
IBM WebSphere Application Server Enterprise,

Version 5.0.2

Monitoring and Tuning Performance

���

Note

Before using this information, be sure to read the general information under “Trademarks and service marks” on page v.

Compilation date: July 30, 2003

© Copyright International Business Machines Corporation 2003. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Trademarks and service marks v

Chapter 1. Welcome to monitoring and

tuning performance 1

Chapter 2. Monitoring performance . . . 3

Performance Monitoring Infrastructure 3

Performance data organization 4

BeanModule data counters 8

JDBC connection pool data counters 11

J2C connection pool data counters 12

Java Virtual Machine data counters 13

Object Request Broker data counters 15

Session data counters 15

Transaction data counters 18

ThreadPool data counters 19

Web application data counters 20

Workload Management data counters 20

System data counters 23

Dynamic cache data counters 24

Web Services Gateway (WSGW) data counters . . 25

Web services data counters 26

Alarm Manager data counters 26

Object Pool data counters 27

Scheduler data counters 27

Performance data classification 29

Enabling performance monitoring services in the

application server through the administrative

console 30

Enabling performance monitoring services in the

NodeAgent through the administrative console . . 31

Enabling performance data collection through the

administrative console 31

Performance monitoring service settings 32

Enabling performance monitoring services using the

command line 32

Enabling Java Virtual Machine Profiler Interface

data reporting 36

Java Virtual Machine Profiler Interface 36

Monitoring performance with Tivoli Performance

Viewer (formerly Resource Analyzer) 36

Tivoli Performance Viewer features 37

Starting the Tivoli Performance Viewer 42

Setting performance monitoring levels 42

Viewing summary reports 44

Changing the refresh rate of data retrieval . . . 44

Changing the display buffer size 44

Viewing and modifying performance chart data 44

Scaling the performance data chart display . . . 45

Refreshing data 45

Clearing values from tables and charts 46

Storing data to a log file 46

Replaying a performance data log file 47

Resetting counters to zero 48

Tivoli performance monitoring and management

solutions 48

Developing your own monitoring applications . . 49

Developing your own monitoring application

using Performance Monitoring Infrastructure

client 49

Developing your own monitoring applications

with Performance Monitoring Infrastructure

servlet 64

Compiling your monitoring applications 66

Running your new monitoring applications . . . 67

Accessing Performance Monitoring Infrastructure

data through the Java Management Extension

interface 68

Developing Performance Monitoring

Infrastructure interfaces (Version 4.0) 82

Third-party performance monitoring and

management solutions 83

Measuring data requests (Performance Monitoring

Infrastructure Request Metrics) 83

Performance Monitoring Infrastructure Request

Metrics 83

Application Response Measurement 84

Performance Monitoring Infrastructure Request

Metrics trace filters 84

Performance Monitoring Infrastructure Request

Metrics data output 84

Configuring Request Metrics 86

Example: Generating trace records from

Performance Monitoring Infrastructure Request

Metrics 90

Performance monitoring service settings 91

Startup 91

Initial specification level 91

Specifications 91

Performance: Resources for learning 92

Chapter 3. Tuning performance 95

Tuning parameter index 95

Business process choreographer 96

Business Rule Beans (BRBeans) 96

Dynamic query service 97

Object pool 97

WorkArea service 97

Asynchronous beans 97

ActivitySession 98

Application profiling 98

Using the Runtime Performance Advisor 98

Runtime Performance Advisor configuration

settings 100

Advice configuration settings 100

Using the Performance Advisor in Tivoli

Performance Viewer 101

Performance Advisor Report in Tivoli

Performance Viewer 102

© Copyright IBM Corp. 2003 iii

iv IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

Trademarks and service marks

The following terms are trademarks of IBM Corporation in the United States, other

countries, or both:

v Cloudscape

v Everyplace

v iSeries

v IBM

v Redbooks

v ViaVoice

v WebSphere

v zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other

countries.

Other company, product and service names may be trademarks or service marks of

others.

© Copyright IBM Corp. 2003 v

vi IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

Chapter 1. Welcome to monitoring and tuning performance

To help administrators identify application performance problems, the product

collects performance data and provides interfaces that allow external applications

to monitor the performance data, tools to display performance data for analysis,

and tools to suggest performance tuning improvements.

In addition, problem determination capabilities in the product help administrators

by providing APIs and graphical interfaces for collecting and analyzing trace and

log data.

Performance Monitoring Infrastructure (PMI)

The product collects data on run-time and applications through the Performance

Monitoring Infrastructure (PMI), as described in Performance Monitoring

Infrastructure. This infrastructure is compatible with and extends the JSR-077

specification.

PMI provides several types of interfaces to access performance data. A new JMX

API is introduced in this version, but the servlet and Java client interfaces are still

available for compatibility with Versions 3.5.5+ and 4.0+. These PMI interfaces are

used to create tools to help monitor and tune performance.

Performance data can be monitored and analyzed with:

v Tivoli Performance Viewer formerly known as Resource Analyzer, which is

included in WebSphere Application Server

v Other Tivoli Monitoring Tools

v User-developed monitoring tools

v Third-party monitoring tools

The Tivoli Performance Viewer uses the PMI Java client to provide graphical

displays and summary reports of collected data. For more information, see

Monitoring performance with Tivoli Performance Viewer (formerly Resource

Analyzer).

Performance Monitoring Infrastructure (PMI) Request Metrics

IBM WebSphere Application Server also collects data by timing requests as they

travel through the product components. PMI Request Metrics logs time spent in

major components, such as Web Server, Web container, Enterprise bean container,

and database. These data points are recorded in logs and can be written to

Application Response Time (ARM) agents used by Tivoli monitoring tools.

For more information about PMI Request Metrics, see Measuring data requests

(Performance Monitoring Infrastructure Request Metrics).

5.0.2

Performance Advisors

5.0.2

IBM WebSphere Application Server includes two performance advisors to

help tune systems for optimal performance. Both advisors use the PMI data to

suggest configuration changes to Object Request Broker (ORB) service thread pools,

© Copyright IBM Corp. 2003 1

Web container thread pools, connection pool size, persisted session size and time,

prepared statement cache size, and session cache size. The Runtime Performance

Advisor runs in the application server process, while the other advisor runs in the

Tivoli Performance Viewer (TPV). The following summary chart outlines the

difference between the two advisors. For more information, see the articles, Using

the Runtime Performance Advisor and Using the Performance Advisor in Tivoli

Performance Viewer.

 Runtime Performance

Advisor

Performance Advisor in

Tivoli Performance Viewer

(TPV)

Location of execution Application server TPV client

Location of tool Administrative console TPV

Output SystemOut.log file and

WebSphere run-time

messages in WebSphere

status panel in the

administrative console

TPV graphical user interface

(GUI)

Frequency of operation Every 10 seconds in

background

When you select refresh in

TPV

Types of advice v ORB service thread pools

v Web container thread

pools

v Connection pool size

v Persisted session size and

time

v Prepared statement cache

size

v Session cache size

v ORB service thread pools

v Web container thread

pools

v Connection pool size

v Persisted session size and

time

v Prepared statement cache

size

v Session cache size

v Dynamic cache size

v JVM heap size

v DB2 Performance

Configuration Wizard

2 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

Chapter 2. Monitoring performance

WebSphere Application Server collects data on run-time and applications through

the Performance Monitoring Infrastructure (PMI). Performance data can then be

monitored and analyzed with a variety of tools.

Steps for this task

1. Enable performance monitoring services in the application server through the

administrative console and enable performance monitoring services in the node

agent through the administrative console if running WebSphere Application

Server Network Deployment.

 In order to monitor performance data through the PMI interfaces, you must

first enable the performance monitoring service through the administrative

console and restart the server. If running in Network Deployment, you need to

enable PMI services on both the server and on the node agent and restart the

server and the node agent.

2. Collect the data.

 The monitoring levels that determine which data counters are enabled can be

set dynamically, without restarting the server. This can be done in one of the

following ways:

a. Enable data collection through the administrative console.

b. Enable performance monitoring services through Tivoli Performance Viewer

(formerly Resource Analyzer).

c. Enable performance monitoring services using the command line.
3. Monitor and analyze performance data.

 You can monitor and analyze data with several tools:

a. Monitor performance data with Tivoli Performance Viewer.

 This tool is included with WebSphere Application Server.

b. Monitor performance data with other Tivoli monitoring tools.

c. Monitor performance data with user-developed monitoring tools.

 Write your own applications to monitor performance data.

d. Monitor performance with third-party monitoring tools.

What to do next

WebSphere Application Server also collects data through PMI Request Metrics. This

feature times requests as they travel through WebSphere Application Server

components. For more information about PMI Request Metrics see the topic

″Measuring data requests (Performance Monitoring Infrastructure Request

Metrics)″.

Performance Monitoring Infrastructure

The Performance Monitoring Infrastructure (PMI) uses a client-server architecture.

The server collects performance data from various WebSphere Application Server

components. A client retrieves performance data from one or more servers and

processes the data.

© Copyright IBM Corp. 2003 3

As shown in the figure, the server collects PMI data in memory. This data consists

of counters such as servlet response time and data connection pool usage. The data

points are then retrieved using a Web client, Java client or JMX client. WebSphere

Application Server contains Tivoli Performance Viewer, a Java client which

displays and monitors performance data. See the topics Monitoring performance

with Tivoli Performance Viewer (formerly Resource Analyzer), Tivoli performance

monitoring and management solutions, Third-party performance monitoring and

management solutions, and Developing your own monitoring applications for

more information on monitoring tools″.

Web
Client

PmiClient
Java

Client

Tivoli
Performance

Viewer

JMX Client
Java Client

PerfServlet

.PerfMBean
App Server

PMI
Client

Wrapper

J2EE client

.PerfMBean
App Server

RMI/IIOP
or

SOAP

JMX
Connector

Cell Manager

Performance
data
and

application
server

HTTP

The figure shows the overall PMI architecture. On the right side, the server

updates and keeps PMI data in memory. The left side displays a Web client, Java

client and JMX client retrieving the performance data.

Performance data organization

Performance Monitoring Infrastructure (PMI) provides server-side monitoring and

a client-side API to retrieve performance data. PMI maintains statistical data within

the entire WebSphere Application Server domain, including multiple nodes and

servers. Each node can contain one or more WebSphere Application Servers. Each

server organizes PMI data into modules and submodules.

4 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

Instance

Counter

Enterprise beans

Bean1 Bean2

Server*

Node* PMI Client

Module

Resource
Analyzer

Methods

Avg Method RT

Avg Method RTNum DestroysGets Found Num Creates

Bean3

Hiearchy of data collections
used for performance reporting
to Resource Analyzer

Serve 2

Avg Method RT

EJB Module 1

entity stateful stateless

The Tivoli Performance Viewer, formerly the Resource Analyzer, organizes

performance data in a centralized hierarchy of the following objects:

v Node. A node represents a physical machine in the WebSphere Application

Server administrative domain.

v Server. A server is a functional unit that provides services to clients over a

network. No performance data is collected for the server itself.

v Module. A module represents one of the resource categories for which collected

data is reported to the performance viewer. Each module has a configuration file

in XML format. This file determines organization and lists a unique identifier for

each performance data in the module. Modules include enterprise beans, JDBC

connection pools, J2C connection pool, Java Virtual Machine (JVM) run time

(including Java Virtual Machine Profiler Interface (JVMPI)), servlet session

manager, thread pools, transaction manager, Web applications, Object Request

Broker (ORB), Workload Management (WLM), Web Services Gateway (WSGW),

and dynamic cache.

v Submodule. A submodule represents a fine granularity of a resource category

under the module. For example, ORB thread pool is a submodule of the thread

pool category. Submodules can contain other submodules.

v Counter. A counter is a data type used to hold performance information for

analysis. Each resource category (module) has an associated set of counters. The

data points within a module are queried and distinguished by the Mbean

ObjectNames or PerfDescriptors. Examples of counters include the number of

active enterprise beans, the time spent responding to a servlet request and the

number of kilobytes of available memory.

The Tivoli Performance Viewer allows users to view and manipulate the data for

counters. A particular counter type can appear in several modules. For example,

both the servlet and enterprise bean modules have a response time counter. In

addition, a counter type can have multiple instances within a module. For

example, in the figure above, both the Enterprise beans module and Bean1 have an

Avg Method RT counter.

Counters are enabled at the module level and can be enabled or disabled for

elements within the module. For example, in the figure, if the Enterprise beans

Chapter 2. Monitoring performance 5

module is enabled, its Avg Method RT counter is enabled by default. However,

you can then disable the Avg Method RT counter even when the rest of the

module counters are enabled. You can also, if desired, disable the Avg Method RT

counter for Bean1, but the aggregate response time reported for the whole module

will no longer include Bean1 data.

Each counter has a specified monitoring level: none, low, medium, high or

maximum. If the module is set to lower monitoring level than required by a

particular counter, that counter will not be enabled. Thus, if Bean1 has a medium

monitoring level, Gets Found and Num Destroys are enabled because they require

a low monitoring level. However, Avg Method RT is not enabled because it

requires a high monitoring level.

Data collection can affect performance of the application server. The impact

depends on the number of counters enabled, the type of counters enabled and the

monitoring level set for the counters.

ModuleTreeRoot

EJBModule

bean 1

webapp 1 webapp 2

bean 2 bean 3

methods

servlets

method 2

servlet 1 servlet 2

method 1

dataSource 1 dataSource 2

ConnPoolModule TranModule WebAppModule

The following PMI modules are available to provide statistical data:

v Enterprise bean module, enterprise bean, methods in a bean

 Data counters for this category report load values, response times, and life cycle

activities for enterprise beans. Examples include the average number of active

beans and the number of times bean data is loaded or written to the database.

Information is provided for enterprise bean methods and the remote interfaces

used by an enterprise bean. Examples include the number of times a method is

called and the average response time for the method. In addition, the Tivoli

Performance Viewer reports information on the size and use of a bean objects

cache or enterprise bean object pool. Examples include the number of calls

attempting to retrieve an object from a pool and the number of times an object is

found available in the pool.

6 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

v JDBC connection pools

 Data counters for this category contain usage information about connection

pools for a database. Examples include the average size of the connection pool

or number of connections, the average number of threads waiting for a

connection, the average wait time in milliseconds for a connection, and the

average time the connection is in use.

v J2C connection pool

 Data counters for this category contain usage information about the Java 2

Enterprise Edition (J2EE) Connector Architecture that enables enterprise beans to

connect and interact with procedural back-end systems, such as Customer

Information Control System (CICS), and Information Management System (IMS).

Examples include the number of managed connections or physical connections

and the total number of connections or connection handles.

v Java Virtual Machine API (JVM)

 Data counters for this category contain memory used by a process as reported

by Java Virtual Machine (JVM) run time. Examples are the total memory

available and the amount of free memory for the JVM. JVM run time also

includes data from the Java Machine Profiler Interface (JVMPI). This data

provides detailed information about the JVM running the application server.

v Object Request Broker (ORB)

 Data counters for this category contain information for the ORB. Examples

include the object reference lookup time, the total number of requests, and the

processing time for each interceptor.

v Servlet session manager

 Data counters for this category contain usage information for HTTP sessions.

Examples include the total number of accessed sessions, the average amount of

time it takes for a session to perform a request, and the average number of

concurrently active HTTP sessions.

v Java Transaction API (JTA)

 Data counters for this category contain performance information for the

transaction manager. Examples include the average number of active

transactions, the average duration of transactions, and the average number of

methods per transaction.

v Thread pool

 Data counters for this category contain information about the thread pools for

Object Request Broker (ORB) threads and the Web container pools used to

process HTTP requests. Examples include the number of threads created and

destroyed, the maximum number of pooled threads allowed, and the average

number of active threads in the pool.

v Web applications, servlet

 Data counters for this category contain information for the selected server.

Examples include the number of loaded servlets, the average response time for

completed requests, and the number of requests for the servlet.

v Workload Management (WLM)

 Data counters for this category contain information for workload management.

Examples include the number of requests, the number of updates and average

response time.

v System data

 Data counters for this category contain information for a machine (node).

Examples include the CPU utilization and memory usage. Note that this

Chapter 2. Monitoring performance 7

category is available at node level, which means it is only available at

NodeAgent in the multiple servers version.

v Dynamic cache

 Data counters for this category contain information for the dynamic cache

service. Examples include in memory cache size, number of invalidations and

number of hits and misses.

v Web Services Gateway (WSGW)

 Data counters for this category contain information for WSGW. Examples

include the number of synchronous and asynchronous requests and responses.

v Web Services

 Data counters for this category contain information for the web services.

Examples include number of loaded web services, number of requests delivered

and processed, request response time, and average size of requests.

v Alarm Manager

 Data counters for this category contain information for the Alarm Manager.

v Object Pool

 Data counters for this category contain information for Object Pools.

v Scheduler

 Data counters for this category contain information for the Scheduler service.

BeanModule data counters

Data counter definitions

 Name Description Version Granularity Type Level

creates Number of times

beans were

created

3.5.5 and above per home CountStatistic Low

removes Number of times

beans were

removed

3.5.5 and above per home CountStatistic Low

passivates Number of times

beans were

passivated (entity

and stateful)

3.5.5 and above per home CountStatistic Low

activates Number of times

beans were

activated (entity

and stateful)

3.5.5 and above per home CountStatistic Low

persistence loads Number of times

bean data was

loaded from

persistent storage

(entity)

3.5.5 and above per home CountStatistic Low

persistence stores Number of times

bean data was

stored in

persistent storage

(entity)

3.5.5 and above per home CountStatistic Low

instantiations Number of times

bean objects were

instantiated

3.5.5 and above per home CountStatistic Low

8 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

destroys Number of times

bean objects were

freed

3.5.5 and above per home CountStatistic Low

Num Ready Beans Number of

concurrently

ready beans

(entity and

session). This

counter was

called concurrent

active in Versions

3.5.5+ and 4.0.

3.5.5 and above per home RangeStatistic High

concurrent live Number of

concurrently live

beans

3.5.5 and above per home RangeStatistic High

avg method rsp time Average response

time in

milliseconds on

the bean methods

(home, remote,

local)

3.5.5 and above per home TimeStatistic High

avg method rsp time

for create

Average time in

milliseconds a

bean create call

takes including

the time for the

load if any

5.0 per home TimeStatistic Medium

avg method rsp time

for load

Average time in

milliseconds for

loading the bean

data from

persistent storage

(entity)

5.0 per home TimeStatistic Medium

avg method rsp time

for store

Average time in

milliseconds for

storing the bean

data to persistent

storage (entity)

5.0 per home TimeStatistic Medium

avg method rsp time

for remove

Average time in

milliseconds a

bean entries call

takes including

the time at the

database, if any

5.0 per home TimeStatistic Medium

total method calls total number of

method calls

3.5.5 and above per home CountStatistic High

avg method rsp time

for activation

Average time in

milliseconds a

beanActivate call

takes including

the time at the

database, if any

5.0 per home TimeStatistic Medium

Chapter 2. Monitoring performance 9

avg method rsp time

for passivation

Average time in

milliseconds a

beanPassivate call

takes including

the time at the

database, if any

5.0 per home TimeStatistic Medium

active methods Number of

concurrently

active methods -

num methods

called at the same

time.

3.5.5 and above per home TimeStatistic High

Per method

invocations

Number of calls

to the bean

methods (home,

remote, local)

3.5.5 and above per method/per

home

CountStatistic Max

Per method rsp time Average response

time in

milliseconds on

the bean methods

(home, remote,

local)

3.5.5 and above per home TimeStatistic Max

Per method concurrent

invocations

Number of

concurrent

invocations to call

a method

5.0 per method/per

home

RangeStatistic Max

getsFromPool Number of calls

retrieving an

object from the

pool (entity and

stateless)

3.5.5 and above per home/object

pool

CountStatistic Low

getsFound Number of times

a retrieve found

an object available

in the pool (entity

and stateless)

3.5.5 and above per home/object

pool

CountStatistic Low

returnsToPool Number of calls

returning an

object to the pool

(entity and

stateless)

3.5.5 and above per home/object

pool

CountStatistic Low

returnsDiscarded Number of times

the returning

object was

discarded because

the pool was full

(entity and

stateless)

3.5.5 and above per home/object

pool

CountStatistic Low

drainsFromPool Number of times

the daemon found

the pool was idle

and attempted to

clean it (entity

and stateless)

3.5.5 and above per home/object

pool

CountStatistic Low

10 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

avgDrainSize Average number

of objects

discarded in each

drain (entity and

stateless)

3.5.5 and above per home/object

pool

TimeStatistic Medium

avgPoolSize Number of objects

in the pool (entity

and stateless)

3.5.5 and above per home/object

pool

RangeStatistic High

messageCount Number of

messages

delivered to the

bean onMessage

method (message

driven beans)

5.0 per type CountStatistic Low

messageBackoutCount Number of

messages failed to

be delivered to

the bean

onMessage

method (message

driven beans)

5.0 per type CountStatistic Low

serverSessionWait Average time to

obtain a

ServerSession

from the pool

(message drive

bean)

5.0 per type TimeStatistic Medium

serverSessionUsage Percentage of

server session

pool in use

(message driven)

5.0 per type RangeStatistic High

JDBC connection pool data counters

PMI collects performance data for 4.0 and 5.0 JDBC data sources. For a 4.0 data

source, the data source name is used. For a 5.0 data source, the JNDI name is used.

The JDBC connection pool counters are used to monitor the JDBC data sources

performance. The data can be found by using the Tivoli Performance Viewer and

looking under each application server. Click application_server > JDBC connection

pool.

Data counter definitions

 Name Description Version Granularity Type Level

creates Total number of

connections created

3.5.5 and

above

per connection

pool

CountStatistic Low

avg pool size Average pool size 3.5.5 and

above

per connection

pool

BoundedRangeStatistic High

free pool size Average free pool

size

5.0 per connection

pool

BoundedRangeStatistic High

allocates Total number of

connections allocated

3.5.5 and

above

per connection

pool

CountStatistic Low

returns Total number of

connections returned

4.0 and

above

per connection

pool

CountStatistic Low

Chapter 2. Monitoring performance 11

avg waiting threads Number of threads

that are currently

waiting for a

connection

3.5.5 and

above

per connection

pool

RangeStatistic High

connection pool faults Total number of

faults, such as,

timeouts, in

connection pool

3.5.5 and

above

per connection

pool

CountStatistic Low

destroys Number of times

bean objects were

freed

3.5.5 and

above

per connection

pool

CountStatistic Low

avg wait time Average waiting time

in milliseconds until

a connection is

granted

5.0 per connection

pool

TimeStatistic Medium

avg time in use Average time a

connection is used

(Difference between

the time at which the

connection is

allocated and

returned. This

includes the JDBC

operation time.)

