2 within a deployment
manager cell″ and then return to this point.

10. Ensure that the UDDI Registry is configured appropriately for your
installation, as described in the section on Configuring the UDDI Registry.

11. Start, or stop and restart, the target application server. This should also start
the UDDI Registry application. If not, use the admin console on the
deployment manager to do so.

What to do next

Advanced use of setupuddi.jacl

A number of symbols are defined at the top of the setupuddi.jacl script. These
allow you to control the amount of logging that is performed, and to install
multiple instances of the UDDI Registry within the same cell.

The symbols which you can edit are as follows:
v logEnabled - default setting is 1 which causes the progress of the script to be

logged. Setting this symbol to 0 causes information logging to be suppressed,
with only error messages being output.

v overwriteExisting - default setting is 1 which causes any existing installation of
the UDDI Registry application to be overwritten. Setting this symbol to 0 would
cause the existing installation to be left as is, but would allow other files used by
the UDDI Registry to be updated. You are recommended to only change this
setting under the guidance of IBM Service.

v appName - default setting is UDDIRegistry, which will be the first part of the
name used for the UDDI Registry application installed into the target server. To
ensure uniqueness of application names within the cell, the full application name
that will be used is <appName>.<nodeName>.<server>, where <nodeName> is
the name of the target node and <server> is the name of the target server. You
can choose to change the first part of this (the <appName>) portion by changing
the setting of this symbol before running setupuddi.jacl, although it is generally
recommended that you do not change this value.

Continue with Configuring the UDDI Registry.

Chapter 10. IBM WebSphere UDDI Registry 559

Setting up the UDDI Registry to use Cloudscape within a
deployment manager cell

If you plan to use Cloudscape for the database in which the UDDI Registry data
will be held, use this task to create and load the UDDI Registry database using
Cloudscape.

Before you begin

Please see the section ″Choice of database product to be used as the persistence
store″ to decide which database product you should use as your persistence store
before proceeding further with this step.

This task is part of the parent task and is described in Installing the UDDI Registry
into a deployment manager cell. You should complete this task at the appropriate
step in the parent task, then return to and complete the parent task.

If you plan to use Cloudscape for the database in which the UDDI Registry data
will be held, use this task to setup and install the UDDI Registry application to use
the supplied Cloudscape database.

This task configures Cloudscape on the host where you want to run the UDDI
Registry. Cloudscape is supplied with WebSphere Application Server, so you
should not need to install Cloudscape support.

In this task you will invoke a script called setupuddi.jacl, specifying the target
node and application server into which the UDDI Registry is to be deployed.
Please note that if the target application server is running when you invoke
setupuddi.jacl, then the script will stop the server and will restart the server after it
has completed its operations.

Steps for this task
1. Copy the UDDI20 directory tree from the bin subdirectory of the deployment

manager tree into the bin subdirectory of the target application server’s install
tree.

2. Create a JDBC driver and datasource to provide access to the UDDI20
Cloudscape database, and install the UDDI Registry application. This is done
using the WSADMIN tool, using as input the setupuddi.jacl script from the
UDDIReg/scripts subdirectory of the Deployment Manager. Note that this
script must be run on the deployment manager node.
You should either run this script from the UDDIReg/scripts subdirectory where
it is located, or copy it to some other suitable directory. Note that the
WSADMIN command is located in the bin subdirectory of the deployment
manager node.The syntax for calling this script for Cloudscape is:
wsadmin -f setupuddi.jacl

deploymgrpath
servername
nodename
discoveryURLprefix
pathtodb
> setupuddi.log

where
v deploymgrpath is the fully qualified pathname of the deployment manager

install directory, specified using forward slashes regardless of platform; e.g.
for Windows, this might be C:/Progra~1/WebSphere/deploymentManager

560 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v servername is the name of the target server on which you wish to deploy the
UDDI Registry, such as server1. Note the the server name entered is case
sensitive.

v nodename is the name of the WebSphere node on which the target server
runs. Note the the node name entered is case sensitive.

v discoveryURLprefix is the URL prefix to be used for discovery URLs. Typically
this will be of the form http://<ip-address>:9080/uddisoap/ so an example
of a discoveryURLprefix value might be
http://mynode.mylocation.mycompany.com:9080/uddisoap/

v pathtodb is the path to the UDDI20 database within the bin subdirectory of
your WebSphere AppServer installation, specified using forward slashes
regardless of platform; e.g. for Windows, this might be
C:/Progra~1/WebSphere/AppServer/bin/UDDI20 and for Unix platforms, it
might be /opt/WebSphere/AppServer/bin/UDDI20

v > setupuddi.log is an optional parameter to direct the output to a log file as
opposed to the default (which is to the screen)

For example (shown on multiple lines for puplication):
wsadmin -f setupuddi.jacl "C:/Progra~1/WebSphere/DeploymentManager/"

server1 MYRIAD "http://myriad.headoffice.xyz.com:9080/uddisoap/"
"C:/Progra~1/WebSphere/Appserver/bin/UDDI20"

will install the UDDI Registry application into the server server1 running on
node MYRIAD, and set it up to access the Cloudscape UDDI20 database
located in the bin subdirectory of the application server.

The setupuddi.jacl script will
a. Create a JDBC driver named UDDI.JDBC.Driver.<nodeName>.<server> and

a datasource named UDDI.Datasource.<nodeName>.<server> (where
<nodeName> is the name of the target node and <server> is the name of
the target server>, and will replace any existing driver and datasource of
that name.

b. Check whether the UDDI Registry application is already installed and, if so,
stop it and uninstall it.

c. Update the uddi.properties configuration property file to configure the
discoveryURLprefix value that you have specified and set the persister
property as ’Cloudscape’, and place this uddi.properties file into the
location
config/cells/<currentcell>/nodes/<nodename>/servers/<servername>. You
should make any further global configuration changes using this copy of the
file.

d. Place a number of files that are needed by the UDDI Registry into the
WebSphere configuration repository, and update the ws.ext.dirs list to
reference these files.

e. Install the UDDI Registry.

This script will deploy the UDDI Registry into the configuration under the
deployment manager, and then do a Synch which causes it to get installed into
the specified server.

What to do next

Return to the next step in the parent task Installing the UDDI Registry into a
deployment manager cell.

Chapter 10. IBM WebSphere UDDI Registry 561

Setting up the UDDI Registry to use DB2 within a deployment
manager cell

Before you begin

Please see the section ″Choice of database product to be used as the persistence
store″ to decide which database product you should use as your persistence store
before proceeding further with this step.

This task is part of the parent task and is described in Installing the UDDI Registry
into a deployment manager cell. You should complete this task at the appropriate
step in the parent task, then return to and complete the parent task.

If you plan to use DB2 for the database in which the UDDI Registry data will be
held, use this task to create and load the UDDI Registry database using DB2, and
to setup and install the UDDI Registry application to use the DB2 database.

This task uses the UDDI DB2 Setup Wizard to configure DB2 on the system where
you want to run the UDDI Registry. Before starting this task, ensure that DB2 is
installed and running on that system.

Copy the UDDIReg directory tree from the deployment manager to the target
application server where DB2 will run.

The following steps should be carried out on the system on which the target
application server is located (referred to below as the ’target system’).

In this task you will invoke a script called setupuddi.jacl, specifying the target
node and application server into which the UDDI Registry is to be deployed.
Please note that if the target application server is running when you invoke
setupuddi.jacl, then the script will stop the server and will restart the server after it
has completed its operations.

Steps for this task
1. On Windows, ensure that since installing DB2 you have run the usejdbc2.bat

command file.
For more information about this, see ″Application Building Guide″ in the DB2
documentation.

2. Create and load the UDDI Registry database, called UDDI20.
Note: If you are migrating from an earlier version of the UDDI Registry, and
your UDDI20 DB2 database already exists, then you should skip this step
unless you want to replace the existing database with a new UDDI20 DB2
database. If you do choose to replace an existing database then all of your
existing UDDI data will be lost. Important: please also note that if you do
choose to replace the existing UDDI20 database, then there must not be any
applications or users accessing the database at the time that you run the UDDI
DB2 setup wizard.
The UDDI DB2 Setup Wizard used in this task will prompt you to provide the
DB2 userid and password under which the UDDI Registry database will be
created and subsequently accessed. Before starting this task, ensure that you
have created an appropriate DB2 userid and password. This same userid and
password must be used throughout the following steps where the DB2 userid
and password is requested.

562 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

5.0.1 If you are using a non-English installation of DB2, then please ensure
you have applied PTF1 before continuing.

5.0.1 If you wish to implement the updated SetupDB2UDDI.jacl database
wizard, then also please the PTF(s) mentioned above.

5.0.1 Note: If you have a copy of the file SetupDB2UDDI.jar in your
appserver directory, then the application of the base and Network Deployment
PTFs will not update SetupDB2UDDI.jar in your appserver directory. You must
apply the PTF for Network Deployment to your DeploymentManager file
structure to update the SetupDB2UDDI.jar located there (in the
/UDDIReg/scripts subdirectory), and then manually copy this jar to any
appserver you may wish to run it on.
On Windows this should be a userid and password with administrative
privileges. On Unix platforms, you should supply the userid and password of
the DB2 instance in which you wish the database to be created.
To create the database you use the UDDI DB2 setup wizard, which is supplied
as a jar file called SetupDB2UDDI.jar in the UDDIReg/scripts subdirectory, by
following these steps:
a. Change directory to the directory containing the file SetupDB2UDDI.jar

(that is, either the UDDIReg/scripts directory in which it is supplied, or a
directory on the target system into which you have copied it).

b. In order to run the wizard, you need to first ensure that you have access
from your command line to the JVM supplied with WebSphere. This is done
as follows:
v On Windows, on a user with administrative privileges, in a command

window type the following command:
was_install\bin\setupcmdline.bat

Where was_install is the path to the directory where you installed
WebSphere Application Server.

For example,
C:\Program Files\WebSphere\AppServer\bin\setupcmdline.bat

v On Unix platforms, at a command line type one of the following
commands:
– If you are using bash, then as the root user run

./opt/WebSphere/AppServer/bin/setupCmdLine.sh

– If you are using csh, then as the root user run
source /opt/WebSphere/AppServer/bin/setupCmdLine.sh

where /opt/WebSphere/AppServer is the path to the directory where you
installed WebSphere Application Server.

c. In the same command window, start the UDDI DB2 setup wizard by typing
one of the following commands:
v To start a graphical user interface, type

java -jar SetupDB2UDDI.jar

v To start a text mode interface, type:
java -jar SetupDB2UDDI.jar -console

d. Follow the prompts to work through the wizard panels.

Chapter 10. IBM WebSphere UDDI Registry 563

e. (Optional) If necessary, check the log files for the wizard. A log file called
UDDIloadDB.log is written to the directory from which the wizard is run
(but note that on Windows platforms, if you have decided not to overwrite
an existing UDDI20 database, then this fact will not be logged, and the log
file will not be created).

3. Create a JBDC driver and datasource to provide access to the UDDI20 DB2
database, and install the UDDI Registry application. This is done using the
WASADMIN tool, using as input the setupuddi.jacl script from the
UDDIReg/scripts subdirectory of the Deployment Manager. Note that this
script must be run on the deployment manager node.
You should either run this script from the UDDIReg/scripts subdirectory where
it is located, or copy it to some other suitable directory. Note that the
WSADMIN command is located in the bin subdirectory of the deployment
manager node.The syntax for this script for DB2 is:
wsadmin -f setupuddi.jacl

deploymgrpath
servername
nodename
discoveryURLprefix
dbname
db2userid
db2password
db2ziplocation
> setupuddi.log

where
v deploymgrpath is the fully qualified pathname of the deployment manager

install directory, specified using forward slashes regardless of platform; e.g.
for Windows, this might be c:/Progra~1/WebSphere/DeploymentManager

v servername is the name of the target application server on which you wish to
deploy the UDDI Registry, such as server1. Note that the server name is case
sensitive.

v nodename is the name of the WebSphere node on which the target application
server runs. Typically, this will be the same as the machine name. Note that
the node name is case sensitive.

v discoveryURLprefix is the URL prefix to be used for discovery URLs. Typically
this will be of the form http://<ip-address>:9080/uddisoap/ so an example
of a discoveryURLprefix value might be
http://mynode.mylocation.mycompany.com:9080/uddisoap/

v dbname is the name of the UDDI Registry database under DB2. For this
parameter, you should specify UDDI20.

v db2userid and db2password are a valid DB2 userid and password with
administrative privileges

v db2ziplocation is the path to the db2java zip file on your system, specified
using forward slashes regardless of platform; e.g. for Windows, this might be
C:/Progra~1/SQLLIB/java/db2java.zip

v > setupuddi.log is an optional parameter to direct the output to a log file as
opposed to the default (which is to the screen)

For example, on Windows the command (shown here on multiple lines for
publication) is:
wsadmin -f setupuddi.jacl "C:/Progra~1/WebSphere/deploymentManager/"
server1 MYRIAD "http://myriad.headoffice.xyz.com:9080/uddisoap/" UDDI20
db2admin secretpwd "C:/Progra~1/SQLLIB/java/db2java.zip" > setupuddi.log

564 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

On Unix platforms the command (shown here on multiple lines for publication)
is:
wsadmin.sh -f setupuddi.jacl "/opt/WebSphere/deploymentManager/"
server1 MYRIAD "http://myriad.headoffice.xyz.com:9080/uddisoap/" UDDI20
db2admin secretpwd "/home/db2inst1/sqllib/java12/db2java.zip" > setupuddi.log

will install the UDDI Registry application into the server server1 running on
node MYRIAD, and set it up to access the DB2 UDDI20 database using the
userid ’db2admin’ and password ’secretpwd’.

The setupuddi.jacl script will:
a. Create a JDBC driver named UDDI.JDBC.Driver.<nodeName>.<server> and

a datasource named UDDI.Datasource.<nodeName>.<server> (where
<nodeName> is the name of the target node and <server> is the name of
the target server>, and will replace any existing driver and datasource of
that name.

b. Check whether the UDDI Registry application is already installed and, if so,
stop it and uninstall it.

c. Update the uddi.properties configuration file to configure the
discoveryURLprefix value that you have specified, and to set the persister
property as ’DB2’, and place this uddi.properties file into the location
config/cells/<currentcell>/nodes/<nodename>/servers/<servername>. You
should make any further global configuration changes using this copy of the
file.

d. Place a number of files that are needed by the UDDI Registry into the
WebSphere configuration repository, and update the ws.ext.dirs list to
reference these files.

e. Install the UDDI Registry.

What to do next

Return to the next step in the parent task Installing the UDDI Registry into a
deployment manager cell.

Installing the UDDI Registry into a single appserver
If you intend to run in a single WebSphere Application server, then complete the
following task.

When you select the UDDI Registry option, then the installation will place all files
that are needed to run a UDDI Registry onto the deployment manager install tree
on the machine on which you are installing IBM WebSphere Application Server for
Network Deployment.

To be able to run the UDDI Registry in a single application server instance in your
network space you must copy these files over to the application server and then
deploy the UDDI Registry. You can do this as follows:

Steps for this task
1. Stop the application server on which you plan to run the UDDI Registry; for

example, using the command stopServer server_name (stopServer.sh on Unix
Platforms)

2. Copy the uddi.ear file from the installableApps subdirectory of the deployment
manager install tree into the installableApps subdirectory of the target
application server’s install tree.

Chapter 10. IBM WebSphere UDDI Registry 565

3. Copy the uddi.properties file from the properties subdirectory of the deployment
manager install tree into the properties subdirectory of the target application
server’s install tree.
In a subsequent step, you configure the UDDI Registry using the properties in
the uddi.properties file.

4. Copy both the uddiresourcebundles.jar and the setupuddimessages.jar files from the
lib subdirectory of the deployment manager install tree into the lib subdirectory
of the target application server’s install tree.

5. Optionally, if you are going to write or run code that uses the EJB interface to
UDDI on another machine, then copy the uddiejbclient.jar file and the EJB
javadoc directory tree from the UDDIReg/ejb subdirectory of the deployment
manager install tree onto a location of your choice on any machines where you
will be creating EJB clients to access the UDDI Registry.

6. Configure database support for the UDDI Registry database, in which the
UDDI Registry will be held.
To do this, complete one of the following tasks then return this point:
v Setting up the UDDI Registry to use Cloudscape in a single AppServer
v Setting up the UDDI Registry to use DB2 in a single AppServer

Note: If you set up the UDDI Registry application with a JDBC driver and
datasource that reference Cloudscape, but set the persister property in
uddi.properties to specify DB2, or vice versa, then some unexpected behavior
will result, such as a fatal error on deleting an entity. If this happens, you
should check that the above details are not in conflict. This only applies to a
UDDI Registry installation on a single appserver.

7. Ensure that the UDDI Registry is configured appropriately for your installation,
as described in the section on Configuring the UDDI Registry.

8. Stop and then restart the application server.
On Unix platforms you must remember to run the db2profile script before
issuing the startServer.sh command. This script is located within the DB2
instance’s home directory under SQLLIB and can be invoked, for example, by
typing:
". /home/db2inst1/sqllib/db2profile"

What to do next

Continue with Configuring the UDDI Registry.

Setting up the UDDI Registry to use Cloudscape in a single
appserver

Before you begin

Please see the section ″Choice of database product to be used as the persistence
store″ to decide which database product you should use as your persistence store
before proceeding further with this step.

If you plan to use Cloudscape for the database in which the UDDI Registry data
will be held, use this task to setup and install the UDDI Registry application to use
the supplied Cloudscape database.

566 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

This task configures Cloudscape on the host where you want to run the UDDI
Registry. Before starting this task, ensure that Cloudscape is installed and running
on that host, and that you can open a command window on that host.

This task, to configure Cloudscape for the UDDI Registry database. Cloudscape is
supplied with WebSphere Application Server, so you should not need to install
Cloudscape support.

This task, to configure Cloudscape for the UDDI Registry database, is part of the
parent task to install and setup a UDDI Registry, described in Installing and
Setting up a UDDI Registry. You should complete this task at the appropriate step
in the parent task, then return to and complete the parent task.

To configure Cloudscape for the UDDI Registry database, complete the following
steps:

Steps for this task
1. Copy the UDDI20 directory tree from the bin subdirectory of the deployment

manager tree into the bin subdirectory of the target application server’s install
tree.

2. Copy the uddicloudscapeuserfunc.jar file from the lib subdirectory of the
deployment manager install tree to the lib subdirectory of the target application
server’s install tree.

3. Ensure that the persister property in the uddi.properties file is set to
persister=Cloudscape

4. Copy the appserversetupuddi.jacl script from the UDDIReg/scripts subdirectory
of the deployment manager install tree to the WebSphere Application Server
bin subdirectory (for example, on Windows,
C:\Progra~1\WebSphere\AppServer\bin).

5. Change directory to the WebSphere Application Server bin subdirectory.
6. Start the application server on which the UDDI Registry is to run.

For example, you can start the application server server1 by typing the
command:
startserver server1

7. Create a JDBC driver and datasource to provide access to the UDDI20
Cloudscape database, and install the UDDI Registry application.
To do this run the WSADMIN tool with the script appserversetupuddi.jacl as
input, on the target application server, using the following command syntax:
(You should either run this script from the UDDIReg/scripts subdirectory
where it is located, or copy it to some other suitable directory. Note that the
WSADMIN command is located in the WebSphere bin subdirectory.)
wsadmin -f appserversetupuddi.jacl

uddi-ear-location
servername
nodename
WebSphere-lib-subdirectory
cloudscapedbname
> setupuddi.log

Where:
v uddi-ear-location is the fully-qualified path to the uddi.ear file in the

installableApps subdirectory, specified using forward slashes regardless of
platform. For example, on Windows:
C:/Progra~1/WebSphere/AppServer/installableApps/uddi.ear

Chapter 10. IBM WebSphere UDDI Registry 567

v servername is the name of the application server on which the UDDI registry
is to run; for example: server1. Note the the server name entered is case
sensitive.

v nodename is the name of the WebSphere node on which the application
server, servername, is running. Typically this is the machine name. Note that
the node name entered is case sensitive.

v WebSphere-lib-subdirectory is the fully-qualified path to the WebSphere
Application Server lib subdirectory, specified using forward slashes
regardless of platform. For example:
– On Windows: C:/Progra~1/WebSphere/AppServer/lib
– On Unix: /opt/WebSphere/AppServer/lib

v cloudscapedbname is the fully-qualified path to the UDDI20 database within
the bin subdirectory of your WebSphere AppServer installation, specified
using forward slashes regardless of platform. For example:
– On Windows, C:/Progra~1/WebSphere/AppServer/bin/UDDI20
– On Unix, /opt/WebSphere/AppServer/bin/UDDI20

v > setupuddi.log is an optional parameter to direct the output to a log file as
opposed to the default (which is to the screen)

The appserversetupuddi.jacl script will complete the following actions:
a. Create a JDBC driver named UDDI.JDBC.Driver.<nodeName>.<server> and

a datasource named UDDI.Datasource.<nodeName>.<server> (where
<nodeName> is the name of the target node and <server> is the name of
the target server>, and will replace any existing driver and datasource of
that name.

b. Checks whether the WebSphere UDDI Registry application is already
installed and, if so, stop the application and uninstall it.

c. Installs the WebSphere UDDI Registry, then start it.

What to do next

Return to the next step in the parent task Installing the UDDI Registry into a single
appserver.

Setting up the UDDI Registry to use DB2 in a single appserver
Before you begin

Please see the section ″Choice of database product to be used as the persistence
store″ to decide which database product you should use as your persistence store
before proceeding further with this step.

This task, to configure DB2 for the UDDI Registry database, is part of the parent
task to install and setup a UDDI Registry, described in Installing and setting up a
UDDI Registry. You should complete this task at the appropriate step in the parent
task, then return to and complete the parent task.

If you plan to use DB2 for the database in which the UDDI Registry data will be
held, use this task to create and load the UDDI Registry database using DB2, and
to setup and install the UDDI Registry application to use the database.

This task uses the UDDI DB2 setup wizard to configure DB2 on the system where
you want to run the UDDI Registry. Before starting this task, ensure that DB2 is
installed and running on that system.

568 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Copy the UDDIReg directory tree from the deployment manager to the target
application server where DB2 will run.

The following steps should be carried out on the system on which the target
application server is located (referred to below as the ’target system’).

Steps for this task
1. On Windows, if you are using DB2 Version 7, then ensure that since installing

DB2 you have run the usejdbc2.bat command file.
For more information about this, see ″Application Building Guide″ in the DB2
documentation.

2. Create and load the UDDI Registry database, called UDDI20.
Note: If you are migrating from an earlier version of the UDDI Registry, and
your UDDI20 DB2 database already exists, then you should skip this step
unless you want to replace the existing database with a new UDDI20 DB2
database. If you do choose to replace an existing database then all of your
existing UDDI data will be lost. Important: please also note that if you do
choose to replace the existing UDDI20 database, then there must not be any
applications or users accessing the database at the time that you run the UDDI
DB2 setup wizard.
The UDDI DB2 setup wizard used in this task will prompt you to provide the
DB2 userid and password under which the UDDI Registry database will be
created and subsequently accessed. Before starting this task, ensure that you
have created an appropriate DB2 userid and password. This same userid and
password must be used throughout the following steps where the DB2 userid
and password is requested.
On Windows this should be a userid and password with administrative
privileges. On Unix platforms, you should supply the userid and password of
the DB2 instance in which you wish the database to be created.

5.0.1 If you are using a non-English installation of DB2, then please ensure
you have applied PTF1 before continuing.

5.0.1 Information on how to do this and where to obtain the PTF can be found
here.

5.0.1 If you wish to implement the updated SetupDB2UDDI database wizard,
then also please apply the PTF(s) mentioned above.

5.0.1 Note: If you have a copy of the file SetupDB2UDDI.jar in your
appserver directory, then the application of the base and Network Deployment
PTFs will not update SetupDB2UDDI.jar in your appserver directory. You must
apply the PTF for Network Deployment to your DeploymentManager file
structure to update the SetupDB2UDDI.jar located there (in the
/UDDIReg/scripts subdirectory), and then manually copy this jar to any
appserver you may wish to run it on.
To create the database you use the UDDI DB2 setup wizard, which is supplied
as a jar file called SetupDB2UDDI.jar in the UDDIReg/scripts subdirectory, by
following these steps:
a. Change directory to the directory containing the file SetupDB2UDDI.jar

(that is, either the UDDIReg/scripts directory in which it is supplied, or a
directory on the target system into which you have copied it).

Chapter 10. IBM WebSphere UDDI Registry 569

b. In order to run the wizard, you need to first ensure that you have access
from your command line to the JVM supplied with WebSphere. This is done
as follows:
v On Windows, on a user with administrative privileges, in a command

window type the following command:
was_install\bin\setupcmdline.bat

Where was_install is the path to the directory where you installed
WebSphere Application Server.

For example, C:\Program
Files\WebSphere\AppServer\bin\setupcmdline.bat

v On Unix platforms, at a command line, type one of the following
commands:
– If you are using bash, then as the root user run

. /opt/WebSphere/AppServer/bin/setupCmdLine.sh

– If you are using csh, then as the root user run
source /opt/WebSphere/AppServer/bin/setupCmdLine.sh

where /opt/WebSphere/AppServer is the path to the directory where you
installed WebSphere Application Server.

c. In the same command window, start the UDDI DB2 setup wizard by issuing
one of the following commands:the following command:
v To start a graphical user interface, type

java -jar SetupDB2UDDI.jar

v To start a text mode interface, type:
java -jar SetupDB2UDDI.jar -console

d. Follow the prompts to work through the wizard panels.
e. (Optional) If necessary, check the log files for the wizard. A log file called

UDDIloadDB.log is written out into the directory from which the wizard is
run (but note that, on Windows platforms, if you have decided not to
overwrite an existing UDDI20 database, then this fact will not be logged,
and the log file will not be created).

3. Ensure that the persister property in the uddi.properties file is set to
persister=DB2.

4. On Unix, ensure that you have run the db2profile script to set up the
environment for the DB2 instance that the UDDI Registry is using.
For example, type the command:
. /home/db2inst1/sqllib/db2profile

5. Start the application server on which the UDDI Registry is to run.
For example, you can start the application server server1 by issuing the
command:
startserver server1

Note: This command must be entered on a single line. It is split here for
display purposes.

6. Copy the appserversetupuddi.jacl script from the UDDIReg/scripts subdirectory
of the deployment manager install tree to the WebSphere Application Server
bin subdirectory (for example, on Windows,
C:\Progra~1\WebSphere\AppServer\bin).

7. Change directory to the WebSphere Application Server bin subdirectory.

570 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

8. Create a JDBC driver and datasource to provide access to the UDDI20 database,
and install the UDDI Registry application.
To do this run the WSADMIN tool with the script appserversetupuddi.jacl as
input, on the target application server, using the following command syntax.
(You should either run this script from the UDDIReg/scripts subdirectory
where it is located, or copy it to some other suitable directory. Note that the
WSADMIN command is located in the WebSphere bin subdirectory.)
wsadmin -f appserversetupuddi.jacl

uddi-ear-location
servername
nodename
WebSphere-lib-subdirectory
dbname
db2userid
db2pwd
db2-install-dirlocation-of-db2java.zip
> setupuddi.log

where
v uddi-ear-location is the fully-qualified path to the uddi.ear file in the

installableApps subdirectory, specified using forward slashes regardless of
platform.
For example, on Windows:

C:/Progra~1/WebSphere/AppServer/installableApps/uddi.ear

v servername is the name of the application server on which the UDDI registry
is to run; for example: server1. Note that the name of the server is case
sensitive.

v nodename is the name of the WebSphere node on which the application
server, servername, is running. Note that the name of the node is case
sensitive. Typically this will be the machine name.

v WebSphere-lib-subdirectory is the fully-qualified path to the WebSphere
Application Server lib subdirectory, specified using forward slashes
regardless of platform. For example:
– On Windows: C:/Progra~1/WebSphere/AppServer/lib
– On Unix or z/OS: /opt/WebSphere/AppServer/lib

v dbname is the name of the UDDI Registry database under DB2. You should
specify UDDI20 for this parameter

v db2userid and db2pwd are a valid DB2 userid and password with
administrative privileges, as specified in an earlier step.

v db2-install-dir is the path under which you have installed DB2 on your
system, specified using forward slashes regardless of platform.
– For DB2 Version 7.2 (and later) on Windows the location is:

C:/Progra~1/SQLLIB/java12/db2java.zip and note that the default value
for db2-install-dir on Windows is C:\Program Files\SQLLIB.

– For DB2 Version 8.1 (and later), then this parameter should be
db2-install-dir/java/db2java.zip, and note that the default value for
db2-install-dir on Windows is C:\Program Files\IBM\SQLLIB

v > setupuddi.log is an optional parameter to direct the output to a log file as
opposed to the default (which is to the screen)

The appserversetupuddi.jacl will complete the following actions:
a. Create a JDBC driver named UDDI.JDBC.Driver.<nodeName>.<server> and

a datasource named UDDI.Datasource.<nodeName>.<server> (where

Chapter 10. IBM WebSphere UDDI Registry 571

<nodeName> is the name of the target node and <server> is the name of
the target server>, and will replace any existing driver and datasource of
that name.

b. Checks whether the WebSphere UDDI Registry application is already
installed and, if so, stop the application and uninstall it.

c. Installs the WebSphere UDDI Registry, then starts it.

What to do next

Return to the next step in the parent task Installing and Setting up a UDDI
Registry.

Reinstalling the UDDI Registry application
If you wish to reinstall the UDDI Registry then please follow the appropriate
section below.

Reinstalling into a deployment manager cell

If you wish to reinstall the UDDI Registry into the target application server, for
example because you wish to alter certain aspects of its configuration using AAT,
then you should rerun the setupuddi.jacl script (described in the appropriate link
below
v ″Setting up the UDDI Registry to use Cloudscape within a deployment cell″
v ″Setting up the UDDI Registry to use DB2 within a deployment cell″

).

Reinstalling into a single appserver

Remove the UDDI Registry application in the same manner as any other Enterprise
Application and then install using the appropriate link shown below:
v Setting up the UDDI Registry to use Cloudscape in a single AppServer
v Setting up the UDDI Registry to use DB2 in a single AppServer

Applying Service to the UDDI Registry in a Network Deployment and
single Application Server environment

Before you begin

When applying service to your WebSphere and UDDI Registry, you need to be
aware of the following.

If you are running in a Network Deployment cell, and you apply service to the
UDDI Registry (on the Deployment Manager), the updates will automatically be
sent to all nodes running UDDI that are federated to that cell.

If, however, you are running in a stand-alone single Application Server (which is
not known to the Deployment Manager), the updates will not automatically be
sent out. In this case you must read the PTF Release Notes for instructions on how
to do this.

572 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

In addition there are some updates to files and scripts that may not automatically
be sent to the application servers in either a Network Deployment or single
Application Server environment. Please read the PTF Release Notes for details

Removing the UDDI Registry application from a deployment manager
cell

Before you begin

If you wish to completely remove the UDDI Registry application from the target
application server in the deployment manager cell, then you should run the
wsadmin (wsadmin.sh on Unix Platforms) script removeuddi.jacl, which is located in
the UDDIReg/scripts directory of the deployment manager install tree.

Please note that if the target server specified on invoking removeuddi.jacl is
running at the same time, then the script will stop the server and will restart the
server after when it has completed its operations.

Steps for this task
1.

The syntax for this script is:
wsadmin -f removeuddi.jacl

servername
nodename
> removeuddi.log

Where servername and nodename are the server and node where you have
deployed the UDDI Registry application. By default output will go to the
screen, but, optionally, you can specify ’> removeuddi.log’ to direct output to a
log file.

For example,
wsadmin -f removeuddi.jacl server1 myriad

will remove the UDDI Registry application and related files from server server1
running in node myriad, and will send any messages to the screen.

Removing the UDDI Registry application from a single appserver
Before you begin

If you wish to completely remove the UDDI Registry application from a
stand-alone application server then you should run the WSADMIN script
appserverremoveuddi.jacl, which will have been installed into the
UDDIReg/scripts directory when you installed the UDDI Registry as part of a
Network Deployment install.

Steps for this task are:

Steps for this task
1. The syntax for this script is:

wsadmin -f appserverremoveuddi.jacl
servername
nodename
> removeuddi.log

Chapter 10. IBM WebSphere UDDI Registry 573

where
v servername and nodename are the name of the stand-alone application node in

which it runs (these are the names that you specified when you ran
appserversetupuddi.jacl to install the UDDI Registry application).

v by default output will go to the screen, but, optionally, you can specify ’>
removeuddi.log’ to direct the output to a log file.

For example,
wsadmin -f appserverremoveuddi.jacl server1 monolith

will remove the UDDI Registry application and related files from server server1
running in node monolith, and will send any meaages to the screen.

Configuring the UDDI Registry
Before you begin

The UDDI Registry is supplied as a J2EE application file, uddi.ear. This is installed
into the WebSphere Application Server during installation. If you want to change
any of its configuration properties using AAT see ″Configuring SOAP properties
with the AAT″.

If you enable WebSphere security then to run the publish API servlet of the IBM
WebSphere UDDI Registry, you also need to configure WebSphere to use HTTPS
and SSL, as described in Configuring WebSphere to use HTTPS and SSL

You can configure the following aspects of the UDDI Registry:
v ″Configuring global UDDI properties″

v ″Modifying the database userid and password″

v ″Configuring security properties″

v ″Configuring the UDDI User Console (GUI) for multiple language encoding
support″

v ″Customizing the UDDI User Console (GUI)″
v ″Configuring SOAP interface properties″

v ″Configuring SOAP properties with the AAT″

v ″Configuring SOAP properties in an already-deployed application″

v ″Configuring WebSphere to use HTTPS and SSL″

Configuring global UDDI properties
Before you begin

To modify any of the global UDDI properties, you will need to edit the file called
uddi.properties. More than one version of this file exists and the version you
need to edit depends on
v whether you are in the installation phase or are updating the properties as a

post installation step
v whether you are configured for a Deployment Manager or Base Application

Server environment

The location of the file you should edit will be one of the following:

Deployment Manager Configurations

574 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

1. If you are in the process of installing the UDDI Registry application for the first
time into a Deployment Manager cell and wish to make some generic changes
before deploying it in the cell, the uddi.properties file will be located in the
<DeploymentManager-install-dir>/properties directory. If you are reinstalling
the UDDI Registry application into a Deployment Manager cell, then you
should edit the file in the location described under 2 below.
Note: Please note that in a Deployment Manager configuration some properties
(such as persister and getServletURLprefix) are dynamically set up in the
uddi.properties file, during subsequent installation processing.

2. If the UDDI Registry is already configured into an application server within a
Deployment Manager cell (i.e. you are undertaking post installation
configuration changes), then the uddi.properties file you should edit will be
located in the configuration repository, under the Deployment Manager filing
system; that is in <DeploymentManager-install-dir>config/cells/<cellname>
/nodes/<nodename>/servers/<servername>, where <cellname> is the name of
the Deployment Manager cell, <nodename> is the name of the node in which
the application server is installed, and <servername> is the name of the
application server in which you have installed the UDDI Registry.

Application Server Configurations

1. If you are in the process of installing the UDDI Registry application into an
Application Server only environment you will be advised during the
installation process when to make changes to the uddi.properties file.
Note: Please note that in contrast with the Deployment Manager configuration,
UDDI properties are not dynamically set during installation processing.

2. If the UDDI Registry is already configured into a single application server
which is not part of a Deployment Manager cell (i.e. you are undertaking post
installation configuration changes), then the uddi.properties file will be located in
the properties subdirectory of the WebSphere Application Server in which you
have installed the UDDI Registry application, that is <ApplicationServer-install-
dir>/properties directory.

The properties that can be changed within uddi.properties are as follows:
v The dbMaxResultCount, which is the limit on the number of rows of

information that should be returned on Find requests, and will apply if the
request does not specify a maxRows limit itself (or if it specifies a limit which
exceeds this value). The initial value for this in uddi.properties is 100.

v The persister, which indicates what database is to be used as the persistence
store for the UDDI Registry database. If you have installed the UDDI Registry
into an application server within a Deployment Manager cell, then the persister
property will have been set to the correct value for you. If you change this
value, then you must also ensure that you have a UDDI Registry database
created using the chosen database product (for more details about the UDDI
Registry database, please refer to the section on ″Installing the UDDI Registry″).
You should also be aware that any data published to the UDDI Registry with
one setting of the persister property will not be accessible when running the
UDDI Registry application with a different setting for the persister property. The
valid values for the persister property are:
– persister=DB2

indicating that DB2 is to be used as the persistence store
– persister=Cloudscape

indicating that Cloudscape is to be used as the persistence store

Chapter 10. IBM WebSphere UDDI Registry 575

The initial value for this in uddi.properties is Cloudscape.

Note: This property is dynamically set by the setupuddi.jacl script when
installing into a Deployment Manager cell so in this case you should not need to
modify it.

v The default language to be used on a publish request as the xml:lang when one
is not specified. The initial value for this in uddi.properties is en-US. This property
must contain one of the valid xml:lang values.

v The UDDI site operator name. This is a string which is stored in every registry
object, to indicate the operator of the UDDI Registry. The initial value for this in
uddi.properties is www.mycompany.com/uddi. This property does not have any
particular functional use, so its value can be set to any string that you feel is
suitable.

v The maximum number of search keys that can be used on find API requests. The
initial value for this in uddi.properties is 5.

v The getServletURLprefix and getServletname name, used to build up the
discovery URL. The initial values for these are
http://localhost:9080/uddisoap/ and get. If you have installed the UDDI
Registry into an application server within a Deployment Manager cell, then the
getServletURLPrefix property will have been set for you using the value you
specified as a parameter to the setup script. You are recommended to set suitable
values for these properties before you first use the UDDI Registry.
Note: This property is dynamically set by the setupuddi.jacl script when installing
into a Deployment Manager cell so in this case you should not need to modify
it.

Applying these changes to your system

In order for your changes to take effect, you must do one of the following:
v If you are in the process of installing the UDDI Registry application for the first

time, you should return to the original topic and complete the installation steps.
Any changes you have made will be picked up during this subsequent
processing.

v If you have made post installation changes in a base Application Server only
environment, you should stop and restart the UDDI Registry application using
the WebSphere Administrative Console.

v If you have made post installation changes in a Deployment Manager
environment you should:
1. Execute a Full Resynchronization for the node where the UDDI Registry

executes. This can be done from the WebSphere Network Deployment
Administrative Console under section Systems Administration ==> Nodes.
Select your node, and then click the button for ’Full Resynchronization’.
It is important that you do a ’Full Resynchronization’ and not just a
’Synchronize’.

2. Stop and restart the UDDI Registry application using the WebSphere
Administrative Console

Modifying the database userid and password
Before you begin

If you use DB2 as the persistence store for the UDDI Registry, and you need to
change the database userid and/or password, you should alter the user and
password values in the custom properties of the ’UDDI Datasource’, which can be

576 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

edited from the WebSphere Administrative Console. The UDDI.Datasource is under
datasources within the UDDI.JDBC.Driver, which is itself found under JDBC
Providers under Resources. Do not alter the databaseName.

Configuring security properties
Before you begin

See Configuring WebSphere to use HTTPS and SSL for details on configuring
security properties.

To run the publish API servlet of the IBM WebSphere UDDI Registry, you also
need to configure WebSphere to use HTTPS and SSL, as described in Configuring
WebSphere to use HTTPS and SSL

Configuring the UDDI User Console (GUI) for multiple
language encoding support

Before you begin

If you want to use multiple language encoding support in the User Console (GUI),
you need to configure the application server into which the UDDI Registry
application is installed with UTF-8 encoding enabled. To do this, please refer to
″Configuring application servers for UTF-8 encoding″ elsewhere in the WebSphere
Application Server version 5 InfoCenter on enabling an application server for
UTF-8.

Customizing the UDDI User Console (GUI)
Before you begin

The look and feel of the UDDI Console is determined by the styles defined in the
uddi_gui.css file which is located in the /gui.war/theme directory of the installed
UDDI Registry application directory. The UDDI Registry The UDDI Registry
application directory will be one of the following, depending on where you have
installed the UDDI Registry:
v If you have installed the UDDI Registry into an application server within a

Deployment Manager cell, the directory is UDDIReg.ear under the /apps
directory of the configuration repository for the cell.

v If you have installed the UDDI Registry into a single application server which is
not part of a Deployment Manager cell, the directory is UDDIRgistry.ear under
the installedApps directory of the WebSphere Application Server in which you
have installed the UDDI registry application.

The contents of this file can be edited to change the colors, fonts and font sizes
according to the user’s preference.

The content and layout of the UDDI User Console is provided by JSP pages, which
can be customized by a programmer who is familiar with JSPs. The JSP pages are
found in the uddi.ear enterprise application, which is under the installedApps
subdirectory of the WebSphere AppServer installation. To locate the JSPs, you
should expand the UDDI_Registry.ear, open the gui.war, and they are located
under WEB-INF in the pages subdirectory. So, on a Windows system which has
WebSphere installed in the default location, the JSP files will be found in
″<WebSphere-install-dir>\installedApps\UDDI_Registry.ear\gui.war\WEB-
INF\pages″. These JSP pages also contain some application logic (as opposed to
presentation logic) which should not be changed.

Chapter 10. IBM WebSphere UDDI Registry 577

Configuring SOAP interface properties
Before you begin

You can configure the following SOAP interface properties
v defaultPoolSize - the number of SOAP parsers with which to initialize the parser

pool for the SOAP interface. The can be set independently for the Publish
(uddipublish) and Inquiry (uddi) APIs. For example, if you expect more
inquiries than publish requests via the SOAP interface, you can set a larger pool
size for the Inquiry API. The default initial size for both APIs is 10.

v The context root used for the Publish and Inquiry APIs, which forms a part of the
URL by which they are accessed. By default this is /uddisoap.

v Whether the API is to be secure (via HTTPS) or insecure (via HTTP). The default
is to use HTTPS.

To configure the following SOAP interface properties, you can use either of the
following methods, as described below:
v ″Configuring SOAP properties with the AAT″ (the recommended option,

especially for a production environment)
v ″Configuring SOAP properties in an already-deployed application″ for the SOAP

module in the UDDI application directly. This option is faster and may be the
preferred method in a test environment.

Configuring SOAP properties with the AAT
Before you begin

To configure SOAP properties by using the WebSphere Application Assembly tool,
complete the following steps:
v Select Update and click on the Application icon.
v Select the uddi.ear file (this is placed, by the UDDI installation, into the UDDI

install directory (e.g. C:\WebSphere\installableApps\uddi.ear).
v Expand the uddi.ear icon on the left-hand pane in the AAT.
v Expand the Web Modules tree.
v Expand the uddi Soap tree
v To change the defaultPoolSize, expand Web Components and then uddipublish (for

the publish API) or uddi (for the inquiry API).
– Click on Initialization Parameters which will show the defaultPoolSize parameter

in the upper right-hand pane. This can be edited in the lower right-hand
pane.

v To change the context root, click on UDDI Soap which will display general
information about the SOAP module in the lower right-hand pane in AAT. The
context root can be edited in this pane.

v To change the publish API to use HTTP (instead of HTTPS), click on Security
Constraints and change the Transport Guarantee from Confidential to none.

v Having made any changes above, you must now save them. To do this, click on
File -> Save (or Save As) to save your changes.

v Redeploy the uddi.ear to WebSphere, by first removing it and reinstalling it via
the Administrator’s Console.

578 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Configuring SOAP properties in an already-deployed
application

Before you begin

To configure SOAP properties after the UDDI application has been installed,
complete the following steps:
1. The deployment descriptor for the SOAP module (web.xml) is found in the

WEB-INF subdirectory of the uddi.ear application in the installed applications
within the WebSphere install directory (for example, <WebSphere-install-
dir>\installableApps\uddi.ear\soap.war\WEB-INF). It can be edited directly to
specify the desired settings.

2. Stop and restart the WebSphere Application server for the changes to take
effect.

Configuring WebSphere to use HTTPS and SSL
Before you begin

To support the use of secure access with the IBM WebSphere UDDI Registry, you
need to configure WebSphere to use HTTPS and SSL. Please refer to the
information available elsewhere in this InfoCenter for configuring SSL in
WebSphere Application Server. It is assumed throughout the information for the
UDDI Registry that, where SSL is used, it has been configured on port 9443.

Administering the UDDI Registry
Before you begin

This section describes the various tasks about administering the UDDI Registry.
v ″Running the UDDI Registry″

v ″Backing up and restoring the UDDI Registry database″

Running the UDDI Registry
Before you begin

The UDDI Registry is started automatically when the Application Server is started.
In order to stop and restart it, use the Administrative console.

Backing up and restoring the UDDI Registry database
Before you begin

If you want to protect the data in your UDDI Registry database, you can backup
and restore the database using the facilities of the database product. For DB2, you
can do this by using the export and import functions of the DB2 Control Center.
For Cloudscape you can simply use operating system tools to copy the database
directory. Please refer to the database product information for more details.

The UDDI Registry database is called UDDI20, and the tables which should be
backed up are:
v ADDRESS
v ADDRLINE
v BSERVICE
v BTEMPLATE

Chapter 10. IBM WebSphere UDDI Registry 579

v BUSINESS
v CATEGORY
v CATEGORYBAG
v CONTACT
v DESCR
v DISCOVERYURL
v EMAIL
v EXTCATEGORY
v IDENTIFIERBAG
v INSTANCEDETAIL
v NAMEELEMENT
v OVERVIEWDOC
v PHONE
v PUBLISHERASSERTION
v SERVICEPROJECTION
v TMODEL
v VALIDATIONCACHE
v VALIDATIONSERVICES

UDDI user console
This topic describes the layout of the UDDI user console, also referred to as the
Graphical User Interface (GUI), which you can use to interact with the IBM
WebSphere UDDI Registry.

For information about how to display the UDDI user console, see Displaying the
user console.

If you will be using the UDDI Console, then it is recommended that you configure
the application server into which you have installed the UDDI Registry for UTF-8
encoding support: please refer to the section on ″Configuring the UDDI User
Console for multiple language encoding support″.
v The user console provides a graphical user interface to the majority of the UDDI

Version 2 API. It is not intended to support the full API set: there is some focus
on inquiry operations, as the main purpose of the UDDI User Console is to
allow users to issue inquiry requests and to familiarize themselves with general
UDDI concepts. This section documents those areas for which support through
the user console is not provided, together with other known restrictions to the
user console.
– General

- Help is provided in the form of explanatory text on the screens.
- Maximum rows cannot be specified on finds. The single maximum rows

value for the registry can be set through the dbMaxResultCount global
configuration property. For more information on setting this property see
Configuring global UDDI properties

– Find business
- The business identifier feature is not supported.

– Find service type
- The business identifier feature is not supported.

580 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

– Add business
- The business contact must be supplied as a name and role (no other

information is supported).
– Add service type

- The overview URL can be entered, but only with one description in
English.

– Add service
- There is no support for entering a Hosting Redirector, nor for adding an

overviewURL.
v Note: The UDDI Version 2 specification states that when a tModel is deleted, it

should not be physically deleted. This allows the tModel to be reinstated. One
effect of this is that, if you delete a tModel using the UDDI user console, the
tModel is still visible through the Show Owned Entities display.

The UDDI user console is split into three distinct areas. At the top of the screen are
buttons which activate various functions in the areas below this bar. These buttons
are:

Home returns you to the IBM WebSphere UDDI Registry welcome page

Find activates the Find tab on the frame below to the left

Publish
similarly activates the Publish tab on the frame below to the left

Below the WebSphere UDDI Registry banner the screen is split into two parts. On
the left are the two tabs mentioned above, the Find and Publish tabs.

Find tab

The Find tab is in two parts. At the top, a Quick Find service is provided. There
are three radio buttons to enable a choice of ’service’, ’business’ and ’technical
model’ finds. Below these radio buttons is a text entry box for entering the name
to search for and, beneath this, a ’Find’ link to start the search. Comments are
provided to show the user the wildcard character. The results of clicking on the
’Find’ link are shown in the detail frame to the right.

Beneath the Quick Find is a section for Advanced Find functions which enables
the user to choose which entity they want to perform an advanced search on.
There are three links: Find services, Find businesses and Find technical models.
Clicking one of these links displays the corresponding advanced search form in the
frame to the right, which the user may use to enter search criteria. To initiate a
Find, the user must first enter a search path (the % wildcard may be used) and
then click the blue Add link to enter the search. Then click on the ’Find Services’
(or ’Find Businesses/Find technical models) link below to initiate the Find
operation.The Locator section has a link (marked in blue with the words ″Show
category tree″) which displays the tree from which the user can select categories
(or taxonomies). This is shown in the left-hand frame. In the advanced search form
there are two links to start the search (mid-way down and at the bottom).

The results of clicking either of the two links to start the search are displayed in
the same detail frame.

Publish tab

Chapter 10. IBM WebSphere UDDI Registry 581

The Publish link on the top banner activates the Publish tab in the navigation frame
to the left. The Publish tab is split into three distinct sections.
1. Quick Publish Function

The top part is a Quick Publish section to allow the user to publish a business
or technical model by name only. There are two radio buttons to enable a
choice of ’business’ or ’technical model’. Below these radio buttons is a text
entry box for entering the name to assign to the selected entity and, beneath
this, a blue ’Publish now’ link to publish the entity. The results of clicking on
the Publish now link are shown in the detail frame to the right.

2. Advanced Publish Functions

To publish an entity with more detail, such as with multiple names,
descriptions and categories, use the Advanced Publish section below this. The
comments below each link (’Add a business’ and ’Add a technical model’)
describe individual functions. Clicking one of these links displays the
corresponding advanced publish form in the detail frame where the user may
enter details about the entity they want to publish. As in the Advanced Find
functions described above, there are two links to publish a business or technical
model (one towards the top of the form and the other at the bottom). Similarly
the Locator section allows taxonomies to be shown in the left frame from which
the user can select categories.
Following entry of the relevant details on the Advanced Publish section, the
user must click on the Publish Business bar in order for the business to be
published to the UDDI Registry.

3. Registered Information

Below the Advanced Publish section is a Registered Information section which
has a link to Show Owned Entities in order to show the businesses, services
and technical models registered to the individual user, and pending business
relationships. Clicking the Show Owned Entities link displays the Show
Owned Entities page in the detail frame at the right. The Show Owned
Entities page is organized in three sections: Registered Businesses, Pending
Business Relationships and Registered Technical Models. Each section shows
the number of registered items.
Edit and Delete Businesses

Users can Edit or Delete businesses owned by them by clicking the appropriate
links in the Actions column.
After an Edit or Delete function has been completed, the user must click on the
Update Business bar in order to publish the changes to the UDDI Registry.
After Deleting a Business the user must confirm the deletion by clicking on the
’Delete this Business’ link.
Adding a Service to a Business

Services are added to a business by clicking the Add a Service link in the
Services column of the Registered Businesses section.
After the Add a Service function is complete, users must click on the Publish
Service bar in order to publish the service to the UDDI Registry.
Referencing a Service from a Business

Services can also be ’referenced’ by a business as if the business was the owner
of the service. This ’service projection’ is performed by clicking the Reference a
service link in the Services column. Services associated with a business,
whether they are owned or referenced, can be displayed by clicking the Show
services link. This acts as a toggle between displaying services available for
editing or deleting, and hiding them.
Adding a relationship to another Business

582 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

A business can be associated with another business in the UDDI Registry and
this function is performed by clicking the Add a relationship link in the
Actions column of the Registered Businesses section. Clicking the Show related
businesses link in the Actions column displays a list of any completed
business relationships.
The Pending Business Relationships section shows all incomplete publisher
assertions, where only one party has asserted a relationship and is waiting for
the other party to make the same assertion. This section reminds the user of
any relationships that involve their businesses. Once both parties have asserted
the same relationship between two businesses, the relationship moves from the
Pending Business Relationships section and appears in the list of relationships
displayed after clicking the Show related businesses link in the Registered
Businesses section.
Technical Models

Technical Models owned by the user are shown in the bottom Registered
Technical Models section. As for businesses, users can Edit or Delete technical
models owned by them by clicking the appropriate links in the Actions
column.
Note: Users should take note that deletion of Technical Models (tModels) does
not cause them to be physically deleted, but hidden. This is in accordance with
the UDDI Registry V2.0 specifications. After deletion Technical Models are
shown under the ″Shown Owned Entities″ link on the publish page but not
via the Find links on the Find page. ALL other entities are deleted from the
UDDI Registry in the normal way.

Example of publishing a Business, Service and tModel with the User Console

For the example, here, we will assume a business called Mondeo Cars that sells
used cars
1. Add the Business

Click on the Publish tab in the left hand navigation frame. Then click on ’Add
a business’ in the Advanced Publish in the left pane. This takes you to a
’Publish Business’ pane on the right. Start by adding your Business Name in
the text field labelled (Mondeo Cars in this example) and select a language and
then click on the blue Add link to the right. This adds the business name (but
the business is not yet published - more about which is explained later). Below
the Business Name is an area called Descriptions - it allows free text to be
added to describe the business - if you enter anything here you must click on
the blue Add link to the right to insert the description.
The next section/area is the Locator area which can be used to describe the
business according to what categories it falls into. This example uses a Used car
dealership. Within the NAICS taxonomy (which you may view by clicking on
’Show category tree’ and then expanding NAICS) this is a Retail Trade [44]
entry which, on expansion, has Motor Vehicle and Parts Dealers [441] and,
again on expansion, has automobile Dealers [4411] and Used Car Dealers
[44112]. This fits the Business perfectly, so clicking on Used Car Dealers will
enter the Key Name and Key Value into the business. For Checked
Categorizations (such as NAICS) the Key name is not checked but the Key
Value is checked. It should be noticed that for unchecked categorizations (such
as ’other’ or unspsc’) the Key value is not checked either. If the locator field has
been added, then the blue Add link must be clicked. The final area is Contacts,
which can have names and role information added if required. Again, the blue
Add link must be clicked after adding the relevant information.

Chapter 10. IBM WebSphere UDDI Registry 583

Once all the fields are filled in to the required level, the final action is to click
on the Publish Business at the bottom of the form or at the top. This causes the
business to be published to the UDDI Registry and a page is displayed
showing the business details.

2. Add a Service

From the Publish tab, there is a ’Show owned entities’ link. This shows the
businesses owned by the current user in the Registry and the language to be
used for a particular user. For Mondeo Cars, the user will see a ’Add service’
button. Clicking this button shows the Publish Service form. The top part of the
form is the Service Name field. After adding this name, the user must click on
the blue Add link to enter the name. As in the Adding the Business form, each
subsequent part must end with the blue Add link being clicked to add that part
of the information to the service. The sections are (from top to bottom,
Description (a free text area), Access Points (to add link points to the Service),
Locator (to add references to taxonomies to the service), and Technical Models
(to associate existing tModels to the Service). After completion of those areas
required, clicking on the ’Publish Service’ button will Publish the service to the
UDDI Registry with the current form contents.

3. Adding a new technical model

Clicking on the ’Add a technical model’ link in the left frame opens up the
Publish Technical Model form on the right. A tModel can only have one name -
hence the lack of a blue Add link next to the Technical Model Name field.
Beneath this field are other fields - Description (a free text area to describe the
technical model), Locator (to describe the technical model with taxonomies, and
an Overview URL (which gives a URL pointing to an overview document, a
description of the document and a Language field). For each of these fields
there is a blue Add link which must be clicked to add the relevant data. At the
bottom of the form is a ’Publish Technical Model’ link which will create the
technical model in the UDDI Registry.
There is a Publish link at the top of the frame in each case also - after the
Name section.

v ″Displaying the user console″

Displaying the user console
Before you begin

This topic describes how to display the UDDI Registry user console (sometimes
referred to as the GUI). The URL you use depends on whether or not you have
enabled WebSphere security:
v If you have the WebSphere security disabled, you can access the UDDI User

Console by using the following URL in your Web browser:
http://<hostname>:9080/uddigui

Note: With WebSphere security disabled, all the publish operations are
performed using a userid of UNAUTHENTICATED.

v If you have WebSphere security enabled, you can access the UDDI User Console
through HTTPS by using the following URL in your Web browser:
https://<hostname>:9443/uddigui

The User Console displays the default frameset containing the header frame,
navigation frame showing find options, and details frame. When you click the
link to show the publish options in the navigation frame, you are challenged for
a userid and password.

584 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

If WebSphere security is enabled and you try to access a publish action via an
unsecured link, e.g. clicking the publish link on the navigation frame where the
User Console was opened with
http://<hostname>:9080/uddigui

you will be redirected to a secure logon. Inquire functions will work as expected.

Custom Taxonomy Support in the UDDI Registry
The IBM WebSphere UDDI Registry is supplied with six published taxonomies (or
categorization schemes) in the taxonomy data. Of these six, four are checked.
Taxonomies can be either checked or unchecked, and this is indicated via a
keyedReference in the categoryBag of the tModel that represents a taxonomy (a
″categorization tModel″). These keyedReferences have the tModel key for
uddi-org:types and are added to the categoryBag to further describe the behavior
of the categorization tModel, as follows:

checked
Marking a tModel with this classification asserts that it represents a
categorization, identifier, or namespace tModel that has a validation service
to check that category values are present in a specified value set.

unchecked
Marking a tModel with this classification asserts that it represents a
categorization, identifier, or namespace tModel that does not have a
validation service.

In the IBM WebSphere UDDI Registry (and also in the IBM UDDI Business
Registry or UBR), the validation of categories in checked taxonomies is performed
against locally managed taxonomy data. Several published taxonomies are
provided:

Taxonomy name Checked Description tModel key

ntis-gov:naics:1997 Yes Business Taxonomy:
NAICS (1997 Release)

uuid:C0B9FE13-179F-
413D-8A5B-
5004DB8E5BB2

uddi-org:iso-ch:3166-
1999

Yes ISO 3166-1:1997 and
3166-2:1998. Codes
for names of
countries and their
subdivisions. Part 1:
Country codes. Part
2: Country
subdivision codes.
Update newsletters
include ISO 3166-1
V-1 (1998-02-05), V-2
(1999-10-01), ISO
3166-2 I-1 (1998)

uuid:4E49A8D6-
D5A2-4FC2-93A0-
0411D8D19E88

unspsc-org:unspsc Yes Product Taxonomy:
UNSPSC

uuid:CD153257-086A-
4237-B336-
6BDCBDCC6634

unspsc-org:unspsc:3-1 No Product Taxonomy:
UNSPSC (Version
3.1)

uuid:DB77450D-
9FA8-45D4-A7BC-
04411D14E384

Chapter 10. IBM WebSphere UDDI Registry 585

uddi-org:types Yes UDDI Type
Taxonomy

uuid:C1ACF26D-
9672-4404-9D70-
39B756E62AB4

uddi-
org:general_keywords

No Special taxonomy
consisting of
namespace identifiers
and the keywords
associated with the
namespaces

uuid:A035A07C-F362-
44DD-8F95-
E2B134BF43B4

Taxonomy data is provided in the IBM WebSphere UDDI Registry for all the above
taxonomies, apart from the general keywords taxonomy (which is unchecked). The
UDDI User Console (GUI) provided with the IBM WebSphere UDDI Registry uses
a shortened label for taxonomies when displayed in the taxonomy tree view, or in
a pull-down list of available taxonomies as follows:

Taxonomy Name (published) Taxonomy name (as displayed in the GUI)

ntis-gov:naics:1997 naics

uddi-org:iso-ch:3166-1999 geo

unspsc-org:unspsc unspsc7

unspsc-org:unspsc:3-1 unspsc

uddi-org:types udditype

uddi-org:general_keywords other

This release of IBM WebSphere UDDI Registry (included with IBM WebSphere
Application Server, Version 5.0.2) introduces the ability to add user-defined
taxonomies, with available allowed values presented in the existing GUI taxonomy
tree display. IBM WebSphere Studio Application Developer, Version 5.1 has a Web
Services Explorer user interface which also allows addition and display of custom
checked taxonomies. The publisher of a custom taxonomy’s categorization tModel
may specify a ’display name’ for use in GUI implementations.

Procedure for adding a Custom taxonomy

To add a custom taxonomy to the IBM WebSphere UDDI Registry requires you to
perform two tasks: load the custom taxonomy data and publish a categorization
tModel. Only when both are complete will the checked taxonomy be of practical
use. Taxonomy data must be provided for validating checked taxonomies.

Taxonomy data may also be used by GUIs for unchecked taxonomies, but it is not a
requirement and is usually only used for presentation of deprecated taxonomies,
such as unspsc-org:unspsc.

If the taxonomy is checked, then any publish requests that have a categoryBag
containing keyedReferences with the new categorization tModel will be validated.
If there is taxonomy data corresponding to the categorization tModel in the
registry database then only valid values will be accepted. If there is no taxonomy
data in the database then all values will be rejected, and the publish request will
fail. If the categorization tModel is unchecked, all values will be allowed,
regardless of whether there is corresponding taxonomy data present in the UDDI
Registry database.

Suggested approach

586 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The suggested way of introducing a new taxonomy is to:
1. Load custom taxonomy data into the UDDI Registry database using the

UDDITaxonomyTools.jar utility (described below)
2. Publish the categorization tModel with a keyedReference of type ’general

keywords’ with keyname of ’customTaxonomy:key’ and a keyValue matching
the taxonomy name in the taxonomy data file (described below also)

Note: the SOAP and EJB interfaces will be able to make use of categorization
tModels as soon as they are published. However, the UDDI Registry GUI will
currently require a restart of the UDDI application because it currently gathers its
list of categorizations for use in the taxonomy tree display when the application
starts.

Loading Custom Taxonomy Data

Custom Taxonomy Data File Format

Taxonomy data is identified by a common taxonomy name, a unique code value,
an optional description and a parent code which specifies its relationship with
other code values. Taxonomy data must adhere to this format:

Column name Maximum length Description of use

name 8 uniquely identifies the
taxonomy within the registry

code 32 unique value within the
taxonomy used for validation

description 128 typically used by GUIs and
optionally in the
keyedReference as the
keyName value

parentcode 32 indicates which existing code
is the logical parent of this
one, and is used in tree
displays

Typically columns are delimited in the taxonomy data file by ’#’ characters as in
this example:
food#00#Food#00
food#10#Fruit#00
food#101#Apples#10
food#102#Oranges#10
food#103#Pears#10
food#1031#Anjou#103
food#1032#Conference#103
food#1033#Bosc#103
food#104#Pomegranates#10
food#20#Vegetables#00
food#201#Carrots#20
food#202#Potatoes#20
food#203#Peas#20
food#204#Sprouts#20

In the example, ’Food’ is the description for the root node with child nodes of
’Fruit’ and ’Vegetables’ (both of these have parentcode values the same as the code
value for ’Food’).

The taxonomy data in the example file could then be rendered in a tree like this:

Chapter 10. IBM WebSphere UDDI Registry 587

Food
Fruit

Apples
Oranges
Pears

Anjou
Conference
Bosc

Pomegranates
Vegetables

Carrots
Potatoes
Peas
Sprouts

The file must be saved in UTF-8 format.

The following taxonomy names are reserved within the IBM WebSphere UDDI
Registry and should not be used for custom taxonomy files: naics, geo, unspsc,
unspsc7, other, udditype. Any attempts to publish a categorization tModel using
these values for a customTaxonomy:key will be rejected. If these names are used in
custom data files and the data is imported it will be indistinguishable from
taxonomy data with the same name.

UDDITaxonomyTools.jar

A utility is provided to load taxonomy data into the IBM WebSphere UDDI
Registry, rename existing taxonomy data and remove existing taxonomy data, for
both IBM DB2 and Cloudscape databases. The usage for each database and
platform is identical:
Usage: java -jar UDDITaxonomyTools.jar {function} [options]

function:
-load <path> Load taxonomy data from specified file
-rename <old> <new> Rename existing taxonomy
-unload <name> Unload existing taxonomy

options:
-properties <path> Specify location of configuration file

Note: Ensure that the command window from which the UDDITaxonomyTools.jar
is run is using a suitable codepage and font for displaying the characters contained
in the taxonomy name.

Use of an incorrect codepage/font may result in unclear messages on a successful
load, and create difficulty using the -unload and -rename options.

The following section explains in more detail how to use the utility’s commands
and parameters. The configuration file, if specified by the optional properties
parameter, determines the database driver, authentication information and
delimiters. The contents are as follows (typical data for DB2 installation shown):

Property and example data (for DB2) Comments

classpath= ″c:/program
files/sqllib/java12/db2java.zip;
c:/tools/UDDITaxonomyTools.jar″

Classpath including database driver and the
UDDITaxonomyTools.jar*

database.driver.className=com.ibm.db2j.jdbc.DB2jDriverFully qualified classname of the database
driver class

588 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

database.url=c:/websphere/appserver/bin/UDDI20JDBC URL of the database

database.userName=db2admin Database userid (DB2 only)

database.password=db2admin Database password (DB2 only)

column.delimiter=# Column delimiter used in taxonomy data
files

string.delimiter=\″ Field delimiter (must be different to the
column.delimiter value)

* the classpath needs to be enclosed in quotes if the path includes space characters.
Also, the UDDITaxonomyTools.jar filepath itself must be appended to the classpath
(if the working directory is the same as the location of the UDDITaxonomyTools.jar
then just the name is sufficient)

Filepath names should include the use of the forward-slash character (/) for all
platforms.

For Cloudscape database users, the values of the following properties would be
likely to be:
v classpath=c:/websphere/appserver/lib/db2j.jar; UDDITaxonomyTools.jar
v database.driver.className=com.ibm.db2j.jdbc.DB2jDriver
v database.url=jdbc:db2j:c:/ websphere/appserver/bin/uddi20

The string.delimiter is typically used where a description value contains the same
character as the column delimiter character. For example, if the column.delimiter
was set to ’,’ (comma), and there was a taxonomy description value of ’Fruits,
citrus’, you could include this in the taxonomy data file by setting the
string.delimiter to ″(double quote) and enclosing the description in quotes: ’Fruits,
citrus’. Note that the quote character is escaped with a backslash to indicate the
literal character is to be used.

If a properties parameter is not specified, the utility looks for and uses
configuration data set in a file called customTaxonomy.properties.

Note: to make updates to taxonomy data in a Cloudscape database, the IBM
WebSphere Application Server must be stopped to release the connection to the
database.

Note: There is currently a limitation with UDDITaxonomyTools.jar when used with
a DB2 UDDI database and multi-byte characters such as Chinese, Japanese and
Korean. The maximum number of multi-byte characters is the maximum value
specified earlier for name, code, description and parentcode divided by 3. For
example, name can only contain values up to 8 characters in length so the
maximum number of Korean characters is 2. If the taxonomy file is found to have
values that exceed the limits, a message is displayed by the tool indicating the line
number and column where the problem occurs. This limitation does not affect use
with a Cloudscape UDDI database.

Publishing a Checked Categorization tModel

This section describes how to publish a checked categorization tModel with the
’customTaxonomy’ keyedReferences to specify which custom taxonomy data to use
and a display name.

Chapter 10. IBM WebSphere UDDI Registry 589

Note: to specify an unchecked categorization substitute the ’checked’ keyValue
with ’unchecked’ or, more simply, omit the keyedReference.

Publish a tModel to the IBM WebSphere UDDI Registry with a categoryBag
containing keyedReferences as follows:

Note tModelKey KeyName KeyValue

1 (uddi-org:types) <optional> categorization

2 (uddi-org:types) <optional> checked

3 (general keywords) urn:x-
ibm:uddi:customTaxonomy:key

<custom taxonomy
key>

4 (general keywords) urn:x-
ibm:uddi:customTaxonomy:displayName

<custom taxonomy
name>

1. indicates this tModel is a categorization tModel (required)
2. indicates use of the tModel will be checked against a list of valid data

(required). (Omitting this keyedReference, or explicitly specifying a value of
’unchecked’ will indicate this categorization is unchecked).

3. this special use of the general keywords taxonomy, with a proprietary urn as
the keyName value, defines the value used by the UDDI Registry to look up
taxonomy data in its database. The value must be 1-8 (inclusive) characters
long and corresponds directly with the name value in the custom taxonomy
data file. Therefore, it must be unique within the registry.

4. this special use of the general keywords taxonomy, with a proprietary urn as
the keyName value, defines a name for the custom taxonomy that is intended
for use in GUI implementations where the full tModel name might be too
long*. The value can be 1-255 characters (inclusive) long. If this keyedReference
is not supplied, the name of the tModel should be used by the GUI
implementation.

* The displayName is intended to provide a way to label a taxonomy such that,
when the UDDI GUI displays it in a taxonomy tree or in a pull-down list of
available taxonomies, the meaning is clear to the user without being restricted to 8
characters and without needing to be the same as the published tModelName,
which could be as long as 255 characters. An example is shown below:

Taxonomies

test1

udditype

unspsc

Natural Foods

geo

naics

other

unspsc7

Food

Fruit

Apples [101]

Oranges [102]

Pears [103]

Pomegranates [104]

Vegetables [20]

Categories:

Search Modifiers

Search behavior

Show category tree

Natural Foods

test1

udditype

unspec

geo

naics

other

unspsc7

Natural Foods

Locator

Type Key name

display name

590 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Uniqueness of the urn:x-ibm:uddi:customTaxonomy:key value is validated at the
time a categorization tModel is published. If it is not unique, a
UDDIInvalidValueException is returned. If using a GUI to publish the tModel, an
appropriate message is displayed indicating the likely cause of the problem.

The urn:x-ibm:uddi:customTaxonomy:displayName should be unique if only to
avoid confusion when displayed in GUIs but this is not validated.

The relationship between the various keyedReferences, the custom taxonomy data
files and use in GUIs for a categorization tModel is shown below:

Taxonomies

test1

udditype

unspsc

Natural Foods

geo

naics

other

unspsc7

Food

Fruit

Apples [101]

Oranges [102]

Pears [103]

Pomegranates [104]

Vegetables [20]

food#00Food#00

food#10Fruit#00

food#101#Apples#10

food#102#Oranges#10

food#103#Pears#10

food#1031#Anjou#103

food#1032#Conference#103

food#1033#Bosc#103

food#104#Pomegranates#10

food#201#Carrots#20

food#202#Potatoes#20

food#203#Peas#20

food#204#Sprouts#20

tModel name

category type* keyName keyValue

tModel

My Food tModel

udditype

udditype

other

other

urn:x-ibm:uddi:customTaxonomy:displayName

urn:x-ibm:uddi:customTaxonomy:key

categorization

checked

Natural Foods

food

* (shorthand notation, where ‘udditype’ is uddi-org:types and ‘other’ is uddi-org:general_keywords)

As a further example, to display the label ’Delicious Victuals’ in GUI displays, the
categorization tModel would have a keyedReference like this:

type keyName keyValue

other urn:x-ibm:uddi:customTaxonomy:displayName Delicious Victuals

And to link a categorization tModel to a custom taxonomy datafile with a
taxonomy name of ’goodfood’ the tModel’s categoryBag must have a
keyedReference like this:

type keyName keyValue

other urn:x-ibm:uddi:customTaxonomy:key goodfood

Chapter 10. IBM WebSphere UDDI Registry 591

To publish a new categorization tModel using SOAP, the message would be:
<save_tModel generic="2.0" xmlns="urn:uddi-org:api_v2">

<authInfo></authInfo>>
<tModel tModelKey="">

<name>Natural Foods tModel</name>
<categoryBag>

<keyedReference tModelKey="uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4>" keyValue="categorization"/>
<keyedReference tModelKey="uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4" keyValue="checked"/>
<keyedReference tModelKey="uuid:A035A07C-F362-44DD-8F95-E2B134BF43B4"

keyName="urn:x-ibm:uddi:customTaxonomy:key" keyValue="food"/>
<keyedReference tModelKey="uuid:A035A07C-F362-44DD-8F95-E2B134BF43B4"

keyName="urn:x-ibm:uddi:customTaxonomy:displayName" keyValue="Natural Foods"/>
</categoryBag>

</tModel>
</save_tModel>

Note: Note that ’uuid:C1ACF26D-9672-4404-9D70-39B756E62AB4’ is the tModel key
for uddi-org:types and ’uuid:A035A07C-F362-44DD-8F95-E2B134BF43B4’ is the
tModel key for uddi-org:general_keywords.

Validation and Error Handling

For a DB2-based IBM WebSphere UDDI Registry, custom taxonomy data can be
loaded, removed and renamed using the provided utility without restarting the
application (if you are using Cloudscape the application server will need to be
stopped to make database updates). Removing data for which there is a
corresponding checked categorization tModel will cause any use of that
categorization’s data to be reported as invalid.

Note: If an attempt is made to add data with a name that matches any of the
’internal’ taxonomies, such as NAICS, GEO, etc, the request is rejected. If an
attempt is made to rename or remove one of the internal taxonomies, a warning
message is returned. Likewise if the user tries to rename a taxonomy to one of the
reserved taxonomies, that is rejected.

The IBM WebSphere UDDI Registry user console will perform validation while a
save tModel request is being built, that is, before the publish occurs. For example,
if a categorization tModel with a customTaxonomy:key keyValue of ’food’ already
exists (in a published categorization tModel), and the user tries to add a
keyedReference with the same value to the current list of keyedReferences, the
following message is displayed:
Advice: The ’urn:x-ibm:uddi:customTaxonomy:key’ value of ’food’ is already in use by
another categorization tModel. Enter a unique value

Similarly, only one of each of the customTaxonomy:key and
customTaxonomy:displayName keyedReferences are allowed. For example, if the
user tries to add two customTaxonomy:displayName keyedReferences they will get
the message:
Advice: Only one ’urn:x-ibm:uddi:customTaxonomy:displayName’ key name is allowed
for the ’Other’ taxonomy

If the customTaxonomy:key keyedReference is valid and unique at the time it is
added to the save_tModel request, the keyedReference is further validated when
the user makes the publish request, to ensure that another session has not
successfully published a categorization tModel with the same
customTaxonomy:key. In this case, the user is returned to the Publish Technical
Model page.

592 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

If a keyedReference containing a keyName value that starts with
’urn:x-ibm:uddi:customTaxonomy:’ is followed by anything other than ’key’ or
’displayName’, the following message is displayed:
Advice: Only key name values of ’urn:x-ibm:uddi:customTaxonomy:displayName’ and
’urn:x-ibm:uddi:customTaxonomy:key’ are supported.

For SOAP, UDDI4J, and EJB initiated requests where the save_tModel message
may have multiple tModels, if any one of the tModels is a categorization tModel
and it fails validation, the request fails with a UDDIInvalidValueException (plus
additional information explaining the likely cause), and none of the tModels is
published. For example, if a publish request includes a customTaxonomy:key
keyedReference with a keyValue that matches the customTaxonomy:key keyValue
of an existing categorization tModel, the following UDDIInvalidValueException is
thrown, with message:
E_invalidValue (20200) A value that was passed in a keyValue attribute did not pass
validation. This applies to checked categorizations, identifiers and other
validated code lists. The error text will clearly indicate the key and value
combination that failed validation. Invalid ’customTaxonomy:dbKey’ keyValue [naics]
in keyedReference. KeyValue already in use by
tModelKey[UUID:C0B9FE13-179F-413D-8A5B-5004DB8E5BB2]

The customTaxonomy:key and customTaxonomy:displayName keyValue values are
validated. For example, a publish categorization tModel request with a
keyedReference including a customTaxonmy:key of ’toolongdbkey’ was attempted,
the following UDDIInvalidValueException is thrown, with message:
E_invalidValue (20200) A value that was passed in a keyValue attribute did not pass
validation. This applies to checked categorizations, identifiers and other
validated code lists. The error text will clearly indicate the key and value
combination that failed validation. Invalid ’customTaxonomy:key’
keyValue [toolongdbkey] in keyedReference. tModelKey[]

If a categorization tModel is edited in the user console, or republished via SOAP,
UDDI4J or EJB, such that it is no longer a categorization tModel (ie the
categorization keyedReference is removed), then that tModel is removed from the
internal store of categorization tModels, and its customTaxonomy:key value, if
present, is available for use by new categorization tModels.

SOAP Application Programming Interface for the UDDI Registry
Access to the SOAP API will by default be available at:

[] or

[]

Where ’localhost’ is the address by which your WebSphere server is known. If
security is enabled on your WebSphere server, the publishapi will also be protected
by basic-authentication. By default, when security is enabled, the publishapi is
restricted to HTTPS, this is to ensure the confidentiality and security of your data
whilst in transit to UDDI. If you do not wish to use SSL, when security is enabled,
you will have to modify the jar file using AAT to remove the CONFIDENTIAL
restriction placed upon the publish URLs. For more information about this topic,
see the section on Configuring SOAP properties with the AAT If you normally
access your WebSphere server via a web server, you will need to ensure the plugin
configuration for the WebSphere plugin on the web server has been updated since
installing UDDI. This will then allow access to the UDDI SOAP API through the
URLs

Chapter 10. IBM WebSphere UDDI Registry 593

[]or

[]

Where ’localhost’ is the address by which your web server is accessed. Note that if
you plan on accessing UDDI via a web server in this manner, that the samples will
require modification to inform them of the SSL certificates used by your web
server, so that the samples can make SSL connections to the web server. It is
beyond the scope of this document to cover the many variants available on web
server/WebSphere/java SSL configurations
v ″Programming the UDDI SOAP API″
v ″SOAP API error handling tips in the UDDI Registry″

Programming the UDDI SOAP API
To use the SOAP API construct a properly formed UDDI message within the body
of a SOAP request, and send it using HTTP POST to the URL of the API which the
request relates to. The response will be returned within the body of the HTTP
reply. Although the samples are written in Java, you may use other programming
languages to create your SOAP client, providing you still send requests compliant
to the SOAP specification. Valid UDDI requests should conform to the UDDI
schema, and be as detailed within the UDDI standard documentation available
from:

[]

For more information on using the SOAP API, refer to [] section within this
InfoCenter.

SOAP API error handling tips in the UDDI Registry
When using the SOAP API there are three main categories that may cause an error
to be returned:-
v An invalid/incorrect request being sent to the SOAP API. e.g. Incorrectly formed

XML, Badly formed UDDI requests, Non-schema compliant requests.
v Invalid business logic within a SOAP API request. e.g. Attempting to delete a

business that does not exist.
v Problems occurring while processing a valid request. e.g. Server connection to

database failure.

In each of these cases, an error will be returned to the client that made the request,
which will attempt to explain further what the problem was.

UDDI Registry Application Programming Interface
The IBM WebSphere UDDI Registry fully supports the Application Programming
Interface (API) specification which can be viewed by visiting []. Any changes from
this specification are documented within the IBM WebSphere UDDI Registry
information.
v The Inquiry API
v The Publish API

Inquiry API for the UDDI Registry
The Inquiry API provides three forms of query that follow broadly used
conventions which match the needs of software traditionally used within registries.

594 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v ″Browse pattern for the UDDI Registry″

v ″Drilldown pattern for the UDDI Registry″

v ″Invocation pattern for the UDDI Registry″

v ″Inquiry API functions in the UDDI Registry″

Browse pattern for the UDDI Registry
Software that allows people to explore and examine data - especially hierarchical
data - requires browse capabilities. The browse pattern characteristically involves
starting with some broad information, performing a search, finding general result
sets and then selecting more specific information for drill-down.

The UDDI API specifications accommodate the browse pattern by way of the
find_xx API calls. These calls form the search capabilities provided by the API and
are matched with summary return messages that return overview information
about the registered information that is associated with the inquiry message type
and the search criteria specified in the inquiry.

A typical browse sequence might involve finding whether a particular business
you know about has any information registered. This sequence would start with a
call to find_business, perhaps passing the first few characters of a business name
that you already know. This returns a businessList result. This result is overview
information (keys, names and descriptions) derived from the registered
businessEntity information, matching on the name fragment that you provided. If
you spot the business you are looking for within this list, you can drill down into
the corresponding businessService information, looking for particular technical
models (e.g. purchasing, shipping, etc) using the find_service API call. Similarly, if
you know the technical fingerprint (tModel signature) of a particular software
interface and want to see if the business you’ve chosen provides a web service that
supports that interface, you can use the find_binding inquiry message.

Drilldown pattern for the UDDI Registry
When you have a key for one of the four main data types managed by a UDDI
registry, you can use that key to access the full registered details for a specific data
instance. The UDDI data types are businessEntity, businessService,
bindingTemplate and tModel. You can access the full registered information for any
of these structures by passing a relevant key type to one of the get_xx API calls.

Continuing the example from the previous section on browsing, one of the data
items returned by all of the find_x return sets is key information. In the case of the
business we were interested in, the businessKey value returned within the contents
of a businessList structure can be passed as an argument to get_businessDetail. The
successful return to this message is a businessDetail message containing the full
registered information for the entity whose key value was passed. This will be a
full businessEntity structure.

Invocation pattern for the UDDI Registry
In order to prepare an application to take advantage of a remote Web service that
is registered within the UDDI registry by other businesses or entities, you need to
prepare that application to use the information found in the registry for the specific
service being invoked.

The bindingTemplate data obtained from the UDDI registry represents the specific
details about an instance of a given interface type, including the location at which
a program starts interacting with the service. The calling application or program

Chapter 10. IBM WebSphere UDDI Registry 595

should cache this information and use it to contact the service at the registered
address whenever the calling application needs to communicate with the service
instance. In previously popular remote procedure technologies tools have
automated the tasks associated with caching (or hard coding) location information.
Problems arise however when a remote service is moved without any knowledge
on the part of the callers. Moves occur for a variety of reasons, including server
upgrades, disaster recovery, and service acquisition and business name changes.

When a call fails using cached information previously obtained from a UDDI
Registry, the proper behavior is to query the UDDI Registry for fresh
bindingTemplate information. The proper call get_bindingDetail passing the
original bindingKey value. If the data returned is different from the cached
information, the service invocation should automatically retry the invocation using
the fresh information. If the result of this retry is successful, the new information
should replace the cached information.

By using this pattern with Web services, a business using a UDDI Registry can
automate the recovery of a large number of partners without undue
communication and coordination costs. For example, if a business has activated a
disaster recovery site, most of the calls from partners will fail when they try to
invoke services at the failed site. By updating the UDDI information with the new
address for the service, partners who use the invocation pattern will automatically
locate the new service information and recover without further administrative
action.

Inquiry API functions in the UDDI Registry
These messages represent inquiries that can be made of the UDDI Registry. These
messages all behave synchronously.

The queries available are:

find_binding
Used to locate specific bindings within a registered businessService.
Returns a bindingDetail message.

find_business
Used to locate information about one or more businesses. Returns a
businessList message.

find_relatedBusinesses
Used to locate information about businessEntity registrations that are
related to a specific business entity whose key is passed in the inquiry. The
Related Businesses feature is used to manage registration of business units
and subsequently relate them based on organizational hierarchies or
business partner relationships. Returns a relatedBusinessList message.

find_service
Used to locate specific services within a registered businessEntity. Returns
a serviceList message.

find_tModel
Used to locate one or more tModel information structures. Returns a
tModelList structure.

get_bindingDetail
Used to get full bindingTemplate information suitable for making one or
more service requests. Returns a bindingDetail message.

596 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

get_businessDetail
Used to get the full businessEntity information for one or more businesses
or organizations. Returns a businessDetail message.

get_serviceDetail
Used to get full details for a given set of registered businessService data.
Returns a serviceDetail message.

get_tModelDetail
Used to get full details for a given set of registered tModel data. Returns a
tModelDetail message.

Accessible query values in the UDDI Registry
A list of the accessible queries for the UDDI Registry is given here.

Accessible queries within the UDDI Registry are:

find_binding
used to locate specific bindings within a registered businessService.
Returns a bindingDetail message that contains zero or more
bindingTemplate structures matching the criteria specified in the argument
list.

find_business
used to locate information about one or more businesses. Returns a
businessList message that matches the conditions specified in the
arguments.

find_relatedBusinesses
used to locate information about businessEntity registrations that are
related to a specific business entity whose key is passed in the inquiry. The
Related Businesses feature is used to manage registration of business units
and subsequently relate them based on organizational hierarchies or
business partner relationships. Returns a relatedBusinessList message
containing results that match the conditions specified in the arguments.

find_Service
used to locate specific services within a registered businessEntity. Returns a
serviceList message that matches the conditions specified in the arguments.

find_tModel
used to locate a list of tModels that match a set of specified criteria. The
response will be a list of abbreviated information about registered tModel
data that matches the criteria specified. The result will be returned in a
tModelList message.

get_bindingDetail
used to requesting the run-time bindingTemplate information for the
purpose of invoking a registered business API. Returns a bindingDetail
message.

get_businessDetail
used to return complete businessEntity information for one or more
specified businessEntity registrations matching on the businessKey values
specified.

get_businessDetailExt
used to return extended businessEntity information for one or more
specified businessEntity registrations. This message returns exactly the

Chapter 10. IBM WebSphere UDDI Registry 597

same information as the get_businessDetail message, but may contain
additional attributes if the source is an external registry that is compatible
with the API specification.

get_serviceDetail
used to request full information about a known businessService structure.
Returns a serviceDetail message.

get_tModelDetail
get_tModelDetail

For full details of the syntax of the above queries, please refer to the API
Specification at []

Publish API for the UDDI Registry
The messages in this section represent commands that are used to publish and
update information contained in a UDDI registry. The messages defined in this
section all behave synchronously.

The Publishing API calls defined that UDDI operators support are:

add_publisherAssertions
this call causes one or more publisherAssertion to be added to an
individual publisher’s assertion collection.

delete_binding
causes one or more instances of bindingTemplate data to be deleted from
the UDDI registry.

delete_business
used to remove one or more business registrations and all direct contents
from a UDDI registry.

delete_publisherAssertions
causes one or more publisherAssertion elements to be removed from a
publisher’s assertion collection.

delete_service
is used to remove one or more businessService elements from the UDDI
registry and from its containing businessEntity parent.

delete_tModel
is used to logically delete one or more tModel structures. Logical deletion
hides the deleted tModels from find_tModel result sets but does not
physically delete it, so it is returned on a get_registeredInfo request.

discard_authToken
is used to inform an Operator Site that the authentication token is to be
discarded, effectively ending the session. Subsequent calls that use the
same authToken will be rejected. This message is optional for Operator
Sites that do not manage session state or that do not support the
get_authToken message.

get_assertionStatusReport
this call provides administrative support for determining the status of
current and outstanding publisher assertions that involve any of the
business registrations managed by the individual publisher account. Using
this message, a publisher can see the status of assertions that they have
made, as well as see assertions that others have made that involve
businessEntity structures controlled by the calling publisher account.

598 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

get_authToken
the call used to obtain an authentication token.Authentication tokens are
opaque values that are required for all other publisher API calls. This
message is not required for Operator Sites that have an external
mechanism defined for users to get an authentication token. This API is
provided for implementations that do not have some other method of
obtaining an authentication token or certificate, or that choose to use user
ID and password based authentication.

get_publisherAssertions
this is used to obtain the full set of publisher assertions that are associated
with an individual publisher account. Publisher assertions are used to
control publicly visible business relationships.

get_registeredInfo
this call is used to get an abbreviated list of all businessEntity and tModel
data that are controlled by the individual associated with the credentials
passed.

save_binding
is used to save or update a complete bindingTemplate element. this
message can be used to add or update one or more bindingTemplate
elements as well as the container/contained relationship that each
bindingTemplate has with one or more existing businessService elements.

save_business
this is used to save or update information about a complete businessEntity
element. This API has the broadest scope of all the save_xx API calls in the
publisher API, and can be used to make sweeping changes to the
published information for one or more businessEntity elements controlled
by an individual.

save_service
the call used to add or update one or more businessService elements
exposed by a specified businessEntity.

save_tModel
this call adds or updates one or more registered tModel elements.

set_publisherAssertions
this call is used to manage all of the tracked relationship assertions
associated with an individual publisher account.

For full details of the syntax of the above queries, please refer to the API
Specification at [].

UDDI EJB Interface for the UDDI Registry
This section describes how to use the EJB application programming interface (API)
of the IBM WebSphere UDDI Registry component to publish, find and delete UDDI
entries.

The necessary client classes are contained in the uddiejbclient.jar file in the ejb
subdirectory of the UDDIReg directory under the WebSphere appserver directory
tree.

The javadoc for the EJB API is contained in the javadoc directory tree under the ejb
subdirectory of the UDDIReg directory under the WebSphere appserver directory
tree.

Chapter 10. IBM WebSphere UDDI Registry 599

The EJB API is contained in two stateless session beans, one for the Inquiry API
(com.ibm.uddi.ejb.InquiryBean) and one for the Publish API
(com.ibm.uddi.ejb.PublishBean), whose public methods form an EJB interface for
the UDDI Registry. All the public methods on the InquiryBean correspond to UDDI
Inquiry API functions, and all the public methods on the PublishBean correspond
to UDDI Publish API functions. (Not all UDDI API functions are implemented, e.g.
get_authToken, discard_authToken, get_businessDetailExt, etc.) For version 1 of the
UDDI registry, the EJB component supports only UDDI v2.0.

The two EJBs use container-managed transactions. The transaction attribute for the
methods of the InquiryBean is NotSupported, and for the methods of the
PublishBean it is Required. You should not change the transaction attributes as this
could result in undesirable behavior.

Within each interface there are groups of overloaded methods that correspond to
the operations in the UDDI 2.0 specification. There is a separate method for each
major variation in function. For example, the single UDDI 2.0 operation
find_business is represented by 10 variations of findBusiness methods, with
different variations for finding by name, finding by categoryBag etc.

The arguments for the EJB interface methods are java objects in the package
com.ibm.uddi.datatypes. Roughly speaking, there is a one-one correspondence
between classes in this package and elements of the UDDI v2.0 XML schema.
Exceptions to this are, for example, where UDDI XML elements can be represented
by a single String. (See Package com.ibm.uddi.datatypes below for more
information.)

Enabling an EJB Client

This section is written on the assumption that WebSphere Application Server V5.0,
a supported database and the IBM WebSphere UDDI Registry have already been
installed.

Classpaths

In order for EJB clients to work correctly, the following jar files and folders must
be added to the user’s CLASSPATH:

For Windows

<WebSphere-install-dir>\lib\j2ee.jar
<WebSphere-install-dir>\lib\naming.jar
<WebSphere-install-dir>\lib\namingclient.jar
<WebSphere-install-dir>\lib\ecutils.jar
<WebSphere-install-dir>\lib\sas.jar
<WebSphere-install-dir>\properties

For Unix Platforms, including z/OS

<WebSphere-install-dir>/lib/j2ee.jar
<WebSphere-install-dir>/lib/naming.jar
<WebSphere-install-dir>/lib/namingclient.jar
<WebSphere-install-dir>/lib/ecutils.jar
<WebSphere-install-dir>/lib/sas.jar
<WebSphere-install-dir>/properties

600 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

In addition to these jars, there is also the jar file that contains all of the UDDI
specific API for the EJB interface, which can be found at:

For Windows

<DeploymentManager-install-dir>\UDDIReg\ejb\uddiejbclient.jar

where <DeploymentManager-install-dir> is the install location for WebSphere
Application Server for Network Deployment, which by default is
C:\Progra~1\WebSphere\DeploymentManager.

For Unix Platforms, including z/OS

<DeploymentManager-install-dir>/UDDIReg/ejb/uddiejbclient.jar

where <DeploymentManager-install-dir> is the install location for WebSphere
Application Server for Network Deployment, which by default is
/opt/WebSphere/DeploymentManager for Linux/Solaris systems or
/usr/WebSphere/DeploymentManager for AIX systems.

The Path

Please ensure that your PATH statement starts with <WebSphere-install-
dir>\java\bin

Creating an EJB Client

If you want to read about creating EJB Clients in more detail, then please read the
″Sun Microsystems Enterprise JavaBeansTM Specification Version 2.0″

Finding the EJB Reference

An EJB Client can be a stand-alone Java application, an Applet, Servlet or a JSP.
This document only covers writing a stand-alone Java application. In order to
invoke an EJB that has been deployed into WebSphere on the server side, the
Client must do two things: find the EJB on the server, and then create a Client side
reference to that EJB. Once this Client side reference has been created, then the
Client can invoke methods upon the EJB as if it was a local object. Clients cannot
reference, or invoke, and EJB directly. Any calls made to the EJB must be made
through the interfaces that the EJB provides. The interface that is used to create a
local reference to the EJB is called the home interface. When an EJB is deployed in
WebSphere, this home interface is made available to Clients by means of a
searchable namespace. This means that a Client can look up an address on the
namespace. If there is a home interface at that address, and it is the home interface
to the EJB that they were looking for, then the Client can create a local instance of
that home interface, and then, from that, a local reference to the EJB can be created.

What code is needed in the Client?

The following code fragment illustrates how to Find and Create a local instance of
the Inquiry EJB only. The same will need to be done to Find and Create a local
copy of the Publish EJB.
private com.ibm.uddi.ejb.Inquiry inquiry = null;
// This private variable, "inquiry" is going to be the local reference to the
// EJB in WebSphere declaring it outside the scope of a method means that this

Chapter 10. IBM WebSphere UDDI Registry 601

// same reference can be used throughout the client, without having to query
// the namespace again.
public void homeLookup()
{
// These variables simply determine the address of the JNDI namespace, and

// the address of the home interface within that namespace.

// String naming_factory = "com.ibm.ejs.ns.jndi.CNInitialContextFactory";
//WAS 4.0.2 Naming Factory
String naming_factory = "com.ibm.websphere.naming.WsnInitialContextFactory";
//WAS 5.0 Naming Factory

String namespace_address = "iiop://localhost:2809/";
//The address of the namespace

String home_address = "com/ibm/uddi/ejb/InquiryHome";
//The address of the home interface within the JNDI namespace

java.util.Hashtable environment = new java.util.Hashtable();
environment.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY, naming_factory);
environment.put(javax.naming.Context.PROVIDER_URL, namespace_address);

try
{
javax.naming.InitialContext ic = new javax.naming.InitialContext(environment);

// Create a context using the details above to connect to the namespace

Object o = ic.lookup(home_address);
// Do a lookup to see if there is an ejb_home at the address specified above

// Now create a valid home instance for the EJB type we want to create
com.ibm.uddi.ejb.InquiryHome home =

(com.ibm.uddi.ejb.InquiryHome)(javax.rmi.PortableRemoteObject.narrow(o,
com.ibm.uddi.ejb.InquiryHome.class));

inquiry = home.create();
// Now create a local reference of the EJB, by using the
// home.create() method. Any business method that is intended for
// the EJB in Websphere must me invoked against this inquiry object.

}
catch (javax.naming.NamingException ne) {ne.printStackTrace();}
// This is thrown if there was a problem connecting to the namespace, or

// finding the home_address in the namespace
catch (java.rmi.RemoteException re) {re.printStackTrace();}
// This usually indicates some sort of system failure, either WebSphere is

// not running, or there is a communications problem
catch (javax.ejb.CreateException ce) {ce.printStackTrace();}
// This is thrown if the EJB reference cannot be created from the home instance.

}

Writing Client code to use the EJB API

Once the reference to the EJB has been created (the Inquiry Object, in the above
code), then the reference can be treated like any other Java Object. This is an
example method using the UDDI EJB API - the only important point to remember
is that, although the Inquiry Object has been created as a local reference, it is still
referring to a remote EJB Object in a different server, possibly even in a different
country. This means that at the very least a javax.rmi.RemoteException must be
caught on each method call that is made to the EJB.

public void findBusiness()
{
System.out.println("Find Business:");

NameList names = new NameList();
names.add(new Name("IBM Corporation"));

//Create the list of names to find in the UDDI Registry, here just one
// is used, "IBM Corporation"

602 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

try
{

BusinessList list = inquiry.findBusiness(names);
//This is the call to the inquiry EJB that searches through the UDDI Registry

//Now display the amount of business found, and for each one, get the
// BusinessKey, the BusinessName and the amount of Services that Business has

System.out.println("There are "+list.getBusinessInfos().size()+"
matching Businesses in this registry");

for (int i=0;i<list getBusinessInfos().size();i++)
{

BusinessInfo business = list.getBusinessInfos().get(i);
System.out.println("\nBusinessKey = "+business.getBusinessKey());
System.out.println("BusinessName = "+business.getNames().get(0).getNameString());
System.out.println("This Business Has "+business.getServiceInfos().size()+" Services\n");

}
}

// This is a UDDI specific exception, and will be thrown if for example an
// invalid name was used as the search criteria

catch (com.ibm.uddi.datatypes.DispositionReportException e) {this.handleDispositionReportException(e);}

catch (java.rmi.RemoteException re) {re.printStackTrace();}
// This is the RemoteException that is thrown if there has been a system failure

// or a connection problem.
}

What new code is needed on the Client?

Just as each EJB has an interface listed on the JNDI namespace, the
javax.transaction.UserTransaction class also has an interface listed. This means that
the same method used to get a local instance of an EJB can be applied to get a
local instance of the UserTransaction class. Again, this code can be used to find the
UserTransaction reference on the namespace, in addition to the code required to
find the Inquiry EJB and the Publish EJB, or, alternatively, there is a slightly more
elegant method used in the TransactionEJBClientSample.java.

public void txLookup()
{
private javax.transaction.UserTransaction tx = null;
// This is the private variable that will be used to hold the UserTransaction Objec
// declaring it outside the scope of a method means that this same reference can be
// used throughout the client, without having to query the namespace again.

// These variables simply determine the address of the JNDI namespace, and the address
// of the home interface within that namespace.

// String naming_factory = "com.ibm.ejs.ns.jndi.CNInitialContextFactory";
//WAS 4.0.2 Naming Factory
String naming_factory = "com.ibm.websphere.naming.WsnInitialContextFactory";
//WAS 5.0 Naming Factory

String namespace_address = "iiop://localhost:2809/";
//The address of the namespace
String transaction_address = "jta/usertransaction";
//The address of the UserTransaction interface within the JNDI namespace

java.util.Hashtable environment = new java.util.Hashtable();
environment.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY, naming_factory);
environment.put(javax.naming.Context.PROVIDER_URL, namespace_address);

try
{
javax.naming.InitialContext ic = new javax.naming.InitialContext(environment);

Chapter 10. IBM WebSphere UDDI Registry 603

// Create a context using the details above to connect to the namespace
Object remote_object = ic.lookup(transaction_address);

// Do a lookup to see if there is a UserTransaction Object at the address specified above
tx = (javax.transaction.UserTransaction)remote_object;
//Convert the remote object found into a UserTransaction Object, and assign to the private variable
}
catch (javax.naming.NamingException ne) {ne.printStackTrace();}
// This is thrown if there was a problem connecting to the namespace, or

// finding the transaction_address in the namespace
}

Writing Client code to use the EJB API with a Client transaction

To perform an Inquiry, a Publish or a Delete upon the IBM WebSphere UDDI
Registry with client side transactional support requires very little additional code
compared to doing the same operations without client side transactional support.
Using the same code that is listed above (in ″Writing Client Code to use the EJB
API″), this example illustrates how easy client side transactions are to implement.

The additional lines of code needed are in bold type. This code also assumes that
there is a variable called tx that has been declared at the class scope.

public void findBusiness()
{
//Just as there are UDDI and RMI specific exceptions thrown,
// 5 more exceptions need to be caught.
try
{
tx.begin(); //This begins the transaction context
System.out.println("Find Business:");
NameList names = new NameList();
names.add(new Name("IBM Corporation"));
//Create the list of names to find in the UDDI Registry, here just one is used, "IBM Corporation"

try
{
BusinessList list = inquiry.findBusiness(names);
//This is the call to the inquiry EJB that searches through the UDDI Registry

//Now display the amount of business found, and for each one, get the BusinessKey,
// the BusinessName and the amount of Services that Business has
System.out.println("There are "+list.getBusinessInfos().size()+" matching Businesses in this registry");
for (int i=0;i<list.getBusinessInfos().size();i++)
{
BusinessInfo business = list.getBusinessInfos().get(i);
System.out.println("\nBusinessKey = "+business.getBusinessKey());
System.out.println("BusinessName = "+business.getNames().get(0).getNameString());
System.out.println("This Business Has "+business.getServiceInfos().size()+" Services\n");
}
}
// This is a UDDI specific exception, and will be thrown if for example an invalid
// name was used as the search criteria
catch (com.ibm.uddi.datatypes.DispositionReportException e) {this.handleDispositionReportException(e);}
catch (java.rmi.RemoteException re) {re.printStackTrace();}
// This is the RemoteException that is thrown if there has been a system failure

// or a connection problem.

tx.commit(); //This ends the transaction context
}
catch (javax.transaction.NotSupportedException nse) {nse.printStackTrace();}
catch (javax.transaction.RollbackException rbe) {rbe.printStackTrace();}
catch (javax.transaction.SystemException se) {se.printStackTrace();}
catch (javax.transaction.HeuristicMixedException hme) {hme.printStackTrace();}
catch (javax.transaction.HeuristicRollbackException hrbe) {hrbe.printStackTrace();}
}

v ″Datatypes package in the UDDI Registry″

604 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v ″EJB interface methods in the UDDI Registry″

Datatypes package in the UDDI Registry
Below is a table listing the classes in the com.ibm.uddi.datatypes package, the
elements in the UDDI v2.0 XML schema, and the correspondence between the two.

com.ibm.uddi.datatypes
Class

Corresponding UDDIv2.0
XML Schema Element

Notes on DatatypeClass

AccessPoint accessPoint
Address address

String addressLine
AdressLineList Encapsulates a Vector of

addressLine Strings
AddressList Encapsulates a Vector of

Address objects
AssertionStatusItem assertionStatusItem
AssertionStatusItemList Encapsulates a Vector of

AssertionStatusItem objects
AssertionStatusReport assertionStatusReport

(response message)
String authInfo

AuthToken Object containing authInfo
String and operator name

String bindingKey
BindingDetail bindingDetail (response

message)
BindingTemplate bindingTemplate
BindingTemplateList bindingTemplates Encapsulates a Vector of

Bindingtemplate objects
BusinessDetail businessDetail (response

message)
BusinessDetailExt businessDetailExt (Response

message)
**

BusinessEntity businessEntity
BusinessEntityExt businessEntityExt **
BusinessEntityExtList Encapsulates a Vector of

BusinessEntityExt objects **
BusinessEntityList Encapsulates a Vector of

BusinessEntity objects
BusinessInfo businessInfo
BusinessInfoList businessInfo Encapsulates a Vector of

businessInfo objects
String businessKey

BusinessList businessList (response
message)

BusinessService businessService
BusinessServiceList businessServices Encapsulates a Vector of

BusinessService objects
CategoryBag categoryBag

String completionStatus
Contact contact
ContactList contacts Encapsulates a Vector of

Contact objects
Description description
DescriptionList Encapsulates a Vector of

Description objects
DiscoveryUrl discoveryURL

Chapter 10. IBM WebSphere UDDI Registry 605

DiscoveryUrlList discoveryURLs Encapsulates a Vector of
DiscoveryURL objects

DispositionReport dispositionReport
DispositionreportException Exception thrown by EJB

interface functions when an
error occurs

Email email
EmailList Encapsulates a Vector of

Email objects
EndPoint Used as baseclass for

AccessPoint and
HostingRedirector providing
mutual exclusivity

ErrInfo errInfo
findQualifier

FindQualifier findQualifiers
String fromKey

HostingRedirector hostingRedirector
IdentifierBag identifierbag
InquiryOptions Encapsulates a FindQualifiers

object and a maxrows field.
Used in find_* API calls to
specify search options

InstanceDetails instanceDetails
String instanceParms
String keyValue

KeyedReference keyedReference
keysOwned keysOwned
LanguageString Abstract class, extended by

some of the datatypes, which
represents a string that can
optionally be tagged with
xml:lang.

Name name
NameList Encapsulates a Vector of

Name objects
OverviewDoc overviewDoc

String overviewURL
String personName

Phone phone
PhoneList Encapsulates a Vector of

Phone objects
PublisherAssertion publisherAssertion
PublisherAssertionList Encapsulates a Vector of

Publisher Assertion objects
PublisherAssertions publisherAssertions (response

message)
RegisteredInfo registeredInfo (response

message)
relatedBusinessInfo not used
relatedBusinessInfos not used

RelatesBusinessesList relatedBusinessesList
RelatedBusinessInfo relatedBusinessInfo
RelatedBusinessInfos relatedBusinessInfos
Result result
ResultList Encapsulates a Vector of

Result objects

606 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

ServiceDetail serviceDetail (response
message)

ServiceInfo serviceInfo
ServiceInfoList serviceInfos Encapsulates a Vector of

serviceInfo objects
String serviceKey

ServiceList serviceList (response
message)
sharedRelationships not used

SharedRelationships sharedRelationships
Tmodel tModel
TModelBag tModelBag
TModelDetail tModelDetail (response

message)
TModelInfo tModelInfo
TModelInfoList tModelInfos Encapsulates a Vector of

TModelInfo objects
TModelInstanceInfo tModelInstanceInfo
TModelInstanceInfoList tModelInstanceDetails Encapsulates a Vector of

TModelInstanceInfo objects
String tModelKey

TModelList tModelList (response
message)

TModels Encapsulates a Vector of
TModel objects

String toKey
String uploadRegister

UploadRegisterList Encapsulates a Vector of
uploadRegister strings

** Used in UDDI API functions relating to BusinessDetailExtension. These UDDI
API functions are not implemented in Version 1 of the IBM WebSphere UDDI
Registry.

In general, a datatype called DatatypeList contains a vector of Datatype objects.
Often these correspond to XML schema elements with plural names. (For example
the datatype Contact corresponds to XML element contact, and ContactList
corresponds to contacts.) Where there is no ″plural″ XML schema element for a
particular Datatype, often there is still a DatatypeList where it is useful to have one,
e.g. AddressList.

The exceptions to this naming convention occur when there is an existing XML
schema element ending in ″List″. The exceptions are: TModelList, ServiceList,
BusinessList. In these cases, the corresponding datatypes are given the same names
as the XML schema elements, and the datatypes that would have had these names
are called: TModels, BusinessServiceList, BusinessEntityList.

EJB interface methods in the UDDI Registry
Inquiry
findBinding
findBusiness
findRelatedBusinesses
findService
findTModel

Chapter 10. IBM WebSphere UDDI Registry 607

getBindingDetail
getBusinessDetail
getServiceDetail
getTModelDetail

Publish
addPublisherAssertions
deleteBinding
deleteBusiness
deletePublisherAssertions
deleteService
deleteTModel
getAssertionStatusReport
getRegisteredInfo
getPublisherASsertions
saveBinding
saveBusiness
saveService
saveTModel
setPublisherAssertions

Each method is overloaded and can take various combinations of arguments. The
Javadoc contains detailed information about each method.

Note that get_authToken and discard_authtoken are not implemented, as
WebSphere security is used instead.

UDDI troubleshooting tips
When the IBM WebSphere UDDI Registry is running, it might issue messages to
report events or errors. You can use these messages, described in Messages as your
first aid to problem determination. If you need more details about the causes of a
problem, you can turn on tracing for UDDI, as described in Turning on UDDI
trace.
v ″Turning on UDDI trace″

Below are a few of the common causes of errors that might be found and their
suggested solutions.
v If you set up the UDDI Registry application with a JDBC driver and datasource

that reference Cloudscape, but set the persister property in uddi.properties to
specify DB2, or vice versa, then some unexpected behavior will result, such as a
fatal error on deleting an entity. If this happens, you should check that the above
details are not in conflict. This only applies to a UDDI Registry installation on a
single appserver.

v If you get a message ″The application failed to initialize″ when trying to access
the UDDI User console and you are using DB2 as the persistence store for the
UDDI Registry, a likely cause of the problem is that you specified the wrong
userid and/or password when you ran the script to install the UDDI Registry
application. If this occurs rerun the script ensuring you use the correct userid
and password.

v You might find that, after uninstalling and reinstalling the UDDI Registry, you
get errors from the UDDI User Console of the form:
″Error 500: JSPG0059E: Unable to compile class for JSP″.
If this occurs, then you should clear out the temp directory of the WebSphere
AppServer.

v When running one of the UDDI setup scripts setupuddi.jacl or removeuddi.jacl,
if you get an error such as:

608 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

WASX7017E: Exception received while running file ″setupuddi.jacl″; exception
information: com.ibm.bsf.BSFException: error while eval’ing Jacl expression:
java.util.MissingResourceException: Can’t find resource for bundle
java.util.PropertyResourceBundle, key ErrMsgIncorrectNumArgs
then please ensure that the file setupuddimessages.jafr is located in the lib
subdirectory of the WebSphere deployment manager or application server under
which you are running the script.

v When running the DB2 Setup Wizard, if you get an error stating ″Invalid userid
and password″, then if could be caused by any of the following situations:
– You have supplied an invalid userid or password - re-enter with a valid

userid and password.
– The supplied userid does not have the necessary privileges - retry with a

userid that has appropriate privileges.
– DB2 is stopped when you run the Wizard - start DB2 and retry the Wizard.
– The UDDI20 database already exists and has been removed previously and,

as such, is not catalogued. The DB2 Wizard does not recognize this situation
and gives the error. You now have two options.
1. If you wish to use the existing database then you will need to catalogue it

and there is no need to rerun the Wizard.
2. If you wish to create a new database you will need to recatalog the

database and re-run the DB2 Wizard and choose the option to overwrite
the database. (Any existing data WILL be lost.)

Applicability of the following list: [Fix Pack 5.0.1 and later]

- Catalog the database by:
v

Windows:
>db2cmd
>db2cat -d iddi20

v

Unix platforms
>su db2inst1 (or name of your db2 instance)

>db2 CATALOG DATABASE UDDI20

– 5.0.1 ensure that, if you are using a non-English installation of DB2, you
have applied PTF1.

5.0.1 Note: If you have a copy of the file SetupDB2UDDI.jar in your appserver
directory, then the application of the base and Network Deployment PTFs will
not update SetupDB2UDDI.jar in your appserver directory. You must apply the
PTF for Network Deployment to your DeploymentManager file structure to
update the SetupDB2UDDI.jar located there (in the /IDDIReg/scripts
subdirectory), and then manually copy this jar to any appserver you may wish
to run it on.

v There is a limitation concerning URL rewriting causing JavaScript syntax errors
on several Web pages in the UDDI User Console. Because of this, cookies must
be enabled in client browsers, the application server must have cookies enabled
as the session tracking mechanism, and URL rewriting must be disabled.

v If you have an existing DB2 version of the UDDI Registry database, and you use
the UDDI DB2 setup wizard to replace this database with a new one, and if the
database is in use at the time that you run the UDDI DB2 setup wizard, then the
existing database is not overwritten.

Chapter 10. IBM WebSphere UDDI Registry 609

v When running the UDDI DB2 setup wizard, as part of the installation step
″Setting up the UDDI Registry to use DB2 within a deployment manager cell″ or
″Setting up the UDDI Registry to use DB2 in a single appserver″, in addition to
running the was_install\bin\setupcmdline.bat directory, you should also type
either set PATH=%WAS_PATH% (for Windows platforms) or export
PATH=/opt/WebSphere/AppServer/java/bin:$PATH (for Unit platforms) to ensure
that you have access to Java.

v UDDI user console ″Page cannot be displayed″ errors with Internet Explorer.
If you use Internet Explorer with the option ″Show friendly HTTP error
messages″ enabled and you have WebSphere Application Server security enabled
(user ID and password authentication enabled), you might experience
intermittent errors on the browser, such as ″Page cannot be displayed″, when
navigating the UDDI user console. This might be particularly noticeable when
accessing the publish actions.
To avoid such errors, disable the ″Show friendly HTTP error messages″ option
on Internet Explorer. This option is found under Tools > Internet options >
Advanced Tab > Browsing Section

v When using SOAP or UDDI4J, it is sometimes necessary to call setServiceKey
(″″) before saving your changes, except with the EJB interface where this might
result in an error.

v There are known problems with inquiries issued against the UDDI Registry if
IBM Cloudscape is used as the persistence store for the registry data. Certain
complex inquiries might produce unexpected results, or could fail. If your
application needs to make inquiries of this nature, consider using DB2 as the
persistence store. Note: DB2 must be used for production purposes. The IBM
Cloudscape support is only provided for development and test use.

v You might see errors if you specify requests which specify more than 5 category
values, more than 5 identifier values, or more than 5 technical model (tModel)
values.

v If you stop and restart the UDDI Registry application from the administrative
console, and then try to access the Registry through the user console, an ″Error
500 - object is not an instance of a declaring class″ displays on the user console, and
the error message ″SRVE0026E″ displays in the system log. You cannot access the
UDDI Registry until you restart the WebSphere Application Server. To avoid this
problem when restarting the UDDI Registry, you should set Prefer WEB-INF
classes on the panel navigated to by the following steps: Applications >
Manage Applications > UDDIRegistry > Web Modules defined for this
Application > gui.war.

v It is possible that a scripting error displays when you are running the wsadmin
appserversetupuddi.jacl command.
During installation, if you see the following error at the end of running the
appserversetupuddi.jacl command, you can safely ignore the error. It is
recommended that you start (or stop and restart) the application server and then
continue.
Here is an example of the error:
UDIN2041I: Starting UDDI application. UDIN8019E: startApplication command for

appname caught exception Exc. Values are: appname=UDDIRegistry,
Exc=com.ibm.ws.scripting.Scripting
Exception: com.ibm.websphere.management.exception.Connector
Exception: ADMC0009E: Failed to make the SOAP RPC call: invoke

Turning on UDDI trace
Before you begin

610 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

You can enable UDDI-specific trace in the same way as you enable other tracing in
the WebSphere Application Server.

The following is a list of trace strings that may be used:
v com.ibm.uddi.api
v com.ibm.uddi.config
v com.ibm.uddi.datatypes
v com.ibm.uddi.dom
v com.ibm.uddi.ejb
v com.ibm.uddi.exception
v com.ibm.uddi.exceptions
v com.ibm.uddi.gui
v com.ibm.uddi.gui.inquire
v com.ibm.uddi.gui.publish
v com.ibm.uddi.persistence
v com.ibm.uddi.persistence.jdbc
v com.ibm.uddi.persistence.jdbc.cloudscape
v com.ibm.uddi.persistence.jdbc.db2
v com.ibm.uddi.ras
v com.ibm.uddi.security
v com.ibm.uddi.soap
v com.ibm.uddi.uuid
v com.ibm.uddi.validation
v com.ibm.uddi.xml

For example, to trace the UDDI User Console you would specify:
’com.ibm.uddi.gui=all=enabled’

This would enable all types of trace for the gui. Please refer to [] elsewhere in the
WebSphere Application Server V5.0 InfoCenter for more information about using
the administrator console to enable/disable trace.

Messages
When the IBM WebSphere UDDI Registry is running, it might issue messages to
report events or errors. The messages are in the form UDxxnnnns where:

xx is a two character descriptor identifying which component is involved

nnnn give the error code being issued

s is either I (Information) or E (Error)

The prefix UDxxnnnns: is followed by text which describes the event or error. For
some messages, the first word of the text is one of the form (MSN=SSSS). The SSSS
provides a message sequence number (or MSN), which identifies the unique
circumstance in which the message was issued, and is of use where the same
message can be issued in more than one circumstance.

To help you diagnose problems and minimize the need to enable trace in any of
the above components, view the messages table. You can view the messages by

Chapter 10. IBM WebSphere UDDI Registry 611

prefix or component, whichever is easiest for you to find in the table. All messages
are documented with user/system action and explanation.

The text for the UDDI messages is contained in a file uddiresourcebundles.jar which
is placed, by the installation process, into the \lib subdirectory (Windows) of the
WebSphere application server into which the UDDI Registry was installed. If you
will be running a console or log analyzer from another process; for example, to
analyze the activity log, then you must place a copy of uddiresourcebundles.jar into a
directory which is within the classpath of that process. Otherwise, the message
lookup for the UDDI messages will fail.

UDDI Components Message Prefix Table

click on individual links for message documentation for the component
UDAI API
UDCF Configuration
UDDA Datatypes
UDDM DOM
UDEJ EJB Interface
UDEX Exceptions
UDIN Installation
UDLC Local API
UDPR Persistence
UDRS Logging
UDSC Security
UDSP SOAP Interface
UDUC User Console
UDUU UUID

UDAI (Web Services UDDI) messages
There are no messages issued by this component.

UDCF (Web Services UDDI) messages
UDCF0001E: Exception occurred while getting int value of configuration
property ″<property>″, exception: ″<exception>″

Explanation: This message is issued when an attempt to read the value of
a configuration property from the uddi.properties file and convert it to
integer has failed with the indicated exception.

User Response: Check that the uddi.properties file contains a value for the
indicated configuration property, and that the value is valid. Check also
that the indicated configuration property is a legal property. Refer to the
InfoCenter for further information about global configuration properties
and the uddi.properties file.

UDCF0002E: Exception occurred while getting long value of configuration
property ″<property>″, exception: ″<exception>″

Explanation: This message is issued when an attempt to read the value of
a configuration property from the uddi.properties file and convert it to
long has failed with the indicated exception.

User Response: Check that the uddi.properties file contains a value for the
indicated configuration property, and that the value is valid. Check also
that the indicated configuration property is a legal property. Refer to the
InfoCenter for further information about global configuration properties
and the uddi.properties file.

612 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

UDCF0003E: Exception occurred while getting boolean value of configuration
property ″<property>″, exception: ″<exception>″

Explanation: This message is issued when an attempt to read the value of
a configuration property from the uddi.properties file and convert it to
boolean has failed with the indicated exception

User Response: Check that the uddi.properties file contains a value for the
indicated configuration property, and that the value is valid. Check also
that the indicated configuration property is a legal property. Refer to the
InfoCenter for further information about global configuration properties
and the uddi.properties file.

UDCF0004E: Failed to load UDDI global properties file.
Explanation: This message is issued when the UDDI global configuration
properties file, uddi.properties, cannot be loaded. Default values for the
global configuration properties will be set, but these defaults may not be
adequate for many of the properties, so you should investigate and resolve
this problem.

User Response: Check that the uddi.properties file exists and is in the
correct directory. Refer to the InfoCenter for further information about
global configuration properties and the uddi.properties file.

UDCF0005E: Exception occurred while loading UDDI global configuration
properties, exception: ″<exception>″

Explanation: This message is issued when an attempt to load the UDDI
global configuration properties from the uddi.properties has failed with the
indicated exception. Default values for the global configuration properties
will be set, but these defaults may not be adequate for many of the
properties, so you should investigate and resolve this problem.

User Response: Check that the uddi.properties file exists and contains
valid values for each of the configuration properties. Refer to the
InfoCenter for further information about global configuration properties
and the uddi.properties file.

UDDA (Web Services UDDI) messages
There are no messages issued by this component.

UDDM (Web Services UDDI) messages
There are no messages issued by this component.

UDEJ (Web Services UDDI) messages
There are no messages issued by this component.

UDEX (Web Services UDDI) messages
There are no messages issued by this component.

UDIN (Web Services UDDI) messages
UDIN0001I: Assuming hard coded defaults.

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None..

Chapter 10. IBM WebSphere UDDI Registry 613

UDIN0002I: Cloudscape classpath is clpath. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0003I: Looking for childtype childname under parenttype parentname.
Values are:

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0004I: Looking for childtype childname under parenttype parentname and
parenttype2 parentname2. Values are:

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0005I: Conflict found with existing childtype childname. Values are:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0006I: Not creating requested childtype. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0007I: Seeking parenttype with requested id of parentname. Values are:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0008I: Seeking parenttype with requested id of parentname under
parenttype2 parentname2. Values are:

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0009I: Attempting to create childtype under parenttype of parentID. Values
are: Explanation: This is an informational message issued by the UDDI setup

script setupuddi.jacl.

User Response: None.

UDIN0010I: Create command that will be issued is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0011I: childtype childId was successfully created. Values are:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0012I: Looking for builtin_rra.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

614 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

User Response: None.

UDIN0013I: List for J2CResourceAdapter returned N members. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0014I: Hunting J2CResourceAdapter associated with Node nodename.
Value is:

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0015I: Using rraID as builtin_rra. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0016I: Using provider class of implclass with a classpath of clpath. Values
are: Explanation: This is an informational message issued by the UDDI setup

script setupuddi.jacl.

User Response: None.

UDIN0017I: Installing to server servername, node nodename using database type
of dbtype. Values are:

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0018I: Attempting to create UDDI JDBCProvider.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0019I: Attempting to create UDDI Datasource.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0020I: Application Manager appmgr found. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0021I: Attempting to install UDDI Registry application.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0022I: Checking for installed UDDI Registry application of name
appname. Value is:

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

Chapter 10. IBM WebSphere UDDI Registry 615

UDIN0023W: Application of name appname is not present. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0024I: ApplicationManager not running, so application will not need to be
stopped.

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0025I: Stopping application of name appname. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0026W: stopApplication command for application appname caught
exception Exc. Application might not have been running on this server. Values
are: Explanation: This is an informational message issued by the UDDI setup

script setupuddi.jacl.

User Response: None.

UDIN0027I: Application appname stopped successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0028I: Removing application appname. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0029I: Application appname removed successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0030I: Adding resource bundles to repository.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0031I: Adding Cloudscape user functions to repository.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0032I: UDDI configuration properties file already exists. Only the persister
and getServletURLPrefix properties will be overwritten.

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0033I: Editing UDDI configuration properties file propsfile. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

616 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

User Response: None.

UDIN0034I: Url prefix found. Updating it to discoveryURL. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0035I: Persister property found. Updating it to dbtype. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0036I: Adding UDDI configuration properties file to repository for cell
cellname under target node and server. Value is:

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0037I: ws.ext.dir processing starting.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0038I: serverID is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0039I: JVM is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0040I: Out of N properties we located M matches at positions poslist.
Values are:

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0041I: Building new ws.ext.dirs properties.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0042I: SYSPROP is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0043I: ws.ext.dir has been set with new sysprop. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

Chapter 10. IBM WebSphere UDDI Registry 617

UDIN0044I: ws.ext.dir update skipped, required changes already present.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0045I: ws.ext.dir processing step complete.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0046I: Cleaning up temporary version of properties file temppropsfile.
Value is:

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0047I: Issuing nodeSync.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0048I: UDDI Registry successfully installed. Please restart server
servername to activate configuration changes. Value is:

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0049I: Application Manager appmgr found. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0050I: Server is not running, so will not need to be stopped.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0051I: Stopping server servername under node nodename. Values are:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0052I: Server servername stopped successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0053I: Restarting application server
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0054I: Application server servername restarted successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

618 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

User Response: None.

UDIN0055I: Please ignore any errors concerning the serverStartupSyncEnabled
attribute.

Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0101I: Attempting to save new configuration.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0102I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0103I: Changes were not saved on this call.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0104I: Attempting to save new configuration.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0105I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0106I: Attempting to save ws.ext.dir changes.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0107I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0108I: Attempting final save of new configuration.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN0109I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script setupuddi.jacl.

User Response: None.

UDIN1001I: Application Manager appmgr found. Value is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

Chapter 10. IBM WebSphere UDDI Registry 619

User Response: None.

UDIN1002I: Server is not running, so will not need to be stopped.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1003I: Stopping server servername under node nodename. Values are:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1004I: Server servername stopped successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1005I: Resource bundles file will be removed from repository if present.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1006I: Removing resource bundles from repository.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1007I: Resource bundles successfully removed from repository.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1008I: Cloudscape user functions file will be removed from repository if
present.

Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1009I: Removing Cloudscape user functions from repository.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1010I: Cloudscape user functions successfully removed from repository.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1011I: Application Manager appmgr found. Value is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

620 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

UDIN1012I: Checking for installed UDDI Registry application of name
appname. Value is:

Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1013W: Application of name appname is not present. Value is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1014I: ApplicationManager not running, so application will not need to be
stopped.

Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1015I: Stopping application of name appname. Value is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1016W: stopApplication command for application appname caught
exception Exc. Application might not have been running on this server. Values
are: Explanation: This is an informational message issued by the UDDI setup

script removeuddi.jacl.

User Response: None.

UDIN1017I: Application appname stopped successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1018I: Removing application appname. Value is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1019I: Application appname removed successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1020I: UDDI datasource will be removed from server servername in node
nodename if present. Values are:

Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1021I: Removing UDDI datasource.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

Chapter 10. IBM WebSphere UDDI Registry 621

UDIN1022I: UDDI datasource successfully removed.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1023I: UDDI JDBC driver will be removed from server servername in node
nodename if present. Values are:

Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1024I: Removing UDDI JDBC driver.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1025I: UDDI JDBC driver successfully removed.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1026I: UDDI configuration properties file will be removed from repository
if present.

Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1027I: Removing configuration properties file from cell cellname, node
nodename and server servername. Values are:

Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1028I: Configuration properties file successfully removed from repository.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1029I: Issuing nodeSync.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1030I: UDDI Registry application, JDBC driver and datasource removed
successfully.

Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1031I: Restarting application server.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

622 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

UDIN1032I: Application server servername restarted successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1033I: Please ignore any errors concerning the serverStartupSyncEnabled
attribute.

Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1034I: ws.ext.dir processing starting.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1035I: serverID is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1036I: JVM is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1037I: Out of N properties we located M matches at positions poslist.
Values are:

Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1038I: Removing UDDI values from ws.ext.dirs properties.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1039I: ws.ext.dir has been set with new sysprop. Value is:
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1040I: ws.ext.dir update skipped, required changes already present.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1041I: ws.ext.dir processing step complete.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1101I: Attempting to save new configuration.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

Chapter 10. IBM WebSphere UDDI Registry 623

User Response: None.

UDIN1102I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1103I: Attempting to save new configuration.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1104I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1105I: Attempting to save new configuration.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1106I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1107I: Attempting final save of new configuration.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1108I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1109I: Attempting to save ws.ext.dir changes.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN1110I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script removeuddi.jacl.

User Response: None.

UDIN2001I: Assuming hard coded defaults.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2002I: Listing members of type parenttype. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

624 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

UDIN2003I: List for type parenttype returned N members. Values are:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2004I: Seeking parenttype with requested id of parentname. Values are:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2005I: Checking parentID with parentname. Values are:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2006I: Using this as parenttype of parentname. Values are:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2007I: Checking for existing childtype under parentname. Values are:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2008I: List for childtype returned N members. Values are:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2009I: No existing childtype present. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2010I: N existing objects of type childtype found, examining for conflict
with childname. Values are:

Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2011I: Checking childID with name childname. Values are:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2012I: Conflict found with existing childtype of id childID. Values are:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2013I: Not creating requested object of type childtype. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

Chapter 10. IBM WebSphere UDDI Registry 625

UDIN2014I: Conflict found with existing childtype, removing existing childtype.
Value is:

Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2015I: Removal of childtype was successful. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2016I: Not in conflict.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2017I: Attempting to create childtype under parentname of parentID.
Values are:

Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2018I: Create command that will be issued is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2019I: childtype childID was successfully created. Values are:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2020I: No matches found.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2021I: Looking for builtin_rra.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2022I: List for J2CResourceAdapter returned N members. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2023I: Hunting J2CResourceAdapter associated with Node nodename.
Value is:

Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2024I: Using rraID as builtin_rra. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

626 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

User Response: None.

UDIN2025I: Using provider class of implclass with a classpath of clpath. Values
are: Explanation: This is an informational message issued by the UDDI setup

script appserversetupuddi.jacl.

User Response: None.

UDIN2026I: Installing to node nodename using database type of dbtype. Values
are: Explanation: This is an informational message issued by the UDDI setup

script appserversetupuddi.jacl.

User Response: None.

UDIN2027I: Attempting to create UDDI JDBCProvider.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2028I: Attempting to create UDDI Datasource.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2029I: Application Manager appmgr found. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2030I: Attempting to install UDDI Registry application.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2031I: Checking for installed UDDI Registry application of name
appname. Value is:

Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2032I: List for Applications returned N members. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2033W: Application of name appname is not present. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2034I: ApplicationManager not running, so application will not need to be
stopped.

Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

Chapter 10. IBM WebSphere UDDI Registry 627

UDIN2035I: Stopping application of name appname. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2036W: stopApplication command for application appname caught
exception Exc. Application might not have been running on this server. Values
are: Explanation: This is an informational message issued by the UDDI setup

script appserversetupuddi.jacl.

User Response: None.

UDIN2037I: Application appname stopped successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2038I: Removing application appname. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2039I: Application appname removed successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2040I: Attempting to install application appname. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2041I: Starting UDDI application.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2042I: Application appname started successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2101I: Attempting to save new configuration.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2102I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2103I: Changes were not saved on this call.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

628 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

UDIN2104I: Attempting to save post installation configuration.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2105I: Changes saved successfully for UDDI Registry.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2106I: Attempting to save new configuration.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN2107I: Changes saved successfully for UDDI Registry.
Explanation: This is an informational message issued by the UDDI setup
script appserversetupuddi.jacl.

User Response: None.

UDIN3001I: Application Manager appmgr found. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3002I: Checking for installed UDDI Registry application.
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3003I: List for Applications returned N members. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3004W: Application of name appname is not present. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3005I: ApplicationManager not running, so application will not need to be
stopped.

Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3006I: Stopping application of name appname. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3007W: stopApplication command for application appname caught
exception Exc. Application might not have been running on this server. Values
are: Explanation: This is an informational message issued by the UDDI setup

script appserverremoveuddi.jacl.

Chapter 10. IBM WebSphere UDDI Registry 629

User Response: None.

UDIN3008I: Application appname stopped successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3009I: Removing application appname. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3010I: Application appname removed successfully. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3011I: UDDI datasource will be removed from server servername in node
nodename if present. Values are:

Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3012I: Removing UDDI datasource.
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3013I: UDDI datasource successfully removed.
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3014I: UDDI JDBC driver will be removed from server servername in node
nodename if present. Values are:

Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3015I: Removing UDDI JDBC driver from node nodename. Value is:
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3016I: UDDI JDBC driver successfully removed.
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3017I: UDDI Registry application, JDBC driver and datasource removed
successfully.

Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

630 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

UDIN3101I: Attempting to save new configuration.
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3102I: Changes to remove UDDI Registry have been saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3103I: Attempting to save new configuration.
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3104I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3105I: Attempting final save of new configuration.
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN3106I: Changes saved successfully.
Explanation: This is an informational message issued by the UDDI setup
script appserverremoveuddi.jacl.

User Response: None.

UDIN6001E: This script must be run in a Deployment Manager environment.
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6002E: To install in a standalone application server, use
appserversetupuddi.jacl.

Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6003E: Incorrect number of arguments passed to script.
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6004E: Usage is:
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl. The text following ’Usage is:’ gives the syntax for calling
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6005E: (<db2userid> <db2password> <db2ziplocation> are only required if
setting up to use DB2).

Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

Chapter 10. IBM WebSphere UDDI Registry 631

User Response:This message is self-explanatory.

UDIN6006E: Use all forward (’/’) slashes to avoid problems with escaping back
(’\\’) slashes.

Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6007E: Removal of childtype childname caught exception Exc. Values are:
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6008E: An exception Exc occurred while creating childtype. Values are:
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6009E: Unable to find requested parentype of parentname. Values are:
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6010E: List command for J2CResourceAdapter caught exception Exc. Value
is: Explanation: This is an error message issued by the UDDI setup script

setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6011E: No J2CResourceAdapter objects available.
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6012E: An error occurred during execution of setupuddi.jacl. Please check
the parameters and try again.

Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6013E: Uninstall of application appname caught exception Exc. Values are:
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6014E: Install of UDDI application caught exception Exc. Value is:
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6015E: Could not get JVM.
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

632 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

UDIN6016E: Cannot find nodeSync MBean.
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6017E: nodeSync failed. UDDI Application may not be fully installed.
Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6018E: stopServer command for server servername caught exception Exc.
Values are:

Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6019E: startServer command for server servername caught exception Exc.
Values are:

Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6101E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6102E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6103E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN6104E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
setupuddi.jacl.

User Response:This message is self-explanatory.

UDIN7001E: This script must be run in a Deployment Manager environment.
Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7002E: To remove from a standalone application server, use
appserverremoveuddi.jacl.

Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

Chapter 10. IBM WebSphere UDDI Registry 633

User Response:This message is self-explanatory.

UDIN7003E: Incorrect number of arguments passed to script.
Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7004E: Usage is:
Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl. The text following ’Usage is:’ gives the syntax for calling
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7005E: stopServer command for server servername caught exception Exc.
Values are:

Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7006E: Removal of resource bundles caught exception Exc. Value is:
Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7007E: Removal of Cloudscape user functions caught exception Exc. Value
is: Explanation: This is an error message issued by the UDDI setup script

removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7008E: Uninstall of application appname caught exception Exc. Values are:
Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7009E: Removal of UDDI datasource caught exception Exc. Value is:
Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7010E: Removal of UDDI JDBC driver caught exception Exc. Value is:
Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7011E: Removal of configuration properties file caught exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7012E: Cannot find nodeSync MBean.
Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

634 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

UDIN7013E: nodeSync failed. UDDI Application may not be fully uninstalled.
Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7014E: startServer command for server servername caught exception Exc.
Values are:

Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7015E: Could not get JVM.
Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7101E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7102E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7103E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7104E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN7105E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
removeuddi.jacl.

User Response:This message is self-explanatory.

UDIN8001E: This script must be run on a standalone application server.
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8002E: To install in a Deployment Manager Environment, use
setupuddi.jacl.

Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

Chapter 10. IBM WebSphere UDDI Registry 635

User Response:This message is self-explanatory.

UDIN8003E: Incorrect number of arguments passed to script.
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8004E: Usage is:
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl. The text following ’Usage is:’ gives the syntax for
calling appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8005E: (<db2userid> <db2password> <db2ziplocation> are only required if
setting up to use DB2).

Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8006E: Use all forward (’/’) slashes to avoid problems with escaping back
(’\\’) slashes.

Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8007E: List command for type parenttype caught exception Exc. Values are:
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8008E: No objects of type parenttype available. Value is:
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8009E: List command for childtype caught exception Exc. Values are:
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8001E: This script must be run on a standalone application server.
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8010E: Error during remove of existing childtype, exception Exc caught.
Values are:

Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8011E: Create command for childtype caught exception Exc. Values are:
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

636 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

UDIN8012E: Unable to find requested parentype of parentname. Values are:
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8013E: List command for J2CResourceAdapter caught exception Exc. Value
is: Explanation: This is an error message issued by the UDDI setup script

appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8014E: No J2CResourceAdapter objects available.
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8015E: An error occurred during execution of appserversetupuddi.jacl.
Please check the parameters and try again.

Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8016E: List command for Applications caught exception Exc. Value is:
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8017E: Uninstall of application appname caught exception Exc. Values are:
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8018E: Install of UDDI application caught exception Exc. Value is:
Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8019E: startApplication command for appname caught exception Exc.
Values are:

Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8101E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN8102E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

Chapter 10. IBM WebSphere UDDI Registry 637

UDIN8103E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
appserversetupuddi.jacl.

User Response:This message is self-explanatory.

UDIN9001E: This script must be run on a standalone application server.
Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

UDIN9002E: To remove from a deployment manager environment, use
removeuddi.jacl.

Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

UDIN9003E: Incorrect number of arguments passed to script.
Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

UDIN9004E: Usage is:
Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

UDIN9005E: List command for Applications caught exception Exc. Value is:
Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

UDIN9006E: Uninstall of application appname caught exception Exc. Values are:
Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

UDIN9007E: Removal of UDDI datasource caught exception Exc. Value is:
Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

UDIN9008E: Removal of UDDI JDBC driver caught exception Exc. Value is:
Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

UDIN9101E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

638 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

UDIN9102E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

UDIN9103E: Error saving configuration, changes not saved due to exception Exc.
Value is:

Explanation: This is an error message issued by the UDDI setup script
appserverremoveuddi.jacl.

User Response:This message is self-explanatory.

UDLC (Web Services UDDI) messages
There are no messages issued by this component.

UDPR (Web Services UDDI) messages
There are no messages issued by this component.

UDRS (Web Services UDDI) messages
UDRS0001E: Exception ″<exception>″ occurred while attempting to get UDDI
Message Logger.

Explanation: This message is issued to stderr when an attempt to get the
UDDI Message Logger fails with the indicated exception. Since the attempt
to get the message logger failed, the message cannot be logged. No
messages can be logged by this instance of the IBM WebSphere UDDI
Registry.

User Response: Restart the UDDI registry. If the error persists, examine the
WebSphere logs for information on its cause. If the problem cannot be
resolved, then please contact the IBM Customer Service Center.

UDRS0002E: Exception ″<exception>″ occurred while attempting to get UDDI
Trace Logger for ″<component>″.

Explanation: This message is logged when an attempt to get the UDDI
Trace Logger for the specified component (or package) fails with the
indicated exception. No trace entries can be logged for this component or
package of the IBM WebSphere UDDI Registry.

User Response: Restart the UDDI registry. If the error persists, examine the
WebSphere logs for information on its cause. If the problem cannot be
resolved, then please contact the IBM Customer Service Center.

UDSC (Web Services UDDI) messages
There are no messages issued by this component.

UDSP (Web Services UDDI) messages
UDSP0001E: ParserPool found empty whilst attempting to process request.
Request unsatisfied

Explanation: A SOAP request was received, but was unable to be dealt
with, as there were no free Parsers within the ParserPool.

User Response: Consider increasing the number of Parsers within the
ParserPool by modifying the Init Parameter on the SOAP servlets.

Chapter 10. IBM WebSphere UDDI Registry 639

UDSP0002E: Error locating schemas required for UDDI processing. SOAP
Servlets unworkable.

Explanation: The SOAP servlet was unable to locate the schemas it
requires in order to process SOAP requests. Without these, the servlet
cannot process SOAP requests.

User Response: Check installation of UDDI was performed correctly. If the
error persists, examine the WebSphere logs for information on its cause. If
the problem cannot be resolved, then please contact the IBM Customer
Service Center.

UDSP0003W: Servlet unable to locate init parameter ’defaultPoolSize’. Using
internal defaults.

Explanation: The SOAP servlet was unable to locate the init parameter
which sets the default size of the ParserPool. It will fall back to an internal
default.

User Response: If this message occured after attempting to make changes
to the defaultPoolSize init parameter, ensure the changes were correct. If
this message has appeared after installed, ensure installation was
performed correctly.

UDSP0004W: Servlet unable to understand init parameter ’defaultPoolSize’.
Using internal defaults.

Explanation: The SOAP servlet was unable to parse the init parameter
which sets the default size of the ParserPool. It will fall back to an internal
default.

User Response: If this message occured after attempting to make changes
to the defaultPoolSize init parameter, ensure the changes were correct. If
this message has appeared after installed, ensure installation was
performed correctly.

UDSP0005E: Error occurred during parser creation.
Explanation: An unspecified error occured during the creation of a SOAP
parser

User Response: Restart the UDDI registry. If the error persists, examine the
WebSphere logs for information on its cause. If the problem cannot be
resolved, then please contact the IBM Customer Service Center.

UDSP0006E: Internal configuration error.
Explanation: This error may occur if there was a failure creating a Parser,
with accompanying message UDSP0005. It may also occur if there was a
problem acquiring the Persistence layer.

User Response: Restart the UDDI registry. If the error persists, examine the
WebSphere logs for information on its cause. If the problem cannot be
resolved, then please contact the IBM Customer Service Center.

UDSP0007E: Error during servlet acquisition of persistence layer.
Explanation: The SOAP servlet was unable to acquire the persistence layer
required for it to communicate with the UDDI datasource

User Response: Restart the UDDI registry. If the error persists, examine the
WebSphere logs for information on its cause. If the problem cannot be
resolved, then please contact the IBM Customer Service Center.

UDSP0008E: Error during servlet release of persistence layer.
Explanation: The persistence layer reported a problem when the SOAP
servlet attempted to release it.

640 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

User Response: Restart the UDDI registry. If the error persists, examine the
WebSphere logs for information on its cause. If the problem cannot be
resolved, then please contact the IBM Customer Service Center.

UDSP0009E: Error during sending of response to client.
Explanation: An error occured when sending a SOAP response message
back to a client. The client may not have received the response

User Response: This error is recorded to enable logging of failed responses
to clients. The error may be the fault of the client disconnecting before the
reply could be sent, or may indicate a network problem. Examine the
WebSphere logs for more information on its cause.

UDUC (Web Services UDDI) messages
UDUC0001I: IBM WebSphere UDDI Registry user console starting initialization.

Explanation: The user console control servlet is starting.

User Response: None.

UDUC0002I: IBM WebSphere UDDI Registry user console finished
initialization.

Explanation: The user console control servlet has completed startup.

User Response: None.

UDUC0003I: Reading init parameters.
Explanation: The user console control servlet has started reading external
parameters in its init method

User Response: None.

UDUC0004I: Finished reading init parameters.
Explanation: The user console control servlet has finished reading external
parameters in its init method. This message indicates the user console is
ready to accept client requests.

User Response: None.

UDUC0005E: A serious error has occurred. Error message: <Message> error:
<Throwable>. More information: <Additional information>.

Explanation: This error message indicates an unexpected error has
occurred. The <Message> describes the error that has occurred and the
<Throwable> is the type of error that was caught. <Additional
information> may provide further information, if available.

User Response: A trace of the gui component is recommended. Contact
IBM support with this information.

UDUC0006E: A persistence error has occurred. Error message: <Message> error:
<Throwable>. More information: <Additional information>.

Explanation: An error occurred while performing a database operation.
The <Message> describes the error that occurred and the <Throwable> is
the type of error that was caught. <Additional information> may provide
further information, if available.

User Response: Check database connections and state. Please provide IBM
support with a trace, including the gui and persistence components.

UDUC0007E: A User mismatch error has occurred. Error message: <Message>
error: <Throwable>. More information: <Additional information>.

Explanation: The user id provided does not match the user id required or
expected whilst performing an operation that requires authentication. The

Chapter 10. IBM WebSphere UDDI Registry 641

<Message> describes the error that occurred and the <Throwable> is the
type of error that was caught. <Additional information> may provide
further information, if available.

User Response: Check the user has authority for the operation being
requested. If necessary, contact IBM support detailing the actions taken to
recreate the problem.

UDUC0008E: An invalid key was passed. Error message: <Message> error:
<Throwable>. More information: <Additional information>.

Explanation: The requested operation is trying to retrieve information
about an entity with a key that is invalid. This may occur if the entity has
been deleted by another session. The <Message> describes the error that
occurred and the <Throwable> is the type of error that was caught.
<Additional information> may provide further information, if available.

User Response: Ask the client to close existing sessions and attempt the
operation in a new browser session. If the problem persists, please provide
IBM support with a trace of the gui and api components.

UDUC0009E: An invalid value was supplied. Error message: <Message> error:
<Throwable>. More information: <Additional information>

Explanation: An invalid value was passed to an API call. The >Message>
describes the error that occurred and the <Throwable> is the type of error
that was caught. <Additional information> may provide further
information, if available.

User Response: Contact IBM support with a trace of the gui and api
components.

UDUC0010E: Failed to introspect ActionForm properties. Exception:
<Exception>.

Explanation: String properties of a form object could not be introspected
which means that the form contents cannot be checked for invalid
characters.

User Response: Please contact IBM support with details of the Exception
and a trace of the gui component.

UDUC0011E: Failed to invoke reflected methods in ActionForm. Exception:
<Exception>.

Explanation: A form object’s declared public method for setting or getting
a String value could not be invoked. This method is required to check for
invalid characters.

User Response: Please contact IBM support with details of the Exception
and a trace of the gui component.

UDUC0012E: User console initialization failed to connect to UDDI database.
Exception: <Exception>.

Explanation: During user console initialization, connection to the database
failed, and threw the exception specified.

User Response: Check the connection to the UDDI database. The included
exception message may yield some clues to help you resolve the problem.
If unresolved, please contact IBM support with a trace of the gui
component during startup.

642 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

UDUC0013E: User console initialization failed to initialize tModels. Exception:
<Exception>.

Explanation: Indicates that an error has occurred during initialization of
ActionServlet, specifically when reading tModels (invoking init method in
class TModelNames).

User Response: Check the state of the UDDI database. Visually inspect the
TMODEL table and confirm it is populated with valid data. The included
exception message may yield some clues to help you resolve the problem.
If unresolved, please contact IBM support with a trace of the gui
component during startup.

UDUC0014E: User console initialization failed to initialize taxonomies.
Exception: <Exception>.

Explanation: Indicates that an error has occurred during initialization of
ActionServlet, specifically when reading taxonomy data (invoking init
method of CategoryTaxonomyTree).

User Response: Check the state of the UDDI database. The included
exception message may yield some clues to help you resolve the problem.
If unresolved, please contact IBM support with a trace of the gui
component during startup.

UDUU (Web Services UDDI) messages
There are no messages issued by this component.

Running the UDDI Samples
The UDDI samples, and documentation on how to use them, are available through
the Web Services UDDI samples link on the Samples Central
(http://www.ibm.com/websphere/developer/library/samples/AppServer.html)
page of the IBM WebSphere Developer Domain Web site.

Installation Verification Program (IVP)
Before you begin

There are some samples available on the WSDD web site (at []) that are intended
to provide an optional Installation Verification test, or IVP, for the UDDI Registry
component.

This topic describes how to run these installation verification programs (IVPs) to
verify that the IBM UDDI Registry has been installed correctly.

There are two IVP SOAP samples called SOAPSampleIVPa and SOAPSampleIVPb.
They are intended to verify the successful installation of the product, and should
be used in conjunction with the UDDI Users Console (GUI). SOAPSampleIVPa
saves some data to the registry which you can then find using the GUI. Finally
you can delete the data by running SOAPSampleIVPb.

The IVP samples are installed into the same target directory as the other SOAP
samples and they use the same XML files as the basic Java SOAP samples.

SOAPSampleIVPa saves three businesses, six services (2 per business) and three
tModels. The data structures are very basic and consist only of a name. The keys
returned by the save_* UDDI API calls are then written to a file,

Chapter 10. IBM WebSphere UDDI Registry 643

SOAPSampleIVPa.out. SOAPSampleIVPb then reads in these keys from the file in
order to delete the saved data from the UDDI registry.

Note: Each time you run SOAPSampleIVPa, it overwrites the output file
SOAPSampleIVPa.out so, if you wish to use SOAPSampleIVPb to delete the data,
you must run this before you next run SOAPSampleIVPa.

To run the IVPs, complete the following steps on the same system as the UDDI
Registry:
1. Ensure that DB2 and the WebSphere Admin Server are started.
2. Start the WebSphere Administrator’s Console and ensure the default server is

started and the UDDI Registry Application is started.
3. For SOAP samples to work, you need to ensure that the Client Developer Kit

for Java is either the one shipped with IBM WebSphere Application Server or a
later IBM Developer Kit for Java.:
v For Windows - ensure that <WebSphere-install-dir>\java\bin is present in

the PATH statement before any other Developer Kits for Java
v For Unix Platforms - ensure that <WebSphere-install-dir>/java/bin is present

in the PATH statement before any other Developer Kits for Java

Note: You must use the IBM WebSphere supplied Developer Kit for Java or a
later level of the IBM Developer Kit for Java.

For Windows, the default system path can be set via Control Panel ...->
Settings ...-> System ...-> Advanced Properties ...-> Environment Variables

Alternatively, this can be accomplished just for the shell where you plan to run
the samples by modifying the path within the shell:
v For Windows - set path=<WebSphere-install-dir>\java\bin;%path%
v For Unix Platforms - export PATH=<WebSphere-install-dir>/java/bin:$PATH

4. Copy the samples and *.xml files to a directory, and compile and run them
there (see next bullets)

5. Compile both SOAPSampleIVPa and SOAPSampleIVPb by typing:
’javac SOAPSampleIVPa.java’

and
’javac SOAPSampleIVPb’

.
6. Run SOAPSampleIVPa by typing ’java SOAPSampleIVPa’. This should publish

a number of businesses and services and technical models into the registry.
7. Start your Web browser on the same system as the UDDI Registry.
8. To display the UDDI GUI home page, type one of the following URLs:

v If you have WebSphere security disabled: http://localhost:9080/uddigui
v If you have WebSphere security enabled: https://localhost:9433/uddigui

9. On the find page, complete the following steps:
a. Select the business radio button
b. In the data entry field, type % (percent is the wild card symbol)
c. Click Find

644 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

You should get a results page returned with three businesses (mybusiness1,
mybusiness2, and mybusiness3). This demonstrates that the API and the
UDDI Console are working correctly.

10. To see the services that are available for a business, click the ″Show Services″
option next to the business.

11. To delete all of the IVP data, run SOAPSampleIVPb (from the command
prompt as before - by typing ’java SOAPSampleIVPb’)

12. On the find page, complete the following steps:
a. Select the business radio button
b. In the data entry field, type % (percent is the wild card symbol)
c. Click Find

You should get an empty results page returned.

Reporting problems with the IBM WebSphere UDDI Registry
Before you begin

If you report a problem with the IBM WebSphere UDDI Registry component to
IBM, please supply the following information:
1. A detailed description of the problem.
2. The build date and time of the version you are using. This can be obtained as

follows:
v In the installedApps subdirectory of the WebSphere install location, you will

find a subdirectory called UDDI_Registry.<nodename>.<servername>.ear,
where <nodename> is the name of the node into which the UDDI Registry
application is installed, and <servername> is the name of the server. Within
that subdirectory, you will find a file called version.txt. Please include the
contents of this file as part of your information.

v If the UDDI Registry has been started with tracing enabled for the UDDI
component, then you should find a trace entry in the WebSphere trace log
which includes the strings ″ getUDDIMessageLogger″ and ″UDDI Build :″
followed by the build date and time, and the build system. Please also
include this information.

3. Any relevant log files and trace files.
v If the problem occurred while setting up and installing the UDDI Registry

application using one of the setup scripts, setupuddi.jacl or
appserversetupuddi.jacl, then please supply the log output from running the
script. (If you had not chosen to redirect the output from the script file to a
log file, then please rerun the script, this time redirecting the output as
described in the section ’Installing and Setting up a UDDI Registry’.) The log
file will be in the directory from which you ran the setup script.

v If the problem occurred while removing the UDDI Registry application using
one of the remove scripts, removeuddi.jacl or appserverremoveuddi.jacl, then
please supply the log output from running the script. (If you had not chosen
to redirect the output from the script file to a log file, then please rerun the
script, this time redirecting the output as described in the section ’Removing
the UDDI Registry from a deployment manager cell’ or ’Removing the UDDI
Registry application from a single appserver’.) The log file will be in the
directory from which you ran the remove script.

v If the problem occurred while creating the UDDI Registry database using the
UDDI DB2 Setup Wizard, then please supply the log file UDDIloadDB.log,
which will be in the directory from which the wizard was run.

Chapter 10. IBM WebSphere UDDI Registry 645

v If the problem occurred while running the UDDI Registry, please enable
UDDI tracing (if not already enabled) and supply the trace log from the logs
directory of the application server on which the UDDI Registry was running.
Please refer to the section on ’Turning on UDDI Trace’ for details on how to
enable UDDI tracing.

4. If appropriate, any application code that you are using and the output
produced by the application code.

In addition to the above, it might be useful to run the WebSphere collector tool
and send the resulting jar file(s) (two files if run from Base AppServer AND
DeploymentManager) to IBM. Instructions on running the collector tool can be
found at Running the collector tool

Feedback
Before you begin

See the section on ″Obtaining help from IBM″ elsewhere in this InfoCenter for
details on seeking assistance.

646 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 11. Web services gateway: Enabling Web services

You use the IBM Web services gateway to handle Web service invocations between
Internet and Intranet environments. You use it to make your internal Web services
available externally, and to make external Web services available to your internal
systems.

With the Web services gateway you can administer Web services, Channels, Filters
and UDDI registrations.