5.0 per connection

pool

TimeStatistic Medium

percent used Average percent of

the pool that is in use

3.5.5 and

above

per connection

pool

RangeStatistic High

percent maxed Average percent of

the time that all

connections are in use

3.5.5 and

above

per connection

pool

RangeStatistic High

Statement cache discard

count

Total number of

statements discarded

by the LRU algorithm

of the statement

cache

4.0 and

above

per connection

pool

CountStatistic Low

Number managed

connections

Number of

ManagedConnection

objects in use

5.0 per connection

factory

CountStatistic Low

Number connections Current number of

connection objects in

use

5.0 per connection

factory

CountStatistic Low

jdbcOperationTimer Amount of time in

milliseconds spent

executing in the JDBC

driver (includes time

spent in JDBC driver,

network and

database)

5.0 per data source TimeStatistic Medium

J2C connection pool data counters

The J2C connection pool data counters are used to monitor the J2C connection pool

performance. The data can be found by using the Tivoli Performance Viewer and

looking under each application server. Click application_server > J2C connection

pool.

12 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

Data counter definitions

 Name Description Version Granularity Type Level

Number managed

connections

Number of

ManagedConnection

objects in use

5.0 per connection

factory

CountStatistic Low

Number connections Current number of

connection objects in

use

5.0 per connection

factory

CountStatistic Low

Number managed

connections created

Total number of

connections created

5.0 per connection

factory

CountStatistic Low

Number managed

connections destroyed

Total number of

connections destroyed

5.0 per connection

factory

CountStatistic Low

Number managed

connections allocated

Total number of

connections allocated

5.0 per connection

factory

CountStatistic Low

Number managed

connections freed

Total number of

connections freed

5.0 per connection

factory

CountStatistic Low

faults Number of faults, such

as timeouts, in

connection pool

5.0 per connection

factory

CountStatistic Low

free pool size Number of free

connections in the pool

5.0 per connection

factory

BoundedRangeStatistic High

pool size Pool size 5.0 per connection

factory

BoundedRangeStatistic High

concurrent waiters Average number of

threads concurrently

waiting for a

connection

5.0 per connection

factory

RangeStatistic High

Percent used Average percent of the

pool that is in use

5.0 per connection

factory

RangeStatistic High

Percent maxed Average percent of the

time that all

connections are in use

5.0 per connection

factory

RangeStatistic High

Average wait time Average waiting time

in milliseconds until a

connection is granted

5.0 per connection

factory

TimeStatistic Medium

Average use time Average time in

milliseconds that

connections are in use

5.0 per connection

factory

TimeStatistic Medium

Java Virtual Machine data counters

The Java Virtual Machine (JVM) data counters are used to monitor the JVM

performance. With an exception to the data counters used for total, used and free

heap size, the data counters can be found using the Java Virtual Machine Profiler

Interface (JVMPI). In order to use JVMPI, you must turn on the monitoring by

settting the -XrunpmiJvmpiProfiler command line. See Enabling Java Virtual

Machine Profiler Interface data reporting

Data counter definitions

 Name Description Version Granularity Type Level

Chapter 2. Monitoring performance 13

Free memory Free memory in JVM

run time

3.5.5 and

above

per Java Virtual

Machine (JVM)

CountStatistic Low

Used memory Used memory in JVM

run time

3.5.5 and

above

per JVM CountStatistic Low

Total memory Total memory in JVM

run time

3.5.5 and

above

per JVM BoundedRangeStatistic.

The upperBound and

lowerBound are not

implemented for the

Total memory counter.

High

Up time The amount of time the

JVM is running

5.0 per JVM CountStatistic Low

Number garbage

collection calls

Number of garbage

collection calls. This

counter is not available

unless

-XrunpmiJvmpiProfiler

is set when starting the

JVM.

4.0 and

above

per JVM CountStatistic Max

Average time between

garbage collection

Average garbage

collection in seconds

between two garbage

collection. This counter

is not available unless

-XrunpmiJvmpiProfiler

is set when starting the

JVM.

4.0 and

above

per JVM TimeStatistic Max

Average garbage

collection duration

Average duration of a

garbage collection. This

counter is not available

unless

-XrunpmiJvmpiProfiler

is set when starting the

JVM.

4.0 and

above

per JVM TimeStatistic Max

num waits for a lock Number of times that a

thread waits for a

lock.This counter is not

available unless

-XrunpmiJvmpiProfiler

is set when starting the

JVM.

4.0 and

above

per JVM CountStatistic Max

avg time waiting for

lock

Average time that a

thread waits for a lock.

This counter is not

available unless

-XrunpmiJvmpiProfiler

is set when starting the

JVM.

4.0 and

above

per JVM TimeStatistic Max

Number of objects

allocated

Number of objects

allocated in heap. This

counter is not available

unless

-XrunpmiJvmpiProfiler

is set when starting the

JVM.

4.0 and

above

per JVM CountStatistic Max

14 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

Number of objects

found

Number of objects in

heap. This counter is

not available unless

-XrunpmiJvmpiProfiler

is set when starting the

JVM.

4.0 and

above

per JVM CountStatistic Max

Number of objects

freed

Number of objects

freed in heap. This

counter is not available

unless

-XrunpmiJvmpiProfiler

is set when starting the

JVM.

4.0 and

above

per JVM CountStatistic Max

Object Request Broker data counters

Data counter definitions

 Name Description Version Granularity Type Level

referenceLookupTime The time (in

milliseconds) to look up

an object reference

before method dispatch

can be carried out

5.0 Object

Request

Broker

(ORB)

TimeStatistic Medium

numRequest The total number of

requests sent to the ORB

5.0 ORB CountStatistic Low

concurrentRequests The number of requests

that are concurrently

processed by the ORB

5.0 ORB RangeStatistic High

processingTime The time (in

milliseconds) it takes a

registered portable

interceptor to run

5.0 per

interceptor

TimeStatistic Medium

Session data counters

Data counter definitions

 Name Description Version Granularity Type Level

createdSessions Number of sessions

created

3.5.5 and

above

per web

application

CountStatistic Low

invalidatedSessions Number of sessions

invalidated

3.5.5 and

above

per web

application

CountStatistic Low

sessionLifeTime The average session

lifetime

3.5.5 and

above

per web

application

TimeStatistic Medium

activeSessions The number of

concurrently active

sessions. A session is

active if WebSphere

is currently

processing a request

which uses that

session.

3.5.5 and

above

per web

application

RangeStatistic High

Chapter 2. Monitoring performance 15

liveSession The number of

sessions that are

currently cached in

memory

5.0 and

above

per web

application

RangeStatistic High

NoRoomForNewSession Applies only to

session in memory

with

AllowOverflow=false.

The number of times

that a request for a

new session can not

be handled because

it would exceed the

maximum session

count.

5.0 per Web

application

CountStatistic Low

cacheDiscards Number of session

objects that have

been forced out of

the cache. (An LRU

algorithm removes

old entries to make

room for new

sessions and cache

misses). Applicable

only for persistent

sessions.

5.0 per Web

application

CountStatistic Low

externalReadTime Time (milliseconds)

taken in reading the

session data from

persistent store. For

multirow sessions,

the metrics are for

the attribute; for

single row sessions,

the metrics are for

the whole session.

Applicable only for

persistent sessions.

When using a JMS

persistent store, the

user has the choice

of whether to

serialize the data

being replicated. If

they choose not to

serialize the data,

the counter will not

be available.

5.0 per Web

application

TimeStatistic Medium

externalReadSize Size of session data

read from persistent

store. Applicable

only for (serialized)

persistent sessions;

similar to

externalReadTime

above.

5.0 per Web

application

TimeStatistic Medium

16 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

externalWriteTime Time (milliseconds)

taken to write the

session data from

the persistent store.

Applicable only for

(serialized) persistent

sessions. Similar to

externalReadTime

above.

5.0 per Web

application

TimeStatistic Medium

externalWriteSize Size of session data

written to persistent

store. Applicable

only for (serialized)

persistent sessions.

Similar to

externalReadTime

above.

5.0 per Web

application

TimeStatistic Medium

affinityBreaks The number of

requests received for

sessions that were

last accessed from

another Web

application. This can

indicate failover

processing or a

corrupt plug-in

configuration.

5.0 per Web

application

CountStatistic Low

serializableSessObjSize The size in bytes of

(the serializable

attributes of)

in-memory sessions.

Only count session

objects that contain

at least one

serializable attribute

object. Note that a

session may contain

some attributes that

are serializable and

some that are not.

The size in bytes is

at a session level.

5.0 per Web

application

TimeStatistic Max

timeSinceLastActivated The time difference

in milliseconds

between previous

and current access

time stamps. Does

not include session

time out.

5.0 per Web

application

TimeStatistic Medium

invalidatedViaTimeout The number of

requests for a

session that no

CountStatistic exists,

presumeably because

the session timed

out.

5.0 per Web

application

CountStatistic Low

Chapter 2. Monitoring performance 17

attemptToActivateNotExistentSession Number of requests

for a session that no

longer exists,

presumeably because

the session timed

out. Use this counter

to help determine if

the timeout is too

short.

5.0 per Web

application

CountStatistic Low

Transaction data counters

Data counter definitions

 Name Description Version Granularity Type Level

Number global

transactions

begun

Total number of

global

transactions

begun on server

4.0 and above per transaction

manager/server

CountStatistic Low

Number global

transactions

involved

Total number of

global trans

involved on

server (for

example, begun

and imported)

4.0 and above per transaction

manager/server

CountStatistic Low

Number local

transactions

begun

Total number of

local transactions

begun on server

4.0 and above per transaction

manager/server

CountStatistic Low

Active global

transactions

Number of

concurrently

active global

transactions

3.5.5 and above per transaction

manager/server

CountStatistic Low

Active local

transactions

Number of

concurrently

active local

transactions

4.0 and above per transaction

manager/server

CountStatistic Low

Global

transactions

duration

Average duration

of global

transactions

3.5.5 and above per transaction

manager/server

TimeStatistic Medium

Local transaction

duration

Average duration

of local

transactions

4.0 and above per transaction

manager/server

TimeStatistic Medium

Local transactions

before_completion

time

Average duration

of

before_completion

for local

transactions

4.0 and above per transaction

manager or server

TimeStatistic Medium

Global transaction

commit time

Average duration

of commit for

global

transactions

4.0 and above per transaction

manager/server

TimeStatistic Medium

18 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

Global transaction

prepare time

Average duration

of prepare for

global

transactions

4.0 and above per transaction

manager/server

TimeStatistic Medium

Local transaction

before_completion

time

Average duration

of

before_completion

for local

transactions

4.0 and above per transaction

manager/server

TimeStatistic Medium

Local transaction

commit time

Average duration

of commit for

local transactions

4.0 and above per transaction

manager/server

TimeStatistic Medium

Number global

transactions

committed

Total number of

global

transactions

committed

3.5.5 and above per transaction

manager/server

CountStatistic Low

Number of global

transactions

rolled back

Total number of

global

transactions

rolled back

3.5.5 and above per transaction

manager/server

CountStatistic Low

Number global

transactions

optimized

Number of global

transactions

converted to

single phase for

optimization

4.0 and above per transaction

manager/server

CountStatistic Low

Number of local

transactions

committed

Number of local

transactions

committed

4.0 and above per transaction

manager/server

CountStatistic Low

Number of local

transactions

rolled back

Number of local

transactions

rolled back

4.0 and above per transaction

manager/server

CountStatistic Low

Number of global

transactions

timed out

Number of global

transactions

timed out

4.0 and above per transaction

manager/server

CountStatistic Low

Number of local

transactions

timed out

Number of local

transactions

timed out

4.0 and above per transaction

manager/server

CountStatistic Low

ThreadPool data counters

Data counter definitions

 Name Description Version Granularity Type Level

Thread creates Total number of

threads created

3.5.5 and above per thread pool CountStatistic Low

Thread destroys Total number of

threads destroyed

3.5.5 and above per thread pool CountStatistic Low

Active threads The number of

concurrently

active threads

3.5.5 and above per thread pool RangeStatistic High

Pool size Average number

of threads in pool

3.5.5 and above per thread pool BoundedRangeStatistic High

Chapter 2. Monitoring performance 19

Percent maxed Average percent

of the time that

all threads are in

use

3.5.5 and above per thread pool RangeStatistic High

Web application data counters

Data counter definitions

 Name Description Version Granularity Type Level

numLoadedServlets Number of servlets that

were loaded

3.5.5 and

above

per Web

application

CountStatistic Low

numReloads Number of servlets that

were reloaded

3.5.5 and

above

per Web

application

CountStatistic Low

totalRequests Total number of

requests a servlet

processed

3.5.5 and

above

per servlet CountStatistic Low

concurrentRequests Number of requests

that are concurrently

processed

3.5.5 and

above

per servlet RangeStatistic High

responseTime The response time, in

milliseconds, of a

servlet request

3.5.5 and

above

per servlet TimeStatistic Medium

numErrors Total number of errors

in a servlet or Java

Server Page (JSP)

3.5.5 and

above

per servlet CountStatistic Low

Workload Management data counters

Data counter definitions

 Name Description Version Granularity Type Level

numIncomingRequests Total number of

incoming IIOP

requests to an

application server

5.0 per server CountStatistic Low

20 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

numIncomingStrongAffinityRequests Number of incoming

IIOP requests to an

application server

that are based on a

strong affinity. A

strong affinity

request is defined as

a request that must

be serviced by this

application server

because of a

dependency that

resides on the server.

This request could

not successfully be

serviced on another

member in the

server cluster. In

Version 5.0 ND

edition, transactional

affinity is the only

example of a strong

affinity

5.0 per server CountStatistic Low

numIncomingNonAffinityRequests Number of incoming

IIOP requests to an

application server

based on no affinity.

This request was

sent to this server

based on workload

management

selection policies

that were decided in

the Workload

Management (WLM)

run time of the

client.

5.0 per server CountStatistic Low

numIncomingNonWLMObjectRequests Number of incoming

IIOP requests to an

application server

that came from a

client that does not

have the WLM run

time present or

where the object

reference on the

client was flagged

not to participate in

workload

management.

5.0 per server CountStatistic Low

Chapter 2. Monitoring performance 21

numServerClusterUpdates Number of times

initial or updated

server cluster data is

sent to a server

member from the

deployment

manager. This metric

determines how

often cluster

information is being

propagated.

5.0 per server CountStatistic Low

numOfWLMClientServiced Number of WLM

enabled clients that

have been serviced

by this application

server.

5.0 per server CountStatistic Low

numOfConcurrentRequests Number of remote

IIOP requests

currently being

processed by this

server

5.0 per server RangeStatistic High

serverResponseTime The response time

(in milliseconds) of

IIOP requests being

serviced by an

application server.

The response time is

calculated based on

the time the request

is received to the

time when the reply

is sent back out.

5.0 per server TimeStatistic Medium

numOfOutgoingRequests The total number of

outgoing IIOP

requests being sent

from a client to an

application server

5.0 per WLM CountStatistic Low

numClientClusterUpdates The number of times

initial or updated

server cluster data is

sent to a WLM

enabled client from

server cluster

member. Use this

metric to determine

how often cluster

information is being

propagated.

5.0 per WLM CountStatistic Low

22 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

clientResponseTime The response time

(in milliseconds) of

IIOP requests being

sent from a client.

The response time is

calculated based on

the time the request

is sent from the

client to the time the

reply is received

from the server.

5.0 per WLM TimeStatistic Medium

System data counters

Data counter definitions

 Name Description Version Granularity Type Level

percentCpuUsage The average system

CPU utilization taken

over the time interval

since the last reading.

Because the first call is

required to perform

initialization, an invalid

value such as 0 will be

returned. All

subsequent calls will

return the expected

value. On SMP

machines, the value

returned will be the

utilization averaged

over all CPUs.

5.0 per node CountStatistic Low

freeMemory The amount of real free

memory available on

the system. Real

memory that is not

allocated is only a

lower bound on

available real memory,

since many operating

systems take some of

the otherwise

unallocated memory

and use it for

additional I/O

buffering. The exact

amount of buffer

memory which can be

freed up is dependent

on both the platform

and the application(s)

running on it.

5.0 per node CountStatistic Low

avgCpuUsage The average

percentCpuUsage that

is busy after the server

is started

5.0 per node TimeStatistic Medium

Chapter 2. Monitoring performance 23

Dynamic cache data counters

Data counter definitions

 Name Description Version Granularity Type Level

maxInMemoryCacheSize Maximum number

of in-memory cache

entries

5.0 per server CountStatistic Low

inMemoryCacheSize Current number of

in-memory cache

entries

5.0 per server CountStatistic Low

totalTimeoutInvalidation Aggregate of

template timeouts

and disk timeouts

5.0 per server CountStatistic Low

hitsInMemory Requests for this

cacheable object

served from memory

5.0 per template CountStatistic Low

hitsOnDisk Requests for this

cacheable object

served from disk

5.0 per template CountStatistic Low

explicitInvalidations Total explicit

invalidation issued

for this template

5.0 per template CountStatistic Low

lruInvalidations Cache entries evicted

from memory by a

Least Recently Used

algorithm. These

entries are

passivated to disk if

disk overflow is

enabled.

5.0 per template CountStatistic Low

timeoutInvalidations Cache entries evicted

from memory

and/or disk because

their timeout has

expired

5.0 per template CountStatistic Low

Entries Current number of

cache entries created

from this template.

Refers to the

per-template

equivalent of

totalCacheSize.

5.0 per template CountStatistic Low

hitsRemove Requests for this

cacheable object

served from other

Java Virtual

Machines (JVM) in

the cluster

5.0 per template CountStatistic Low

Misses Requests for this

cacheable object that

were not found in

the cache

5.0 per template CountStatistic Low

24 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

RequestFromClient Requests for this

cacheable object

generated by

applications running

on the application

server

5.0 per template CountStatistic Low

requestsFromJVM Requests for this

cacheable object

generated by

cooperating caches

in this cluster

5.0 per template CountStatistic Low

explicitInvalidationsFromMemory Explicit invalidations

resulting in an entry

being removed from

memory

5.0 per template CountStatistic Low

explicitInvalidationsFromDisk Explicit invalidations

resulting in an entry

being removed from

disk

5.0 per template CountStatistic Low

explicitInvalidationsNoOp Explicit invalidations

received for this

template where no

corresponding entry

exists

5.0 per template CountStatistic Low

explicitInvalidationsLocal Explicit invalidations

generated locally,

either

programmatically or

by a cache policy

5.0 per template CountStatistic Low

explicitInvalidationsRemote Explicit invalidations

received from a

cooperating JVM in

this cluster

5.0 per template CountStatistic Low

remoteCreations Entries received

from cooperating

dynamic caches

5.0 per template CountStatistic Low

Web Services Gateway (WSGW) data counters

Data counter definitions

 Name Description Version Granularity Type Level

synchronousRequests Number of

synchronous requests

that were made

5.0 per Web service CountStatistic Low

synchronousResponses Number of

synchronous responses

that were made

5.0 per Web service CountStatistic Low

asynchronousRequests Number of

asynchronous requests

that were made

5.0 per Web service CountStatistic Low

Chapter 2. Monitoring performance 25

asynchronousResponses Number of

asynchronous

responses that were

made

5.0 per Web service CountStatistic Low

Web services data counters

Data counter definitions

 Name Description Version Granularity Type Level

numLoadedServices Number of loaded

Web services

5.02 and above per service CountStatistic Low

numberReceived Number of requests

service received

5.02 and above per Web

service

CountStatistic Low

numberDispatched Number of requests

service

dispatched/delivered

5.02 and above per web

service

CountStatistic Low

numberSuccessful Number of requests

service successfully

processed

5.02 and above per web

service

TimeStatistic Low

responseTime The average response

time, in milliseconds,

for a successful request

5.02 and above per web

service

TimeStatistic Medium

requestResponseTime The average response

time, in milliseconds,

to prepare a request

for dispatch

5.02 and above per web

service

TimeStatistic Medium

dispatchResponseTime The average response

time, in milliseconds,

to dispatch a request

5.02 and above per web

service

TimeStatistic Medium

replyResponseTime The average response

time, in milliseconds,

to prepare a reply after

dispatch

5.02 and above per web

service

TimeStatistic Medium

size The average payload

size in bytes of a

received request/reply

5.02 and above per web

service

TimeStatistic Medium

requestSize The average payload

size in bytes of a

request

5.02 and above per web

service

TimeStatistic Medium

replySize The average payload

size in bytes of a reply

5.02 and above per web

service

TimeStatistic Medium

Alarm Manager data counters

Data counter definitions

 Name Description Version Granularity Type Level

26 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

Alarms created Total number of

alarms created by

all Asynchronous

scopes for this

WorkManager

5.0 and above per WorkManager CountStatistic High

Alarms cancelled Number of

alarms cancelled

by the application

5.0 and above per WorkManager CountStatistic High

Alarms fired Number of

alarms fired

5.0 and above per WorkManager CountStatistic High

Alarm latency Latency of alarms

fired in

milliseconds

5.0 and above per WorkManager RangeStatistic High

Alarms pending Number of

alarms waiting to

fire

5.0 and above per WorkManager RangeStatistic High

Alarms per sec The number of

alarms firing per

second

5.0 and above per WorkManager RangeStatistic High

Object Pool data counters

Data counter definitions

 Name Description Version Granularity Type Level

Objects created Total number of

objects created

5.0 and above per ObjectPool CountStatistic High

Objects allocated Number of

objects requested

from the pool

5.0 and above per ObjectPool CountStatistic High

Objects returned Number of

objects returned

to the pool

5.0 and above per ObjectPool CountStatistic High

Object idle Average number

of idle object

instances in the

pool

5.0 and above per ObjectPool RangeStatistic High

Scheduler data counters

Data counter definitions

 Name Description Version Granularity Type Level

Failed tasks Number of tasks

that have failed to

execute

5.0 and above per Scheduler CountStatistic High

Executed tasks Number of tasks

that have

executed

successfully

5.0 and above per Scheduler CountStatistic High

Chapter 2. Monitoring performance 27

Number of polls Number of poll

cycles that have

completed for all

daemon threads

5.0 and above per Scheduler CountStatistic High

Tasks per second Number of tasks

executed per

second

5.0 and above per Scheduler RangeStatistic High

Collisions per sec Number of

collisions

encountered per

second between

competing poll

daemons

5.0 and above per Scheduler RangeStatistic High

Time for poll Execution time in

milliseconds for

each poll daemon

thread’s database

poll query

5.0 and above per Scheduler RangeStatistic High

Task execution

Time

Number of tasks

that were loaded

by each poll

daemon thread.

(Multiply this

number by the

number of poll

daemon threads

to get the tasks

expiring per

effective poll

cycle.)