Detailed instructions on how to enable Web services through the IBM Web services
gateway are given in the following tasks:
v Web services gateway - Completing the installation.
v Administering the Web services gateway.
v Running the Web services gateway samples.

v
5.0.2 Passing SOAP messages with attachments through the Web services

gateway.
v Developing Web services gateway extensions.
v Administering security for the Web services gateway.
v Troubleshooting the Web services gateway.

5.0.2 Before applying a WebSphere Application Server fix pack or upgrade, see
Backing up and restoring a gateway configuration.

For a brief overview of what the Web services gateway is for, and how it works,
see ″Web services gateway - Frequently Asked Questions″.

For a list of the major changes since the AlphaWorks preview version of the Web
services gateway, see ″Web services gateway - What is new in this release″.

For additional technical details of the Web services gateway, see the gateway
Javadoc(../javadoc/wsg/index.html).

For more information about working with Web services, visit the Internet sites
referenced in Web services gateway: Resources for Learning.

Web services gateway - Frequently Asked Questions
This topic provides answers to the following set of frequently asked questions
about the Web services gateway:
v “What are Web services?” on page 648
v “What is the IBM Web services gateway?” on page 648
v “How does the Web services gateway work?” on page 648
v “What problems are solved by the Web services gateway?” on page 648
v “Who should use the Web services gateway?” on page 649

v
5.0.2 “What is the difference between the Apache SOAP channel and the

SOAP/HTTP channel?” on page 649

© Copyright IBM Corp. 2003 647

What are Web services?
Web services are modular applications that interact with one another across the
Internet. Web services are based on shared, open and emerging technology
standards and protocols (such as SOAP, UDDI, and WSDL) and can communicate,
interact, and integrate with other applications, no matter how they are
implemented.

What is the IBM Web services gateway?
The gateway is a middleware component that bridges the gap between Internet
and Intranet environments during Web service invocations. You use it to manage
v Web services.
v channels that carry requests to and responses from the services.
v filters that act upon the services.
v references to UDDI registries in which services can be registered.

How does the Web services gateway work?
The gateway builds upon the Web Services Description Language
(WSDL)(http://www.w3.org/TR/wsdl) and the (Web Services Invocation
Framework (WSIF)) for deployment and invocation.

You deploy a Web service to the Web services gateway by deploying a WSDL file
that describes how the Web services gateway should access it. The WSDL file can
be deployed to a UDDI registry or to a URL. You can send requests passing
through the Web services gateway to a Java class, an enterprise bean, a SOAP
server or a SOAP/JMS server (including another gateway).

A request to the Web services gateway arrives through a channel, is translated into
an internal form, then passed through any filters that are registered for the
requested service, and finally sent on to the service implementation. Responses
follow the same path in reverse.

What problems are solved by the Web services gateway?
v Securely ″externalizing″ Web services: Business applications that are exposed as

Web services can be used by any Web service-enabled tool, regardless of the
implementation details, to create new applications. To better integrate your
business processes, you might want to expose these assets to business partners,
customers and suppliers who are outside the firewall. The Web services gateway
lets clients from outside the firewall use Web services that are buried deep inside
your enterprise. The gateway also allows you to set access control on each of
these deeply-buried services.

v Better return on investment: A process that you develop as a Web service can be
reused by any number of partners.

v Use of existing infrastructure: With the Web services gateway, you can use your
existing messaging infrastructure to make Web service requests, and use your
existing Web services for external process integration.

v Protocol transformation: You might use one particular messaging protocol to
invoke Web services, while your partners use some other protocol. Using the
Web services gateway, you can trap the request from the client and transform it
to another messaging protocol.

648 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Who should use the Web services gateway?
Any enterprise that chooses to share its resources selectively with its business
partners and customers. IT managers and developers, who deploy resources, can
also benefit from this technology.

What is the difference between the Apache SOAP channel and
the SOAP/HTTP channel?

5.0.2

The Apache SOAP channel and the SOAP/HTTP channel both support SOAP
applications that are SOAP 1.1 compatible (for example Apache SOAP 2.3 and Axis
SOAP 1.0). So if you have an application that uses a production-supported Axis 1.0
SOAP stack, generating SOAP 1.1, then this application can use either channel.

If you are using the Apache SOAP Channel, then the SOAP message format must
be RPC style. To handle Document style SOAP messages, you must use the
SOAP/HTTP channel (which supports both RPC style and Document style SOAP
messages).

If you deploy Web services that pass attachments in a MIME message, then these
Web services can only be accessed using the SOAP/HTTP channel.

Web services gateway - What is new in this release
The Web services gateway was first made available on
AlphaWorks(http://www.alphaworks.ibm.com/tech/wsgw) on 21 December 2001.
The main differences between the AlphaWorks edition and this version are as
follows:
v The gateway has been rebuilt using enterprise beans.

Note: A side-effect of this is that the Web services gateway now only runs in an
application server that has an EJB container. So it no longer runs in the Tomcat
server.

v The gateway includes UDDI integration, so you can deploy and remove Web
services to a UDDI registry as well as to a URL.

v
5.0.2 In addition to the Apache SOAP channel, there is now also a

SOAP/HTTP channel.

v
5.0.2 The SOAP/HTTP channel supports

– SOAP messages with attachments.
– RPC style and Document style SOAP message formats.

v The gateway supports bidirectional interactions (that is, both inbound and
outbound requests) directly, by deploying two instances of each type of channel.
Note: To achieve this configuration with the AlphaWorks version, you had to
deploy two instances of the Web services gateway; one for inbound
communication and one for outbound communication.

v Interceptors have been renamed as filters.
v Channels, filters and UDDI references are deployed to the Web services gateway,

then associated with individual Web services. So when you configure a Web
service, you choose the following entities:
– The channels on which it is available.

Chapter 11. Web services gateway: Enabling Web services 649

– The filters (if any) which apply to it.
– The UDDI references (if any) to which it is deployed.

v You can change the channels, filters and UDDI references that are associated
with a deployed service without having to remove the service.

v You can deploy multiple targets for a single service (that is, more than one
implementation of a service that has the same service interface).

v
5.0.2 You can back up and restore a gateway configuration.

v
5.0.2 You can create a gateway cluster (for example for load balancing).

v
5.0.2 You can configure the gateway for secure transmission of SOAP messages

using tokens, keys, signatures and encryption in accordance with the emerging
Web Services Security (WS-Security) specification(http://www-
106.ibm.com/developerworks/webservices/library/ws-secure/).

v You can set security (basic authorization) on the individual methods of a Web
service, and for the gateway as a whole.

v The gateway can invoke Web services over HTTPS.

v
5.0.2 You can configure the gateway to work with authenticating proxies.

Web services gateway - Completing the installation
Before you begin

This task assumes that, when you installed WebSphere Application Server, you
either chose to install the Web services gateway (by choosing the ″custom install″
option Web services -> Web services gateway) or you accepted the ″typical install″
option (which includes the gateway). If you did this, then all the files that are
needed to run a Web services gateway were copied into directories under
WebSphere_DeployMgr_root, where WebSphere_DeployMgr_root is the deployment
manager root directory (by default WebSphere/DeploymentManager).

The following table lists the Web services gateway files, and the locations into
which they are placed by the install. The Location column shows the subdirectory
under WebSphere_DeployMgr_root. For example, if you installed WebSphere
Application Server onto a machine running Windows, and accepted the default
directory names, then the location of the ″installableApps″ directory is
C:\Progra~1\WebSphere\DeploymentManager\installableApps.

File name Purpose Location
wsgw.ear The Web services gateway

application
/installableApps

wsgwsoap1.ear The Apache SOAP channel
application number 1

/installableApps

wsgwsoap2.ear The Apache SOAP channel
application number 2

/installableApps

wsgwsoaphttp1.ear The SOAP/HTTP channel
application number 1

/installableApps

wsgwsoaphttp2.ear The SOAP/HTTP channel
application number 2

/installableApps

wsgwcorr.ear The application used to
correlate any asynchronous
reply messages

/installableApps

650 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

wsgwauth.ear The Web service
operation-level security
application

/installableApps

WSGWResourceBundles.jar System messages for the Web
services gateway application

/lib

Various install scripts Installation of the Web
services gateway

/WSGW/scripts/install

Authorization scripts Generation of authorization
beans for Web service
operation-level security

/WSGW/scripts/auth

Cloudscape directory tree Cloudscape database
containing the Web services
gateway tables and
pre-loaded data needed to
install a database to use with
the gateway

/bin/WSGWDB

5.0.2 If you want to run a gateway cluster (for example to guarantee high
availability) you must create the cluster before you install the gateway on any
machine in the cluster.

To complete the gateway installation, you have two choices:
v Install into a deployment manager cell.
v Install into a stand-alone application server.

For production use you will probably want to install the gateway into one or more
nodes of a deployment manager cell. But for development or test purposes you
might find it useful to install the gateway into a stand-alone application server
(that is, an application server that is not part of a deployment manager cell).

What to do next

To finish the Web services gateway installation, complete the following steps:
1. Confirm that your system configuration complies with the Web services

gateway prerequisites and constraints.
2. Establish requirements for using a database with the gateway.
3. Enable security if required.
4. Either Install the gateway into a deployment manager cell, or Install the

gateway into a stand-alone application server.
5. Test the installation.

Web services gateway - prerequisites and constraints
The gateway is an enterprise application that you can deploy
v to an application server that is a node of a WebSphere Application Server

Network Deployment cell.
v to a stand-alone application server.

5.0.2 If you want to run a gateway cluster (for example to guarantee high
availability) you must create the cluster (probably as a deployment manager cell)
before you install the gateway on any machine in the cluster.

Chapter 11. Web services gateway: Enabling Web services 651

WebSphere Application Server Network Deployment is not a stand-alone product
for running enterprise applications. So if you want to deploy the gateway you also
need to install the base WebSphere Application Server product.

Note: Although it is not installed by default, a copy of the base WebSphere
Application Server product is packaged with the WebSphere Application Server
Network Deployment product.

This version of the Web services gateway is also subject to the following
constraints:
v WSDL definitions for target services must use XML Schema version 2001. For

more information, see ″Web services gateway troubleshooting tips″.

v
5.0 +

5.0.1 +

The SOAP message format must be RPC style. The gateway does not support
Document style SOAP messages.

v
5.0.2 If you are using the Apache SOAP Channel, then the SOAP message

format must be RPC style. To handle Document style SOAP messages, use the
SOAP/HTTP channel (which supports both RPC style and Document style
SOAP messages).

v The gateway application (wsgw.ear) must be installed before channel and filter
applications. If the gateway application needs to be reinstalled, all channels and
filters must be uninstalled first, then reinstalled after the gateway application.

v
5.0 + The gateway does not support WSDL service definitions that contain

soap:header elements within their wsdl:definition element.

v
5.0.1 If the WSDL for your service contains soap:header elements within the

wsdl:definition element, then the gateway passes the SOAP headers through.
This is correct behavior. However, you will also see the following effects:
– The SOAP headers will not be included in the WSDL that the gateway

generates.
– If you set the ″must understand″ flag on the SOAP message, then you will get

an error message.

You might also find it useful to enable trace for all gateway components: Set the
WebSphere Application Server trace string to com.ibm.wsgw.*=all=enabled, and
have trace, stdout and stderr for the application server written to a well-known
location. For information on how to do this, see Enabling trace.

Establishing requirements for using a database with the
gateway

Before installing the Web services gateway you need to decide on your database
requirements. There are three choices:

No database
You do not have to install a database, but if you do not install one you
cannot use asynchronous channels.

DB2 If DB2 is already installed on your system, you can create an associated
DB2 Web services gateway database.

652 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Cloudscape
You can use the copy of Cloudscape runtime that is installed with
WebSphere Application Server.

What to do next

Database installation instructions are included in the next task. So after you have
decided on your database requirements you are ready to either Install the gateway
into a deployment manager cell or Install the gateway into a stand-alone
application server.

Installing the gateway into a deployment manager cell
Before you begin

This task assumes that you have already completed the step Establishing
requirements for using a database with the gateway.

If you want to enable gateway-level security, you must do so before you install the
Web services gateway.

If you want to use DB2 on a UNIX system, the shell in which the install is invoked
requires the environment to be set up using the db2profile and usejdbc2 script
files. To do this, run both the following commands:
./home/db2_instance/sqllib/db2profile
./home/db2_instance/sqllib/java12/usejdbc2

where db2_instance is the db2 instance to be configured.

In this task you install the gateway into an application server that is hosted on a
node of an existing deployment manager cell. The major elements of this process
are as follows:
v Database and Table creation (optional - DB2 only).
v JDBC driver and Datasource creation (optional - only if a database is being

installed).
v Installation of the following enterprise applications:

– The gateway application.
– Apache SOAP channel 1.

– 5.0.2 SOAP/HTTP channel 1.
– The correlation application (optional - only if a database is being installed).

v Installation of other gateway applications. For example:
– Apache SOAP channel 2.

– 5.0.2 SOAP/HTTP channel 2.

To install the gateway into an application server that is hosted on a node of a
deployment manager cell, complete the following steps:

Steps for this task
1. (Optional) To create and install a DB2 database and associated tables, complete

the following steps:
a. From a command prompt, go to directory

WebSphere_DeployMgr_root/WSGW/scripts/install, where

Chapter 11. Web services gateway: Enabling Web services 653

WebSphere_DeployMgr_root is the deployment manager root directory (by
default WebSphere/DeploymentManager).

b. Enter the command WSGWinstallDB:
v [Windows] WSGWinstallDB.bat WebSphere_DeployMgr_root db2user_id

db2password

v [UNIX] WSGWinstallDB.sh WebSphere_DeployMgr_root db2user_id

For example (UNIX systems):

./WSGWinstallDB.sh /opt/WebSphere/DeploymentManager mydb2id

Note: Running WSGWinstallDB also creates WSGWInstallDB.log in the
application server for network deployment’s /logs directory. Open this file
to check that the database was created successfully.

2. Start the application server (you can use the command startServer.ext
your_server).

3. From a command prompt, go to directory
WebSphere_DeployMgr_root/WSGW/scripts/install.

4. Clear your class path.
You can use the following command:
v (Windows systems): set CLASSPATH=

v (UNIX systems): unset CLASSPATH

5. Enter the command WebSphere_DeployMgr_root/bin/wsadmin.ext -f
setupWSGW.jacl parm1 ... parmN

where
v parm1 is the WebSphere_DeployMgr_root directory
v parm2 is the server name
v parm3 is the node name (this is case sensitive)

If you are not using a database, there are no more parameters and
wsgwcorr.ear is not installed. For example (Windows systems):

C:\Progra~1\WebSphere\DeploymentManager\bin\wsadmin.bat -f
setupWSGW.jacl C:/Progra~1/WebSphere/DeploymentManager server1 PHJ2

Note: The use of forward slashes (/) is compulsory for this command, even on
Windows systems.

If you are using Cloudscape, there is one more parameter:
v parm4 is the name and location of the WSGWDB directory

(WebSphere_DeployMgr_root/bin/WSGWDB).

For example (Windows systems):

C:\Progra~1\WebSphere\DeploymentManager\bin\wsadmin.bat -f
setupWSGW.jacl C:/Progra~1/WebSphere/DeploymentManager server1 PHJ2
C:/Progra~1/WebSphere/DeploymentManager/bin/WSGWDB

Note: The use of forward slashes (/) is compulsory for this command, even on
Windows systems.

If you are using DB2, there are four more parameters:

654 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v parm4 is WSGWDB.
v parm5 is your DB2 user ID
v parm6 is your DB2 password
v parm7 is the name and location of file db2java.zip

For example (Windows systems):

C:\Progra~1\WebSphere\DeploymentManager\bin\wsadmin.bat -f
setupWSGW.jacl C:/Progra~1/WebSphere/DeploymentManager server1 PHJ2
WSGWDB mydb2id mydb2pw C:/Progra~1/SQLLIB/java/db2java.zip

Note: The use of forward slashes (/) is compulsory for this command, even on
Windows systems.

When you run the setupWSGW.jacl command, the following initial set of
gateway applications is installed:
v The gateway itself (wsgw.ear).
v Apache SOAP channel 1 (wsgwsoap1.ear).

v
5.0.2 SOAP/HTTP channel 1 (wsgwsoaphttp1.ear).

v (Optionally) The correlation application (wsgwcorr.ear).
6. Install additional gateway applications. For example:

v Apache SOAP channel 2 (wsgwsoap2.ear)

v
5.0.2 SOAP/HTTP channel 2 (wsgwsoaphttp2.ear)

To install additional gateway applications, complete the following steps:

Note: If you prefer, you can install these EAR files using the WebSphere
Application Server administrative console, as described in the final step of the
task Enabling operation-level authorization.
a. From a command prompt, go to directory WebSphere_DeployMgr_root/bin

b. To start the application server, enter the command startServer.ext
your_server

c. To start the WebSphere administration program, enter the command
wsadmin.ext.

d. For each additional Web services gateway enterprise application that you
want to install, enter the following commands at the wsadmin> prompt:
$AdminApp install path_to_ear_file {-appname application

-server your_server -node your_node_name}
$AdminConfig save

where
v application is the name of the enterprise application
v path_to_ear_file is the name and location of the enterprise application’s

EAR file
v your_node_name is the node name (this is case sensitive)

For example (Windows systems):
wsadmin>$AdminApp install

C:/Progra~1/WebSphere/DeploymentManager/installableApps/wsgwsoap2.ear
{-appname wsgwsoap2 -server server1 -node PHJ2}

$AdminConfig save

Chapter 11. Web services gateway: Enabling Web services 655

e. After you have installed all your additional Web services gateway
enterprise applications, close the WebSphere administration program by
entering quit or exit at the wsadmin> prompt.

7. To stop then restart the application server, complete the following steps:
a. Enter the command stopServer.ext your_server

b. Enter the command startServer.ext your_server

What to do next

If you want more than one gateway installation (for example to create a gateway
cluster) then repeat the steps given in this topic for another application server that
is hosted on a node in a deployment manager cell.

You are now ready to test the installation. Run the test on every application server
on which you have installed the gateway.

Installing the gateway into a stand-alone application server
Before you begin

This task assumes that you have already completed the step Establishing
requirements for using a database with the gateway.

If you want to enable gateway-level security, you must do so before you install the
gateway.

If you want to use DB2 on a UNIX system, the shell in which the install is invoked
requires the environment to be set up using the db2profile and usejdbc2 script
files. To do this, run both the following commands:
./home/db2_instance/sqllib/db2profile
. /home/db2_instance/sqllib/java12/usejdbc2

where db2_instance is the db2 instance to be configured.

Note: The application server in which you run the gateway must not form part of
a cell managed by a deployment manager. In other words, you must not issue an
addNode command for the node containing the application server in which you run
the Web services gateway application. If you do issue the addNodecommand, then
the installed Web services gateway application is deleted by the node
synchronization process that takes place within a cell of application servers.

When you installed WebSphere Application Server, all the files that are needed to
run a Web services gateway were copied into directories under
WebSphere_DeployMgr_root, where WebSphere_DeployMgr_root is the deployment
manager root directory (by default WebSphere/DeploymentManager). Before you can
install and run the gateway in a single application server instance in your network
space, you must first copy these files over to the application server. You can do this
by completing the following steps:
v Stop the application server into which you plan to install the Web services

gateway. You can use the command stopServer.ext your_server

where
– .ext is .bat for a Windows system and .sh for a UNIX system.
– your_server is your application server’s name.

For example (UNIX systems): ./stopServer.sh server1.

656 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v Copy all the EAR files with filenames that begin ″wsgw″ from the
WebSphere_DeployMgr_root/installableApps directory of the machine on which
you installed WebSphere Application Server Network Deployment into the
stand-alone_WAS_HOME/installableApps directory of the target application
server’s install tree, where stand-alone_WAS_HOME is the root directory of your
target application server (by default WebSphere/AppServer).

v Copy file WebSphere_DeployMgr_root/lib/WSGWResouceBundles.jar into directory
stand-alone_WAS_HOME/lib.

v Copy directory WebSphere_DeployMgr_root/WSGW and all files and directories
within it into directory stand-alone_WAS_HOME/WSGW.

v If you plan to use the Cloudscape database with the Web services gateway, then
copy directory WebSphere_DeployMgr_root/bin/WSGWDB and all files and
directories within it into directory stand-alone_WAS_HOME/bin/WSGWDB.

In this task you install the gateway into an individual application server instance
in your network space. The major elements of this process are as follows:
v Database and Table creation (optional - DB2 only).
v JDBC driver and Datasource creation (optional - only if a database is being

installed).
v Installation of the following enterprise applications:

– The gateway application.
– Apache SOAP channel 1.

– 5.0.2 SOAP/HTTP channel 1.
– The correlation application (optional - only if a database is being installed).

v Installation of other gateway applications. For example:
– Apache SOAP channel 2.

– 5.0.2 SOAP/HTTP channel 2.

To install the gateway into an application server instance, complete the following
steps:

Steps for this task
1. (Optional) To create and install a DB2 database and associated tables, complete

the following steps:
a. From a command prompt, go to directory stand-

alone_WAS_HOME/WSGW/scripts/install.
b. Enter the command WSGWinstallDB:

v [Windows] WSGWinstallDB.bat stand-alone_WAS_HOME db2user_id
db2password

v [UNIX] WSGWinstallDB.sh stand-alone_WAS_HOME db2user_id

For example (UNIX systems):

./WSGWinstallDB.sh /opt/WebSphere/AppServer mydb2id

Note: Running WSGWinstallDB also creates WSGWInstallDB.log in the
stand-alone application server’s /logs directory. Open this file to check that
the database was created successfully.

2. Start the application server (you can use the command startServer.ext
your_server).

Chapter 11. Web services gateway: Enabling Web services 657

3. From a command prompt, go to directory stand-
alone_WAS_HOME/WSGW/scripts/install.

4. Clear your class path.
You can use the following command:
v (Windows systems): set CLASSPATH=

v (UNIX systems): unset CLASSPATH

5. Enter the command stand-alone_WAS_HOME/bin/wsadmin.ext -f
setupWSGW.jacl parm1 ... parmN

where
v parm1 is the stand-alone_WAS_HOME directory
v parm2 is the server name
v parm3 is the node name (this is case sensitive)

If you are not using a database, there are no more parameters and
wsgwcorr.ear is not installed. For example (Windows systems):

C:\Progra~1\WebSphere\AppServer\bin\wsadmin.bat -f setupWSGW.jacl
C:/Progra~1/WebSphere/AppServer server1 PHJ2

Note: The use of forward slashes (/) is compulsory for this command, even on
Windows systems.

If you are using Cloudscape, there is one more parameter:
v parm4 is the name and location of the WSGWDB directory

(stand-alone_WAS_HOME/bin/WSGWDB).

For example (Windows systems):

C:\Progra~1\WebSphere\AppServer\bin\wsadmin.bat -f setupWSGW.jacl
C:/Progra~1/WebSphere/AppServer server1 PHJ2
C:/Progra~1/WebSphere/AppServer/bin/WSGWDB

Note: The use of forward slashes (/) is compulsory for this command, even on
Windows systems.

If you are using DB2, there are four more parameters:
v parm4 is WSGWDB.
v parm5 is your DB2 user ID
v parm6 is your DB2 password
v parm7 is the name and location of file db2java.zip

For example (Windows systems):

C:\Progra~1\WebSphere\AppServer\bin\wsadmin.bat -f setupWSGW.jacl
C:/Progra~1/WebSphere/AppServer server1 PHJ2 WSGWDB mydb2id mydb2pw
C:/Progra~1/SQLLIB/java/db2java.zip

Note: The use of forward slashes (/) is compulsory for this command, even on
Windows systems.

When you run the setupWSGW.jacl command, the following initial set of
gateway applications is installed:

658 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v The gateway itself (wsgw.ear).
v Apache SOAP channel 1 (wsgwsoap1.ear).

v
5.0.2 SOAP/HTTP channel 1 (wsgwsoaphttp1.ear).

v (Optionally) The correlation application (wsgwcorr.ear).
6. Install additional gateway applications. For example:

v Apache SOAP channel 2 (wsgwsoap2.ear)

v
5.0.2 SOAP/HTTP channel 2 (wsgwsoaphttp2.ear)

To install additional gateway applications, complete the following steps:

Note: If you prefer, you can install these EAR files using the WebSphere
Application Server administrative console, as described in the final step of the
task Enabling operation-level authorization.
a. From a command prompt, go to directory stand-alone_WAS_HOME/bin

b. To start the application server, enter the command startServer.ext
your_server

c. To start the WebSphere administration program, enter the command
wsadmin.ext.

d. For each additional Web services gateway enterprise application that you
want to install, enter the following commands at the wsadmin> prompt:
$AdminApp install path_to_ear_file {-appname application

-server your_server -node your_node_name}
$AdminConfig save

where
v application is the name of the enterprise application
v path_to_ear_file is the name and location of the enterprise application’s

EAR file
v your_node_name is the node name (this is case sensitive)

For example (Windows systems):
wsadmin>$AdminApp install

C:/Progra~1/WebSphere/AppServer/installableApps/wsgwsoap2.ear
{-appname wsgwsoap2 -server server1 -node PHJ2}

$AdminConfig save

e. After you have installed all your additional Web services gateway
enterprise applications, close the WebSphere administration program by
entering quit or exit at the wsadmin> prompt.

7. To stop then restart the application server, complete the following steps:
a. Enter the command stopServer.ext your_server

b. Enter the command startServer.ext your_server

What to do next

You are now ready to test the installation.

Testing the Web services gateway installation
Use this task to test that the Web services gateway has been installed correctly.

Chapter 11. Web services gateway: Enabling Web services 659

To test the basic installation of the Web services gateway, complete the following
steps:

Steps for this task
1. In a Web browser, go to http://host:port/wsgw where host and port are the

host name and port number that your HTTP server is listening on.
The browser should display the following message:
IBM Web services gateway

What do you want to do?
v Run the admin client
v View the product ID

2. If the previous step was successful, then to test the Apache SOAP channels use
your Web browser to display the Web page at
http://host:port/wsgwengine/soaprpcrouter where engine is either soap1 or
soap2.
The browser should display the following message: Sorry, I don’t speak via
HTTP GET - you have to use HTTP POST to talk to me.

3. If the previous step was successful, then complete the following steps:
a. To test the Apache SOAP channels, use your Web browser to display the

Web page at http://host:port/wsgwengine/soaprpcrouter where engine is
either soap1 or soap2.
The browser should display the following message: Sorry, I don’t speak
via HTTP GET - you have to use HTTP POST to talk to me.

b. To test the SOAP/HTTP channels, use your Web browser to display the
Web page at http://host:port/wsgwengine/soaphttpengine where engine is
either soaphttp1 or soaphttp2.
The browser should display the message: And now... Some Services,
followed by a list of the Web services that are currently deployed to the
channel.

If you do not see these messages, your server is not configured correctly - in
which case, see Web services gateway troubleshooting tips.

Backing up and restoring a gateway configuration
The Back up options write out, to a single file, the deployment details for all the
channels, filters, UDDI references and Web services that are currently deployed to
the gateway. The Restore option uses the information contained in a
previously-saved file to populate an empty installation of the gateway with the
same deployment details for those channels, filters, UDDI references and Web
services.

There are two situations in which you might want to back up a gateway
configuration:
v Before you apply an upgrade or fix pack to WebSphere Application Server.
v Because you want to create or update a gateway cluster.

When you apply an upgrade or fix pack, the configured gateway is replaced with an
upgraded but empty gateway. You use the Save Gateway Configuration -> Private
option to preserve your configuration.

660 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

When you want to create or update a gateway cluster, you use the Save Gateway
Configuration -> Shared option to save a ″shareable″ version of your gateway
configuration. This saved configuration does not include machine-specific values,
and therefore does not over-write these values on the target gateways in your
cluster when you restore the configuration to them.

The restore option automatically detects whether the configuration file that it is
restoring contains a Private or a Shared gateway configuration.

Note: For the Save Gateway Configuration -> Private option, the steps below
include
v Manual un-publishing of Web services from UDDI before backing up the

gateway configuration.
v Manual re-publishing of these Web services to UDDI after restoring the gateway

configuration.

The reasons for this are explained in Backing up and restoring UDDI publication
links.

To back up and restore a gateway configuration, complete the following steps:

Steps for this task
1. Display the Web services gateway administrative user interface.
2. (Optional) If you are backing up before you apply an upgrade or fix pack, and

any of your deployed Web services are also published by the gateway to UDDI
registries, use the Listing and managing gateway-deployed Web services option
to un-publish them from UDDI. Make a note of the UDDI deployment details
so that you can re-publish them to UDDI after you restore the gateway
configuration.

3. To back up the gateway configuration, complete the following steps:
a.

1) In the gateway user interface navigation pane, click the following link:
Gateway

v Back Up

The Save Gateway Configuration screen is displayed.
2) In the Location field, type the path to your configuration file.

Note:

v The path to your configuration file must point to a local drive on the
machine on which the gateway is currently running.

v The file name for the configuration file can be any valid Java
filename.

3) If you are backing up before you apply an upgrade or fix pack, select
Private. If you are backing up to create a gateway cluster, select Shared.

4) Click OK

Your gateway configuration is saved to the location you specified.
b. To restore a gateway configuration, complete the following steps:

1) Check that the target gateway is empty. If there are any channels, filters,
UDDI references or Web services deployed to the gateway, then remove
them.

Chapter 11. Web services gateway: Enabling Web services 661

Note: If you have just installed a WebSphere Application Server fix pack
or upgrade program, then the upgraded gateway is empty.

2) In the gateway user interface navigation pane, click the following link:
Gateway

v Restore

The Restore Gateway Configuration screen is displayed.
3) In the Location field, type the path to your configuration file.

Note:

v The path to your configuration file must point to a local drive on the
machine on which the gateway is currently running.

v The saved file is not specific to a given version of the gateway.
v If you are restoring a file that was backed up using the Save Gateway

Configuration -> Private option, then the backup contains
deployment details (for example URIs) that are specific to a given
gateway instance. If you restore this type of backup file to a different
instance (for example a gateway on a host with a different network
identity), then the restore will succeed but you will have to use the
gateway user interface to correct any resultant errors in the
deployment details.

4) Click OK

Your gateway configuration is restored to the gateway that you are
currently administering.

c. (Optional) If you have just restored a configuration after applying an
upgrade or fix pack, and any of the deployed Web services were previously
published to UDDI registries, use the Listing and managing
gateway-deployed Web services option (and the notes you made in step 2
above) to re-publish these Web services to UDDI.

Backing up and restoring UDDI publication links
When you save a gateway configuration, the deployment details through which a
deployed Web service has been published to UDDI by the gateway are not saved.
The reasons for not backing up these details are as follows:
v When a gateway is replaced through a fix pack or upgrade program, or

otherwise removed without first using the gateway administrative console to
un-publish each Web service from UDDI, then the associated entries in UDDI
registries are not removed.

v When a gateway is restored, if the UDDI publication details were also restored,
then the Web services would be re-published to UDDI by the gateway.

v When a gateway publishes the same service twice to a UDDI registry, the
registry does not overwrite the initial publication. It creates a second copy of the
TModel and Service definition.

v When a gateway removes a service from a UDDI registry, it only removes the
last one published. So it can leave behind defunct TModels and Service
Definitions.

So, to preserve the integrity of the UDDI registries, restoring the gateway does not
automatically re-publish any Web services to UDDI. But if you know that a service
has been un-published from UDDI (for example because you removed it manually
before backing up the gateway configuration) then you can safely re-publish it to
UDDI after the configuration has been restored.

662 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Creating and updating a gateway cluster
In order to improve performance and availability, you configure WebSphere
Application Server so that a set of application servers acts as a cluster. In a cluster,
several application servers are configured identically, and a plug-in to the front-end
HTTP server shares incoming HTTP requests between the available application
servers in the cluster. Application servers in a cluster can each be hosted on a
separate machine, or all hosted on one or two machines. For a more detailed
overview of options for clustering in WebSphere Application Server Network
Deployment, see Setting up a multinode environment.

To create a gateway cluster, you manually install an identically-configured gateway
on every application server in an existing cluster.

To create and update a gateway cluster, complete the following steps:

Steps for this task
1. Create a cluster of application servers. For example, by completing the

following substeps:
Note: These substeps illustrate how to use the WebSphere Application Server
Network Deployment deployment manager and administrative console to
create a two-server cluster within a cell. In this example, each clustered
application server is on a separate node of the cell. However there are other
valid configurations, and other ways of creating a cluster. For more detailed
information see the InfoCenter for WebSphere Application Server Edge
components(http://www-
3.ibm.com/software/webservers/appserv/ecinfocenter.html), which contains
complete documentation for the Caching Proxy and the Load Balancer in the
following PDF online books: WebSphere Application Server Concepts, Planning, and
Installation for Edge Components; the WebSphere Application Server Caching Proxy
Administration Guide, and the WebSphere Application Server Programming Guide for
Edge Components.
a. Install WebSphere Application Server on machines X and Y.
b. Install WebSphere Application Server Network Deployment on machine X.
c. Stop all application servers on both machines.
d. Add machines X and Y as nodes in a deployment manager cell by entering

the following command from a command line on each machine:
WAS_HOME/bin/addnode dm_machine_hostname dm_port -includeapps

where
v WAS_HOME is the root directory of your target application server (by

default WebSphere/AppServer).
v dm_machine_hostname is the host name for the machine on which the

deployment manager for this cell is running (in this case machine X).
v dm_port is the port on which the deployment manager is listening (by

default 8879).

For example (Windows systems):
C:\Progra~1\WebSphere\AppServer\bin\addnode xhost 8879 -includeapps

e. Use the WebSphere Application Server Network Deployment administrative
console to create new, clustered application servers on the two machines:
1) Select Servers -> Clusters -> New.
2) Enter a name for the cluster.

Chapter 11. Web services gateway: Enabling Web services 663

3) Clear the Prefer local enabled check box.
4) Select the Do not include an existing server in this cluster check box.
5) Create a new clustered application server on machine X (enter a name

for the application server; select the node for this application server
(machine X); clear the generate unique HTTP Ports check box; click
Apply).

6) Repeat the previous step to create a new clustered application server on
machine Y.

7) Click Next.
8) Click Finish.

The new cluster is created.
2. Install a gateway on every application server in the cluster.
3. Select and configure the gateway that is to be the source configuration for

every gateway in the cluster.
Note:

v The gateway that is chosen as the source for the cluster configuration need
not be part of the cluster.

v The channels deployed to this gateway must have their End Point addresses
configured for clustering. See Deploying channels to the Web services
gateway.

4. Use the back up and restore options to save the source configuration, then
restore it to every gateway in the cluster.

5. Apply all subsequent gateway updates only to the source configuration
gateway, then use the back up and restore options to restore the updated
configuration to every gateway in the cluster.
Note: This is particularly important with regard to Web services that have been
published to UDDI by the gateway. When you save a gateway configuration,
the record of which Web services have been gateway-published to UDDI is not
saved (for reason that are explained in Backing up and restoring UDDI
publication links). So if you change the gateway that you use as the source for
cluster updates, you lose the record of which Web services have been
gateway-published to UDDI.

Administering the Web services gateway
Before you begin

5.0.2 If you have just applied a WebSphere Application Server fix pack or
upgrade, your gateway configuration is currently empty. If you want to restore a
saved configuration, you must do so before you add any new channels, filters,
UDDI references or Web services.

To administer the Web services gateway, complete the following steps:

Steps for this task
1. Start the WebSphere Application Server Administrative Server.
2. Open the following Web page: http://host:port/wsgw/admin/index.html

where host and port are the host name and port number that your HTTP server
is listening on. For example localhost:8080 or localhost:9080.
The main administration page is displayed:

664 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The order of the elements on this page is significant, for the following reasons:
v If you change the namespace URI or WSDL URI (using the Configure

Gateway option), you break the link back to the gateway for every Web
service that you have already deployed. So you must set these URIs before
you deploy any Web services.

v When you configure a Web service, you choose the following entities:
– The channels on which it is available.
– The filters (if any) which apply to it.
– The UDDI references (if any) to which it is deployed.

Each of these choices is made from a list of resources which have already
been deployed to the Web services gateway. So you might want to deploy
your channels, filters and UDDI references to the gateway before you
configure the Web services that use them.

3. For more information on how to configure each element of the Web services
gateway, see the following topics:
v Setting the namespace URI and WSDL URI for the Web services gateway
v Working with channels
v Working with filters
v Working with UDDI references
v Working with Web services

Note:

v You configure each of the above elements of the gateway by filling in fields
in a panel.

v In all of the gateway panels, fields marks with asterisks are required.

Chapter 11. Web services gateway: Enabling Web services 665

v After you deploy a channel, filter, or UDDI reference you should refresh all
other open browser windows to ensure that up-to-date lists are displayed.

Setting the namespace URI and WSDL URI for the Web
services gateway

Before you begin

Initial values for the namespace URI and WSDL URI are automatically configured
when you install the Web services gateway.

When you deploy a Web service to the Web services gateway, these two URIs are
used as follows:
v The Namespace URI for services is used as the namespace for the gateway

services in exported WSDL documents.
v The WSDL URI for exported definitions is used to generate the URL in import

statements within exported WSDL documents.

Note: When you change these URIs, you break the link back to the Web services
gateway for every Web service that you have already deployed. So you must set
these URIs before you deploy any Web services to the Web services gateway.

To set the namespace URI and WSDL URI for the Web services gateway, complete
the following steps:

Steps for this task
1. Display the Web services gateway administrative user interface.
2. In the navigation pane, click the following link:

Gateway

v Configure

The gateway configuration form is displayed:

3. In the Namespace URI for services field, type the new name.

666 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

There is no fixed syntax for the namespace URI, but whatever name you
choose is likely to be more effective if it observes the following guidelines:
v It begins with ″urn:″

See the guidance on Internet standards for the syntax of Uniform Resource
Names (URNs) at
http://www.ietf.org/rfc/rfc2141.txt(http://www.ietf.org/rfc/rfc2141.txt).

v It is globally unique.
v It reflects your company name.

4. In the WSDL URI for exported definitions field, type the new name.
The initial value is the gateway’s ″best guess″ at the right value, but you will
probably want to overwrite it with a new value. For example it might guess a
local URI such as http://hldswrth:9080/wsgw, and because you are giving the
WSDL to people in other companies you modify this to
http://hldswrth.your_company.com/wsgw. Note that only the host and port parts
of the initial value are modified, and that this URI should always start http://
and end /wsgw.

5. Click Apply Changes.

What to do next

5.0.2 Note: You also use the gateway configuration form to enable proxy
authentication for the gateway.

Working with channels
Before you begin

Before you can work with a channel, you must install the channel application in
WebSphere Application Server as described in the penultimate step of Installing the
gateway into a deployment manager cell and Installing the gateway into a
stand-alone application server.

Two versions of each type of channel are supplied so that, for each channel type,
you can set up separate channels for inbound and outbound requests. For more
information see Channels - entry points to the Web services gateway.

From the navigation pane of the Web services gateway administrative user
interface, you can choose the following actions for Channels:
v List to list the deployed channels, and modify their deployment details.
v Deploy to deploy a channel.
v Remove to remove channels.

Channels - entry points to the Web services gateway
Channels form entry points to the Web services gateway and carry requests and
responses between Web services and the Web services gateway. A request to the
Web services gateway arrives through a channel, is translated into a (WSIF)
message, then passed through any filters that are registered for the requested
service, and finally sent on to the service implementation. Responses follow the
same path in reverse.

Before you can use a channel, you must install the channel application in
WebSphere Application Server then deploy the channel to the Web services
gateway.

Chapter 11. Web services gateway: Enabling Web services 667

Note: A deployed channel is not used until you deploy a Web service that uses the
channel.

Two versions of each type of channel are supplied with the gateway. This is so
that, for each channel type, you can set up separate channels for inbound and
outbound requests. This provides a simple mechanism for giving different access
rights to users from outside your organisation from the rights you give to users
within your organisation:
v To ensure that users outside your organisation can only access those internal

services that you choose to publish externally, you deploy those services on the
inbound channel.

v To give users inside your organisation access to the full range of internal and
external services, you deploy those services on the outbound channel.

Listing and managing gateway-deployed channels
Use this task to list the channels that are deployed to the Web services gateway,
and modify their deployment details.

To list the channels that are currently deployed to the Web services gateway, and
view and modify their deployment details, complete the following steps:

Steps for this task
1. Display the Web services gateway administrative user interface.
2. In the navigation pane, click the following link:

Channels

v List

The main pane is updated with a list of all the channels that are deployed to
the Web services gateway.

3. Click the name of a channel in the list. A form is displayed through which you
can view and modify the current deployment details for this channel.

4. Modify the following deployment details:

Home Location
Type the name of the new home for this channel.

End Point Address
Type the new address on which the channel is to listen.

5.0.2

Note: For a channel running on an application server that is not part of
a cluster, this is the address for accessing the channel through the
associated HTTP server. For a channel running on an application server
that is part of a cluster, this address is in two parts (separated by a
comma):
v The address for accessing the channel through the associated HTTP

server.
v The address for accessing the channel through the particular

application server on which the channel application is running.
5. (Optional) If this channel is intended to be used to receive asynchronous reply

messages, type appropriate values in the following two fields. Otherwise leave
them blank.

668 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Note: If the channel supports asynchronous messaging, then the deployment
details documentation for the channel should indicate what values to enter in
these fields.

Async Reply Context Name

Async Reply Context Value

6. To start this channel, enable the YES radio button. To stop this channel, enable
the NO radio button.

7. Click Apply changes.

Results

If the processing completes successfully, the list of deployed channels is
redisplayed. Otherwise, an error message is displayed.

Deploying channels to the Web services gateway
Before you begin

Before you can deploy a channel, you must install the channel application in
WebSphere Application Server as described in the penultimate step of Installing the
gateway into a deployment manager cell and Installing the gateway into a
stand-alone application server.

If you want to deploy the channels supplied with the Web services gateway, their
deployment details are listed in Web services gateway - Channel deployment
details.

To deploy a channel, complete the following steps:

Steps for this task
1. Display the Web services gateway administrative user interface.
2. In the navigation pane, click the following link:

Channels

v Deploy

A form is displayed for you to specify the deployment details.
3. Type the following channel deployment details:

Channel Name
Type the name by which the channel will be known within the Web
services gateway (and by which it will be listed using the Channels >
List option). This name must be unique within the gateway.

Home Location
Type the name of the home for this channel.

End Point Address
Type the address on which the channel is to listen.

5.0.2

Note: For a channel running on an application server that is not part of
a cluster, this is the address for accessing the channel through the
associated HTTP server. For a channel running on an application server
that is part of a cluster, this address is in two parts (separated by a
comma):

Chapter 11. Web services gateway: Enabling Web services 669

v The address for accessing the channel through the associated HTTP
server.

v The address for accessing the channel through the particular
application server on which the channel application is running.

4. (Optional) If this channel is intended to be used to receive asynchronous reply
messages, type appropriate values in the following two fields. Otherwise leave
them blank.
Note: If the channel you are deploying supports asynchronous messaging, then
the deployment details documentation for the channel should indicate what
values to enter in these fields.

Async Reply Context Name

Async Reply Context Value

5. Click OK.

Results

If the processing completes successfully, the list of deployed channels is updated to
include the new channel. Otherwise, an error message is displayed.

What to do next

Note: The deployed channel will not be used until you deploy a Web service that
uses the channel.

Web services gateway - Channel deployment details
The deployment details for the channels supplied with the Web services gateway
are listed below:
v Apache SOAP channel 1

– Channel Name: ApacheSOAPChannel1
– Home Location: ApacheSOAPChannel1Bean

– 5.0 +

5.0.1 +

End Point Address: http://domain_name/wsgwsoap1

where domain_name is the domain name of the HTTP server through which
HTTP requests are passed to this application server.

– 5.0.2 End Point Address:

- Application server not within a cluster: http://domain_name/wsgwsoap1
- Application server within a cluster: http://domain_name/wsgwsoap1,

http://host_name:port_number/wsgwsoap1
where host_name and port_number are the host name and port number for
this application server.

– Async Reply Context Name: Leave blank. This function is not supported by
this channel.

– Async Reply Context Value: Leave blank. This function is not supported by
this channel.

v Apache SOAP channel 2
– Channel Name: ApacheSOAPChannel2

670 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

– Home Location: ApacheSOAPChannel2Bean

– 5.0 +

5.0.1 +

End Point Address: http://domain_name/wsgwsoap2

where domain_name is the domain name of the HTTP server through which
HTTP requests are passed to this application server.

– 5.0.2 End Point Address:

- Application server not within a cluster: http://domain_name/wsgwsoap2
- Application server within a cluster: http://domain_name/wsgwsoap2,

http://host_name:port_number/wsgwsoap2
where host_name and port_number are the host name and port number for
this application server.

– Async Reply Context Name: Leave blank. This function is not supported by
this channel.

– Async Reply Context Value: Leave blank. This function is not supported by
this channel.

v
5.0.2 SOAP/HTTP Channel 1

– Channel Name: SOAPHTTPChannel1
– Home Location: SOAPHTTPChannel1Bean
– End Point Address:

- Application server not within a cluster:
http://domain_name/wsgwsoaphttp1

- Application server within a cluster: http://domain_name/wsgwsoaphttp1,
http://host_name:port_number/wsgwsoaphttp1
where host_name and port_number are the host name and port number for
this application server.

– Async Reply Context Name: Leave blank. This function is not supported by
this channel.

– Async Reply Context Value: Leave blank. This function is not supported by
this channel.

v
5.0.2 SOAP/HTTP Channel 2

– Channel Name: SOAPHTTPChannel2
– Home Location: SOAPHTTPChannel2Bean
– End Point Address:

- Application server not within a cluster:
http://domain_name/wsgwsoaphttp2

- Application server within a cluster: http://domain_name/wsgwsoaphttp2,
http://host_name:port_number/wsgwsoaphttp2
where host_name and port_number are the host name and port number for
this application server.

– Async Reply Context Name: Leave blank. This function is not supported by
this channel.

– Async Reply Context Value: Leave blank. This function is not supported by
this channel.

Chapter 11. Web services gateway: Enabling Web services 671

Removing channels from the Web services gateway
To remove a channel, complete the following steps:

Steps for this task
1. Display the Web Services gateway administrative user interface.
2. In the navigation pane, click the following link:

Channels

v Remove

The main pane is updated with a list of all the channels that are deployed to
the Web services gateway. Alongside each entry in the list is a check box, and
information on the number of Web services that currently use the channel.

3. (Optional) Click the name of a channel in the list.
A form is displayed through which you can view the current deployment
details for this channel, including a list of the Web services that currently use
the channel.

4. Select the check box for every channel that you want to remove.
Note: When you remove a channel that is currently used by one or more Web
services, the gateway removes the channel from the channel list for each
associated Web service.

5. Click OK.

Results

If the processing completes successfully, the list of deployed channels is updated.
Otherwise, an error message is displayed.

Working with filters
Before you begin

Before you can work with a filter, you must install the filter application in
WebSphere Application Server as described in the penultimate step of Installing the
gateway into a deployment manager cell and Installing the gateway into a
stand-alone application server.

From the navigation pane of the Web services gateway administrative user
interface, you can choose the following actions for Filters:
v List to list the deployed filters, and modify their deployment details.
v Deploy to deploy a filter.
v Remove to remove filters.

You can also write your own filters for the Web services gateway.

Filters - service interceptors for the Web services gateway
Filters are used to intercept service invocations which come into the Web services
gateway, and responses which leave it. Filters can perform a wide range of tasks,
from logging messages, to transforming their content, to terminating an incoming
request. Filters are deployed to the Web services gateway as described in
Deploying filters to the Web services gateway, then registered for use with
individual Web services as described in ″Working with Web services″.

672 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Listing and managing gateway-deployed filters
Use this task to list the filters that are deployed to the Web services gateway, and
modify their deployment details.

To list the filters that are currently deployed to the Web services gateway, and view
and modify their deployment details, complete the following steps:

Steps for this task
1. Display the Web Services gateway administrative user interface.
2. In the navigation pane, click the following link:

Filters

v List

The main pane is updated with a list of all the filters that are deployed to the
Web services gateway.

3. Click the name of a filter in the list. A form is displayed through which you
can view and modify the current deployment details for this filter.

4. Modify the following deployment detail:

Home Location
Type the name of the new home for this filter.

5. Click Apply changes.

Results

If the processing completes successfully, the list of deployed filters is redisplayed.
Otherwise, an error message is displayed.

Deploying filters to the Web services gateway
Before you begin

Use this task to deploy a filter to the Web services gateway.

Note: The deployed filter will not be used until you deploy a Web service that uses
the filter.

Before you can deploy a filter, you must install the filter application in WebSphere
Application Server as described in the penultimate step of Installing the gateway
into a deployment manager cell and Installing the gateway into a stand-alone
application server.

Note: You can deploy multiple instances of a filter by entering different filter
names.

To deploy a filter, complete the following steps:

Steps for this task
1. Display the Web Services gateway administrative user interface.
2. In the navigation pane, click the following link:

Filters

v Deploy

A form is displayed for you to specify the deployment details.
3. Type the following filter deployment details:

Chapter 11. Web services gateway: Enabling Web services 673

Filter Name
Type the name by which the filter will be known within the Web
services gateway (and by which it will be listed using the Filters > List
option). This name must be unique within the Web services gateway.

Home Location
Type the name of the home for this filter.

4. Click OK.

Results

If the processing completes successfully, the list of deployed filters is updated to
include the new filter. Otherwise, an error message is displayed.

Removing filters from the Web services gateway
To remove a filter, complete the following steps:

Steps for this task
1. Display the Web Services gateway administrative user interface.
2. In the navigation pane, click the following link:

Filters

v Remove

The main pane is updated with a list of all the filters that are deployed to the
Web services gateway. Alongside each entry in the list is a check box, and
information on the number of Web services that currently use the filter.

3. (Optional) Click the name of a filter in the list.
A form is displayed through which you can view the current deployment
details for this filter, including a list of the Web services that currently use the
filter.

4. Select the check box for every filter that you want to remove.
Note: When you remove a filter that is currently used by one or more Web
services, the gateway removes the filter from the filter lists for each associated
Web service.

5. Click OK.

Results

If the processing completes successfully, the list of deployed filters is updated.
Otherwise, an error message is displayed.

Working with UDDI references
A UDDI reference is a pointer to a UDDI registry. This may be a private UDDI
registry such as the (IBM WebSphere UDDI Registry), or a public UDDI registry.

In the UDDI model, Web services are owned by ″businesses″, and ″businesses″ are
owned by ″Authorized Names″. Each UDDI reference gives access to the Web
services that are owned by a single ″Authorized Name″ in single UDDI registry.

From the navigation pane of the Web services gateway administrative user
interface, you can choose the following actions for UDDI References:
v List to list the deployed UDDI references, and modify their deployment details.
v Deploy to deploy a UDDI reference.

674 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v Remove to remove UDDI references.

For more information about how the gateway works with UDDI registries, see
UDDI registries - Web service directories that integrate with the Web services
gateway and Publishing a Web service to a UDDI registry for deployment to the
gateway. For more general information about UDDI and UDDI registries, see the
UDDI community at uddi.org(http://uddi.org).

UDDI registries - Web service directories that integrate with the
Web services gateway
UDDI

The Universal Description, Discovery and Integration (UDDI) specification defines
a way to publish and discover information about Web services.

In this specification:
v Each Web service is owned by one ″business″, and each ″business″ (and the Web

services it owns) is maintained by one ″Authorized Name″.
v One ″Authorized Name″ can own many ″businesses″, and one ″business″ can

own many Web services.

The UDDI specification also associates Web services with ″Technical models″.
These are generic categories that allow a UDDI registry user to search for a type of
service, rather than needing to know the access details for a specific service.

For more general information about UDDI, see the UDDI community at
uddi.org(http://uddi.org).

UDDI registries

UDDI registries use the UDDI specification to publish directory listings of Web
services. There are Universal Business Registries (sometimes referred to as ’public
UDDI registries’) hosted worldwide, including one hosted by IBM. Enterprises can
also host their own internal registries behind their firewalls (sometimes referred to
as ’private UDDI registries’) to better manage their internal implementation of Web
services. The (WebSphere UDDI Registry) is an example of a private UDDI registry.

How the gateway interacts with UDDI registries

The gateway interacts with UDDI registries in two ways:
v When you deploy a Web service to the gateway, you specify the location of the

″internal″ WSDL file that describes the Web service to be deployed. This WSDL
file can be located through a UDDI registry.

v For any gateway-deployed Web service, you can tell the gateway to create
entries for the Web service in one or more UDDI registries.

To enable your gateway to interact with a UDDI registry, you create one or more
gateway pointers to the registry. The gateway refers to these pointers as ″UDDI
references″, and you create them as described in Deploying UDDI references to the
Web services gateway. Each UDDI reference includes the following parameters:
v The access points for the UDDI registry (the Inquiry URL and the Publish

URL).
v The ″Authorized Name″ (the User ID and Password) for the owner of one or

more ″businesses″ in the UDDI registry.

Chapter 11. Web services gateway: Enabling Web services 675

You get the ″Authorized Name″ from the target UDDI registry. For more
information see Publishing a Web service to a UDDI registry for deployment to the
gateway.

Note: A given UDDI reference can only access the Web services that are owned by
the ″businesses″ that are in turn owned by a single ″Authorized Name″. So if you
need access to two Web services in the same registry, and each service is owned by
a different ″Authorized Name″, then you need to create two UDDI references.

When you deploy a Web service, and you specify that the ″internal″ WSDL file is
located through a UDDI registry, you enter the following two parameters:
v The UDDI reference that can access this service.
v The ″service key″ that the UDDI registry has assigned to this service.

You get the ″service key″ from the target UDDI registry. For more information see
Publishing a Web service to a UDDI registry for deployment to the gateway

When you tell the gateway to create entries for a deployed Web service in one or
more UDDI registries, you enter the following two parameters:
v The UDDI references (one for each registry) that can access the UDDI business

category under which you want to publish this service.
v The ″business key″ that identifies the UDDI business category.

You get the ″business key″ from the target UDDI registry. For more information see
Publishing a Web service to a UDDI registry for deployment to the gateway

Note: Because the gateway only interacts with UDDI registries at the level of
specific Web services, the gateway does not make use of UDDI ″technical models″.

Listing and managing gateway-deployed UDDI references
Use this task to list the UDDI references that are deployed to the Web services
gateway, and modify their deployment details.

To list the UDDI references that are currently deployed to the Web services
gateway, and view and modify their deployment details, complete the following
steps:

Steps for this task
1. Display the Web services gateway administrative user interface.
2. In the navigation pane, click the following link:

UDDI References

v List

The main pane is updated with a list of all the UDDI references that are
deployed to the Web services gateway.

3. Click the name of a UDDI reference in the list. A form is displayed through
which you can view and modify the current deployment details for this UDDI
reference.

4. Modify the following deployment details:

Inquiry URL
Type the new URL that provides access to this registry for the SOAP
inquiry API.

676 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Publish URL
Type the new URL that provides access to this registry for the SOAP
publish API.

User Name
Type the new user ID for the ″Authorized Name″ that has update
access to this registry.

Password
Type the password for this new user ID.

Confirm Password
Type again the password for this new user ID.

Note:

The values you enter here for User Name and Password must match those of
the owner of the corresponding business in UDDI. You can see the owning user
ID in UDDI by looking at the business details under the ″Authorized Name″
field.

If the values you enter here do not match the ″Authorized Name″ values for
the business that owns the service, then the service will not be published or
found.

If the business that owns the service has more than one ″Authorized Name″,
you might want to set up multiple UDDI references (each with a different user
ID) to the same UDDI registry .

5. Click Apply changes.

Results

If the processing completes successfully, the list of deployed UDDI references is
redisplayed. Otherwise, an error message is displayed.

Deploying UDDI references to the Web services gateway
Before you begin

Note: The deployed UDDI reference will not be used until you deploy a Web
service that uses the UDDI reference.

To deploy a UDDI reference, complete the following steps:

Steps for this task
1. Display the Web services gateway administrative user interface.
2. In the navigation pane, click the following link:

UDDI References

v Deploy

A form is displayed for you to specify the deployment details.
3. Type the following UDDI reference deployment details:

Reference Name
Type the name by which the UDDI reference will be known within the
Web services gateway (and by which it will be listed using the UDDI
References > List option). This name must be unique within the
gateway - and note that you might need more than one UDDI reference

Chapter 11. Web services gateway: Enabling Web services 677

for a given UDDI registry (for more information see UDDI registries -
Web service directories that integrate with the Web services gateway).

Inquiry URL
Type the URL that provides access to this registry for the SOAP inquiry
API.

Publish URL
Type the URL that provides access to this registry for the SOAP publish
API.

User Name
Type the user ID for an ″Authorized Name″ that has update access to
this registry.

Password
Type the password for this user ID.

Confirm Password
Type again the password for this user ID.

Note:

The values you enter here for User Name and Password must match those of
the ″Authorized Name″ in the UDDI registry. You can see the owning user ID
in UDDI by looking at the business details under the ″Authorized Name″ field.

4. Click OK.

Results

If the processing completes successfully, the list of deployed UDDI references is
updated to include the new UDDI reference. Otherwise, an error message is
displayed.

Removing UDDI references from the Web services gateway
To remove a UDDI reference, complete the following steps:

Steps for this task
1. Display the Web services gateway administrative user interface.
2. In the navigation pane, click the following link:

UDDI References

v Remove

The main pane is updated with a list of all the UDDI references that are
deployed to the Web services gateway. Alongside each entry in the list is a
check box, and information on the number of Web services that currently use
the UDDI reference.

3. (Optional) Click the name of a UDDI reference in the list.
A form is displayed through which you can view the current deployment
details for this UDDI reference, including a list of the Web services that
currently use the UDDI reference.

4. Select the check box for every UDDI reference that you want to remove.
Note: When you remove a UDDI reference that is currently used by one or
more Web services, the gateway removes the UDDI reference from the UDDI
reference list for each associated Web service.

5. Click OK.

678 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Results

If the processing completes successfully, the list of deployed UDDI references is
updated. Otherwise, an error message is displayed.

Working with Web services
Before you begin

If you change the Namespace URI, you break the link back to the Web services
gateway for every Web service that you have already deployed. So you must set
the Namespace URI before you deploy any Web services.

When you configure a Web service, you choose the following resources:
v The channels on which the service is available.
v The filters (if any) that apply to the service.
v The UDDI registries (if any) in which entries for the service are created.

Each of these choices is made from a list of resources that have already been
deployed to the Web services gateway. So you must deploy your channels, filters
and references to UDDI registries to the Web services gateway before you deploy
the Web services that use those resources.

From the navigation pane of the Web services gateway administrative user
interface, you can choose the following actions for Services:
v List to list the deployed Web services, and modify their deployment details.
v Deploy to deploy a Web service.
v Remove to remove Web services.

Listing and managing gateway-deployed Web services
Use this task to list the Web services that are deployed to the Web services
gateway, and modify their deployment details.

Before you begin

There is no point in deploying multiple target services to the same gateway service
unless you have a filter implementation that is capable of selecting the required
target service.

For information on how to write pluggable filters that can select the target service,
see Writing a filter for the Web services gateway and Using a filter to select a
target service and port.

To list the Web services that are currently deployed to the Web services gateway,
and view and modify their deployment details (including adding or removing
multiple target services) complete the following steps:

Steps for this task
1. Display the Web services gateway administrative user interface.
2. In the navigation pane, click the following link:

Services

v List

Chapter 11. Web services gateway: Enabling Web services 679

The main pane is updated with a list of all the Web services that are deployed
to the Web services gateway.

3. Click the name of a Web service in the list. A form is displayed through which
you can view and modify the current deployment details for this Web service,
and add or remove multiple target services.

4. At the level of the gateway service itself (in the Gateway Service Properties
section) you can change the following settings. When you have finished
making changes, click Apply Changes.
a. Authorization Policy - Control access to this service. Use this check box

to enable or disable operation-level authorization for this gateway service.
b. Audit Policy - Log requests to this service.

The Audit policy indicates whether the MessageWarehouse object, if
present, should be used to log requests and responses for this service. If
you have a Message Warehouse implementation, use this check box to
enable or disable logging of requests and responses for this Web service.
For more information see Capturing Web service invocation information
and The MessageWarehouse interface.

c. In this release of the gateway, the Annotation URL field is not used.
d. If you want to publish the service to one or more UDDI registries (selected

in the UDDI References section below), enter the UDDI business key in
the field provided under UDDI Publication Properties. This key identifies
the business category under which you want your service to appear in
UDDI. To get a list of valid business keys, look up businesses in a UDDI
registry. This is an example of a UDDI business key: 08A536DC-3482-4E18-
BFEC-2E2A23630526. For more information about UDDI business keys see
Publishing a Web service to a UDDI registry for deployment to the
gateway.

e. If you want to enable or disable Service Security, select or clear the
Enable service security check box. If you choose to enable service security,
then you must use the Edit service security configuration option to
configure secure communication for this gateway service between the
service requester (the client) and the gateway. For more information see
Editing the service security configuration.

5. In the Target Services section you can add, modify or remove services from a
list of target services for this single gateway service. Every service on this list
provides exactly the same service, and they are presented by the gateway to
the service requesters as a single gateway service. To add a new target service,
complete the following steps:
a. WSDL Location. Type the location of the ″internal″ WSDL file that

describes the Web service to be deployed. The WSDL file is either located
at a URL, or through a UDDI registry.
If the WSDL location is a URL, type the URL (if the binding and service
definition for this Web service are held in separate WSDL files, then type
the URL of the WSDL file that defines the binding).
If the WSDL is located through a UDDI registry, type
uddiReference,serviceKey where
v uddiReference is the reference name by which a currently-deployed UDDI

reference is known within the gateway (and by which it is listed using
the UDDI References -> List option)

v serviceKey is the service key that the UDDI registry has assigned to the
service. This is an example of a UDDI service key: 34280367-0ECF-46CE-

680 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

B804-14C21D6D0FB1. For more information about UDDI service keys see
Publishing a Web service to a UDDI registry for deployment to the
gateway.

Note:

v When the Web services gateway deploys the Web service, it generates a
matching ″external″ WSDL file that it makes available to gateway users.
This ″external″ WSDL file also describes the service, but is located at a
new URL and is generated and maintained by the Web services gateway
itself.

v If the Web service is also published to one or more UDDI registries, then
the ″internal″ WSDL file is required to remove the service from the
gateway.

b. Location Type. Select the type of location (either URL or UDDI) where the
″internal″ WSDL file is held.

c. Target Service Name. If the Web service WSDL contains more than one
service, or the WSDL is located through a UDDI registry, type the target
service’s name from the target service WSDL.

d. Target Service Namespace. If the Web service WSDL contains more than
one service, or the WSDL is located through a UDDI registry, type the
namespace of the target service’s name from the target service WSDL.

e. Target Service Identity Information. Type the identity by which the target
service is known within the Web services gateway. This identity need not
be unique.
Note: If you are mapping multiple target services, and also writing a filter
to select a target service, you might use the Target Service Identity
Information to select a particular target service from the set.

f. Click add.
The target service is added to a list of target services.

5.0.2 To modify the deployment details for an existing target service, click
on the name of the service in the list of target services. A form is displayed,
containing the same fields that you filled in when you added the service, and
also the following additional fields:
v Started. Enable this check box option if you want the gateway to offer this

Web service to service requesters.
v Enable target service security. Enable this check box if you want the

gateway to use secure communication between the gateway and the target
service.

v Edit target service security configuration. If you choose to enable target
service security, then you must use this option to configure secure
communication between the gateway and the target service. For more
information see Editing the target service security configuration.

When you have finished making changes, click Apply Changes.
6. In the Channels section, you can add or remove channels from the list of

deployed channels through which this service is available.
7. In the Request Filters section, you can add or remove filters from the list of

deployed filters that are applied to the request.
Note: The filters are executed in the order shown. To add a filter into the list
at a particular position, use the at position menu.

Chapter 11. Web services gateway: Enabling Web services 681

8. In the Response Filters section, you can add or remove filters from the list of
deployed filters that are applied to the response.
Note: The filters are executed in the order shown. To add a filter into the list
at a particular position, use the at position menu.

9. In the UDDI References section, you can add or remove UDDI references
from the list of deployed UDDI references to UDDI registries in which this
service is published. If you select one or more UDDI references in this step,
you must also enter a UDDI business key in the field provided under UDDI
Publication Properties as described above. For more information about how
the gateway works with UDDI registries, see UDDI registries - Web service
directories that integrate with the Web services gateway.

10. In the Exported WSDL definitions section there are two pairs of WSDL links.
Both pairs link to (a) the external WSDL implementation definition, and (b)
the external WSDL interface definition.
v To view details of the associated external WSDL for the service, use the first

pair.
v To return the WSDL for use by application programs that need the WSDL

definitions for the service, use the second pair.

If there is an error generating the WSDL then a blank page is returned.

Note: To help your service users locate the WSDL documents for services that
are deployed to the Web services gateway, the gateway also supports the
WS-Inspection
specification(http://www.ibm.com/developerworks/webservices/library/ws-
wsilspec.html). To open a WS-Inspection document which contains references
to the WSDL documents for all of the gateway-deployed services, you issue an
HTTP GET against
http://host:port/wsgw/wsinspection.wsil

where host and port are the host name and port number that your HTTP
server is listening on.

Deploying Web services to the Web services gateway
Before you begin

5.0 +

5.0.1 +

Before you deploy a Web service to the gateway, deploy the resources (channels,
filters, and UDDI references) that the Web service uses.

5.0.2 Before you deploy a Web service to the gateway, deploy the resources
(channels, filters, UDDI references and security bindings) that the Web service uses.

To deploy a Web service, complete the following steps:

Steps for this task
1. Display the Web services gateway administrative user interface.
2. In the navigation pane, click the following link:

Services

v Deploy

682 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

A form is displayed for you to specify the deployment details.
3. Type the following Web service deployment details:

a. Gateway Service Name. Type the name by which the Web service will be
known within the gateway, and by which it will be listed using the Services
> List option. This name must be unique within the gateway and must not
contain any spaces.
Note: If you have several implementations of the same Web service, you can
map them all to the same deployed gateway service. You use the Deploy
option (this option) to deploy just one instance of a given gateway service.
To add more target services to a deployed gateway service, you use the
Services > List option.

b. Choose between the two types of Message part representation. For more
information see Data type representation - choosing between Generic classes
and Deployed Java classes.

Generic classes

You can select this option in all cases except the following cases:
v You cannot select this option if your service has EJB or Java

bindings that are used at runtime.
v You cannot select this option if your service uses Vectors,

Enumerations, Hashtables or Maps.

Deployed Java classes

You must select this option if the target services for the gateway
service use Vectors, Enumerations, Hashtables or Maps, or contain
EJB or Java bindings.

Note: For Web services deployed with Java bindings (or EJB
bindings even where the Web service is on a different server) you
must also make sure that the specific Java classes that have been
generated for the Web service are available to the gateway. For more
information see Deploying Web services with Java bindings.

You can also select this option (as an alternative to selecting
″Generic classes″):
v If the target service uses only supported simple and compound

types.
v If the target service uses complex types, and the specific Java

classes that have been generated for the Web service are available
to the gateway (but note that if you select ″Generic classes″, then
you don’t need to also deploy the associated Java classes locally).

c. (Optional) Authorization Policy - Control access to this service. If you
want to enable operation-level authorization for this Web service, enable this
check box.

d. (Optional) Audit Policy - Log requests to this service.
The Audit policy indicates whether the MessageWarehouse object, if
present, should be used to log requests and responses for this service. If you
have a Message Warehouse implementation, and you want it to log requests
and responses for this Web service, enable this check box.
For more information see Capturing Web service invocation information
and The MessageWarehouse interface.

e. In this release of the gateway, the Annotation URL field is not used.

Chapter 11. Web services gateway: Enabling Web services 683

f. Select the deployed resources that the Web service is to use, from the
following lists:

Channels
Select one or more deployed channels through which this service is
to be available.

Request Filters
Select zero or more deployed filters to apply to the request.

Response Filters
Select zero or more deployed filters to apply to the response.

UDDI References
Select zero or more deployed UDDI references (one for each UDDI
registry) that can access the UDDI business category under which
you want to publish this service. If you select one or more UDDI
references in this step, you must also enter the UDDI business key in
step 3h below. For more information about how the gateway works
with UDDI registries, see UDDI registries - Web service directories
that integrate with the Web services gateway.

g. Specify the Target Service Properties for the Web service:

WSDL Location
Type the location of the ″internal″ WSDL file that describes the Web
service to be deployed. The WSDL file is either located at a URL, or
through a UDDI registry.

If the WSDL location is a URL, type the URL (if the binding and
service definition for this Web service are held in separate WSDL
files, then type the URL of the WSDL file that defines the binding).

If the WSDL is located through a UDDI registry, type
uddiReference,serviceKey where
v uddiReference is the reference name by which a currently-deployed

UDDI reference is known within the gateway (and by which it is
listed using the UDDI References -> List option)

v serviceKey is the service key that the UDDI registry has assigned
to the service. This is an example of a UDDI service key:
34280367-0ECF-46CE-B804-14C21D6D0FB1. For more information
about UDDI service keys see Publishing a Web service to a UDDI
registry for deployment to the gateway.

Note:

v When the Web services gateway deploys the Web service, it
generates a matching ″external″ WSDL file that it makes available
to gateway users. This ″external″ WSDL file also describes the
service, but is located at a new URL and is generated and
maintained by the Web services gateway itself.

v If the Web service is also published to one or more UDDI
registries, then the ″internal″ WSDL file is required to remove the
service from the gateway.

Location Type
Select the type of location (either URL or UDDI) where the
″internal″ WSDL file is held.

Target Service Name
If the Web service WSDL contains more than one service, or the

684 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

WSDL is located through a UDDI registry, type the target service’s
name from the target service WSDL.

Target Service Namespace
If the Web service WSDL contains more than one service, or the
WSDL is located through a UDDI registry, type the namespace of
the target service’s name from the target service WSDL.

Target Service Identity Information
Type the identity by which the Web service is known within the
Web services gateway. This identity need not be unique.

Note: If you later add more target services to this gateway service,
and also write a filter to select a target service, you might use the
Target Service Identity Information to select a particular target
service from the set.

h. If you want to publish the service to one or more UDDI registries (selected
in a previous step), enter the UDDI business key in the field provided
under UDDI Publication Properties. This key identifies the business
category under which you want your service to appear in UDDI. To get a
list of valid business keys, look up businesses in a UDDI registry. This is an
example of a UDDI business key: 08A536DC-3482-4E18-BFEC-2E2A23630526.
For more information about UDDI business keys see Publishing a Web
service to a UDDI registry for deployment to the gateway.

4. Click OK.

Results

If the processing completes successfully, the list of deployed Web services is
updated to include the new Web service. Otherwise, an error message is displayed.

What to do next

5.0 +

5.0.1 +

After deployment, use the list deployed Web services option to change the
resources (channels, filters and UDDI references) that the Web service uses, or to
add multiple target services for this gateway service.

5.0.2 After deployment, use the list deployed Web services option to change the
resources (channels, filters, UDDI references and security bindings) that the Web
service uses, or to add multiple target services for this gateway service.

If you enabled the check box ’Authorization Policy - Control access to this service’,
you must now enable Web service operation-level authorization.

Data type representation - choosing between Generic classes
and Deployed Java classes
When you deploy a Web service, the Message part representation option allows
you to choose between Generic classes and Deployed Java classes.

As your message passes through the gateway, the message parts are represented as
actual Java objects. The data type used for each part is defined as follows:

Chapter 11. Web services gateway: Enabling Web services 685

v It is one of the set of XML schema and SOAP supported simple and compound
data types, or

v It is a complex type defined in the WSDL schema section.

Note: A complex type is a data type represented by a Java class (such as a
user-written class) that is not part of the native Java language.

Generic classes and Deployed Java classes can both represent simple, compound
and complex data types, subject to the following constraints:
v The gateway only supports the simple and compound types that are listed in

Web services gateway - Supported types.
v Only Deployed Java classes can represent Vectors, Enumerations, Hashtables

and Maps (but either Generic classes or Deployed Java classes can represent
Arrays).

v If Deployed Java classes are used to represent complex types, then the actual
Java classes representing these complex types must be deployed to the
application server on which the gateway is running.

v If the target service uses Java or EJB WSDL bindings (that is, if the target service
is a Java class deployed on the local application server, or it is an enterprise
bean) then Deployed Java classes must be used, and the bindings must be made
available as described in Deploying Web services with Java bindings.

The gateway’s schema parser determines all top-level types that are defined in the
WSDL schema section, and generates mappings to generic classes for all of these
types. This enables the gateway to forward requests (and responses) containing
most complex data type parameters (and return values) to a remote destination
without requiring the actual Java classes representing these complex types to be
deployed to the application server on which the gateway is running. So if your
Web service uses complex data types, and there is no other constraint that forces
you to use Deployed Java classes, then you should select Generic classes.

Performance is the same whether you choose to use Deployed Java classes or
Generic classes.

Complex data types - mapping namespaces to packages
If you write your own WSDL file that describes your Web service (rather than use
an automated tool such as WebSphere Studio Application Developer) and the
service uses complex data types, then to ensure that it can be successfully
deployed to the gateway you should follow these guidelines for mapping
namespaces to packages.

For working with complex data types, there is no industry-wide standard way of
mapping namespaces to packages (in fact the JAX-RPC standard states that the
tools themselves must make up their own standard). The standard used by the
gateway is as follows:
v Set the namespace of the complex data type to the class’s java package name.
v Set the complex data type name to the class’s name.

So if the java class you are using for the complex data type is random.RandomData,
then the namespace of the complex data type is random, and the complex data type
name is RandomData. And if the full package name is com.ibm.www.random, then the
namespace is www.ibm.com/random.

686 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

See also the troubleshooting tip about working with Web services that use complex
data types.

Deploying Web services with Java bindings
For Web services deployed with Java bindings (or EJB bindings even where the
Web service is on a different server) you must make additional classes available to
the gateway.

For EJB bindings, make the EJB client JAR file available. If the Web service is
deployed on the same server as the gateway, the necessary interfaces and classes
are already visible. If not, you should implement one of the following options:
v Copy the EJB client JAR file into the WAS_HOME/lib or WAS_HOME/lib/app directory

(where WAS_HOME is the root directory for your installation of IBM WebSphere
Application Server).

v Update the application server class path to include the EJB client JAR file.

For Java bindings, make the Java classes for the Web service available by
implementing one of the following options:
v Copy the JAR or class files that contain the Java classes into the WAS_HOME/lib or

WAS_HOME/lib/app directory.
v Update the application server class path to include the JAR file.
v Wrap the Java classes in an enterprise bean and deploy it on the same

application server. WebSphere Application Server will then make the classes
available to the gateway application.

Web services gateway - Supported types
When you deploy a Web service, you use the Message part representation option
to choose between Generic classes and Deployed Java classes. This topic gives
reference information about the data types that are supported in each case.

Simple types

The following table gives a list of the XML schema (and Java equivalent) simple
types that are supported by both Generic classes and Deployed Java classes:

XML schema (and Java equivalent) simple type
xsd:string
xsd:float
xsd:double
xsd:int
xsd:boolean
xsd:byte
xsd:short
xsd:long
xsd:decimal
xsd:QName
xsd:date
xsd:timeInstant

Compound types

From a Java perspective, compound types are types with constituent elements.
These elements are either identified purely by name (for example, a Java class with
several member properties) or by ordinal position (for example, a List data
structure like Array or Vector).

Chapter 11. Web services gateway: Enabling Web services 687

The following table gives a list of the SOAP (and Java equivalent) compound types
that are supported:

SOAP compound
type

java equivalent compound
type

Supported by

Array Java array Generic classes and Deployed Java
classes

Vector java.util.Vector Deployed Java classes
Vector java.util.Enumeration Deployed Java classes
Map java.util.Hashtable Deployed Java classes
Map java.util.Map Deployed Java classes

Complex types

A complex type is a data type represented by a Java class (such as a user-written
class) that is not part of the native Java language.

Complex types can include combinations of simple types, compound types, and
other complex types. For example, the children of a complex type might be
represented by another complex type, or by any of the simple or compound types.

Generic classes and Deployed Java classes can both represent complex types,
subject to the constraints described in Data type representation - choosing between
Generic classes and Deployed Java classes.

Publishing a Web service to a UDDI registry for deployment to
the gateway
The gateway interacts with UDDI registries as described in UDDI registries - Web
service directories that integrate with the Web services gateway. When you deploy
a Web service to the gateway, you enable UDDI interaction by entering a UDDI
reference, and (depending upon what you are trying to do) either or both of the
following pieces of information:
v The ″service key″ that the UDDI registry has assigned to this service.
v The ″business key″ that identifies the UDDI business category under which you

want your service to appear in the UDDI registries.

You get these two keys from the UDDI registry. To help you understand what UDDI
″service keys″ and ″business keys″ are, and where you find them in a UDDI
registry, this topic describes how to publish a Web service to a UDDI registry.

Note:

v The UDDI publication process described below requires that you specify a
″technical model″. Technical models are generic categories. They allow a UDDI
registry user to search for a type of service, rather than needing to know the
access details for a specific service. The gateway makes no use of technical
model information, because it only interacts with UDDI registries at the level of
specific Web services.

v The following task steps include specific navigation instructions. These
instructions describe how you publish a Web service to the (IBM WebSphere
UDDI Registry). If you are working with a different UDDI registry, then the
specific navigation will be different but the underlying principles will be the
same.

Steps for this task
1. Specify a business:

688 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

a. To get a list of valid business keys, look up businesses in the UDDI
registry.
This is an example of a UDDI business key: 08A536DC-3482-4E18-BFEC-
2E2A23630526.

b. If you do not find an appropriate existing business in the UDDI registry,
then use the Add a business option on the Advanced Publish section of the
Publish pane to add a new one.

2. Add a technical model:
a. Select Add a technical model on the Advanced Publish section of the

Publish pane.
b. Enter the name as specified for the target namespace of your binding (or

interface) WSDL file, then add a description (if required).
c. Add a category of Type unspsc and value wsdlSpec (the Key name field can

be left blank).
d. Add an overview URL specifying the URL for your binding WSDL file, then

add a description (if required).
Note: The binding and the service definition for your Web service might be
held in separate WSDL files, so be careful to type the URL of the WSDL file
that defines the binding.

e. Click Publish Technical Model.
3. Add a service:

a. Select Show owned entities on the Advanced Publish section of the
Publish pane.

b. Select Add a Service for your business.
c. Enter the name as specified for the target service in your WSDL file, then

add a description (if required).
d. For the Access point ensure the correct URL type is selected (for example

http for an http access point), then enter the value of the soap:address
location (or its equivalent) from your service definition WSDL file (for
example http://yourhost:80/SimpleTest/servlet/rpcrouter).

e. For the Technical model select Add, then find the required technical model
by entering a suitable prefix and selecting Find technical models, then
check the selection box for the required technical model and click Update.

f. Click Publish Service.

Results

The UDDI registry assigns a service key to your service, and publishes the service.

Removing Web services from the Web services gateway
To remove a Web service, complete the following steps:

Steps for this task
1. Display the Web services gateway administrative user interface.
2. In the navigation pane, click the following link:

Services

v Remove

The main pane is updated with a list of all the Web services that are deployed
to the Web services gateway. Alongside each entry in the list is a check box.

3. Select the check box for every Web service that you want to remove.

Chapter 11. Web services gateway: Enabling Web services 689

4. Click OK.

Results

If the processing completes successfully, the list of deployed Web services is
updated. Otherwise, an error message is displayed.

Note: If the Web service that you want to remove is also published to one or more
UDDI registries, then the ″internal″ WSDL file is required to remove the service
from the gateway. So if the service is published to UDDI, and the processing does
not complete successfully, check that the WSDL file is still available at the location
defined for the service in the Target Services -> WSDL Location. For more
information see Listing and managing gateway-deployed Web services.

Running the Web services gateway samples
The following pre-built samples are available for use with the Web services
gateway:
v The standard Stock Quote service sample, that requires an Internet connection.
v The Address Book service sample, that allows the storing and retrieval of names

and addresses.

Results

These samples, and documentation on how to use them, are available through the
Web services gateway samples link on the Samples Central
(http://www.ibm.com/websphere/developer/library/samples/AppServer.html)
page of the IBM WebSphere Developer Domain Web site.

What to do next

If you want to test the gateway taking service definitions from a private UDDI
registry such as the (WebSphere UDDI Registry), you should complete the
following additional steps:
1. Publish the WSDL for each of these samples to UDDI. (For more information

on how to do this, see Publishing a Web service to a UDDI registry for
deployment to the gateway and the documentation for your private UDDI
registry).

2. Instruct the gateway to locate the service through the UDDI registry, as
described in Deploying Web services to the Web services gateway.

Passing SOAP messages with attachments through the Web services
gateway

The Web services gateway supports Web services that pass attachments in a MIME
message. This support is included in the SOAP/HTTP channel.

Attachments are carried through the various gateway components and passed on
to the target service. The content MIME type of each attachment is preserved.

When the Target service is deployed to a JAX-RPC compliant server, the
attachments can be accessed on the target service using
javax.activation.DataHandler.

690 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The WSDL representing a SOAP messages with attachments service must define
the attachment parts in the Binding section. The mime:multipartRelated, mime:part
and mime:content tags are used to describe the attachment.

For more information, see the following topics:
v SOAP messages with attachments - a definition.
v Writing the WSDL extensions for SOAP messages with attachments.

Note: The following scenarios are not supported:
v Using the Apache SOAP channel.
v Using DIME.
v Using the mime:mimeXml WSDL tag.
v Nesting a mime:multipartRelated inside a mime:part.
v Using Arrays or Vectors of DataHandlers, Images, and so forth.

The MIME headers from the incoming message are not preserved for referenced
attachments. The outgoing message contains new MIME headers for Content-Type,
Content-Id and Content-Transfer-Encoding that are created by (WSIF).

SOAP messages with attachments - a definition
From an architecture and external specification viewpoint, SOAP Messages with
Attachments(http://www.w3.org/TR/SOAP-attachments) is an extension to the
SOAP 1.1 (http://www.w3.org/TR/SOAP/) Recommendation from the World
Wide Web Consortium (W3C)(http://www.w3.org/).

The W3C SOAP messages with attachments document describes a standard way to
associate a SOAP message with one or more attachments in their native format (for
example GIF or JPEG) by using a multipart MIME structure for transport. It
defines specific usage of the Multipart/Related MIME media type, and rules for
the usage of URI references to refer to entities bundled within the MIME package.
It thereby outlines a technique for a SOAP 1.1 message to be carried within a
MIME multipart/related message in such a way that the SOAP processing rules for
a standard SOAP message are not changed.

An associated W3C document Web services Description Language
(WSDL)(http://www.w3.org/TR/wsdl) outlines a technique for including bindings
to MIME types in a WSDL file.

Writing the WSDL extensions for SOAP messages with
attachments

Usage scenario

The following WSDL illustrates a simple operation that has one attachment called
attch:

<binding name="MyBinding" type="tns:abc" >
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="MyOperation">

<soap:operation soapAction=""/>
<input>

<mime:multipartRelated>
<mime:part>

<soap:body parts="part1 part2 ..." use="encoded" namespace="http://mynamespace"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding"/>

</mime:part>

Chapter 11. Web services gateway: Enabling Web services 691

<mime:part>
<mime:content part="attch" type="text/html"/>

</mime:part>
</mime:multipartRelated>

</input>
</operation>

</binding>

Note:

v There must be a part (in this example attch) on the message for the operation
(in this example MyOperation). There can be other input parts to MyOperation
that are not attachments.

v In the binding input there must either be a <soap:body tag or a
<mime:multipartRelated tag, but not both.

v For MIME messages, the soap:body is inside a mime:part. There may be one
mime:part that contains a soap:body in the binding input and that must not
contain a mime:content as well, because a content type of text/xml is assumed
for the soap:body.

v There can be multiple attachments in a MIME message, each described by a
mime:part.

v Each mime:part (that is not a soap:body) contains a mime:content that describes
the attachment itself. The type attribute inside the mime:content is not checked
or used by the gateway. It is there to suggest to the application using the
gateway what the attachment contains. Multiple mime:contents inside a single
mime:part means that the backend service will expect a single attachment with a
type specified by one of the mime:contents inside that mime:part.

v The parts=″...″ attribute inside the soap:body is assumed to contain the names
of all the SOAP parts in the message, but not the attachment parts. If there are
only attachment parts, then you must specify parts=″″ (empty string). If you
omit the parts attribute altogether, then the gateway assumes ALL parts
including the attachments - which means the attachments will appear twice.

In your WSDL you might have defined a schema for the attachment (for instance
as a binary[]). Whether or not you have done this, the gateway silently ignores
this mapping and treats the attachment as a Data Handler.

Unreferenced attachments need not be mentioned in the WSDL bindings at all.

Developing Web services gateway extensions
Use this task to develop your own extensions for the gateway

Before you begin

This information is intended for use by Java programmers.

To extend the functionality of the Web services gateway, you can write your own
Java programs. The gateway does not provide any application programming
interfaces, but there are system level interfaces that you can use. Specific guidance
on how to do this in key areas is given in the following topics:
v Writing a filter for the Web services gateway.
v Using a filter to select a target service and port.
v Capturing Web service invocation information from the Web services gateway.
v Handling exceptions for the Web services gateway.

692 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

For additional technical details of the Web services gateway, see the Javadoc
(../../javadoc/wsg/index.html).

Writing a filter for the Web services gateway
Use this task to write a filter for the Web services gateway.

Before you begin

To use this information you should be familiar with using a J2EE session bean
development environment such as IBM WebSphere Studio Application Developer.

A Web services gateway filter is essentially a J2EE session bean implementing
specific Home and Remote interfaces.

To write a filter using IBM WebSphere Studio Application Developer, complete the
following steps. For more detailed information on writing session beans, see the
WebSphere Studio Application Developer documentation topic ″Developing
enterprise beans - overview″.

Steps for this task
1. Open the J2EE perspective.
2. To create a new EJB application project, complete the following steps:

a. Select File -> New -> Enterprise Application Project.
The Project Creation wizard opens.

b. In the Project Creation wizard, complete the following steps:
1) Select the version of the J2EE specification that you want to use, then

click Next.
2) Type your project name.
3) Create a new module project for the EJB project only. Clear the other

Application Client Project, Web Project and Connector Project check
boxes as necessary.

4) Clear the Web module check box.
5) Click Finish.

Your new EJB application project is created.
3. To add the extra JAR files that your EJB module needs that are not already in

the Enterprise Application Server /lib directory, complete the following steps:
a. Select File -> Import.
b. Select the input source File system, then click Next.
c. In the Import window, complete the following steps:

1) Select WSGW_HOME/client as the source directory.
where WSGW_HOME is the root directory for your installation of the
gateway.

2) Select wsgwejb.jar.
3) Select the root directory of your new project as the destination for

imported resources.
4) Click Finish.

d. (Optional) Repeat the previous File -> Import process to add any other
extra JAR files that your EJB module needs.

e. In the J2EE Hierarchy view, from the pop-up menu for your EJB module,
select Open With -> JAR Dependency Editor.

Chapter 11. Web services gateway: Enabling Web services 693

f. In the JAR Dependencies window, select all the JAR files listed.
g. Close the JAR Dependencies window, then click Yes in the Save Resource

window to save your changes.
4. To add extra JAR files to the Java build path for your EJB module, complete the

following steps:
a. In the J2EE Hierarchy view, select your EJB module’s Properties.
b. In the Properties window, ensure that the following JAR files are included

on the Java Build Path:
v WAS_HOME/lib/jrom.jar

v WAS_HOME/lib/qname.jar

v WAS_HOME/lib/wsdl4j.jar

v WAS_HOME/lib/wsif.jar

v WSGW_HOME/client/wsgwejb.jar

where WAS_HOME is the root directory for your installation of WebSphere
Application Server Enterprise, and WSGW_HOME is the root directory for
your installation of the gateway.

c. Add any other JAR files or projects that you need for compiling your filter.
d. Click OK.

5. To create the session bean, complete the following steps:
a. Select File -> New -> Enterprise Bean.

The Enterprise Bean Creation wizard opens.
b. In the Enterprise Bean Creation wizard, complete the following steps:

1) Select your EJB project, then click Next.
2) Ensure that Session Bean is selected.
3) Enter a name for the bean.
4) Enter a suitable package name for the bean.
5) Click Next.

c. In the Enterprise Bean Details window, complete the following steps:
1) Accept the defaults offered for Session type (Stateless)and Transaction

type (Container).
2) Accept the defaults offered for Bean supertype (<none>), Bean class

and EJB binding name.
3) Confirm that Local client view is not enabled.
4) For the Remote client view: Remote Home Interface, click Class... then

select the com.ibm.wsgw.beans.FilterHome interface.
5) For the Remote client view: Remote Interface, click Class... and select

the com.ibm.wsgw.beans.FilterRemote interface.
6) Click Next.

d. In the EJB Java Class window, specify the Bean superclass as
com.ibm.wsgw.beans.Filterimpl, then click Finish.

Your new session bean is created.
6. The generated java code for your session bean does not implement the Filter.

To update the code, complete the following steps:
a. In the J2EE Hierarchy view, expand your session bean to show Java code

entries for the Home interface, the Remote interface and for the session
bean itself.

694 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

b. In the J2EE Hierarchy view, double-click the entry for the session bean code.
In the editor view, the generated code opens for editing.

c. In the editor view, add the following import statements:
import com.ibm.wsgw.*;
import com.ibm.wsgw.beans.*;
import org.apache.wsif.*;
import java.rmi.RemoteException;

Note: If you selected J2EE version 1.3 or later for your Enterprise
Application Project, then omit the statement import
java.rmi.RemoteException from the set of import statements added here,
and see the note below.

d. Select File -> Save to save the file. Ignore any errors at this stage.

Note: If you selected J2EE version 1.3 or later for your Enterprise Application
Project, then your filter methods must not throw java.rmi.RemoteException. So
for J2EE version 1.3 or later:
v Omit the statement import java.rmi.RemoteException from the set of import

statements added in the step above.
v Remove all instances of throws RemoteException from your filter methods.
v Code your filter to override the getContextVersion() method from

FilterImpl (in order to eliminate the RemoteException from this method).
Specifically, implement a getContextVersion() method in your filter to
return Filter.CONTEXT_VERSION_WORKAREA as follows:
public int getContextVersion()

{
return Filter.CONTEXT_VERSION_WORKAREA;

}

7. To add the unimplemented methods of the Filter interface to your session bean,
complete the following steps:
a. Open the Outline view (select Window -> Show View -> Outline).
b. In the Outline view, from the pop-up menu for your session bean, select

Override Methods.
c. In the Override Methods window, select all the Filter methods to override

then click OK.

The methods of the Filter interface are added to your session bean.
8. Select File -> Save to save the file. Any errors from the previous File -> Save

are resolved.
9. Develop your filter.

The exact steps that you take to develop your filter depend upon what you
want it to do. However to develop any filter, you use the following resources:
v The Filter interface.
v The gateway Javadoc for the Filter interface
v The additional information on the Filter interface that is in Web services

gateway - the Filter interface
v The gateway message context. (This contains the context values for each

message that comes into the gateway. These are the values that your filter
acts upon.)

v The gateway Javadoc for the GatewayContextNames class. (To use the
gateway message context values, you import the GatewayContextNames
class.)

Chapter 11. Web services gateway: Enabling Web services 695

http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/wsg/com/ibm/wsgw/beans/Filter.html
http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/wsg/com/ibm/wsgw/GatewayContextNames.html

v The additional information on the gateway message context values that is in
Web services gateway - the message context values.

v The gateway WorkArea. (Filters use this to get and set the message context
values, as described in Web services gateway - the Filter interface.)

v The WSIF Javadoc for the following WSIF objects:
– WSIFRequest
– WSIFResponse
– WSIFMessage
– WSIFException

(the methods of the Filter interface use these objects, as described in Web
services gateway - the Filter interface.)

v The example code below.

Note: You must observe the J2EE programming model, and ensure that any
non-gateway services you use are available on all platforms that the filter might
be expected to run on. For example, you should not use static variables to store
state information because on certain platforms, or in certain configurations
(such as a cluster), a filter might be invoked in a different JVM for each request.

Usage scenario

This example shows you how to access the context and get values in the
filterRequest method of a filter.

import javax.naming.InitialContext;
import javax.naming.NamingException;

import com.ibm.websphere.workarea.UserWorkArea;
import com.ibm.websphere.workarea.WorkAreaException;

import com.ibm.wsgw.GatewayContextNames;

...

try
{

// Lookup the WorkArea gateway context in JNDI
InitialContext ctx = new InitialContext();
UserWorkArea wsgwContext =

(UserWorkArea)ctx.lookup("services:websphere/WSGW/workarea");

// Get the currently selected port name
String Ptype =

(wsgwContext.get(GatewayContextNames.TARGET_PORT_NAME)).getClass().getName();
String ThePortname =

(String) wsgwContext.get(GatewayContextNames.TARGET_PORT_NAME);

// Get the currently selected target service WSDL location
String Xtype =

(wsgwContext.get(GatewayContextNames.TARGET_SERVICE_LOCATION)).getClass().getName();
TargetServiceLocation WSDLObject =

(TargetServiceLocation) wsgwContext.get(GatewayContextNames.TARGET_SERVICE_LOCATION);

String ServiceLocation = WSDLObject.serviceLocation;
int ServiceLocationType = WSDLObject.serviceLocationType;
String ServiceName = WSDLObject.serviceName;
String ServiceNamespace = WSDLObject.serviceNamespace;

}
catch (NamingException e)
{

696 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/javadoc/wsi/org/apache/wsif/WSIFRequest.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/javadoc/wsi/org/apache/wsif/WSIFResponse.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/javadoc/wsi/org/apache/wsif/WSIFMessage.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/javadoc/wsi/org/apache/wsif/WSIFException.html

// Handle any exceptions thrown by the InitialContext here
}
catch (WorkAreaException e)
{

// Handle exceptions thrown by UserWorkArea here
}

...

What to do next

After you have developed your filter, you need to generate deployment code and
export the enterprise application. To do this using IBM WebSphere Studio
Application Developer, complete the following steps:
1. Open the J2EE perspective.
2. In the J2EE Hierarchy view, from the pop-up menu for your EJB module, select

Generate -> Deploy and RMIC code.
3. In the Generate Deploy and RMIC Code window, select the beans for which

you want to generate code, then click Finish.
4. To configure the deployment descriptor properties for your bean, complete the

following steps:
a. In the J2EE Hierarchy view, from the pop-up menu for your bean, select

Open With -> EJB Deployment Descriptor.
b. On the Beans tab, set the JNDI name to the Filter class name. This name

will be used as the ″Home Location″ when the filter is deployed to the
gateway.

c. Close the EJB Deployment Descriptor window, then click Save to save the
changes.

5. In the J2EE Hierarchy view, from the pop-up menu for your project, select
Export EAR file to export the enterprise application.

You are now ready to install your filter (as described in the penultimate step of
Installing the gateway into a deployment manager cell and Installing the gateway
into a stand-alone application server), then deploy your filter.

Web services gateway - the Filter interface
This topic gives more information on using each of the methods of the Filter
interface. It supplements the information given in the following Javadoc:
v The gateway Javadoc for the Filter interface
v The WSIF Javadoc for

– WSIFRequest
– WSIFResponse
– WSIFMessage
– WSIFException

The Filter interface represents an object which is called during service invocation.
A bean which implements this interface can be registered to be called just before a
request invocation, or just after response receipt for a particular service.

Gateway filters use the gateway WorkArea to get and set the gateway message
context values. You get the gateway’s WorkArea partition from
services:websphere/WSGW/workarea in JNDI, then use the UserWorkArea API to get
and set data within the message context.

Chapter 11. Web services gateway: Enabling Web services 697

http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/wsg/com/ibm/wsgw/beans/Filter.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/javadoc/wsi/org/apache/wsif/WSIFRequest.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/javadoc/wsi/org/apache/wsif/WSIFResponse.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/javadoc/wsi/org/apache/wsif/WSIFMessage.html
http://publib.boulder.ibm.com/infocenter/wasinfo/topic/com.ibm.websphere.base.doc/info/aes/javadoc/wsi/org/apache/wsif/WSIFException.html

These are the two main methods you use for developing your filter:
v FilterAction filterRequest(org.apache.wsif.WSIFRequest request,

org.apache.wsif.WSIFResponse response).
v FilterAction filterResponse(org.apache.wsif.WSIFRequest request,

org.apache.wsif.WSIFResponse response).

Another important method that requires a specific value to be returned is
getContextVersion().

If you want your filter to change the WSIFReponse and WSIFRequest messages,
then note that changes to messages are only recognized if the setUpdatedRequest
and setUpdatedResponse methods are called on the returned FilterAction object.
The FilterAction object can also dictate whether processing of the message should
continue by calling the setContinueProcess method.

filterRequest Method

The filterRequest method is called by the gateway Manager just before a request is
sent to a target service. The return value from the method can indicate that the
request should not be sent.

The request parameter contains the request WSIFMessage. This consists of a set of
named parts. Each part has a value which is encoded as an instance of an
appropriate Java object. Filters can change the values of the Java object instances,
but should not add or remove parts, or replace the values of parts with ones of a
different type.

The Filter might decide that the request should not proceed. In that case it has
three options:
v Throw a FilterException. The gateway logs the exception but continues

processing filters and the request invocation.
v Throw a WSGWException. The gateway logs and rethrows the exception, and

processing of filters and the request is stopped. The exeption then goes back to
the receiving channel, and the channel must determine what to do with the
exception (in the case of SOAP-based channels, this results in a Fault message
back to the client). This should only be done for unexpected errors in the filter.

v Return a FilterAction object with the continueProcessing flag set to false. In this
case the response message in the FilterAction can also be set, and is sent to the
originator of the request. No further filters are invoked.

If the request or response is modified, then it must be returned in an instance of
the FilterAction class. If this is not done, any change to the response is ignored by
the Web services gateway.

filterResponse Method

The filterResponse method is called by the gateway Manager just after a response
has been received from a target service. The response parameter contains the
response or fault WSIFMessage. This consists of a set of named parts.

Each part has a value which is encoded as an instance of an appropriate Java
object. Filters can change the values of the Java object instances, but should not
add or remove parts, or replace the values of parts with ones of a different type.

698 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The Filter may decide that the response should not proceed. In that case it has
three options:
v Throw a FilterException. The gateway logs the exception but continues

processing filters and the response invocation.
v Throw a WSGWException. The gateway logs and rethrows the exception, and

processing of filters and the response is stopped. The exeption then goes back to
the receiving channel, and the channel must determine what to do with the
exception (in the case of SOAP-based channels, this results in a Fault message
back to the client). This should only be done for unexpected errors in the filter.

v Return a FilterAction object with the continueProcessing flag set to false. In this
case the fault WSIF Message is set in the response message in the FilterAction,
and is sent to the originator of the request. No further filters are invoked.

If the response is modified, then it must be returned in an instance of the
FilterAction class. If this is not done, any change to the response is ignored by the
Web services gateway.

If the Filter throws a FilterException, it is logged, but the gateway continues to
process other filters. If it throws a WSGWException, processing of the response is
stopped.

See also Creating and returning a SOAP fault message from a filterResponse
method.

getVersionString Method

The getVersionString method returns a string form of the version of the filter
implementation. This is used by the gateway when logging events relating to the
filter so that the exact version of the filter implementation is known.

getContextVersion Method

The getContextVersion method indicates the approach that this filter uses to access
context information. To access the message context information for IBM WebSphere
Application Server Version 5, this method must be implemented to return the
value: Filter.CONTEXT_VERSION_WORKAREA.

init Method

The init method tells the filter that it has been configured with the Web services
gateway.

This method is called by the gateway when it has been asked to add a filter.

destroy Method

The destroy method tells the filter that it is no longer configured with the Web
services gateway. This method is called by the gateway when it has been asked to
remove a filter.

Creating and returning a SOAP fault message from a
filterResponse method
This topic gives an example of the recommended way to create and return a SOAP
fault message from a GatewayFilter.filterResponse method.

Chapter 11. Web services gateway: Enabling Web services 699

Usage scenario
public FilterAction filterResponse(WSIFRequest wsifRequest, WSIFResponse wsifResponse)

throws FilterException, WSGWException, RemoteException {
// Construct the fault message
WSIFMessage faultMessage = new WSIFDefaultMessage();
faultMessage.setObjectPart(WSIFConstants.SOAP_FAULT_ACTOR,"mySoapFaultActor");
faultMessage.setObjectPart(WSIFConstants.SOAP_FAULT_CODE,"mySoapFaultCode");
faultMessage.setObjectPart(WSIFConstants.SOAP_FAULT_STRING,"mySoapFaultString");
faultMessage.setObjectPart("stackTrace","myStackTraceDetails");
faultMessage.setObjectPart("otherDetails","myOtherDetails");
// repeat faultMessage.setObjectPart("aaaa","bbbb");
// for each additional detail element
// Set the fault message into the wsifResponse object
wsifResponse.setFaultMessage(faultMessage);
wsifResponse.setIsFault(true);

// Return the updated response in the filterAction object
FilterAction filterAction = new FilterAction();
filterAction.setUpdatedResponse(wsifResponse);
filterAction.setContinueProcessing(false);
return filterAction;
}

5.0.2 This example works with both the Apache SOAP and the SOAP/HTTP
Channels. Using the SOAP/HTTP channel, the example returns the following
SOAP fault response:

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>
<soapenv:Fault>
<faultcode xmlns:ns1="http://xml.apache.org/axis/">ns1:mySoapFaultCode</faultcode>
<faultstring>mySoapFaultString</faultstring>
<faultactor>mySoapFaultActor</faultactor>
<detail>
<stackTrace>myStackTraceDetails</stackTrace>
<otherDetails>myOtherDetails</otherDetails>
</detail>
</soapenv:Fault>
</soapenv:Body>

</soapenv:Envelope>

Web services gateway - the gateway message context values
The gateway message context contains the context information for each incoming
message.

You can use the Context Field Constant values if you import the class
com.ibm.wsgw.GatewayContextNames.

For basic information on the fields that are available in the context, see the Javadoc
for the GatewayContextNames class. Additional information on all of these fields
except AUTH_SUBJECT and copyright is given in the table below.

Note: In this version of the gateway you should treat all of the context fields as
Read only. If your filter attempts to write to a context field, you do not get an
error message (because the write does not actually fail) but subsequent system
behavior is not readily predictable.

If you want to change the target service location and port name fields, then you
should use the Routing interface to get the list of valid target service locations and

700 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/wsg/com/ibm/wsgw/GatewayContextNames.html
http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/wsg/com/ibm/wsgw/GatewayContextNames.html

to select the target service location. For more information see Using a filter to select
a target service and port.

Context Field Constant Description
AUTH_PASSWORD Read the password from the incoming HTTP

request (where available)
AUTH_USER_NAME Read the user name from the incoming HTTP

request (where available).
GATEWAY_SERVICE_NAME Name of the gateway Service for which the request

was received.
MESSAGE_ID Set by the channel and is a server-unique ID that

can be used to correlate messages, for example in
trace. Can be made globally unique by prefixing
with host name.

RECEIVING_CHANNEL_NAME Name of the channel on which the request was
received.

REQUEST_SOAP_HEADERS Retrieve the SOAP headers for an inbound SOAP
request. SOAP Headers are returned as a Vector of
Nodes.

RESPONSE_SOAP_HEADERS Retrieve the SOAP headers for an outbound SOAP
response. SOAP Headers are returned as an Array
of Nodes.

RETRY_COUNT Number of retries for the request. NOT
CURRENTLY USED.

SOAP_HEADERS Retrieve the SOAP headers for an inbound SOAP
request. SOAP Headers are returned as a Vector of
Nodes. DEPRECATED (use
REQUEST_SOAP_HEADERS).

TARGET_PORT_NAME Currently selected port name. Not set until after
service invocation, so can only be got by response
filters and not by request filters. See also Using a
filter to select a target service and port.

TARGET_SERVICE_LOCATION Gives the location of the currently selected target
service’s WSDL, Name and Namespace. See also
the Javadoc for the TargetServiceLocation class.

TIMEOUT_TIME Time-out value for the response. NOT
CURRENTLY USED.

Using a filter to select a target service and port
Use this task to write a filter to select a target service and port.

When a request is received by the gateway, it must determine what the target
service really is, and what port to use to access that service.

The gateway represents each exported service as a gateway service. Each gateway
service can map to one or more target services, but without filters there is no point
in mapping multiple targets as the gateway will always pick the first one. If you
want to map multiple targets, you also need to write pluggable filters (configured
for each gateway service) that can select the target service from those available.

You write a filter as described in Writing a filter for the Web services gateway.
Your filter can get the list of potential target services from the Routing service. It
needs to select the target service, then call the Routing service to set the target
service (note that doing this clears any prior selection of a target service’s port).
Your filter might also use the Routing service to select the target port for the
service invocation.

Chapter 11. Web services gateway: Enabling Web services 701

http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/wsg/com/ibm/wsgw/config/TargetServiceLocation.html

The Routing service provides a non-standard interface which is defined in the
topic The Routing interface. The implementation of the Routing service is not
pluggable.

The Home object for this service must implement the
com.ibm.wsgw.beans.RoutingHome interface and be located in JNDI at
websphere/WSGW/Routing.

The sequence of events for a filter to determine and set the target service is as
follows:
1. The filter is called with a WSIFRequest.
2. The filter obtains the list of potential target services from the Routing service.
3. The filter selects the target service.
4. The filter calls the Routing service to set the target service (note that doing this

clears any prior selection of a target service’s port).

The Filter can also use the Routing service to select the target port for the service
invocation.

Each target service is identified by the target service definition location (which is
unique) and target service identity information (which might not be unique). So to
select the target service, your filter can either get the table of mappings from target
service location to identity information, then choose a target service to use; or it
can call setSelectedTargetServiceIdentity with the required identity string (relying
on the target service identity information being carefully defined). The routing
service then selects the first target service it finds (for the current gateway service)
with identity information that matches that specified (using String.equals()).

Note: When you use Routing to set the target service or the target port, the
Routing service updates the request context. Because the request context has
changed, you then need to set the request object in the FilterAction object that you
return from the filterRequest method (see the filter interface).

Web services gateway - the Routing interface
This topic gives more information on using each of the methods of the Routing
interface. It supplements the information given for this interface in the gateway
Javadoc.

The Routing interface encapsulates a service which manages routing for requests.
Filters can use this service to select the target service and port.

Note: The set methods all return a WSIFRequest object that contains the updated
context information.

To get information on the currently selected target service, use the following
Routing interface methods:

getSelectedTargetServiceLocation
This method returns the currently selected target service location for the
request.

getTargetPortName
This method returns the currently selected target port name for the request.

Note: In this version of the gateway, this method always returns blank.

702 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/wsg/com/ibm/wsgw/beans/Routing.html
http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/wsg/com/ibm/wsgw/beans/Routing.html

getTargetServiceDefinition
This method returns the currently selected target service definition for the
request.

To set the target port, use the following Routing interface method:

setTargetPortName
This method sets the selected target port name for the request.

To get information on all potential target services, use the following Routing
interface method:

getTargetServices
This method returns the set of target service names which are mapped by
the gateway service on which the request was received.

To set the target service, use either of the following Routing interface methods:

setSelectedTargetServiceLocation
This method sets the selected target service location for the request. The
selected port name if any is reset by this call.

setSelectedTargetServiceIdentity
This method sets the selected target service identity for the request. Target
service identity need not be unique, so the first target service found with
matching identity information is set. If none is found that matches, the
method throws a WSGWException.

Capturing Web service invocation information from the Web
services gateway

Use this task to help you to capture Web service invocation information from the
Web services gateway.

The Web services gateway has not implemented a service that stores operational
messages, but the gateway does contain an interface (the MessageWarehouse
interface) to encapsulate such a service. This interface is driven by channels on
receipt of requests and before sending responses.

If you have your own system for handling (classifying, storing and retrieving)
operational messages, you can potentially use it to log the gateway’s operational
messages through the MessageWarehouse interface.

The Home object for this service must implement the
com.ibm.wsgw.beans.MessageWarehouseHome interface and be located in JNDI at
websphere/WSGW/MessageWarehouse.

Web services gateway - the MessageWarehouse interface
This topic gives more information on using each of the methods of the
MessageWarehouse interface. It supplements the information given for this
interface in the gateway Javadoc.

The MessageWarehouse interface encapsulates a service which stores messages for
archiving. This interface is used by the channels to log incoming requests for the
purposes of non-repudiation.

A default implementation of this interface is not provided by the Web services
gateway. If no implementation is present the interface is not used.

Chapter 11. Web services gateway: Enabling Web services 703

http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/wsg/com/ibm/wsgw/beans/MessageWarehouse.html
http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/wsg/com/ibm/wsgw/beans/MessageWarehouse.html

logRequest

This method stores a request, along with information about the channel
and originator of the request.

It is called by a channel when a request is received, after the user has been
authenticated and the message decrypted. The channel may provide
information to identify the originator of the request, and to identify the
channel itself. The request itself is logged as a WSIFMessage.

Additional information regarding receipt of the request (for example any
associated digital certificates) can also be logged as Serializable objects.

logResponse

This method stores a response, along with information about the channel
and destination of the response.

It is called by a channel when a response is about to be sent, before the
response is encrypted. The channel may provide information to identify
the destination of the response, and to identify the channel itself. The
response itself is logged as a WSIFMessage.

Additional information regarding sending of the response (for example any
associated digital certificates) can also be logged as Serializable objects.

logException

This method stores a request, along with information about the channel
and originator of the request in the event that an exception is thrown to
the channel while the request is being processed. This method allows the
exact request and exception information to be logged before the channel
decides what actions to take as a result of the exception.

Additional information regarding request and exception (for example any
associated digital certificates) can also be logged as Serializable objects.

Handling exceptions for the Web services gateway
Use this task to help you to capture information on the gateway’s exception
handling activities.

During normal processing of a Web service invocation, a fault message might be
generated by the target service, and is passed back to the channel to be sent to the
originator. As far as the Web services gateway is concerned there is no difference
between processing a normal output message and processing a fault message.

But when an exception occurs during processing of a request, the channel needs
some way to decide what to do with the exception. What is needed is a service
that provides a pluggable handler that can look at the message, exception and
other information to decide whether the exception should be thrown back to the
originator, or whether a fault message should be constructed.

This service is not provided with the Web services gateway, but the gateway does
contain an interface to encapsulate such a service. The ExceptionHandler interface
allows channels to call an exception handling service, and allows the exceptions to
be reported to a third party for analysis.

The Home object for this service must implement the
com.ibm.wsgw.beans.ExceptionHandlerHome interface and be located in JNDI at
websphere/WSGW/ExceptionHandlerService.

704 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Web services gateway - the ExceptionHandler interface
This topic gives more information on using each of the methods of the
ExceptionHandler interface. It supplements the information given in the gateway
this interface in the gateway Javadoc.

The ExceptionHandler interface encapsulates a service which takes actions when
exceptions occur during request/response processing in the gateway. It is intended
for use by channels to allow a centralized facility to report and take actions when
exceptions occur within the gateway.

handleException

This method is called by a channel when an exception is caught as a result
of processing a message.

The return value indicates what action the channel should take. The
actions include:
v Re-throw the original exception.
v Throw a new exception (this is thrown by the handler itself).
v Convert the exception into a fault message.

Note: If there is no ExceptionHandler installed, the MessageWarehouse (if
any) is always used to log the exception, then the exception is rethrown.

Administering security for the Web services gateway

5.0.2 The gateway provides facilities for secure communication between the
service requester and the gateway, and between the gateway and the target service.
To configure these facilities for each deployed Web service, see Enabling Web
Services Security (WS-Security) for the gateway.

The gateway provides basic authentication and authorization facilities based upon
the broader security features of WebSphere Application Server. See Enabling basic
authentication and authorization for the gateway.

The gateway can also invoke Web services that include https:// in their addresses,
if you have configured your Java and WebSphere Application Server security
properties to allow it. To check your security property settings, see Invoking Web
services over HTTPS.

5.0.2 In many installations, the gateway requires access to the Internet for
invoking external Web services. To configure the gateway to work with
authenticating proxies, see Enabling proxy authentication for the gateway.

What to do next

For hints on solving security-related problems, see ″Web services gateway
troubleshooting tips″.

Enabling Web Services Security (WS-Security) for the gateway
You can configure the gateway for secure transmission of SOAP messages using
tokens, keys, signatures and encryption in accordance with the Web Services
Security (WS-Security) draft recommendation. For more information on how
WS-Security is implemented in WebSphere Application Server Network

Chapter 11. Web services gateway: Enabling Web services 705

http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/wsg/com/ibm/wsgw/beans/ExceptionHandler.html

Deployment, see (Securing Web services). For more information on the approach
taken by the gateway to implementing this emerging standard, see The Web
services gateway and WS-Security.

The gateway sits between the service requester (the client) and the target Web
service. You configure the gateway to act as the target service from the point of
view of the client, and as the client from the point of view of the target service. So
you need to get, from the owning parties, the WS-Security configurations for both
the client and the Web service. This information is found in the following files on
the owners systems:
v Key stores (.ks and .jceks files).
v Certificate stores (.cer files).
v Security settings (ibm-webservicesclient-ext.xmi for the client, and

ibm-webservices-ext.xmi for the Web service).
v Binding information - for example the location of a keystore on the file system

(ibm-webservicesclient-bnd.xmi for the client, and ibm-webservices-bnd.xmi for
the Web service).

Note: If the client is hosted on WebSphere Application Server, and the Web service
security settings were created using IBM Web services tooling (for example
WebSphere Studio Application Developer), then the files that contain the security
settings and binding information will have the exact file names (*.xmi) given
above. For clients and Web services from other vendors, these files will have
different names.

You need to copy the key store and certificate store files to the gateway file system,
and to enter and configure for the gateway the security settings that are contained
in the .xmi files. The security settings are entered and configured manually using
the gateway administrative user interface. There are tools available (for example
WebSphere Studio Application Developer) that can parse the .xmi files for you.

You use the Gateway -> Security option to configure the security bindings (the
tokens, keys, signatures and encryption methods) that are available to the gateway,
as described in Configuring the gateway security bindings.

You then configure the level of security that applies at each stage of the
transmission (and note that different levels of security, including no security, can
be applied to each stage):
v From the service requester to the gateway.
v From the gateway to the target service.
v From the target service back to the gateway.
v From the gateway back to the service requester.

For information on how to do this, see the following topics:
v Editing the service security configuration - how to configure secure

communication for this gateway service between the service requester (the
client) and the gateway.

v Editing the target service security configuration - how to configure secure
communication between the gateway and the target service.

The Web services gateway and WS-Security
You can configure the gateway for secure transmission of SOAP messages using
tokens, keys, signatures and encryption in accordance with the emerging Web

706 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Services Security (WS-Security) specification(http://www-
106.ibm.com/developerworks/webservices/library/ws-secure/).

In a normal (non gateway) WS-Security scenario, the flow is as shown in the
following figure:

ibm-webservices-ext.xmi
ibm-webservices-bnd.xmi

ibm-webservicesclient-ext.xmi
ibm-webservicesclient-bnd.xmi

Client
Web

service

Request

Response

The client generates a request which is then handled by the client Web services
engine. It reads the client security configuration and applies the security defined in
the ibm-webservicesclient-ext.xmi file to the SOAP message. It gets additional
binding information from the ibm-webservicesclient-bnd.xmi file (for instance, the
location of a keystore on the file system).

On receipt of a SOAP message, the Web services engine on the server refers to the
*.xmi files for the called Web service. In this case, the ibm-webservices-ext.xmi file
tells the engine what security the incoming message must have (for example, that
the body of the message must be signed). If the message does not comply, then it
is rejected. The Web services engine verifies any security information, then passes
the message on to the Web service being called.

On the response leg from server to client, the process is reversed. The Web service
*.xmi files tell the Web services engine what security to apply to the response
message, and the client *.xmi files tell the client engine what security to require in
the response message.

When the gateway is introduced, the scenario is more complex. Essentially it can
be thought of as two separate request/response invocations. Client to gateway and
gateway to target service, as shown in the following figure:

ibm-webservices-ext.xmi
ibm-webservices-bnd.xmi

ibm-webservicesclient-ext.xmi
ibm-webservicesclient-bnd.xmi

Client
Web

service

TSRequest

TSResponse

GWRequest

GWResponse

WSGW

In this scenario, the client and the Web service are unchanged, and still have the
same security settings in their *.xmi files. However, the gateway is unsecured.
Secure SOAP messages cannot travel through the gateway unchanged, and must
be processed on receipt. So the gateway needs to act as the target service from the
point of view of the client, and as the client from the point of view of the target

Chapter 11. Web services gateway: Enabling Web services 707

service. This scenario means that the security settings for the Web service need to
be configured for the view of the service that the gateway presents to the client,
and the security settings for the associated gateway target services (remember that
there may be multiple target services deployed for a single gateway service) need
to be configured with the security settings for the client.

WS-Security settings for the gateway are configured manually using the gateway
administrative user interface.

Configuring the gateway security bindings
You use the Gateway -> Security option to configure all the security bindings (the
tokens, keys, signatures and encryption methods) that are available to the gateway.
This information describes the security bindings that are used to secure the SOAP
messages that pass between service requesters (clients) and the gateway, and
between target services and the gateway.

You receive this security binding information direct from the service requester or
target service provider, in the form of an ibm-webservicesclient-bnd.xmi file for
the client, and an ibm-webservices-bnd.xmi file for the Web service. You extract the
information from these .xmi files, then manually enter it into the gateway security
bindings forms that are described below.

Steps for this task
1. Display the Web services gateway administrative user interface.
2. In the navigation pane, click the following link:

Gateway

v Security

The Configure Gateway Security Bindings form is displayed.

This form is divided into eight sections, one for each type of security binding.
The following comments apply to every section:
v To add a new binding, click Add new binding_type.
v To amend an existing binding, click on the name of the binding.
v To delete an existing binding, click remove alongside the name of the

binding.
v If you choose to add or amend a binding, then a binding information

sub-form is displayed. Within this form:
– Help is provided in comments on the sub-form, and in hover-help

alongside each field.
– Fields marked on the sub-form with an asterisk (*) are required fields.
– For some bindings, the fields that are required are different depending

on whether you are adding or amending a binding.
– Many fields are populated by making a selection from a drop-down list.
– Information entered in one binding information sub-form often appears

in a drop-down list in another sub-form.
– When you have finished entering information for a binding, click OK.

3. Add, amend or delete Signing Information.
The signing information specifies the configuration for digital signature
validation and message signing.

708 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

If you choose to add or amend a signing information binding, then the Define
Signing Information form is displayed. In this form you enter a name for the
binding (if you are adding a new binding), and the following binding details:
v Signature method
v Digest method
v Canonicalization method
v Signing key name
v Signing Key Locator
v Certificate Path (a choice between trusting any certificates, and trusting

certificates from a particular Trust Anchor and Certificate Store).

Note: The signing information can also be used for X.509 certificate validation
when Authentication Method is IDAssertion and ID Type is X509Certificate
in the gateway service configuration. In such cases, you must fill in the
″Certificate Path″ fields only.

4. Add, amend or delete Encryption Information.
The encryption information specifies the configuration for encrypting and
decrypting messages.
If you choose to add or amend an encryption information binding, then the
Define Encryption Information form is displayed. In this form you enter a
name for the binding (if you are adding a new binding), and the following
binding details:
v Key locator
v Encryption key name
v Key encryption algorithm
v Data encryption algorithm

5. Add, amend or delete Trust Anchors.
A trust anchor specifies a list of key store configurations that contain root
trusted certificates.
If you choose to add or amend a trust anchor, then the Define Trust Anchor
form is displayed. In this form you enter a name for the trust anchor (if you
are adding a new anchor), and the following details:
v Key store type
v Key store path
v Key store password

Note: These configurations are used for certificate path validation of the
incoming X.509-formatted security tokens. The keystore must be created using
the Java Development Kit keytool. The ikeyman tool is not supported.

6. Add, amend or delete Certificate Stores.
A certificate store specifies a list of untrusted, intermediate certificate files. It is
used for certificate path validation of incoming X.509-formatted security
tokens.
If you choose to add or amend a certificate store, then the Define Certificate
Store form is displayed. In this form you enter a name for the certificate store
(if you are adding a new store), and the following details:
v Certificate Store Provider

Chapter 11. Web services gateway: Enabling Web services 709

When you amend an existing certificate store, you are given an extra option to
add or remove X.509 certificates from the list of certificates that are contained
within this store. When you add an X.509 certificate, you specify the full path
for the certificate.

7. Add, amend or delete Key Locators.
A key locator specifies a configuration that is used to retrieve keys for signature
and encryption. A key locator class can be customized to retrieve keys from
other types of repositories. The default implementation retrieves keys from a
keystore.
If you choose to add or amend a key locator, then the Define Key Locators
form is displayed. In this form you enter a name for the key locator (if you
are adding a new key locator), and the following details:
v Classname
v Key store type
v Key store path
v Key store password

When you amend an existing key locator, you are given two extra options:
v Add or remove key entries. For each additional key, you specify:

– Key name
– Key alias
– Key password

Note: You do not need to list all the certificate entries as keys; instead, the
distinguished name (DN) of the certificate is used as the search key.

v Add or remove additional properties for the configuration. For each
additional property, you specify:
– Property name
– Property value

8. Add, amend or delete Trusted ID Evaluators.
A trusted ID evaluator determines whether the identity (ID)-asserting authority
is trusted.
If you choose to add or amend a trusted ID evaluator, then the Define
Trusted ID Evaluator form is displayed. In this form you enter a name for the
trusted ID evaluator (if you are adding a new evaluator), and the following
details:
v Class name

When you amend an existing trusted ID evaluator, you are given an extra
option to add or remove additional properties for the configuration. For each
additional property, you specify:
v Property name
v Property value

9. Add, amend or delete Login Mappings.
A login mapping specifies a configuration for validating security tokens within
incoming messages.
If you choose to add or amend a login mapping, then the Define Login
Mapping form is displayed. In this form you enter a name for the login
mapping (if you are adding a new mapping), and the following details:
v Authentication method

710 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v JAAS Configuration name
v Callback handler factory class name
v Token type local name
v Token type URI

When you amend an existing login mapping, you are given extra options to
add or remove additional properties for the configuration, and additional
properties for the callback handler factory. For each additional property, you
specify:
v Property name
v Property value

10. Add, amend or delete Login Bindings.
A login binding specifies a configuration for generating security tokens within
outgoing messages.
If you choose to add or amend a login binding, then the Define Login
Binding form is displayed. In this form you enter a name for the login
binding (if you are adding a new binding), and the following details:
v Authentication method
v JAAS Configuration name
v Callback handler factory class name
v Token type local name
v Token type URI

When you amend an existing login binding, you are given extra options to
add or remove additional properties for the configuration, and additional
properties for the callback handler. For each additional property, you specify:
v Property name
v Property value

Editing the service security configuration
Before you begin

Before you can select the security settings that are applied for an individual Web
service, you must configure the gateway security bindings.

For each Web service, you can select the security settings that are applied between
the service requester (the client) and the gateway. These settings are specified for
each stage of the transmission:
v From the service requester to the gateway (the client request).
v From the gateway back to the service requester (the gateway response).

You receive this security settings information from the service requester and from
the target service provider in the following form:
v An ibm-webservicesclient-bnd.xmi for the client, and ibm-webservices-bnd.xmi

for the Web service, from which you process the security bindings information
as described in Configuring the gateway security bindings.

v An ibm-webservicesclient-ext.xmi for the client, and ibm-webservices-ext.xmi
for the Web service, which contain the information on the levels of security
(integrity, confidentiality and identification) that are required when this Web

Chapter 11. Web services gateway: Enabling Web services 711

service exchanges messages with a service requester. These are therefore also the
settings that the gateway needs to apply when it makes the equivalent gateway
service available to a service requester.

To set the security settings that are applied between the service requester (the
client) and the gateway, complete the following steps:

Steps for this task
1. List the gateway-deployed Web services
2. Click the name of a Web service in the list.

A form is displayed through which you can view and modify the current
deployment details for this Web service, and add or remove multiple target
services.

3. In the Service Security section, select the Edit service security configuration
option.
The service security configuration form is displayed. This form is divided into
the following sections:
v Gateway Security Properties (the Actor URI)
v Client Request Security Properties (integrity, confidentiality and

identification settings)
v Gateway Response Security Properties (the response Actor URI, and

integrity and confidentiality settings)
v Security bindings (request bindings and response bindings).

The following comments apply to every section:
v Help is provided in comments on the form, and in hover-help alongside each

field.
v There are no required fields.
v Many fields are populated by making a selection from a drop-down list.

4. In the Gateway Security Properties section, set the Actor URI.
Note: If you specify an Actor URI, then only SOAP security headers with this
Actor URI will be processed.

5. In the Client Request Security Properties section, set the following security
levels:
a. Set the Integrity level.

Set the parts of the incoming SOAP message that must be signed (the Body,
the Timestamp and the Security Token).

b. Set the Confidentiality level.
Set the parts of the incoming SOAP message that must be encrypted (the
Body and the Username Token).

c. Set the Identification level.
Set the identification methods that will be accepted (Basic Authentication ,
Digital Signature and ID Assertion).

6. In the Gateway Response Security Properties section, set the following
security levels:
a. Set the Response Actor URI.

Note: If you specify a Response Actor URI, then the SOAP security header
in the response message will have this Actor URI.

b. Set the Integrity level.

712 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Set the parts of the response SOAP message that must be signed (the Body
and the Timestamp).

c. Set the Confidentiality level.
Set whether or not the Body of the response SOAP message must be
encrypted.

7. In the Security bindings section, set the Request bindings and the Response
bindings that are to be used.
Note: You choose these bindings (Signing Information, Encryption
Information, Trusted ID Evaluator and Login Mappings) from pull-down lists.
The available items in these lists are those that you have previously entered as
described in Configuring the gateway security bindings.

8. When you have finished editing the service security configuration, click Apply
changes.

Editing the target service security configuration
Before you begin

Before you can select the security settings that are applied for target Web service,
you must configure the gateway security bindings.

For each target Web service, you can select the security settings that are applied
between the target Web service and the gateway. These settings are specified for
each stage of the transmission:
v From the gateway to the target service (the target service request).
v From the target service back to the gateway (the target service response).

You receive this security settings information from the service requester and from
the target service provider - usually in the following form:
v An ibm-webservicesclient-bnd.xmi for the client, and ibm-webservices-bnd.xmi

for the Web service, from which you process the security bindings information
as described in Configuring the gateway security bindings.

v An ibm-webservicesclient-ext.xmi for the client, and ibm-webservices-ext.xmi
for the Web service, which contains the information on the levels of security
(integrity, confidentiality and identification) that are required when this Web
service exchanges messages with a service requester. These are therefore also the
settings that the gateway needs to apply when it calls the target service on
behalf of the service requester.

To set the security settings that are applied between the target service and the
gateway, complete the following steps:

Steps for this task
1. List the gateway-deployed Web services
2. Click the name of a Web service in the list.

A form is displayed through which you can view and modify the current
deployment details for this Web service, and add or remove multiple target
services.

3. In the Target Services section, click the name of a target Web service in the list.
A form is displayed, containing the same fields that you filled in when you
added the target service, and also the following additional fields:
v Started (a check box).
v Enable target service security (a check box).

Chapter 11. Web services gateway: Enabling Web services 713

v Edit target service security configuration.
4. Select the Edit target service security configuration option.

The target service security configuration form is displayed. This form is divided
into the following sections:
v Target Service Security Properties (the Actor URI)
v Target Service Request Security Properties (integrity, confidentiality and

identification settings)
v Target Service Response Security Properties (the response Actor URI, and

integrity and confidentiality settings)
v Security bindings (request bindings and response bindings).

The following comments apply to every section:
v Help is provided in comments on the form, and in hover-help alongside each

field.
v There are no required fields.
v Many fields are populated by making a selection from a drop-down list.

5. In the Target Service Security Properties section, set the Actor URI.
Note: If you specify an Actor URI, then only SOAP security headers with this
Actor URI will be processed.

6. In the Target Service Request Security Properties section, set the following
security levels:
a. Set the Target Actor URI.

Note: If you specify a Target Actor URI, then the SOAP security header in
the request message will have this Actor URI.

b. Set the Integrity level.
Set the parts of the outgoing SOAP message that must be signed (the Body,
the Timestamp and the Security Token).

c. Set the Confidentiality level.
Set the parts of the outgoing SOAP message that must be encrypted (the
Body and the Username Token).

d. Set the Identification level.
Set the identification methods that will be accepted (Basic Authentication ,
Digital Signature and ID Assertion).

7. In the Target Service Response Security Properties section, set the following
security levels:
a. Set the Integrity level.

Set the parts of the response SOAP message that must be signed (the Body
and the Timestamp).

b. Set the Confidentiality level.
Set whether or not the Body of the response SOAP message must be
encrypted.

8. In the Security bindings section, set the Request bindings and the Response
bindings that are to be used.
Note: You choose these bindings (Signing Information, Encryption
Information, Trusted ID Evaluator and Login Mappings) from pull-down lists.
The available items in these lists are those that you have previously entered as
described in Configuring the gateway security bindings.

9. When you have finished editing the target service security configuration, click
Apply changes.

714 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Enabling basic authentication and authorization for the
gateway

5.0.2 In addition to the security options described in Enabling Web services
Security (WS-Security) through the gateway, you can also use the broader security
features of WebSphere Application Server to enable basic authentication and
authorization.

5.0 +

5.0.1 +

The Web services gateway provides a basic authentication and authorization
mechanism based upon the broader security features of WebSphere Application
Server.

Basic authentication can be applied at two levels, as described in the following
topics:
1. Enabling gateway-level authentication.
2. Enabling Web service operation-level authorization.

For gateway-level authentication, you set up a role and realm for the gateway on
WebSphere Application Server’s Web server and servlet container, and define the
userid and password that is used by the gateway to access the role and realm. You
also modify the gateway’s channel applications so that they only give access to the
gateway to service requesters that supply the correct userid and password for that
role and realm.

Note: This means that gateway-level authentication must be enabled before you
install any channels.

For operation-level authorization, you apply security to individual methods in a
Web service. To do this, you create an enterprise bean with methods matching the
Web service operations. These EJB methods perform no operation and are just
entities for applying security. Existing WebSphere Application Server authentication
mechanisms can be applied to the enterprise bean. Before any Web service
operation is invoked, a call is made to the EJB method. If authorization is granted,
the Web service is invoked. Your target Web service is protected by wrapping it in
an EAR file, and applying role-based authorization to the EAR file. This process is
explained in general terms in Operation-level security - role-based authorization.

Note:

v If you want to enable operation-level authorization, you must first enable
gateway-level authentication.

v If you want to change the default gateway-level authentication settings, you
must do so before you install any channels.

v After gateway-level authentication has been enabled, filters have access to the
requester’s authentication information.

The Web services gateway can also invoke Web services that include https:// in
their addresses, if the Java and WebSphere security properties have been
configured to allow it. To check your security property settings, see the following
topic:
v Invoking Web services over HTTPS

Chapter 11. Web services gateway: Enabling Web services 715

What to do next

For hints on solving security-related problems, see ″Web services gateway
troubleshooting tips″.

Enabling gateway-level authentication
A number of default gateway-level authentication settings are included in the
gateway. There is a default role of AuthenticatedUsers which includes the special
group ’AllAuthenticatedUsers’. When security is enabled, you must supply a user
ID and password to use the gateway administrative interface or invoke a gateway
service.

This task covers the three main areas in which you might want to make changes:
v Changing the default gateway-level authentication settings.
v Enabling gateway-level authentication.
v Assigning users and groups to roles.

Note:

v If you want to change the default gateway-level authentication settings, you
must do so before you install any channels. When you run the script that installs
the gateway itself (either into a deployment manager cell or into a stand-alone
application server) you also install the following channels:
– Apache SOAP channel 1.

– 5.0.2 SOAP/HTTP channel 1.

So if you change the default gateway-level authentication settings after you
install the gateway, you then need to re-run the gateway install.

v You can enable gateway-level authentication, and assign users and groups to
roles, at any time.

v After gateway-level authentication has been enabled, filters have access to the
requester’s authentication information.

Steps for this task
1. To change the default gateway-level authentication settings, use the WebSphere

Application Server (Tool (AAT)) to complete the following steps:
a. Set up a role and realm for the gateway on WebSphere Application Server’s

Web server and servlet container.
b. Define the user ID and password that is used by the gateway to access the

role and realm.
c. Modify the gateway’s channel applications so that they only give access to

the gateway to service requesters that supply the correct user ID and
password for that role and realm.

2. To enable gateway-level authentication, complete the following steps:
a. Start the WebSphere Application Server administrative server.
b. Start the administrative console.
c. In the navigation pane, select Security -> Global Security.
d. In the main pane, on the Configuration tab, enable the ″Enabled″ check

box.
e. Save the settings.
f. Stop then restart the application server.
g. Close the administrative console.

716 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

3. You can use the AAT or the administrative console to assign users and groups
to roles. To map users to roles using the administrative console, complete the
following steps:
a. Start the WebSphere Application Server administrative server.
b. Start the administrative console.
c. In the navigation pane, select Application -> Enterprise Applications ->

wsgw.
In the main pane, an option to map security roles to users and groups
appears in the Additional Properties table.

d. Modify the security roles and save the settings.
e. Repeat the previous two steps for each enterprise application that you want

to modify.
f. Stop then restart the application server.
g. Close the administrative console.

For more information see Assigning users and groups to roles.

Note: The current jacl install scripts do not let you assign users to roles as part
of installing the gateway into a deployment manager cell or into a stand-alone
application server.

What to do next

You might now want to enable operation-level authorization, or install the
gateway.

Enabling operation-level authorization
Use this task to apply security to individual methods in a Web Service.

Before you begin

Before you begin this task you must first enable gateway-level authentication.

You can only apply operation-level authorization to a Web service that has already
been deployed to the gateway with the check box ’Authorization Policy - Control
access to this service’ enabled.

This task involves making changes to the file /lib/wsgwauth.ear. To protect the
installation version of this file, you should make a backup copy of it before you
change it.

For operation-level authorization you create an enterprise bean with methods
matching the Web service operations. These EJB methods perform no operation
and are just entities for applying security. Existing WebSphere Application Server
authentication mechanisms can be applied to the enterprise bean. Before any Web
service operation is invoked, a call is made to the EJB method. If authorization is
granted, the Web service is invoked.

Your target Web service is protected by wrapping it in an EAR file, and applying
role-based authorization to the EAR file. This process is explained in general terms
in Operation-level security - role-based authorization.

The EAR file that now contains your Web service is then imported into
wsgwauth.ear (which contains all of the gateway’s protected Web services) and

Chapter 11. Web services gateway: Enabling Web services 717

wsgwauth.ear is modified to set the roles and assign them to methods. Finally, this
modified wsgwauth.ear file is deployed in Websphere Application Server and users
are assigned to the previously defined roles.

To enable Web service operation-level authorization, complete the following steps:

Steps for this task
1. To create your_webservice.ear, complete the following steps:

a. Open a command prompt.
b. Go to directory /WSGW/scripts/auth

c. Enter the command WSGWAuthGen location your_webservice

where
v location is the URL for the gateway (this must include the root context)
v your_webservice is the name of the service as deployed in the gateway

(this is case-sensitive)

For example WSGWAuthGen http://host:port/wsgw AddressBook where host
and port are the host name and port number for the application server on
which the gateway is installed.

Note: The Web service name and operation name can contain characters
(such as ″-″,″.″,&) that are disallowed in an EJB class name and method
name. So these are translated during the generation process of
your_webservice.ear. A message appears informing you of the name
change.

your_webservice.ear is created in directory /WSGW/scripts. There is also a
temporary directory /WSGW/scripts/ejb, which you can delete.

2. To finish assigning roles and protecting methods, use the WebSphere
Application Server (Application Assembly Tool (AAT)) to complete the
following steps:
a. Start the AAT.
b. From the File menu select File > Open, and browse to select file

/lib/wsgwauth.ear.
c. To import your_webservice.ear into wsgwauth.ear, complete the following

steps:
v In the navigation pane, open the pop-up menu for EJB Modules and

select Import

v Browse to select file /WSGW/scripts/your_webservice.ear. The Select
modules to import window opens.

v In the Select modules to import window, select your_webservice and click
OK.

v The Confirm values window opens. Click OK.
v In the navigation pane, expand EJB Modules to confirm that

your_webservice.ear has been imported.
d. In the navigation pane, expand EJB Modules > your_webservice.ear and

select Security Roles.
e. For every security role that you want to create, repeat the following steps:

v From the pop-up menu for Security Roles, select New.
v Type the name and description of the new security role, and click OK.

718 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

f. In the navigation pane, expand EJB Modules > your_webservice.ear and
select Method Permissions.

g. For every defined role that you want to assign to a Web service method,
repeat the following steps:
v From the pop-up menu for Method Permissions, select New. The New

Method Permission window opens.
v Type the name of the new method permission, and click ADD for

Methods. The Add Methods window opens.
v In the Add Methods window, expand the tree for remote methods and

select the method to be protected. Click OK. The Add Methods window
closes.

v In the New Method Permission window, click ADD for Roles. Select a
previously defined role from the list then click OK.

h. To ensure that the authorization enterprise bean can reference the
newly-imported enterprise bean, complete the following steps:
v In the navigation pane, expand WSGW Authorization group > Session

Beans > Authorization and select EJB References.
v From the pop-up menu for EJB References, select New. The New EJB

Reference window opens.
v In the New EJB Reference window, on the General tab, type a name for

the reference then use the ’Link’ combination box to select the
newly-imported EJB (all the other fields on this tab are populated
automatically).

v In the New EJB Reference window, on the Bindings tab, type the JNDI
name as it appears in the bindings tab of the service enterprise bean (this
should be in the form websphere/WSGW/Security/your_webservice).

v Click OK. The New EJB Reference window closes.
i. From the AAT File menu, select File > Generate Code For Deployment.
j. Make a note of the name of the modified ear file, then click Generate Now.
k. From the AAT File menu, select File > Save to save the modified copy of

wsgwauth.ear.
l. Close the AAT.

3. To install the modified copy of Deployed_wsgwauth.ear, complete the following
steps:
a. Start the WebSphere Application Server Administrative Console.
b. In the navigation pane, select Applications > Install an Application.
c. Use Install New Application to install Deployed_wsgwauth.ear. Select the

users or groups to be assigned to the roles when prompted.

Operation-level security - role-based authorization
During construction of an EAR file, roles can be defined and applied to methods.
At deployment of the EAR file, individual users or groups can be assigned to roles.
So you can use this feature of EAR files to add role-based security to your Web
service.

For example: You have a Web service that controls access to important information,
and you want to give read-only access to some users, and write access to others.
So when you build the EAR file you define two roles READ and WRITE, then you
apply the READ role to the getData method and the WRITE role to the writeData
method. When you deploy the EAR file in WebSphere Application Server, you
assign ’All Authenticated Users’ to the READ role and individual users to the

Chapter 11. Web services gateway: Enabling Web services 719

WRITE role. When a user tries to access WebService.getData, their user name and
password is checked by the operating system or by Lightweight Third Party
Authentication (LTPA).

Invoking Web services over HTTPS
The Web services gateway can invoke Web services that include https:// in their
addresses, if the Java and WebSphere security properties have been configured to
allow it. This means that one gateway can send a SOAP/HTTPS message direct to
another gateway, rather than having to export services and have clients invoke
them using HTTPS.

To enable your gateway to send and receive SOAP/HTTPS messages, confirm that
your Java and WebSphere security properties are configured as described in the
following steps:

Steps for this task
1. Check that there is a copy of file ibmjsse.jar in directory

WAS_HOME/java/jre/lib/ext (where WAS_HOME is the root directory for your
installation of IBM WebSphere Application Server).

2. Edit the security properties file
WAS_HOME/java/jre/lib/security/java.security so that it includes entries for
both the Sun security provider and the IBM security provider. For example:
security.provider.1=sun.security.provider.Sun
security.provider.2=com.ibm.jsse.IBMJSSEProvider

Note: The order is significant. The Sun security provider must come before the
IBM provider.

3. Use the WebSphere Application Server Administrative Console to set up the
following equivalent system properties:
// truststore location
System.setProperty("javax.net.ssl.trustStore",

"your_truststore_root_directory/TestSSL/key.jks");
// set truststore password
System.setProperty("javax.net.ssl.trustStorePassword",

"your_truststore_password");
//use ibm reference implementation
System.setProperty("java.protocol.handler.pkgs",

"com.ibm.net.ssl.internal.www.protocol");

Enabling proxy authentication for the gateway
The gateway requires access to the Internet for invoking Web services and for
retrieval of WSDL files. Many enterprise installations use a proxy server in support
of Internet routing, and many proxy servers require authentication before they
grant access to the Internet. This requirement is supported in HTTP messaging by
a ″Proxy-Authorization″ message header that contains encoded username and
password credentials.

For messages passing through the gateway, you can enable and disable proxy
authentication, and specify whether the authentication credentials are supplied by
the service requester or by the gateway. If you specify requester-supplied credentials,
the credentials in the HTTP message that the gateway receives are re-instantiated
by the gateway in the equivalent message that it sends on to the proxy. If you
specify gateway-supplied credentials, the gateway ignores any credentials in the
incoming HTTP message and supplies its own credentials in the equivalent
message that it sends on to the proxy.

720 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Note: In certain circumstances, the gateway also creates and sends its own
messages (for example for WSDL retrieval). In these cases, the gateway always
supplies its own credentials to the authenticating proxy. So even if you enable
proxy authentication and specify requester-supplied credentials, you must still
supply credentials for the gateway.

To enable proxy authentication for the gateway, complete the following steps:

Steps for this task
1. Display the Web services gateway administrative user interface.
2. In the navigation pane, click the following link:

Gateway

v Configure

The gateway configuration form is displayed:

3. Enable the Enable proxy authentication check box.
4. In the Proxy user field, type the proxy username for the gateway itself.

Note: If you enable proxy authentication then this field is compulsory, even if
you also specify requester-supplied credentials as described below.

5. In the Proxy password field, type the associated proxy password for the
gateway itself.
Note: If you enable proxy authentication then this field is compulsory, even if
you also specify requester-supplied credentials as described in the next step.

6. To set the Use Gateway proxy credentials for invoking WebServices check
box, complete one of the following two steps:
a. If you want to use requester-supplied credentials, then clear the Use Gateway

proxy credentials check box.
With this setting, each incoming message to the gateway from a service
requester is expected to contain a valid ″Proxy-Authorization″ HTTP
message header. This header is re-instantiated by the gateway in the
equivalent message that it sends on to the proxy.

Chapter 11. Web services gateway: Enabling Web services 721

Note: For gateway-initiated messaging, such as WSDL retrieval, the gateway
supplies its own credentials in the HTTP messages that it sends to the
proxy.

b. If you want to use gateway-supplied credentials, then enable the Use
Gateway proxy credentials check box.
With this setting, a trust association is established between the gateway and
the authenticating proxy. The gateway supplies its own credentials in all
messages that it sends to the proxy, and no username or password is
required from service requesters for invoking Web services.

7. Click Apply Changes.
8. You also need to provide the application server in which your gateway is

running with machine details for the authenticating proxy and for any internal
machines that do not require authentication. You do this by setting system
properties in the WebSphere Application Server Java Virtual Machine as
follows:
a. Start the WebSphere Application Server administrative server.
b. Start the administrative console.
c. In the navigation pane, select Application Servers -> your_server_name ->

Process Definition -> Java Virtual Machine -> Custom Properties.
d. Set the following properties:

v http.proxySet - Set this to true to tell the application server that it is
required to work with an authenticating proxy.

v http.proxyHost - Set this to the machine name of the authenticating
proxy.

v http.proxyPort - Set this to the port through which the authenticating
proxy is accessed. For example 8080

v http.nonProxyHosts - List the internal machines for which authentication
is not required for routing through the proxy. Separate each machine
name in the list with a vertical bar ″|″.
Note: This list must include the machine on which the gateway is
installed.

e. Save the settings.
f. Stop then restart the application server.
g. Close the administrative console.

What to do next

Note: You also use the gateway configuration form to set the namespace URI and
WSDL URI for the Web services gateway.

Web services gateway troubleshooting tips
This topic provides hints to help you resolve problems you experience when using
the Web services gateway.

For information on resolving WebSphere-level problems, see Diagnosing and fixing
problems.

To identify and resolve gateway-related problems, you can use the standard
WebSphere Application Server trace and logging facilities. To enable trace for the
gateway, set the application server’s trace string to com.ibm.wsgw.*=all=enabled. If
you encounter a problem that you think might be related to the gateway, you can

722 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

check for error messages in the WebSphere Application Server administrative
console, and in the application server’s stdout.log file. You can also enable the
application server debug trace to provide a detailed exception dump.

5.0.2 If you report a gateway-related problem to IBM Service and Support, please
include in your report the gateway release and build information that is listed
under the About option of the Web services gateway administrative user interface.

The gateway’s user interface uses cascading style sheets to lay out its pages, and
javascript to monitor progress and advise you as you fill in each on-screen form.
So your Web browser must support javascript and cascading style sheets, and it
must be configured so that javascript and style sheets are enabled. How you do
this depends on which browser you use. For example for Netscape, you select Edit
-> Preferences, click Advanced in the Category pane, then confirm that the Enable
Javascript and Enable style sheets check boxes are selected.

A list of the gateway runtime system messages, with details of what each message
means, is given in Web services gateway messages.

Here is a checklist of common problems:

You are about to apply a WebSphere Application Server fix pack or upgrade, but

you do not want to lose your current gateway configuration. 5.0.2

When you apply an upgrade or fix pack to WebSphere Application Server,
the configured gateway is replaced with an upgraded but empty gateway.
To preserve your gateway configuration, use the save application to save
the configuration before you apply the upgrade, then use the restore
application to restore the configuration after you apply the upgrade. For
more information, see Backing up and restoring a gateway configuration.

You have managed to deploy your Web service in the Web services gateway but
you are getting a class cast exception when you invoke the operation which
takes an integer parameter.

Check that your client is using the version of soap.jar that is supplied in
the WebSphere Application Server’s /AppServer/lib/app directory. If you
enable trace, you may see in the trace for the request <SOAP-ENV:Envelope
xmlns:SOAP-ENV=″http://schemas.xmlsoap.org/soap/envelope/″
xmlns:xsi=″http://www.w3.org/1999/XMLSchema-instance″
xmlns:xsd=″http://www.w3.org/1999/XMLSchema″>

The gateway expects the 2001 version of the XML schema. Older versions
of soap.jar (including 2.2) generate 1999 schema. If you have the soap.jar
that is supplied with WebSphere Application Server in the client’s class
path, you should see 2001 schema in the request, which should then work.

The persistent state of the Web services gateway has become out of sync with
the channel applications.

This can happen if you remove and reinstall the Apache SOAP
applications. If you need to do this, then either ensure that all
corresponding channels configured with the Web services gateway are
removed, or remove and reinstall the Web services gateway at the same
time.

Note: The Web services gateway application (wsgw.ear) must be installed
before channel and filter applications. If the gateway application needs to

Chapter 11. Web services gateway: Enabling Web services 723

be reinstalled, all channels and filters must be uninstalled first, then
reinstalled after the gateway application.

You are getting SOAP fault messages, but cannot determine the precise problem
from the fault message.

If you receive a SOAP fault message with a faultstring which is just the
value of one of the parameters of the invocation, that means that that
parameter’s value was invalid. For example if you have a service which
expects an int parameter and you send it a message containing the value
″1.1″, then the fault message you receive simply contains 1.1 as the fault
string:
<faultcode>SOAP-ENV:Client</faultcode>
<faultstring>1.1</faultstring>

Note: This is Apache SOAP behavior, and not something that the gateway
can do anything about.

If you receive a SOAP fault message containing an element that is not
present in the WSDL for the target service, then the error message thrown
can be difficult to identify. There are two possible scenarios:
v The WSDL is deployed to use Generic Classes. In this case the returned

SOAP message contains an IllegalArgument exception. For example:
[Attributes={}] [faultCode=SOAP-ENV:Server]
[faultString=com.ibm.wsgw.WSGWException:
WSGW0043E: Exception while executing

operation createEntry service ExchangeService.
Exception: org.apache.wsif.WSIFException: SOAPException:
SOAP-ENV:ClientNo mapping found for ’com.ibm.jrom.JROMValue’
using encoding style ’http://schemas.xmlsoap.org/soap/encoding/’.;
nested exception is:

[SOAPException: faultCode=SOAP-ENV:Client; msg=No mapping found for
’com.ibm.jrom.JROMValue’ using encoding style
’http://schemas.xmlsoap.org/soap/encoding/’.;
targetException=java.lang.IllegalArgumentException:
No mapping found for ’com.ibm.jrom.JROMValue’ using encoding style
’http://schemas.xmlsoap.org/soap/encoding/’.]]
[faultActorURI=/wsgwsoap1/soaprpcrouter]
...

v The WSDL is deployed to use Deployed Classes. In this case an empty
message is returned. For example:
[Attributes={}] [faultCode=null] [faultString=null] [faultActorURI=null]

[DetailEntries=] [FaultEntries=]

Note: This is Apache SOAP behavior, and not something that the gateway
can do anything about.

You are enabling operation-level authorization, but when you install
wsgwauth.ear, an error message appears in the WebSphere Application Server
administrative console detailing a JNDI problem.

Check that you entered, in the authorization session bean’s ’EJB
References’, the correct JNDI name of the imported Web service enterprise
bean. Note that this is case sensitive.

You are trying to have a Web services gateway send an SOAP/HTTPS message to
another Web services gateway, and you are receiving a Malformed URLException
error.

The Web services gateway can invoke Web services that include https:// in
their addresses, if the Java and WebSphere security properties have been

724 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

configured to allow it. To check your security property settings, see the
topic Invoking Web services over HTTPS

You deselect ’Authorization Policy - Control access to this service’ from the
deployment details for a Web service, and you find the service no longer works.

A number of tasks are required to disable security. Clearing the check box
’Authorization Policy - Control access to this service’ will still leave
WebSphere Application Server security in place, so basic authentication
might still be required.

To disable security fully, use the WebSphere Application Server
administrative console’s Security Center to disable Global Security.

You experience problems with handling Document style SOAP messages.
5.0 +

5.0.1 +

The SOAP message format must be RPC style. The gateway does not
support Document style SOAP messages.

5.0.2

If you are using the Apache SOAP Channel, then the SOAP message
format must be RPC style. To handle Document style SOAP messages, use
the SOAP/HTTP channel (which supports both RPC style and Document
style SOAP messages).

You experience problems with handling SOAP messages with attachments.
5.0 +

5.0.1 +

The gateway does not support SOAP messages with attachments.

5.0.2

To handle SOAP messages with attachments, use the SOAP/HTTP channel.

You experience problems with a Web service that uses complex data types. The
same service works fine, when not using the gateway.

You need to do one of two things to support Web services that use
complex types in the Web services gateway:
v Set the message part representation for the service to Generic classes.
v Set the message part representation for the service to Deployed Java

classes, and make the original classes available to the application server
(either by updating the class path or by putting the JAR file somewhere
like WAS_HOME/lib/app). If you do not have the original classes, you
can use wsdl2java to generate java beans that can contain values of the
complex type for the service, then compile the beans into a JAR file and
make it available to the application server.

For more information on the factors to consider when choosing between
these options, see Data type representation - choosing between Generic
classes and Deployed Java classes.

Chapter 11. Web services gateway: Enabling Web services 725

Note:

v If your Web service has non-bean parameters (that is, it requires a
custom serializer/deserializer) then it is not supported by the current
release of the gateway.

v Not all complex types that are expressible in XML schema are supported
by the current release of the gateway. For more information see Web
services gateway - Supported types.

v See also Complex data types - mapping namespaces to packages.

5.0 +

5.0.1 +

If your Web service contains complex types, and it is deployed to Axis 1.0,
and you used the Axis tools to generate the WSDL file, then you need to
remove the following line in the WSDL schema definition:
<import namespace="any_namespace_name">

Web services gateway messages
WebSphere system messages are logged from a variety of sources, including
application server components and applications. Messages logged by application
server components and associated IBM products start with a unique message
identifier that indicates the component or application that issued the message. For
more information about the message identifier format, see the topic Message
Format.

The rest of this topic contains a list of the Web services gateway runtime system
messages, with details of what each message means.

WSGW0001E: Channel name {0} from gateway configuration differs from that in
JNDI: {1}

Explanation: The name specified for the channel does not match the name
of the channel as defined within the EAR file.

User Response: Ensure that the channel name is specified correctly

WSGW0002E: Error storing endpoint address. Exception: {0}
Explanation: An unexpected exception occurred when storing the endpoint
address for a channel.

User Response: Contact IBM Support

WSGW0003E: Error retrieving endpoint address. Exception: {0}
Explanation: An unexpected exception occurred when retrieving the
endpoint address for a channel.

User Response: Contact IBM Support

WSGW0004E: Not used
Explanation:

User Response:

WSGW0005E: Error retrieving channel name. Exception: {0}
Explanation: An unexpected exception occurred when retrieving the
channel name from JNDI.

User Response: Contact IBM Support

726 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

WSGW0006E: Error deploying service to {1}. Exception: {0}
Explanation: An unexpected error occurred deploying the service to the
given component.

User Response: This error may be caused by a previous failure. Try
redeploying the service using a different gateway service name. If that
fails, reinstalling the channel and gateway applications may remove the
problem.

WSGW0007E: Error getting endpoint URL from channel {0}. Exception: {1}
Explanation: An unexpected error occurred generating the endpoint URL
for the given channel.

User Response: Contact IBM Support

WSGW0008E: Could not determine default port name for target service {0}
Explanation: There are no ports in the WSDL defined for the target service
that are supported by currently available WSIF providers or there is an
error in the WSDL file associated with the port definition or a namespace it
uses.

User Response: Either ensure that a WSIF provider is correctly configured
for the port in the WSDL, or ensure that the WSDL contains correctly
specified port information.

WSGW0009E: Failed to deploy service. Exception: {0}
Explanation: An unexpected error occurred trying to deploy the service.

User Response: Contact IBM Support

WSGW0010E: The namespaceURI attribute cannot be changed when there are
active services

Explanation: The namespaceURI is used to generate WSDL for gateway
services. If this global setting is changed then current WSDL becomes
invalid.

User Response: Either remove all channels or all gateway services from the
gateway configuration and retry the change.

WSGW0011E: Not used
Explanation:

User Response:

WSGW0012E: Not used
Explanation:

User Response:

WSGW0013E: Could not locate home {0}. Exception: {1}
Explanation: The specified home location could not be found in JNDI.

User Response: Ensure that the home location is specified correctly, and
that it appears in JNDI.

WSGW0014E: Not used
Explanation:

User Response:

WSGW0015E: Could not create instance of class {0}. Exception: {1}
Explanation: The gateway failed to create an instance of the specified Java
class.

Chapter 11. Web services gateway: Enabling Web services 727

User Response: Ensure that the Java class has a public constructor with no
parameters.

WSGW0016E: Could not locate class {0}. Exception: {1}
Explanation: The gateway failed to locate the specified Java class.

User Response: Ensure that the Java class is visible to the gateway
application’s classloader.

WSGW0017E: Not used
Explanation:

User Response:

WSGW0018E: Not used
Explanation:

User Response:

WSGW0019E: Failed to clone definition. Exception: {1}
Explanation: An unexpected error occurred cloning a WSDL definition.

User Response: Contact IBM Support

WSGW0020E: Error while loading mapped type class {0}. Exception: {1}
Explanation: An error occurred while trying to load the given Java class
which represents a type in the deployed WSDL for a target service.

User Response: Ensure that the Java class is visible to the gateway
application’s classloader.

WSGW0021E: Expected WSDL definition to contain a <wsdl:type> element with
a schema from one of the ’{0}’, ’{1}’, or ’{2}’ namespaces

Explanation: Schema types in WSDL definitions must be declared using
one of the specified XML Schema namespaces.

User Response: Update the WSDL definition to use the appropriate
namespace.

WSGW0022E: Unexpected Schema->Java problem when parsing WSDL file.
Exception: {0}

Explanation: An unexpected exception occurred when parsing a WSDL
file. This may be due to unsupported elements in the WSDL.

User Response: Contact IBM Support

WSGW0023E: Unexpected Schema->JROM problem when parsing WSDL file.
Exception: {0}

Explanation: An unexpected exception occurred when parsing a WSDL
file. This may be due to unsupported elements in the WSDL.

User Response: Contact IBM Support

WSGW0024E: Channel {0} cannot be removed because it is being used by a
deployed service

Explanation: Channels can only be removed when they are not in use by
gateway services.

User Response: Remove the channel from gateway services to which it is
deployed before removing the channel.

WSGW0025E: Target service identity cannot be specified as null
Explanation: A target service can only be selected using a non-null valid
for the identity.

728 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

User Response: Modify the calling code to ensure that the target service
identity value is never null.

WSGW0026E: Invalid gateway service name {0}. The name must be a valid XML
Schema NCNAME.

Explanation: The name specified for the gateway service does not conform
to the required definition.

User Response: Correct the gateway service name so that it is a valid XML
Schema NCNAME.

WSGW0027E: Port {0} does not exist for target service {1}
Explanation: The requested port does not exist for the target service.

User Response: Ensure that a valid port is requested, or update the target
service WSDL to contain a port of the requested name.

WSGW0028E: No binding for port {0} for target service {1}
Explanation: The requested port for the target service does not have a
binding defined in the WSDL definition of the service.

User Response: Ensure that the target service WSDL has a binding for the
requested port, or use a different port name.

WSGW0029E: No portType for binding {0} for port {1} for target service {2}
Explanation: The requested port for the target service does not have a
portType defined in the WSDL definition of the service.

User Response: Ensure that the target service WSDL has a portType for the
requested port, or use a different port name.

WSGW0030E: Not used
Explanation:

User Response:

WSGW0031E: Channel name {0} already exists
Explanation: The name specified for the channel is the same as that of a
channel that is currently deployed.

User Response: Choose a different name for the channel, or remove the
existing channel of the given name.

WSGW0032E: Channel name {0} not found
Explanation: No channel is currently deployed with the given name.

User Response: Use the name of a channel that is currently deployed.

WSGW0033E: Filter {0} cannot be removed because it is being used by a
deployed service

Explanation: Filters can only be removed when they are not in use by
gateway services.

User Response: Remove the filter from gateway services to which it is
deployed before removing the filter.

WSGW0034W: Invocation of filter {0} failed. Exception: {1}
Explanation: An unexpected exception was thrown during processing of
the given filter.

User Response: Contact IBM Support

WSGW0035E: Filter context version {0} not supported
Explanation: The context version that the filter requires is not supported
by this version of the gateway.

Chapter 11. Web services gateway: Enabling Web services 729

User Response: Ensure that the filter is requesting the correct context
version. It may be necessary to upgrade the gateway to support the filter.

WSGW0036E: Target service identity information {0} not matched for gateway
service {1}

Explanation: A target service was requested by identity, but the identity
information does not match any currently deployed target service.

User Response: Ensure that the identity information is correct, and that
there is a target service deployed to the given gateway service with the
right identity information.

WSGW0037E: Filter name {0} already exists
Explanation: The name specified for the filter is the same as that of a filter
that is currently deployed.

User Response: Choose a different name for the filter, or remove the
existing filter of the given name.

WSGW0038E: Filter name {0} not found
Explanation: No filter is currently deployed with the given name.

User Response: Use the name of a filter that is currently deployed.

WSGW0039E: Error loading state from {0}. Exception {1}
Explanation: An unexpected exception occurred loading the state of the
gateway from the given location.

User Response: Ensure that the given location is visible to the gateway
application.

WSGW0040E: Failed to convert definition to string. Exception: {0}
Explanation: An unexpected exception occurred converting a WSDL
definition into a string in order to display it or return it to an application.

User Response: Contact IBM Support

WSGW0041E: Failed to save state. Exception {0}
Explanation: An unexpected exception occurred when saving the state of
the gateway.

User Response: Contact IBM Support

WSGW0042W: No target services available to get service definition
Explanation: A request was made for the WSDL definition for the gateway
service, however no target services have been defined for the gateway
service, so it is not possible to generate a WSDL definition.

User Response: Deploy one or more target services to the gateway service.

WSGW0043E: Exception while executing operation {0} service {1}. Exception: {2}
Explanation: An unexpected exception occurred when passing a request on
to a target web service.

User Response: Ensure that the gateway service and target service are
correctly deployed (using the correct message part representation). Ensure
that the target service is available and responds correctly to direct requests
(i.e. not through the gateway).

WSGW0044E: Filter position {0} invalid
Explanation: The specified position for addition or removal of the filter
was not valid.

User Response: Ensure a valid value is specified. The value should be -1, 0
or a positive integer.

730 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

WSGW0045E: Filter not found in list
Explanation: An attempt was made to remove a filter from a gateway
service specifying -1 as the index, but the filter is not in the list at all.

User Response: Ensure that the correct filter is specified.

WSGW0046E: Channel {0} already defined for gateway service {1}
Explanation: The given channel has already been defined for the gateway
service.

User Response: Ensure that the correct channel name is specified.

WSGW0047E: Channel {0} not defined for gateway service {1}
Explanation: The channel cannot be removed from the gateway service as
it is not currently defined for the gateway service.

User Response: Ensure that the correct channel name is specified.

WSGW0048E: UDDI reference {0} already defined for gateway service {1}
Explanation: The given UDDI reference has already been defined for the
gateway service.

User Response: Ensure that the correct UDDI reference name is specified.

WSGW0049E: UDDI reference {0} not defined for gateway service {1}
Explanation: The UDDI reference cannot be removed from the gateway
service as it is not currently defined for the gateway service.

User Response: Ensure that the correct UDDI reference name is specified.

WSGW0050E: Target service with location {0} already defined for gateway service
{1} Explanation: The given target service location has already been defined for

the gateway service.

User Response: Ensure that the correct target service location is specified.

WSGW0051E: Target service with location {0} not defined for gateway service {1}
Explanation: The target service location cannot be removed from the
gateway service as it is not currently defined for the gateway service.

User Response: Ensure that the correct target service location is specified.

WSGW0052E: Target service with location {0} was not found for gateway service
{1} Explanation: The target service WSDL definition could not be obtained

from the given location.

User Response: Ensure that the correct target service location is specified.

WSGW0053E: gateway service {0} cannot be removed as active entities and force
not specified

Explanation: A gateway service with one or more target services, channels,
filters or UDDI references cannot be removed.

User Response: Remove the target services, channels, filters and UDDI
references from the gateway service.

WSGW0054E: An exported definition for gateway service {0} is not available as
there are no defined channels for the service

Explanation: A request was made for the WSDL definition for the gateway
service, however no channels have been defined for the gateway service, so
it is not possible to generate a WSDL definition.

User Response: Deploy one or more channels to the gateway service.

WSGW0055E: Not used
Explanation:

Chapter 11. Web services gateway: Enabling Web services 731

User Response:

WSGW0056E: No default target service available for {0}
Explanation: The default target service location cannot be obtained for the
gateway service as no target services are defined.

User Response: Ensure that one or more target services are defined for the
gateway service.

WSGW0057E: No receiving channel name in context
Explanation: A request has reached the gateway that does not contain the
receiving channel name in the context.

User Response: Contact the supplier of the channel application.

WSGW0058E: Channel {0} not defined for gateway service {1}
Explanation: A request has reached the gateway for the given service
through a channel which is not defined for that service. The request is
rejected.

User Response: If the channel should be valid for the service, add the
channel, otherwise check that the client of the request is making a valid
request. This exception may be thrown when a client is making a malicious
attack.

WSGW0059E: gateway service {0} does not exist
Explanation: A request was made for a gateway service that does not exist.

User Response: Ensure that the correct gateway service name is specified.

WSGW0060E: gateway service {0} already exists
Explanation: An attempt was made to create a new gateway service using
a name that is used by an existing gateway service.

User Response: Use a different name for the gateway service.

WSGW0061E: Could not find Service in UDDI registry {0} with parameters {1},
{2}, {3} Explanation: The given parameters for UDDI lookup did not yield a

match.

User Response: Ensure that the parameters are correct. Also ensure that
the UDDI reference parameters are correct and correspond to those used to
publish the service to UDDI.

WSGW0062E: Target service WSDL contains no <service> elements
Explanation: The target service WSDL could be loaded but does not
contain a <service> element. This is necessary to be able to invoke the
target service.

User Response: Ensure that the target service WSDL contains one or more
<service> element.

WSGW0063E: Target service WSDL contains more than one service, and either
target service name or namespace not specified

Explanation: When adding a target service to a gateway service, you must
specify both the service name and namespace values if there is more than
one <service> element in the target service WSDL.

User Response: Specify the target service name and namespace as well as
the location.

WSGW0064E: Target service name {0} does not match service name in WSDL: {1}
Explanation: A target service name was specified that is not the same as
any target service name in the WSDL at the given location.

732 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

User Response: Ensure that a valid target service name is specified.

WSGW0065E: Target service namespace {0} does not match service namespace in
WSDL: {1}

Explanation: A target service namespace was specified that is not the same
as any target service namespace in the WSDL at the given location.

User Response: Ensure that a valid target service namespace is specified.

WSGW0066E: Target service name {0} or namespace {1} not found in WSDL
definition

Explanation: A target service name and namespace were both specified,
but do not match any target service name and namespace combination in
the WSDL at the given location.

User Response: Ensure that a valid target service name and namespace
combination is specified.

WSGW0067E: UDDI reference {0} cannot be removed because it is being used by
a deployed service

Explanation: UDDI references can only be removed when they are not in
use by gateway services.

User Response: Remove the UDDI reference from gateway services to
which it is deployed before removing the UDDI reference.

WSGW0068E: UDDI reference {0} already exists
Explanation: The name specified for the UDDI reference is the same as
that of a UDDI reference that is currently deployed.

User Response: Choose a different name for the UDDI reference, or
remove the existing UDDI reference of the given name.

WSGW0069E: UDDI reference {0} not found
Explanation: No UDDI reference is currently deployed with the given
name.

User Response: Use the name of a UDDI reference that is currently
deployed.

WSGW0070E: Invalid target service location type {0}
Explanation: The location type for the target service is not a valid value.

User Response: Ensure that a correct value is specified for the target
service location type.

WSGW0071E: Failed to load URL definition from {0}
Explanation: The URL location specified was incorrect, or the WSDL it
refers to cannot be loaded.

User Response: Ensure that the URL location is correct, and refers to a
valid WSDL document.

WSGW0072E: Failed to load UDDI definition from {0}
Explanation: The UDDI location specified was incorrect, or the WSDL it
refers to cannot be loaded.

User Response: Ensure that the UDDI location is correct, and refers to a
valid WSDL document.

WSGW0073W: Not used
Explanation:

User Response:

Chapter 11. Web services gateway: Enabling Web services 733

WSGW0074E: Not used
Explanation:

User Response:

WSGW0075E: Failed to set gateway end point address. Exception {0}
Explanation: An unexpected exception occurred when automatically
setting the gateway’s end point address.

User Response: Contact IBM Support

WSGW0076E: Unable to access the gateway configuration bean. Exception {0}
Explanation: An unexpected exception occurred looking up the gateway’s
configuration bean in JNDI.

User Response: Restart the application server.

WSGW0077E: Failed to remove gateway configuration session. Exception {0}
Explanation: An unexpected exception occurred removing the session bean
while access the gateway’s configuration bean.

User Response: Contact IBM Support

WSGW0078E: Unable to access the gateway EndPoint bean. Exception {0}
Explanation: An unexpected exception occurred looking up the gateway’s
endpoint bean in JNDI.

User Response: Restart the application server.

WSGW0079E: Failed to remove endpoint session. Exception {0}
Explanation: An unexpected exception occurred removing the session bean
while access the gateway’s endpoint bean.

User Response: Contact IBM Support

WSGW0080E: Performance monitoring error. Exception {0}
Explanation: An unexpected exception occurred when recording
performance monitoring information.

User Response: Contact IBM Support

WSGW0081E: Unexpected error in method {0}. Exception {1}
Explanation: An unexpected exception occurred in the given method.

User Response: Contact IBM Support

WSGW0082E: Unable to determine WAS security setting
Explanation: The WAS security setting could not be determined. It will be
assumed that security is enabled.

User Response: No action required.

WSGW0083W: Failed to authorize request for operation {0} on service {1}.
Exception {2}

Explanation: Authorization of the given request failed. The request has
been rejected.

User Response: Ensure that the required authorization bean has been
generated for the given service, and that the correct authorization policy is
defined.

WSGW0084W: Invocation of filter {0} version {1} failed. Exception {2}
Explanation: An exception was thrown during processing of the given
filter. Processing of the request continues.

734 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

User Response: Investigate the reason for the exception being thrown by
the filter. Refer to the documentation for the filter on how to resolve the
problem.

WSGW0085E: Failed to publish service {0} to UDDI registry {1}. Exception: {2}
Explanation: An unexpected exception occurred when publishing the given
service to a UDDI registry.

User Response: Ensure that the properties of the gateway service and
UDDI reference are specified correctly.

WSGW0086E: Failed to unpublish service {0} from UDDI registry {1}. Exception:
{2} Explanation: An unexpected exception occurred when unpublishing the

given service from a UDDI registry.

User Response: Ensure that the properties of the gateway service and
UDDI reference are specified correctly.

WSGW0087I: Published service {0} to UDDI registry {1}
Explanation: The service was successfully published to the UDDI registry.

User Response: None

WSGW0088I: Unpublished service {0} from UDDI registry {1}
Explanation: The service was successfully unpublished from the UDDI
registry.

User Response: None

WSGW0089I: No MessageWarehouse registered. Requests will not be logged
Explanation: A MessageWarehouse implementation was not found at the
expected location in JNDI, so none is being used.

User Response: If a MessageWarehouse has been implemented, ensure that
it is bound to JNDI at the correct location.

WSGW0090I: No ExceptionHandler registered. Exceptions will not be handled
Explanation: An ExceptionHandler implementation was not found at the
expected location in JNDI, so none is being used.

User Response: If an ExceptionHandler has been implemented, ensure that
it is bound to JNDI at the correct location.

WSGW0091I: Usage: java -jar GenAuth -DWAS_HOME=<was.install.directory>
<HostName> <ServiceName>

where <was.install.directory> is the location of the WebSphere
installation directory and <HostName> is the url pointed to by
the installation of the gateway and <ServiceName>
is the name of the deployed gateway service.
(Please note the ServiceName is case sensitive).
For example
java -jar GenAuth.jar -DWAS_HOME=

c:\\websphere\\AppServer http://host.machine.name.com/wsgw ServiceName

Successful execution will generate a file named <ServiceName>.ear

Explanation: Usage statement. This message is used by the
WSGWAuthGen command line utility.

User Response: No action required.

WSGW0092I: Retrieving Service :
Explanation: Progress message indicating that the service definition is
being retrieved. This message is used by the WSGWAuthGen command
line utility.

Chapter 11. Web services gateway: Enabling Web services 735

User Response: No action required.

WSGW0093I: Retrieving Port Type :
Explanation: Progress message indicating that the port type information is
being retrieved. This message is used by the WSGWAuthGen command
line utility.

User Response: No action required.

WSGW0094I: Retrieving Methods :
Explanation: Progress message indicating that method information is being
retrieved. This message is used by the WSGWAuthGen command line
utility.

User Response: No action required.

WSGW0095I: Making Directory :
Explanation: Progress message indicating that a directory is being created.
This message is used by the WSGWAuthGen command line utility.

User Response: No action required.

WSGW0096I: Using Directory :
Explanation: Progress message indicating that a directory is being used.
This message is used by the WSGWAuthGen command line utility.

User Response: No action required.

WSGW0097I: About to compile....
Explanation: Progress message indicating that a compilation is about to
start. This message is used by the WSGWAuthGen command line utility.

User Response: No action required.

WSGW0098I: Command Status :
Explanation: General command status message. This message is used by
the WSGWAuthGen command line utility.

User Response: No action required.

WSGW0099I: About to create jar....
Explanation: Progress message indicating that a JAR file is about to be
created. This message is used by the WSGWAuthGen command line utility.

User Response: No action required.

WSGW0100I: About to create ear....
Explanation: Progress message indicating that an EAR file is about to be
created. This message is used by the WSGWAuthGen command line utility.

User Response: No action required.

WSGW0101E: Error retrieving port from service {1}
Explanation: An error occurred retrieving the port from the service in the
WSDL. This message is used by the WSGWAuthGen command line utility.

User Response: Ensure that the service name is specified correctly and is
deployed to the gateway with at least one target service and one channel.

WSGW0102E: Error retrieving service {0}
Explanation: An error occurred retrieving the service. This message is used
by the WSGWAuthGen command line utility.

User Response: Ensure that the service name is specified correctly and is
deployed to the gateway with at least one target service and one channel.

736 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

WSGW0103E: Exception while retrieving service definition from URL:
{0}/ServiceDefinition?name={1}. Exception: {2}

Explanation: An unexpected exception occurred retrieving WSDL from the
given location. This message is used by the WSGWAuthGen command line
utility.

User Response: Ensure that the service name is specified correctly and is
deployed to the gateway with at least one target service and one channel.

WSGW0104E: Error retrieving methods from service {0}
Explanation: An unexpected exception occurred retrieving the methods
that correspond to operations on the service.

User Response: Contact IBM Support

WSGW0105E: Error retrieving WAS_HOME environment variable
Explanation: The value of the WAS_HOME environment variable could
not be retrieved.

User Response: Ensure that the WAS_HOME variable is set correctly in the
environment under which the command is being executed.

WSGW0106E: Error compiling files
Explanation: An unexpected error occurred compiling the generated Java
files.

User Response: Contact IBM Support

WSGW0107E: Error executing JAR command
Explanation: An unexpected error occurred generating a JAR file.

User Response: Contact IBM Support

WSGW0110E: A client attempted to load imported URL {0} for gateway service
{1}. This URL is not imported by the definition for that service.

Explanation: An attempt was made to use the gateway’s import mapping
servlet to load information from a URL that does not correspond to one
that is referenced by the WSDL definition for that service.

User Response: Ensure that the client is making a valid request. This may
be a malicious attempt to obtain information that the client does not have
access to.

WSGW0111W: Unsupported elements within the WSDL definition for target
service {0} were ignored. The functionality of this service may be compromised.

Explanation: In order to be able to use the given WSDL definition within
the gateway, certain elements of the definition were ignored.

User Response: Refer to the service provider’s documentation to determine
whether this will affect the use of the service.

WSGW0120E: Exception while removing ConversationPart {0} from Correlation
Service. Exception {1}

Explanation: An unexpected exception occurred when using the
Correlation Service.

User Response: Contact IBM Support

WSGW0121E: Exception while accessing ConversationPart {0} from Correlation
Service. Exception {1}

Explanation: An unexpected exception occurred when using the
Correlation Service.

User Response: Contact IBM Support

Chapter 11. Web services gateway: Enabling Web services 737

WSGW0122E: Exception while storing Serializable {0} at Correlation Service.
Exception {1}

Explanation: An unexpected exception occurred when using the
Correlation Service.

User Response: Contact IBM Support

WSGW0123E: Exception while storing Serializable {0} with id {1} at Correlation
Service. Exception {1}

Explanation: An unexpected exception occurred when using the
Correlation Service.

User Response: Contact IBM Support

Web services gateway: Resources for learning
Use the following links to find supplementary information about getting started
with the Web services gateway. The information resides on IBM and non-IBM
Internet sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.
v WebSphere Version 5 Web services Handbook. This Redbook illustrates with

suitable demonstration applications how Web services can be implemented using
the IBM product portfolio, especially WebSphere Application Server Version 5
and WebSphere Studio Application Developer Version 5. It includes chapters on
the gateway and on Web service security.

v Samples Central.The gateway samples, and documentation on how to use them,
are available through the Samples Central page of the IBM WebSphere
Developer Domain Web site.

v InfoCenter for WebSphere Application Server Edge components. This InfoCenter
contains a library of PDF online books covering all aspects of the WebSphere
Application Server Edge components. gateway clustering builds upon the load
balancing capabilities of these components.

v The Web Services Security (WS-Security) specification. A major area of gateway
security is based upon this emerging standard.

v The IBM Web services gateway: Technical Overview. A different version of the
gateway is available as a component of a product called IBM WebSphere
Business Connection. This brief technical summary from WebSphere Business
Connection applies equally well to the version of the gateway in WebSphere
Application Server.

For supplementary information about Web services in general, see “Web services:
Resources for learning” on page 479.

The gateway builds on the (Web Services Invocation Framework) (WSIF), which
allows the gateway to pass on Web service invocations to any WSDL-defined Web
service. For supplementary information about WSIF, see “WSIF: Resources for
learning” on page 549.

738 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg246891.html?Open
http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html
http://www-3.ibm.com/software/webservers/appserv/ecinfocenter.html
http://www-106.ibm.com/developerworks/webservices/library/ws-secure/
http://www-3.ibm.com/software/integration/busconn/gateway.html

Chapter 12. Class loading

Class loaders affect the packaging of applications and the run-time behavior of
packaged applications deployed on application servers.

Steps for this task
1. Read about class loaders. The article ″Class loading: Resources for learning″

points to additional sources.
2. If necessary, migrate class-loader Module Visibility Mode settings for Version

4.0.x applications to Version 5.0 application or WAR class-loader policies.
3. When assembling an enterprise application resource (EAR) file that has EJB

modules, set the classpath for the class loader to use during packaging.
4. (Optional) If an application module uses a resource, create a resource provider

that specifies the directory name of the resource drivers. Do not specify the
resource JAR file names. All JAR files in the specified directory will be added
into the classpath of the WebSphere Application Server extensions class loader.

5. Configure class loaders of an application server for the run-time environment.
a. Click Servers > Application Servers > server_name and, on the settings page

for an application server, set the application class-loader policy and
application class-loader mode.
The application class-loader policy controls the isolation of applications
running in the system. When set to SINGLE, applications are not isolated; a
single application class loader is used to contain all EJB modules,
dependency JAR files, and shared libraries in the system. When set to
MULTIPLE, applications are isolated from each other; each application
receives its own class loader to load that application’s EJB modules,
dependency JAR files, and shared libraries.
The application class-loader mode specifies the class-loader mode when the
application class-loader policy is SINGLE. PARENT_FIRST causes the class
loader to first delegate the loading of classes to its parent class loader before
attempting to load the class from its local classpath. PARENT_LAST causes
the class loader to first attempt to load classes from its local classpath before
delegating the class loading to its parent. This allows an application class
loader to override and provide its own version of a class that exists in the
parent class loader.

b. On the settings page for an application server, click Classloader. On the
Classloader page, click New.

c. On the settings page for a class loader, specify the class-loader mode.
PARENT_FIRST causes the class loader to delegate the loading of classes to
its parent class loader before attempting to load the class from its local
classpath. PARENT_LAST causes the class loader to attempt to load classes
from its local classpath before delegating the class loading to its parent.
Then, click OK.

d. (Optional) On the settings page for a class loader, click Libraries. From the
Library Ref page, click Add. On the settings page for a library reference,
specify variables for the library reference as needed and click OK. Repeat
the previous step until you define a library reference instance for each
library file that your application needs. To define a library reference, you
must first define one or more shared libraries.

© Copyright IBM Corp. 2003 739

6. When configuring an installed enterprise application for deployment in the
run-time environment, set the class-loader mode and the WAR class-loader
policy.

7. When configuring an installed Web module for deployment in the run-time
environment, set the class-loader mode.

Class loaders
Class loaders are part of the Java virtual machine (JVM) code and are responsible
for finding and loading class files. Class loaders affect the packaging of
applications and the run-time behavior of packaged applications deployed on
application servers.

The run-time environment of WebSphere Application Server uses the following
class loaders to find and load new classes for an application in the following order:
1. The bootstrap, extensions, and CLASSPATH class loaders created by the JVM.

The bootstrap class loader uses the boot classpath (typically classes in jre/lib)
to find and load classes. The extensions class loader uses the system property
java.ext.dirs (typically jre/lib/ext) to find and load classes. The CLASSPATH
class loader uses the CLASSPATH environment variable to find and load
classes.
The CLASSPATH class loader contains the J2EE APIs of the WebSphere
Application Server product (inside j2ee.jar). Because the J2EE APIs are in this
class loader, you can add libraries that depend on J2EE APIs to the classpath
system property to extend a server’s classpath. However, a preferred method of
extending a server’s classpath is to add a shared library.

2. A WebSphere-specific extensions class loader.
The WebSphere extensions class loader loads the WebSphere run-time and J2EE
classes that are required at run time. The extensions class loader uses a
ws.ext.dirs system property to determine the path used to load classes. Each
directory in the ws.ext.dirs classpath and every JAR file or ZIP file in these
directories is added to the classpath used by this class loader.
The WebSphere extensions class loader also loads resource provider classes into
a server if an application module installed on the server refers to a resource
that is associated with the provider and if the provider specifies the directory
name of the resource drivers.

3. One or more application module class loaders that load elements of enterprise
applications running in the server.
The application elements can be Web modules, EJB modules, resource adapters,
and dependency JAR files. Application class loaders follow J2EE class-loading
rules to load classes and JAR files from an enterprise application. The
WebSphere run time enables you to associate a shared library classpath with an
application.

Each class loader is a child of the class loader above it. That is, the application
module class loaders are children of the WebSphere-specific extensions class loader,
which is a child of the CLASSPATH Java class loader. Whenever a class needs to
be loaded, the class loader usually delegates the request to its parent class loader.
If none of the parent class loaders can find the class, the original class loader
attempts to load the class. Requests can only go to a parent class loader; they
cannot go to a child class loader. If the WebSphere class loader is requested to find
a class in a J2EE module, it cannot go to the application module class loader to
find that class and a ClassNotFoundException occurs. Once a class is loaded by a

740 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

class loader, any new classes that it tries to load reuse the same class loader or go
up the precedence list until the class is found.

Class-loader isolation policies

The number and function of the application module class loaders depends on the
class-loader policies specified in the server configuration. Class loaders provide
multiple options for isolating applications and modules to enable different
application packaging schemes to run on an application server.

Two class-loader policies control the isolation of applications and modules:

Application class-loader policy
Application class loaders consist of EJB modules, dependency JAR files,
resource adapters, and shared libraries. Depending on the application
class-loader policy, an application class loader can be shared by multiple
applications (SINGLE) or unique for each application (MULTIPLE). The
application class-loader policy controls the isolation of applications running
in the system. When set to SINGLE, applications are not isolated. When set
to MULTIPLE, applications are isolated from each other.

WAR class-loader policy
By default, Web module class loaders load the contents of the
WEB-INF/classes and WEB-INF/lib directories. The application class
loader is the parent of the Web module class loader. You can change the
default behavior by changing the application’s WAR class-loader policy.

The WAR class-loader policy controls the isolation of Web modules. If this
policy is set to APPLICATION, then the Web module contents also are
loaded by the application class loader (in addition to the EJB files, RAR
files, dependency JAR files, and shared libraries). If the policy is set to
MODULE, then each web module receives its own class loader whose
parent is the application class loader.

Note: WebSphere server class loaders never load application client modules.

For each application server in the system, you can set the application class-loader
policy to SINGLE or MULTIPLE. When the application class-loader policy is set to
SINGLE, then a single application class loader loads all EJB modules, dependency
JAR files, and shared libraries in the system. When the application class-loader
policy is set to MULTIPLE, then each application receives its own class loader used
for loading that application’s EJB modules, dependency JAR files, and shared
libraries.

This application class loader can load each application’s Web modules if that WAR
module’s class-loader policy is also set to APPLICATION. If the WAR module’s
class-loader policy is set to APPLICATION, then the application’s loader loads the
WAR module’s classes. If the WAR class-loader policy is set to MODULE, then
each WAR module receives its own class loader.

The following example shows that when the application class-loader policy is set
to SINGLE, a single application class loader loads all EJB modules, dependency
JAR files, and shared libraries of all applications on the server. The single
application class loader can also load Web modules if an application has its WAR
class-loader policy set to APPLICATION. Applications having a WAR class-loader
policy set to MODULE use a separate class loader for Web modules.

Chapter 12. Class loading 741

Application class-loader policy: SINGLE

Application 1
Module: EJB1.jar
Module: WAR1.war

MANIFEST Class-Path: Dependency1.jar
WAR Classloader Policy = MODULE

Application 2
Module: EJB2.jar
MANIFEST Class-Path: Dependency2.jar
Module: WAR2.war
WAR Classloader Policy = APPLICATION

WebSphere extensions classloader

Application classloader

WAR classloader

Classpath:
WebSphere/AppServer/classes
WebSphere/AppServer/lib
WebSphere/AppServer/lib/ext

WAR1.war

Classpath:
Ejb1.jar
Dependency1.jar
Ejb1.jar
Dependency2.jar
WAR2.war (WEB-INF/classes, ...)

The following example shows that when the application class-loader policy of an
application server is set to MULTIPLE, each application on the server has its own
class loader. An application class loader also loads its Web modules if the
application’s WAR class-loader policy is set to APPLICATION. If the policy is set
to MODULE, then a Web module uses its own class loader.
Application class-loader policy: MULTIPLE

Application 1
Module: EJB1.jar
Module: WAR1.war
MANIFEST Class-Path: Dependency1.jar
WAR Classloader Policy = MODULE

Application 2
Module: EJB2.jar
MANIFEST Class-Path: Dependency2.jar
Module: WAR2.war
WAR Classloader Policy = APPLICATION

742 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

WebSphere extensions classloader

Application classloader Application classloader

WAR classloader

Classpath:
WebSphere/AppServer/classes
WebSphere/AppServer/lib
WebSphere/AppServer/lib/ext

WAR1.war

Classpath:
Ejb1.jar
Dependency1.jar

Classpath:
Ejb2.jar
Dependency2.jar
WAR2.war (WEB-INF/classes, ...)

Class-loader modes

There are two possible values for a class-loader mode:

PARENT_FIRST
The PARENT_FIRST class-loader mode causes the class loader to first
delegate the loading of classes to its parent class loader before attempting
to load the class from its local classpath. This is the default for class-loader
policy and for standard JVM class loaders.

PARENT_LAST
The PARENT_LAST class-loader mode causes the class loader to first
attempt to load classes from its local classpath before delegating the class
loading to its parent. This policy allows an application class loader to
override and provide its own version of a class that exists in the parent
class loader.

The following settings determine a class loader’s mode:
v If the application class-loader policy of an application server is SINGLE, the

application class-loader policy of an application server defines the mode for an
application class loader.

v If the application class-loader policy of an application server is MULTIPLE, the
class-loader mode of an application defines the mode for an application class
loader.

v If the WAR class-loader policy of an application is MODULE, the WAR
class-loader policy of a Web module defines the mode for a WAR class loader.

Class loader collection
Use this page to manage class-loader instances on an application server. A class
loader determines whether an application class loader or a parent class loader
finds and loads Java class files for an application.

To view this administrative console page, click Servers > Application Servers >
server_name > Classloader.

Chapter 12. Class loading 743

Classloader ID
States a string unique to the server identifying the class-loader instance. The
product assigns the identifier.

Classloader Mode
Specifies the class-loader mode when the application class-loader policy is SINGLE.
PARENT_FIRST causes the class loader to delegate the loading of classes to its
parent class loader before attempting to load the class from its local classpath.
PARENT_LAST causes the class loader to attempt to load classes from its local
classpath before delegating the class loading to its parent; this allows an
application class loader to override and provide its own version of a class that
exists in the parent class loader.

Class loader settings
Use this page to configure a class loader for applications that reside on an
application server.

To view this administrative console page, click Servers > Application Servers >
server_name > Classloader > class_loader_ID.

Classloader ID
States a string unique to the server identifying the class-loader instance. The
product assigns the identifier.

Data type String

Classloader Mode
Specifies the class-loader mode when the application class-loader policy is SINGLE.
PARENT_FIRST causes the class loader to delegate the loading of classes to its
parent class loader before attempting to load the class from its local classpath.
PARENT_LAST causes the class loader to attempt to load classes from its local
classpath before delegating the class loading to its parent; this allows an
application class loader to override and provide its own version of a class that
exists in the parent class loader.

Data type String
Default PARENT_FIRST

Migrating the class-loader Module Visibility Mode setting
WebSphere Application Server Version 4.0.x had a server-wide configuration
setting called Module Visibility Mode. For Version 5.0, you use application or
WAR class-loader policies instead of module visibility modes. The Version 5.0
policies provide additional flexibility because you can configure applications
running in a server for an application class-loader policy of SINGLE or MULTIPLE
and for a WAR class-loader policy of APPLICATION or MODULE.

To migrate module visibility modes in your Version 4.0.x applications to their
equivalents in Version 5.0, change the settings for your Version 4.0.x applications
and modules to the Version 5.0 values shown in the table below.

Version 4.0.x module
visibility mode

Version 5.0 application
class-loader policy

Version 5.0 WAR class-loader
policy

Server SINGLE APPLICATION

744 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Compatibility SINGLE MODULE
Application MULTIPLE APPLICATION
Module* MULTIPLE MODULE
J2EE MULTIPLE MODULE

*There is no exact equivalent for the Version 4.0.x Module mode because it isolated
EJB modules within an application.

Class loading: Resources for learning
Use the following links to find relevant supplemental information about class
loaders. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v Programming model and decisions
v Programming instructions and examples
v Programming specifications

Programming model and decisions

v J2EE Class Loading Demystified
(http://www7b.boulder.ibm.com/wsdd/library/techarticles/0112_deboer/
deboer.html)

v Understanding J2EE Application Server Class Loading Architectures
(http://www.theserverside.com/resources/article.jsp?l=ClassLoading)

Programming instructions and examples

v Developing and Deploying Modular J2EE Applications with WebSphere
Studio Application Developer and WebSphere Application Server
(http://www7b.boulder.ibm.com/wsdd/library/techarticles/
0206_robinson/robinson.html)

v IBM WebSphere Application Server Programming (http://www.mcgraw-
hill.co.uk/html/0072224592.html)

Programming specifications

v Sun’s J2EETM Platform Specification
(http://java.sun.com/j2ee/download.html#platformspec)

v Sun’s J2EETM Extension Mechanism Architecture
(http://java.sun.com/j2se/1.4/docs/guide/extensions/spec.html)

Chapter 12. Class loading 745

http://www7b.boulder.ibm.com/wsdd/library/techarticles/0112_deboer/deboer.html
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0112_deboer/deboer.html
http://www.theserverside.com/resources/article.jsp?l=ClassLoading
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0206_robinson/robinson.html
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0206_robinson/robinson.html
http://www.mcgraw-hill.co.uk/html/0072224592.html
http://www.mcgraw-hill.co.uk/html/0072224592.html
http://java.sun.com/j2ee/download.html#platformspec
http://java.sun.com/j2se/1.4/docs/guide/extensions/spec.html

746 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 13. Using EJB query

The EJB query language is used to specify a query over container-managed entity
beans. The language is similar to SQL. An EJB query is independent of the bean’s
mapping to a persistent store.

An EJB query can be used in three situations:
v To define a finder method of an EJB entity bean.
v To define a select method of an EJB entity bean.
v To dynamically specify a query using the executeQuery() dynamic API.

Finder and select queries are specified in the bean’s deployment descriptor using
the <ejb-ql> tag. Queries specified in the deployment descriptor are compiled into
SQL during deployment. Dynamic queries require the interface provided by
WebSphere Application Server Enterprise.

WebSphere’s EJB query language is compliant with the EJB QL defined in Sun’s
EJB 2.0 specification and has additional capabilities as listed in the topic
Comparison of EJB 2.0 specification and WebSphere Query Language.

In your WebSphere application, you can define an EJB query in the following
ways:
v Application Assembly Tool. When assembling an EJB 2.0 entity bean, specify

the <ejb-ql> tag for the finder() or select() method.
v WebSphere Studio Application Developer. When defining an entity bean,

specify the <ejb-ql> tag for the finder or select method.
v Dynamic query service. Add the executeQuery() method to your application.

The dynamic query API is provided as an Enterprise Extension to WebSphere
Application Server.

Before using EJB query, familiarize yourself with query language concepts, starting
with the topic, EJB Query Language.

Usage scenario

See the topic ″Example: EJB queries″.

EJB query language
An EJB query is a string that contains the following elements:
v a SELECT clause that specifies the EJBs or values to return;
v a FROM clause that names the bean collections;
v an optional WHERE clause that contains search predicates over the collections;
v an optional GROUP BY and HAVING clause (see Aggregation functions);
v an optional ORDER BY clause that specifies the ordering of the result collection.

The SELECT clause is optional in order to maintain compatibility with WebSphere
Application Server Version 4.

© Copyright IBM Corp. 2003 747

Collections of entity beans are identified in EJB queries through the use of their
abstract schema name in the query FROM clause.

The elements of EJB query language are discussed in more detail in the following
related topics.

Example: EJB queries
Here is an example EJB schema, followed by a set of example queries:

DeptBean schema

Entity bean name (EJB name) DeptEJB (not used in query)

Abstract schema name DeptBean

Implementation class com.acme.hr.deptBean (not used in query)

Persistent attributes (cmp fields) v deptno - Integer (key)

v name - String

v budget - BigDecimal

Relationships v emps - 1:Many with EmpEJB

v mgr - Many:1 with EmpEJB

EmpBean schema

Entity bean name (EJB name) EmpEJB (not used in query)

Abstract schema name EmpBean

Implementation class com.acme.hr.empBean (not used in query)

Persistent attributes (cmp fields) v empid - Integer (key)

v name - String

v salary - BigDecimal

v bonus - BigDecimal

v hireDate - java.sql.Date

v birthDate - java.util.Calendar

v address - com.acme.hr.Address

Relationships v dept - Many:1 with DeptEJB

v manages - 1:Many with DeptEJB

Address is a serializable object used as cmp field in EmpBean. The definition of
address is as follows:

public class com.acme.hr.Address extends Object implements Serializable {
public String street;
public String state;
public String city;
public Integer zip;

public double distance (String start_location) { ... } ;
public String format () { ... } ;

}

The following query returns all departments:
SELECT OBJECT(d) FROM DeptBean d

748 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The following query returns departments whose name begins with the letters
″Web″. Sort the result by name:
SELECT OBJECT(d) FROM DeptBean d WHERE d.name LIKE ’Web%’ ORDER BY d.name

The keywords SELECT and FROM are shown in uppercase in the examples but are
case insensitive. If a name used in a query is a reserved word, the name must be
enclosed in double quotes to be used in the query. There is a list of reserved words
later in this document. Identifiers enclosed in double quotes are case sensitive. This
example shows how to use a cmp field that is a reserved word:
SELECT OBJECT(d) FROM DeptBean d WHERE d."select" > 5

The following query returns all employees who are managed by Bob. This example
shows how to navigate relationships using a path expression:
SELECT OBJECT (e) FROM EmpBean e WHERE e.dept.mgr.name=’Bob’

A query can contain a parameter which referes to the corresponding value of the
finder or select method. Query parameters are numbered starting with 1:
SELECT OBJECT (e) FROM EmpBean e WHERE e.dept.mgr.name= ?1

This query shows navigation of a multivalued relationship and returns all
departments that have an employee that earns at least 50000 but not more than
90000:
SELECT OBJECT(d) FROM DeptBean d, IN (d.emps) AS e
WHERE e.salary BETWEEN 50000 and 90000

There is a join operation implied in this query between each department object and
its related collection of employees. If a department has no employees, the
department does not appear in the result. If a department has more than one
employee that earns more than 50000, that department appears multiple times in
the result.

The following query eliminates the duplicate departments:
SELECT DISTINCT OBJECT(d) from DeptBean d, IN (d.emps) AS e WHERE e.salary > 50000

Find employees whose bonus is more than 40% of their salary:
SELECT OBJECT(e) FROM EmpBean e where e.bonus > 0.40 * e.salary

Find departments where the sum of salary and bonus of employees in the
department exceeds the department budget:
SELECT OBJECT(d) FROM DeptBean d where d.budget <
(SELECT SUM(e.salary+e.bonus) FROM IN(d.emps) AS e)

A query can contain DB2 style date-time arithmetic expressions if you use java.sql.*
datatypes as CMP fields and your datastore is DB2. Find all employees who have
worked at least 20 years as of January 1st, 2000:
SELECT OBJECT(e) FROM EmpBean e where year(’2000-01-01’ - e.hireDate) >= 20

If the datastore is not DB2 or if you prefer to use java.util.Calendar as the CMP
field, then you can use the java millsecond value in queries. The following query
finds all employees born before Jan 1, 1990:
SELECT OBJECT(e) FROM EmpBean e WHERE e.birthDate < 631180800232

Find departments with no employees:
SELECT OBJECT(d) from DeptBean d where d.emps IS EMPTY

Chapter 13. Using EJB query 749

Find all employees whose earn more than Bob:
SELECT OBJECT(e) FROM EmpBean e, EmpBean b
WHERE b.name = ’Bob’ AND e.salary + e.bonus > b.salary + b.bonus

Find the employee with the largest bonus:
SELECT OBJECT(e) from EmpBean e WHERE e.bonus =
(SELECT MAX(e1.bonus) from EmpBean e1)

The above queries all return EJB objects. A finder method query must always
return an EJB Object for the home. A select method query can in addition return
CMP fields or other EJB Objects not belonging to the home.

The following would be valid select method queries for EmpBean. Return the
manager for each department:
SELECT d.mgr FROM DeptBean d

Return department 42 manager’s name:
SELECT d.mgr.name FROM DeptBean d WHERE d.deptno = 42

Return the names of employees in department 42:
SELECT e.name FROM EmpBean e WHERE e.dept.deptno=42

Another way to write the same query is:
SELECT e.name from DeptBean d, IN (d.emps) AS e WHERE d.deptno=42

Finder and select queries allow only a single CMP field or EJBObject in the
SELECT clause.

The dynamic query api allows multiple expressions in the SELECT clause. The
following query would be a valid dynamic query, but not a valid select or finder
query:
SELECT e.name, e.salary+e.bonus as total_pay , object(e), e.dept.mgr
FROM EmpBean e
ORDER BY 2

The following dynamic query returns the number of employees in each
department:
SELECT e.dept.deptno as department_number , count(*) as employee_count
FROM EmpBean e
GROUP BY by e.dept.deptno
ORDER BY 1

The dynamic query api allows queries that contain bean or value object methods:
SELECT object(e), e.address.format()
FROM EmpBean e EmpBean e

FROM clause
The FROM clause specifies the collections of objects to which the query is to be
applied. Each collection is identified either by an abstract schema name and an
identification variable, called a range variable, or by a collection member
declaration that identifies a multivalued relationship and an identification variable.

Conceptually, the semantics of the query is to first form a temporary collection of
tuples R. Tuples are composed of elements from the collections identified in the
FROM clause. Each tuple contains one element from each of the collections in the

750 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

FROM clause. All possible combinations are formed subject to the constraints
imposed by the collection member declarations. If any schema name identifies a
collection for which there are no records in the persistent store, then the temporary
collection R will be empty.

Example: FROM clause

DeptBean contains records 10, 20 and 30 in the persistent store. EmpBean contains
records 1, 2 and 3 that are related to department 10 and records 4, 5 that are
related to department 20. Department 30 has no related employees.
FROM DeptBean d, EmpBean e

This forms a temporary collection R that contains 15 tuples.
FROM DeptBean d, DeptBean d1

This forms a temporary collection R that contains 9 tuples.
FROM DeptBean d, IN (d.emps) AS e

This forms a temporary collection R that contains 5 tuples. Department 30 because
it contains no employees will not be in R. Department 10 will be contained in R
three times and department 20 will be contained in R twice.

After forming the temporary collection the search conditions of the WHERE clause
will be applied to R and this will yield a new temporary collection R1. The
ORDER BY and SELECT clauses are applied to R1 to yield the final result set.

An identification variable is a variable declared in the FROM clause using the
operator IN or the optional AS.
FROM DeptBean AS d, IN (d.emps) AS e

is equivalent to:
FROM DeptBean d, IN (d.emps) e

An identification variable that is declared to be an abstract schema name is called a
range variable. In the query above ″d″ is a range variable. An identification
variable that is declared to be a multivalued path expression is called a collection
member declaration. ″d″ and ″e″ in the example above are collection member
declarations.

Note that the following path expression is illegal as a collection member
declaration because it is not multivalued:
e.dept.mgr

Inheritance in EJB query
If an EJB inheritance hierarchy has been defined for an abstract schema, using the
abstract schema name in a query statement implies the collection of objects for that
abstract schema as well as all subtypes.

Example: Inheritance

Suppose that bean ManagerBean is defined as a subtype of EmpBean and
ExecutiveBean is a subtype of ManagerBean in an EJB inheritance hierarchy. The
following query returns employees as well as managers and executives:
SELECT OBJECT(e) FROM EmpBean e

Chapter 13. Using EJB query 751

Path expressions
An identification variable followed by the navigation operator (.) and a cmp or
relationship name is a path expression.

A path expression that leads to a cmr field can be further navigated if the cmr field
is single-valued. If the path expression leads to a multi-valued relationship, then
the path expression is terminal and cannot be further navigated. If the path
expression leads to a cmp field whose type is a value object, it is possible to
navigate to attributes of the value object.

Example: Value object

Assume that address is a cmp field for EmpBean, which is a value object.
SELECT object(e) FROM EmpBean e
WHERE e.address.distance(’San Jose’) < 10 and e.address.zip = 95037

It is best to use the composer pattern to map value object attributes to relational
columns if you intend to search on value attributes. If you store value objects in
serialized format, then each value object must be retrieved from the database and
deserialized. Value object methods can only be done in dynamic queries.

A path expression can also navigate to a bean method. The method must be
defined on either the remote or local bean interface. Methods can only be used in
dynamic queries. You cannot mix both remote and local methods in a single query
statement.

If the query contains remote methods, the dynamic query must be executed using
the query remote interface. Using the query remote interface causes the query
service to activate beans and create instances of the remote bean interface

Likewise, a query statement with local bean methods must be executed with the
query local interface. This causes the query service to activate beans and local
interface instances.

Do not use get methods to access cmp and cmr fields of a bean.

If a method has overloaded definitions, the overloaded methods must have
different number of parameters.

Methods must have non-void return types and method arguments and return
types must be either primitive types byte, short, int, long, float, double, boolean,
char or wrapper types from the following list:

Byte, Short, Integer, Long, Float, Double, BigDecimal, String, Boolean, Character,
java.util.Calendar, java.sql.Date, java.sql.Time, java.sql.Timestamp, java.util.Date

If any input argument to a method is NULL, it is assumed the method returns a
NULL value and the method is not invoked.

A collection valued path expression can be used in the FROM clause as a collection
member declaration, and with the IS EMPTY, MEMBER OF, and EXISTS predicates
in the WHERE clause.

FROM EmpBean e WHERE e.dept.mgr.name=’Bob’OK

752 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

FROM EmpBean e WHERE e.dept.emps.name=’BOB’INVALID — cannot navigate through emps
because it is multivalued

FROM EmpBean e, IN (e.dept.emps) e1
WHERE e1.name=’BOB’

OK

FROM EmpBean e WHERE e.dept.emps IS EMPTY OK

WHERE clause
The WHERE clause contains search conditions composed of the following:
v literal values
v input parameters
v expressions
v basic predicates
v quantified predicates
v BETWEEN predicate
v IN predicate
v LIKE predicate
v NULL predicate
v EMPTY collection predicate
v MEMBER OF predicate
v EXISTS predicate
v IS OF TYPE predicate

If the search condition evaluates to TRUE, the tuple is added to the result set.

Literals
A string literal is enclosed in single quotes. A single quote that occurs within a
string literal is represented by two single quotes; For example: ’Tom’’s’. A string
literal cannot exceed the maximum length that is supported by the underlying
persistent datastore.

A numeric literal can be any of the following:
v an exact value such as 57, -957, +66
v any value supported by Java long
v a decimal literal such as 57.5, -47.02
v an approximate numeric value such as 7E3, -57.4E-2

A decimal or approximate numeric value must be in the range supported by the
underlying persistent datastore.

A boolean literal can be the keyword TRUE or FALSE and is case insensitive.

Input parameters
Input parameters are designated by the question mark followed by a number; For
example: ?2

Input parameters are numbered starting at 1 and correspond to the arguments of
the finder or select method; therefore, a query must not contain an input parameter
that exceeds the number of input arguments.

Chapter 13. Using EJB query 753

An input parameter can be a primitive type of byte, short, int, long, float, double,
boolean, char or wrapper types of Byte, Short, Integer, Long, Float, Double,
BigDecimal, String, Boolean, Char, java.util.Calendar, java.util.Date, java.sql.Date,
java.sql.Time, java.sql.Timestamp or an EJBObject.

An input parameter must not have a NULL value. To search for the occurrence of
a NULL value the NULL predicate should be used.

Expressions
Conditional expressions can consist of comparison operators and logical operators
(AND, OR, NOT).

Arithmetic expressions can be used in comparison expressions and can be
composed of arithmetic operations and functions, path expressions that evaluate to
a numeric value and numeric literals and numeric input parameters.

String expressions can be used in comparison expressions and can be composed of
string functions, path expressions that evaluate to a string value and string literals
and string input parameters. A cmp field of type char is handled as if it were a
string of length 1.

Boolean expressions can be used with = and <> comparison and can be composed
of path expressions that evaluate to a boolean value and TRUE and FALSE
keywords and boolean input parameters.

Reference expressions can be used with = and <> comparison and can be
composed of path expressions that evaluate to a cmr field, an identification
variable and an input parameter whose type is an EJB reference

Four different expression types are supported for working with date-time types.
For portability the java.util.Calendar type should be used. DB2 style date, time and
timestamp expressions are supported if the datastore is DB2 and the CMP field is
of type java.util.Date, java.sql.Date, java.sql.Time or java.sql.Timestamp.

A Calendar type can be compared to another Calendar type, an exact numeric
literal or input parameter of type long whose value is the standard Java long
millisecond value.

The following query finds all employees born before Jan 1, 1990:
SELECT OBJECT(e) FROM EmpBean e WHERE e.birthDate < 631180800232

Date expressions can be used in comparison expressions and can be composed of
operators + - , date duration expressions and date functions, path expressions that
evaluate to a date value, string representation of a date and date input parameters.

Time expressions can be used in comparison expressions and can be composed of
operators + - , time duration expressions and time functions, path expressions that
evaluate to a time value, string representation of time and time input parameters.

Timestamp expressions can be used in comparison expressions and can be
composed of operators + - , timestamp duration expressions and timestamp
functions, path expressions that evaluate to a timestamp value, string
representation of a timestamp and timestamp input parameters.

Standard bracketing () for ordering expression evaluation is supported.

754 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The operators and their precedence order from highest to lowest are:
v Navigation operator (.)
v Arithmetic operators in precedence order:

– + - unary
– * / multiply, divide
– + - add, subtract

v Comparison operators: =, >, <, >=, <=, <>(not equal)
v Logical operator NOT
v Logical operator AND
v Logical operator OR

In some datastores, a zero length string value (’’) is treated as a null value and
affects the results of queries. Some datastores perform division between two
integer values using integer arithmetic rules and other datastores use non integer
rules. This also can affect the results of queries. For portability, avoid the use of
zero length string values and division of integer values in an EJB query.

Null value semantics
The following describe the semantics of NULL values:
v Comparison or arithmetic operations with an unknown (NULL) value yield an

unknown value
v Path expressions that contain NULL evaluate to NULL
v The IS NULL and IS NOT NULL operators can be applied to path expressions

and return TRUE or FALSE. Boolean operators AND, OR and NOT use three
valued logic.

AND True False Unknown

True True False Unknown

False False False False

Unknown Unknown False Unknown

OR True False Unknown

True True True True

False True False Unknown

Unknown True Unknown Unknown

NOT

True False

False True

Unknown Unknown

Example: Null value semantics
select object(e) from EmpBean where e.salary > 10 and e.dept.budget > 100

If salary is NULL the evaluation of e.salary > 10 returns unknown and the
employee object is not returned. If the cmr field dept or budget is NULL evalution
of e.dept.budget > 100 returns unknown and the employee object is not returned.
select object(e) from EmpBean where e.dept.budget is null

Chapter 13. Using EJB query 755

If dept or budget is NULL evaluation of e.dept.budget is null returns TRUE and
the employee object is returned.
select object(e) from EmpBean e , in (e.dept.emps) e1 where e1.salary > 10

If dept is NULL, then the multivalued path expression e.dept.emps results in an
empty collection (not a collection that contains a NULL value). An employee with
a null dept value will not be returned.
select object(e) from EmpBean e where e.dept.emps is empty

If dept is NULL the evaluation of the predicate in unknown and the employee
object is not returned.
select object(e) from EmpBean e , EmpBean e1 where e member of e1.dept.emps

If dept is NULL evaluation of the member of predicate returns unknown and the
employee is not returned.

Date time arithmetic and comparisons
DATE, TIME and TIMESTAMP values may be compared with another value of the
same type. Comparisons are chronological. Date time values can also be
incremented, decremented, and subtracted.

If the datastore is DB2, then DB2 string representation of DATE, TIME and
TIMESTAMP types can also be used. A string representation of a date or time can
use ISO, USA, EUR or JIS format. A string representation of a timestamp uses ISO
format.

Format Date format Date examples Time format Time examples

ISO yyyy-mm-dd 1987-02-24 1987-2-24 hh.mm.ss 13.50.00 13.50

USA mm/dd/yyyy 2/24/1987 hh:mm AM or
PM

1:50 pm 02:10 AM

EUR dd.mm.yyyy 24.02.1987 24.2.1987 hh.mm.ss 13.50.00 13.55

JIS yyyy-mm-dd 1987-02-24 hh:mm:ss 13:50 13:50:05

Example 1: Date time arithmetic comparisons
e.hiredate > ’1990-02-24’

The timestamp of February 24th, 1990 1:50 pm can be represented as follows:
’1990-02-24-13.50.00.000000’ or
’1990-02-24-13.50.00’

If the datastore is DB2, DB2 decimal durations can be used in expressions and
comparisons. A date duration is a decimal(8,0) number that represents the
difference between two dates in the format YYYYMMDD. A time duration is a
decimal(6,0) number that represents the difference between two time values as
HHMMSS. A timestamp duration is a decimal(20,6) number representing the
differences between two timestamp values as YYYYMMDDHHMMSS.ZZZZZZ
(ZZZZZZ is the number of microseconds and is to the right of the decimal point) .

Two date values (or time values or timestamp values) can be subtracted to yield a
duration. If the second operand is greater than the first the duration is a negative
decimal number. A duration can be added or subtracted from a datetime value to
yield a new datetime value.

Example 2: Date time arithmetic comparisons

756 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

DATE(’3/15/2000’) - ’12/31/1999’ results in a decimal number 215 which is a
duration of 0 years, 2 months and 15 days.

Durations are really decimal numbers and can be used in arithmetic expressions
and comparisons.

(DATE(’3/15/2000’) - ’12/31/1999’) + 14 > 215 evaluates to TRUE.

DATE(’12/31/1999’) + DECIMAL(215,8,0) results in a date value 3/15/2000.

TIME(’11:02:26’) - ’00:32:56’ results in a decimal number 102930 which is a time
duration of 10 hours, 29 minutes and 30 seconds.

TIME(’00:32:56’) + DECIMAL(102930,6,0) results in a time value of 11:02:26.

TIME(’00:00:59’) + DECIMAL(240000,6,0) results in a time value of 00:00:59.

e.hiredate + DECIMAL(500,8,0) > ’2000-10-01’ means compare the hiredate plus
5 months to the date 10/01/2000.

Basic predicates
Basic predicates can be of two forms
expression-1 comparison-operator expression-2

expression-3 comparison-operator (subselect)

The subselect must not return more than one value and the subselect can not
return a type of an EJB reference. Boolean types and reference types only support =
and <> comparisons.

Example: Basic predicates
d.name=’Java Development’
e.salary > 20000
e.salary > (select avg(e.salary) from EmpBean e)

Quantified predicates
A quantified predicate compares a value with a set of values produced by a
subselect.
expression comparison-operator SOME | ANY | ALL (subselect)

The expression must not evaluate to a reference type.

When SOME or ANY is specified the result of the predicate is as follows:
v TRUE if the comparison is true for at least one value returned by the subselect.
v FALSE if the subselect is empty or if the comparison is false for every value

returned by the subselect.
v UNKNOWN if the comparison is not true for all of the values returned by the

subselect and at least one of the comparisons is unknown because of a null
value.

When ALL is specified the result of the predicate is as follows:
v TRUE if the subselect returns empty or if the comparison is true to every value

returned by the subselect.
v FALSE if the comparison is false for at least one value returned by the subselect.
v UNKNOWN if the comparison is not false for all values returned by the

subselect and at least one comparison is unknown because of a null value.

Chapter 13. Using EJB query 757

BETWEEN predicate
The BETWEEN predicate determines whether a given value lies between two other
given values.
expression [NOT] BETWEEN expression-2 AND expression-3

Example: BETWEEN predicate
e.salary BETWEEN 50000 AND 60000

is equivalent to:
e.salary >= 50000 AND e.salary <= 60000

e.name NOT BETWEEN ’A’ AND ’B’

is equivalent to:
e.name < ’A’ OR e.name > ’B’

IN predicate
The IN predicate compares a value to a set of values and can have one of two
forms:
expression [NOT] IN (subselect)

expression [NOT] IN (value1, value2,)

ValueN can either be a literal value or an input parameter. The expression can not
evaluate to a reference type.

Example: IN predicate
e.salary IN (10000, 15000)

is equivalent to
(e.salary = 10000 OR e.salary = 15000)

e.salary IN (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

is equivalent to
e.salary = ANY (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

e.salary NOT IN (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

is equivalent to
e.salary <> ALL (select e1.salary from EmpBean e1 where e1.dept.deptno = 10)

LIKE predicate
The LIKE predicate searches a string value for a certain pattern.
string-expression [NOT] LIKE pattern [ESCAPE escape-character]

The pattern value is a string literal or parameter marker of type string in which the
underscore (_) stands for any single character and percent (%) stands for any
sequence of characters (including empty sequence). Any other character stands
for itself. The escape character can be used to search for character _ and %. The
escape character can be specified as a string literal or an input parameter.

If the string-expression is null, then the result is unknown.

If both string-expression and pattern are empty, then the result is true.

Example: LIKE predicate

v ’’ LIKE ’’ is true

758 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v ’’ LIKE ’%’ is true
v e.name LIKE ’12%3’ is true for ’123’ ’12993’ and false for ’1234’
v e.name LIKE ’s_me’ is true for ’some’ and ’same’, false for ’soome’
v e.name LIKE ’/_foo’ escape ’/’ is true for ’_foo’, false for ’afoo’
v e.name LIKE ’//_foo’ escape ’/’ is true for ’/afoo’ and for ’/bfoo’
v e.name LIKE ’///_foo’ escape ’/’ is true for ’/_foo’ but false for ’/afoo’

NULL predicate
The NULL predicate tests for null values.
single-valued-path-expression IS [NOT] NULL

Example: NULL predicate
e.name IS NULL

e.dept.name IS NOT NULL

e.dept IS NOT NULL

EMPTY collection predicate
To test if a multivalued relationship is empty, use the following syntax:
collection-valued-path-expression IS [NOT] EMPTY

Example: Empty collection predicate

To find all departments with no employees:
SELECT OBJECT(d) FROM DeptBean d WHERE d.emps IS EMPTY

MEMBER OF predicate
This expression tests whether the object reference specified by the single valued
path expression or input parameter is a member of the designated collection. If the
collection valued path expression designates an empty collection the value of the
MEMBER OF expression is FALSE.

{single-valued-path-expression | input_parameter} [NOT] MEMBER [OF] collection-valued-path-expression

Example: MEMBER OF predicate

Find employees that are not members of a given department number:
SELECT OBJECT(e) FROM EmpBean e , DeptBean d
WHERE e NOT MEMBER OF d.emps AND d.deptno = ?1

Find employees whose manager is a member of a given department number:
SELECT OBJECT(e) FROM EmpBean e, DeptBean d
WHERE e.dept.mgr MEMBER OF d.emps and d.deptno=?1

EXISTS predicate
The exists predicate tests for the presence or absence of a condition specified by a
subselect.
EXISTS (subselect)

EXISTS collection-valued-path-expression

The result of EXISTS is true if the subselect returns at least one value or the path
expression evaluates to a nonempty collection, otherwise the result is false.

To negate an EXISTS predicate, precede it with the logical operator NOT.

Example: EXISTS predicate

Chapter 13. Using EJB query 759

Return departments that have at least one employee earning more than 1000000:
SELECT OBJECT(d) FROM DeptBean d
WHERE EXISTS (SELECT 1 FROM IN (d.emps) e WHERE e.salary > 1000000)

Return departments that have no employees:
SELECT OBJECT(d) FROM DeptBean d
WHERE NOT EXISTS (SELECT 1 FROM IN (d.emps) e)

The above query can also be written as follows:
SELECT OBJECT(d) FROM DeptBean d WHERE NOT EXISTS d.emps

IS OF TYPE predicate
The IS OF TYPE predicate is used to test the type of an EJB reference. It is similar
in function to the Java instance of operator. IS OF TYPE is used when several
abstract beans have been grouped into an EJB inheritance hierarchy. The type
names specified in the predicate are the bean abstract names. The ONLY option
can be used to specify that the reference must be exactly this type and not a
subtype.
identification-variable IS OF TYPE ([ONLY] type-1, [ONLY] type-2,)

Example: IS OF TYPE predicate

Suppose that bean ManagerBean is defined as a subtype of EmpBean and
ExecutiveBean is a subtype of ManagerBean in an EJB inheritance hierarchy.

The following query returns employees as well as managers and executives:
SELECT OBJECT(e) FROM EmpBean e

If you are interested in objects which are employees and not managers and not
executives:
SELECT OBJECT(e) FROM EmpBean e WHERE e IS OF TYPE(ONLY EmpBean)

If you are interested in object which are managers or executives:
SELECT OBJECT(e) FROM EmpBean e WHERE e IS OF TYPE(ManagerBean)

The above query is equivalent to the following query:
SELECT OBJECT(e) FROM ManagerBean e

If you are interested in managers only and not executives:
SELECT OBJECT(e) FROM EmpBean e WHERE e IS OF TYPE(ONLY ManagerBean)

or:
SELECT OBJECT(e) FROM ManagerBean e
WHERE e IS OF TYPE (ONLY ManagerBean)

Scalar functions
EJB query contains scalar built-in functions for doing type conversions, string
manipulation, and for manipulating date-time values. The list of scalar functions is
documented in the topic EJB query: Scalar functions.

Example: Scalar functions

Find employees hired in 1999:
SELECT OBJECT(e) FROM EmpBean e where YEAR(e.hireDate) = 1999

760 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The only scalar functions that are guaranteed to be portable across backend
datastore vendors are the following:
v ABS
v SQRT
v CONCAT
v LENGTH
v LOCATE
v SUBSTRING

The other scalar functions should be used only when DB2 is the backend datastore.

EJB query: Scalar functions
EJB query contains scalar built-in functions, as listed below, for doing type
conversions, string manipulation, and for manipulating date-time values.

Numeric functions
ABS (< any numeric datatype >) -> < any numeric datatype >

SQRT (< any numeric datatype >) -> Double

Type conversion functions
CHAR (< any numeric datatype >) -> string
CHAR (< string >) -> string
CHAR (< any datetime datatype > [, Keyword k]) -> string

Datetime datatype is converted to its string representation in a format specified by
the keyword k. The valid keywords values are ISO, USA, EUR or JIS. If k is not
specified the default is ISO.
BIGINT (< any numeric datatype >) -> Long
BIGINT (< string >) -> Long

The following function converts the argument to an integer n by truncation and
returns the date that is n-1 days after January 1, 0001:
DATE (< date string >) -> Date
DATE (< any numeric datatype>) -> Date

The following function returns date portion of a timestamp:
DATE(timestamp) -> Date
DATE (< timestamp-string >) -> Date

The following function converts number to decimal with optional precision p and
scale s.
DECIMAL (< any numeric datatype > [, p [,s]]) -> Decimal

The following function converts string to decimal with optional precision p and
scale s.
DECIMAL (< string > [, p [, s]]) -> Decimal

DOUBLE (< any numeric datatype >) -> Double
DOUBLE (< string >) -> Double

FLOAT (< any numeric datatype >) -> Double
FLOAT (< string >) -> Double

Float is a synonym for DOUBLE.
INTEGER (< any numeric datatype >) -> Integer
INTEGER (< string >) -> Integer

Chapter 13. Using EJB query 761

REAL (< any numeric datatype >) -> Float

SMALLINT (< any numeric datatype) -> Short
SMALLINT (< string >) -> Short

TIME (< time >) -> Time
TIME (< time-string >) -> Time
TIME (< timestamp >) -> Time
TIME (< timestamp-string >) -> Time

TIMESTAMP (< timestamp >) -> Timestamp
TIMESTAMP (< timestamp-string >) -> Timestamp

String functions
CONCAT (<string>, <string>) -> String

The following function returns a character string representing absolute value of the
argument not including its sign or decimal point. For example, digits(-42.35) is
″4235″.
DIGITS (Decimal d) -> String

The following function returns the length of the argument in bytes. If the argument
is a numeric or datetime type, it returns the length of internal representation.
LENGTH (< string >) -> Integer

The following function returns a copy of the argument string where all upper case
characters have been converted to lower case.
LCASE (< string >) -> String

The following function returns the starting position of the first occurrence of
argument 1 inside argument 2 with optional start position. If not found, it returns
0.
LOCATE (String s1 , String s2 [, Integer start]) -> Integer

The following function returns a substring of s beginning at character m and
containing n characters. If n is omitted, the substring contains the remainder of
string s. The result string is padded with blanks if needed to make a string of
length n.
SUBSTRING (String s , Integer m [, Integer n]) -> String

The following function returns a copy of the argument string where all lower case
characters have been converted to upper case.
UCASE (< string >) -> String

Date - time functions

The following function returns the day portion of its argument. For a duration, the
return value can be -99 to 99.
DAY (Date) -> Integer
DAY (< date-string >) -> Integer
DAY (< date-duration >) -> Integer
DAY (Timestamp) -> Integer
DAY (< timestamp-string >) -> Integer
DAY (< timestamp-duration >) -> Integer

The following function returns one more than number of days from January 1,
0001 to its argument.

762 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

DAYS (Date) -> Integer
DAYS (< Date-string >) -> Integer
DAYS (Timestamp) -> Integer
DAYS (< timestamp-string >) -> Integer

The following function returns the hour part of its argument. For a duration, the
return value can be -99 to 99.
HOUR (Time) -> Integer
HOUR (< time-string >) -> Integer
HOUR (< time-duration >) -> Integer
HOUR (Timestamp) -> Integer
HOUR (< timestamp-string >) -> Integer
HOUR (< timestamp-duration >) -> Integer

The following function returns the microsecond part of its argument.
MICROSECOND (Timestamp) -> Integer
MICROSECOND (< timestamp-string >) -> Integer
MICROSECOND (< timestamp-duration >) -> Integer

The following function returns the minute part of its argument. For a duration, the
return value can be -99 to 99.
MINUTE (Time) -> Integer
MINUTE (< time-string >) -> Integer
MINUTE (< time-duration >) -> Integer
MINUTE (Timestamp) -> Integer
MINUTE (< timestamp-string >) -> Integer
MINUTE (< timestamp-duration >) -> Integer

The following function returns the month portion of its argument. For a duration,
the return value can be -99 to 99.
MONTH (Date) -> Integer
MONTH (< date-string >) -> Integer
MONTH (< date-duration >) -> Integer
MONTH (Timestamp) -> Integer
MONTH (< timestamp-string >) -> Integer
MONTH (< timestamp-duration >) -> Integer

The following function returns the second part of its argument. For a duration, the
return value can be -99 to 99.
SECOND (Time) -> Integer
SECOND (< time-string >) -> Integer
SECOND (< time-duration >) -> Integer
SECOND (Timestamp) -> Integer
SECOND (< timestamp-string >) -> Integer
SECOND (< timestamp-duration >) -> Integer

The following function returns the year portion of its argument. For a duration, the
return value can be -9999 to 9999.
YEAR (Date) -> Integer
YEAR (< date-string >) -> Integer
YEAR (< date-duration >) -> Integer
YEAR (Timestamp) -> Integer
YEAR (< timestamp-string >) -> Integer
YEAR (< timestamp-duration >) -> Integer

Aggregation functions
Queries that return aggregate values can only be used with the dynamic query
interface available in WebSphere Application Server Enterprise. However,
aggregation functions can be used in non-dynamic queries if the aggregation
function is used in a subselect or HAVING clause.

Chapter 13. Using EJB query 763

Aggregation functions operate on a set of values to return a single scalar value.
The following is an example of an aggregation:
SELECT SUM (e.salary + e.bonus) FROM EmpBean e WHERE e.dept.deptno =20

This computes the total salary and bonus for department 20.

The aggregation functions are avg, count, max, min and sum. The syntax of an
aggregation function is as follows:
aggregation-function ([ALL | DISTINCT] expression)

or:
COUNT(*)

The DISTINCT option eliminates duplicate values before applying the function.
ALL is the default and does not eliminate duplicates. Null values are ignored in
computing the aggregate function except for COUNT(*) which returns a count of
all elements in the set.

MAX and MIN can apply to any numeric, string or datetime datatype and returns
the same datatype. SUM and AVG take a numeric type as input. SUM and AVG
return numeric type. The actual numeric type returned by SUM and AVG depends
on the underlying datastore. COUNT can take any datatype and returns an integer.

If you are using an Informix datastore, the argument to COUNT must be an
asterisk or a single valued path expression. The argument to SUM, AVG, MIN, or
MAX used with DISTINCT must be a single valued path expression.

The set of values that is used for the aggregate function is determined by the
collection that results from the FROM and WHERE clause of the subquery. This set
can be divided into groups and the aggregation function applied to each group.
This is done by using a GROUP BY clause in the subquery. The GROUP BY clause
defines grouping members which is a list of path expressions. Each path
expression specifies a field that is a primitive type of byte, short, int, long, float,
double, boolean, char, or a wrapper type of Byte, Short, Integer, Long, Float,
Double, BigDecimal, String, Boolean, Character, java.util.Calendar, java.util.Date,
java.sql.Date, java.sql.Time or java.sql.Timestamp.

Finder or select queries can not return aggregation function values. In other words,
aggregation functions can not appear in the top level SELECT of a finder or select
query but can be used in subqueries.

Example: Aggregation functions
SELECT e.dept.deptno, AVG (e.salary) FROM EmpBean e GROUP BY e.dept.deptno

The above query computes the average salary for each department.

In dividing a set into groups, a NULL value is considered equal to another NULL
value.

Just as the WHERE clause filters tuples from the FROM clause, the groups can be
filtered using a HAVING clause that tests group properties involving aggregate
functions or grouping members:
SELECT e.dept.deptno, AVG (e.salary) FROM EmpBean e
GROUP BY e.dept.deptno
HAVING COUNT(*) > 3 AND e.dept.deptno > 5

764 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

This query returns average salary for departments that have more than 3
employees and the department number is greater than 5.

It is possible to have a HAVING clause without a GROUP BY clause in which case
the entire set is treated as a single group to which the HAVING clause is applied.

SELECT clause
For finder and select queries, the syntax of the SELECT clause is as follows:
SELECT [ALL | DISTINCT]
{ single-valued-path-expression | OBJECT (identification-variable) }

The SELECT clause consists of either a single identification variable that is defined
in the FROM clause or a single valued path expression that evaluates to a object
reference or CMP value. The keyword DISTINCT can be used to eliminate
duplicate references.

For a query that defines a finder method the query must return an object type
consistent with the home for which the finder method associated with the query. In
other words, a finder method for a department home can not return employee
objects.

For dynamic queries the syntax is as follows:
SELECT { ALL | DISTINCT } [selection ,]* selection
selection ::= { expression [[AS] id] | scalar-subselect }

A scalar-subselect is a subselect that returns a single value.

Example: SELECT clause

Find all employees that earn more than John:
SELECT OBJECT(e) FROM EmpBean ej, EmpBean e
WHERE ej.name = ’John’ and e.salary > ej.salary

Find all departments that have one or more employees who earn less than 20000:
SELECT DISTINCT e.dept FROM EmpBean e where e.salary < 20000

A select method query can have a path expression that evaluates to an arbitrary
value:
SELECT e.dept.name FROM EmpBean e where e.salary < 2000

The above query returns a collection of name values for those departments having
employees earning less than 20000.

Example: Valid dynamic queries

The following are examples of dynamic queries:
SELECT e.name, e.salary+e.bonus as total_pay from EmpBean e

SELECT SUM(e.salary+e.bonus) from EmpBean e where e.dept.deptno = ?1

ORDER BY clause
The ORDER BY clause specifies an ordering of the objects in the result collection:
ORDER BY [order_element ,]* order_element
order_element ::= { path-expression | integer } [ASC | DESC]

Chapter 13. Using EJB query 765

The path expression must specify a single valued field that is a primitive type of
byte, short, int, long, float, double, char or a wrapper type of Byte, Short, Integer,
Long, Float, Double, BigDecimal, String, Character, java.util.Calendar,
java.util.Date, java.sql.Date, java.sql.Time, java.sql.Timestamp.

ASC specifies ascending order and is the default. DESC specifies descending order.

Integer refers to a selection expression in the SELECT clause.

Example: ORDER BY clause

Return department objects in decreasing deptno order:
SELECT OBJECT(d) FROM DeptBean d ORDER BY d.deptno DESC

Return employee objects sorted by department number and name:
SELECT OBJECT(e) FROM EmpBean e ORDER BY e.dept.deptno ASC, e.name DESC

The following is a valid dynamic query:
SELECT OBJECT(e), e.salary+e.bonus as total_pay FROM EmpBean e ORDER BY 2 DESC

Subqueries
A subquery can be used in quantified predicates, EXISTS predicate or IN predicate.
A subquery should only specify a single element in the SELECT clause. When a
path expression appears in a subquery, the identification variable of the path
expression must be defined either in the subquery, in one of the containing
subqueries, or in the outer query. A scalar subquery is a subquery that returns one
value. A scalar subquery can be used in a basic predicate and in the SELECT
clause of a dynamic query.

Example: Subqueries
SELECT OBJECT(e) FROM EmpBean e
WHERE e.salary > (SELECT AVG(e1.salary) FROM EmpBean e1)

The above query returns employees who earn more than average salary of all
employees.
SELECT OBJECT(e) FROM EmpBean e WHERE e.salary >
(SELECT AVG(e1.salary) FROM IN (e.dept.emps) e1)

The above query returns employees who earn more than average salary of their
department.
SELECT OBJECT(e) FROM EmpBean e WHERE e.salary =
(SELECT MAX(e1.salary) FROM IN (e.dept.emps) e1)

The above query returns employees who earn the most in their department.
SELECT OBJECT(e) FROM EmpBean e
WHERE e.salary > (SELECT AVG(e.salary) FROM EmpBean e1
WHERE YEAR(e1.hireDate) = YEAR(e.hireDate))

The above query returns employees who earn more than the average of employees
hired in same year.

EJB query restrictions
An EJB query is compiled into an SQL query and executed against the underlying
datastore based on schema mapping of the abstract bean to the datastore schema.
The semantics of comparison and arithmetic operations are that of the underlying

766 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

datastore. In the case of SQL, note that two strings are equal if the shorter string
padded with blanks equals the longer string. For example, ’A’ is equal to ’A ’. This
differs from the equality of strings in the Java language. Arithmetic overflow
operations are an error in SQL.

A cmp field can not be used in comparison operations or predicates (except for
LIKE) if that cmp field is mapped to a long varchar or large objects (LOB) column
or any other column type for which the database server does not support
predicates or comparison operations.

A cmp field of any type can be used in a SELECT clause. Fields that can be used in
predicates, grouping, or ordering operations must be of the types listed below:
v Primitive types : byte, short, int, long, float, double, boolean, char
v Object types: Byte, Short, Integer, Long, Float, Double, BigDecimal, String,

Boolean, Char, java.util.Calendar , java.util.Date
v JDBC types: java.sql.Date, java.sql.Time, java.sql.Timestamp

The field must be mapped to a table column that is compatible in type either by
using a ″top-down″ default mapping generated by the WebSphere deploy tool, or
using a ″meet-in-the-middle″ mapping between compatible types.

In order to search on attributes of a cmp field that is a user-defined value object,
you should use a ″meet-in-the-middle″ mapping and use a composer to map each
attribute to a compatible column. The default ″top-down″ mapping stores the
object as a serialized object in a column of type blob, which does not allow
searching.

If a cmp field is mapped to a column using a ″meet-in-the-middle″ mapping with a
converter, that field can only be used with the NULL predicate or with basic
predicates of the following form:
path-expression <comparison> literal_value
path-expression <comparison> input_parameter

In this situation, the converter method toData() is called to convert the right-hand
side of the predicate to an SQL value.

Example of allowable predicate on a cmp field with user defined converter:
e.name = ’Chris’
e.name > ?1
e.name IS NULL

Examples of unallowable predicates:
substring(e.name, 1, 3) = ’ABC’
e.salary > d.budget

A converter should preserve equality, collating sequence and null values when
doing a conversion. Otherwise cmp fields created by the converter should not be
used in WHERE, GROUP, HAVING or ORDER clauses of a query.

EJB Query: Reserved words
The following words are reserved in WebSphere EJB query:

all, as, distinct, empty, false, from, group, having, in, is, like, select, true, union,
where

Chapter 13. Using EJB query 767

Avoid using identifiers that start with underscore (for example, _integer) as these
are also reserved.

EJB query: BNF syntax
EJB QL ::= [select_clause] from_clause [where_clause]

[group_by_clause] [having_clause] [order_by_clause]

from_clause::=FROM identification_variable_declaration
[,identification_variable_declaration]*

identification_variable_declaration::=collection_member_declaration |
range_variable_declaration

collection_member_declaration::=
IN (collection_valued_path_expression) [AS] identifier

range_variable_declaration::=abstract_schema_name [AS] identifier

single_valued_path_expression ::=
{single_valued_navigation | identification_variable}.
(cmp_field | method | cmp_field.value_object_attribute |

cmp_field.value_object_method)
| single_valued_navigation

single_valued_navigation::=
identification_variable.[single_valued_cmr_field.]*

single_valued_cmr_field

collection_valued_path_expression ::=
identification_variable.[single_valued_cmr_field.]*

collection_valued_cmr_field

select_clause::= SELECT { ALL | DISTINCT } {
single_valued_path_expression | identification_variable |
OBJECT (identification_variable) }

select_clause_eex ::= SELECT { ALL | DISTINCT } [selection ,]* selection

selection ::= { expression [[AS] id] | subselect }

order_by_clause::=
ORDER BY [{single_valued_path_expression | integer} [ASC|DESC],]*

{single_valued_path_expression | integer}[ASC|DESC]

where_clause::= WHERE conditional_expression

conditional_expression ::= conditional_term |
conditional_expression OR conditional_term

conditional_term ::= conditional_factor |
conditional_term AND conditional_factor

conditional_factor ::= [NOT] conditional_primary

conditional_primary::=simple_cond_expression | (conditional_expression)

simple_cond_expression ::= comparison_expression | between_expression |
like_expression | in_expression | null_comparison_expression |
empty_collection_comparison_expression | quantified_expression |
exists_expression | is_of_type_expression | collection_member_expression

between_expression ::= expression [NOT] BETWEEN expression AND expression

in_expression ::= single_valued_path_expression [NOT] IN
{ (subselect) | (atom ,]* atom) }

atom = { string-literal | numeric-constant | input-parameter }

like_expression ::= expression [NOT] LIKE
{string_literal | input_parameter}
[ESCAPE {string_literal | input_parameter}]

null_comparison_expression ::=
single_valued_path_expression IS [NOT] NULL

empty_collection_comparison_expression ::=
collection_valued_path_expression IS [NOT] EMPTY

768 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

collection_member_expression ::=
{ single_valued_path_expression | input_paramter } [NOT] MEMBER [OF]

collection_valued_path_expression

quantified_expression ::=
expression comparison_operator {SOME | ANY | ALL} (subselect)

exists_expression ::= EXISTS {collection_valued_path_expression | (subselect)}

subselect ::=
SELECT [{ ALL | DISTINCT }] expression from_clause [where_clause]

[group_by_clause] [having_clause]

group_by_clause::= GROUP BY [single_valued_path_expression,]*
single_valued_path_expression

having_clause ::= HAVING conditional_expression

is_of_type_expression ::= identifier IS OF TYPE
([[ONLY] abstract_schema_name,]* [ONLY] abstract_schema_name)

comparison_expression ::=
expression comparison_operator { expression | (subquery) }

comparison_operator ::= = | > | >= | < | <= | <>

method ::= method_name([[expression ,]* expression])

expression ::= term | expression {+|-} term

term ::= factor | term {*|/} factor

factor ::= {+|-} primary

primary ::= single_valued_path_expression | literal |
(expression) | input_parameter | functions

functions ::=
ABS(expression) |
AVG([ALL|DISTINCT] expression) |
BIGINT(expression) |
CHAR({expression [,{ISO|USA|EUR|JIS}]) |
CONCAT (expression , expression) |
COUNT({[ALL|DISTINCT] expression | *}) |
DATE(expression) |
DAY({expression) |
DAYS(expression) |
DECIMAL(expression [,integer[,integer]])
DIGITS(expression) |
DOUBLE(expression) |
FLOAT(expression) |
HOUR (expression) |
INTEGER(expression) |
LCASE (expression) |
LENGTH(expression) |
LOCATE(expression, expression [, expression]) |
MAX([ALL|DISTINCT] expression) |
MICROSECOND(expression) |
MIN([ALL|DISTINCT] expression) |
MINUTE (expression) |
MONTH(expression) |
REAL(expression) |
SECOND(expression) |
SMALLINT(expression) |
SQRT (expression) |
SUBSTRING(expression, expression[, expression]) |
SUM([ALL|DISTINCT] expression) |
TIME(expression) |
TIMESTAMP(expression) |
UCASE (expression) |
YEAR(expression)

Chapter 13. Using EJB query 769

Comparison of EJB 2.0 specification and WebSphere query
language

Item EJB 2.0 specification WebSphere Query WebSphere
Enterprise (Dynamic)
Query

Bean methods no no yes
Calendar
comparisons

yes yes yes

Delimited identifiers no yes yes
Dependent Value
attributes

no yes yes

Dependent Value
methods

no no yes

Dynamic Query APIs no no yes
EXISTS predicate no yes yes
Inheritance no yes yes
Multiple element
select clauses

no no yes

Order by no yes yes
Scalar functions yes * yes yes
Select clause required optional optional
SQL Date/time
expressions

no yes yes

String comparisons = and <> only = <> > < = <> > <
Subqueries,
aggregations, group
by, and having
clauses

no yes yes

* EJB 2.0 defines the following scalar functions: abs, sqrt, concat, length, locate and
substring. WebSphere query and dynamic query support additional scalar
functions as listed in the topic, EJB query: Scalar functions.

Using the dynamic query service
Before you begin

Consider using the dynamic query service (available with WebSphere Application
Server Enterprise) when any of the following are true:
v You do not know the query search criteria until application runtime.
v You need to return multiple cmp or cmr fields from a query (deployment

queries allow only a single element to be specified in the SELECT clause). For
more information, see the Example: EJB queries article.

v You want to perform aggregation in the query (deployment queries do not allow
use of aggregation function SUM, AVG, COUNT, MAX, MIN in the top level
SELECT of a query).

v You want to use value object methods or bean methods in the query statement.
For more information, see Path expressions.

v You want to interactively test an EJB query during development but do not want
to repeatedly deploy your application each time you update a finder or select
query.

770 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

If you have a query that has a high frequency of execution you should define it as
a finder or select method and consider using SQLJ as a deployment option for best
performance. The dynamic query service always uses JDBC and must parse and
process the EJB query at runtime.

If you need security control over which queries a user can execute, you need to
define the queries as finder or select methods and use EJB method authorization.
The dynamic query service does not have fine grain security control at this time.
You can control who is permitted access to the remote query bean and the local
query bean, but once authorized a user can execute any valid query and return
any data in the server.

The dynamic query API is a stateless session bean. Using the dynamic query API is
similar to using any other J2EE EJB application bean.

The default JNDI name for the query bean is as follows, but your system
administrator can change this name:
com/ibm/websphere/ejbquery/Query

The system administrator might need to install the query.ear application into the
application server. The WebSphere product install does this only for the default
server.

Note: The query.ear file is located in the <WAS_HOME>/installableApps directory
where <WAS_HOME> is the location of the WebSphere Application Server.

The query bean has both a remote and a local interface to support both remote and
local clients.
v remote interface = com.ibm.websphere.ejbquery.Query

v remote home interface = com.ibm.websphere.ejbquery.QueryHome

v local interface = com.ibm.websphere.ejbquery.QueryLocal

v local home interface = com.ibm.websphere.ejbquery.QueryLocalHome

5.0 + To use the local interface or bean methods on the remote interface of the
query bean, you must configure your server to use the following:
Application Classloader Policy = SINGLE

Using a value of MULTI may result in your application being unable to find the
local interface for the query bean home.

The following Jar files comprise the query service:

Jar Location Usage

query.jar server - AppServer/lib query parser

qjcup.jar server - AppServer/lib auxillary classes for parser

querybean.jar server - installedApps query session bean

querymd.jar server - AppServer/lib auxillary classes for parser

queryws.jar server - AppServer/lib adapter classes for runtime

qryclient.jar client client stubs and classes

Steps for this task

Chapter 13. Using EJB query 771

1. To execute a query, have your client do a JNDI lookup for the QueryHome and
create an instance of the query bean. The query bean contains the
executeQuery() method, which takes as parameters the query statement in the
form of a string, and input parameters in the form of an array of
java.lang.Object values. Remote clients also pass as arguments the size of the
result set to return.
The results of the query are returned for remote clients as:
com.ibm.websphere.ejbquery.QueryIterator

or for local clients as:
com.ibm.websphere.ejbquery.QueryLocalIterator

If you want to return remote EJB references from the query, or if the query
statement contains remote methods, you must use the query remote interface.

If you want to return local EJB references from the query, or if the query
statement contains local methods, you must use the query local interface.

Calling the next() method on the iterator returns an intance of
com.ibm.websphere.ejbquery.IQueryTuple, which contains the actual data
values or object references. The iterator also contains the following methods:
getFieldName(int i)
getFieldsCount();

2. Compile and run your client program with the file qryclient.jar in the
classpath.
For more details, see the following articles:
v Javadoc (../../javadoc/ee/com/ibm/websphere/ejbquery/Query.html) for

package com.ibm.websphere.ejbquery.
v Class IQueryTuple

(../../javadoc/ee/com/ibm/websphere/ejbquery/IQueryTuple.html)
v Class QueryIterato

r(../../javadoc/ee/com/ibm/websphere/ejbquery/QueryIterator.html)

The WebSphere Sample Gallery contains a complete working example of the
dynamic query service.

Security Considerations. WebSphere does not have security access control for
CMP and CMR fields. You must therefore secure the query bean methods
executeQuery(), prepareQuery(), and executePlan(), and the create() method on
the query home; otherwise, any user is able to perform a dynamic query and
retrieve data from your application.

Example: Dynamic query remote client
The following is an example of the Dynamic query remote client with added
explanation.

import com.ibm.websphere.ejbquery.QueryHome;
import com.ibm.websphere.ejbquery.Query;
import com.ibm.websphere.ejbquery.QueryIterator;
import com.ibm.websphere.ejbquery.IQueryTuple;
import com.ibm.websphere.ejbquery.QueryException;

try {
String query =
"select e.name as name , object(e) as emp from EmpBean e where e.salary < 50000";

772 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

InitialContext ic = new InitialContext();

Object obj = ic.lookup("com/ibm/websphere/ejbquery/Query");

QueryHome qh =
(QueryHome) javax.rmi.PortableRemoteObject.narrow(obj, QueryHome.class);
Query qb = qh.create();

You must specify a maximum size of the query result set. In this example 99 is
used.
QueryIterator it = qb.executeQuery(query, null, null ,0, 99);

The iterator contains a collection of IQueryTuple objects. Each tuple contains one
value of name and one value of object(e) from the query. To display the contents of
the query result, use the following code:
while (it.hasNext()) {
IQueryTuple tuple = (IQueryTuple) it.next();
System.out.print(it.getFieldName(1));
String s = (String) tuple.getObject(1);
System.out.println(s);

System.out.println(it.getFieldName(2));
Emp e =

(Emp) javax.rmi.PortableRemoteObject.narrow(tuple.getObject(2), Emp.class);
System.out.println(e.getPrimaryKey().toString());
}

The output from the program might look something like the following:
name Bob
emp 1001
name Dave
emp 298003
...

Finally, catch and process any exceptions. An exception might occur because of a
syntax error in the query statement or a run-time processing error. The following is
an example that catches and processes these exceptions:
} catch (QueryException qe) {

System.out.println("Query Exception "+ qe.getMessage());
}

Example: Dynamic query from local client
Establish a transaction context prior to calling executeQuery so that a call to begin(
) and commit() is needed. The QueryLocalIterator becomes invalid at end of a
transaction. Therefore, you must use the iterator in the same transaction scope as
the executeQuery call.
import com.ibm.websphere.ejbquery.QueryLocalHome;

import com.ibm.websphere.ejbquery.QueryLocal;
import com.ibm.websphere.ejbquery.QueryLocalIterator;
import com.ibm.websphere.ejbquery.IQueryTuple;
import com.ibm.websphere.ejbquery.QueryException;

String query =
"select e.name, object(e) from EmpBean e where e.salary < 50000 ";

InitialContext ic = new InitialContext();
QueryLocalHome qh = (LocalQueryHome) ic.lookup("java:comp/env/ejb/query");

QueryLocal qb = qh.create();
userTransaction.begin();
QueryLocalIterator it = qb.executeQuery(query, null, null);
while (it.hasNext()) {

Chapter 13. Using EJB query 773

IQueryTuple tuple = (IQueryTuple) it.next();
System.out.print(it.getFieldName(1));
String s = (String) tuple.getObject(1);
System.out.println(s);

System.out.println(it.getFieldName(2));
EmpLocal e = (EmpLocal) tuple.getObject(2);
System.out.println(e.getPrimaryKey().toString());
}
userTransaction.commit();

Dynamic query service performance considerations
You can use the dynamic query service to build and execute queries against entity
beans constructed dynamically at runtime, rather than defining them at
deployment time. By using dynamic query you gain the flexibility of queries
defined at runtime and utilize the power of EJB-Query Language (QL). Apart from
supporting all of the capabilities of an EJB-QL query, dynamic query adds
additional functionality not available to standard static query. Two examples are
the ability to select multiple data fields directly from the bean itself (static queries
currently only allow one) and executing business methods directly in the query.

When used as a direct replacement for an equivalent static query, dynamic query is
slower that the static variation. This slowdown is due to the need for parsing and
building a plan for the query, in addition to executing it. In the static variation,
these costs are paid at deploy time. In WebSphere Application Server Enterprise
5.0, expect to see 60% degradation in performance between executing a predefined
static query and the equivalent dynamic query. Through optimizations
implemented in WebSphere Application Server Enterprise 5.01, a cache for recently
used query plans and other performance improvements, this degradation is
reduced to about 25%.

You can effectively create more efficient and less resource intensive applications
with dynamic query. For example, two data fields are required from the results of
a query. Because a standard EJB-QL query can only select one data field, it is
necessary to select the entire EJB object and extract the needed data from the
returned results through data access methods, possibly traversing Container
Managed Relationships (CMR) boundaries in the process. However, when using
dynamic query, you can get both pieces of data directly from the query without
additional CMR traversal or accessor methods. This principle is the key to
evaluating whether or not dynamic query can be used for performance gain. You
should review the amount of data that must be retrieved, in addition to the
amount of business logic needed to retrieve it, for example, CMR traversal or
accessor methods.

Using parameters in the query rather than literal values is another performance
consideration. Under most circumstances, it is better to define conditional values as
parameters in the query and then pass those parameters through the appropriate
mechanisms. By using this method, you have a greater chance of matching a
cached query plan and you eliminate the need to parse and build the plan from
scratch. For example, ″SELECT Object(o) FROM schemaname AS o WHERE
o.fieldname LIKE foo″, is more appropriately expressed as ″SELECT Object(o)
FROM schemaname AS o WHERE o.fieldname LIKE ?1″ with the value foo passed
as a parameter to the executeQuery method. The result is that any subsequent
execution of a dynamic query structure that is the same, except for different string
literal conditions, are registered as a plan cache hit affecting observed performance.

774 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The dynamic query service is inherently handicapped from a performance
viewpoint because of the necessary work of parsing the supplied queries
dynamically and building the subsequent query plans. Despite this, the added
functionality gained through the use of dynamic query, specifically the ability to
select multiple data fields in a single query even across CMRs, creates
opportunities to utilize dynamic query for the sake of performance improvement.
The additional benefits of dynamic query in WebSphere Application Server
Enterprise 5.01, like the use of parameters within the query, further improves the
performance through caching and reusing a more general set of plans.

Chapter 13. Using EJB query 775

776 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 14. Using the internationalization service

The internationalization service adds APIs and tooling that enable J2EE
applications to manage the distribution of internationalization information, or
internationalization context, necessary to perform localizations within server-side
application components. This topic summarizes the steps involved in using the
internationalization service.

Steps for this task
1. If you have an application that uses the WebSphere Version 4.0

internationalization service, review the topic Migrating internationalized
applications.

2. Use the internationalization context API within application components to
obtain or manage internationalization context.
Servlet and enterprise bean business methods can use internationalization
context to perform locale- and time zone-sensitive localizations. EJB client
applications, and server components configured to manage internationalization
context must use the internationalization context API to set the context
elements scoped to their invocations.

5.0.2 You use the internationalization context API within Web service-enabled
J2EE client programs and stateless session beans in the same manner as you
would in conventional J2EE components, with one exception:
Internationalization context propagated over Web services requests contains a
time zone ID, whereas conventional RMI/IIOP requests propagate complete
time zone information, including the raw offset, DST information, and so on.

3. Assemble internationalized applications.
Use the Application Assembly Tool to configure the internationalization type
and any container internationalization attributes for the servlets and enterprise
beans of your application.
Internationalization type specifies the internationalization policy applicable to a
servlet or an enterprise bean and, in particular, indicates whether the
application component or its hosting J2EE container will manage
internationalization context. Container internationalization attributes can be
specified for container-managed servlet and enterprise bean business methods.
These attributes tailor a policy by indicating which context the container will
scope to an invocation. Configuring internationalization policies declaratively
prescribes, by means of the application’s deployment descriptor, the
distribution and management of context throughout an application.

5.0.2 You configure internationalization type and container internationalization
attributes for Web service-enabled stateless session beans in the same manner
as you do for conventional beans.

4. Manage the internationalization service.
Use the administrative console to enable the service on all application servers.
By default, the service is enabled within J2EE client environments but is
disabled on application servers. You must enable the service on all application
servers hosting your application’s servlets and enterprise beans in order to use
internationalization context.

© Copyright IBM Corp. 2003 777

5.0.2 This also applies to J2EE Web service client environments and Web
service-enabled enterprise beans.

5. Troubleshoot the internationalization service as needed.
Use the administrative console to enable the trace service to log
internationalization service messages when debugging your applications.

Internationalization
An application that can present information to users according to regional cultural
conventions is said to be internationalized: The application can be configured to
interact with users from different localities in culturally appropriate ways. In an
internationalized application, a user in one region sees error messages, output, and
interface elements in the requested language. Date and time formats, as well as
currencies, are presented appropriately for users in the specified region. A user in
another region sees output in the conventional language or format for that region.

Historically, the creation of internationalized applications has been restricted to
large corporations writing complex systems. Internationalization techniques have
traditionally been expensive and difficult to implement, so they have been applied
only to major development efforts. However, given the rise in distributed
computing and in the use of the World Wide Web, application developers have
been pressured to internationalize a much wider variety of applications. This
requires making internationalization techniques much more accessible to
application developers.

In an application that is not internationalized, the interface that the user sees is
unalterably written into the application code. On the other hand, localizing the
displayed strings adds a layer of abstraction into the design of the application.
Instead of simply printing an error message, an internationalized application
represents the error message with some language-neutral information; in the
simplest case, each error condition corresponds to a key. To print a usable error
message, then, the application looks up the key in the configured message catalog.
Each message catalog is a list of keys with associated strings. Different message
catalogs provide strings for the different languages supported. The application
looks up the key in the appropriate catalog, retrieves the corresponding error
message in the requested language, and prints this string for the user.

Localization of text can be used for far more than translating error messages. For
example, by using keys to represent each element in a graphical user interface
(GUI) and by providing the appropriate message catalogs, the GUI itself (buttons,
menus, and so on) can support multiple languages. Extending support to
additional languages requires that you provide message catalogs for those
languages; in many cases, the application itself needs no further modification.

Internationalization of an application is driven by two variables, the time zone and
the locale. The time zone indicates how to compute the local time as an offset from
a standard time like Greenwich Mean Time. The locale is a collection of
information about language, currency, and the conventions for presenting
information like dates. In a localized application, the locale also indicates the
message catalog from which an application is to retrieve message strings. A time
zone can cover many locales, and a single locale can span time zones. With both
time zone and locale, the date, time, currency, and language for users in a specific
region can be determined.

778 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

WebSphere Application Server Enterprise provides an Internationalization Service,
which manages the distribution of locale and time-zone information, or
internationalization context, within Java applications.

Internationalization service: Overview
In a distributed client-server environment, application processes can run on
different machines, configured to different locales, corresponding to different
cultural conventions; they can also be located across geographical boundaries. For
an understanding of how these differences impact application development, review
the topic Internationalization challenges in distributed applications.

The J2EE platform provides support for application components executing on
computers with differing endian architecture and code sets, but does not provide
dedicated support for application components that run on computers having
different locales or time zones.

The conventional method for solving locale and time zone mismatch across remote
application components is to pass one or more extra parameters on all business
methods needed to convey the client-side locale or time zone to the server.
Although simple, this technique has the following limitations when used in EJB
applications:
v It is intrusive because it requires that one or more parameters be added to all

bean methods in the call chain to locale-sensitive or time zone-sensitive
methods.

v It is inherently error-prone.
v It is impracticable within applications that do not afford modification, such as

legacy applications.

The internationalization service solution
The WebSphere internationalization service addresses the challenges posed by
locale and time zone mismatch without incurring the limitations of conventional
techniques. It does this by systematically managing the distribution of
internationalization contexts across the various components of EJB applications,
including client applications, enterprise beans, and servlets.

The service works by associating an internationalization context with every thread
of execution within an application. When a client-side component invokes a
business method, the internationalization service interposes by obtaining the
internationalization context associated with the current thread of the client-side
process and attaching that context to the outgoing request. On the server-side, the
internationalization service again interposes by detaching the context from the
incoming request and associating it with the thread of the server-side process on
which the business method will execute, effectively scoping the context to the
business method. The service propagates internationalization context on
subsequent business method invocations in the same manner and thus distributes
the context of the originating request over the entire chain of business method
invocations.

This basic operation of scoping and propagation is defined precisely by
internationalization context management policies. Every application component has
a default policy, which can be overridden and tailored for servlets and enterprise
beans at development time using WebSphere’s Application Assembly Tool (AAT).
Internationalization policies specify whether an application component or its
hosting J2EE container are to manage internationalization context. For

Chapter 14. Using the internationalization service 779

container-managed components, the policy indicates which internationalization
context the container will scope to invocations on that component. Server
components configured to manage internationalization context, as well as EJB
clients, must use the internationalization context API to manage the
internationalization context elements scoped to their invocations.

At execution time, application components can use the internationalization context
API to get any element of the internationalization contexts scoped to an invocation.
To programmatically access context elements, application components first resolve
an internationalization context API reference, then invoke the appropriate API
method to access the various context elements, such as the caller locale or the
invocation time zone. These elements can be used in calls to Java 2 SDK
internationalization API methods; for example, to perform localizations such as
formatting messages, configuring dates, or comparing strings.

Internationalization challenges in distributed applications
With the advent of Internet-based business computational models, such as
eCommerce, applications increasingly comprise clients and servers that operate in
different locales and geographical regions. These differences introduce challenges
to the task of designing a sound client-server infrastructure. Specifically, clients and
servers can:
v Execute on computers having different endian architectures or code sets.
v Be located in different locales.
v Be located in different time zones.

The following sections describe these three challenges in more detail.

Computers with differing endian architectures or code sets

Clients and servers can reside in computers having different endian architectures: a
client could reside in a little-endian CPU, while the server code runs in a
big-endian one. As a more complex instance, a client might want to invoke a
business method on a server running in a code set different from that of the client.

A client-server infrastructure must define precise endian and code set tracking and
conversion rules. Both CORBA and J2EE have addressed the problems of endian
and code set mismatches. The language-neutral CORBA formalism uses byte order
indicator in all marshalled data streams to indicate the byte order of the
originating machine; in case of an endian mismatch, the receiving side can perform
byte swapping for endian correction. The code set mismatch is addressed by
CORBA using a comprehensive framework for code set conversion.

J2EE has nearly eliminated these problems in a unique way by relying on its Java
Virtual Machine (JVM), which encodes all string data in UCS-2 format and
externalizes everything in big-endian format. The JVM employs a set of
platform-specific programs for interfacing with the native platform. These
programs perform any necessary code set conversions between UCS-2 and the
native code set of a platform.

Computers located in different locales

Client and server processes can execute in geographical locations having different
locales. For example, a Spanish client might invoke a business method upon an
object residing on an American server. Some business methods can be
locale-sensitive in nature; for example, given a business method that returns a

780 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

sorted list of strings, the Spanish client expects that list to be sorted according to
the Spanish collating sequence, not in the server’s English collating sequence. Since
data retrieval and sorting procedures run on the server, the locale of the client
must be available in order to perform a legitimate sort.

A similar consideration applies in instances where the server has to return strings
containing date, time, currency, exception messages, and so on, formatted
according to the client’s cultural expectations. Neither the CORBA nor the J2EE
specifications have architecturally addressed the locale mismatch problem and
other options involving extra parameters are not practical or have limitations. For
example, requiring an extra parameter could require interface changes, which is a
serious concern for deployed applications.

Computers located in different time zones

Client and server processes can execute in geographical locations having different
time zones. To date, all internationalization literature and resources have
concentrated mainly on code set and locale-related issues. They have generally
ignored the time zone issue, even though business methods can be sensitive to
time zone as well as to locale.

For example, suppose that a vendor makes the claim that ″orders received before
2:00 PM will be processed by 5:00 PM the same day″. The times given, of course,
are in the time zone of the server that is processing the order. It is important to
know the client’s time zone in order to give customers in other time zones the
correct times for same-day processing.

Other time zone-sensitive operations include time stamping messages logged to a
server, and accessing file or database resources. The concept of Daylight Savings
Time (DST) further complicates the time zone issue. Neither the CORBA nor the
J2EE specifications address time zone issues adequately, and conventional methods
of solving this problem are limited.

Migrating internationalized applications
Applications that used the internationalization service in WebSphere Application
Server Version 4.0 can use the service in Version 5.0 with no modification. The
packaging and structure of the internationalization context API remain identical
across releases. Most importantly, the semantics of the API remain as well.

In Version 4.0, the internationalization service did not provide internationalization
deployment descriptor policy information to direct how the service manages
internationalization context across the various application components. Rather, the
service employed the implicit client-side internationalization (CSI) and server-side
internationalization (SSI) policies, which dictated how the service managed context
according to the type of J2EE container hosting a component. For details, refer to
the WebSphere Application Server Version 4.0 Integrated InfoCenter
(http://www.ibm.com/software/webservers/appserv/doc/v40/aee/index.html).
Briefly, all server components in Version 4.0 were SSI, and all EJB client
applications were CSI.

In Version 5.0, the internationalization type setting of all server components is
configured to ″Container″ by default. The internationalization service assigns the
default container internationalization attribute, ″RunAsCaller″, to any
container-managed (CMI) servlet or enterprise bean invocation lacking a container
internationalization attribute. Hence, invocations of server components lacking

Chapter 14. Using the internationalization service 781

internationalization policy information in the deployment descriptor run under the
policy, [CMI, RunAsCaller], which is semantically equivalent to the SSI
internationalization policy of Version 4.0; EJB client applications run under the
logical policy [AMI, RunAsServer], which is equivalent to the CSI policy of Version
4.0.

When migrating a Version 4.0 application to Version 5.0, it is unnecessary to
configure the internationalization deployment descriptor information during
application assembly because all component invocations execute under
semantically equivalent internationalization context management policies.

Assembling internationalized applications
Use the Application Assembly Tool to configure internationalization deployment
descriptor information for servlets and enterprise beans.

Steps for this task
1. (Optional) Set the internationalization type.

All servlets and enterprise beans have an internationalization type setting that
specifies whether internationalization context is managed by the application
component or by its hosting J2EE container during invocations of their
respective lifecycle and business methods. Internationalization type can be
configured for all server application components except entity beans, which are
container-managed only.
By default, all server components employ container-managed
internationalization (CMI). The default setting should suffice in most cases;
when it does not, modify the internationalization type setting by completing
the steps described in one of the following topics:
v Setting the internationalization type for servlets
v Setting the internationalization type for enterprise beans

2. (Optional) Set the container internationalization attribute.
You can associate CMI servlets, and business methods of CMI enterprise beans,
with a container internationalization attribute that specifies which of three
internationalization contexts - Caller, Server, or Specified - the container is to
scope to an invocation. When running as specified, the container
internationalization attribute also specifies the custom internationalization
context elements.
Named container internationalization attributes can be associated with sets of
servlets or with sets of EJB business methods. Initially, CMI servlets and
business methods implicitly run as caller and do not associate with a container
internationalization attribute. When the implicit behavior or an associated
attribute setting is unsuitable, configure an attribute by completing the steps
described in one of the following topics:
v Configuring container internationalization for servlets
v Configuring container internationalization for enterprise beans

Setting the internationalization type for servlets
This task sets the internationalization type for a servlet within a Web module.

Steps for this task
1. Start the Application Assembly Tool.

782 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

2. View the servlets of your Web module by selecting application_name > Web
Modules > webmodule_name > Web Components in the left-hand pane.

3. Select your servlet from the left-hand pane.
4. On the WAS Enterprise tab on the right, select either Container or Application

from the Internationalization type drop-down menu.
5. Click Apply.

Results

The internationalization type setting is assigned to the servlet.

Configuring container internationalization for servlets
This task configures container internationalization for a servlet within a Web
module. Use this procedure to relate one or more servlets to a container
internationalization attribute.

Steps for this task
1. Start the Application Assembly Tool.
2. In the left-hand panel, expand your Web module.
3. Select Internationalization.
4. To configure a new attribute, right-click on Internationalization and select

New; otherwise, skip to step 5.
a. On the New Container Internationalization Attribute panel, enter a

Description that uniquely identifies the policy.
b. Click Add. From the Add Servlets list, select one or more servlets to

which the attribute will apply and click OK to exit the panel. The
servlet(s) appear in the Web Components list.

c. Click OK.

The new attribute description is displayed in the Description list in the
right-hand panel.

5. Select a named Container Internationalization Attribute from the Description
list.
The fields of the selected attribute are displayed.

6. If desired, re-enter a description (name) that uniquely identifies this attribute.
A description is an arbitrary character string.

7. Click the Add button adjacent to the Web Components list.
8. From the Add Servlets list, select one or more servlets to which the attribute

applies.
9. Click OK.

The servlets appear in the Web Components list. Repeat these steps for any
remaining servlets you want configure.

10. Complete the Run as field by selecting Caller, Server, or Specified.
If the servlet is to run as Specified, complete the following steps to specify
the context elements that the container will scope to servlet invocations;
otherwise, click OK to exit this panel.

11. (Optional) Enter the Description of the specified localization context.
A description is an arbitrary character string.

12. Complete the Time Zone ID fields:

Chapter 14. Using the internationalization service 783

a. (Optional) Enter the time zone ID Description.
A description is an arbitrary character string.

b. Enter the Time Zone ID.
A time zone ID is an arbitrary, non-empty string that identifies a time zone
supported by the Java SDK type, java.util.SimpleTimeZone. Refer to the
topic Container internationalization attributes for details.

13. Complete the Locales fields; perform the following steps to construct an
ordered list of locales:
a. Click Add.

The Add Locales panel is displayed.
b. [Optional] Enter the locale Description.

A description is an arbitrary character string.
c. Enter the Language Code.

A language code is an arbitrary string. A valid locale must contain at least
a language code or a country code.

d. Enter the Country Code.
A country code is an arbitrary string. A valid locale must contain at least a
language code or a country code.

Refer to the section on locales in the topic Container internationalization
attributes for details about language codes, country codes, and variants.

14. Click Apply to apply your changes and exit this panel.

Results

The servlets are now configured to run under the associated internationalization
settings.

Internationalization assembly properties for Web modules
Use this page to specify which internationalization context the Web container will
scope to servlet service method invocations.

By default, a Web container scopes the caller’s internationalization context to
service method invocations of servlets and Java Server Pages components (JSPs)
configured to the Container internationalization type. To override this default
scoping behavior, create and configure at least one Container Internationalization
attribute.

A Container Internationalization attribute associates those servlets (JSPs) that
employ container-managed internationalization to one of three internationalization
contexts: the Caller context, the Server context, or the context specified in the
attribute. For each servlet listed in the attribute, the container scopes the
internationalization context that is specified in the attribute’s Run as field.

Use the following information to configure new and existing Container
Internationalization attributes.

Description: Describes the attribute.

Servlet: Specifies the set of servlets to which the Run as field applies.

Click the Add button to select the servlets specified by this attribute.

784 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Run as: Specifies the internationalization context that the container will use for
scoping method invocations of the servlet indicated in the Servlet field.

Default Caller
Range Valid values are Caller, Server, and Specified

More information about valid values follows:

Caller

The container invokes the attribute’s servlet with the locales (the
accept-languages) of the incoming HTTP request. The container supplies
GMT+00:00 for time zone. Select Caller when you want servlets to execute
under the invocation context of the client request.

Server

The container invokes the servlet with the default context elements of the
server Java Virtual Machine (JVM). Select Server when you want servlets
to execute under the invocation context of the server JVM.

Specified

The container invokes the attribute’s servlet with the context elements
specified in the attribute’s Locales and Time zone ID fields. Select
Specified when you want servlets to execute under the invocation context
elements specified in the attribute. Be sure to complete the Locales and
Time zone ID fields. You can add information about the group of specified
context elements in the Description field.

Time zone: Represents a temporal offset and computes daylight savings
information.

Specify the time zone fields within the Time Zone panel according to the following
instructions:

Description
Describes the specified time zone (ID).

ID Specifies a time zone.

Enter a valid time zone ID. A valid ID represents any time zone supported
by java.util.TimeZone. Specifically, an ID may be any of the IDs that
appear in the list of time zone IDs returned by method
java.util.TimeZone.getAvailableIds(), or a custom ID having the form
GMT[+|-]hh[[:]mm]; for example, America/Los_Angeles and GMT-08:00 are
valid time zone IDs.

Locales: Specifies an ordered list of locales; a locale represents a specific
geographical, cultural, or political region.

Description
Describes the specified locale.

Language code
Specifies the language spoken within a particular region.

Enter the language code of the new locale. Ideally, language code is one of
the lower-case, two-character codes defined by ISO-639. Language code is
not restricted to ISO codes and is not a required field; however, a valid
locale must contain either a language code or a country code.

Chapter 14. Using the internationalization service 785

Country code
Specifies the country within a particular region.

Enter the country code of the new locale. Ideally, country code is one of
the upper-case, two-character codes defined by ISO-3166. Country code is
not restricted to ISO codes and is not a required field; however, a valid
locale must specify either a language code or a country code.

Variant
A vendor-specific code.

Enter the variant of the new locale. Variant is not a required field and
serves only to supplement the Language code and Country code fields
according to application- or platform-specific requirements.

Setting internationalization type for enterprise beans
This task sets the internationalization type for an enterprise bean within an EJB
module.

5.0.2 Use this also for a stateless session bean enabled for Web services.

Steps for this task
1. Start the Application Assembly Tool.
2. View the beans of your EJB module by selecting application_name > EJB

Modules > EJBmodule_name > Session Beans | Message-Driven Beans in the
left-hand panel.
Recall that internationalization type cannot be configured on entity beans,
which are CMI only.

3. Select your bean from the left-hand panel.
4. On the WAS Enterprise tab of the right-hand panel, select either Container or

Application from the Internationalization type drop-down menu.
5. Click Apply.

Results

The internationalization type is assigned to the bean.

Configuring container internationalization for enterprise beans
This task configures container internationalization for enterprise bean business
methods. Use this procedure to relate one or more business methods to a container
internationalization attribute.

5.0.2 Use this also for stateless session beans that are enabled for Web services.

Steps for this task
1. Start the Application Assembly Tool.
2. In the left-hand panel, expand your EJB module.
3. Select Internationalization.
4. To configure a new attribute, right-click on Internationalization and select

New; otherwise, skip to step 5.
a. On the New Container Internationalization Attribute panel, enter a

Description that uniquely identifies the policy.

786 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

b. Click Add. From the Add Methods list, select one or more methods to
which the attribute will apply and click OK to exit the panel. The
selections appear in the Methods list.

c. Click OK.

The new attribute description is displayed in the Description list.
5. Select a named Container Internationalization Attribute from the Description

list.
The fields of the selected attribute are displayed.

6. If desired, re-enter a description (name) that uniquely identifies this attribute.
A description is an arbitrary character string.

7. To specify the list of bean methods to which the attribute applies, click the
Add button adjacent to the Methods list.
The Add Methods panel is displayed.

8. Select a bean method to which the attribute applies.
9. Click Apply.

The method appears in the methods list. Repeat these steps for each
remaining bean method that you want configure.

10. Click OK to exit the Add Methods panel.
11. Complete the Run As field by selecting Caller, Server, or Specified.

If the bean is to run as Specified, complete the following steps to specify the
context elements that the container will scope to bean method invocations;
otherwise, click OK to exit the panel.

12. (Optional) Enter a Description of the specified context.
A description is an arbitrary character string.

13. Complete the Time Zone ID fields:
a. (Optional) Enter the Time zone ID Description.

A description is an arbitrary character string.
b. Enter the Time Zone ID.

A time zone ID is an arbitrary, non-empty string that identifies a time zone
supported by the Java SDK type, java.util.SimpleTimeZone. Refer to the
topic Container internationalization attributes for details.

14. Complete the Locales fields. Complete the following steps to construct an
ordered list of locales:
a. Click Add.

The Add Locales panel is displayed.
b. (Optional) Enter the locale Description.

A description is an arbitrary character string.
c. Enter the Language code.

A language code is an arbitrary string. A valid locale must contain at least
a language code or a country code.

d. Enter the Country code.
A country code is an arbitrary string. A valid locale must contain at least a
language code or a country code.

Refer to the topic Container internationalization attributes for details.
15. Click OK to apply your changes and to exit this panel.

Chapter 14. Using the internationalization service 787

Results

The bean methods are now configured to run under the associated
internationalization settings.

Internationalization assembly settings for EJB modules
Use this page to specify which internationalization context the EJB container will
scope to enterprise bean business method invocations.

By default, the EJB container scopes the caller’s internationalization context to
business method invocations of enterprise beans configured to the Container
internationalization type. To override this default scoping behavior, create and
configure at least one Container Internationalization attribute.

A Container Internationalization attribute associates business methods of those
enterprise beans that employ container-managed internationalization to one of
three internationalization contexts: the Caller context, the Server context, or the
context specified in the attribute. For each method listed in the attribute, the
container scopes the internationalization context that is specified in the attribute’s
Run as field.

Use the information below to configure new and existing Container
Internationalization attributes.

Description: Describes the attribute.

Methods: Specifies the set of EJB methods to which the Run as field applies.
Click the Add button, then select the methods to be specified in the attribute.

Run as: Specifies the internationalization context that the EJB container will use
for scoping invocations of the business methods indicated in the Methods field.

Default Caller
Range Valid values are Caller, Server, and Specified

More information about valid values follows:

Caller

The container invokes the attribute’s methods with the locales and time
zone of the incoming client request. For any missing context element, the
container supplies the corresponding default element of the server Java
Virtual Machine (JVM). Select Caller when you want bean methods to
execute under the invocation context of the client request.

Server

The container invokes the attribute’s methods with the default context
elements of the server JVM. Select Server when you want bean methods to
execute under the invocation context of the server JVM.

Specified

The container invokes the attribute’s methods with the context elements
specified in the attribute’s Locales and Time zone ID fields. Select
Specified when you want bean methods to execute under the invocation
context specified in the attribute. Be sure to complete the Locales and Time
zone ID fields. You can add information about the group of specified
context elements in the Description field.

788 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Time zone: Represents a temporal offset and computes daylight savings
information.

Description
A description of the specified time zone (ID).

ID A short-hand identifier for a time zone.

Enter a valid time zone ID. A valid ID represents any time zone supported
by java.util.TimeZone. Specifically, an ID can be any of the IDs that appear
in the list of time zone IDs returned by method
java.util.TimeZone.getAvailableIds(), or a custom ID having the form
GMT[+|-]hh[[:]mm]; for example, America/Los_Angeles and GMT-08:00 are
valid time zone IDs.

Locales: Specifies an ordered list of locales; a locale represents a specific
geographical, cultural, or political region.

Description
Describes the specified locale.

Language code
Specifies the language spoken within a particular region.

Enter the language code of the new locale. Ideally, language code is one of
the lower-case, two-character codes defined by ISO-639. Language code is
not restricted to ISO codes and is not a required field; however, a valid
locale must contain either a language code or a country code.

Country code
Specifies the country within a particular region.

Enter the country code of the new locale. Ideally, country code is one of
the upper-case, two-character codes defined by ISO-3166. Country code is
not restricted to ISO codes and is not a required field; however, a valid
locale must specify either a language code or a country code.

Variant
A vendor-specific code.

Enter the variant of the new locale. Variant is not a required field and
serves only to supplement the Language code and Country code fields
according to application- or platform-specific requirements.

Using the internationalization context API
Before you begin

Enterprise JavaBeans (EJB) client applications, servlets, and enterprise beans can
programmatically obtain and manage internationalization context using the
internationalization context API.

The java.util and com.ibm.websphere.i18n.context packages contain all classes
necessary to use the internationalization service within an EJB application. Classes
specific to the internationalization service reside in the file
WAS_HOME/lib/i18nctx.jar. Before compiling application components that import
internationalization service classes, add the i18nctx.jar file to your CLASSPATH.

Steps for this task
1. Gain access to the internationalization context API.

Chapter 14. Using the internationalization service 789

2. Access caller locales and time zone.
3. Access invocation locales and time zone.

Usage scenario

Each EJB application component uses the internationalization context API
differently. Three code examples are provided that illustrate how to use the API
within each application type. Differences in API usage, as well as other coding tips,
are noted in comments that precede the relevant statement blocks.

5.0.2 For Web services client applications and stateless session beans, you use the
API to obtain and manage internationalization context in the same manner as for
EJB clients and enterprise beans, respectively.

Gaining access to the internationalization context API
This topic describes how to access the internationalization service by resolving a
reference to the internationalization context API.

Tip:

Resolve internationalization context API references once over the lifecycle of an
application component, within the initialization method of that component (for
example, within the init() method of servlets, or within the SetXxxContext()
method of enterprise beans).

5.0.2 For Web service client programs, perform the following task to resolve a
reference to the internationalization context API during initialization. For stateless
session beans enabled for Web services, resolve the reference in the
setSessionContext() method.

Steps for this task
1. Resolve a reference to the UserInternationalization interface by performing a

lookup on the JNDI name java:comp/websphere/UserInternationalization.
For example:
//--
// Internationalization context imports.
//--
import com.ibm.websphere.i18n.context.*;
import javax.naming.*;
...

public class MyApplication {
...

//--
// Resolve a reference to the UserInternationalization interface.
//--
InitialContext initCtx = null;
UserInternationalization userI18n = null;
final String UserI18nUrl = "java:comp/websphere/UserInternationalization";
try {

initCtx = new InitialContext();
userI18n = (UserInternationalization)initCtx.lookup(UserI18nUrl);

}
catch (NamingException ne) {

// UserInternationalization URL is unavailable.
}

790 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

If the UserInternationalization object is unavailable due to an anomaly or a
restriction, the JNDI lookup invocation throws a
javax.naming.NameNotFoundException that contains the
java.lang.IllegalStateException.

2. Use the UserInternationalization reference to create references to the
CallerInternationalization or InvocationInternationalization objects, which
provide access to elements of the Caller or Invocation internationalization
contexts, respectively.
The CallerInternationalization reference can be bound to the
Internationalization interface, only; the InvocationInternationalization reference
can be bound to either the Internationalization or the
InvocationInternationalization interfaces, depending on whether the application
requires read-only or read-write access to invocation context. For example:

...
//--
// Resolve references to the Internationalization and
// InvocationInternationalization interfaces.
//--
Internationalization callerI18n = null;
InvocationInternationalization invocationI18n = null;
try {

callerI18n = userI18n.getCallerInternationalization();
invocationI18n = userI18n.getInvocationInternationalization();

}
catch (IllegalStateException ise) {

// An Internationalization interface(s) is unavailable.
}

Accessing caller locales and time zone
Before you begin

An application component must first resolve a reference to the
CallerInternationalization object and then bind it to the Internationalization
interface.

Every remote invocation of an application component has an associated caller
internationalization context associated with the thread running that invocation.
Caller context is propagated by the internationalization service and middleware to
the target of a request, such as an EJB business method or servlet service method.
Perform the following task to access elements of the Caller internationalization
context.

5.0.2 This task also applies to Web service client programs and stateless session
beans enabled for Web services.

Steps for this task
1. Obtain the desired caller context elements.

java.util.Locale [] myLocales = null;
try {

myLocales = callerI18n.getLocales();
}
catch (IllegalStateException ise) {

// The Caller context is unavailable;
// is the service started and enabled?

}
...

Chapter 14. Using the internationalization service 791

The Internationalization interface contains the following methods to get caller
internationalization context elements:
v Locale [] getLocales() Returns the list of caller locales associated with the

current thread.
v Locale getLocale() Returns the first in the list of caller locales associated with

the current thread.
v TimeZone getTimeZone() Returns the caller SimpleTimeZone associated with

the current thread.

The Internationalization interface allows read-only access to internationalization
context within application components. Methods of the Internationalization
interface are available to all EJB application components and are used in the
same manner for each, but the method semantics vary according to the
component’s type. For instance, when obtaining caller locale within an EJB
client application, the interface returns the default locale of the host JVM; in
contrast, when obtaining caller context within a servlet service method (for
example, doPost() or doGet() methods), the interface returns the first locale
(accept-language) propagated within the corresponding HTML request. See
Internationalization context for a discussion of how the service propagates
internationalization context throughout an application.

2. Use the caller context elements to localize computations under a locale or time
zone of the calling process.
DateFormat df = DateFormat.getDateInstance(myLocale);
String localizedDate = df.getDateInstance().format(aDateInstance);
...

Accessing invocation locales and time zone
Before you begin

An application component must first resolve a reference to the
InvocationInternationalization object and then bind it to the
InvocationInternationalization interface of the internationalization context API.

Every remote invocation of a servlet service or EJB business method has an
invocation internationalization context associated with the thread running that
invocation. Invocation context is the internationalization context under which
servlet and business method implementations execute; it is propagated on
subsequent invocations by the internationalization service and middleware.
Perform the following task to access elements of the invocation internationalization
context.

5.0.2 This task also applies to Web services clients and stateless session beans
enabled for Web services.

Steps for this task
1. Obtain the desired invocation context elements.

java.util.Locale myLocale;
try {

myLocale = invocationI18n.getLocale();
}
catch (IllegalStateException ise) {

// The invocation context is unavailable;
// is the service started and enabled?

}
...

792 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The InvocationInternationalization interface contains the following methods to
both get and set invocation internationalization context elements:
v Locale [] getLocales(). Returns the list of invocation locales associated with

the current thread.
v Locale getLocale(). Returns the first in the list of invocation locales

associated with the current thread.
v TimeZone getTimeZone(). Returns the invocation SimpleTimeZone

associated with the current thread.
v setLocales(Locale []). Sets the list of invocation locales associated with the

current thread to the supplied list.
v setLocale(Locale). Sets the list of invocation locales associated with the

current thread to a list containing the supplied locale.
v setTimeZone(TimeZone). Sets the invocation time zone associated with the

current thread to the supplied SimpleTimeZone.
v setTimeZone(String). Sets invocation time zone associated with the current

thread to a SimpleTimeZone having the supplied ID.

The InvocationInternalization interface allows read and write access to
invocation internationalization context within application components.
However, according to internationalization context management policies, only
components configured to manage internationalization context (AMI
components) have write access to invocation internationalization context
elements. Calls to set invocation context elements within CMI application
components result in a java.lang.IllegalStateException. Any differences in how
application components can use InvocationInternationalization methods are
explained in Internationalization context.

2. Use the invocation context elements to localize a computation under a locale or
time zone of the invoking process.
DateFormat df = DateFormat.getDateInstance(myLocale);

String localizedDate = df.getDateInstance().format(aDateInstance);
...

Usage scenario

In the following code example, locale (en,GB) and simple time zone (GMT)
transparently propagate on the call to the myBusinessMethod() method. Server-side
application components, such as myEjb, can use the InvocationInternationalization
interface to obtain these context elements.
...
//--
// Set the invocation context under which the business method or
// servlet will execute and propagate on subsequent remote business
// method invocations.
//--
try {

invocationI18n.setLocale(new Locale("en", "GB"));
invocationI18n.setTimeZone(SimpleTimeZone.getTimeZone("GMT"));

}
catch (IllegalStateException ise) {

// Is the component CMI; is the service started and enabled?
}
myEjb.myBusinessMethod();

Within CMI application components, the Internationalization and
InvocationInternationalization interfaces are semantically equivalent, and either of
these interfaces can be used to obtain the context associated with the thread on

Chapter 14. Using the internationalization service 793

which that component is running. For instance, both interfaces can be used to
obtain the list of locales propagated to the servlet doPost() service method.

Example: Internationalization context in an EJB client program
The following code example illustrates how to use the internationalization context
API within a contained EJB client program.

5.0.2 This example also applies to Web service client programs.
//--
// Basic Example: J2EE EJB client.
//--
package examples.basic;

//--
// INTERNATIONALIZATION SERVICE: Imports.
//--
import com.ibm.websphere.i18n.context.UserInternationalization;
import com.ibm.websphere.i18n.context.Internationalization;
import com.ibm.websphere.i18n.context.InvocationInternationalization;

import javax.naming.InitialContext;
import javax.naming.Context;
import javax.naming.NamingException;
import java.util.Locale;
import java.util.SimpleTimeZone;

public class EjbClient {

public static void main(String args[]) {

//--
// INTERNATIONALIZATION SERVICE: API references.
//--
UserInternationalization userI18n = null;
Internationalization callerI18n = null;
InvocationInternationalization invocationI18n = null;

//--
// INTERNATIONALIZATION SERVICE: JNDI name.
//--
final String UserI18NUrl =

"java:comp/websphere/UserInternationalization";

//--
// INTERNATIONALIZATION SERVICE: Resolve the API.
//--
try {
Context initialContext = new InitialContext();
userI18n = (UserInternationalization)initialContext.lookup(

UserI18NUrl);
callerI18n = userI18n.getCallerInternationalization();
invI18n = userI18n.getInvocationInternationalization ();
} catch (NamingException ne) {

log("Error: Cannot resolve UserInternationalization: Exception: " + ne);
} catch (IllegalStateException ise) {

log("Error: UserInternationalization is not available: " + ise);
}
...

//--
// INTERNATIONALIZATION SERVICE: Set invocation context.
//
// Under Application-managed Internationalization (AMI), contained EJB
// client programs may set invocation context elements. The following

794 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

// statements associate the supplied invocation locale and time zone
// with the current thread. Subsequent remote bean method calls will
// propagate these context elements.
//--
try {

invocationI18n.setLocale(new Locale("fr", "FR", ""));
invocationI18n.setTimeZone("ECT");

} catch (IllegalStateException ise) {
log("An anomaly occurred accessing Invocation context: " + ise);

}
...

//--
// INTERNATIONALIZATION SERVICE: Get locale and time zone.
//
// Under AMI, contained EJB client programs can get caller and
// invocation context elements associated with the current thread.
// The next four statements return the invocation locale and time zone
// associated above, and the caller locale and time zone associated
// internally by the service. Getting a caller context element within
// a contained client results in the default element of the JVM.
//--
Locale invocationLocale = null;
SimpleTimeZone invocationTimeZone = null;
Locale callerLocale = null;
SimpleTimeZone callerTimeZone = null;
try {

invocationLocale = invocationI18n.getLocale();
invocationTimeZone =

(SimpleTimeZone)invocationI18n.getTimeZone();
callerLocale = callerI18n.getLocale();
callerTimeZone = SimpleTimeZone)callerI18n.getTimeZone();

} catch (IllegalStateException ise) {
log("An anomaly occurred accessing I18n context: " + ise);

}

...
} // main

...
void log(String s) {

System.out.println (((s == null) ? "null" : s));
}

} // EjbClient

Example: Internationalization context in an EJB servlet
The following code example illustrates how to use the internationalization context
API within a servlet. Note the init() and doPost() methods.
...
//--
// INTERNATIONALIZATION SERVICE: Imports.
//--
import com.ibm.websphere.i18n.context.UserInternationalization;
import com.ibm.websphere.i18n.context.Internationalization;
import com.ibm.websphere.i18n.context.InvocationInternationalization;

import javax.naming.InitialContext;
import javax.naming.Context;
import javax.naming.NamingException;
import java.util.Locale;

public class J2eeServlet extends HttpServlet {

...
//--

Chapter 14. Using the internationalization service 795

// INTERNATIONALIZATION SERVICE: API references.
//--
protected UserInternationalization userI18n = null;
protected Internationalization i18n = null;
protected InvocationInternationalization invI18n = null;

//--
// INTERNATIONALIZATION SERVICE: JNDI name.
//--
public static final String UserI18NUrl =

"java:comp/websphere/UserInternationalization";

protected Locale callerLocale = null;
protected Locale invocationLocale = null;

/**
* Initialize this servlet.
* Resolve references to the JNDI initial context and the
* internationalization context API.
*/
public void init() throws ServletException {

//--
// INTERNATIONALIZATION SERVICE: Resolve API.
//
// Under Container-managed Internationalization (CMI), servlets have
// read-only access to invocation context elements. Attempts to set these
// elements result in an IllegalStateException.
//
// Suggestion: cache all internationalization context API references
// once, during initialization, and use them throughout the servlet
// lifecycle.
//--
try {

Context initialContext = new InitialContext();
userI18n = (UserInternationalization)initialContext.lookup(UserI18nUrl);
callerI18n = userI18n.getCallerInternationalization();
invI18n = userI18n.getInvocationInternationalization();

} catch (NamingException ne) {
throw new ServletException("Cannot resolve UserInternationalization" + ne);

} catch (IllegalStateException ise) {
throw new ServletException ("Error: UserInternationalization is not

available: " + ise);
}
...

} // init

/**
* Process incoming HTTP GET requests.
* @param request Object that encapsulates the request to the servlet
* @param response Object that encapsulates the response from the
* Servlet.
*/
public void doGet(

HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {
doPost(request, response);

} // doGet

/**
* Process incoming HTTP POST requests
* @param request Object that encapsulates the request to
* the Servlet.
* @param response Object that encapsulates the response from
* the Servlet.
*/

796 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

public void doPost(
HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

...
//--
// INTERNATIONALIZATION SERVICE: Get caller context.
//
// The Internationalization service extracts the accept-languages
// propagated in the HTTP request and associates them with the
// current thread as a list of locales within the caller context.
// These locales are accessible within HTTP Servlet service methods
// using the caller internationalization object.
//
// If the incoming HTTP request does not contain accept languages,
// the service associates the server’s default locale. The service
// always associates the GMT time zone.
//
//--
try {

callerLocale = callerI18n.getLocale(); // caller locale
// the following code enables you to get invocation locale,
// which depends on the Internationalization policies.
invocationLocale = invI18n.getLocale(); // invocation locale

} catch (IllegalStateException ise) {
log("An anomaly occurred accessing Invocation context: " + ise);

}
// NOTE: Browsers may propagate accept-languages that contain a
// language code, but lack a country code, like "fr" to indicate
// "French as spoken in France." The following code supplies a
// default country code in such cases.
if (callerLocale.getCountry().equals(""))

callerLocale = AccInfoJBean.getCompleteLocale(callerLocale);

// Use iLocale in JDK locale-sensitive operations, etc.
...

} // doPost

...
void log(String s) {

System.out.println (((s == null) ? "null" : s));
}

} // CLASS J2eeServlet

Example: Internationalization context in a session bean
The following code example illustrates how to perform a localized operation using
the internationalization service within a session bean.

5.0.2 This example also applies to Web service-enabled session beans.
...
//--
// INTERNATIONALIZATION SERVICE: Imports.
//--
import com.ibm.websphere.i18n.context.UserInternationalization;
import com.ibm.websphere.i18n.context.Internationalization;
import com.ibm.websphere.i18n.context.InvocationInternationalization;

import javax.naming.InitialContext;
import javax.naming.Context;
import javax.naming.NamingException;
import java.util.Locale;

/**

Chapter 14. Using the internationalization service 797

* This is a stateless Session Bean Class
*/
public class J2EESessionBean implements SessionBean {

//--
// INTERNATIONALIZATION SERVICE: API references.
//--
protected UserInternationalization userI18n = null;
protected InvocationInternationalization invI18n = null;

//--
// INTERNATIONALIZATION SERVICE: JNDI name.
//--
public static final String UserI18NUrl =

"java:comp/websphere/UserInternationalization";
...

/**
* Obtain the appropriate internationalization interface
* reference in this method.
* @param ctx javax.ejb.SessionContext
*/
public void setSessionContext(javax.ejb.SessionContext ctx) {

//--
// INTERNATIONALIZATION SERVICE: Resolve the API.
//--
try {

Context initialContext = new InitialContext();
userI18n = (UserInternationalization)initialContext.lookup(

UserI18NUrl);
invI18n = userI18n.getInvocationInternationalization();

} catch (NamingException ne) {
log("Error: Cannot resolve UserInternationalization: Exception: " + ne);

} catch (IllegalStateException ise) {
log("Error: UserInternationalization is not available: " + ise);

}
} // setSessionContext

/**
* Set up resource bundle using I18n Service
*/
public void setResourceBundle()
{

Locale invLocale = null;

//--
// INTERNATIONALIZATION SERVICE: Get invocation context.
//--
try {

invLocale = invI18n.getLocale();
} catch (IllegalStateException ise) {

log ("An anomaly occurred while accessing Invocation context: " + ise);
}
try {

Resources.setResourceBundle(invLocale);
// Class Resources provides support for retrieving messages from
// the resource bundle(s). See Currency Exchange sample source code.

} catch (Exception e) {
log("Error: Exception occurred while setting resource bundle: " + e);

}
} // setResourceBundle

/**
* Pass message keys to get the localized texts
* @return java.lang.String []

798 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

* @param key java.lang.String []
*/
public String[] getMsgs(String[] key) {

setResourceBundle();
return Resources.getMsgs(key);

}

...
void log(String s) {

System.out.println(((s == null) ? ";null" : s));
}

} // CLASS J2EESessionBean

Internationalization context API: Programming reference
Application components programmatically manage internationalization context
through the UserInternationalization, Internationalization, and
InvocationInternationalization interfaces in the com.ibm.websphere.i18n.context
package. The following code example introduces the internationalization context
API:
public interface UserInternationalization {

public Internationalization getCallerInternationalization();
public InvocationInternationalization
getInvocationInternationalization();

}

public interface Internationalization {
public java.util.Locale[] getLocales();
public java.util.Locale getLocale();
public java.util.TimeZone getTimeZone();

}

public interface InvocationInternationalization
extends Internationalization {

public void setLocales(java.util.Locale[] locales);
public void setLocale(java.util.Locale jmLocale);
public void setTimeZone(java.util.TimeZonetimeZone);
public void setTimeZone(String timeZoneId);

}

UserInternationalization interface

The UserInternationalization interface provides factory methods for obtaining
references to the CallerInternationalization and InvocationInternationalization
context objects. Use these references to access elements of the caller and invocation
contexts correlated to the current thread.

Methods of the UserInternationalization interface:

Internationalization getCallerInternationalization()
Returns a reference implementing the Internationalization interface that
allows access to elements of the caller internationalization context
correlated to the current thread. If the service is disabled, this method
throws an IllegalStateException.

InvocationInternationalization getInvocationInternationalization()
Returns a reference implementing the InvocationInternationalization
interface. If the service is disabled, this method throws an
IllegalStateException.

Internationalization interface

Chapter 14. Using the internationalization service 799

The Internationalization interface declares methods affording read-only access to
internationalization context. Given a caller or invocation internationalization
context object created with the UserInternationalization interface, bind the object to
the Internationalization interface in order to get elements of that context type.
Observe that caller internationalization context can be accessed only through this
interface.

Methods of the Internationalization interface:

Locale[] getLocales()
Returns the chain of locales within the internationalization context (object)
bound to the interface, provided the chain is not null; otherwise this
method returns a chain of length(1) containing the default locale of the
JVM.

Locale getLocale()
Returns the first in the chain of locales within the internationalization
context (object) bound to the interface, provided the chain is not null;
otherwise this method returns the default locale of the JVM.

TimeZone getTimeZone()
Returns the caller time zone (that is, the SimpleTimeZone) associated with
the current thread, provided the time zone is non-null; otherwise this
method returns the process time zone.

InvocationInternationalization interface

The InvocationInternationalization interface declares methods affording read and
write access to InvocationInternationalization context. Given an invocation
internationalization context object created with the UserInternationalization
interface, bind the object to the InvocationInternationalization interface in order to
get and set elements of the invocation context.

Note: According to the container-managed internationalization (CMI) policy, all set
methods, setXxx(), throw an IllegalStateException when called within a CMI servlet
or enterprise bean.

Methods of the InvocationInternationalization interface:

void setLocales(java.util.Locale[] locales)
Sets the chain of locales to the supplied chain, locales, within the invocation
internationalization context. The supplied chain can be null or have
length(>= 0). When the supplied chain is null or has length(0), the service
sets the chain of invocation locales to an array of length(1) containing the
default locale of the JVM. Null entries can exist within the supplied locale
list, for which the service substitutes the default locale of the JVM on
remote invocations.

void setLocale(java.util.Locale locale)
Sets the chain of locales within the invocation internationalization context
to an array of length(1) containing the supplied locale, locale. The supplied
locale can be null, in which case the service instead sets the chain to an
array of length(1) containing the default locale of the JVM.

void setTimeZone(java.util.TimeZone timeZone)
Sets the time zone within the invocation internationalization context to the
supplied time zone, time zone. If the supplied time zone is not an exact
instance of java.util.SimpleTimeZone or is null, the service instead sets the
invocation time zone to the default time zone of the JVM.

800 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

void setTimeZone(String timeZoneId)
Sets the time zone within the invocation internationalization context to the
java.util.SimpleTimeZone having the supplied ID, timeZoneId. If the
supplied time zone ID is null or invalid (that is, it does not appear in the
list of IDs returned by the java.util.TimeZone.getAvailableIds() method) the
service sets the invocation time zone to the simple time zone having an ID
of GMT, an offset of 00:00, and otherwise invalid fields.

Internationalization context
An internationalization context is a distributable collection of internationalization
information containing an ordered list, or chain, of locales and a single time zone,
where the locales and time zone are instances of Java SDK types, java.util.Locale
and java.util.TimeZone. A locale chain is ordered according to the user’s
preference.

The internationalization service manages and makes available two varieties of
internationalization context: the caller context, which represents the caller’s
localization environment, and the invocation context, which represents the
localization environment under which a business method runs. Server application
components use elements of the caller and invocation internationalization contexts
to appropriately tailor locale-sensitive and time zone-sensitive computations.

Note: The internationalization service does not support time zone types other than
Java SDK type java.util.SimpleTimeZone. Unsupported time zone types silently
map to the default time zone of the JVM when supplied to internationalization
context API methods. For a complete description of the java.util.Locale,
java.util.TimeZone, and java.util.SimpleTimeZone types, refer the Java SDK API
documentation.

Caller context

Caller internationalization context contains the locale chain and time zone received
on incoming EJB business method and servlet service method invocations; it is the
internationalization context propagated from the calling process. Use caller context
elements within server application components to localize computations to the
calling component. Caller context is read-only and can be accessed by all
application components by using the Internationalization interface of the
internationalization context API.

Caller context is computed in the following manner: On an EJB business method or
servlet service method invocation, the internationalization service extracts the
internationalization context from the incoming request and scopes this context to
the method as the caller context. For any missing or null context element, the
service inserts the corresponding default element of the JVM (for example,
java.util.Locale.getDefault() or java.util.TimeZone.getDefault().)

5.0.2 The service performs a similar insertion whenever missing or null Caller
context elements are encountered on invocations of stateless session beans that are
enabled for Web services.

Formally, caller context is the invocation context of the calling business method or
application component.

Invocation context

Chapter 14. Using the internationalization service 801

Invocation internationalization context contains the locale chain and time zone
under which EJB business methods and servlet service methods execute. It is
managed by either the hosting container or the application component, depending
on the applicable internationalization policy. On outgoing business method
requests, it is the context that propagates to the target process. Use invocation
context elements to localize computations under the specified settings of the
current application component.

Invocation context is computed in the following manner: On an incoming business
method or servlet service method invocation, the internationalization service
queries the associated context management policy. If the policy is
container-managed internationalization (CMI), the container scopes the context
designated by the policy to the invocation; otherwise the policy is
application-managed internationalization (AMI), and the container scopes a
vacuous context to the invocation that can be altered by the method
implementation.

Application components can access invocation context elements through both the
Internationalization and InvocationInternationalization interfaces of the
internationalization context API. Invocation context elements can be set
(overwritten) under the application-managed internationalization policy only.

On an outgoing business method request, the service obtains the currently scoped
invocation context and attaches it to the request. This outgoing exported context
becomes the caller context of the target invocation. When supplying invocation
context elements, either for export on outgoing requests or through the API, the
internationalization service always provides the most recent element set using the
API; also, the service supplies the corresponding default element of the JVM for
any null invocation context element.

5.0.2 Because the internationalization context that is propagated over Web services
(SOAP) requests contains a time zone ID rather than the entire state of a
java.lang.SimpleTimeZone object, time zone information might be lost when a Web
service-enabled client program or session bean becomes involved in remote
business computation.

Internationalization context: Propagation and scope
The scope of internationalization context is implicit. Every EJB client application,
servlet service method, and EJB business method invocation has two
internationalization contexts under which it executes. For each application
component invocation, the container enters the caller context and the invocation
context, as indicated by the pertinent internationalization policy, into scope before
the container delegates to the actual implementation. When the implementation
returns, the service removes these contexts from scope. The internationalization
service supplies no programmatic mechanism for components to explicitly manage
the scope of internationalization context.

The service scopes internationalization context differently with respect to
application component type:
v EJB client programs (contained)
v Servlets
v Enterprise beans

v
5.0.2 Web service client programs (contained)

802 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v
5.0.2 Stateless session beans that are enabled for Web services

Internationalization context observes by-value semantics over remote method
requests, meaning that changes to internationalization context elements scoped to
an invocation do not affect the corresponding elements of the internationalization
context scoped to the remote calling process. Also, modifications to context
elements obtained using the internationalization context API do not affect the
corresponding elements scoped to the invocation.

EJB client programs (contained)

Before it invokes the main() method of a client program, the J2EE client container
introduces into scope invocation and caller internationalization contexts containing
null elements. These contexts remain in scope throughout the life of program. EJB
client programs are the base in a chain of remote business method invocations and,
technically, do not have a logical caller context. Accessing a caller context element
yields the corresponding default element of the client JVM. On outgoing EJB
business method requests, the internationalization service propagates the
invocation context to the target process. Any unset (null) invocation context
elements are replaced with the default of the JVM when exported by the
internationalization context API or by outgoing requests.

Tip:

To propagate values other than the JVM defaults to remote business methods, EJB
client programs, as well as AMI servlets or enterprise beans, must set (override)
elements of the invocation context. To learn how to set invocation context elements,
see the topic Accessing invocation locales and time zone.

Servlets

On every servlet service method (doGet(), doPost()) invocation, the J2EE web
container introduces caller and invocation internationalization contexts into scope
before delegating to the service method implementation. The caller context
contains the accept-languages propagated in the HTTP servlet request, typically
from a Web browser. The invocation context contains whichever context is
indicated by the container internationalization attribute of the internationalization
policy associated with the servlet. Any unset (null) invocation context elements are
replaced with the default of the server JVM when exported by the
internationalization context API or by outgoing requests. The caller and invocation
contexts remain effective until immediately after the implementation returns, at
which time the container removes them from scope.

Enterprise beans

On every EJB business method invocation, the J2EE EJB container introduces caller
and invocation internationalization contexts into scope before delegating to the
business method implementation. The caller context contains the
internationalization context elements imported from the incoming IIOP request; if
the incoming request lacks a particular internationalization context element, the
container scopes a null element. The invocation context contains whichever context
is indicated by the container internationalization attribute of the
internationalization policy associated with the business method. On outgoing EJB
business method requests, the service propagates the invocation context to the
target process. Any unset (null) invocation context elements are replaced with the

Chapter 14. Using the internationalization service 803

default of the server JVM when exported by the internationalization context API or
by outgoing requests. The caller and invocation contexts remain effective until
immediately after the implementation returns, at which time the container removes
them from scope.

Consider a simple WebSphere EJB application having a Java client that invokes
remote bean method, myBeanMethod(). On the client side, the application could
use the Internationalization Service API to set invocation context elements. When
the client calls myBeanMethod(), the service exports the client’s invocation context
to the outgoing request. On the server side, the service detaches the imported
context from the incoming request and scopes it to the method as its caller context;
it also scopes the invocation context to the method as indicated by the associated
internationalization context management policy. The EJB container then calls the
myBeanMethod(), which can use the internationalization context API to access
elements of either the caller or invocation contexts. When myBeanMethod()
returns, the EJB container removes these contexts from scope.

Web service client programs (contained) 5.0.2

Before it calls the main() method of a Web service client program, the J2EE client
container introduces into scope both invocation and caller internationalization
contexts that contain null elements. These contexts remain in scope throughout the
duration of program execution. Web service client programs are the base in a chain
of remote business method invocations and, technically, do not have a logical caller
context. Accessing a Caller context element yields the corresponding default
element of the client virtual machine.