5.0 and above per Scheduler RangeStatistic High

Tasks expiring

per poll

Number of tasks

in a poll query

5.0 and above per Scheduler RangeStatistic High

Task latency Period of time

that the task is

delayed

5.0 and above per Scheduler RangeStatistic High

Poll time Number of

seconds between

poll cycles

5.0 and above per Scheduler RangeStatistic High

Tasks executed

per poll

Number of tasks

that were

executed by each

poll daemon

thread. (Multiply

this by the

number of poll

daemon threads

to get the tasks

executed per

effective poll

cycle.)

5.0 and above per Scheduler RangeStatistic High

28 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

Performance data classification

Performance Monitoring Infrastructure provides server-side data collection and

client-side API to retrieve performance data. Performance data has two

components: static and dynamic.

The static component consists of a name, ID and other descriptive attributes to

identify the data. The dynamic component contains information that changes over

time, such as the current value of a counter and the time stamp associated with

that value.

The PMI data can be one of the following statistical types defined in the JSR-077

specification:

v CountStatistic

v BoundaryStatistic

v RangeStatistic

v TimeStatistic

v BoundedRangeStatistic

RangeStatistic data contains current value, as well as lowWaterMark and

highWaterMark.

In general, CountStatistic data require a low monitoring level and TimeStatistic data

require a medium monitoring level. RangeStatistic and BoundedRangeStatistic

require a high monitoring level.

There are a few counters that are exceptions to this rule. The average method

response time, the total method calls, and active methods counters require a high

monitoring level. The Java Virtual Machine Profiler Interface (JVMPI) counters,

SerializableSessObjSize, and data tracked for each individual method (method level

data) require a maximum monitoring level.

name: String
unit: String
descriptions: String
startTime: long

Statistic

count: long

CountStatistic

upperBound: long
lowerBound: long

highWaterMark: long
lowWaterMark: long

count: long
maxTime: long
minTime: long
totalTime: long
RequestRate: double

BoundaryStatistic RangeStatistic TimeStatistic

BoundedRangeStatistic

In previous versions, PMI data was classified with the following types:

Chapter 2. Monitoring performance 29

v Numeric: Maps to CountStatistic in the JSR-077 specification. Holds a single

numeric value that can either be a long or a double. This data type is used to

keep track of simple numeric data, such as counts.

v Stat: Holds statistical data on a sample space, including the number of elements

in the sample set, their sum, and sum of squares. You can obtain the mean,

variance, and standard deviation of the mean from this data.

v Load: Maps to the RangeStatistic or BoundedRangeStatistic, based on JSR-077

specification. This data type keeps track of a level as a function of time,

including the current level, the time that level was reached, and the integral of

that level over time. From this data, you can obtain the time-weighted average

of that level. For example, this data type is used in the number of active threads

and the number of waiters in a queue.

These PMI data types continue to be supported through the PMI API. Statistical

data types are supported through both the PMI API and Java Management

Extension (JMX) API.

The TimeStatistic type keeps tracking many counter samples and then returns the

total, count and average of the samples. An example of this is an average method

response time. Given the nature of this statistic type, it is also used to track

non-time related counters, like average read and write size. You can always call

getUnit method on the data configuration information to learn the unit for the

counter.

In order to reduce the monitoring overhead, numeric and stat data are not

synchronized. Since these data track the total and average, the extra accuracy is

generally not worth the performance cost. Load data is very sensitive, therefore,

load counters are always synchronized. In addition, when the monitoring level of a

module is set to max, all numeric data are also synchronized to guarantee accurate

values.

Enabling performance monitoring services in the application server

through the administrative console

To monitor performance data through the performance monitoring infrastructure

(PMI) interfaces, you must first enable PMI services through the administrative

console.

Steps for this task

 1. Open the administrative console.

 2. Click Servers > Application Servers in the console navigation tree.

 3. Click server.

 4. Click the Configuration tab.

 When in the Configuration tab, settings will apply once the server is restarted.

When in the Runtime Tab, settings will apply immediately. Note that

enablement of Performance Monitoring Service can only be done in the

Configuration tab.

 5. Click Performance Monitoring Service.

 6. Select the checkbox Startup.

 7. (Optional) Select the PMI modules and levels to set the initial specification

level field.

 8. Click Apply or OK.

30 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

9. Click Save.

10. Restart the application server.

 The changes you make will not take affect until you restart the application

server.

What to do next

When running in WebSphere Application Server Network Deployment, be sure to

Enable performance monitoring services in the NodeAgent through the

administrative console.

Enabling performance monitoring services in the NodeAgent through

the administrative console

To monitor performance data through the performance monitoring infrastructure

(PMI) interfaces, you must first enable PMI services through the administrative

console.

Steps for this task

1. Open the administrative console.

2. Click System Administration > NodeAgents in the console navigation tree.

3. Click node_agent.

4. Click Performance Monitoring Service.

5. Select the checkbox Startup.

6. (Optional) Select the PMI modules and levels to set the initial specification

level field.

7. Click Apply or OK.

8. Click Save.

9. Restart the NodeAgent.

 The changes you make will not take affect until you restart the NodeAgent.

What to do next

When in the Configuration tab, settings will apply once the server is restarted.

When in the Runtime Tab, settings will apply immediately. Note that enablement

of Performance Monitoring Service can only be done in the Configuration tab.

Enabling performance data collection through the administrative

console

To enable data collection in the administrative console, select the Performance

Monitoring Infrastructure (PMI) modules and levels that you want to monitor.

Steps for this task

1. Open the administrative console.

2. Click Servers > Application Servers in the console navigation tree.

3. Click server.

4. Click the Runtime tab.

5. Click Performance Monitoring Service.

6. Select the PMI modules and levels to set the initial specification level field.

Chapter 2. Monitoring performance 31

7. Click Apply or OK.

8. Click Save.

What to do next

These changes will take effect immediately, but will not be persistent. Use the

Configuration tab for a persistent change. See the InfoCenter article Enabling PMI

services through the administrative console for more information about making a

persistent change.

Performance monitoring service settings

Use this page to specify settings for performance monitoring, including enabling

performance monitoring, selecting the PMI module and setting monitoring levels.

To view this administrative console page, click Servers > Application Servers >

server > Performance Monitoring.

Startup

Specifies whether the application server attempts to start the specified service. If an

application server is started when the performance monitoring service is disabled,

you will have to restart the server in order to enable it.

Initial specification level

Specifies a Performance Monitoring Infrastructure (PMI) string that stores PMI

specification levels, for example module levels, for all components in the server.

Set the PMI specification levels by selecting the none, standard or custom checkbox.

If you choose none, all PMI modules are set to the none level. Choosing standard,

sets all PMI modules to high and enables all PMI data excluding the method level

data and JVMPI data. Choosing custom, gives you the option to change the level

for each individual PMI module. You can set the level to N, L, M, H or X (none,

low, medium, high and maximum). Note that you should not change the module

names.

Specifications

Specifies the PMI module and monitoring level that you have set.

Set the PMI specification levels by selecting the none, standard or custom checkbox.

If you choose none, all PMI modules are set to the none level. Choosing standard,

sets all PMI modules to high and enables all PMI data excluding the method level

data and JVMPI data. Choosing custom, gives you the option to change the level

for each individual PMI module. You can set the level to N, L, M, H or X (none,

low, medium, high and maximum). Note that you should not change the module

names.

Enabling performance monitoring services using the command line

You can use the command line to enable performance monitoring services.

Steps for this task

1. Enable PMI services through the administrative console.

 Make sure to restart the application server.

2. (Run the wsadmin command).

 Using wsadmin, you can invoke operations on Perf Mbean to obtain the PMI

data, set or obtain PMI monitoring levels and enable data counters.

32 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

The following operations in Perf MBean can be used in wsadmin:

 /** Set instrumentation level using String format

* This should be used by scripting for an easy String processing

*/ The level STR is a list of moduleName=Level connected by ":".

public void setInstrumentationLevel(String levelStr, Boolean recursive);

/** Get instrumentation level in String for all the top level modules

* This should be used by scripting for an easy String processing

*/ public String getInstrumentationLevelString();

 /** Return the PMI data in String

*

*/ public String getStatsString(ObjectName on, Boolean recursive);

/** Return the PMI data in String

* Used for PMI modules/submodules without direct MBean mappings.

*/ public String getStatsString(ObjectName on, String submoduleName,

Boolean recursive);

/**

* Return the submodule names if any for the MBean

*/

public String listStatMemberNames(ObjectName on);

 If an MBean is a StatisticProvider and if you pass its ObjectName to

getStatsString, you will get the Statistic data for that MBean. MBeans with the

following MBean types are statistic providers:

v DynaCache

v EJBModule

v EntityBean

v JDBCProvider

v J2CResourceAdapter

v JVM

v MessageDrivenBean

v ORB

v Server

v SessionManager

v StatefulSessionBean

v StatelessSessionBean

v SystemMetrics

v ThreadPool

v TransactionService

v WebModule

v Servlet

v WLMAppServer

v WebServicesService

v WSGW

Usage scenario

The following are sample commands in wsadmin you can use to obtain PMI data:

Obtain the Perf MBean ObjectName

wsadmin>set perfName [$AdminControl completeObjectName type=Perf,*]

wsadmin>set perfOName [$AdminControl makeObjectName $perfName]

Chapter 2. Monitoring performance 33

Invoke getInstrumentationLevelString operation

v use invoke since it has no parameter

 wsadmin>$AdminControl invoke $perfName getInstrumentationLevelString

This command returns the following:

beanModule=H:cacheModule=H:connectionPoolModule=H:j2cModule=H:jvmRuntimeModule=H

:orbPerfModule=H:servletSessionsModule=H:systemModule=H:threadPoolModule=H

:trans actionModule=H:webAppModule=H

Note that you can change the level (n, l, m, h, x) in the above string and then pass

it to setInstrumentationLevel method.

Invoke setInstrumentationLevel operation

v set parameters (″pmi=l″ is the simple way to set all modules to the low level)

 wsadmin>set params [java::new {java.lang.Object[]} 2]

wsadmin>$params set 0 [java::new java.lang.String pmi=l]

wsadmin>$params set 1 [java::new java.lang.Boolean true]

v set signatures

 wsadmin>set sigs [java::new {java.lang.String[]} 2]

wsadmin>$sigs set 0 java.lang.String

wsadmin>$sigs set 1 java.lang.Boolean

v invoke the method: use invoke_jmx since it has parameter

 wsadmin>$AdminControl invoke_jmx $perfOName setInstrumentationLevel $params $sigs

This command does not return anything.

The PMI level string can be as simple as pmi=level (where level is n, l, m, h, or x)

or something like module1=level1:module2=level2:module3=level3 with the same

format shown in the string returned from getInstrumentationLevelString.

Invoke getStatsString(ObjectName, Boolean) operation As an example, JVM

MBean is used here.

v get MBean query string - e.g., JVM MBean

 wsadmin>set jvmName [$AdminControl completeObjectName type=JVM,*]

v set parameters

 wsadmin>set params [java::new {java.lang.Object[]} 2]

wsadmin>$params set 0 [$AdminControl makeObjectName $jvmName]

wsadmin>$params set 1 [java::new java.lang.Boolean true]

v set signatures

 wsadmin>set sigs [java::new {java.lang.String[]} 2]

wsadmin>$sigs set 0 javax.management.ObjectName wsadmin>$sigs set 1 java.lang.Boolean

v invoke method

 wsadmin>$AdminControl invoke_jmx $perfOName getStatsString $params $sigs

This command returns the following:

{Description jvmRuntimeModule.desc} {Descriptor {{Node wenjianpc} {Server server

1} {Module jvmRuntimeModule} {Name jvmRuntimeModule} {Type MODULE}}} {Level 7} {

Data {{{Id 4} {Descriptor {{Node wenjianpc} {Server server1} {Module jvmRuntimeM

odule} {Name jvmRuntimeModule} {Type DATA}}} {PmiDataInfo {{Name jvmRuntimeModul

e.upTime} {Id 4} {Description jvmRuntimeModule.upTime.desc} {Level 1} {Comment {

The amount of time in seconds the JVM has been running}} {SubmoduleName null} {T

ype 2} {Unit unit.second} {Resettable false}}} {Time 1033670422282} {Value {Coun

t 638} }} {{Id 3} {Descriptor {{Node wenjianpc} {Server server1} {Module jvmRunt

imeModule} {Name jvmRuntimeModule} {Type DATA}}} {PmiDataInfo {{Name jvmRuntimeM

odule.usedMemory} {Id 3} {Description jvmRuntimeModule.usedMemory.desc} {Level 1

34 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

} {Comment {Used memory in JVM runtime}} {SubmoduleName null} {Type 2} {Unit uni

t.kbyte} {Resettable false}}} {Time 1033670422282} {Value {Count 66239} }} {{Id

2} {Descriptor {{Node wenjianpc} {Server server1} {Module jvmRuntimeModule} {Nam

e jvmRuntimeModule} {Type DATA}}} {PmiDataInfo {{Name jvmRuntimeModule.freeMemor

y} {Id 2} {Description jvmRuntimeModule.freeMemory.desc} {Level 1} {Comment {Fre

e memory in JVM runtime}} {SubmoduleName null} {Type 2} {Unit unit.kbyte} {Reset

table false}}} {Time 1033670422282} {Value {Count 34356} }} {{Id 1} {Descriptor

{{Node wenjianpc} {Server server1} {Module jvmRuntimeModule} {Name jvmRuntimeMod

ule} {Type DATA}}} {PmiDataInfo {{Name jvmRuntimeModule.totalMemory} {Id 1} {Des

cription jvmRuntimeModule.totalMemory.desc} {Level 7} {Comment {Total memory in

JVM runtime}} {SubmoduleName null} {Type 5} {Unit unit.kbyte} {Resettable false}

}} {Time 1033670422282} {Value {Current 100596} {LowWaterMark 38140} {HighWaterM

ark 100596} {MBean 38140.0} }}}}

Invoke getStatsString (ObjectName, String, Boolean) operation

v get MBean query string - e.g., server MBean

 wsadmin>set mySrvName [$AdminControl completeObjectName type=Server,name=server1,

node=wenjianpc,*]

v set parameters

 wsadmin>set params [java::new {java.lang.Object[]} 3]

wsadmin>$params set 0 [$AdminControl makeObjectName $mySrvName]

wsadmin>$params set 1 [java::new java.lang.String beanModule]

wsadmin>$params set 2 [java::new java.lang.Boolean true]

v set signatures

 wsadmin>set sigs [java::new {java.lang.String[]} 3]

wsadmin>$sigs set 0 javax.management.ObjectName

wsadmin>$sigs set 1 java.lang.String

wsadmin>$sigs set 2 java.lang.Boolean

v invoke method

 wsadmin>$AdminControl invoke_jmx $perfOName getStatsString $params $sigs

This command returns all the beans within the BeanModule hierarchy.

Note that this method is used to get stats data for the PMI modules that do not

have direct MBean mappings.

Invoke listStatMemberNames operation

v get MBean queryString - for example, Server

 wsadmin>set mySrvName [$AdminControl completeObjectName type=Server,name=server1,

node=wenjianpc,*]

v set parameter

 wsadmin>set params [java::new {java.lang.Object[]} 1]

wsadmin>$params set 0 [$AdminControl makeObjectName $mySrvName]

v set signatures

 wsadmin>set sigs [java::new {java.lang.String[]} 1]

wsadmin>$sigs set 0 javax.management.ObjectName

wsadmin>$AdminControlinvoke_jmx $perfOName listStatMemberNames $params $sigs

This command returns the PMI module and submodule names, which have no

direct MBean mapping. The names are seperated by a space ″ ″. You can then use

the name as the String parameter in getStatsString method, for example:

beanModule connectionPoolModule j2cModule servletSessionsModule threadPoolModule

webAppModule

Chapter 2. Monitoring performance 35

Enabling Java Virtual Machine Profiler Interface data reporting

To enable Java Virtual Machine Profiler Interface (JVMPI) data reporting for each

individual application server:

Steps for this task

 1. Open the administrative console.

 2. Click Servers > Application Servers in the console navigation tree.

 3. Click the application server for which JVMPI needs to be enabled.

 4. Click Process Definition

 5. Click the Java Virtual Machine.

 6. Type -XrunpmiJvmpiProfiler in the genericJvmArguments field.

 7. Click Apply or OK.

 8. Click Save.

 9. Click Servers > Application Servers in the console navigation tree.

10. Click the application server for which JVMPI needs to be enabled.

11. Click the Configuration tab.

 When in the Configuration tab, settings will apply once the server is restarted.

When in the Runtime Tab, settings will apply immediately. Note that

Performance Monitoring Service can only be enabled in the Configuration tab.

12. Click Performance Monitoring Service.

13. Select the checkbox Startup.

14. Set initial specification level to Custom and jvmRuntimeModule=X.

15. Click Apply or OK.

16. Click Save.

17. Start the application server, or restart the application server if it is currently

running.

18. Refresh the Tivoli Performance Viewer if you are using it.

 The changes you make will not take affect until you restart the application

server.

Java Virtual Machine Profiler Interface

The Tivoli Performance Viewer leverages a Java Virtual Machine Profiler Interface

(JVMPI) to enable more comprehensive performance analysis. This profiling tool

enables the collection of information, such as data about garbage collection, and

the Java virtual machine (JVM) API that runs the application server.

JVMPI is a two-way function call interface between the JVM API and an in-process

profiler agent. The JVM API notifies the profiler agent of various events, such as

heap allocations and thread starts. The profiler agent can activate or deactivate

specific event notifications, based on the needs of the profiler.

JVMPI supports partial profiling by enabling the user to choose which types of

profiling information to collect and to select certain subsets of the time during

which the JVM API is active. JVMPI moderately increases the performance impact.

Monitoring performance with Tivoli Performance Viewer (formerly

Resource Analyzer)

The Resource Analyzer has been renamed Tivoli Performance Viewer.

36 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

Tivoli Performance Viewer is a Graphical User Interface (GUI) performance

monitor for WebSphere Application Server.

Monitor and analyze the data with Tivoli Performance Viewer with these tasks:

Steps for this task

 1. Start the Tivoli Performance Viewer.

 2. Set monitoring levels.

 3. View summary reports.

 4. (Optional) Store data to a log file.

 5. (Optional) Replay a performance data log file.

 6. (Optional) View and modify performance chart data.

 7. (Optional) Scale the performance data chart display.

 8. (Optional) Refresh data.

 9. (Optional) Clear values from tables and charts.

10. (Optional) Reset counters to zero.

What to do next

The Performance Advisor in Tivoli Performance Viewer provides advice to help

tune systems for optimal performance and gives recommendations on inefficient

settings by using collected PMI data. For more information, see Using the

Performance Advisor in Tivoli Performance Viewer.

Tivoli Performance Viewer features

Tivoli Performance Viewer is a Java client which retrieves the Performance

Monitoring Infrastructure (PMI) data from an application server and displays it in

a variety of formats.

You can do the following tasks with the Tivoli Performance Viewer:

v View data in real time

v Record current data in a log, and replay the log later

v View data in chart form, allowing visual comparison of multiple counters. Each

counter can be scaled independently to enable meaningful graphs.

v View data in tabular form

v Compare data for single resources to aggregate data across a node

To minimize the performance impact, Tivoli Performance Viewer polls the server at

an interval set by the user. All data manipulations are done in the Tivoli

Performance Viewer client, which can be run on a separate machine, further

reducing the impact.

The Tivoli Performance Viewer graphical user interface includes the following:

v Resource selection panel

v Data monitoring panel

v Menu bar

v Toolbar icons

v Node icons

v Status bar

Chapter 2. Monitoring performance 37

1

1
2
3

- Resource Selection Panel
- Counter Selection panel
- Viewing Counter (chart and table views)

3

2

Layout of the console

The performance viewer main window consists of two panels: the Resource

Selection panel and the Data Monitoring panel. The Resource Selection panel,

located on the left, provides a view of resources for which performance data can be

displayed. The Data Monitoring panel, located on the right, displays numeric and

statistical data for the resources that are highlighted (selected) in the Resource

Selection panel.

You can adjust the width of the Resource Selection and Data Monitoring panels by

dragging the split bar left or right. You can rearrange the order of the table

columns in the Data Monitoring panel by dragging the column heading left or

right. You can also adjust the width of the columns by dragging the edge of the

column left or right.

Resource selection panel

The Resource Selection panel provides a hierarchical (tree) view of resources and

the types of performance data available for those resources. Use this panel to select

which resources to monitor and to start and stop data retrieval for those resources.

The Resource Selection panel displays resources and associated resource categories

in an indented tree outline. Clicking the plus (+) and minus (-) symbols expands

and collapses the tree to reveal the categories for the various resource instances.

The resource tree can also be navigated by using the up and down arrow keys to

cycle through the branches and by using the left and right arrow keys to expand

and collapse the tree of resources. Resource instances can be expanded to reveal

the instances they contain, if applicable. For example, when a EJB JAR instance is

expanded, the enterprise bean instances in the EJB JAR are revealed. The Data

Monitoring panel automatically displays the appropriate selection of counters for

any objects highlighted in the Resource Selection panel.

38 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

The first level of the hierarchy includes all nodes (machines) in the administrative

domain, followed by all application servers on the node. Below each application

server, all resource categories are listed. If the enterprise beans category is

expanded, all EJB JAR instances in the server are displayed. Next, all enterprise

bean instances appear below the EJB JAR in the hierarchy. Then, a methods

resource is associated with each bean. Clicking an individual bean or EJB JAR

instance causes its corresponding counters to be displayed in the Data Monitoring

panel. For enterprise beans, the counters displayed depend on whether the bean is

an entity bean or a session bean. For EJB JARs, the counters are aggregate counters

for all enterprise beans in the EJB JARs. See the InfoCenter article Performance

data organization for more information.

Data monitoring panel

The Data Monitoring panel enables the selection of multiple counters and displays

the resulting performance data for the currently selected resource. It contains two

panels: the Viewing Counter panel above and the Counter Selection panel below.

Counter selection panel

The Counter Selection panel shows the counters available for the resource

performance category selection.

Two factors determine the list of available counters in the Counter Selection panel:

v Only counters associated with the resource that is selected in the Resource

Selection panel are displayed.

v Only counters having impact cost ratings within or below the instrumentation or

monitoring level that is set for that resource in the administrative domain are

displayed.

The first three counters shown for each resource performance category are selected

by default. All counters can be selected or deselected, and the resulting output,

shown in the top panel, automatically reflects the selection.

The columns in the Counter Selection panel supply the following information for

each counter:

v Name. The names of the counters that are available for selection with this

resource.

v Description. A brief description of the function of each counter.

v Value. The value for the counter, displayed according to the display mode in

effect. Values are actual values (not scaled values used for the chart, if

applicable).

v Select. A check box that indicates whether a counter is to be reflected in the

chart. To hide data, clear the check box. The column representing that counter is

then removed from the View Data window, and the graphic display for that

counter is removed from the View Chart window.

v Scale. A value indicating whether data has been scaled (amplified or

diminished) from its actual value to fit on the chart. This value is reflected only

in the View Chart window.