On outgoing Web service requests, the internationalization service transparently
creates a Simple Object Access Protocol (SOAP) header block that contains the
invocation context associated with the current thread; the SOAP representation of
invocation context is propagated through the request to the target process. Any
unset (that is, null) invocation context elements are replaced with the default
element of the JVM when exported by the internationalization context API or by
outgoing requests. Also, because the header contains only a time zone ID, the
additional state of the invocation context’s time zone object
(java.lang.SimpleTimeZone) might be lost, because it does not get propagated
through the request.

Tip:

To propagate values other than the JVM defaults to remote business methods, Web
service client programs, as well as AMI servlets or enterprise beans, must set
(override) elements of the invocation context. For more information, see ″Accessing
invocation locales and time zone.″

Stateless session beans that are enabled for Web services 5.0.2

On every method invocation of a Web service-enabled bean, the EJB container
introduces caller and invocation internationalization contexts into scope before
delegating control to the business method implementation. The caller context
contains the internationalization context elements imported from the SOAP header
block of the incoming request. If the incoming request lacks a particular
internationalization context element, the container introduces a null element into

804 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

scope. The invocation context contains whichever context is indicated by the
container internationalization attribute of the internationalization policy that is
associated with the business method.

On outgoing EJB business method requests, the service propagates the invocation
context to the target process. Any unset (that is, null) invocation context elements
are replaced with the default element of the server JVM when exported by the
internationalization context API or by outgoing requests. The caller and invocation
contexts remain effective until immediately after control returns from the business
method implementation, at which time the container removes them from scope.

On outgoing Web service requests, the internationalization service transparently
creates a SOAP header block that contains the invocation context associated with
the current thread. The SOAP representation of the invocation context is
propagated through the request to the target process. Any unset (that is, null)
invocation context elements are replaced with the default element of the JVM when
exported by the internationalization context API or by outgoing requests.

Thread association considerations

The Web and EJB containers scope internationalization contexts to a method by
associating it with the thread that executes the method’s implementation. Similarly,
methods of the internationalization context API either associate context with, or
obtain context associated with, the thread on which these methods execute. In
cases where new threads are spawned within an application component (for
instance, a user-generated thread inside the service() method of a servlet, or a
system-generated event handling thread in an AWT client) the internationalization
contexts associated with the parent thread does not automatically transfer to the
newly-spawned thread. In such instances, the service exports the default locale and
time zone of the JVM on any remote business method request and on any API calls
executed on the new thread. If the default context is inappropriate, the desired
invocation context elements must be explicitly associated to the new thread using
the setXxx() methods of the InvocationInternationalization interface. Currently,
internationalization context management policies allow invocation context to be set
within EJB client programs, as well as within servlets, session beans, and
message-driven beans employing application-managed internationalization.

Example: Internationalization context in a SOAP header
The following code example illustrates how internationalization context is
represented within the Simple Object Access Protocol (SOAP) header of a Web
service request.
<InternationalizationContext>

<Locales>
<Locale>

<LanguageCode>ja</LanguageCode>
<CountryCode>JP</CountryCode>
<VariantCode>Nihonbushi</VariantCode>

</Locale>
<Locale>

<LanguageCode>fr</LanguageCode>
<CountryCode>FR</CountryCode>

</Locale>
<Locale>

<LanguageCode>en</LanguageCode>
<CountryCode>US</CountryCode>

</Locale>
</Locales>
<TimeZoneID>JST</TimeZoneID>

</InternationalizationContext>

Chapter 14. Using the internationalization service 805

Internationalization context: Management policies
Internationalization policies declaratively prescribe how J2EE application
components or their hosting containers (the service) will manage
internationalization context on component invocations. There are two
internationalization context management policies applicable to all component
types:
v Application-managed internationalization (AMI)
v Container-managed internationalization (CMI)

These policies are represented in two parts:
v Internationalization type
v Container internationalization attribute

The service defines a default, or implicit, internationalization policy for every
application component type. At development time, assemblers can override the
default policy for server component types by explicitly configuring their
internationalization type, and optional container internationalization attributes,
using the WebSphere Application Assembly Tool. Policies configured during
assembly are preserved in the application’s deployment descriptor.

All components have an internationalization type that indicates whether it is AMI
or CMI; that is, whether a component is to deploy under the application-managed
or the container-managed internationalization policy. Application assemblers can
set the internationalization type for servlets, session beans, and message-driven
beans. Entity beans are implicitly CMI and EJB clients are implicitly AMI; neither
can be configured otherwise.

For CMI servlets and enterprise beans, optional container internationalization
attributes can be specified to indicate which invocation internationalization context
the container is to scope to service or business methods. A CMI service or business
method invocation can run under the context of the caller’s process, under the
default context of the server’s JVM, or under a custom context specified in the
attribute. Assemblers can specify one container internationalization attribute per
disjoint set of CMI servlets within a Web module, or one Attribute per disjoint set
of business methods of CMI beans within an EJB module. In other words, a
container internationalization attribute can be associated with more than one
method, but a method cannot be associated with more than one attribute.

When a WebSphere application server launches an application, the
internationalization service collects policy information from the deployment
descriptor, then uses this information to construct and associate an
internationalization policy to every component invocation. A policy is denoted as:
[<Internationalization Type>,<Container Internationalization Attribute>]

There are several cases where the deployment descriptor appears to lack policy
information, for example: EJB client applications have no configurable
internationalization policy settings; AMI components do not have container
internationalization attributes; and you are not required to specify container
internationalization attributes for CMI components. When the service cannot obtain
the explicit internationalization type and container attribute settings from a
well-formed deployment descriptor, it implicitly inserts the appropriate setting into
the policy.

The service observes the following conventions when applying policies to
invocations:

806 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v Servlets (service) and EJB business methods lacking all internationalization
policy information in the deployment descriptor implicitly execute under policy
[CMI,RunAsCaller].

v CMI servlets and business methods lacking a container internationalization
attribute in the deployment descriptor implicitly execute under policy
[CMI,RunAsCaller].

v AMI servlets and business methods always lack container internationalization
attributes in the deployment descriptor, but implicitly execute under the logical
policy [AMI,RunAsServer].

v EJB clients always lack internationalization policy information in the deployment
descriptor. By definition, EJB clients are implicitly AMI and run under the
invocation context of the JVM; they execute under the logical policy
[AMI,RunAsServer].

For conditions other than these, such as a malformed deployment descriptor, refer
to the topic Internationalization service errors.

Internationalization policies for EJB clients and HTTP clients cannot be configured
using the Application Assembly Tool; HTTP clients do, however, run under the
language priority settings of the hosting Web browser. These settings are
configurable under the options dialog of most Web browsers; refer to your Web
browser’s documentation for details.

Internationalization type
Every server application component has an internationalization type setting that
indicates whether the invocation internationalization context is to be managed by
the component or by the hosting J2EE container.

Server application components can be deployed to use one of two types of
internationalization context management:
v Application-managed internationalization (AMI)
v Container-managed internationalization (CMI)

A server component may be deployed as AMI or CMI, but not both; CMI is the
default. The setting applies to the entire component, on every invocation. Use the
Application Assembly Tool to configure the internationalization type for servlets,
session beans, and message-driven beans; entity beans are CMI and cannot be
configured otherwise. EJB client applications do not have an internationalization
type setting, but are implicitly AMI.

Application-managed internationalization (AMI)

Under the AMI deployment policy, component developers assume complete
control over the invocation internationalization context. AMI components can use
the internationalization context API to programmatically set invocation context
elements.

AMI components are expected to manage invocation context. Invocations of AMI
components implicitly run under the default locale and time zone of the hosting
JVM. Invocation context elements not set using the API default to the
corresponding elements of the JVM when accessed through the API or when
exported on business methods. To export context elements other than the JVM
defaults, AMI servlets, AMI enterprise beans, and EJB client applications must set
(overwrite) invocation elements using the internationalization context API.
Moreover, the container logically suspends caller context imported on AMI servlet

Chapter 14. Using the internationalization service 807

lifecycle method and AMI EJB business method invocations. To continue
propagating the context of the calling process, AMI servlets and enterprise beans
must use the API to transfer caller context elements to the invocation context.

Specify AMI for server components that have internationalization context
management requirements not supported by container-managed
internationalization (CMI).

Container-managed internationalization (CMI)

CMI is the preferred internationalization context management policy for server
application components; it is also the default policy. Under CMI, the
internationalization service collaborates with the Web and EJB containers to set the
invocation internationalization context for servlets and enterprise beans. The
service sets invocation context according to the container internationalization
attribute of the policy associated with a servlet (service method) or an EJB business
method.

A CMI policy contains a container internationalization attribute that indicates
which internationalization context the container is to scope to an invocation. For
details, see topic Container internationalization attributes. By default, invocations
of CMI components run under the caller’s internationalization context; or rather,
they adhere to the implicit policy [CMI,RunasCaller] whenever the servlet or
business is not associated with an attribute in the deployment descriptor. For
complete details, see the topic Internationalization context: Management policies.

Methods within CMI components can obtain elements of the invocation context
using the internationalization context API, but cannot set them. Any attempt to set
invocation context elements within CMI components results in a
java.lang.IllegalStateException.

Specify container-managed internationalization for server application components
requiring standard internationalization context management, then specify the
container internationalization attributes for CMI servlets and for business methods
of CMI enterprise beans that should not run under the caller’s internationalization
context.

Container internationalization attributes
The internationalization policy of every CMI servlet and EJB business method has
a container internationalization attribute that specifies which internationalization
context the container is to scope to its invocation.

The container internationalization attribute has three main fields:
v Run as
v Locales
v Time zone ID

As a convenience, you can create named container internationalization attributes
and associate them to the following:
v Subsets of CMI servlets within a Web module
v Subsets of business methods of CMI enterprise beans within an Enterprise

JavaBeans (EJB) module

808 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v
5.0.2 Subsets of business methods of Web service-enabled session beans. In the

following descriptions, the term supported enterprise bean refers to both CMI
enterprise beans and Web service-enabled session beans.

Run-as field

The Run-as field specifies one of three types of invocation context that a container
can scope to a method. For servlet service and EJB business methods, the container
constructs the invocation internationalization context according to the Run as field
setting and associates this context to the current thread before delegating to the
method’s implementation.

With the Application Assembly Tool, the Run as field is configurable for any CMI
servlet and business method of a CMI enterprise bean.

5.0.2 You can also configure the Run as field for Web service business methods.

By default, invocations of servlet service methods and EJB business methods
implicitly run as caller (RunAsCaller) unless the Run as field of a policy’s attribute
specifies otherwise. EJB client applications and AMI server components always run
as server (RunAsServer).

Invocation context types specifiable with the Run as field are:

Caller The container invokes the method under the internationalization context of
the calling process. For any missing context element, the container supplies
the corresponding default context element of the JVM. Select run as caller
when you want the invocation to execute under the invocation context of
the calling process.

Server The container invokes the method under the default locale and time zone
of the JVM. Select run as server when you want the invocation to execute
under the invocation context of the JVM.

Specified
The container invokes the method under the internationalization context
specified in the attribute. Select run as specified when you want the
invocation to execute under the custom invocation context specified in the
policy, then provide the custom context elements by completing the Locales
and Time zone ID fields.

Note: JMS messages do not contain internationalization context. Although
container-managed message-driven beans can be configured to run as caller, the
container associates the default elements of the server process when invoking the
onMessage() method of any message-driven bean configured as [CMI,
RunAsCaller].

Locales field

The Locales field specifies an ordered list of locales that the container scopes to an
invocation. With the Application Assembly Tool, the Locales field is configurable
for CMI servlets and for business methods of supported enterprise beans that run
as specified.

A locale represents a specific geographical, cultural, or political region and contains
three fields:

Chapter 14. Using the internationalization service 809

v Language code. Ideally, language code is one of the lower-case, two-character
codes defined by ISO-639; however, language code is not restricted to ISO codes
and is not a required field. A valid locale must specify a language code if it does
not specify a country code.

v Country code. Ideally, country code is one of the upper-case, two-character
codes defined by ISO-3166; however, country code is not restricted to ISO codes
and is not a required field. A valid locale must specify a country code if it does
not specify a language code.

v Variant. Variant is a vendor-specific code. Variant is not a required field and
serves only to supplement the language and country code fields according to
application- or platform-specific requirements.

A valid locale must specify at least a language code or a country code; the variant
is always optional. The first locale of the list is returned when accessing invocation
context using the internationalization context API method getLocale().

Time zone ID field

The Time zone ID field specifies a shorthand identifier for a time zone that the
container scopes to an invocation. With the Application Assembly Tool, the Time
zone ID field is configurable for CMI servlets and for CMI EJB business methods
that run as specified.

5.0.2 You can also configure the Time zone ID field for Web service business
methods.

A time zone represents a temporal offset and computes daylight savings
information. A valid ID indicates any time zone supported by the SDK type,
java.util.TimeZone. Specifically, a valid ID is any of the IDs appearing in the list of
time zone IDs returned by method java.util.TimeZone.getAvailableIds(), or a
custom ID having the form GMT[+|-]hh[[:]mm]; for example, America/Los_Angeles,
GMT-08:00 are valid time zone IDs.

Managing the internationalization service
To use internationalization context in an Enterprise JavaBeans (EJB) application, the
internationalization service must be enabled in the run-time environments for all
server-side components (servlets and enterprise beans) as well as all client-side
components (EJB client applications).

During installation of this product, if you installed the Additional services option
but do not require the internationalization service, disable the service on all J2EE
clients and application servers. Disabling the service eliminates any possible
performance degradation incurred by the implicit distribution of
internationalization resources.

Note: The internationalization service cannot be enabled for HTTP clients because
support for internationalization in that case is provided by the browser, not by the
application server.

Steps for this task
1. As needed, enable or disable the internationalization service for servlets and

enterprise beans.

810 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The service is disabled by default within WebSphere enterprise application
servers. You enable the service by using either the administrative console or the
wsadmin tool.

5.0.2 This step applies also to Web service-enabled session beans.
2. As needed, enable or disable the internationalization service for EJB clients

within the hosting WebSphere J2EE client environments.
The service is enabled by default within the WebSphere J2EE client container.

5.0.2 This step applies also to Web service clients.

Enabling the internationalization service for servlets and
enterprise beans

Any servlet or enterprise bean can use internationalization context if the
internationalization service is enabled within the hosting WebSphere application
server instance.

5.0.2 This task applies also to Web service-enabled enterprise beans.

Steps for this task
1. Start the administrative console.
2. Select Servers > Application Servers > server_name > Internationalization

Service.
3. Enable the internationalization service.

a. If not already selected, select the Startup checkbox.
b. Click OK.

Results

When the Startup setting is selected, the application server automatically
initializes, starts, and enables the internationalization service whenever the server
starts. If you change this setting, be sure to restart the application server in order
for the new setting to take effect.

To disable the service, clear the Startup checkbox. In this case, the
internationalization service is initialized but is neither started nor enabled when
the application server starts.

Usage scenario

Alternatively, the internationalization service can be enabled from the command
line by using the wsadmin tool. To do this, start the wsadmin tool and enter the
following commands:
set x [$AdminConfig list I18NService]
$AdminConfig modify $x { { enable true } }
$AdminConfig save
exit

What to do next

If you enable or disable the internationalization service, be sure to stop and then
restart the application server in order for the new setting to take effect.

Chapter 14. Using the internationalization service 811

Internationalization service settings
Use this page to enable or disable the internationalization service.

The internationalization service manages the implicit propagation and scoping of
locale and time zone information, called internationalization context, within
WebSphere Enterprise applications. When the service is enabled, server-side
application components can use the internationalization context API to
programmatically manage locale and time zone information, or to use this
information with the J2SE Internationalization API to perform server-side
localizations.

To view this administrative console page, click Servers > Application Servers >
server_name > Internationalization Service .

Startup: Specifies whether the server will attempt to start the internationalization
service.

Default Selected
Range Valid values are Selected or Cleared

More information about valid values follows:

Selected
When the application server starts, it attempts to start the
internationalization service automatically.

Cleared
The server does not try to start the internationalization service. If
internationalization is to be used in applications that run on this server, the
system administrator must select this property then restart the server.

Enabling the internationalization service for EJB clients
By default, the internationalization service is enabled for use within Enterprise
JavaBeans (EJB) client applications whenever the i18nctx.jar file is in the
CLASSPATH setting constructed by the launchClient tool.

5.0.2 The internationalization service is also enabled for Web service-enabled
clients.

When invoking a Java client application, the launchClient tool sets the
CLASSPATH to include the i18nctx.jar file and then activates the WebSphere J2EE
client (container), which initializes, starts, and enables the service before delegating
to the specified application.

To disable the service for all application server instances in your installation,
remove the i18nctx.jar file from the install_root/lib directory. This prevents the file
from inadvertently being included in the CLASSPATH setting constructed by the
launchClient tool.

To selectively disable the service, include the argument
-CCDI18NService.enable=false or -CCDI18NService.enable=no when invoking the
launchClient tool.

812 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Troubleshooting the internationalization service
To have your application server emit trace statements for the internationalization
service, specify the appropriate trace string to the server’s diagnostic trace service.

Steps for this task
1. Start the administrative console.
2. Select Servers > application servers > server_name > Diagnostic Trace Service.
3. Select the Enable Trace checkbox.
4. In the Trace Specification field, type the following as a continuous string (no

spaces and no line breaks):
com.ibm.ws.i18n.context.*=all=enabled:
com.ibm.websphere.i18n.context.*=all=enabled

5. Click OK.
6. Click Save on the taskbar.
7. Click Save in the Save to Master Repository panel.

Results

These settings enable the internationalization service trace when you start or restart
the corresponding application server.

Internationalization service errors
The following conditions can occur while your internationalized application is
running. These conditions might cause the internationalization service not to start,
to throw instances of IllegalStateException, or to exercise default behaviors:
v The service is disabled
v The service is not started
v Invalid context element
v Missing context element
v Invalid policy
v Missing policy

If you encounter unexpected or exceptional behavior, the problem is likely related
to one of these conditions. You need to examine the trace log to investigate these
conditions, which requires that you configure the diagnostic trace service to
generate messages about internationalization service function. To do this, see the
topic Troubleshooting the internationalization service.

The service is disabled

The internationalization service does not initialize and start when the service’s
startup setting is cleared. The service generates a message indicating whether it is
enabled or disabled. Applications cannot access the internationalization API when
the service is disabled. If an application attempts a JNDI lookup to obtain the
UserInternationationlization reference, the lookup fails with a NamingException
indicating the reference could not be found. In addition, the service does not scope
(propagate) internationalization context on incoming (outgoing) business method
invocations.

The service is not started

Chapter 14. Using the internationalization service 813

The internationalization service is operational whenever it is in the STARTED state.
For example, if an application attempts to access internationalization context and
the service is not started, the API throws an IllegalStateException. In addition, the
service does not provide runtime support for servlets and enterprise beans.

As an application server progresses through its lifecycle, it initializes, starts, stops,
and terminates (destroys) the internationalization service. If an anomaly occurs
during initialization, the service does not start. Once the service has been started,
its state can change to BLOCKED in the event that a serious error occurs. The
service generates a message for every state change.

If a trace message indicates that the service is not STARTED, examine previous
messages to determine the problem. For instance, the internationalization service
does not start if the activity service is unavailable and a message is displayed to
that effect during initialization of the internationalization service.

During startup, the following messages indicate potential configuration or run-time
problems:

No ORB support
The service could not obtain an instance of the ORB. This is a fatal error.
Examine the logs for information.

No TCM support
The service could not obtain an instance of its thread context manager. This
is a fatal error. Examine the logs for information.

No IIOP (Activity service) support
The service could not register with the Activity service. This is a fatal error.
The internationalization service cannot propagate or receive context on
IIOP requests without Activity service support. Review the logs for error
conditions related to the Activity service.

No AsynchBeans support
The service could not register into the AsynchBeans environment. This
warning indicates that the AsynchBeans environment cannot support
internationalization context. If the application server should have
AsynchBeans support, verify that the asynchbeans.jar and
asynchbeansimpl.jar files exist in the classpath and review the trace log for
any AsynchBeans error conditions.

No EJB container support
The service could not register with the EJB container. This is a warning
that the internationalization service cannot support enterprise beans.
Without EJB container support, internationalization, contexts do not scope
properly to EJB business methods. Review the trace log for any EJB
container-related error conditions.

No Web container support
The service could not register with the Web container. This is a warning
that the internationalization service cannot support servlets and Java
Server Pages (JSPs). Without Web container support, internationalization
contexts do not scope properly to servlet service methods. Review the trace
log for any Web container-related error conditions.

No Meta-data support
The service could not register with the meta-data service. This is a warning
that the internationalization service cannot process the internationalization
policies within application deployment descriptors. Without meta-data

814 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

support, the service associates the default internationalization context
management policy, [CMI, RunAsCaller], to every servlet lifecycle method
and enterprise bean business method invocation. Review the trace log for
any meta-data service-related error conditions.

No JNDI (Name service) support
The service could not bind the UserInternationalization object into the
namespace. This is a fatal error. Application components are unable to
access internationalization context API references, and are therefore unable
to access internationalization context elements. Review the trace log for
any Naming (JNDI) service-related error conditions.

No API support
The service could not obtain an instance of an internationalization context
API object. This is a fatal error. Application components are unable to
access internationalization context API references, and are therefore unable
to access internationalization context elements.

Invalid context element

The service detected an invalid internationalization context element. For example,
the internationalization service does not support TimeZone instances of a type
other than java.util.SimpleTimeZone. If the service encounters an invalid element,
it logs a message and substitutes the corresponding default element of the JVM.

Missing context element

The service detected a missing internationalization context element. Incoming
requests, for example from application servers not supporting the
internationalization service will lack internationalization context. When the service
attempts to access a caller internationalization context element, which does not
exist in this case, it logs a message and substitutes the corresponding default
element of the JVM.

Whenever possible, the internationalization service should be enabled within all
clients and hosting application servers comprising a WebSphere enterprise
application. For more information see the topic Managing the internationalization
service.

Invalid policy

The internationalization service detected a malformed internationalization policy in
the application deployment descriptor. At execution, the service replaces the
malformed attribute with the appropriate default. For instance, if the
internationalization type for an entity bean is set to Application during the
execution of a servlet or EJB business method invocation, the service logs the
inconsistency and enforces the Container setting instead.

Also, AMI application components do have an implicit container
internationalization attribute. By default they run as server. The service silently
enforces the implicit policy, [AMI, RunAsServer], and logs messages to this effect.

Invalid container internationalization attributes are likely to occur when specifying
the Locales and Time zone ID fields. When encountering invalid Locales and Time
zone ID within attributes, the service replaces each with the corresponding default
element of the JVM. Be sure to follow the guidelines provided in the topic
Assembling internationalized applications.

Chapter 14. Using the internationalization service 815

Missing policy

The service detected a missing internationalization policy. At execution, the service
replaces the missing policy with the appropriate default. For instance, if the
internationalization type is missing for a servlet or enterprise bean, the service sets
the attribute to Container.

Container internationalization attributes are not mandatory for CMI application
components. In the event that a CMI servlet or EJB business method lacks a
container internationalization attribute, the service silently enforces the implicit
policy [CMI, RunAsCaller].

When an application lacks internationalization policies in its deployment
descriptor, or meta-data support is unavailable, the service logs a message and
applies the policy [CMI, RunAsCaller] on every servlet service method and EJB
business method invocation.

For more information, see the following topics:
v Assembling internationalized applications
v Container internationalization attributes
v Internationalization type
v Migrating internationalized applications

Internationalization service exceptions
The internationalization service employs one exception:
java.lang.IllegalStateException. This exception indicates one of the following things:
v An application component attempted an operation not supported by the

service’s programming model.
IllegalStateException is thrown whenever a server application component whose
internationalization type is set to container-managed Internationalization (CMI)
attempts to set invocation context. This is a violation of the CMI policy, under
which servlets and enterprise beans cannot modify their invocation
internationalization context.

v An anomaly occurred that disabled the service.
For instance, if the internationalization service does not properly initialize, the
JNDI lookup on the UserInternationalization URL throws a
javax.naming.NameNotFoundException containing an instance of
IllegalStateException. Refer to the trace log to determine the reason for failure
and, if necessary, contact your IBM support representative.

Internationalization: Resources for learning
Use the following links to find relevant supplemental information about
internationalization. The information resides on IBM and non-IBM Internet sites,
whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
this product but is useful all or in part for understanding the product. When
possible, links are provided to technical papers and Redbooks that supplement the
broad coverage of the release documentation with in-depth examinations of
particular product areas.

View links to additional information about:

816 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v Programming instructions and examples
v Programming specifications

Programming instructions and examples

v Java internationalization tutorial
(http://java.sun.com/docs/books/tutorial/i18n/index.html)
An online tutorial that explains how to use the Java 2 SDK Internationalization
API.

Programming specifications

v Java 2 SDK, Standard Edition Documentation: Internationalization
(http://java.sun.com/j2se/1.3/docs/guide/intl/)
The Java internationalization documentation from Sun Microsystems, including a
list of supported locales and encodings.

v
5.0.2 Java Specification Request 150, Internationalization Service for

J2EE (http://www.jcp.org/en/jsr/detail?id=150)
The specification of the J2EE internationalization service that is currently being
developed through the Java Community Process.

v
5.0.2 W3C, Web Services Internationalization Task Force

(http://www.w3.org/2002/05/i18n-recharter/WG-charter.html#web-services)
The task force of the W3C’s Internationalization Working Group responsible for
investigating the internationalization of Web services, in particular, the
dependence of Web services on language, culture, region, and locale-related
contexts.

v Making the WWW truly World Wide (http://www.w3.org/International/)
The W3C’s effort to make World Wide Web technology work with the many
writing systems, languages, and cultural conventions of the global community:

v developerWorks - Unicode
(http://www.ibm.com/developerworks/unicode/)
Articles on various subjects relating to Unicode, from IBM’s developerWorks.

Chapter 14. Using the internationalization service 817

http://java.sun.com/docs/books/tutorial/i18n/index.html
http://java.sun.com/j2se/1.3/docs/guide/intl/
http://www.jcp.org/en/jsr/detail?id=150
http://www.w3.org/2002/05/i18n-recharter/WG-charter.html#web-services
http://www.w3.org/International/
http://www.ibm.com/developerworks/unicode/

818 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 15. Application profiling

Application profiling enables you to configure multiple access intent policies on
the same entity bean. Application profiling reflects the fact that different
invocations against the same entity can require different kinds of support from the
server run-time environment. For more information, see the topic Application
Profiling: Overview.

Steps for this task
1. Assembling applications for application profiles.

This topic describes how to configure tasks, create application profiles, and
configure tasks on profiles, using the Application Assembly Tool.

2. Managing application profiles.
This topic describes how to add and remove tasks from application profiles
using the administrative console.

3. Using the TaskNameManager API.
This topic describes how to programmatically set the current task name, but
you should use this technique sparingly. Wherever possible, use the declarative
method instead, which results in more portable function.

Application profiling: Overview
Application profiling enables developers to identify particular units of work to the
WebSphere Application Server Version 5 run-time environment. The run time can
tailor its support to the exact requirements of that unit of work. Access intent is
currently the only run time component that makes use of the application profiling
functionality. For example, you can configure one transaction to load an entity
bean with strong update locks and configure another transaction to load the same
entity bean without locks.

Application profiling introduces two new concepts in order to achieve this
function: ″tasks″ and ″profiles″.

Tasks A task is a named unit of work within a distributed application. Unit of
work in this case means a unique path within the application that may or
may not correspond to a transaction or activity session. The name of the
path is typically assigned declaratively to a J2EE client or servlet, or to the
method of an enterprise bean. This point of configuration marks the head
of a graph or subgraph identified by the name of the task; the task name
flows from the head of the graph downstream on all subsequent IIOP
requests, identifying each subsequent invocation along the graph as
belonging to the developer-configured task.

Profiles
A profile is simply a set of policies that are configured not only on the
components of an application, but on a set of tasks as well. When an
invocation on a bean (whether by a finder method, a cmr getter, or a
dynamic query) requires data to be retrieved from the back-end system, the
current task associated with the request is used to determine the exact
requirement of the transaction; the same bean loads and behaves
differently in the context of the task to profile mapping. Each profile
provides the developer an opportunity to reconfigure the application’s

© Copyright IBM Corp. 2003 819

access intent. If a request is operating in the absence of a task, the run-time
environment uses the access intent configuration external to the application
profiles.

Tasks
Tasks are named units of work. They are the mechanism by which the run-time
environment determines which access intent policies to apply when an entity
bean’s data is loaded from the back-end system.

Application profiles enable developers to configure an entity bean with multiple
access intent policies; if there are n instances of profiles in a given application, each
bean can be configured with as many as n access intent policies.

A task is a unit of work that is given a name by a developer. A task is assigned to
any thread executing within a J2EE component, then propagated implicitly across
all IIOP requests. The WebSphere Application Server run-time environment queries
the task at the invocation of any entity bean, and establishes the appropriate access
intent policy with which an entity instance will be associated. A task typically
corresponds to the execution of a concrete and high-level job within the
application.

If an entity bean is loaded in a unit of work that is not associated with a task, or is
associated with a task that is unassociated with an application profile, the
method-level access intent configuration is applied. If a unit of work is associated
with a task that is configured with an application profile, the bean-level access
intent configuration within the appropriate application profile is applied.

For example, consider a school district application that calls through a session bean
in order to interact with student records. One method on the session bean allows
administrators to modify the students’ records; another method supports student
requests to view their own records. Without application profiling, the two tasks
would operate anonymously and the run-time environment would be unable to
distinguish work operating on behalf of one task or the other. To optimize the
application, a developer can configure one of the methods on the session bean with
the task ″updateRecords″ and the other method on the session bean with the task
″readRecords″. When registered with an application profile that has the student
bean configured with the appropriate locking access intent, the ″updateRecords″
task is assured that it is not unnecessarily blocking transactions that need to only
read the records.

Developers declare tasks using the Application Assembly Tool. Tasks can be
declared in three ways:
v Tasks can be associated with J2EE application clients, servlets, and JSPs; requests

from these components are then associated with the appropriate task.
v Tasks can be associated with methods of an enterprise bean using a task run-as

policy. There are two run-as policies:

run as caller
This is the default policy under which all methods run. If a request is
already associated with a task, the configured method imports and runs
under that task. If the request is not associated with a task, the request
operates in the absence of a task and beans are controlled using the
method-level access intent as configured outside of an application
profile.

820 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

run as specified
Under the run as specified policy, requests to the configured methods
never run under an imported task; instead, a specified task names the
unit of work beginning with the method.

v Tasks can be associated with any point in the execution of a component by using
the programmatic interface of the task name manager. Any task that can be
applied programatically must first be declared for the component; attempts to
set unknown task names result in an IllegalTaskNameException error.

Application profiles
An application profile is the set of access intent policies that should be selectively
applied, as well as the list of tasks for which the policies should be applied.

The intention of application profiling is to enable an application to run under a
different set of policies depending on the active task under which the application is
operating.

Consider an application that centralizes the student records for a school district.
These records are frequently accessed by the school district’s central office in order
to generate reports. The report generation process would be optimized if it held no
locks with the back-end system, and if the records could be read into memory with
as few back-end operations as possible. Occasionally, however, the records are
updated by the students’ instructors. Without the ability to distinguish between
transactions, the developer is forced to assume a worst-case scenario and, wishing
to use pessimistic concurrency, lock the records for all transactions.

Using the application profiling service, the developer can configure in as many
ways as necessary the access intent under which the students’ records are loaded.
Under one profile, the records can be configured with an exclusive pessimistic
update intent, not only locking-out competing transactions but ensuring that the
student is not removed from the system before the transaction completes. Under
another profile, the records can be configured with an optimistic intent as part of
an object graph that is read from the back-end system in a single database
operation. Any task configured with the pessimistic profile receives the
strong-locking semantics required for certain transactions, while tasks configured
with the optimistic profile receive the performance benefits appropriate for other
transactions.

Multiple tasks can be configured on a single profile, indicating that different units
of work can have the same requirements on the application; however, the same
task cannot be registered with multiple application profiles because the run-time
environment would have to guess which set of policies the developer wanted to
have applied.

Use the Application Assembly Tool (AAT) to create and configure application
profiles. Application profiles span the entire scope of an application. When a
profile is created within a module, that profile is automatically created within all
other EJB modules and at the EAR file level of the application. Likewise, when a
profile is created at the EAR file level of an application, the profile is automatically
pushed down to all EJB modules of the application. When an EJB module is
imported into an application, all profiles within the module, and the profiles
already declared inside the application, are merged.

Chapter 15. Application profiling 821

Application profiling performance considerations
Application profiling enables assembly configuration techniques that improve your
application runtime, performance and scalability. You can configure tasks that
identify incoming requests, identify access intents determining concurrency and
other data access characteristics, and profiles that map the tasks to the access
intents. The capability to configure the application server can improve
performance, efficiency and scalability, while reducing development and
maintenance costs. The application profiling service has no tuning parameters,
other than a checkbox for disabling the service if the service is not necessary.
However, the overhead for the application profile service is small and should not
be disabled, or unpredictable results can occur.

Access intents enable you to specify data access characteristics. The WebSphere
run-time environment uses these hints to optimize the access to the data, by setting
the appropriate isolation level and concurrency. Various access intent hints can be
grouped together in an access intent policy.

In WebSphere Application Server, access intent policies are configured on methods;
when an invocation of a method drives the activation of a bean, the access intent
configured on that method controls the data access characteristics, such as
concurrency. In WebSphere Application Server Enterprise, application profiling
enables you to configure multiple access intent policies on the entity bean.
WebSphere Application Server Enterprise chooses the appropriate access intent for
the entity bean, using the task associated with the current unit of work (UOW).
Some callers can load a bean with the intent to read data, while others can load the
bean for update. The capability to configure the application server can improve
performance, efficiency, and scalability, while reducing development and
maintenance costs.

Access intents enable the EJB container to be configured providing optimal
performance based on the specific type of enterprise bean used. Various access
intent hints can be specified declaratively at deployment time to indicate to
WebSphere resources, such as the container and persistence manager, to provide
the appropriate access intent services for every EJB request.

The application profiling service improves overall entity bean performance and
throughput by fine tuning the runtime behavior. The application profiling service
enables EJB optimizations to be customized for multiple user access patterns
without resorting to ″worst case″ choices, such as pessimistic update on a bean
accessed with the findByPrimaryKey method, regardless of whether the client
needs it for read or for an update.

Application profiling provides the capability to define the following hierarchy:
Container Tasks > Application Profiles > Access Intent Policies > Access Intent
Overrides. Container tasks identify UOW and are associated with a method or a
set of methods. When a method associated with the task is invoked, the task name
is propagated with the request. For example, a UOW refers to a unique path
within the application that can correspond to a transaction or activity session. The
name of the task is assigned declaratively to a J2EE client or servlet, or to the
method of an enterprise bean. The task name identifies the starting point of a call
graph or subgraph; the task name flows from the starting point of the graph
downstream on all subsequent IIOP requests, identifying each subsequent
invocation along the graph as belonging to the configured task. As a best practice,
wherever a UOW starts, for example, a transaction or an ActivitySession, assign a
task to that starting point and make sure the task remains associated with that

822 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

UOW. It is best to configure the application server so that no more than one
transaction is associated with more than one task.

The application profile service associates the propagated tasks with access intent
policies. When a bean is loaded and data is retrieved, the characteristics used for
the retrieval of the data are dictated by the application profile. The application
profile configures the access intent policy and the overrides that should be used to
access data for a specific task.

Access intent policies determine how beans are loaded for specific tasks and how
data is accessed during the transaction. The access intent policy is a named group
of access intent hints. The hints can be used, depending on the characteristics of
the database and resource manager. Various access intent hints applied to the data
access operation govern data integrity. The general rule is, the more data integrity,
the more overhead. More overhead causes lower throughput and the opportunity
for simultaneous data access from multiple clients.

If specified, access intent overrides provide further configuration for the access
intent policy.

Best practices

Application profiling is effective in a variety of different scenarios. The following
are example situations where application profiling is useful
v The same bean is loaded with different data access patterns

The same bean or set of beans can be reused across applications, but each of
those applications has differing requirements for the bean or for beans within
the invocation graph. One application can require that beans be loaded for
update, while another application requires beans be loaded for read only.
Application profiling enables deploy time configuration for beans to distinguish
between EJB loading requirements.

v Different clients have different data access requirements

The same bean or set of beans can be used for different types of client requests.
When those clients have different requirements for the bean, or for beans within
the invocation graph, application profiling can be used to tailor the bean loading
characteristics to the requirements of the client. One client can require beans be
loaded for update, while another client requires beans be loaded for read only.
Application profiling enables deploy time configuration for beans to distinguish
between EJB loading requirements.

Monitoring tools

You can use the Tivoli Performance Viewer, database and logs as monitoring tools.

You can use the Tivoli Performance Viewer to monitor various metrics associated
with beans in an application profiling configuration. The following sections
describe at a high level the Tivoli Performance Viewer metrics that reflect changes
when access intents and application profiling are used:
v Collection scope

The enterprise beans group contains EJB life cycle information, either a
cumulative value for a group of beans, or for specific beans. You can monitor
this information to determine the difference between using the ActivitySession
scope versus the transaction scope. For the transaction scope, depending on how
the container transactions are defined, activates and passivates can be associated

Chapter 15. Application profiling 823

with method invocations. The application could use the ActivitySession scope to
reduce the frequency of activates and passivates. For more information, see
″Using the ActivitySession service.″

v Collection increment

The enterprise beans group contains EJB life cycle information, either a
cumulative value for a group of beans, or for specific beans. You can monitor
Num Activates to watch the number of enterprise beans activated for a particular
findByPrimaryKey operation. For example, if the collection increment is set to
10, rather than the default 25, the Num Activates value shows 25 for the initial
findByPrimaryKey, before any result set iterator runs. If the number of activates
rarely exceeds the collection increment, consider reducing the collection
increment setting.

v Resource manager prefetch increment

The resource manager prefetch increment is a hint acted upon by the database
engine to depend upon the database. The Tivoli Performance Viewer does not
have a metric available to show the effect of the resource manager prefetch
increment setting.

v Read ahead hint

The enterprise beans group contains EJB life cycle information, either a
cumulative value for a group of beans, or for specific beans. You can monitor
Num Activates to watch the number of enterprise beans activated for a particular
request. If a read ahead association is not in use, the Num Activates value shows
a lower initial number. If a read ahead association is in use, the Num Activates
value represents the number of activates for the entire call graph.

Database tools are helpful in monitoring the different bean loading characteristics
that introduce contention and concurrency issues. These issues can be solved by
application profiling, or can be made worse by the misapplication of access intent
policies.

Database tools are useful for monitoring locking and contention characteristics,
such as locks, deadlocks and connections open. For example, for locks the DB2
Snapshot Monitor can show statistics for lock waits, lock time-outs and lock
escalations. If excessive lock waits and time-outs are occurring, application
profiling can define specific client tasks that require a more string level of locking,
and other client tasks that do not require locking. Or, a different access intent
policy with less restrictive locking could be applied. After applying this
configuration change, the snapshot monitor shows less locking behavior. Refer to
information about the database you are using on how to monitor for locking and
contention.

The application server logs can be monitored for information about rollbacks,
deadlocks, and other data access or transaction characteristics that can degrade
performance or cause the application to fail.

Assembling applications for application profiling
Before you begin

Application profiling enables multiple access intent policies to be configured on the
same entity bean, to be applied for a particular unit of work. Before using
application profiles, you need to first apply access intent policies to entity beans.
You can use the one of the default policies or create your own, as described in the
topic, Creating a custom access intent policy.

824 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Steps for this task
1. Configuring tasks.

Declaratively configure tasks using the Application Assembly Tool, as described
in the following topics:
v Configuring a component task policy.
v Configuring a container task policy.

On rare occasions, you might find it necessary to configure tasks
programatically. Application profiling supports this requirement with a simple
interface that enables both overriding of the current task associated with the
thread of execution, and resetting of the current task to the original task. See
the topic Using the TaskNameManager interface.

2. Creating an application profile.
3. Configuring tasks on application profiles.

Applying access intent policies to entity beans
Use the Application Assembly Tool to apply an access intent policy to an entity
bean, or set of entity beans, for a particular application profile. To configure access
intent for beans that are to be loaded without application profiling support, apply
access intent policies to your entity bean.

Steps for this task
1. Start the Application Assembly Tool.
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, select File >
Open, then select the EAR file.

3. Select EJB Modules > module_name > Access Intent Policies.
4. To configure a new access intent policy, right-click and select New.
5. On the New Access Intent panel, specify a name and description.

These attributes are provided as a convenience to the developer and is not
used at run time.

6. To select the entities to which the access intent policy should apply, click Add
beside the Entity Beans table.

7. From Applied Access Intent list, select an access intent policy.
8. To override an attribute defined in the applied policy, click Add beside the

Access Intent Attribute Overrides table.
9. Click OK to exit the New Access Intent panel.

10. (Optional) Verify your configuration by selecting File > Verify.
11. Save your configuration by selecting File > Save.

Access intent assembly settings for application profiling
Use this page to associate access intent policies with entity beans within an
application profile in order to influence the management of persistence and
collections.

Name: The name of the access intent policy.

An optional field provided for the convenience of the developer and not used by
the run-time environment.

Data type String

Chapter 15. Application profiling 825

Description: A description of the access intent policy.

An optional field provided for the convenience of the developer.

Data type String

Access intent entity beans: The entity beans upon which to apply the access
intent policy.

This policy is used to load the bean whether the bean is loaded by means of a
finder, a container-managed relationship, or a dynamic query.

To add a new entity bean, click Add and select one or more entries from the list of
eligible entities. To delete an entity, select it and click Remove. Entities will only be
displayed for configuration if they have not already been configured within the
same application profile. Also, only entities configured for version 2.x persistence
are eligible for configuration.

Applied access intent: The access intent policy to apply to the selected entities.

From the drop-down menu, select the policy to apply to the selected entities.
Predefined policies are available in addition to any custom policies that you have
defined.

Default wsPessimisticUpdate - WeakestLockAtLoad

826 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Range
wsPessimisticUpdate - WeakestLockAtLoad

Access type = Pessimistic update
WeakestLockAtLoad = True
Collection scope = Transaction
Collection increment = 25
Resource manager prefetch increment = 0
Read ahead hint = null

wsPessimisticUpdate

Access type = Pessimistic update
Collection scope = Transaction
Collection increment = 1
Resource manager prefetch increment = 0
Read ahead hint = null

wsOptimisticUpdate

Access type = Optimistic update
Collection scope = Transaction
Collection increment = 25
Resource manager prefetch increment = 0
Read ahead hint = null

wsPessimisticUpdate-Exclusive

Access type = Pessimistic update
Exclusive = true
Collection scope = Transaction
Collection increment = 1
Resource manager prefetch increment = 0
Read ahead hint = null

wsPessimisticUpdate-NoCollision

Access type = Pessimistic update
No collision = true
Collection scope = Transaction
Collection increment = 25
Resource manager prefetch increment = 0
Read ahead hint = null

wsPessimisticRead

Access type = Pessimistic read
Collection scope = Transaction
Collection increment = 25
Resource manager prefetch increment = 0
Read ahead hint = null

wsOptimisticRead

Access type = Optimistic read
Collection scope = Transaction
Collection increment = 25
Resource manager prefetch increment = 0
Read ahead hint = null

Custom access intent policies
You can define any number of custom access intent policies.

Access intent attribute overrides: The values to override from the defined access
intent policy.

The values configured in the defined access intent policy are shared by all
referencing instances of applied access intents. Those values can be overridden
here without affecting other configurations using the original intent.

Chapter 15. Application profiling 827

To override an attribute, click Edit. To remove an existing attribute, select the
attribute and click Remove.

Collection scope: If the EJB container returns a lazy collection, this intent specifies
the maximum lifespan of that collection.

Default Transaction
Range

Transaction
A lazy collection is valid for the life of the
current transaction.

ActivitySession
A lazy collection is valid for the life of the
current activity session. If collection scope is
ActivitySession, but there is no activity session
current at run time, the collection scope is
automatically demoted to Transaction.

Collection increment: Specifies the number of objects to return in each segment
of a lazy multi-object finder.

Lazy multi-object finders return n objects initially, and then repeatedly calls the
server to fetch the next n objects as the client traverses the returned collection; this
continues until the client has finished or the resultset is exhausted.

The value of n influences application performance; the collection increment count
suggests the value of n. A value of 0 means return all elements (eager collection).

Data type Integer
Default Pessimistic update = 1

Pessimistic update (exclusive = true) = 1
All other access types = 25

Range 0 - Integer.MAX_VALUE

Resource manager prefetch increment: Specifies the number of rows that the
database is asked to return in each segment of a multi-object finder query.

This value is a hint to the JDBC driver; the actual behavior depends upon the
specific driver implementation. A value of 0 indicates that the JDBC driver should
ignore this attribute and make its own determination as to an appropriate fetch
size.

Data type Integer
Units N/A
Default 0
Range 0 - Integer.MAX_VALUE

Read ahead hint: For entities that have container-managed relationships (CMR),
this field specifies which related objects should also be read in a single query when
the findByPrimaryKey() method is executed.

The read ahead hint is given as a series of access paths composed of CMR
relationship field names. Read ahead hints can only be specified if a single bean is
selected for the policy and if the selected bean is configured with optimistic
concurrency. CMR relationships are considered eligible for inclusion in a read

828 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

ahead hint only if the relationship is not many to many. Developers must ensure
that all beans in a read ahead hint are loaded with optimistic concurrency at
runtime; otherwise, an exception is raised when the CMR getter is invoked.

Data type String

Creating a custom access intent policy
Use the Application Assembly Tool to define a custom access intent policy, which
can then be applied to an application’s entity beans.

Steps for this task
1. Start the Application Assembly Tool.
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, select File >
Open, then select the EAR file.

3. Select EJB Modules > module_name > Access Intent Policies.
4. To create a new access intent policy, right-click and select New.
5. On the New Defined Access Intent panel, specify a name and a description.

The name is a required attribute. It must be unique within the scope of the
EJB module. The description is provided as a convenience to the developer
and is not used at run time.

6. To define an access intent attribute, click Edit beside the Access intent
attributes table.

7. From the pop-up menu, select an attribute.
8. Provide supported values in the new attribute panel, then click OK.
9. Click OK to exit the New Defined Access Intent panel.

10. (Optional) Verify your configuration by selecting File > Verify.
11. Save your configuration by selecting File > Save.

Method level access intent assembly settings
Use this page to associate access intent policies with entity bean methods in order
to influence the management of persistence and collections.

Name: The name of the access intent policy.

An optional field provided for the convenience of the developer and administrator.

Data type String

Description: A description of the access intent policy.

An optional field provided for the convenience of the developer and administrator.

Data type String

Access intent methods: The methods upon which to apply the access intent
policy.

If the specified method causes the bean’s data to be read from the backend, the
configured access intent is associated with the bean instance for the duration of the
unit of work; access intent policies configured on other methods are ignored. If the

Chapter 15. Application profiling 829

invocation of the method results in the traversal of a CMR to a related entity, the
configured access intent policy is used to load that related entity.

To add a new method, click Add. Expand the tree to select the method or methods
from theEJB module. Be sure that each method has been configured with a policy
no more than once. To delete a method, select it and click Remove. Note that only
methods from 2.0 entity beans are available for configuration. If a CMP entity’s
version has been set to 1.1, the methods from that entity will not be visible in the
method tree.

Applied access intent: The access intent policy to apply to the selected methods.

From the drop-down menu, select the policy to apply to the selected methods.
Predefined policies are available in addition to any custom policies that you have
defined.

Default wsPessimisticUpdate - WeakestLockAtLoad

830 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Range
wsPessimisticUpdate - WeakestLockAtLoad

Access type = Pessimistic update
WeakestLockAtLoad = True
Collection scope = Transaction
Collection increment = 25
Resource manager prefetch increment = 0
Read ahead hint = null

wsPessimisticUpdate

Access type = Pessimistic update
Collection scope = Transaction
Collection increment = 1
Resource manager prefetch increment = 0
Read ahead hint = null

wsOptimisticUpdate

Access type = Optimistic update
Collection scope = Transaction
Collection increment = 25
Resource manager prefetch increment = 0
Read ahead hint = null

wsPessimisticUpdate-Exclusive

Access type = Pessimistic update
Exclusive = true
Collection scope = Transaction
Collection increment = 1
Resource manager prefetch increment = 0
Read ahead hint = null

wsPessimisticUpdate-NoCollision

Access type = Pessimistic update
No collision = true
Collection scope = Transaction
Collection increment = 25
Resource manager prefetch increment = 0
Read ahead hint = null

wsPessimisticRead

Access type = Pessimistic read
Collection scope = Transaction
Collection increment = 25
Resource manager prefetch increment = 0
Read ahead hint = null

wsOptimisticRead

Access type = Optimistic read
Collection scope = Transaction
Collection increment = 25
Resource manager prefetch increment = 0
Read ahead hint = null

Custom access intent policies
You can define any number of custom access intent policies.

Access intent attribute overrides: The values to override from the defined access
intent policy.

The values configured in the defined access intent policy are shared by all
referencing instances of applied access intents. Those values can be overridden
here without affecting other configurations using the original intent.

Chapter 15. Application profiling 831

To override an attribute, click Edit. To remove an existing attribute, select the
attribute and click Remove.

Collection scope: If the EJB container returns a lazy collection, this intent specifies
the maximum lifespan of that collection.

Default Transaction
Range

Transaction
A lazy collection is valid for the life of the
current transaction.

ActivitySession
A lazy collection is valid for the life of the
current activity session. If collection scope is
ActivitySession, but there is no activity session
current at run time, the collection scope is
automatically demoted to Transaction.

Collection increment: Specifies the number of objects to return in each segment
of a lazy multi-object finder.

Lazy multi-object finders return n objects initially, and then repeatedly calls the
server to fetch the next n objects as the client traverses the returned collection; this
continues until the client has finished or the resultset is exhausted.

The value of n influences application performance; the collection increment count
suggests the value of n. A value of 0 means return all elements (eager collection).

Data type Integer
Default Pessimistic update = 1

Pessimistic update (exclusive = true) = 1
All other access types = 25

Range 0 - Integer.MAX_VALUE

Resource manager prefetch increment: Specifies the number of rows that the
database is asked to return in each segment of a multi-object finder query.

This value is a hint to the JDBC driver; the actual behavior depends upon the
specific driver implementation. A value of 0 indicates that the JDBC driver should
ignore this attribute and make its own determination as to an appropriate fetch
size.

Data type Integer
Units N/A
Default 0
Range 0 - Integer.MAX_VALUE

Read ahead hint: For entities that have container-managed relationships (CMR),
this field specifies which related objects should also be read in a single query when
the findByPrimaryKey() method is executed.

The read ahead hint is given as a series of access paths composed of CMR
relationship field names. Read ahead hints can only be specified if a single bean is
selected for the policy and if the selected bean is configured with optimistic
concurrency. CMR relationships are considered eligible for inclusion in a read

832 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

ahead hint only if the relationship is not many to many. Developers must ensure
that all beans in a read ahead hint are loaded with optimistic concurrency at
runtime; otherwise, an exception is raised when the CMR getter is invoked.

Data type String

Defined access intent assembly settings for EJB modules
Use this page to create custom access intent policies.

Access intent policies are created by developers to be applied to beans across the
EJB module. Changes made to a defined policy upon which beans have previously
been configured are reflected in the behavior of those configured beans.

Name: The name of the access intent policy used to identify the attributes to be
applied to methods.

The name must be unique within the EJB module.

Data type String

Description: A description of the access intent policy.

An optional field provided for the convenience of the developer.

Data type String

Access intent attributes: To modify an attribute, click Edit.

Access type: Specifies whether the concurrency control scheme used to select and
update the bean in the current transaction should be pessimistic or optimistic.

The same scheme must be used in a given transaction. Any attempt by the
application to suggest a change in scheme within a given transaction is ignored.
Also specifies whether the application intends to read or update the entity bean.
This hint is used to determine isolation level on JDBC backend connections, as well
as lock type shared or exclusively used by the EJB container to manage access to
enterprise beans with an activation policy of once.

Default Pessimistic update

Chapter 15. Application profiling 833

Range
Optimistic read, Pessimistic read

A value of read indicates that the caller does not intend
to drive an update method on the entity bean. If a read
intent is indicated and the caller drives a method that
performs an update, the following result occurs

v For a CMP entity, the EJB Container throws
com.ibm.websphere.pm.UpdateMethodCannotProceedWithIntegrity;

v for a BMP entity, the EJB is advised to throw
javax.ejb.EJBException

Optimistic update, Pessimistic update
A value of update indicates that the caller intends to
drive update methods on the entity bean. In addition,
you can indicate one of the following hints to further
qualify the pessimistic update attribute:

Weakest lock at load
The application prefers the weakest lock
available from the back-end datastore,
assuming that the primary access of data will
be for read purposes; updates can result in lock
escalation if necessary.

Data type
Boolean

Units N/A

Default
Selected (True)

Range True, False

Exclusive
The application prefers exclusive access to the
database rows. A higher isolation should be
chosen by the run-time environment.

Data type
Boolean

Units N/A

Default
Cleared (False)

Range True, False

No collision
The application has no row collisions by
design; the WebSphere run-time environment
takes no responsibility for ensuring this
condition, and can choose a lesser isolation
level.

Data type
Boolean

Default
Cleared (False)

Range True, False

834 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Collection scope: Specifies the maximum lifespan of a lazy collection when such
a collection is returned by the EJB container

Default Transaction
Range

Transaction
A collection scope of Transaction specifies that
a lazy collection is valid for the life of the
current transaction.

ActivitySession
A collection scope of ActivitySession specifies
that a lazy collection is valid for the life of the
current activity session. If collection scope is
ActivitySession, but there is no activity session
current at runtime, then the collection scope is
automatically demoted to Transaction.

Collection increment: Specifies the number of objects to return in each segment
of a lazy multi-object finder.

Lazy multi-object finders return n objects initially, then repeatedly return to the
server to fetch the next n objects as the client traverses the returned collection; this
continues until the client is finished or the resultset is exhausted. The value of n
influences application performance; the collection increment count suggests the
value of n. A value of 0 means return all elements (eager collection).

Data type Integer
Default Pessimistic update = 1

Pessimistic update (exclusive = true) = 1
All other access types = 25

Range 0 - Integer.MAX_VALUE

Resource manager prefetch increment: Specifies the number of rows that the
database is asked to return in each segment of a multi-object finder query.

This value is a hint to the JDBC driver; the actual behavior depends upon the
specific driver implementation. A value of 0 indicates that the JDBC driver should
ignore this attribute and make its own determination as to an appropriate fetch
size.

Data type Integer
Default 0
Range 0 - Integer.MAX_VALUE

Configuring a component task policy
Use the Application Assembly Tool to configure a component’s own task. A
servlet’s or application client’s own task is associated with distributed requests
from the component unless overridden by a container task policy. Components
without a configured task of their own run without a task; units of work without a
task and application profile load entities using the method-level or default access
intent configuration, without the support of application profiling.

Steps for this task
1. Start the Application Assembly Tool.

Chapter 15. Application profiling 835

2. Create or edit the application EAR file.
For example, to change attributes of an existing application, select File > Open
then select the EAR file.

3. Select Web Modules > module_name.war > Web Components > component_name

4. Select the WAS Enterprise tab.
5. Select the Own task checkbox. Provide a name and description for the task.

Task names do not have to be unique within an application; however, task
names should be shared consciously and conservatively; at run time, all tasks
with the same name are treated the same way, regardless of where the task was
configured.
The description is provided as a convenience to the developer and is not used
by the run-time environment.

6. Click OK.
7. (Optional) Select File > Verify to verify your configuration.
8. Select File > Save to save your configuration.

What to do next

Configuring tasks on application profiles.

Configuring a container task policy
Use the Application Assembly Tool to apply a container task policy to a method, or
set of methods, for an application’s entity beans. A container task policy defines
the task under which the method is invoked. A method can run with an imported
task, with its own task, or with a specified task.

Note: Applications use application profiling on a per task basis. As soon as a path
within an application is configured with a task and that task is associated with an
application profile, any entity enlisted within units of work in the scope of that
task cease to use the method-level access intent configuration and instead use the
bean-level access intent configuration of the application profile with which the task
is registered. If the entity was not configured with an intent within the application
profile, then the configured default intent is applied.

Steps for this task
1. Start the Application Assembly Tool.
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, select File >
Open then select the EAR file.

3. Select EJB Modules > module_name > Container Tasks.
4. To create a new container task policy, select File > New > Selected Object.
5. On the New Container Task panel, specify a name and a description.

These attributes are provided as a convenience to the developer and are not
used at runtime.

6. To select the methods to which the container task policy should apply, click
Add beside the Methods table.

7. Select one of the these attributes:

Run as caller
This is the default attribute applied to EJB method invocations. If the
configured methods are invoked with an associated task, the method

836 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

is executed with the imported task. If a method is invoked by a
request that is unassociated with a task, the method continues to
execute without a task.

Run as specified
The configured methods are never invoked with an imported task.
Instead, the method executes as the specified task name. The task
name can be selected from the pull-down menu or you can enter a
new task name. The description is provided as a convenience to the
developer and is not used at runtime.

8. Click OK.
9. (Optional) Select File > Verify to verify your configuration.

10. Select File > Save to save your configuration.

What to do next

Configuring tasks on application profiles.

Container assembly settings for tasks
Use this page to configure container task policies.

Tasks identify units of work within a distributed application by the implicit
propagation of the task name on remote requests. The task name is configured on
application profiles in order to customize the access intent for the units of work
associated with that task.

A container task policy instructs the container under which task a request upon an
EJB method should operate. Methods can be configured to run as a caller’s task, as
the task configured on the bean, or as a specified task.

Name: The name of the policy.

An optional field provided for the convenience of the developer. Although Name is
a required field, the name is not used except as a label within the application
assembly tool.

Data type String

Description: A description of the policy.

An optional field provided for the convenience of the developer.

Data type String

Methods: The methods upon which the container will apply the task policy.

To add a new method to the policy, click New. Expand the tree to select the
method or methods from the EJB module. Be sure that each method has been
configured no more than once with a container task policy. To remove a method,
select it and click Remove.

Name: The policy that the container should apply when the configured set of
methods are invoked.

Default Run as caller

Chapter 15. Application profiling 837

Range
Run as caller

If the client invokes the bean method with an
associated task, the container invokes the bean
method with the same task. If the client invokes
the bean method without a task, the container
invokes the bean method with the task configured
as the bean’s default task.

Run as specified
The container invokes the bean method with the
specified task.

Name The name of the task

Description
The description of the task

Creating an application profile
Use the Application Assembly Tool to create an application profile. An application
profile contains a set of access intent policies applied to an application’s entity
beans. The access intent policies are only applied for requests that are associated
with tasks configured on the application profile.

Steps for this task
1. Start the Application Assembly Tool.
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, select File >
Open, then select the EAR file.

3. You can create application profiles at the scope of either an application EAR
file or an EJB module.
To create an application profile at the EAR file scope, select Application
Profile.
To create an application profile at the module scope, expand EJB Modules >
module_name > Application Profile.
An application profile logically spans the application EAR file and all
contained EJB Jar files. When a profile is created for the EAR file, the profile is
automatically created within all EJB Jar files. When a profile is created within
an EJB Jar file, the profile is automatically created for all remaining EJB Jar
files and the EAR file as well. It makes no difference where an application
profile is created, edited, or removed.

4. To create a new application profile, select File > New > Selected Object.
5. On the New Application Profile panel, specify a name and a description.

The name of the profile must be unique within the application; there cannot
be two distinct application profiles with the same name.
The description is provided as a convenience to the developer and is not used
at runtime.

6. Click OK.
7. Be sure that your newly-created application profile is selected. In the

navigation pane, expand the new application profile, then select the Access
Intent node.

838 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

8. To apply access intents within the scope of the application profile, follow the
steps as described in the topic Applying access intent policies to entity beans.
Any custom access intent policies are available within the application profile.

9. Select File > Verify to verify your configuration.
10. Select File > Save to save your configuration.

Application profile assembly settings
Use this page to configure application profiles.

Application profiles support the definition of alternate access-intent configurations
that are mapped to particular requests identified by an association with a task
name.

Name: The name of this application profile.

The name must be unique; multiple profiles cannot share the same name.

The creation, configuration, and deletion of profiles is reflected in the configuration
of profiles at both the application and module scope

Data type String

Description: A description of the application profile

An optional field provided for the convenience of the developer and administrator.

Data type String

Tasks: Tasks that are configured to operate under the application profile.

Requests associated with any of the configured tasks operate under the
access-intent policies configured with the profile within the EJB modules.

To add a task that has been declared within the application, click Add. To add a
task that has not been declared within the application, click New.

To remove a task, select the task and click Remove. Any given task can be
configured on only one application profile.

Name: The name of the task.

Select the name of the task from the pulldown menu or specify a new name. The
name of the task must be unique among the set of application profiles. The task
name is a required field.

Data type String

Description: A description of the task.

An optional field provided for the convenience of the developer and administrator.

Data type String

Chapter 15. Application profiling 839

Configuring tasks on application profiles
Use the Application Assembly tool to associate tasks with application profiles.
When a task is configured on an application profile, the access intent policies
defined in the profile are applied, as appropriate, to requests associated with that
task.

Steps for this task
1. Start the Application Assembly Tool.
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, select File > Open,
then select the EAR file.

3. Associate tasks with an application profile at the scope of either an application
EAR file or an EJB module.
To edit the tasks within an application profile at the EAR file scope, select
Application Profile in the navigation pane, then select the appropriate profile
from the list of application profiles.
To edit the tasks within an application profile at the EJB module scope, expand
EJB Modules > module_name > Application Profile, then select the appropriate
application profile from the list of application profiles.
An application profile logically spans the application EAR file and all contained
EJB Jar files. Adding a task to, or removing a task from, an application profile
within any module or EAR file automatically causes the task to be removed
from the same profile in other modules.

4. To add a task defined elsewhere in the application, click Add beside the table
of tasks and select a task name from the dropdown menu. To add a task that
you defined outside of the application, click New beside the table of tasks.

5. Select File > Verify to verify your configuration.
6. Select File > Save to save your configuration.

Dynamic query assembly settings
Use this page to associate access intent policies with entity beans in order to
influence the management of persistence during the execution of dynamic queries.
This access intent will be used for requests that are not associated with an
application profile.

Name
The name of the access intent policy. The name is provided as a convenience to the
developer and is not used by the application server.

Data type String

Description
A description of the access intent policy. An optional field provided for the
convenience of the developer.

Data type String

Entity beans
The beans with which to associate the access intent.

To add a new bean, click New. Expand the tree to select the bean or beans from
theEJB module. Be sure that each bean has been configured with a policy no more

840 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

than once within any particular application profile. To delete a bean, select it and
click Remove. Note that only 2.0 entity beans are available for configuration. If a
CMP entity bean’s version has been set to 1.1, that bean is not visible in the tree.

Applied access intent
The access intent policy to apply to the selected beans.

Select from the pulldown menu the policy to apply to the selected beans. The
following policies are available:

Default wsPessimisticUpdate - WeakestLockAtLoad
Range

wsPessimisticUpdate - WeakestLockAtLoad

Access type = Pessimistic update
WeakestLockAtLoad = True

wsPessimisticUpdate

Access type = Pessimistic update

wsOptimisticUpdate

Access type = Optimistic update

wsPessimisticUpdate-Exclusive

Access type = Pessimistic update
Exclusive = true

wsPessimisticUpdate-NoCollision

Access type = Pessimistic update
No collision = true

wsPessimisticRead

Access type = Pessimistic read

wsOptimisticRead

Access type = Optimistic read

Managing application profiles
Manage your application profiles using the administrative console. From the
console, you can add tasks to, and remove tasks from, application profiles.

Steps for this task
1. Start the administrative console.
2. Select Applications > Applications > application_name > Application Profile >

profile_name > Tasks.
3. On the Tasks collection page, you can add new tasks to the profile, delete tasks,

edit current task settings, and so on.
Note that no task can, within the scope of an application, be configured on
more than one application profile. In such a situation, your application cannot
be restarted until you correct the configuration.

4. Save your configuration.
5. Restart the application in order for your changes to take affect.

Chapter 15. Application profiling 841

Application profiling exceptions
The following exceptions are thrown in response to various illegal actions related
to application profiling:

com.ibm.ws.exception.RuntimeWarning
This exception is thrown when the application is started, if the application
is configured incorrectly. The startup is consequently terminated. You can
validate an application’s configuration by using the Verify function in the
Application Assembly Tool. Some examples of misconfiguration include:
v A task configured on two different application profiles.
v A method configured with two different task run-as policies .

com.ibm.websphere.appprofile.IllegalTaskNameException
This exception is raised if an application attempts to programmatically set
a task when that task has not been configured as a task name reference.

Application profiling service settings
Use this page to enable or disable the application profiling service.

Applications that are configured to use the application profiling service will not
start successfully unless the application profiling service is enabled.

To view this administrative console page, click Servers > Application Servers >
server_name > Application Profiling Service.

Startup
Specifies whether the server will attempt to start the application profiling service.

Default Selected
Range

Selected
When the application server starts, it
attempts to start the application
profiling service automatically.

Cleared
This option is unavailable. The
application profiling service cannot be
disabled.

Application profile collection
Use this page to manage application profiles.

An application profile is a set of policies that are to be applied during the
execution of an enterprise bean and a set of tasks that are associated with that
profile. Mapping tasks to application profiles will control which access intent
policies are applied at run time for the units of work that correspond to a
particular task.

To view this administrative console page, click Applications > Applications >
application_name > Application Profile.

Name
The name of the application profile.

The name must be unique; multiple profiles cannot share the same name.

842 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Data type String

Description
A description of the application profile.

Data type String

Application profile settings
Use this page to modify application profile settings.

To view this administrative console page, click Applications > Applications >
application_name > Application Profile > application_profile_name.

Name: The name of the application profile.

The name must be unique; multiple profiles cannot share the same name.

Data type String

Description: A description of the application profile.

Data type String

Task collection
Use this page to manage tasks.

Requests associated with any of the configured tasks operate under the
access-intent policies that are configured with the profile. A task can be configured
on only one application profile.

To view this administrative console page, click Applications > Applications >
application_name > Application Profile > application_profile_name > Tasks.

Name: The name of the task.

The task name must be unique among the set of application profiles.

Data type String

Description: A description of the task.

Data type String

Task settings
Use this page to modify task settings.

To view this administrative console page, click Applications > Applications >
application_name > Application Profile > application_profile_name > Tasks >
task_name.

Name: The name of the task.

The task name must be unique among the set of application profiles.

Chapter 15. Application profiling 843

Data type String

Description: A description of the task.

Data type String

Using the TaskNameManager interface
You can declaratively configure tasks on a J2EE component and associate tasks
with EJB methods using the Application Assembly Tool. On rare occasions, you
might find it necessary to programatically set the current task name. Application
profiling supports this requirement with a simple interface that enables both
overriding of the current task associated with the thread of execution, and resetting
of the current task with the original task.

Application profiling does not support queries of the task that is in operation at
run time. Instead, applications interact with logical task names that are
declaratively configured as task references. Logical references enable the actual task
name to be changed without having to recompile applications.

While you cannot programmatically set the current access intent policy, you can
accomplish this by programmatically setting a task. Consider, for example, an
entity bean with a single multi-object finder method, getLargeAccounts(), which is
invoked by the single() method of the AccountManager session bean. By default,
suppose that the entity bean runs assuming read intent; suppose, also, that an
application profile has been configured under which that bean loads assuming
update intent. Configure a task, perhaps with the name ″update″, on the profile.
Now, depending on logic in the session bean’s method, the session bean selectively
and programmatically sets the task update before invoking the entity bean’s finder
method; that finder method correctly functions assuming updates.

Wherever possible, avoid setting tasks programmatically. The declarative method
results in more portable function that can be easily adjusted without requiring
redevelopment and recompilation.

Steps for this task
1. Configure task references.

Application profiling requires that a task name reference be declared for any
task that is to be set programmatically. Task name references introduce a level
of indirection so that the actual task set at run time can be adjusted by
reassembly without requiring recoding or recompilation. Any attempt to set a
task name that is undeclared as a task reference results in the raising of an
exception.
a. Start the Application Assembly Tool.
b. Create or edit the application EAR file.

For example, to change attributes of an existing application, select File >
Open, then select the EAR file.

c. Select Web Modules > module_name.war > Web Components >
component_name

d. Select the WAS Enterprise tab.
e. Click Add beside the Task references table.
f. Provide a name for the task reference.

844 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The name must be unique for the component. This is the name that is
referenced programatically. The name should be short and should be
descriptive of the function that is performed when the task is executed.

g. Provide a name and description for the task, itself.
The name of the task is the identifier that is propagated on remote requests;
it is the task name that is configured on application profiles to dynamically
associate access intent hints with entity bean execution.

h. Click OK.
i. Select File > Save to save your configuration.

2. Perform a JNDI lookup on the TaskNameManager interface:
InitialContext ic = new InitialContext();
TaskNameManager tnManager = ic.lookup
("java:comp/websphere/AppProfile/TaskNameManager");

The TaskNameManager interface is not bound into the namespace if the
application profiling service is disabled.

3. Set the task name:
try {
tnManager.setTaskName("updateAccount");
}
catch (IllegalTaskNameException e) {
// task name reference not configured. Handle error.
}
// . . .
rnManager.resetTaskName();

Resetting the task name undoes the effects of any setTaskName() method
operations and reestablishes whatever task name was current when the
component began execution. If the setTaskName() method has not been called,
the resetTaskName() method has no effect.

What to do next

Configuring tasks on application profiles.

TaskNameManager interface
The TaskNameManager interface is available to all J2EE components using the
following JNDI lookup:
java:comp/websphere/AppProfile/TaskNameManager

package com.ibm.websphere.appprofile;

/**
* The TaskNameManager is the programmatic interface
* to the application profiling function. Using this interface,
* programmers can set the current task name on the
* thread of execution. The task name must have been
* configured in the deployment descriptors as a task
* reference associated with a task. The set task
* name’s scope is the duration of the method
* invocation in the EJB and Web components and for
* the duration of the client process, or until the
* resetTaskName() method is invoked.
*/
public interface TaskNameManager {

/**
* Set the thread’s current task name to the specified
* parameter. The task name must have been configured as

Chapter 15. Application profiling 845

* a task reference with a corresponding task or the
* IllegalTaskName exception is thrown.
*/
public void setTaskName(String taskName) throws IllegalTaskNameException;

/**
* Sets the thread’s task name to the value that was set
* at, or imported into, the beginning of the method
* invocation (for EJB and Web components) or process
* (for J2EE clients).
*/
public void resetTaskName();

}

846 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 16. Using Business Rule Beans

Before you begin

This topic provides a brief overview of the steps involved in externalizing Business
Rule Beans. To gain an understanding of business rules and Business Rule Beans
(BRBeans), review the topic Overview of Business Rule Beans. The following
sections provide an overview of externalizing business rules using Business Rule
Beans:

Steps for this task
1. Developing BRBeans
2. Assembling applications for use with BRBeans
3. Managing rules

Usage scenario

To help you get started quickly, a sample BRBeans application is provided.
Samples are installed by default during a typical WebSphere installation or you can
select to install specific samples during a custom installation.

The BRBeans sample is an online movie store application. The application’s EAR
file is installed and the application is configured to use the Cloudscape database
(Cloudscape is provided with WebSphere Application Server). A number of rules
are created that you can view using the Rule Management Application (RMA). To
do this, change to the <install_root>/bin directory and type one of the following
commands:
v On a Microsoft Windows platform:

rulemgmt ..\samples\lib\BRBeans\movieSampleProperties

v On a Unix platform:
rulemgmt.sh ../samples/lib/BRBeans/movieSampleProperties

By running the sample, you can see how these rules are used. The source code for
the sample also is provided in the <install_root>/samples/src/BRBeans/Movie
directory. To see the use of trigger points, search the code for places where the
trigger() method is used.

Advantages of externalizing business rules
Business Rule Beans (BRBeans) provide a framework in which business
applications can externalize business rules. You can externalize rules by extending
your application analysis and design processes to identify the points of variability
(or ″trigger points″) in application behavior. When the application is implemented,
the business logic required at the points of variability is externalized into a
business rule. This allows certain aspects of the behavior to be changed without
actually changing the application code.

Here are some advantages of externalizing business rules:

© Copyright IBM Corp. 2003 847

Explicit documentation of business practice decisions
Separating business rule values from the application code makes the code
easier for others to view and understand while isolating information that
relates to business practice decisions.

Clearer understanding of application behavior
Externalization makes it possible to inspect the application to see which
business rules are being applied, when they are applied, and under what
circumstances.

Reuse of rules across business processes
Separating rules from the business logic of the application makes it easy to
reuse a business practice decision in a consistent fashion.

Increased consistency of business practices
Because externalized rules promote reuse and facilitate clear understanding
of business practice decisions, they provide a basis for improving business
practice consistency across applications.

Decreased maintenance and testing costs
Externalized rules have a clearly defined scope and are not tightly coupled
to the application code. This makes them easy to modify, quick to test, and
decreases costs and improves cycle time.

Improved manageability of business practice decisions
Externalization, change history, and inspectability all promote clear
ownership and consequently a better definition of who can change rules
and under what circumstances.

Increased confidence in predicting the business impact of proposed changes
Because rules are available for inspection, have well-defined scope, and are
not tightly coupled to application business logic, they make it easy to
understand the likely impact of changes and to predict whether
contemplated modifications or additions will have unwanted ripple effects.

Ability to identify and correct conflicting business rules in different parts of the
business

Externalized rules make it easy to check that rules being used in two
different parts of an application or even two different applications dealing
with different parts of the business, are consistent.

Overview of Business Rule Beans
Business Rule Beans are used to create and modify rules that keep pace with
complex business practices. This enables your application’s core behavior and user
interface objects to remain intact and untouched, even as business practices change.

The Business Rule Beans (BRBeans) framework enables you to organize rules in
folders. Folders provide a structure similar to the file system on your computer’s
hard drive. For example:
v Rules can be placed in folders based on any criteria you want.
v A rule folder can contain any number of rules and other rule folders.

In the BRBeans framework, each business rule is represented by an entity bean that
persistently stores information related to that rule. Each business rule is assigned
an appropriate rule name and stored in an appropriate rule folder (See Rule
folders for more information).

848 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

When naming rules and folders, adhere to the Java package naming convention.
That is, name rules and folders based on the domain name of the organization for
which the rules are developed. For example, ACME’s isSeniorCitizen rule’s fully
qualified rule name (″full rule name″), might be
com/acme/ageRules/isSeniorCitizen. In this example, the com/acme path is used by
all of the rules developed by ACME and the ageRules folder is used to separate
″age″ rules from rules of other kinds. The root folder has no name; therefore, fully
qualified path names never start with a forward slash (’/’).

A fully qualified rule name consists of the following:
v The full path of the folder followed by a forward slash (’/’)
v The name of the rule

This fully qualified rule name is used by a trigger point to identify the rule to
trigger. Trigger points are small pieces of code that interface with the Business Rule
Beans trigger point framework to run business rules during application execution.
See Placing a trigger point for more information.

By default, trigger points can only trigger rules that are currently in effect based on
the current date and time when the trigger point is called. A business rule has a
start date and an end date (see Rule attributes for more information) that together
define the interval during which the rule is in effect (see Rule states for more
information). This behavior can be overridden by specifying a date on the trigger
point. This date is referred to as the ″As Of Date″. If no start date is specified, the
rule is not valid and cannot be found by trigger points. Conversely, if no end date
is specified, the rule never expires. Dates and times with a precision of one second
can be assigned using the ″Rule Management Application″.

When there is more than one rule with the same fully qualified name, all of the
rules with that name that are currently in effect are triggered and the results are
combined using the combining strategy specified on the trigger point. See the
CombiningStrategy method for more information.

Externalized business rules
A business rule is a statement that defines or constrains some aspect of a business
by asserting control over some behavior of that business.

A business rule officiates over frequently changing business practices and can come
from within the company or be mandated from outside, typically by regulatory
agencies. Typical uses for business rules include the following:
v Determining the current interest rate for a home loan
v Calculating a discount for a product
v Calculating the tax to apply to a given product
v Determining whether a given person is a senior citizen

The objects used to implement a business rule contain methods and attributes used
by the Business Rule Beans (BRBeans) run-time environment, its administrative
component, or both. An externalized business rule is implemented as a pair of
objects:
v Rule
v RuleImplementor

Chapter 16. Using Business Rule Beans 849

The Rule is an entity enterprise bean that stores all of the persistent data for the
business rule. This is the object that the trigger point framework code actually
deals with directly. When a trigger point is invoked, the internal framework code
performs a query to find the Rule object or objects representing the business rules
to be triggered. Once the Rules are found, the framework code determines where
the Rule is invoked, either local to the trigger point or remotely on the application
server. Then, it invokes the fire method on either the Rule enterprise bean itself
(for remote triggering) or on a local copy of the enterprise bean (for local
triggering) to perform the function of the business rule.

The class name of the business rule’s RuleImplementor is stored persistently in the
Rule. The RuleImplementor is a transient object (not managed by the application
server) that the Rule instantiates and then uses to do the actual work. When the
fire() method is called on the Rule object, the Rule object combines its persistent
set of values with the parameters it received on invocation. This creates the
parameter list for the RuleImplementor prior to invoking fire() on the
RuleImplementor with this parameter list. The actual execution of the
RuleImplementor algorithm can take place either remotely (within the application
server where the BRBeans enterprise beans are installed) or locally (within the Java
virtual machine (JVM) where the trigger point was called).

Types of business rules
Business rules can be divided into the following types:
v Base rules
v Classifier rules

Base rules are the most common type of rule and are triggered by the
TriggerPoint.trigger method. You can divide Base rules into the following
categories:

Derivation rules
These rules use an algorithm to return a value. These rules return any type
of value that makes sense in the business context in which they are used.
For example, a derivation rule can calculate a discount or compute the
total price of an order.

Constraint rules
These rules confirm that an operation has met all of its obligations and that
a particular constraint or edit has been met. For instance, a constraint rule
can check that a value entered by an external user is within legal bounds.
Business Rule Beans (BRBeans) provide a special return type,
com.ibm.websphere.brb.ConstraintReturn, which can be returned by a
constraint-type rule. A ConstraintReturn object contains a boolean value so
that if it is false, it can contain information that can be used to produce an
external message explaining what constraint was not met.

Invariant rules
These rules ensure that multiple changes made by an operation are
properly related to one another.

Script rules
These rules implement ″micro-workflow″ or electronic performance
support. They are small, variable pieces of a business process that provide
assistance to end-users to get the most from the application.

850 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

On the surface, classifier rules are much like base rules. However, classifier rules
can be used to determine the ways in which variables are classified by a business.
Classifier rules are triggered by the TriggerPoint.triggerClassifier method.

A classifier rule is used to compute a classification for a particular business
situation. The classification returned is required to be of type string. For instance,
bank customers may be classified into gold, silver, and bronze categories based on
their spending history or the amount of money they have in their account. For
more information on this type of rule, refer to Situational trigger point.

Rule folders
Rule folders are similar to the directories that divide a computer’s hard drive in
that they split a large number of files into conceptual units. The rule folder adds
its path to the fully qualified rule name. Like the directories on a hard drive, a rule
folder can contain any number of rules or rule folders.

Although you can name the folders whatever you deem appropriate, it is
recommended that you follow the Java package naming convention. That is, base
the names on the domain name of the organization where the rules are developed.
So, the fully qualified rule name or full rule name of ACME’s isSeniorCitizen
might be com/acme/ageRules/isSeniorCitizen. In this example, the com/acme path
is used by all of the rules developed by ACME and the ageRules folder is used to
separate ″age″ rules from rules of other kinds.

Note: The root folder has no name, which means that fully qualified path names
never start with a ’/’.

When using the Rule Management APIs, a rule folder contains instances of IRules,
which also are referred to as ″rules″. To begin working with rules, get the root rule
folder by using the getRootFolder method on RuleMgmtHelper class. From the root
rule folder you can add, delete, and retrieve folders and rules using methods on
this interface.

Rule attributes
Rule name

A name for the rule that is appropriate to its business context.

Rule folder
The folder that contains the rule.

Start date
This is the date and time at which the rule goes into effect. Prior to this
time, it will not be found by trigger points. Together with the end date, the
start date defines a period of time during which the rule is effective. A rule
that does not have a start date specified is not a valid rule and will not be
found by trigger points.

End date
This is the date and time at which the rule is no longer effective. After this
date and time the rule is no longer in effect and will not be found by
trigger points. Together with the start date, the end date defines a period
of time during which the rule is effective. A rule that does not have an end
date specified is valid and will never expire.

Ready This indicates whether the rule is ready to be used. Rules that are not
marked as ready will not be found by trigger points. This is intended to be

Chapter 16. Using Business Rule Beans 851

an easy way to keep a rule from being used until it is completely defined
or to temporarily turn a rule off without having to change the basic rule
data such as start and end dates.

Java Rule Implementor name
This is the fully package-qualified name of a Java class that implements the
BRBeans RuleImplementor interface. The fire method of the class
performs the function of the rule. Business Rule Beans (BRBeans) provide
several predefined rule implementors or you can write your own. See Rule
Implementors or Customized rule implementors for more information.

Initialization parameters
This is an array of parameters that are passed to the rule implementor to
initialize it. Each element in the array can be any object. This also can be
referred to as the rule data, which is the external data that may change
over time. The initialization parameters defined for a rule are passed
directly to the init method of the rule implementor when it is instantiated.
See ″Rule Implementors″ for more information on how rule implementors
can use initialization parameters.

Firing parameters
Normally, firing parameters are simply the parameters passed on the
trigger point when a rule is triggered. However, it is allowed to override
these parameters by specifying parameters on the rule itself. This is where
these overriding parameters are specified.

Firing location
This specifies where the rule implementor for this rule is instantiated and
run. The following values are allowed:

Local This option instantiates the rule implementor and runs it local to
the trigger point (in the same JVM as the trigger point call). This is
run on the client machine if the trigger point call is done there or
on the server if the server part of an application makes a trigger
point call. Use this option for the best performance since, once a
rule is cached on the client, the entire triggering process can be
performed locally without going to the server at all. The main
disadvantage of this option is that the class files for the rule
implementors need to be available on every client that can trigger
rules.

Remote
This will instantiate the rule implementor and run it on the
application server where the Business Rule Beans enterprise beans
are installed. When using this option at least one remote method
call always is required to trigger a rule since the trigger takes place
on the server. The advantage is that the rule implementor class
files only need to be available on the server.

Anywhere
This option tries to instantiate and run the rule implementor
locally, and, if the class cannot be found, it tries to trigger it
remotely.

Classification
For classified rules, this is the classification to which the rule applies. This
is used when you use a situational trigger. Once a classification is

852 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

computed for the situational trigger point, rules that apply to that
classification are found and triggered. For more information, see Situational
trigger point.

Classifier
This indicates whether this rule computes a classification. Classification is
used for a situational trigger. A classifier rule is used to perform the first
step of a situational trigger which computes a classification that is used to
find rules to deal with the situation. For more information, see ″Situational
trigger point″.

Dependent rules
In many cases, a rule triggers other rules to complete the overall task.
These other rules are referred to as dependent rules and can be specified
using the dependent rules attribute. For more information, see Dependent
rules.

Business intent
This is a text description of the intent of this rule from the view point of
the business analyst. You can store any text string here.

Description
This is a text description of the rule at the programmer’s level. You can
store any text string here.

Original requirement
This is a text description of the initial business analyst requirement of this
rule. You can use this description to keep track of why this rule was
originally created (for example, to keep auditing records). You can store
any text string here.

User-defined data
You can store a user-defined text string here. The format and use of this
data is completely determined by the user.

Primary key
Every rule has a primary key to uniquely identify it in the database where
the enterprise beans are stored. Normally, a unique primary key is
generated automatically when you create a new rule. However, you can
use the rule management APIs to specify your own primary key, if desired.
See Rule management APIs for more information.

Precedence
This is the relative priority of this rule. The default finding strategy uses
this value to order the rules found in the database, from lowest to highest,
when more than one rule is found for a particular trigger point. Rules are
sorted numerically by precedence with the numerically lowest precedence
first and the numerically highest precedence last.

Rule states
Rules can be in any one of the following states at any particular time:

scheduled
The rule is scheduled to become effective (its start date is in the future)
and will not be found by current trigger points.

in effect
The rule is currently in effect and can be found by trigger points.

Chapter 16. Using Business Rule Beans 853

expired
The rule is no longer in effect (the end date is in the past) and will not be
found by trigger points.

invalid
The rule is not correctly defined and will not be found by trigger points.

Typically, only those rules that are ″in effect″ are found by the Business Rule Beans
(BRBeans) run-time environment. This behavior can be overridden by setting an
asOfDate on the TriggerPoint object, which then will execute ″as if″ the current
date is the given date. For more information, see ″As Of Date″.

When a Rule is first created, it is marked as ″ready for use″ and is found when
firing Rules. If the Rule is not complete and you do not want it to be found by
BRBeans, then use either of the following to mark the Rule:
v Use the setReady(false) method in the Rule Management APIs
v Use the Rule Management Application to mark the rule as not ready

Rule results
In general, a rule can return any type of result that makes sense for the business
purpose of the rule. The return type on the fire() method is java.lang.Object so
any Java object can be returned, including arrays. You cannot return a Java
primitive since the results must be an object. However, you can return the object
form of the primitives. For example, you can return a java.lang.Integer instead of
an int. If the rule is fired remotely, the returned value must implement
java.io.Serializable.

Dependent rules
When a business rule triggers other business rules as part of its implementation,
the rules that are triggered are called dependent rules of the first rule. An example
is the RuleAND rule implementor supplied with Business Rule Beans (BRBeans). It
uses two or more dependent rules, each of which is assumed to return a true or
false value. When a rule with RuleAND as its implementor is triggered, it triggers
each of its dependent rules and a logical AND operation is performed on all of the
returned results. The result of this AND operation is returned as the result of the
top-level rule.

Dependent rules are specified in the attributes of the top-level rule where the fully
qualified name of each dependent rule is listed. When the top-level rule is
triggered, an array of dependent rule names is passed to the rule implementor’s
init() method. They are stored here until they are triggered by the fire() method.

Note: The BRBeans framework does not ensure that the dependent rules specified
in the enterprise beans are actually triggered. Triggering the dependent rules and
interpreting their results is entirely up to the rule implementor of the top-level
rule.

Dependent rules can be nested within other dependent rules. In other words, a
dependent rule of some particular rule can have its own dependent rules which, in
turn, can have their own dependent rule and so on. The BRBeans framework does
not place any restriction on the number of levels that dependent rules can be
nested. The only practical restriction is the complexity of the rule set that is built
up when dependent rules are nested many levels deep.

854 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

BRBeans run-time environment
The Business Rule Beans (BRBeans) run-time environment is used to find and
trigger rules.

The BRBeans run-time environment is made up of two parts:
v Code that runs on the client (″client″ here meaning wherever the trigger point is

located). This consists of code that does the following:
– Finds the specified rules
– Decides where the rules should be triggered
– Calls the fire method on all rules
– Combines the results from the rules

v Code that runs on the server. This consists of enterprise beans used to represent
rules and rule folders. These enterprise beans do the following:
– Provides for business rule persistence
– Provides query functions that the client part of the run time can use to find

rules to be triggered

BRBeans run-time behavior
Business Rule Beans (BRBeans) run-time behavior can best be described by giving
a simple example of a trigger point selecting, executing, and then responding to
the results of a business rule.

The first step in triggering a rule is for the trigger point framework to perform a
query on the rule server to determine which rules to trigger. The main item used
for the query is the fully qualified rule name. Other items used in the query
include the start and end date, whether this is a classifier, the classification of the
rule, and whether the rule is marked ″ready″. This query returns zero or more
rules. If there is at least one rule, the trigger point assembles the data that is sent
as parameters to each rule. The trigger point then loops through the list of rules
invoking the fire() method on each and passing the parameters. The results are
combined depending on the combining strategy used.

When the trigger point framework invokes fire on a rule, it instantiates the
RuleImplementor and uses it to do the actual work (to execute the rule algorithm or
test). Once it has arrived at a result, the RuleImplementor returns that result. For
constraint rules (ones that arrive at a boolean true or false answer) the returned
value is, by convention, a ConstraintReturn. A ConstraintReturn is a data structure
that indicates whether the constraint was satisfied. If not, the ConstraintReturn
indicates what went wrong. For derivation rules (ones that calculate a single,
generally non-boolean value), the return value can be any type. In the simplest
case, the return value from each RuleImplementor is returned back to the trigger
point where it is analyzed to determine what action to take.

The following is an overview of what happens when the maxTruckDriverHours rule
is triggered:

A rule exists named maxTruckDriverHours. The purpose of this rule is to check that
the number of hours entered by a user for a particular truck driver does not
exceed the maximum allowed value. This rule contains an initialization parameter
list consisting of a single value of 8. This rule is bound to a RuleImplementor class
called MaxRuleImpl. MaxRuleImpl tests the parameter it is passed against the
initialization list value and returns a ConstraintReturn. The ConstraintReturn is
set to true if the passed parameter is less than or equal to the initialization value.

Chapter 16. Using Business Rule Beans 855

Otherwise, a ConstraintReturn is set to false and some information is added that
describes which values were compared and why the test failed.

When this rule is triggered, the following details the trigger point process:
1. During the execution of the application, the application reaches a point where it

needs to verify that the number of truck driver hours that was entered is valid.
The application code invokes a simple trigger point passing the name of the
rule to be triggered and a parameter list containing the entered hours for the
driver.

2. The trigger point framework performs a query on the rule server to find the
rule with the specified name. It receives back a sequence of rule objects. In this
case, this sequence contains one rule, maxTruckDriverHours.

3. The framework determines whether this rule is to be triggered on a local or
remote machine. If local, the framework gets a local copy of the rule object and
calls the fire method on the copy. If remote, the framework calls the fire
method on the enterprise bean reference. The parameter list containing the
weight is passed to the fire method.

4. The maxTruckDriverHours rule (either the copy or the enterprise bean itself)
creates an instance of the rule implementor class, maxRuleImpl, if it does not
already have one. When a new rule implementor instance is created, the rule
calls its init method passing any initialization parameters defined for the rule.
In this case, the initialization parameter list contains the single value 8. If the
rule already has a rule implementor instance, it uses that one and does not call
the init method.

5. The maxTruckDriverHours rule calls the fire method on the rule implementor
instance. The firing parameters passed to the trigger point are passed to the
rule implementor and are possibly modified by any firing parameters defined
in the rule itself. In this case, the firing parameters are passed directly from the
trigger point.

6. The maxRuleImpl returns a ConstraintReturn object to the rule that indicates the
result of its comparison. This ConstraintReturn is returned to the trigger point
framework and ultimately to the application.

7. The application checks the value in the ConstraintReturn and takes the
appropriate action.

BRBeans run-time exception handling
Business Rule Beans (BRBeans) defines one general exception class for exceptions
that might be exposed to the user. All other BRBeans exceptions inherit from this
class. The name of this class is
com.ibm.websphere.brb.BusinessRuleBeansException. A
BusinessRuleBeansException is generally thrown when an unexpected error occurs
within BRBeans. A BusinessRuleBeansException might have information in it about
the original exception that caused the error. Doing a printStackTrace on the
BusinessRuleBeansException prints out this information and the stack trace for the
BusinessRuleBeansException itself. Also, there are methods to access the original
exception programmatically, if desired.

BRBeans also defines a ConstraintViolationException , which extends
BusinessRuleBeansException. A ConstraintViolationException is thrown if the
ThrowViolationCombiningStrategy is specified on the TriggerPoint and the rule
returns a false value (either a ConstraintReturn or a boolean).

Finally, BRBeans defines two exceptions, NoRuleFoundException and
MultipleRulesFoundException , that are thrown by some of the predefined filtering

856 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

strategies if an unexpected number of rules is found on a trigger point call. These
two exceptions both extend UnexpectedRulesFoundException which, in turn,
extends BusinessRuleBeansException.

Rule implementors
A rule implementor, in terms of Business Rule Beans, is an algorithm written in
Java that implements the BRBeans RuleImplementor interface.

A Business Rule Beans (BRBeans) Rule is a persistent object that exists on the
BRBeans Rule server. One of the rule’s persistent attributes, in addition to
startDate, endDate, initParams, and so on, is javaRuleImplementorName, which is
the name of its rule implementor.

BRBeans supplies a number of predefined rule implementor classes that can be
used in user-defined BRBeans rules (see the BRBeans Javadoc
(../../javadoc/ee/com/ibm/websphere/brb/RuleImplementor.html)) to implement
the BRBeans RuleImplementor Interface. The Java source code for these rule
implementors is supplied as BRBeans sample code in the
com.ibm.websphere.brb.implementor package. This sample code, packaged in a
JAR file, appears in the CLASSPATH of the BRBeans Rule Server (for ″remote″
firing) or is co-located in the CLASSPATH of the application or applications using
it (for ″local″ firing). Typically, the RuleImplementor is in the application EAR file.

Using standard Java development tools, you can externalize BRBeans by attaching
them to either enterprise beans or ordinary Java objects. Programming a new rule
implementation in Java is typically a simple process. If you write your own rule
implementor, you must create a new Java class that implements the
com.ibm.websphere.brb.RuleImplementor interface. This class must implement the
following methods:

Default constructor
The class must have a default, no-argument constructor so that it can be
instantiated when a rule using it is triggered.

init The init method comes from the RuleImplementor interface and is called
when the rule implementor is first. Its purpose is to perform an
initialization needed by the rule implementor instance before it is actually
fired. The following parameters are passed to the init method:

The initialization parameters defined for the rule being triggered
These can be any parameters needed to properly initialize the rule
implementor instance. Often the initialization parameters consist of
constants required by the algorithm. For example, when using a
rule implementor that checks whether a number is greater than a
threshold value, the threshold value normally is passed as an
initialization parameter. This parameter is null if there are no
initialization parameters for the rule.

An array of names of dependent rules for the rule being triggered
Normally, the rule implementor stores these names to be used
when the fire method is called. These dependent rules are
intended to be triggered as part of the algorithm performed by the
rule implementor. See Dependent Rules for more information. This
parameter is null if there are no dependent rules defined for the
rule.

The user-defined data for the rule being triggered
This data is completely defined by the user of the Business Rule

Chapter 16. Using Business Rule Beans 857

Beans (BRBeans). BRBeans does not interpret this data in any way.
This parameter is null if there is no user-defined data defined for
the rule.

A reference to the actual rule being triggered
This can be used to extract attribute values from the rule, if
needed.

fire The fire method comes from the RuleImplementor interface. This method is
called to perform the algorithm of the rule implementor. Any desired
algorithm can be performed here. Normally, a value is returned by the
fire method that is ultimately returned as the result of triggering the rule.
The following parameters are passed to the fire method:

The TriggerPoint object that is being used to trigger the rule
This parameter is needed if the rule has dependent rules that the
fire method needs to trigger.

The target object for this particular trigger call
This parameter can be any object that is thought of as the target of
the rule. However, the parameter can be null.

A reference to the actual rule being triggered
This parameter can be used to extract attribute values from the
rule, if needed.

The firing parameters for this particular trigger call
Normally, these parameters are the firing parameters passed by the
code that invoke the trigger point. However, these can be
overridden by specifying firing parameters on the rule itself.
Wherever they ultimately come from, these are the parameters that
the rule implementor needs at run time to perform its function.
Normally, these are run-time variables that are to be processed by
the rule implementor. For example, when using a rule implementor
that checks whether a number is greater than a threshold value,
the number to be checked normally is passed as a firing parameter.
This parameter is null if no firing parameters are passed by the
caller and none are defined on the rule itself.

getDescription
getDescription comes from the RuleImplementor interface. The purpose of
this method is to return a text string that describes the function of the rule
implementor. This information might be displayed on a user interface to
help select what implementor to use. This method, however, is currently
not used by the BRBeans framework. Users can incorporate this
information if they create their own rule implementor. For additional
information, see the BRBeans Javadoc
(../../javadoc/ee/com/ibm/websphere/brb/RuleImplementor.html) for
the RuleImplementor interface.

Trigger point framework
A trigger point is the location in a method of an object where externalized business
rules are invoked.

The proper placement of trigger points can add substantially to the flexibility and
speed with which a business application adapts to new business practices.

858 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Wherever a trigger point is placed in user-written code, the Business Rule Beans
(BRBeans) trigger point framework needs to do the following:
1. Assemble the parameter list to send to the rules
2. Find the potential rules that apply
3. Filter out any rules which do not apply (optional)
4. Fire the rules in the filtered rule set
5. Combine the results of the rule firings is some meaningful way

The application code that contains the trigger point needs to perform the following
functions:
1. Establish a value for the target object. Usually the target object is the object in

which the trigger point is encountered. The target object is one of the
parameters passed to the fire method of the RuleImplementor. However, this is
an optional parameter. If the rule implementor does require a target object, null
can be passed instead.

2. Build the array of objects containing the run-time parameters needed to satisfy
the trigger point’s business purpose. This array is normally passed as one of
the parameters of the fire method of the RuleImplementor. If firing parameters
are specified on the rule itself, then those firing parameters are passed instead
of the ones passed by the caller.

3. Invoke the trigger(), triggerClassifier(), or triggerSituational() method
of the TriggerPoint class.

4. Catch and handle any exceptions that might occur as a result of firing the rules.
Otherwise, take action based upon the rule firing results.

The two simple trigger methods, trigger and triggerClassifier, perform their
function in four steps:
1. Find the rules
2. Filter out those rules which are not desired
3. Fire the remaining rules
4. Combine the results and return to the caller

The complex trigger method, triggerSituational does this sequence of steps
twice. In the first phase, the method performs the four steps once to find a rule
that returns a classification. This classification is fed into the second phase. The
second phase triggers rules that have the name specified in the triggerSituational
method and have a classification equal to the value returned by the first phase.

How each of these steps is performed can be modified through various methods
on the TriggerPoint object. The implementation of each step is defined by a
strategy object. For more information on strategies, see Administering strategy
objects to control triggers.

Trigger points
Examples of how to code a trigger point call are provided in the following topics:
v Simple trigger point
v Classifier trigger point
v Situational trigger point

Simple trigger point
A simple trigger point is used to trigger a rule or rules specified by name. This
type of trigger point is used by invoking the trigger method on an instance of the

Chapter 16. Using Business Rule Beans 859

TriggerPoint class. All rules with the specified name are triggered and the results
are combined using the CombiningStrategy specified on the TriggerPoint object.
This type of trigger point only finds rules that are not marked as classifiers.

The following shows an example of using a simple trigger point to trigger a rule
named isSeniorCitizen (in the com/acme/ageRules folder), which determines
whether a person is classified as a senior citizen based on the passed in age:
...
// create an instance of TriggerPoint for triggering the rule and specify that the
// ReturnFirstCombiningStrategy is to be used to return only the first result if
// multiple rules are found.
TriggerPoint tp = new TriggerPoint();
tp.setCombiningStrategy(CombiningStrategy.RETURN_FIRST, TriggerPoint.ALL_RULES);

// define parameter list that’s passed to the rule
Object [] plist = new Object[1];

// define age of person to be tested
Integer age = new Integer(64);

// define name of rule to be fired
String ruleName = "com/acme/ageRules/isSeniorCitizen";

// define result of rule firing
Object result = null;

// initialize parameter list
plist[0] = age;

try {

// fire "com/acme/ageRules/isSeniorCitizen" rule passing parameter list containing
// age.
// Note: in this case the target object is not used and could be null.
result = tp.trigger(this, plist, ruleName);

// put result into usable format. A single result is returned since we specified to
// use the ReturnFirstCombiningStrategy. By default an array of results is returned.
boolean seniorCitizen = ((Boolean)result).booleanValue();

// make use of result
if(seniorCitizen) {
...
}

}
catch(BusinessRuleBeansException e) {

// handle exception
...

}

Classifier trigger point
A classifier trigger point is identical to a simple trigger point except that it only
finds rules marked as classifiers. Classifiers are rules that determine what sort of
business situation is present. These rules then return a classification string that
indicates the result.

Usually these rules are used as part of a situational trigger point, but they also can
be triggered on their own. This type of trigger point is used by invoking the
triggerClassifier method on an instance of the TriggerPoint class.

860 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The following shows an example of using a classifier trigger point to trigger a rule
named determineCustomerLevel (in folder com/acme/customerClassfiers). This rule
classifies customers into levels (gold, silver, and bronze) based on their spending
history.
...
// create an instance of TriggerPoint for triggering the rule and specify that the
// ReturnFirstCombiningStrategy is to be used to return only the first result if
// multiple rules are found.
TriggerPoint tp = new TriggerPoint();
tp.setCombiningStrategy(CombiningStrategy.RETURN_FIRST, TriggerPoint.ALL_RULES);

// define parameter list that’s passed to the rule
Object [] plist = new Object[1];

// information about the customer to be checked is stored in this object
Customer cust = ...;

// define name of rule to be fired
String ruleName = "com/acme/customerClassifiers/determineCustomerLevel";

// define result of rule firing
Object result = null;

// initialize parameter list
plist[0] = cust;

try {

// fire "com/acme/customerClassifiers/determineCustomerLevel" rule passing
// parameter list containing the customer to be checked.

// Note: in this case the target object is not used and could be null.
result = tp.triggerClassifier(this, plist, ruleName);

// put result into usable format. A single result is returned since we
// specified to use the ReturnFirstCombiningStrategy. By default an array of
// results would be returned.

String customerLevel = (String) result;

// make use of result
if(customerLevel.equals("Gold")) {
...
} else if (customerLevel.equals("Silver")) {
...
} else if (customerLevel.equals("Bronze")) {
...
} else {
...
}
}
catch(BusinessRuleBeansException e) {

// handle exception
...

}

Situational trigger point
A situational trigger point is used when the rule or rules to be triggered depend on
the business situation.

This example evaluates a customer’s past purchasing history to place them into
one of three levels: Gold, Silver, or Bronze. Their classification determines how
much of a discount they receive.

Chapter 16. Using Business Rule Beans 861

To use a situational trigger point to handle this case, it is first necessary to define
four rules:
v one classifier rule to determine under which of the three levels to classify the

customer
v three classified rules to determine the actual discount to offer

All of the classified rules have the same name and are marked as applying to one
of the three customer levels by specifying the level in its classification attribute. For
example, the rule to determine the discount for a Gold level customer will contain
the string ″Gold″ in its classification attribute.

The situational trigger point takes two rule names as input: the name of the
classifier rule and the name of the classified rule. The situational trigger point then
proceeds in two phases:
1. Find the specified classifier rule and trigger it to generate a classification string.
2. Find the rules that have the name specified for the classified rule and have a

classification attribute equal to the classification string returned by the first
phase.

These rules then are triggered to produce the final result, in this case the discount
to offer.

The following shows an example of a situational trigger point used to handle the
case described previously:
...
// create an instance of TriggerPoint for triggering the rule and specify that the
// ReturnFirstCombiningStrategy is to be used to return only the first result if
// multiple rules are found.
TriggerPoint tp = new TriggerPoint();
tp.setCombiningStrategy(CombiningStrategy.RETURN_FIRST, TriggerPoint.ALL_RULES);

// define parameter list that’s passed to the classifier rule
Object [] classifierPlist = new Object[1];

// define parameter list that’s passed to the classified rule
Object [] classifiedPlist = new Object[1];

// information about the customer to be checked is stored in this object
Customer cust = ...;

// define name of classifier rule to be fired
String classifierRuleName = "com/acme/customerClassifiers/determineCustomerLevel";

// define name of classified rule to be fired
String classifiedRuleName = "com/acme/discountRules/determineDiscount";

// define result of rule firing
Object result = null;

// initialize parameter lists
classifierPlist[0] = cust;
classifiedPlist[0] = cust;

try {
// fire the rules to get the discount to offer
// Note: in this case the target object is not used and could be null.
result = tp.triggerSituational(this, classifiedPlist, classifierPlist,

classifiedRuleName, classifierRuleName);

// put result into usable format. A single result is returned since we
// specified to use the ReturnFirstCombiningStrategy. By default an array

862 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

// of results would be returned.
Float discountToOffer = (Float) result;

// make use of result
...
}
catch(BusinessRuleBeansException e) {

// handle exception
...

}

As Of Date
An ″As Of Date″ can cause rules to be triggered as if the given date is the current
date. This is especially useful when you want to test a rule, see what effect a future
change in rules or regulations may have on the overall framework, or see what
past or future rates, discounts, or both might be.

Normally, a rule only can be triggered if it is ″in effect″ (see ″Rule States″) as of the
current date and time.

To set an ″As Of Date″, call the setAsOfDate() method on the TriggerPoint object
and pass the date that you want to be used. To use the current date again, call
unsetAsOfDate or setAsOfDate and pass null for the date.

Predefined strategy objects
The following is a list of predefined strategy objects that are provided in Business
Rule Beans:

FindingStrategy
Accesses the data store and returns those rules that meet the search criteria
specified

FilteringStrategy
Takes the list of rules that were found by the FindingStrategy and filters
out the rules that should not be fired

FiringStrategy
Takes the rules that were found by the FindingStrategy, (possibly modified
by the FilteringStrategy), fires them each in order, and returns an array
containing the results of each rule

CombiningStrategy
Takes the results of the rules that are fired by the FiringStrategy and
combines them to form a reasonable result to the TriggerPoint caller.

FindingStrategy method
The job of the FindingStrategy is to access the data store and return those rules
that meet the search criteria specified. There are two FindingStrategy classes
provided by Business Rule Beans (BRBeans):
v DefaultClassifierFindingStrategy

v DefaultNonClassifierFindingStrategy

Both of these strategies perform a case-sensitive search for Rules that are marked
″ready″ and match the given search criteria. Results are ordered by precedence
from highest to lowest (the first rule in the array has the numerically smallest
precedence, the next rule has the next smallest precedence, and so on). If no rules

Chapter 16. Using Business Rule Beans 863

are found, then an empty array is returned. The former strategy returns classifier
rules (classifier=true) only and the latter returns non-classifier rules
(classifier=false) only.

These default strategies are used automatically by the TriggerPoint. There is no
need to call setFindingStrategy to use these strategies. Instances of these two
default finding strategies are stored in static constants defined on the
FindingStrategy interface.

FilteringStrategy method
The job of the FilteringStrategy is to take the list of rules that were found by the
FindingStrategy and filter out the rules that should not be fired. There are three
sets of filtering strategies used in TriggerPoint:

v strategy for zero rules found
v strategy for one rule found
v strategy for multiple rules found

A different strategy can be used for each of these scenarios, along with different
strategies for classifier and non-classifier rules. The zero rules strategy is invoked if
no rules are found by the finding strategy, the one rule strategy is invoked if
exactly one rule is found and the multiple rules strategy is invoked if more than
one rule is found.

Business Rule Beans (BRBeans) provides the following filtering strategies that can
be used:

Accept Any
BRBeans utilizes all of the rules found (this is the default).

Accept One
BRBeans expects one rule only.

Accept First
BRBeans utilizes the first rule found.

Accept Last
BRBeans utilizes the last rule found.

Instances of these filtering strategies are stored in static constants defined in the
FilteringStrategy interface. You can use these for setting the strategies on a
TriggerPoint.

As an example, here is one common way to use filtering strategies. You want to
ensure that exactly one rule is found on a TriggerPoint call. Thus, set all three
strategies (zero rules, one rule, and multiple rules) for this TriggerPoint to
FilteringStrategy.ACCEPT_ONE. This strategy throws an exception if the number of
rules is not exactly one. The following sequence of method calls accomplishes this
for TriggerPoint tp:

tp.setNoRulesFilteringStrategy(FilteringStrategy.ACCEPT_ONE, TriggerPoint.ALL_RULES);
tp.setOneRuleFilteringStrategy(FilteringStrategy.ACCEPT_ONE, TriggerPoint.ALL_RULES);
tp.setMultipleRulesFilteringStrategy(FilteringStrategy.ACCEPT_ONE,

TriggerPoint.ALL_RULES);

FiringStrategy method
The FiringStrategy takes the rules that were found by the FindingStrategy,
(possibly modified by the FilteringStrategy), fires them each in order, and
returns an array containing the results of each rule.

864 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

A single default FiringStrategy is provided by Business Rule Beans (BRBeans) as
all of the rules are fired in the same way. This implementation takes each rule in
order and performs the following steps:
1. Determines what firing parameters to pass to the rule. If there are no firing

parameters specified for this rule, the implementation uses the firing
parameters passed on the TriggerPoint call. Otherwise, it uses the firing
parameters specified in the rule in place of the parameters passed on the
TriggerPoint call.

2. Calls the fire method on the rule and passes the firing parameters from the first
step.

Unexpected exceptions result in a BusinessRuleBeansException being thrown that
contains the original exception.

CombiningStrategy method
The job of the CombiningStrategy is to take the results of the rules that are fired by
the FiringStrategy and combine them to form a reasonable result to the
TriggerPoint caller. Business Rule Beans (BRBeans) provides several combining
strategies to be used in applications:

Return All
Returns the results from all of the rules fired in an array (this is the
default)

Return First
Returns only the result from the first rule fired

Return Last
Returns only the result from the last rule fired

Return AND
Returns the logical AND of the results from all the rules fired. This
strategy requires that all of the results returned by the fired rules are either
ConstraintReturn objects or java.lang.Boolean objects. An exception is
thrown if this is not the case.

Return OR
Returns the logical OR of the results from all of the rules fired. This
strategy requires that all of the results returned by the fired rules are either
ConstraintReturn objects or java.lang.Boolean objects. An exception is
thrown if this is not the case.

Throw Violation
Throws a ConstraintViolationException containing all of the failed
ConstraintReturn objects if any ConstraintReturns contain false.
Otherwise, it returns a true ConstraintReturn.

Instances of these combining strategies are stored in static constants defined in the
CombiningStrategy interface. You can use these for setting the strategies on a
TriggerPoint. For example, the following method call sets the CombiningStrategy
on TriggerPoint tp to be the Return_First strategy:
tp.setCombiningStrategy(CombiningStrategy.RETURN_FIRST, TriggerPoint.ALL_RULES);

Customized strategy objects
The process of triggering a rule or set of rules is controlled by a set of strategy
objects. The following four strategies are used each time a rule is triggered:

FindingStrategy
The FindingStrategy accesses the persistent data store to find the set of

Chapter 16. Using Business Rule Beans 865

rules matching the search criteria passed to the trigger call. The search
criteria are based on the rule ID information passed on the trigger call. The
set of rules found is passed to the FilteringStrategy.

FilteringStrategy
The FilteringStrategy can change the set of rules that were found by the
FindingStrategy. The set of rules returned is the set that are fired by the
FiringStrategy.

FiringStrategy
The FiringStrategy fires the rules found by the FindingStrategy, which
may be modified by the FilteringStrategy. It gathers the results of the
individual rules and passes them to the CombiningStrategy.

CombiningStrategy
The CombiningStrategy takes the results from firing the rules and combines
them to produce the final result of the trigger.

Each TriggerPoint object has its own set of strategies that can be changed
independent of any other TriggerPoint object. There is a set of default strategies
that are used by the TriggerPoint if none are explicitly set.

For each of the four strategies, you can set different strategies for classifier rules
and for non-classifier rules. The strategies set for classifier rules are used when the
Business Rule Beans (BRBeans) framework is triggering a classifier rule. The
strategies for non-classifier rules are used in all other cases.

It is also possible to set three different sets of filtering strategies:
v one to be used if no rules are found
v one to be used if exactly one rule is found
v one to be used if more than one rule is found

This capability can be used to set up filtering strategies that throw exceptions if the
expected number of rules is not found.

Strategy classes must implement one of the strategy interfaces provided by
BRBeans in the com.ibm.websphere.brb package:
v FindingStrategy

v FilteringStrategy

v FiringStrategy

v CombiningStrategy

Users can write their own strategy implementations to perform special functions
not performed by the predefined implementations. Write these strategy
implementations with care since part of the functionality of the BRBeans
framework is replaced when you write a custom strategy. One simple example of
writing a custom strategy is creating a new firing strategy that logs every rule that
is fired.

The basic requirement for a strategy implementation is that it implements the
appropriate strategy interface.

For the filtering and combining strategies, create a class that implements either
FilteringStrategy or CombiningStrategy and either the filterRules() method (for
FilteringStrategy) or the combineResults() method (for CombiningStrategy) to
perform the required functions. At run time, create an instance of the new class

866 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

and pass it to the TriggerPoint object using the appropriate set method so that the
new strategy is used when rules are triggered using that TriggerPoint.

The finding and firing strategies are more complicated to customize since they
provide more function than the simple filtering and combining strategies. Default
finding and firing strategy implementations are provided that define a general
outline of the steps necessary to perform the function. It is suggested that you
subclass these when you customize your own strategies and then override the
desired methods on the default implementation to provide the new behavior.

The BRBeans Javadoc provides more information about the FindingStrategy
(../../javadoc/ee/com/ibm/websphere/brb/FindingStrategy.html),
FilteringStrategy
(../../javadoc/ee/com/ibm/websphere/brb/FilteringStrategy.html), FiringStrategy
(../../javadoc/ee/com/ibm/websphere/brb/FiringStrategy.html), and the
CombiningStrategy
(../../javadoc/ee/com/ibm/websphere/brb/CombiningStrategy.html) interfaces.

Customized rule implementors
To write your own rule implementor, create a new Java class that implements the
com.ibm.websphere.brb.RuleImplementor interface. This class must implement the
following methods:

Default constructor
The class must have a default, no-argument constructor so that it can be
instantiated when a rule using it is triggered.

init The init method comes from the RuleImplementor interface and is called
when the rule implementor is first created. Its purpose is to perform an
initialization needed by the rule implementor instance before it is actually
fired. The following parameters are passed to the init method:

The initialization parameters defined for the rule being triggered
These can be any parameters needed to properly initialize the rule
implementor instance. Often the initialization parameters consist of
constants required by the algorithm. For example, when using a
rule implementor that checks whether a number is greater than a
threshold value, the threshold value normally is passed as an
initialization parameter. This parameter is null if there are no
initialization parameters for the rule.

An array of names of dependent rules for the rule being triggered
Normally, the rule implementor stores these names to be used
when the fire method is called. These dependent rules are
intended to be triggered as part of the algorithm performed by the
rule implementor. See Dependent Rules for more information. This
parameter is null if there are no dependent rules defined for the
rule.

The user-defined data for the rule being triggered
This data is completely defined by the user of the Business Rule
Beans (BRBeans). BRBeans does not interpret this data in any way.
This parameter is null if there is no user-defined data defined for
the rule.

A reference to the actual rule being triggered
This can be used to extract attribute values from the rule, if
needed.

Chapter 16. Using Business Rule Beans 867

fire The fire method comes from the RuleImplementor interface. This method is
called to perform the algorithm of the rule implementor. Any desired
algorithm can be performed here. Normally, a value is returned by the
fire method that is ultimately returned as the result of triggering the rule.
The following parameters are passed to the fire method:

The TriggerPoint object that is being used to trigger the rule
This parameter is needed if the rule has dependent rules that the
fire method needs to trigger.

The target object for this particular trigger call
This parameter can be any object that is thought of as the target of
the rule. However, the parameter can be null.

A reference to the actual rule being triggered
This parameter can be used to extract attribute values from the
rule, if needed.

The firing parameters for this particular trigger call
Normally, these parameters are the firing parameters passed by the
code invoking the trigger point. However, these can be overridden
by specifying firing parameters on the rule itself. Wherever they
ultimately come from, these are the parameters that the rule
implementor needs at run time to perform its function. Normally,
these will be run-time variables that are to be processed by the rule
implementor. For example, when using a rule implementor that
checks whether a number is greater than a threshold value, the
number to be checked normally is passed as a firing parameter.
This parameter is null if no firing parameters are passed by the
caller and none are defined on the rule itself.

getDescription
getDescription comes from the RuleImplementor interface. The purpose of
this method is to return a text string that describes the function of the rule
implementor. This information might be displayed on a user interface to
help a user select what implementor to use. This method, however, is
currently not used by the BRBeans framework. For additional imformation,
see the RuleImplementor
(../../javadoc/ee/com/ibm/websphere/brb/RuleImplementor.html)
interface in the BRBeans Javadoc.

Rule management command
The Rule management command assists the user in performing high-level
administration of rules and rule folders.

This includes the capability to create, modify, delete, import, or export rules or rule
folders. This command can be used initially by the programmer to define rules
interactively and then used by the domain analyst for rule management tasks. You
can use the following files:
v On Microsoft Windows platforms, rulemgmt.bat
v On Unix platforms, rulemgmt.sh

Syntax

868 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

rulemgmt properties-file [host-address port-number]

Parameters

<properties-file>
The fully qualified name of a file containing the JNDI names of the rule
EJBs for the rule set that is to be accessed.

The following must be specified in the file:
RuleJndi=<JNDI name of the Rule EJB>
RuleFolderJndi=<JNDI name of the RuleFolder EJB>
RuleHelperJndi=<JNDI name of the RuleHelper EJB>

See <WAS_HOME>/bin/brbeansDefaultProperties for an example.

Arguments

host-address
This is the host name of the name server. The default is the local host.

port-number
This is the port number of the name server. The default is 2809.

Rule importer command
The rule importer command imports rules into a database from one or more XML
documents.

The rule importer command can be invoked using the Rule Management
Application (RMA). The user interface in RMA provides some assistance in
specifying the parameters required by the importer. Alternatively, the rule importer
can be invoked from the command line using the following scripts:
v For Microsoft Windows platforms, ruleimporter.bat
v For UNIX platforms, ruleimporter.sh

Syntax

ruleimporter <properties-file> <import-files> [options]

Parameters

<properties-file>
The fully qualified name of a file containing the JNDI names of the
Business Rule Beans (BRBeans) enterprise beans for the rule set that is to
be accessed. Refer to BRBeans Properties file for a definition of the contents
of this file. This parameter is required.

<import-files>
One or more fully qualified names of the files containing XML rule
definitions to be imported. These files must contain XML in the format
defined in <WAS_HOME>\bin\brb.dtd file. This parameter is required.

Options

-[v]erbose
Shows verbose output while importing. This shows the rule definition of
every rule that is imported.

-[t]est Parses the input files only and does not create rules on the application
server. This will ensure that there are no errors in the syntax of the rule

Chapter 16. Using Business Rule Beans 869

definitions provided in the XML document. Combined with the -verbose
option, it also can be used to see exactly what rules will be imported.

-[u]pdate
Update the existing rule with values from the input file when a rule in an
input file has the same primary key as an existing rule. If this option is not
specified, then any rule with the same primary key as an existing rule
causes an error and that rule is not imported.

-[c]ommiteach
Performs a commit after each rule is created rather than creating all of the
rules in a single transaction. If this option is not specified, then all rules are
created in a single transaction. This means that if any rule causes an error,
the entire transaction is rolled back and none of the rules are imported. If
-commiteach is specified and a rule causes an error, only that rule is not
imported. Other rules are still imported.

-[h]ost <host-name>
Specifies the name of the host for the name server. The default is the local
host.

-[p]ort <port-number>
Specifies the port number for the name server. The default is 2809.

Rule exporter command
The rule exporter command exports rules from a database into an XML document.

The rules that are exported are determined by an XML document, which is
provided to the command. The rule exporter function can be invoked using the
Rule Management Application (RMA). The user interface in RMA provides some
assistance in specifying the parameters required by the exporter. Alternatively, the
rule exporter can be invoked from the command line using the following scripts:
v For Microsoft Windows platforms, ruleexporter.bat
v For UNIX platforms, ruleexporter.sh

Syntax

ruleexporter <properties-file> <export-list-files> [options]

Parameters

<properties-file>
The fully qualified name of a file containing the JNDI names of the
BRBeans enterprise beans for the rule set that is to be accessed. Refer to
BRBeans Properties file for a definition of the contents of this file. This
parameter is required.

<export-list-files>
One or more fully qualified names of files containing a list of rules, folders,
or both to be exported. These files must contain XML in the format defined
in the <WAS_HOME>\AppServer\bin\brb-export-list.dtd file. This parameter
is required.

Options

-[v]erbose
Shows verbose output while exporting.

870 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

-[o]utput <file-name>
Specifies the name of the output file where the XML rule definitions are
stored. This is a required parameter.

-[h]ost <host-name>
Specifies the name of the host for the name server. The default is the local
host.

-[p]ort <port-number>
Specifies the port number for the name server. The default is 2809.

BRBeans properties file
Applications that use the Business Rule Beans (BRBeans) enterprise beans (this
includes applications that trigger rules or use the rule management APIs) must
specify the JNDI names for these enterprise beans so that the application can find
them at run time. If the application is running in a J2EE client container, in a
servlet, or on the application server itself (for example, as part of another
enterprise bean), then these names probably have been specified by the person
who configured the application. If the application is not running in a container, the
names must be specified some other way. The BRBeans properties file provides a
way to do this.

At run time, the BRBeans code looks for a special Java property that identifies the
name of the properties file. This Java property can be specified on the command
line as -DbrbPropertiesFile=<file_name>. The file specified is expected to contain
the JNDI names used to find the BRBeans enterprise beans. The BRBeans
framework uses these names when it needs to locate the enterprise beans.

When an application attempts to reference BRBeans enterprise beans, the code first
looks for the brbPropertiesFile Java property. If this property is specified, the
names listed in that file are used to find the enterprise beans and to override any
EJB references that were specified in the container (if the application is running in
a container). If the property is not specified, then BRBeans attempts to use the EJB
references specified in the container.

The host name and port number used to access the name server also can be set in
this file. If these are not specified, the BRBeans framework uses the name server
used by the container in which the application is running. If the application is not
running in a container, then localhost is used for the host name and 2809 is used
for the port number.

The properties file must be in the following format (entries can be specified in any
order):
host=<host-name-for-name-server>
port=<port-number-for-name-server>
RuleJndi=<JNDI-name-for-Rule-EJB>
RuleFolderJndi=<JNDI-name-for-RuleFolder-EJB>
RuleHelperJndi=<JNDI-name-for-RuleHelper-EJB>

Location

A default properties file is shipped as
<WAS_HOME>\AppServer\bin\brbeansDefaultProperties.

Chapter 16. Using Business Rule Beans 871

There are a set of JAR files that conform to the BRBeans<database-type>.jar
naming convention (depending on the type of database that you want to use). If
the JAR files are used without changing the JNDI names, then you also can use the
default properties file.

Usage note

The file name still must be specified even if you want to use the default file. There
is no file that is used automatically if the brbPropertiesFile property is not set.

The tools shipped with BRBeans (the Rule Management Application, the rule
importer, and the rule exporter) all run outside of any container. Hence, the JNDI
names need to be specified when these tools are run. The scripts for these tools all
require that you pass a properties file name as a command line parameter. This
name then is specified as the value for the brbPropertiesFile property when the
tool is run.

Database considerations for BRBeans
The following relational databases are supported by Business Rule Beans
(BRBeans):
v IBM DB2
v IBM Cloudscape
v Microsoft SQL Server
v Oracle
v Sybase
v Informix

This documentation does not provide you with specific instructions on how to use
any of these databases. For help with specific commands, consult the
documentation that accompanied your database software. The following are
general considerations for relational databases that are supported by BRBeans:

Large character data

There are several attributes in the BRBeans Rule enterprise beans that might
contain large amounts of data. This includes fields such as: businessIntent,
dependentRules, description, firingParameters, initParameters, originalReq,
and userDefinedData. The value for these attributes is stored in a character type
column within a database table. Whenever possible, the values are stored in large
character fields like LONG VARCHAR (for DB2) and TEXT (for Sybase).

There are several cases where the use of large character fields is problematic,
mostly in terms of a lack of query support. Refer to each of the supported database
sections for details on the column type used for storing the values in these
attributes.

Isolation level

All of the enterprise beans accessed in a transaction must specify the same
isolation level. If your application contains enterprise beans that are used in the
same transaction as the rules, you must do one of the following:
v Change the BRBeans enterprise beans (Rule, RuleFolder, and RuleHelper) to

the same isolation level as your beans.

872 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v Change your beans to the same isolation level as the BRBeans enterprise beans.
v Place the BRBeans enterprise beans in a different database than your enterprise

beans and configure the application to run using the two-phase commit protocol.
This causes the beans to run in different transactions; thereby removing the
restriction that they need to have the same isolation level.

Oracle considerations
Large character data

The preferred Oracle data type for storing large character objects is CLOB. However,
Oracle does not allow a CLOB to be queried. Because of this, a data type of
VARCHAR2 is used by Business Rule Beans (BRBeans). A specific length must be
specified when specifying VARCHAR2. The maximum length for a VARCHAR2 is 4000
bytes.

To determine the default size of VARCHAR2, look in the table.ddl file that was
generated when you deployed the code. If the default size is not acceptable for
your application, you can do one of the following:

Increase the size of the columns
Keep in mind that maximum size for a VARCHAR2 in Oracle is 4000. Increase
the column size either by changing the value in the create table statement
or by changing the schema mapping and deploying the BRBeans JAR file.

Change the schema mapping to specify CLOB
Do this for any of the attributes that you do not wish to query and then
deploy the BRBeans JAR file.

Isolation level

The default isolation level is REPEATABLE_READ. Oracle does not support this
isolation level. Therefore, the IBM WebSphere runtime environment converts this to
the next highest isolation level, which in this case is SERIALIZED. Be aware that this
isolation level tends to be overly restrictive as it prevents two clients from reading
data at the same time. The BRBeansOracle.jar file specifies an isolation level of
READ_COMMITTED.

Sybase considerations
Allowing null values

By default, Sybase does not allow null values in string columns (like VARCHAR, TEXT,
and so on). You can change this default value for a database using ″isql″ by issuing
the following command:

sp_dboption databasename, ″allow nulls by default″, true

In this example ″databasename″ is your database name.

Large character data

The large character data fields are stored in a column of type TEXT. Sybase allows
TEXT fields to be queried only using the SQL ″LIKE″ operator. Queries against the
columns that perform the SQL ″IS NULL″ or ″IS NOT NULL″ operations are not
allowed by Sybase. The alternative is to specify a column type of VARCHAR.
However, the maximum allowed size for a VARCHAR in Sybase is 255 characters.
This is not considered a large enough value for storing firingParameters,
initParameters, descriptions, and so on.

Chapter 16. Using Business Rule Beans 873

If performing ″IS NULL″ and ″IS NOT NULL″ type queries is important and the 255
character limitation is acceptable, change these column types to VARCHAR. To
accomplish this, alter the schema mapping for the Rule bean and then deploy the
BRBeans JAR file.

The query APIs (in the com.ibm.websphere.brb.query package) allow for ″IS NULL″
and ″IS NOT NULL″ type queries to be performed on several of these fields. In
addition, the Rule Management Application allows the firing parameters to be
queried in this manner. These queries fail on Sybase with the default column type
of TEXT.

Informix considerations
Large character data

The preferred Informix data type for storing large character data is CLOB. However,
Informix does not allow a CLOB to be queried. Because of this, a data type of
LVARCHAR is used by BRBeans. The maximum length for an Informix LVARCHAR is
2,000 characters. If 2,000 characters is not acceptable and your application does not
need to query these data types, you can change the schema mapping to specify
CLOB. Then, deploy the BRBeans JAR file.

Custom properties for the data source

When configuring the data source for your application, you must specify the
following properties:
v ifxIFXHOST=Name of the physical machine on which the Informix instance is

installed

v serverName=Informix instance name

v portNumber=Port number for which the Informix instance is configured

v informixLockModeWait=500

A setting of 500 causes a connection to wait for up to 500 seconds for a lock. If
you have a busy system, this wait can appear to be a system hang. This setting
has the same effect as running SET LOCK MODE TO WAIT 500 on the
connection.

Note: The previous configuration values are subject to change. Consult your
Informix documentation for updates.

Rule Management Application
The Rule Management Application (RMA) is a tool that assists the user in
performing high-level administration of rules and rule folders.

This includes the capability to create, modify, delete, import, or export rules or rule
folders. The RMA tool can be used initially by the programmer to define rules
interactively, and then by the domain analyst for rule management tasks. The main
window for the RMA is the Rules Browser.

The column on the left side of the Rule Browser window shows a nested hierarchy
of all of the existing rule folders. Click one of these folders to display the rules it
contains. The names of these rules appear in the right column.

Navigate as you would in a typical file-management browser.
1. Click the ″+″ icon to expand by one level and click the ″-″ icon to collapse it.

874 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

2. Click a rule or folder name to highlight it, right-click the rule or folder name to
launch a list of actions, or select an option from the main menu.

RMA is designed to be a general purpose tool for interactive management of rules.
Alternatively, you can write your own user interface that is tailored more
specifically to the domain in which you work. For instance, a domain-specific user
interface can provide more help to the user in the task of managing rules than a
general purpose tool such as RMA. If you plan to write your own user interface,
refer to the RuleImplementor
(../../javadoc/ee/com/ibm/websphere/brb/RuleImplementor.html) of the
BRBeans Javadoc for assistance.

Rule management APIs
Business Rule Beans (BRBeans) provide a set of APIs to perform rule management
tasks programmatically. These tasks include creating, deleting, and updating rules
and folders. These APIs are provided to simplify the interaction with the BRBeans
enterprise beans. Use these APIs to perform rule management tasks instead of
coding directly in the EJB interfaces.

The rule management APIs consist of the classes in the
com.ibm.websphere.brb.mgmt package. You might use the following main classes:

IRule

This is the interface used to access the object representing a business rule in
BRBeans. It provides methods to read and update attributes of the rule, to delete
the rule, and to make a copy of the rule. The methods to create rules are in the
IRuleFolder interface since you must always create a rule and specify a particular
folder in which it will reside. In the rule management APIs, any time you get a
rule, you have the option to receive a reference to the enterprise bean itself or to
receive a local copy of the data contained in the enterprise beans. Regardless of
which option you choose, the IRule interface can be used to access the returned
object. If a local copy is requested, it is possible to cast the returned object to an
IRuleCopy. IRuleCopy extends IRule and adds a couple additional methods to
those defined by IRule. See the IRuleCopy section for more details.

IRuleCopy

This is the interface used to access a local copy of the enterprise bean that
represents a business rule. An object implementing this interface is returned from
rule management API methods if you ask for a local copy of the rule. The main
reason for requesting a local copy is performance. Calling a method on a local
copy is much faster than calling the method on the actual enterprise bean. If you
need to access several different rule attributes, this may make a big difference.
Similarly, when updating a rule, all updates can be sent to the enterprise bean in
one method call instead of many. The individual set methods are called on the
copy and then the updatePersistentRule() method is called to actually send the
updates to the enterprise bean.

IRuleFolder

This is the interface used to access the object representing a rule folder. It provides
methods to create, delete, and find rules and subfolders. It also provides methods
to move and rename the folder, and to get the parent folder. The IRuleFolder
representing the root folder is generally what you start with when performing rule

Chapter 16. Using Business Rule Beans 875

management tasks. Once you have the root folder you can navigate up and down
the folder hierarchy and access rules contained within the folders.

RuleMgmtHelper

This is a helper class intended to contain methods that are of general use for
performing rule management tasks. Currently, the only methods available are used
to get the IRuleFolder representing the root folder. The root folder is normally the
starting point for performing rule management tasks.

IParameter

This is the interface used to represent an initialization or firing parameter stored in
a Rule EJB. Every parameter has a user description and a value that are accessible
from this interface. The following classes are provided to implement the
IParameter interface:

ConstantParameter
This is the most common type of parameter. It represents a single constant
value that is to be passed as an initialization or firing parameter.

MethodCallParameter
This class represents a parameter whose value is determined by calling a
method on the target object. The method to call must be a public method
and must take zero parameters. This is only used for firing parameters.

TriggerPointParameter
This class represents a parameter that is retrieved from one of the trigger
point firing parameters. This is mainly used for reordering the firing
parameters passed on the trigger point. This is only used for firing
parameters.

For more details on the rule management interfaces, including a number of coding
examples, refer to the com.ibm.websphere.brb.mgmt
(../../javadoc/ee/com/ibm/websphere/brb/mgmt/package-summary.html)
package in the BRBeans Javadoc.

BRBeans performance enhancements
Externalizing business logic using Business Rule Beans (BRBeans) has many
benefits, but does not come completely without a cost. Since every business rule is
represented by an enterprise bean, then, in general, every rule trigger is performed
in three parts:
1. a query is performed to find the enterprise beans that represent the rules to be

triggered.
2. a remote method call is performed on the EJB instance to trigger the rule.
3. a remote method call is made to determine whether to fire the rule locally or

remotely.

The first two steps both require server processing so processing can become rather
slow.

This section documents the following ways to improve performance:
v Performance enhancements through caching
v Performance enhancements using indexes
v Performance enhancements by changing the firing location

876 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Performance enhancements through caching
The Business Rule Beans (BRBeans) framework incorporates a cache on the client
side; that is, wherever the trigger() method on the TriggerPoint object is called.
This cache is scoped to the Java virtual machine (JVM) in which the client is
running so that any trigger calls performed in a particular JVM use the same cache
and two triggers performed in different JVMs use two different caches. The
BRBeans cache caches the results of all of the queries performed to find a set of
rules to be triggered. The next time a trigger is performed in that JVM with the
same rules specified, the rules are found in the cache and the query does not
require server processing.

Once the rules are found in the cache they are triggered, either locally or remotely,
depending on how they were defined. If a rule found in the cache is specified to
be triggered locally, then the entire trigger process for that rule is performed on the
client without calling the server. Even if the rule is specified to be triggered
remotely, finding the rule in the cache eliminates one call to the server since the
query is not performed on the server.

The BRBeans cache can improve performance greatly, however it has one
disadvantage: changes made to rules are not recognized immediately.

When a change is made to a rule on the server, there is no way to inform all of the
potential clients that something has changed and that they may need to refresh
their caches. Thus, the client cache must check periodically to see if anything in the
persistent rule data has changed. This is implemented by associating a polling
frequency with the cache. This polling frequency specifies an interval of time that
the cache waits before checking to see if anything has changed. The next time a
trigger is performed after a polling interval has passed, the cache checks to see if
any changes have been made to the persistent rule data stored on the server. If no
changes have been made, then the cache is not refreshed. If any changes have been
made, the entire cache is cleared so that the changes are picked up. Thus, changes
to the rules are only picked up by the cache after a polling interval has passed.

The default polling frequency is 10 minutes. The user can change this value by
changing the single initialization parameter specified for the special rule named
com/ibm/websphere/brb/BRB CacheRule. The value for this initialization parameter
is in the following format: hh:mm:ss

hh stands for hours, mm stands for minutes, and ss stands for seconds.

Thus the default of 10 minutes is specified by a value of 00:10:00. To specify a
polling frequency of, for example, 1 hour, 30 minutes, specify 01:30:00

When this value is changed, it does not take effect until the previous polling
interval has passed. Thus, if the previous polling interval is set to 24 hours and the
polling frequency is changed to 1 hour, the new frequency does not take effect
until the previous 24 hour polling interval passes. The only other ways to get the
new frequency to take effect are to either restart the client (since this causes the
cache to be re-initialized from scratch) or have the client code call the
refreshCache() method on the TriggerPoint object. If there is more than one client
JVM performing triggers, this must be done for each client since each JVM has its
own cache.

Note: There is only one BRB CacheRule and this rule applies to all clients. There is
no way to set different polling frequencies for different clients.

Chapter 16. Using Business Rule Beans 877

Caching can be disabled for a particular TriggerPoint object using the
disableCaching() method. After the disableCaching() method is called any triggers
performed using that TriggerPoint object can not use the cache. Triggers performed
using other TriggerPoint objects are not affected.

Performance enhancements using indexes
Creating an index over the database table that is used to store rules is an
important way to improve the performance of rule queries. It is recommended that
an index be created over the rulename column of the table containing the rules.
This greatly improves the performance of rule-triggered queries that are looking
for a rule or rules with a specific name. The index saves the query from searching
every row in the table. Refer to the documentation for your database for
instructions on how to create an index.

Performance enhancements by changing the firing location
The Business Rule Beans (BRBeans) framework allows you to specify where to fire
a particular rule. This determines where the rule implementor is instantiated and
invoked. The following lists the possible values for the firing location:

Local Fires the Java rule implementor in the same JVM in which the trigger was
performed.

Remote
Fires the Java rule implementor on the server where the rules exist.

Anywhere
Tries to fire the Java rule implementor locally. If the Java rule implementor
cannot be found, then it fires the the implementor remotely. This is the
default value.

For simple rule implementors that do not perform any server-intensive work,
specifying Local usually results in the best performance. This is true both without
and with caching. A complete comparison of local firing versus remote firing must
consider four cases: local and remote firing without caching and local and remote
firing with caching. A description of these four cases follow:

Remote call without caching

Without caching, the work done to fire a rule remotely involves the following:
1. Finding the rule.
2. Determining whether the rule is to be fired locally or remotely.
3. Calling fire on the remote rule.

Each of these three operations requires a remote call to the server.

Local call without caching

Without caching the work done to fire a rule locally involves the following:
1. Finding the rule.
2. Determining whether the rule is to be fired locally or remotely.
3. Calling fire on a local copy of the rule.

This requires only two remote calls. Firing locally results in a savings of one
remote method call.

Local call with caching

878 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

With caching, local firing results in even more dramatic improvements. The work
done to fire a rule remotely involves the following:
1. Finding the rule. This involves a search of the local cache and does not involve

calling the database.
2. Calling fire on the remote copy of the rule found in the server’s cache.

This requires only one remote method call.

Remote call with caching

The work done to fire a rule locally with caching involves the following:
1. Finding the rule. This involves a search of the local cache and does not involve

calling the database.
2. Calling fire on the local copy of the rule found in the cache.

This does not involve any remote method calls. The entire rule firing process takes
place locally without remote method calls. To get the full benefit of the BRBeans
cache, use local firing. However, remotely fired rules still benefit from the cache
due to the elimination of the query on the server and the elimination of the remote
call to determine whether the rule is being fired locally or remotely.

There may be some cases where a rule implementor must perform some work that
requires significant interaction with the server. In these cases, it may be beneficial
to have rules using this rule implementor defined to be fired remotely. This might
make the server interaction performed by the implementor more efficient.

Note: In addition to performance, maintenance also must be considered in relation
to specifying a firing location. The rule implementor classes for rules that are
defined to be fired locally must be present on any client system that tries to fire
those rules. Otherwise, the implementor cannot be instantiated when the rule is
fired. This can result in maintenance problems when the rule implementors are
changed since they must be updated on many different systems.

Developing BRBeans
Although the development tasks in this article are shown in sequential order, the
exact sequence is left to your discretion. In particular, you might choose to create
the business rules before or after the trigger point is placed. Also, you can write
the rule implementor before or after creating the actual business rules. However, if
you do not have the rule implementor at the time that the business rule is created,
then you cannot complete the rule implementor field or the initialization
parameters in the rule. However, you can leave the business rule marked as not
ready until you can complete that information. For this reason, we have chosen to
list the task of writing the rule implementor first. Complete the following tasks to
develop Business Rule Beans:

Steps for this task
1. Determining where to place the trigger point

Determine where there are points of variability and where business logic must
be externalized as part of application analysis and design process.

2. Placing a trigger point in the application code
Add code to the application to invoke the trigger point framework, to find
business rules, and to fire the rules.

3. Administering strategy objects to control triggers

Chapter 16. Using Business Rule Beans 879

Control the process of triggering the rules using a set of strategy objects.
4. Implementing the business rules

Use a rule implementor, written in Java, to implement the BRBeans
RuleImplementor interface. Also, create business rules invoked by the rule
implementor.

What to do next

It is possible to develop your own customized strategy objects and rule
implementors. See Customized strategy objects and Customized rule implementors
for more information.

Determining where to place a trigger point
To determine where to place your trigger points, you can use either the case
analysis or the Object Interaction Diagrams (OIDs) method. The following are
examples of methods that you can use to determine where to place a trigger point:

Use case analysis

Trigger points can be found during analysis by inspecting the use cases or user
interaction scenarios that are typically developed as statements of requirement as
input to the analysis process. A fragment of a use case is shown below:

The vehicle is entered into the system or chosen. The customer service representative
attempts to locate the named driver in the system. If the driver is not found, she or he is
added to the system and then picked.

Otherwise the found driver is simply picked. If the vehicle is an auto, anyone between the
ages of 16 and 75 can be picked as a driver. If the vehicle is a truck, only drivers 16 to 70
years old can be picked. And if the vehicle is a motorcycle, drivers 14 to 65 can be picked.

After the driver has been picked, a rate quote can be performed...

To identify potential trigger locations in use case analyses such as this one, look for
keywords such as:
v ″if X is in a special category Y″ (For example, ″if the vehicle is a truck″)
v ″except when″

v ″unless″

v ″depends on″

Object Interaction Diagrams (OIDs)

OIDs that are based on use cases can yield a number of observable patterns that
can be used to identify trigger points fairly easy. The following are some of the
rules to look for and where the trigger point might be placed:
v Validation of edits on create methods.
v Validation of edits on set methods.
v Referential integrity of edits on methods that set references.
v Cardinality checks at a consistency point (a point in time where all of the data is

expected to be self consistent).
v Required fields checks at a consistency point.
v Cross field edits at a consistency point.

880 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v Constraints or derivations that have a high potential for reuse (especially if the
algorithm is complex) at any appropriate point.

v Constraints or derivations that a business desires to be consistent across
applications (at any appropriate point).

v Constraints or derivations where the business wants to decouple the
maintenance cycle for a rule from the maintenance cycle for the code (at any
appropriate point).

Results

By using either method, you will be able to identify where to locate trigger points
to use Business Rule Beans (BRBeans) effectively.

What to do next

Once the trigger points have been identified, place the trigger point or points. See
Placing a trigger point for more information.

Placing a trigger point in the application code
Before you begin

Before placing a trigger point, review the following topics:
v Trigger point framework
v Determining where to place a trigger point

The TriggerPoint class is the primary interface of the Business Rule Beans
(BRBeans) Trigger Point framework. The class is used to transfer control to the
Trigger Point framework to find and fire the rules specified in the application’s
trigger point.

Steps for this task
1. Create an instance of the com.ibm.websphere.brb.TriggerPoint class. All rule

triggers must be performed against an instance of this class. Also, set any
desired strategies on the TriggerPoint instance.

2. Gather together the parameters to be passed on the trigger.
For the simple trigger() and triggerClassifier() methods this includes the
following:

An optional target object
This can be used to specify an object that is to be the target of the rule’s
algorithm. Whether this is needed depends completely on the design of
the rule implementor being used.

The firing parameters for this rule trigger
This is an array of run-time parameters needed by the rule to satisfy its
business purpose. The exact set of required firing parameters is
determined by the rule implementor that is used by the rule.

Note: Any firing parameters defined on the rule itself will override
whatever is passed here.

Information identifying the rule or rules to be triggered
Normally this is either a single String containing the name of the rule
to be triggered or an array of Strings each element of which is the

Chapter 16. Using Business Rule Beans 881

name of a rule to be triggered. However if a custom finding strategy is
being used, this could be whatever information it needs in order to find
the correct rules.

The triggerSituational method differs in that it takes two sets of firing
parameters and two sets of rule identification information: one set for the
classifier rules and one for the classified rules.

3. Invoke the trigger(), triggerClassifier(), or triggerSituational() method
of the TriggerPoint instance. This will actually trigger the rule or rules.

4. Process the results of the triggered rule or rules.

What to do next

Examples of how to code a trigger point call are provided in the following topics:
v Simple trigger point
v Classifier trigger point
v Situational trigger point

For a detailed description of the trigger point programming interfaces refer to the
Trigger Point class (../../javadoc/ee/com/ibm/websphere/brb/TriggerPoint.html)
in the BRBeans Javadoc.

Administering strategy objects to control triggers
Strategy objects are used to alter TriggerPoint functions. The two simple trigger
methods, trigger() and triggerClassifier(), perform their function in the
following sequence:

Steps for this task
1. Find the rules.
2. Filter out those rules which are not desired.
3. Fire the remaining rules.
4. Combine the results and return to the caller.

Results

The complex trigger method triggerSituational() does this sequence of steps
twice; the first sequence finds the classification to feed into the second sequence.

Default strategy objects already are defined for each of the four TriggerPoint steps
and they are used if none are specified explicitly. For each of these steps, there are
at least two strategy objects used, one for triggering classifier rules, and one for
triggering non-classifier rules. For the filtering step, there are actually three pairs of
strategies that are used, based on the number of rules which the finding strategy
returns (zero, one, or multiple).

While the sheer number of strategies that are available can be intimidating (twelve
different strategy classes can be set), very few will need updating. Most users will
modify the filtering strategies or the combining strategies only.

A number of predefined strategy objects are provided and can be used for the
majority of cases. Although the following strategies are described separately, they
have a definite dependency on each other. For example, the FilteringStrategy filters

882 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

rules from the FindingStrategy; the FiringStrategy uses the results of the
FindingStrategy to operate; and the CombiningStrategy depends on the results of
the FiringStrategy.

FindingStrategy
The FindingStrategy accesses the data store and returns those rules that
meet the search criteria specified. See the FindingStrategy method for more
information.

FilteringStrategy
The FilteringStrategy takes the list of rules that were found by the
FindingStrategy and filters out the rules that should not be fired. See the
FilteringStrategy method for more information.

FiringStrategy
The FiringStrategy takes the rules that were found by the FindingStrategy,
(possibly modified by the FilteringStrategy), fires them each in order, and
returns an array containing the results of each rule. See the FiringStrategy
method for more information.

CombiningStrategy
The CombiningStrategy takes the results of the rules that are fired by the
FiringStrategy and combines them to form a reasonable result to the
TriggerPoint caller. See the CombiningStrategy method for more
information.

The Java classes for these strategy objects are defined in the
com.ibm.websphere.brb.strategy package. Static constants also are defined in the
interfaces for the various strategies. This allows easy access to instances of the
strategy classes to set them on the TriggerPoint.

Also, it is possible to write your own strategy class if the supplied ones do not
perform the function you need. See Customized strategy objects for more details.

Implementing business rules
Before you begin

After determining where to place a trigger point, placing the trigger point, and
defining your strategy objects, you must provide a method to implement the
business rules and then create the rules. In addition, you might choose to organize
your rules by creating rule folders.

Note: Although the development tasks in this article are shown in sequential order,
the exact sequence is left to your discretion. In particular, you might choose to
write the rule implementor before or after creating the actual business rules.

The business rule encapsulates and externalizes the business logic for the rule and
any data that parameterizes the rule. Complete the following process to implement
business rules:

Steps for this task
1. Provide an implementation, called a rule implementor, for each business rule

that you create
The rule implementor provides the actual business logic for the rule,
implemented in Java. The rule implementor’s fire() method is called when the
business rule is triggered to actually perform the processing for the rule.
Several generic rule implementors are shipped with BRBeans, which might be

Chapter 16. Using Business Rule Beans 883

useful in some situations. However, if these rule implementors do not meet
your needs, you can write your own rule implementor. Refer to the section on
writing your own rule implementor for details.

2. Use the Rule Management Application (RMA) to create the business rule
a. In the Rule Browser window, select the folder where you want the new

rule to be created.
b. From the main menu, click File > New > Rule.

In the New Rule properties window, use the following tabs to define the
rule:

General
Use this tab to enter general information about the rule.

Implementation
Use this tab to define the manner in which the rule is implemented.

Description
Use this tab to define the purpose and intent of the rule.

Dependent Rules
Use this tab to specify the rules that the newly created rule will
depend upon.

Other Use this tab to to establish precedence, and enter information that is
relevant to you, but does not fit into any other category.

c. To complete the creation of the rule, click OK.
If there are any mandatory fields still undefined, either go back and give
them a value, or make the rule unavailable for use (see Status in the
General tab for more information on this).

3. (Optional) Create a rule folder using the Rule Management Application to
contain the new business rule
a. In the Rule Browser window, select the folder where you want the new

folder to be nested.
b. From the main menu, click File > New > Folder.

A new folder appears in the folder hierarchy in edit mode. Enter a folder
name and hit the Enter key.

Assembling applications for use with BRBeans
When you are ready to ship your application, include a Business Rule Beans
(BRBeans) JAR file in your EAR file. There are several of these JAR files in the
<WAS_HOME>/BRBeans directory; one for each supported database. Each name reflects
the database type that it uses (for example, BRBeansDB2.jar). These JAR files
contain three enterprise beans with the following JNDI names:
v brbeans/application/Rule

v brbeans/application/RuleFolder

v brbeans/application/RuleHelper

In your EAR files, complete the following steps:

Steps for this task
1. Change the JNDI names of the BRBeans enterprise beans to make them unique

for your application.
For example, if your application is called MyApp, you could change the first
one to brbeans/MyApp/Rule or com/MyCompany/MyApp/Rule.

884 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

2. Define EJB references to these three enterprise beans in any module where a
trigger...() method exists in one or more of its classes.
You can do this using the WebSphere Studio Application Developer tool or the
Application Assembly tool. The Name field should contain the following and
correspond to the enterprise beans listed above:
v ejb/com/ibm/ws/brb/Rule

v ejb/com/ibm/ws/brb/RuleFolder

v ejb/com/ibm/ws/brb/RuleHelper

Note: The JNDI name on the Bindings tab should be the same as the JNDI
names that you gave earlier to the enterprise beans.

Since the BRBeans enterprise beans refer to each other, there are also EJB
references defined within the BRBeans JAR file itself. Each of the three BRBeans
enterprise beans has two EJB references defined. These six references also need
to be updated with the JNDI names you assigned earlier.

3. If you are not using the BRBeansCloudscape.jar file, skip this step. In the
BRBeansCloudscape.jar file each entity enterprise bean has a resource reference
defined for the data source it will use. You must update the JNDI binding for
this reference to specify the JNDI name of the actual data source you want to
use for the BRBeans entity enterprise bean. The shipped BRBeansCloudscape.jar
file contains a dummy JNDI name for each binding. There are two resource
references that need to be updated: one for the Rule enterprise bean and one
for the RuleFolder enterprise bean. You can use the WebSphere Studio
Application Developer tool or the Application Assembly tool to perform this
update.

What to do next

After you have an EAR file that includes your application code and the BRBeans
enterprise beans, complete the following steps to install and run the application:
1. Deploy the EAR file to generate run-time code for the BRBeans enterprise

beans and any other enterprise beans that you may have in your application.
Deployment can be accomplished either as a separate step (using the ejbdeploy
command) or as part of the process of installing the EAR file onto an
application server. Refer to the base WebSphere documentation for more
information about deploying an EAR file.

2. The deployment process generates a file named Table.ddl. Table.ddl contains
database commands to create the database tables needed by the BRBeans entity
enterprise beans. You must use your database software to create a database and
then use the commands in the Table.ddl file to create tables in this database.
Refer to your database software documentation for more information on the
commands needed to set up a database and the database tables.

3. Create a JDBC provider and a data source to access the database created in the
previous step. For all of the databases except IBM Cloudscape, the BRBeans
enterprise beans are configured to require a Version 4 data source. For
Cloudscape, you can use a normal data source.
Note: The JNDI name you specify for the data source also must be specified
when you install the EAR file on the application server so that the server
knows which data source to use.Refer to the base WebSphere documentation
for more information on these topics.

4. Install the EAR file on an application server. To install the EAR file, either use
command line tools or the WebSphere Administrative Console.

Chapter 16. Using Business Rule Beans 885

Note: The EAR file can be deployed either as a separate step or as part of the
installation process on the server.Refer to the base WebSphere documentation
for more information on installing an EAR file on an application server.

5. Start the application using the WebSphere Administrative Console.

You now have an application installed and running using BRBeans.