 The value for the Scale column can be set manually by editing the value of the

Scale field. See Scaling the chart display manually for information on manually

setting the scale.

Viewing Counter panel

Chapter 2. Monitoring performance 39

When a counter on the list in the Counter Selection panel is selected, the statistics

gathered from that counter are displayed in the Viewing Counter panel at the top

of the Data Monitoring panel.

The View Data window shows the counter’s output in table format; the View Chart

window displays a graph with time represented on the x-axis and the performance

value represented on the y-axis. One or more performance counters can be

simultaneously graphed on a single chart. The chart plots data from n data points,

where n is the current table size (number of rows).

Display of multiple resources and aggregate data

When a single resource is selected in the Resource Selection panel, the Data

Monitoring panel displays a choice of a table view or a chart view. If multiple

resources are selected, the Data Monitoring panel displays a single data sheet for

viewing summary information for the selected resources. The data sheet displays

the tables for all objects of similar type for the selected resources. For example, if

three servlet instances are selected, the data sheet displays a table of counter values

for all the servlets. By default, the display buffer size is set to 40 rows,

corresponding to the values of the last 40 data points retrieved.

The performance viewer provides aggregate data at the module level. If aggregate

data is available for a group, it is displayed in the Data Monitoring panel. For

example, for each enterprise bean home interface, counters track the number of

active enterprise beans of that home. Each EJB JAR has an aggregate value that is

the sum of all the enterprise beans in that EJB JAR. The enterprise beans resource

category (module) within the application server has an aggregate value that is the

sum of all enterprise beans in all EJB JARs.

Menu bar

The menu bar contains the following options:

v File menu. Used to change to current mode (from logging mode), to open an

existing log file, and to exit from the performance viewer. The File menu

contains the following items:

– Refresh. Queries the administrative server for any newly started resources

since data retrieval began or for additional counters to report. This operation

is also recursive over all components subordinate to the selected resources.

Tivoli Performance Viewer refreshes data every 10 seconds. When changing

the refresh rate, you must use an integer greater than or equal to 1.

– Current Activity. Resumes the display of real-time data in tables and charts.

This menu option is used to stop viewing data from a log file and return to

viewing real-time data.

– Log. Displays a dialog box for specifying the name and location of an existing

log file to be replayed.

– Exit. Closes the performance viewer. If you made changes to the

instrumentation levels of any resources during the session, a dialog box opens

to ask whether you want to save the changed settings before closing the tool.
v Logging menu. Provides On and Off options that are used to start and stop

recording data in a log file. If you start a new log file and specify the same file

name, the file is overwritten.

v Setting menu. Used to start and stop the reporting of data, and to clear and

refresh data. The Setting menu contains the following items:

40 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

– Clear Buffer. Deletes the values currently displayed in tables and charts. For

example, after stopping a counter, you can use this operation to remove the

remaining data from a table.

– Reset to Zero. Resets cumulative counters of the selected performance group

back to zero.

– View Data As. Specifies how counter values are displayed. You can choose

whether to display absolute values, changes in values, or rates of change.

How data is displayed differs slightly depending on where you are viewing

data. The choices follow:

- Raw Value. Displays the absolute value. If the counter represents load data,

such as the average number of connections in a database pool, then the

Tivoli Performance Viewer displays the current value followed by the

average. For example, 18 (avg:5).

- Change in Value. Displays the change in the current value from the

previous value.

- Rate of Change. Displays the ratio change/(T1 - T2), where change is the

change in the current value from the previous value, T1 is the time when

the current value was retrieved and T2 is the time when the previous value

was retrieved.
– Log Replay. Includes Rewind Stop Play Fast Forward .

 Note that right-clicking a resource in the Resource Selection panel displays a

menu that provides the following options: Refresh, Clear Buffer, and Reset to

Zero.

v Help menu. Provides information for users.

Toolbar icons

Toolbar icons provide shortcuts to frequently used commands. The toolbar includes

the following icons:

v Refresh. Updates data and structures for the selected resources. That is, it polls

the administrative server to retrieve new information about additional counters

to display or new servers recently added to the domain.

v Clear Buffer. Deletes the values currently displayed in all tables and charts.

v Reset to Zero. Resets the counters.

Node icons

In the Resource Selection panel, the color of the node icon indicates the current

state and availability of the application server in the domain.

v Green—The resource is running and available.

v Red—The resource is stopped.

Status bar

The status bar across the bottom of the performance viewer window dynamically

displays the current state of the reporting values. The following state information

is reported in the status bar:

v The current setting for the refresh rate

v The buffer size in use in the current Viewing Counter panel

v The display mode in use in the current Viewing Counter panel

v The current state of the logging setting

Chapter 2. Monitoring performance 41

Starting the Tivoli Performance Viewer

An alternative way to collect data is to use the Tivoli Performance Viewer, a

Graphical User Interface (GUI) performance monitor shipped with WebSphere

Application Server. You can also start the Tivoli Performance Viewer with security

enabled. To do this see Running your monitoring applications with security

enabled.

Steps for this task

1. Enable PMI services through the administrative console.

2. Start the Tivoli Performance Viewer.

 This can be done in two ways:

a. Start performance monitoring from the command line.

 Go to the <i>product_installation_directory</i>/bin directory and run

the tperfviewer script.

 You can specify the host and port in Windows NT and 2000 environments

as:

tperfviewer.bat host_name port_number connector_type

or

 On the AIX and other UNIX platforms, use

tperfviewer.sh host_name port_number connector_type

for example:

tperfviewer.bat localhost 8879 SOAP

 Connector_type can be either SOAP or RMI.

 8879 is the default ND port for SOAP connector.

 9809 is the default ND port for RMI connector

b.

 Click Start > Programs > IBM WebSphere > Application Server v.50 >

Tivoli Performance Viewer.

 Tivoli Performance Viewer detects which package of WebSphere Application

Server you are using and connects using the default Remote Method

Invocation (RMI) connector port. If the connection fails, a dialog is

displayed to provide new connection parameters.

 You can connect to a remote host or a different port number, by using the

command line to start the performance viewer.
3. Adjust the data collection settings.

 Refer to the instructions in the topic ″Setting performance monitoring levels″.

Setting performance monitoring levels

Before you begin

The monitoring settings determine which counters are enabled. Changes made to

the settings from Tivoli Performance Viewer affect all applications using the

Performance Monitoring Infrastructure (PMI) data.

To view monitoring settings:

Steps for this task

1. Choose the Data Collection icon on the Resource Selection panel.

42 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

This selection provides two options on the Counter Selection panel. Choose the

Current Activity option to view and change monitoring settings. Alternatively,

use File> Current Activity to view the monitoring settings.

2. Set monitoring levels by choosing one of the following options:

v None: Provides no data collection

v Standard: Enables data collection for all modules except enterprise bean

method level data

v Custom: Allows customized settings for each module

These options apply to an entire application server.

3. (Optional) Fine tune the monitoring level settings.

a. Click Specify.

 This sets the monitoring level to custom.

b. Select a monitoring level.

 For each resource, choose a monitoring level of None, Low, Medium, High

or Maximum. The dial icon will change to represent this level. Note: The

instrumentation level is set recursively to all elements below the selected

resource. You can override this by setting the levels for children AFTER

setting their parents.
4. Click OK.

5. Click Apply.

Results

If the instrumentation level excludes a counter, that counter does not appear in the

tables and charts of the performance viewer. For example, when the

instrumentation level is set to low, the thread pool size is not displayed because

that counter requires a level of high.

Note that monitoring levels can also be set through the administrative console. See

the InfoCenter article Enabling data collection through the administrative console

for more information.

Setting monitoring levels for individual enterprise bean methods

Before you begin

Due to performance overhead, the Standard monitoring level does not include

monitoring individual enterprise bean methods.

To monitor individual methods:

Steps for this task

1. Choose the Custom option for setting monitoring levels.

2. Set the monitoring level for the methods category to Maximum by following

the procedure described in setting the monitoring level task.

3. Click Apply.

4. Click OK.

Results

Individual methods display, and you can set the level for individual methods.

Chapter 2. Monitoring performance 43

Only methods called by an application display. If a remote method has not been

called since the application server started, it does not appear in the performance

panel.

Viewing summary reports

Before you begin

Summary reports are available for each application server. Before viewing reports,

make sure data counters are enabled and monitoring levels are set properly.

The standard monitoring level will enable all reports except the report on

enterprise bean methods. To enable enterprise bean method reports, use the custom

monitoring setting and set the monitoring level to Max for the enterprise bean

module.

To view the summary reports:

Steps for this task

1. Click the application server icon in the navigation tree.

2. Click the appropriate column header to sort the columns in the report.

Changing the refresh rate of data retrieval

Before you begin

By default, the Tivoli Performance Viewer retrieves data every 10 seconds.

To change the rate at which data is retrieved:

Steps for this task

1. Click Setting > Set Refresh Rate.

2. Type a positive integer representing the number of seconds in the Set Refresh

Rate dialog box.

3. Click OK.

Changing the display buffer size

To change the size of the buffer and the number of rows displayed:

Steps for this task

1. Click Setting > Set Buffer Size.

2. Type the number of rows to display in the Set Buffer Size dialog box.

3. Click OK.

Viewing and modifying performance chart data

Before you begin

The View Chart tab displays a graph with time as the x-axis and the performance

value as the y-axis.

To view data in a chart:

Steps for this task

1. Click a resource in the Resource Selection panel.

44 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

2. Click the View Chart tab in the Data Monitoring panel.

 Negative results display as zero (0). If necessary, you can set the scaling factors

by typing directly in the scale field. See Scaling the performance data chart

display for more information.

Scaling the performance data chart display

You can manually adjust the scale for counters so that the graphic displays enable

meaningful comparisons between graphs of different counters. Follow these steps

to manually adjust the scale:

Steps for this task

1. Double-click the Scale column for the counter that you want to modify.

2. Type the desired value in the field for the Scale value.

 The View Chart display immediately reflects the change in the scaling factor.

Results

The possible values for the Scale field range from 0 to 100 and show the following

relationships:

v A value equal to 1 indicates that the value is the actual value. The value

represents the default setting.

v A value greater than 1 indicates that the variable value is amplified by the factor

shown. For example, a scale setting of 1.5 means that the the variable is graphed

as one and one-half times their actual values.

v A value less than 1 indicates that the variable value is decreased by the factor

shown. For example, a scale setting of .5 means that the the variable is graphed

as one-half its actual values.

Scaling only applies to the graphed values.

Refreshing data

The refresh operation is a local, not global, operation that applies only to selected

resources. The refresh operation is recursive; all subordinate or children resources

refresh when a selected resource refreshes. To refresh data:

Steps for this task

1. Click one or more resources in the Resource Selection panel.

2. Click File > Refresh. Alternatively, click the Refresh icon or right-click the

resource and select Refresh.

 Clicking refresh with server selected under the viewer icon causes TPV to

query the server for new PMI and product configuration information. Clicking

refresh with server selected under the advisor icon causes TPV to refresh the

advice provided, but will not refresh PMI or product configuration information.

Performance data refresh behavior

New performance data can become available in either of the following situations:

v An administrator uses the console to change the instrumentation level for a

resource (for example, from medium to high).

v An administrator uses the console to add a new resource (for example, an

enterprise bean or a servlet) to the run time.

Chapter 2. Monitoring performance 45

In both cases, if the resource in question is already polled by the Tivoli

Performance Viewer or the parent of the resource is being polled, the system is

automatically refreshed. If more counters are added for a group that the

performance viewer is already polling, the performance viewer automatically adds

the counters to the table or chart views. If the parent of the newly added resource

is polled, the new resource is detected automatically and added to the Resource

Selection tree. You can refresh the Resource Selection tree, or parts of it, by

selecting the appropriate node and clicking the Refresh icon, or by right-clicking a

resource and choosing Refresh.

When an application server runs, the performance viewer tree automatically

updates the server local structure, including its containers and enterprise beans, to

reflect changes on the server. However, if a stopped server starts after the

performance viewer starts, a manual refresh operation is required so that the

server structure accurately reflects in the Resource Selection tree.

Clicking refresh with server selected under the viewer icon causes TPV to query

the server for new PMI and product configuration information. Clicking refresh

with server selected under the advisor icon causes TPV to refresh the advice

provided, but will not refresh PMI or product configuration information.

Clearing values from tables and charts

Before you begin

Selecting Clear Values removes remaining data from a table or chart. You can then

begin populating the table or chart with new data.

To clear the values currently displayed:

Steps for this task

1. Click one or more resources in the Resource Selection panel.

2. Click Setting > Clear Values. Alternatively, right-click the resource and select

Clear Values

Storing data to a log file

You can save all data reported by the Tivoli Performance Viewer in a log file and

write the data in binary format (serialized Java objects) or XML format.

To start recording data:

Steps for this task

1. Click Logging > On or click the Logging icon.

2. Specify the name, location, and format type of the log file in the Save dialog

box.

 The Files of type field allows an extension of *.perf for binary files or *.xml

for XML format. The XML format provides a flexibility that enables analysis by

using third-party tools.

 Note: The *.perf files may not be compatible between fix levels.

3. Click OK.

What to do next

To stop logging, click Logging > Off or click the Logging icon.

46 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

Performance data log file

An example of the performance data log file format is below.

Location

By default, this file is written to:

product_installation_root/logs/ra_mmdd_hhmm.xml

where mmdd=month and date, and hhmm=hour and minute

Usage Notes

This read-write data file is created by Tivoli Performance Viewer and provides data

collected by the performance viewer. The log file is not updated, but remains

available for you to replay the collected data. The performance data log file does

not have an effect on the WebSphere environment.

Example

<?xml version="1.0"?>

<RALog version="5.0">

<RAGroupSnapshot time="1019743202343" numberGroups="1">

 <CpdCollection name="root/peace/Default Server/jvmRuntimeModule" level="7">

 <CpdData name="root/peace/Default

 Server/jvmRuntimeModule/jvmRuntimeModule.total/Memory" id="1">

 <CpdLong value="39385600" time="1.019743203334E12"/>

 </CpdData>

 <CpdData name="root/peace/Default

 Server/jvmRuntimeModule/jvmRuntimeModule.freeMemory" id="2">

 <CpdLong value="4815656" time="1.019743203334E12"/>

 </CpdData>

 <CpdData name="root/peace/Default

 Server/jvmRuntimeModule/jvmRuntimeModule.usedMemory" id="3">

 <CpdLong value="34569944" time="1.019743203334E12"/>

 </CpdData>

 </CpdCollection>

 </RAGroupSnapshot>

</RALog>

Replaying a performance data log file

Before you begin

You can replay both binary and XML logs by using the Tivoli Performance Viewer.

To replay a log file, do the following:

Steps for this task

1. Click Data Collection in the navigation tree.

2. Click the Log radio button in the Performance data from field.

3. Click Browse to locate the file that you want to replay or type the file

pathname in the Log field.

4. Click Apply.

5. Play the log by using the Play icon or click Setting > Log Replay > Play.

Results

By default, the data replays at the same rate it was collected or written to the log.

If data is collected every minute, it displays every minute. You can choose Fast

Chapter 2. Monitoring performance 47

Forward mode in which the log replays without simulating the refresh interval. To

Fast Forward, use the button in the tool bar or click Setting > Log Replay > Fast

Forward.

To rewind a log file, click Setting > Log Replay > Rewind or use the Rewind icon

in the toolbar.

While replaying the log, you can choose different groups to view by selecting them

in the Resource Selection pane. You can also view the data in either of the views

available in the tabbed Data Monitoring panel.

You can stop and resume the log at any point. However, you cannot replay data in

reverse.

Resetting counters to zero

Some counters report relative values based on how much the value has changed

since the counter was enabled. The Reset to Zero operation resets those counters

so that they will report changes in values since the reset operation. This operation

will also clear the buffer for the selected resources. See ″Clearing values from

tables and charts″ in Related Links for more information about clearing the buffer

for selected resources. Counters based on absolute values can not be reset and will

not be affected by the Reset to Zero operation.

To reset the start time for calculating relative counters:

Steps for this task

1. Click one or more resources in the Resource Selection panel.

2. Click Setting > Reset to Zero. Alternatively, right-click the resource and click

Reset to Zero.

Tivoli performance monitoring and management solutions

Tivoli offers the complete IBM solution for managing the extended WebSphere

environment. For precise viewing of performance metrics, users can start with the

Tivoli Performance Viewer, a complimentary tool shipped with WebSphere

Application Server.

Tivoli also provides on-going production monitoring tools described below. For

more information about Tivoli’s solutions for WebSphere Application Server, see

the InfoCenter article Performance: Resources for Learning.

IBM Tivoli Monitoring for Web Infrastructure (ITMf WI). Provides best-practice

monitoring of the key elements of WebSphere Application Server. This is the

inside-out view, enabling administrators to quickly address problems before they

impact end-users. Using Tivoli’s advanced monitoring technology and predefined

WebSphere best-practices, this tool quickly identifies problems, notifies appropriate

personnel, and provides a solution. All monitoring data is displayed real-time with

a health console displaying non-stop data. This same information can be uploaded

to a common data warehouse for historical reporting.

IBM Tivoli Monitoring for Transaction Performance (ITMTP). Provides a unique

monitoring perspective from that of the end-user. This is the outside-in view that

verifies that end-to-end components provide a positive end-user experience. ITMTP

monitors performance of actual and synthetic transactions, as well as verifying that

the content delivered meets predefined guidelines.

48 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

Transaction performance includes total round trip response time, network latency,

back-end response time and page render time. Additional granularity of

transaction detail on the back-end is provided through Application Response

Measurement instrumentation.

The ITM and ITMTP function by providing Web site performance monitoring,

alerting customers to end user response time issues.

The ability to quickly find performance issues is key to maintaining a high

performance Web site. This WebSphere Application Server release and the new

ITMTP release combine to provide a new feature for analyzing performance

problems. Using Synthetic Transaction Investigator (STI) from ITMTP, you can save

key transactions and replay them later. ITMTP also collects the data provided by

PMI Request Metrics through the Application Response Measurement (ARM)

interface and correlates this information with the originating STI transaction. In the

ITMTP real-time browser, the STI information links to the servlet and the

enterprise bean response time data. The details regarding the overall transaction

response time and response time for individual WebSphere Application Server

components provide the ability to quickly identify performance problems.

Tivoli provides additional products for monitoring other key elements of the

extended environment. For more information about Tivoli’s solutions for

WebSphere Application Server, see the topic ″Performance: Resources for

Learning″.

Developing your own monitoring applications

Before you begin

You can use the Performance Monitoring Infrastructure (PMI) interfaces to develop

your own applications to collect and display performance information.

There are three such interfaces - a Java Machine Extension (JMX)-based interface, a

PMI client interface, and a servlet interface. All three interfaces return the same

underlying data. The JMX interface is accessible through the AdminClient tool. The

PMI client interface is a Java interface that works with Version 3.5.5 and above.

The servlet interface is perhaps the simplest, requiring minimal programming, as

the output is XML.

Steps for this task

1. Developing your own monitoring application using Performance Monitoring

Infrastructure client .

2. Developing your own monitoring applications with PMI servlet

3. Compiling your monitoring applications

4. Running your new monitoring applications

5. Accessing Performance Monitoring Infrastructure data through the Java

Management Extension interface.

6. Developing Performance Monitoring Infrastructure interfaces (Version 4.0).

Developing your own monitoring application using

Performance Monitoring Infrastructure client

The following is the programming model for Performance Monitoring

Infrastructure (PMI) client:

Chapter 2. Monitoring performance 49

Steps for this task

1. Create an instance of PmiClient.

 This is used for all subsequent method calls.

2. Call the listNodes() and listServers(nodeName) methods to find all the nodes

and servers in the WebSphere Application Server domain.

 The PMI client provides two sets of methods: one set in Version 5.0 and the

other set inherited from Version 4.0. You can only use one set of methods. Do

not mix them together.

3. Call listMBeans and listStatMembers to get all the available MBeans and

MBeanStatDescriptors.

4. Call the getStats method to get the Stats object for the PMI data.

5. (Optional) The client can also call setStatLevel or getStatLevel to set and get the

monitoring level. Use the MBeanLevelSpec objects to set monitoring levels.

What to do next

If you prefer to use the Version 4.0 version of the interface, the model is

essentially the same, but the object types are different:

1. Create an instance of PmiClient.

2. Call the listNodes() and listServers(nodeName) methods to find all the nodes

and servers in the WebSphere Application Server domain.

3. Call listMembers to get all the perfDescriptor objects.

4. Use the PMI client’s get or gets method to get CpdCollection objects. These

contain snapshots of performance data from the server. The same structure is

maintained and its update method is used to refresh the data.

5. (Optional) The client can also call setInstrumentationLevel or

getInstrumentationLevel to set and get the monitoring level.

Performance Monitoring Infrastructure client

A Performance Monitoring Infrastructure (PMI) client is an application that

receives PMI data from servers and processes this data.

You can use the PMI client package to write WebSphere Application Server clients

that collect and display PMI data from servers.

Clients can be graphical user interfaces (GUIs) that display performance data in

real-time, applications that monitor performance data and trigger different events

according to the current values of the data, or any other application that needs to

receive and process performance data.

Performance Monitoring Infrastructure client interface

The data provided by the Performance Monitoring Infrastructure (PMI) client

interface is documented here. Access to the data is provided in a hierarchical

structure. Descending from the object are node information objects, module

information objects, CpdCollection objects and CpdData objects. Using Version 5.0,

you will get Stats and Statistic objects. The node and server information objects

50 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

contain no performance data, only static information.

Web
Client

PmiClient
Java

Client

Tivoli
Performance

Viewer

JMX Client
Java Client

PerfServlet

.PerfMBean
App Server

PMI
Client

Wrapper

J2EE client

.PerfMBean
App Server

RMI/IIOP
or

SOAP

JMX
Connector

Cell Manager

Performance
data
and

application
server

HTTP

Each time a client retrieves performance data from a server, the data is returned in

a subset of this structure; the form of the subset depends on the data retrieved.

You can update the entire structure with new data, or update only part of the tree,

as needed.

The JMX statistic data model is supported, as well as the existing CPD data model

from Version 4.0. When you retrieve performance data using the Version 5.0 PMI

client API, you get the Stats object, which includes Statistic objects and optional

sub-Stats objects. When you use the Version 4.0 PMI client API to collect

performance data, you get the CpdCollection object, which includes the CpdData

objects and optional sub-CpdCollection objects.

The following are additional Performance Monitoring Infrastructure (PMI)

interfaces:

v BoundaryStatistic

v BoundedRangeStatistic

v CountStatistic

v MBeanStatDescriptor

v MBeanLevelSpec

v New Methods in PmiClient

v RangeStatistic

v Stats

v Statistic

v TimeStatistic

The following PMI interfaces introduced in Version 4.0 are also supported:

Chapter 2. Monitoring performance 51

v CpdCollection

v CpdData

v CpdEventListener and CpdEvent

v CpdFamily class

v CpdValue

– CpdLong

– CpdStat

– CpdLoad
v PerfDescriptor

v PmiClient class

The CpdLong maps to CountStatistic; CpdStat maps to Time Statistic;

CpdCollection maps to Stats; and CpdLoad maps to RangeStatistic and

BoundedRangeStatistic.

Note: Version 4.0 PmiClient APIs are supported in this version, however, there are

some changes. The data hierarchy is changed in some PMI modules, notably the

enterprise bean module and HTTP sessions module. If you have an existing

PmiClient application, and you want to run it against Version 5.0, you might have

to update the PerfDescriptor(s) based on the new PMI data hierarchy. Also, the

getDataName and getDataId methods in PmiClient are changed to be non-static

methods in order to support multiple WebSphere Application Server versions. You

might have to update your existing application which uses these two methods.

Using Version 5.0 PMI API in Version 3.5.5+ and Version 4.0.x

For Version 3.5.5+, follow these instructions:

Steps for this task

1. Make configuration changes.

 For PMI to interact correctly with Version 3.5.x application servers, you must

upgrade both the Version 3.5.x run time environment and the PMI JAR files to

the levels specified below. In addition, you must prepend the repository.jar,

ejs.jar, and ujc.jar files from the upgraded Version 3.5.x run time

environment to the PMI client’s run time classpath.

a. Change the Version 3.5.x run time environment.

 Ensure the Version 3.5 environment is Version 3.5.5 or later.

b. Change the PMI client’s run time or development environment.

 Both the Version 5.0 PMI client and the Version 4.02 client can work with

the Version 3.5.5+ WebSphere Application Server.

 Copy the repository.jar, ujc.jar and ejs.jar files from the

WebSphere_35_installation_root/lib directory to each machine from

which a PMI client is run.

 Prepend the Version 3.5.5+ repository.jar, ujc.jar and ejs.jar files to the

PMI client’s run time classpath.
2. Copy the XML configuration files from Version 4.0.2+.

a. Get the perf.jar file from Version 4.0.

b. Append the perf.jar file to the classpath of the Version 5.0 PMI client.

 Note: Ensure the Version 5.0 pmi.jar file and pmiclient.jar files come

before the Version 4.0 perf.jar file.
3. Make programmatic changes.

52 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

A new constructor for PmiClient allows a client to monitor Version 3.5.5 or later

application servers. The new constructor takes three string parameters:

hostName, serverName, and version.

public PmiClient(String host, String port, String version)

Using this constructor with ″EPM″ as the third parameter creates a PmiClient

that can retrieve data from Version 3.5.5+ application servers.

PmiClient pmiClnt = new PmiClient(hostName, portNumber, "EPM")

What to do next

Use Version 4.0 PmiClient API to write your own client application with

WebSphere Application Server Version 4.0 and 3.5.5+. See the example code for

using Version 4.0 API in the topic ″Example: Performance Monitoring

Infrastructure client (Version 4.0)″.

To run a Version 5.0 PMI client with a Version 4.0 server, the instructions are

similar, except in substep 2 of step 1, you need to copy the repository.jar and

ujc.jar files from a WebSphere Application Server, Version 4.0, installation.

Example: Performance Monitoring Infrastructure client (Version

4.0)

The following is a list of example Performance Monitoring Infrastructure (PMI)

client code from Version 4.0:

/**

 * This is a sample code to show how to use PmiClient to collect PMI data.

 * You will need to use adminconsole to set instrumentation level (a level other

 * than NONE) first.

 *

 * <p>

 * End-to-end code path in 4.0:

 * PmiTester -> PmiClient -> AdminServer -> appServer

 */

package com.ibm.websphere.pmi;

import com.ibm.websphere.pmi.*;

import com.ibm.websphere.pmi.server.*;

import com.ibm.websphere.pmi.client.*;

import com.ibm.ws.pmi.server.*;

import com.ibm.ws.pmi.perfServer.*;

import com.ibm.ws.pmi.server.modules.*;

import com.ibm.ws.pmi.wire.*;

import java.util.ArrayList;

/**

 * Sample code to use PmiClient API (old API in 4.0) and get CpdData/CpdCollection objects.

 *

 */

public class PmiTester implements PmiConstants {

 /** a test driver:

 * @param args[0] - node name

 * @param args[1] - port number, optional, default is 2809

 * @param args[2] - connector type, default is RMI

 * @param args[3] - verion (AE, AEs, WAS50), default is WAS50

 *

 */

 public static void main(String[] args) {

 String hostName = null;

Chapter 2. Monitoring performance 53

String portNumber = "2809";

 String connectorType = "RMI";

 String version = "WAS50";

 if (args.length < 1) {

 System.out.println("Usage: <host> [<port>] [<connectorType>]

[<version>]");

 return;

 }

 if(args.length >= 1)

 hostName = args[0];

 if(args.length >= 2)

 portNumber = args[1];

 if (args.length >=3)

 connectorType = args[2];

 if (args.length >=4)

 version = args[3];

 try {

 PmiClient pmiClnt = new PmiClient(hostName, portNumber,

version, false, connectorType);

 // uncomment it if you want debug info

 //pmiClnt.setDebug(true);

 // get all the node PerfDescriptor in the domain

 PerfDescriptor[] nodePds = pmiClnt.listNodes();

 if(nodePds == null) {

 System.out.println("no nodes");

 return;

 }

 // get the first node

 String nodeName = nodePds[0].getName();

 System.out.println("after listNodes: " + nodeName);

 //list all the servers on the node

 PerfDescriptor[] serverPds = pmiClnt.listServers(nodePds[0].getName());

 if(serverPds == null || serverPds.length == 0) {

 System.out.println("NO app server in node");

 return;

 }

 // print out all the servers on that node

 for(int j=0; j<serverPds.length; j++) {

 System.out.println("server " + j + ": " + serverPds[j].getName());

 }

 for(int j=0; j<serverPds.length; j++) {

 System.out.println("server " + j + ": " + serverPds[j].getName());

 // Option: you can call createPerfLevelSpec and then

setInstrumentationLevel to set the level

 // for each server if you want. For example, to set all

the modules to be LEVEL_HIGH for the server j,

 // uncomment the following.

 // PerfLevelSpec[] plds = new PerfLevelSpec[1];

 // plds[0] = pmiClnt.createPerfLevelSpec(null, LEVEL_HIGH);

 // pmiClnt.setInstrumentationLevel(serverPds[j].getNodeName(),

serverPds[j].getServerName(), plds, true);

 // First, list the PerfDescriptor in the server

 PerfDescriptor[] myPds = pmiClnt.listMembers(serverPds[j]);

 // check returned PerfDescriptor

54 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

if(myPds == null) {

 System.out.println("null from listMembers");

 continue;

 }

 // you can add the pds in which you are interested to PerfDescriptorList

 PerfDescriptorList pdList = new PerfDescriptorList();

 for(int i=0; i<myPds.length; i++) {

 // Option 1: you can recursively call listMembers for each myPds

 // and find the one you are interested. You can call

listMembers

 // until individual data level and after that level

you will null from listMembers.

 // e.g., PerfDescriptor[] nextPds = pmiClnt.listMembers(myPds[i]);

 // Option 2: you can filter these pds before adding to pdList

 System.out.println("add to pdList: " + myPds[i].getModuleName());

 pdList.addDescriptor(myPds[i]);

 if(i % 2 == 0)

 pmiClnt.add(myPds[i]);

 }

 // call gets method to get the CpdCollection[] corresponding to pdList

 CpdCollection[] cpdCols = pmiClnt.gets(pdList, true);

 if(cpdCols == null) {

 // check error

 if(pmiClnt.getErrorCode() >0)

 System.out.println(pmiClnt.getErrorMessage());

 continue;

 }

 for(int i=0; i<cpdCols.length; i++) {

 // simple print them

 //System.out.println(cpdCols[i].toString());

 // Or call processCpdCollection to get each data

 processCpdCollection(cpdCols[i], "");

 }

 // Or call gets() method to add the CpdCollection[] for whatever

there by calling pmiClnt.add().

 System.out.println("\n\n\n ---- get data using gets(true) ----- ");

 cpdCols = pmiClnt.gets(true);

 if(cpdCols == null) {

 // check error

 if(pmiClnt.getErrorCode() >0)

 System.out.println(pmiClnt.getErrorMessage());

 continue;

 }

 for(int i=0; i<cpdCols.length; i++) {

 // simple print out the whole collection

 System.out.println(cpdCols[i].toString());

 // Option: refer processCpdCollection to get each data

 }

 }

 }

 catch(Exception ex) {

 System.out.println("Exception calling CollectorAE");

 ex.printStackTrace();

 }

 }

Chapter 2. Monitoring performance 55

/**

 * show the methods to retrieve individual data

 */

 private static void processCpdCollection(CpdCollection cpdCol, String indent) {

 CpdData[] dataList = cpdCol.dataMembers();

 String myindent = indent;

 System.out.println("\n" + myindent + "--- CpdCollection "

+ cpdCol.getDescriptor().getName() + " ---");

 myindent += " ";

 for(int i=0; i<dataList.length; i++) {

 if (dataList[i] == null)

 continue;

 // if you want to get static info like name, description, etc

 PmiDataInfo dataInfo = dataList[i].getPmiDataInfo();

 // call getName(), getDescription() on dataInfo;

 CpdValue cpdVal = dataList[i].getValue();

 if(cpdVal.getType() == TYPE_STAT) {

 CpdStat cpdStat = (CpdStat)cpdVal;

 double mean = cpdStat.mean();

 double sumSquares = cpdStat.sumSquares();

 int count = cpdStat.count();

 double total = cpdStat.total();

 System.out.println(myindent + "CpdData id=" + dataList[i].getId()

 + " type=stat mean=" + mean);

 // you can print more values like sumSquares, count,etc here

 }

 else if(cpdVal.getType() == TYPE_LOAD) {

 CpdLoad cpdLoad = (CpdLoad)cpdVal;

 long time = cpdLoad.getTime();

 double mean = cpdLoad.mean();

 double currentLevel = cpdLoad.getCurrentLevel();

 double integral = cpdLoad.getIntegral();

 double timeWeight = cpdLoad.getWeight();

 System.out.println(myindent + "CpdData id=" + dataList[i].getId()

 + " type=load mean=" + mean + " currentLevel="

+ currentLevel);

 // you can print more values like sumSquares, count,etc here

 }

 else if(cpdVal.getType() == TYPE_LONG) {

 CpdValue cpdLong = (CpdValue)cpdVal;

 long value = (long)cpdLong.getValue();

 System.out.println(myindent + "CpdData id=" + dataList[i].getId()

 + " type=long value=" + value);

 }

 else if(cpdVal.getType() == TYPE_DOUBLE) {

 CpdValue cpdDouble = (CpdValue)cpdVal;

 double value = cpdDouble.getValue();

 System.out.println(myindent + "CpdData id=" + dataList[i].getId()

 + " type=double value=" + value);

 }

 else if(cpdVal.getType() == TYPE_INT) {

 CpdValue cpdInt = (CpdValue)cpdVal;

 int value = (int)cpdInt.getValue();

 System.out.println(myindent + "CpdData id=" + dataList[i].getId()

 + " type=int value=" + value);

 }

 }

 // recursively go through the subcollection

 CpdCollection[] subCols = cpdCol.subcollections();

 for(int i=0; i<subCols.length; i++) {

 processCpdCollection(subCols[i], myindent);

 }

 }

56 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

/**

 * show the methods to navigate CpdCollection

 */

 private static void report(CpdCollection col) {

 System.out.println("\n\n");

 if(col==null) {

 System.out.println("report: null CpdCollection");

 return;

 }

 System.out.println("report - CpdCollection ");

 printPD(col.getDescriptor());

 CpdData[] dataMembers = col.dataMembers();

 if(dataMembers != null) {

 System.out.println("report CpdCollection: dataMembers is "

+ dataMembers.length);

 for(int i=0; i<dataMembers.length; i++) {

 CpdData data = dataMembers[i];

 printPD(data.getDescriptor());

 }

 }

 CpdCollection[] subCollections = col.subcollections();

 if(subCollections != null) {

 for(int i=0; i<subCollections.length; i++) {

 report(subCollections[i]);

 }

 }

 }

 private static void printPD(PerfDescriptor pd) {

 System.out.println(pd.getFullName());

 }

}

Example: Performance Monitoring Infrastructure client with new

data structure

The following is example code using Performance Monitoring Infrastructure (PMI)

client with the new data structure:

import com.ibm.websphere.pmi.*;

import com.ibm.websphere.pmi.stat.*;

import com.ibm.websphere.pmi.client.*;

import com.ibm.websphere.management.*;

import com.ibm.websphere.management.exception.*;

import java.util.*;

import javax.management.*;

import java.io.*;

/**

 * Sample code to use PmiClient API (new JMX-based API in 5.0) and

get Statistic/Stats objects.

 */

public class PmiClientTest implements PmiConstants {

 static PmiClient pmiClnt = null;

 static String nodeName = null;

 static String serverName = null;

 static String portNumber = null;

 static String connectorType = null;

 static boolean success = true;

 /**

 * @param args[0] host

Chapter 2. Monitoring performance 57

* @param args[1] portNumber, optional, default is 2809

 * @param args[2] connectorType, optional, default is RMI connector

 * @param args[3]serverName, optional, default is the first server found

 */

 public static void main(String[] args) {

 try {

 if(args.length > 1) {

 System.out.println("Parameters: host [portNumber]

[connectorType] [serverName]");

 return;

 }

 // parse arguments and create an instance of PmiClient

 nodeName = args[0];

 if (args.length > 1)

 portNumber = args[1];

 if (args.length > 2)

 connectorType = args[2];

 // create an PmiClient object

 pmiClnt = new PmiClient(nodeName, portNumber, "WAS50", false, connectorType);

 // Uncomment it if you want to debug any problem

 //pmiClnt.setDebug(true);

 // update nodeName to be the real host name

 nodeName = pmiClnt.getConnectedHost();

 System.out.println("use node " + nodeName);

 if (args.length == 4)

 serverName = args[3];

 else { // find the server you want to get PMI data

 // get all servers on this node

 PerfDescriptor[] allservers = pmiClnt.listServers(nodeName);

 if (allservers == null || allservers.length == 0) {

 System.out.println("No server is found on node " + nodeName);

 System.exit(1);

 }

 // get the first server on the list. You may want to get a different server

 serverName = allservers[0].getName();

 System.out.println("Choose server " + serverName);

 }

 // get all MBeans

 ObjectName[] onames = pmiClnt.listMBeans(nodeName, serverName);

 // Cache the MBeans we are interested

 ObjectName perfOName = null;

 ObjectName serverOName = null;

 ObjectName wlmOName = null;

 ObjectName ejbOName = null;

 ObjectName jvmOName = null;

 ArrayList myObjectNames = new ArrayList(10);

 // get the MBeans we are interested in

 if(onames != null) {

 System.out.println("Number of MBeans retrieved= " + onames.length);

 AttributeList al;

 ObjectName on;

 for(int i=0; i<onames.length; i++) {

 on = onames[i];

 String type = on.getKeyProperty("type");

58 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

// make sure PerfMBean is there.

 // Then randomly pick up some MBeans for the test purpose

 if(type != null && type.equals("Server"))

 serverOName = on;

 else if(type != null && type.equals("Perf"))

 perfOName = on;

 else if(type != null && type.equals("WLM")) {

 wlmOName = on;

 }

 else if(type != null && type.equals("EntityBean")) {

 ejbOName = on;

 // add all the EntityBeans to myObjectNames

 myObjectNames.add(ejbOName); // add to the list

 }

 else if(type != null && type.equals("JVM")) {

 jvmOName = on;

 }

 }

 // set monitoring level for SERVER MBean

 testSetLevel(serverOName);

 // get Stats objects

 testGetStats(myObjectNames);

 // if you know the ObjectName(s)

 testGetStats2(new ObjectName[]{jvmOName, ejbOName});

 // assume you are only interested in a server data in WLM MBean,

 // then you will need to use StatDescriptor and MBeanStatDescriptor

 // Note that wlmModule is only available in ND version

 StatDescriptor sd = new StatDescriptor(new String[] {"wlmModule.server"});

 MBeanStatDescriptor msd = new MBeanStatDescriptor(wlmOName, sd);

 Stats wlmStat = pmiClnt.getStats(nodeName, serverName, msd, false);

 if (wlmStat != null)

 System.out.println("\n\n WLM server data\n\n + " + wlmStat.toString());

 else

 System.out.println("\n\n No WLM server data is availalbe.");

 // how to find all the MBeanStatDescriptors

 testListStatMembers(serverOName);

 // how to use update method

 testUpdate(jvmOName, false, true);

 }

 else {

 System.out.println("No ObjectNames returned from Query");

 }

 }

 catch(Exception e) {

 new AdminException(e).printStackTrace();

 System.out.println("Exception = " +e);

 e.printStackTrace();

 success = false;

 }

 if(success)

 System.out.println("\n\n All tests are passed");

 else

 System.out.println("\n\n Some tests are failed. Check for the exceptions");

 }

Chapter 2. Monitoring performance 59

/**

 * construct an array from the ArrayList

 */

 private static MBeanStatDescriptor[] getMBeanStatDescriptor(ArrayList msds) {

 if(msds == null || msds.size() == 0)

 return null;

 MBeanStatDescriptor[] ret = new MBeanStatDescriptor[msds.size()];

 for(int i=0; i<ret.length; i++)

 if(msds.get(i) instanceof ObjectName)

 ret[i] = new MBeanStatDescriptor((ObjectName)msds.get(i));

 else

 ret[i] = (MBeanStatDescriptor)msds.get(i);

 return ret;

 }

 /**

 * Sample code to navigate and display the data value from the Stats object.

 */

 private static void processStats(Stats stat) {

 processStats(stat, "");

 }

 /**

 * Sample code to navigate and display the data value from the Stats object.

 */

 private static void processStats(Stats stat, String indent) {

 if(stat == null) return;

 System.out.println("\n\n");

 // get name of the Stats

 String name = stat.getName();

 System.out.println(indent + "stats name=" + name);

 // Uncomment the following lines to list all the data names

 /*

 String[] dataNames = stat.getStatisticNames();

 for (int i=0; i<dataNames.length; i++)

 System.out.println(indent + " " + "data name=" + dataNames[i]);

 System.out.println("\n");

 */

 // list all datas

 com.ibm.websphere.management.statistics.Statistic[] allData = stat.getStatistics();

 // cast it to be PMI’s Statistic type so that we can have get more

 Statistic[] dataMembers = (Statistic[])allData;

 if(dataMembers != null) {

 for(int i=0; i<dataMembers.length; i++) {

 System.out.print(indent + " " + "data name="

+ PmiClient.getNLSValue(dataMembers[i].getName())

 + ", description="

+ PmiClient.getNLSValue(dataMembers[i].getDescription())

 + ", unit=" + PmiClient.getNLSValue(dataMembers[i].getUnit())

 + ", startTime=" + dataMembers[i].getStartTime()

 + ", lastSampleTime=" + dataMembers[i].getLastSampleTime());

 if(dataMembers[i].getDataInfo().getType() == TYPE_LONG) {

 System.out.println(", count="

+ ((CountStatisticImpl)dataMembers[i]).getCount());

 }

 else if(dataMembers[i].getDataInfo().getType() == TYPE_STAT) {

 TimeStatisticImpl data = (TimeStatisticImpl)dataMembers[i];

 System.out.println(", count=" + data.getCount()

 + ", total=" + data.getTotal()

 + ", mean=" + data.getMean()

 + ", min=" + data.getMin()

60 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

+ ", max=" + data.getMax());

 }

 else if(dataMembers[i].getDataInfo().getType() == TYPE_LOAD) {

 RangeStatisticImpl data = (RangeStatisticImpl)dataMembers[i];

 System.out.println(", current=" + data.getCurrent()

 + ", lowWaterMark=" + data.getLowWaterMark()

 + ", highWaterMark=" + data.getHighWaterMark()

 + ", integral=" + data.getIntegral()

 + ", avg=" + data.getMean());

 }

 }

 }

 // recursively for sub-stats

 Stats[] substats = (Stats[])stat.getSubStats();

 if(substats == null || substats.length == 0)

 return;

 for(int i=0; i<substats.length; i++) {

 processStats(substats[i], indent + " ");

 }

 }

 /**

 * test set level and verify using get level

 */

 private static void testSetLevel(ObjectName mbean) {

 System.out.println("\n\n testSetLevel\n\n");

 try {

 // set instrumentation level to be high for the mbean

 MBeanLevelSpec spec = new MBeanLevelSpec(mbean, null, PmiConstants.LEVEL_HIGH);

 pmiClnt.setStatLevel(nodeName, serverName, spec, true);

 System.out.println("after setInstrumentaionLevel high on server MBean\n\n");

 // get all instrumentation levels

 MBeanLevelSpec[] mlss = pmiClnt.getStatLevel(nodeName, serverName, mbean, true);

 if(mlss == null)

 System.out.println("error: null from getInstrumentationLevel");

 else {

 for(int i=0; i<mlss.length; i++)

 if(mlss[i] != null) {

 // get the ObjectName, StatDescriptor,

and level out of MBeanStatDescriptor

 int mylevel = mlss[i].getLevel();

 ObjectName myMBean = mlss[i].getObjectName();

 StatDescriptor mysd = mlss[i].getStatDescriptor(); // may be null

 // Uncomment it to print all the mlss

 //System.out.println("mlss " + i + ":, " + mlss[i].toString());

 }

 }

 }

 catch(Exception ex) {

 new AdminException(ex).printStackTrace();

 ex.printStackTrace();

 System.out.println("Exception in testLevel");

 success = false;

 }

 }

 /**

 * Use listStatMembers method

 */

 private static void testListStatMembers(ObjectName mbean) {

 System.out.println("\n\ntestListStatMembers \n");

 // listStatMembers and getStats

 // From server MBean until the bottom layer.

Chapter 2. Monitoring performance 61

try {

 MBeanStatDescriptor[] msds = pmiClnt.listStatMembers(nodeName, serverName, mbean);

 if(msds == null) return;

 System.out.println(" listStatMembers for server MBean, num members

(i.e. top level modules) is " + msds.length);

 for(int i=0; i<msds.length; i++) {

 if(msds[i] == null) continue;

 // get the fields out of MBeanStatDescriptor if you need them

 ObjectName myMBean = msds[i].getObjectName();

 StatDescriptor mysd = msds[i].getStatDescriptor(); // may be null

 // uncomment if you want to print them out

 //System.out.println(msds[i].toString());

 }

 for(int i=0; i<msds.length; i++) {

 if(msds[i] == null) continue;

 System.out.println("\n\nlistStatMembers for msd=" + msds[i].toString());

 MBeanStatDescriptor[] msds2 =

pmiClnt.listStatMembers(nodeName, serverName, msds[i]);

 // you get msds2 at the second layer now and the

listStatMembers can be called recursively

 // until it returns now.