Managing rules
Before you begin

In Business Rule Beans (BRBeans), rule management involves making changes to
the set of business rules used by applications. This can include any of the
following activities:
v Implementing the business rules: Creating rules and rule folders
v Copying and moving rule or rule folders
v Working with Quick Copy
v Finding a rule
v Deleting rules
v Deleting rule folders
v Changing the properties of a rule
v Importing a rule
v Exporting a rule
v Renaming rules
v Renaming rule folders
v Formatting columns
v Changing the date and time format

There are two different interfaces that can be used for rule management:

Rule Management Application
An external user interface that allows users to manage rules interactively. It
provides a general purpose interface for managing rules where no
assumptions are made about the content or implementation of the rules.
For information on how to use the Rule Management Application, see
Starting the Rule Management Application.

Rule management APIs
A programmatic interface that can be used by programmers to manage
rules or to customize an external user interface. For more information on
Rule management APIs, see the com.ibm.websphere.brb.mgmt
(../../javadoc/ee/com/ibm/websphere/brb/mgmt/package-
summary.html) package.

Rules can be managed in any way that makes sense for your application, but the
BRBeans framework was designed with the following administrative paradigm in
mind:

Steps for this task
1. Understand the desired change in business behavior.
2. Inspect the application documentation (in particular information that indicates

where trigger points are located) to understand where the changes need to be
made in the system.

886 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

3. Inspect the corresponding set of existing business rules using the Rule
Management Application (or your own custom management application, if
you have one) to understand which rules need to change.

4. Use the Rule Management Application, on a test system, to create one or more
new rules that implement the required new behavior. Give these rules the
correct name so that they are triggered by the appropriate trigger point. Also,
make sure that these new rules are currently in effect.

5. Withdraw (by setting the end date of the rule), on the test system, all of the
rules that are to be superseded.

6. Test the application to ensure that it behaves as expected.
7. Export the new rules using the Rule Exporter on the test system. Schedule the

rules to become effective at the correct point in time.
8. Export the rules to be superseded using the Rule Exporter on the test system.

Set them to expire when the new rules come into effect.
9. Import the new rules using the Rule Importer on the production system. This

creates the new rules and schedules them to become effective at the date you
specified when you exported them.

10. Import the rules to be superseded using the Rule Importer on the production
system. This puts the new end date into the existing rules on the production
system and sets them to expire on the specified date.

What to do next

For more information on the overall topic of Externalizing business rules, see
Using Business Rule Beans

Starting the Rule Management Application
Before you begin

Review the overview topic Managing rules

To administer BRBeans, use the Rule Management Application (RMA). To launch
the RMA, complete the following steps:

Steps for this task
1. Open a command window and change to the following directory:

<WAS_HOME>/bin

2. For Microsoft Windows platforms, enter rulemgmt.bat <properties-file>. For
UNIX platforms, enter rulemgmt.sh <properties-file>

where <properties-file> is a fully qualified name of a file containing port,
host, and JNDI names used for the Business Rule Beans (BRBeans) enterprise
beans. If you are using localhost port 2809 and you are using the default JNDI
names for the BRBeans enterprise beans, you can specify the following in the
default properties file: <WAS_HOME>/bin/brbeansDefaultProperties. For a full
definition of the contents of this file, see the BRBeans properties file.

Copying or moving rules or rule folders
Copy or move rules or rule folders either by cutting and pasting, or dragging and
dropping.

To copy or move rules or rule folders, proceed as follows:

Chapter 16. Using Business Rule Beans 887

Cutting and pasting
Use the menu commands (Edit > Copy, Edit > Cut and Edit > Paste) or
keyboard commands (CTRL-C, CTRL-V, and CTRL-X).

Dragging and dropping
Highlight the rule or rule folder you want to copy. Then press and hold
the right mouse button, drag the cursor to the target location, and release.
Select Copy or Move from the list.

Note: A rule also can be copied so that the copy replaces the existing rule at a
specified date. This is referred to as a Quick Copy.

See Managing rules for other tasks related to the management of your rules.

Working with Quick Copy
Use Quick Copy to make a copy of a rule that will replace the existing one on a
specified date.

For example, suppose that we have an ″isSeniorCitizen″ rule. Currently a person is
considered a senior citizen if they are 62 years of age or older. Starting on January
1, 2002, we are going to change this to 65. Use Quick Copy to specify the new
date, and change the age from 62 to 65. The current rule will be set to expire on
the same date that the new rule will take effect with the new senior citizen age
defined as 65.

To use Quick Copy from the Rule Browser or Search Results window, proceed as
follows:

Steps for this task
1. Select the rules you want to Quick Copy.
2. From the main menu, click Edit > Quick Copy.
3. In the Quick Copy window, specify in the following fields how the copy will

differ from the original:

Start Date For New Rule
Enter the date that the new rule will replace the existing rule. Use the
date and time format that is shown.

Change parameter values for new rule
Enter the new parameter values.

4. Click OK to finish.

What to do next

See Managing rules for other tasks related to the management of your rules.

Finding a rule
To search for a specific rule using the Rule Management Application Find function,
proceed as follows:

Steps for this task
1. To search through all rules in all folders:

a. From the main menu of the Rule Browser, click Edit > Find.
b. Use the tabs in the Find Rules window to determine your search criteria.

888 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

2. To search a specific folder:
a. Right-click the folder and select Find from the list.
b. Use the tabs in the Find Rules window to determine your search criteria.

What to do next

The results of your search are displayed in a Search Results window.

See Managing rules for other tasks related to the management of your rules.

Deleting rules
To delete rules from the Rule Browser or Search Results window, proceed as
follows:

Steps for this task
1. Select the rules you want to delete.
2. From the main menu, click File > Delete.

3. Click Delete and then confirm the delete request.

What to do next

Note: You cannot delete com/ibm/websphere/brb/BRB CacheRule as this rule is
needed by the Business Rule Beans run-time environment.

See Managing rules for other tasks related to the management of your rules.

Deleting rule folders
To delete rule folders from the Rule Browser window, proceed as follows:

Steps for this task
1. Select the folder you want to delete.
2. From the main menu, click File > Delete.

3. Click Delete and then confirm the delete request.

What to do next

Note: You cannot delete the root folder or any of the folders in the path
com/ibm/websphere/brb.

See Managing rules for other tasks related to the management of your rules.

Changing the properties of a rule
To change the properties of a rule, perform the following steps in either the Rule
Browser or Search Result window:

Steps for this task
1. Highlight the rule you wish to edit.
2. From the main menu, click File > Properties.

In the Rule Properties properties window, use the following tabs to edit the
rule’s definition:

Chapter 16. Using Business Rule Beans 889

General
Use this tab to edit general information about the rule.

Implementation
Use this tab to edit the manner in which the rule is implemented.

Description
Use this tab to edit the purpose and intent of the rule.

Dependent Rules
Use this tab to edit the list of rules that the newly created rule will
depend upon.

Other Use this tab to establish precedence, and enter information that is
relevant to you, but does not fit into any other category.

3. To complete the editing of the rule, click OK.
If there are any mandatory fields still undefined, either go back and give them
a value, or make the rule unavailable for use (see Status in the General tab for
more information on this).

What to do next

See Managing rules for other tasks related to the management of your rules.

Importing a rule
To import rules from an XML format, use the Rule Browser window and proceed
as follows:

Steps for this task
1. In the main menu, click File > Import.

2. In the Import Rules window, specify the file you want to import.
3. Click OK.

Rules and rule folders are created as specified within the XML.

What to do next

See Managing rules for other tasks related to the management of your rules.

Exporting a rule
To export rules, use the Rule Browser or Search Results window and proceed as
follows:

Steps for this task
1. In the main menu click File > Export.

2. In the Export Rules Wizard, proceed as follows:
a. In the Specify Rules to Export window, select the rule or rules that you

want to export and click Next.
b. In the Change Effective Dates On Exported Rules window, alter the start

and end dates of the rule (if desired) and click Next.
c. In the Select File For Rule Export window, choose a name and location for

the exported rule.
3. Click Export to finish.

What to do next

890 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

See Managing rules for other tasks related to the management of your rules.

Renaming rules
To rename rules, use the Rule Browser or Search Results window and proceed as
follows:

Steps for this task
1. Highlight the rule you want to rename.
2. From the main menu, click File > Rename.

3. Type a new name and press the Enter key.
To cancel the name change while it is still in progress, press the Esc key.

What to do next

See Managing rules for other tasks related to the management of your rules.

Renaming rule folders
To rename rule folders, use the Rule Browser or Search Results window and
proceed as follows:

Steps for this task
1. Place the folder name in edit mode by performing one of the following tasks:

a. Right-click the folder and select Rename from the list.
b. Highlight the folder and click File >Rename in the main menu.
c. Click the folder name twice with a slight pause between each click.

2. Type a new name and press the Enter key.
To cancel the name change while it is still in progress, press the Esc key.

Results

Note: You cannot change the name of the root folder.

What to do next

See Managing rules for other tasks related to the management of your rules.

Specifying columns
To choose which columns you want shown in your Rule Browser window, perform
the following steps in either the Rule Browser or Search Results window:

Steps for this task
1. From the main menu, click View > Specify Columns.
2. In the Specify Column window, proceed as follows:

To add a new column
Select one or more entries in the Available columns list and click the
Add button. The selected entries are added to the end of the Columns
displayed list.

Chapter 16. Using Business Rule Beans 891

To remove a column
Select one or more entries in the Columns displayed list and click the
Remove button. The selected entries are added to the end of the
Available columns list.

To reorder columns
Select one or more entries in the Columns displayed list. To move the
entries towards the top of the list, click the Up arrow. To move them
towards the bottom, click the Down arrow.

What to do next

See Managing rules for other tasks related to the management of your rules.

Changing the date and time format
To change the date and time format, use either the Rule Browser or Search
Results window and proceed as follows:

Steps for this task
1. In the main menu, click View > Specify Date/Time Format.

2. In the Specify Date/Time Format window, choose one of the following radio
button options:

Use default format for this locale
Use this option to adjust the date and time format to match the default
setting of your current locale.

Select a predefined format for the date and time
Use this option to choose from one of several existing date and time
formats.

Specify a custom format for the date and time
Use this option to determine your own format for your date and time
display.

3. When the example in the lower left of the window meets your needs, click OK
to finish.

What to do next

See Managing rules for other tasks related to the management of your rules.

Rule Browser
The Rule Browser is the main window of the Rule Management Application
(RMA), which is the tool used to administer business rules for Business Rules
Beans. The RMA is a simple graphic user interface that assists the user in the
high-level administration of rules and rule folders. The column on the left side of
the Rule Browser window shows a nested hierarchy of all of the existing rule
folders. Open one of these rule folders to display the rules. The names of these
folders appear in the right column.

To navigate through the information, perform the following actions:
v Click the + icon to expand the folder by one level; click the - icon to collapse it.
v Click a file name to highlight it, right-click it to launch a list of actions, or select

an option from the main menu.

892 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

File menu
This article describes the options available in the File menu window.

New
Use the New option to create one of the following objects:

Folder The Folder selection creates a new folder within the folder currently
selected in the browser. To create a new folder, complete the following
steps:
1. Select the folder, in the Rule Browser window in which to nest the new

folder.
2. Click File > New > Folder from the main menu. A new folder appears

in the folder hierarchy in edit mode.
3. Enter a folder name and press Enter.

Rule The Rule selection creates a new rule within the folder that is currently
selected in the browser. To create a new rule, complete the following steps:
1. Select the folder, in the Rule Browser window, where you want to

create the new rule.
2. Click File > New > Rule from the main menu.
3. Use the following options, in the New Rule Properties window, to

define the rule. For more information on each of these tabs, see the
associated help file.

General
Use the General tab to enter general information about the
rule. For more information, click the New Rule properties
window: General tab link under Related reference.

Implementation
Use the Implementation tab to define the manner in which the
rule is implemented. For more information, click the New Rule
properties window: Implementation tab link under Related
reference.

Description
Use the Description tab to define the purpose and intent of the
rule. For more information, click the New Rule properties
window: Description tab link under Related reference.

Dependent Rules
Use the Dependent Rules tab to specify the rules that the
newly created rule will depend upon. For more information,
click the New Rule properties window: Dependent Rules tab
link under Related reference.

Other Use the Other tab to establish precedence and enter
information that is relevant to you, but does not fit into any
other category. For more information, click the New Rule
properties window: Other tab link under Related reference.

Note: When you change the properties of a rule and there are
undefined mandatory fields, either give them a value or make the rule
unavailable for use. See ″status″ on the General tab for more
information.

4. Click OK to complete the creation of the rule.

Chapter 16. Using Business Rule Beans 893

Rule Browser Window
This selection opens a new Rule Browser window on your desktop and
shows the content of the currently selected folder.

Import
Use the Import option to import rules that are defined in a file and written in
XML. The rules are imported into folders as specified within the XML.

Importing rules

You can use the Rule Browser window to import from an XML format. To import
rules, complete the following steps:
1. Click File > Import in the main menu.
2. Specify the file, in the Import Rules window, that you want to import.
3. Click OK. The rules are imported as specified within the XML.

For more information, see the Import Rules window link under Related reference.

Export
Use the Export option to export a file in an XML format.

Exporting rules

You can export rules from the Rule Browser or Search Results windows. To export
rules, complete the following steps:
1. Click File > Export, in the main menu.
2. Proceed as follows using the Export Rules Wizard:

v In the Select Rules to Export window, select the rule or rules that you want
to export and click Next.

v In the Change Effective Dates On Exported Rules window, alter the start and
end dates of the rule, if desired, and click Next.

v In the Select File For Rule Export window, choose a name and location for
the exported rule.

3. Click Export to finish.

For more information on this Export Rules Wizard, see the Select Rules to Export
window link under Related reference.

Delete
Use the Delete option to delete the selected rule or rule folder. If a rule folder is
selected, all of the rules and subfolders the folder contains also are deleted.

Deleting rules

You can delete rules from the Rule Browser or Search Results windows. To delete
rules, complete the following steps:
1. Select the rules that you want to delete using the Rule Browser window.
2. Click File > Delete from the main menu.
3. Click Delete and then confirm the delete request.

Note: You cannot delete com/ibm/websphere/brb/BRB CacheRule as this rule is
needed by the Business Rule Beans run-time environment.

Deleting a folder

894 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

To delete a folder, complete the following steps:
1. Select the folder you want to delete using the Rule Browser window.
2. Click File > Delete in the main menu.
3. Click Delete and then confirm the delete request.

Note: You cannot delete the root folder.

Rename
Use the Rename option to rename the selected rule or rule folder.

Renaming a rule

You can rename rules from the Rule Browser or Search Results windows. To
rename a folder, complete the following steps:
1. Highlight the rule you want to rename.
2. Click File >Rename from the main menu.
3. Type a new name and press Enter. To cancel the name change while it is still in

progress, press Esc.

Renaming a folder

1. Place the folder name in edit mode by doing any of the following:
v Right-click the folder and select Rename from the list.
v Highlight the folder and click File >Rename in the main menu.
v Click the folder name twice with a slight pause between each click.

2. Type a new name and press Enter. To cancel the name change while it is still in
progress, press Esc.

Note: You cannot rename the root folder.

Properties
Use the Properties option to modify the properties of the selected rule or rule
folder and then click OK.

Use the following tabs, in the Rule Properties window, to define the rule. For
more information on each of these tabs, see the associated help file.

General
Use the General tab to enter general information about the rule. For more
information, click the Rule properties window: General tab link under
Related reference.

Implementation
Use the Implementation tab to define the manner in which the rule is
implemented. For more information, click the Rule properties window:
Implementation tab link under Related reference.

Description
Use the Description tab to define the purpose and intent of the rule. For
more information, click the Rule properties window: Description tab link
under Related reference.

Dependent Rules
Use the Dependent Rules tab to specify the rules that the newly created
rule will depend upon. For more information, click the Rule properties
window: Dependent Rules tab link under Related reference.

Chapter 16. Using Business Rule Beans 895

Other Use the Other tab to establish precedence and enter information that is
relevant to you, but does not fit into any other category. For more
information, click the Rule properties window: Other tab link under
Related reference.

Note: When you change the properties of a rule and there are undefined
mandatory fields, either give the fields a value or make the rule unavailable for
use. See ″status″ on the Rule properties window: General tab for more
information.

Validate
Use the Validate option to verify the correctness of the selected rules or folder. A
report is generated and displayed in system browser window. Use the browser
functionality to view, save, and print the results. The following items are validated:

Start and End dates
Specifies a valid start date. The end date must be empty (never expires) or
be later than the start date.

Java rule implementor name
Specifies a valid and existing Java rule implementor name. The specified
class must implement the RuleImplementor interface.

Dependent rules
Verifies the existence of each specified dependent rule.

When this option is selected, the Validate Rules window displays. You must
specify a Java class path to validate rule implementor classes.

Close
Use the Close option to terminate the application and close the window.

New Rule properties window: General tab
Use the New Rule properties window: General tab to enter general information
about the rule. The following fields and options are available on this tab:

Name and location

Folder name
(Required) Use the Folder name field to identify the folder in which to
create the rule. To browse the existing folders, click the ellipses button to
the right of the text field.

Name (Required) Use the Name field to give the rule a name. The name cannot
include the forward slash ’/’ and must contain at least one non-blank
character. The name cannot exceed the maximum length of the rule name
column in the database table.

Period when rule is in effect

Start date
(Required) Use the Start date field to specify the date and time that the
rule will go into effect. If you do not specify the time, a value of midnight
is used.

End date
Use the End date field to determine the date when this rule expires. If you
do not specify a value, the rule never expires.

Classification

896 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Use this section to specify your rule’s classification status. Choose one of the
following options:
v Rule is not classified and does not perform a classification (default)
v Rule performs a classification
v Rule is classified with the following classification

Status

Rule is available for use
Select Rule is available for use when the rule is available for use by the
Business Rule Beans run-time environment. This feature is useful when
you have not finished creating the rule, but need to save your changes.

New Rule properties window: Implementation tab
Use the New Rule properties window: Implementation tab to define the manner
in which the rule is implemented.

Note: The rule contains the data, but it does not perform the implementation.
Rather, the Java rule implementor implements the rule.

For example, suppose you want to create a rule that determines whether a given
person is a senior citizen, 62 years old or older. To implement this rule, give the
″com.ibm.websphere.brb.implementor.RuleGreaterThanEqual″ Java rule
implementor the value 62 and specify it as an initialization parameter. When the
application fires the rule, the person’s age is passed to the Java rule implementor
as a firing parameter and 62 is passed as an initialization parameter. The person’s
age is compared against the initialization parameter of 62 and a value of true or
false is returned from the Java rule implementor to the application. To change the
age at which a person is considered a senior citizen, change the value of the
initialization parameter.

The following fields and options are available on this tab:

Java rule implementor: (Required) Use the Java rule implementor field to specify
a class to implement this rule. The initialization and firing parameters that are
required are determined by looking at the documentation for the specified Java
rule implementor.

Firing location: Use the Firing location field to determine where the rule is fired.
You can fire the Java rule implementor on the server where the rules exist or fire it
locally on the client machine. The client can be a servlet running on the server.
Specify one of the following values for the firing location:

Local Use the Local option to fire the Java rule implementor local to the
application that fired the rule.

Remote
Use the Remote option to fire the Java rule implementor on the server
where the rules exist.

Anywhere (default)
Use the Anywhere option to attempt to fire the Java rule implementor
locally first. If the Java rule implementor cannot be found, then it is fired
remotely.

To choose the value of the firing location, you must take both performance and
maintenance into consideration. Most rules perform better if they are run on the
same Java virtual machine (JVM) as the application (locally). However, there might

Chapter 16. Using Business Rule Beans 897

be cases where a Java rule implementor performs server-intensive tasks, in which
case the rules might run better when they run on the server. To run locally, you
must have all of the Java rule implementors installed locally. They must be
accessible by the application that fires the rules.

Initialization parameters: The initialization parameters contain constant values
passed to the rule implementor when it is initialized. Typically, the initialization
parameters contain values that might change as your business practices evolve,
such as the age at which a person is considered a senior citizen or the current
interest rate for a loan.

To add a new initialization parameter to the list, click Add and fill in the fields in
the Add Initialization Parameter window.

To edit an existing initialization parameter, highlight it, click Change, and fill in
the fields in the Change Initialization Parameter window.

To delete an initialization parameter, highlight it and click Delete.

To change the order of the initialization parameters, highlight one and click the up
or down arrows to move it to a new location.

Firing parameters: The firing parameters contain values passed from the trigger
point in the application to the Java rule implementor at run time. You can alter the
parameters coming from the application before passing them to the Java rule
implementor. Typically, these parameters are left unaltered.

For example, when implementing the ″isSeniorCitizen″ rule that determines
whether a person is a senior citizen, you might want to pass a person from the
application to the rule as the target object. However, the ″isSeniorCitizen″ rule uses
the RuleGreaterThanEqual Java rule implementor, which requires that you pass an
integer value. You can alter the firing parameters to specify that the method
″getAge″ is called on the person object and pass that result to the Java rule
implementor.

You must choose one of the following options:

Pass firing parameters from trigger point unchanged
The parameters specified in the trigger point of the application are passed
to the Java rule implementor without being altered. This is the default
value.

Specify firing parameters
The values specified in the table are passed to the Java rule implementor.

To add a new firing parameter to the list, click Add and fill in the fields in the
Add Firing Parameter window.

To edit an existing firing parameter, highlight the firing parameter, click Change,
and fill in the fields in the Change Firing Parameter window.

To delete a parameter, highlight the firing parameter and click Delete.

To change the order of the firing parameters, highlight one and click the up or
down arrows to move it to a new location.

898 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Add Initialization Parameter window
Use the Add Initialization Parameter window to add initialization parameters to a
rule. The initialization parameters contain constant values passed to the Java rule
implementor when it is initialized. Typically, the initialization parameters contain
values that will change as your business practices evolve. These values might be
the age at which a person is considered a senior citizen or the current interest rate
for a loan.

To add an initialization parameter, proceed as follows:
1. Fill in the fields as needed.
2. Click Add. The initialization parameter is added and the window remains open

to specify additional parameters.
3. When you are finished specifying initialization parameters, click Close.

The following fields and options are available in this window:

Description: Use the Description field to specify a description of the initialization
parameter. This field can contain any information necessary to describe the
purpose of the initialization parameter.

Type: Use the Type field to specify the type of data that is contained within this
initialization parameter. The data itself is stored in the Value field (see the
following field description). For example, if this initialization parameter specifies
the age at which a person is considered a senior citizen, then the Type likely is an
″Integer″. If the initialization parameter specifies a company name, such as ″IBM″,
then the Type is a ″String″.

The following values are available:
v String
v Character
v Byte
v Short
v Integer
v Long
v Float
v Double
v Boolean
v java.math.BigDecimal
v java.math.BigInteger
v Null Value

Value: Use the Value field to add a value for the parameter. For example, if the
initialization parameter is intended to specify the age at which a person is
considered a senior citizen, then this field might be set to 62.

Change Initialization Parameter window
Use the Change Initialization Parameter window to edit an existing initialization
parameter.

The initialization parameters contain constant values passed to the Java rule
implementor when it is initialized. Typically, the initialization parameters contain

Chapter 16. Using Business Rule Beans 899

values that change as your business practices evolve. These values might be the
age at which a person is considered a senior citizen or the current interest rate for
a loan.

To edit an existing initialization parameter, modify the fields and click OK.

The following fields are available in this window:

Description: Use the Description field to specify a description of the initialization
parameter. This field can contain any information necessary to describe the
purpose of the initialization parameter.

Type: Use the Type field to specify the type of data that is contained within this
initialization parameter. The data itself is stored in the Value field (see the
following field description). For example, if this initialization parameter specifies
the age at which a person is considered a senior citizen, then the Type likely is an
″Integer″. If the initialization parameter specifies a company name, such as ″IBM″,
then the Type is a ″String″.

The following values are available:
v String
v Character
v Byte
v Short
v Integer
v Long
v Float
v Double
v Boolean
v java.math.BigDecimal
v java.math.BigInteger
v Null Value

Value: Use the Value field to add a value for the parameter. For example, if the
initialization parameter is intended to specify the age at which a person is
considered a senior citizen, then this field might be set to 62.

New Rule properties window: Description tab
Use the New Rule properties window: Description tab to define the purpose and
intent of the rule. All of the fields in this panel are optional and none of them are
used by the Business Rule Beans run time. The following fields are available on
this tab:

Business Intent: Use the Business Intent field to describe the business intent of
this rule.

Description: Use the Description field to define a general description of the rule
and its purpose.

Original requirement: Use the Original requirement field to compose a
description of the original requirement that created this rule.

900 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

New Rule properties window: Dependent Rules tab
Use the New Rule properties window: Dependent Rules tab to specify the rules
that the newly created rule will depend upon.

To add names to the Dependent rule names field, proceed as follows:
1. Locate the dependent rule. You can do this in one of two ways:

Browse for a rule
If you are familiar with the location of the dependent rule, then click
Browse. Navigate to the rule’s location and highlight it.

Find a rule
If you are unfamiliar with the location of the rule, then click Find. This
launches a Find Rules window in which you can specify options and
then initiate a search. When you have located the rule, highlight it.

2. Click Add.

5.0.2 To change the name of a rule in the Dependent rule names field, highlight
one or more rules and click Edit. Specify the new name for the rule and click OK.

5.0.2 To change the folder name of a rule in the Dependent rule names field,
highlight one or more rules and click Change Folder. Fill-in the fields in the
Change Folder window. All selected rules are updated with the newly specified
values.

To delete a rule from the Dependent rule names field, highlight the rule and click
Delete.

To change the order of the rules in the Dependent rule names field, highlight a
rule and click the up or down arrows to move it to a new location.

New Rule properties window: Other tab
Use the New Rule properties window: Other tab to establish precedence and
enter information that is relevant to you, but does not fit into any other category.
The following fields are available on this tab:

Precedence: Use the Precedence field to specify the relative priority when firing
the rule. This value is used to order the rules from lowest to highest.

User defined data: Use the User defined data field to enter any additional text
that you want to store. The Business Rule Beans run time does not use this field.

Import Rules window
Use the Import Rules window to select and import a rule expressed in an XML
format. The following fields and options are available in this window:

File Name: Use the File Name field to specify the name of a file that contains the
rules that you want to import. To search for a file, click the ellipses icon to the
right of the text entry field.

Show output from rule importer: Select Show output from rule importer to
display detailed information about the rules that you want to import.

Show rules to be created but do not create them: Select Show rules to be
created but do not create them to validate the XML prior to committing to the
rule’s creation. The rule XML runs through the importer but is not created.

Chapter 16. Using Business Rule Beans 901

Update existing rules with the same primary key: Select Update existing rules
with the same primary key to update the rules with the same primary key. If this
check box is clear, the rule is not imported if one is found with this same primary
key. An error message is shown and the transaction in which this rule was created
is not committed. The primary key is an optional tag within the XML and there is
a possibility that a rule already exists on the system with this same primary key.

Transaction Option: The following is a list of transaction options:

One transaction per rule
Use the One transaction per rule option to start a transaction for each rule.
If one rule fails to import, it does not prevent other rules in the specified
file from being imported.

One transaction for all rules
Use the One transaction for all rules option to stop all of the rules from
being imported if any rule fails to import successfully. Use this feature to
ensure that all of your rules are in a consistent state. Typically, it is
undesirable to have only a portion of the rules imported successfully since
rules might have dependencies on other rules.

Select Rules To Export window
This is the first of three windows in the Export Rules Wizard. Use the Select Rules
To Export window to select the rules to export. After entering the appropriate
information in the following fields, click Next.

Note: If you specify a folder, the tool exports the entire contents of the folder
including its subfolders.

The following options are available in this window:

Add: Use the Add option to open a window in which you can type the fully
qualified name of a rule or a rule folder. If there are multiple rules with the
specified name, they are all exported.

Find: Use the Find option to open a Find Rules window in which you can specify
your search criteria. If there are multiple rules with the same name, only the
selected rules are exported.

Browse button: Use the Browse button to open a window and browse for rules to
add to the list. If there are multiple rules with the same name, only the selected
rules are exported.

Remove button: Use the Remove button to remove the selected rules from the
list.

Show output from rule exporter: Select Show output from rule exporter to open
a window that contains details about the export operation of the select rules. This
window is shown when the export operation begins.

Change Effective Dates On Exported Rules window
This is the second of three windows in the Export Rules Wizard. Use the Change
Effective Dates on Exported Rules window to alter the rule’s start and end times.
This procedure is useful when the application and the rules are tested on a
development system prior to being deployed on a production system. You can
change the dates of the rules and test on the development system using the current
date, even if you plan to use the rules on the production system at a future date.

902 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The rules on the development system are not changed; only the exported version
of the rules are changed. After determining whether to select the check boxes in
the following descriptions, click Next.

The following fields and options are available in this window:

Change start date and time on exported rules: Select Change start date and time
on exported rules to alter the start date of the rules to export. You must specify a
valid date and time using the format shown. For example, the format might be
″m/d/yy h:mm a″ resulting in 10/23/01 1:45 PM.

Change end date and time on exported rules: Select Change end date and time
on exported rules to alter the end date of the rules to export. You must specify a
valid date and time using the format shown. For example, the format might be
″m/d/yy h:mm a″ resulting in 10/23/01 1:45 PM.

Select File For Rule Export window
This is the third of three windows in the Export Rules Wizard. Use the Select File
For Rule Export window to chose a name and location for the exported rule.
1. Browse to an existing directory or create a new one.
2. Type the name of the file. Typically, the file will end with an ″.xml″ extension.
3. Click Export.

Rule properties window: General tab
Use the Rule properties window: General tab to enter general information about
the rule. The following fields and options are available in this window:

Name and location

Folder name
(Required) Use the Folder name field to identify the folder in which to
create the rule. To browse the existing folders, click the ellipses button to
the right of the text field.

Name (Required) Use the Name field to give the rule a name. The name cannot
include the forward slash ’/’ and must contain at least one non-blank
character. The name cannot exceed the maximum length of the rule name
column in the database table.

Period when rule is in effect

Start date
(Required) Use the Start date field to specify the date and time that the
rule goes into effect. If you do not specify the time, a value of midnight is
used.

End date
Use the End date field to determine the date when this rule expires. If you
do not specify a value, the rule never expires.

Classification

Use the Classification section to specify your rule’s classification status. Choose
one of the following options:
v Rule is not classified and does not perform a classification (default)
v Rule performs a classification
v Rule is classified with the following classification

Chapter 16. Using Business Rule Beans 903

Status

Rule is available for use
Select Rule is available for use when the rule is available for use by the
Business Rule Beans run-time environment. This feature is useful when
you have not finished creating the rule, but you want to save your
changes.

Rule properties window: Implementation tab
Use the Rule properties window: Implementation tab to define the manner in
which the rule is implemented.

Note: The rule contains the data and it does not perform the implementation.
Rather, the Java rule implementor implements the rule

For example, suppose you want to create a rule that determines whether a given
person is a senior (62 years old or older). To implement this rule, give the
″com.ibm.websphere.brb.implementor.RuleGreaterThanEqual″ Java rule
implementor the value 62 and specify it as an initialization parameter. When the
application fires the rule, the person’s age is passed to the Java rule implementor
as a firing parameter and 62 is passed as an initialization parameter. The person’s
age is compared against the initialization parameter of 62 and a value of true or
false is returned from the Java rule implementor to the application. To change the
age at which a person is considered a senior citizen, change the value of the
initialization parameter.

The following fields and options are available on this tab:

Java rule implementor: (Required) Use the Java rule implementor field to specify
a class to implement this rule. The initialization and firing parameters that are
required are determined by looking at the documentation for the specified Java
rule implementor.

Firing location: Use the Firing location field to determine where the rule is fired.
You can fire the Java rule implementor on the server where the rules exist or fire it
locally on the client machine. The client can be a servlet running on the server.
Specify one of the following values for the firing location:

Local Use the Local option to fire the Java rule implementor local to the
application that fired the rule.

Remote
Use the Remote option to fire the Java rule implementor on the server
where the rules exist.

Anywhere (default)
Use the Anywhere option to attempt to fire the Java rule implementor
locally first. If the Java rule implementor cannot be found, then it is fired
remotely.

To choose the value of the firing location, you must take both performance and
maintenance into consideration. Most rules perform better if they are run on the
same Java virtual machine (JVM) as the application (locally). However, there might
be cases where a Java rule implementor performs server-intensive tasks, in which
case the rules might run better when they run on the server. To run locally, you
must have all of the Java rule implementors installed locally. They must be
accessible by the application that fires the rules.

904 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Initialization parameters: The initialization parameters contain constant values
passed to the rule implementor when it is initialized. Typically, the initialization
parameters contain values that might change as your business practices evolve,
such as the age at which a person is considered a senior citizen or the current
interest rate for a loan.

To add a new initialization parameter to the list, click Add and fill in the fields in
the Add Initialization Parameter window.

To edit an existing initialization parameter, highlight it, click Change, and fill in
the fields in the Change Initialization Parameter window.

To delete an initialization parameter, highlight it and click Delete.

To change the order of the initialization parameters, highlight one and click the up
or down arrows to move it to a new location.

Firing parameters: The firing parameters contain values passed from the trigger
point in the application to the Java rule implementor at run time. You can alter the
parameters coming from the application before passing them to the Java rule
implementor. Typically these parameters are left unaltered.

For example, when implementing the ″isSeniorCitizen″ rule that determines
whether a person is a senior citizen, you might want to pass a person from the
application to the rule as the target object. However, the ″isSeniorCitizen″ rule uses
the RuleGreaterThanEqual Java rule implementor, which requires that you pass an
integer value. You can alter the firing parameters to specify that the method
″getAge″ is called on the person object and pass that result to the Java rule
implementor.

You must choose one of the following:

Pass firing parameters from trigger point unchanged
The parameters specified in the trigger point of the application are passed
to the Java rule implementor without being altered. This is the default
value.

Specify firing parameters
The values specified in the table are passed to the Java rule implementor.

To add a new firing parameter to the list, click Add and fill in the fields in the
Add Firing Parameter window.

To edit an existing firing parameter, highlight the firing parameter, click Change,
and fill in the fields in the Change Firing Parameter window.

To delete a parameter, highlight the firing parameter and click Delete.

To change the order of the firing parameters, highlight one and click the up or
down arrows to move it to a new location.

Add Firing Parameter window
Use the Add Firing Parameter window to add a firing parameter to a rule. The
firing parameters contain values passed from the trigger point in the application to
the Java rule implementor at run time. You can alter the parameters coming from
the application before passing them to the Java rule implementor. Typically, these
parameters are left unaltered.

Chapter 16. Using Business Rule Beans 905

To add a firing parameter, enter a field description, select an appropriate option,
and click Add. The parameter is added and the window remains open to specify
additional parameters. When you finish specifying initialization parameters, click
Close. The following fields and options are available in this window:

Description: Use the Description field to type a description of the firing
parameter.

Specify a type and value: Use the Specify a type and value option to specify a
constant value to pass to the Java rule implementor.

Get value from method call: Use the Get value from method call option to call
the specified method on the target object.

Get value from trigger point firing parameters: Use the Get value from trigger
point firing parameters option to get a specific value from the firing parameters
that were specified in the trigger method in the application. An index to the
original firing parameter must be specified. This index starts with 0; thus, specify
the value 0 to pass the first firing parameter. Specify the trigger point parameter
number.

Change Firing Parameter window
Use the Change Firing Parameter window to edit an existing firing parameter. The
firing parameters contain values passed from the trigger point in the application to
the Java rule implementor at run time. You can alter the parameters coming from
the application before passing them to the Java rule implementor. Typically, these
parameters are left unaltered.

To change a firing parameter, enter a field description, select an appropriate option,
and click Change. The parameter is changed and the window remains open to
specify additional parameters. When you finish specifying initialization
parameters, click Close.

The following fields and options are available in this window:

Description: Use the Description field to type a description of the firing
parameter. There are three types of firing parameters that can be specified.

Specify a type and value: Use the Specify a type and value option to specify a
constant value to pass to the Java rule implementor.

Get value from method call: Use the Get value from method call option to call
the specified method on the target object.

Get value from trigger point firing parameters: Use the Get value from trigger
point firing parameters option to pass a specific value from the firing parameters
that were specified on the trigger method in the application. An index to the
original firing parameter must be specified. This index starts with 0; thus, specify
the value 0 to pass the first firing parameter.

Rule properties window: Description tab
Use the Rule properties window: Description tab to define the purpose and intent
of the rule. All of the fields in this panel are optional and none are used by the
Business Rule Beans run-time environment. The following fields are available on
this tab:

906 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Business Intent: Use the Business Intent field to describe the business intent of
this rule.

Description: Use the Description field to define a general description of the rule
and its purpose.

Original requirement: Use the Original requirement field to compose a
description of the original requirement that created this rule.

Rule properties window: Dependent Rules tab
Use the Rule properties window: Dependent Rules tab to specify the rules that
the newly created rule will depend upon.

To add names to the Dependent rule names field, proceed as follows:
1. Locate the dependent rule. You can do this in one of two ways:

Browse for a rule
If you are familiar with the location of the dependent rule, then click
Browse. Navigate to the rule’s location and highlight it.

Find a rule
If you are unfamiliar with the location of the rule, then click Find. This
launches a Find Rules window in which you can specify options and
then initiate a search. When you have located the rule, highlight it.

2. Click Add.

5.0.2 To change the name of a rule in the Dependent rule names field, highlight
one or more rules and click Edit. Specify the new name for the rule and click OK.

5.0.2 To change the folder name of a rule in the Dependent rule names field,
highlight one or more rules and click Change Folder. Fill-in the fields in the
Change Folder window. All selected rules are updated with the newly specified
values.

To delete a rule from the Dependent rule names field, highlight the rule and click
Delete.

To change the order of the rules in the Dependent rule names field, highlight a
rule and click the up or down arrows to move it to a new location.

Change Folder window
Use the Change Folder window to change the folder name for all selected
dependent rules. There are two options for changing the folder name:

Specify a new folder name: Use the Name field to specify the new folder name
for all selected rules. All selected dependent rule names are updated to contain the
new folder, exactly as specified.

Replace common portion of the folder name: Use this option to change the
portion of the folder name that is common to all selected rules.

For example, suppose the following two rules exist:
v com/acme/insurance/health/ruleA

v com/acme/insurance/life/ruleB

Chapter 16. Using Business Rule Beans 907

You want to change the com/acme/insurance portion of the name to com/acme/ins.
The com/acme/insurance portion will be changed while leaving the remaining
portion of the rule name intact.

The Common folder field is set to the common portion of the folder name. In the
preceding example, this field is set to com/acme/insurance. This value cannot be
changed.

Specify the new folder name in the Replace with field. For the preceding example,
specify com/acme/ins.

Rule properties window: Other tab
Use the Rule properties window: Other tab to establish precedence and enter
information that is relevant to you, but does not fit into any other category. The
following fields are available in this window:

Precedence: Use the Precedence field to specify the relative priority when firing
the rule. This value is used to order the rules from lowest to highest.

User defined data: Use the User defined data field to enter any additional text
that you want to store. The Business Rule Beans run-time environment does not
use this field.

Validate Rules
Use the Validate option to verify the correctness of the selected rules or folder. A
report is generated and displayed in system’s browser window. You can use the
browser functionality to view, save, and print the results. The following items are
validated:

Start and End dates
A valid start date must be specified. The end date must be empty (never
expires) or be later than the start date.

Java rule implementor name
A valid and existing Java rule implementor name must be specified. The
specified class must implement the RuleImplementor interface.

Dependent rules
The existence of each specified dependent rule is verified.

You can specify a Java classpath to use to validate rule implementor classes for the
rules. To add individual JAR files or directories containing classes to the Classpath
field, click Add or Browse.

To specify the full name of a jar file or directory to be added to the classpath, click
Add.

To search through the file system for a JAR file or directory to be added to the
classpath, click Browse.

To change an existing classpath entry, highlight the entry and click Edit. Specify
the new name for the classpath entry and click OK.

To remove a classpath entry from the list, highlight one or more entries and click
Remove.

To change the order of the classpath entries, highlight one or more entries and
click the Up or Down arrows to move it to a new location.

908 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

After specifying the classpath, click OK to generate the report.

Edit menu
This menu describes the options available on the Edit menu window. The
following options are available in this window:

Cut
Use the Cut option to move rules and rule folders.

Copy
Use the Copy option to copy rules and rule folders. The following tasks can be
accomplished using the Copy option:
v Copying rules

Copy or move a rule from one folder to another by either cutting and pasting it
or dragging and dropping it.

Cutting and pasting
Use menu commands (Edit > Copy, Edit > Cut and Edit > Paste) or
keyboard commands (CTRL-C, CTRL-V and CTRL-X) to copy or move
a rule.

Dragging and dropping
Highlight the rule you want to copy. Then, press and hold the right
mouse button, drag the cursor to the target location, and release. Select
Copy or Move from the list.

Note: You also can copy a rule so that the copy replaces the existing rule at a
specified date. This is referred to as a Quick Copy.

v Copying rule folders

Copy or move a rule folder and all its contents by either cutting and pasting it
or dragging and dropping it.

Cutting and pasting
Use menu commands (Edit > Copy, Edit > Cut and Edit > Paste) or
keyboard commands (CTRL-C, CTRL-V and CTRL-X) to copy or move
a rule.

Dragging and dropping
Press and hold the right mouse button on the folder to be copied. Drag
the cursor to the target location and release the mouse button. Select
Copy or Move from the list.

Paste
Use the Paste option to add cut or copied rules and rule folders.

Find
Use the File option to search for a rule. A window opens in which you can specify
your search criteria. If you would like to search a specific folder, right-click the
folder and select Find from the list. For more information, click the Find Rules
window link under Related reference.
v Search the whole directory

To search the whole directory, complete the following steps:
1. Click Edit > Find from the main menu of the Rule Browser.
2. Determine your search criteria in the Find Rules window.

v Search a specific folder

To search a specific folder, complete the following steps:

Chapter 16. Using Business Rule Beans 909

1. Right-click the folder and select Find from the list.
2. Determine your search criteria in the Find Rules window.

The results of your search are displayed in a Search Results window.

Quick Copy
Use the Quick Copy option to make a copy of a rule that will replace the existing
one on a specified date. You can modify the copy so that a new value goes into
effect on the desired date and time while the old rule expires. For more
information, see the Quick Copy window link in Related reference.

Select All
Use the Select All option to facilitate rule selection.

Deselect All
Use the Deselect All option to deselect rules.

Quick Copy window
Use the Quick Copy window to make a copy of a rule that replaces the existing
one on a specified date.

For example, suppose that you have an ″isSeniorCitizen″ rule. Currently, a person
is considered a senior citizen if they are 62 years of age or older. Starting on
January 1, 2002, you must change this to 65. Use Quick Copy to specify the new
date and to change the age from 62 to 65. The current rule is set to expire on the
same date that the new rule takes effect. The new senior citizen age is defined as
65.

Note: Use the Quick Copy function for simple changes only.

In the following fields, specify how the copy differs from the original:

Start Date For New Rule: Use the Start Date For New Rule field to enter the
date that the new rule replaces the existing rule. Use the date and time format that
is shown. For example, the format might be the following:

Usage scenario

M/d/yy h:mm a.

Change parameter values for new rule: Use the Change parameter values for
new rule field to add new parameter values.

Automatically Update References window
Use the Automatically Update References window to indicate what you would like
to do with rules that contain references to the rules being moved, copied, or
renamed. You can choose whether to update references and whether to view the
references before updating the rules. When the rule references are displayed, you
can choose which references to update. The following options are available in this
window:

Automatically update references: Select Automatically update references to
indicate that references should be updated.

Display the updates before changing the rules option: Select Display the
updates before changing the rules option to indicate whether to show the changes

910 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

before updating the references. When you choose this option, the Update
Dependent Rule References window is displayed, allowing you to select which
references to update.

Update Dependent Rule References window
Use the Update Dependent Rule References window to select the dependent rule
references that must be updated as a result of the move, copy, or rename operation.

Each row in the table represents one dependent rule reference. The following
information is shown:

Rule Name
Specifies the name of the rule containing the dependent rule reference.

Folder Name
Specifies the folder containing the rule specified by Rule Name.

Dependent Rule Old Name
Specifies the name of the dependent rule that is to be changed as a result
of this move, copy, or rename operation.

Dependent Rule New Name
Specifies the new name to be given to the dependent rule as a result of this
move, copy, or rename operation.

Status Specifies the status of the rule; in effect, scheduled, expired, or invalid.

Start Date
Specifies the date and time when this rule will begin being used.

End Date
Specifies the date and time of when this rule will expire (no longer be
used).

The check box to the left of the rule name indicates whether the dependent rule
reference will be updated. Select the check box to change the selection which
indicates that the reference should be updated.

Use the Select All button to indicate that all dependent rule references should be
updated.

Use the Deselect All button to clear the dependent rule references selection.

Click Continue after reviewing the list of dependent rule references and indicating
which references to update. Click Cancel to cause the move, copy, or rename
operation to be cancelled completely.

References To Rules Being Deleted window
Use the References To Rules Being Deleted window to view dependent rule
references when a rule or folder is deleted. Each row in the table represents one
dependent rule reference. The following information is shown:

Rule Name
Specifies the name of the rule containing the dependent rule reference.

Folder Name
Specifies the name of the folder containing business rules.

Dependent Rule Reference
Specifies the name of the dependent rule that is being deleted.

Chapter 16. Using Business Rule Beans 911

Start Date
Specifies the date and time when this rule is implemented.

End Date
Specifies the date and time when this rule expires.

Click Continue to delete. Click Cancel to abort.

Rule Names Already Exist window
The Rule Names Already Exist window displays when one or more rules are
copied into a folder and existing rules are found with the same name. This
window enables you to rename the rules before you proceed with the copy
operation. The conflicting rule names do not need to be changed; you can create
multiple rules with the same name.

Each line of the table represents one rule for which a name conflict has occurred.
The table shows the following fields:

Rule Name
Specifies the name of the rule being copied which is the same as the name
of a rule that already exists in the destination folder.

Folder Name
Specifies the folder containing the rule specified by Rule Name

Status Specifies the status of the rule; in effect, scheduled, expired, or invalid

Start Date
Specifies the date and time when this rule will begin being used

End Date
Specifies the date and time when this rule will expire (no longer be used)

To change the name of the rule being copied, click on the Rule Name in the table
and specify a new name for the rule.

Click OK when you are finished reviewing or changing the rule names. Click
Cancel to abort the copy operation.

View menu
This article describes the options available in the View menu window. The
following options are available in this window:

Status Bar
Use the Status Bar option to toggle the status bar on or off. The status bar is
shown along the bottom of the Rule Browser window.

Specify Columns
Use the Specify Columns option to adjust the type and order of the columns that
display in your window.

In the window that opens, the following tasks can be accomplished:

Add a new column
Select one or more entries in the Available columns list and click the Add
button. The selected entries are added to the end of the Columns
displayed list.

912 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Remove a column
Select one or more entries in the Columns displayed and click the Remove
button. The selected entries are added to the end of the Available columns
list.

Reorder columns
Select one or more entries in the Columns displayed list. To move the
entries towards the top of the list, click the Up arrow; to move the entries
towards the bottom, click the Down arrow.

Specify Date/Time Format
Use the Specify Date/Time Format option to adjust the format used when
displaying dates and times. For more information, click the Specify Date/Time
Format window link under Related reference.

Refresh
Use the Refresh option to update the contents of the folder hierarchy and the rule
table.

Specify Date/Time Format window
Use the Specify Date/Time Format window to change the date and time format.
Choose one of the following radio button options and then click OK:

Use default format for this locale: Use the Use default format for this locale
option to adjust the date and time format to match the default setting of your
current locale.

Select a predefined format for the date and time: Use the Select a predefined
format for the date and time option to select one of several existing date and time
formats.

Specify a custom format for the date and time: Use the Specify a custom format
for the date and time option to determine your own format for your date and time
display. Choose one of the date and time formats from the two menus.

Find Rules window
Use the Find Rules window to specify search criteria to locate rules. The search
combines your queries using a logical ″AND″ operation. For example, if you
specify both a folder name and a rule name, the search finds rules that match both
the folder name and rule name. It displays the results in a Search Results window.

Note: All of the fields in this window are optional.

Main menu

The main menu has the following options:
v File

Save As
Use the Save as option to open a Save Search window and store the
current search criteria.

Open Use the Open option to open the Open Saved Search window and load
a previously saved set of search criteria into the Find Rules window.

Close Use the Close option to close the Find Rules window.
v View

Chapter 16. Using Business Rule Beans 913

Show Search
Use the Show Search option to display a text description of your search
criteria on one screen.

Specify Date/Time Format
Use the Specify Date/Time Format option to adjust the format used
when displaying dates and times. For more information, see the Specify
Date/Time Format window link in Related reference.

Tabs

The following tabs are displayed in this window:

Name Use the Name tab to specify the basic search criteria. For more
information, click the Find Rules window: Name tab link under Related
reference.

Date Use the Date tab to specify the date-related search criteria. For more
information, click the Find Rules window: Date tab link under Related
reference.

Classification
Use the Classification tab to specify the search criteria related to a rule’s
classification. For more information, click the Find Rules window:
Classification tab link under Related reference.

Implementation
Use the Implementation tab to specify the search criteria that is based on
the manner in which the rule is implemented. For more information, click
the Find Rules window: Implementation tab link under Related reference.

Description
Use the Description tab to specify the text-based search criteria related to a
rule’s description. For more information, click the Find Rules window:
Description tab link under Related reference.

Other Use the Other tab to specify the search criteria based on precedence and
user-defined data. For more information, click the Find Rules window:
Other tab link under Related reference.

Find Rules window: Name tab
Use the Find Rules window: Name tab to specify the basic search criteria. The
following fields and options are available on this tab:

Name: Use the Name field to search for a specific rule name.

Note: This is case-sensitive.

Drop-down search option list: Use the one of the following options in the
Drop-down search option list to narrow your search:

equal Use the equal selection to look for an exact match.

starting with
Use the starting with selection to find rules whose name starts with the
specified value.

ending with
Use the ending with selection to find rules whose name ends with the
specified value.

914 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

containing
Use the containing selection to find rules that contain the specified value.

Location: Use the Location field to specify the folder that you want to search.
Click the ellipses button to the right of the field if you want to browse for the
folder.

Note: The folder names are case-sensitive.

Include subfolders: Select Include subfolders to include the folder’s subfolders
in the search.

Status: Use the Status menu to specify a search criteria that is based on a rule’s
availability.

Find Rules window: Date tab
Use the Find Rules window: Date tab to specify date-related search criteria. A rule
always has a start date and a range of time in which it is in effect. The end date is
optional and if it is not specified, the rule never expires. The following options are
available on this tab:

Find Rules for any date: Use the Find Rules for any date option to remove the
date from consideration in the search criteria.

Find Rules that are: Use the Find Rules that are option to search for rules in one
of the following states:

currently in effect
The currently in effect selection finds rules that are active at this point in
time.

scheduled
The scheduled selection finds rules that go into effect at a future date.

expired
The expired selection finds previously active rules that are beyond the
rule’s end date.

Find Rules: Use the Find Rules option to specify the dates you want to search.
Modify the following criteria to narrow your search:
1. Select one of the following rule states from the menu:

v in effect
v starting
v ending

2. Select Query on date only if you would like your search to ignore time-specific
information.

3. Select one of the following three methods by which to search:

on x Select the on x option to find rules that are in the desired state (as
chosen in Step 1) on the specified date. If the Query on date only check
box is clear, then midnight is used for the time.

anytime between x and y
Select the anytime between x and y option to find rules that are in the
desired state (as chosen in Step 1) anytime between the given dates.
Specify a start date (represented by x) and an end date (represented by
y). If the Query on date only check box is clear, then midnight of each
day is used for the time.

Chapter 16. Using Business Rule Beans 915

anytime during the next x days
Select the anytime during the next x days option to find rules that are
in the desired state (as chosen in Step 1) within this period of time and
specified in days.

Find Rules window: Classification tab
Use the Find Rules window: Classification tab to specify search criteria related to
a rule’s classification. The following options are available on this tab:

Show all: Use the Show all option if you do not want to include the classification
information in the search criteria.

Show rules that are not classified and do not perform classification: Use the
Show rules that are not classified and do not perform classification option to
find rules that you do not need to classify.

Show rules that perform classification: Use the Show rules that perform
classification option to find rules that return a classification such as ″Gold″,
″Silver″, or ″Bronze″.

Show rules that are classified: Use the Show rules that are classified option to
find rules that are classified with the specified classification. The specified
classification is case-sensitive. Enter a specific classification into the field that is
provided.

Find Rules window: Implementation tab
Use the Find Rules window: Implementation tab to specify search criteria that is
based on the manner in which the rule is implemented. The following options are
available on this tab:

Java rule implementor: Use the Java rule implementor option to search for rules
that use the specified Java rule implementor. You can use one of the values in the
list or type in your own.

Firing location: Use the Firing location option to search for the location in which
the rule implementor is run. Choose one of the following values from the check
box:

Local Use the Local option to search locally for the location in which the rule
implementor is run.

Remote
Use the Remote option to search the server for the location in which the
rule implementor is run.

Anywhere
Use the Anywhere option to search both locally and on the server for the
location in which the rule implementor is run.

Firing parameters: Use the Firing parameters option to search for rules that alter
the firing parameters passed from the trigger point to the Java rule implementor.
For more information, see the Add Firing Parameter window link in Related
reference.

The following selections are available for the firing parameter option:
v show rules that alter firing parameters
v show rules that do not alter firing parameters

916 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Find Rules window: Description tab
Use the Find Rules window: Description tab to specify text-based search criteria
related to a rule’s description. The following fields and options are available on
this tab:

Business intent: Use the Business intent field to search for rules with a given
business intent.

Description: Use the Description field to search for rules with a given
description.

Original requirement: Use the Original requirement field to search for rules with
a given original requirement.

Drop-down search option list: Use the following options in the Drop-down
search option list to narrow your search in the Business intent, Description, and
Original requirements fields:

equal Use the equal selection to look for an exact match.

starting with
Use the starting with selection to find rules whose name starts with the
specified value.

ending with
Use the ending with selection to find rules whose name ends with the
specified value.

containing
Use the containing selection to find rules that contain the specified value.

Find Rules window: Other tab
Use the Find Rules window: Other tab to specify search criteria based on
precedence and user-defined data. The following options are available on this tab:

Precedence: Use the Precedence option to search for rules with given precedence.
The precedence is an integer value that specifies the relative priority of this rule
when it is fired.

Drop-down search option list: Use the Drop-down search option list to narrow
your search by using one of the following options:
v equal
v less than
v less than or equal
v greater than
v greater than or equal
v not equal

User defined data: Use the User defined data option to search for rules with
given user defined data.

Drop-down search option list: Use one of the following options from the
Drop-down search option list:

equal Use the equal selection to look for an exact match.

Chapter 16. Using Business Rule Beans 917

starting with
Use the starting with selection to find rules whose name starts with the
specified value.

ending with
Use the ending with selection to find rules whose name ends with the
specified value.

containing
Use the containing selection to find rules that contain the specified value.

Search Results window
This window contains the results of a search from a Find Rules window. It is
nearly identical to the Rule Browser in terms of form and function. Use the options
in the main menu to perform many of the same administrative actions, with a few
differences:
v Rules cannot be imported into the Search Results window.
v Rules cannot be pasted into the Search Results window.
v The Open Containing Folder menu item opens a new browser window showing

the contents of the folder for the selected rule.

Save Search window
Use the Save Search window to store the current search criteria for later retrieval.
Follow the following steps to save your search:
1. Type in a name for your search or replace a previously saved search from the

list.
2. Click OK.

The saved search criteria is loaded into the Find Rules window.

Open Saved Search window
Use the Open Saved Search window to open a previously saved search. Follow
these steps to open your saved search:
1. In the Select a Search window, highlight the name of the search you want to

open.
2. Click OK.

The saved search criteria is loaded into the Find Rules window.

Business rule beans: Resources for learning
Use the following links to find relevant supplemental information about business
rule beans. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v Planning, business scenarios, and IT architecture
v Programming instructions and examples
v Administration

918 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Planning, business scenarios, and IT architecture

v Delivering new business value to the enterprise on a J2EE and Web
services base (Update)
(http://www7b.software.ibm.com/wsdd/library/summaries/200462.html)
This paper, in PDF form, describes the strategy behind the IBM extensions to
J2EE and Web services functionality in the WebSphere Application Server
Version 4.0 Enterprise Edition. It explains Enterprise Services, business rule
beans, message beans and JMS listener, internationalization, shared work areas,
bidirectional CORBA connectivity, the ActiveX bridge, and the C++ CORBA
SDK.

v WebSphere Application Server V5.0 Architecture and Overview
(http://developerworks.cybercentral.com/ibm0502/amt/ibmpresentations/
683_1.pdf)
This is an IBM developerWorks presentation that provides an overview of the
functionality available with WebSphere Application Server V5.0.

Programming instructions and examples

v Message-Driven Beans and Encapsulated Business Rules
(http://www2.theserverside.com/resources/ article.jsp?l= Message-Driven-
Beans-And-Encapsulated-Business-Rules)
This article describes how to use business rules with Message-driven Beans.

v WebSphere Application Server Enterprise Edition 4.0: A Programmer’s
Guide (http://www.redbooks.ibm.com/redbooks/SG246504.html)
Chapter three of this programmer’s guide provides information about
implementation, modification, and deployment of business rules.

v WebSphere Application Server Enterprise Edition Technology Sample
(http://www7b.software.ibm.com/wsdd/downloads/ee41_landing.html)
This technology sample enables developers to gain experience with the Business
Rule Beans technology.

Administration

v IBM WebSphere Administration (http://books.mcgraw-hill.com/cgi-
bin/pbg/0072223154.html)

v

Listing of all IBM WebSphere Application Server Redbooks
(http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere)

This is a listing of the Redbook publications about the WebSphere software
platform.

v WebSphere Application Server Version 4.0 Enterprise Edition —
Presentations and Labs (http://www7b.boulder.ibm.com/wsdd/
library/presents/WAS_EE_Training.html)

Chapter 16. Using Business Rule Beans 919

http://www7b.software.ibm.com/wsdd/library/summaries/200462.html
http://developerworks.cybercentral.com/ibm0502/amt/ibmpresentations/683_1.pdf
http://developerworks.cybercentral.com/ibm0502/amt/ibmpresentations/683_1.pdf
http://www2.theserverside.com/resources/article.jsp?l=Message-Driven-Beans-And-Encapsulated-Business-Rules
http://www2.theserverside.com/resources/article.jsp?l=Message-Driven-Beans-And-Encapsulated-Business-Rules
http://www.redbooks.ibm.com/redbooks/SG246504.html
http://www7b.software.ibm.com/wsdd/downloads/ee41_landing.html
http://books.mcgraw-hill.com/cgi-bin/pbg/0072223154.html
http://books.mcgraw-hill.com/cgi-bin/pbg/0072223154.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www7b.boulder.ibm.com/wsdd/library/presents/WAS_EE_Training.html
http://www7b.boulder.ibm.com/wsdd/library/presents/WAS_EE_Training.html

920 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 17. Using asynchronous beans

The asynchronous beans feature adds a new set of APIs that enable J2EE
applications to run work asynchronously inside a WebSphere Enterprise
Application Server. This topic provides a brief overview of the tasks involved in
using asynchronous beans. For a more detailed description of the asynchronous
beans model, review the conceptual topic Asynchronous beans.

Steps for this task
1. Configuring work managers
2. Assembling applications that use work managers
3. Developing work objects to run code in parallel
4. Developing event listeners
5. Developing asynchronous scopes

Asynchronous beans
An asynchronous bean is a Java object or enterprise bean that can be executed
asynchronously by a J2EE application, using the J2EE context of the bean’s creator.

Asynchronous beans can improve performance by enabling a J2EE program to
decompose operations into parallel tasks. Asynchronous beans enable the
construction of stateful, ″active″ J2EE applications. These applications address a
segment of the application space that J2EE has not previously addressed (that is,
advanced applications that require application threading, active agents within a
server application, or distributed monitoring capabilities).

Asynchronous beans can run using the J2EE security context of the creator J2EE
component. These beans also can run with copies of other J2EE contexts. For
example:
v Internationalization context
v Application profiles
v Work areas
v Access intent policies

Asynchronous bean interfaces

There are three types of asynchronous bean:

Work object
A work object implements the com.ibm.websphere.asynchbeans.Work
interface. A work object runs parallel to its caller using the
WorkManager.startWork() method. Applications implement work objects in
order to run code blocks asynchronously. For more information on the
Work interface, see the Related reference section at the end of this article.

Alarm listener
An alarm listener is an object that implements the
com.ibm.websphere.asynchbeans.AlarmListener interface. Alarm listeners

© Copyright IBM Corp. 2003 921

are called when a high-speed transient alarm expires. For more information
on the AlarmListener interface, see the Related reference section at the end
of this article.

Event listener
An event listener can implement any interface. An event listener is a
lightweight, asynchronous notification mechanism for asynchronous events
within a single JVM. An event listener would typically be used to enable
J2EE components within a single application to notify each other about
various asynchronous events.

Supporting interfaces

Work manager
A work manager is a thread pool that administrators create for J2EE
applications. The administrator specifies the properties of the thread pool
and a policy that determines which J2EE contexts the asynchronous bean
will inherit.

Event source
An event source implements the
com.ibm.websphere.asynchbeans.EventSource interface. An event source is
a system-provided object that supports a generic, type-safe asynchronous
notification server within a single JVM. The event source enables event
listener objects, which implement any interface, to be registered. For more
information on the EventSource interface, see the Related reference section
at the end of this article.

Event source events
Every event source can generate events of its own. Event sources also can
generate their own events such as ’listener count changed’. An application
can register an event listener object that implements
com.ibm.websphere.asynchbeans.EventSourceEvents. This enables the
application to catch events such as listeners being added or removed, or a
listener throwing an unexpected exception. For more information on
EventSourceEvents, see the Related reference section at the end of this
article.

Additional interfaces, including alarms and subsystem monitors, are introduced in
the topic Developing Asynchronous scopes, which discusses some of the advanced
applications of asynchronous beans.

Transactions

Every asynchronous bean method is called using its own transaction, much like
container-managed transactions in a typical enterprise bean. It is very similar to
the situation when an EJB method is called with TX_NOT_SUPPORTED. The
run-time environment starts a local transaction before invoking the method. The
asynchronous bean method is free to start its own global transaction if this is
possible for the calling J2EE component. For example, if an enterprise bean creates
the component, the method that creates the asynchronous bean must be
TX_BEAN_MANAGED.

When you call an entity bean from within an asynchronous bean, for example, you
must have a global transactional context available on the current thread. Since
asynchronous bean objects start local transactional contexts, you can encapsulate all
entity bean logic in a session bean that has a method marked as TX_REQUIRES or

922 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

equivalent. This process establishes a global transactional context from which you
can access one or more entity bean methods.

If the asynchronous bean method throws an exception, any local transactions are
rolled back. If the method returns normally, any incomplete local transactions are
completed according to the unresolved action policy configured for the bean. EJB
methods can configure this policy using their deployment descriptor. If the
asynchronous bean method starts its own global transaction and does not commit
this global transaction, the transaction is rolled back when the method returns.

Access to J2EE component meta-data

If an asynchronous bean is a J2EE component, such as a session bean, its own
meta-data is active when a method is called. If an asynchronous bean is a simple
Java object, the J2EE component metadata of the creating component is available to
the bean. Like its creator, the asynchronous bean can look up the java:comp
namespace. This enables the bean to access connection factories and enterprise
beans, just as it would if it were any other J2EE component. The environment
properties of the creating component also are available to the asynchronous bean.

The java:comp namespace is identical to the one available for the creating
component; the same restrictions apply. For example, if the Enterprise Bean or
servlet has an EJB reference of java:comp/env/ejb/MyEJB, this EJB reference is
available to the Asynchronous Bean. In addition, all of the connection factories use
the same resource-sharing scope as the creating component.

Connection management

An asynchronous bean method can use the connections that its creating J2EE
component obtained using java:comp resource references. (For more information on
resource references, see References). However, the bean method must access those
connections using a get, use, close pattern. There is no connection caching between
method calls on an asynchronous bean. The connection factories or DataSources
themselves can be cached, but the connections must be retrieved on every method
call, used, and then closed. While the asynchronous bean method can look up
connection factories using a global JNDI name, this is not recommended for the
following reasons:
v The JNDI name is hard-coded in the application (for example, as a property or

string literal).
v The connection factories are unshared because there is no way to specify a

sharing scope.

For code examples that demonstrate both the correct and the incorrect ways to
access connections from asynchronous bean methods, see the topic Example:
Asynchronous bean connection management.

Example: Asynchronous bean connection management
An asynchronous bean method can use the connections that its creating J2EE
component obtained using java:comp resource references. (For more information on
resource references, see the topic References.) The following is an example of an
asynchronous bean that uses connections correctly:
class GoodAsynchBean
{
DataSource ds;
public GoodAsynchBean()

Chapter 17. Using asynchronous beans 923

throws NamingException
{
// ok to cache a connection factory or datasource
// as class instance data.
InitialContext ic = new InitialContext();
// we are assuming that the creating J2EE component has this
// resource reference defined in its deployment descriptor.
ds = (DataSource)ic.lookup("java:comp/env/jdbc/myDataSource");
}
// When the asynchronous bean method is called, get a connection,
// use it, then close it.
void anEventListener()
{
Connection c = null;
try
{
c = ds.getConnection();
// use the connection now...
}
finally
{
if(c != null) c.close();
}
}
}

The following is an example of an asynchronous bean that uses connections
illegally:
class BadAsynchBean
{
DataSource ds;
// Do not do this. You cannot cache connections across asynch method calls.
Connection c;

public BadAsynchBean()
throws NamingException
{
// ok to cache a connection factory or datasource as
// class instance data.
InitialContext ic = new InitialContext();
ds = (DataSource)ic.lookup("java:comp/env/jdbc/myDataSource");
// here, you broke the rules...
c = ds.getConnection();
}
// Now when the asynch method is called, illegally use the cached connection
// and you’ll likely see a bunch of J2C related exceptions at runtime.
// close it.
void someAsynchMethod()
{
// use the connection now...
}
}

Configuring work managers
Before you begin

If you are unfamiliar with work managers, review the conceptual topic Work
managers.

A work manager acts as a thread pool for application components that use
asynchronous beans. Use the administrative console to configure work managers.
You can define multiple work managers for each cell. Each work manager is bound
to a unique place in JNDI.

924 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Note: The work manager service is only supported from within the EJB Container
or Web Container (EJBs or Servlets). Looking-up and using a configured
WorkManager from a J2EE Application Client container is not supported.

Steps for this task
1. Start the administrative console.
2. Select Resources > Work Managers.
3. Click New.
4. Specify the following required properties:

Name The display name for the work manager.

JNDI Name
The JNDI name for the work manager. This name is used by
asynchronous beans that need to look up the work manager. Each work
manager must have a unique JNDI name within the cell.

Number of Alarm Threads
The maximum number of threads to be used for processing alarms.
There is a single thread that is used to monitor pending alarms and
dispatch them. Also there is an additional pool of threads that is used
for dispatching the threads. All alarm managers on the asynchronous
beans associated with this work manager share this set of threads. That
is, there is a single alarm thread pool for each work manager and all of
the asynchronous beans associated with the work manager share this
pool of threads.

Minimum Number Of Threads
The initial number of threads to be created in the thread pool.

Maximum Number Of Threads
The maximum number of threads to be created in the thread pool. The
maximum number of threads can be exceeded temporarily if the
Growable checkbox is selected. These additional threads are discarded
when the work on the thread completes.

Thread Priority
The order of priority for threads available in the thread pool.

5. [Optional] Specify a Description and a Category for the work manager.
6. [Optional] Select the Service Names (J2EE contexts) on which you want this

work manager to be made available. Any asynchronous beans that use this
work manager then will inherit the selected J2EE contexts from the component
that creates the bean. The list of selected services also is known as the ″sticky″
context policy for the work manager.
Note: Selecting more services than are actually required might impede
performance.

7. Save your configuration.

Results

The work manager is now configured and ready to be accessed by application
components that need to manage asynchronous code execution.

Work managers
A work manager is a thread pool created for J2EE applications that use
asynchronous beans.

Chapter 17. Using asynchronous beans 925

Using the administrative console, an administrator can configure any number of
work managers. The administrator specifies the properties of the work manager,
including the ″sticky″ context (inheritance) policy for any asynchronous beans that
use the work manager. The administrator binds each work manager to a unique
place in JNDI.

When writing a Web or EJB component that uses asynchronous beans, the
developer should include a resource reference in each component that needs access
to a work manager. (For more information on resource references, see the topic
References.) The component looks up a work manager using a logical name in the
component’s java:comp namespace, just as it would look up a datasource,
enterprise bean, or connection factory.

The deployer binds physical work managers to logical work managers when the
application is deployed.

For example, if a developer needs three thread pools to partition work between
bronze, silver, and gold levels, the developer writes the component to pick a
logical pool based on an attribute in the client application’s profile. The deployer
has the flexibility to decide how to map this request for three thread pools. The
deployer might decide to use a single thread pool on a small machine. In this case,
the deployer binds all three resource references to the same work manager instance
(that is, the same JNDI name). A larger machine might allow for three thread
pools, so the deployer binds each resource reference to a different work manager.
Work managers can be shared between multiple J2EE applications installed on the
same server.

An application developer can use as many logical work managers as necessary; the
deployer chooses whether to map one physical work manager or several to the
logical work manager defined in the application.

Note: All J2EE components that need to share asynchronous scope objects must
use the same work manager. These scope objects have an affinity with a single
work manager so an application that uses AsynchScopes should verify that all of
the components using scope objects use the same work manager.

When multiple work managers are defined, the underlying thread pools are
created in a JVM only if an application within that JVM looks up the work
manager. For example, there might be ten thread pools (work managers) defined,
but none are actually created until an application looks them up.

How to look up a work manager

An application can look up a work manager as follows. Here, the component
contains a resource reference named wm/myWorkManager, which was bound to a
physical work manager when the component was deployed:
InitialContext ic = new InitialContext();
WorkManager wm = (WorkManager)ic.lookup("java:comp/env/wm/myWorkManager");

″Sticky″ J2EE contexts

Asynchronous beans can inherit the following J2EE contexts. In other words, these
contexts can be made ″sticky″:

Internationalization context

Work area

926 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Application profile

Security
The asynchronous bean can be run as anonymous or as the client
authenticated on the thread that created it. This is useful because the
asynchronous bean can do only what the caller can do. This is more useful
than a RUN_AS mechanism, for example, which prevents this kind of
behavior.

Component meta-data
Component meta-data is relevant only when the asynchronous bean is a
simple Java object. If the bean is a J2EE component, such as an enterprise
bean, the component’s meta-data is active.

Which contexts are sticky depends on the work manager used by the application
that creates the asynchronous bean. Using the administrative console, the
administrator defines the sticky context policy of a work manager by selecting the
services on which the work manager is to be made available.

Work manager collection
Use this page to view the configuration properties of work managers.

A work manager contains a pool of threads bound into JNDI.

To view this administrative console page, click Resources > Work Managers .

Name
The name by which the work manager is known for administrative purposes.

Data type String

JNDI Name
The JNDI name used to look up the work manager in the namespace.

Data type String

Description
A description of this work manager for administrative purposes.

Data type String

Category
A string that can be used to classify or group this work manager.

Data type String

Number of Alarm Threads
The number of threads used to execute concurrent alarms.

Data type Integer

Minimum Number of Threads
The minimum number of threads available in this work manager for running
works.

Chapter 17. Using asynchronous beans 927

Data type Integer

Maximum Number of Threads
The maximum number of threads available in this work manager for running
works.

Data type Integer

Thread Priority
The priority of the threads available in this work manager

Data type Integer

Growable
Specifies whether the number of threads in this work manager can be increased.

Service Names
A list of service names on which this work manager is made available.

The context information of each selected service is propagated to each work or
alarm that is created using this work manager. Selecting services that are not
needed can negatively impact performance.

Work manager settings
Use this page to modify work manager settings.

A work manager contains a pool of threads bound into JNDI.

To view this administrative console page, click Resources > Work Managers >
workmanager_name.

Name: The name by which the work manager is known for administrative
purposes.

Data type String

JNDI Name: The JNDI name used to look up the work manager in the
namespace.

Data type String

Description: A description of this work manager for administrative purposes.

Data type String

Category: A string that can be used to classify or group this work manager.

Data type String

Number of Alarm Threads: The number of threads used to execute concurrent
alarms.

Data type Integer

928 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Minimum Number of Threads: The minimum number of threads available in
this work manager for running works.

Data type Integer

Maximum Number of Threads: The maximum number of threads available in
this work manager for running works.

Data type Integer

Thread Priority: The priority of the threads available in this work manager

Data type Integer

Growable: Specifies whether the number of threads in this work manager can be
increased.

Service Names: A list of service names on which this work manager is made
available.

The context information of each selected service is propagated to each work or
alarm that is created using this work manager. Selecting services that are not
needed can negatively impact performance.

Work manager service settings
Use this page to enable or disable the work manager service, which manages work
manager resources used by the server.

To view this administrative console page, click Servers > Application Servers >
server_name > Work Manager Service .

Startup
Specifies whether the server will attempt to start the work manager service.

Default Selected
Range

Selected
When the application server starts, it
attempts to start the work manager
service automatically.

Cleared
The server does not try to start the
work manager service. If work
manager resources are to be used on
this server, the system administrator
must start the work manager service
manually or select this property then
restart the server.

Assembling applications that use work managers
Before you begin

Chapter 17. Using asynchronous beans 929

Your administrator needs to configure at least one work manager using the
administrative console.

If your application references one or more logical work managers, the logical work
managers must be bound to one or more physical work managers using the
Application Assembly Tool.

Steps for this task
1. Declare a resource reference for each work manager (required action by the

application developer). This forms an EAR file. (For more information on
resource references, see the topic References.)

2. Using the Application Assembly Tool (AAT), bind each resource reference to a
physical work manager.

3. Add a resource reference with the type
’com.ibm.websphere.asynchbeans.WorkManager’ to the application’s descriptor.
The application then can look up this work manager using its resource
reference name in java:comp. The AAT or WebSphere Studio Application
Developer Integration Edition (WSAD-IE) then can specify which resource
references are bound to a physical work manager.
Note: The previous process is the same as the process used for DataSources.

Developing work objects to run code in parallel
Before you begin

Your administrator must have configured at least one work manager using the
administrative console.

To run code in parallel, or in a different J2EE context, wrap the code in a work
object.

Steps for this task
1. Create a work object.

A work object implements the com.ibm.websphere.asynchbeans.Work interface.
For example:
class SampleWork implements Work

2. Determine the number of work managers needed by this application
component.

3. Look up the work manager or managers using the work manager’s resource
reference (or logical name) in the java:comp namespace. (For more information
on resource references, see the topic References.)
InitialContext ic = new InitialContext();
WorkManager wm = (WorkManager)ic.lookup("java:comp/env/wm/myWorkManager");

The resource reference for the work manager (in this case,
wm/myWorkManager) must be declared as a resource reference in the
application’s deployment descriptor.

4. Call the WorkManager.startWork() method using the work object as a
parameter.
For example:
Work w = new MyWork(...);
WorkItem wi = wm.startWork(w);

930 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The startWork() method can take a startTimeout parameter. This specifies a
hard time limit for the Work object to be started.

The startWork() method returns a work item object. This object is a handle that
provides a link from the component to the now running work object.

5. [Optional] If your application component needs to wait for one or more of its
running work objects to complete, call the WorkManager.join() method.
For example:
WorkItem wiA = wm.start(workA);
WorkItem wiB = wm.start(workB);
ArrayList l = new ArrayList();
l.add(wiA);
l.add(wiB);
if(wm.join(l, wm.JOIN_AND, 5000)) // block for up to 5 seconds
{

// both wiA and wiB finished
}
else
{

// timeout

// we can check wiA.getStatus or wiB.getStatus to see which, if any, finished.
}

This method takes an array list of work items that your component wants to
wait on and a flag that indicates whether the component will wait for one or
all of the work objects to complete. You also can specify a timeout value.

6. Using the release() method, set a variable in a synchronized block.
For example:
public synchronized void release()
{
released = true;
}

The Work.run() method should periodically examine this variable to check
whether the loop should exit or not.

Work objects
A work object is a type of asynchronous bean used by application components to
run code in parallel or in a different J2EE context.

A work object implements the com.ibm.websphere.asynchBeans.Work interface. A
work object is essentially a java.lang.Runnable object that is serializable and
provides additional methods. For details, see the Interface Work
(../../javadoc/ee/com/ibm/websphere/asynchbeans/Work.html) in the Javadoc.

A component wanting to run work in parallel, or in a different J2EE context,
locates a work manager in JNDI, then calls the WorkManager.startWork() method
using the work object as a parameter.

The startWork() method returns a work item object. This object is a handle that
provides a link from the component to the now running work object. The work
item object is typically used when the component needs to wait for one or more of
its running work objects to complete. The WorkManager.join() method takes an
array list of work items that the component wants to wait on, and a flag indicating

Chapter 17. Using asynchronous beans 931

whether the component will wait for all or one of the work objects to complete. A
timeout can be specified, which prevents the component from waiting indefinitely.

Why not have the application simply create Java 2 SDK threads? The threads
created by the Java 2 SDK are not managed threads and hence know nothing about
the J2EE environment and are unusable inside an application server. In addition,
these threads have no J2EE context (for example, a java:comp) and are not
authenticated when they fire. Work object threads, on the other hand, are fully
supported by the application server and have the same properties as any other
asynchronous bean.

Example: Work object
The following is an example of a work object that dynamically subscribes to a
topic:
class SampleWork implements Work
{
boolean released;
Topic targetTopic;
EventSource es;
TopicConnectionFactory tcf;
public SampleWork(TopicConnectionFactory tcf, EventSource es, Topic targetTopic)
{
released = false;
this.targetTopic = targetTopic;
this.es = es;
this.tcf = tcf;
}
synchronized boolean getReleased()
{
return released;
}
public void run()
{
// setup our JMS stuff.
TopicConnection tc = tcf.createConnection();
TopicSession sess = tc.createSession(false, Session.AUTOACK);
tc.start();

MessageListener proxy = es.getEventTrigger(MessageListener.class, false);
while(!getReleased())
{
// block for up to 5 seconds.
Message msg = sess.receiveMessage(5000);
if(msg != null)
}
tc.close();
}
// called when we want to stop the Work object.
public synchronized void release()
{
released = true;
}
}

As a result, any component that has access to the event source can add an event
on demand, which allows components to subscribe to a topic in a more scalable
way than by simply giving each client subscriber its own thread. The previous
example is fully explored in the WebSphere Trader sample. See your Samples
Gallery for details.

932 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Developing event listeners
Application components that listen for events can use the
EventSource.addListener() method to register an event listener object (a type of
asynchronous bean) with the event source to which the events will be published.
An event source also can fire events in a type-safe manner using any interface.

Notifications between components within a single EAR file are handled by a
special event source. See the topic, Using the application notification service.

Steps for this task
1. Create an event listener object, which can be any type. For example, see the

following interface code:
interface SampleEventGroup
{

void finished(String message);
}

class myListener implements SampleEventGroup
{

public void finished(String message)

{

// This will be called when we ’finish’.

}
}

2. Register the event listener object with the event source
For example, see the following code:

InitialContext ic = ...;
EventSource es = (EventSource)ic.lookup("java:comp/websphere/ApplicationNotificationService");
myListener l = new myListener();
es.addListener(l);

This enables the myListener.finished() method to be called whenever the event
is fired. The following code example shows how this event might be fired:

InitialContext ic = ...;
EventSource es = (EventSource)ic.lookup("java:comp/websphere/ApplicationNotificationService");
myListener proxy = es.getEventTrigger(myListener.class);
// fire the ’event’ by calling the method
// representing the event on the proxy
proxy.finished("done");

Using the application notification service
During an application’s lifetime, individual J2EE components (servlets or enterprise
beans) within a single EAR file might need to signal each other. There is an event
source in the java:comp namespace that is bound into all components within an
EAR file. The JNDI name for this event source is:
java:comp/websphere/ApplicationNotificationService

Components within the same application can fire asynchronous events and register
event listeners using this application notification service. Startup beans can be used
to register these event listeners at application startup or they can be registered
dynamically at run time.

Chapter 17. Using asynchronous beans 933

To have your enterprise bean or servlet use the application notification service,
write code similar to what is shown in the following example:
InitialContext ic = new InitialContext();
EventSource appES = (EventSource)

ic.lookup("java:comp/websphere/ApplicationNotificationService");
// now, the application can add a listener using the EventSource.addListener method.
// MyEventType is an interface.
MyEventType myListener = ...;
AppES.addListener(myListener);

// later another component can fire events as follows
InitialContext ic = new InitialContext();
EventSource appES = (EventSource)
ic.lookup("java:comp/websphere/ApplicationNotificationService");

// This highlights a constant string on the EventSource interface which
// specifies the ’java:comp/websphere/ApplicationNotificationService’ string.
ic.lookup(appES.APPLICATION_NOTIFICATION_EVENT_SOURCE)
// now, the application can add a listener using the EventSource.addListener method.
MyEventType proxy = appES.getEventTrigger(MyEventType.class, false);
proxy.someEvent(someArguments);

Example: Event listener
The following code example demonstrates how to fire a listenerCountChanged
event:
// imagine this snippet inside an EJB or servlet method.
// Make an inner class implementing the required event interfaces.
EventSourceEvents listener = new Object() implements EventSourceEvents.class
{
void listenerCountChanged(EventSource es, int old, int newCount)
{
try
{

InitialContext ic = new InitialContext();
// here, the asynch bean can access an environment variable of
// the component which created it.
int i = (Integer)ic.lookup("java:comp/env/countValue").intValue());
if(newCount == i)
{
// do something interesting
}
// this should be called when the code below executes.
}
catch(NamingException e)
{
}
}
void listenerExceptionThrown(EventSource es, Object listener,

String methodName, Throwable exception)
{
}
void unexpectedException(EventSource es, Object runnable, Throwable exception)
{
}
}
// register it.
es.addListener(listener);

...

// now fire an event which the above listener should receive.
EventSourceEvents proxy = (EventSourceEvents)

es.getEventTrigger(EventSourceEvents.class, false);

934 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

proxy.listenerCountChanged(es, 0, 1);

// now, fire another event, we could call any of the methods.
proxy.listenerCountChanged(es, 4, 5);

In this example, we get a proxy for the interface that we want to fire a method on.
Then, call the method corresponding to the event on the proxy. This causes the
same method, with the same parameters, to be called on any event listeners that
implement the EventSourceEvents interface and that were previously registered
with the EventSource ″es″. The same proxy can be used to send multiple events
simultaneously.

The boolean parameter on the getEventTrigger() is named ″sameTransaction″.
When the sameTransaction parameter is false, a new transaction is started for each
event listener invoked and these event listeners can be called in parallel to the
caller. However, the event() method always is blocked until all of the event
listeners have been notified. If the sameTransaction parameter is true, the current
transaction, if any, on the thread is used for all of the event listeners; that is, the
event listeners share the transaction of the method that fired the event. For that
reason, all event listeners must run serially in an undetermined order. That is, the
order in which the listeners are called is undefined and the order in which listeners
were registered should not be a guide for the order used at run time. The method
on the proxy does not return until all of the event listeners have been called; that
is, it is a synchronous operation.

The parameters are passed by reference and listeners should not interfere with
these references unless the method that fired the event has purposefully designed
such interaction. For example, event listeners can be used as collaborators and add
data to a map, which was a parameter. Each event listener runs on its own
transaction, independent of any transaction that is active on the thread. Extreme
care must be taken when the sameTransaction parameter is false because the
parameters can potentially be accessed by multiple threads.

Developing Asynchronous scopes
Asynchronous scopes are units of scoping that comprise a set of alarms, subsystem
monitors, and child asynchronous scopes. Using asynchronous scopes can involve
some or all of the following steps:

Steps for this task
1. Create asynchronous scopes

Create a parent asynchronous scope object by calling the
AsynchScopeManager.createAsynchScope() method using a unique name as the
parameter.
You can store properties in an asynchronous scope object. This provides J2EE
applications with a way to store a non-serializable state that otherwise cannot
be stored in a session bean.
You also can create child asynchronous scopes, which is useful for scoping data
beneath the parent.

2. Listen for alarm notifications
a. Create a listener object by implementing the AlarmListener interface. For

more information, see the AlarmListener interface
(../../javadoc/ee/com/ibm/websphere/asynchbeans/AlarmListener.html)
in the Javadoc.

Chapter 17. Using asynchronous beans 935

b. Supply this object to the AlarmManager.create() method, as the target for
the alarm.
The create() method takes the following parameters:

Target for the alarm
The target on which the fired() method is called when the alarm is
fired.

Context
The context object for the alarm. This is useful for supplying
alarm-specific data to the listener and allows a single listener to be
used for multiple alarms.

Interval
The number of milliseconds before the alarm fires.

After the specified interval, the alarm fires and the fired() method of the
listener is called with the firing alarm as a parameter. The alarm object,
itself, is returned. By calling methods on this object, you can cancel or
reschedule the alarm.

3. Monitoring remote systems
a. Implement a mechanism for detecting messages sent from the remote

system. For example, publish-subscribe messaging.
b. Create a subsystem manager object by calling the

SubsystemMonitorManager.create() method with the following parameters:

Name Each subsystem monitor must have a unique name.

Heartbeat interval
The expected interval, in milliseconds, between heartbeats.

Missed heart beats until stale or suspect
The number of heartbeats that can be missed before the subsystem
is marked as stale.

Missed heart beats until dead
The number of heartbeats that can be missed before the system is
marked as dead.

c. Create an object that implements the SubsystemMonitorEvents interface. For
more information, see the SubsystemMonitorEvents
(../../javadoc/ee/com/ibm/websphere/asynchbeans/
SubsystemMonitorEvents.html) in the Javadoc.

d. Add an instance of this object to the subsystem monitor using the
SubsystemMonitor.addListener() method.

e. Whenever a heartbeat message arrives from the remote system, call the
SubsystemMonitor’s ping() method.

The subsystem monitor configures alarms to track the heartbeat status of the
remote system. Whenever the ping() method is called, the alarms are reset. If
an alarm fires, the ping() method has not been called; that is, the application
did not receive a heartbeat from the subsystem being monitored.

Usage scenario

Asynchronous scopes are useful in stateful server applications. An application can
have a startup bean that creates an asynchronous scope on a named work
manager. The application also might create subsystem monitors to monitor the
health of any remote systems on which the application is dependent.

936 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

When a client attaches to the server, the application creates a child asynchronous
scope that is owned by the application asynchronous scope for the client and
named using the client ID. A subsystem monitor for monitoring the client itself
might be created on the client asynchronous scope. If the client times out, a
callback can clean up the client state on the server. Callbacks can be attached to the
application subsystem monitors, on behalf of the client. When a remote system
becomes unavailable, the client code in the server is notified and an event is sent
to the client to warn it that a critical remote system has failed. For example, the
failure might be a data feed in an electronic trading application.

Asynchronous scopes
An asynchronous scope (AsynchScope object) is a unit of scoping provided for use
with asynchronous beans.

Asynchronous scopes are collections of alarms, subsystem monitors, and child
asynchronous scopes that enable a relationship to be formed. Each asynchronous
scope uses a single work manager.

Each AsynchScope object owns and controls the life cycle of the following objects:

Child asynchronous scopes
Each AsynchScope object extends the AsynchScopeManager interface,
which is a factory for AsynchScope objects. (For more information on the
AsynchScopeManager interface, see the Javadoc
(../../javadoc/ee/com/ibm/
websphere/asynchbeans/AsynchScopeManager.html)). Any asynchronous
scope can therefore create named asynchronous scopes (children). Child
asynchronous scopes can be useful for scoping data underneath the parent.
All of the child asynchronous scopes must be uniquely named. These
children are destroyed if the parent asynchronous scope is destroyed.

Alarms
Each asynchronous scope has an associated alarm manager. All of the
alarms created by the alarm manager are automatically cancelled if the
associated asynchronous scope is destroyed.

Subsystem monitors
Each asynchronous scope has a subsystem monitor manager, which
manages a set of subsystem monitors associated with the asynchronous
scope. When the asynchronous scope is destroyed, all of the associated
subsystem monitors also are destroyed.

To summarize, asynchronous scopes can be organized into an acyclic tree. The life
cycle of each asynchronous scope is directly coupled to that of its parent
asynchronous scope. Each asynchronous scope is associated with a set of alarms
and subsystem monitors, and an optional set of child asynchronous scopes. These
objects are cancelled and destroyed when the asynchronous scope is destroyed.

Asynchronous scope state

Each asynchronous scope has an associated map, in which applications can store
state in the form of name and value pairs.

Asynchronous scope events

Chapter 17. Using asynchronous beans 937

Each asynchronous scope is also an event source. Applications can therefore
register event listeners against the asynchronous scope. The event listeners can
receive notification if, for example, the AsynchScope object is about to be
destroyed.

Applications also can use this event source to fire events only to listeners of this
asynchronous scope. For example, an AsynchScope object created for a client
session might be used to fire asynchronous events to parties interested in that
client.

Alarms
An alarm executes J2EE context-aware code at a given time interval. Alarm objects
are fine-grained, non-persistent, transient, and can fire at millisecond intervals.

Alarms, themselves, are executed using a thread pool associated with the work
manager that owns the associated asynchronous scope.

The AlarmManager.createAlarm() method takes an application-written object that
implements the AlarmListener interface. (For more information on the
AlarmListener interface, see the Javadoc
(../../javadoc/ee/com/ibm/websphere/asynchbeans/AlarmListener.html).) The
fired method is called when the alarm expires. The createAlarm() method returns a
non-serializable handle, which can be used to cancel or reset the alarm. All of the
pending alarms are cancelled when its associated AsynchScope object is destroyed.

The Java 2 SDK already has a timer mechanism, so why create a new one? The
Java 2 SDK is a J2SE feature that knows nothing about the J2EE environment.
Timers fired by the J2SE feature do not run on a managed thread and are therefore
unusable inside an application server. These timers also lack a J2EE context (that is,
a java:comp value) and are not authenticated when they fire. The asynchronous
scope alarms are fully supported by WebSphere Application Server Enterprise and
have the same properties as any other asynchronous bean.

Alarm performance

The alarm subsystem is designed to handle a large number of alarms. However, do
not have alarms undertake heavy processing when they are firing as this slows the
processing of later alarms. If an alarm needs to process a heavy load, design a
work object that is activated by a work manager. This procedure moves the heavy
processing to a different thread and enables the alarm threads to process alarms
unhampered. All of the alarms owned by asynchronous scopes that, in turn, are
owned by a single work manager, share a common thread pool. The properties of
this thread pool can be tuned at the work manager level using the administrative
console.

Subsystem monitors
A subsystem monitor is an object that monitors the health of a remote system. It
uses an event source to inform all registered listeners of the health of the system.

Advanced J2EE applications often rely on remote, non-managed, non-J2EE systems.
These remote systems can periodically send clients a message to indicate that they
are working. A subsystem monitor is essentially a set of alarms that track
indicators messages or ″heartbeats″ from a remote system.

938 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

An application creates a subsystem monitor by calling the
SubsystemMonitorManager.create() method with the following parameters:

Name Each subsystem monitor must be uniquely named.

Heart beat interval
The time period, in milliseconds, between arriving heartbeat messages.

Missed heart beats until stale or suspect
The number of heartbeats that can be missed before the subsystem is
marked as stale. This designation indicates that the subsystem might be
having problems.

Missed heart beats until dead
The number of heartbeats that can be missed before the system is
considered to be down. The system then is marked as dead.

The subsystem monitor configures alarms to track the heartbeat status. Whenever
the ping() method is called, the alarms are reset. If an alarm fires, the ping()
method has not been called; that is, the application did not receive a heartbeat
from the subsystem being monitored. When the number of Missed heart beats
until stale has elapsed without a ping, a stale event is fired. Later, if the number of
Missed heart beats until dead elapses without a ping, a dead event is fired. If a
ping is received after a stale or dead notification, a fresh event is sent, which
indicates that the subsystem is alive again.

Make Missed heart beats until dead greater or equal to the Missed heart beats
until stale. If Missed heart beats until stale equals Missed heart beats until dead,
a stale event is not published; only a dead event is published.

Applications that want to be informed of these events can register a listener that
implements the SubsystemMonitorEvents interface. For more information on the
SybsystemMonitorEvents interface, see the Javadoc (../../javadoc/ee/com/ibm/
websphere/asynchbeans/SubsystemMonitorEvents.html).

Heart beat messages can be transmitted using a variety of mechanisms. The
application must call the SubsystemMonitor’s ping() method whenever a heartbeat
message arrives from a remote system, but the method used to detect these
messages is up to the application. For example, you might use a Java Message
Service (JMS) publish or subscribe implementation or even a third-party Java
messaging product that does not implement JMS.

Asynchronous scopes: Dynamic message bean scenario
J2EE now supports message-driven beans, but the beans are static. All of the
message sources must be known in advance and bound at deployment time. This
is not always viable, especially in fluid messaging environments such as those
found in brokerages. Some environments have publish-subscribe topic spaces that
are continually changing and clients need servers that can subscribe on demand to
an arbitrary topic.

An asynchronous bean application can create a work object that performs a
blocking receive on a JMS topic and then publishes the message as an event on an
application-defined event source. Clients requiring a subscription to that message
can add an event listener to the event source. The event source can inform the
work object when there are no listeners. Then, the event source can shut down and
make the JMS and thread resources available. The work object registers a listener
with its own event source. When the count is one again, the work object knows

Chapter 17. Using asynchronous beans 939

that it is the only listener and its time to shut down the work object. The
WebSphere Trader sample (see your installed Samples Gallery) uses this pattern to
dynamically subscribe to JMS topics at run time to gather stock prices. For more
information, see an overview of the samples.

How does the server catch clients that disconnect or crash? It creates a subsystem
monitor to watch the client and adds an event listener to catch dead events. When
a dead event occurs, the server application can clean up the client’s server state.
For example, the server application can remove the client’s event listener from the
dynamic message bean; thereby allowing the server to subscribe to a dynamic
topic only when it is needed.

Interoperating with asynchronous beans
Before you begin

The WebSphere Application Server Enterprise Edition Asynchronous Beans 5.0
service has interoperability problems that affect how the dependent services
behave in a clustered environment with mixed WebSphere product versions and or
mixed platforms. Read the Asynchronous beans interoperability issues article to
determine whether you need to complete the following general recovery steps.

Steps for this task
1. Apply interim fix PQ72742 or PTF 1 to bring all affected servers up to the

appropriate Version WorkWithExecutionContext level.
At this point, all servers are functioning normally, assuming that the security
problems are not true.

2. If any of the conditions described in the ″Asynchronous beans security errors″
section of Asynchronous beans interoperability issues document are true,
re-serialize all data. For example, modify the existing EJB or servlet used to
serialize the WorkWithExecutionContext, so that it rewrites the object using a
java.io.ObjectOutputStream:
ObjectInputStream ois = new ObjectInputStream(...);

ObjectOutputStream oos = new ObjectOutputStream(...);
Object in = ois.readObject();
oos.writeObject(in);
oos.flush();

Asynchronous beans interoperability issues
Asynchronous beans allow taking snapshots of J2EE contextual information from
the current servlet or EJB method. This information can include security
information, and can be stored using the WorkManager.create(Work r) method to
get a serializable WorkWithExecutionContext object.

If this WorkWithExecutionContext object is serialized and stored with customer
data, the following information must be reviewed to determine if any steps must
be taken to avoid problems.

Affected products
Both the Scheduler and Process Choreographer services that are included with the
WebSphere Application Server Enterprise Edition 5 are affected by the problems
described in this document. Review the respective sections of each service in the
Version 5.0.1 Release Notes or in the one following interim fix options for further
information:
v PQ72885 - Scheduler Version 5 Interoperability Issues

940 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v PQ72886 - Process Choreographer Version 5 Interoperability Issues

Asynchronous beans security errors
The asynchronous beans WorkWithExecutionContext object created with the 5.0
version of asynchronous beans stores security information incorrectly, which can
cause deserialization errors and ASYN9999E errors to appear in the WebSphere
Application Server log files. This happens if the interoperating versions of
WebSphere Application Server have different implementations of Java
Authentication and Authorization Service (JAAS). This error most likely occurs
when interoperating between two different platforms, but may occur on the same
platform if the JAAS implementation is updated on any of the servers.

Security information is stored with the WorkWithExecutionContext object only
when the following conditions are true:
v The WorkManager resource used to create the WorkWithExecutionContext object

has the security context policy attribute enabled.
v Global Security is enabled on the WebSphere Application Server.

If either of the previous conditions are false, then there should be no
interoperability issues.

If the JAAS implementation JAR files have already been updated or changed such
that all servers are already experiencing ASYN9999E errors, then apply the original
version of the JAAS implementation JAR files that were used to serialize the
WorkWithExecutionContext data, or follow the Recovery and interoperability steps
in the article, (Interoperating with asynchronous beans), on each platform that is
having the problem to ensure all data is reserialized to the appropriate version.

Asynchronous beans interoperability errors
To avoid further problems interoperating between releases or platforms of
asynchronous beans, the serialization mechanisms within asynchronous beans have
been updated such so that a 5.0 version of the asynchronous beans object,
WorkWithExecutionContext, is not able to deserialize a WorkWithExecutionContext
object that is serialized with a Version 5.0.1 release or later.

Interoperability and recovery
If any of the conditions described in the Asynchronous beans security errors
section of this document are true, then all data with the serialized Version 5
WorkWithExecutionContext object must be reserialized with the updated format.

Regardless of whether any of the conditions described in the ″Asynchronous beans
security errors″ section of this document are true, apply interim fix, PQ72742, to all
WebSphere Application Server Enterprise 5 servers that expect to interoperate with
Version 5.0.1 and later servers or expect to interoperate with other Version 5
servers that have PQ72742 applied.

Servers with interim fix, PQ72742, or Version 5.0.1 applied are able to read
WorkWithExecutionContext data serialized with Version 5, but servers at the
Version 5 level are not able to read data serialized in the PQ72742 or Version 5.0.1
format. If this problem occurs, errors such as the following appear: ASYN9999E:
Unexpected Exception Occurred: java.io.OptionalDataException.

For more information on completing the steps for recovery and interoperability, see
the article, (Interoperating with asynchronous beans).

Chapter 17. Using asynchronous beans 941

Internationalization interoperability issues
There are internationalization interoperability issues with the Asynchronous Beans
WorkWithExecutionContext object. Read this section and the Internationalization
Interoperability section of the Version 5.0.1 Release Notes for details on how to
determine if this issue affects your work environment, and if so, how to resolve the
problems.

Affected customers are those who store Internationalization service context
information with the WorkWithExecutionContext object. Internationalization
information is stored with the WorkWithExecutionContext object only when the
following conditions are true:
v The WorkManager resource used to create the WorkWithExecutionContext object

has the com.ibm.ws.i18n context policy attribute enabled.
v The Internationalization service is enabled on the WebSphere Application Server.

If either of the previous conditions are false on either the application server that
serializes the WorkWithExecutionContext or the application server that deserializes the
WorkWithExeuctionContext, no interoperability issue exists.

If both of the previous conditions are true on either of the application servers, then
follow the instructions in the Internationalization Interoperability section of the
Version 5.0.1 Release Notes or interim fix PQ73371.

942 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 18. Using object pools

An object pool enables an application to avoid creating new Java objects
repeatedly. Most objects can be created once, used, and then reused at a later point.
An object pool allows an object to be pooled while waiting for the point when it
can be reused. These object pools are not meant to be used for pooling JDBC
connections or JMS connections and sessions. WebSphere provides specialized
mechanisms for dealing with those types of objects. These object pools are
intended for pooling application-defined objects or basic JDK types.

To use an object pool, the WebSphere administrator must define an object pool
manager using the administrative console. Multiple object pool managers can be
created in a Websphere cell.

Note: The Object pool manager service is only supported from within the EJB
Container or Web Container (EJBs or Servlets). Looking-up and using a configured
object pool manager from a J2EE application client container is not supported.

Steps for this task
1. Start the administrative console.
2. Select Resources > Object Pools.
3. Define the name of the object pool manager. This name can be up to 30 ASCII

characters long.
4. Assign the object pool manager a JNDI name.
5. Provide a description of this object pool manager.
6. Categorize the object pool manager.

Results

After completing this steps, applications can find the object pool manager by doing
a JNDI lookup using the specified JNDI name.

Usage scenario

The following code illustrates how an application can find an Object pool manager
object:
InitialContext ic = new InitialContext();
ObjectPoolManager opm = (ObjectPoolManager)ic.lookup("java:comp/env/pool");

Once the application has an ObjectPoolManager, it can cache an object pool for
classes of the types it wants to use. The following is an example:
ObjectPool arrayListPool = nulll;
ObjectPool vectorPool = null;
try
{
arrayListPool = opm.getPool(ArrayList.class);
vectorPool = opm.getPool(Vector.class);
}
catch(InstantiationException e)
{
// problem creating pool
}

© Copyright IBM Corp. 2003 943

catch(IllegalAccessException e)
{
// problem creating pool
}

Once the application has the pools, it can use them as in the following example:
ArrayList list = null;
try
{
list = (ArrayList)arrayListPool.getObject();
list.clear(); // just in case
for(int i = 0; i < 10; ++i)
{
list.add("" + I);
}
// do what ever we need with the ArrayList
}
finally
{
if(list != null) arrayListPool.returnObject(list);
}

This is the basic pattern for using object pooling. If the application ″forgets″ to
return the object, the only adverse effect is that the object cannot be reused.

Object pool managers
Object pool managers control the reuse of application objects and JDK objects such
as Vectors and HashMaps.

Multiple object pool managers can be created in a WebSphere cell. Each object pool
manager has a unique cell-wide JNDI name. Applications can find a specific object
pool manager by doing a JNDI lookup using the specific JNDI name.

The Object pool manager and its associated objects implement the following
interfaces:
public interface ObjectPoolManager
{
ObjectPool getPool(Class aClass)
throws InstantiationException, IllegalAccessException;
ObjectPool createFastPool(Class aClass)
throws InstantiationException, IllegalAccessException;

}

public interface ObjectPool
{
Object getObject();
void returnObject(Object o);

}

Each object pool manager can be used to pool any Java object with the following
characteristics:
v The object must be a public class with a public default constructor.
v Each object class to be pooled must have its own object pool.
v An application gets an object pool for a specific object using either the

ObjectPoolManager.getPool() or ObjectPoolManager.createFastPool() method. The
difference between these methods is that the getPool() method returns a pool

944 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

that can be shared across multiple threads. The createFastPool() method returns
a pool that can only be used by a single thread.

If, in a JVM, the getPool() method is called multiple times for a single class, the
same pool is returned. A new pool is returned for each call when the
createFastPool() method is called. Basically, the getPool() method returns a pool
that is thread-synchronized.

The pool for use by multiple threads is slightly slower than a fast pool due to the
need to handle thread synchronization. However, extreme care must be taken
when using a fast pool. Consider the following interface:
public interface PoolableObject
{
void init();
void returned();
}

If the objects placed in the pool implement this interface and
theObjectPool.getObject() is called, the object returned has the init() method called
on it. When the ObjectPool.returnObject() method is called, the returned method is
called on the object before it is returned to the object pool. This allows objects to be
pre-initialized or cleaned up.

It is not always possible for an object to implement PoolableObject. For example,
an application might want to pool ArrayList objects. The ArrayList would need to
be cleared each time the application reuses it. The application might extend
ArrayList and have that implement Poolable. For example, consider the following:
public class PooledArrayList extends ArrayList implements PoolableObject
{
public PooledArrayList()
{
}

public void init() {
}

public void returned()
{
clear();
}
}

If the application uses this, in place of a true ArrayList, the ArrayList is cleared
automatically when it is returned to the pool.

Note: Clearing an ArrayList simply marks it as empty and the array backing the
ArrayList is not freed.

Therefore, as the application reuses the ArrayList, the backing array expands until
it is big enough for all of the application requirements. Once this point is reached,
it stops allocating and copying new backing arrays and achieves the best
performance.

It might not be possible or desirable to use the previous procedure. An alternative
is to implement a custom object pool and register this with the object pool
manager as the pool to use for classes of that type. The class is registered by the
WebSphere administrator when the object pool manager is defined in the cell. Take
care that these classes are packaged in JAR files available on all of the nodes in the
cell where they might be used.

Chapter 18. Using object pools 945

Object pool manager collection
Use this page to manage object pool managers.

To view this administrative console page, click Resources > Object Pools .

Name
The name by which the object pool manager is known for administrative purposes.

Data type String
Range 1 through 30 ASCII characters

JNDI Name
The JNDI name for the object pool manager.

Data type String

Description
A description of the object pool manager.

Data type String

Category
A category string used to classify or group this object pool manager.

Data type String

Object pool manager settings
Use this page to modify object pool manager settings.

To view this administrative console page, click Resources > Object Pools >
objectpoolmanager_name

Name
The name by which the object pool manager is known for administrative purposes.

Data type String
Range 1 through 30 ASCII characters

JNDI Name
The JNDI name for the object pool manager.

Data type String

Description
A description of the object pool manager.

Data type String

946 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Category
A category string used to classify or group this object pool manager.

Data type String

Custom object pool collection
Use this page to manage object pools.

To view this administrative console page, click Resources > Object Pools >
objectpoolmanager_name > Object Pools.

Pool Class Name: The fully-qualified class name of the objects that are stored in
the object pool.

Data type String

Pool Impl Class Name: The fully-qualified class name of the CustomObjectPool
implementation class for this object pool.

Data type String

Custom object pool settings
Use this page to modify custom object pool settings.

An object pool manages a pool of arbitrary objects.

To view this administrative console page, click Resources > Object Pools >
objectpoolmanager_name > Object Pools > objectpool_name.

Pool Class Name: The fully-qualified class name of the objects that are stored in
the object pool.

Data type String

Pool Impl Class Name: The fully-qualified class name of the CustomObjectPool
implementation class for this object pool.

Data type String

Object pool service settings
Use this page to enable or disable the object pool service, which manages object
pool resources used by the server.

To view this administrative console page, click Servers > Application Servers >
server_name > Object Pool Service .

Startup
Specifies whether the server will attempt to start the object pool service.

Default Selected

Chapter 18. Using object pools 947

Range
Selected

When the application server starts, it
attempts to start the object pool service
automatically.

Cleared
The server does not try to start the
object pool service service. If object
pool resources are to be used on this
server, the system administrator must
start the object pool service manually
or select this property then restart the
server.

Object pools: Resources for learning
Use the following links to find relevant supplemental information about object
pools. The information resides on IBM and non-IBM Internet sites, whose sponsors
control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

Programming model and decisions

v

Java theory and practice: Thread pools and work queues (http://www-
106.ibm.com/developerworks/library/j-jtp0730.html)

v

Java performance programming, Part 1: Smart object-management saves the
day (http://www-106.ibm.com/developerworks/library/jw-performance.html)

v

Build your own ObjectPool in Java to boost app speed
(http://www.javaworld.com/jw-06-1998/jw-06-object-pool.html)

v

Improve the robustness and performance of your ObjectPool
(http://www.javaworld.com/jw-08-1998/jw-08-object-pool.html)

v

Java Tip 78: Recycle broken objects in resource pools
(http://www.javaworld.com/javaworld/javatips/jw-javatip78.html)

948 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Object pool performance considerations
Object pools are designed to pool and reuse instances of objects that are both
complex and frequently instantiated during runtime. To use an object pool, you
must define an object pool manager using the administrative console. The object
pool manager is available in the Java Naming Directory Interface (JNDI) and able
to provide object pool instances for any class implementing the PoolableObject
interface. The PoolableObject interface defines methods for releasing resources
when an object is to be pooled and initializes the internal state when an object is
retrieved from the pool. The objects are obtained by methods available on the
ObjectPool object.

You should use an object pool when objects are needed repeatedly that are
expensive to instantiate. This expense can be gauged through the complexity of the
object, as well as the size of the data inside the object. Another consideration is the
viability of efficiently cleaning out an object. If the members of an object are large
or complex, but cannot be quickly restored to defaults for future use, pooling these
objects proves effective. The key to seeing a benefit from using an object pool is to
make sure that the total time to retrieve the object from the pool, initialize the
internal members, and clear the object for reuse and return it to the pool, is less
than the time it takes to instantiate the object, initialize internal members, and
subsequently garbage collect it when heap space runs out. Retrieving an object
from the pool and returning it to the pool have been streamlined as much as
possible, but the tasks of member initialization and clearing must fall to the
developer to implement and evaluate.

An important issue to consider is when implementing an object pool thread
contention. There are two types of object pools to choose from; one is thread-safe
and other is not. The latter is not synchronized, allowing for faster access and
reduction in contention, but is not recommended in a multi-threaded environment.
If there is a chance that two threads are operating on a pool at the same time, use
the thread-safe object pool. However, be sure to consider how many threads are
accessing the pool at the same time and how frequently. If it is more than a few on
a regular basis, the single point of contention created in this scenario can
sometimes cancel out all benefits with an otherwise well-conceived poolable object.
A thread-safe pool accessed by multiple threads creates a bigger pool of ready
object instances, but lining up to retrieve these instances through synchronization
can degrade performance.

When attempting to maximize performance with an object pool, cache the
ObjectPoolManager instance wherever it is accessed. By looking it up once and
keeping a reference to it for the future, you can reduce the amount of time spent
looking it up in JNDI, which, because of its remote nature, tends to be quite costly.

Another performance consideration is in the implementation of a poolable object’s
returned() method. Preserve the member to be cleared, if it is needed for next use.
This reduces even more trash for the garbage collector and avoids the
re-initialization of this member upon reuse. Also, if a member has a more efficient
way to clear its state, other than simply destroying it, try to utilize the poolable
object returned() method. For example, calling the clear() method on a member
Vector is much more efficient than destroying the Vector and instantiating a new
one upon reuse.

Using an object pool significantly reduces the amount of memory that applications
use and the amount of garbage created. Through an intelligent choice of pooled

Chapter 18. Using object pools 949

objects and pool types, performance improvements can be achieved by avoiding
unnecessary object allocation and garbage collection.

950 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 19. Using startup beans

A startup bean is a stateful session bean that is loaded when an application starts.
Startup beans enable J2EE applications to execute business logic automatically,
whenever an application starts or stops normally.

Startup beans are especially useful when used in combination with asynchronous
bean features. For example, a startup bean might create an alarm object that uses
JMS to periodically publish heartbeat messages on a well-known topic. This
enables clients or other server applications to determine whether the application is
available.

Steps for this task
1. Use the home interface, com.ibm.websphere.startupservice.AppStartUpHome,

to designate a bean as a startup bean
2. Use the remote interface, com.ibm.websphere.startupservice.AppStartUp, to

define a start() and stop() method on the bean.
The bean’s start() method is called when the application starts. It implements
any business logic that needs to run at application start time.
The start() method returns a boolean. True indicates normal application startup
and false indicates that the application start process should be aborted. The
start() and stop() methods should not use a TX_MANDATORY attribute
because there never is a transaction on the thread when the start() or stop()
methods are invoked. Any other TX_* attribute can be used. If
TX_MANDATORY is used, an exception is logged (need a transaction for
mandatory) and the application does not start.
The bean’s stop() method is called when the application stops and implements
any business logic that needs to run at this time. Any exception thrown by a
stop() method is ignored, but logged to trace.
The start() and stop() methods on the remote interface use Run-As mode.
Run-As mode specifies the credential information to be used by the security
service to determine the permissions that a principal has on various resources.
If security is on, the Run-As mode needs to be defined on all of the methods
called. The identity of the bean without this setting is undefined. For more
information about the Run-As mode, see the topic Method extension assembly
settings.
There are no restrictions on what code the start() and stop() methods can run,
since the full Enterprise Application Server programming model is available to
these methods.

3. Use an optional environment property called wasStartupPriority, which is an
integer, to specify the start order of multiple startup beans in the same JAR file.
If the environment property is found and is the wrong type, application startup
is aborted. If no priority value is specified, a default priority of 0 is used. It is
recommended that you specify the priority property. Beans that have specified
a priority are sorted using this property. Beans with numerically lower
priorities are executed first. Beans that have the same priority are executed in
an undefined order. All priorities must be positive integers. The priority is used
to order beans within an EJB JAR file. The order in which this process is
applied to different EJB JAR files in a single EAR file is undefined. Beans are
stopped in the opposite order to their start priority.

© Copyright IBM Corp. 2003 951

Startup beans must specify a timeout value of 0. Failure to do so causes the
bean to be passivated and results in errors when attempting to call the stop()
method when the application is stopped.

952 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 20. Using the scheduler service

The scheduler service enables tasks to be executed at a requested time. The
following tasks can be scheduled:
v Invoke a session bean method.
v Send a JMS (Java Message Service) message on a Queue or Topic.

The scheduler service performs the task, repeating as necessary, according to the
meta data for that task.

Steps for this task
1. Developing and scheduling tasks.

This article includes instructions for developing various types of tasks,
receiving notifications from a scheduler, submitting tasks to a scheduler, and
managing tasks.
Note: Creating and manipulating scheduled tasks through the Scheduler
interface is only supported from within the EJB Container or Web Container
(enterprise beans or servlets). Looking-up and using a configured scheduler
from a J2EE application client container is not supported.

2. Managing the scheduler service.
This article includes instructions for creating and configuring a database for
scheduler, configuring a scheduler instance, and enabling or disabling the
scheduler service (the service is enabled by default).

3. Interoperating with the Scheduler service.
This article explains how to manage the Scheduler service in a clustered
environment with mixed WebSphere Application Server product versions and
or mixed platforms.

Managing the scheduler service
Schedulers are configured using the administrative console. Schedulers are
available to all servers on which the scheduler service is enabled.

Steps for this task
1. ″Creating the database for scheduler″.
2. ″Configuring a scheduler″.
3. ″Enabling the scheduler service″.

The scheduler service is enabled by default.

Creating the database for scheduler
Before you begin

Your database system must be installed and available.

It is important to realize that the scheduler uses this database for storing tasks and
then executing them. The performance of the scheduler is ultimately limited by the
performance of the database. If you need more tasks per second, you can run the
scheduler daemons on larger systems or you can use clusters for the session beans

© Copyright IBM Corp. 2003 953

used by the tasks. Eventually, however, the task database becomes saturated and
you then need a larger or better-tuned database system.

Multiple applications can share a scheduler database. This can lower the cost of
administering the scheduler database.

Scheduler requires a database, JDBC provider, and data source.

Steps for this task
1. Create the database according to the description for your database system:

v Creating a Cloudscape database for scheduler.
v Creating a DB2 database for scheduler.
v Creating an Informix database for scheduler.
v Creating a Microsoft SQL Server database for scheduler.
v Creating an Oracle database for scheduler.
v Creating a Sybase 12.0 database for scheduler.

2. If the database is not on the same machine as your IBM WebSphere Application
Server, verify that you can access the database from your application server
machine.

3. Configure your JDBC provider and data source.
For details, see the topic Creating and configuring a JDBC provider and data
source.

Creating a Cloudscape database for scheduler
Cloudscape is a database system implemented in Java. It is delivered with
WebSphere Application Server as three JAR files. The Cloudscape license that
comes with WebSphere is only for development and test, not for production
purposes.

Steps for this task
1. Open a command-line window.
2. Make sure that you have administrator rights for the database system.
3. If you want to use an existing database, skip to step 5.

Note: Make sure that the database supports Unicode (UTF-8) . Otherwise, it
cannot store all characters that can be handled in Java, and you could run into
codepage conversion problems when a client uses an incompatible codepage.

4. Use the Cloudview utility supplied with Cloudscape to create a database
named scheddb.
Note: Cloudscape allows only one local connection. If WebSphere Application
Server is running and accessing a Cloudscape database, attempts to open a
second connection to the database from the command line are rejected.

5. Create the schema.
a. Using a text editor, edit the script

%WAS_HOME%\Scheduler\createSchemaCloudscape.ddl according to the
instruction at the top of the file.

b. Enter one of the following commands (shown here on multiple lines for
publication):
On Windows:
%WAS_HOME%\java\jre\bin\java -Djava.ext.dirs=%WAS_HOME%/lib
-Dij.protocol=jdbc:db2j: -Dij.database=scheddb com.ibm.db2j.tools.ij
%WAS_HOME%\Scheduler\createSchemaCloudscape.ddl

954 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

On UNIX:
%WAS_HOME%/java/jre/bin/java -Djava.ext.dirs=%WAS_HOME%/lib
-Dij.protocol=jdbc:db2j: -Dij.database=scheddb com.ibm.db2j.tools.ij
%WAS_HOME%/Scheduler/createSchemaCloudscape.ddl

Results

The Cloudscape database for Scheduler exists.

Creating a DB2 database for scheduler
Steps for this task
1. Open a DB2 command-line window.
2. Make sure that you have administrator rights for the database system.
3. If you want to use an existing database, skip to step 5.

Note: Make sure that the database supports Unicode (UTF-8) . Otherwise, it
cannot store all characters that can be handled in Java, and you could run into
codepage conversion problems when a client uses an incompatible codepage.
To avoid deadlocks, be sure that the DB2 isolation level is set to ″read stability″.
If necessary, enter the command db2set DB2_RR_TO_RS=YES then restart the DB2
instance to activate the change.

4. In the DB2 command line processor, enter this command to create the database:
db2 CREATE DATABASE scheddb USING CODESET UTF-8 TERRITORY en-us

A DB2 database named scheddb has been created.
5. Create the tablespace and schema.

a. (Optional) Analyze the results of your experiences during development and
system testing.
The size of your database depends on many factors. If possible, distribute
tablespace containers across different logical disks, and implement an
appropriate security policy. Consider the performance implications of your
choices for bufferpools and log file settings.

b. Using a text editor, edit the following scripts according to the instruction at
the top of each file: %WAS_HOME%\Scheduler\createTablespaceDB2.ddl,
%WAS_HOME%\Scheduler\createSchemaDB2.ddl,
%WAS_HOME%\Scheduler\dropSchemaDB2.ddl, and
%WAS_HOME%\Scheduler\dropTablespaceDB2.ddl.

c. Make sure that you are attached to the correct instance.
Check the environment variable DB2INSTANCE.

d. To connect to a database named scheddb, enter the command:

db2 connect to scheddb

e. To create the tablespace, enter the command:

db2 -tf createTablespaceDB2.ddl

Make sure that the script’s output contains no errors. If there were any
errors, you can drop the tablespace using the script dropTablespaceDB2.ddl.

f. To create the schema (tables and indices), in the DB2 command line
processor, enter the command:

db2 -tf createSchemaDB2.ddl

Chapter 20. Using the scheduler service 955

Make sure that the script’s output contains no errors. If there were any
errors, you can use dropSchemaDB2.ddl to drop the schema.

Results

The DB2 database for scheduler exists.

Creating an Informix database for scheduler
Steps for this task
1. Open a command-line window.
2. Make sure that you have administrator rights for the database system.
3. If you want to use an existing database, skip to step 5.

Note: Make sure that the database supports Unicode (UTF-8) . Otherwise, it
cannot store all characters that can be handled in Java, and you could run into
codepage conversion problems when a client uses an incompatible codepage.

4. If you want to create a new database named scheddb, enter the command:

dbaccess CREATE DATABASE scheddb with log

5. Create the schema.
a. Using a text editor, edit the script

%WAS_HOME%\Scheduler\createSchemaInformix.sql according to the
instruction at the top of the file.

b. Enter the command:

dbaccess scheddb createSchemaInformix.sql

Results

The Informix database for scheduler exists.

Creating a Microsoft SQL Server database for scheduler
Steps for this task
1. Open a command-line window.
2. Change to the directory where the configuration scripts for scheduler are

located. This is the Scheduler subdirectory of the IBM WebSphere Application
Server installation directory.
On Windows, enter:

cd %WAS_HOME%\Scheduler

On UNIX, enter:

cd $WAS_HOME/Scheduler

3. Using a text editor, edit the schema creation script (createSchemaMSSQL.sql for
SQL Server 2000 and createSchemaMSSQL7.sql for SQL Server 7), according to
the instructions at the beginning of the file.

4. If you want to use an existing database, skip to step 6.
Note: Make sure that the database supports Unicode (UTF-8) . Otherwise, it
cannot store all characters that can be handled in Java, and you could run into
codepage conversion problems when a client uses an incompatible codepage.

5. If you want to create a new database named scheddb:
a. Make sure that you are using a user ID that has administrator rights for the

database system.

956 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

b. In the Enterprise Manager, expand a server group, then expand a server.
c. Right-click Databases, then click New Database.
d. Type the name scheddb.
e. Modify any default values, as desired, then save.

An Microsoft SQL Server database named scheddb has been created.
6. To create the schema:

a. Make sure that you have administrator rights for the database system.
The user ID you use to create the schema must be the one that you tell
WebSphere to use when accessing the database.

b. Run the script to create the schema (tables and views):
isql -S <serverName> -U<userid> -P<password> -D<databaseName> -i <script name>

Results

The Microsoft SQL Server database for scheduler exists.

Creating an Oracle database for scheduler
Steps for this task
1. Open a command-line window.
2. Make sure that you have administrator rights for the database system.
3. If you want to use an existing database, skip to step 5.

Note: Make sure that the database supports Unicode (UTF-8) . Otherwise, it
cannot store all characters that can be handled in Java, and you could run into
codepage conversion problems when a client uses an incompatible codepage.

4. Use the Database Configuration Assistant to create a database named scheddb.
Make sure that you select the JServer option for the database. It is
recommended to use a Unicode codepage when creating the database. The text
data you pass to the APIs must be compatible with the selected codepage.

5. Create the tablespace and schema.
a. Using a text editor, edit the scripts

%WAS_HOME%\Scheduler\createTablespaceOracle.ddl and
%WAS_HOME%\Scheduler\createSchemaOracle.ddl according to the instruction
at the top of the files.

b. If you do not want the schema to be created in the default instance, set the
environment variable ORACLE_SID

c. To create the tablespace, run the script createTablespaceOracle.ddl.
For test purposes you can use the same location for all tablespaces and pass
the path as a command line argument to the script, for example, on
Windows, user ID scheduser, password schedpwd, database name scheddb,
and tablespace path d:\mydb\ts, enter the command:
sqlplus scheduser/schedpwd@scheddb @createTablespaceOracle.ddl d:\mydb\ts

If you get any errors creating the tablespace, you can use
dropTablespaceOracle.ddl to drop the tablespace.

d. To create the schema, run the script createSchemaOracle.ddl.
For example, on Windows, enter:
sqlplus scheduser/schedpwd@scheddb @createSchemaOracle.ddl

If you get any errors creating the schema (tables and views), you can use
dropSchemaOracle.ddl to drop the schema.

Chapter 20. Using the scheduler service 957

Results

The Oracle database for scheduler exists.

Creating a Sybase database for scheduler
Steps for this task
1. Open a command-line window.
2. Make sure that you have administrator rights for the database system.
3. Make sure that you have the DTM option for Sybase ASE installed.
4. If you want to use an existing database, skip to step 6.

Note: Make sure that the database supports Unicode (UTF-8) . Otherwise, it
cannot store all characters that can be handled in Java, and you could run into
codepage conversion problems when a client uses an incompatible codepage.

5. Use the Sybase isql utility to create a database named scheddb. See your Sybase
product documentation for details.

6. Create the schema:
a. Using a text editor, edit the script

%WAS_HOME%\Scheduler\createSchemaSybase12.ddl according to the
instruction at the top of the file.

b. Enter the command:
isql -S <serverName> -U<userid> -P<password> -D scheddb -i createSchemaSybase12.ddl

Results

The Sybase database for scheduler exists.

Configuring a scheduler
Before your application can make use of the scheduler service, you need to
configure a scheduler instance using the administrative console. Conceptually, a
scheduler is similar to a datasource: you specify various configuration attributes,
including a JNDI name where the instance will be bound. Once defined, an
application using the scheduler API can look up the scheduler object and call
various methods to manage tasks.

Steps for this task
1. Start the administrative console.
2. Select Resources > Scheduler Configurations.
3. Click New.
4. Specify configuration settings.

Fields marked with an asterisk (*) are required. The settings are described in
detail in the topic Scheduler configuration settings.

Scheduler configuration collection
Use this page to manage scheduler configurations.

To view this administrative console page, click Resources > Scheduler
Configurations .

Name: The name by which this scheduler is known for administrative purposes.

Data type String

958 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

JNDI Name: The JNDI name for the scheduler.

The JNDI name specifies where this scheduler instance is bound in the namespace.
Clients can look this name up directly, although the use of resource references is
recommended.

Data type String

Description: A description of this scheduler for administrative purposes.

Data type String

Category: A string that can be used to classify or group this scheduler.

Data type String

Datasource JNDI Name: Datasource where persistent tasks will be stored.

Any datasource available in the name space can be used with a scheduler. Multiple
schedulers can share a single datasource while using different tables by specifying
a table prefix.

Data type String

Datasource Alias: Alias to a user name and password used to access the
datasource.

Data type String

Table Prefix: String prepended to the table name TASK.

Multiple independent schedulers can share the same database if each instance
specifies a different prefix string.

Data type String

Poll Interval: The interval at which the scheduler daemon polls the database.
Each scheduled, repeating task’s minimum repeat interval will be equal to this
value regardless of what is specified on the task.

Each poll operation can be expensive. If the interval is extremely small and there
are many scheduled tasks, polling can consume a large portion of system
resources.

Data type Integer
Units Seconds
Default 30
Range Any positive long integer

Work Manager: Specifies the work manager used by this scheduler.

Chapter 20. Using the scheduler service 959

The Work Manager is a server object that serves as a logical thread pool for the
scheduler. Each repeating task that is created using this scheduler will use the
″Number Of Alarm Threads″ specified in the Work Manager which will affect the
number tasks that can run concurrently. Use the Work Manager’s ″Service Names″
property to limit the amount of context information that is propagated to the task
when it executes.

When a task fires, the task is run in the Work Manager associated with the
scheduler instance. Configuring a scheduler with a specific Work Manager enables
you to control how many tasks are actively running at a given time.

Scheduler configuration settings
Use this page to modify scheduler settings.

To view this administrative console page, click Resources > Scheduler
Configurations > scheduler_name.

Name: The name by which this scheduler is known for administrative purposes.

Data type String

JNDI Name: The JNDI name for the scheduler.

The JNDI name specifies where this scheduler instance is bound in the namespace.
Clients can look this name up directly, although the use of resource references is
recommended.

Data type String

Description: A description of this scheduler for administrative purposes.

Data type String

Category: A string that can be used to classify or group this scheduler.

Data type String

Datasource JNDI Name: Datasource where persistent tasks will be stored.

Any datasource available in the name space can be used with a scheduler. Multiple
schedulers can share a single datasource while using different tables by specifying
a table prefix.

Data type String

Datasource Alias: Alias to a user name and password used to access the
datasource.

Data type String

Table Prefix: String prepended to the table name TASK.

960 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Multiple independent schedulers can share the same database if each instance
specifies a different prefix string.

Data type String

Poll Interval: The interval at which the scheduler daemon polls the database.
Each scheduled, repeating task’s minimum repeat interval will be equal to this
value regardless of what is specified on the task.

Each poll operation can be expensive. If the interval is extremely small and there
are many scheduled tasks, polling can consume a large portion of system
resources.

Data type Integer
Units Seconds
Default 30
Range Any positive long integer

Work Manager: Specifies the work manager used by this scheduler.

The Work Manager is a server object that serves as a logical thread pool for the
scheduler. Each repeating task that is created using this scheduler will use the
″Number Of Alarm Threads″ specified in the Work Manager which will affect the
number tasks that can run concurrently. Use the Work Manager’s ″Service Names″
property to limit the amount of context information that is propagated to the task
when it executes.

When a task fires, the task is run in the Work Manager associated with the
scheduler instance. Configuring a scheduler with a specific Work Manager enables
you to control how many tasks are actively running at a given time.

Creating a scheduler resource reference
When a scheduler has been defined in the server configuration, the object instance
is bound into the global name space under the configured JNDI name. A resource
reference can be used to avoid hardcoding this JNDI name into your application.

You can alternatively create a scheduler resource reference by editing the XML
directly. A scheduler resource reference is a J2EE compliant resource that uses the
class com.ibm.websphere.scheduler.Scheduler as the object type. For information
regarding the XML file format, see the J2EE Specification.

Steps for this task
1. Start the Application Assembly Tool.
2. Select your application.
3. In the left-hand panel, right-click on Resource References and select New.
4. On the General tab, complete the following fields:

Name Specify the name suffix. For example, if the scheduler name is
MyScheduler, the reference JNDI name is java:comp/env/MyScheduler

Type From the drop-down list select
com.ibm.websphere.scheduler.Scheduler

5. (Optional) At this time you can also specify the global JNDI name to which this
resource reference is bound by entering the JNDI name on the Bindings tab.

Chapter 20. Using the scheduler service 961

Scheduler daemon
A scheduler daemon is a background thread that searches for events in the
persistent store.

A scheduler daemon is started for each scheduler defined on each server. If
″Scheduler 1″ is configured on server1, then there will only be one scheduler
daemon running on server1 unless it is cloned. If ″Scheduler 1″ is defined at the
node scope level, then the scheduler will run on each server within that node.

The poll interval determines the frequency at which the persistent store is queried.
By default, this value is set to 30 seconds. When a task is found that is scheduled
to fire within the current poll interval, an alarm is set. The task then runs as close
to this time as possible using an alarm thread from the scheduler’s associated work
manager. Thus, the number of alarm threads configured on the work manager
determines how many concurrent tasks are executed. No tasks are lost. If we reach
this limit, then new tasks are simply queued to be executed when an alarm thread
becomes available. The actual firing time is dictated by server load and availability
of free threads in the alarm thread pool of the associated work manager.

Scheduler daemons in a cluster

When multiple scheduler daemons are configured to the same table (as is the case
in a clustered environment), any of the daemons can find a task and set the timer
in its Java Virtual Machine (JVM). The task is executed in the virtual machine
where the timer first fires.

Enabling the scheduler service
Before you begin

Before an application can make use of the scheduler service, you need to configure
a scheduler.

The scheduler service manages all schedulers used by a given server. The
scheduler service can be enabled and disabled on a server-by-server basis using the
administrative console. The service is enabled by default. If you disable the service
on a server, all schedulers configured on that server are no longer available. All
lookups fail and all scheduler daemons are inactive.

Steps for this task
1. Start the administrative console.
2. Select Servers > server_name > Scheduler Service.
3. Select or clear the Startup checkbox in order to enable or disable the service.
4. Click Save on the menu bar to save your configuration.

Results

The change takes effect on the next server restart.

Scheduler service settings
Use this page to enable or disable the scheduler service, which manages scheduler
resources used by the server.

To view this administrative console page, click Servers > Application Servers >
server_name > Scheduler Service .

962 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Startup: Specifies whether the server will attempt to start the scheduler service.

Default Selected
Range

Selected
When the application server starts, it
attempts to start the scheduler service
automatically.

Cleared
The server does not try to start the
scheduler service. If scheduler
resources are to be used on this server,
the system administrator must start the
scheduler service manually or select
this property then restart the server.

Developing and scheduling tasks
Steps for this task
1. Developing a task.

The scheduler API supports different implementations of the TaskInfo interface,
each of which can be used to schedule a particular type of work. Refer to one
of the following topics for details:
v Developing a task that calls a session bean.
v Developing a task that sends a JMS message. This task object can send a JMS

message to either a queue or a topic.

Note: Creating and manipulating scheduled tasks through the Scheduler
interface is only supported from within the EJB Container or Web Container
(enterprise beans or servlets). Looking-up and using a configured scheduler
from a J2EE application client container is not supported.

2. Receiving scheduler notifications.
A notification sink is set on a task in order to receive the notification events
that are generated by a scheduler when it performs an operation on the task.

3. Submitting a task to a scheduler.
After a TaskInfo object has been created, it can be submitted to the scheduler
for task creation by calling the Scheduler.create() method.

4. Managing tasks with a scheduler.

Developing a task that calls a session bean
The scheduler API supports different implementations of the TaskInfo interface,
each of which can be used to schedule a particular type of work. This topic
describes how to call a method on a task handler session bean using the
BeanTaskInfo implementation.

Steps for this task
1. Create a stateless session bean that implements the process() method in the

com.ibm.websphere.scheduler.TaskHandler remote interface. The process()
method is called when the task fires.
The Home and Remote interfaces must be set as follows in the bean’s
deployment descriptor:
v com.ibm.websphere.scheduler.TaskHandlerHome

Chapter 20. Using the scheduler service 963

v com.ibm.websphere.scheduler.TaskHandler
2. Create an instance of the BeanTaskInfo interface by using the following

Scheduler.createBeanTaskInfo()method:
//lookup the scheduler instance to be used
Scheduler scheduler =
(Scheduler)new InitialContext.lookup("java:comp/env/Scheduler");

BeanTaskInfo taskInfo = scheduler.createBeanTaskInfo();

Note: Creating a BeanTaskInfo object does not add the task to the persistent
store. Rather, it creates a placeholder for the necessary data. The task is not
added to the persistent store until the create() method is called on a Scheduler
instance, as described in the topic Submitting a task to a scheduler.

3. Set parameters on the BeanTaskInfo object. These parameters define which task
is to run, which session bean is called, and so on.
The TaskInfo interface contains various set() methods that you can use to
control execution of the task, including when the task will fire and what work
the task will do when it fires. For example:

//create a date object which represents 30 seconds from now
java.util.Date startDate = new java.util.Date(System.currentTimeMillis()+30000);

//find the session bean to be called when the task executes
Object o = new InitialContext().lookup("java:comp/env/ejb/MyTaskHandlerHome");
TaskHandlerHome home =
(TaskHandlerHome)javax.rmi.PortableRemoteObject.narrow(o,TaskHandlerHome.class);

//now set the start time and task handler to be called in the task info
taskInfo.setTaskHandler(home);
taskInfo.setStartTime(startDate);

The TaskInfo interface
(../../javadoc/ee/com/ibm/websphere/scheduler/TaskInfo.html) specifies
additional control points, as documented in Javadoc.

Results

A TaskInfo object has been created that contains all of the relevant data for a task.

What to do next

Submit the task to a scheduler instance for creation, as described in the topic
Submitting a task to a scheduler.

Developing a task that sends a JMS message
The scheduler API supports different implementations of the TaskInfo interface,
each of which can be used to schedule a particular type of work. This topic
describes how to use the MessageTaskInfo implementation, which sends a JMS
message to either a queue or a topic.

Steps for this task
1. Create an instance of the MessageTaskInfo interface by using the following

Scheduler.createMessageTaskInfo() method:
//lookup the scheduler instance to be used
Scheduler scheduler =
(Scheduler)new InitialContext.lookup("java:comp/env/Scheduler");

MessageTaskInfo taskInfo = scheduler.createMessageTaskInfo();

964 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Note: Creating a MessageTaskInfo object does not add the task to the persistent
store. Rather, it creates a placeholder for the necessary data. The task is not
added to the persistent store until the create() method is called on a Scheduler
instance, as described in the topic Submitting a task to a scheduler.

2. Set parameters on the MessageTaskInfo object.
The TaskInfo interface contains various set() methods that can be used to
control execution of the task, including when the task will fire and what work
the task will do when it fires. For example:
//create a date object which represents 30 seconds from now
java.util.Date startDate = new java.util.Date(System.currentTimeMillis()+30000);

//now set the start time and the JNDI names for the queue connection
// factory and the queue
taskInfo.setConnectionFactoryJndiName("jms/MyQueueConnectionFactory");
taskInfo.setDestination("jms/MyQueue");
taskInfo.setStartTime(startDate);

The TaskInfo interface
(../../javadoc/ee/com/ibm/websphere/scheduler/TaskInfo.html) specifies
additional control points, as documented in Javadoc.

Results

A TaskInfo object has been created that contains all of the relevant data for a task.

What to do next

Submit the task to a scheduler instance for creation, as described in the topic
Submitting a task to a scheduler.

Receiving scheduler notifications
Various notification events are generated by a scheduler when it performs an
operation on a task. These events include:

Scheduled
A task has been scheduled.

Purged
A task has been permanently deleted from the persistent store.

Suspended
A task was suspended.

Resumed
A task was resumed.

Complete
A task has run completely. If it was a repeating task, all repeats have been
performed.

Cancelled
A task has been cancelled. It will not run again.

Fired A task fired successfully.

Fire Failed
A task could not fire successfully.

Chapter 20. Using the scheduler service 965

To receive notification events, call the setNotificationSink() method on the TaskInfo
interface before creating the event. The setNotificationSink() method enables you to
specify the session bean that is to act as the callback, and a mask that restricts
which events are generated.

Steps for this task
1. Create a notification sink session bean.

Create a stateless session bean that implements the handleEvent() method in
the com.ibm.websphere.scheduler.NotificationSink remote interface. The
handleEvent() method is called when the notification is fired. The Home and
Remote interfaces can be set as follows in the bean’s deployment descriptor:
com.ibm.websphere.scheduler.NotificationSinkHome
com.ibm.websphere.scheduler.NotificationSink

The notification sink bean must exist in the same application (EAR file) that is
used to create the task.

The NotificationSink interface defines the following method:
public void handleEvent(TaskNotificationInfo task) throws java.rmi.RemoteException;

The transactional context used by the session bean is defined by the assembler.
2. Specify the notification sink session bean to be used as the callback.

The following code illustrates how to set this option:
TaskInfo taskInfo = ...
Object o = new InitialContext().lookup("java:comp/env/ejb/NotificationSink");
NotificationSinkHome home =
(NotificationSinkHome)javax.rmi.PortableRemoteObject.narrow
(o,NotificationSinkHome.class);
taskInfo.setNotificationSink(home,TaskNotificationInfo.ALL_EVENTS);

3. Specify the event mask.
The event mask is specified as an integer mask. You can either use an
individual mask such as TaskNotificationInfo.CREATED to receive specific
events, TaskNotificationInfo.ALL_EVENTS to receive all events or a
combination of specific events.. For example:
int eventMask = TaskNotificationInfo.CREATED+TaskNotificationInfo.PURGED;

Submitting a task to a scheduler
Before you begin

This task assumes that you have already configured a scheduler instance using the
administrative console.

Once you have developed a TaskInfo object that contains all relevant data for a
task, submit the task to a scheduler instance for creation. For example:
//lookup the scheduler instance to be used
Scheduler scheduler =

(Scheduler)new InitialContext.lookup("java:comp/env/Scheduler");

TaskStatus status = scheduler.create(taskInfo);

5.0.1 You must plan ahead when you create tasks with the Scheduler. When the
Scheduler creates a task, the security context of the creator is stored with the
scheduled task. When the task is later executed, the original context is reapplied to
the thread before calling the customer TaskInfo instance. If you intend to secure

966 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

your application using the global security mechanism built into WebSphere
Application Server, create each task with the correct credentials on the thread.
Once each task has the correct credentials, you can disable and re-enable security
without causing any security problems. If you do not set the security context when
the Scheduler task is created and you later enable security in the target application,
a security exception or error message might display.

5.0.1 The security context is not set if any of the follow conditions are true:
v Global security is disabled
v The security context policy is disabled on the configured WorkManager for the

associated Scheduler instance configuration
v A credential is not set on the thread. For example, the enterprise bean or servlet

that is used to create the scheduled task is not secured.

5.0.1 If any of the previously mentioned conditions are true when you create your
task and you need to enable security on your application server or application, you
must complete the following steps:
1. Cancel the task with security disabled
2. Re-create each scheduled task with security enabled, which enables Scheduler

to store the desired security context with the task.

When you configure a scheduler, it is bound to a global JNDI name. Although the
desired scheduler instance can be found by performing a lookup on that JNDI
name, it is better to create a resource reference, which allows for more flexibility in
configuring the scheduler.

Note: The scheduler interface is a local interface. It can only be used by server-side
code; that is, J2EE applications.

Once the call to the create() method is executed, the task exists in the persistent
store and is run at the time specified in the TaskInfo object. This call is
transactional. If a transactional context is present on the thread when the create()
method rolls back or is aborted, the task does not run.

The status object, which has been returned by the call to the create() method,
contains information about the state of the task, as well as the task ID. The task ID
is the unique identifier for this task, and is required if the task is to be suspended,
resumed, cancelled, and so on, at a later time.

Note: The status object is only a snapshot of the current state of the task. Use the
Scheduler.getStatus() method to receive the current state when needed.

Managing tasks with a scheduler
When a task is created by calling the create() method on a scheduler instance, a
TaskStatus object is returned to the caller. The status object contains the task ID,
which is a unique identifier. The scheduler API defines several additional methods
that pertain to the management of tasks, each of which accepts the task ID as a
parameter. The following task management methods are defined:

suspend()
Suspends a task. The task does not run until it has been resumed.

resume()
Resumes a previously suspended task.

Chapter 20. Using the scheduler service 967

cancel()
Cancels a task. The task is not run.

purge()
Permanently deletes the task from the persistent store.

getStatus()
Returns the current status of the task.

For example, the following code creates and cancels a task:
//Create the task.
TaskInfo taskInfo = ...
TaskStatus status = scheduler.create(taskInfo);

//Get the task ID
String taskId = status.getTaskId();

//Cancel the task. Specify the purgeAlso flag so that the task does not remain
// in the persistent store
scheduler.cancel(taskId,true);

Transactionality. All methods of the scheduler API are transactional. If a global
transactional context is present, it is used to perform the operation. If an
unexpected exception is thrown, the transaction is marked to roll back. If an
expected or declared exception is thrown, the transaction remains intact and the
caller must choose to roll back or to commit the transaction. If the transaction is
rolled back at some point, all scheduler operations performed within the
transaction ware also rolled-back.

If a local transactional context is present, it is suspended and a new global
transactional context begins. Likewise, if no transactional context is active, a global
transactional context begins. In both cases, if an unexpected exception is thrown,
the transaction rolls back. If a declared exception is thrown, the transaction is
committed.

If another thread is concurrently modifying the task in question, a TaskPending
exception is thrown. This is because schedulers lock the database optimistically.
The calling application can then retry the operation.

All methods defined by the scheduler API are described in Javadoc
(../../javadoc/ee/com/ibm/websphere/scheduler/package-frame.html).

Transactions and the scheduler service
Transactions and the scheduler daemon

Scheduled BeanTaskInfo and MessageTaskInfo objects are guaranteed to execute
only once. This is accomplished by grouping all of the work done in the task as a
single unit of work. When each task fires, the following events occur in a single
global transactional context:
1. The context of the application that created the task is applied to the thread.
2. A global transactional context is started.
3. The next fire time and start-by time are calculated using the UserCalendar bean

or the DefaultUserCalendar.
4. The task database task record is updated in the database with the state of the

next task or deleted if the task is complete and the task’s auto-purge setting is
true.

5. The BeanTaskInfo or MessageTaskInfo object is executed.

968 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

6. If the task fails and the NotificationSink bean is set, a FIRE_FAILED notification
is fired on a separate transaction.

7. If the task’s NotificationSink bean is set, then the various notifications are fired
as required.

8. The global transaction is committed.

Because all of a task’s events are executed in a single global transactional context,
you need to consider the following points in order to avoid transaction-related
errors:
v Each resource participating in the task’s transaction must be 2-phase XA

capable.
This includes the JDBC datasource configured for the scheduler, any JMS
services used by the MessageTaskInfo objects, and any resources used within
any of the UserCalendar, TaskHandler, or NotificationSink beans that have a
transaction setting of ″Requires″.

v One resource can be single-phase, if last participant support is enabled for the
application that created the transaction.
Enable last participant support using the Application Assembly Tool. On the
WAS Enterprise tab for your enterprise application, select the Accept heuristic
hazard checkbox.

All unexpected exceptions are logged to the activity log and all events
participating in the task’s global transaction are rolled back. This includes changes
to the task’s database record, which force the task to be executed again when the
scheduler daemon polls the database during the next poll cycle. The UserCalendar,
TaskHandler, and NotificationSink beans can choose not to participate in the global
transaction by setting the bean’s transaction setting to ″Requires new″.

Transactions and the scheduler interface

All Scheduler interface methods participate in a single global transactional context.
If a global transactional context is already present on the thread when the create(),
suspend(), resume(), cancel(), and purge() methods are executed, the existing global
transaction is used. Otherwise, a new global transaction begins.

If the method participates in the caller’s global transaction and an unexpected error
occurs, the transaction is marked to roll back. If the exception is a declared
exception, then the exception is rethrown to the caller, and the transaction is left
alone for the caller to commit or roll back.

If the method starts its own global transaction and any exception occurs, the
transaction is rolled-back, and the exception is rethrown to the caller.

Scheduler interface
A scheduler object exists in the JNDI namespace for each scheduler configuration.
A reference to a scheduler can be obtained by performing a lookup on the JNDI
name; however, the lookup is valid only from the server process where the
scheduler instance exists. Once a reference has been obtained, tasks can be created,
suspended, cancelled, and so on, if the caller has access to the scheduler instance.

For details, see the Interface Scheduler
(../../javadoc/ee/com/ibm/websphere/scheduler/Scheduler.html) in the Javadoc.

Chapter 20. Using the scheduler service 969

Task creation
The task is created in the persistent store using the caller’s global
transactional context if present. See the topic ″Transactions and the
scheduler service″ for more details. Since this is a transactional operation,
the task cannot be run or modified from another thread until the current
transaction commits.

Task modification
Tasks that have been created can be modified with the suspend(), resume(),
cancel(), and purge() methods. These methods take a Task Identifier string
as a parameter, which is generated by the create() method and can be
found in the TaskStatus object. If a task is currently running or being
modified by another thread, an operation that attempts to modify the state
of the task does not block on the attempt, but a TaskPending exception is
thrown. The operation can be reattempted at another time. Tasks can only
be modified by the same application (EAR file) that was used to create the
task.

Task execution
Tasks are executed in the thread pool specified by the configuration’s work
manager, under the security ID of the task creator. If multiple schedulers
are configured to share the same database table, the tasks found in the
table can be executed on any of the schedulers, whether or not they are in
the same server, node, or cell.

Task lookup
Tasks can be located using the Name property that was assigned at
creation time. This is useful when you need to modify a group of tasks and
tracking individual task ID’s is not convenient.

TaskInfo interface
TaskInfo objects contain the information that can be used to create a task. Several
implementations of this class exist, one for each type of task that can be run.
Available TaskInfo implementations include:

BeanTaskInfo
Calls a stateless session bean.

MessageTaskInfo
Sends a JMS message to a queue or publishes a message to a topic.

For details, see the Interface TaskInfo
(../../javadoc/ee/com/ibm/websphere/scheduler/TaskInfo.html) in the Javadoc.

After a TaskInfo object is created, it can be submitted to the scheduler for task
creation by calling the Scheduler.create() method.

Specifying time intervals. setStartTimeInterval(), setStartByInterval(), and
setRepeatInterval() methods all take a String parameter that represents time
interval. Time intervals are calculated using user calendars.

TaskHandler interface
A task handler is a user-defined stateless session bean that is called by tasks
created using a BeanTaskInfo object. A task handler bean uses the following home
and remote interfaces, which are defined in the deployment descriptor using the
Application Assembly Tool or WebSphere Studio Application Developer:
com.ibm.websphere.scheduler.TaskHandlerHome
com.ibm.websphere.scheduler.TaskHandler

970 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The bean itself needs to implement the process() method defined in the remote
interface. For details, see the Interface TaskHandler
(../../javadoc/ee/com/ibm/websphere/scheduler/TaskHandler.html) in the
Javadoc.

If a task is created using a BeanTaskInfo object, the process() method on the
TaskHandler session bean is called whenever the task runs. Because the TaskStatus
object for the task is passed as a parameter, the handler can make use of the saved
UserContext field, as well as determine information about the task, such as when it
will fire next, the number of repeats remaining, and so on.

NotificationSink interface
A notification sink is a user-defined stateless session bean that is called by tasks
when their state changes throughout the bean’s lifecycle. A notification sink bean
uses the following home and remote interfaces, which are defined in the
deployment descriptor using the Application Assembly Tool or WebSphere Studio
Application Developer::
com.ibm.websphere.scheduler.NotificationSinkHome
com.ibm.websphere.scheduler.NotificationSink

The bean itself needs to implement the handleEvent() method defined in the
remote interface. For details, see the Interface NotificationSink
(../../javadoc/ee/com/ibm/websphere/scheduler/NotificationSink.html) in the
Javadoc.

A NotificationSink provides an event notification callback on a task-by-task basis.
A notification sink is set on the TaskInfo interface, using the setNotificationSink()
method. If a notification sink is not specified on a task, all notifications are lost;
however, the status of a task can be determined by calling the getStatus() method
from the Scheduler interface. A notification callback is made for each of the
following events:
v Scheduled
v Suspended
v Resumed
v Fired
v Fire Failed
v Complete
v Purged

UserCalendar interface
A user calendar is a user-defined stateless session bean that is called by tasks when
they need to calculate date-related values. A user calendar bean uses the following
home and remote interfaces, which are defined in the deployment descriptor using
the Application Assembly Tool or WebSphere Studio Application Developer:
com.ibm.websphere.scheduler.UserCalendarHome
com.ibm.websphere.scheduler.UserCalendar

The bean itself needs to implement the applyDelta() and validate() methods
defined in the remote interface. For details, see the Interface UserCalendar
(../../javadoc/ee/com/ibm/websphere/scheduler/UserCalendar.html) in the
Javadoc.

User calendars can be used to calculate time intervals, such as the time between
when a repeating task fires and the next time it fires. A user calendar takes a

Chapter 20. Using the scheduler service 971

java.util.Date object and applies the interval string. The resulting object is a
java.util.Date object that is an incremented date.

User calendars are set by the setUserCalendar() method on the TaskInfo interface,
and called by the scheduler run-time code when a delta calculation is necessary.

The following methods on the TaskInfo interface specify delta strings that use the
user calendar for calculation:
v setStartTimeInterval
v setStartByInterval
v setRepeatInterval

Default user calendar
If a user calendar has not been specified using the
TaskInfo.setUserCalendar() method, a default user calendar is used. The
default calendar allows for simple delta specifications, such as seconds,
minutes, hours, days, and months. See the JavaDoc
(../../javadoc/ee/com/ibm/websphere/scheduler/UserCalendar.html) for
details on the default calendar.

Calendar specifiers
A single user calendar can contain logic for multiple calendars. Which
calendar is used is determined by a string that acts as the specifier. For
example, a bean might be implemented to recognize the interval ″day″,
with a specifier that determines whether to calculate ″day″ as a standard
calendar day, or as a business day.

Internationalization and timezones
Scheduler makes use of the java.util.Date class when storing and
processing dates. Internally, this class saves the time as milliseconds since
the Epoch, Greenwhich Mean Time. Since the Date is not converted to local
time until converted to a string, scheduler respects the timezone where the
date was created.

Writing user calendars
Because the user calendar is a stateless session bean, the same J2EE
Programming model available to other session beans is available to the
user calendar as well.

Interoperating with the Scheduler service
Before you begin

The WebSphere Application Server Enterprise Edition Scheduler Version 5.0 service
has several interoperability problems that affect how the Scheduler behaves in a
clustered environment with mixed WebSphere versions and/or mixed platforms.
Specifically, there are two issues that cause interoperability problems:
1. The EJB HomeHandle format has changed between the Versions 5.0 and 5.0.1 of

the product. See interim fix PQ72184 or the Interoperability section of the
Version 5.0.1 Release Notes.

2. The Asynchronous Beans serialization mechanism has changed between
Versions 5.0 and 5.0.1 of the product. See interim fix PQ72742 or the
Asynchronous Beans section of the Version 5.0.1 Release Notes.

To avoid problems interoperating between Version 5.0 and 5.0.1 and or higher, all
Version 5.0 Scheduler customers must first apply the Version 5.0 fix packs

972 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

associated with interim fixes PQ72184 and PQ72742 and remove all scheduled
tasks that were created prior to applying these fix packs.

Be aware that removing all scheduled tasks involves removing data from your
Scheduler databases. Follow these procedures for each Scheduler instance defined
on the affected server.

Steps for this task
1. Recreating all Scheduler tasks.

Use this method if you wish to programmatically recreate your scheduled
tasks.

2. Deleting all Scheduler tasks.
Use this method to remove all of your Scheduler tasks and recreate them
manually.

3. Recreating all Scheduler tables.
Use this method to drop and recreate the Scheduler tables.

Recreating Scheduler tasks
Before you begin

This step requires advanced knowledge of developing J2EE Applications and the
Scheduler programming interfaces.

Steps for this task
1. Use the administrative console to locate each Scheduler resource that was used

in WebSphere Application Server Version 5.0. For each Scheduler resource, note
the JNDI name.

2. Back up the Scheduler database.
3. Create a new or modify an existing EJB or servlet J2EE application to

implement as a method that you intend to use as the Scheduler update
program.

4. Create a method similar to the included example.
This action finds all existing Scheduler tasks, deletes them and creates new
ones with the same parameters. If Global Security is enabled in the WebSphere
Application Server and the ″security″ context is enabled on the WorkManager
referenced by the Scheduler resource, the current security context is used (as
well all other J2EE contexts that are enabled on the creating EJB or servlet
thread). See the following as an example:

public void recreateTasks(String schedulerJNDIName)
throws Exception

{
InitialContext ctx = new InitialContext();
Scheduler s = (Scheduler)ctx.lookup(schedulerJNDIName);

Iterator tasks = null;;
try
{

tasks = s.findTasksByName("%");
}
catch (SchedulerNotAvailableException e)
{

e.printStackTrace();
throw e;

}

Chapter 20. Using the scheduler service 973

// Iterate through each task and recreate it.
while(tasks.hasNext())
{

TaskInfo curTask = (TaskInfo) tasks.next();

int retries=0;
boolean deleted=false;
TaskStatus status=null;

// It’s best to include each cancel/create
// in it’s own transaction (not shown here).
while(!deleted && retries < 5)
{

try
{

// Delete the task.
s.cancel(curTask.getTaskId(), true);
deleted = true;

// Create a new one.
int createRetries = 0;
boolean created = false;
while(!created && createRetries<5)
{

try
{

s.create(curTask);
created = true;

}
catch (Exception e)
{

++createRetries;
Thread.sleep(5000);

}
}
if (!created)
{

System.out.println("Task Not Created: " + curTask.getTaskId());
}

}
catch (Exception se)
{

++retries;
Thread.sleep(5000);

}
}
if (!deleted)
{

System.out.println("Task Not Deleted: " + curTask.getTaskId());
}

}
}

Deleting Scheduler tasks
Before you begin

Use this method to remove all of your Scheduler tasks and recreate them manually.

Steps for this task
1. Use the administrative console to locate each Scheduler resource that was used

in WebSphere Application Server Version 5.0. For each Scheduler resource, note
the following:
v JDBC DataSource JNDI Name

974 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v Table Prefix
2. Use the administrative console to locate each JDBC DataSource, and note the

connection and location parameters.
3. Back up the Scheduler database.
4. Using the native database utilities, remove all of the records for each Scheduler

resource for each database noted in steps 1 and 2.
The following SQL query template can be used to remove all records.
Substitute TBLPFX with the actual Table Prefix.

DELETE FROM<TBLPFX>TASK

What to do next

Once the tasks are deleted, new tasks can be created immediately. In addition, the
Scheduler service can be active while executing the DELETE SQL command in step 4.
However, the operation might take longer to execute or even time out if the
Scheduler has database records locked.

Recreating Scheduler tables
Before you begin

Use this method to drop and recreate the Scheduler tables.

Steps for this task
1. Use the administrative console to locate each Scheduler resource that was used

in WebSphere Application Server Version 5.0. For each Scheduler resource, note
the following:
v JDBC DataSource JNDI Name
v Table Prefix

2. Use the administrative console to locate each JDBC DataSource, and note the
connection and location parameters.

3. Back up the Scheduler database.
4. For each database and Table Prefix identified in the previous steps, execute the

dropSchemaXXX.ddl and createSchemaXXX.ddl scripts located in the
<install_root>/Scheduler directory of your WebSphere Application Server,
where <install_root>, is the directory where the WebSphere Application
Server is installed.
Each DDL script has instructions (located at the beginning of the respective
script and in the form of a comment) on how to edit and execute the script.
Refer to the Creating the database for scheduler article for more information.

Chapter 20. Using the scheduler service 975

976 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 21. Using shared work areas

The WorkArea service enables application developers to implicitly propagate
information beyond the information passed in remote calls. Applications can create
a work area, insert information into it, and make remote invocations. The work
area is propagated with each remote method invocation, eliminating the need to
explicitly include an appropriate argument in the definition of each method. The
methods on the server side can use or ignore the information in the work area as
appropriate.

Before proceeding with the steps to implement work areas, as described below,
review the topic WorkArea service: Overview.

Steps for this task
1. Developing applications that use work areas.

Applications interact with the WorkArea service by implementing the
UserWorkArea interface.

2. Managing work areas.
The WorkArea service is managed using the administrative console.

WorkArea service - Overview
One of the foundations of distributed computing is the ability to pass information,
typically in the form of arguments to remote methods, from one process to another.
When application-level software is written over middleware services, many of the
services rely on information beyond that passed in the application’s remote calls.
Such services often make use of the implicit propagation of private information in
addition to the arguments passed in remote requests; two typical users of such a
feature are security and transaction services. Security certificates or transaction
contexts are passed without the knowledge or intervention of the user or
application developer. The implicit propagation of such information means that
application developers do not have to manually pass the information in method
invocations, which makes development less error-prone, and the services requiring
the information do not have to expose it to application developers. Information
such as security credentials can remain secret.

The WorkArea service gives application developers a similar facility. Applications
can create a work area, insert information into it, and make remote invocations.
The work area is propagated with each remote method invocation, eliminating the
need to explicitly include an appropriate argument in the definition of every
method. The methods on the server side can use or ignore the information in the
work area as appropriate. If methods in a server receive a work area from a client
and subsequently invoke other remote methods, the work area is transparently
propagated with the remote requests. When the creating application is done with
the work area, it terminates it.

There are two prime considerations in deciding whether to pass information
explicitly as an argument or implicitly by using a work area. These considerations
are:
v Pervasiveness: Is the information used in a majority of the methods in an

application?
v Size: Is it reasonable to send the information even when it will not be used?

© Copyright IBM Corp. 2003 977

When information is sufficiently pervasive that it is easiest and most efficient to
make it available everywhere, application programmers can use the WorkArea
service to simplify programming and maintenance of code. The argument does not
need to go onto every argument list. It is much easier to put the value into a work
area and propagate it automatically. This is especially true for methods that simply
pass the value on but do nothing with it. Methods that make no use of the
propagated information simply ignore it.

Work areas can hold any kind of information, and they can hold an arbitrary
number of individual pieces of data, each stored as a property.

Work area property modes
The information in a work area consists of a set of properties; a property consists
of a key-value-mode triple. The key-value pair represents the information
contained in the property; the key is a name by which the associated value is
retrieved. The mode determines whether the property can be removed or modified.

Property modes

There are four possible mode values for properties, as shown in the following code
example:

Code example: The PropertyModeType definition
public final class PropertyModeType {

public static final PropertyModeType normal;
public static final PropertyModeType read_only;
public static final PropertyModeType fixed_normal;
public static final PropertyModeType fixed_readonly;

};

A property’s mode determines three things:
v Whether the value associated with the key can be modified
v Whether the property can be deleted
v Whether the mode associated with the key-value pair can be modified

The two read-only modes forbid changes to the information in the property; the
two fixed modes forbid deletion of the property.

The WorkArea service does not provide methods specifically for the purpose of
modifying the value of a key or the mode associated with a property. To change
information in a property, applications simply rewrite the information in the
property; this has the same effect as updating the information in the property. The
mode of a property governs the changes that can be made. Modifying key-value
pairs describes the restrictions each mode places on modifying the value and
deleting the property. Changing modes describes the restrictions on changing the
mode.

Changing modes

The mode associated with a property can be changed only according to the
restrictions of the original mode. The read-only and fixed read-only properties do
not permit modification of the value or the mode. The fixed normal and fixed
read-only modes do not allow the property to be deleted. This set of restrictions
leads to the following permissible ways to change the mode of a property within
the lifetime of a work area:

978 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v If the current mode is normal, it can be changed to any of the other three
modes: fixed normal, read-only, fixed read-only.

v If the current mode is fixed normal, it can be changed only to fixed read-only.
v If the current mode is read-only, it can be changed only by deleting the property

and re-creating it with the desired mode.
v If the current mode is fixed read-only, it cannot be changed.
v If the current mode is not normal, it cannot be changed to normal. If a property

is set as fixed normal and then reset as normal, the value is updated but the
mode remains fixed normal. If a property is set as fixed normal and then reset
as either read-only or fixed read-only, the value is updated and the mode is
changed to fixed read-only.

Note: The key, value, and mode of any property can be effectively changed by
terminating (completing) the work area in which the property was created and
creating a new work area. Applications can then insert new properties into the
work area. This is not precisely the same as changing the value in the original
work area, but some applications can use it as an equivalent mechanism.

Nested work areas
Applications can nest work areas. When an application creates a work area, a work
area context is associated with the creating thread. If the application thread creates
another work area, the new work area is nested within the existing work area and
becomes the current work area. Nested work areas allow applications to define and
scope properties for specific tasks without having to make them available to all
parts of the application. All properties defined in the original, enclosing work area
are visible to the nested work area. The application can set additional properties
within the nested work area that are not part of the enclosing work area.

An application working with a nested work area does not actually see the nesting
of enclosing work areas. The current work area appears as a flat set of properties
that includes those from enclosing work areas. In the figure below, the enclosing
work area holds several properties and the nested work area holds additional
properties. From the outermost work area, the properties set in the nested work
area are not visible. From the nested work area, the properties in both work areas
are visible.

Defining new properties in nested work areas

Chapter 21. Using shared work areas 979

key1

key5

key2

key6

key3

key7

key4

key8

A

E

B

F

C

G

D

H

normal

normal

fixed normal

fixed normal

read-only

read-only

fixed read-only

fixed read-only

key value mode

Work Area 1.1

key value mode

Work Area 1
Visible to Work Area 1

key1 = A

key2 = B

key3 = C

key4 = D

Visible to Work Area 1.1

key1 = A

key2 = B

key3 = C

key4 = D

key5 = E

key6 = F

key7 = G

key8 = H

Nesting can also affect the apparent settings of the properties. Properties can be
deleted from or directly modified only within the work areas in which they were
set, but nested work areas can also be used to temporarily override information in
the property without having to modify the property. Depending on the modes
associated with the properties in the enclosing work area, the modes and the
values of keys in the enclosing work area can be overridden within the nested
work area.

The mode associated with a property when it is created determines whether nested
work areas can override the property. From the perspective of a nested work area,
the property modes used in enclosing work areas can be grouped as follows:
v Modes that permit a nested work area to override the mode or the value of a

key locally. The modes that permit overriding are:
– Normal
– Fixed normal

v Modes that do not permit a nested work area to override the mode or the value
of a key locally. The modes that do not permit overriding are:
– Read-only
– Fixed read-only

If an enclosing work area defines a property with one of the overridable modes, a
nested work area can specify a new value for the key or a new mode for the
property. The new value or mode becomes the value or mode seen by
subsequently nested work areas. Changes to the mode are governed by the
restrictions described in Changing modes. If an enclosing work area defines a
property with one of the modes that cannot be overridden, no nested work area
can specify a new value for the key.

A nested work area can delete properties from enclosing work areas, but the
changes persist only for the duration of the nested work area. When the nested

980 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

work area is completed, any properties that were added in the nested area vanish
and any properties that were deleted from the nested area are restored.

The following figure illustrates the overriding of properties from an enclosing
work area. The nested work area redefines two of the properties set in the
enclosing work area. The other two cannot be overridden. The nested work area
also defines two new properties. From the outermost work area, the properties set
or redefined in the nested work are not visible. From the nested work area, the
properties in both work areas are visible, but the values seen for the redefined
properties are those set in the nested work area.

Redefining existing properties in nested work areas

key1

key1

key2

key2

key3

key5

key4

key6

A

X

B

Y

C

E

D

F

normal

normal

fixed normal

fixed normal

read-only

normal

fixed read-only

fixed

key value mode

Work Area 2.1

key value mode

Work Area 2
Visible to Work Area 2

key1 = A

key2 = B

key3 = C

key4 = D

Visible to Work Area 2.1

key1 = X (overridden in 2.1)

key2 = Y (overridden in 2.1)

key3 = C

key4 = D

key5 = E

key6 = F

Distributed work areas
If a remote invocation is issued from a thread associated with a work area, a copy
of the work area is automatically propagated to the target object, which can use or
ignore the information in the work area as necessary. If the calling application has
a nested work area associated with it, a copy of the nested work area and all its
ancestors is propagated to the target. The target application can locally modify the
information, as allowed by the property modes, by creating additional nested work
areas; this information will be propagated to any remote objects it invokes.
However, no changes made to a nested work area on a target object are
propagated back to the calling object. The caller’s work area is unaffected by
changes made in the remote method.

WorkArea service: Special considerations
Developers who use work areas should consider the following issues that could
potentially cause problems: interoperability between the EJB and CORBA
programming models; and the use of work areas with Java’s Abstract Windowing
Toolkit.

Chapter 21. Using shared work areas 981

EJB and CORBA interoperability

Although the WorkArea service can be used across the EJB and CORBA
programming models, many composed data types cannot be successfully used
across those boundaries. For example, if a SimpleSampleCompany instance is
passed from the WebSphere environment into a CORBA environment, the CORBA
application can retrieve the SimpleSampleCompany object encapsulated within a
CORBA Any object from the work area, but it cannot extract the value from it.
Likewise, an IDL-defined struct defined within a CORBA application and set into a
work area will not be readable by an application using the UserWorkArea class.
Applications can avoid this incompatibility by directly setting only primitive types,
like integers and strings, as values in work areas, or by implementing complex
values with structures designed to be compatible, like CORBA valuetypes. Also,
CORBA Anys that contains either the tk_null or tk_void typecode can be set into
the work area by using the CORBA interface, but the work-area specification
cannot allow the J2EE implementation to return null on a lookup that retrieves
these CORBA-set properties without incorrectly implying that there is no value set
for the corresponding key. If a J2EE application tries to retrieve CORBA-set
properties that are non-serializable, or contain CORBA nulls or void references, the
com.ibm.websphere.workarea.IncompatibleValue exception is raised.

Using work areas with Java’s Abstract Windowing Toolkit (AWT)

Work areas must be used cautiously in applications that use Java’s Abstract
Windowing Toolkit (AWT). The AWT implementation is multithreaded, and work
areas begun on one thread are not available on another. For example, if a program
begins a work area in response to an AWT event, such as pressing a button, the
work area might not be available to any other part of the application after the
execution of the event completes.

WorkArea service performance considerations
The WorkArea service is designed to address complex data passing patterns that
can quickly grow beyond convenient maintenance. A work area is a note pad that
is accessible to any client capable of looking up Java Naming Directory Interface
(JNDI). Once a work area is established, data can be placed there for future use in
any subsequent method calls to both remote and local resources.

You can utilize a work area when a large number of methods require common
information or if information is only needed by a method that is significantly
further down the call graph. The former avoids the need for complex parameter
passing models where the number of arguments passed becomes excessive and
hard to maintain. You can improve application function by placing the information
in a work area and subsequently accessing it independently in each method,
eliminating the need to pass these parameters from method to method. The latter
case also avoids unnecessary parameter passing and helps to improve performance
by reducing the cost of marshalling and de-marshalling these parameters over the
Object Request Broker (ORB) when they are only needed sparsely throughout the
call graph.

When attempting to maximize performance by using a work area, cache the
UserWorkArea retrieved from JNDI wherever it is accessed. You can reduce the
amount of time spent looking up information in JNDI by retrieving it once and
keeping a reference for the future. JNDI look up takes time and can be costly.

982 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Performance is degraded if you use a work area as a direct replacement to passing
a single parameter over a single method call. The reason is that you incur more
overhead than just passing that parameter between method calls. Although the
degradation is usually within acceptable tolerances and scales similarly to passing
parameters with regard to object size, consider this potential problem before
utilizing the service. As with most functional services, intelligent usage of work
areas yields the best results.

The WorkArea service is a tool to simplify the job of passing information from
resource to resource, and in some cases can improve performance by reducing the
overhead associated with parameter passing when the information is only sparsely
accessed within the call graph. Caching the instance retrieved from JNDI is
important to effectively maximize performance during runtime.

Developing applications that use work areas

Applications interact with the WorkArea service by implementing the
UserWorkArea interface. This interface defines all of the methods used to create,
manipulate, and complete work areas:

Steps for this task
1. Accessing the WorkArea service.
2. Beginning a work area.
3. Setting properties in a work area.
4. Using a work area to manage local work.
5. Completing a work area.

Usage scenario

An example application, the WorkArea SimpleSample application, is used
throughout this documentation to illustrate these tasks

UserWorkArea interface
Applications interact with the WorkArea service by implementing the
UserWorkArea interface. This interface, shown below, defines all of the methods
used to create, manipulate, and terminate work areas:
package com.ibm.websphere.workarea;

public interface UserWorkArea {
void begin(String name);
void complete() throws NoWorkArea, NotOriginator;

String getName();
String[] retrieveAllKeys();
void set(String key, java.io.Serializable value)

throws NoWorkArea, NotOriginator, PropertyReadOnly;
void set(String key, java.io.Serializable value, PropertyModeType mode)

throws NoWorkArea, NotOriginator, PropertyReadOnly;
java.io.Serializable get(String key);
PropertyModeType getMode(String key);
void remove(String key)

throws NoWorkArea, NotOriginator, PropertyFixed;
}

Note: EJB applications can use the UserWorkArea interface only within the
implementation of methods in the remote interface; likewise, servlets can use the

Chapter 21. Using shared work areas 983

interface only within the service method of the HTTPServlet class. Use of work
areas within any lifecycle method of a servlet or enterprise bean is considered a
deviation from the work area programming model and is not supported.

Exceptions

The WorkArea service defines the following exceptions for use with the
UserWorkArea interface:

NoWorkArea
Thrown when a request requires an associated work area but none is
present.

NotOriginator
Raised when a request attempts to manipulate the contents of an imported
work area.

PropertyReadOnly
Raised when a request attempts to modify a read-only or fixed read-only
property.

PropertyFixed
Raised by the remove method when the designated property has one of the
fixed modes.

Example: WorkArea SimpleSample application
In this example, the client creates a work area and inserts two properties into the
work area: a site identifier and a priority. The site-identifier is set as a read-only
property; the client does not allow recipients of the work area to override the site
identifier. This property consists of the key company and a static instance of a
SimpleSampleCompany object. The priority property consists of the key priority
and a static instance of a SimpleSamplePriority object. The object types are defined
as shown in the following code example
public static final class SimpleSampleCompany {

public static final SimpleSampleCompany Main;
public static final SimpleSampleCompany NewYork_Sales;
public static final SimpleSampleCompany NewYork_Development;
public static final SimpleSampleCompany London_Sales;
public static final SimpleSampleCompany London_Development;

}

public static final class SimpleSamplePriority {
public static final SimpleSamplePriority Platinum;
public static final SimpleSamplePriority Gold;
public static final SimpleSamplePriority Silver;
public static final SimpleSamplePriority Bronze;
public static final SimpleSamplePriority Tin;

}

The client then makes an invocation on a remote object. The work area is
automatically propagated; none of the methods on the remote object take a work
area argument. On the remote side, the request is first handled by the
SimpleSampleBean; the bean first reads the site identifier and priority properties
from the work area. The bean then intentionally attempts, and fails, both to write
directly into the imported work area and to override the read-only site-identifier
property.

The SimpleSampleBean successfully begins a nested work area, in which it
overrides the client’s priority, then calls another bean, the
SimpleSampleBackendBean. The SimpleSampleBackendBean reads the properties

984 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

from the work area, which contains the site identifier set in the client and priority
set in the SimpleSampleBean. Finally, the SimpleSampleBean completes its nested
work area, writes out a message based on the site-identifier property, and returns.

The implementation of this application is discussed in the topic, Developing
applications that use work areas.

Accessing the WorkArea service
The WorkArea service provides a JNDI binding to an implementation of the
UserWorkArea interface under the name java:comp/websphere/UserWorkArea.
Applications that need to access the service can perform a lookup on that JNDI
name, as shown in the following code example:

Usage scenario
import com.ibm.websphere.workarea.*;
import javax.naming.*;

public class SimpleSampleServlet {
...

InitialContext jndi = null;
UserWorkArea userWorkArea = null;
try {

jndi = new InitialContext();
userWorkArea = (UserWorkArea)jndi.lookup(

"java:comp/websphere/UserWorkArea");
}
catch (NamingException e) { ... }

}

What to do next

The next step is to use the begin() method to create a new work area and associate
it with the calling thread, as described in the topic Beginning a new work area.

Beginning a new work area
Before you begin

Be sure that your client has a reference to the UserWorkArea interface, as described
in the topic Accessing the WorkArea Service

Use the begin() method to create a new work area and associate it with the calling
thread. The begin() method takes a string as an argument; the string is used to
name the work area. The argument must not be null, which causes the
java.lang.NullPointer exception to be raised. In the following code example, the
application begins a new work area with the name SimpleSampleServlet:
public class SimpleSampleServlet {
...

try {
...
userWorkArea = (UserWorkArea)jndi.lookup(

"java:comp/websphere/UserWorkArea");
}
...

userWorkArea.begin("SimpleSampleServlet");
...

}

Chapter 21. Using shared work areas 985

The begin() method is also used to create nested work areas; if a work area is
associated with a thread when the begin() method is called, the method creates a
new work area nested within the existing work area.

The WorkArea service makes no use of the names associated with work areas; You
can name work areas in any way that you choose. Names are not required to be
unique, but the usefulness of the names for debugging is enhanced if the names
are distinct and meaningful within the application. Applications can use the
getName() method to return the name associated with a work area by the begin()
method.

What to do next

Using a work area

Setting properties in a work area
An application with a current work area can insert properties into the work area
and retrieve the properties from the work area. The UserWorkArea interface
provides two set() methods for setting properties and a get() method for retrieving
properties. The two-argument set() method inserts the property with the property
mode of normal. The three-argument set() method takes a property mode as the
third argument. (See ″Setting property modes″, later in this topic.)

Both set() methods take the key and the value as arguments. The key is a String;
the value is an object of the type java.io.Serializable. None of the arguments can be
null, which causes the java.lang.NullPointer exception to be raised.

The WorkArea SimpleSample application uses objects of two classes, the
SimpleSampleCompany class and the SimpleSampleProperty class, as values for
properties. The SimpleSampleCompany class is used for the site identifier, and the
SimpleSamplePriority class is used for the priority. These classes are shown in
following code example:
public class SimpleSampleServlet {

...
userWorkArea.begin("SimpleSampleServlet");

try {
// Set the site-identifier (default is Main).
userWorkArea.set("company",

SimpleSampleCompany.Main, PropertyModeType.read_only);

// Set the priority.
userWorkArea.set("priority",

SimpleSamplePriority.Silver);
}

catch (PropertyReadOnly e) {
// The company was previously set with the read-only or
// fixed read-only mode.
...

}

catch (NotOriginator e) {
// The work area originated in another process,
// so it can’t be modified here.
...

}

catch (NoWorkArea e) {
// There is no work area begun on this thread.

986 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

...
}

// Do application work.
...

}

The get() method takes the key as an argument and returns a Java Serializable
object as the value associated with the key. For example, to retrieve the value of
the company key from the work area, the code example above uses the get()
method on the work area to retrieve the value.

Setting property modes. The two-argument set() method on the UserWorkArea
interface takes a key and a value as arguments and inserts the property with the
default property mode of normal. To set a property with a different mode,
applications must use the three-argument set() method, which takes a property
mode as the third argument. The values used to request the property modes are as
follows:
v Normal: PropertyModeType.normal
v Fixed normal: PropertyModeType.fixed_normal
v Read-only: PropertyModeType.read_only
v Fixed read-only: PropertyModeType.fixed_readonly

Using a work area to manage local work
Before you begin

Be sure that your client has a reference to the UserWorkArea interface, as described
in the topic Accessing the WorkArea Service

In a business application that uses work areas, server objects typically retrieve the
work area properties and use them to guide local work.

Steps for this task
1. Retrieving the name of the active work area

This step determines whether the calling thread is associated with a work area.
2. Overriding work area properties.

Server objects can override client work area properties by creating their own,
nested work area.

3. Retrieving properties from a work area
4. Retrieving a list of all keys in a work area
5. Querying the mode of a work area property
6. Deleting a work area property
7. Completing a work area

Usage scenario

The server side of the WorkArea SimpleSample application accepts remote
invocations from clients. With each remote call, the server also gets a work area
from the client if the client has created one. The work area is propagated
transparently. None of the remote methods includes the work area on its argument
list.

Chapter 21. Using shared work areas 987

In the example application, the server objects use the work area interface for
demonstration purposes only. For example, the SimpleSampleBean intentionally
attempts to write directly to an imported work area, which triggers the
NotOriginator exception. Likewise, the bean intentionally attempts to mask the
read only SimpleSampleCompany, which triggers the PropertyReadOnly exception.
The SimpleSampleBean also nests a work area and successfully overrides the
priority property before invoking the SimpleSampleBackendBean. A true business
application would extract the work area properties and use them to guide the local
work. The SimpleSampleBean mimics this by writing a message that function is
denied when a request emanates from a sales environment.

Retrieving the name of the active work area
Applications use the getName() method on the UserWorkArea interface to retrieve
the name of the current work area. This is the recommended method for
determining whether the thread is associated with a work area; if the thread is not
associated with a work area, the getName() method returns null. In the following
code example, the name of the work area corresponds to the name of the class in
which the work area was begun.

Usage scenario
public class SimpleSampleBeanImpl implements SessionBean {

...

public String [] test() {
// Get the work-area reference from JNDI.
...

// Retrieve the name of the work area. In this example,
// the name is used to identify the class in which the
// work area was begun.
String invoker = userWorkArea.getName();
...

}
}

Overriding work area properties
Work areas are inherently associated with the process that creates them. In the
sample application, the client begins a work area and sets into it the site-identifier
and priority properties. This work area is propagated to the server when the client
makes a remote invocation.

Applications nest work areas in order to temporarily override properties imported
from a client process. The nesting mechanism is automatic; invoking begin on the
UserWorkArea interface from within the scope of an existing work area creates a
nested work area that inherits the properties from the enclosing work area.
Properties set into the nested work area are strictly associated with the process in
which the work area was begun; the nested work area must be completed within
the process that created them. If a work area is not completed by the creating
process, the work-area facility terminates the work area when the process exits.
After a nested work area is completed, the original view of the enclosing work
area is restored. However, the view of the complete set of work areas associated
with a thread cannot be decomposed by downstream processes.

Applications set properties into a work area using property modes in ensure that a
particular property is fixed (not removable) or read-only (not overrideable) within
the scope of the given work area.

Usage scenario

988 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

In the following code example, the server-side sample bean attempts to write
directly to the imported work area; this action is not permitted, and the
NotOriginator exception is thrown. The sample bean must begin its own work area
in order to override any imported properties, as shown in the second code
example.
public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...
String invoker = userWorkArea.getName();

try {
userWorkArea.set("key", "value");

}
catch (NotOriginator e) {
}
...

}
}

The following code example demonstrates beginning a nested work area, using the
name of the creating class to identify the nested work area.
public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...
String invoker = userWorkArea.getName();
try {

userWorkArea.set("key", "value");
}
catch (NotOriginator e) {
}

// Begin a nested work area. By using the name of the creating
// class as the name of the work area, we can avoid having
// to explicitly set the name of the creating class in
// the work area.
userWorkArea.begin("SimpleSampleBean");

...
}

}

In the example application, the client sets the site-identifier property as read-only;
that guarantees that the request will always be associated with the client’s
company identity. A server cannot override that value in a nested work area. In the
following code example, the SimpleSampleBean attempts to change the value of
the site-identifier property in the nested work area it created.
public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...

String invoker = userWorkArea.getName();
try {

userWorkArea.set("key", "value");
}
catch (NotOriginator e) {
}

// Begin a nested work area.
userWorkArea.begin("SimpleSampleBean");

Chapter 21. Using shared work areas 989

try {
userWorkArea.set("company",

SimpleSampleCompany.London_Development);
}
catch (NotOriginator e) {
}
...

}
}

Retrieving work area properties
Properties can be retrieved from a work area by using the get() method. This
method is intentionally lightweight; there are no declared exceptions to handle. If
there is no active work area, or if there is no such property set in the current work
area, the get() method returns null.

Note: The get() method can raise a NotSerializableError in the relatively rare
scenario in which CORBA clients set composed data types and invoke
enterprise-bean interfaces.

Usage scenario

The following example shows the retrieval of the site-identifier and priority
properties by the SimpleSampleBean. Recall that one property was set into an
outer work area by the client, and the other property was set into the nested work
area by the server-side bean; the nesting is transparent to the retrieval of the
properties.
public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...

// Begin a nested work area.
userWorkArea.begin("SimpleSampleBean");
try {

userWorkArea.set("company",
SimpleSampleCompany.London_Development);

}
catch (NotOriginator e) {
}

SimpleSampleCompany company =
(SimpleSampleCompany) userWorkArea.get("company");

SimpleSamplePriority priority =
(SimpleSamplePriority) userWorkArea.get("priority");

...
}

}

Retrieving a list of all keys in a work area
The UserWorkArea interface provides the retrieveAllKeys() method for retrieving a
list of all the keys visible from a work area. This method takes no arguments and
returns an array of strings. This method returns null if there is no work area
associated with the thread. If there is an associated work area containing no
properties, the method returns an array of size 0.

Querying the mode of a work area property
The UserWorkArea interface provides the getMode() method for determining the
mode of a specific property. This method takes the property’s key as an argument
and returns the mode as a PropertyModeType object. (See Setting property modes
for more information on names of mode types.) If the specified key does not exist

990 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

in the work area, the method returns PropertyModeType.normal, indicating that
the property can be set and removed without error.

Deleting a work area property
The UserWorkArea interface provides the remove() method for deleting a property
from the current scope of a work area. If the property was initially set in the
current scope, removing it deletes the property. If the property was initially set in
an enclosing work area, removing it deletes the property until the current scope is
completed. When the current work area is completed, the deleted property is
restored.

The remove() method takes the property’s key as an argument. Only properties
with the modes normal and read-only can be removed. Attempting to remove a
fixed property causes the PropertyFixed exception to be thrown. Attempting to
remove properties in work areas that originated in other processes causes the
NotOriginator exception to be thrown.

Completing a work area
After an application has finished using a work area, it must complete the work
area by calling the complete() method on the UserWorkArea interface. This
terminates the association with the calling thread and destroys the work area. If
the complete method is called on a nested work area, the nested work area is
terminated and the parent work area becomes the current work area. If there is no
work area associated with the calling thread, a NoWorkArea exception is thrown.

Every work area must be completed, and work areas can be completed only by the
originating process. For example, if a server attempts to call the complete() method
on a work area that originated in a client, a NotOriginator exception is thrown.
Work areas created in a server process are never propagated back to an invoking
client process.

Note: The WorkArea service claims full local-remote transparency. Even if two
beans happen to be deployed in the same server, and therefore the same JVM and
process, a work area begun on an invocation from another is completed and the
bean in which the request origininated is always in the same state after any remote
call.

Usage scenario

The following code example shows the completion of the work area created in the
client application.
public class SimpleSampleServlet {

...
userWorkArea.begin("SimpleSampleServlet");
userWorkArea.set("company",

SimpleSampleCompany.Main, PropertyModeType.read_only);
userWorkArea.set("priority", SimpleSamplePriority.Silver);
...

// Do application work.
...

// Terminate the work area.
try {

userWorkArea.complete();
}

catch (NoWorkArea e) {

Chapter 21. Using shared work areas 991

// There is no work area associated with this thread.
...

}

catch (NotOriginator e) {
// The work area was imported into this process.
...

}
...

}

The following code example shows the sample application completing the nested
work area it created earlier in the remote invocation.
public class SimpleSampleBeanImpl implements SessionBean {

public String [] test() {
...

// Begin a nested work area.
userWorkArea.begin("SimpleSampleBean");
try {

userWorkArea.set("company",
SimpleSampleCompany.London_Development);

}
catch (NotOriginator e) {
}

SimpleSampleCompany company =
(SimpleSampleCompany) userWorkArea.get("company");

SimpleSamplePriority priority =
(SimpleSamplePriority) userWorkArea.get("priority");

// Complete all nested work areas before returning.
try {

userWorkArea.complete();
}
catch (NoWorkArea e) {
}
catch (NotOriginator e) {
}

}
}

Managing the work area service

The WorkArea service is managed using the administrative console. There are two
administrative tasks associated with work areas:
v Enabling the WorkArea service. The WorkArea Service is enabled by default on

both clients and servers.
v Managing the size of work areas. Applications can set maximum sizes on each

work area to be sent and to be accepted.

Enabling the WorkArea service

For an application to take advantage of work areas, the WorkArea service must be
enabled for both clients and servers. In both cases, the service is enabled by
default.

Steps for this task
1. Enable (or disable) the use of work areas on a server:

992 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

a. Start the administrative console.
b. Select Servers > server_name > WorkArea Service.
c. Select or clear the Startup checkbox.

This specifies whether or not the server should automatically start the
WorkArea service when the server starts.

2. Enable (or disable) the use of work areas on a client:
Set the com.ibm.websphere.workarea.enabled property to TRUE or FALSE
before starting the client. For example, edit the launchClient script in the
$WAS_HOME/bin directory and add the following to the Java invocation:
-Dcom.ibm.websphere.workarea.enabled=false

WorkArea service settings
Use this page to manage the work area service.

The work area service manages the scope and implicit propagation of application
context.

To view this administrative console page, click Servers > Application Servers >
server_name > Work Area Service .

Startup: Specifies whether the server will attempt to start the work area service.

Default Selected
Range

Selected
When the application server starts, it
attempts to start the work area service
automatically.

Cleared
The server does not try to start the
work area service. If work areas are to
be used on this application server, the
system administrator must start the
service manually or select this property
then restart the server.

Maximum Send Size: Specifies the maximum size of data that can be sent within
a single work area.

Data type Integer
Units Bytes
Default 32767
Range -1 to no limit

-1 Default.

0 No limit.

Maximum Receive Size: Specifies the maximum size of data that can be received
by a single work area.

Data type Integer
Units Bytes
Default 32767

Chapter 21. Using shared work areas 993

Range -1 to no limit

-1 Default.

0 No limit.

Managing the size of work areas

Applications can set maximum sizes on each work area to be sent or received. By
default, the maximum size of a work area that is sent by a client and received,
then possibly re-sent, by a server is 32,768 bytes. You can change this size as
described in this topic.

Steps for this task
1. Change the size of the work area that can be sent or received by a server:

a. Start the administrative console.
b. Select Servers > server_name > WorkArea Service.
c. Enter a new value in the maxSendSize field to modify the size of the work

area that this server can send, or enter a new value in the maxReceiveSize
field to modify the size of the work area that this server can accept.

2. Change the size of the work area that can be sent by a client:
Set the com.ibm.websphere.workarea.maxSendSize property to the desired
number of bytes before starting the client. This can be done in several ways.
For example, to set the maximum size to 10,000 bytes, edit the launchClient
script in the $WAS_HOME/bin directory and add the following to the Java
invocation:
-Dcom.ibm.websphere.workarea.maxSendSize=10000

Results

The maximum size that can be specified is determined by the maximum value
expressible in the Java Integer data type, 2,147,483,647. The smallest maximum size
that can be specified is 1. Using a maximum size of 1 byte effectively means that
no requests associated with the work area can leave the system or enter another
system. A value of 0 means that no limit is imposed. A value of -1 means that the
default value is to be honored. The default value is also used if an invalid value or
a malformed property is specified.

994 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 22. Using the transaction service

These topics provide information about using transactions with WebSphere
applications

WebSphere applications can use transactions to coordinate multiple updates to
resources as atomic units (as indivisible units of work) such that all or none of the
updates are made permanent.

In WebSphere Application Server, transactions are handled by three main
components:
v A transaction manager that supports the enlistment of recoverable XAResources

and ensures that each such resource is driven to a consistent outcome either at
the end of a transaction or after a failure and restart of the application server.

v A container in which the J2EE application runs. The container manages the
enlistment of XAResources on behalf of the application when the application
performs updates to transactional resource managers (for example, databases).
Optionally, the container can control the demarcation of transactions for
enterprise beans configured for container-managed transactions.

v An application programming interface (UserTransaction) that is available to
bean-managed enterprise beans and servlets. This allows such application
components to control the demarcation of their own transactions.

For more information about using transactions with WebSphere applications, see
the following topics:
v ″Transaction support in WebSphere Application Server″

v ″Developing components to use transactions″

v ″Configuring transaction properties for an application server″

v ″Using local transactions″

v ″Setting transactional attributes in the deployment descriptor″

v ″Using bean-managed transactions″

v ″Managing active transactions″

v ″Troubleshooting transactions″

v ″Transaction service exceptions″

v ″UserTransaction interface - methods available″

v Coordinating access to 1-PC and 2-PC-capable resources within the same
transaction

v Implementing WebSphere enterprise applications that use ActivitySessions

Transaction support in WebSphere Application Server
A transaction is unit of activity within which multiple updates to resources can be
made atomic (as an indivisible unit of work) such that all or none of the updates
are made permanent. For example, multiple SQL statements to a relational
database are committed atomically by the database during the processing of an
SQL COMMIT statement. In this case, the transaction is contained entirely within
the database manager and can be thought of as a resource manager local transaction
(RMLT). In some contexts, a transaction is referred to as a logical unit of work
(LUW).

© Copyright IBM Corp. 2003 995

The way that applications use transactions depends on the type of application
component, as follows:
v A session bean can either use container-managed transactions (where the bean

delegates management of transactions to the container) or bean-managed
transactions (where the bean manages transactions itself).

v Entity beans use container-managed transactions.
v Web components (servlets) use bean-managed transactions.

WebSphere Application Server is a transaction manager that supports the
coordination of resource managers through their XAResource interface and
participates in distributed global transactions with other OTS 1.2 compliant
transaction managers (for example J2EE 1.3 application servers). WebSphere
applications can also be configured to interact with databases, JMS queues, and
JCA connectors through their local transaction support when distributed transaction
coordination is not required.

Resource managers that offer transaction support can be categorized into those that
support two-phase coordination (by offering an XAResource interface) and those
that support only one-phase coordination (for example through a LocalTransaction
interface). The WebSphere Application Server transaction support provides
coordination, within a transaction, for any number of two-phase capable resource
managers. It also enables a single one-phase capable resource manager to be used
within a transaction in the absence of any other resource managers, although a
WebSphere transaction is not necessary in this case.

With the Last Participant Support of WebSphere Application Server Enterprise, you
can coordinate the use of a single one-phase commit (1PC) capable resource with
any number of two-phase commit (2PC) capable resources in the same global
transaction. At transaction commit, the two-phase commit resources are prepared
first using the two-phase commit protocol, and if this is successful the one-phase
commit-resource is then called to commit(one_phase). The two-phase commit
resources are then committed or rolled back depending on the response of the
one-phase commit resource.

The ActivitySession service of WebSphere Application Server Enterprise provides
an alternative unit-of-work (UOW) scope to that provided by global transaction
contexts. It is a distributed context that can be used to coordinate multiple
one-phase resource managers. The WebSphere EJB container and deployment
tooling support ActivitySessions as an extension to the J2EE programming model.
EJBs can be deployed with lifecycles that are influenced by ActivitySession context,
as an alternative to transaction context. An application can then interact with a
resource manager through its LocalTransaction interface for the period of a
client-scoped ActivitySession rather than just the duration of an EJB method.

Resource manager local transaction (RMLT)
A resource manager local transaction (RMLT) is a resource manager’s view of a
local transaction; that is, it represents a unit of recovery on a single connection that
is managed by the resource manager.

Resource managers include:
v Enterprise Information Systems that are accessed through a resource adapter, as

described in the J2EE Connector Architecture 1.0
(http://java.sun.com/j2ee/connector/index.html).

v Relational databases that are accessed through a JDBC datasource.

996 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://java.sun.com/j2ee/connector/index.html

v JMS queue and topic destinations.

Resource managers offer specific interfaces to enable control of their RMLTs. J2EE
connector resource adapters that include support for local transactions provide a
LocalTransaction interface to enable applications to request that the resource
adapter commit or rollback RMLTs. JDBC datasources provide a Connection
interface for the same purpose.

The boundary at which all RMLTs must be complete is defined in WebSphere
Application Server by a ″Local transaction containment (LTC)″.

Global transactions
If an application uses two or more resources, then an external transaction manager
is needed to coordinate the updates to both resource managers in a global
tansaction.

Global transaction support is available to web and enterprise bean J2EE
components. Enterprise bean components can be subdivided into beans that exploit
container-managed transactions (CMT) or bean-managed transactions (BMT).

BMT enterprise beans and web components can use the Java Transaction API (JTA)
UserTransaction interface to define the demarcation of a global transaction. The
UserTransaction interface is obtained by a JNDI lookup of
java:comp/UserTransaction. The UserTransaction is not available to the following
components:
v CMT enterprise beans. Any attempt by such beans to obtain the interface results

in an exception in accordance with the EJB specification.
v Client applications running outside the Web and EJB containers.

Ensure that programs that perform a JNDI lookup of the UserTransaction interface,
use an InitialContext that resolves to a local implementation of the interface. Also
ensure that such programs use a JNDI location appropriate for the EJB version.

Before the EJB 1.1 specification, the JNDI location of the UserTransaction interface
was not specified. Each EJB container implementor defined it in an
implementation-specific manner. Earlier versions of WebSphere Application Server,
up to and including Version 3.5.x (without EJB 1.1), bind the UserTransaction
interface to a JNDI location of jta/usertransaction. WebSphere Application Server
Version 4, and later releases, bind the UserTransaction interface at the location
defined by EJB 1.1, which is java:comp/UserTransaction. WebSphere Application
Server, Version 5 no longer provides the jta/usertransaction binding within Web
and EJB containers to applications at a J2EE level of 1.3 or later. For example, EJB
2.0 applications can use only the java:comp/UserTransaction location.

A web component or enterprise bean (CMT or BMT) can get the
ExtendedJTATransaction interface through a lookup of
java:comp/websphere/ExtendedJTATransaction. This interface provides access to
the transaction identity and a mechanism to receive notification of transaction
completion.

Local transaction containment (LTC)
A local transaction containment (LTC) is used to define the application server
behavior in an unspecified transaction context.

Chapter 22. Using the transaction service 997

(Unspecified transaction context is defined in the Enterprise JavaBeans 2.0
Specification (http://java.sun.com/products/ejb/2.0.html).)

A LTC is a bounded unit-of-work scope within which zero, one, or more resource
manager local transactions (RMLTs) can be accessed. The LTC defines the
boundary at which all RMLTs must be complete; any incomplete RMLTs are
resolved, according to policy, by the container. An LTC is local to a bean instance;
it is not shared across beans even if those beans are managed by the same
container. LTCs are started by the container before dispatching a method on a J2EE
component (such as an enterprise bean or servlet) whenever the dispatch occurs in
the absence of a global transaction context. LTCs are completed by the container
depending on the application-configured LTC boundary; for example at the end of
the method dispatch. There is no programmatic interface to the LTC support;
rather LTCs are managed exclusively by the container and configured by the
application deployer through transaction attributes in the application deployment
descriptor.

A local transaction containment cannot exist concurrently with a global transaction.
If application component dispatch occurs in the absence of a global transaction, the
container always establishes an LTC. The only exceptions to this are as follows:
v Where application component dispatch occurs without container interposition;

for example, for a stateless session bean create.
v J2EE 1.2 web components.
v J2EE 1.2 BMT enterprise beans.

A local transaction containment can be scoped to an ActivitySession context that
lives longer than the enterprise bean method in which it is started, as described in
“ActivitySession and transaction contexts” on page 1023ActivitySessions and
transaction contexts.

Using local transactions
Local transaction containment (LTC) support, and its configuration through local
transaction extended deployment descriptors, gives IBM WebSphere Application
Server application programmers a number of advantages. This topic describes
those advantages and how they relate to the settings of the local transaction
extended deployment descriptors. This topic also describes points to consider to
help you best configure transaction support for some example scenarios that use
local transactions.

Develop an enterprise bean or servlet that accesses one or more databases that
are independent and require no coordination.

If an enterprise bean does not need to use global transactions, it is often
more efficient to deploy the bean with the Container Transaction
deployment descriptor Transaction attribute set to Not supported instead
of Required.

With the extended local transaction support of IBM WebSphere Application
Server, applications can perform the same business logic in an unspecific
transaction context as they can under a global transaction. An enterprise
bean, for example, runs under an unspecified transaction context if it is
deployed with a Transaction attribute of Not supported or Never.

The extended local transaction support provides a container-managed,
implicit local transaction boundary within which application updates can
be committed and their connections cleaned up by the container.
Applications can then be designed with a greater degree of independence
from deployment concerns. This makes using a Transaction attribute of

998 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://java.sun.com/products/ejb/2.0.html

Supports much simpler, for example, when the business logic may be
called either with or without a global transaction context.

An application can follow a get-use-close pattern of connection usage
regardless of whether or not the application runs under a transaction. The
application can depend on the close behaving in the same way and not
causing a rollback to occur on the connection if there is no global
transaction.

There are many scenarios where ACID coordination of multiple resource
managers is not needed. In such scenarios running business logic under a
Transaction policy of Not supported performs better than if it had been
run under a Required policy. This benefit is exploited through the Local
Transactions - Resolution-control extended deployment setting of
ContainerAtBoundary. With this setting, application interactions with
resource providers (such as databases) are managed within implicit RMLTs
that are both started and ended by the container. The RMLTs are
committed by the container at the configured Local Transactions -
Boundary; for example at the end of a method. If the application returns
control to the container by an exception, the container rolls back any
RMLTs that it has started.

This usage applies to both servlets and enterprise beans.

Use local transactions in a managed environment that guarantees clean-up.
Applications that want to control RMLTs, by starting and ending them
explicitly, can use the default Local Transactions - Resolution-control
extended deployment setting of Application. In this case, the container
ensures connection cleanup at the boundary of the local transaction
context.

J2EE specifications that describe application use of local transactions do so
in the manner provided by the default setting of Local Transactions -
Resolution-control=Application and Local Transactions -
Unresolved-action=Rollback. By configuring the Local Transactions -
Unresolved-action extended deployment setting to Commit, then any
RMLTs started by the application but not completed when the local
transaction containment ends (for example, when the method ends) are
committed by the container. This usage applies to both servlets and
enterprise beans.

Extend the duration of a local transaction beyond the duration of an EJB
component method.

The J2EE specifications restrict the use of RMLTs to single EJB methods.
This restriction is because the specifications have no scoping device,
beyond a container-imposed method boundary, to which an RMLT can be
extended. In WebSphere Application Server Enterprise, you can exploit the
Local Transactions - Boundary extended deployment setting to give the
following advantages:
v Significantly extend the use-cases of RMLTs
v Make conversational interactions with one-phase resource managers

possible through ActivitySession support.

An ActivitySession is a WebSphere Application Server Enterprise
programming model extension that provides a distributed context with a
boundary that is longer than a single method. You can extend the use of
RMLTs over the longer ActivitySession boundary, which can be controlled
by a client. The ActivitySession boundary reduces the need to use

Chapter 22. Using the transaction service 999

distributed transactions where ACID operations on multiple resources are
not needed. This benefit is exploited through the Local Transactions -
Boundary extended deployment setting of ActivitySession. Such extended
RMLTs can remain under the control of the application or be managed by
the container depending on the use of the Local Transactions -
Resolution-control deployment descriptor setting.

Coordinate multiple one-phase resource managers.
For resource managers that do not support XA transaction coordination, a
client can exploit ActivitySession-bounded local transaction contexts. Such
contexts give a client the same ability to control the completion direction of
the resource updates by the resource managers as the client has for
transactional resource managers. A client can start an ActivitySession and
call its entity beans under that context. Those beans can perform their
RMLTs within the scope of that ActivitySession and return without
completing the RMLTs. The client can later complete the ActivitySession in
a commit or rollback direction and cause the container to drive the
ActivitySession-bounded RMLTs in that coordinated direction.

To determine how best to configure the transaction support for an application,
depending on what you want to do with transactions, consider the following
points.

General points

v You want to start and end global transactions explicitly in the
application (BMT session beans and servlets only).
For a session bean, set the Transaction type to Bean (to use
bean-managed transactions) in the component’s deployment descriptor.
(You do not need to do this for servlets.)

v You want to access only one XA or non-XA resource in a method.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to ContainerAtBoundary. In the Container transaction
deployment descriptor, set Transaction to Supports.

v You want to access several XA resources atomically across one or more
bean methods.
In the Container transaction deployment descriptor, set Transaction to
Required, Requires new, or Mandatory.

v You want to access several non-XA resource in a method without having
to worry about managing your own local transactions.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to ContainerAtBoundary. In the Container transaction
deployment descriptor, set Transaction to Not supported.

v You want to access several non-XA resources in a method and want to
manage them independently.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to Application and set Local Transactions -
Unresolved-action to Rollback. In the Container transaction deployment
descriptor, set Transaction to Not supported.

Points specific to WebSphere Application Server Enterprise

v You want to access one of more non-XA resources across multiple EJB
method calls without having to worry about managing your own local
transactions.

1000 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

In the component’s deployment descriptor, set Local Transactions -
Resolution-control to ContainerAtBoundary, Local Transactions -
Boundary to ActivitySession, and Bean Cache - Activate at to
ActivitySession. In the Container transaction deployment descriptor, set
Transaction to Not supported and set ActivitySession attribute to
Required, Requires new, or Mandatory.

v You want to access several non-XA resources across multiple EJB method
calls and want to manage them independently.
In the component’s deployment descriptor, set Local Transactions -
Resolution-control to Application, Local Transactions - Boundary to
ActivitySession, and Bean Cache - Activate at to ActivitySession. In
the Container Transaction deployment descriptor, set Transaction to Not
supported and set ActivitySession attribute to Required, Requires new,
or Mandatory.

v You want to use a single non-XA resource and one or more
XAResources.
Use the Last Participant Support of WebSphere Application Server
Enterprise.

Local and global transaction considerations
Applications use resources, such as JDBC data sources or connection factories, that
are configured through the Resources view of the WebSphere Application Server
Administrative Console. How these resources participate in a global transaction
depends on the underlying transaction support of the resource provider. For
example, most JDBC providers can provide either XA or non-XA versions of a data
source. A non-XA data source can support only resource manager local transactions
(RMLTs), but an XA data source can support two-phase commit coordination, as
well as local transactions.

If an application uses two or more resource providers that support only RMLTs,
then atomicity cannot be assured because of the one-phase nature of these
resources. To ensure atomic behavior, the application should use resources that
support XA coordination and should access them within a global transaction.

If an application uses only one RMLT, the atomic behavior can be guaranteed by
the resource manager, which can be accessed under a local transaction containment
context.

An application can also access a single resource manager under a global
transaction context, even if that resource manager does not support the XA
coordination. An application can do this, because WebSphere Application Server
performs an ″only resource optimization″ and interacts with the resource manager
under a RMLT. Within a global transaction context, any attempt to use more than
one resource provider that supports only RMLTs causes the global transaction to be
rolled back.

At any moment, an instance of an enterprise bean can have work outstanding in
either a global transaction context or a local transaction containment context, but
never both. An instance of an enterprise bean can change from running under one
type of context to the other (in either direction), if all outstanding work in the
original context is complete. Any violation of this principle causes an exception to
be thrown when the enterprise bean tries to start the new context.

Chapter 22. Using the transaction service 1001

Developing components to use transactions
These topics provide information about developing WebSphere application
components to use transactions

The way that applications use transactions depends on the type of application
component, as follows:
v A session bean can either use container-managed transactions (where the bean

delegates management of transactions to the container) or bean-managed
transactions (where the bean manages transactions itself).

v Entity beans use container-managed transactions.
v Web components (servlets) use bean-managed transactions.

You configure whether a component uses container- or bean-managed transactions
by setting an appropriate value on the Transaction type deployment attribute, as
described in ″Setting transactional attributes in the deployment descriptor″. You
can also configure other transactional deployment descriptor attributes.

If you want a session bean to manage its own transactions, you must write the
code that explicitly demarcates the boundaries of a transaction as described in
″Using bean-managed transactions″.

Similarly, if you want a Web component to use transactions, you must write the
code that explicitly demarcates the boundaries of a transaction as described in
″Using bean-managed transactions″.

Setting transactional attributes in the deployment descriptor
Use this task to configure the transactional deployment descriptor attributes
associated with an EJB or Web module, to enable a J2EE application to use
transactions.

To set transactional attributes in the deployment descriptor for an application
component (enterprise bean or servlet), complete the following steps:

Steps for this task
1. (Start the Application Assembly Tool).
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, click File-> Open
then select the EAR file.

3. In the navigation pane, select the component instance; for example:
v For a session bean, expand ejb_module_instance-> Session beans then select

the bean instance.
v For a servlet, expand web_application-> Web Components then select the

servlet instance.

A property dialog notebook for the component is displayed in the property
pane.

4. In the property pane, select the Advanced tab.
5. Set the Transaction type attribute, which defines the transactional manner in

which the container invokes a method.
You can set this attribute to Container or Bean, as follows:
v For a session bean to use container-managed transactions, set Container

1002 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v For a session bean to use bean-managed transactions, set Bean
v For an entity bean, set Container
v For a Web component (servlet), set Bean

6. In the property pane, select the IBM Extensions tab.
7. Configure J2EE component extensions attributes for extended local transaction

containment.
To enable management of local transaction containments, configure the
following EJB extensions attributes. These attributes configure, for the
component, the behaviour of the container’s local transaction containment
(LTC) environment that the container establishes whenever a global transaction
is not present.

Boundary
Specifies the duration of a local transaction context. You can set this
attribute to Bean method or ActivitySession, as described in (″Entity
bean assembly settings″).

Note: The ActivitySession option is not supported in the web container.

This property can be changed on WAS Enterprise only.

Resolution control
Specifies how the local transaction is to be resolved before the local
transaction context ends: by the application through user code or by the
EJB container. You can set this attribute to either Application or
ContainerAtBoundary, as described in (″Entity bean assembly
settings″).

Unresolved action
Specifies the action that the container must take when the local
transaction context scope ends, if resources are uncommitted by an
application in a local transaction and the Resolution control is set to
Application. You can set this attribute to either Commit or Rollback, as
described in (″Entity bean assembly settings″).

8. [For EJB components only] For container-managed transactions, configure how
the container must manage the transaction boundaries when delegating a
method invocation to an enterprise bean’s business method:
a. In the navigation pane, select Container Transactions.

This displays a table of the methods for enterprise beans.
b. For each method of the enterprise bean set the Transaction attribute

attribute to an appropriate value, as defined in (″Container transaction
assembly settings″).

If the application uses ActivitySessions, how the container manages transaction
boundaries when delegating a method invocation depends on both the
Transaction attribute attribute, set here, and the ActivitySession kind attribute,
as described in “Configuring ActivitySession deployment attributes for an
enterprise bean” on page 1033Configuring ActivitySession deployment
attributes for an enterprise JavaBean. For more detail about the relationship
between these two properties, see “Combining transaction and ActivitySession
container policies” on page 1024Combining transaction and ActivitySession
container policies.

Chapter 22. Using the transaction service 1003

Using bean-managed transactions
This topic describes how to enable a session bean or servlet to use bean-managed
transactions, to manage its own transactions directly instead of letting the
container manage the transactions.

Note: Entity beans cannot manage transactions (so cannot use bean-managed
transactions).

To enable a session bean or servlet to use bean-managed transactions, complete the
following steps:

Steps for this task
1. Set the Transaction type attribute in the component’s deployment descriptor to

Bean, as described in Setting transactional attributes in the deployment
descriptor.

2. Write the component code to actively manage transactions
When writing the code required by a component to manage its own
transactions, remember the following basic rules:
v An instance of a stateless session bean cannot reuse the same transaction

context across multiple methods called by an EJB client.
v An instance of a stateful session bean can reuse the same transaction context

across multiple methods called by an EJB client.

The following code extract shows the standard code required to obtain an
object encapsulating the transaction context. There are three basics steps
involved:
v The component class must set the value of the javax.ejb.SessionContext object

reference in the setSessionContext method.
v A javax.transaction.UserTransaction object is created by calling a lookup on

″java:comp/UserTransaction″.
v The UserTransaction object is used to participate in the transaction by calling

transaction methods such as begin and commit as needed. If an enterprise
bean begins a transaction, it must also complete that transaction either by
invoking the commit method or the rollback method.

...
import javax.transaction.*;
...
public class MyStatelessSessionBean implements SessionBean {
private SessionContext mySessionCtx =null;
...
public void setSessionContext (SessionContext ctx)throws EJBException {
mySessionCtx =ctx;
}
...

public float doSomething(long arg1)throws FinderException,EJBException {
UserTransaction userTran = (UserTransaction)initCtx.lookup(

"java:comp/UserTransaction");
...
//User userTran object to call transaction methods
userTran.begin ();
//Do transactional work
...
userTran.commit ();
...

}
...

}

1004 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Configuring transaction properties for an application server
Use this task to configure the transaction properties for an application server; for
example, to define the location of the directory that contains the transaction log or
to change default timeouts associated with transactions.

To configure the transaction properties for an application server, complete the
following steps:

Steps for this task
1. Start the Administrative console
2. In the navigation pane, select Servers-> Manage Local Server

This displays the properties of the application server in the content pane.
3. Select the Transaction Service tab, to display the properties page for the

transaction service, as two notebook pages:

Configuration
The values of properties defined in the configuration file. If you
change these properties, the new values are applied when the
application server next starts.

Runtime
The runtime values of properties. If you change these properties, the
new values are applied immediately, but are overwritten with the
Configuration values when the application server next starts.

4. Select the Configuration tab, to display the transaction-related configuration
properties.

5. (Optional) If you want to change the directory in which transaction logs are
written, type the full pathname of the directory in the Transaction log
directory field.
You can check the current runtime value of Transaction log directory, by
clicking the Runtime tab.
You can also specify a size for the transaction logs, as described in the
following step.
Note: If you change the transaction log directory, you should apply the
change and restart the application server as soon as possible, to minimize the
risk of problems caused that might occur before the application server is
restarted. For example, if a problem causes the server to fail (with in-flight
transactions), the server next starts with the new log directory and is unable
to automatically resolve in-flight transactions that were recorded in the old log
directory.

6. (Optional) If you want to change the default file size of transaction log files,
modify the Transaction log directory field to include a file size setting, in the
following format:
directory_name;file_size

Where
v directory_name is the name of the transaction log directory
v file_size is the new default size specified in bytes. The nK or nM suffix can

be used to indicate kilobytes or megabytes. If you do not specify a file size
value, the default value of 1M is used.

For example, c:\tranlogs;2M indicates the files are to be created with 2M
bytes size and stored in the directory c:\tranlogs.

Chapter 22. Using the transaction service 1005

In a non-production environment, you can use the transaction log directory
value of ;0 to disable transaction logging. (There must be no directory name
element before the size element of 0.) You should not disable transaction
logging in a production environment, because this prevents recovery after a
system failure and, therefore, data integrity cannot be guaranteed.

7. In the Total transaction lifetime timeout field, type the number of seconds a
transaction can remain inactive before it is ended by the transaction service. A
value of 0 (zero) indicates that there is no timeout limit.

8. In the Client inactivity timeout field, type the number of seconds after which
a client is considered inactive and the transaction service ends any
transactions associated with that client. A value of 0 (zero) indicates that there
is no timeout limit.

9. Click OK.
10. Stop then restart the application server.

If you change the transaction log directory configuration property to an
incorrect directory name, the application server will restart but be unable to
open the transaction logs. You should change the configuration property to a
valid directory name, then restart the application server.

Transaction service settings
Use this page to modify transaction service settings.

To view this administrative console page, click Servers > Application Servers >
server > Transaction Service.

Transaction log directory
Specifies the name of a directory for this server where the transaction service stores
log files for recovery.

A blank value in the server configuration is expanded by the transaction log at
startup as the directory (install_root)/tranlog/(server_name).

When the application running on the WebSphere product accesses more then one
resource, the WebSphere product stores transaction information to properly
coordinate and manage the distributed transaction. In a higher transaction load,
this persistence slows down performance of the application server due to its
dependency on the operating system and the underlying storage systems.

To achieve better performance, move the transaction log files to a storage device
with more physical disk drives, or preferably RAID disk drives. When the log files
are moved to the file systems on the raided disks, the task of writing data to the
physical media is shared across the multiple disk drives. This allows more
concurrent access to persist transaction information and faster access to that data
from the logs. Depending upon the design of the application and storage
subsystem, performance gains can range from 10% to 100%, or even more in some
cases.

This change is applicable only to the configuration where the application uses
distributed resources or XA transactions, for example, multiple databases and
resources are accessed within a single transaction. Consider setting this property
when the application server shows one or more of following signs:
v CPU utilization remains low despite an increase in transactions
v Transactions fail with several time outs
v Transaction rollbacks occur with unable to enlist transaction exception

1006 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v Application server hangs in middle of a run and requires the server to be
restarted

v The disk on which an application server is running shows higher utilization

Data type String
Default Initial value is the %WAS_HOME%\tranlog directory and a default

size of 1MB.
Recommended Create a file system with at least 3-4 disk drives raided together in a

RAID-0 configuration. Then, create the transaction log on this file
system with the default size. When the server is running under
load, check the disk input and output. If disk input and output time
is more then 5%, consider adding more physical disks to lower the
value. If disk input and output is low, but the server is still high,
consider increasing the size of the log files.

Total transaction lifetime timeout
Specifies the maximum duration, in seconds, for transactions on this application
server.

Any transaction that is not requested to complete before this time-out is rolled
back. If set to 0, there is no time-out limit.

Data type Integer
Units Seconds
Default 120
Range 0 to 2 147 483 647

Client inactivity timeout
Specifies the maximum duration, in seconds, between transactional requests from a
remote client.

Any period of client inactivity that exceeds this timeout results in the transaction
rolling back in this application server. If set to 0, there is no timeout limit.

Data type Integer
Units Seconds
Default 60
Range 0 to 2 147 483 647

Maximum Transaction Timeout
Specifies the maximum duration, in seconds, that transactions started by or
propagated into this application server are allowed to execute.

Data type Integer
Units Seconds
Default 300
Range 0 to 2 147 040

Managing active transactions
Use this task to manage transactions that are active on an application server.

Chapter 22. Using the transaction service 1007

You can use this task to display a snapshot of all the transactions currently running
on an application server. For each transaction, the following properties are shown:
its local ID, global ID, and current status. You can also choose to finish transactions
manually.

Under normal circumstances, transactions should run and complete (commit or
rollback) automatically, without the need for intervention. However, in some
circumstances, you may need to finish a transaction manually. For example, you
may want to finish a transaction that has become stuck polling a resource manager
that you know will not become available again within the desired timeframe.

Note: If you choose to finish a transaction on an application server, it is recorded
as having completed in the transaction service logs for that server, so will not be
eligible for recovery during server start up. If you finish a transaction, you are
responsible for cleaning up any in-doubt transactions on the resource managers
affected.

To manage the active transactions for an application server, use the administrative
console to complete the following steps:

Steps for this task
1. In the navigation pane, select Servers-> Manage Application Servers

This displays a list of application servers in the content pane.
2. In the content pane, click your_app_server

This displays the properties of the application server, your_app_server.
3. In the content pane, click the Runtime tab.

This displays the runtime properties of the application server.
4. In the Additional Properties table, select Transaction Service

This displays the runtime properties of the Transaction Service.
5. Click Manage Transactions.

This displays a snapshot of all the transactions currently running on the server.
For each transaction, the following properties are shown: its local ID, global ID,
and current status.

6. (Optional) If you want to finish one or more transactions, select the checkbox
provided on the entry for the transaction, then click Finish. Alternatively, to
finish all transactions, select the checkbox in the header of the transactions
table, then click Finish.

Managing transaction logging for optimum server availability
This topic describes some considerations and actions that you can use to manage
transaction logging to help ensure that the availability of your application servers
is optimized.

The transaction service writes information to the transaction log for every global
transaction which involves two or more resources or is distributed across multiple
servers. The transaction log is stored on disk and is used by the transaction service
for recovery after a system or server crash. The transaction log for each application
server consists of multiple files held in a single directory. You can change the
directory that an application server uses to store the transaction log, as described
in ″Configuring transaction properties for an application server″.

1008 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

When a global transaction is completed, the information in the transaction log is
not needed anymore so is marked for deletion. Periodically, this redundant
information is garbage collected and the space reused by new transactions. The log
files are created of fixed size at server startup, thus no further disk space allocation
is required during the lifetime of the server. The default allocation is suitable for
around 500 concurrent transactions.

If all the log space is in use when a transaction needs to save information, the
transaction is rolled back and the message ″WTRN0075W: The transaction log file
is full. Transaction rolled back.″ is reported to the system error log. No more
transactions can commit until more log space is made available when existing
active transactions complete.

You can monitor the number of concurrent global transactions by using the
performance monitoring counters for transactions. The ″Global transaction commit
time″ counter is a measure of how long a transaction takes to complete and,
therefore, how long the log is in use by a transaction. If this value is high, then
transactions are taking a long time to complete, which can be due to resource
manager or network failures. If you ensure this value is low, the log is more
efficiently used and unlikely to become full.

You can change the default size of log files by updating the transaction log settings
as described in ″Configuring transaction properties for an application server″. Take
care if you increase the size above the default 1Mbyte setting, because this extends
the time of the log file garbage collection process, and can lead to undesireable
periodic ″transaction stall″ effects.

Configuring transaction aspects of servers for optimum
availability

This topic describes some considerations and actions that you can take to configure
transaction-related aspects of application servers for optimum availability.

To configure transaction-related aspects of application servers for optimum
availability, complete the following steps:

Steps for this task
1. Store the transaction log files on a fast disk in a highly-available file system,

such as a RAID device.
The transaction log may need to be accessed by every global transaction and be
used for transaction recovery after a crash. Therefore, the disk the log files are
being written to should be on a highly-available file system, such as a RAID
device.
The performance of the disk also directly affects the transaction performance. In
general, a global transaction makes two disk writes, one after the prepare phase
when the outcome of the transaction is known (this information is forced to
disk) and a further disk write at transaction completion. Therefore, the
transaction logs should be placed on the fastest disks available and not make
use of network mounted devices.

2. Mirror the transaction log files by using hardware disk mirroring or
dual-ported disks.
If log files have been mirrored or can be recovered, they can be used when
restarting a failed server or moved to an another machine and another server
started there to perform recovery.

Chapter 22. Using the transaction service 1009

Hardware disk mirroring or dual-ported disks can be used by specifiying the
appropriate file system directory for the transaction logs using the WebSphere
Administrative Console.

3. Specify the optimum location of the transaction log directory for application
servers.
The default transaction log directory for an application server configuration is
unset. By default the application server places transaction log files in a
subdirectory of the installed WebSphere tranlog directory (as defined by the
WebSphere variable TRANLOG_ROOT), and the subdirectory name is the same
as the server name. For example, the default directory for a server named
server1 on Windows 2000 is: c:\WebSphere\AppServer\tranlog\server1.
You can specify an optimum location of the transaction log directory for all
application servers, either on a node or cell scope, by setting the WebSphere
variable TRANLOG_ROOT. You can specify a different location separately for
each application server by setting the Transaction Log Directory property for
the server.

4. Never allow more than one application server to concurrently use the same set
of log files.
Because the transaction logs record the state of global transactions within a
server, if the logs become lost or corrupt, then transactions that are in the
prepared state before failure can leave resources in an in-doubt state and
prevent further updates or access to the resources by other users or servers.
These transactions may need to be manually resolved by either committing or
rolling back the transactions at the affected resource managers. The failed
server can then be cold-started, which creates new empty transaction logs.
If log files have been mirrored or can be recovered, they can be used when
restarting the failed server or moved to an alternate server or machine and
another server restarted to perform recovery, as described in the related tasks.
Never allow more than one application server to concurrently use the same set
of log files, because each server will destroy the information recorded by the
other, resulting in corrupt log files that are unusable for future recovery
purposes.

5. Configure application servers to always use the same listening port address at
each startup.
If you are running distributed transactions between multiple application
servers, the remote object references saved in the transaction log need to be
redirected to the originating server on recovery.
On Application Server Network Deployment, the node agents automatically
redirect such remote object references to the appropriate application servers on
recovery. However, if the distributed transaction is between application servers
that are not on Application Server Network Deployment, then you must handle
the redirection of remote object references for transaction recovery to complete.
For example, you must do this is if an application server is deployed on
WebSphere Application Server (not the Network Deployment edition) and runs
distributed transactions with non-WebSphere EJB or Corba servers.
In particular, the default restart action of an application server not on
Application Server Network Deployment is to use a different listening port
address to the port when the server shut down. This prevents transaction
recovery completing. To overcome this, you should always configure
application servers to always use the same listening port address at each
startup (see the ORB property com.ibm.CORBA.ListenerPort in (″Object
Request Broker service settings that can be added to the administrative

1010 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

console″)). You may need to make similar configuration changes to other
application servers involved in transactions, to be able to access those servers
during recovery.

Moving a transaction log from one server to another
This topic describes some considerations and actions that you can take to move the
transaction logs for an application server to another server.

To move transaction logs from one application server to another, consider the
following steps:

Steps for this task
1. Move all the transaction log files for the application server.

The transaction log directory for each server contains four log files; named
tranlog1, tranlog2, XAresource1, and XAresource2. When moving transaction
logs from one server to another you must move all four files; otherwise
recovery may not complete resulting in data inconsistency.

2. For a single server configuration, move the transaction logs to any server that
has access to the same resource managers.
For a single server configuration (where there are no distributed transactions),
the transaction logs can be moved to any server (on any node) that has access
to the same resource managers as the original server. For example, the server
needs communication and valid security access to databases or message
queues.
All the transaction log files for the original server need to be moved to a
directory accessible by the new server. This can be accomplished by either
renaming the transaction log directory or copying all the log files to the new
server’s transaction log directory before starting the new server.
Note: To complete transaction recovery, the application server uses the resource
manager configuration information in the transaction logs. However, for the
application server to continue to do new work with the same resource
managers, the server must have an appropriate resource manager configuration
(as for the original server).

3. For a network-deployed server configuration, move the transaction logs to a
server that has the same name and host IP address, and access to the same
resource managers.
For a network-deployed server configuration, where there can be distributed
transactions present in the logs, there are more restrictions. Distributed
transactions that access multiple servers log information about each server
involved in the transaction. This information includes the server name and the
IP address of the machine on which the server is running. When recovery is
taking place on server restart, the server uses this information to contact the
distributed servers and similarly, the distributed servers try to contact the
server with the same original name. So, if a server fails and the logs need to
the recovered on an alternative server, that alternative server needs to have the
same name and host IP address as the original server. The alternative server
also needs to have access to the same resource managers as the original server.
For example, the server needs communication and valid security access to
databases or message queues.
Note: All servers within a cell must have unique names.
Note: To complete transaction recovery, the application server uses the resource
manager configuration information in the transaction logs. However, for the

Chapter 22. Using the transaction service 1011

application server to continue to do new work with the same resource
managers, the server must have an appropriate resource manager configuration
(as for the original server).

Restarting an application server on a different host
This topic describes some considerations and actions that you can take with
transaction logs to restart an application server on a different host.

Moving transactions logs to a different host is similar to moving logs from one
server to another, as described in ″Moving a transaction log from one server to
another″.

This involves moving an original application server on one host to an alternative
server, which has access to the same resource managers, on another host. For a
network-deployed server configuration, the alternative server must have the same
name and host IP address as the original server.

Note: To complete transaction recovery, the application server uses the resource
manager configuration information in the transaction logs. However, for the
application server to continue to do new work with the same resource managers,
the server must have an appropriate resource manager configuration (as for the
original server).

To restart an application server on a different host, complete the following steps:

Steps for this task
1. Ensure that the alternative application server is stopped.
2. Move all the transaction logs for the original server to the alternative

application server, according to the considerations described in ″Moving a
transaction log from one server to another″.

3. Restart the alternative application server.

Transactional interoperation with non-WebSphere application servers
To interoperate transactionally with a non-WebSphere application server,
WebSphere Application Server switches dynamically between native transaction
contexts and interoperable OTS contexts depending on the capability of the partner
with which it is interoperating. The following system properties (that were needed
to be set in WebSphere Application Server before version 5.0 to enable transactional
interoperation), and the use of native contexts, are deprecated:
com.ibm.ejs.jts.jts.ControlSet.nativeOnly=false
com.ibm.ejs.jts.jts.ControlSet.interoperabilityOnly=true

In a future release of WebSphere Application Server only interoperable OTS
contexts will be supported.

Troubleshooting transactions
Use this overview task to help resolve a problem that you think is related to the
Transaction service.

To identify and resolve transaction-related problems, you can use the standard
WebSphere Application Server RAS facilities. If you encounter a problem that you
think might be related to transactions, complete the following stages:

1012 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Steps for this task
1. Check for transaction messages in the admin console.

The Transaction service produces diagnostic messages prefixed by ″WTRN″.
The error message indicates the nature of the problem and provides some
detail. The associated message information provides an explanation and any
user actions to resolve the problem.

2. Check for Transaction messages in the activity log.
Activity log messages produced by the Transaction service are accompanied by
log analyzer descriptions.

3. Check for more messages in the application server’s stdout.log.
For more information about a problem, check the stdout.log file for the
application server, which should contain more error messages and extra details
about the problem.

4. Check for messages in the application server’s transaction log directory for
information about the transactions in-flight when the problem occurred.
Note: If you changed the transaction log directory and a problem caused the
application server to fail (with in-flight transactions) before the server was
restarted properly, the server will next start with the new log directory and be
unable to automatically resolve in-flight transactions that were recorded in the
old log directory. To resolve this, you can copy the transaction logs to the new
directory then stop and restart the application server.

Transaction service exceptions
This topic lists the exceptions that can be thrown by the WebSphere Application
Server transaction service. The exceptions are listed in the following groups:
v Standard exceptions
v Heuristic exceptions

If the EJB container catches a system exception from the business method of an
enterprise bean, and the method is running within a container-managed
transaction, the container rolls back the transaction before passing the exception on
to the client. For more information about how the container handles the exceptions
thrown by the business methods for beans with container-managed transaction
demarcation, see the section Exception handling in the Enterprise JavaBeans 2.0
specification (http://java.sun.com/products/ejb/2.0.html). That section specifies
the container’s action as a function of the condition under which the business
method executes and the exception thrown by the business method. It also
illustrates the exception that the client receives and how the client can recover from
the exception.

Standard exceptions

The standard exceptions such as TransactionRequiredException,
TransactionRolledbackException, and InvalidTransactionException are defined in
the Java Transaction API (JTA) 1.0.1 Specification
(http://java.sun.com/products/jta/).

InvalidTransactionException
This exception indicates that the request carried an invalid transaction
context.

Chapter 22. Using the transaction service 1013

http://java.sun.com/products/ejb/2.0.html
http://java.sun.com/products/jta/

TransactionRequiredException exception
This exception indicates that a request carried a null transaction context,
but the target object requires an active transaction.

TransactionRolledbackException exception
This exception indicates that the transaction associated with processing of
the request has been rolled back, or marked for roll back. Thus the
requested operation either could not be performed or was not performed
because further computation on behalf of the transaction would be
fruitless.

Heuristic exceptions

A heuristic decision is a unilateral decision made by one or more participants in a
transaction to commit or rollback updates without first obtaining the consensus
outcome determined by the Transaction Service. Heuristic decisions are an issue
only after the participant has been prepared and the second phase of commit
processing is underway. Heuristic decisions are normally made only in unusual
circumstances, such as repeated failures by the transaction manager to
communicate with a resource manage during two-phase commit. If a heuristic
decision is taken, there is a risk that the decision differs from the consensus
outcome, resulting in a loss of data integrity.

The following list provides a summary of the heuristic exceptions. For more detail,
see the Java Transaction API (JTA) 1.0.1 Specification
(http://java.sun.com/products/jta/).

HeuristicRollback exception
This exception is raised on the commit operation to report that a heuristic
decision was made and that all relevant updates have been rolled back.

HeuristicMixed exception
This exception is raised on the commit operation to report that a heuristic
decision was made and that some relevant updates have been committed
and others have been rolled back.

UserTransaction interface - methods available
For details about the methods available with the UserTransaction interface, see the
WebSphere Application Server application programming interface reference
information (Javadoc) or the Java Transaction API (JTA) 1.0.1 Specification
(http://java.sun.com/products/jta/).

Coordinating access to 1-PC and 2-PC-capable resources within the
same transaction

Use these topics to help you coordinate the use of a single 1-phase commit (1PC)
capable resource with any number of 2-phase commit (2PC) capable resources in
the same global transaction.

You can coordinate the use of a single 1-phase commit (1PC) capable resource with
any number of 2-phase commit (2PC) capable resources in the same global
transaction.

At transaction commit, the 2-phase commit resources are prepared first using the
2-phase commit protocol, and if this is successful the 1-phase commit-resource is

1014 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://java.sun.com/products/jta/
http://publib.boulder.ibm.com/infocenter/wasinfo/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/javadoc/ae/index.html
http://publib.boulder.ibm.com/infocenter/wasinfo/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/javadoc/ae/index.html
http://java.sun.com/products/jta/

then called to commit(one_phase). The 2-phase commit resources are then
committed or rolled back depending on the response of the 1-phase commit
resource.

For more information about coordinating access to 1PC and 2PC-capable resources
within the same transaction, see the following topics:
v Coordinating access to 1-PC and 2-PC-capable resources within the same

transaction
v Enabling an application to coordinate access to 1-PC and 2-PC-capable resources

within the same transaction
v Configuring an application server to allow logging for heuristic reporting

Coordinating access to 1-PC and 2-PC-capable resources
within the same transaction

You can coordinate the use of a single 1-phase commit (1PC) capable resource with
any number of 2-phase commit (2PC) capable resources in the same global
transaction.

At transaction commit, the 2-phase commit resources are prepared first using the
2-phase commit protocol, and if this is successful the 1-phase commit-resource is
then called to commit(one_phase). The 2-phase commit resources are then
committed or rolled back depending on the response of the 1-phase commit
resource.

Note: If the global transaction is distributed across multiple application servers,
you cannot coordinate access to 1-PC and 2-PC-capable resources within the same
transaction .

Coordinating access to 1-PC and 2-PC-capable resources within the same
transaction introduces an increased risk of an heuristic outcome to the transaction.
That is, the transaction manager cannot be sure that all resources were completed
in the same direction (either committed or rolled back). For this reason, to enable
an application to coordinate access to 1-PC and 2-PC-capable resources within the
same transaction, you configure the application to accept the increased risk of an
heuristic outcome.

An heuristic outcome occurs if the transaction service (JTS) receives no response
from the commit one-phase flow on the 1PC resource. In this situation the
transaction service cannot determine whether changes for the 1PC resource were
committed or rolled back, so cannot drive reliably the correct outcome of the
global transaction on the other 2PC resources.

You can configure the transaction service for an application server to indicate
whether or not to log that it is about to commit the 1PC resource. This does not
reduce the heuristic hazard, but ensures that any failure, and subsequent recovery,
of the application server during the 1PC phase occurs with knowledge of whether
or not the 1PC resource was asked to commit:
v If the 1PC resource was asked to commit, a heuristic outcome is reported to the

activity log.
v If the 1PC resource was not asked to commit, then the transaction is rolled back

consistently.

Chapter 22. Using the transaction service 1015

Enabling an application to coordinate access to 1-PC and
2-PC-capable resources within the same transaction

Use this task to enable an application to coordinate access to 1-phase and 2-phase
commit capable resources within the same transaction.

To enable an application to coordinate access to 1-phase and 2-phase commit
capable resources within the same transaction, you must configure the application
to accept the increased risk of an heuristic outcome.

To configure an application to indicate that you accept the increased risk of an
heuristic outcome, use the Application Assembly tool to complete the following
steps:

Steps for this task
1. Launch the Application Assembly Tool.
2. Open the application EAR file.
3. In the navigation pane, select the application

This displays the properties notebook in the property pane.
4. In the property pane, select the WAS Enterprise tab.
5. Select the Accept heuristic hazard checkbox.
6. To apply the changes and close the Application Assembly Tool, click OK.

Otherwise, to apply the values but keep the property dialog open for additional
edits, click Apply.

7. (Optional) To see changes reflected in your application, regenerate deployment
code and re-install the deployable archive.

Last participant support extension settings
Use this page to configure last participant support extensions.

Last participant support is an extension to the transaction service to allow a single
one-phase resource to participate in a two-phase transaction with one or more
two-phase resources.

To view this administrative console page, click Applications > Applications >
application_name > Last Participant Support Extension.

Accept Heuristic Hazard: Specifies whether the application accepts the possibility
of an heuristic hazard occurring in a two-phase transaction containing a one-phase
resource.

Default Cleared
Range

Selected
The application accepts the increased risk of an heuristic
outcome.

Cleared
The application does not accept the increased risk of an
heuristic outcome.

1016 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Configuring an application server to allow logging for
heuristic reporting

To enable an application server to log ″about to commit 1PC resource″ events from
transactions that involve a 1-phase commit resource and 2-phase commit resources,
use the Administrative console to complete the following steps:

Steps for this task
1. Start the Administrative console
2. In the navigation pane, select Servers-> Manage Application Servers->

your_app_server

This displays the properties of the application server, your_app_server, in the
content pane.

3. Select the Transaction Service tab, to display the properties page for the
transaction service, as two notebook pages:

Configuration
The values of properties defined in the configuration file. If you change
these properties, the new values are applied when the application
server next starts.

Runtime
The runtime values of properties. If you change these properties, the
new values are applied immediately, but are overwritten with the
Configuration values when the application server next starts.

4. Select the Configuration tab, to display the transaction-related configuration
properties.

5. Select the Enable logging for heuristic reporting checkbox.
6. Click OK.
7. Stop then restart the application server.

Exceptions thrown for transactions involving both single- and
two-phase commit resources

The exceptions that can be thrown by transactions that involve single- and
two-phase commit resources are the same as those that can be thrown by
transactions involving only two-phase commit resources, and are listed in the
WebSphere API reference information
(http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/ee/index.html).

Last Participant Support: Resources for learning
Use the following links to find relevant supplemental information about Last
Participant Support. The information resides on IBM and non-IBM Internet sites,
whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v Programming specifications
v Other

Chapter 22. Using the transaction service 1017

http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/ee/index.html

Programming specifications

v J2EE Activity Service for Extended Transactions

v Java Transaction API (JTA) 1.0.1

Other

v WebSphere Application Server Enterprise Version 5 Overview: Advanced
Transactional Connectivity

v Listing of PDF files to learn about WebSphere Application Server Version 5
(http://www-3.ibm.com/software/webservers/appserv/appserv_v5.html)

v Listing of all IBM WebSphere Application Server Redbooks
(http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere)

v Listing of all IBM WebSphere Application Server Whitepapers
(http://www-4.ibm.com/software/webservers/appserv/whitepapers.html)

v WebSphere Application Server Enterprise Edition 4.0: A Programmer’s
Guide (http://www.redbooks.ibm.com/redbooks/SG246504.html)

1018 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://java.sun.com/products/jta/
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=products/appserv_enterprise#advanced
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=products/appserv_enterprise#advanced
http://www-3.ibm.com/software/webservers/appserv/appserv_v5.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www-4.ibm.com/software/webservers/appserv/whitepapers.html
http://www.redbooks.ibm.com/redbooks/SG246504.html
http://www.redbooks.ibm.com/redbooks/SG246504.html

Chapter 23. Using the ActivitySession service

These topics provide information about implementing WebSphere enterprise
applications that use ActivitySessions.

The ActivitySession service provides an alternative unit-of-work (UOW) scope to
that provided by global transaction contexts. ActivitySessions provide a scoping
mechanism for units of work, and both an ActivitySession and a transaction has
the same following characteristics:
v It can be bean-managed or container-managed
v It can be distributed across application servers
v It can be used as the context for managing EJB activation policy and lifecycle

An ActivitySession differs significantly from a transaction in the manner of its
interaction with resource managers. An ActivitySession is used to scope or
coordinate local transactions. That is, an ActivitySession can be used to request
multiple 1-phase resource managers to come to an application- or
container-determined outcome. Unlike a transaction, an ActivitySession has no
notion of a prepare phase or any notion of recovery at a service level.

The WebSphere EJB container and deployment tools support ActivitySessions as an
extension to the J2EE programming model. Enterprise beans can be deployed with
lifecycles that are influenced by ActivitySession context, as an alternative to
transaction context. An enterprise bean with an ActivitySession-scoped lifecycle can
participate in a resource manager local transaction (RMLT) that has a duration of
the ActivitySession rather than an individual method on the bean (which is all that
is possible under the standard J2EE model). Applications can then be composed of
several enterprise beans with ActivitySession-based activation, with each bean
participating in extended local transactions with one or more resource managers.
At the end of the ActivitySession each of the local transactions can be directed to a
common outcome by the ActivitySession manager.

You can configure the WebSphere containers and deployable applications to
support enterprise beans that operate under application- or container-initiated
ActivitySessions rather than, or in addition to, transactions.

For more information about implementing WebSphere enterprise applications that
use ActivitySessions, see the following topics:
v The ActivitySession service

– ActivitySessions and transaction contexts
– Using ActivitySessions with HTTP sessions

v The ActivitySession service programming interfaces
v Developing a J2EE application to use an ActivitySession
v ″Samples: ActivitySessions″

v ″Configuring ActivitySession deployment attributes for an enterprise bean″

v ″Configuring ActivitySession deployment attributes for a Web application″

v ″Disabling or enabling the ActivitySession service″

v Configuring the default ActivitySession timeout
v Troubleshooting ActivitySessions

© Copyright IBM Corp. 2003 1019

The ActivitySession service
The ActivitySession service provides an alternative unit-of-work (UOW) scope to
that provided by global transaction contexts. An ActivitySession context can be
longer-lived than a global transaction context and can encapsulate global
transactions.

Support for the ActivitySession service is shown in the following figure:

The ActivitySession service. This figure show the main components of the
ActivitySession service within WebSphere Application server. For an overview of
these components, see the text that accompanies this figure.

EJBObject

ActivitySession service

Enterprise application

EJB

Container

Bean

Local

transaction

Resource adapter

UserActivitySession

Application server

Although the purpose of a global transaction is to coordinate multiple resource
managers, global transaction context is often used by J2EE applications as a
″session″ context through which to access EJB instances. An ActivitySession context
is such a session context, and can be used in preference to a global transaction in
cases where coordination of two-phase commit resource managers is not needed.
Further, an ActivitySession can be associated with an HttpSession to extend a
″client session″ to an HTTP client.

ActivitySession support is available to Web, EJB, and J2EE-client components. EJB
components can be divided into beans that exploit container-managed
ActivitySessions and beans that use bean-managed ActivitySessions.

The ActivitySession service provides a UserActivitySession application
programming interface available to J2EE components that use bean-managed
ActivitySessions for application-managed demarcation of ActivitySession context.
The ActivitySession service also provides a system programming interface for

1020 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

container-managed demarcation of ActivitySession context and for
container-managed enlistment of one-phase resources (RMLTs) in such contexts.

The UserActivitySession interface is obtained by a JNDI lookup of
java:comp/websphere/UserActivitySession. This interface is not available to
enterprise beans that use container-managed ActivitySessions, and any attempt by
such beans to obtain the interface results in a NotFound exceptions.

Using ActivitySessions with HTTP sessions
A web application that runs in the WebSphere Web container can participate in an
ActivitySession context.

If the web application is designed such that several servlet invocations occur as
part of the same logical application, then the servlets can use the HttpSession to
preserve state across servlet invocations. The ActivitySession context is one state
that can be suspended into the HttpSession and resumed on a future invocation of
a servlet that accesses the HttpSession.

An ActivitySession is associated automatically with an HttpSession, so can be used
to extend access to the ActivitySession over multiple HTTP invocations, over
inclusion or forwarding of servlets, and to support EJB activation periods that can
be determined by the lifecycle of the web HTTP client. An ActivitySession context
stored in an HttpSession can also be used to relate work for the ActivitySession
back to a specific web HTTP client.

The Web container manages ActivitySessions based on deployment descriptor
attributes associated with servlets in the Web application module, as described in
″Configuring ActivitySession deployment attributes for a Web application″. The
two usage models are:
v The Web container starts and ends ActivitySessions.

The Web application invokes a servlet that has been configured for container
control of ActivitySessions.
– If an HttpSession exists then it has an associated ActivitySession.
– If an HttpSession does not exist, the servlet can start an HttpSession, which

causes an ActivitySession to be started automatically and associated with the
HttpSession.

A servlet cannot start a new HttpSession until an existing HttpSession has been
ended. Within an HttpSession, the Web application can invoke other servlets that
can use the associated ActivitySession context. When the Web application
invokes a servlet that ends the HttpSession, the ActivitySession is ended
automatically. This is shown in the following diagram:

Chapter 23. Using the ActivitySession service 1021

Web application

invokes servlet

Servlet starts

HttpSession

(ActivitySession started automatically)

ActivitySession

HttpSession

As1

Servlet invalidates

HttpSession

(ActivitySession checkpointed automatically)

v The Web application starts and ends ActivitySessions.
The Web application invokes a servlet that has been configured for application
control of ActivitySesions.
– If an HttpSession exists and has an associated ActivitySession, the servlet can

use or end that ActivitySession context.
– If an HttpSession does not exist, the servlet can start an HttpSession, but this

does not automatically start an ActivitySession.
– If an HttpSession exists but does not have an associated ActivitySession, the

servlet can start a new ActivitySession. This automatically associates the
ActivitySession with the HttpSession. The ActivitySession lasts either until the
ActivitySession is specifically ended or until the HttpSession is ended.

The servlet cannot start a new ActivitySession until an existing ActivitySession
has been ended. The servlet cannot start a new HttpSession until an existing
HttpSession has been ended.

Within an HttpSession, the Web application can invoke other servlets that can
use or end an existing ActivitySession context or, if no ActivitySession exists
start a new ActivitySession. When the Web application invokes a servlet that
ends the HttpSession, the ActivitySession is ended automatically. This is shown
in the following diagram:

Web application

invokes servlet

Servlet

starts

HttpSession

ActivitySession

HttpSession

As1

Servlet invalidates

HttpSession

(ActivitySession As2

checkpointed automatically)

Servlet starts and

ends ActivitySessions

specifically

As2

A Web application can invoke servlets configured for either usage model.

1022 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The following points apply to both usage models:
v To end an HttpSession (and any associated ActivitySession), the Web application

must invalidate that session. This causes the ActivitySession to be checkpointed.
v Any downstream EJBs activated within the context of an ActivitySession can be

held in memory rather than passivated between servlet invocations, because the
client effectively becomes the web HTTP client.

v Web applications can be composed of many Web components, but each
component in the Web application must be configured with the same value for
ActivitySessionControl. ActivitySessionControl determines whether the Web
component or its container starts any ActivitySessions.

v An ActivitySession context that encapsulates an active transaction context cannot
be associated with an HttpSession, because a transaction can hold database locks
and should be designed to be shortlived. If an application moves an active
transaction to an HttpSession, the transaction is rolled back and the
ActivitySession is suspended into the HTTPSession. In general, you should
design applications to use ActivitySessions or other constructs as the long-lived
entities and ACID transactions as short-duration entities within these.

v Only one ActivitySession can be associated with an HttpSession at any time, for
the duration of the ActivitySession. An ActivitySession associated with an
HttpSession remains associated for the duration of that ActivitySession, and
cannot be replaced with another until the first ActivitySession is completed. The
ActivitySession can be accessed by multiple servlets if they have shared access to
the HttpSession.

v ActivitySessions are not persistent. If a persistent HttpSession exists longer than
the server hosting it, any cached ActivitySession is terminated when the hosting
server ends.

v If the HttpSession times out before the associated ActivitySession has ended, the
ActivitySession is reset.

v If the ActivitySession times out, it is reset then the HttpSession is ended.

ActivitySession and transaction contexts
The ActivitySession service defines a hierarchical relationship between transaction
and ActivitySession context, requiring that any transaction context be either wholly
inside or wholly outside an ActivitySession context.

An ActivitySession context is very similar to a transaction context and extends the
lifecycle choices for activation of enterprise beans; it can encapsulate one or more
transactions. The ActivitySession context is a distributed context that, like the
transaction context, can be bean- or container-managed. An ActivitySession context
is used mainly by a client to scope the lifecycle of an enterprise bean that it uses
either beyond or in the absence of individual transactions started by that client.

ActivitySessions have a lower overhead than transactions and can be used instead
of transactions that are only used to scope the lifecycle of a called enterprise bean.
For a bean with an activation policy of ActivitySession, the duration of any
resource manager local transactions (RMLTs) started by that bean can be bounded
by the duration of the ActivitySession instead of the bean method in which the
RMLT was started. This provides flexibility and potential for using RMLTs in an
enterprise bean beyond the scenarios described in the J2EE specifications. The J2EE
specifications define that RMLTs need to be completed before the end of the bean
method, because the bean method is the only containment boundary for local
transactions available in those specifications.

Chapter 23. Using the ActivitySession service 1023

The following rules defines the relationship between transactions and
ActivitySessions.
v The EJB or Web container always uses a local transaction containment (LTC) if

there is no global transaction present. An LTC can be method-scoped or
ActivitySession-scoped.

v Before a method dispatch, the container ensures that there is always either an
LTC or global transaction context, but never both contexts.

v ActivitySessions cannot be nested within each other. Any attempt to start a
nested ActivitySession results in a
com.ibm.websphere.ActivitySession.NotSupportedException on
UserActivitySession.beginSession().

v An ActivitySession can wholly encapsulate one or more global transactions.
v An ActivitySession cannot be encapsulated by a global transaction nor should

ActivitySession and global transaction boundaries overlap. Any attempt to start
an ActivitySession in the presence of a global transaction context results in a
com.ibm.websphere.ActivitySession.NotSupportedException on
UserActivitySession.beginSession(). Any attempt to call
endSession(EndModeCheckpoint) on an ActivitySession that contains an
incomplete global transaction results in a
com.ibm.websphere.ActivitySession.ContextPendingException. Neither the global
transaction nor the ActivitySession context are affected. If
endSession(EndModeReset) is called then the ActivitySession is reset and the
global transactions marked rollback_only.

v Each global transaction wholly encapsulated by an ActivitySession is
independent of every other global transaction within that ActivitySession. A
rollback of one global transaction does not affect any others or the
ActivitySession itself.

v ActivitySession and global transaction contexts can coexist with an
ActivitySession encapsulating one or more serially-executing global transactions.

Combining transaction and ActivitySession container policies
This topic provides details about the relationship between the deployment
descriptor properties that determine how the container manages ActivitySession
boundaries.

If an enterprise bean uses ActivitySessions, how the EJB container manages
ActivitySession boundaries when delegating a method invocation depends on both
the ActivitySession kind and Transaction attribute deployment descriptor
attributes configured for the enterprise bean. The following table lists the
relationship between these two properties.

In each row, the final column describes the behavior that the EJB container takes
with respect to global transaction and ActivitySession context, based on the
following abbreviations:

Sn An ActivitySession, where n indicates the ActivitySession instance.

Tn A transaction, where n indicates the transaction instance.

In every case where the container does not start or leave a global transaction
context associated with the thread, it starts (or obtains from the bean instance) a
local transaction containment and associates that with the thread. The duration of
the local transaction containment is determined by a combination of the
local-transaction boundary descriptor (configured as part of the application

1024 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

deployment descriptor, and not shown in the following table) and the presence or
not of an ActivitySession context, as described in ″ActivitySession and transaction
contexts″.

The rows highlighted in bold are not allowed.

Container behavior for activitysession and transaction policies deployment
settings

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Transaction

attribute)

Received
contexts

Container
behaviour

Required Required None Start S1, Start T1
S1 Start T1
T1 Suspend T1, Start

S1, Start T2
S1, T1 No Action

Requires new None Start S1, Start T1
S1 Start T1
T1 Suspend T1, Start

S1, Start T2
S1, T1 Suspend T1, Start

T2
Supports None Start S1

S1 No Action
T1 Suspend T1, Start

S1
S1, T1 No Action

Not supported None Start S1
S1 No Action
T1 Suspend T1, Start

S1
S1, T1 Suspend T1

Mandatory None Exception
S1 Exception
T1 Exception
S1, T1 No action

Never None Start S1
S1 No Action
T1 Suspend T1, Start

S1
S1, T1 Exception

Chapter 23. Using the ActivitySession service 1025

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Transaction

attribute)

Received
contexts

Container
behaviour

Requires new Required None Start S1 + T1
S1 Suspend S1, Start

S2 + T1
T1 Suspend T1, Start

S1 + T2
S1 + T1 Suspend S1 + T1,

Start S2 + T2
Requires new None Start S1 + T1

S1 Suspend S1, Start
S2 + T1

T1 Suspend T1, Start
S1 + T2

S1 + T1 Suspend S1 + T1,
Start S2 + T2

Supports None Start S1
S1 Suspend S1, Start

S2
T1 Suspend T1, Start

S1
S1, T1 Suspend S1 + T1,

Start S2
Not supported None Start S1

S1 Suspend S1, Start
S2

T1 Suspend T1, Start
S1

S1, T1 Suspend S1 + T1,
Start S2

Mandatory None Exception
S1 Exception
T1 Exception
S1, T1 Exception

Never None Start S1
S1 Suspend S1, Start

S2
T1 Suspend T1, Start

S1
S1, T1 Suspend S1 + T1,

Start S2

1026 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Transaction

attribute)

Received
contexts

Container
behaviour

Supports Required None Start T1
S1 Start T1
T1 No Action
S1, T1 No Action

Requires new None Start T1
S1 Start T1
T1 Suspend T1, Start

T2
S1, T1 Suspend T1, Start

T2
Supports None No Action

S1 No Action
T1 No Action
S1, T1 No Action

Not supported None No Action
S1 No Action
T1 Suspend T1
S1, T1 Suspend T1

Mandatory None Exception
S1 Exception
T1 No Action
S1, T1 No Action

Never None No Action
S1 No Action
T1 Exception
S1, T1 Exception

Chapter 23. Using the ActivitySession service 1027

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Transaction

attribute)

Received
contexts

Container
behaviour

Not supported Required None Start T1
S1 Suspend S1, Start

T1
T1 No Action
S1, T1 Suspend S1 + T1,

Start T2
Requires new None Start T1

S1 Suspend S1, Start
T1

T1 Suspend T1, Start
T2

S1, T1 Suspend S1 + T1,
Start T2

Supports None No Action
S1 Suspend S1
T1 No Action
S1, T1 Suspend S1 + T1

Not supported None No Action
S1 Suspend S1
T1 Suspend T1
S1, T1 Suspend S1 + T1

Mandatory None Exception
S1 Exception
T1 No Action
S1,T1 Exception

Never None No Action
S1 Suspend S1
T1 Exception
S1, T1 Suspend S1 + T1

1028 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Transaction

attribute)

Received
contexts

Container
behaviour

Mandatory Required None Exception
S1 Start T1
T1 Exception
S1, T1 No Action

Requires new None Exception
S1 Start T1
T1 Exception
S1, T1 Suspend T1, Start

T2
Supports None Exception

S1 No Action
T1 Exception
S1, T1 No Action

Not supported None Exception
S1 No Action
T1 Exception
S1, T1 Suspend T1

Mandatory None Exception
S1 Exception
T1 Exception
S1, T1 No Action

Never None Exception
S1 No Action
T1 Exception
S1,T1 Exception

Never Required None Start T1
S1 Exception
T1 No Action
S1, T1 Exception

Requires new None Start T1
S1 Exception
T1 Suspend T1, Start

T2
S1,T1 Exception

Supports None No Action
S1 Exception
T1 No Action
S1,T1 Exception

Not supported None No Action
S1 Exception
T1 Suspend T1
S1,T1 Exception

Mandatory None Exception
S1 Exception
T1 No Action
S1,T1 Exception

Never None No Action
S1 Exception
T1 Exception
S1,T1 Exception

Chapter 23. Using the ActivitySession service 1029

Bean ActivitySession
policy(ActivitySession kind)

Bean transaction
policy(Transaction

attribute)

Received
contexts

Container
behaviour

Bean managed Bean managed None No Action
S1 Suspend S1
T1 Suspend T1
S1, T1 Suspend S1 + T1

Developing a J2EE application to use ActivitySessions
This topic provides an overview of the scenarios for which you would develop a
J2EE application to use an ActivitySession.

The following common J2EE application scenarios make use of an ActivitySession:
v Developing a J2EE application to use one or more enterprise beans that are

persisted to non-transactional datastores.
This scenario can be used by an application that needs to coordinate multiple
1-phase resource managers; for example, for two or more entity EJBs whose
persistence is delegated to LocalTransaction resource adapters.
In this scenario, the enterprise beans used by the application have an Activation
policy of ActivitySession and a local transaction containment policy with a
boundary of ActivitySession and resolution-control of ContainerAtBoundary.
These configuration attributes are described in ″Configuring ActivitySession
deployment attributes for an enterprise bean″. The synchronization of the EJB
state data is synchronized, by the container, with the 1-phase resource managers
at ActivitySession completion and no application code is required to be aware of
ActivitySession support.

v Developing a J2EE application in which an enterprise bean accesses a resource
manager multiple times in different business methods.
This scenario can be used by an application that needs to extend a resource
manager local transaction (RMLT) over several business methods of an
enterprise bean instance.
In this scenario, the enterprise beans used by the application have an Activation
policy of ActivitySession and a local transaction containment policy with a
boundary of ActivitySession and resolution-control of Application. These
configuration attributes are described in ″Configuring ActivitySession
deployment attributes for an enterprise bean″. The application logic starts and
ends the RMLTs, for example using the javax.resource.cci.LocalTransaction
interface offered by a LocalTransaction Connector, but is not constrained to start
and commit the LocalTransaction in the same method.

v Developing a J2EE client application to use an ActivitySession to scope EJB
activation and load-balancing.
This scenario can be used by an application client that needs to access an entity
bean instance several times in the same client session, either without needing to
run under a transaction context, or with the need to run under a number of
distinct and serially-executed transactions.
In this scenario, the enterprise beans used by the application client have an
Activation policy of ActivitySession and a local transaction containment policy
appropriate to the function of the enterprise bean. These configuration attributes
are described in ″Configuring ActivitySession deployment attributes for an
enterprise bean″. The J2EE client application can represent a period of user
activity, for example a signon period, during which a number of interactions

1030 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

occur with one or more enterprise beans. If the J2EE client application begins an
ActivitySession and invokes the enterprise beans within the scope of the UOW
represented by the ActivitySession, then the enterprise bean instances are
activated by the container on the ActivitySession boundary and remain in the
active state until passivated by the container at the end of the ActivitySession.
Workload affinity management based on the ActivitySession is a platform
quality of service. Global transactions can begin and end within the
ActivitySession, if they are wholly encapsulated by the ActivitySession and run
serially. EJB instances activated at the ActivitySession boundary remain active
across the serial global transactions.

v Developing a Web application client to participate in an ActivitySession context.
A web application that runs in the WebSphere Web container can participate in
an ActivitySession context. Web applications can use the UserActivitySession
interface to begin and end an ActivitySession context. Also, the ActivitySession
can be associated with an HttpSession, thereby extending access to the
ActivitySession over multiple HTTP invocations and supporting EJB activation
periods that can be determined by the lifecycle of the web HTTP client.
The Web container manages ActivitySessions based on deployment descriptor
attributes associated with the Web application module, as described in
″Configuring ActivitySession deployment attributes for a Web application″.

General considerations:

v An application that is accessed under an ActivitySession context can receive a
javax.transaction.InvalidTransactionException RemoteException, thrown by the
EJB container when servicing any application method. This exception occurs
when an instance of an enterprise bean that has an ActivitySession-based
activation policy becomes involved with concurrent global and local
transactions.

v To enable an enterprise bean to participate in an ActivitySession context and
support ActivitySession-based operations, it must be configured with an
ActivationPolicy of ACTIVITY_SESSION. A bean configured with
ActivationPolicy of either TRANSACTION or ONCE cannot participate in
ActivitySession context.

v A session bean can either use container-managed ActivitySessions or implement
bean-managed ActivitySessions; entity beans can only use container-managed
ActivitySessions. A bean is deployed to be bean-managed or container-managed
with respect to ActivitySession management by setting its transaction type
deployment attribute to be bean-managed or container-managed when
deploying the enterprise bean, as described in ″Configuring ActivitySession
deployment attributes for an enterprise bean″. A bean that uses bean-managed
transactions can use bean-managed ActivitySessions; a bean that uses
container-managed transactions can use container-managed ActivitySessions.

v If you want a session bean or J2EE client to manage its own ActivitySessions,
you must write the code that explicitly demarcates the boundaries of an
ActivitySession, as described in ″Developing an enterprise bean or J2EE client to
manage ActivitySessions″.

For examples of using ActivitySessions in J2EE applications, see ″Samples:
ActivitySessions″.

Chapter 23. Using the ActivitySession service 1031

Developing an enterprise bean or J2EE client to manage
ActivitySessions

Use this task to write the code needed by a session EJB or J2EE client application
to manage an ActivitySession, based on the example code extract provided.

In most situations, an enterprise bean can depend on the EJB container to manage
ActivitySessions within the bean. In these situations, all you need to do is set the
appropriate ActivitySession attributes in the EJB module deployment descriptor, as
described in ″Configuring ActivitySession deployment attributes for an enterprise
bean″. Further, in general, it is practical to design your enterprise beans so that all
ActivitySession management is handled at the enterprise bean level.

However, in some cases you may need to have a session bean or J2EE client
participate directly in ActivitySessions. You then need to write the code needed by
the session bean or J2EE client application to manage its own ActivitySessions.

Note: Session beans that use BMT and have an Activate at setting of Activity
session can manage ActivitySessions. Entity beans cannot manage
ActivitySessions; the EJB container always manages ActivitySessions within entity
beans.

When preparing to write code needed by a session bean or J2EE client application
to manage ActivitySessions, consider the points described in ″ActivitySession and
transaction contexts″.

To write the code needed by a session EJB or J2EE client application to manage an
ActivitySession, complete the following steps based on the example code extract
below:

Steps for this task
1. Get an initial context for the ActivitySession.
2. Get an implementation of the UserActivitySession interface, by a JNDI lookup

of the URL java:comp/websphere/UserActivitySession. The
UserActivitySession interface is used to begin and end ActivitySessions and to
query various attributes of the active ActivitySession associated with the
thread.

3. (Optional) Set the timeout, in seconds, after which any subsequently started
ActivitySessions are automatically completed by the ActivitySession service. If
the session bean or J2EE client does not specifically set this value, the default
timeout (300 seconds) is used.
The default timeout can also be overridden for each application server, on the
server-> Activity Session Service panel of the administrative console.

4. Start the ActivitySession, by calling the beginSession() method of the
UserActivitySession.

5. Within the ActivitySession, call business methods to do the work needed. You
can also call UserActivitySession methods to manage the ActivitySession; for
example, to get the status of the ActivitySession or to checkpoint all the
ActivitySession resources involved in the ActivitySession.

6. End the ActivitySession, by calling the endSession() method of the
UserActivitySession.

Usage scenario

1032 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The following code extract provides a basic example of using the
UserActivitySession interface:

// Get initial context
InitialContext ic = new InitialContext();

// Lookup UserActivitySession
UserActivitySession uas = (UserActivitySession)ic.lookup("java:comp/websphere/UserActivitySession");

// Set the ActivitySession timeout to 60 seconds
uas.setSessionTimeout(60);

// Start a new ActivitySession context
uas.beginSession();

// Do some work under this context
MyBeanA beanA.doSomething();
...
MyBeanB beanB.doSomethingElse();

// End the context
uas.endSession(EndModeCheckpoint);

Configuring ActivitySession deployment attributes for an enterprise
bean

Use this task to configure the ActivitySession deployment attributes for an
enterprise bean to enable the bean to participate in an ActivitySession context and
support ActivitySession-based operations.

You can specify ActivitySession deployment attributes as part of the deployment of
an enterprise bean.

To configure the ActivitySession deployment attributes for an enterprise bean, use
the Application Assembly Tool to complete the following steps:

Steps for this task
1. Launch the Application Assembly Tool.
2. Create or edit the application EAR file.

For example, to change attributes of an existing application, click File-> Open
then select the EAR file.

3. In the navigation pane, select the enterprise bean instance; for example, for an
entity bean expand ejb_module_instance-> Entity beans then select the bean
instance.
A property dialog notebook for the enterprise bean is displayed in the property
pane.

4. In the property pane, select the IBM Extensions tab.
5. In the Bean Cache group box, set the Activate at attribute to Activity Session:

An enterprise bean with this activation policy is activated and passivated as
follows:
v On an ActivitySession boundary, if an ActivitySession context is present on

activation.
v On a transaction boundary, if a transaction context, but no ActivitySession

context, is present on activation.
v Otherwise on an invocation boundary.

6. (Optional) In the Local Transactions group box, set the Boundary attribute to
ActivitySession:

Chapter 23. Using the ActivitySession service 1033

When this setting is used, the local transaction must be resolved within the
scope of any ActivitySession in which it was started or, if no ActivitySession
context is present, within the same bean method in which it was started.

7. For entity beans, or session beans, set the ActivitySessions properties for each
EJB method.
a. In the navigation pane, select Container ActivitySessions.

This displays a table of the methods for enterprise beans.
b. For each method of the enterprise bean set the ActivitySession kind

attribute to specify how the container must manage the ActivitySession
boundaries when delegating a method invocation to an enterprise bean’s
business method:

Supports
If the client invokes the bean method within an ActivitySession, the
container invokes the bean method within an ActivitySession
context. If the client invokes the bean method without a
ActivitySession context, the container invokes the bean method
without an ActivitySession context. The ActivitySession context is
passed to any enterprise bean objects or resources that are used by
this bean method.

Not supported
The container invokes bean methods without an ActivitySession
context. If a client invokes a bean method from within an
ActivitySession context, the container suspends the association
between the ActivitySession and the current thread before invoking
the method on the enterprise bean instance. The container then
resumes the suspended association when the method invocation
returns. The suspended ActivitySession context is not passed to any
enterprise bean objects or resources that are used by this bean
method.

Never The container invokes bean methods without an ActivitySession
context.
v If the client invokes a bean method from within an

ActivitySession context, the container throws an
InvalidActivityException exception, which is a
javax.rmi.RemoteException.

v If the client invokes a bean method from outside an
ActivitySession context, the container behaves in the same way as
if the Not Supported value was set. The client must call the
method without an ActivitySession context.

Required
The container invokes the bean method within an ActivitySession
context. If a client invokes a bean method from within an
ActivitySession context, the container invokes the bean method
within the client ActivitySession context. If a client invokes a bean
method outside an ActivitySession context, the container creates a
new ActivitySession context and invokes the bean method from
within that context. The ActivitySession context is passed to any
enterprise bean objects or resources that are used by this bean
method.

Requires new
The container always invokes the bean method within a new
ActivitySession context, regardless of whether the client invokes the

1034 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

method within or outside an ActivitySession context. The new
ActivitySession context is passed to any enterprise bean objects or
resources that are used by this bean method.

Any received ActivitySession context is suspended for the duration
of the method and resumed after the method ends. The container
starts a new ActivitySession before method dispatch and completes
it after the method ends.

Mandatory
The container always invokes the bean method within the
ActivitySession context associated with the client. If the client
attempts to invoke the bean method without an ActivitySession
context, the container throws an ActivityRequiredException
exception to the client. The ActivitySession context is passed to any
EJB object or resource accessed by an enterprise bean method.

The ActivityRequiredException exception is
javax.rmi.RemoteException.

How the container manages the ActivitySession boundaries when delegating a
method invocation depends on both the ActivitySession kind attribute, set
here, and the Transaction attribute attribute, as described in″Setting
transactional attributes in the deployment descriptor″ (not in this document).
For more detail about the relationship between these two properties, see
″Combining transaction and ActivitySession container policies″.

8. To apply the changes and close the Application Assembly Tool, click OK.
Otherwise, to apply the values but keep the property dialog open for additional
edits, click Apply.

9. (Optional) To see changes reflected in your application, regenerate deployment
code and reinstall the deployable archive.

Container ActivitySession assembly properties for EJB
modules

Use this page to specify how a container must manage the scope of an
ActivitySession for an enterprise bean’s method invocations.

Name
Specifies a name for the mapping between an ActivitySession attribute and one or
more methods.

Datatype String

Description
Contains text that describes the mapping

Datatype String

Methods
The methods to which the ActivitySession attribute applies.

To add a new method, click Add. Expand the tree to select the method or methods
from the EJB module

Chapter 23. Using the ActivitySession service 1035

ActivitySession attribute
How the container must manage the activity session boundaries when delegating a
method invocation to an enterprise bean’s business method

Default Supports
Range

Not supported
The container invokes bean methods without an ActivitySession
context. If a client invokes a bean method from within an
ActivitySession context, the container suspends the association
between the ActivitySession and the current thread before invoking
the method on the enterprise bean instance. The container then
resumes the suspended association when the method invocation
returns. The suspended ActivitySession context is not passed to any
enterprise bean objects or resources that are used by this bean
method.

Required
The container invokes the bean method within an ActivitySession
context. If a client invokes a bean method from within an
ActivitySession context, the container invokes the bean method
within the client ActivitySession context. If a client invokes a bean
method outside an ActivitySession context, the container creates a
new ActivitySession context and invokes the bean method from
within that context. The ActivitySession context is passed to any
enterprise bean objects or resources that are used by this bean
method.

Supports
If the client invokes the bean method within an ActivitySession, the
container invokes the bean method within an ActivitySession context.
If the client invokes the bean method without a ActivitySession
context, the container invokes the bean method without an
ActivitySession context. The ActivitySession context is passed to any
enterprise bean objects or resources that are used by this bean
method.

Requires new
The container always invokes the bean method within a new
ActivitySession context, regardless of whether the client invokes the
method within or outside an ActivitySession context. The new
ActivitySession context is passed to any enterprise bean objects or
resources that are used by this bean method.

Any received ActivitySession context is suspended for the duration
of the method and resumed after the method ends. The container
starts a new ActivitySession before method dispatch and completes it
after the method ends.

Default Supports

1036 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Range
(continued) Mandatory

The container always invokes the bean method within the
ActivitySession context associated with the client. If the client
attempts to invoke the bean method without an ActivitySession
context, the container throws an ActivityRequiredException exception
to the client. The ActivitySession context is passed to any EJB object
or resource accessed by an enterprise bean method.

The ActivityRequiredException exception is defined as a
javax.rmi.RemoteException that is propagated over an ORB boundary
as a CORBA.ACTIVITY_REQUIRED system exception.

EJB clients that access these entity beans must do so within an
existing ActivitySession. For other enterprise beans, the enterprise
bean or bean method must implement bean-managed
ActivitySessions or use the Required or Requires New value. For
non-enterprise bean EJB clients, the client must invoke an
ActivitySession by using the UserActivitySession interface.

Never The container invokes bean methods without an ActivitySession
context.

v If the client invokes a bean method from within an ActivitySession
context, the container throws an InvalidActivityException
exception, which is defined as a javax.rmi.RemoteException that is
propagated over an ORB boundary as a
CORBA.INVALID_ACTIVITY system exception.

v If the client invokes a bean method from outside an
ActivitySession context, the container behaves in the same way as
if the Not Supported value was set. The client must call the
method without an ActivitySession context.

Configuring ActivitySession deployment attributes for a Web
application

Use this task to configure the ActivitySession deployment attributes for a Web
application to start UserActivitySessions and perform work scoped within
ActivitySessions.

You can specify ActivitySession deployment attributes as part of the deployment of
a Web application.

To configure the ActivitySession deployment attributes for a Web application, use
the Application Assembly Tool to complete the following steps:

Steps for this task
1. Launch the Application Assembly Tool.
2. Create or edit the Web module.

For example, to change attributes of an existing module, click File-> Open then
select the archive file for the module.

3. In the navigation pane, expand web_application-> Web Components then
select the servlet instance.
A property dialog box for the servlet instance is displayed in the property pane.

4. In the property pane, select the WAS Enterprise tab.
This displays the Enterprise properties in the property pane.

Chapter 23. Using the ActivitySession service 1037

5. Set the ActivitySession control kind attribute to either Application, Container,
or None. All Web components in a Web application must be configured with
the same value for ActivitySession control kind.

Application
The Web application is responsible for starting and ending
ActivitySessions, as follows:
v If an HttpSession is active when an application begins an

ActivitySession, then the container associates the ActivitySession with
the HttpSession.

v If an ActivitySession is started in the absence of an HttpSession, then
the application must ensure it is completed before the dispatched
method completes; otherwise, an exception results.

v If an HttpSession is associated with a request dispatched to an
application with this ActivitySession control value, and if that
HttpSession has an ActivitySession associated with it, then the
container dispatches the request in the context of that
ActivitySession. For example, the container resumes the
ActivitySession context onto the thread before the dispatch.

v A Web application can use both transactions and ActivitySessions.
Any transactions started within the scope of an ActivitySession must
be ended by the web component that started them and within the
same request dispatch.

Container
A servlet has no access to UserActivitySessions. Any HttpSession
started by the servlet has an ActivitySession automatically associated
with it by the container, and this ActivitySession is put onto the thread
of execution. If such a servlet is dispatched by a request that has an
HttpSession containing no ActivitySession, then the container starts an
ActivitySession and associates it with the HttpSession and the thread.

A Web application can use both transactions and ActivitySessions. Any
transactions started within the scope of an ActivitySession must be
ended by the web component that started them and within the same
request dispatch.

None A servlet has no access to UserActivitySessions, and no participation in
an ActivitySession is tolerated. Any HttpSession containing an
ActivitySession that is associated with a request dispached on such a
servlet is rejected with a ServletException.

6. To apply the changes and close the Application Assembly Tool, click OK.
Otherwise, to apply the values but keep the property dialog open for additional
edits, click Apply.

7. (Optional) To see changes reflected in your application, regenerate deployment
code and re-install the deployable archive.

Disabling or enabling the ActivitySession service
Use this task to disable or enable the ActivitySession service for an application
server.

You can use the ActivitySession Startup property to specify whether or not the
ActivitySession service is started automatically for an application server.

1038 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

To configure the ActivitySession Startup property for an application server, use the
Administrative console to complete the following steps:

Steps for this task
1. Start the Administrative console.
2. In the navigation pane, expand Servers-> Manage Application Servers

This displays a list of the application servers in the content pane.
3. In the Content pane, select the application server that you want to configure.

This displays the properties for the application server in the content pane.
4. In the Additional Properties table, select ActivitySession service. This displays

the ActivitySession service properties in the content pane.
5. Select or clear the Startup property as needed:

Selected
[Default] The ActivitySession service is started when the application
server is started. This enables applications that specify use of
ActivitySessions in their deployment descriptors to run on such an
application server.

Cleared
The ActivitySession service is not started when the application server is
started. Applications that specify use of ActivitySessions in their
deployment descriptors cannot start on such an application server.

Any attempt to start an application that uses ActivitySessions is
rejected and a message issued:
WACS0043E: Error found starting an application. application_name
specified an ActivitySession attribute that is not allowed when the
ActivitySession service is not enabled

If this happens during server startup, the server continues to start
without the application.

6. Click OK.
7. To save your configuration, click Save on the task bar of the Administrative

console window.
8. (Optional) To have the changed configuration take effect, stop then restart the

application server.

ActivitySession service settings
Use this page to administer the run-time properties of the ActivitySession service.

To view this administrative console page, click Servers > Application Servers >
server_name > Activity Session Service.

Startup
Specifies whether the server will attempt to start the ActivitySession service.

Default Selected

Chapter 23. Using the ActivitySession service 1039

Range
Selected

When the application server starts, it attempts to start the
ActivitySession service automatically.

Cleared
The server does not try to start the ActivitySession service.
If ActivitySessions are to be used in applications that run
on this server, the system administrator must start the
service manually or select this property then restart the
server.

Default timeout
The default timeout for an ActivitySession. A server resets an ActivitySession if a
remote client has failed to complete the ActivitySession within this time period.

The Default ActivitySession timeout specifies the time after which an
ActivitySession is completed automatically by the ActivitySession service, if a
remote client has failed to complete the ActivitySession within the specified time.
The initial default timeout can be configured separately for each application server,
and can be overridden programmatically by the UserActivitySession interface
(setSessionTimeout).

Data type Integer
Units Seconds
Default 300 (5 minutes)
Range -1 through 2147483647 seconds

v -1 indicates that ActivitySessions never timeout

v 0 indicates that the default timeout applies

v Other values are an integer number of seconds

Configuring the default ActivitySession timeout for an application
server

Use this task to configure the default ActivitySession timeout for an application
server, after which any started ActivitySessions are completed automatically by the
ActivitySession service.

The ActivitySession timeout is used to reset any ActivitySession whose remote
client has failed to complete the ActivitySession in a timely fashion. The initial
default timeout can be configured separately for each application server, and can
be overridden programmatically by the UserActivitySession interface
(setSessionTimeout). If an ActivitySession that contains a transaction reaches the
timeout, the transaction’s timeout is accelerated so that it is timed out (and rolled
back) immediately before the ActivitySession is reset.

To configure the default ActivitySession timeout for an application server, use the
WebSphere Administrative console to complete the following steps:

Steps for this task
1. Start the WebSphere Administrative console.
2. In the navigation pane, expand Servers-> Manage Application Servers

This displays a list of the application servers in the content pane.
3. In the Content pane, select the application server that you want to configure.

1040 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

This displays the properties for the application server in the content pane.
4. In the Additional Properties table, select ActivitySession service. This displays

the ActivitySession service properties in the content pane.
5. Set the ActivitySession timeout property to the default timeout as an integer

number of seconds.
v -1 indicates that ActivitySessions never timeout
v 0 indicates that the default timeout, 300 seconds, applies
v Other values are an integer number of seconds

6. Click OK.
7. To save your configuration, click Save on the task bar of the Administrative

console window.
8. (Optional) To have the changed configuration take effect, stop then restart the

application server.

ActivitySession service settings
Use this page to administer the run-time properties of the ActivitySession service.

To view this administrative console page, click Servers > Application Servers >
server_name > Activity Session Service.

Startup
Specifies whether the server will attempt to start the ActivitySession service.

Default Selected
Range

Selected
When the application server starts, it attempts to start the
ActivitySession service automatically.

Cleared
The server does not try to start the ActivitySession service.
If ActivitySessions are to be used in applications that run
on this server, the system administrator must start the
service manually or select this property then restart the
server.

Default timeout
The default timeout for an ActivitySession. A server resets an ActivitySession if a
remote client has failed to complete the ActivitySession within this time period.

The Default ActivitySession timeout specifies the time after which an
ActivitySession is completed automatically by the ActivitySession service, if a
remote client has failed to complete the ActivitySession within the specified time.
The initial default timeout can be configured separately for each application server,
and can be overridden programmatically by the UserActivitySession interface
(setSessionTimeout).

Data type Integer
Units Seconds
Default 300 (5 minutes)
Range -1 through 2147483647 seconds

v -1 indicates that ActivitySessions never timeout

v 0 indicates that the default timeout applies

v Other values are an integer number of seconds

Chapter 23. Using the ActivitySession service 1041

Troubleshooting ActivitySessions
Use this overview task to help resolve a problem that you think is related to the
ActivitySession service.

To identify and resolve ActivitySession-related problems, you can use the standard
WebSphere Application Server RAS facilities. If you encounter a problem that you
think might be related to ActivitySessions, complete the following stages:

Steps for this task
1. Check for ActivitySession messages in the admin console.

The ActivitySession service produces diagnostic messages prefixed by ″WACS″.
The error message indicates the nature of the problem and provides some
detail. The associated message information provides an explanation and any
user actions to resolve the problem.

2. Check for ActivitySession messages in the activity log.
Activity log messages produced by the ActivitySession service are accompanied
by log analyzer descriptions.

3. Check for more messages in the application server’s stdout.log.
For more information about a problem, check the stdout.log file for the
application server, which should contain more error messages and extra details
about the problem.

The ActivitySession service application programming interfaces
The ActivitySession service consists of an application programming interface
available to Web applications, session EJBs, and J2EE client applications for
application-managed demarcation of ActivitySession context. Applications use the
UserActivitySession interface, which provides demarcation scope methods.

ActivitySession API

The ActivitySession service provides the UserActivitySession interface for use by
EJB Session beans using bean-managed context demarcation, Web application
components configured with ActivitySession control=Web Application, and J2EE
client applications. This UserActivitySession interface defines the set of
ActivitySession operations available to an application component. An
implementation of this interface is obtained via a JNDI lookup of the URL
″java:comp/websphere/UserActivitySession″. It is used to begin and end
ActivitySessions and to query various attributes of the active ActivitySession
associated with the thread.

For more information about the ActivitySession API, see the ActivitySession API
(Javadoc).

The ActivitySession API and the implementation of its interfaces is contained in
the com.ibm.websphere.ActivitySession package.

Programming Examples

The following code extract provides a basic example of using the
UserActivitySession interface:

1042 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/ee/com/ibm/websphere/ActivitySession/package-summary.html
http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/ee/com/ibm/websphere/ActivitySession/package-summary.html

// Get initial context
InitialContext ic = new InitialContext();

// Lookup UserActivitySession
UserActivitySession uas =

(UserActivitySession)ic.lookup("java:comp/websphere/UserActivitySession");

// Set the ActivitySession timeout to 60 seconds
uas.setSessionTimeout(60);

// Start a new ActivitySession context
uas.beginSession();

// Do some work under this context
MyBeanA beanA.doSomething();
...
MyBeanB beanB.doSomethingElse();

// End the context
uas.endSession(EndModeCheckpoint);

Samples: ActivitySessions
The following ActivitySession samples are provided with WebSphere Application
Server:

MasterMind sample
This sample is based on the game MasterMind. It consists of the following
components:
v A servlet, configured with Activity session contol set to Container, that

accesses a stateful session bean.
v A stateful session bean, configured with an activation policy of

ActivitySession containing transient state data.

The servlet begins an HttpSession at the start of each new game, and ends
it at the end of each game; therefore an ActivitySession lasts for the
duration of each game. The ActivitySession activation policy stops the bean
from being passivated and therefore the transient data remains in memory.
This is to demonstrate HttpSession/ActivationSession association in the
web container, and an ActivitySession-scoped activation policy.

J2EE client container application and a CMP entity bean backed by a
1-phase-commit datasource

In this sample, the entity bean is configured with the following properties:
v TX_NOT_SUPPORTED
v An ActivitySession container managed policy of REQUIRES
v An LTC boundary of ActivitySession
v An LTC Resolution Control of ContainerAtBoundary

The client accesses the UserActivitySession, begins an ActivitySession,
updates two instances of the bean, then ends the ActivitySession. It does
this twice using EndModeReset then EndModeCheckpoint. This sample
demonstrates the following functionality:
v Client access to the UserActivitySession interface
v Multiple RMLTs being scoped to the ActivitySession and automatically

taking their completion direction from that of the ActivitySession

The entity bean also holds a transient variable incremented by each
method call (gets and sets for the persistent data). This value is checked
before the end of the ActivitySession to show that the same bean instance
is used. The client checks for the correct results.

Chapter 23. Using the ActivitySession service 1043

A J2EE client container application and two session beans with different
ActivitySession types

This sample consists of a J2EE client container application and the
following session beans:
v SLB1, a stateless session bean configured with an ActivitySession Type of

Bean.
v SFB2, a stateful session bean configured with ActivitySession Type of

Requires, an LTC boundary of ActivitySession, LTC Resolution Contol of
APPLICATION, and an LTC Unresolved Action of ROLLBACK.

Both beans are configured with TX_NOTSUPPORTED.

This sample performs the following steps:
1. The client starts SLB1
2. SLB1 accesses the UserActivitySession interface, begins an

ActivitySession, then calls a method on SFB2
3. SFB2 accesses the UserActivitySession interface, begins an

ActivitySession, calls a method on SFB2
4. SFB2 gets a connection (setAutoCommit false) then uses JDBC to

update a single-phase datasource.
5. SLB1 then optionally calls a seperate method on SFB2 to finish the

work either committing or rolling-back the RMLT.
6. SLB1 then ends the ActivitySession with an EndModeCheckpoint.

This demonstrates that the ActivitySession completion direction is
unconnected to the direction of the RMLTs, although their containment is
bound to the ActivitySession, and the use of the container using the
unresolved action when the RMLT is not completed. It also shows a
bean-managed ActivitySessions bean using the UserActivitySession
interface. The sample checks for correct results and reports them back to
the client.

ActivitySession service: Resources for learning
Use the following links to find relevant supplemental information about
ActivitySessions. The information resides on IBM and non-IBM Internet sites,
whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v Programming model and decisions
v Programming specifications
v Other

Programming model and decisions

v ActivitySession API (Javadoc)

1044 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://publib7b.boulder.ibm.com/wasinfo1/en/info/ee/javadoc/ee/com/ibm/websphere/ActivitySession/package-summary.html

Programming specifications

v J2EE Activity Service for Extended Transactions

v Java Transaction API (JTA) 1.0.1

Other

v WebSphere Application Server Enterprise Version 5 Overview: Advanced
Transactional Connectivity

v Listing of PDF files to learn about WebSphere Application Server Version 5

v Listing of all IBM WebSphere Application Server Redbooks

v Listing of all IBM WebSphere Application Server Whitepapers

v WebSphere Application Server Enterprise Edition 4.0: A Programmer’s
Guide

Chapter 23. Using the ActivitySession service 1045

http://www.jcp.org/jsr/detail/95.jsp
http://java.sun.com/products/jta/
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=products/appserv_enterprise#advanced
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=products/appserv_enterprise#advanced
http://www-3.ibm.com/software/webservers/appserv/appserv_v5.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www-4.ibm.com/software/webservers/appserv/whitepapers.html
http://www.redbooks.ibm.com/redbooks/SG246504.html
http://www.redbooks.ibm.com/redbooks/SG246504.html

1046 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 24. Using naming

Naming is used by clients of WebSphere Application Server applications most
commonly to obtain references to objects related to those applications, such as
Enterprise JavaBeans (EJB) homes. The following steps outline the context of
Naming in the overall application development and deployment process. Steps for
this task follow:

Steps for this task
1. Develop your application using either JNDI or CosNaming (CORBA) interfaces.

Use these interfaces to look up server application objects that are bound into
the name space and obtain references to them. Most Java developers use the
JNDI interface. However, the CORBA CosNaming interface is also available for
performing Naming operations on WebSphere Application Server name servers
or other CosNaming name servers.

2. Assemble your application
Application assembly is a packaging and configuration step that is a
prerequisite to application deployment. If the application you are assembling is
a client to an application running in another process, you should qualify the
jndiName values in the deployment descriptors for the objects related to the
other application. Otherwise, you may need to override the names with
qualified names during application deployment. If the objects have fixed
qualified names configured for them, you should usethem so that the jndiName
values do not depend on the other application’s location within the topology of
the cell.

3. Deploy your application.
Put your assembled application onto the application server. If the application
you are assembling is a client to an application running in another server
process, be sure to qualify the jndiName values for the other application’s
server objects if they are not already qualified.
For more information on qualified names, see Lookup names support in
deployment descriptors and thin clients.

4. Configure name space bindings.
This step is necessary in these cases:
v Your deployed application is to be accessed by legacy client applications

running on previous versions of WebSphere Application Server. In this case,
you must configure additional name bindings for application objects relative
to the default initial context for legacy clients. (Version 5 clients have a
different initial context from legacy clients.)

v The application requires qualified name bindings for such reasons as:
– It will be accessed by J2EE client applications or server applications

running in another server process
– It will be accessed by thin client applications

In this case, you can configure name bindings as additional bindings for
application objects. The qualified names for the configured bindings are fixed,
meaning they do not contain elements of the cell topology that can change if
the application is moved to another server. Objects as bound into the name

© Copyright IBM Corp. 2003 1047

space by the system can always be qualified with a topology-based name.
You must explicitly configure a name binding to use as a fixed qualified
name.

For more information on qualified names, see Lookup names support in
deployment descriptors and thin clients. For more information on configured
name bindings, see Configured name bindings.

5. Troubleshoot any problems that develop.
If a Naming operation is failing and you need to verify whether certain name
bindings exist, use the dumpNameSpace tool to generate a dump of the name
space.

Naming
Naming is used by clients of WebSphere Application Server applications to obtain
references to objects related to those applications, such as Enterprise JavaBeans
(EJB) homes.

These objects are bound into a mostly hierarchical structure, referred to as a name
space. In this structure, all non-leaf objects are called contexts. Leaf objects can be
contexts and other types of objects. Naming operations, such as lookups and binds,
are performed on contexts. All naming operations begin with obtaining an initial
context. You can view the initial context as a starting point in the name space.

The name space structure consists of a set of name bindings, each consisting of a
name relative to a specific context and the object bound with that name. For
example, the name myApp/myEJB consists of one non-leaf binding with the name
myApp, which is a context. The name also includes one leaf binding with the name
myEJB, relative to myApp. The object bound with the name myEJB in this example
happens to be an EJB home reference. The whole name myApp/myEJB is relative to
the initial context, which you can view as a starting place when performing
naming operations.

You can access and manipulate the name space through a name server. Users of a
name server are referred to as naming clients. Naming clients typically use the Java
Naming and Directory Interface (JNDI) to perform naming operations. Naming
clients can also use the Common Object Request Broker Architecture (CORBA)
CosNaming interface.

Typically, objects bound to the name space are resources and objects associated
with installed applications. These objects are bound by the system, and client
applications perform lookup operations to obtain references to them. Occasionally,
server and client applications bind objects to the name space. An application can
bind objects to transient or persistent partitions, depending on requirements.

In J2EE environments, some JNDI operations are performed with java: URL names.
Names bound under these names are bound to a completely different name space
which is local to the calling process. However, some lookups on the java: name
space may trigger indirect lookups to the name server.

New features for name space support
The following are new features of the WebSphere Application Server V5 naming
implementation:
v Name space is distributed.

1048 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

For additional scalability, the name space for a cell is distributed among various
servers. Every server has a name server. In previous releases, there was only one
name server for an entire administrative domain.
In WebSphere Application Server versions prior to V5, all servers shared the
same default initial context, and everything was bound relative to that same
initial context. In WebSphere Application Server V5, the default initial context for
a server is its server root. System artifacts, such as EJB homes and resources, are
bound to the server root of the server with which they are associated.

v Transient and persistent partitions.

The name space is partitioned into transient areas and persistent areas. Server
roots are transient. System-bound artifacts such as EJB homes and resources are
bound under server roots. There is a cell persistent root, which you can use for
cell-scoped persistent bindings, and a node persistent root, which you can use to
bind objects with a node scope.

v System name space structure.

The name space for the entire cell is federated among all servers in the cell.
Every server process contains a name server. All name servers provide the same
logical view of the cell name space. The various server roots and persistent
partitions of the name space are interconnected by means of a system name
space. You can use the system name space structure to traverse to any context in
the cell name space.

v Configured bindings.

You can use the configuration graphical interface and script interfaces to
configure bindings in various root contexts within the name space. These
bindings are read-only and are bound by the system at server startup.

v Support for CORBA Interoperable Naming Service (INS) object URLs.

WebSphere Application Server V5 contains support for Common Object Request
Broker Architecture (CORBA) object URLs (corbaloc and corbname) as Java
Naming and Directory Interface (JNDI) provider URLs and lookup names.

Name space logical view
The name space for the entire cell is federated among all servers in the cell. Every
server process contains a name server. All name servers provide the same logical
view of the cell name space. The various server roots and persistent partitions of
the name space are interconnected by a system name space. You can use the
system name space structure to traverse to any context in a the cell’s name space.

Chapter 24. Using naming 1049

A logical view of the name space is shown in the following diagram.

System Name SpaceSystem Name Space

(R(Read Onlead Only)y)

Cell PCell Perersistentsistent

(R(Read/Write)ead/Write)

SerServver Rer Rootsoots

(R(Read/Write Tead/Write Trransient)ansient)

Node PNode Perersistentsistent

(R(Read/Write)ead/Write)

X

Y

Z

X

Y

Z

L

M
N

A

B
C

A

B

C

nodes

cell root
of foreign cell

foreign cells

cell clusters

BS

user persistent
sub-ctxs & objs

user persistent
sub-ctxs & objs

node persistent
root

user transient
sub-ctxs & objs

A

B

C

system artifact
sub-ctxs & objs

BS
Server root

<user-created-bindings>

<physical-server-name><cluster-name>

<user-created-bindings>

<user-created-bindings> <system-artifacts>

<foreign-cell-names>

<node-name>

cellcell

domaindomain
nodeAgentnodeAgent

clusters

deploymentManagerdeploymentManager

legacyRootlegacyRoot

cells

domaindomain

cellcell

nodes

Logical View of a Cell's Name Space

persistent cellcell

cell persistent
root

X

Y
Z

node physical
servers

persistent

servers

cellcell

Cell root
BS

X
Y

Z

Node root
BS

Name Space Logical View

The bindings in the preceding diagram appear with solid arrows, labeled in bold,
and dashed arrows, labeled in gray. Solid arrows represent primary bindings. A
primary binding is formed when the associated subcontext is created. Dashed
arrows show linked bindings. A linked binding is formed when an existing context
is bound under an additional name. Linked bindings are added for convenience or
interoperability with previous WebSphere Application Server versions.

A cell name space is composed of contexts which reside in servers throughout the
cell. All name servers in the cell provide the same logical view of the cell name
space. A name server constructs this view at startup by reading configuration
information. Each name server has its own local in-memory copy of the name
space and does not require another running server to function. There are, however,
a few exceptions. Server roots for other servers are not replicated among all the
servers. The respective server for a server root must be running to access that
server root context.

Name space partitions
There are four major partitions in a cell name space:
v System name space partition
v Server roots partition
v Cell persistent partition
v Node persistent partition

Each partition is discussed in more detail below.

System name space partition

1050 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The system name space contains a structure of contexts based on the cell topology.
The system structure supports traversal to all parts of a cell name space and to the
cell root of other cells, which are configured as foreign cells. The root of this
structure is the cell root. In addition to the cell root, the system structure contains a
node root for each node in the cell. You can access other contexts of interest
specific to a node from the node root, such as the node persistent root and server
roots for servers configured in that node.

All contexts in the system name space are read-only. You cannot add, update, or
remove any bindings.

Server roots partition

Each server in a cell has a server root context. A server root is specific to a
particular server. You can view the server roots for all servers in a cell as being in
a transient read/write partition of the cell name space. System artifacts, such as
EJB homes for server applications and resources, are bound under the server root
context of the associated server. A server application can also add bindings under
its server root. These bindings are transient. Therefore, the server application
creates all required bindings at application startup, so they exist anytime the
application is running.

A server cluster is composed of many servers that are logically equivalent. Each
member of the cluster has its own server root. These server roots are not replicated
across the cluster. In other words, adding a binding to the server root of one
member does not propagate it to the server roots of the other cluster members. To
maintain the same view across the cluster, you should create all user bindings
under the server root by the server application at application startup so that the
bindings are present under the server root of each cluster member. Because of
Workload Management (WLM) behavior, a JNDI client outside a cluster has no
control over which cluster member’s server root context becomes the target of the
JNDI operation. Therefore, you should execute bind operations to the server root of
a cluster member should from within that cluster member process only.

Distributing application objects among many server roots is a departure from
previous WebSphere Application Server releases, where all system artifacts were
bound under a single root. This change can affect the names that clients use to
look up these objects.

Server-scoped bindings are relative to a server’s server root.

Cell persistent partition

The root context of the cell persistent partition is the cell persistent root. A binding
created under the cell persistent root is saved as part of the cell configuration and
continues to exist until it is explicitly removed. Applications that need to create
additional persistent bindings of objects generally associated with the cell can bind
these objects under the cell persistent root.

It is important to note that the cell persistent area is not designed for transient,
rapidly changing bindings. The bindings are more static in nature, such as part of
an application setup or configuration, and are not created at run time.

An important role of the cell persistent root is as the initial context for clients
running in previous WebSphere Application Server versions. If you want to access
an enterprise bean by WebSphere Application Server v4.0.x and 3.5.x clients, you

Chapter 24. Using naming 1051

must ensure that a binding for it has been added to the cell persistent root. You
can configure these additional bindings as cell-scoped bindings.

Node persistent partition

The node persistent partition is similar to the cell partition except that each node
has its own node persistent root. A binding created under a node persistent root is
saved as part of that node configuration and continues to exist until it is explicitly
removed.

Applications that need to create additional persistent bindings of objects associated
with a specific node can bind those objects under that particular node’s node
persistent root. As with the cell persistent area, it is important to note that the
node persistent area is not designed for transient, rapidly changing bindings. These
bindings are more static in nature, such as part of an application setup or
configuration, and are not created at run time.

Unlike the cell persistent root, the node persistent root plays no special role in
interoperability with WebSphere Application Server clients of previous releases.
Node-scoped bindings are relative to a node’s node persistent root.

Initial context support
All naming operations begin with obtaining an initial context. You can view the
initial context as a starting point in the name space. Use the initial context to
perform naming operations, such as looking up and binding objects in the name
space.

Initial contexts registered with the ORB as initial references
The server root, cell persistent root, cell root, and node root are registered with the
name server’s ORB and can be used as an initial context. An initial context is used
by CORBA and enterprise bean applications as a starting point for name space
lookups. The keys for these roots as recognized by the ORB are shown in the
following table:

Root Context Initial Reference Key

Server Root NameServiceServerRoot

Cell Persistent Root NameServiceCellPersistentRoot

Cell Root NameServiceCellRoot
NameService

Node Root NameServiceNodeRoot

A server root initial context is the server root context for the specific server you are
accessing. Similarly, a node root initial context is the node root for the server being
accessed.

You can use the previously mentioned keys in CORBA INS object URLs (corbaloc
and corbaname) and as an argument to an ORB resolve_initial_references call. For
examples, see CORBA and JNDI programming examples, which show how to get
an initial context.

1052 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Default initial contexts
The default initial context depends on the type of client. Different categories of
clients and the corresponding default initial context follow.

WebSphere Application Server V5 JNDI interface implementation

The JNDI interface is used by EJB applications to perform name space lookups.
WebSphere Application Server clients by default use the WebSphere Application
Server CosNaming JNDI plug-in implementation. The default initial context for
clients of this type is the server root of the server specified by the provider URL.
For more details, refer to the JNDI programming examples on getting initial
contexts.

WebSphere Application Server JNDI interface implementation prior to V5

WebSphere Application Server clients running in releases prior to WebSphere
Application Server V5 by default use WebSphere Application Server’s v4.0
CosNaming JNDI plug-in implementation. The default initial context for clients of
this type is the cell persistent root, also known as the legacy root.

Other JNDI implementation

Some applications can perform name space lookups with a non-WebSphere
Application Server CosNaming JNDI plug-in implementation. Assuming the key
NamingContext is used to obtain the initial context, the default initial context for
clients of this type is the cell root.

CORBA

The standard CORBA client obtains an initial org.omg.CosNaming.NamingContext
reference with the key NamingContext. The initial context in this case is the cell
root.

Lookup names support in deployment descriptors and thin clients
Server objects, such as EJB homes, are bound relative to the server root context for
the server in which the application is installed. Other objects, such as resources,
can also be bound to a specific server root. The names used to look up these
objects must be qualified so as to select the correct server root. This is a departure
from previous versions of WebSphere Application Server, where these objects were
all bound under a single root context. This section discusses what relative and
qualified names are, when they can be used, and how you can construct them.

Relative names
All names are relative to a context. Therefore, a name that can be resolved from
one context in the name space cannot necessarily be resolved from another context
in the name space. This point is significant because the system binds objects with
names relative to the server root context of the server in which the application is
installed. Each server has its own server root context. The initial JNDI context is by
default the server root context for the server identified by the provider URL used
to obtain the initial context. (Typically, the URL consists of a host and port.) For
applications running in a server process, the default initial JNDI context is the
server root for that server. A relative name will resolve successfully when the
initial context is obtained from the server which contains the target object, but it
will not resolve successfully from an initial context obtained from another server.

Chapter 24. Using naming 1053

If all clients of a server application run in the same server process as the
application, all objects associated with that application are bound to the same
initial context as the clients’ initial context. In this case, only names relative to the
server’s server root context are required to access these server objects. Frequently,
however, a server application has clients that run outside the application’s server
process. The initial context for these clients can be different from the server
application’s initial context, and lookups on the relative names for server objects
may fail. These clients need to use the qualified name for the server objects. This
point must be considered when setting up the jndiName values in a J2EE client
application deployment descriptors and when constructing lookup names in thin
clients. Qualified names resolve successfully from any initial context in the cell.

Qualified names
All names are relative to a context. Here, the term qualified name refers to names
that can be resolved from any initial context in a cell. This action is accomplished
by using names that navigate to the same context, the cell root. The rest of the
qualified name is then relative to the cell root and uniquely identifies an object
throughout the cell. All initial contexts in a server (that is, all naming contexts in a
server registered with the ORB as an initial reference) contain a binding with the
name cell, which links back to the cell root context. All qualified names begin with
the string cell/ to navigate from the current initial context back to the cell root
context.

A qualified name for an object is the same throughout the cell. The name can be
topology-based, or some fixed name bound under the cell persistent root.
Topology-based names, described in more detail below, navigate through the
system name space to reach the target object. A fixed name bound under the cell
persistent root has the same qualified name throughout the cell and is independent
of the topology. Creating a fixed name under the cell persistent root for a server
application object requires an extra step when the server application is installed,
but this step eliminates impacts to clients when the application is moved to a
different location in the cell topology. The process for creating a fixed name is
described later in this section.

Generally speaking, you must use qualified names for EJB jndiName values in a
J2EE client application deployment descriptors and for EJB lookup names in thin
clients. The only exception is when the initial context is obtained from the server in
which the target object resides. For example, a session bean which is a client to an
entity bean can use a relative name if the two beans run in the same server. If the
session bean and entity beans run in different servers, the jndiName for the entity
bean must be qualified in the session bean’s deployment descriptors. The same
requirement may be true for resources as well, depending on the scope of the
resource.

Topology-based names

The system name space partition in a cell’s name space reflects the cell’s topology.
This structure can be navigated to reach any object bound into the cell’s name
space. Topology-based qualified names include elements from the topology which
reflect the object’s location within the cell. For a system-bound object, such as an
EJB home, the form for a topology-based qualified name depends on whether the
object is bound to a single server or cluster. Both forms are described below.

Single Server
An object bound in a single server has a topology-based qualified name of
the following form:

1054 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

cell/nodes/nodeName/servers/serverName/relativeJndiName

where nodeName and serverName are the node name and server name for
the server where the object is bound, and relativeJndiName is the
unqualified name of the object; that is, the object’s name relative to its
server’s server root context.

Server Cluster
An object bound in a server cluster has a topology-based qualified name of
the following form:
cell/clusters/clusterName/relativeJndiName

where clusterName is the name of the server cluster where the object is
bound, and relativeJndiName is the unqualified name of the object; that is,
the object’s name relative to a cluster member’s server root context.

Fixed names

It is possible to create a fixed name for a server object so that the qualified name is
independent of the cell topology. This quality is desirable when clients of the
application run in other server processes or as pure clients. Fixed names have the
advantage of not changing if the object is moved to another server. The jndiName
values in deployment descriptors for a J2EE client application can reference the
qualified fixed name for a server object regardless of the cell topology on which
the client or server application is being installed.

Defining a cell-wide fixed name for a server application object requires an extra
step after the server application is installed. That is, a binding for the object must
be created under the cell persistent root. A fixed name bound under the cell
persistent root can be any name, but all names under the cell persistent root must
be unique within the cell because the cell persistent root is global to the entire cell.

A qualified fixed name has the form:
cell/persistent/fixedName

where fixedName is an arbitrary fixed name.

The binding can be created programmatically (for example, using JNDI). However,
it is probably more convenient to configure a cell-scoped binding for the server
object.

You must keep the programmatic or configured binding up-to-date. Configured
EJB bindings are based on the location of the enterprise bean within the cell
topology, and moving the EJB application to another single server or to a server
cluster, for example, requires the configured binding to be updated. Similar
changes affect an EJB home reference programmatically bound so that the fixed
name would need to be rebound with a current reference. However, for J2EE
clients, the jndiName value for the object, and for thin clients, the lookup name for
the object, remains the same. In other words, clients that access objects by fixed
names are not affected by changes to the configuration of server applications they
access.

Chapter 24. Using naming 1055

JNDI support in WebSphere Application Server
IBM WebSphere Application Server includes a name server to provide shared
access to Java components, and an implementation of the javax.naming JNDI
package which supports user access to the WebSphere Application Server name
server through the JNDI naming interface.

WebSphere Application Server does not provide implementations for:
v javax.naming.directory or
v javax.naming.ldap packages

Also, WebSphere Application Server does not support interfaces defined in the
javax.naming.event package.

However, to provide access to LDAP servers, the development kit shipped with
WebSphere Application Server supports Sun’s implementation of:
v javax.naming.ldap and
v com.sun.jndi.ldap.LdapCtxFactory

WebSphere Application Server’s JNDI implementation is based on version 1.2 of
the JNDI interface, and was tested with Version 1.2.1 of Sun’s JNDI Service
Provider Interface (SPI).

The default behavior of this JNDI implementation is adequate for most users.
However, users with specific requirements can control certain aspects of JNDI
behavior.

Developing applications that use JNDI
References to EJB homes and other artifacts such as data sources are bound to the
WebSphere name space. These objects can be obtained through the JNDI interface.
Before you can perform any JNDI operations, you need to get an initial context.
You can use the initial context to look up objects bound to the WebSphere name
space.

These examples describe how to get an initial context and how to perform lookup
operations.
v Getting the default initial context
v Getting an initial context by setting the provider URL property
v Setting the provider URL property to select a different root context as the initial

context
v Looking up an EJB home with JNDI
v Looking up a JavaMail session with JNDI

In these examples, the default behavior of features specific to WebSphere’s JNDI
Context implementation is used.

WebSphere Application Server’s JNDI context implementation includes special
features. JNDI caching enhances performance of repeated lookup operations on the
same objects. Name syntax options offer a choice of a name syntaxes, one
optimized for typical JNDI clients, and one optimized for interoperability with
CosNaming applications. Most of the time, the default behavior of these features is
the preferred behavior. However, sometimes you should modify the behavior for
specific situations.