 }

 }

 catch(Exception ex) {

 new AdminException(ex).printStackTrace();

 ex.printStackTrace();

 System.out.println("Exception in testListStatMembers");

 success = false;

 }

 }

 /**

 * Test getStats method

 */

 private static void testGetStats(ArrayList mbeans) {

 System.out.println("\n\n testgetStats\n\n");

 try {

 Stats[] mystats = pmiClnt.getStats(nodeName,

serverName, getMBeanStatDescriptor(mbeans), true);

 // navigate each of the Stats object and get/display the value

 for(int k=0; k<mystats.length; k++) {

 processStats(mystats[k]);

 }

 }

 catch(Exception ex) {

 new AdminException(ex).printStackTrace();

 ex.printStackTrace();

 System.out.println("exception from testGetStats");

 success = false;

 }

 }

 /**

 * Test getStats method

 */

 private static void testGetStats2(ObjectName[] mbeans) {

 System.out.println("\n\n testGetStats2\n\n");

62 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

try {

 Stats[] statsArray = pmiClnt.getStats(nodeName, serverName, mbeans, true);

 // You can call toString to simply display all the data

 if(statsArray != null) {

 for(int k=0; k<statsArray.length; k++)

 System.out.println(statsArray[k].toString());

 }

 else

 System.out.println("null stat");

 }

 catch(Exception ex) {

 new AdminException(ex).printStackTrace();

 ex.printStackTrace();

 System.out.println("exception from testGetStats2");

 success = false;

 }

 }

 /**

 * test update method

 */

 private static void testUpdate(ObjectName oName, boolean keepOld,

boolean recursiveUpdate) {

 System.out.println("\n\n testUpdate\n\n");

 try {

 // set level to be NONE

 MBeanLevelSpec spec = new MBeanLevelSpec(oName, null, PmiConstants.LEVEL_NONE);

 pmiClnt.setStatLevel(nodeName, serverName, spec, true);

 // get data now - one is non-recursive and the other is recursive

 Stats stats1 = pmiClnt.getStats(nodeName, serverName, oName, false);

 Stats stats2 = pmiClnt.getStats(nodeName, serverName, oName, true);

 // set level to be HIGH

 spec = new MBeanLevelSpec(oName, null, PmiConstants.LEVEL_HIGH);

 pmiClnt.setStatLevel(nodeName, serverName, spec, true);

 Stats stats3 = pmiClnt.getStats(nodeName, serverName, oName, true);

 System.out.println("\n\n stats3 is");

 processStats(stats3);

 stats1.update(stats3, keepOld, recursiveUpdate);

 System.out.println("\n\n update stats1");

 processStats(stats1);

 stats2.update(stats3, keepOld, recursiveUpdate);

 System.out.println("\n\n update stats2");

 processStats(stats2);

 }

 catch(Exception ex) {

 System.out.println("\n\n Exception in testUpdate");

 ex.printStackTrace();

 success = false;

 }

 }

}

Chapter 2. Monitoring performance 63

Developing your own monitoring applications with

Performance Monitoring Infrastructure servlet

Before you begin

The performance servlet uses the Performance Monitor Interface (PMI)

infrastructure to retrieve the performance information from WebSphere Application

Server. This is the same infrastructure used by the Tivoli Performance Viewer and

is subject to the same restrictions on the availability of data as the performance

viewer.

The performance servlet .ear file perfServletApp.ear is located in the

install_root directory.

The performance servlet is deployed exactly as any other servlet. To use it, follow

these steps:

Steps for this task

1. Deploy the servlet on a single application server instance within the domain.

2. After the servlet deploys, you can invoke it to retrieve performance data for the

entire domain.

 Invoke the performance servlet by accessing the following default URL:

http://hostname/wasPerfTool/servlet/perfservlet

Results

The performance servlet provides performance data output as an XML document,

as described by the provided document type definition (DTD). The output

structure provided is called leaves. The paths that lead to the leaves provide the

context of the data. See the topic ″Performance Monitoring Infrastructure (PMI)

servlet″ for more information about the PMI servlet output.

Performance Monitoring Infrastructure servlet

The Performance Monitoring Infrastructure (PMI) servlet is used for simple

end-to-end retrieval of performance data that any tool, provided by either IBM or a

third-party vendor, can handle.

The PMI servlet provides a way to use an HTTP request to query the performance

metrics for an entire WebSphere Application Server administrative domain.

Because the servlet provides the performance data through HTTP, issues such as

firewalls are trivial to resolve.

The performance servlet provides the performance data output as an XML

document, as described in the provided document type description (DTD). In the

XML structure, the leaves of the structure provide the actual observations of

performance data and the paths to the leaves that provide the context. There are

three types of leaves or output formats within the XML structure:

v PerfNumericInfo

v PerfStatInfo

v PerfLoadInfo

PerfNumericInfo.When each invocation of the performance servlet retrieves the

performance values from Performance Monitoring Infrastructure (PMI), some of

the values are raw counters that record the number of times a specific event occurs

during the lifetime of the server. If a performance observation is of the type

64 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

PerfNumericInfo, the value represents the raw count of the number of times this

event has occurred since the server started. This information is important to note

because the analysis of a single document of data provided by the performance

servlet might not be useful for determining the current load on the system. To

determine the load during a specific interval of time, it might be necessary to

apply simple statistical formulas to the data in two or more documents provided

during this interval. The PerfNumericInfo type has the following attributes:

v time—Specifies the time when the observation was collected (Java

System.currentTimeMillis)

v uid—Specifies the PMI identifier for the observation

v val—Specifies the raw counter value

The following document fragment represents the number of loaded servlets. The

path providing the context of the observation is not shown.

<numLoadedServlets>

 <PerfNumericData time="988162913175" uid="pmi1"

val="132"/>

</numLoadedServlets>

PerfStatInfo.When each invocation of the performance servlet retrieves the

performance values from PMI, some of the values are stored as statistical data.

Statistical data records the number of occurrences of a specific event, as the

PerfNumericInfo type does. In addition, this type has sum of squares, mean, and

total for each observation. This value is relative to when the server started.

The PerfStatInfo type has the following attributes:

v time—Specifies the time the observation was collected (Java

System.currentTimeMillis)

v uid—Specifies the PMI identifier for this observation

v num—Specifies the number of observations

v sum_of_squares—Specifies the sum of the squares of the observations

v total—Specifies the sum of the observations

v mean—Specifies the mean (total number) for this counter

The following fragment represents the response time of an object. The path

providing the context of the observation is not shown:

<responseTime>

 <PerfStatInfo mean="1211.5" num="5"

sum_of_squares="3256265.0"

time="9917644193057" total="2423.0"

uid="pmi13"/>

</responseTime>

PerfLoadInfo.When each invocation of the performance servlet retrieves the

performance values from PMI, some of the values are stored as a load. Loads

record values as a function of time; they are averages. This value is relative to

when the server started.

The PerfLoadInfo type has the following attributes:

v time—Specifies the time when the observation was collected (Java

System.currentTimeMillis)

v uid—Specifies the PMI identifier for this observation

v currentValue—Specifies the current value for this counter

v integral—Specifies the time-weighted sum

Chapter 2. Monitoring performance 65

v timeSinceCreate—Specifies the elapsed time in milliseconds since this data was

created in the server

v mean—Specifies time-weighted mean (integral/timeSinceCreate) for this counter

The following fragment represents the number of concurrent requests. The path

providing the context of the observation is not shown:

<poolSize>

 <PerfLoadInfo currentValue="1.0" integral="534899.0

" mean="0.9985028962051592"

time="991764193057" timeSinceCreate="535701.0

"uid="pmi5"</poolSize>

When the performance servlet is first initialized, it retrieves the list of nodes and

servers located within the domain in which it is deployed. Because the collection of

this data is expensive, the performance servlet holds this information as a cached

list. If a new node is added to the domain or a new server is started, the

performance servlet does not automatically retrieve the information about the

newly created element. To force the servlet to refresh its configuration, you must

add the refreshConfig parameter to the invocation as follows:

http://hostname/wasPerfTool/servlet/perfservlet?refreshConfig=true

By default, the performance servlet collects all of the performance data across a

WebSphere domain. However, it is possible to limit the data returned by the servlet

to either a specific node, server, or PMI module.

v Node.The servlet can limit the information it provides to a specific host by using

the node parameter. For example, to limit the data collection to the node rjones,

invoke the following URL:

 http://hostname/wasPerfTool/servlet/perfservlet?Node=rjones

v Server.The servlet can limit the information it provides to a specific server by

using the server parameter. For example, in order to limit the data collection to

the TradeApp server on all nodes, invoke the following URL:

 http://hostname/wasPerfTool/servlet/perfservlet?Server=TradeApp

 To limit the data collection to the TradeApp server located on the host rjones,

invoke the following URL:

http://hostname/wasPerfTool/servlet/perfservlet?Node=rjones&Server=TradeApp

v Module.The servlet can limit the information it provides to a specific PMI

module by using the module parameter. You can request multiple modules from

the following Web site:

 http://hostname/wasPerfTool/servlet/perfservlet?Module=beanModule+jvmRuntimeModule

For example, to limit the data collection to the beanModule on all servers and

nodes, invoke the following URL:

http://hostname/wasPerfTool/servlet/perfservlet?Module=beanModule

 To limit the data collection to the beanModule on the server TradeApp on the

node rjones, invoke the following URL:

http://hostname/wasPerfTool/servlet/perfservlet?Node=rjones&Server=TradeApp

&Module=beanModule>

Compiling your monitoring applications

Before you begin

To compile your Performance Monitoring Infrastructure (PMI) code, you must have

the following JAR files in your classpath:

v admin.jar

66 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

v wsexception.jar

v jmxc.jar

v pmi.jar

v pmiclient.jar

If your monitoring applications use APIs in other packages, also include those

packages on the classpath.

Running your new monitoring applications

Steps for this task

1. Obtain the pmi.jar and pmiclient.jar files.

 The pmi.jar and pmiclient.jar files are required for client applications using

PMI client APIs. The pmi.jar and pmiclient.jar files are distributed with

WebSphere Application Server and are also a part of WebSphere Java thin client

package. You can get it from either a WebSphere Application Server installation

or WebSphere Java Thin Application Client installation. You also need the other

JAR files in WebSphere Java Thin Application Client installation in order to run

a PMI application.

2. Use PMI client API to write your own application.

3. Compile the newly written PMI application and place it on the classpath.

4. Run the application with the following script:

 call "%~dp0setupCmdLine.bat"

set WAS_CP=%WAS_HOME%\properties

set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\pmi.jar

set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\pmiclient.jar

set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\ras.jar

set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\admin.jar

set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\wasjmx.jar

set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\j2ee.jar

set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\soap.jar

set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\soap-sec.jar

set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\nls.jar

set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\wsexception.jar

set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\ws-config-common.jar

set WAS_CP=%WAS_CP%;%WAS_HOME%\lib\namingclient.jar

%JAVA_HOME%\bin\java "%CLIENTSOAP%" "%CLIENTSAS%" "-Dws.ext.dirs=%WAS_EXT_DIRS%"

%DEBUGOPTS% -classpath "%WAS_CP%" com.ibm.websphere.pmi.PmiClientTest host name

[port] [connectorType]

Performance Monitoring Infrastructure client package

Performance Monitoring Infrastructure (PMI) client package provides a wrapper

class PmiClient to deliver PMI data to a client.

As shown in the following figure, PmiClient uses the AdminClient API to

communicate the Perf MBean in an application server.

PmiClient communicates with the network manager first, retrieving an

AdminClient instance to each application server. Once the PmiClient receives the

instance, it uses it to communicate with the application server directly for

performance or level setting changes. Since level settings are persistent through

PmiClient, you are only required to set it once, unless you want to change it.

Performance Monitoring Infrastructure and Java Management Extensions

Chapter 2. Monitoring performance 67

The PmiClient API does not work if the Java Management Extensions (JMX)

infrastructure and Perf MBean are not running. If you prefer to use the

AdminClient API directly to retrieve PMI data, you still have a dependency on the

JMX infrastructure.

When using the PmiClient API, you have to pass the JMX connector protocol and

port number to instantiate an object of the PmiClient. Once you get a PmiClient

object, you can call its methods to list nodes, servers and MBeans, set the

monitoring level, and retrieve PMI data.

The PmiClient API creates an instance of the AdminClient API and delegates your

requests to the AdminClient API. The AdminClient API uses the JMX connector to

communicate with the PerfMBean in the corresponding server and then returns the

data to the PmiClient, which returns the data to the client.

PmiClient

PMIClient Application

AdminClient

App Server

JMX Connector Perf
MBean

Running your monitoring applications with security enabled

In order to run a Performance Monitoring Infrastructure client application with

security enabled, you must have %CLIENTSOAP% and %CLIENTSAS% properties on your

Java virtual machine command line. The %CLIENTSOAP% and %CLIENTSAS% properties

are defined in the setupCmdLine.bat or setupCmdline.sh files.

Steps for this task

1. Set com.ibm.SOAP.securityEnabled to True in the soap.client.props file for the

SOAP connector.

 The soap.client.props property file is located in the WAS_ROOT/properties

directory.

2. Set com.ibm.SOAP.loginUserid and com.ibm.SOAP.loginPassword as the user ID

and password for login.

3. Set the sas.client.props file or type the user ID and password in the pop-up

window if you do not put them in the property file for RMI connector

 A common mistake is leaving extra spaces at the end of the lines in the

property file. Do not leave extra spaces at the end of the lines, especially for the

user ID and password lines.

Accessing Performance Monitoring Infrastructure data

through the Java Management Extension interface

Before you begin

WebSphere Application Server allows you to invoke methods on MBeans through

the AdminClient Java Management Extension (JMX) interface. You can use

68 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

AdminClient API to get Performance Monitoring Infrastructure (PMI) data by

using either PerfMBean or individual MBeans. See information about using

individual MBeans at bottom of this article.

Individual MBeans provide the Stats attribute from which you can get PMI data.

The PerfMBean provides extended methods for PMI administration and more

efficient ways to access PMI data. To set the PMI module instrumentation level,

you must invoke methods on PerfMBean. To query PMI data from multiple

MBeans, it is faster to invoke the getStatsArray method in PerfMBean than to get

the Stats attribute from multiple individual MBeans. PMI can be delivered in a

single JMX cell through PerfMBean, but multiple JMX calls have to be made

through individual MBeans.

See the topic ″Developing an administrative client program″ for more information

on AdminClient JMX.

After the performance monitoring service is enabled and the application server is

started or restarted, a PerfMBean is located in each application server giving access

to PMI data. To use PerfMBean:

Steps for this task

1. Create an instance of AdminClient.

 When using AdminClient API, you need to first create an instance of

AdminClient by passing the host name, port number and connector type.

 The example code is:

 AdminClient ac = null;

 java.util.Properties props = new java.util.Properties();

 props.put(AdminClient.CONNECTOR_TYPE, connector);

 props.put(AdminClient.CONNECTOR_HOST, host);

 props.put(AdminClient.CONNECTOR_PORT, port);

 try {

 ac = AdminClientFactory.createAdminClient(props);

 }

 catch(Exception ex) {

 failed = true;

 new AdminException(ex).printStackTrace();

 System.out.println("getAdminClient: exception");

 }

2. Use AdminClient to query the MBean ObjectNames

 Once you get the AdminClient instance, you can call queryNames to get a list

of MBean ObjectNames depending on your query string. To get all the

ObjectNames, you can use the following example code. If you have a specified

query string, you will get a subset of ObjectNames.

 javax.management.ObjectName on = new javax.management.ObjectName("WebSphere:*");

 Set objectNameSet= ac.queryNames(on, null);

 // you can check properties like type, name, and process to find a specified ObjectName

 After you get all the ObjectNames, you can use the following example code to

get all the node names:

 HashSet nodeSet = new HashSet();

 for(Iterator i = objectNameSet.iterator(); i.hasNext(); on =

(ObjectName)i.next()) {

 String type = on.getKeyProperty("type");

 if(type != null && type.equals("Server")) {

 nodeSet.add(servers[i].getKeyProperty("node"));

 }

 }

Note, this will only return nodes that are started.

Chapter 2. Monitoring performance 69

To list running servers on the node, you can either check the node name and

type for all the ObjectNames or use the following example code:

 StringBuffer oNameQuery= new StringBuffer(41);

 oNameQuery.append("WebSphere:*");

 oNameQuery.append(",type=").append("Server");

 oNameQuery.append(",node=").append(mynode);

 oSet= ac.queryNames(new ObjectName(oNameQuery.toString()), null);

 Iterator i = objectNameSet.iterator ();

 while (i.hasNext ()) {

 on=(objectName) i.next();

 String process= on[i].getKeyProperty("process");

 serversArrayList.add(process);

 }

3. Get the PerfMBean ObjectName for the application server from which you

want to get PMI data.

 Use this example code:

 for(Iterator i = objectNameSet.iterator(); i.hasNext(); on = (ObjectName)i.next()) {

 // First make sure the node name and server name is what you want

 // Second, check if the type is Perf

 String type = on.getKeyProperty("type");

 String node = on.getKeyProperty("node");

 String process= on.getKeyProperty("process");

 if (type.equals("Perf") && node.equals(mynode) &

& server.equals(myserver)) {

 perfOName = on;

 }

 }

4. Invoke operations on PerfMBean through the AdminClient.

 Once you get the PerfMBean(s) in the application server from which you want

to get PMI data, you can invoke the following operations on the PerfMBean

through AdminClient API:

- setInstrumentationLevel: set the instrmentation level

 params[0] = new MBeanLevelSpec(objectName, optionalSD, level);

 params[1] = new Boolean(true);

 signature= new String[]{ "com.ibm.websphere.pmi.stat.MBeanLevelSpec",

"java.lang.Boolean"};

 ac.invoke(perfOName, "setInstrumentationLevel", params, signature);

- getInstrumentationLevel: get the instrumentation level

 Object[] params = new Object[2];

 params[0] = new MBeanStatDescriptor(objectName, optionalSD);

 params[1] = new Boolean(recursive);

 String[] signature= new String[]{

"com.ibm.websphere.pmi.stat.MBeanStatDescriptor", "java.lang.Boolean"};

 MBeanLevelSpec[] mlss = (MBeanLevelSpec[])ac.invoke(perfOName,

"getInstrumentationLevel", params, signature);

- getConfigs: get PMI static config info for all the MBeans

 configs = (PmiModuleConfig[])ac.invoke(perfOName, "getConfigs", null, null);

- getConfig: get PMI static config info for a specific MBean

 ObjectName[] params = {objectName};

 String[] signature= { "javax.management.ObjectName" };

 config = (PmiModuleConfig)ac.invoke(perfOName, "getConfig", params,

signature);

- getStatsObject: you can use either ObjectName or MBeanStatDescriptor

 Object[] params = new Object[2];

 params[0] = objectName; // either ObjectName or or MBeanStatDescriptor

 params[1] = new Boolean(recursive);

 String[] signature = new String[] { "javax.management.ObjectName",

"java.lang.Boolean"};

70 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

Stats stats = (Stats)ac.invoke(perfOName, "getStatsObject", params,

signature);

 Note: The returned data only have dynamic information (value and time stamp).

See PmiJmxTest.java for additional code to link the configuration information with the

returned data.

- getStatsArray: you can use either ObjectName or MBeanStatDescriptor

 ObjectName[] onames = new ObjectName[]{objectName1, objectName2};

 Object[] params = new Object[]{onames, new Boolean(true)};

 String[] signature = new String[]{"[Ljavax.management.ObjectName;",

"java.lang.Boolean"};

 Stats[] statsArray = (Stats[])ac.invoke(perfOName, "getStatsArray",

params, signature);

 Note: The returned data only have dynamic information (value and time stamp).

See PmiJmxTest.java for additional code to link the configuration information with the

returned data.

- listStatMembers: navigate the PMI module trees

 Object[] params = new Object[]{mName};

 String[] signature= new String[]{"javax.management.ObjectName"};

 MBeanStatDescriptor[] msds = (MBeanStatDescriptor[])ac.invoke(perfOName,

"listStatMembers", params, signature);

or,

 Object[] params = new Object[]{mbeanSD};

 String[] signature= new String[]

{"com.ibm.websphere.pmi.stat.MBeanStatDescriptor"};

 MBeanStatDescriptor[] msds = (MBeanStatDescriptor[])ac.invoke

(perfOName, "listStatMembers", params, signature);

v To use an individual MBean: You need to get the AdminClient instance and

the ObjectName for the individual MBean. Then you can simply get the Stats

attribute on the MBean.

Example: Administering Java Management Extension-based

interface

Examples

The following is example code directly using Java Management Extension (JMX)

API. For information on compiling your source code, see Compiling your

monitoring applications

package com.ibm.websphere.pmi;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.exception.ConnectorException;

import com.ibm.websphere.management.exception.InvalidAdminClientTypeException;

import com.ibm.websphere.management.exception.*;

import java.util.*;

import javax.management.*;

import com.ibm.websphere.pmi.*;

import com.ibm.websphere.pmi.client.*;

import com.ibm.websphere.pmi.stat.*;

/**

 * Sample code to use AdminClient API directly to get PMI data from PerfMBean

 * and individual MBeans which support getStats method.