1056 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

JNDI caching and name syntax options are associated with a
javax.naming.InitialContext instance. To select options for these features, set
properties that are recognized by the WebSphere Application Server’s initial
context factory . To set JNDI caching or name syntax properties which will be
visible to WebSphere Application Server’s initial context factory, follow the
following steps.

Steps for this task
1. (Optional) Configure JNDI caches

JNDI caching can greatly increase performance of JNDI lookup operations. By
default, JNDI caching is enabled. In most situations, this default is the desired
behavior. However, in specific situations, use the other JNDI cache options.
Objects are cached locally as they are looked up. Subsequent lookups on cached
objects are resolved locally. However, cache contents can become stale. This
situation is not usually a problem, since most objects you look up do not
change frequently. If you need to look up objects which change relatively
frequently, change your JNDI cache options.
JNDI clients can use several properties to control cache behavior.
You can set properties:
v From the command line by entering the actual string value. For example:

java -Dcom.ibm.websphere.naming.jndicache.maxentrylife=1440

v In a jndi.properties file by creating a file named jndi.properties as a text
file with the desired properties settings. For example:
...
com.ibm.websphere.naming.jndicache.cacheobject=none
...

Include the file as the beginning of the classpath, so that the classloader
loads your copy of jndi.properties before any other copies.

v Within a Java program by using the PROPS.JNDI_CACHE* Java constants,
defined in the com.ibm.websphere.naming.PROPS file. The constant
definitions follow:

public static final String JNDI_CACHE_OBJECT = "com.ibm.websphere.naming.jndicache.cacheobject";
public static final String JNDI_CACHE_OBJECT_NONE = "none";
public static final String JNDI_CACHE_OBJECT_POPULATED = "populated";
public static final String JNDI_CACHE_OBJECT_CLEARED = "cleared";
public static final String JNDI_CACHE_OBJECT_DEFAULT = JNDI_CACHE_OBJECT_POPULATED;

public static final String JNDI_CACHE_NAME = "com.ibm.websphere.naming.jndicache.cachename";
public static final String JNDI_CACHE_NAME_DEFAULT = "providerURL";

public static final String JNDI_CACHE_MAX_LIFE = "com.ibm.websphere.naming.jndicache.maxcachelife";
public static final int JNDI_CACHE_MAX_LIFE_DEFAULT = 0;

public static final String JNDI_CACHE_MAX_ENTRY_LIFE = "com.ibm.websphere.naming.jndicache.maxentrylife";
public static final int JNDI_CACHE_MAX_ENTRY_LIFE_DEFAULT = 0;

To use the previous properties in a Java program, add the property setting to
a hashtable and pass it to the InitialContext constructor as follows:
java.util.Hashtable env = new java.util.Hashtable();
...
//Disable caching
env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE);
...
javax.naming.Context initialContext = new javax.naming.InitialContext(env);

2. (Optional) Specify the name syntax

Chapter 24. Using naming 1057

Most WebSphere applications use JNDI to look up EJB objects and do not need
to look up objects bound by CORBA applications. Therefore, the default name
syntax used for JNDI names is the most convenient. If your application needs
to look up objects bound by CORBA applications, you may need to change
your name syntax so that all CORBA CosNaming names can be represented.
JNDI clients can set the name syntax by setting a property. The property setting
is applied by the initial context factory when you instantiate a new
java.naming.InitialContext object. Names specified in JNDI operations on the
initial context are parsed according to the specified name syntax.
You can set the property:
v From the command line by entering the actual string value. For example:

java -Dcom.ibm.websphere.naming.name.syntax=ins

v In a jndi.properties file by creating a file named jndi.properties as a text file
with the desired properties settings. For example:
...
com.ibm.websphere.naming.name.syntax=ins
...

Include the file as the beginning of the classpath, so that the classloader
loads your copy of jndi.properties before any other copies.

v Within a Java program by using the PROPS.NAME_SYNTAX* Java constants,
defined in the com.ibm.websphere.naming.PROPS file. The constant
definitions follow:
public static final String NAME_SYNTAX="com.ibm.websphere.naming.name.syntax";
public static final String NAME_SYNTAX_JNDI = "jndi";
public static final String NAME_SYNTAX_INS = "ins";

To use the previous properties in a Java program, add the property setting to
a hashtable and pass it to the InitialContext constructor as follows:
java.util.Hashtable env = new java.util.Hashtable();
...
env.put(PROPS.NAME_SYNTAX, PROPS.NAME_SYNTAX_INS); // Set name syntax to INS
...
javax.naming.Context initialContext = new javax.naming.InitialContext(env);

Example: Getting the default initial context
This example below gets the default initial context. That is, no provider URL is
passed to the javax.naming.InitialContext constructor. The following section
explains the process of determining the address of the bootstrap server to use to
obtain the initial context.

Usage scenario
...
import javax.naming.Context;
import javax.naming.InitialContext;
...
Context initialContext = new InitialContext();
...

The default initial context returned depends the runtime environment of the JNDI
client. The initial context returned in the various environments are listed below:
v Thin client: The server root context of the server running on the local host at

port 2809.
v Pure client:

1058 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

– The context specified by the java.naming.provider.url property passed to
launchClient command with the -CCD command line parameter. The context
usually will be the server root context of the server at the address specified in
the URL, although it is possible to construct a corbaname or corbaloc URL
which resolves to some other context.

– If no provider URL was specified, the server root context of the server
running on the host and port specified by the -CCBootstrapHost
-CCBootstrapPort command line parameters. The default host is the local
host, and the default port is 2809.

v Server process: The server root context for that process.

Even though no provider URL is explicitly specified in the above example, the
InitialContext may find a provider URL defined in other places that it searches for
property settings.

Users of properties which affect ORB initialization should read the rest of this
section for a deeper understanding of exactly how initial contexts are obtained,
which has changed from previous releases.

Determining which server is used to obtain the initial context
WebSphere Application Server name servers are CORBA CosNaming name servers,
and WebSphere Application Server provides a CosNaming JNDI plug-in
implementation for JNDI clients to perform naming operations on WebSphere
Application Server name spaces. The WebSphere Application Server CosNaming
plug-in implementation is selected through a JNDI property that is passed to the
InitialContext constructor. This property is java.naming.factory.initial, and it
specifies the initial context factory implementation to use to obtain an initial
context. The factory returns a javax.naming.Context instance, which is part of its
implementation.

The WebSphere Application Server initial context factory,
com.ibm.websphere.naming.WsnInitialContextFactory, is typically used by
WebSphere Application Server applications to perform JNDI operations. The
WebSphere Application Server run-time environment is set up to use this
WebSphere Application Server initial context factory if one is not specified
explicitly by the JNDI client. When the initial context factory is invoked, an initial
context is obtained. The following paragraphs explain how the WebSphere
Application Server initial context factory obtains the initial context in client and
server environments.

Understanding the registration of initial references in server processes

Every WebSphere Application Server has an ORB used to receive and dispatch
invocations on objects running in that server. Services running in the server process
can register initial references with the ORB. Each initial reference is registered
under a key, which is a string value. An initial reference can be any CORBA object.
WebSphere Application Server name servers register several initial contexts as
initial references under predefined keys. Each name server initial reference is an
instance of the interface org.omg.CosNaming.NamingContext.

Obtaining initial references in pure client processes

Pure JNDI clients, that is, JNDI clients which are not running in a WebSphere
Application Server process, also have an ORB instance. This client ORB instance
can be passed to the InitialContext constructor, but typically the initial context
factory creates and initializes the client ORB instance transparently. A client ORB

Chapter 24. Using naming 1059

can be initialized with initial references, but the initial references most likely
resolve to objects running in some server. The initial context factory does not
define any default initial references when it initializes an ORB. If the
resolve_initial_references method is invoked on the client ORB when no initial
references have been configured, the method invocation fails. This condition is
typical for pure client processes. To obtain an initial NamingContext reference, the
initial context factory must invoke string_to_object with an IIOP type CORBA
object URL, such as corbaloc:iiop:myhost:2809. The URL specifies the address of
the server from which to obtain the initial context. The host and port information
is extracted from the provider URL passed to the InitialContext constructor. If no
provider URL is defined, the WebSphere Application Server initial context factory
uses the default provider URL of corbaloc:iiop:localhost:2809. The
string_to_object ORB method resolves the URL and communicates with the target
server ORB to obtain the initial reference.

Obtaining initial references in server processes

If the JNDI client is running in a WebSphere Application Server process, the initial
context factory obtains a reference to the server ORB instance if the JNDI client
does not provide an ORB instance. Typically, JNDI clients running in server
processes use the server ORB instance; that is, they do not pass an ORB instance to
the InitialContext constructor. The name server which is running in the server
process sets a provider URL as a java.lang.System property to serve as the default
provider URL for all JNDI clients in the process. This default provider URL is
corbaloc:rir:/NameServiceServerRoot. This URL resolves to the server root
context for that server. (The URL is equivalent to invoking
resolve_initial_references on the ORB with a key of NameServiceServerRoot. The
name server registers the server root context as an initial reference under that key.)

Understanding the legacy ORB protocol

Previous versions of WebSphere Application Server used a different ORB
implementation, which used a legacy protocol in contrast with the Interoperable
Name Service (INS) protocol now used. This change has affected the
implementation of the WebSphere Application Server initial context factory. Certain
types of pure clients can experience different behavior when getting initial JNDI
contexts as compared to previous releases of WebSphere Application Server. This
behavior is discussed in more detail below.

The following ORB properties are used with the legacy ORB protocol for ORB
initialization and are now deprecated:
v com.ibm.CORBA.BootstrapHost
v com.ibm.CORBA.BootstrapPort

The new INS ORB is different in a major respect, in that it exhibits no default
behavior if no initial references are defined. In the legacy ORB, the bootstrap host
and port values defaulted to localhost and 900. All initial references were obtained
from the server running on the bootstrap host and port. So, if the ORB user
provided no bootstrap host and port, all initial references are resolved from the
server running on the local host at port 900. The INS ORB has no concept of
bootstrap host or bootstrap port. All initial references are defined independently.
That is, different initial references could resolve to different servers. If
ORB.resolve_initial_references is invoked with a key such that the ORB is not
initialized with an initial reference having that key, the call fails.

1060 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

In previous releases of WebSphere Application Server, the initial context factory
invoked resolve_initial_references on the ORB in the absence of any provider URL.
This action succeeded if a name server at the default bootstrap host and port was
running. Today, with the INS ORB, this would fail. (Actually, the ORB would fall
back to the legacy protocol during the deprecation period, but when the legacy
protocol is no longer supported, the operation would fail.) The initial context
factory now uses a default provider URL of corbaloc:iiop:localhost:2809, and
invokes string_to_object with the provider URL. This operation preserves the
behavior that pure clients in previous releases experienced when they set no ORB
bootstrap properties or provider URL. However, this different initial context
factory implementation changes the behavior experienced by certain legacy pure
clients, which do not specify a provider URL:
v Clients which set the ORB bootstrap properties listed above when getting an

initial context.
v Clients which supply their own ORB instance to the InitialContext constructor.

There are two ways to circumvent this change of behavior:
v Always specify an IIOP type provider URL. This approach does not depend on

the bootstrap host and port properties and continues to work when support for
the bootstrap host and port properties is removed. For example, you can express
bootstrap host and port property values of myHost and 2809, respectively, as
corbaloc:iiop:myHost:2809.

v Use an rir type provider URL:
– Specify corbaloc:rir:/NameServiceServerRoot if the ORB is initialized to use

a WebSphere Application Server 5 server as the bootstrap server.
– Specify corbaname:rir:/NameService#domain/legacyRoot if the ORB is

initialized to use a WebSphere Application Server 4.0.x server as the bootstrap
server.

– Specify corbaloc:rir:/NameService if the ORB is initialized to use a server
other than a WebSphere Application Server 5 or 4.0.x server as the bootstrap
server.

URLs of this type are equivalent to invoking resolve_initial_references on the
ORB with the specified key. If the bootstrap host and port properties are being
used to initialize the ORB, this approach will not work when the bootstrap and
host properties are no longer supported.

The InitialContext constructor search order for JNDI properties

If the code snippet shown at the beginning of this section is executed by an
application, the bootstrap server depends on the value of the property,
java.naming.provider.url. If the property is not set (in server processes the default
value is set as a system property), the default host of localhost and default port of
2809 are used as the address of the server from which to obtain the initial context.
The JNDI specification describes where the InitialContext constructor looks for
java.naming.provider.url property settings, but briefly, the property is picked up
from the following places in the order shown:
1. The InitialContext constructor. This does not apply to the above example since

the example uses the empty InitalContext constructor.
2. System environment. You can add JNDI properties to the system environment

as an option on the java command invocation and by program code. The
recommended way to set the provider URL in the system environment is as an
option supplied to the Java command invocation. Setting the provider URL in
this manner is not temporal, so that getting a default initial context will always

Chapter 24. Using naming 1061

yield the same result. It is generally recommended that program code not set
the provider URL property in the system environment because as a side-effect,
this could adversely affect other, possibly unrelated, code running elsewhere in
the same process.

3. jndi.properties file. There may be many jndi.properties files that are within
the scope of the class loader in effect. All jndi.properties files are used for
setting JNDI properties, but the provider URL setting is determined by the first
jndi.properties file returned by the class loader.

Example: Getting an initial context by setting the provider
URL property

In general, JNDI clients should assume the correct environment is already
configured so there is no need to explicitly set property values and pass them to
the InitialContext constructor. However, a JNDI client may need to access a name
space other than the one identified in its environment. In this case, it is necessary
to explicitly set the java.naming.provider.url (provider URL) property used by the
InitialContext constructor. A provider URL contains bootstrap server information
that the initial context factory can use to obtain an initial context. Any property
values passed in directly to the InitialContext constructor take precedence over
settings of those same properties found elsewhere in the environment.

You can use two different provider URL forms with WebSphere Application
Server’s initial context factory:
v A CORBA object URL (new for J2EE 1.3)
v An IIOP URL

CORBA object URLs are more flexible than IIOP URLs and are the recommended
URL format to use. CORBA object URLs are part of the OMG CosNaming
Interoperable Naming Specification. A corbaname URL, for example, can include
initial context and lookup name information and can be used as a lookup name
without the need to explicitly obtain another initial context.The IIOP URLs are the
legacy JNDI format, but are still supported by the WebSphere Application Server
initial context factory.

The following examples illustrate the use of these URLs.

Using a CORBA object URL
This example shows a CORBA object URL.

Usage scenario
...
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL,

"corbaloc:iiop:myhost.mycompany.com:2809");
Context initialContext = new InitialContext(env);
...

Using a CORBA object URL with multiple name server addresses
CORBA object URLs can contain more than one bootstrap address. You can use
this feature when attempting to obtain an initial context from a server cluster. You
can specify the bootstrap addresses for all servers in the cluster in the URL. The

1062 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

operation succeeds if at least one of the servers is running, eliminating a single
point of failure. There is no guarantee of any particular order in which the address
list will be processed. For example, the second bootstrap address may be used to
obtain the initial context even though the server at the first bootstrap address in
the list is available.

Multiple-address provider URLs should only contain the bootstrap addresses of
members of the same cluster. Otherwise, incorrect behavior may occur.

An example of a corbaloc URL with multiple addresses follows.

Usage scenario
...
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");
// All of the servers in the provider URL below are members of the same cluster.
env.put(Context.PROVIDER_URL,

"corbaloc::myhost1:9810,:myhost1:9811,:myhost2:9810");
Context initialContext = new InitialContext(env);
...

Using a CORBA object URL from an non-WebSphere Application
Server JNDI implementation
Initial context factories for CosNaming JNDI plug-in implementations other than
the WebSphere Application Server initial context factory most likely obtain an
initial context using the object key, NameService. When you use such a context
factory to obtain an initial context from a WebSphere Application Server name
server, the initial context is the cell root context. Since system artifacts such as EJB
homes associated with a server are bound under the server’s server root context,
names used in JNDI operations must be qualified. If you want to use relative
names, ensure your initial context is the server root context under which the target
object is bound. In order to make the server root context the initial context, specify
a corbaloc provider URL with an object key of NameServiceServerRoot.

This example shows a CORBA object type URL from a non-WebSphere Application
Server JNDI implementation. This example assumes full CORBA object URL
support by the non-WebSphere Application Server JNDI implementation. The
object key of NameServiceServerRoot is specified so that the initial context will be
the specified server’s server root context.

Usage scenario
...
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.somecompany.naming.TheirInitialContextFactory");
env.put(Context.PROVIDER_URL,

"corbaname:iiop:myhost.mycompany.com:9810/NameServiceServerRoot");
Context initialContext = new InitialContext(env);
...

If qualified names are used, you can use the default key of NameService.

Chapter 24. Using naming 1063

Using an IIOP URL
The IIOP type of URL is a legacy format which is not as flexible as CORBA object
URLs. However, URLs of this type are still supported. The following example
shows an IIOP type URL as the provider URL.

Usage scenario
...
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, "iiop://myhost.mycompany.com:2809");
Context initialContext = new InitialContext(env);
...

Example: Setting the provider URL property to select a
different root context as the initial context

Each server contains its own server root context, and, when bootstrapping to a
server, the server root is the default initial JNDI context. Most of the time, this
default is the desired initial context, since system artifacts such as EJB homes are
bound there. However, other root contexts exist, which can contain bindings of
interest. It is possible to specify a provider URL to select other root contexts.

Selecting the initial root context with a CORBA object URL
There are several object keys registered with the bootstrap server that you can use
to select the root context for the initial context. To select a particular root context
with a CORBA object URL object key, set the object key to the corresponding value.
The default object key is NameService. Using JNDI yields the server root context.
A table that lists the different root contexts and their corresponding object key
follows:

Root Context CORBA Object URL Object Key
Server Root NameServiceServerRoot
Cell Persistent Root NameServiceCellPersistentRoot
Cell Root NameServiceCellRoot
Node Root NameServiceNodeRoot

The following example shows the use of a corbaloc URL with the object key set to
select the cell persistent root context as the initial context.

Usage scenario
...
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL,

"corbaloc:iiop:myhost.mycompany.com:2809/NameServiceCellPersistentRoot");
Context initialContext = new InitialContext(env);
...

1064 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Selecting the initial root context with the name space root
property
You can also select the initial root context by passing a name space root property
setting to the InitialContext constructor. Generally, the object key setting described
above is sufficient. Sometimes a property setting is preferable. For example, you
can set the root context property on the Java invocation to make which server root
is being used as the initial context transparent to the application . The default
server root property setting is defaultroot, which yields the server root context.

Root Context Name Space Root Property Value
Server Root bootstrapserverroot
Cell Persistent Root cellpersistentroot
Cell Root cellroot
Node Root bootstrapnoderoot

The initial context factory ignores the name space root property if the provider
URL contains an object key other than NameService.

The following example shows use of the name space root property to select the cell
persistent root context as the initial context. Note that available constants are used
instead of hardcoding the property name and value.

Usage scenario
...
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import com.ibm.websphere.naming.PROPS;
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, "corbaloc:iiop:myhost.mycompany.com:2809");
env.put(PROPS.NAME_SPACE_ROOT, PROPS.NAME_SPACE_ROOT_CELL_PERSISTENT);
Context initialContext = new InitialContext(env);
...

Example: Looking up an EJB home with JNDI
Most applications which use JNDI run in a container. Some do not. The name used
to look up an object depends on whether or not the application is running in a
container. The examples below show lookups from each type of application.
Sometimes it is more convenient for an application to use a corbaname URL as the
lookup name. Container-based JNDI clients and thin Java clients can use a
corbaname URL. An example of a lookup with a corbaname URL is also included
in this section.

JNDI lookup from an application running in a container
Applications that run in a container can use java: lookup names. Lookup names
of this form provide a level of indirection such that the lookup name used to look
up an object is not dependent on the object’s name as it is bound in the name
server’s name space. The deployment descriptors for the application provide the
mapping from the java: name and the name server lookup name. The container
sets up the java: name space based on the deployment descriptor information so
that the java: name is correctly mapped to the corresponding object.

The following example shows a lookup of an EJB home. The actual home lookup
name is determined by the application’s deployment descriptors.

Chapter 24. Using naming 1065

// Get the initial context as shown in a previous example
...
// Look up the home interface using the JNDI name
try {

java.lang.Object ejbHome =
initialContext.lookup("java:comp/env/com/mycompany/accounting/AccountEJB");

accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(
(org.omg.CORBA.Object) ejbHome, AccountHome.class);

}
catch (NamingException e) { // Error getting the home interface

...
}

JNDI lookup from an application that does not run in a container
Applications that do not run in a container cannot use java: lookup names
because it is the container which sets the java: name space up for the application.
Instead, an application of this type must look the object up directly from the name
server. Each application server contains a name server. System artifacts such as EJB
homes are bound relative to the server root context in that name server. The
various name servers are federated by means of a system name space structure.
The recommended way to look up objects on different servers is to qualify the
name so that the name resolves from any initial context in the cell. If a relative
name is used, the initial context must be the same server root context as the one
under which the object is bound. The form of the qualified name depends on
whether the qualified name is a topology-based name or a fixed name. A topology
based name depends on whether the object resides in a single server or a server
cluster. Examples of each form of qualified name follow.

Topology-based qualified names

Topology-based qualified names traverse through the system name space to the
server root context context under which the target object is bound. A
topology-based qualified name resolves from any initial context in the cell. The
topology-based qualified name depends on whether the object resides on a single
server or server cluster. Examples of each lookup follow.

Single server
The following example shows a lookup of an EJB home that is running in
the single server, MyServer, configured in the node, Node1.

// Get the initial context as shown in a previous example
// Using the form of lookup name below, it doesn’t matter which
// server in the cell is used to obtain the initial context.
...
// Look up the home interface using the JNDI name
try {

java.lang.Object ejbHome = initialContext.lookup(
"cell/nodes/Node1/servers/MyServer/com/mycompany/accounting/AccountEJB");

accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(
(org.omg.CORBA.Object) ejbHome, AccountHome.class);

}
catch (NamingException e) { // Error getting the home interface
...
}

Server cluster
The example below shows a lookup of an EJB home which is running in
the cluster, MyCluster. The name can be resolved if any of the cluster
members is running.
// Get the initial context as shown in a previous example
// Using the form of lookup name below, it doesn’t matter which
// server in the cell is used to obtain the initial context.

1066 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

...
// Look up the home interface using the JNDI name
try {

java.lang.Object ejbHome = initialContext.lookup(
"cell/clusters/MyCluster/com/mycompany/accounting/AccountEJB");

accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(
(org.omg.CORBA.Object) ejbHome, AccountHome.class);

}
catch (NamingException e) { // Error getting the home interface

...
}

Fixed qualified names

If the target object has a cell-scoped fixed name defined for it, you can use its
qualified form instead of the topology-based qualified name. Even though the
topology-based name works, the fixed name does not change with the specific cell
topology or with the movement of the target object to a different server. An
example lookup with a qualified fixed name is shown below.

// Get the initial context as shown in a previous example
// Using the form of lookup name below, it doesn’t matter which
// server in the cell is used to obtain the initial context.
...
// Look up the home interface using the JNDI name
try {

java.lang.Object ejbHome = initialContext.lookup(
"cell/persistent/com/mycompany/accounting/AccountEJB");

accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(
(org.omg.CORBA.Object) ejbHome, AccountHome.class);

}
catch (NamingException e) { // Error getting the home interface

...
}

JNDI lookup with a corbaname URL
A corbaname can be useful at times as a lookup name. If, for example, the target
object is not a member of the federated name space and cannot be located with a
qualifiied name, a corbaname can be a convenient way to look up the object. A
lookup with a corbaname URL follows.

// Get the initial context as shown in a previous example
...
// Look up the home interface using a corbaname URL
try {

java.lang.Object ejbHome =
initialContext.lookup("corbaname:iiop:someHost:2809#com/mycompany/accounting/AccountEJB");

accountHome = (AccountHome)javax.rmi.PortableRemoteObject.narrow(
(org.omg.CORBA.Object) ejbHome, AccountHome.class);

}
catch (NamingException e) { // Error getting the home interface

...
}

Example: Looking up a JavaMail session with JNDI
The example below shows a lookup of a JavaMail resource. The actual lookup
name is determined by the application’s deployment descriptors.

Usage scenario
// Get the initial context as shown above
...
Session session = (Session) initialContext.lookup("java:comp/env/mail/MailSession");

Chapter 24. Using naming 1067

JNDI interoperability considerations
This section explains considerations to take into account when interoperating with
previous releases of WebSphere Application Server and with non-WebSphere
Application Server JNDI clients. Also, the way resources from MQSeries must be
bound to the name space has changed and is described below.

Interoperability with previous WebSphere Application Server
Releases
EJB clients running on WebSphere Application Server V3.5 or V4.0 accessing
EJB applications running on WebSphere Application Server V5

Applications migrated from previous versions of WebSphere Application Server
may still have clients still running in a previous release. The default initial JNDI
context for EJB clients running on previous versions of WebSphere Application
Server is the cell persistent root (legacy root). The home for an enterprise bean
deployed in version 5 is bound to its server’s server root context. In order for the
EJB lookup name for down-level clients to remain unchanged, configure a binding
for the EJB home under the cell persistent root.

Note: EJB clients running in version 3.5 must be running in version 3.5.5 or above,
or in version 3.5.3 or 3.5.4 with e-fix PQ51387 installed.

EJB clients running on WebSphere Application Server V5 accessing EJB
applications running on WebSphere Application Server V3.5 or V4.0 servers

The default initial context for a WebSphere Application Server v3.5 or v4.0 server is
the correct initial context. Simply look up the JNDI name under which the EJB
home is bound.

Note: To enable WebSphere Application Server V5 clients to access version 3.5.x
and 4.0.x servers, the down-level installations must have e-fix PQ60074 installed.

EJB clients running in an environment other than WebSphere
Application Server accessing EJB applications running on
WebSphere Application Server V5 servers
When an EJB application running in WebSphere Application Server V5 is accessed
by a non-WebSphere Application Server EJB client, the JNDI initial context factory
is presumed to be a non-WebSphere Application Server implementation. In this
case, the default initial context will be the cell root. If the JNDI service provider
being used supports CORBA object URLs, the corbaname format can be used to
look up the EJB home. The construction of the stringified name depends on
whether the object is installed on a single server or cluster, as shown below.

Single server
initialContext.lookup("corbaname:iiop:myHost:2809#cell/nodes/node1/servers/server1/myEJB");

According to the URL above, the bootstrap host and port are myHost and 2809,
and the enterprise bean is installed in a server server1 in node node1 and bound
in that server under the name myEJB.

Server cluster
initialContext.lookup("corbaname:iiop:myHost:2809#cell/clusters/myCluster/myEJB");

According to the URL above, the bootstrap host and port are myHost and 2809,
and the enterprise bean is installed in a server cluster named myCluster and
bound in that cluster under the name myEJB.

1068 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The above lookup will work with any name server bootstrap host and port
configured in the same cell.

The above lookup will also work if the bootstrap host and port belongs to a
member of the cluster itself. To avoid a single point of failure, the bootstrap server
host and port for each cluster member could be listed in the URL as follows:

initialContext.lookup("corbaname:iiop:host1:9810,host2:9810#cell/clusters/myCluster/myEJB");

The name prefix cell/clusters/myCluster/ is not necessary if boostrapping to the
cluster itself, but it will work. The prefix is needed, however, when looking up
enterprise beans in other clusters. Name bindings under the clusters context are
implemented on the name server to resolve to the server root of a running cluster
member during a lookup; thus avoiding a single point of failure.

Without CORBA object URL support

If the JNDI initial context factory being used does not support CORBA object
URLs, the initial context can be obtained from the server, and the lookup can be
performed on the initial context as follows:

Hashtable env = new Hashtable();
env.put(CONTEXT.PROVIDER_URL, "iiop://myHost:2809");
Context ic = new InitialContext(env);
Object o = ic.lookup("cell/clusters/myCluster/myEJB");

Binding resources from MQSeries 5.2
In previous releases of WebSphere Application Server, the MQSeries jmsadmin tool
could be used bind resources to the name space. When used with a WebSphere
Application Server V5 name space, the resource will be bound within a transient
partition in the name space and will not persist past the life of the server process.
Instead of binding the MQSeries resources with the jmsadmin tool, bind them from
the WebSphere Application Server administrative console, under Resources in the
left panel on the console

JNDI caching
To increase the performance of JNDI operations, the WebSphere Application Server
JNDI implementation employs caching to reduce the number of remote calls to the
name server for lookup operations. For most cases, use the default cache setting.

When an InitialContext object is instantiated, an association is established between
the InitialContext instance and a cache. The initial context and any contexts
returned directly or indirectly from a lookup on the initial context are all
associated with that same cache instance. By default, the association is based on
the provider URL, in particular, the host name and port. The caller can specify the
cache name to override this default behavior. A cache instance of a given name is
shared by all instances of InitialContext configured to use a cache of that name
which were created with the same context class loader in effect. Two EJB
applications running in the same server will use their own cache instances, if they
are using different context class loaders, even if the cache names are the same.

After an association between an InitialContext instance and cache is established,
the association does not change. A javax.naming.Context object returned from a
lookup operation inherits the cache association of the Context object on which the
lookup was performed. Changing cache property values with the
Context.addToEnvironment() or Context.removeFromEnvironment() method does
not affect cache behavior. You can change properties affecting a given cache
instance with each InitialContext instantiation.

Chapter 24. Using naming 1069

A cache is restricted to a process and does not persist past the life of that process.
A cached object is returned from lookup operations until either the max cache life
for the cache is reached, or the max entry life for the object’s cache entry is
reached.

After this time, a lookup on the object causes the cache entry for the object to be
refreshed. If a bind or rebind operation is executed on an object, the change is not
reflected in any caches other than the one associated with the context from which
the bind or rebind was issued. This scenario is most likely to happen when
multiple processes are involved, since different processes do not share the same
cache, and context objects in all threads in a process typically share the same cache
instance for a given name service provider.

Usually, cached objects are relatively static entities, and objects becoming stale are
not a problem. However, you can set timeout values on cache entries or on a cache
so that cache contents are periodically refreshed.

JNDI cache settings
Various cache property settings follow. Ensure that all property values are string
values.

com.ibm.websphere.naming.jndicache.cachename
The name of the cache to associate with an initial context instance can be specified
with this property.

It is possible to create multiple InitialContext instances, each operating on the
name space of a different name server. By default, objects from each bootstrap
address are cached separately, since they each involve independent name spaces
and name collisions could occur if they used the same cache. The provider URL
specified when the initial context is created by default serves as the basis for the
cache name. With this property, a JNDI client can specify a cache name. Valid
options for cache names follow:

Valid options Resulting cache behavior

providerURL (default) Use the value for java.naming.provider.url property as
the basis for the cache name. Cache names are based on
the bootstrap host and port specified in the URL. The
boostrap host is normalized to a fully qualfied name, if
possible. For example,
″corbaname:iiop:server1:2809#some/starting/context″
and ″corbaloc:iiop://server1″ are normalized to the same
cache name. If no provider URL is specified, a default
cache name is used.

Any string Use the specified string as the cache name. You can use
any arbitrary string with a value other than
″providerURL″ as a cache name.

com.ibm.websphere.naming.jndicache.cacheobject
Turn caching on or off and clear an existing cache with this property.

By default, when an InitialContext is instantiated, it is associated with an existing
cache or, if one does not exist, a new one is created. An existing cache is used with
its existing contents. In some circumstances, this behavior is not desirable. For
example, when objects that are looked up change frequently, they can become stale

1070 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

in the cache. Other options are available. Thefollowing table lists these other
options along with the corresponding property value.

Valid values Resulting cache behavior

populated (default) Use a cache with the specified name. If the
cache already exists, leave existing cache
entries in the cache; otherwise, create a new
cache.

cleared Use a cache with the specified name. If the
cache already exists, clear all cache entries
from the cache; otherwise, create a new
cache.

none Do not cache. If this option is specified, the
cache name is irrelevant. Therefore, this
option will not disable a cache that is
already associated with other InitialContext
instances. The InitialContext that is
instantiated is not associated with any cache.

com.ibm.websphere.naming.jndicache.maxcachelife
Impose a limit to the age of a cache with this property.

By default, cached objects remain in the cache for the life of the process or until
cleared with the com.ibm.websphere.naming.jndicache.cacheobject property set to
″cleared″. This property enables a JNDI client to set the maximum life of a cache.
This property differs from the maxentrylife property (below) in that the entire
cache is cleared when the cache lifetime is reached. The table below lists the
various maxcachelife values and their affect on cache behavior:

Valid options Resulting cache behavior

0 (default) Make the cache lifetime unlimited.

Positive integer Set the maximum lifetime of the entire cache, in minutes,
to the specified value. When the maximum lifetime for the
cache is reached, the next attempt to read any entry from
the cache causes the cache to be cleared

com.ibm.websphere.naming.jndicache.maxentrylife
Impose a limit to the age of individual cache entries with this property.

By default, cached objects remain in the cache for the life of the process or until
cleared with the com.ibm.websphere.naming.jndicache.cacheobject property set to
cleared. This property enables a JNDI client to set the maximum lifetime of
individual cache entries. This property differs from the maxcachelife property in
that individual entries are refreshed individually as their maximum lifetime
reached. This might avoid any noticeable change in performance that might occur
if the whole cache is cleared at once. The table below lists the various maxentrylife
values and their effect on cache behavior:

Valid options Resulting cache behavior

0 (default) Lifetime of cache entries is unlimited.

Chapter 24. Using naming 1071

Positive integer Set the maximum lifetime of individual cache entries, in
minutes, to the specified value. When the maximum
lifetime for an entry is reached, the next attempt to read
the entry from the cache causes the individual cache
entry to refresh.

Example: Controlling JNDI cache behavior from a program
Following are examples that illustrate how you can use JNDI cache properties to
achieve the desired cache behavior. Cache properties take effect when an
InitialContext object is constructed.

Usage scenario
import java.util.Hashtable;
import javax.naming.InitialContext;
import javax.naming.Context;
import com.ibm.websphere.naming.PROPS;

/*****
Caching discussed in this section pertains to the WebSphere Application Server
initial context factory. Assume the property, java.naming.factory.initial, is set
to "com.ibm.websphere.naming.WsnInitialContextFactory" as a
java.lang.System property.
*****/

Hashtable env;
Context ctx;

// To clear a cache:

env = new Hashtable();
env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_CLEARED);
ctx = new InitialContext(env);

// To set a cache’s maximum cache lifetime to 60 minutes:

env = new Hashtable();
env.put(PROPS.JNDI_CACHE_MAX_LIFE, "60");
ctx = new InitialContext(env);

// To turn caching off:

env = new Hashtable();
env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE);
ctx = new InitialContext(env);

// To use caching and no caching:

env = new Hashtable();
env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_POPULATED);
ctx = new InitialContext(env);
env.put(PROPS.JNDI_CACHE_OBJECT, PROPS.JNDI_CACHE_OBJECT_NONE);
Context noCacheCtx = new InitialContext(env);

Object o;

// Use caching to look up home, since the home should rarely change.
o = ctx.lookup("com/mycom/MyEJBHome");
// Narrow, etc. ...

// Do not use cache if data is volatile.
o = noCacheCtx.lookup("com/mycom/VolatileObject");
// ...

1072 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

JNDI name syntax
JNDI name syntax is the default syntax and is suitable for typical JNDI clients.

This syntax includes the following special characters: forward slash (/) and
backslash (\). Components in a name are delimited by a forward slash. The
backslash is used as the escape character. A forward slash is interpreted literally if
it is escaped, that is, preceded by a backslash. Similarly, a backslash is interpreted
literally if it is escaped.

INS name syntax
INS syntax is designed for JNDI clients that need to interoperate with CORBA
applications.

The INS syntax allows a JNDI client to make the proper mapping to and from a
CORBA name. INS syntax is very similar to the JNDI syntax with the additional
special character, dot (.). Dots are used to delimit the id and kind fields in a name
component. A dot is interpreted literally when it is escaped. Only one unescaped
dot is allowed in a name component. A name component with a non-empty id
field and empty kind field is represented with only the id field value and must not
end with an unescaped dot. An empty name component (empty id and empty
kind field) is represented with a single unescaped dot. An empty string is not a
valid name component representation.

JNDI to CORBA name mapping considerations
WebSphere Application Server name servers are an implementation of the CORBA
CosNaming interface. WebSphere Application Server provides a JNDI
implementation which you can use to access CosNaming name servers through the
JNDI interface. Issues can exist when mapping JNDI name strings to and from
CORBA names.

Each component in a CORBA name consists of an id and kind field, but a JNDI
name component consists of no such fields. Each component in a JNDI name is
atomic. Typical JNDI clients do not need to make a distinction between the id and
kind fields of a name component, or know how JNDI name strings map to CORBA
names. JNDI clients of this sort can use the JNDI syntax described below. When a
name is parsed according to JNDI syntax, each name component is mapped to the
id field of the corresponding CORBA name component. The kind field always has
an empty value. This basic syntax is the least obtrusive to the JNDI client in that it
has the fewest special characters. However, you cannot represent with this syntax a
CORBA name with a non-empty kind field. This restriction can prevent EJB
applications from interoperating with CORBA applications.

Some clients, however must interoperate with CORBA applications which use
CORBA names with non-empty kind fields. These JNDI clients must make a
distinction between id and kind so that JNDI names are correctly mapped to
CORBA names, particularly when the CORBA names contain components with
non-null kind fields. Such JNDI clients can use the INS name syntax. With its
additional special character, you can use INS to represent any CORBA name. Use
of this syntax is not recommended unless it is necessary, because this syntax is
more restrictive from the JNDI client’s perspective in that the JNDI client must be
aware that name components with multiple unescaped dots are syntactically
invalid. INS name syntax is part of the OMG CosNaming Interoperable Naming
Specification.

Chapter 24. Using naming 1073

Example: Setting the syntax used to parse name strings
JNDI clients which must interoperate with CORBA applications may need to use
INS name syntax to represent names in string format. The name syntax property
may be passed to the InitialContext constructor through its parameter, in the
System properties, or in a jndi.properties file. The initial context and any contexts
looked up from that initial context will parse name strings based on the specified
syntax.

The following example shows how to set the name syntax to make the initial
context parse name strings according to INS syntax.

Usage scenario
...
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import com.ibm.websphere.naming.PROPS; // WebSphere naming constants
...
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, ...);
env.put(PROPS.NAME_SYNTAX, PROPS.NAME_SYNTAX_INS);
Context initialContext = new InitialContext(env);
// The following name maps to a CORBA name component as follows:
// id = "a.name", kind = "in.INS.format"
// The unescaped dot is used as the delimiter.
// Escaped dots are interpreted literally.
java.lang.Object o = initialContext.lookup("a\.name.in\.INS\.format");
...

Developing applications that use CosNaming (CORBA Naming
interface)

CORBA clients can perform naming operations on WebSphere name servers
through the CosNaming interface. The following examples show how to obtain an
ORB instance and an initial context as well as how to look up an EJB home.

Note: To enable WebSphere Application Server V5 clients to access Versions 3.5.x
and 4.0.x servers, the earlier installations must have e-fix PQ60074 installed.

Steps for this task
1. Get an initial context
2. Perform desired CosNaming operations

Example: Getting an initial context with CosNaming
In the WebSphere Application Server, an initial context is obtained from a
bootstrap server. The address for the bootstrap server consists of a host and port.
To get an initial context, you must know the host and port for the server that is
used as the bootstrap server.

Obtaining an initial context consists of two basic steps:
1. Obtain an ORB reference
2. Invoke a method on the ORB to obtain the initial reference

These steps are now explained in more detail.

1074 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Obtaining an ORB reference
Pure CosNaming clients, that is clients that are not running in a server process,
must create and initialize an ORB instance with which to obtain the initial context.
CosNaming clients which run in server processes can obtain a reference to the
server ORB with a JNDI lookup. The following examples illustrate how to create
and initialize a client ORB and how to obtain a server ORB reference.

Creating a client ORB instance

To create an ORB instance, invoke the static method, org.omg.CORBA.ORB.init.
The init method requires a property set to the name of the ORB class you want to
instantiate. An ORB implementation with the class name
com.ibm.CORBA.iiop.ORB is included with the WebSphere Application Server. The
WebSphere Application Server ORB recognizes additional properties with which
you can specify initial references.

The basic steps for creating an ORB are as follows:
1. Create a Properties object.
2. Set the ORB class property to WebSphere Application Server’s ORB class.
3. If the bootstrap server is INS-compliant, set the initial reference properties. If

the bootstrap server is not INS-compliant (meaning, WebSphere Application
Server v4.0.x or earlier), set bootstrap host and port for bootstrap server.

4. Invoke ORB.init, passing in the Properties object.

Usage scenario
...
import java.util.Properties;
import org.omg.CORBA.ORB;
...
Properties props = new Properties();
props.put("org.omg.CORBA.ORBClass", "com.ibm.CORBA.iiop.ORB");
props.put("com.ibm.CORBA.ORBInitRef.NameService",

"corbaloc:iiop:myhost.mycompany.com:2809/NameService");
props.put("com.ibm.CORBA.ORBInitRef.NameServiceServerRoot",

"corbaloc:iiop:myhost.mycompany.com:2809/NameServiceServerRoot");
// props.put("com.ibm.CORBA.BootstrapHost", "myhost.mycompany.com");

// Use this if bootstrap server is WebSphere 4.0.x or before
// props.put("com.ibm.CORBA.BootstrapPort", "2809");

// Use this if bootstrap server is WebSphere 4.0.x or before
ORB _orb = ORB.init((String[])null, props);
...

Notice the initial reference definitions for NameService and
NameServiceServerRoot. The initial context returned for NameService depends on
the type of bootstrap server. The key NameServiceServerRoot is a key introduced
in WebSphere Application Server V5. For more information on initial contexts, see
the section Initial Contexts.

Note: The properties com.ibm.CORBA.BootstrapHost and
com.ibm.CORBA.BootstrapPort are deprecated. They are needed, however, to
connect to WebSphere Application Servers of Version 4.0.x or earlier. The default
bootstrap host is the local host and the default port is 2809.

Obtaining a reference to the server ORB

CosNaming clients which run in a server process can obtain a reference to the
server ORB with a JNDI lookup on a java: name, shown as follows:

Chapter 24. Using naming 1075

Usage scenario
...
import javax.naming.Context;
import javax.naming.InitialContext;
import org.omg.CORBA.ORB;
...
Context initialContext = new InitialContext();
ORB orb = (ORB) initialContext.lookup("java:comp/ORB");
...

Using an ORB reference to get an initial naming reference
There are two basic ways to get an initial CosNaming context. Both ways involve
an ORB method invocation. The first way is to invoke the resolve_initial_references
method on the ORB with an initial reference key. For this call to work, the ORB
must be initialized with an initial reference for that key. The other way is to invoke
the string_to_object method on the ORB, passing in a CORBA object URL with the
host and port of the bootstrap server. The following examples illustrate both
approaches.

Invoking resolve_initial_references

Once an ORB reference is obtained, invoke the resolve_initial_references method on
the ORB to obtain a reference to the initial context. The following code example
invokes resolve_initial_reference on an ORB reference.

Usage scenario
...
import org.omg.CORBA.ORB;
import org.omg.CosNaming.NamingContextExt;
import org.omg.CosNaming.NamingContextExtHelper;
...
// Obtain ORB reference as shown in examples earlier in this section
...
org.omg.CORBA.Object obj = _orb.resolve_initial_references("NameService");
NamingContextExt initCtx = NamingContextExtHelper.narrow(obj);
...

Note that the key NameService is passed to the resolve_initial_references method.
Other initial context keys are registered in WebSphere Application Servers. For
example, NameServiceServerRoot can be used to obtain a reference to the server
root context in the bootstrap name server. For more information on the initial
contexts registered in server ORBs, please see the section Initial Contexts.

Invoking string_to_object with a CORBA object URL

You can use an INS-compliant ORB to obtain an initial context even if the ORB is
not initialized with any initial references or bootstrap properties, or if those
property settings are for a different server than the name server from which you
want to obtain the initial context. To obtain an initial context by explicitly
specifying the bootstrap name server, invoke the string_to_object method on the
ORB, passing in a CORBA object URL which contains the bootstrap server host
and port.

The code in the example below invokes the string_to_object method on an existing
ORB reference, passing in a CORBA object URL which identifies the desired initial
context.

Usage scenario

1076 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

...
import org.omg.CORBA.ORB;
import org.omg.CosNaming.NamingContextExt;
import org.omg.CosNaming.NamingContextExtHelper;
...
// Obtain ORB reference as shown in examples earlier in this section
...
org.omg.CORBA.Object obj =

orb.string_to_object("corbaloc:iiop:myhost.mycompany.com:2809/NameService");
NamingContextExt initCtx = NamingContextExtHelper.narrow(obj);
...

Note that the key NameService is used in the corbaloc URL. Other initial context
keys are registered in WebSphere Application Servers. For example, you can use
NameServiceServerRoot to obtain a reference to the server root context in the
bootstrap name server.

Using an existing ORB and invoking string_to_object with a
CORBA object URL with multiple name server addresses to get
an initial context
CORBA object URLs can contain more than one bootstrap server address. Use this
feature when attempting to obtain an initial context from a server cluster. You can
specify the bootstrap server addresses for all servers in the cluster in the URL. The
operation will succeed if at least one of the servers is running, eliminating a single
point of failure. There is no guarantee of any particular order in which the address
list will be processed. For example, the second bootstrap server address may be
used to obtain the initial context even though the first bootstrap server in the list is
available. An example of a corbaloc URL with multiple addresses follows.

Usage scenario
...
import org.omg.CORBA.ORB;
import org.omg.CosNaming.NamingContextExt;
import org.omg.CosNaming.NamingContextExtHelper;
...
// Assume orb is an existing ORB instance org.omg.CORBA.Object obj =
// orb.string_to_object(
"corbaloc::myhost1:9810,:myhost1:9811,:myhost2:9810/NameService");
NamingContextExt initCtx = NamingContextExtHelper.narrow(obj);
...

Example: Looking up an EJB home with CosNaming
You can look up an EJB home or other CORBA object from a WebSphere
Application Server name server through the CORBA CosNaming interface. You can
invoke resolve or resolve_str on the initial context, or you can invoke
string_to_object on the ORB. You can use a qualified name so that the name
resolves regardless of which name server the lookup is executed on, or use an
unqualified name that only resolves from the server root context on the name
server that actually contains the object binding. (The qualified name traverses the
federated system name space to the specified server root context.)

Qualified and unqualified names

Each application server contains a name server. System artifacts such as EJB homes
are bound in that name server. The various name servers are federated by means
of a system name space structure. The recommended way to look up objects on
different servers is to use a qualified name. A qualified name can be a
topology-based name, based on the name of the cluster or single server and node
that contains the object. You can define fixed qualified names for objects. With

Chapter 24. Using naming 1077

qualified names, you can look up objects residing on different servers from the
same initial context by traversing the system name space structure. Alternatively,
you can use an unqualified name, but an unqualified name will only resolve using
the name server associated with the object’s application server.

CosNaming.resolve (and resolve_str) vs. ORB.string_to_object

If you have an initial context from any name server in a WebSphere Application
Server cell, you can look up any CORBA object with a qualified name. You do not
need additional host and port information for the target object’s name server.

Alternatively, you can look up an object by invoking string_to_object on the ORB,
passing in a corbaname URL. Typically, an IIOP type URL is specified, so the
bootstrap address information required for an initial context must be contained in
the URL. You can use a qualified or unqualified stringified name, but an
unqualifed name resolves only if the initial context is from the name server in
which the object is bound.

The following examples show CosNaming resolve operations using qualified
topology-based lookup names and an unqualified lookup name.

CosNaming resolve operation using a qualified name
The topology-based qualified name for an object depends on whether the object is
bound in a single server or a server cluster. Examples of each follow.

Single Server

The following example shows the lookup of an EJB home that is running in a
single server. The enterprise bean that is being looked up is running in the server,
MyServer, on the node, Node1.
// Get the initial context as shown in the previous example
// Using the form of lookup name below, it doesn’t matter which
// server in the cell is used to obtain the initial context.
...
// Look up the home interface using the name under which the EJB home is bound
org.omg.CORBA.Object ejbHome = initialContext.resolve_str(

"cell/nodes/Node1/servers/MyServer/mycompany/accounting/AccountEJB");
accountHome =

(AccountHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, AccountHome.class);

Server Cluster

The following example shows a lookup of an EJB home that is running in a cluster.
The enterprise bean being that is looked up is running in the cluster, Cluster1. The
name can be resolved if any of the cluster members is running.

Usage scenario
// Get the initial context as shown in the previous example
// Using the form of lookup name below, it doesn’t matter which
// server in the cell is used to obtain the initial context.
...
// Look up the home interface using the name under which the EJB home is bound
org.omg.CORBA.Object ejbHome = initialContext.resolve_str(

"cell/clusters/Cluster1/mycompany/accounting/AccountEJB");
accountHome =

(AccountHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, AccountHome.class);

1078 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

ORB string_to_object operation using an unqualified stringified
name
If the resolve operation is being performed on the name server that contains the
object, the system name space does not need to be traversed, and you can use an
unqualified lookup name. Note that this name does not resolve on other name
servers. If an unqualified name is provided, the object key must be
NameServiceServerRoot so that the correct initial context is selected. If a qualified
name is provided, you can use the default key of NameService.

The following example shows a lookup of an EJB home. The enterprise bean that is
being looked up is bound on the name server running on the host myHost on port
2809. Note the object key of NameServiceServerRoot.

Usage scenario
// Assume orb is an existing ORB instance
...
// Look up the home interface using the name under which the EJB home is bound
org.omg.CORBA.Object ejbHome = orb.string_to_object(

"corbaname:iiop:myHost:2809/NameServiceServerRoot#mycompany/accounting");
accountHome =

(AccountHome)javax.rmi.PortableRemoteObject.narrow(ejbHome, AccountHome.class);

Configured name bindings
Administrators can configure bindings into the name space. A configured binding
is different from a programmatic binding in that the system creates the binding
every time a server is started, even if the target context is in a transient partition.

Administrators can add name bindings to the name space through the
configuration. Name servers add these configured bindings to the name space
view, by reading the configuration data for the bindings. Configuring bindings is
an alternative to creating the bindings from a program. Configured bindings have
the advantage of being created each time a server starts, even when the binding is
created in a transient partition of the name space. Cell-scoped configured bindings
provide interoperability with JNDI clients running on previous versions of
WebSphere Application Server. Additionally, you can configure cell-scoped
bindings to create a fixed qualified name for server objects.

Scope

You can configure a binding at one of the following three scopes: cell, node, or
server. Cell-scoped bindings are created under the cell persistent root context.
Node-scoped bindings are created under the node persistent root context for the
specified node. Server-scoped bindings are created under the server root context
for the selected server. If the target server of a server-scoped binding is a cluster,
the binding is created under the server root context of each cluster member.

Note: The term server includes clusters and can be used interchangeably with the
term cluster with respect to configured bindings. When applied to a cluster, a
server-scoped binding is created in the server root for all member servers.

The scope you select for new bindings depends on how the binding is to be used.
For example, if the binding is not specific to any particular node or server, or if
you do not want the binding to be associated with any specific node or server, a
cell-scoped binding is a suitable scope. Defining fixed names for enterprise beans
to create fixed qualified names is just such an application. If a binding is to be
used only by clients of an application running on a particular server, or if you

Chapter 24. Using naming 1079

want to configure a binding with the same name on different servers which resolve
to different objects, a server-scoped binding would be appropriate. Note that two
servers can have configured bindings with the same name but resolve to different
objects. At the cell scope, only one binding with a given name can exist.

Intermediate Contexts

Intermediate contexts created with configured bindings are read-only. For example,
if an EJB home binding is configured with the name some/compound/name/ejbHome,
the intermediate contexts some, some/compound, and some/compound/name will be
created as read-only contexts. You cannot add, update, or remove any read-only
bindings.

The configured binding name cannot conflict with existing bindings. However,
configured bindings can use the same intermediate context names. Therefore, a
configured binding with the name some/compound/name2/ejbHome2 does not conflict
with the previous example name.

Configured binding types
Types of objects that you can bind follow:

EJB: EJB home installed in some server in the cell

The following data is required to configure an EJB home binding:
v JNDI name of the EJB server or server cluster where the enterprise bean is

deployed
v Target root for the configured binding (scope)
v The name of the configured binding, relative to the target root.

This type of binding is of special significance because you can use it to provide
interoperability with WebSphere Application Server v3.5.x and v4.0.x JNDI clients.
The default initial context for these earlier clients is the cell persistent root, which
is different from the initial context of the server root for WebSphere Application
Server V5 JNDI clients. If you migrate an application to the current release, you
can configure an EJB binding at the cell scope so that the lookup names for the
enterprise bean do not change for clients still running in a earlier WebSphere
Application Server version.

A cell-scoped EJB binding is also useful for creating a fixed lookup name for an
enterprise bean so that the qualified name is not dependent on the topology.

CORBA: CORBA object available from some CosNaming name server

You can identify any CORBA object bound into some INS compliant CosNaming
server with a corbaname URL. The referenced object does not have to be available
until the binding is actually referenced by some application.

The following data is required in order to configure a CORBA object binding:
v The corbaname URL of the CORBA object
v An indicator if the bound object is a context or leaf node object (to set the

correct CORBA binding type of context or object).
v Target root for the configured binding
v The name of the configured binding, relative to the target root.

1080 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Indirect: Any object bound in WebSphere Application Server name space
accessible with JNDI

Besides CORBA objects, this includes javax.naming.Referenceable,
javax.naming.Reference, and java.io.Serializable objects. The target object itself is
not bound to the name space. Only the information required to look up the object
is bound. Therefore, the referenced name server does not have to be running until
the binding is actually referenced by some application. The following data is
required in order to configure an indirect JNDI lookup binding:
v JNDI provider URL of name server where object resides
v JNDI lookup name of object
v Target root for the configured binding (scope)
v The name of the configured binding, relative to the target root.

A cell-scoped indirect binding is useful when creating a fixed lookup name for a
resource so that the qualified name is not dependent on the topology. You can also
achieve this topology by widening the scope of the resource definition.

Note: WebSphere Application Server v3.5.x clients cannot access this type of
binding .

String: String constant

You can configure a binding of a string constant. The following data is required to
configure a string constant binding:
v String constant value
v Target root for the configured binding (scope)
v The name of the configured binding, relative to the target root.

Name space federation
Federating name spaces involves binding contexts from one name space into
another name space.

For example, assume that a name space, Name Space 1, contains a context under
the name a/b. Also assume that a second name space, Name Space 2, contains a
context under the name x/y. (See the following illustration.) If context x/y in Name
Space 2 is bound into context a/b in Name Space 1 under the name f2, the two
name spaces are federated. Binding f2 is a federated binding because the context
associated with that binding comes from another name space. From Name Space 1,
a lookup of the name a/b/f2 returns the context bound under the name x/y in
Name Space 2. Furthermore, if context x/y contains an Enterprise JavaBeans (EJB)
home bound under the name ejb1, the EJB home could be looked up from Name
Space 1 with the lookup name a/b/f2/ejb1. Notice that the name crosses name

Chapter 24. Using naming 1081

spaces. This fact is transparent to the naming client.

Initial Context

a

Local Context

Local Context

Federated
Context

(remote reference)

b

f2

Name Space 1

Initial Context

x

Local Context

Local Context

y

ejb1

Name Space 2

EJB

Federated Name Spaces

In a WebSphere Application Server name space, you can create federated bindings
with the following restrictions:
v Federation is limited to CosNaming name servers. A WebSphere Application

Server name server is a Common Object Request Broker Architecture (CORBA)
CosNaming implementation. You can create federated bindings to other
CosNaming contexts. You cannot, for example, bind contexts from an LDAP
name server implementation.

v If you use JNDI to federate the name space, you must use WebSphere
Application Server’s initial context factory to obtain the reference to the
federated context. If you use some other initial context factory implementation,
you either may not be able to create the binding, or the level of transparency
may be reduced.

v A federated binding to a non-WebSphere Application Server naming context has
the following functional limitations:
– JNDI operations are restricted to the use of CORBA objects. For example, you

can look up EJB homes, but you cannot look up non-CORBA objects such as
data sources.

– JNDI caching is not supported for non-WebSphere Application Server name
spaces. This restriction affects the performance of lookup operations only.

v Do not federate two WebSphere Application Server standalone server name
spaces. Incorrect behavior may result. If you want to federate WebSphere
Application Server name spaces, you should use servers running under the
Network Deployment or Enterprise packages of WebSphere Application Server.

1082 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Name space bindings
Administrators can add name bindings to the name space through the
configuration. Name servers add these configured bindings to the name space view
by reading the configuration data for the bindings. Configuring bindings is an
alternative to creating the bindings from a program.

Configured bindings are created each time a server starts, even when the binding
is created in a transient partition of the name space. One major use of configured
bindings to provide interoperability with JNDI clients running on previous
versions of the WebSphere Application Server.

There are four different kinds of bindings that you can configure:
v Enterprise JavaBeans (EJB)
v CORBA object
v Indirect Lookup
v String

Configuring and viewing name space bindings
To view or configure an EJB, CORBA, Indirect lookup or string name space
binding, complete the following:

Steps for this task
1. Open the administrative console.
2. Click Environment.
3. Click Manage Name Space Bindings.
4. Select the desired scope by entering in a node name for node-scoped bindings,

or a node name and server name for server-scoped bindings, and click Apply.
5. To create a new binding, click New and follow the instructions. To edit a

previously created binding, click the binding you want to edit and proceed to
the next step.

6. Edit the Binding identifier, the Name in name space, and the String value
fields as desired.
Note: All of these fields are required.

7. Click Finish to register the changes.

String binding settings
Use this page to configure a new string binding or to view or edit an existing
string binding.

To view this administrative console page, click Environment > Naming > Name
Space Bindings > string_namespace_binding.

Scope
Shows the scope of the configured binding. This value indicates the configuration
location for the namebindings.xml file. This field is for information purposes only
and cannot be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent
root context. If the configured binding is node-scoped, the starting context is the
node persistent root context. If the configured binding is server-scoped, the starting
context is the server’s server root context.

Chapter 24. Using naming 1083

Binding Type
Shows the type of binding configured. Possible choices are String, EJB, CORBA,
and Indirect. This field is for information purposes only and cannot be updated.

Binding Identifier
Specifies the name that uniquely identifies this configured binding.

Name in Name Space
Specifies the name used for this binding in the name space. This name can be a
simple or compound name depending on the portion of the name space where this
binding is configured.

String Value
Specifies the string to be bound into the name space.

CORBA object binding settings
Use this page to configure a new name binding of a CORBA object binding, or to
view or edit an existing CORBA object binding.

To view this administrative console page, click Environment > Naming > Name
Space Bindings > CORBA_namespace_binding.

Scope
Shows the scope of the configured binding. This value indicates the configuration
location for the namebindings.xml file. This field is for information purposes only
and cannot be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent
root context. If the configured binding is node-scoped, the starting context is the
node persistent root context. If the configured binding is server-scoped, the starting
context is the server’s server root context.

Binding Type
Shows the type of binding configured. Possible choices are String, EJB, CORBA,
and Indirect. This field is for information purposes only and cannot be updated.

Binding Identifier
Specifies the name that uniquely identifies this configured binding.

Name in Name Space
Specifies the name used for this binding in the name space. This name can be a
simple or compound name depending on the portion of the name space where this
binding is configured.

Corbaname URL
Specifies the CORBA name URL string identifying where the object is bound in a
CosNaming server.

Federated Context
Specifies whether the target is a CosNaming context (true) or a leaf node object
(false).

Value Result
true The target object is bound with a context CORBA binding type. If the

corbaname URL does not resolve to a NamingContext, an error
occurs when the binding is first used (which is when the URL is first
resolved).

false The target object is bound with an object CORBA binding type.

1084 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Indirect lookup binding settings
Use this page to configure a new indirect lookup name binding, or to view or edit
an existing indirect lookup binding.

To view this administrative console page, click Environment > Naming > Name
Space Bindings > indirect_lookup_namespace_binding.

Scope
Shows the scope of the configured binding. This value indicates the configuration
location for the namebindings.xml file. This field is for information purposes only
and cannot be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent
root context. If the configured binding is node-scoped, the starting context is the
node persistent root context. If the configured binding is server-scoped, the starting
context is the server’s server root context.

Binding Type
Shows the type of binding configured. Possible choices are String, EJB, CORBA,
and Indirect. This field is for information purposes only and cannot be updated.

Binding Identifier
Specifies the name that uniquely identifies this configured binding.

Name in Name Space
Specifies the name used for this binding in the name space. This name can be a
simple or compound name depending on the portion of the name space where this
binding is configured.

Provider URL
Specifies the provider URL string needed to obtain a JNDI initial context.

JNDI Name
Specifies the name used to look up the target object from the initial context.

EJB binding settings
Use this page to configure a new EJB binding, or to view or edit an existing EJB
binding.

To view this administrative console page, click Environment > Naming > Name
Space Bindings > EJB_namespace_binding.

Scope
Shows the scope of the configured binding. This value indicates the configuration
location for the namebindings.xml file. This field is for information purposes only
and cannot be updated.

If the configured binding is cell-scoped, the starting context is the cell persistent
root context. If the configured binding is node-scoped, the starting context is the
node persistent root context. If the configured binding is server-scoped, the starting
context is the server’s server root context.

Binding Type
Shows the type of binding configured. Possible choices are String, EJB, CORBA,
and Indirect. This field is for information purposes only and cannot be updated.

Chapter 24. Using naming 1085

Binding Identifier
Specifies the name that uniquely identifies this configured binding.

Name in Name Space
Specifies the name used for this binding in the name space. This name can be a
simple or compound name depending on the portion of the name space where this
binding is configured.

Enterprise Bean Location
Specifies whether the enterprise bean is running in a server cluster or a single
server. If Single Server is specified, type the node name.

Server
Specifies the name of the cluster or non-clustered server in which the enterprise
bean is configured.

JNDI Name
Specifies the JNDI name of the deployed enterprise bean (the bean’s JNDI name
that is in the enterprise bean bindings—not the java:comp name)

Name space binding collection
Use this page to configure a name binding of an EJB, a CORBA CosNaming
NamingContext, a CORBA leaf node object, an object that you can look up using
JNDI, or a constant string value.

Binding information for configured bindings is stored in the configuration and
applied upon startup of the name server for each server within the scope of the
binding.

To view the Manage Name Space Bindings Settings page, Click Environment >
Naming > Name Space Bindings.

Click the check boxes to select one or more of the users in your collection. Use the
buttons to control the selected users.

Name space bindings
Shows the names given to uniquely identify these configured bindings.

Configuring name servers
To configure a name server, complete the following:

Steps for this task
1. Open the administrative console.
2. Click Servers.
3. Click Application Servers.
4. Click the application server you want to configure.
5. Click Server Components.
6. Click Name Server.
7. Edit the fields as desired.

Note: All of these fields are mandatory.
8. (Optional) To make other changes, click Custom Properties.
9. Click OK to register your changes.

1086 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Name server settings
Use this page to configure Naming Service Provider settings for the application
server.

To view this administrative console page, click one of the following paths:
v Servers > Application Servers > server_name > Server Components > Name

Server

v Servers > JMS Servers > server_name > Server Components > Name Server

The Configuration tab on the page provides editable fields and the Runtime tab
provides read-only information.

Name
Specifies the display name for the server.

Initial State
Specifies the execution state.

Troubleshooting name space problems
Many naming problems can be avoided by fully understanding the key underlying
concepts of WebSphere Application Server naming.

Steps for this task
1. Review the key concepts of WebSphere Application Server naming, especially

Name space logical view and Lookup names support in deployment
descriptors and thin clients.

2. Review the programming examples that are included in the sections explaining
the JNDI and CosNaming interfaces.

3. Read ″Naming services component troubleshooting tips″ (not in this document)
for additional general information.

4. If you ″Cannot look up an object hosted by WebSphere Application Server
from a servlet, JSP file, or other client″ (not in this document), read this article.

dumpNameSpace tool
You can use the name space dump utility to dump the contents of a name space
accessed through a name server. When you invoke the dump utility, the naming
service must be active. The dump utility cannot dump name spaces local to the
server process, such as those with java: and local: URL schemes. The local: name
space contains references to enterprise beans with local interfaces. Use the name
space dump utility for java:, local: and server name spaces to dump java: and local:
name spaces.

Note that the server root context for the server at the specified host and port is
dumped (unless a non-default starting context which precludes it is specified). The
server root contexts for other servers are not dumped.

Command line invocation descriptions of the name space dump utility follow. This
section includes sample output.

You can also access this utility a through its program interface. Refer to the class
com.ibm.websphere.naming.DumpNameSpace in the WebSphere Application
Server API documentation.

Chapter 24. Using naming 1087

Syntax

To invoke the tool through the command line, enter the following command from
the WebSphere/AppServer/bin directory:

Platform Command

UNIX dumpNameSpace.sh [[-keyword value]...]

Windows NT dumpNameSpace [[-keyword value]...]

Parameters

The keywords and associated values for the dumpNameSpace utility follow:

-host myhost.austin.ibm.com
Indicates the bootstrap host or the WebSphere Application Server host
whose name space you want to dump. The value defaults to localhost.

-port nnn
Indicates the bootstrap port which, if not specified, defaults to 2809.

-root {cell | server | node | host | legacy | tree | default}
Indicates the root context to use as the initial context for the dump. The
applicable root options and default root context depend on the type of
name server from which the dump is being obtained. This information is
provided in the following tables.

For WebSphere Application Servers V5 or later:

cell DumpNameSpace default. Dump the tree starting at the cell
root context.

server Dump the tree starting at the server root context.

node Dump the tree starting at the node root context. (Synonymous
with host.)

For WebSphere Application Servers v4.0 or later:

legacy DumpNameSpace default. Dump the tree starting at the legacy
root context.

host Dump the tree starting at the bootstrap host root context.
(Synonymous with node.)

tree Dump the tree starting at the tree root context.

For all WebSphere Application Servers and other name servers:

default Dump the tree starting at the initial context which JNDI
returns by default for that server type. This is the only -root
choice that is compatible with WebSphere Application Servers
prior to v4.0 and with non-WebSphere Application Server
name servers.

-url some provider URL
Indicates the value for the java.naming.provider.url property used to get

1088 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

the initial JNDI context. This option can be used in place of the -host, -port,
and -root options. If the -url option is specified, the -host, -port, and -root
options are ignored.

-factory com.ibm.websphere.naming.WsnInitialContextFactory
Indicates the initial context factory to be used to get the JNDI initial
context. The value defaults to:
com.ibm.websphere.naming.WsnInitialContextFactory The default value
generally does not need to be changed.

-startAt some/subcontext/in/the/tree
Indicates the path from the bootstrap host’s root context to the top level
context where the dump should begin. The utility recursively dumps
subcontexts below this point. It defaults to an empty string, that is, the
bootstrap host root context.

-format {jndi | ins}

Option Description

jndi The default. Displays name components as atomic
strings.

ins Shows name components parsed per INS rules (id.kind).

-report {short | long}

Option Description

short The default. Dumps the binding name and bound object
type. This output is also provided by JNDI
Context.list().

long Dumps the binding name, bound object type, local
object type, and string representation of the local object
(that is, the IORs, string values, and other values that
are printed).

For objects of user-defined classes to display correctly
with the long report option, it may be necessary to add
their containing directories to the list of directories
searched. Set the environment variable
WAS_USER_DIRS. The value can include one or more
directories, as for example:

Platform
Command

UNIX WAS_USER_DIRS=/usr/classdir1:/usr/classdir2
export WAS_USER_DIRS

Windows NT
set WAS_USER_DIRS=c:\classdir1;d:\classdir2

All zip, jar, and class files in the specified directories can
then be resolved by the class loader when running
dumpNameSpace.

-traceString ″some.package.name.to.trace.*=all=enabled″
Represents the trace string with the same format as that generated by the
servers. The output is sent to the file, DumpNameSpaceTrace.out.

Chapter 24. Using naming 1089

Example: Invoking the name space dump utility
It is often helpful to view a dump of the name space to understand why a naming
operation is failing. You can invoke the name space dump utility from the
command line or from a program. Examples of each option follow.

Invoking name space dump utility from a command line
Invoke the name space dump utility from the command line by entering the
following command:
dumpNameSpace -host myhost.mycompany.com -port 901

OR
dumpNameSpace -url corbaloc:iiop:myhost.mycompany.com:901

There are several command line options to choose from. For detailed help, enter
the following command:
dumpNameSpace -help

Invoking name space dump utility from a Java program
You can dump name spaces from a program with the
com.ibm.websphere.naming.DumpNameSpace API. Refer to the WebSphere
Application Server API documentation for details on the DumpNameSpace
program interface.

The following example illustrates how to invoke the name space dump utility from
a Java program:

{
...
import javax.naming.Context;
import javax.naming.InitialContext;
import com.ibm.websphere.naming.DumpNameSpace;
...
java.io.PrintStream filePrintStream = ...
Context ctx = new InitialContext();
ctx = (Context) ctx.lookup("cell/nodes/node1/servers/server1"); // Starting context for dump
DumpNameSpace dumpUtil = new DumpNameSpace(filePrintStream, DumpNameSpace.SHORT);
dumpUtil.generateDump(ctx);
...

}

Name space dump utility for java:, local:and server name
spaces

Sometimes it is helpful to dump the java: name space for a J2EE application. You
cannot use the dumpNameSpace command line utility for this purpose because the
application’s java: name space is accessible only by that J2EE application. From the
WebSphere Application Server scripting tool, you can invoke a NameServer MBean
to dump the java: name space for any J2EE application running in that same server
process.

There is another name space local to server process which you cannot dump with
the dumpNameSpace command line utility. This name space has the URL scheme
of local: and is used by the container to bind objects locally instead of through the
name server. The local: name space contains references to enterprise beans with
local interfaces. There is only one local: name space in a server process. You can
dump the local: name space by invoking the NameServer MBean associated with
that server process.

1090 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Name space dump options
Name space dump options are specified in the MBean invocation as a parameter in
chararacter string format. The option descriptions follow.

-startAt some/subcontext/in/the/tree
Indicates the path from the name space root context to the top level context
where the dump should begin. The utility recursively dumps subcontexts
below this point. It defaults to an empty string, that is, the root context.

-report {short | long}

Option Description

short The default. Dumps the binding name and bound object type. This
output is also provided by JNDI Context.list().

long Dumps the binding name, bound object type, local object type, and
string representation of the local object (that is, the IORs, string values,
and other values that are printed).

-root {tree | host | legacy | cell | node | server || default}
Specify the root context of where the dump should start. The default value
for -root is cell. This option is only valid for server name space dumps.

Option Description

tree Dumps the tree starting at the tree root context.

host Dumps the tree starting at the server host root context (synonymous
with ″node″).

legacy Dumps the tree starting at the legacy root context.

cell The default. Dumps the tree starting at the cell root context.

node Dumps the tree starting at the node root context (synonymous with
″host″).

server Dumps the tree starting at the server root context. This is -root
default.

default Dumps the tree starting at the initial context which JNDI returns by
default for that server type.

-format {jndi | ins}
Specify the format to display name component as atomic strings or parsed
according to INS rules (id.kind). This option is only valid for server name
space dumps.

Option Description

jndi Displays name components as atomic strings. This is -format default.

ins Displays name components parsed according to INS rules (id.kind).

NameServer MBean invocation

Enter the WebSphere Application Server scripting command prompt: Invoke a
method on a NameServer MBean by using the WebSphere Application Server
scripting tool. Enter the scripting command prompt by typing the following
command:

Platform Command

UNIX wsadmin.sh

Chapter 24. Using naming 1091

Platform Command

Windows NT wsadmin

Use the -help option for help on using the wsadmin command.

Select the NameServer MBean instance to invoke: Execute the following script
commands to select the NameServer instance you want to invoke. For example
(shown here on multiple lines for publication),
set mbean [$AdminControl completeObjectName

WebSphere:*,type=NameServer,cell=cellName,
node=nodeName,process=serverName]

where cellName, nodeName, and serverName are the names of the cell, node, and
server for the MBean you want to invoke. The specified server must be running
before you can invoke a method on the MBean.

You can see a list of all NameServer MBeans current running by issuing the
following query:
$AdminControl queryNames {*:*,type=NameServer}

Invoke the NameServer MBean: java: name space

Dump a java: name space by invoking the dumpJavaNameSpace method on the
NameServer MBean. Since each server application has its own java: name space,
the application must be specified on the method invocation. An application is
identified by the application name, module name, and component name. The
method syntax follows:
$AdminControl invoke $mbean dumpJavaNameSpace {{appname}{modName}{compName}{opts}}

where appName is the application name, modName is the module name, and
compName is the component name of the java: name space you want to dump. The
value for opts is the list of name space dump options described earlier in this
section. The list can be empty.

local: name space

Dump a java: name space by invoking the dumpLocalNameSpace method on the
NameServer MBean. Since there is only one local: name space in a server process,
you have to specify the name space dump options only.
$AdminControl invoke $mbean dumpLocalNameSpace {{opts}}

where opts is the list of name space dump options described earlier in this section.
The list can be empty.

Name space dump output
Name space dump output is sent to the console. It is also written to the file
DumpNameSpace.log, in the server’s log directory.

Name space dump sample output
Name space dump output looks like the following example, which is the SHORT
dump format:
Getting the initial context
Getting the starting context

1092 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

==
Name Space Dump

Provider URL: corbaloc:iiop:localhost:9810
Context factory: com.ibm.websphere.naming.WsnInitialContextFactory
Requested root context: cell
Starting context: (top)=outpostNetwork
Formatting rules: jndi
Time of dump: Mon Sep 16 18:35:03 CDT 2002

==

==
Beginning of Name Space Dump
==

1 (top)
2 (top)/domain javax.naming.Context
2 Linked to context: outpostNetwork
3 (top)/cells javax.naming.Context
4 (top)/clusters javax.naming.Context
5 (top)/clusters/Cluster1 javax.naming.Context
6 (top)/cellname java.lang.String
7 (top)/cell javax.naming.Context
7 Linked to context: outpostNetwork
8 (top)/deploymentManager javax.naming.Context
8 Linked to URL: corbaloc::outpost:9809/NameServiceServerRoot
9 (top)/nodes javax.naming.Context
10 (top)/nodes/will2 javax.naming.Context
11 (top)/nodes/will2/persistent javax.naming.Context
12 (top)/nodes/will2/persistent/SomeObject SomeClass
13 (top)/nodes/will2/nodename java.lang.String
14 (top)/nodes/will2/domain javax.naming.Context
14 Linked to context: outpostNetwork
15 (top)/nodes/will2/cell javax.naming.Context
15 Linked to context: outpostNetwork
16 (top)/nodes/will2/servers javax.naming.Context
17 (top)/nodes/will2/servers/server1 javax.naming.Context
18 (top)/nodes/will2/servers/will2 javax.naming.Context
19 (top)/nodes/will2/servers/member2 javax.naming.Context
20 (top)/nodes/will2/node javax.naming.Context
20 Linked to context: outpostNetwork/nodes/will2
21 (top)/nodes/will2/nodeAgent javax.naming.Context
22 (top)/nodes/outpost javax.naming.Context
23 (top)/nodes/outpost/node javax.naming.Context
23 Linked to context: outpostNetwork/nodes/outpost
24 (top)/nodes/outpost/nodeAgent javax.naming.Context
24 Linked to URL: corbaloc::outpost:2809/NameServiceServerRoot
25 (top)/nodes/outpost/persistent javax.naming.Context
26 (top)/nodes/outpost/nodename java.lang.String
27 (top)/nodes/outpost/domain javax.naming.Context
27 Linked to context: outpostNetwork
28 (top)/nodes/outpost/servers javax.naming.Context
29 (top)/nodes/outpost/servers/server1 javax.naming.Context
30 (top)/nodes/outpost/servers/server1/url javax.naming.Context
31 (top)/nodes/outpost/servers/server1/url/CatalogDAOSQLURL
31 java.net.URL
32 (top)/nodes/outpost/servers/server1/mail javax.naming.Context
33 (top)/nodes/outpost/servers/server1/mail/PlantsByWebSphere
33 javax.mail.Session
34 (top)/nodes/outpost/servers/server1/TransactionFactory
34 com.ibm.ejs.jts.jts.ControlSet$LocalFactory
35 (top)/nodes/outpost/servers/server1/servername java.lang.String

36 (top)/nodes/outpost/servers/server1/WSsamples javax.naming.Context
37 (top)/nodes/outpost/servers/server1/WSsamples/TechSampDatasource
37 TechSamp
38 (top)/nodes/outpost/servers/server1/thisNode javax.naming.Context
38 Linked to context: outpostNetwork/nodes/outpost
39 (top)/nodes/outpost/servers/server1/cell javax.naming.Context
39 Linked to context: outpostNetwork

Chapter 24. Using naming 1093

40 (top)/nodes/outpost/servers/server1/eis javax.naming.Context
41 (top)/nodes/outpost/servers/server1/eis/DefaultDatasource_CMP
41 Default_CF
42 (top)/nodes/outpost/servers/server1/eis/WSsamples javax.naming.Context
43 (top)/nodes/outpost/servers/server1/eis/WSsamples/TechSampDatasource_CMP
43 TechSamp_CF
44 (top)/nodes/outpost/servers/server1/eis/jdbc javax.naming.Context
45 (top)/nodes/outpost/servers/server1/eis/jdbc/PlantsByWebSphereDataSource_CMP
45 PLANTSDB_CF
46 (top)/nodes/outpost/servers/server1/eis/jdbc/petstore
46 javax.naming.Context
47 (top)/nodes/outpost/servers/server1/eis/jdbc/petstore/PetStoreDB_CMP
47 PetStore_CF
48 (top)/nodes/outpost/servers/server1/eis/jdbc/CatalogDB_CMP
48 Catalog_CF
49 (top)/nodes/outpost/servers/server1/jta javax.naming.Context
50 (top)/nodes/outpost/servers/server1/jta/usertransaction
50 java.lang.Object
51 (top)/nodes/outpost/servers/server1/DefaultDatasource
51 Default Datasource
52 (top)/nodes/outpost/servers/server1/jdbc javax.naming.Context
53 (top)/nodes/outpost/servers/server1/jdbc/CatalogDB CatalogDB
54 (top)/nodes/outpost/servers/server1/jdbc/petstore javax.naming.Context
55 (top)/nodes/outpost/servers/server1/jdbc/petstore/PetStoreDB
55 PetStoreDB
56 (top)/nodes/outpost/servers/server1/jdbc/PlantsByWebSphereDataSource
56 PLANTSDB
57 (top)/nodes/outpost/servers/outpost javax.naming.Context
57 Linked to URL: corbaloc::outpost:2809/NameServiceServerRoot
58 (top)/nodes/outpost/servers/member1 javax.naming.Context
59 (top)/nodes/outpost/cell javax.naming.Context
59 Linked to context: outpostNetwork
60 (top)/nodes/outpostManager javax.naming.Context
61 (top)/nodes/outpostManager/domain javax.naming.Context
61 Linked to context: outpostNetwork
62 (top)/nodes/outpostManager/cell javax.naming.Context
62 Linked to context: outpostNetwork
63 (top)/nodes/outpostManager/servers javax.naming.Context
64 (top)/nodes/outpostManager/servers/dmgr javax.naming.Context
64 Linked to URL: corbaloc::outpost:9809/NameServiceServerRoot
65 (top)/nodes/outpostManager/node javax.naming.Context
65 Linked to context: outpostNetwork/nodes/outpostManager
66 (top)/nodes/outpostManager/nodename java.lang.String
67 (top)/persistent javax.naming.Context
68 (top)/persistent/cell javax.naming.Context
68 Linked to context: outpostNetwork
69 (top)/legacyRoot javax.naming.Context
69 Linked to context: outpostNetwork/persistent
70 (top)/persistent/AnotherObject AnotherClass

==
End of Name Space Dump
==

Naming and directories: Resources for learning
Use the following links to find relevant supplemental information about naming
and directories. The information resides on IBM and non-IBM Internet sites, whose
sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

1094 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Programming specifications

v OMG CosNaming Interoperable Naming Specification
(http://java.sun.com/j2se/1.4.1/docs/api/org/omg/CosNaming/package-
summary.html)

Chapter 24. Using naming 1095

http://java.sun.com/j2se/1.4.1/docs/api/org/omg/CosNaming/package-summary.html
http://java.sun.com/j2se/1.4.1/docs/api/org/omg/CosNaming/package-summary.html

1096 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 25. Using the dynamic cache service to improve
performance

The dynamic cache service works within an application server Java virtual
machine (JVM), intercepting calls to cacheable objects. For example, it intercepts
calls through a servlet service() method or a command execute() method, and
either stores the output of the object to, or serves the content of the object from the
dynamic cache.

WebSphere Application Server, Version 4.0, supported the configuration of dynamic
servlet caching through the servletcache.xml file. To utilize the new and improved
functionality of the dynamic cache service, configure your cache policy using the
cachespec.xml format.

The dynamic caching documentation provides you with the following tasks to
enable and configure the dynamic cache service, as well as advanced features, such
as controlling external caches and building user-defined drop-in components to
customize the cache operation.

Steps for this task
1. Enable the dynamic cache service globally.
2. Configure servlet caching.
3. Configure Edge Side Include (ESI) caching.
4. Configure command caching.
5. Configure Web services caching.

What to do next

To use the DistributedMap interface for the dynamic cache, see Using the
DistributedMap interface for the dynamic cache.

Dynamic cache
Caching the output of servlets, commands and JavaServer Pages (JSP) files,
improves application performance. WebSphere Application Server consolidates
several caching activities, including servlets, Web services, and WebSphere
commands into one service called the dynamic cache. These caching activities work
together to improve application performance, and share many configuration
parameters, which are set in the dynamic cache service of an application server.

You can use the dynamic cache to improve the performance of servlet and JSP files
by serving requests from an in-memory cache. Cache entries contain servlet output,
results of servlet execution, and metadata.

© Copyright IBM Corp. 2003 1097

Configuring cache replication
Cache replication leverages the WebSphere internal replication service that is also
leveraged for HttpSession memory-to-memory replication for failover purposes.
Hence, a replication domain with at least one replicator entry needs to exist in
order to replicate the data. The dynamic cache service, in essence, connects to the
replicator. See more information in the topic referring to managing internal
replication.

To configure cache replication and its features:

Steps for this task
1. Click Servers>Manage Application Servers in the administrative console

navigation tree.
2. Click server.
3. Click Dynamic Cache Service.
4. Click Enable cache replication check box in the Cache replication field.

To manage batch update or PUSH-PULL - PUSH/PULL, repeat steps 1-4, then,
click the Advanced button in the Cache replication field. Batch update interval
is set under push frequency. PUSH-PULL-PUSH/PULL is set through the
runtime mode.
You can also select which replication domain and initial replicator entry the
dynamic cache will utilize (either those managed within the cell or across the
cell).

Cache replication
Data is generated one time and copied or replicated to other servers in the cluster,
thus saving execution time and resources. Caching in a cluster has additional
concerns. In particular, the same data could be required, and hence, generated in
multiple places. Also, the access the resources need to generate the cached data can
be restricted, preventing access to the data.

Cache replication addresses these concerns by generating the data one time and
copying or replicating it to the other servers in the cluster. It also aids in cache
consistency, in that cache entries that are not needed are removed or replaced.

The configuration specific to replication of data can exist as part of the Web
container dynamic cache configuration accessible through the administrative
console, or on a per cache entry basis through the cachespec.xml file. This includes
the option to configure cache replication at the Web container level, but disabling it
for a specific cache entry.

Cache replication can take on three forms:
v PUSH - Send out new entries, both ID and data, and updates to those entries.
v PULL - Requests data from other servers in the cluster when that data is not

locally present.
v PUSH/PULL - Sends out IDs for new entries, then, only request from other

servers in the cluster entries for IDs previously broadcast. The dynamic cache
always sends out cache entry invalidations.

The dynamic cache provides a batch update option. Specifically, for PUSH or
PUSH/PULL, the dynamic cache broadcasts the update asynchronously, based on a

1098 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

timed interval rather than sending them immediately upon inception. Invalidators
are sent immediately. Distribution of invalidations addresses the issue of stale data
residing in a cluster.

Internal messaging configuration settings
Use this page to set advanced configurations for Memory to Memory session
replication.

To view this administrative console page, click Servers > Application Servers >
server > Dynamic Cache Service> Cache replication > Enable cache replication .

The advanced replication settings include fields for choosing the initial replicator
entry that connects to the replicator domains. As an alternative, you can specify the
IP addresses and ports (of the form address:port) for connection to replicators
outside of the cell that the server is administered under. By default, if a replicator
is defined on the server you are configuring, that server is the one chosen for cache
replication. Select the advanced properties only if you want to deviate from the
default setting.

Internal messaging server
Specifies a domain from which your data will be replicated. Depending on the
domain you choose to replicate the data, you can choose any of the replicators
defined under that domain. You can use the default domain or choose one from
the drop down window.

Runtime mode
Specifies the global sharing policy for this server.

The following settings are available:
v Both push and pull sends the cache ID of newly updated content to other

servers in the replication domain. Then, if one of the other servers requests the
content, and that server has the ID of the cache entry for the previously updated
content, it will retrieve the content from the publishing server. On the other
hand, if a request is made for an ID which has not been previously published,
the server assumes it does not exist in the cluster and creates a new entry.

v Push only sends the cache ID and cache content of new content to all other
servers in the replication domain.

v The sharing policy of Not Shared results in the cache ID and cache content not
being shared with other servers in the replication domain.

The default setting for a non-clustered environment is Not Shared. When enabling
replication, the default value is Push only.

Push frequency
Specifies the time in seconds to wait before pushing new or modified cache entries
to other servers. A value of 0 (zero) means send immediately.

Setting this property to a value greater than 0 (zero) causes a ″batch″ push of all
cache entries that are created or modified during the time period.

Default 0 (equivalent to immediate)

Chapter 25. Using the dynamic cache service to improve performance 1099

Cache replication
Data is generated one time and copied or replicated to other servers in the cluster,
thus saving execution time and resources. Caching in a cluster has additional
concerns. In particular, the same data could be required, and hence, generated in
multiple places. Also, the access the resources need to generate the cached data can
be restricted, preventing access to the data.

Cache replication addresses these concerns by generating the data one time and
copying or replicating it to the other servers in the cluster. It also aids in cache
consistency, in that cache entries that are not needed are removed or replaced.

The configuration specific to replication of data can exist as part of the Web
container dynamic cache configuration accessible through the administrative
console, or on a per cache entry basis through the cachespec.xml file. This includes
the option to configure cache replication at the Web container level, but disabling it
for a specific cache entry.

Cache replication can take on three forms:
v PUSH - Send out new entries, both ID and data, and updates to those entries.
v PULL - Requests data from other servers in the cluster when that data is not

locally present.
v PUSH/PULL - Sends out IDs for new entries, then, only request from other

servers in the cluster entries for IDs previously broadcast. The dynamic cache
always sends out cache entry invalidations.

The dynamic cache provides a batch update option. Specifically, for PUSH or
PUSH/PULL, the dynamic cache broadcasts the update asynchronously, based on a
timed interval rather than sending them immediately upon inception. Invalidators
are sent immediately. Distribution of invalidations addresses the issue of stale data
residing in a cluster.

Enabling the dynamic cache service
In order to use the dynamic cache service, you must first enable it.

Steps for this task
1. Open the administrative console.
2. Click Servers > Application Servers in the administrative console navigation

tree.
3. Click a server.
4. Click Dynamic Cache Service under Additional Properties.
5. Select Enable service at server startup in the Startup state field.
6. Click Apply or OK.
7. Restart WebSphere Application Server.

Results

The dynamic cache service will now cache content for requests that have cache
policies configured.

Dynamic cache service settings
Use this page to configure and manage the dynamic cache service settings.

1100 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

To view this administrative console page, click Servers > Application Servers >
server > Dynamic Cache Service.

Startup state
Specifies whether the dynamic cache is enabled.

Cache size
Specifies a positive integer as the value for the maximum number of entries the
cache holds.

Enter the cache size value in this field between the range of 100 through 200,000.

Default priority
Specifies the default priority for cache entries, determining how long an entry stays
in a full cache.

Default 1

Disk offload
Specifies whether disk offload is enabled.

By default, the dynamic cache maintains the number of entries configured in
memory. If new entries are created while the cache is full, the priorities configured
for each cache entry and a least recently used algorithm, are used to remove
entries from the cache. As an alternative, you can configure disk offload, and
rather than remove the entries from memory, have them copied onto the file
system (the location is configurable) for later.

Cache replication
Specifies whether cache replication is enabled.

You can also configure advanced cache replication settings.

Configuring servlet caching
Before you begin

To enable servlet caching, you must enable the dynamic cache service.

Steps for this task
1. Open the administrative console.
2. Click Servers > Application Servers in the console navigation tree.
3. Click a server.
4. Click Web Container.
5. Select the Enable servlet caching check box under the Configuration tab.
6. Click Apply or OK.

Servlet caching
After a servlet is invoked and generating the output to cache, a cache entry is
created containing the output and the side effects of the invocation. For example,
these side effects can include calls to other servlets or JavaServer Pages (JSP) files,
as well as metadata about the entry, including timeout and entry priority
information.

Chapter 25. Using the dynamic cache service to improve performance 1101

Unique entries are distinguished by an ID string generated from the
HttpServletRequest object for each invocation of the servlet. You can then base
servlet caching on:
v Request parameters and attributes the URI used to invoke the servlet
v Session information
v Other options, including cookies

Since JSP files are compiled by WebSphere Application Server into servlets, the
dynamic cache function treats them the same, except in specifically documented
situations.

Configuring cache replication
Cache replication leverages the WebSphere internal replication service that is also
leveraged for HttpSession memory-to-memory replication for failover purposes.
Hence, a replication domain with at least one replicator entry needs to exist in
order to replicate the data. The dynamic cache service, in essence, connects to the
replicator. See more information in the topic referring to managing internal
replication.

To configure cache replication and its features:

Steps for this task
1. Click Servers>Manage Application Servers in the administrative console

navigation tree.
2. Click server.
3. Click Dynamic Cache Service.
4. Click Enable cache replication check box in the Cache replication field.

To manage batch update or PUSH-PULL - PUSH/PULL, repeat steps 1-4, then,
click the Advanced button in the Cache replication field. Batch update interval
is set under push frequency. PUSH-PULL-PUSH/PULL is set through the
runtime mode.
You can also select which replication domain and initial replicator entry the
dynamic cache will utilize (either those managed within the cell or across the
cell).

Cache replication
Data is generated one time and copied or replicated to other servers in the cluster,
thus saving execution time and resources. Caching in a cluster has additional
concerns. In particular, the same data could be required, and hence, generated in
multiple places. Also, the access the resources need to generate the cached data can
be restricted, preventing access to the data.

Cache replication addresses these concerns by generating the data one time and
copying or replicating it to the other servers in the cluster. It also aids in cache
consistency, in that cache entries that are not needed are removed or replaced.

The configuration specific to replication of data can exist as part of the Web
container dynamic cache configuration accessible through the administrative
console, or on a per cache entry basis through the cachespec.xml file. This includes
the option to configure cache replication at the Web container level, but disabling it
for a specific cache entry.

Cache replication can take on three forms:

1102 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v PUSH - Send out new entries, both ID and data, and updates to those entries.
v PULL - Requests data from other servers in the cluster when that data is not

locally present.
v PUSH/PULL - Sends out IDs for new entries, then, only request from other

servers in the cluster entries for IDs previously broadcast. The dynamic cache
always sends out cache entry invalidations.

The dynamic cache provides a batch update option. Specifically, for PUSH or
PUSH/PULL, the dynamic cache broadcasts the update asynchronously, based on a
timed interval rather than sending them immediately upon inception. Invalidators
are sent immediately. Distribution of invalidations addresses the issue of stale data
residing in a cluster.

Internal messaging configuration settings
Use this page to set advanced configurations for Memory to Memory session
replication.

To view this administrative console page, click Servers > Application Servers >
server > Dynamic Cache Service> Cache replication > Enable cache replication .

The advanced replication settings include fields for choosing the initial replicator
entry that connects to the replicator domains. As an alternative, you can specify the
IP addresses and ports (of the form address:port) for connection to replicators
outside of the cell that the server is administered under. By default, if a replicator
is defined on the server you are configuring, that server is the one chosen for cache
replication. Select the advanced properties only if you want to deviate from the
default setting.

Internal messaging server: Specifies a domain from which your data will be
replicated. Depending on the domain you choose to replicate the data, you can
choose any of the replicators defined under that domain. You can use the default
domain or choose one from the drop down window.

Runtime mode: Specifies the global sharing policy for this server.

The following settings are available:
v Both push and pull sends the cache ID of newly updated content to other

servers in the replication domain. Then, if one of the other servers requests the
content, and that server has the ID of the cache entry for the previously updated
content, it will retrieve the content from the publishing server. On the other
hand, if a request is made for an ID which has not been previously published,
the server assumes it does not exist in the cluster and creates a new entry.

v Push only sends the cache ID and cache content of new content to all other
servers in the replication domain.

v The sharing policy of Not Shared results in the cache ID and cache content not
being shared with other servers in the replication domain.

The default setting for a non-clustered environment is Not Shared. When enabling
replication, the default value is Push only.

Push frequency: Specifies the time in seconds to wait before pushing new or
modified cache entries to other servers. A value of 0 (zero) means send
immediately.

Chapter 25. Using the dynamic cache service to improve performance 1103

Setting this property to a value greater than 0 (zero) causes a ″batch″ push of all
cache entries that are created or modified during the time period.

Default 0 (equivalent to immediate)

Cache replication
Data is generated one time and copied or replicated to other servers in the cluster,
thus saving execution time and resources. Caching in a cluster has additional
concerns. In particular, the same data could be required, and hence, generated in
multiple places. Also, the access the resources need to generate the cached data can
be restricted, preventing access to the data.

Cache replication addresses these concerns by generating the data one time and
copying or replicating it to the other servers in the cluster. It also aids in cache
consistency, in that cache entries that are not needed are removed or replaced.

The configuration specific to replication of data can exist as part of the Web
container dynamic cache configuration accessible through the administrative
console, or on a per cache entry basis through the cachespec.xml file. This includes
the option to configure cache replication at the Web container level, but disabling it
for a specific cache entry.

Cache replication can take on three forms:
v PUSH - Send out new entries, both ID and data, and updates to those entries.
v PULL - Requests data from other servers in the cluster when that data is not

locally present.
v PUSH/PULL - Sends out IDs for new entries, then, only request from other

servers in the cluster entries for IDs previously broadcast. The dynamic cache
always sends out cache entry invalidations.

The dynamic cache provides a batch update option. Specifically, for PUSH or
PUSH/PULL, the dynamic cache broadcasts the update asynchronously, based on a
timed interval rather than sending them immediately upon inception. Invalidators
are sent immediately. Distribution of invalidations addresses the issue of stale data
residing in a cluster.

Configuring the dynamic cache disk offload
By default, when the number of cache entries reaches the configured limit for a
given WebSphere server, eviction of cache entries occurs, allowing new entries to
enter the cache service. The dynamic cache includes an alternative feature named
disk offload, that copies the evicted cache entries to disk for potential future access.

To configure disk offload:

Steps for this task
1. Open the administrative server.
2. Click Server > Application Server in the administrative console navigation

tree.
3. Click server.
4. Click Dynamic Cache Service.
5. Click the Enable disk offload check box in the Disk offload field.

You can also set the disk offload location in this field.
6. Click Apply or OK.

1104 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Application servers must have different disk offload locations
When you have two or more application servers with servlet caching enabled and
the application servers specify the same disk offload location for their caches
through the dynamic cache service, the following exceptions might occur:
java.lang.NullPointerException

at com.ibm.ws.cache.CacheOnDisk.readTemplate(CacheOnDisk.java:686)
at com.ibm.ws.cache.Cache.internalInvalidateByTemplate(Cache.java:828)

or:
java.lang.NullPointerException

at com.ibm.ws.cache.CacheOnDisk.readCacheEntry(CacheOnDisk.java:600)
at com.ibm.ws.cache.Cache.getCacheEntry(Cache.java:341)

If one server is run as root and the other servers are run as nonroot, this problem
could occur. For example, if server1 runs as root and server2 runs as wasuser or
wasgroup, the cache files in the disk offload location might be created with root
permissions. This situation causes the applications running on the nonroot servers
to crash when they try to read or write to the cache.

The disk offload location must be unique for servers defined on the same node. If
you have multiple servers defined on the same node, make sure the disk offload
location is different for each server as defined on the Dynamic Cache Service
panel, Offload location field.

Configuring Edge Side Include caching
Edge Side Include (ESI) is configured through the plugin-cfg.xml file.

The Web server plug-in contains a built-in ESI processor. The ESI processor has the
ability to cache whole pages, as well as fragments, providing a higher cache hit
ratio. The cache implemented by the ESI processor is an in-memory cache, not a
disk cache, therefore, the cache entries are not saved when the Web server is
restarted.

The basic operation of the ESI processor is as follows: When a request is received
by the Web server plug-in, it is sent to the ESI processor, unless the ESI processor
is disabled. It is enabled by default. If a cache miss occurs, a Surrogate-Capabilities
header is added to the request and the request is forwarded to the WebSphere
Application Server. If the dynamic servlet cache is enabled in the application
server, and the response is edge cacheable, the application server returns a
Surrogate-Control header in response to the WebSphere Application Server plug-in.

The value of the Surrogate-Control response header contains the list of rules which
are used by the ESI processor in order to generate the cache ID. The response is
then stored in the ESI cache, using the cache ID as the key. For each ESI include
tag in the body of the response, a new request is processed such that each nested
include results in either a cache hit or another request forwarded to the application
server. When all nested includes have been processed, the page is assembled and
returned to the client.

The ESI processor is configurable through the WebSphere Web server plug-in
configuration file plugin-cfg.xml. The following is an example of the beginning of
this file, which illustrates the ESI configuration options.

Chapter 25. Using the dynamic cache service to improve performance 1105

<?xml version-"1.0"?>
<Config>

<Property Name="esiEnable" Value="true"/>
<Property Name="esiMaxCacheSize" Value="1024"/>
<Property Name="esiInvalidationMonitor" Value="false"/>

The first option, esiEnable, can be used to disable the ESI processor by setting the
value to false. ESI is enabled by default. If ESI is disabled, then the other ESI
options are ignored.

The second option, esiMaxCacheSize, is the maximum size of the cache in 1K byte
units. The default maximum size of the cache is 1 megabyte. If the cache is full, the
first entry to be evicted from the cache is the entry that is closest to expiration.

The third option, esiInvalidationMonitor, specifies whether or not the ESI processor
should receive invalidations from the application server. ESI works well when the
Web servers following a threading model is used, and only one process is started.
When multiple processes are started, each process caches the responses
independently and the cache is not shared. This could lead to a situation where,
the system’s memory is fully used up by ESI processor.There are three methods by
which entries are removed from the ESI cache: first, an entry’s expiration timeout
could fire; second, an entry may be purged to make room for newer entries; or
third, the application server could send an explicit invalidation for a group of
entries. In order for the third mechanism to be enabled, the esiInvalidationMonitor
property must be set to true and the DynaCacheEsi application must be installed
on the application server. The DynaCacheEsi application is located in the
installableApps directory and is named DynaCacheEsi.ear. If the
ESIInvalidationMonitor property is set to true but the DynaCacheEsi application is
not installed, then errors will occur in the webserver plugin and the request will
fail.

The ESI processor’s cache can be monitored through the CacheMonitor application.
In order for ESI processor’s cache to be visible in the CacheMonitor, the
DynaCacheEsi application must be installed as described above and the
ESIInvalidationMonitor property must be set to true in the plugin-cfg.xml file.

When WebSphere Application Server is used to serve static data, such as images
and HTML on the application server, the URLs are also cached in the ESI
processor. This data has a default timeout of 300 seconds. You can change the
timeout value by adding the property com.ibm.servlet.file.esi.timeOut to your
JVM’s command line parameters. The following example shows how to set a one
minute timeout on static data cached in the plug-in:
-Dcom.ibm.servlet.file.esi.timeOut=60

For more information about the plugin-cfg.xml file see the topic ″Improving
performance with the dynamic cache service″.

5.0.1 For information about configuring alternate URL, see the topic Configuring
alternate URL.

Configuring alternate URL
Alternate URL is a method for edge caching JavaServer Pages (JSP) files and
servlet responses that you can not request externally. Dynamic cache provides
support to recognize the presence of an Edge Side Include (ESI) processor and to
generate ESI include tags and appropriate cache policies for edge cacheable
fragments. However, for a fragment to be edge cacheable, you must be able to

1106 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

externally request it from the application server. In other words, if a user types the
URL in their browser with the appropriate parameters and cookies for the
fragment, WebSphere Application Server must return the content for that fragment.

One of the standard J2EE programming architectures is the model-view-controller
(MVC) architecture, where a call to a controller servlet might include one or more
child JSP files to construct the view. When using the MVC programming model,
the child JSP files are edge cacheable only if you can request these JSP files
externally, which is not usually the case. For example, if a child JSP file uses one or
more request attributes that are determined and set by the controller servlet, you
cannot cache that JSP file on the edge. You can use alternate URL support to
overcome this limitation by providing an alternate controller servlet URL used to
invoke the JSP file.

The alternate URL for a JSP file or a servlet is set in the cachespec.xml file as a
property with the name alternate_url. You can set the alternate URL either on a
per cache-entry basis or on a per cache-id basis. It is valid only if the
EdgeCacheable property is also set for that entry. If the EdgeCacheable property is
not set, the alternate_url property is ignored. The following is a sample cache
policy using the alternate_url property:

<cache-entry>
<class>servlet</class>
<name>/AltUrlTest2.jsp</name>
<property name="EdgeCacheable">true</property>
<property name="alternate_url">/alturlcontroller2</property>

<cache-id>
<timeout>600</timeout>
<priority>2</priority>

</cache-id>
</cache-entry>

What to do next

For more information on the cachespec.xml file, see Cachespec.xml file.

Configuring external cache groups
The dynamic cache can control caches outside of the application server, such as
IBM Edge Server, an IBM HTTP Server for distributed platforms’ Fast Response
Cache Accelerator (FRCA) cache, and a WebSphere HTTP Server for distributed
platforms plug-in ESI Fragment Processor. When external cache groups are
defined, the dynamic cache matches externally cacheable cache entries with those
groups, and pushes cache entries and invalidations out to those groups. This
allows WebSphere Application Server to manage dynamic content beyond the
application server. The content can then be served from the external cache, instead
of the application server, improving savings in performance.

Steps for this task
1. Open the administrative console.
2. Enable the dynamic cache.

a. Click Servers > Application Servers in the administrative console
navigation tree.

b. Click a server.
c. Click Dynamic Cache Service.
d. Select the check box in the Startup state field to enable the dynamic cache.

Chapter 25. Using the dynamic cache service to improve performance 1107

3. Define the external cache group in which WebSphere Application Server should
control.
a. Click External Caching Groups from the Dynamic Cache administrative

console page.
b. Click New or choose an external cache group from the list.

4. Configure cache group members.
a. Click External cache groups from the Dynamic Cache administrative

console page. Then click New or choose an external cache group from the
list.

b. Click External cache group members > New or choose an external cache
group member from the list.

c. Type the configuration string in the Address field.
d. Type the adapter bean name in the Adapter Bean Name field.
e. Save the configuration.
f. Click Apply or OK.

External cache group collection
Use this page to define sets of external caches controlled by WebSphere
Application Server on Web servers, such as IBM Edge Server and IBM HTTP
Server.

To view this administrative console page, click Servers > Application Servers >
server > Dynamic Cache Service > External Cache Groups.

Name: Specifies the external cache group name.

The external cache group name needs to match the externalcache property as
defined in the servlet or JSP cachespec.xml file.

When external caching is enabled, the cache matches pages with its URIs and
pushes matching pages to the external cache. The entries can then be served from
the external cache, instead of the application server.

Type: Specifies the external cache group type.

External cache group settings
Use this page to configure sets of external caches controlled by WebSphere
Application Server on Web servers, such as IBM Edge Server and IBM HTTP
Server.

To view this administrative console page, click Servers > Application Server >
server > Dynamic Cache Service > External Cache groups > external_cache_group.

Name: Specifies the external cache group name.

The external cache group name needs to match the externalcache property as
defined in the servlet or JavaServer Pages (JSP) cachespec.xml file.

When external caching is enabled, the cache matches pages with its URIs and
pushes matching pages to the external cache. The entries can then be served from
the external cache, instead of the application server. This ability creates a
significant savings in performance.

Type: Specifies the external cache group type.

1108 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

External cache group member collection
Use this page to define specific caches that are members of a cache group.

To view this administrative console page, click Servers > Application Servers >
server > Dynamic Cache Service > External Cache groups > external_cache_group >
External cache group members.

Address: Specifies a configuration string used by external cache adapter bean to
connect to the external cache.

AdapterBeanName: Specifies the adapter bean name.

Example adapter bean names supported in WebSphere Application Server are:

AFPA
AdapterBeanName: com.ibm.ws.cache.servlet.Afpa
Address: Port on which afpa listens

ESI
AdapterBeanName: com.ibm.websphere.servlet.cache.ESIInvalidatorServlet
Address: local host

WTE
AdapterBeanName: com.ibm.websphere.edge.dynacache.WteAdapter
Address: hostname:port (hostname and port on which WTE is listening)

External cache group member settings
Use this page to configure specific caches that are members of a cache group.

To view this administrative console page, click Servers > Application Servers >
server > Dynamic Cache Service > External Cache groups > External_cache_group >
External cache group members > External_cache_group_members.

Address: Specifies a configuration string used by external cache adapter bean to
connect to the external cache.

AdapterBeanName: Specifies the adapter bean name.

AFPA
AdapterBeanName: com.ibm.ws.cache.servlet.Afpa
Address: Port on which afpa listens

ESI
AdapterBeanName: com.ibm.websphere.servlet.cache.ESIInvalidatorServlet
Address: local host

WTE
AdapterBeanName: com.ibm.websphere.edge.dynacache.WteAdapter
Address: hostname:port (hostname and port on which WTE is listening)

Configuring high-speed external caching through the Web server
IBM HTTP Server for Windows NT and Windows 2000 operating systems contains
a high-speed cache referred to as the Fast Response Cache Accelerator, or cache
accelerator.

Chapter 25. Using the dynamic cache service to improve performance 1109

The Fast Response Cache Accelerator is available on Windows NT and Windows
2000 operating systems and AIX platforms. However, support to cache dynamic
content is only available on Windows NT and Windows 2000 operating systems.

You can enable cache accelerator to cache static and dynamic content. To enable
cache accelerator for caching static content, add the following directives to the
http.conf configuration file, in the IBM HTTP Server conf directory:
v AfpaEnable

v AfpaCache on

v AfpaLogFile ″install_root\IBMHttpServer\logs\afpalog″ V-ECLF

To enable Cache Accelerator for caching dynamic content, such as servlets and Java
Server Pages (JSP) files, configure the WebSphere Application Server and the IBM
HTTP Server for distributed platforms:

Steps for this task
1. Configure WebSphere Application Server to enable Fast Cache Response

Accelerator:
a. Turn on servlet caching for each application server that uses the cache

accelerator.
b. Configure an external cache group on the application server:

v Click Servers > Application Servers > server1.
v Click Dynamic Cache Service in the Additonal Properties window.
v Click External Cache Groups in the Additional Properties window.
v Click New on the External cache group administrative console page to

define an external cache group named afpa for each application server
that uses the cache accelerator.

v Type afpa in the External cache group field.
v Click Apply.
v Add a member to the group with an adapter bean name of

com.ibm.ws.cache.servlet.Afpa:

Click Afpa > External cache group members. Click New on the External
cache group members administrative console page. Type
com.ibm.ws.cache.servlet.Afpa in the AdapterBean name field. Enter an
unused port number in the Address field.

c. Add a cache policy in the cachespec.xml file for the servlet or JSP file you
want to cache. Add the following property to the cache policy:
<property name="ExternalCache">afpa</property>

It is important to follow all the steps for every application server in the cluster.
2. Enable cache accelerator on the IBM HTTP Server for distributed platforms:

a. Add the following directives to the end of the httpd.conf file:
v AfpaEnable

v AfpaCache on

v AfpaLogFile ″install_root\IBMHttpServer\logs\afpalog″ V-ECLF

v LoadModule afpaplugin_module install_root/bin/afpaplugin.dll

v AfpaPluginHost WAS_Hostname:port, where WAS_Hostname is the host name
of the application server and port is the port you specified in the Address
field while configuring the external cache group member

1110 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The LoadModule directive loads the IBM HTTP Server plug-in that connects
the Fast Response Cache Accelerator to the WebSphere Application Server
fragment cache.

If multiple IBM HTTP Servers are routing requests to a single application
server, add the directives above to the http.conf file of each of these IBM
HTTP Servers for distributed platforms.

If one IBM HTTP Server is routing requests to a cluster of application servers,
add the AfpaPluginHost WAS_Hostname:port directive to the http.conf file for
each application server in the cluster. For example, if there are three application
servers in the cluster, add the following directives to the http.conf file:
v LoadModule afpaplugin_module install_root/bin/afpaplugin.dll

v AfpaPluginHost WAS1_Hostname:port1

v AfpaPluginHost WAS2_Hostname:port2

v AfpaPluginHost WAS3_Hostname:port3

Configuring Fast Response Cache Accelerator cache size
through a distributed platforms Web server
In the default IBM HTTP Server for distributed platforms configuration, the
maximum Fast Cache Accelerator dynamic cache size is calculated as 1/8 of
physical pin-able memory. On a machine with 384MG of RAM, it allows a
maximum of approximately 50MG for the Fast Cache Accelerator dynamic cache.
When this limit is reached, the Cache Accelerator then deletes older entries to
cache new ones.

Follow these steps to configure the Cache Accelerator:

Steps for this task
1. Using the IBM HTTP Server for distributed platforms’ AfpaDynaCacheMax

directive, tune the maximum allowed cache size:
a. Place the directive in the global server configuration scope, along with the

other default Fast Cache Accelerator directives.
b. Enable Fast Cache Accelerator.

To enable the Fast Cache Accelerator, update the following directives in this
IBM HTTP Server’s http.conf file:
AfpaEnable
AfpaCache on
AfpaLogFile "c:/Program Files/IBM HTTP Server/logs/afpalog" V-ECLF
AfpaDynaCacheMax 10

These above settings limit the dynamic cache size to 10MG. If you use these
directives to increase cache size, do not make the cache so large that all the
physical memory is consumed. Determine how much memory is available
when all applications are running, by using the Windows Task Manager.

Assign no more than 50% of available physical memory to the dynamic
cache. Specifying too large a cache not only decreases the performance of
other applications, but also puts you at a risk for completely running out of
memory.

The default configuration does not include the AfpaDynaCacheMax
directive where the cache size is automatically calculated as 1/8 of physical
memory.

Chapter 25. Using the dynamic cache service to improve performance 1111

Displaying cache information
The dynamic cache monitor is an installable Web application that displays simple
cache statistics, cache entries, and cache policy information. Follow the steps below
to install the cache monitor application.

Steps for this task
1. Install the cache monitor application from the install_root/installableApps

directory.
The application is named CacheMonitor.ear.

2. Access the Web application using a Web browser and the URL http://your
host_name:your_port_number/cachemonitor, where your port_number is the port
associated with the host on which you installed the cache monitor application.

Configuring cacheable objects with the cachespec.xml file
Before you begin

Define cacheable objects inside the cachespec.xml, found inside the Web module
WEB-INF or enterprise bean META-INF directory.

You can place a global cachespec.xml in the application server properties directory,
but the recommended method is to place the cache configuration file with the
deployment module. The root element of the cachespec.xml file is <cache>, which
contains <cache-entry> elements.

Within a <cache-entry>...</cache-entry> element are parameters that allow you to
complete the following tasks to enable the dynamic cache with the cachespec.xml
file:

Steps for this task
1. Develop a cachespec.xml file.

a. Create a caching configuration file.
In the <install_root>/properties directory, locate the
cachespec.sample.xml file.

b. Copy the cachespec.sample.xml file to cachespec.xml in Web module
WEB-INF or enterprise bean META-INF directory.

2. Define the cache-entry elements necessary to identify the cacheable objects. See
the topic ″Cachespec.xml file″ for a list of elements.

3. Develop cache-ID rules.
To cache an object, WebSphere Application Server must know how to generate
unique IDs for different invocations of that object. The <cache-id> element
performs that task. Each cache entry can have multiple cache-ID rules that
execute in order until either a rule returns non-empty cache-ID or no more
rules remain to execute. If none of the cache-ID generation rules produce a
valid cache ID, then the object is not cached. Develop these IDs in one of two
ways:
v Use the <component> element defined in the cache policy of a cache entry

(recommended)
v Write custom Java code to build the ID from input variables and system

state

1112 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

To configure the cache entry to use the IdGenerator, specify your IdGenerator
in the XML file by using the <idgenerator> tag, for example:
<cache-entry>

<class>servlet</class>
<name>/servlet/CommandProcessor</name>

<cache-id>
<idgenerator>com.mycompany.SampleIdGeneratorImpl</idgenerator>
<timeout>60</timeout>

</cache-id>
</cache-entry>

You can also use the Application Assembly Tool (AAT) to define the
IdGenerator class in the cache policy’s Advanced tab.

4. Specifying dependency ID rules.
Use dependency ID elements to specify additional cache group identifiers that
associate multiple cache entries to the same group identifier.
The dependency ID is generated by concatenating the dependency ID base
string with the values returned by its component elements. If a required
component returns a null value, then the entire dependency ID does not
generate and is not used. You can validate the dependency IDs explicitly
through the WebSphere Dynamic Cache API, or use another cache-entry
<invalidation> element. Multiple dependency ID rules can exist per cache-entry.
All dependency ID rules separately execute. See the topic ″Cachespec.xml file″
for a list of <component> elements.

5. Invalidate other cache entries as a side effect of this object execution, if
relevant.
You can define invalidation rules in exactly the same manner as dependency
IDs. However, the IDs that generate by invalidation rules are used to invalidate
cache entries that have those same dependency IDs.
The invalidation ID is generated by concatenating the invalidation ID base
string with the values returned by its component element. If a required
component returns a null value, then the entire invalidation ID is not generated
and no invalidation occurs. Multiple invalidation rules can exist per
cache-entry. All invalidation rules separately execute.

6. Verify the cacheable page.

What to do next

Typically you declare several <cache-entry>...</cache-entry> elements inside a
cachespec.xml file.

The dynamic cache responds to changes in this file. When new versions of the
cachespec.xml are detected, the old policies are replaced. Objects cached through
the old policy file are not automatically invalidated from the cache; they are either
reused with the new policy or eliminated from the cache through its replacement
algorithm.

For each of the three IDs (cache, dependency, invalidation) generated by cache
entries, a <cache-entry> can contain multiple elements. The dynamic cache will
execute the <cache-id> rules in order, and the first one that successfully generates
an ID will be used to cache that output. If the object is to be cached, each one of
the <dependency-id> elements will be executed to build a set of dependency IDs
for that cache entry. Finally, each of the <invalidation> elements will be executed,
building a list of IDs that the dynamic cache will invalidate, whether or not this
object is cached.

Chapter 25. Using the dynamic cache service to improve performance 1113

Verifying the cacheable page
Verify the cacheable page by following these steps:

Steps for this task
1. View the snoop servlet in the default application by accessing the URI: /snoop
2. Invoke and reload the URI several times using a different Web browser or

using different parameters.
This action returns the same output for the snoop servlet. The snoop servlet is
now operating incorrectly, because it displays the request information from its
first invocation rather than from the current request.

3. Inspect the entry in the cache with the dynamic cache monitor.

Cachespec.xml file
The cache parses the cachespec.xml file on startup, and extracts from each
<cache-entry> element a set of configuration parameters. Every time a new servlet
or other cacheable object initializes, the cache attempts to match each of the
different cache-entry elements, to find the configuration information for that object.
Different cacheable objects have different <class> elements. You can define the
specific object a cache policy refers to using the <name> element.

Location

The cachespec.xml file is found inside the WEB-INF directory of a Web module.

You can place a global cachespec.xml file in the application server properties
directory, but the recommended method is to place the cache configuration file
with the deployment module. (To place the cache configuration file with the
deployment module, use the Application Assembly Tool (AAT) to define the
cacheable objects.

The root element of the cachespec.xml file is cache, which contains cache-entry
elements.

The cachespec.dtd file is available in the application server properties directory.

Usage notes

Each cache entry must specify certain basic information that the dynamic cache
uses to process that entry. This section explains the function of each cache entry
element of the cachespec.xml file including:
v class
v name
v sharing-policy
v property
v cache-id

class

<class>command | servlet | webservice</class>

This element is required and governs how the application server interprets the
remaining cache policy definition. The value servlet refers to servlets and
JavaServer Pages (JSP) files deployed in the WebSphere Application Server servlet

1114 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

engine. The object class extends the servlet with special component types for Web
services requests. Finally, the value command refers to classes using the WebSphere
command programming model. The following examples illustrate the class
element:
<class>command</class>
<class>servlet</class>
<class>webservice</class>

name

<name>name</name>

where name is the fully qualified class name of the command, servlet, or object.

There are two ways to use <name> to specify a cacheable object:
v For commands and objects, this required element must include the package

name, if any, and class name, including a trailing .class, of the configured
object.

v For servlets and JSP files, if the cachespec.xml file is in the WebSphere
Application Server properties directory, this required element must include the
full URI of the JSP file or servlet to cache. For servlets and JSP files, if the
cachespec.xml file is in the Web application, this required element can be
relative to the specific Web application context root.
Note: The preferred location of the cachespec.xml file is in the Web application,
not the properties directory.

You can specify multiple <name> elements within a <cache-entry> if you have
different mappings that refer to the same servlet.

The following examples illustrate the name element:
<name>com.mycompany.MyCommand.class</name>
<name>default_host:/servlet/snoop</name>
<name>com.mycompany.beans.MyJavaBean</name>
<name>mywebapp/myjsp.jsp</name>

sharing-policy

<sharing-policy> not-shared | shared-push | shared-pull </sharing-policy>

When working within a cluster with a distributed cache, these values determine
the sharing characteristics of entries created from this object. If this element is not
present, a not-shared value is assumed. Also, in non-distributed environments,
not-shared is the only valid value. This property does not affect distribution to
Edge servers through the Edge fragment caching property.

Value Description

not-shared Cache entries for this object are not shared
among different application servers. These
entries can contain non-serializable data. For
example, a cached servlet can place
non-serializable objects into the request
attributes, if the <class> type supports it.

Chapter 25. Using the dynamic cache service to improve performance 1115

shared-push Cache entries for this object are
automatically distributed to the dynamic
caches in other application servers or
cooperating Java virtual machines (JVMs).
Each cache has a copy of the entry at the
time it is created. These entries cannot store
non-serializable data.

shared-pull Cache entries for this object are shared
between application servers on demand. If
an application server gets a cache miss for
this object, it queries the cooperating
application servers to see if they have the
object. If no application server has a cached
copy of the object, the original application
server executes the request and generates
the object. These entries cannot store
non-serializable data.

shared push-pull Cache entries for this object are shared
between application servers on demand.
When an application server generates a
cache entry, it broadcasts the cache ID of the
created entry to all cooperating application
servers. Each server then knows whether an
entry exists for any given cache ID. On a
given request for that entry, the application
server knows whether to generate the entry
or pull it from somewhere else. These entries
cannot store non-serializable data.

The following example shows a sharing policy:
<sharing-policy>not-shared</sharing-policy>

property

<property name=″key″>value</property>

where key is the name of the property defined for this cache entry element, and
value is the corresponding value.

You can set optional properties on a cacheable object, such as a description of the
configured servlet. The class determines valid properties of the cache entry. At this
time, the following properties are defined:

Property Valid classes Value

ApplicationName All Overrides the J2EEName
application ID so that
multiple applications can
share a common cache ID
namespace.

1116 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

EdgeCacheable Servlet True or false. Default is false.
If the property is true, then
the given servlet or JSP file is
externally requested from an
Edge Server. Whether or not
the servlet or JSP file is
cacheable, depends on the
rest of the cache
specification.

ExternalCache Servlet Specifies the external cache
name. The external cache
name needs to match the
external cache group name.

consume-subfragments Servlet or Web service True or false. Default is false.
When a servlet is cached,
only the content of that
servlet is stored, and
includes placeholders for any
other fragments to which it
includes or forwards.
Consume-subfragments
(CSF) tells the cache not to
stop saving content when it
includes a child servlet. The
parent entry, the one marked
CSF, includes all the content
from all fragments in its
cache entry, resulting in one
big cache entry that has no
includes or forwards, but the
content from the whole tree
of entries. This can save a
significant amount of
application server processing,
but is typically only useful
when the external HTTP
request contains all the
information needed to
determine the entire tree of
included fragments.

cache-id

To cache an object, the application server must know how to generate a unique ID
for different invocations of that object. These IDs are built either from user-written
custom Java code or from rules defined in the cache policy of each cache entry.
Each cache entry can have multiple cache ID rules that are executed in order until
either:
v A rule returns a non-empty cache ID, or
v No more rules are left to execute.

If none of the cache ID generation rules produce a valid cache ID, the object is not
cached.

Each cache-id element defines a rule for caching an object and is composed of the
sub-elements component, timeout, priority, and property. The following example
illustrates a cache-id:

Chapter 25. Using the dynamic cache service to improve performance 1117

<cache-id>component*| timeout? | priority? | property* </cache-id>

component sub-element

Use the component sub-element to generate a portion of the cache ID. Each
component sub-element consists of the attributes id, type, and ignore-value, and
the elements method, field, required, value, and not-value.
v Use the id attribute to identify the component.
v Use the type attribute to identify the type of component. The following table

lists the values for the type.

Type Valid classes Meaning
method command Calls the indicated method

on the command or object
field command Retrieves the named field in

the command or object
parameter servlet Retrieves the named

parameter value from the
request object

parameter-list servlet Retrieves a list of values for
the named parameter

session servlet Retrieves the named value
from the HTTPSession

cookie servlet Retrieves the named cookie
value

attribute servlet Retrieves the named request
attribute

header servlet and Web service Retrieves the named request
header

pathInfo servlet Retrieves the pathInfo from
the request

servletpath servlet Retrieves the servlet path
locale servlet Retrieves the request locale
SOAPEnvelope Web service Retrieves the SOAPEnvelope

from a Web services request.
An ID attribute of Hash uses
a Hash of the SOAPEnvelope,
while Literal uses the
SOAPEnvelope as received.

SOAPAction Web service Retrieves the SOAPAction
header, (if available), for a
Web services request.

serviceOperation Web service Retrieves the service
operation for a Web services
request

serviceOperationParameter Web service Retrieves the specified
parameter from a Web
services request

v Use the ignore-value attribute to specify whether or not to use the value
returned by this component in cache ID formation. This is an optional attribute
with a default value of false. If the value is true, only the ID of the component is
used when creating a cache ID, or no output is used when creating a
dependency or invalidation ID.

v Use the method element to call a void method on a returned object. You can
infinitely nest method and field objects in any combination. The method must be
public and is not valid for edge-cacheable components. For example:

1118 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

<component id="getUser" type="method"><method>getUserInfo
<method>getName</method></method></component>

This method is equivalent to getUser().getUserInfo().getName()
v Use the field element to access a field in a returned object. You can infinitely

nest method and field objects in any combination. The field must be public. Not
valid for edge-cacheable components. For example:
<component id="getUser" type="method"><method>getUserInfo
<field>name</field></method></component>

This method is equivalent to getUser().getUserInfo().name
v Use the required element to specify whether or not this component must return

a non-null value for this cache ID for it to represent a valid cache. If set to true,
this component must return a non-null value for this cache ID to represent a
valid cache ID. If set to false, the default, a non-null value is used in the
formation of the cache ID and a null value means that this component is not
used at all in the ID formation. For example:
<required>true</required>

v Use the value element to specify values that must match to use this component
in cache ID formation. For example:
<component id="getUser" type="method"><value>blue</value>
<value>red</value> </component>

v Use the not-value element to specify values that must not match to use this
component in cache ID formation. This method is similar to <value>, but instead
prescribes the defined values from caching. You can use multiple <not-value>
elements when there is more than one invalid value. For example:
<component id="getUser" type="method">
<required>true</required>
<not-value>blue</not-value>
<not-value>red</not-value></component>

The component element can have either a method or a field element, or a value or
a not-value element. The method and field elements apply only to commands. The
following example illustrates the attributes of a component element:
<component id="isValid" type="method" ignore-value="true"><component>

timeout sub-element

The timeout sub-element is used to specify a time-to-live (TTL) value for the cache
entry. For example,
<timeout>value</timeout>

where value is the amount of time, in seconds, to keep the cache entry. If 0, or a
negative value is specified, the cache entry is kept indefinitely.

priority sub-element

Use the priority sub-element to specify the priority of a cache entry in a cache. The
priority weighting is used by the least recently used (LRU) algorithm, of the cache
to decide which entries to remove from the cache if the cache runs out of storage
space. For example,
<priority>value</priority>

where value is a positive integer between 1 and 255 inclusive.

Chapter 25. Using the dynamic cache service to improve performance 1119

property sub-element

Use the property sub-element to specify generic properties for the cache entry. For
example,
<property name="key">value</property>

where key is the name of the property to define, and value is the corresponding
value.

For example:
<property name="description">The Snoop Servlet</property>

Property Valid classes Meaning
sharing-
policy/timeout/priority

All Overrides the settings for the
containing cache entry when
the request matches this
cache ID.

EdgeCacheable servlet Overrides the settings for the
containing cache entry when
the request matches this
cache ID.

idgenerator and metadatagenerator elements

Use the idgenerator element to specify the class name loaded for the generation of
the cache ID. The IdGenerator must implement the
com.ibm.websphere.servlet.cache.IdGenerator interface. The IdGenerator must
build and set cache IDs, group IDs and invalidation IDs. An example of the
idgenerator element follows:
<idgenerator> classname classname </idgenerator>

(where classname= Fully qualified name of the class to use)

Use the metadatagenerator element to specify the class name loaded for the
metadata generation cache ID. The MetadataGenerator class must implement the
com.ibm.websphere.servlet.cache.MetaDataGenerator interface. The
MetadataGenerator defines properties like timeout, external caching or generic
properties. An example of the metadatagenerator element follows:
<metadatagenerator> classname classname </metadatagenerator>

(where classname= Fully qualified name of the class to use)

Configuring command caching
Cacheable commands are stored in the cache for re-use with a similar mechanism
for servlets and Java Server Pages (JSP) files. However, in this case, the unique
cache IDs are generated based on methods and fields present in the command as
input parameters. For example, a GetStockQuote command can have a symbol as
its input parameter.

A unique cache ID can generate from the name of the command, plus the value of
the symbol.

To use command caching you must:

1120 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Steps for this task
1. Create a command.

a. Define an interface.
The Command interface specifies the most basic aspects of a command.
You must define the interface that extends one or more of the interfaces in
the command package. The command package consists of three interfaces:
v TargetableCommand
v CompensableCommand
v CacheableCommand

In practice, most commands implement the TargetableCommand interface,
which allows the command to execute remotely. The code structure of a
command interface for a targetable command follows:
...
import com.ibm.websphere.command.*;
public interface MyCommand extends TargetableCommand {

// Declare application methods here
}

a. Provide an implementation class for the interface.
Write an interface that extends the CacheableCommandImpl class and
implements your command interface. This class contains the code for the
methods in your interface, the methods inherited from extended interfaces
like the CacheableCommand interface, and the required or abstract methods
in the CacheableCommandImpl class.
You can also override the default implementations of other methods
provided in the CacheableCommandImpl class.

Command class
To write a command interface, extend one or more of the three interfaces included
in the command package. The base interface for all commands is the Command
interface. This interface provides only the client-side interface for generic
commands and declares three basic methods:
v isReadyToCallExecute. This method is called on the client side before the

command passes to the server for execution.
v execute. This method passes the command to the target and returns any data.
v reset. This method reverts any output properties to the values they had before

the execute method was called so that you can reuse the object.

The implementation class for your interface must contain implementations for the
isReadyToCallExecute and reset methods.

CacheableCommandImpl class
Commands are implemented by extending the class CacheableCommandImpl,
which implements the CacheableCommand interface.

The CacheableCommandImpl class is an abstract class that provides
implementations for some of the methods in the CacheableCommand interface, for
example, setting return values. This class declares additional methods that the
application must implement, for example, how to execute the command.

The code structure of an implementation class for the CacheableCommand
interface follows:

Chapter 25. Using the dynamic cache service to improve performance 1121

...
import com.ibm.websphere.command.*;
public class MyCommandImpl extends CacheableCommandImpl
implements MyCommand {
// Set instance variables here ...
// Implement methods in the MyCommand interface ...
// Implement abstract methods in the CacheableCommandImpl class
...
}

Example: Caching a command object
This example of command caching is a simple stock quote command.

Examples

The following is a stock quote command bean. It accepts a ticker as an input
parameter and produces a price as its output parameter.
public class QuoteCommand extends CacheableCommandImpl
{

private String ticker;
private double price;
// called to validate that command input parameters have been set
public boolean isReadyToCallExecute() {

return (ticker!=null);
}
// called by a cache-hit to copy output properties to this object
public void setOutputProperties(TargetableCommand fromCommand) {

QuoteCommand f = (QuoteCommand)fromCommand;
this.price = f.price;

}

// business logic method called when the stock price must be retrieved
public void performExecute()throws Exception {...}

//input parameters for the command
public void setTicker(String ticker) { this.ticker=ticker;}
public String getTicker() { return ticker;}

//output parameters for the command
public double getPrice() { return price;};

}

Examples

To cache the above command object using the stock ticker as the cache key and
using a 60 second time-to-live, use the following cache policy:
<cache>

<cache-entry>
<class>command</class>
<sharing-policy>not-shared</sharing-policy>
<name>QuoteCommand</name>
<cache-id>
<component type="method" id="getTicker">
<required>true</required>
</component>
<priority>3</priority>
<timeout>60</timeout>
</cache-id>

</cache-entry>
</cache>

1122 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Using the DistributedMap interface for the dynamic cache
The DistributedMap interface is a simple interface for the dynamic cache. Using
the DistributedMap interface, J2EE applications and system components can cache
and share Java objects by storing a reference to the object in the cache. The default
WebSphere dynamic cache instance is created if dynamic cache service is enabled
in the administrative console. This default instance is bound into the global JNDI
namespace using the name services/cache/distributedmap. For information on
how to enable the dynamic cache service globally, see Enabling the dynamic cache
service.

Multiple instances of the DistributedMap interface on the same Java virtual
machine (JVM) enables applications to separately configure cache instances as
needed. Each instance of DistributedMap has its own properties:
v Cache JNDI name. The JNDI name is used for calling a particular

DistributedMap instance.
v Cache size (Property name: cacheSize, Default: 2000). Dynamic cache maintains

the maximum number of entries in memory.
v Enable disk offload (Property name: enableDiskOffload, Default: false).

– Disk offload is disabled - If a new entry is created while the cache is full, the
priorities configured for each entry, along with at least recently used
algorithm are used to remove the entry from the cache in memory.

– Disk offload is enabled - If a new entry is created while the cache is full, the
priorities configured for each entry, along with a recently used algorithm are
used to remove the entry from the cache in memory. The entry that is
removed is copied to the local file system, specified by the disk offload
location.

v Disk offload location (Property name: diskOffloadLocation). If disk offload
location is not specified, the default location,
$install_root/temp/node/servername/_dynacache/cacheJNDIname will be used. If
disk offload location is specified, the node, server name, and cache instance
name will be appended.
For example, $install_root/diskoffload generates the location as
$install_root/diskoffload/node/servername/cacheJNDIname. This value is
ignored if enableDiskOffload is false.

v Flush to disk default (Property name: flushToDiskOnStop, Default: false). Set
this value to true to save in-memory cached objects to disk when the server is
stopped. This value is ignored if enableDiskOffload is false.

v Use listener context (Property name: useListenerContext, Default: false). Used
for cache invalidation listener. If the user wants to use listener J2EE context for
callback, set this to true. If the user wants to use the caller thread context for
callback, set this to false.

There are three methods for configuring and using cache instances.

Method 1 - Administrative Console

You can create additional cache instances using the Administrative Console. Click
Resources > Cache Instances. After you create a new cache instance, you can
optionally add additional properties, such as flushToDiskOnStop and
useListenerContext, using the custom properties. See Cache instance settings for
more information.

Chapter 25. Using the dynamic cache service to improve performance 1123

If you defined two cache instances in the Administrative Console with JNDI names
of services/cache/instance_one and services/cache/instance_two, you can use the
following code to look up the cache instances:
InitialContext ic = new InitialContext();

DistributedMap dm1 = (DistributedMap)ic.lookup("services/cache/instance_one");
DistributedMap dm2 = (DistributedMap)ic.lookup("services/cache/instance_two");

Note: For more information about the DistributedMap interface, see the Javadoc
(../javadoc/ee/com/ibm/websphere/cache/DistributedMap.html) for the
com.ibm.websphere.cache package.

Method 2 - Properties file

Note: The distributedmap.properties file will be deprecated in a future release.
Using the Administrative Console is the recommended way to configure cache
instances.

You can create additional cache instances using the distributedmap.properties file
with the following format. :
cache.instance.0=/services/cache/instance_one
cache.instance.0.cacheSize=1000
cache.instance.0.enableDiskOffload=true
cache.instance.0.diskOffloadLocation=${WAS_INSTALL_ROOT}/diskOffload
cache.instance.0.flushToDiskOnStop=true
cache.instance.0.useListenerContext=true
cache.instance.1=/services/cache/instance_two
cache.instance.1.cacheSize=1500
cache.instance.1.enableDiskOffload=false
cache.instance.1.flushToDiskOnStop=false
cache.instance.1.useListenerContext=false

The preceding example creates two DistributedMap instances named instance_one
and instance_two. instance_one has a cache entry size of 1,000 and instance_two
has a cache entry size of 1,500. Disk offload is enabled in instance_one and
disabled in instance_two. Use listener context is enabled in instance_one and
disabled in instance_two. Flush to disk on stop is enabled in instance_one and
disabled in instance_two.

You must place the distributedmap.properties file in either your application
server or application class path. For example, you can use your application WAR file,
WEB-INF\classes directory, or was_root\classes directory. The first entry in the
properties file (cache.instance.0) specifies the JNDI name for the cache instance in
the global namespace. You can use the following code to look up the cache
instance:

InitialContext ic = new InitialContext();
DistributedMap dm1 = (DistributedMap)ic.lookup("services/cache/instance_one");
DistributedMap dm2 = (DistributedMap)ic.lookup("services/cache/instance_two");

Note: For more information about the DistributedMap interface, see the Javadoc
(../javadoc/ee/com/ibm/websphere/cache/DistributedMap.html) for the
com.ibm.websphere.cache package.

Method 3 - Resource references

Note: Method three is an extension to method one or method two, listed above.
First use either method one or method two.

1124 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

The following describes resource reference files. Alternately, you can use the
Application Assembly Tool to create the resource reference.

Define a resource-ref in your module deployment descriptor (web.xml and
ibm-web-bnd.xmi files) and look up the cache using the java:comp namespace.

Resource-ref example:
File: web.xml
<resource-ref id="ResourceRef_1">

<res-ref-name>dmap/LayoutCache</res-ref-name>
<res-type>com.ibm.websphere.cache.DistributedMap</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>
<resource-ref id="ResourceRef_2">

<res-ref-name>dmap/UserCache</res-ref-name>
<res-type>com.ibm.websphere.cache.DistributedMap</res-type>
<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

File: ibm-web-bnd.xmi
<?xml version="1.0" encoding="UTF-8"?>
<webappbnd:WebAppBinding xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:webappbnd="webappbnd.xmi"
xmlns:webapplication="webapplication.xmi" xmlns:commonbnd="commonbnd.xmi" xmlns:common="common.xmi"
xmi:id="WebApp_ID_Bnd" virtualHostName="default_host">

<webapp href="WEB-INF/web.xml#WebApp_ID"/>
<resRefBindings xmi:id="ResourceRefBinding_1" jndiName="services/cache/instance_one">

<bindingResourceRef href="WEB-INF/web.xml#ResourceRef_1"/>
</resRefBindings>
<resRefBindings xmi:id="ResourceRefBinding_2" jndiName="services/cache/instance_two">

<bindingResourceRef href="WEB-INF/web.xml#ResourceRef_2"/>
</resRefBindings>

</webappbnd:WebAppBinding>

The following example shows how to look up the resource-ref:
InitialContext ic = new InitialContext();
DistributedMap dm1a =(DistributedMap)ic.lookup("java:comp/env/dmap/LayoutCache");
DistributedMap dm2a =(DistributedMap)ic.lookup("java:comp/env/dmap/UserCache");

The previous resource-ref example maps java:comp/env/dmap/LayoutCache to
/services/cache/instance_one and java:comp/env/dmap/UserCache to
/services/cache/instance_two. In the examples, DistributedMap dm1 and dm1a are
the same map. DistributedMap dm2 and dm2a are the same map.

Note: The DistributedMap interface does not currently have authorization or access
control associated with any of the cache entries.

What to do next

To learn how to share cached objects in a clustered environment, see Sharing
cached objects in a clustered environment.

Sharing cached objects in a clustered environment
In a clustered environment, the content you place in cache might be shared with
other servers in the cluster. The content might also be off-loaded to disk. If you
intend to have the cached objects shared or off-loaded to disk, you must make
these particular objects serializable. If the objects you place in cache are
non-serializable, you must specify that the sharing policy for these objects is ″not
shared″. The DistributedMap interface Javadoc

Chapter 25. Using the dynamic cache service to improve performance 1125

(../javadoc/ee/com/ibm/websphere/cache/DistributedMap.html) contains
information about how to specify the sharing policy for a cached object. Specifying
a sharing policy other than ″not shared″ for non-serializable objects can result in
poor system performance.

Cache instance settings
A cache instance is a location, in addition to the default shared dynamic cache,
where any J2EE application can store, distribute, and share data. This gives
applications greater flexibility and better tuning of the cache resources. The
programming interface to access this cache instance is called DistributedMap. See
the DistributedMap API documentation in the WebSphere Application Server
Javadoc (../javadoc/ee/com/ibm/websphere/cache/DistributedMap.html) for
more information.

To view this administrative console page, click Resources > Cache Instances.

Name
Specifies the required display name for the resource.

JNDI name
Specifies the Java Naming and Directory Interface (JNDI) name for the resource.
Use this name when looking up a reference to this cache instance. The returned
object is of type DistributedMap.

Description
Specifies a description for the resource. This field is optional.

Category
Specifies a category string to classify or group the resource. This field is optional.

Cache Size
Specifies a positive integer for the maximum number of entries the cache holds.

The range is 100 to 200,000.

Default Priority
Specifies the default priority for servlets that can be cached. This value will
determine how long an entry will stay in a full cache.

The recommended value is one.

Enable Disk Offload
Checking this box will enable disk offloading.

Disk Offload Location
Specifies the directory used for disk offload.

Additional custom properties (available only when a cache
instance is created)
Custom properties are available for flushToDiskOnStop and useListenerContext.

Note: You can define custom properties once you create a cache instance.
v Name - Specifies the name of the custom property. In this case, it will be

flushToDiskOnStop or useListenerContext. This field is required.
v Value - True or false. Specifies the value of the custom property. This field is

required.

1126 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v Description - Specifies text to describe any bounds or values for this property.
This field is optional.

Cache instance collection
Use this page to configure and manage cache instances.

To view this administrative console page, click Resources > Cache Instances >
New.

Scope
Specify CELL SCOPE to view and configure cache instances that are available to all
servers within the cell. Specify NODE SCOPE to view and configure cache
instances that are available to all servers with the particular node. Specify SERVER
SCOPE to view and configure cache instances that are available only on the
specific server.

Name
Specifies the required display name for the resource.

JNDI name
Specifies the Java Naming and Directory Interface (JNDI) name for the resource.
Use this name when looking up a reference to this cache instance. The returned
object is of type DistributedMap.

Description
Specifies a description for the resource. This field is optional.

Category
Specifies a category string to classify or group the resource. This field is optional.

Cache Size
Specifies a positive integer for the maximum number of entries the cache holds.

The range is 100 to 200,000.

Enable Disk Offload
Checking this box will enable disk offloading.

By default, dynamic cache only maintains the number of entries configured in
memory. If new entries are created while the cache is full, the priorities configured
for each cache entry, along with a least recently used (LRU) algorithm, are used to
remove entries from the cache. As an alternative, you can configure disk offload to
copy entries onto the file system to be accessed at a later time. The location to copy
the entries is configurable.

Cache instance service settings
The Cache Instance Service enables server-level configuration for Cache Instance
resources.

To view this administrative console page, click Servers > Application Servers >
server1 > Cache Instance Service.

Startup
Specifies whether the server will attempt to start the specified service when the
server starts. Checking the box turns this service on or off.

Chapter 25. Using the dynamic cache service to improve performance 1127

Invalidation listeners
Invalidation listener mechanism uses Java events for alerting applications when
contents are removed from the cache.

Applications implement the InvalidationListener interface (defined in the
com.ibm.websphere.cache package) and register it to the cache using the
DistributedMap interface. Listeners receive InvalidationEvents (defined in the
com.ibm.websphere.cache package) when entries from the cache are evicted, due to
an explicit user invalidation, timeout, least recently used (LRU) eviction, cache
clear, or disk timeout. Applications can immediately recalculate the invalidated
data and prime the cache before the next user request.

Enable listener support in DistributedMap before registering listeners.
DistributedMap can also be configured to use the invalidation listener J2EE context
from registration time during callbacks. Setting the value of the custom property
useListenerContext to true will enable the invalidation listener J2EE context for
callbacks. See Cache instance settings for more information.

The following example shows how to set up an invalidation listener:
dmap.enableListener(true); // Enable cache invalidation listener.
InvalidationListener listener = new MyListenerImpl();

//Create invalidation listener object.
dmap.addInvalidationListener(listener); //Add invalidation listener.

:
:
:

dmap.removeInvalidationListener(listener);
//Remove the invalidation listener. This increases performance.

dmap.enableListener(false);
// Disable cache invalidation listener. This increases performance.

For more information about invalidation listeners, see the Javadoc
(../javadoc/ee/com/ibm/websphere/cache/package-summary.html) for the
com.ibm.websphere.cache package.

Example: Caching Web services
The following is a example of building a set of cache policies for a simple Web
services application. The application in this example stores stock quotes, and has
operations to read, update the price of, and buy a given stock symbol.

Following are two SOAP message examples that the application can receive, with
accompanying HTTP Request headers.

The first message sample contains a SOAP message for a GetQuote operation,
requesting a quote for IBM. This is a read-only operation that gets its data from the
back-end, and is very cacheable. In this example the SOAP messasge is cached and
a timeout is placed on its entries to guarantee the quotes it returns are not too out
of date.

Message example 1
POST /soap/servlet/soaprouter
HTTP/1.1
Host: www.myhost.com
Content-Type: text/xml; charset="utf-8"
SOAPAction: urn:stockquote-lookup
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

1128 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

<SOAP-ENV:Body>
<m:getQuote xmlns:m="urn:stockquote:>
<symbol>IBM</symbol>
</m:getQuote>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The SOAPAction HTTP header in the request is defined in the SOAP specification
and is used by HTTP proxy servers to dispatch requests to particular HTTP
servers. WebSphere Application Server dynamic cache can use this header in its
cache policies to build IDs without having to parse the SOAP message.

Message example 2 illustrates a SOAP message for a BuyQuote operation. While
message 1 is cacheable, this message is not, because it updates the back-end
database.

Message example 2
POST /soap/servlet/soaprouter
HTTP/1.1
Host: www.myhost.com
Content-Type: text/xml; charset="utf-8"
SOAPAction: urn:stockquote-update
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<m:buyStock xmlns:m="urn:stockquote:>
<symbol>IBM</symbol>
</m:getQuote>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The graphic illustrates how to invoke methods with the SOAP messages. In Web
services terms, especially Web Service Definition Language (WSDL), a service is a
collection of operations such as getQuote and buyStock. A body element
namespace (urn:stockquote in our example) defines a service, and the name of the
first body element indicates the operation.

buyStock

getQuote

SOAP Router
Servlet

Another
Service

StockQuote
Service

SOAP/HTTP

The following is an example of WSDL for the getQuote operation:
<?xml version="1.0"?>
<definitions name="StockQuoteService-interface"
targetNamespace="http://www.getquote.com/StockQuoteService-interface"
xmlns:tns="http://www.getquote.com/StockQuoteService-interface"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns=soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns="http://schemas.xmlsoap.org/wsdl/"
<message name="SymbolRequest">

Chapter 25. Using the dynamic cache service to improve performance 1129

<part name="return" type="xsd:string"/>
</message>
<portType name="StockQuoteService">
<operation name="getQuote">
<input message="tns:SymbolRequest"/>
<output message="tns:QuoteResponse"/>
</operation>
</portType>
<binding name="StockQuoteServiceBinding"
type="tns:StockQuoteService">
<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getQuote">
<soap:operation soapAction="urn:stockquote-lookup"/>
<input>
<soap:body use="encoded" namespace="urn:stockquote"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<soap:body use="encoded" namespace="urn:stockquotes"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>
</operation>>
</binding>
</definition>

To build a set of cache policies for a Web services application configure WebSphere
Application Server dynamic cache to recognize cacheable service operation of the
operation.

WebSphere Application Server inspects the HTTP request to determine whether or
not an incoming message can be cached based on the cache policies defined for an
application. In this example, buyStock and stock-update are not cached, but
stockquote-lookup is cached. In the cachespec.xml file for this Web application, the
cache policies need defining for these services so that the dynamic cache can
handle both SOAPAction and service operation.

WebSphere Application Server uses the operation and the message body in Web
services cache IDs, each of which has a component associated with them.
Therefore, each Web services <cache-id> rule contains only two components. The
first is for the operation. Because you can perform the stockquote-lookup operation
by either using a SOAPAction header or a service operation in the body, you must
define two different <cache-id> elements, one for each method. The second
component is of type ″body″, and defines how WebSphere Application Server
should incorporate the message body into the cache ID. You can use a hash of the
body, although it is legal to use the literal incoming message in the ID.

The incoming HTTP request is analyzed by WebSphere Application Server to
determine which of the <cache-id> rules match. Then, the rules are applied to
form cache or invalidation IDs.

The following is sample code of a cachespec.xml file defining SOAPAction and
servicesOperation rules:
<cache>
<cache-entry>
<class>webservice</class>
<name>/soap/servlet/soaprouter</name>
<sharing-policy>not-shared</sharing-policy>
<cache-id>
<component id="" type=SOAPAction>
<value>urn:stockquote-lookup</value>
</component>

1130 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

<component id="Hash" type="SOAPEnvelope"/>
<timeout>3600</timeout>
<priority>1<priority>
</cache-id>
<cache-id>
<component id="" type="serviceOperation">
<value>urn:stockquote:getQuote</value>
</component>
<component id="Hash" type="SOAPEnvelope"/>
<timeout>3600</timeout>
<priority>1</priority>
</cache-id>
</cache-entry>
</cache>

Example: Configuring the dynamic cache
This example puts all the steps together for configuring the dynamic cache with
the cachespec.xml file, showing the use of the cache ID generation rules,
dependency IDs, and invalidation rules.

Suppose we have a servlet which is used to manage a simple news site. This
servlet uses the query parameter ″action″ to determine whether the request is
being used to ″view″ news or ″update″ news (used by the administrator). Further,
another query parameter ″category″ is used to select the news category. Further,
suppose that this site supports an optional customized layout, which is stored in
the user’s session using the attribute name ″layout″. Here are example URL
requests to this servlet:

http://yourhost/yourwebapp/newscontroller?action=view&category=sports (Returns
a news page for the sports category)

http://yourhost/yourwebapp/newscontroller?action=view&category=money (Returns
a news page for the money category)

http://yourhost/yourwebapp/newscontroller?action=update&category=fashion
(Allows the administrator to update news in the fashion category)

Here are the steps for configuring dynamic cache with cachespec.xml, using the
information provided to you:
1. Define the cache-entry elements necessary to identify the servlet. In this case,

the servlet’s URI is ″newscontroller″ so this will be our cache-entry’s name
element. Also, since we are caching a servlet/JavaServer Page (JSP), the
cache-entry class is ″servlet″.
<cache-entry>
<name> /newscontroller </name>
<class>servlet </class>
</cache-entry>

2. Define cache ID generation rules. For this servlet, we only want to cache when
action=view, so one component of the cache ID will be the parameter ″action″
when the value equals ″view″. The news category is also an essential part of
the cache ID. Finally, the optional session attribute for the user’s layout is
included in the cache ID. The cache-entry now looks like this:
<cache-entry>

<name> /newscontroller </name>
<class>servlet </class>

<cache-id>
<component id="action" type="parameter">
<value>view</value>

Chapter 25. Using the dynamic cache service to improve performance 1131

<required>true</required>
</component>
<component id="category" type="parameter">
<required>true</required>
</component>
<component id="layout" type="session">
<required>false</required>
</component>

</cache-id>
</cache-entry>

3. Define dependency ID rules. For this servlet, a dependency ID will be added
for the category. Later, when the category is invalidated due to an update
event, all views of that news category will be invalidated. After adding our
dependency-id, the cache-entry now looks like this:
<cache-entry>

<name>newscontroller </name>
<class>servlet </class>

<cache-id>
<component id="action" type="parameter">
<value>view</value>
<required>true</required>
</component>
<component id="category" type="parameter">
<required>true</required>
</component>
<component id="layout" type="session">
<required>false</required>
</component>
</cache-id>
<dependency-id>category
<component id="category" type="parameter">
<required>true</required>
</component>
</dependency-id>

</cache-entry>

4. Define invalidation rules. Since we defined a category dependency ID, we will
now define an invalidation rule to invalidate the category when action=update.
To incorporate the conditional logic, we will add ″ignore-value″ components
into the invalidation rule. These components will not add to the output of the
invalidation ID, but will only determine whether or not the invalidation ID is
created and executed. The final cache-entry now looks like this:
<cache-entry>

<name>newscontroller </name>
<class>servlet </class>

<cache-id>
<component id="action" type="parameter">
<value>view</value>
<required>true</required>
</component>
<component id="category" type="parameter">
<required>true</required>
</component>
<component id="layout" type="session">
<required>false</required>
</component>
</cache-id>
<dependency-id>category
<component id="category" type="parameter">
<required>true</required>
</component>
</dependency-id>
<invalidation>category<
<component id="action" type="parameter" ignore-value="true">
<value>update</value>

1132 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

<required>true</required>
</component>
<component id="category" type="parameter">
<required>true</required>

</invalidation>
</cache-entry>

Cache monitor
Cache monitor is an installable Web application that provides a real time and run
time view of the current state of the cache, and helps verify that the cache is
behaving as expected. The only way to manipulate the data in the cache is by
using the cache monitor. It provides a GUI interface to manually change data.

Cache monitor does not provide a view for cache instance resources.

Cache monitor provides a way to:
v Verify the configuration of dynamic cache

The WebSphere Application Server Adminstration Console provides ways to
enable the dynamic cache service and configure properties, such as maximum
size of the cache and disk offload location, as well as advanced features such as
controlling external caches. Cache monitor offers a way for dynamic cache users
to verify the configuration of the dynamic cache by providing a convenient view
of the configured features and properties in the cache monitor.

v Verify the cache policies

To cache an object, WebSphere Application Server must know how to generate
unique IDs for different invocations of that object. This is performed by
providing rules for each cacheable object in the cachespec.xml file, found inside
the Web module WEB-INF or enterprise bean META-INF directory. Each cacheable
object can have multiple cache ID rules that execute in sequence until either a
rule returns a cache ID or no more rules remain to execute. If none of the cache
ID generation rules produce a valid cache ID, then the object is not cached. Since
there can be multiple cachespec.xml files with multiple cache ID rules, cache
monitor provides a convenient way to verify the policies of each object. It offers
a view of all the cache polices currently loaded in dynamic cache. This view is
also convenient to verify that the cachespec.xml file was read by the dynamic
cache without errors.

v Monitor cache statistics

Cache monitor provides a view of the essential cache data, such as number of
cache hits, cache misses, and number of entries in cache. This helps to tune the
cache configuration optimally to get the best performance improvement out of
dynamic cache. For example, if the number of used entries is often high, and
entries are being removed and recreated, one might consider increasing the
maximum size of the cache or enabling disk offload.

v Monitor the data flowing through the cache

Once a cacheable object is invoked, dynamic cache creates a cache entry for it
that contains the output of the execution and metadata, such as time to live,
sharing policy, etc. Entries are distinguished by a unique ID string that is based
on the rules specified in the cachespec.xml file for this objects name. Objects
with the same name may generate multiple cache IDs for different invocations,
based on request parameters and attributes for each invocation. Cache monitor
provides a view of all the cache entries currently in cache, based on the unique
ID. It also provides a view of the group of cache entries that share a common
name (also known as template). Cache entries can also be grouped together by a
dependency ID, which is used to invalidate the entire group of entries

Chapter 25. Using the dynamic cache service to improve performance 1133

dependent on a common entity. Therefore, cache monitor also provides a view of
the group of cache entries that share a common dependency ID.
For each entry, cache monitor also displays metadata, such as time to live,
priority and sharing-policy, and provides a view of the output that has been
cached. This helps the customer to verify which pages have been cached, that
the pages have been cached with the right attributes such as time to live,
priority, etc., and that the pages have the right content.

v Monitor the data in the edge cache

Dynamic cache provides support to recognize the presence of an Edge Side
Include (ESI) processor and to generate ESI include tags and appropriate cache
policies for edge cacheable fragments. The ESI processor has the ability to cache
whole pages, as well as fragments, providing a higher cache hit ratio. There can
be multiple ESI processors running on multiple hosts configured for caching.
Cache monitor provides a list of all ESI processes and their hosts that are
enabled for caching. It also provides a way to select a host or a processor, and
view its edge cache statistics as well as current cache entries.

v View the data offloaded to the disk

By default, when the number of cache entries reaches the configured limit for a
given server, eviction of cache entries occurs, allowing new entries to enter the
cache service. The dynamic cache includes the disk offload feature that copies
the evicted cache entries to disk for future access. Cache monitor offers a view of
the content offloaded to disk that corresponds to the view of contents cached in
memory.

v Manage the data in the cache

Besides displaying cache content, cache monitor also provides some basic
operations on the data in the cache:
– Removing an entry from the cache
– Removing all entries for a certain dependency ID
– Removing all entries for a certain name (template)
– Moving and entry to the front of the least recently used queue to avoid

eviction
– Moving an entry from the disk to the cache
– Clearing the entire contents of the cache
– Clearing the contents of the disk cache

These functions are useful for dynamic cache customers, as they provide a way
to manually change the state of the cache without having to restart the server.

Edge cache statistics
Cache monitor provides a view of the edge cache statistics.

The following statistics are available:
v ESI Processors. Number of processes configured as edge caches.
v Number of Edge Cached Entries. Number of entries currently cached on all

edge servers and processes.
v Cache Hits. Number of requests that match entries on edge servers.
v Cache Misses By URL. A cache policy does not exist on the edge server, for the

requested template.
Note:

1134 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

– The initial ESI request for a template that has a cache policy on WebSphere
Application Server will result in a miss.

– Every request for a template that does not have a cache policy on WebSphere
Application Server will result in a miss by URL on the edge server.

v Cache Misses By Cache ID. The policy for the requested template exists on the
edge server, and a cache ID is created, based on the ID rules and the request
attributes, but the cache entry for this ID does not exist.
Note: If the policy exists on the edge server for the requested template, but a
cache ID match is not found, based on the ID rules and the request attributes, it
is not treated as a cache miss.

v Cache Timeouts. Number of entries removed from the edge cache, based on the
timeout value.

v Evictions. Number of entries removed from the edge cache, due to invalidations
received from WebSphere Application Server.

Chapter 25. Using the dynamic cache service to improve performance 1135

1136 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 26. Managing user profiles

Note: User Profile Manager API is deprecated in the current release, and there is
no replacement available.

IBM WebSphere Application Server provides a service for processing user profiles,
called the User Profile Manager. The service is provided in the form of an EJB entity
bean that servlets can call whenever they are required to access a user profile.

The key activities for implementing user profiles are summarized.

Steps for this task
1. Customize the user profile support as necessary.

Options include:
v Using the data representation class with the name-value pairs it currently

supports (no action required)
v Extending the data representation class to support additional, arbitrary

name-value pairs
v Adding columns to the base user profile representation
v Extending the User Profile enterprise bean to import existing databases

Evaluate whether the user profile representation provided by IBM represents
the kind of data you want to keep about your users. You might find it desirable
to customize the IBM user profile support.

2. Create or modify servlets to use the User Profile Manager and related user
profile support classes to maintain user profiles on behalf of Web applications.

3. Assemble your application.
4. Deploy your application.
5. Ensure the administrator appropriately configures User Profile Managers using

userprofile.xml file.
If the programmer and administrator are not the same person, the programmer
might need to provide settings information to the administrator, based on how
the programmer implemented user profiles.

User profile
Some applications collect data about the users with which they interact. The data is
stored in a database. The next time the user interacts with the application, the
application recalls the data.

Because the application already knows something about the user, it can provide
the user with a more personalized experience.

User profiles provide a means by which a company can maintain and manage
database tables containing fields for demographic data and use those tables to
interact with a database of individual customers or other users on the company
system.

© Copyright IBM Corp. 2003 1137

For example, when a repeat user logs onto a Web site that supports user profiles,
the Web site can display headlines and advertising tailored to the shopping
preferences of that user. The site can address the user by logon name.

An application implementing user profiles requires database access for storing the
user profile data it gathers.

UserProfileManager class
Servlets and other application building blocks requiring user profile support
should make calls to the class:
com.ibm.websphere.userprofile.UserProfileManager

The class supports the following functions:
v Creating and deleting user profiles
v Getting and updating (cached and immediate) to and from the database
v Getting user profiles for read-only tasks
v Performing queries on database columns

User profile development options
The application developer has a few options for customizing the user profile
support provided by IBM WebSphere Application Server. The Related information
provides instructions and additional details about each option.

Extending the data represented in user profiles
Web applications can maintain several pieces of data about users. You can extend
the data representation to allow the collection of arbitrary name-value pairs.

Use the following interface with the
com.ibm.websphere.userprofile.UserProfileExtender class to extend a user profile
hash table:
com.ibm.websphere.userprofile.UserProfileProperties

This action enables you to place arbitrary name-value pairs in the user profile.
Extending the hash table is similar to using the java.util.Dictionary class in the
base JDK 1.x, or any of the classes that extend it.

Adding columns to the base user profile implementation
Application developers can customize user profiles by adding columns to the base
user profile implementation. Adding new columns is accomplished by
implementing the interface:
com.ibm.websphere.userprofile.UserProfileExtender

and extending the base class:
com.ibm.servlet.personalization.userprofile.UserProfile

The application developer can add columns to but not delete columns from the
base implementation.

Adding columns is a two-step process, as follows:
1. Extend the UserProfile class.
2. Modify your existing servlets to use the new columns.

1138 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Several examples are available to demonstrate how to extend the base user profile
implementation and utilize the extension with a servlet.

Example Description

UPServletExample.java Demonstrates how a servlet opens a user
profile and prints the fields contained
within.

UserProfileExtendedSample.java Shows how to extend the UserProfile class
to add a column to the user profile for a
cellular phone number.

The WebSphere Application Server
administrator configures the User Profile
Manager to point to the extended class.

UPServletExampleExtended.java Shows how to modify the UPServletExample
servlet to include the cellular phone number
in the output.

UserProfileExtended.java Shows how to extend a hash table to place
arbitrary name-value pairs into the user
profile.

UPServletExtended.java Shows how to extend the servlet. When any
of the newly added columns are removed or
replaced, look for the table named
″USERPROFILE″ in the database to which
the user profile is configured and drop that
table.

The examples are encoded in HTML for viewing in a browser. The documentation
directory also contains nonHTML versions (.java files) that are ready for use.

Extending the User Profile enterprise bean and importing
legacy databases

Application developers can extend the User Profile enterprise bean itself and
import legacy databases into the user profile. The main advantage in extending the
User Profile enterprise bean is to gain the ability to import existing databases into
the user profile. You can also extend this enterprise bean to add columns to the
base user profile implementation.

UPServletExample.java
import java.io.*;
import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

import com.ibm.websphere.userprofile.UserProfile;
import com.ibm.websphere.userprofile.UserProfileManager;
import com.ibm.websphere.userprofile.UserProfileCreateException;
import com.ibm.websphere.userprofile.UserProfileFinderException;
import com.ibm.websphere.userprofile.UserProfileRemoveException;

//Creates a Userprofile using the new API

public class UPServlet_ReadWrite extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

Chapter 26. Managing user profiles 1139

PrintWriter out;
res.setContentType("text/html");
out = res.getWriter();

UserProfileManager manager = UserProfileManager.getUserProfileManager();
UserProfile userprofile;

try {

//Try creating the UserProfile
userprofile = manager.addUserProfile("bpink");

} catch(UserProfileCreateException e1) {

try {

//Try finding the existing in readWrite mode.
//Second argument indicates whether we want to get userprofile
//in read only mode or read write mode.

userprofile = manager.getUserProfile("bpink",true);

} catch(UserProfileFinderException e) {
e.printStackTrace();
return;

}

}

//Set the properties

userprofile.setAddress1("myaddress1");
userprofile.setAddress2("myaddress2");
userprofile.setFirstName("Pinkowski");
userprofile.setSurName("Ben");
userprofile.setDayPhone("555-6677");
userprofile.setNightPhone("556-6765");
userprofile.setCity("MYCITY");
userprofile.setNation("myCountry");
userprofile.setEmployer("MyEmployer");
userprofile.setFax("7823470");

userprofile.setLanguage("mylanguage");
userprofile.setEmail("MyEmail@email");
userprofile.setStateOrProvince("myState");
userprofile.setPostalCode("xxxxx");

//Freeing resources held by userprofile
manager.releaseResources(userprofile);
userprofile=null;

//Checking whether it updated the info

try {

//Getting the existing userprofile in ReadOnly mode.

userprofile = manager.getUserProfile("bpink",false);

} catch(UserProfileFinderException e1) {

out.println("Error finding ");

1140 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

e1.printStackTrace();
return;

}

//Displaying the properties of userprofile

out.println(userprofile.getAddress1()+"
");
out.println(userprofile.getAddress2()+"
");;
out.println(userprofile.getFirstName()+"
");;
out.println(userprofile.getSurName()+"
");
out.println(userprofile.getDayPhone()+"
");;
out.println(userprofile.getNightPhone()+"
");;
out.println(userprofile.getCity()+"
");
out.println(userprofile.getNation()+"
");;
out.println(userprofile.getEmployer()+"
");;
out.println(userprofile.getFax()+"
");;
out.println(userprofile.getLanguage()+"
");;
out.println(userprofile.getEmail()+"
");;
out.println(userprofile.getStateOrProvince()+"
");;
out.println(userprofile.getPostalCode()+"
");

//Freeing resources held by userprofile
manager.releaseResources(userprofile);

}
}

UserProfileExtendedSample.java
/* ---
** Copyright 1997-99 IBM Corporation. All rights reserved.
**
** ---
*/
package com.ibm.servlet.personalization.userprofile;

import com.ibm.servlet.personalization.userprofile.UserProfile;
import com.ibm.websphere.userprofile.UserProfileExtender;

//Extensions of UserProfile to add new Columns should implement UserProfileExtender
public class UserProfileExtendedSample

extends com.ibm.servlet.personalization.userprofile.UserProfile
implements UserProfileExtender {

//New column that is being added by this
//derived class.
public String cellPhone;

//Manager Class will call this method to append new Column types.
//If UserProfile class is extended to append new columns
//TOTAL COLUMNS: Base Class columns + columns returned by this class

public String[] getNewColumns() {
//If variable name is "cellPhone," you need to
//return "cellPhone" in array format. JDBC equivalent will be
//generated automatically. You can add muliple columns.
//For multiple columns: String newCol={"fieldName1","fieldName2",...};
String[] newCol={"cellPhone"};
return newCol;

}

public String getCellPhone() {
// Need to call this method to
// get the things from persistence store.
return(String)getByType("cellPhone");

Chapter 26. Managing user profiles 1141

}

public void setCellPhone(String value) {
cellPhone = value;
//Call this method to store the
//things in persistence store
setByType("cellPhone", value);

}
}

UPServletExampleExtended.java
import java.io.*;
import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

import com.ibm.websphere.userprofile.UserProfile;
import com.ibm.websphere.userprofile.UserProfileManager;
import com.ibm.websphere.userprofile.UserProfileCreateException;
import com.ibm.websphere.userprofile.UserProfileFinderException;
import com.ibm.websphere.userprofile.UserProfileRemoveException;
import com.ibm.servlet.personalization.userprofile.UserProfileExtendedSample;

public class UPServletExtendedSample extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException
{

UserProfileManager manager = UserProfileManager.getUserProfileManager();
UserProfile userprofile;

PrintWriter out;

res.setContentType("text/html");
out = res.getWriter();

try {

//try Creating the UserProfile

userprofile = manager.addUserProfile("bpink");

} catch(UserProfileCreateException e1) {

try { //try finding the existing in readWrite mode

userprofile = manager.getUserProfile("bpink",true);
} catch(UserProfileFinderException e) {

e.printStackTrace();
return;

}

}

userprofile.setAddress1("myaddress1");
userprofile.setAddress2("myaddress2");
userprofile.setFirstName("Pinkowski");
userprofile.setSurName("Ben");
userprofile.setDayPhone("555-6677");
userprofile.setNightPhone("556-6765");

1142 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

userprofile.setCity("MYCITY");
userprofile.setNation("myCountry");
userprofile.setEmployer("MyEmployer");
userprofile.setFax("7823470");
userprofile.setLanguage("mylanguage");
userprofile.setEmail("MyEmail@email");
userprofile.setStateOrProvince("myState");
userprofile.setPostalCode("xxxxx");

//calling setCellPhone
((com.ibm.servlet.personalization.userprofile.UserProfileExtendedSample)

userprofile).setCellPhone("346-4588");

//Freeing resources held by userprofile
manager.releaseResources(userprofile);
userprofile=null;

//Checking whether it updated the info

try {

//Getting the existing userprofile
userprofile = manager.getUserProfile("bpink",false);

} catch(UserProfileFinderException e1) {

out.println("Error finding ");
e1.printStackTrace();
return;

}

out.println(userprofile.getAddress1()+"
");
out.println(userprofile.getAddress2()+"
");;
out.println(userprofile.getFirstName()+"
");;
out.println(userprofile.getSurName()+"
");
out.println(userprofile.getDayPhone()+"
");;
out.println(userprofile.getNightPhone()+"
");;
out.println(userprofile.getCity()+"
");
out.println(userprofile.getNation()+"
");;
out.println(userprofile.getEmployer()+"
");;
out.println(userprofile.getFax()+"
");;
out.println(userprofile.getLanguage()+"
");;
out.println(userprofile.getEmail()+"
");;
out.println(userprofile.getStateOrProvince()+"
");;
out.println(userprofile.getPostalCode()+"
");

//Calling getCellPhone
out.println(((UserProfileExtendedSample)userprofile).getCellPhone()+"
");

//Freeing resources held by userprofile
manager.releaseResources(userprofile);
userprofile=null;

//For getting values by cellPhone
out.println("

Retreiving by Cell Phone
");
Enumeration enum = manager.findUserProfiles("cellPhone","346-4588");
while(enum.hasMoreElements()) {

com.ibm.websphere.userprofile.UserProfile up =
(com.ibm.websphere.userprofile.UserProfile)enum.nextElement();

out.println("first name :"+up.getFirstName()+"
");

Chapter 26. Managing user profiles 1143

//Freeing resources held by userprofile
manager.releaseResources(up);

}
}

}

UserProfileExtended.java
package com.ibm.servlet.personalization.userprofile;
/* ---
** Copyright 1997-99 IBM Corporation. All rights reserved.
**
** ---
*/
import java.util.*;

import com.ibm.servlet.personalization.userprofile.UserProfile;

import com.ibm.websphere.userprofile.UserProfileExtender;
import com.ibm.websphere.userprofile.UserProfileProperties;

public class UserProfileExtended extends UserProfile implements UserProfileExtender,
UserProfileProperties {
//New column that is being added by this
//derived class.
public Hashtable properties;

static String propCol ="properties";

//Manager Class will call this method to append new Column types
//to SQL Strings. If UserProfile class is extended to append new columns
//it should implement UserProfileExtender.
//COLUMNS: Base Class columns + columns returned by this class

public String[] getNewColumns() {
//if variable name is properties, you need to
//return "properties" . JDBC equivalent will be
//generated automatically.
String[] newCol={propCol};
return newCol;

}

public Object getValue(String key) {
// Need to call this method to
// get the things from persistent store
properties = (Hashtable) getByType(propCol);

if(properties != null)
return properties.get(key);

else return null;

}

public void putValue(String key, Object value) {

properties =(Hashtable) getByType(propCol);

if(properties == null)
properties = new Hashtable();

properties.put(key,value);

//store in persistent store
setByType(propCol, properties);

}

1144 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

public void removeValue(String key) {
properties = (Hashtable) getByType(propCol);

if(properties == null)
return;

properties.remove(key);

//store in persistent store
setByType(propCol, properties);

}
}

UPServletExtended.java
import java.io.*;
import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

import com.ibm.websphere.userprofile.UserProfile;
import com.ibm.websphere.userprofile.UserProfileManager;
import com.ibm.websphere.userprofile.UserProfileCreateException;
import com.ibm.websphere.userprofile.UserProfileFinderException;
import com.ibm.websphere.userprofile.UserProfileRemoveException;
import com.ibm.websphere.userprofile.UserProfileProperties;

public class UPServletExtended extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException
{

UserProfileManager manager = UserProfileManager.getUserProfileManager();
UserProfile userprofile;

PrintWriter out;

res.setContentType("text/html");
out = res.getWriter();

try {

//try Creating the UserProfile

userprofile = manager.addUserProfile("bpink");

} catch(UserProfileCreateException e1) {

try { //try finding the existing in readWrite mode

userprofile = manager.getUserProfile("bpink",true);
} catch(UserProfileFinderException e) {

e.printStackTrace();
return;

}

}

userprofile.setAddress1("myaddress1");
userprofile.setAddress2("myaddress2");
userprofile.setFirstName("Pinkowski");
userprofile.setSurName("Ben");
userprofile.setDayPhone("555-6677");

Chapter 26. Managing user profiles 1145

userprofile.setNightPhone("556-6765");
userprofile.setCity("MYCITY");
userprofile.setNation("myCountry");
userprofile.setEmployer("MyEmployer");
userprofile.setFax("7823470");
userprofile.setLanguage("mylanguage");
userprofile.setEmail("MyEmail@email");
userprofile.setStateOrProvince("myState");
userprofile.setPostalCode("xxxxx");

//calling putValue

((UserProfileProperties)userprofile).putValue("name","HHHHHHH");
((UserProfileProperties)userprofile).putValue("Date",new java.util.Date());

//Freeing resources held by userprofile
manager.releaseResources(userprofile);
userprofile=null;

//Checking whether it updated the info

try {

//Getting the existing userprofile

userprofile = manager.getUserProfile("bpink",false);

out.println(userprofile.getAddress1()+"
");
out.println(userprofile.getAddress2()+"
");;
out.println(userprofile.getFirstName()+"
");;
out.println(userprofile.getSurName()+"
");
out.println(userprofile.getDayPhone()+"
");;
out.println(userprofile.getNightPhone()+"
");;
out.println(userprofile.getCity()+"
");
out.println(userprofile.getNation()+"
");;
out.println(userprofile.getEmployer()+"
");;
out.println(userprofile.getFax()+"
");;
out.println(userprofile.getLanguage()+"
");;
out.println(userprofile.getEmail()+"
");;
out.println(userprofile.getStateOrProvince()+"
");;
out.println(userprofile.getPostalCode()+"
");

//Getting the values

out.println(((UserProfileProperties)userprofile).getValue("name")+"
");
out.println(((UserProfileProperties)userprofile).getValue("Date")+"
");
out.println("Removing Values ");
((UserProfileProperties)userprofile).removeValue("name");
((UserProfileProperties)userprofile).removeValue("Date");
out.println(((UserProfileProperties)userprofile).getValue("name")+"
");
out.println(((UserProfileProperties)userprofile).getValue("Date")+"
");

//Freeing resources held by userprofile
manager.releaseResources(userprofile);

} catch(UserProfileFinderException e1) {

out.println("Error finding ");
e1.printStackTrace();
return;

}
}

}

1146 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

userprofile.xml
To installation_root/properties, add a file named userprofile.xml in the following
format. Specify enterprise bean class names; data wrapper class name; and JNDI
names for the read-only bean, read/write bean, and data source (from step 2). You
must also add user ID and password information for the JNDI data source

The following example file contains class names as provided in WebSphere
Application Server. If data wrapper and enterprise bean class names are extended
programmatically, change them accordingly.
<?xml version="1.0"?>

<userprofile>
<userprofile-enabled>true</userprofile-enabled>
<userprofile-wrapper-class>

<classname>
com.ibm.servlet.personalization.userprofile.UserProfile

</classname>
</userprofile-wrapper-class>
<userprofile-manager-name>

User Profile Manager
</userprofile-manager-name>
<userprofile-bean>

<readonly-interface>
com.ibm.servlet.personalization.userprofile.UP_ReadOnly

</readonly-interface>
<readwrite-interface>

com.ibm.servlet.personalization.userprofile.UP_ReadWrite
</readwrite-interface>
<readonlyhome-interface>

com.ibm.servlet.personalization.userprofile.UP_ReadOnlyHome
</readonlyhome-interface>
<readwritehome-interface>

com.ibm.servlet.personalization.userprofile.UP_ReadWriteHome
</readwritehome-interface>
<readonly-JNDI-lookupName>UP_ReadOnlyHome</readonly-JNDI-lookupName>

<readwrite-JNDI-lookupName>UP_ReadWriteHome</readwrite-JNDI-lookupName>
</userprofile-bean>

<userprofile-store>
<database-userid></database-userid>
<database-password></database-password>
<database-datasource></database-datasource>

</userprofile-store>

</userprofile>

Chapter 26. Managing user profiles 1147

1148 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 27. Assembling applications

Assemble application modules (known as EAR files) from new or existing J2EE 1.3
modules, including these archives: Web application archives (WAR), resource
adapter archives (RAR), enterprise beans (EJB JAR), and application client archives
(JAR). This packaging and configuration of code artifacts into application modules
or standalone Web modules is necessary for deploying the applications onto the
application server.

Before you begin

Gather the code artifacts that you want to package into one or more assembled
modules. Code artifacts include these items that you have created and unit tested
in your favorite integrated development environment:
v Enterprise beans
v Servlets, JavaServer Pages (JSP) files and other Web components
v Resource adapter (connector) implementations
v Application clients
v Other supporting classes and files

Steps for this task
1. Start the Application Assembly Tool (AAT).
2. (Optional) Migrate existing J2EE 1.2 modules to J2EE 1.3.

The Application Assembly Tool (AAT) has an option for migrating J2EE 1.2
application modules to J2EE 1.3. The J2EE 1.2 module is kept intact, with a
new 1.3 module created. See also the earconvert tool documentation.
You must migrate J2EE 1.2 application modules to which you want to add
J2EE 1.3 level WAR, RAR, EJB and client modules. This tool migrates only the
application modules. J2EE 1.2-level modules inside a J2EE 1.2 application
module must be migrated by other means.

3. Assemble new EJB modules (enterprise bean JAR files) as needed.
Assemble an EJB module to contain enterprise beans and related code
artifacts. (Group Web components, client code, and resource adapter code in
separate modules.)
You can install an EJB module as a standalone application or you can combine
it with other modules into an enterprise application.

4. Assemble new Web modules (WAR files) as needed.
Assemble a Web module to contain servlets, JSP files, and related code
artifacts. (Group enterprise beans, client code, and resource adapter code in
separate modules.)
You can install a Web module as a standalone application or combine it with
other modules into an enterprise application.

5. Assemble new application client modules (client JAR files) as needed.
6. Assemble new resource adapter archives (RAR files) as needed.

Assemble a resource adapter archive module to contain the library
implementation code that your application uses to connect to enterprise
information systems (EIS). (Group enterprise beans, Web components, and
client code in separate modules.)

© Copyright IBM Corp. 2003 1149

7. Assemble an application module from other module types.
You are ready to combine your new or migrated modules into an application
module (EAR file).
For applications containing only Web modules, this step is optional. It is
feasible to deploy Web modules without assembling them into application
modules.

8. Verify your archive files.
Verify your archive files and correct any problems so that generation of
deployment code is successful. During verification, the Application Assembly
Tool (AAT) checks that an archive file is complete, and that deployment
descriptor properties and references contain appropriate values.

9. Remember to save your application one last time.
10. Generate code for deployment for applications containing EJB modules.

If the application modules contain EJB modules, you must generate
deployment code for the enterprise beans in the application before you deploy
applications on the server. The Application Assembly Tool (AAT) provides this
ability, or you can use the ejbdeploy command line tool.

11. Open existing modules (File > Open) in the AAT to modify them as needed.
For example, you can add or remove modules and edit deployment descriptor
properties.

What to do next

After assembling your applications, use a systems management tool to deploy the
EAR or WAR files onto the application server.

The systems management tool follows the security and deployment instructions
defined in the deployment descriptor, and enables you to modify bindings
specified within the AAT. The tool locates the required external resources that the
application uses, such as enterprise beans and databases.

Select a tool to use:
v Deploying and managing applications with the GUI
v Deploying and managing applications using programming (Java administrative

APIs)
v Deploying and managing applications using scripting (WebSphere Application

Server wsadmin tool)

If you are uncertain of which systems management tool to use, try using the
administrative console.

Application assembly and J2EE applications
Application assembly is the process of creating an Enterprise Archive (EAR) file
containing all files related to an application, as well as an XML deployment
descriptor for the application. This configuration and packaging prepares the
application for deployment onto an application server.

EAR files are comprised of the following archives:
v Enterprise bean (JAR) files (known as EJB modules)
v Web application (WAR) files (known as Web modules)
v Application client (JAR) files (known as client modules)

1150 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

v Resource adapter (RAR) files (known as resource adapter modules)

Ensure that modules are contained in an EAR file so that they may be deployed
onto the server. The exceptions are WAR modules, which you can deploy
individually. Although WAR modules can contain regular JAR files, they cannot
contain the other module types described previously.

The assembly process includes the following:
v Selecting all of the files to include in the module
v Creating a deployment descriptor containing instructions for module

deployment on the application server.
As you configure properties using the Application Assembly Tool (AAT), the tool
generates the deployment descriptor for you. While the AAT graphical interface
is recommended, you can also edit descriptors directly
(../javadoc/wccm/index.html) in your favorite XML editor.

v Packaging modules into a single Enterprise archive (EAR) file, which contains
one or more files in a compressed format

Archive support in Version 5.0
These archives and Web components are supported:
v J2EE 1.3 Enterprise application (EAR) files
v EJB 2.0 (JAR) files
v Servlet 2.3 Web application WAR files
v Application Client 1.3 JAR files
v Connector 1.0 RAR files

These archive files and Web components are back-level and may be read but not
created or changed:
v J2EE 1.2 EAR files
v EJB 1.1 JAR files
v Servlet 2.2 WAR files
v Application Client 1.2 JAR files

Starting the Application Assembly Tool (AAT)
Before you begin

A graphical interface is available for packaging code artifacts into various archives
(modules) and configuring their J2EE 1.3 compliant deployment descriptors. The
Application Assembly Tool (AAT) is available from the Windows Start menu, or
you can invoke the tool from a command line as described in the Steps for this
task.

If you access the Application Assembly Tool from a remote browser and select the
Help, the Help files do not display. You can only view the Help files from a locally
installed browser. To view the Help files and avoid this problem, close all the
Netscape sessions on the remote machine and click Help. A new Netscape session
starts, and you can then view the Help files.

Steps for this task

Chapter 27. Assembling applications 1151

1. Change directory at a system command prompt to the location of the
assembly.bat|sh file, typically install_root/bin.

2. Run the assembly script to launch the graphical interface.
3. Select whether to work with an existing module or create a new one.

Results

The navigation tree displays a hierarchical structure used to build the contents of a
new module, or to work with the contents of an existing module. Icons in the tree
represent the components, assembly properties, and files for the module. The
assembly properties appear in the AAT workspace.

Starting the Application Assembly Tool on a UNIX platform results in errors
similar to the following:

...Font specified in font.properties not found [-urw-itc
zapfdingbats-medium-r-normal--*-%d-*-*-p-*-sun-fontspecific]
Font specified in font.properties not found [-urw-itc
zapfdingbats-medium-r-normal--*-%d-*-*-p-*-sun-fontspecific]
...

The Application Assembly Tool or installer functions are not affected by these
errors. These messages display in the command shell that spawned the Java GUI.
You can disregard these messages.

What to do next

Consider whether you have any existing J2EE 1.2 application modules that you
would like to migrate to J2EE 1.3.

You can create new modules of the following types, to assemble into an application
module later:
v Assembling EJB modules
v Assembling Web modules
v Assembling application client modules
v Assembling resource adapter modules

Rather than create new modules to assemble an application, you can proceed
directly to assembling a new application module. While assembling an application
module, you can create any new modules that you need.

Migrating application modules from J2EE 1.2 to J2EE 1.3
The Application Assembly Tool (AAT) has an option for migrating J2EE 1.2
application modules to J2EE 1.3. The J2EE 1.2 module is kept intact, with a new 1.3
module created. See also the earconvert tool documentation.

Migrate J2EE 1.2 application modules to which you want to add J2EE 1.3 level Web
application (WAR) modules, Resource adapter (RAR) modules, Entity bean (EJB)
modules, and application client modules. This tool migrates only the application
modules. Migrate J2EE 1.2-level modules inside a J2EE 1.2 application module by
other means.

Note: When Entity beans are moved from a J2EE 1.2 module to a J2EE 1.3 module,
the EJB container will then apply rules defined in the EJB 2.0 specification to these

1152 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

beans. The EJB 2.0 specification mandates that when a findBy method is called on
a bean home (except for findByPrimaryKey), the EJB container must cause other
Entity beans enlisted in the same transaction to write out their current state to the
persistent store. This is to ensure that the findBy operation is performed on the
most current data. Application developers should plan for and be aware of any
changes to the application behavior as a result of this rule.

Steps for this task
1. Start the AAT.
2. Use it to open the J2EE 1.2 application module you want to migrate.
3. Click Convert EAR from the file menu.
4. Save the new J2EE 1.3 application.

What to do next

Assemble zero or more new modules of your choice:
v Assembling EJB modules
v Assembling Web modules
v Assembling application client modules
v Assembling resource adapter modules

Another option is to proceed directly to assembling a new application module. You
can create any new modules that you need, while assembling an application
module.

earconvert tool
A command line tool is provided for migrating J2EE 1.2 application modules to
J2EE 1.3. This migration enables you to add J2EE 1.3 modules to the migrated
application module. See also the Application Assembly Tool (AAT) for information
on performing this task.

Migrate J2EE 1.2 application modules to which you want to add J2EE 1.3 level Web
application (WAR), Resource adapter (RAR), Enterprise beans (EJB), and client
modules. This tool migrates only the application modules. Ensure that you migrate
J2EE 1.2-level modules inside a J2EE 1.2 application to prevent working with
back-level files.

Syntax

Locate the file that contains the earconvert.bat|sh tool, which must reside in the
bin directory of the product installation root.

earconvert
j2ee_1.2_file_name

j2ee_1.3_file_name

Parameters

Supported arguments include:

″j2ee_1.2_file_name″
Specifies the actual name of the existing J2EE 1.2 application file. (In this
and other arguments, use quotation marks to allow for path names that
contain spaces.)

Chapter 27. Assembling applications 1153

″j2ee_1.3_file_name″
Specifies what you would like to name the new J2EE 1.3 application file.

Examples

The following command creates a new J2EE 1.3 archive, new_application.ear,
based on the J2EE 1.2 archive, existing_application.ear.

earconvert existing_application.ear new_application.ear

Assembling new or modifying existing modules
Before you begin

Ensure that code artifacts, such as servlets, JSP files, enterprise beans, and
application clients are assembled into their respective modules.

If you want to use existing J2EE 1.2 modules in your J2EE 1.3 application, migrate
these modules to J2EE 1.3 first. Also migrate any J2EE 1.2 application modules to
which you want to add J2EE 1.3 modules.

You are now ready to combine your new or migrated modules into an application
module Enterprise application (EAR file).

The Application Assembly Tool (AAT) provides flexibility in assembling
applications from various Web application (WAR), Resource adapter (RAR),
Enterprise beans (EJB JAR), and application client (JAR) files. Options described in
assembling applications include:
v Importing an existing module (JAR, RAR or WAR file)
v Creating a new module while you create the new application
v Copying code artifacts, such as servlets, from one module to another of the same

type, to reside in the new application

Steps for this task
1. Start the AAT.
2. From the New tab, select Application, and click OK, if you did not already

specify to create a new application module.
Each of the next three steps is optional, but you must perform at least one of
them.

3. (Optional) Import existing modules into the application module.
a. Right-click the folder for the type of module you want to import, such as an

EJB module, in the navigation tree.
b. Click Import from its right-click menu.
c. Use the file browser to locate and select the archive file for the module.
d. Click Open. The archive file appears under the appropriate folder in the

navigation tree.
e. Click the plus sign (+) next to the icon for the archive, to view the module

contents and edit its properties if needed.
f. Save the application module.

4. (Optional) Create a new archive file to include in the application.

1154 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

a. Right-click the folder for the type of module to create (such as enterprise
beans (EJB) modules, Web application modules (WAR), resource adapter
(RAR) files, or application client modules) in the navigation tree.

b. Click New from its right-click menu.
c. Configure properties of the new module when it displays.
d. Click OK. The archive file displays under the appropriate folder.
e. Click the plus sign (+) to verify file contents and enter assembly properties.
f. Add enterprise beans, if this is an EJB module.
g. Right-click the folder corresponding to the type of bean to create (session

bean or entity bean), and click New or Import.
h. Configure properties of the enterprise bean when it displays.
i. Click OK. The enterprise bean appears in the navigation pane.
j. Click the plus sign (+) to verify file contents and enter assembly properties.
k. Save the application module.

5. (Optional) Copy code artifacts, such as servlets, from one module to another of
the same type, to reside in the new application.
a. Identify the code artifact to copy, and the type of module in which it

resides. Make sure you already have the same kind of module (such as a
Web module) created in the new application module.

b. Open a separate, existing module in the AAT by selecting File > Open from
the menu bar.

c. Arrange the AAT workspace so that you can see both the new application
module and the source archive containing the code artifact.

d. Copy and paste the code artifact from the source module to the same
module type in the new application.
For example, copy a container-managed persistence (CMP) bean from the
source EJB module into the new EJB application module.

e. Save the application module.
6. Continue to add desired modules to the application module.
7. Define security properties for the application.

a. Right-click the Security Roles icon in the navigation tree.
b. Click New.
c. Configure the security properties.
d. Click OK.

8. Add supplementary files needed by the application.
a. Right-click the Files icon in the navigation tree, and select Add Files.
b. Add files, using the Add Files dialog.

9. Save the application module.

Results

You are performing application assembly results in a J2EE 1.3 compliant EAR file
containing one or more WAR, RAR, or JAR files.

Note: If you use the Application Assembly Tool to create application client
modules, you must also use the Application Client Resource Configuration Tool.
Using this tool, you can define references to resources (other than enterprise beans)
on the machine where the application client resides.

Chapter 27. Assembling applications 1155

What to do next

″Verifying archive files″. ″Generating code for deployment″.

After an application is assembled and you generate your application code for
deployment, use the administrative console to install the application in an
application server.

Use the administrative console at installation time to carry out the security
instructions defined in the deployment descriptor and to locate required external
resources, such as enterprise beans and databases. You can add configuration
properties and redefine binding properties defined in the Application Assembly
Tool.

After the application deploys, you can use the Application Assembly Tool to
modify the application by adding or removing modules, editing deployment
descriptor properties and regenerating code for deployment.

Note: If your application has a large number of modules, it might not install
successfully onto a server. Package your application so the .ear file has as few
modules as are necessary. Modules can include metadata for the modules such as
information on deployment descriptors, bindings and IBM extensions.

Adding files to assembled modules
Before you begin

Review the usage scenario (as follows) to become familiar with the Add Files
dialog.

Use the Add Files dialog box of the Application Assembly Tool (AAT) to import
files into assembled modules including Enterprise application (EAR), Web
application (WAR), Resource adapter (RAR) and Application client (JAR) files.

This task assumes that you are performing another task, such as assembling a Web
or EJB module, when the Add Files dialog is presented to you.

Steps for this task
1. Click Browse. Locate the files to add.

v To add specific individual files, select the directory or archive (WAR, JAR,
RAR, ZIP, for example) containing the files.

v To add an entire directory of files, select its parent directory.
2. Click OK.

The selected directory or achive appears in the top left part of the dialog box,
in an expandable tree.
The top right part of the dialog box shows the contents of the directory,
subdirectory, or archive that is selected on the left-hand side.

3. Select one or more items to add from the top right part of the dialog, then click
Add.
As you add files, they will be displayed in the lower half of the dialog box.

4. Change your left-hand selection to gain access to other files that you want to
add, as needed.

5. Click OK when all of the files that you want to add appear in the lower half of
the dialog box.

1156 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Usage scenario

The following example refers to the main areas of the Add Files dialog box. Details
such as clicking OK are omitted. Refer to the detailed task steps above for this
information.

1

2 3

4

Suppose you are constructing a new application module and want to add
myFile.txt file to the archive as a supplementary file. The myFile.txt currently is
contained within the myFiles subdirectory of a JAR file that resides somewhere on
your directory system.
1. Browse for the JAR file.
2. Select the JAR file.
3. Exit the browse dialog. At this point:

v Area 1 of the Add Files dialog contains the path to the JAR file.
v Area 2 displays the JAR file name as the root directory of an expandable tree

showing the directories in the JAR file — including myFiles.
v Area 3 shows the root contents of the JAR file, as well as any subdirectories

visible from the root.
4. Select the myFiles directory from area 2, causing myFile.txt to become visible

in area 3.
5. Click myFiles.txt from area 3 and specify to Add the file. Now this file is listed

in area 4, the lower half of the dialog, which indicates it is the file that you
want to add to the new application module.

6. Exit the Add Files dialog.

Resource environment reference assembly settings
Resource environment reference elements contain declarations of an enterprise
bean’s reference to an administered object associated with a resource in the
enterprise bean’s environment.

Name
Specifies the name of the resource environment reference.

Its value is the environment entry name used in the enterprise bean code.

Data type String

Chapter 27. Assembling applications 1157

Description
Contains the information that the EJB jar file producer wants to provide to the EJB
jar file consumer.

Data type String

Type
Specifies the type of a resource environment reference.

Data type String

Resource Adapter Archive file assembly settings
Use this page to set the resource adapter archive file properties.

File name
Specifies the file name of the Resource Adapter Archive.

Data type String

Display name
Specifies a short name that is intended to be displayed by the GUI.

Data type String

Description
Specifies a description that should include any information that the component file
producer wants to provide to the consumer of the component file (that is, to the
deployer).

Data type String

EIS type
This helps in identifying EIS instances that can be used with this resource adapter.

Data type String

Vendor name
Specifies a string-based version of the resource adapter from the resource adapter
provider.

Data type String

Version
Specifies a string-based version of the resource adapter from the resource adapter
provider.

Data type String

Specification
Specifies the version of the connector architecture specification that is supported by
this resource adapter.

Data type String

1158 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

License required
Specifies if a license is or is not required.

Description
If a license is required, this field specifies the licensing requirements for the
resource adapter module. For example, duration of license, number of
connection restrictions, and so forth.

Data type String

Implementation
The element (managedconnectionfactory class) that specifies the fully qualified
name of the Java class that implements the javax.resource.spi.Managed-
ConnectionFactory interface.

Data type Class

Interface
The element (credential-interface) that specifies the interface that the resource
adapter implementation supports for the representation of the credentials.

The possible values are:
<credential-interface> javax.resource.spi.security.PasswordCredential
</credential-interface>
<credential-interface> javax.resource.spi.security.GenericCredential
</credential-interface>

Data type Class

Implementation
The element (connectionfactory class) that specifies the fully-qualified name of the
ConnectionFactory class that implements the resource adapter specific
ConnectionFactory interface.

Data type Class

Interface
The element (connection-interface) that specifies the fully-qualified name of the
Connection interface supported by the resource adapter.

Data type Class

Implementation
The element (connection class) that specifies the fully-qualified name of the
Connection class that implements the resource adapter specific Connection
interface.

Data type Class

Support Reauthentication
Specifies whether the resource adpater implementation supports re-authentication
of existing ManagedConnection instances.

Chapter 27. Assembling applications 1159

The values are either True or False.

Data type String

Transaction
Specifies the level of transaction support provided by the resource adapter.

The three possible values are:
v NoTransaction
v LocalTransaction
v XATransaction

Data type String

Small Icon
The image is used as an icon to represent the module in a GUI.

Specifies a JPEG or GIF file containing a small image (16x16 pixels).

Data type Image

Large Icon
The image is used as an icon to represent the module in a GUI.

Specifies a JPEG or GIF file containing a small image (32x32 pixels).

Data type Image

Basic Password
The basic user password authentication mechanism that is specific to an EIS.

Credential Interface
Specifies the interface that the resource adapter implementation supports
for the representation of the credentials. For Basic Password the credential
value is javax.resource.spi.security.PasswordCredential.

Description
Any information that describes Basic Password selection.

Data type String

Kerboros V5
Specifies a Kerboros version 5 authentication mechanism.

Credential Interface
Specifies the interface that the resource adapter implementation supports
for the representation of the credentials. For Kerboros version 5, the
credential value is javax.resource.spi.security.GenericCredential.

Description
Any information that describes the Kerboros V5 selection.

Data type String

1160 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Property Name
Specifies the name of a configuration property.

The possible values are:
<config-property-name>ServerName</config-property-name>
<config-property-name>PortNumber</config-property-name>
<config-property-name>UserName</config-property-name>
<config-property-name>Password</config-property-name>
<config-property-name>ConnectionURL</config-property-name>

Data type String

Property Type
Contains the fully-qualified Java type of a configuration property as required by
the ManagedConnectionFactory instance.

Data type String

Property Value
Contains the value of a configuration entry.

Data type String

Description
Describes the parent element.

Data type String

Permission Specification
Specifies a security permission that is required by the resource adapter code.

Data type String

Saving applications after assembly
Periodically save modules that you assemble with the Application Assembly Tool
(AAT). Save any changes right before you close the module with which you are
working.

Before you begin

This task assumes you have started the AAT and are working with a particular
module.

Steps for this task
1. Save the archive file by clicking File > Save As.

v If you are saving an existing archive file or application, click File > Save.
2. Name the new archive file or application whatever you like.

This step is optional if you are working with an existing archive file or
application.

What to do next

Chapter 27. Assembling applications 1161

Now that you have saved your assembled application, you can verify your
archives and generate code for deployment.

Verifying archive files
Verify your archive files and correct any problems so that generation of
deployment code is successful. During verification, the Application Assembly Tool
(AAT) checks that an archive file is complete, and that deployment descriptor
properties and references contain appropriate values.

This task assumes you have previously assembled and saved one or more
modules.

Steps for this task
1. Start the Application Assembly Tool (AAT).
2. Click File > Open and select the module to verify.
3. Right-click the name of the module at the top of the navigation pane and click

Verify.
4. Click Verify in the Verify window. The tool displays a scrolling window for

viewing status messages as the verification proceeds.
5. Save the application.

Results

Archive files have been verified. The following list includes, but is not limited to,
areas that the verification process has checked:
v Required deployment properties contain values.
v Values specified for environment entries match their associated Java types.
v In both Enterprise application (EAR) and Web application (WAR) files:

– The target enterprise bean of the link exists for EJB references.
– The target role exists for security role references.
– Security roles are unique.

v Each module listed in the deployment descriptor exists in the archive for EAR
files.

v Files for icons, servlets, error and welcome pages listed in the deployment
descriptor have corresponding files in the archive for WAR files.

v For EJB modules:
– All class files referenced in the deployment descriptor exist in the JAR file.
– Method signatures for enterprise bean home, remote and implementation

classes are compliant with the EJB 2.0 specification.

What to do next

If your application module contains EJB modules, generate code for deployment.

Otherwise, you are ready to deploy this application module (or standalone Web
module) onto the application server.

1162 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Application assembly performance checklist
Application assembly tools are used to build J2EE components and modules into
J2EE applications. Generally, assembling consists of defining application
components and their attributes including enterprise beans, servlets and resource
references. Many of these application configuration settings and attributes play an
important role in the run-time performance of the deployed application. Use the
following information as a check list of important parameters and advice for
finding optimal settings:
v EJB modules

– Entity bean Bean Cache - Activate at and Bean Cache - Load at settings
– Method extensions Isolation level and Access intent settings
– (Container transactions assembly settings)

v Web modules
– Web modules assembly settings

- Distributable
- Reload interval
- Reload enabled

v Web components
– Load on startup

Generating code for deployment
Before deploying applications on the server, if the application modules contain EJB
modules, you must generate deployment code for the enterprise beans in the
application. The Application Assembly Tool (AAT) provides this ability, or you can
use the ejbdeploy command line tool.

Before you begin

This task assumes you have already assembled an EJB module, added it to an
application module, saved the application module, and verified the application
module.

Before installing your application in WebSphere Application Server, you must
generate deployment code for the application. This step is required for EJB
modules and for any Enterprise application (EAR) files that contain EJB modules.
During code generation, the Application Assembly Tool invokes the EJBDeploy tool
to prepare entity bean (JAR) files for deployment in run time environment. To
deploy a J2EE application, you can install the application in the administrative
console.

The following steps assume that you are using the Application Assembly Tool to
generate code for deployment.

Steps for this task
1. Start the Application Assembly Tool (AAT).
2. Open the EAR or JAR file for which you want to generate code for

deployment.
3. Click File > Generate code for deployment from the menu bar.
4. Specify the options for the server to use for generating code for the application

deployment.

Chapter 27. Assembling applications 1163

Note: For Container managed persistence (CMP) entity beans, if the JAR file
that you opened (inputJar file) contains a map and schema document, that
schema is used. If the JAR file does not contain a map and schema document,
the Application Assembly Tool uses a top-down mapping to generate files that
contain mapping and database schema information.

5. Click Generate Now.
Review the messaging box for details of any error that might occur.
Note: Do not change the default output file name to be the same as the input
filename, as the AAT cannot read and write to the same file name, and
therefore, an error will occur.

Results

After deployment code is generated for an application, the deployable archive is
renamed with the prefix Deployed_.

What to do next

Install the application on your server machine.

Note: Before deploying the application in your run time environment, you might
need to set classpaths.

ejbdeploy tool
You can generate code for deployment by either using the Application Assembly
Tool (AAT) or by using the Deployment Tool for Enterprise Java Beans (ejbdeploy)
from a command prompt. For example, the options that you are able to set in AAT
correspond with commands that the EJBDeploy tool uses to generate code for
deploying an application.

Syntax

For a detailed list of available options in the EJBDeploy tool, enter ejbdeploy from
a command prompt.

ejbdeploy syntax — relationship to Application Assembly Tool
options

Abstract:

Many options for generating code for deployment in the Application
Assembly Tool (AAT) directly correlate with the options in the command line
EJBDeploy tool.

Application Assembly Tool
options

EJBDeploy tool options

Deployed module location outputJar

Working Directory workingDirectory

Dependent classpath cp

Code generation only codegen

Verify archive (unchecked) novalidate

RMIC options rmic options

1164 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Database type dbvendor

Database name dbname

Schema name dbschema

Application Assembly Tool: Resources for learning
Use the following links to find relevant supplemental information about the
Application Assembly Tool. The information resides on IBM and non-IBM Internet
sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v Programming specifications
v Administration

Programming specifications

v J2EE 1.3 specification (http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf)

v EJB specifications (http://java.sun.com/products/ejb/docs.html)

v Servlet specifications
(http://java.sun.com/products/servlet/download.html)

Administration

v Application Client files
(http://developer.java.sun.com/developer/technicalArticles/J2EE/appclient/)

v Connector RAR files (http://java.sun.com/j2ee/connector/)

Chapter 27. Assembling applications 1165

http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/servlet/download.html
http://developer.java.sun.com/developer/technicalArticles/J2EE/appclient/
http://java.sun.com/j2ee/connector/

1166 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Chapter 28. Deploying and managing applications

After you develop an enterprise application and configure an application server,
you can use the administrative console to install application files on the server and
manage the activity of deployed applications.

Steps for this task
1. Install your application on your application server.
2. Start and stop applications.
3. Edit the administrative configuration for an application. Go to the settings page

for an application, change the values for settings as needed, and click OK.
4. (Optional) Export applications.
5. (Optional) Export DDL files.
6. Update application binary files.
7. Uninstall applications.

After making changes to administrative configurations of your applications, ensure
that you click Save on the administrative console taskbar to save the changes.

Enterprise applications
Enterprise applications (or J2EE applications) are applications that conform to the
Java 2 Platform, Enterprise Edition, specification.

Enterprise applications can consist of the following:
v Zero or more EJB modules
v Zero or more Web modules
v Zero or more connector modules (packaged in RAR files)
v Zero or more application client modules
v Optionally, additional JAR files containing dependent classes or other

components required by the application
v Any combination of the above

A J2EE application is represented by, and packaged in, an enterprise archive (EAR)
file.

Installing a new application
To install an enterprise application to a WebSphere Application Server
configuration, you can use the administrative console or the wsadmin tool. The
steps below describe how to use the administrative console to install an
application, EJB component, or Web module.

Note: Once you start performing the steps below, click Cancel to exit if you decide
not to install the application. Do not simply move to another administrative
console page without first clicking Cancel on an application installation page.

Steps for this task

© Copyright IBM Corp. 2003 1167

1. Click Applications > Install New Application in the console navigation tree.
The first of two Preparing for application install pages is shown.

2. On the first Preparing for application install page:
a. Specify the full path name of the source application file (.ear file otherwise

known as an EAR file). The EAR file that you are installing can be either
on the client machine (the machine that runs the Web browser) or on the
server machine (the machine to which the client is connected). If you
specify an EAR file on the client machine, then the administrative console
uploads the EAR file to the machine on which the console is running and
proceeds with application installation. You can also specify a stand-alone
WAR or JAR file for installation.

b. If you are installing a stand-alone WAR file, specify the context root.
c. Click Next.

3. On the second Preparing for application install page:
a. Select whether to generate default bindings. Using the default bindings

causes any incomplete bindings in the application to be filled in with
default values. Existing bindings are not altered. You can customize default
values used in generating default bindings. For example, you can specify
JNDI prefix for all the EJB files in EJB modules, default data source and
connection factory settings for EJB modules, virtual host for web modules,
and so on. ″Preparing for application installation settings″ describes
available customizations and provides sample bindings.

b. Click Next. The Install New Application pages are now shown. If you
chose to generate default bindings, you can proceed to the Summary step
(step 23 below). ″Example: Installing an EAR file using the default
bindings″ provides sample steps.

4. On the Step: Provide options to perform the installation panel, provide
values for the following settings specific to WebSphere Application Server.
Default values are used if you do not specify a value.
a. For Pre-compile JSP, specify whether to precompile JSP files as a part of

installation. The default is not to precompile JSP files.
b. For Directory to Install Application, specify the directory to which the

application EAR file will be installed. The default value is the value of
APP_INSTALL_ROOT/cell_name, where the APP_INSTALL_ROOT variable
is install_root/installedApps; for example,
C:\WebSphere\AppServer\installedApps\cell_name.
Note: If an installation directory is not specified when an application is
installed on a single-server (base) configuration, the application is installed
in APP_INSTALL_ROOT/base_cell_name. When the base server is made a
part of a Network Deployment configuration (using the addNode utility),
the cell name of the new configuration becomes the cell name of the
deployment manager node. If the -includeapps option is used for the
addNode utility, then the applications that are installed prior to the
addNode operation still use the installation directory
APP_INSTALL_ROOT/base_cell_name. However, an application that is
installed after the base server is added to the network configuration uses
the default installation directory APP_INSTALL_ROOT/network_cell_name.
To move the application to the APP_INSTALL_ROOT/network_cell_name
location upon running the addNode operation, you should explicitly
specify the installation directory as ${APP_INSTALL_ROOT}/${CELL} during
installation. In such a case, the application files can always be found under
APP_INSTALL_ROOT/current_cell_name.

1168 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

c. For Distribute Application, specify whether WebSphere Application Server
expands or deletes application binaries in the installation destination. The
default is to enable application distribution. As a result, when you save
changes in the console, application binaries for newly installed applications
are expanded to the directory specified. The binaries are also deleted when
you uninstall and save changes to the configuration. If you disable this
option, then you must ensure that the application binaries are expanded
appropriately in the destination directories of all nodes where the
application is expected to run.

d. For Use Binary Configuration, specify whether the application server uses
the binding, extensions, and deployment descriptors located with the
application deployment document, the deployment.xml file (default), or
those located in the EAR file. The default is not to use the binary
configuration.

e. For Deploy EJBs, specify whether the EJBDeploy tool runs during
application installation. The tool generates code needed to run EJB files.
The default is not to run the EJBDeploy tool. You must enable this setting
if the EAR file was assembled using the Application Assembly (AAT) tool
and the EJBDeploy tool was not run during assembly, if the EAR file was
not assembled using the AAT tool, or if the EAR file was assembled using
versions of the AAT tool previous to Version 5. Note that enabling this
setting might cause the installation program to run for several minutes.

f. For Application Name, name the application. Application names must be
unique within a cell and cannot contain characters that are not allowed in
object names.

g. For Create MBeans for Resources, specify whether to create MBeans for
various resources (such as servlets or JSP files) within an application when
the application is started. The default is to create MBean instances.

h. For Enable class reloading, specify whether to enable class reloading
when application files are updated. The default is not to enable class
reloading.

i. For Reload Interval, specify the number of seconds to scan the
application’s file system for updated files. The default is the value of the
reload interval attribute in the IBM extension (META-INF/ibm-application-
ext.xmi) file of the EAR file. This setting takes effect only if class reloading
is enabled.
The reload interval specified here overrides the value specified in the IBM
extensions for each Web module in the EAR file (which in turn overrides
the reload interval specified in the IBM extensions for the application in the
EAR file).

5. If your application uses EJB modules, on the Step: Provide JNDI Names for
Beans panel, specify a JNDI name for each enterprise bean in every EJB
module. You must specify a JNDI name for every enterprise bean defined in
the application. For example, for the EJB module MyBean.jar, specify MyBean.

6. If your application uses EJB modules that contain Container Managed
Persistence (CMP) beans that are based on the EJB 1.x specification, for Step:
Provide default datasource mapping for modules containing 1.x entity
beans, specify a JNDI name for the default data source for the EJB modules.
The default data source for the EJB modules is optional if data sources are
specified for individual CMP beans.

7. If your application has CMP beans that are based on the EJB 1.x specification,
for Step: Map datasources for all 1.x CMP, specify a JNDI name for data
sources to be used for each of the 1.x CMP beans. The data source attribute is

Chapter 28. Deploying and managing applications 1169

optional for individual CMP beans if a default data source is specified for the
EJB module that contains CMP beans. If neither a default data source for the
EJB module nor a data source for individual CMP beans are specified, then a
validation error displays after you click Finish (step 23) and the installation is
cancelled.

8. If your application defines EJB references, for Step: Map EJB references to
beans, specify JNDI names for enterprise beans that represent the logical
names specified in EJB references. Each EJB reference defined in the
application must be bound to an EJB file before clicking Finish on the
Summary panel.

9. If your application defines resource references, for Step: Map resource
references to resources, specify JNDI names for the resources that represent
the logical names defined in resource references. Each resource reference
defined in the application must be bound to a resource defined in your
WebSphere Application Server configuration before clicking on Finish on the
Summary panel.

10. If your application uses Web modules, for Step: Map virtual hosts for web
modules, select a virtual host from the list that should map to a Web module
defined in the application. The port number specified in the virtual host
definition is used in the URL that is used to access artifacts such as servlets
and JSP files in the Web module. Each Web module must have a virtual host
to which it maps. Not specifying all needed virtual hosts will result in a
validation error displaying after you click Finish on the Summary panel.

11. On the Step: Map modules to application servers panel, for every module
select a target server or a cluster from the Clusters and Servers list. Place a
checkmark in the check box beside Module to select all of the application
modules or select individual modules.

12. If the application has security roles defined in its deployment descriptor then,
for Step: Map security roles to users/groups, specify users and groups that
are mapped to each of the security roles. Place a checkmark in the check box
beside Role to select all of the roles or select individual roles. For each role,
you can specify if predefined users such as Everyone or All Authenticated
users are mapped to it. To select specific users or groups from the user
registry:
a. Select a role and click Lookup users or Lookup groups.
b. On the Lookup users/groups panel shown, enter search criteria to extract

a list of users or groups from the user registry.
c. Select individual users or groups from the results displayed.
d. Click OK to map the selected users or groups to the role selected on the

Step: Map security roles to users/groups panel.
13. If the application has RunAs roles defined in its deployment descriptor, for

Step: Map RunAs roles to user, specify the RunAs user name and password
for every RunAs role. RunAs roles are used by enterprise beans that must run
as a particular role while interacting with another enterprise bean. Place a
checkmark in the check box beside Role to select all of the roles or select
individual roles. After selecting a role, enter values for the user name,
password, and verify password and click Apply.

14. If your application contains EJB 1.x CMP beans that do not have method
permissions defined for some of the EJB methods, for Step: Ensure all
unprotected 1.x methods have the correct level of protection, specify if you
want to leave such methods unprotected or assign protection with deny all
access.

1170 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

15. If your application contains message driven enterprise beans, for Step:
Provide Listener Ports for messaging beans, provide a listener port name for
every message driven bean. If a name is not specified for each bean, then a
validation error displays after you click on Finish on the Summary panel.

16. If your application uses EJB modules that contain CMP beans that are based
on the EJB 2.0 specification, for Step: Provide default datasource mapping for
modules containing 2.0 entity beans, specify a JNDI name for the default
data source and the type of resource authorization to be used for the default
data source for the EJB modules. The default data source for EJB modules is
optional if data sources are specified for individual CMP beans.

17. If your application has CMP beans that are based on the EJB 2.0 specification,
on the Step: Map datasources for all 2.0 CMP panel, for each of the 2.0 CMP
beans specify a JNDI name and the type of resource authorization for data
sources to be used. The data source attribute is optional for individual CMP
beans if a default data source is specified for the EJB module that contains
CMP beans. If neither a default data source for the EJB module nor a data
source for individual CMP beans are specified, then a validation error is
shown after you click Finish and installation is cancelled.

18. If your application contains EJB 2.0 CMP beans that do not have method
permissions defined in the deployment descriptors for some of the EJB
methods, on the Step: Ensure all unprotected 2.0 methods have the correct
level of protection panel, specify whether you want to assign a specific role to
the unprotected methods, add the methods to the exclude list, or mark them
as unchecked. Methods added to the exclude list are marked as uncallable.
For methods marked unchecked no authorization check is performed prior to
their invocation.

19. If the Deploy EJBs setting is enabled on the Provide options to perform the
installation panel, then you can specify options for the EJBDeploy tool on the
Step: Provide options to perform the EJB Deploy panel. On this panel, you
can specify extra classpath, rmic options, database types, and database schema
names to be used while running the EJBDeploy tool. The tool is run on the
EAR file during installation after you click Finish.

20. If your application contains resource environment references, for Step:
Mapping Resource Environment References to Resources, specify JNDI
names of resources that map to the logical names defined in resource
environment references. If each resource environment reference does not have
a resource associated with it, a validation error is shown after you click
Finish.

21. If your application defines Run-As Identity as System Identity, for Step:
Replacing RunAs System to RunAs Roles, you can optionally change it to
Run-As role and specify a user name and password for the RunAs role
specified. Selecting System Identity implies that the invocation is done using
the WebSphere Application Server security server ID and should be used with
caution as this ID has more privileges.

22. If your application has resource references that map to resources that have an
Oracle database doing back-end processing, for Step: Specify the isolation
level for Oracle type provider, specify or correct the isolation level to be used
for such resources when used by the application. Oracle databases support
ReadCommitted and Serializable isolation levels only.

23. On the Summary panel, verify the cell, node, and server onto which the
application modules will install. Beside the Cell/Node/Server option, click
Click here and verify the settings. Then click Finish.
Note: After clicking Finish, if you receive an OutOfMemory exception and the
source application file does not install, your system might not have enough

Chapter 28. Deploying and managing applications 1171

memory or your application might have too many modules in it to install
successfully onto the server. If lack of system memory is not the cause of the
exception, package your application again so the .ear file has fewer modules.
If lack of system memory and the number of modules are not the cause of the
exception, check the options you specified on the Java Virtual Machine page
of the application server running the administrative console. Then, try
installing the application file again.

24. Associate any shared libraries that the application needs to the application.
25. Click Save on the administrative console taskbar to save the changes to your

configuration. The application is registered with the administrative
configuration and application files are copied to the target directory, which is
install_root/installedApps/cell_name by default or the directory that you
designate. For the single-server (base) installation, application files are copied
to the destination directory when you click Save; for the Network
Deployment installation, files are copied to remote nodes when the
configuration on the deployment manager synchronizes with the configuration
on individual nodes.

26. Test the application. For example, point a Web browser at the URL for the
deployed application and examine the performance of the application. If
necessary, update the application.

Preparing for application installation settings
Use this page to install an application (EAR file) or module (JAR or WAR file).

To view this administrative console page, click Applications > Install New
Application.

Follow the steps on this page to install an application or module. You must
complete, at minimum, the first step; you must complete some or all of the later
steps, depending on whether you are installing an application, EJB module, or Web
module.

Path
Specifies the fully qualified path to the .ear, .jar, or .war file for the enterprise
application.

Use Local path if the browser and application files are on the same machine
(whether or not the server is on that machine, too).

Use Server path if the application file resides on any node in the current cell
context. You can browse the entire file system of a node if the node agent or
deployment manager is running on that selected node. Only .ear, .jar, or .war files
are shown during the browsing.

During application installation, application files are typically uploaded from a
client machine running the browser to the server machine running the
administrative console, where they are deployed. In such cases, the Web browser
running the administrative console is used to select EAR, WAR, or JAR modules to
upload to the server machine.

In some cases, however, the application files reside on the file system of any of the
nodes in a cell. To have the application server install these files, use the Server
path option.

1172 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

You can also use this option to specify an application file already residing on the
machine running the application server. For example, the field value on Windows
NT might be C:\WebSphere\AppServer\installableApps\test.ear. If you are
installing a stand-alone WAR module, then you also must specify the context root.

Context Root
Specifies the context root of the Web application (WAR).

This field is used only to install a stand-alone WAR file. The context root is
combined with the defined servlet mapping (from the WAR file) to compose the
full URL that users type to access the servlet. For example, if the context root is
/gettingstarted and the servlet mapping is MySession, then the URL is
http://host:port/gettingstarted/MySession.

Generate Default Bindings
Specifies whether to generate default bindings. If you place a checkmark in the
check box, then any incomplete bindings in the application are filled in with
default values. Existing bindings are not altered.

By choosing this option, you can directly jump to the Summary step and install the
application if none of the steps have a red asterisk (*) next to them. A red asterisk
denotes that the step has incomplete data and requires a valid value. On the
Summary panel, verify the cell, node and server on which the application is
installed.

Bindings are generated as follows:
v EJB JNDI names are generated of the form prefix/ejb-name. The default prefix is

ejb, but can be overridden. The ejb-name is as specified in the deployment
descriptors <ejb-name> tag.

v EJB references are bound as follows: If an <ejb-link> is found, it is honored.
Otherwise, if a unique enterprise bean is found with a matching home (or local
home) interface as the referenced bean, the reference is resolved automatically.

v Resource reference bindings are derived from the <res-ref-name> tag. Note that
this action assumes that the java:comp/env name is the same as the resource
global JNDI name.

v Connection factory bindings (for EJB 2.0 JAR files) are generated based on the
JNDI name and authorization information provided. This action results in
default connection factory settings for each EJB 2.0 JAR file in the application
being installed. No bean-level connection factory bindings are generated.

v Data source bindings (for EJB 1.1 JAR files) are generated based on the JNDI
name, data source user name password options. This results in default data
source settings for each EJB JAR file. No bean-level data source bindings are
generated.

v Message Driven Bean (MDB) listener ports are derived from the MDB
<ejb-name> tag with the string Port appended.

v For .war files, the virtual host is set as default_host unless otherwise specified.

The default strategy suffices for most applications or at least for most bindings in
most applications. However, it does not work if:
v You want to explicitly control the global JNDI names of one or more EJB files.
v You need tighter control of data source bindings for CMPs. That is, you have

multiple data sources and need more than one global data source.
v You must map resource references to global resource JNDI names that are

different from the java:comp/env name.

Chapter 28. Deploying and managing applications 1173

In such cases, you can alter the behavior with an XML document (a custom
strategy). Use the Specific bindings file field to specify a custom strategy and see
the field’s help for examples.

Prefixes
Specifies prefixes to use for generated JNDI names.

Override
Specifies whether to override existing bindings.

If this check box is checked, the existing bindings are overridden by the generated
ones.

EJB 1.1 CMP bindings
Specifies the default data source JNDI name.

If the Default Bindings for EJB 1.1 CMPs radio button is selected, specify the
JNDI name for the default data source to be used with the CMP 1.1 beans. Also
specify the user ID and password for this default data source.

Connection Factory Bindings
Specifies the default data source JNDI name.

If the Default connection factory bindings radio button is selected, specify the
JNDI name for the default data source to be used with the bindings. Also specify
the resource authorization.

Virtual Host
Specifies the virtual host for WAR modules.

Specific bindings file
Specifies a bindings file that overrides the default binding.

Alter the behavior of the default binding with an XML document (aka custom
strategy). Custom strategies extend the default strategy so you only need to
customize those areas where the default strategy is insufficient. That is, you only
need to describe how you want to change the bindings generated by the default
strategy; you do not have to define bindings for the entire application.

Brief examples of how to override various aspects of the default bindings
generator follow:

Controlling an EJB JNDI name
<?xml version="1.0"?>
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>

<module-bindings>
<ejb-jar-binding>

<jar-name>helloEjb.jar</jar-name>
<!-- this name must match the module name in the .ear file -->

<ejb-bindings>
<ejb-binding>
<ejb-name>HelloEjb</ejb-name>

<!-- this must match the <ejb-name> entry in the EJB jar DD -->
<jndi-name>com/acme/ejb/HelloHome</jndi-name>
</ejb-binding>

</ejb-bindings>
</ejb-jar-binding>

</module-bindings>
</dfltbndngs>

1174 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Setting the connection factory binding for an EJB JAR file
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>

<module-bindings>
<ejb-jar-binding>

<jar-name>yourEjb20.jar</jar-name>
<connection-factory>

<jndi-name>eis/jdbc/YourData_CMP</jndi-name>
<res-auth>Container</res-auth>

</connection-factory>
</ejb-jar-binding>

</module-bindings>
</dfltbndngs>

Setting the connection factory binding for an EJB file
<?xml version="1.0">
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>

<module-bindings>
<ejb-jar-binding>

<jar-name>yourEjb20.jar</jar-name>
<ejb-bindings>

<ejb-binding>
<ejb-name>YourCmp20</ejb-name>

<!-- this matches the ejb-name tag in the DD -->
<connection-factory>
<jndi-name>eis/jdbc/YourData_CMP</jndi-name>
<res-auth>PerConnFact</res-auth>
</connection-factory>

</ejb-binding>
</ejb-bindings>

</ejb-jar-binding>
</module-bindings>
</dfltbndngs>

Overriding a Resource Ref Binding from a WAR, EJB JAR file, or J2EE client
JAR file

Example code for overriding a Resource Ref Binding from a WAR file follows. Use
similar code to override a Resource Ref Binding from an EJB JAR file or a J2EE
client JAR file.
<?xml version="1.0"?>
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>

<module-bindings>
<war-binding>

<jar-name>hello.war</jar-name>
<resource-ref-bindings>

<resource-ref-binding>
<!-- the following must match the resource-ref in the DD -->
<resource-ref-name>jdbc/MyDataSrc</resource-ref-name>
<jndi-name>war/override/dataSource</jndi-name>

</resource-ref-binding>
</resource-ref-bindings>

</war-binding>
</module-bindings>

</dfltbndngs>

Overriding MDB JMS listener ports
<?xml version="1.0"?>
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>

<module-bindings>

Chapter 28. Deploying and managing applications 1175

<ejb-jar-binding>
<jar-name>YourEjbJar.jar</jar-name>
<ejb-bindings>

<ejb-binding>
<ejb-name>YourMDB</ejb-name>
<listener-port>yourMdbListPort</listener-port>

</ejb-binding>
</ejb-bindings>

</ejb-jar-binding>
</module-bindings>

</dfltbndngs>

Example: Installing an EAR file using the default bindings
An example of a simple .ear file installation using the default bindings follows:
1. Go to the Preparing for application install pages. Click Applications > Install

an Application in the console navigation tree.
2. For Path, specify the full path name of the .ear file. For this example, the base

file name is my_appl.ear and the file resides on a server at C:\sample_apps.
a. Select the Server path radio button and click Browse.
b. On the Browse Remote Filesystems page, click on the name of the node that

holds the my_appl.ear file, C:\, sample_apps, my_appl.ear, and then OK.
3. Now that a value is given for Path, on the first Preparing for application install

page, click Next.
4. On the second Preparing for application install page, place a checkmark beside

the Generate Default Bindings check box and click Next. Using the default
bindings causes any incomplete bindings in the application to be filled in with
default values. Existing bindings are not changed. By choosing this option, you
can directly jump to the Summary step.

5. On the Install New Application page, click on Summary, the last step.
6. On the Summary panel, verify the cell, node, and server onto which the

application files will install.
a. Beside the Cell/Node/Server option, click Click here.
b. On the Map modules to application servers panel, select the server onto

which the application files will install from the Clusters and Servers list,
place a checkmark in the check box beside Module to select all of the
application modules, and click Next.

Because my_appl.ear does not require any additional settings to complete an
installation, the Summary panel displays again.

7. On the Summary panel, click Finish.

Enterprise application collection
Use this page to view and manage enterprise applications.

To view this administrative console page, click Applications > Enterprise
Applications.

Name
Specifies the name of the installed (or deployed) application. Application names
must be unique within a cell and cannot contain characters that are not allowed in
object names.

1176 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Status
Indicates whether the application deployed on the application server is started,
stopped, or unavailable.

Enterprise application settings
Use this page to configure an enterprise application.

To view this administrative console page, click Applications > Enterprise
Applications > application_name.

Name
Specifies a logical name for the application. Application names must be unique
within a cell and cannot contain characters that are not allowed in object names.

Data type String

Starting Weight
Specifies the order in which applications are started when the server starts. The
application with the lowest starting weight is started first.

Data type Integer
Default 1
Range 0 to 100

Application Binaries
Specifies the directory to which the application EAR file will be installed. The
default value is the value of APP_INSTALL_ROOT/cell_name, where the
APP_INSTALL_ROOT variable is install_root/installedApps; for example,
C:\WebSphere\AppServer\installedApps\cell_name.

You can specify an absolute path or use a pathmap variable such as ${MY_APPS}.
You can use a pathmap variable in any installation though it is particularly needed
when installing an application on a cluster with members on heterogeneous nodes
because, in such cases, there might not be a single way to specify an absolute path.
A WebSphere Application Server variable ${CELL} that denotes the current cell
name can also be in the pathmap variable; for example, ${MY_APP}/${CELL}.

Data type String
Units Full path name

Use Metadata From Binaries
Specifies whether the application server uses the binding, extensions, and
deployment descriptors located with the application deployment document, the
deployment.xml file (default), or those located in the enterprise application
resource (EAR) file.

Data type Boolean
Default true

Enable Distribution
Specifies whether WebSphere Application Server expands or deletes application
binaries in the installation destination. The default is to enable application
distribution. Application binaries for installed applications are expanded to the
directory specified. The binaries are also deleted when you uninstall and save

Chapter 28. Deploying and managing applications 1177

changes to the configuration. If you disable this option, then you must ensure that
the application binaries are expanded appropriately in the destination directories of
all nodes where the application runs.

Data type Boolean
Default true

Classloader Mode
Specifies whether the class loader searches in the parent class loader or in the
application class loader first to load a class. The standard for JDK class loaders and
WebSphere Application Server class loaders is PARENT_FIRST. By specifying
PARENT_LAST, your application can override classes contained in the parent class
loader, but this action can potentially result in ClassCastException or LinkageErrors
if you have mixed use of overridden classes and non-overridden classes.

The options are PARENT_FIRST and PARENT_LAST. The default is to search in
the parent class loader before searching in the application class loader to load a
class.

Data type String
Default PARENT_FIRST

WAR Classloader Policy
Specifies whether to use a single class loader to load all WAR files of this
application or to use a different class loader for each WAR file.

The options are APPLICATION and MODULE. The default is to use a separate
class loader to load each WAR file.

Data type String
Default MODULE

Create MBeans for Resources
Specifies whether to create MBean files for various resources (such as servlets or
JSP files) within an application.

Data type Boolean
Default true

Reload Enabled
Specifies whether to enable class reloading when application files are updated.

Data type Boolean
Default true

Reload Interval
Specifies the number of seconds to scan the application’s file system for updated
files. The default is the value of the reload interval attribute in the IBM extension
(META-INF/ibm-application-ext.xmi) file of the EAR file. This setting takes effect
only if class reloading is enabled.

The reload interval specified here overrides the value specified in the IBM
extensions for each Web module in the EAR file (which in turn overrides the
reload interval specified in the IBM extensions for the application in the EAR file).

1178 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Data type Integer
Units Seconds

Target mapping collection
Use this page to manage mappings of deployed applications or modules to servers
or clusters.

To view this administrative console page, click Applications > Enterprise
Applications > application_name > Target Mappings.

Target: States the name of the target server or cluster to which the application or
module maps. You specify the target on the Map modules to application servers
page accessed from the settings for an application.

Node: Specifies the node name if the target is a server.

Status: Indicates whether the status of the application running on the target
server or cluster is started, stopped or unavailable.

Target mapping settings
Use this page to map a deployed application or module to a server or cluster.

To view this administrative console page, click Applications > Enterprise
Applications > application_name > Target Mappings > target_name.

Target: States the name of the target server or cluster to which the application or
module maps. You specify the target on the Map modules to application servers
page accessed from the settings for an application.

Data type String

Enabled: Indicates whether the application modules installed on the target server
are started (or enabled) when the server starts. This sets the initial state of
application modules. A true value indicates that the corresponding modules are
enabled and thus are accessible when the server starts. A false value indicates that
the corresponding modules are not enabled and thus are not accessible when the
server starts.

Data type Boolean
Default true

Starting and stopping applications
You can start an application that is not running (has a status of Stopped) or stop an
application that is running (has a status of Started).

Steps for this task
1. Go to the Enterprise Applications page. Click Applications > Enterprise

Applications in the console navigation tree.
2. Check the check box for the application you want started or stopped.
3. Click a button:

Start Runs the application and changes the state of the application from
Stopped to Started.

Chapter 28. Deploying and managing applications 1179

Stop Stops the processing of the application and changes the state of the
application from Started to Stopped.

To restart a running application, place a checkmark in the check box for the
application you want to restart, click Stop and then click Start.

Results

The status of the application changes and a message stating that the application
started or stopped displays at the top the page.

Exporting applications
You can export an enterprise application to a location of your choice. Exporting
applications enables you to back up your applications and preserve binding
information for the applications. You might export your applications before
updating installed applications or migrating to a later version of the WebSphere
Application Server product.

Steps for this task
1. Click Applications > Enterprise Applications in the administrative console

navigation tree to access the Enterprise Applications page.
2. Place a checkmark in the check box beside the application and click Export.
3. On the Export Application EAR Files page, click on the link to download the

exported EAR file.
4. Use the browser dialogue to specify a location at which to save the exported

EAR file and click OK.

The file containing binding information is exported to the specified node and
directory, and has the name enterprise_application_name.ear.

Exporting DDL files
You can export the DDL files (Table.ddl) in the EJB modules of the application to a
location of your choice.

Steps for this task
1. Click Applications > Enterprise Applications in the administrative console

navigation tree to access the Enterprise Applications page.
2. Place a checkmark in the check box beside the application and click Export

DDL. If the application has no DDL files in any of its EJB modules, then the
message No DDL files were found displays at the top of the page. If the
application has DDL files in its EJB modules, then a page displays listing DDL
files in the format appname.ear/_module.jar_Table.ddl.

3. Click on a file in the list to download the file to your machine.

Updating applications
You can update an application deployed on a server. The steps below describe how
to update a deployed application using the administrative console.

Steps for this task

1180 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

1. Update the contents of the application and reassemble it, using the Application
Assembly Tool. Typical tasks include adding or editing assembly properties,
adding or importing modules into an application, and adding enterprise beans,
Web components, and files.

2. Go to the Applications page of the administrative console. Click Applications >
Enterprise Applications in the console navigation tree.

3. (Optional) Back up the application. Place a checkmark in the check box beside
the application you want uninstalled and click Export to export the application
to an EAR file and preserve the binding information.

4. With a checkmark beside the application, click Update.
The binding information of the updated (new) version of the application
merges with the binding information from the installed (old) version. Then, the
older version uninstalls from the configuration and the new version installs.

5. Complete the steps in the Preparing for application install page and the pages
that follow it. See information on installing applications and on the settings
page for application installation for guidance.
Note that the installation steps have the merged binding information from the
new version and the old version. If the new version has bindings for
application artifacts such as EJB JNDI names, EJB references or resource
references, then those bindings will be part of the merged binding information.
If new bindings are not present, then bindings are taken from the installed (old)
version. If bindings are not present in the old version and if the default binding
generation option is enabled, then the default bindings will be part of the
merged binding information.
You can select whether to ignore bindings in the old version or ones in the new
version.

6. (Optional) Map the installed application or module to servers or clusters. Use
the Map modules to application servers page of the Install New Application
pages displayed during updating the application. Or, after updating the
application, use the Map modules to application servers page accessed from the
Enterprise Applications page.
a. Go to the Map modules to application servers page. Click Applications >

Enterprise Applications in the console navigation tree, click the application
name, and then click Map modules to application servers.

b. Specify the application server where you want to install modules contained
in your application and click OK.

7. Click Save on the admistrative console taskbar to save the changes to your
configuration. In the single server (base) product, after you click Save the old
version of the application is uninstalled and the new version is installed into
the configuration. The application binaries for the old version are deleted from
the destination directory and the new binaries are copied to the directory. In
the Network Deployment product, the old application files are deleted and new
files are copied when the configuration on the deployment manager
synchronizes with the configuration on the node where the application is
installed.
If the application is running when you update it, the application stops running
before its files are copied to the destination directory of the node and restarts
after the copy operation completes. Thus, the application is unavailable on the
node during the time the node is synchronizing its configuration with the
deployment manager.

8. Restart the application so the changes take effect. If the application is updated
while it is running, WebSphere Application Server stops the application,
updates the application logic and restarts the application.

Chapter 28. Deploying and managing applications 1181

a. Click Applications > Enterprise Applications in the console navigation tree
to go to the Enterprise Applications page.

b. Check the check box for the updated application.
c. Click Start.

Note that you can also update applications using the wsadmin tool, which
provides updating capabilities identical to those provided by clicking Update on
the Enterprise Applications page. Further, in some situations, you can update
applications without needing to restart the applications.

Hot deployment and dynamic reloading
You can make various changes to applications and their contents without having to
stop the server and start it again. Making these types of changes is known as hot
deployment and dynamic reloading.

Hot deployment is the process of adding new components (such as WAR files, EJB
Jar files, enterprise Java beans, servlets, and JSP files) to a running server without
having to stop the application server process and start it again.

Dynamic reloading is the ability to change an existing component without needing
to restart the server in order for the change to take effect. Dynamic reloading
involves:
v Changes to the implementation of a component of an application, such as

changing the implementation of a servlet
v Changes to the settings of the application, such as changing the deployment

descriptor for a Web module

Steps for this task
1. Locate your expanded application files. The application files are in the directory

you specified when installing the application or, if you did not specify a
custom target directory, are in the default target directory,
install_root/installedApps/cell_name. Your EAR file,
${APP_INSTALL_ROOT}/cell_name/application_name.ear, points to the target
directory. The variables.xml file for the node defines ${APP_INSTALL_ROOT}.
It is important to locate the expanded application files because, as part of
installing applications, a WebSphere application server unjars portions of the
EAR file onto the file system of the computer that will run the application.
These expanded files are what the server looks at when running your
application.
If you cannot locate the expanded application files, look at the binariesURL
attribute in the deployment.xml file for your application. The attribute
designates the location the run time uses to find the application files.
For the remainder of this information on hot deployment and dynamic
reloading, application_root represents the root directory of the expanded
application files.

2. Locate application metadata files. The metadata files include the deployment
descriptors (web.xml, application.xml, ejb-jar.xml, and the like), the bindings
files (ibm-web-bnd.xmi, ibm-app-bnd.xmi, and the like), and the extensions files
(ibm-web-ext.xmi, ibm-app-ext.xmi, and the like).
Metadata XML files for an application can be loaded from one of two locations.
The metadata files can be loaded from the same location as the application
binary files (such as application_root/META-INF) or they can be loaded from the
WebSphere configuration tree, ${CONFIG_ROOT}/cells/cell_name/applications/

1182 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

application_EAR_name/deployments/application_name/. The value of the
useMetadataFromBinary flag specified during application installation controls
which location is used. If specified, the metadata files are loaded from the same
location as the application binary files. If not specified, the metadata files are
loaded from the application deployment folder in the configuration tree.
For the remainder of this information, metadata_root represents the location of
the metadata files for the specified application or module.

3. CAUTION: If you are running WebSphere Application Server on a group of
machines using Network Deployment and you are changing an application on
a particular node, disable automatic synchronization.
a. Click System Administration > Node Agents in the administrative console

navigation tree, click on a node agent name, and then click File
Synchronization Service.

b. On the File Synchronization Service page, remove the checkmark from the
check box for Automatic Synchronization and click OK.

When you run WebSphere Application Server on a group of machines using
Network Deployment and you change a file on the disk in the expanded
application directory for a particular node, you can lose those changes the next
time node synchronization occurs. In the Network Deployment environment,
the configuration stored by the deployment manager is the master copy and
any changes detected between that master copy and the copy on a particular
machine trigger the master copy to be downloaded to the node.

4. Change or add the following components or modules as needed:
v Application files
v WAR files
v EJB Jar files
v HTTP plug-in configuration files

5. For changes to take effect, you might need to start, stop, or restart an
application. ″Starting and stopping applications″ provides information on using
the administrative console to start, stop, or restart an application. ″Example:
Starting an application using wsadmin″ (not in this document) and ″Example:
Stopping running applications on a server using wsadmin″ (not in this
document) provide information on using the wsadmin scripting tool.

6. If you disabled automatic synchronization in step 3, return to the File
Synchronization Service page, enable Automatic Synchronization, and click
OK.

Changing or adding application files
You can change or add application files on application servers without having to
stop the server and start it again. This file describes—
v Updating an existing application on a running server (providing a new EAR file)
v Adding a new application to a running server
v Removing an existing application from a running server
v Adding a new EJB or Web module to an existing, running application
v Changing the application.xml file for an application
v Changing the ibm-app-ext.xmi file for an application
v Changing the ibm-app-bnd.xmi file for an application
v Changing a non-module Jar file contained in the EAR file

Updating an existing application on a running server (providing a new EAR file)

Chapter 28. Deploying and managing applications 1183

Reinstall an updated application using the administrative console or the wsadmin
$AdminApp install command with the -update option.

Both reinstallation methods enable you to update an existing application using any
of the other steps listed in this file, including changing classes, adding modules,
removing modules, changing modules, or changing metadata files. The application
reinstallation methods detect the changes in your application and prompt you for
additional binding data that might be needed to install the application. The
reinstallation process automatically stops and restarts your application on the
appropriate servers.

Hot deployment: Yes
Dynamic reloading: Yes

Adding a new application to a running server

Install an application using the administrative console or the wsadmin install
command.

Hot deployment: Yes
Dynamic reloading: No

Removing an existing application from a running server

Stop the application and then uninstall it from the server. Use the administrative
console to stop the application and then uninstall it. Or run the wasadmin
stopApplication command and then the uninstall command.

Hot deployment: Yes
Dynamic reloading: No

Adding a new EJB or Web module to an existing, running application

1. Update the application files in the application_root location.
2. Restart the application. Use the administrative console to restart the application.

Or run the wasadmin stopApplication and startApplication commands.

Hot deployment: Yes
Dynamic reloading: No

Changing the application.xml file for an application

Restart the application. Automatic reloading will not detect the change. Use the
administrative console to restart the application. Or run the wasadmin
stopApplication and startApplication commands.

Hot deployment: Not applicable
Dynamic reloading: Yes

Changing the ibm-app-ext.xmi file for an application

Restart the application. Automatic reloading will not detect the change. Use the
administrative console to restart the application. Or run the wasadmin
stopApplication and startApplication commands.

1184 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Hot deployment: Not applicable
Dynamic reloading: Yes

Changing the ibm-app-bnd.xmi file for an application

Restart the application. Automatic reloading will not detect the change. Use the
administrative console to restart the application. Or run the wasadmin
stopApplication and startApplication commands.

Hot deployment: Not applicable
Dynamic reloading: Yes

Changing a non-module Jar file contained in the EAR file

1. Update the non-module Jar file in the application_root location.
2. If automatic reloading is not enabled, restart the application. Use the

administrative console to restart the application. Or run the wasadmin
stopApplication and startApplication commands.
If automatic reloading is enabled, you do not need to take further action.
Automatic reloading will detect the change.

Hot deployment: Yes
Dynamic reloading: Yes

Changing or adding WAR files
You can change WAR files on application servers without having to stop the server
and start it again. This file describes—
v Changing an existing JSP file
v Adding a new JSP file to an existing application
v Changing an existing servlet class (editing and recompiling)
v Changing a dependent class of an existing servlet class
v Adding a new servlet using the Invoker (Serve Servlets by class name) facility or

adding a dependent class to an existing application
v Adding a new servlet, including a new definition of the servlet in the web.xml

deployment descriptor for the application
v Changing the web.xml file of a WAR file
v Changing the ibm-web-ext.xmi file of a WAR file
v Changing the ibm-web-bnd.xmi file of a WAR file

Changing an existing JSP file

Place the changed JSP file directly in the application_root/module_name directory or
the appropriate subdirectory. The change will be automatically detected and the
JSP will be recompiled and reloaded.

Hot deployment: Not applicable
Dynamic reloading: Yes

Adding a new JSP file to an existing application

Chapter 28. Deploying and managing applications 1185

Place the new JSP file directly in the application_root/module_name directory or the
appropriate subdirectory. The new file will be automatically detected and compiled
on the first request to the page.

Hot deployment: Yes
Dynamic reloading: Yes

Changing an existing servlet class (editing and recompiling)

1. Place the new version of the servlet .class file directly in the
application_root/module_name/WEB-INF/classes directory. If the .class file is part
of a Jar file, you can place the new version of the Jar file directly in
application_root/module_name/WEB-INF/lib. In either case, the change will be
detected, the Web application will be shut down and reinitialized, picking up
the new class.

2. If automatic reloading is not enabled, restart the application. Use the
administrative console to restart the application. Or run the wasadmin
stopApplication and startApplication commands.
If automatic reloading is enabled, you do not need to take further action.
Automatic reloading will detect the change.

Hot deployment: Not applicable
Dynamic reloading: Yes

Changing a dependent class of an existing servlet class

1. Place the new version of the dependent .class file directly in the
application_root/module_name/WEB-INF/classes directory. If the .class file is part
of a Jar file, you can place the new version of the Jar file directly in
application_root/module_name/WEB-INF/lib. In either case, the change will be
detected, the Web application will be shut down and reinitialized, picking up
the new class.

2. If automatic reloading is not enabled, restart the application. Use the
administrative console to restart the application. Or run the wasadmin
stopApplication and startApplication commands.
If automatic reloading is enabled, you do not need to take further action.
Automatic reloading will detect the change.

Hot deployment: Not applicable
Dynamic reloading: Yes

Adding a new servlet using the Invoker (Serve Servlets by class name) facility
or adding a dependent class to an existing application

1. Place the new .class file directly in the application_root/module_name/WEB-
INF/classes directory. If the .class file is part of a Jar file, you can place the new
version of the Jar file directly in application_root/module_name/WEB-INF/lib. In
either case, the change will be detected, the Web application will be shut down
and reinitialized, picking up the new class.
This case is treated the same as changing an existing class. The difference is
that adding the servlet or class does not immediately cause the Web application
to reload because the class has never been loaded before. The class simply
becomes available for execution.

1186 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

2. If automatic reloading is not enabled, restart the application. Use the
administrative console to restart the application. Or run the wasadmin
stopApplication and startApplication commands.
If automatic reloading is enabled, you do not need to take further action.
Automatic reloading will detect the change.

Hot deployment: Yes
Dynamic reloading: Not applicable

Adding a new servlet, including a new definition of the servlet in the web.xml
deployment descriptor for the application

1. Place the new .class file directly in the application_root/module_name/WEB-
INF/classes directory. If the .class file is part of a Jar file, you can place the new
version of the Jar file directly in application_root/module_name/WEB-INF/lib.
You can edit the web.xml file in place or copy it into the
application_root/module_name/WEB-INF/classes directory. The new .class file
will not trigger a reloading of the application.

2. Restart the application. Use the administrative console to restart the application.
Or run the wasadmin stopApplication and startApplication commands. After
the application restarts, the new servlet is available for service.

Hot deployment: Yes
Dynamic reloading: Not applicable

Changing the web.xml file of a WAR file

1. Edit the web.xml file in place or copy it into the
metadata_root/module_name/WEB-INF directory.

2. Restart the application. Use the administrative console to restart the application.
Or run the wasadmin stopApplication and startApplication commands.

Hot deployment: Yes
Dynamic reloading: Yes

Changing the ibm-web-ext.xmi file of a WAR file

Edit the extension settings as needed. You can change all of the extension settings.
The only warning is if you set the reloadInterval property to zero (0) or the
reloadEnabled property to false, the application will no longer automatically detect
changes to class files. Both of these changes disable the automatic reloading
function. The only way to re-enable automatic reloading is to change the
appropriate property and restart the application. See other task descriptions in this
file for information on restarting an application.

Hot deployment: Not applicable
Dynamic reloading: Yes

Changing the ibm-web-bnd.xmi file of a WAR file

1. Edit the bindings as needed. You can change all of the values but ensure that
the entities you are binding to are present in the configuration of the server.

2. Restart the application. Use the administrative console to restart the application.
Or run the wasadmin stopApplication and startApplication commands.

Chapter 28. Deploying and managing applications 1187

Hot deployment: Not applicable
Dynamic reloading: Yes

Changing or adding EJB Jar files
You can change EJB Jar files on application servers without having to stop the
server and start it again. This file describes—
v Changing the ejb-jar.xml file of an EJB Jar file
v Changing the ibm-ejb-jar-ext.xmi or ibm-ejb-jar-bnd.xmi file of an EJB Jar file
v Changing the Table.ddl file for an EJB Jar file
v Changing the Map.mapxmi or Schema.dbxmi file for an EJB Jar file
v Updating the implementation class for an EJB file or a dependent class of the

implementation class for an EJB file
v Updating the Home/Remote interface class for an EJB file
v Adding a new EJB file to an existing EJB Jar file

Changing the ejb-jar.xml file of an EJB Jar file

Restart the application. Automatic reloading will not detect the change. Use the
administrative console to restart the application. Or run the wasadmin
stopApplication and startApplication commands.

Hot deployment: Not applicable
Dynamic reloading: Yes

Changing the ibm-ejb-jar-ext.xmi or ibm-ejb-jar-bnd.xmi file of an EJB Jar file

Restart the application. Automatic reloading will not detect the change. Use the
administrative console to restart the application. Or run the wasadmin
stopApplication and startApplication commands.

Hot deployment: Not applicable
Dynamic reloading: Yes

Changing the Table.ddl file for an EJB Jar file

Rerun the DDL file on the user database server. Changing the Table.ddl file has no
effect on the application server and is a change to the database table schema for
the EJB files.

Hot deployment: Not applicable
Dynamic reloading: Not applicable

Changing the Map.mapxmi or Schema.dbxmi file for an EJB Jar file

1. Change the Map.mapxmi or Schema.dbxmi file for an EJB Jar file.
2. Regenerate the deployed code artifacts for the EJB file.
3. Apply the new EJB Jar file to the server.
4. Restart the application. Use the administrative console to restart the application.

Or run the wasadmin stopApplication and startApplication commands.

Hot deployment: Not applicable
Dynamic reloading: Yes

1188 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

Updating the implementation class for an EJB file or a dependent class of the
implementation class for an EJB file

1. Update the class file in the application_root/module_name.jar file.
2. If automatic reloading is enabled, you do not need to take further action.

Automatic reloading will detect the change.
If automatic reloading is not enabled, restart the application of which the EJB
file is a member. If the updated module is used by other modules in other
applications, restart those applications as well. Use the administrative console
to restart the application. Or run the wasadmin stopApplication and
startApplication commands.

Hot deployment: Not applicable
Dynamic reloading: Yes

Updating the Home/Remote interface class for an EJB file

1. Update the interface class of the EJB file.
2. Regenerate the deployed code artifacts for the EJB file.
3. Apply the new EJB Jar file to the server.
4. If automatic reloading is enabled, you do not need to take further action.

Automatic reloading will detect the change.
If automatic reloading is not enabled, restart the application of which the EJB
file is a member. Use the administrative console to restart the application. Or
run the wasadmin stopApplication and startApplication commands.

Hot deployment: Not applicable
Dynamic reloading: Yes

Adding a new EJB file to an existing EJB Jar file

1. Apply the new or updated Jar file to the application_root location.
2. If automatic reloading is enabled, you do not need to take further action.

Automatic reloading will detect the change.
If automatic reloading is not enabled, restart the application. Use the
administrative console to restart the application. Or run the wasadmin
stopApplication and startApplication commands.

Hot deployment: Yes
Dynamic reloading: Yes

Changing the HTTP plug-in configuration
You can change the HTTP plug-in configuration without having to stop the server
and start it again. This file describes—
v Changing the application.xml file to change the context root of a WAR file
v Changing the web.xml file to add, remove, or modify a servlet mapping
v Changing the server.xml file to add, remove, or modify an HTTP transport or

changing the virtualhost.xml file to add or remove a virtual host or to add,
remove, or modify a virtual host alias

Changing the application.xml file to change the context root of a WAR file

1. Change the application.xml file.

Chapter 28. Deploying and managing applications 1189

2. Regenerate the plug-in configuration file using the administrative console or by
running the GenPluginCfg.bat/sh script.

Hot deployment: Yes
Dynamic reloading: No

Changing the web.xml file to add, remove, or modify a servlet mapping

1. Change the web.xml file.
2. Regenerate the plug-in configuration file using the administrative console or by

running the GenPluginCfg.bat/sh script.
If the Web application has file serving enabled or has a servlet mapping of /,
you do not have to regenerate the plug-in configuration. In all other cases the
regeneration is required.

Hot deployment: Yes
Dynamic reloading: Yes

Changing the server.xml file to add, remove, or modify an HTTP transport or
changing the virtualhost.xml file to add or remove a virtual host or to add,
remove, or modify a virtual host alias

1. Change the server.xml file to add, remove, or modify an HTTP transport or
change the virtualhost.xml file to add or remove a virtual host or to add,
remove, or modify a virtual host alias.

2. Regenerate the plug-in configuration file using the administrative console, by
running the GenPluginCfg.bat/sh script, or by running a wsadmin command.

Hot deployment: Yes
Dynamic reloading: Yes

Uninstalling applications
After an application no longer is needed, you can uninstall it. Uninstalling an
application deletes the application from the WebSphere Application Server
configuration repository and it deletes the application binaries from the file system
of all nodes where the application modules are installed.

Steps for this task
1. Click Applications > Enterprise Applications in the administrative console

navigation tree to access the Enterprise Applications page.
2. (Optional) Stop the application. Place a checkmark in the check box beside the

application you want uninstalled and click Stop. Note that it is recommended
you stop the application before uninstalling. However, even if the application is
running when uninstallation commences, the uninstallation program stops the
application before deleting application binaries from the file system.

3. (Optional) Back up the application. Place a checkmark in the check box beside
the application you want uninstalled and click Export to export the application
to an EAR file and preserve the binding information.

4. With a checkmark in the check box beside the application you want
uninstalled, click Uninstall.

5. Confirm the uninstallation operation.

1190 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

6. Click Save on the console taskbar to save changes made to the administrative
configuration.

In the single-server (base) product, application binaries are deleted after you click
Save. In the Network Deployment product, application binaries are deleted when
configuration changes on the deployment manager synchronize with configurations
for individual nodes.

Deploying and managing applications: Resources for learning
Use the following links to find relevant supplemental information about deploying
and managing applications using the administrative console. The information
resides on IBM and non-IBM Internet sites, whose sponsors control the technical
accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

View links to additional information about:
v Programming model and decisions
v Programming instructions and examples
v Administration

Programming model and decisions

v The J2EETM Tutorial: The Duke’s Bank Application
(http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Ebank.html)

v Best Practices in WebSphere Application: Separating the developers from
the administrators (http://www.sys-con.com/websphere/
articleprint.cfm?id=26)

v Designing Enterprise Applications with the JavaTM 2 Platform, Enterprise
Edition, Second Edition (http://java.sun.com/blueprints/
guidelines/designing_enterprise_applications_2e/)

v Designing Enterprise Applications, Second Edition
(http://developer.java.sun.com/developer/Books/j2ee/ designingenterprise/)

v Building JavaTM Enterprise Applications Volume I: Architecture
(http://developer.java.sun.com/developer/Books/j2ee/bjeapps/)

Programming instructions and examples

v WebSphere Application Server education
(http://www.ibm.com/software/webservers/learn/)

v Developing and Testing a Complete ’Hello World’ J2EE Application with
IBM WebSphere Studio Application Developer for Linux
(http://www7b.software.ibm.com/wsdd/library/tutorials/
0206_wosnick/wosnick_reg.html?open&l=937,t=gr)

v Writing Enterprise Applications with JavaTM 2 Platform, Enterprise
Edition (http://developer.java.sun.com/developer/onlineTraining/J2EE/Intro/)

Administration

Chapter 28. Deploying and managing applications 1191

http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Ebank.html
http://www.sys-con.com/websphere/articleprint.cfm?id=26
http://www.sys-con.com/websphere/articleprint.cfm?id=26
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/
http://java.sun.com/blueprints/guidelines/designing_enterprise_applications_2e/
http://developer.java.sun.com/developer/Books/j2ee/designingenterprise/
http://developer.java.sun.com/developer/Books/j2ee/bjeapps/
http://www.ibm.com/software/webservers/learn/
http://www7b.software.ibm.com/wsdd/library/tutorials/0206_wosnick/wosnick_reg.html?open&l=937,t=gr
http://www7b.software.ibm.com/wsdd/library/tutorials/0206_wosnick/wosnick_reg.html?open&l=937,t=gr
http://developer.java.sun.com/developer/onlineTraining/J2EE/Intro/

v Listing of all IBM WebSphere Application Server Redbooks
(http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere)

1192 IBM WebSphere Application Server Enterprise, Version 5.0.2: Applications

http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere

	Contents
	Trademarks and service marks
	Chapter 1. Welcome to Applications
	Chapter 2. Using Web applications
	Web applications
	web.xml file
	Migrating Web application components
	Default Application
	Snoop
	HelloHTML
	HitCount

	Servlets
	Developing servlets with WebSphere Application Server extensions
	Application lifecycle listeners and events
	Listener classes for servlet context and session changes
	Example: com.ibm.websphere.DBConnectionListener.java
	Servlet filtering
	Filter, FilterChain, FilterConfig classes for servlet filtering
	Example: com.ibm.websphere.LoggingFilter.java
	Configuring page list servlet client configurations
	Page lists
	Client type detection support
	client_types.xml
	Example: Extending PageListServlet

	autoRequestEncoding and autoResponseEncoding
	autoRequestEncoding and autoResponseEncoding encoding examples

	JavaServer Pages files
	Developing JavaServer Pages files with WebSphere extensions
	Tag libraries
	tsx:dbconnect tag JavaServer Pages syntax
	dbquery tag JavaServer Pages syntax
	dbmodify tag JavaServer Pages syntax
	tsx:getProperty tag JavaServer Pages syntax and examples
	tsx:userid and tsx:passwd tag JavaServer Pages syntax
	tsx:repeat tag JavaServer Pages syntax
	Example: Combining tsx:repeat and tsx:getProperty JavaServer Pages tags
	Example: tsx:dbmodify tag syntax
	Example: Using tsx:repeat JavaServer Pages tag to iterate over a results set
	Implicit and explicit indexing
	Nesting <tsx:repeat> blocks

	JspBatchCompiler tool

	Bean Scripting Framework
	Developing Web applications
	Disabling JavaServer Pages run-time compilation

	Example: Converting JavaScript source to the Bean Scripting Framework
	Scenario: Creating a Bean Scripting Framework application
	Scenario description
	Developing the BSF application
	Deploying the BSF application

	Example: Bean Scripting Framework code example
	Web modules
	Assembling Web Modules
	Context parameters
	Security constraints
	Servlet mappings
	Invoker attributes
	Error pages
	File serving
	Initialization parameters
	Servlet caching
	Web components
	Web property extensions
	Web resource collections
	Welcome files
	Context parameter assembly settings
	Parameter name (Required, String)
	Parameter value (Required, String)
	Description

	Initialization parameter assembly settings
	Parameter name (Required, String)
	Parameter value (Required, String)
	Description

	Filter assembly settings
	Filter name
	Class
	Description

	JavaServer Pages attribute assembly settings
	JSP Attribute (Name)
	JSP Attribute (Value)
	classdebuginfo
	classpath
	deprecation
	disableJspRuntimeCompilation
	ieClassID
	javaEncoding
	jspCompilerPath
	keepgenerated
	largefile
	mappedfile
	scratchdir
	usePageTagPool
	useThreadTagPool
	verbose

	Multipurpose Internet Mail Extensions (MIME) filter assembly settings
	Component name (Required, String)
	Display name
	Description
	Component type
	Class name (Required, String)
	JSP file (Required, String)
	Load on startup
	Small icon
	Large icon

	Page list assembly settings
	Name
	MIME Type
	Error Page
	Default Page
	Pages - Name
	Pages - URI

	Security constraint assembly settings
	Security constraint name
	Authorization Constraints - Roles
	Authorization Constraints - Description
	User Data Constraints - Transport guarantee
	User Data Constraints - Description

	Servlet mapping assembly settings
	URL pattern (Required, String)
	Servlet (Required, String)

	Tag library assembly settings
	Tag library file name (Required, String)
	Tag library location (Required, String)

	Welcome file assembly settings
	Welcome file (Required, String)

	Servlet caching configuration assembly settings
	Caching group name
	Priority
	Timeout
	Invalidate only
	Caching group members
	Use URIs for cache ID building
	Use specified string
	Variables - ID
	Variables - Type
	Variables - Method
	Variables - Data ID
	Variables - Invalidate ID
	Required
	External cache groups - Group name
	ID generator
	Meta data generator

	Web components assembly settings
	Component name
	Display name
	Description
	Component type
	Class name
	JSP file
	Load on startup
	Small icon
	Large icon
	Run as role name
	Description
	Run as role mode
	Local Transactions - Unresolved action
	WebSphere Application Server Enterprise assembly settings for Web components

	Web modules assembly settings
	File name
	Alternative DD
	Context root
	Classpath
	Display name
	Description
	Distributable
	Small icon
	Large icon
	Session configuration
	Session timeout
	Login configuration — Authentication method
	Login configuration — Realm name
	Login configuration — Login page
	Form Login Config — Error page
	Reload interval
	Reloading enabled
	Default error page
	Additional classpath
	File serving enabled
	Directory browsing enabled
	Serve servlets by classname
	Virtual hostname
	Filter mappings

	Assembly property extensions
	File serving attribute assembly settings
	File Serving Attribute (Name)
	File Serving Attribute (Value)

	Invoker attribute assembly settings
	Invoker Attribute (Name)
	Invoker Attribute (Value)

	Error page assembly settings
	Error code
	Error Code (Required, String)
	Exception
	Exception type name (Required, String)
	Location (Required, String)

	Web resource collections security constraint properties
	Web resource name
	Web resource description
	HTTP methods
	URL pattern

	Troubleshooting tips for Web application deployment
	Modifying the default Web container configuration
	Web container
	Web container settings
	Default virtual host
	Servlet caching

	Web module settings
	URI
	Name
	Alternate DD
	Starting weight
	Prefer WEB-INF Classes
	Initial State

	Web Module Deployment settings
	URI
	Alternate DD
	Starting weight
	Classloader Mode

	Web container custom property settings
	Name
	Value
	Description

	Web applications: Resources for learning

	Chapter 3. Managing HTTP sessions
	Sessions
	Migrating HTTP sessions
	Developing session management in servlets
	SessionSample.java

	Assembling so that session data can be shared
	Servlet API Behavior

	Session security support
	Security integration rules for HTTP sessions
	Programmatic details and scenarios

	Session management support
	Configuring session management by level
	Session tracking options
	Session tracking with cookies
	Session tracking with URL rewriting
	Session tracking with SSL information

	Configuring session tracking
	Serializing access to session data
	Session Management settings
	Overwrite Session Management (application and Web module level only)
	Session tracking mechanism
	Overflow
	Maximum in-memory session count
	Session timeout
	Security integration
	Serialize session access

	Cookie settings
	Cookie name
	Secure cookies
	Cookie domain
	Cookie path
	Cookie maximum age

	Configuring session tracking for Wireless Application Protocol (WAP) devices
	Session management custom properties

	Distributed sessions
	Session recovery support
	Distributed Environment settings
	Distributed Sessions

	Configuring for database session persistence
	Switching to a multirow schema
	Configuring tablespace and page sizes for DB2 session databases
	Database settings
	Datasource JNDI Name
	User ID
	Password
	Confirm Password
	DB2 Row Size
	Table Space Name
	Use Multirow Sessions

	Multirow schema considerations
	Coding considerations and test environment

	Clustered session support
	Tuning session management
	Configuring scheduled invalidation
	Usage considerations

	Configuring write contents
	Configuring write frequency
	Base in-memory session pool size
	Overflow in nondistributed sessions

	Controlling write operations
	Tuning parameter settings
	Tuning Level
	Write frequency
	Write contents
	Schedule sessions cleanup

	Best practices for using HTTP Sessions
	Managing HTTP sessions: Resources for learning:

	Chapter 4. Using enterprise beans in applications
	Enterprise beans
	Developing enterprise beans
	Migrating enterprise bean code to the supported specification
	Migrating enterprise bean code from Version 1.0 to Version 1.1
	Migrating enterprise bean code from Version 1.1 to Version 2.0

	WebSphere extensions to the Enterprise JavaBeans specification
	Best practices for developing enterprise beans
	Batch commands for container managed persistence
	Setting the run time for batched commands
	Deferred Create for container managed persistence
	Setting the run time for deferred create
	Explicit Invalidation in the Persistence Manager Cache
	Example: Explicit Invalidation in the Persistence Manager Cache
	Setting Persistence Manager Cache Invalidation

	Using access intent policies
	Access intent policies
	Concurrency control
	Read-ahead hints

	Access intent service
	Access intent with BMP entity beans

	Access intent design considerations
	Applying access intent policies to methods
	Using the AccessIntent API
	AccessIntent interface

	Access intent exceptions
	Access intent assembly settings
	Name
	Description
	Methods - Name
	Methods - Enterprise bean
	Methods - Type
	Methods - Parameters
	Applied access intent

	Access intent best practices
	Frequently asked questions: Access intent

	EJB modules
	Assembling EJB modules
	CMP field assembly settings
	Name

	Container transactions
	Container transaction assembly settings
	Name
	Description
	Transaction attribute
	Methods - Name
	Methods - Enterprise bean
	Methods - Type
	Methods - Parameters

	EJB module assembly settings
	File name
	Alternate DD
	Classpath
	Display name
	Description
	EJB client JAR
	Small icon
	Large icon
	Generalizations - Subtype
	Generalizations - Supertype
	EJB relationships - Name
	Default data source - JNDI name
	Default CMP connection factory
	Default authorization - User ID
	Default authorization - Password

	Entity bean assembly settings
	EJB name
	Display name
	Description
	EJB class
	Remote - Home
	Remote - Interface
	Local interface - Home
	Local interface - Interface
	Persistence type
	Reentrant
	Primary key class
	Primary key field
	Version
	Abstract schema name
	Small icon
	Large icon
	Security identity
	Run-As mode
	Role name
	Description
	Concurrency control
	Inheritance root
	Bean Cache - Activate at
	Bean Cache - Load at
	Commit option
	Local Transactions - Unresolved action
	Local Transactions - Resolution control
	Local Transactions - Boundary
	Local Relationship Roles - Name
	Local Relationship Roles - Source EJB Name
	Local Relationship Roles - is Forward
	Local Relationship Roles - is Navigable
	Lifetime in cache
	Lifetime in cache usage
	Default Access Intent
	JNDI name
	Data source - JNDI name
	Default Authorization - User ID
	Default Authorization - Password
	CMP Resource - JNDI name
	CMP Resource - Resource authentication
	WAS Enterprise assembly settings for entity beans

	Message-driven bean assembly settings
	EJB name
	Display name
	Description
	EJB class
	Transaction type
	Message selector
	Acknowledge mode
	Destination type
	Listener port name
	WAS Enterprise assembly settings for message-driven beans

	Method extensions
	Method extension assembly settings
	Method type
	Name
	Parameters
	Isolation level attributes
	Isolation level
	Access intent - Intent type
	Finder descriptor - User
	Finder descriptor - EJB QL
	Finder descriptor - Full SELECT
	Finder descriptor - WHERE clause
	Security identity
	Description
	Run-As mode
	Role name
	Description

	Method permissions
	Method permission assembly settings
	Method permission name
	Description
	Methods - Name
	Methods - Enterprise bean
	Methods - Type
	Methods - Parameters
	Unchecked
	Roles - Role name

	Query assembly settings
	Name
	Parameters
	Result type

	References
	EJB reference assembly settings
	Name
	Description
	Link
	Home
	Remote
	Type
	JNDI name

	EJB local-reference assembly settings
	Name
	Description
	Link
	Local interface
	Local home
	Type

	EJB relation assembly settings
	Description
	Source EJB
	Multiplicity
	Cascade delete
	CMR field

	Exclude list assembly settings
	Description
	Methods - Name
	Methods - Enterprise bean
	Methods - Type
	Methods - Parameters

	Security role assembly settings
	Role name
	Description
	Binding - Groups - Name
	Binding - Users - Name
	Binding - Special Subjects - Name

	Session bean assembly properties
	EJB name
	Display name
	Description
	EJB class
	Remote - Home
	Remote - Interface
	Local interface - Home
	Local interface - Interface
	Session type
	Transaction type
	Small icon
	Large icon
	Security identity
	Description
	Run-As mode
	Role name
	Description
	Timeout
	Inheritance root
	Bean Cache - Activate at
	Local Transactions - Unresolved action
	Local Transactions - Resolution control
	Local Transactions - Boundary
	JNDI name
	WAS Enterprise assembly settings for session beans

	EJB containers
	Managing EJB containers
	EJB container settings
	Passivation directory
	Inactive pool cleanup interval
	Default datasource JNDI name
	Initial state

	EJB container system properties
	EJB cache settings
	Cleanup interval
	Cache size

	Container interoperability

	Deploying EJB modules
	EJB module collection
	URI

	EJB module settings
	URI
	Alternate DD
	Starting weight

	Enterprise beans: Resources for learning
	EJB method Invocation Queuing

	Chapter 5. Using extended messaging in applications
	Extended messaging - overview
	Extended messaging - receiving messages
	Extended messaging - sending messages
	Extended messaging - data mapping
	Extended messaging - handling late responses
	Extended messaging - transactional support
	Extended messaging - exception handling

	Extended messaging - application usage scenarios
	Extended messaging - components
	Designing an enterprise application to use extended messaging
	Developing an enterprise application to use extended messaging
	Deploying an enterprise application to use extended messaging
	Configuring deployment attributes for a receiver bean
	Extended messaging assembly properties for EJB modules

	Configuring deployment attributes for a sender bean

	Configuring extended messaging service resources
	Adding a new input port
	Adding a new output port
	Configuring an input port
	Configuring an output port
	Extended messaging service settings
	Startup
	Late response handling extension collection
	Late response handling extension settings

	Extended messaging provider settings
	Name
	Description
	Input port collection
	Input port settings
	Output port collection
	Output port settings

	Troubleshooting extended messaging
	Extended Messaging: Resources for learning

	Chapter 6. Using message-driven beans in applications
	Message-driven beans - an overview
	Message-driven beans - components
	Message-driven beans - transaction support

	Designing an enterprise application to use message-driven beans
	Developing an enterprise application to use message-driven beans
	Migrating a JMS listener application to use message-driven beans

	Deploying an enterprise application to use message-driven beans
	Configuring deployment attributes for a message-driven bean

	Configuring message listener resources for message-driven beans
	Configuring the message listener service
	Message listener service
	Message listener port collection
	Listener port settings

	Adding a new listener port
	Configuring a listener port
	Deleting a listener port
	Configuring security for message-driven beans
	Administering listener ports
	Starting a listener port
	Stopping a listener port

	Important files for message-driven beans and extended messaging
	Troubleshooting message-driven beans
	Message-driven beans samples

	Chapter 7. Using application clients
	Application clients
	Application client functions
	ActiveX application clients
	Applet clients
	J2EE application clients
	Pluggable application clients
	Thin application clients

	Example: Migrating application clients
	Migration tips for application clients

	Installing application clients
	Installing application clients on Version 9 of the Solaris Operating Environment

	Developing ActiveX application client code
	Starting an ActiveX application
	Starting an ActiveX application and configuring service programs
	Starting an ActiveX application and configuring non-service programs
	setupCmdLineXJB.bat, launchClientXJB.bat, and other ActiveX batch files

	JClassProxy and JObjectProxy classes
	Java virtual machine initialization tips
	Example: Developing ActiveX to enterprise bean bridge, using Java proxy objects
	Example: Calling Java methods in the ActiveX to enterprise bean bridge
	Java field programming tips
	ActiveX to Java primitive data type conversion values
	Example: Using helper methods for data type conversion

	Array tips for ActiveX application clients
	Error handling codes for ActiveX application clients
	Threading tips
	Example: Viewing System.out message
	Example: Enabling logging and tracing for application clients
	ActiveX client programming best practices

	Developing applet client code
	Accessing secure resources using the TCP/IP protocol for applet clients
	Applet client security requirements

	Applet client tag requirements
	Applet client code requirements

	Developing J2EE application client code
	J2EE application client class loading

	Developing pluggable application client code
	Developing thin application client code
	Developing thin application client code on a client machine
	Developing thin application client code on a server machine

	Assembling Application Client Modules
	Application client modules
	Application client assembly settings
	File name (Required, String)
	Alternative DD
	Classpath
	Display name (Required, String)
	Small icon
	Large icon
	Description
	Main class (Required, String)
	WebSphere Application Server Enterprise Edition assembly settings for application clients

	Environment entries assembly properties
	Name
	Value
	Type
	Description

	Deploying application clients on workstation platforms
	Starting the Application Client Resource Configuration Tool and opening an EAR file
	Data sources for application clients
	Configuring new data source providers (JDBC providers) for application clients
	Configuring new data source providers
	Example: Configuring data source provider and data source settings
	Data source provider settings for application clients
	Data source properties for application clients

	Configuring new data sources for application clients
	Mail providers and mail sessions for the Application Client Assembly Tool
	Configuring mail providers and sessions for application clients
	Mail provider settings for application clients
	Mail session settings for application clients
	Example: Configuring JavaMail provider and JavaMail session settings for application clients

	Configuring new mail sessions for application clients
	URLs for application clients
	URL providers for the Application Client Resource Configuration Tool
	Configuring new URL providers for application clients
	Configuring URL providers and sessions using the Application Client Resource Configuration Tool
	URL settings for application clients
	URL provider settings for application clients
	Example: Configuring URL and URL provider settings for application clients

	Configuring new URLs with the Application Client Resource Configuration Tool
	WebSphere asynchronous messaging using the Java Message Service API for the Application Client Resource Configuration Tool
	Configuring Java messaging client resources
	Configuring new JMS providers with the Application Client Resource Configuration Tool
	JMS provider settings for application clients
	WebSphere queue connection factory settings for application clients
	WebSphere topic connection factory settings for application clients
	WebSphere queue destination settings for application clients
	WebSphere topic destination settings for application clients
	MQSeries queue connection factory settings for application clients
	MQSeries topic connection factory settings for application clients
	MQSeries queue destination settings for application clients
	MQSeries topic destination settings for application clients
	Generic JMS connection factory settings for application clients
	Generic JMS destination settings for application clients
	Example: Configuring JMS Provider, JMS Connection Factory and JMS Destination settings for application clients

	Configuring new connection factories for application clients
	Configuring new Java Message Service destinations for application clients
	Example: Configuring MQ Queue and Topic connection factories and destination factories for application clients
	Example: Configuring WAS Queue and Topic connection factories and destination factories for application clients
	Configuring new resource environment providers for application clients
	Resource environment provider settings for application clients

	Configuring new resource environment entries for application clients
	Resource environment entry settings for application clients

	Managing application clients
	Updating data source and data source provider configurations with the Application Client Resource Configuration Tool
	Updating URLs and URL provider configurations for application clients
	Updating mail session configurations for application clients
	Updating Jave Message Service provider, connection factories, and destination configurations for application clients
	Updating MQ Java Message Service provider, MQ connection factories, and MQ destination configurations for application clients
	Updating Resource Environment Entry and Resource Environment Provider configurations for application clients
	Example: Configuring Resource Environment settings
	Example: Configuring Resource Environment custom settings for application clients

	Removing application client resources

	Running application clients
	launchClient tool
	Specifying the directory for an expanded EAR file

	Example: Using a Java 2 security manager with a J2EE application client
	Example: Enabling Java 2 security prior to J2EE application client runtime initialization

	Application client troubleshooting tips

	Chapter 8. Using Web services
	Web services
	Planning to use Web services
	Setting up a Web services development environment

	Migrating Apache SOAP Web services to Web services for J2EE
	Developing Web services
	Developing a Web service using a Java bean
	Developing a Service Endpoint Interface
	Developing a Web Services Description Language file
	Publishing Web Services Description Language files
	Publishing Web Services Description Language files with the administrative console
	Publishing Web Services Description Language files with the wsadmin command tool
	Publishing Web Services Description Language files through a URL
	Multipart Web Services Description Language file best practices
	Developing Web services deployment descriptor templates from a Web Services Description Language file
	Configuring the webservices.xml deployment descriptor with command-line tools
	Configuring the webservices.xml deployment descriptor with the Assembly Toolkit
	Configuring the ibm-webservices-bnd.xmi deployment descriptor with command-line tools
	Configuring the ibm-webservices-bnd.xmi deployment descriptor with the Assembly Toolkit
	Configuring the webservicesclient.xml deployment descriptor with command-line tools
	Configuring the webservicesclient.xml deployment descriptor with the Assembly Toolkit
	Java2WSDL command

	Developing a Web service using a stateless session enterprise bean
	Developing a new Web service with an existing Web Services Description Language file using a Java bean
	Developing implementation templates and bindings from a Web Services Description Language file
	Completing the enterprise bean implementation
	Completing the Java bean implementation
	WSDL2Java command

	Developing a new Web service with an existing Web Services Description Language file using a stateless session enterprise bean
	Web services development artifacts
	Mapping between Java, Web Services Description Language and XML

	Developing a Web services client
	Assembling a Web services-enabled client JAR and EAR file
	Testing Web services-enabled clients

	Assembling Web services applications
	Assembling a Web services-enabled EJB JAR file
	Assembling a Web services-enabled EJB JAR file when starting from Java code
	Assembling Web services-enabled EJB JAR file when starting from Web Services Description Language

	Assembling Web services-enabled WAR file
	Assembling a Web services-enabled WAR file when starting from Java code
	Assembling a Web services-enabled WAR file when starting from Web Services Description Language

	Assembling a Web services-enabled EAR file
	Web services assembly properties
	Enabling the EAR file
	endptEnabler command

	Deploying Web services
	wsdeploy command

	Using Java Messaging Service to transport Web services requests
	Java Messaging Service endpoint URL syntax

	Securing Web services
	Configuring client-side transport level security
	Transport level security

	Configuring HTTP basic authentication
	HTTP basic authentication

	Web Services: Default bindings for the Web Services Security collection
	Trust Anchors
	Collection Certificate Store
	Key Locators
	Trusted ID Evaluators
	Login Mappings
	Trust Anchors collection
	Trust Anchor configuration settings
	Collection Certificate Store collection
	Collection Certificate Store configuration settings
	X.509 certificates collection
	X.509 Certificate configuration settings
	Key Locator collection
	Key Locator configuration settings
	Key collection
	Key configuration settings
	Trusted ID Evaluator collection
	Trusted ID Evaluator configuration settings
	Login Mappings collection
	Login Mapping configuration settings
	Web Services Security property collection
	Web Services: Client Security Bindings collection
	Request Sender Binding collection
	Login Bindings configuration settings
	Signing Information configuration settings
	Response Receiver Binding collection
	Web Services: Server Security Bindings collection
	Request Receiver Binding collection
	Signing Information collection
	Signing Information configuration settings
	Encryption Information collection
	Encryption information configuration settings
	Response Sender Binding collection
	Encryption information configuration settings
	View Web Services Server Deployment Descriptor
	View Web Services Client Deployment Descriptor

	Web Services: Server Security Bindings collection
	Port
	Web Service
	Request Receiver Binding
	Response Sender Binding
	Request Receiver Binding collection
	Signing Information collection
	Signing Information configuration settings
	Encryption Information collection
	Encryption information configuration settings
	Response Sender Binding collection
	Encryption information configuration settings

	Web Services: Client Security Bindings collection
	Port
	Web Service
	Request Sender Binding
	Response Receiver Binding
	Request Sender Binding collection
	Login Bindings configuration settings
	Signing Information configuration settings
	Response Receiver Binding collection

	Tuning Web services applications
	Troubleshooting Web services
	Tracing Web services messages
	Frequently asked questions about Web services for J2EE

	Web services: Resources for learning
	Web services implementation scope
	Port
	Service
	URI
	Scope

	Web services client bindings
	Web Service
	URI
	WSDL Filename
	Default Port Mappings

	Default Port Mapping Definitions collection
	Port Type Local Name
	Port Type Namespace
	Default Port Local Name
	Default Port Namespace

	Default Port Type Mapping Properties settings
	Port Type Local Name
	Port Type Namespace
	Default Port Local Name
	Default Port Namespace

	Publish WSDL files settings
	HTTP
	Select HTTP URL prefix
	Custom HTTP URL prefix
	JMS

	Using Apache SOAP Web services in Version 5.0 and 5.0.1
	Developing an Apache SOAP client
	Accessing enterprise beans with Apache SOAP
	Assembling Apache SOAP Web services
	Apache SOAP deployment descriptor
	Enabling Apache SOAP Web services in an enterprise application
	Deploying Apache SOAP Web services applications
	Administering deployed Apache SOAP Web services (XML-SOAP administrative tool)
	Securing Apache SOAP Web services
	Migrating Apache SOAP security
	Securing Apache SOAP services with HTTP basic authentication
	Securing Apache SOAP services on Secured Sockets Layer
	Securing Apache SOAP services on Secured Sockets Layer with SOAP Signature
	Apache SOAP signature architecture

	UDDI4J specifications
	Web services: Resources for learning

	Chapter 9. Web Services Invocation Framework (WSIF): Enabling Web services
	Goals of WSIF
	WSIF - Web services are not just SOAP services
	WSIF - tying client code to a particular protocol implementation is restricting
	WSIF - incorporating new bindings into client code is hard
	WSIF - multiple bindings can be used in flexible ways
	WSIF - a freer Web services environment enables intermediaries

	An overview of WSIF
	WSIF architecture
	Using WSIF with Web services that offer multiple bindings
	WSIF and WSDL
	WSIF usage scenarios
	Dynamic invocation

	Using WSIF to invoke Web services
	Using the WSIF providers
	Using the SOAP provider
	Using the JMS providers
	Using the SOAP over JMS provider
	The SOAP over JMS provider - writing the WSDL extension
	Using the native JMS provider
	The native JMS provider - writing the WSDL extension
	The JMS providers - configuring the client and server
	Using the Java provider
	The Java provider - writing the WSDL extension
	Using the EJB provider
	The EJB provider - writing the WSDL extension

	Developing a WSIF service
	Developing the WSIF client - the Address Book sample

	Using complex types
	Manual mapping of complex types
	Automatic mapping of complex types

	Using JNDI
	Passing SOAP messages with attachments using WSIF
	SOAP messages with attachments - writing the WSDL extensions
	SOAP messages with attachments - passing attachments to WSIF
	SOAP messages with attachments - types and type mappings

	Interacting with the WebSphere J2EE container
	Running WSIF as a client

	WSIF system management and administration
	Maintaining the WSIF properties file
	Enabling security for WSIF
	WSIF troubleshooting tips
	Trace and logging for WSIF
	WSIF (Web Services Invocation Framework) messages

	WSIF API
	WSIF API reference: Creating a message for sending to a port
	WSIF API reference: Finding a port factory or service
	WSIFService interface
	WSIFServiceFactory class

	WSIF API reference: Using ports
	WSIFPort interface
	WSIFOperation interface
	WSIFOperation - Context
	WSIFOperation - Asynchronous interactions reference
	WSIFOperation - Synchronous and asynchronous timeouts reference

	WSIF: Resources for learning

	Chapter 10. IBM WebSphere UDDI Registry
	UDDI Registry terminology
	UDDI Registry definitions

	An overview of IBM UDDI Registries
	Migrating from the IBM WebSphere UDDI Registry on WebSphere Application Server 4.0
	Installing and setting up a UDDI Registry
	Installing the UDDI Registry into a deployment manager cell
	Setting up the UDDI Registry to use Cloudscape within a deployment manager cell
	Setting up the UDDI Registry to use DB2 within a deployment manager cell
	Installing the UDDI Registry into a single appserver
	Setting up the UDDI Registry to use Cloudscape in a single appserver
	Setting up the UDDI Registry to use DB2 in a single appserver

	Reinstalling the UDDI Registry application
	Applying Service to the UDDI Registry in a Network Deployment and single Application Server environment
	Removing the UDDI Registry application from a deployment manager cell
	Removing the UDDI Registry application from a single appserver
	Configuring the UDDI Registry
	Configuring global UDDI properties
	Modifying the database userid and password
	Configuring security properties
	Configuring the UDDI User Console (GUI) for multiple language encoding support
	Customizing the UDDI User Console (GUI)
	Configuring SOAP interface properties
	Configuring SOAP properties with the AAT
	Configuring SOAP properties in an already-deployed application
	Configuring WebSphere to use HTTPS and SSL

	Administering the UDDI Registry
	Running the UDDI Registry
	Backing up and restoring the UDDI Registry database

	UDDI user console
	Displaying the user console

	Custom Taxonomy Support in the UDDI Registry
	SOAP Application Programming Interface for the UDDI Registry
	Programming the UDDI SOAP API
	SOAP API error handling tips in the UDDI Registry

	UDDI Registry Application Programming Interface
	Inquiry API for the UDDI Registry
	Browse pattern for the UDDI Registry
	Drilldown pattern for the UDDI Registry
	Invocation pattern for the UDDI Registry
	Inquiry API functions in the UDDI Registry
	Accessible query values in the UDDI Registry
	Publish API for the UDDI Registry

	UDDI EJB Interface for the UDDI Registry
	Datatypes package in the UDDI Registry
	EJB interface methods in the UDDI Registry

	UDDI troubleshooting tips
	Turning on UDDI trace

	Messages
	UDAI (Web Services UDDI) messages
	UDCF (Web Services UDDI) messages
	UDDA (Web Services UDDI) messages
	UDDM (Web Services UDDI) messages
	UDEJ (Web Services UDDI) messages
	UDEX (Web Services UDDI) messages
	UDIN (Web Services UDDI) messages
	UDLC (Web Services UDDI) messages
	UDPR (Web Services UDDI) messages
	UDRS (Web Services UDDI) messages
	UDSC (Web Services UDDI) messages
	UDSP (Web Services UDDI) messages
	UDUC (Web Services UDDI) messages
	UDUU (Web Services UDDI) messages

	Running the UDDI Samples
	Installation Verification Program (IVP)
	Reporting problems with the IBM WebSphere UDDI Registry
	Feedback

	Chapter 11. Web services gateway: Enabling Web services
	Web services gateway - Frequently Asked Questions
	What are Web services?
	What is the IBM Web services gateway?
	How does the Web services gateway work?
	What problems are solved by the Web services gateway?
	Who should use the Web services gateway?
	What is the difference between the Apache SOAP channel and the SOAP/HTTP channel?

	Web services gateway - What is new in this release
	Web services gateway - Completing the installation
	Web services gateway - prerequisites and constraints
	Establishing requirements for using a database with the gateway
	Installing the gateway into a deployment manager cell
	Installing the gateway into a stand-alone application server
	Testing the Web services gateway installation

	Backing up and restoring a gateway configuration
	Backing up and restoring UDDI publication links
	Creating and updating a gateway cluster

	Administering the Web services gateway
	Setting the namespace URI and WSDL URI for the Web services gateway
	Working with channels
	Channels - entry points to the Web services gateway
	Listing and managing gateway-deployed channels
	Deploying channels to the Web services gateway
	Web services gateway - Channel deployment details
	Removing channels from the Web services gateway

	Working with filters
	Filters - service interceptors for the Web services gateway
	Listing and managing gateway-deployed filters
	Deploying filters to the Web services gateway
	Removing filters from the Web services gateway

	Working with UDDI references
	UDDI registries - Web service directories that integrate with the Web services gateway
	Listing and managing gateway-deployed UDDI references
	Deploying UDDI references to the Web services gateway
	Removing UDDI references from the Web services gateway

	Working with Web services
	Listing and managing gateway-deployed Web services
	Deploying Web services to the Web services gateway
	Data type representation - choosing between Generic classes and Deployed Java classes
	Complex data types - mapping namespaces to packages
	Deploying Web services with Java bindings
	Web services gateway - Supported types
	Publishing a Web service to a UDDI registry for deployment to the gateway
	Removing Web services from the Web services gateway

	Running the Web services gateway samples
	Passing SOAP messages with attachments through the Web services gateway
	SOAP messages with attachments - a definition
	Writing the WSDL extensions for SOAP messages with attachments

	Developing Web services gateway extensions
	Writing a filter for the Web services gateway
	Web services gateway - the Filter interface
	Creating and returning a SOAP fault message from a filterResponse method
	Web services gateway - the gateway message context values

	Using a filter to select a target service and port
	Web services gateway - the Routing interface

	Capturing Web service invocation information from the Web services gateway
	Web services gateway - the MessageWarehouse interface

	Handling exceptions for the Web services gateway
	Web services gateway - the ExceptionHandler interface

	Administering security for the Web services gateway
	Enabling Web Services Security (WS-Security) for the gateway
	The Web services gateway and WS-Security
	Configuring the gateway security bindings
	Editing the service security configuration
	Editing the target service security configuration

	Enabling basic authentication and authorization for the gateway
	Enabling gateway-level authentication
	Enabling operation-level authorization
	Operation-level security - role-based authorization

	Invoking Web services over HTTPS
	Enabling proxy authentication for the gateway

	Web services gateway troubleshooting tips
	Web services gateway messages

	Web services gateway: Resources for learning

	Chapter 12. Class loading
	Class loaders
	Class loader collection
	Classloader ID
	Classloader Mode
	Class loader settings
	Classloader ID
	Classloader Mode

	Migrating the class-loader Module Visibility Mode setting
	Class loading: Resources for learning

	Chapter 13. Using EJB query
	EJB query language
	Example: EJB queries
	FROM clause
	Inheritance in EJB query
	Path expressions
	WHERE clause
	Literals
	Input parameters
	Expressions
	Null value semantics
	Date time arithmetic and comparisons
	Basic predicates
	Quantified predicates
	BETWEEN predicate
	IN predicate
	LIKE predicate
	NULL predicate
	EMPTY collection predicate
	MEMBER OF predicate
	EXISTS predicate
	IS OF TYPE predicate

	Scalar functions
	EJB query: Scalar functions

	Aggregation functions
	SELECT clause
	ORDER BY clause
	Subqueries
	EJB query restrictions
	EJB Query: Reserved words
	EJB query: BNF syntax
	Comparison of EJB 2.0 specification and WebSphere query language

	Using the dynamic query service
	Example: Dynamic query remote client
	Example: Dynamic query from local client
	Dynamic query service performance considerations

	Chapter 14. Using the internationalization service
	Internationalization
	Internationalization service: Overview
	The internationalization service solution
	Internationalization challenges in distributed applications

	Migrating internationalized applications
	Assembling internationalized applications
	Setting the internationalization type for servlets
	Configuring container internationalization for servlets
	Internationalization assembly properties for Web modules

	Setting internationalization type for enterprise beans
	Configuring container internationalization for enterprise beans
	Internationalization assembly settings for EJB modules

	Using the internationalization context API
	Gaining access to the internationalization context API
	Accessing caller locales and time zone
	Accessing invocation locales and time zone
	Example: Internationalization context in an EJB client program
	Example: Internationalization context in an EJB servlet
	Example: Internationalization context in a session bean
	Internationalization context API: Programming reference
	Internationalization context
	Internationalization context: Propagation and scope
	Example: Internationalization context in a SOAP header
	Internationalization context: Management policies
	Internationalization type
	Container internationalization attributes

	Managing the internationalization service
	Enabling the internationalization service for servlets and enterprise beans
	Internationalization service settings

	Enabling the internationalization service for EJB clients

	Troubleshooting the internationalization service
	Internationalization service errors
	Internationalization service exceptions

	Internationalization: Resources for learning

	Chapter 15. Application profiling
	Application profiling: Overview
	Tasks
	Application profiles
	Application profiling performance considerations

	Assembling applications for application profiling
	Applying access intent policies to entity beans
	Access intent assembly settings for application profiling

	Creating a custom access intent policy
	Method level access intent assembly settings
	Defined access intent assembly settings for EJB modules

	Configuring a component task policy
	Configuring a container task policy
	Container assembly settings for tasks

	Creating an application profile
	Application profile assembly settings

	Configuring tasks on application profiles
	Dynamic query assembly settings
	Name
	Description
	Entity beans
	Applied access intent

	Managing application profiles
	Application profiling exceptions
	Application profiling service settings
	Startup

	Application profile collection
	Name
	Description
	Application profile settings
	Task collection
	Task settings

	Using the TaskNameManager interface
	TaskNameManager interface

	Chapter 16. Using Business Rule Beans
	Advantages of externalizing business rules
	Overview of Business Rule Beans
	Externalized business rules
	Types of business rules
	Rule folders
	Rule attributes
	Rule states
	Rule results
	Dependent rules
	BRBeans run-time environment
	BRBeans run-time behavior
	BRBeans run-time exception handling
	Rule implementors
	Trigger point framework
	Trigger points
	Simple trigger point
	Classifier trigger point
	Situational trigger point

	As Of Date
	Predefined strategy objects
	FindingStrategy method
	FilteringStrategy method
	FiringStrategy method
	CombiningStrategy method

	Customized strategy objects
	Customized rule implementors
	Rule management command
	Rule importer command
	Rule exporter command
	BRBeans properties file
	Database considerations for BRBeans
	Oracle considerations
	Sybase considerations
	Informix considerations

	Rule Management Application
	Rule management APIs
	BRBeans performance enhancements
	Performance enhancements through caching
	Performance enhancements using indexes
	Performance enhancements by changing the firing location

	Developing BRBeans
	Determining where to place a trigger point
	Placing a trigger point in the application code
	Administering strategy objects to control triggers
	Implementing business rules

	Assembling applications for use with BRBeans
	Managing rules
	Starting the Rule Management Application
	Copying or moving rules or rule folders
	Working with Quick Copy
	Finding a rule
	Deleting rules
	Deleting rule folders
	Changing the properties of a rule
	Importing a rule
	Exporting a rule
	Renaming rules
	Renaming rule folders
	Specifying columns
	Changing the date and time format

	Rule Browser
	File menu
	New
	Import
	Export
	Delete
	Rename
	Properties
	Validate
	Close
	New Rule properties window: General tab
	New Rule properties window: Implementation tab
	Add Initialization Parameter window
	Change Initialization Parameter window
	New Rule properties window: Description tab
	New Rule properties window: Dependent Rules tab
	New Rule properties window: Other tab
	Import Rules window
	Select Rules To Export window
	Change Effective Dates On Exported Rules window
	Select File For Rule Export window
	Rule properties window: General tab
	Rule properties window: Implementation tab
	Add Firing Parameter window
	Change Firing Parameter window
	Rule properties window: Description tab
	Rule properties window: Dependent Rules tab
	Change Folder window
	Rule properties window: Other tab
	Validate Rules

	Edit menu
	Cut
	Copy
	Paste
	Find
	Quick Copy
	Select All
	Deselect All
	Quick Copy window
	Automatically Update References window
	Update Dependent Rule References window
	References To Rules Being Deleted window
	Rule Names Already Exist window

	View menu
	Status Bar
	Specify Columns
	Specify Date/Time Format
	Refresh
	Specify Date/Time Format window

	Find Rules window
	Find Rules window: Name tab
	Find Rules window: Date tab
	Find Rules window: Classification tab
	Find Rules window: Implementation tab
	Find Rules window: Description tab
	Find Rules window: Other tab
	Search Results window
	Save Search window
	Open Saved Search window

	Business rule beans: Resources for learning

	Chapter 17. Using asynchronous beans
	Asynchronous beans
	Example: Asynchronous bean connection management

	Configuring work managers
	Work managers
	Work manager collection
	Name
	JNDI Name
	Description
	Category
	Number of Alarm Threads
	Minimum Number of Threads
	Maximum Number of Threads
	Thread Priority
	Growable
	Service Names
	Work manager settings

	Work manager service settings
	Startup

	Assembling applications that use work managers
	Developing work objects to run code in parallel
	Work objects
	Example: Work object

	Developing event listeners
	Using the application notification service
	Example: Event listener

	Developing Asynchronous scopes
	Asynchronous scopes
	Alarms
	Subsystem monitors
	Asynchronous scopes: Dynamic message bean scenario

	Interoperating with asynchronous beans
	Asynchronous beans interoperability issues
	Affected products
	Asynchronous beans security errors
	Asynchronous beans interoperability errors
	Interoperability and recovery
	Internationalization interoperability issues

	Chapter 18. Using object pools
	Object pool managers
	Object pool manager collection
	Name
	JNDI Name
	Description
	Category
	Object pool manager settings
	Name
	JNDI Name
	Description
	Category
	Custom object pool collection
	Custom object pool settings

	Object pool service settings
	Startup

	Object pools: Resources for learning
	Object pool performance considerations

	Chapter 19. Using startup beans
	Chapter 20. Using the scheduler service
	Managing the scheduler service
	Creating the database for scheduler
	Creating a Cloudscape database for scheduler
	Creating a DB2 database for scheduler
	Creating an Informix database for scheduler
	Creating a Microsoft SQL Server database for scheduler
	Creating an Oracle database for scheduler
	Creating a Sybase database for scheduler

	Configuring a scheduler
	Scheduler configuration collection
	Scheduler configuration settings
	Creating a scheduler resource reference
	Scheduler daemon

	Enabling the scheduler service
	Scheduler service settings

	Developing and scheduling tasks
	Developing a task that calls a session bean
	Developing a task that sends a JMS message
	Receiving scheduler notifications
	Submitting a task to a scheduler
	Managing tasks with a scheduler
	Transactions and the scheduler service

	Scheduler interface
	TaskInfo interface
	TaskHandler interface
	NotificationSink interface
	UserCalendar interface

	Interoperating with the Scheduler service
	Recreating Scheduler tasks
	Deleting Scheduler tasks
	Recreating Scheduler tables

	Chapter 21. Using shared work areas
	WorkArea service - Overview
	Work area property modes
	Nested work areas
	Distributed work areas
	WorkArea service: Special considerations
	WorkArea service performance considerations

	Developing applications that use work areas
	UserWorkArea interface
	Example: WorkArea SimpleSample application
	Accessing the WorkArea service
	Beginning a new work area
	Setting properties in a work area
	Using a work area to manage local work
	Retrieving the name of the active work area
	Overriding work area properties
	Retrieving work area properties
	Retrieving a list of all keys in a work area
	Querying the mode of a work area property
	Deleting a work area property

	Completing a work area

	Managing the work area service
	Enabling the WorkArea service
	WorkArea service settings

	Managing the size of work areas

	Chapter 22. Using the transaction service
	Transaction support in WebSphere Application Server
	Resource manager local transaction (RMLT)
	Global transactions
	Local transaction containment (LTC)
	Using local transactions

	Local and global transaction considerations

	Developing components to use transactions
	Setting transactional attributes in the deployment descriptor
	Using bean-managed transactions

	Configuring transaction properties for an application server
	Transaction service settings
	Transaction log directory
	Total transaction lifetime timeout
	Client inactivity timeout
	Maximum Transaction Timeout

	Managing active transactions
	Managing transaction logging for optimum server availability
	Configuring transaction aspects of servers for optimum availability
	Moving a transaction log from one server to another
	Restarting an application server on a different host

	Transactional interoperation with non-WebSphere application servers
	Troubleshooting transactions
	Transaction service exceptions
	UserTransaction interface - methods available
	Coordinating access to 1-PC and 2-PC-capable resources within the same transaction
	Coordinating access to 1-PC and 2-PC-capable resources within the same transaction
	Enabling an application to coordinate access to 1-PC and 2-PC-capable resources within the same transaction
	Last participant support extension settings

	Configuring an application server to allow logging for heuristic reporting
	Exceptions thrown for transactions involving both single- and two-phase commit resources
	Last Participant Support: Resources for learning

	Chapter 23. Using the ActivitySession service
	The ActivitySession service
	Using ActivitySessions with HTTP sessions
	ActivitySession and transaction contexts
	Combining transaction and ActivitySession container policies

	Developing a J2EE application to use ActivitySessions
	Developing an enterprise bean or J2EE client to manage ActivitySessions
	Configuring ActivitySession deployment attributes for an enterprise bean
	Container ActivitySession assembly properties for EJB modules
	Name
	Description
	Methods
	ActivitySession attribute

	Configuring ActivitySession deployment attributes for a Web application
	Disabling or enabling the ActivitySession service
	ActivitySession service settings
	Startup
	Default timeout

	Configuring the default ActivitySession timeout for an application server
	ActivitySession service settings
	Startup
	Default timeout

	Troubleshooting ActivitySessions
	The ActivitySession service application programming interfaces
	Samples: ActivitySessions
	ActivitySession service: Resources for learning

	Chapter 24. Using naming
	Naming
	New features for name space support
	Name space logical view
	Name space partitions

	Initial context support
	Initial contexts registered with the ORB as initial references
	Default initial contexts

	Lookup names support in deployment descriptors and thin clients
	Relative names
	Qualified names

	JNDI support in WebSphere Application Server
	Developing applications that use JNDI
	Example: Getting the default initial context
	Determining which server is used to obtain the initial context

	Example: Getting an initial context by setting the provider URL property
	Using a CORBA object URL
	Using a CORBA object URL with multiple name server addresses
	Using a CORBA object URL from an non-WebSphere Application Server JNDI implementation
	Using an IIOP URL

	Example: Setting the provider URL property to select a different root context as the initial context
	Selecting the initial root context with a CORBA object URL
	Selecting the initial root context with the name space root property

	Example: Looking up an EJB home with JNDI
	JNDI lookup from an application running in a container
	JNDI lookup from an application that does not run in a container
	JNDI lookup with a corbaname URL

	Example: Looking up a JavaMail session with JNDI
	JNDI interoperability considerations
	Interoperability with previous WebSphere Application Server Releases
	EJB clients running in an environment other than WebSphere Application Server accessing EJB applications running on WebSphere Application Server V5 servers
	Binding resources from MQSeries 5.2

	JNDI caching
	JNDI cache settings
	com.ibm.websphere.naming.jndicache.cachename
	com.ibm.websphere.naming.jndicache.cacheobject
	com.ibm.websphere.naming.jndicache.maxcachelife
	com.ibm.websphere.naming.jndicache.maxentrylife

	Example: Controlling JNDI cache behavior from a program
	JNDI name syntax
	INS name syntax
	JNDI to CORBA name mapping considerations
	Example: Setting the syntax used to parse name strings

	Developing applications that use CosNaming (CORBA Naming interface)
	Example: Getting an initial context with CosNaming
	Obtaining an ORB reference
	Using an ORB reference to get an initial naming reference
	Using an existing ORB and invoking string_to_object with a CORBA object URL with multiple name server addresses to get an initial context

	Example: Looking up an EJB home with CosNaming
	CosNaming resolve operation using a qualified name
	ORB string_to_object operation using an unqualified stringified name

	Configured name bindings
	Configured binding types

	Name space federation
	Name space bindings
	Configuring and viewing name space bindings
	String binding settings
	Scope
	Binding Type
	Binding Identifier
	Name in Name Space
	String Value

	CORBA object binding settings
	Scope
	Binding Type
	Binding Identifier
	Name in Name Space
	Corbaname URL
	Federated Context

	Indirect lookup binding settings
	Scope
	Binding Type
	Binding Identifier
	Name in Name Space
	Provider URL
	JNDI Name

	EJB binding settings
	Scope
	Binding Type
	Binding Identifier
	Name in Name Space
	Enterprise Bean Location
	Server
	JNDI Name

	Name space binding collection
	Name space bindings

	Configuring name servers
	Name server settings
	Name
	Initial State

	Troubleshooting name space problems
	dumpNameSpace tool
	Example: Invoking the name space dump utility
	Invoking name space dump utility from a command line
	Invoking name space dump utility from a Java program

	Name space dump utility for java:, local:and server name spaces
	Name space dump options
	NameServer MBean invocation
	Name space dump output

	Name space dump sample output

	Naming and directories: Resources for learning

	Chapter 25. Using the dynamic cache service to improve performance
	Dynamic cache
	Configuring cache replication
	Cache replication
	Internal messaging configuration settings
	Internal messaging server
	Runtime mode
	Push frequency

	Cache replication

	Enabling the dynamic cache service
	Dynamic cache service settings
	Startup state
	Cache size
	Default priority
	Disk offload
	Cache replication

	Configuring servlet caching
	Servlet caching

	Configuring cache replication
	Cache replication
	Internal messaging configuration settings
	Cache replication

	Configuring the dynamic cache disk offload
	Application servers must have different disk offload locations

	Configuring Edge Side Include caching
	Configuring alternate URL

	Configuring external cache groups
	External cache group collection
	External cache group settings
	External cache group member collection
	External cache group member settings
	Configuring high-speed external caching through the Web server
	Configuring Fast Response Cache Accelerator cache size through a distributed platforms Web server

	Displaying cache information
	Configuring cacheable objects with the cachespec.xml file
	Verifying the cacheable page
	Cachespec.xml file

	Configuring command caching
	Command class
	CacheableCommandImpl class
	Example: Caching a command object

	Using the DistributedMap interface for the dynamic cache
	Sharing cached objects in a clustered environment
	Cache instance settings
	Name
	JNDI name
	Description
	Category
	Cache Size
	Default Priority
	Enable Disk Offload
	Disk Offload Location
	Additional custom properties (available only when a cache instance is created)

	Cache instance collection
	Scope
	Name
	JNDI name
	Description
	Category
	Cache Size
	Enable Disk Offload

	Cache instance service settings
	Startup

	Invalidation listeners

	Example: Caching Web services
	Example: Configuring the dynamic cache
	Cache monitor
	Edge cache statistics

	Chapter 26. Managing user profiles
	User profile
	UserProfileManager class
	User profile development options
	Extending the data represented in user profiles
	Adding columns to the base user profile implementation
	Extending the User Profile enterprise bean and importing legacy databases
	UPServletExample.java
	UserProfileExtendedSample.java
	UPServletExampleExtended.java
	UserProfileExtended.java
	UPServletExtended.java

	userprofile.xml

	Chapter 27. Assembling applications
	Application assembly and J2EE applications
	Archive support in Version 5.0
	Starting the Application Assembly Tool (AAT)
	Migrating application modules from J2EE 1.2 to J2EE 1.3
	earconvert tool

	Assembling new or modifying existing modules
	Adding files to assembled modules
	Resource environment reference assembly settings
	Name
	Description
	Type

	Resource Adapter Archive file assembly settings
	File name
	Display name
	Description
	EIS type
	Vendor name
	Version
	Specification
	License required
	Implementation
	Interface
	Implementation
	Interface
	Implementation
	Support Reauthentication
	Transaction
	Small Icon
	Large Icon
	Basic Password
	Kerboros V5
	Property Name
	Property Type
	Property Value
	Description
	Permission Specification

	Saving applications after assembly
	Verifying archive files
	Application assembly performance checklist
	Generating code for deployment
	ejbdeploy tool
	ejbdeploy syntax — relationship to Application Assembly Tool options

	Application Assembly Tool: Resources for learning

	Chapter 28. Deploying and managing applications
	Enterprise applications
	Installing a new application
	Preparing for application installation settings
	Path
	Context Root
	Generate Default Bindings
	Prefixes
	Override
	EJB 1.1 CMP bindings
	Connection Factory Bindings
	Virtual Host
	Specific bindings file

	Example: Installing an EAR file using the default bindings

	Enterprise application collection
	Name
	Status
	Enterprise application settings
	Name
	Starting Weight
	Application Binaries
	Use Metadata From Binaries
	Enable Distribution
	Classloader Mode
	WAR Classloader Policy
	Create MBeans for Resources
	Reload Enabled
	Reload Interval
	Target mapping collection
	Target mapping settings

	Starting and stopping applications
	Exporting applications
	Exporting DDL files
	Updating applications
	Hot deployment and dynamic reloading
	Changing or adding application files
	Changing or adding WAR files
	Changing or adding EJB Jar files
	Changing the HTTP plug-in configuration

	Uninstalling applications
	Deploying and managing applications: Resources for learning