 */

public class PmiJmxTest implements PmiConstants {

Chapter 2. Monitoring performance 71

private AdminClient ac = null;

 private ObjectName perfOName = null;

 private ObjectName serverOName = null;

 private ObjectName wlmOName = null;

 private ObjectName jvmOName = null;

 private ObjectName orbtpOName = null;

 private boolean failed = false;

 private PmiModuleConfig[] configs = null;

 /**

 * Creates a new test object

 * (Need a default constructor for the testing framework)

 */

 public PmiJmxTest() {

 }

 /**

 * @param args[0] host

 * @param args[1] port, optional, default is 8880

 * @param args[2] connectorType, optional, default is SOAP connector

 *

 */

 public static void main(String[] args) {

 PmiJmxTest instance = new PmiJmxTest();

 // parse arguments and create AdminClient object

 instance.init(args);

 // navigate all the MBean ObjectNames and cache those we are interested

 instance.getObjectNames();

 // set level, get data, display data

 instance.doTest();

 // test for EJB data

 instance.testEJB();

 // how to use JSR77 getStats method for individual MBean other than PerfMBean

 instance.testJSR77Stats();

 }

 /**

 * parse args and getAdminClient

 */

 public void init(String[] args) {

 try {

 String host = null;

 String port = "8880";

 String connector = "SOAP";

 if(args.length < 1) {

 System.err.println("ERROR: Usage: PmiJmxTest <host> [<port>]

[<connector>]");

 System.exit(2);

 }

 else {

 host = args[0];

 if (args.length > 1)

 port = args[1];

 if (args.length > 2)

 connector = args[2];

 }

 if(host == null) {

72 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

host = "localhost";

 }

 if(port == null) {

 port = "8880";

 }

 if (connector == null) {

 connector = AdminClient.CONNECTOR_TYPE_SOAP;

 }

 System.out.println("host=" + host + " , port=" + port + ",

connector=" + connector);

 //--

 // Get the ac object for the AppServer

 //--

 System.out.println("main: create the adminclient");

 ac = getAdminClient(host, port, connector);

 } catch (Exception ex) {

 failed = true;

 new AdminException(ex).printStackTrace();

 ex.printStackTrace();

 }

 }

 /**

 * get AdminClient using the given host, port, and connector

 */

 public AdminClient getAdminClient(String hostStr, String portStr, String connector) {

 System.out.println("getAdminClient: host=" + hostStr + " , portStr=" + portStr);

 AdminClient ac = null;

 java.util.Properties props = new java.util.Properties();

 props.put(AdminClient.CONNECTOR_TYPE, connector);

 props.put(AdminClient.CONNECTOR_HOST, hostStr);

 props.put(AdminClient.CONNECTOR_PORT, portStr);

 try {

 ac = AdminClientFactory.createAdminClient(props);

 }

 catch(Exception ex) {

 failed = true;

 new AdminException(ex).printStackTrace();

 System.out.println("getAdminClient: exception");

 }

 return ac;

 }

 /**

 * get all the ObjectNames.

 */

 public void getObjectNames() {

 try {

 //--

 // Get a list of object names

 //--

 javax.management.ObjectName on = new javax.management.ObjectName("WebSphere:*");

 //--

 // get all objectnames for this server

 //--

 Set objectNameSet= ac.queryNames(on, null);

 //--

 // get the object names that we care about: Perf, Server, JVM,

WLM (only applicable in ND)

 //--

Chapter 2. Monitoring performance 73

if(objectNameSet != null) {

 Iterator i = objectNameSet.iterator();

 while (i.hasNext()) {

 on = (ObjectName)i.next();

 String type = on.getKeyProperty("type");

 // uncomment it if you want to print the ObjectName for each MBean

 // System.out.println("\n\n" + on.toString());

 // find the MBeans we are interested

 if(type != null && type.equals("Perf")) {

 System.out.println("\nMBean: perf =" + on.toString());

 perfOName = on;

 }

 if(type != null && type.equals("Server")) {

 System.out.println("\nMBean: Server =" + on.toString());

 serverOName = on;

 }

 if(type != null && type.equals("JVM")) {

 System.out.println("\nMBean: jvm =" + on.toString());

 jvmOName = on;

 }

 if(type != null && type.equals("WLMAppServer")) {

 System.out.println("\nmain: WLM =" + on.toString());

 wlmOName = on;

 }

 if(type != null && type.equals("ThreadPool")) {

 String name = on.getKeyProperty("name");

 if (name.equals("ORB.thread.pool"))

 System.out.println("\nMBean: ORB ThreadPool =" + on.toString());

 orbtpOName = on;

 }

 }

 }

 else {

 System.err.println("main: ERROR: no object names found");

 System.exit(2);

 }

 // You must have Perf MBean in order to get PMI data.

 if (perfOName == null) {

 System.err.println("main: cannot get PerfMBean. Make sure PMI is enabled");

 System.exit(3);

 }

 }

 catch(Exception ex) {

 failed = true;

 new AdminException(ex).printStackTrace();

 ex.printStackTrace();

 }

 }

 /**

 * Some sample code to set level, get data, and display data.

 */

 public void doTest() {

 try {

 // first get all the configs - used to set static info for Stats

 // Note: server only returns the value and time info.

 // No description, unit, etc is returned with PMI data to

reduce communication cost.

 // You have to call setConfig to bind the static info and Stats data later.

 configs = (PmiModuleConfig[])ac.invoke(perfOName, "getConfigs", null, null);

 // print out all the PMI modules and matching mbean types

 for (int i=0; i<configs.length; i++)

74 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

System.out.println("config: moduleName=" + configs[i].getShortName() + ",

mbeanType=" + configs[i].getMbeanType());

 // set the instrumentation level for the server

 setInstrumentationLevel(serverOName, null, PmiConstants.LEVEL_HIGH);

 // example to use StatDescriptor.

 // Note WLM module is only available in ND.

 StatDescriptor sd = new StatDescriptor(new String[] {"wlmModule.server"});

 setInstrumentationLevel(wlmOName, sd, PmiConstants.LEVEL_HIGH);

 // example to getInstrumentationLevel

 MBeanLevelSpec[] mlss = getInstrumentationLevel(wlmOName, sd, true);

 // you can call getLevel(), getObjectName(), getStatDescriptor() on mlss[i]

 // get data for the server

 Stats stats = getStatsObject(serverOName, true);

 System.out.println(stats.toString());

 // get data for WLM server submodule

 stats = getStatsObject(wlmOName, sd, true);

 if (stats == null)

 System.out.println("Cannot get Stats for WLM data");

 else

 System.out.println(stats.toString());

 // get data for JVM MBean

 stats = getStatsObject(jvmOName, true);

 processStats(stats);

 // get data for multiple MBeans

 ObjectName[] onames = new ObjectName[]{orbtpOName, jvmOName};

 Object[] params = new Object[]{onames, new Boolean(true)};

 String[] signature = new String[]{"[Ljavax.management.ObjectName;",

"java.lang.Boolean"};

 Stats[] statsArray = (Stats[])ac.invoke(perfOName, "getStatsArray",

params, signature);

 // you can call toString or processStats on statsArray[i]

 if (!failed)

 System.out.println("All tests passed");

 else

 System.out.println("Some tests failed");

 }

 catch(Exception ex) {

 new AdminException(ex).printStackTrace();

 ex.printStackTrace();

 }

 }

 /**

 * Sample code to get level

 */

 protected MBeanLevelSpec[] getInstrumentationLevel(ObjectName on, StatDescriptor sd,

boolean recursive) {

 if (sd == null)

 return getInstrumentationLevel(on, recursive);

 System.out.println("\ntest getInstrumentationLevel\n");

 try {

 Object[] params = new Object[2];

 params[0] = new MBeanStatDescriptor(on, sd);

 params[1] = new Boolean(recursive);

 String[] signature= new String[]{ "com.ibm.websphere.pmi.stat.MBeanStatDescriptor",

 "java.lang.Boolean"};

 MBeanLevelSpec[] mlss = (MBeanLevelSpec[])ac.invoke(perfOName,

"getInstrumentationLevel", params, signature);

Chapter 2. Monitoring performance 75

return mlss;

 }

 catch(Exception e) {

 new AdminException(e).printStackTrace();

 System.out.println("getInstrumentationLevel: Exception Thrown");

 return null;

 }

 }

 /**

 * Sample code to get level

 */

 protected MBeanLevelSpec[] getInstrumentationLevel(ObjectName on, boolean recursive) {

 if (on == null)

 return null;

 System.out.println("\ntest getInstrumentationLevel\n");

 try {

 Object[] params = new Object[]{on, new Boolean(recursive)};

 String[] signature= new String[]{ "javax.management.ObjectName",

"java.lang.Boolean"};

 MBeanLevelSpec[] mlss = (MBeanLevelSpec[])ac.invoke(perfOName,

"getInstrumentationLevel", params, signature);

 return mlss;

 }

 catch(Exception e) {

 new AdminException(e).printStackTrace();

 failed = true;

 System.out.println("getInstrumentationLevel: Exception Thrown");

 return null;

 }

 }

 /**

 * Sample code to set level

 */

 protected void setInstrumentationLevel(ObjectName on, StatDescriptor sd, int level) {

 System.out.println("\ntest setInstrumentationLevel\n");

 try {

 Object[] params = new Object[2];

 String[] signature = null;

 MBeanLevelSpec[] mlss = null;

 params[0] = new MBeanLevelSpec(on, sd, level);

 params[1] = new Boolean(true);

 signature= new String[]{ "com.ibm.websphere.pmi.stat.MBeanLevelSpec",

"java.lang.Boolean"};

 ac.invoke(perfOName, "setInstrumentationLevel", params, signature);

 }

 catch(Exception e) {

 failed = true;

 new AdminException(e).printStackTrace();

 System.out.println("setInstrumentationLevel: FAILED: Exception Thrown");

 }

 }

 /**

 * Sample code to get a Stats object

 */

 public Stats getStatsObject(ObjectName on, StatDescriptor sd, boolean recursive) {

 if (sd == null)

 return getStatsObject(on, recursive);

 System.out.println("\ntest getStatsObject\n");

 try {

 Object[] params = new Object[2];

 params[0] = new MBeanStatDescriptor(on, sd); // construct MBeanStatDescriptor

76 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

params[1] = new Boolean(recursive);

 String[] signature = new String[] {

"com.ibm.websphere.pmi.stat.MBeanStatDescriptor", "java.lang.Boolean"};

 Stats stats = (Stats)ac.invoke(perfOName, "getStatsObject", params, signature);

 if (stats == null) return null;

 // find the PmiModuleConfig and bind it with the data

 String type = on.getKeyProperty("type");

 if (type.equals(MBeanTypeList.SERVER_MBEAN))

 setServerConfig(stats);

 else

 stats.setConfig(findConfig(on));

 return stats;

 } catch(Exception e) {

 failed = true;

 new AdminException(e).printStackTrace();

 System.out.println("getStatsObject: Exception Thrown");

 return null;

 }

 }

 /**

 * Sample code to get a Stats object

 */

 public Stats getStatsObject(ObjectName on, boolean recursive) {

 if (on == null)

 return null;

 System.out.println("\ntest getStatsObject\n");

 try {

 Object[] params = new Object[]{on, new Boolean(recursive)};

 String[] signature = new String[] { "javax.management.ObjectName",

"java.lang.Boolean"};

 Stats stats = (Stats)ac.invoke(perfOName, "getStatsObject", params,

signature);

 // find the PmiModuleConfig and bind it with the data

 String type = on.getKeyProperty("type");

 if (type.equals(MBeanTypeList.SERVER_MBEAN))

 setServerConfig(stats);

 else

 stats.setConfig(findConfig(on));

 return stats;

 } catch(Exception e) {

 failed = true;

 new AdminException(e).printStackTrace();

 System.out.println("getStatsObject: Exception Thrown");

 return null;

 }

 }

 /**

 * Sample code to navigate and get the data value from the Stats object.

 */

 private void processStats(Stats stat) {

 processStats(stat, "");

 }

 /**

 * Sample code to navigate and get the data value from the Stats and Statistic object.

 */

Chapter 2. Monitoring performance 77

private void processStats(Stats stat, String indent) {

 if(stat == null) return;

 System.out.println("\n\n");

 // get name of the Stats

 String name = stat.getName();

 System.out.println(indent + "stats name=" + name);

 // list data names

 String[] dataNames = stat.getStatisticNames();

 for (int i=0; i<dataNames.length; i++)

 System.out.println(indent + " " + "data name=" + dataNames[i]);

 System.out.println("");

 // list all datas

 com.ibm.websphere.management.statistics.Statistic[] allData = stat.getStatistics();

 // cast it to be PMI’s Statistic type so that we can have get more

 // Also show how to do translation.

 Statistic[] dataMembers = (Statistic[])allData;

 if(dataMembers != null) {

 for(int i=0; i<dataMembers.length; i++) {

 System.out.print(indent + " " + "data name=" +

PmiClient.getNLSValue(dataMembers[i].getName())

 + ", description=" +

PmiClient.getNLSValue(dataMembers[i].getDescription())

 + ", startTime=" + dataMembers[i].getStartTime()

 + ", lastSampleTime=" + dataMembers[i].getLastSampleTime());

 if(dataMembers[i].getDataInfo().getType() == TYPE_LONG) {

 System.out.println(", count=" +

((CountStatisticImpl)dataMembers[i]).getCount());

 }

 else if(dataMembers[i].getDataInfo().getType() == TYPE_STAT) {

 TimeStatisticImpl data = (TimeStatisticImpl)dataMembers[i];

 System.out.println(", count=" + data.getCount()

 + ", total=" + data.getTotal()

 + ", mean=" + data.getMean()

 + ", min=" + data.getMin()

 + ", max=" + data.getMax());

 }

 else if(dataMembers[i].getDataInfo().getType() == TYPE_LOAD) {

 RangeStatisticImpl data = (RangeStatisticImpl)dataMembers[i];

 System.out.println(", current=" + data.getCurrent()

 + ", integral=" + data.getIntegral()

 + ", avg=" + data.getMean()

 + ", lowWaterMark=" + data.getLowWaterMark()

 + ", highWaterMark=" + data.getHighWaterMark());

 }

 }

 }

 // recursively for sub-stats

 Stats[] substats = (Stats[])stat.getSubStats();

 if(substats == null || substats.length == 0)

 return;

 for(int i=0; i<substats.length; i++) {

 processStats(substats[i], indent + " ");

 }

 }

 /**

 * Get PmiModuleConfig based on MBean ObjectName

 */

 public PmiModuleConfig findConfig(ObjectName on) {

 if (on == null) return null;

78 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

String type = on.getKeyProperty("type");

 System.out.println("findConfig: mbean type =" + type);

 for (int i=0; i<configs.length ; i++) {

 if (configs[i].getMbeanType().equals(type))

 return configs[i];

 }

 System.out.println("Error: cannot find the config");

 return null;

 }

 /**

 * Get PmiModuleConfig based on PMI module name */

 public PmiModuleConfig findConfig(String moduleName) {

 if (moduleName == null) return null;

 for (int i=0; i<configs.length ; i++) {

 if (configs[i].getShortName().equals(moduleName))

 return configs[i];

 }

 System.out.println("Error: cannot find the config");

 return null;

 }

 /**

 * The Stats object returned from server does not have static config info.

You have to set it on client side.

 */

 public void setServerConfig(Stats stats) {

 if(stats == null) return;

 if(stats.getType() != TYPE_SERVER) return;

 PmiModuleConfig config = null;

 Stats[] statList = stats.getSubStats();

 if (statList == null || statList.length == 0)

 return;

 Stats oneStat = null;

 for(int i=0; i<statList.length; i++) {

 oneStat = statList[i];

 if (oneStat == null) continue;

 config = findConfig(oneStat.getName());

 if(config != null)

 oneStat.setConfig(config);

 else

 System.out.println("Error: get null config for " + oneStat.getName());

 }

 }

 /**

 * sample code to show how to get a specific MBeanStatDescriptor

 */

 public MBeanStatDescriptor getStatDescriptor(ObjectName oName, String name) {

 try {

 Object[] params = new Object[]{serverOName};

 String[] signature= new String[]{"javax.management.ObjectName"};

 MBeanStatDescriptor[] msds = (MBeanStatDescriptor[])ac.invoke(perfOName,

"listStatMembers", params, signature);

 if (msds == null)

 return null;

 for (int i=0; i<msds.length; i++) {

 if (msds[i].getName().equals(name))

 return msds[i];

Chapter 2. Monitoring performance 79

}

 return null;

 }

 catch(Exception e) {

 new AdminException(e).printStackTrace();

 System.out.println("listStatMembers: Exception Thrown");

 return null;

 }

 }

 /**

 * sample code to show you how to navigate MBeanStatDescriptor via listStatMembers

 */

 public MBeanStatDescriptor[] listStatMembers(ObjectName mName) {

 if (mName == null)

 return null;

 try {

 Object[] params = new Object[]{mName};

 String[] signature= new String[]{"javax.management.ObjectName"};

 MBeanStatDescriptor[] msds = (MBeanStatDescriptor[])ac.invoke(perfOName,

"listStatMembers", params, signature);

 if (msds == null)

 return null;

 for (int i=0; i<msds.length; i++) {

 MBeanStatDescriptor[] msds2 = listStatMembers(msds[i]);

 }

 return null;

 }

 catch(Exception e) {

 new AdminException(e).printStackTrace();

 System.out.println("listStatMembers: Exception Thrown");

 return null;

 }

 }

 /**

 * Sample code to get MBeanStatDescriptors

 */

 public MBeanStatDescriptor[] listStatMembers(MBeanStatDescriptor mName) {

 if (mName == null)

 return null;

 try {

 Object[] params = new Object[]{mName};

 String[] signature= new String[]{"com.ibm.websphere.pmi.stat.MBeanStatDescriptor"};

 MBeanStatDescriptor[] msds = (MBeanStatDescriptor[])ac.invoke(perfOName,

"listStatMembers", params, signature);

 if (msds == null)

 return null;

 for (int i=0; i<msds.length; i++) {

 MBeanStatDescriptor[] msds2 = listStatMembers(msds[i]);

 // you may recursively call listStatMembers until find the one you want

 }

 return msds;

 }

 catch(Exception e) {

 new AdminException(e).printStackTrace();

 System.out.println("listStatMembers: Exception Thrown");

 return null;

 }

 }

80 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

/**

 * sample code to get PMI data from beanModule

 */

 public void testEJB() {

 // This is the MBeanStatDescriptor for Enterprise EJB

 MBeanStatDescriptor beanMsd = getStatDescriptor(serverOName, PmiConstants.BEAN_MODULE);

 if (beanMsd == null)

 System.out.println("Error: cannot find beanModule");

 // get the Stats for module level only since recursive is false

 Stats stats = getStatsObject(beanMsd.getObjectName(), beanMsd.getStatDescriptor(),

false); // pass true if you wannt data from individual beans

 // find the avg method RT

 TimeStatisticImpl rt = (TimeStatisticImpl)stats.getStatistic(EJBStatsImpl.METHOD_RT);

 System.out.println("rt is " + rt.getMean());

 try {

 java.lang.Thread.sleep(5000);

 } catch (Exception ex) {

 ex.printStackTrace();

 }

 // get the Stats again

 Stats stats2 = getStatsObject(beanMsd.getObjectName(), beanMsd.getStatDescriptor(),

false); // pass true if you wannt data from individual beans

 // find the avg method RT

 TimeStatisticImpl rt2 = (TimeStatisticImpl)stats2.getStatistic(EJBStatsImpl.METHOD_RT);

 System.out.println("rt2 is " + rt2.getMean());

 // calculate the difference between this time and last time.

 TimeStatisticImpl deltaRt = (TimeStatisticImpl)rt2.delta(rt);

 System.out.println("deltaRt is " + rt.getMean());

 }

 /**

 * Sample code to show how to call getStats on StatisticProvider MBean directly.

 */

 public void testJSR77Stats() {

 // first, find the MBean ObjectName you are interested.

 // Refer method getObjectNames for sample code.

 // assume we want to call getStats on JVM MBean to get statistics

 try {

 com.ibm.websphere.management.statistics.JVMStats stats =

 (com.ibm.websphere.management.statistics.JVMStats)ac.invoke(jvmOName,

"getStats", null, null);

 System.out.println("\n get data from JVM MBean");

 if (stats == null) {

 System.out.println("WARNING: getStats on JVM MBean returns null");

 } else {

 // first, link with the static info if you care

 ((Stats)stats).setConfig(findConfig(jvmOName));

 // print out all the data if you want

 //System.out.println(stats.toString());

 // navigate and get the data in the stats object

 processStats((Stats)stats);

Chapter 2. Monitoring performance 81

// call JSR77 methods on JVMStats to get the related data

 com.ibm.websphere.management.statistics.CountStatistic upTime =

stats.getUpTime();

 com.ibm.websphere.management.statistics.BoundedRangeStatistic heapSize =

stats.getHeapSize();

 if (upTime != null)

 System.out.println("\nJVM up time is " + upTime.getCount());

 if (heapSize != null)

 System.out.println("\nheapSize is " + heapSize.getCurrent());

 }

 } catch (Exception ex) {

 ex.printStackTrace();

 new AdminException(ex).printStackTrace();

 }

 }

}

Developing Performance Monitoring Infrastructure interfaces

(Version 4.0)

Before you begin

The Version 4.0 APIs are supported in this release, however, some data hierarchy

changes have occurred in the PMI modules, including the enterprise bean and

HTTP sessions modules. If you have an existing PmiClient application and you

want to run it against Version 5.0, you might have to update the PerfDescriptor(s)

based on the new PMI data hierarchy.

The getDataName and getDataId methods in PmiClient have also changed. They

are now non-static methods in order to support multiple WebSphere Application

Server versions. You might have to update your existing application which uses

these two methods.

This section discusses the use of the Performance Monitoring Infrastructure (PMI)

client interfaces in applications. The basic steps in the programming model follow:

Steps for this task

1. Retrieve an initial collection or snapshot of performance data from the server.

 A client uses the CpdCollection interface to retrieve an initial collection or

snapshot from the server. This snapshot, which is called Snapshot in this

example, is provided in a hierarchical structure as described in data

organization and hierarchy, and contains the current values of all performance

data collected by the server. The snapshot maintains the same structure

throughout the lifetime of the CpdCollection instance.

2. Process and display the data as specified.

 The client processes and displays the data as specified. Processing and display

objects, for example, filters and GUIs, can register as CpdEvent listeners to data

of interest. The listener works only within the same Java virtual machine (JVM).

When the client receives updated data, all listeners are notified.

3. Display the new CpdCollection instance through the hierarchy.

 When the client receives new or changed data, the client can simply display the

new CpdCollection instance through its hierarchy. When it is necessary to

update the Snapshot collection, the client can use the update method to update

Snapshot with the new data.

Snapshot.update(S1);

// ...later...

Snapshot.update(S2);

82 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

Results

Steps 2 and 3 are repeated through the lifetime of the client.

Third-party performance monitoring and management solutions

Several other companies provide performance monitoring, problem determination

and management solutions that can be used with WebSphere Application Server.

These products use WebSphere Application Server interfaces, including

Performance Monitoring Infrastructure (PMI), Java Management Extensions (JMX),

and PMI Request Metrics Application Response Measurement (ARM).

See the topic Performance: Resources for learning for a link to IBM business

partners providing monitoring solutions for WebSphere Application Server.

Measuring data requests (Performance Monitoring Infrastructure

Request Metrics)

Performance Monitoring Infrastructure (PMI) Request Metrics collects data by

timing requests as they travel through WebSphere Application Server components.

This data helps to identify run time and application problems. PMI Request

Metrics logs the time spent at major points, such as the Web server plug-in, Web

container, enterprise bean container and database. These points are recorded in

logs and can be written to Application Response Measurement (ARM) agents used

by Tivoli monitoring tools. Request metrics provides response times for remote EJB

containers (by way of IIOP), , servlets (Web containers) and Java Database

Connectivity (JDBC) drivers.

If you plan to run in a production environment, plan to filter by IP address - a

specific IP address using a synthetic transaction generator. If you choose to enable

request metrics, but not filter by a specific IP address, performance can be

impacted significantly.

Learn more about Request Metrics by reviewing this section, including:

v Detailed explanation about Request Metrics

v Request Metrics process and filters

v Types and format of output you will be reading

v Configuring Request Metrics

Performance Monitoring Infrastructure Request Metrics

Performance Monitoring Infrastructure (PMI) Request Metrics helps identify run

time and application performance problems by capturing process hop response

times in multi-tiered applications and recording the data in system logs.

For requests that start from either an HTTP or enterprise bean remote requests,

Request Metrics captures response times for the initiating request and any related

downstream enterprise bean invocations and Java Database Connectivity (JDBC)

calls. Request Metrics also provides the same information on process hop response

time through the Application Response Measurement (ARM) interface.

When active, Request Metrics compares each incoming request to a set of known

filters. If the request matches any filter with a trace level greater than

TRACE_NONE, trace records are generated for that request.

Chapter 2. Monitoring performance 83

Typically, requests enter the system and create processes that fan out across several

nodes within a distributed system. Each process can further fan out and call other

processes. When the processes fan out, trace records are generated for each process.

Then, these trace records can be correlated together to build a sequence diagram of

the response times for the request. The processes are only recorded if they are

generated through a remote enterprise bean call.

Application Response Measurement

Application Response Measurement (ARM) is an Open Group standard composed

of a set of interfaces implemented by an ARM agent that provides information on

elapsed time for process hops.

WebSphere Application Server does not provide an ARM agent. Contact your ARM

agent provider for information on whether their ARM agent is supported with

WebSphere Application Server.

See the article Performance: Resources for learning for more information about the

ARM specifications.

Performance Monitoring Infrastructure Request Metrics trace

filters

When Performance Monitoring Infrastructure (PMI) Request Metrics is active, trace

filters control which requests get traced. The data is recorded to the system log file

StdOut and can be used for real-time and historical analysis.

Incoming HTTP requests

For HTTP requests arriving at a WebSphere Application Server it is possible to

filter on the URI and client IP address.

v Client IP address filters. Requests are filtered based on a known IP address.

You can specify a mask for an IP address using the asterisk (*). If used, the

asterisk must always be the last character of the mask, for example 127.0.0.*,

127.0.*, 127*. For performance reasons, the pattern matches character by

character, until either an asterisk is found in the filter, a mismatch occurs, or the

filters are found as an exact match.

v URI filters. Requests are filtered, based on the URI of the incoming HTTP

request. The rules for pattern matching are the same as for matching client IP

address filters.

v Filter combinations.If both URI and Client IP address filters are active, then

Request Metrics requires a match for both filter types. If neither is active, all

requests are considered a match.

Incoming enterprise bean requests

v Enterprise bean method name filters. Requests are filtered based on the full

name of the enterprise bean method. As with IP address and URI filters, you can

use the asterisk (*) to provide a mask. The asterisk must always be the last

character of a filter pattern.

Performance Monitoring Infrastructure Request Metrics data

output

The trace records for Performance Monitoring Infrastructure (PMI) Request Metrics

data are written in two log files

84 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

In the WebSphere Application Server log file the trace record format is:

PMRM0003I: parent:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn

-

current:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn

 type=TTT detail=some_detail_information elapsed=nnnn

The trace record format is composed of two correlators: a parent correlator and

current correlator. The parent correlator represents the upstream request and the

current correlator represents the current operation. If the parent and current

correlators are the same, then the record represents an operation that occurred as it

entered WebSphere Application Server.

To correlate trace records for a particular request, collect records with a message ID

of PMRM0003I from the appropriate application server log files and the PLUGIN

trace record from the Web server plug-in log file. Records are correlated by

matching current correlators to parent correlators. The logical tree can be created

by connecting the current correlators of parent trace records to the parent

correlators of child records. This tree shows the progression of the request across

the server cluster.

The parent correlator is denoted by the comma separating fields following the

keyword ″parent:″. Likewise, the current correlator is denoted by the comma

separating fields following ″current:″.

The fields of both parent and current correlators are as follows:

v ver: The version of the correlator. For convenience, it is duplicated in both the

parent and current correlators.

v ip: The IP address of the node of the application server that generated the

correlator.

v pid: The process ID of the application server that generated the correlator.

v time: The start time of the application server process that generated the

correlator.

v reqid: An ID assigned to the request by Request Metrics, unique to the

application server process.

v event: An event ID assigned to differentiate the actual trace events.

Following the parent and current correlators, is the metrics data for timed

operation:

v type: A code representing the type of operation being timed. Supported types

include , URI, EJB and JDBC.

v detail: Identifies the name of the operation being timed (See the description of

Universal Resource Identifier (URI), , Enterprise bean and Java Database

Connectivity (JDBC) below.)

v elapsed: The measured elapsed time in <units> for this operation, which

includes all sub-operations called by this operation. The unit of elapsed time is

milliseconds.

The type and detail fields are described as follows:

v URI: The trace record was generated by a Web component. The URI is the name

of the URI used to invoke the request.

v EJB: The fully qualified package and method name of the enterprise bean.

v JDBC: The values select, update, insert or delete for prepared statements. For

non-prepared statements, the full statement can appear.

Chapter 2. Monitoring performance 85

Configuring Request Metrics

Before you begin

You can enable Request Metrics without enabling Application Response

Measurement (ARM).

To configure Request Metrics, you will need to access the Configuration tab in the

administrative console. To access the Configuration tab , click Problem

Determination > PMI Request Metrics from the administrative console navigation

tree.

Tasks included in configuring Request Metrics:

Steps for this task

1. Enable Request Metrics.

2. (Optional) Enable Application Response Measurement (ARM).

3. (Optional) Enable Request Metrics filters.

4. (Optional) Add and remove Request Metrics filters.

5. Set the trace level in Request Metrics.

Enabling Performance Monitoring Infrastructure Request Metrics

When enabled, Performance Monitoring Infrastructure (PMI) Request Metrics

captures response times for the initiating request and any related downstream

enterprise bean invocations and Java Database Connectivity (JDBC) calls. Then,

Request Metrics compares each incoming request to a set of known filters.

Steps for this task

1. Open the administrative console.

2. Click Problem Determination > PMI Request Metrics in the console

navigation tree.

3. Select the check box in the enable field under the Configuration tab.

4. Click Apply or OK.

5. Click Save.

What to do next

Regenerate the Web server plug-in configuration file, if logging time spent in the

Web server.

Enabling Application Response Measurement

Before you begin

Before enabling Application Response Measurement (ARM), install an appropriate

ARM implementation on all WebSphere Application Server nodes. Refer to the

appropriate ARM implementation documentation. Verify with your ARM agent

provider that Request Metrics is supported by the ARM agent implementation.

ARM support is dependent on Request Metrics support.

You can learn more about ARM agents in the topic Performance: Resources for

Learning.

86 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

Note: Request Metrics in the Web server plug-in is not integrated with ARM in

WebSphere Application Server Version 5.0.x. Therefore, Request Metrics in the Web

Server plug-in ignores ARM, if enabled.

Steps for this task

1. Install the appropriate ARM implementation

a. Change the startup command for the application servers to include the

following:

 -Dcom.ibm.websphere.pmi.reqmetrics.ARMIMPL=ARMIMPLNAME

ARM support is dependent on Request Metrics support. If enabled, and an

appropriate ARM implementation is defined to the server run times, then

the ARM implementation is called as requests enter WebSphere Application

Server processes and when Java Database Connectivity (JDBC) calls are

made, using EJB 2.0 data sources.
2. Open the administrative console.

3. Click Problem Determination > PMI Request Metrics in the console

navigation tree.

4. Select the check box in the enableARM field.

5. Click Apply or OK.

6. Click Save.

What to do next

Regenerate the Web server plug-in configuration file.

Enabling Performance Monitoring Infrastructure Request Metrics

filters

Performance Monitoring Infrastructure (PMI) Request Metrics compares each

incoming request to a set of known filters, but you need to enable these filters.

Steps for this task

1. Open the administrative console.

2. Click Problem Determination > PMI Request Metrics in the administrative

console navigation tree.

3. Click filters.

4. Click filter type.

5. Select the check box in the enable field under the Configuration tab.

6. Click Apply or OK.

7. Click Save.

 You can enable or disable a filter group. If the group is enabled, you can enable

or disable individual filters.

What to do next

Regenerate the Web server plug-in configuration file, if logging time spent in the

Web server.

Adding and removing Performance Monitoring Infrastructure

Request Metrics filters

To add or remove Performance Monitoring Infrastructure (PMI) Request Metrics

filters:

Chapter 2. Monitoring performance 87

Steps for this task

1. Open the administrative console.

2. Click Problem Determination > PMI Request Metrics in the console

navigation tree.

3. Click filters.

4. Click New.

5. Choose a filter type from the drop down box in the type field under the

Configuration tab.

6. (Optional) Select the check box in the enable field to enable the filter.

7. Click Apply or OK.

8. Click Save.

 Individual filters are composed of an indicator and an IP address. Use the

indicator to determine whether the individual filter is active. The IP address is

composed of a standard dotted IP address.

What to do next

Regenerate the Web server plug-in configuration file, if logging time spent in the

Web server.

Setting the trace level in Performance Monitoring Infrastructure

Request Metrics

To set the trace level to generate records:

Steps for this task

1. Open the administrative console.

2. Click Problem Determination > PMI Request Metrics in the administrative

console navigation tree.

3. Find traceLevel in the Configuration tab.

4. Select the desired trace level from the drop down list box.

 To set the Request Metrics trace level to generate records, make sure the trace

level is set to a value greater than NONE.

5. Click Apply or OK.

6. Click Save.

What to do next

Regenerate the Web server plug-in configuration file, if logging time spent in the

Web server.

Performance Monitoring Infrastructure Request Metrics

Use this page to enable Performance Monitoring Infrastructure (PMI) Request

Metrics, enable Request Metrics Application Response Measurement (ARM), and

set trace levels.

To view this administrative console page, click Troubleshooting > PMI Request

Metrics.

Request Metrics: Enables PMI Request Metrics.

When disabled, the Request Metrics function is disabled.

88 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

Application Response Measurement (ARM): Enables PMI Request Metrics to call

an underlying ARM agent.

Before enabling ARM, install an appropriate ARM implementation on all

WebSphere Application Server nodes. Verify with your ARM agent provider that

Request Metrics is supported by the ARM agent implementation. ARM support is

dependent on Request Metrics support.

Trace Level: Specifies how much trace data to accumulate for a given request.

Including one of the following: NONE - no trace; HOPS - only accumulates on

major process hops; PERF_DEBUG - enables additional information over hops, but

is not as performance intensive as DEBUG; DEBUG - full detailed trace.

PMIRM Filter collection

Use this page to view a list of Performance Monitoring Infrastructure (PMI)

Request Metrics filters.

To view this administrative console page, click Troubleshooting > PMI Request

Metrics > Filters.

Type: Specifies the type of request metrics filter.

Enable: Specifies whether this filter is enabled.

PMIRM Filter settings

Use this page to specify filters that define whether or not trace is enabled for the

request as it moves through WebSphere Application Server.

To view this administrative console page, click Troubleshooting > PMI Request

Metrics > filters > filter_type.

Type: Specifies the type of Request Metrics filter.

Enable: Specifies whether this filter is enabled.

filterValues collection

Use this page to specify the values for client IP, URI or EJB Request Metrics filters.

To view this administrative console page, click Troubleshooting > PMI Request

Metrics > filters > filter_type > filterValues.

Value: Specifies a URI value or IP name based on the type of filter.

For example, for URI filters, the value might be ″/servlet/snoop″.

Enable Filter: Specifies whether a filter value is enabled.

filterValues settings

Use this page to specify the values for client IP, URI or EJB Request Metrics filters.

To view this administrative console page, click Troubleshooting > PMI Request

Metrics > filters > filter > filterValues > filter_value.

Value: Specifies a URI value or IP name based on the type of filter.

For example, for URI filters, the value can be ″/servlet/snoop″.

Chapter 2. Monitoring performance 89

Enable: Specifies whether this filter value is enabled.

Regenerating the Web server plug-in configuration file

After you modify the Request Metrics configuration, you must complete the

following steps to regenerate the Web server plug-in configuration file.

Regenerating ensures that the Web server plug-in recognizes the changes you made

for the Request Metrics configuration. If you are making multiple changes to

Request Metrics, then regenerate the plug-in configuration files once you have

completed all changes.

Note: You must complete this step after you change the request metrics

configuration. If you do not, the Web server plug-in might have different Request

Metrics configuration data than the application server. This difference in

configuration data might cause inconsistent behaviors for request metrics between

the Web server plug-in and the application server.

Steps for this task

1. Open the administrative console.

2. (Regenerate the Web server plug-in configuration).

Example: Generating trace records from Performance

Monitoring Infrastructure Request Metrics

Examples

Use HitCount enterprise bean /webapp/examples/hitcount?source=EJB where the

servlet is deployed on one machine - 192.168.0.1, and the enterprise bean

Increment.jar file is deployed on a second machine - 192.168.0.2. The web server

runs on 192.168.0.1.

In this example, both machines are used as clients.

To illustrate the use of client IP filtering, one client IP filter (192.168.0.2) is defined

and enabled. This action allows tracing of requests originating from the enterprise

bean machine through http://192.168.0.1/webapp/examples/hitcount?source=EJB.

However, requests originating from the servlet machine are not traced since the

client IP address is not in the filter list.

By only creating a client IP filter, any request from that client IP address is

effectively traced. This tool can be effective for locating performance problems with

systems under load. If the normal load is originating from other IP addresses, then

their requests are not traced. By using the defined client IP address to generate

requests, you can see performance bottlenecks at the various hops by comparing

the trace records of the loaded system to trace records from a non-loaded run. This

ability can help focus tuning efforts to the correct node and process within a

complex deployment environment.

Make sure Request Metrics is enabled using the administrative console. Also, make

sure the trace level is set to at least hops (writing request traces at process

boundaries). Using the configuration listed above, send a request through the

HitCount servlet from the enterprise bean machine

http://192.168.0.1/webapp/examples/hitcount?source=EJB.

In this example, at least three trace records are generated:

v A trace record for the Web server plug-in appears in the plug-in log file on

192.168.0.1.

90 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

v A trace record for the servlet execution appears in the application server log file

on 192.168.0.1.

v A trace record for the increment bean method invocation appears in the

application server log file on 192.168.0.2

The two trace records appearing on 192.168.0.1 are similar to the following:

PLUGIN: parent:ver=1,ip=192.168.0.1,time=1016556185102,pid=796,reqid=40,event=0

- current:ver=1,ip=192.168.0.1,time=1016556185102,pid=796,reqid=40,event=1

type=HTTP detail=/webapp/examples/hitcount elapsed=60 bytesIn=0 bytesOut=2252

PMRM0003I: parent:ver=1,ip=192.168.0.1,time=1016556185102,pid=796,reqid=40,event=0

- current:ver=1,ip=192.168.0.1,time=1016556186102,pid=884,reqid=40,event=1

type=URI detail=/webapp/examples/hitcount elapsed=60

The trace record appearing on 192.168.0.2 is similar to the following:

PMRM0003I: parent:ver=1,ip=192.168.0.1,time=1016556186102,pid=884,reqid=40,event=1

- current:ver=1,ip=192.168.0.2,time=1016556122505,pid=9321,reqid=40,event=1

type=EJB detail=com.ibm.websphere.examples.Inc.IncBean.increment elapsed=40

Performance monitoring service settings

Use this page to specify settings for performance monitoring, including enabling

performance monitoring, selecting the PMI module and setting monitoring levels.

To view this administrative console page, click Servers > Application Servers >

server > Performance Monitoring.

Startup

Specifies whether the application server attempts to start the specified service. If an

application server is started when the performance monitoring service is disabled,

you will have to restart the server in order to enable it.

Initial specification level

Specifies a Performance Monitoring Infrastructure (PMI) string that stores PMI

specification levels, for example module levels, for all components in the server.

Set the PMI specification levels by selecting the none, standard or custom checkbox.

If you choose none, all PMI modules are set to the none level. Choosing standard,

sets all PMI modules to high and enables all PMI data excluding the method level

data and JVMPI data. Choosing custom, gives you the option to change the level

for each individual PMI module. You can set the level to N, L, M, H or X (none,

low, medium, high and maximum). Note that you should not change the module

names.

Specifications

Specifies the PMI module and monitoring level that you have set.

Set the PMI specification levels by selecting the none, standard or custom checkbox.

If you choose none, all PMI modules are set to the none level. Choosing standard,

sets all PMI modules to high and enables all PMI data excluding the method level

data and JVMPI data. Choosing custom, gives you the option to change the level

for each individual PMI module. You can set the level to N, L, M, H or X (none,

low, medium, high and maximum). Note that you should not change the module

names.

Chapter 2. Monitoring performance 91

Performance: Resources for learning

Use the following links to find relevant supplemental information about

performance. The information resides on IBM and non-IBM Internet sites, whose

sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to

the IBM WebSphere Application Server product, but is useful for understanding

the product. When possible, links are provided to technical papers and Redbooks

that supplement the broad coverage of the release documentation with in-depth

examinations of particular product areas. The following sections are covered in this

reference:

View links to additional information about:

v Performance Monitoring Infrastructure (PMI) Request Metrics.

v Monitoring performance with third-party tools

v Tuning performance

v Garbage collection

Performance Monitoring Infrastructure (PMI) Request Metrics

v

Systems Management: Application Response Measurement (ARM)

(http://www.opengroup.org/publications/catalog/c807.htm)

 The Open Group ARM specifications.

Monitoring performance with third-party tools

v

Enterprise Web Application Management http: / / www-3.ibm.com /

software / webservers / pw / dhtml / wsperformance / ...

performance_bpsolutions.html WebSphere Performance Management Business

Partner Solution Finder

 Find a list of IBM’s business partners that offer performance monitoring tools

compliant with WebSphere Application Server.

Tuning performance

v http: / / www-3.ibm.com / software / webservers / httpservers / doc / v136 /

misc / perf.html Hints on Running a high-performance Web server

 Read hints about running Apache on a heavily loaded Web server. The

suggestions include how to tune your kernel for the heavier TCP/IP load, and

hardware and software conflicts

v

Application tuning http: / / www-1.ibm.com / support /

docview.wss?uid=swg27000615

 See WebSphere Application Server Development Best Practices for Performance

and Scalability for more information on application tuning.

v

Performance Analysis for Java Web sites http://www.awprofessional.com

/ catalog / product.asp?product_id={A801214C-A166-4836-859A-423B246C65E4}

v

AIX documentation http://publib16.boulder.ibm.com / pseries / en_US /

infocenter / base / aix.htm

 View the entire AIX software documentation library for releases 4.3, 5.1, and 5.2.

v

WebSphere Application Server Development Best Practices for

Performance and Scalability http://www-
1.ibm.com/support/docview.wss?uid=swg27000615

92 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

Describes development best practices for Web applications with servlets, JSP

files, JDBC connections, and enterprise applications with EJB components.

v

iSeries performance documents http://www-1.ibm.com/servers / eserver

/ iseries / software / websphere / wsappserver / product / ...

performanceAE40.html

 This Web site is a directory to several iSeries performance documents, including

WebSphere Application Server for iSeries Performance Considerations, the

Performance Trace Data Visualizer (PTDV) tool and Workload Estimator tool.

v

IBM WebSphere Application Server Advanced Edition Tuning Guide

http://www-3.ibm.com /software / webservers / appserv / doc / v40 / ae /

infocenter / was / pdf /... nav_Tuneguide.pdf (Version 4.02)

v

Redbook: WebSphere Application Server V3.5 Handbook (SG24-6161-00)

http://www.redbooks.ibm.com / pubs / pdfs / redbooks / sg246161.pdf

v

Redbook: WebSphere Application Server V3 Performance Tuning Guide

(SG24-5657-00) http://www.redbooks.ibm.com / pubs / pdfs / redbooks /

sg245657.pdf

Garbage collection

v

IBM developerWorks http://java.sun.com / docs / hotspot / gc /

index.html

 Search the IBM developerWorks Web site for a list of garbage collection

documentation, including ″Understanding the IBM Java Garbage Collector″, a

three-part series. To locate the documentation, search on ″sensible garbage

collection″ in the developerWorks search application.

 Review ″Understanding the IBM Java Garbage Collector″ for a description of the

IBM verbose:gc output and more information about the IBM garbage collector.

v

Tuning Garbage Collection with the 1.3.1 JavaTM Virtual Machine

http://java.sun.com / docs / hotspot / gc / index.html

 Learn more about using garbage collection in a Solaris operating environment.

Chapter 2. Monitoring performance 93

94 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

Chapter 3. Tuning performance

To optimize your WebSphere Application Servers to their fullest extent, use the

Performance Advisors in addition to the suggested procedures or parameters in the

tuning parameter hot list and the tuning parameter index.

Performance Advisors

The Performance Advisors use the PMI data to suggest configuration changes to

ORB service thread pools, Web container thread pools, connection pool size,

persisted session size and time, prepared statement cache size, and session cache

size. The Runtime Performance Advisor runs in the application server process,

while the other advisor runs in the Tivoli Performance Viewer (TPV). For more

information, see Using the Runtime Performance Advisor and Using the

Performance Advisor in Tivoli Performance Viewer.

Tuning Parameter hot list and parameter index

Review the hot list, which is a subset of the tuning parameter index. These hot

parameters have an important impact on performance.

For an index of the tuning parameters used in the WebSphereApplication Server

product, see the Tuning parameter index. Use this index to find information and

parameters about general tuning recommendations. You can tune:

v Business process choreographer

v Business Rule Beans

v Dynamic query service

v Object pool

v Work area

v Asynchronous beans

v ActivitySession

v Application profiling

The tuning guide focuses on server tuning. If you want to tune your applications,

see Performance: Resources for learning for more information about application

tuning.

For your convenience, procedures for tuning parameters in other products, such as

DB2, Web servers and operating systems are included. Because these products

might change, consider these descriptions as suggestions.

Tuning parameter index

Each WebSphere Application Server process has several parameters influencing

application performance. You can use the WebSphere Application Server

administrative console to configure and tune applications, Web containers, EJB

containers, application servers and nodes in the administrative domain.

Each parameter in the tuning parameter index links to information that explains

the parameter, provides reasons to adjust the parameter, how to view or set the

parameter, as well as default and recommended values.

© Copyright IBM Corp. 2003 95

v Business process choreographer

v Business Rule Beans (BRBeans)

v Dynamic query service

v Object pool

v WorkArea service

v Asynchronous beans

v ActivitySession

v Application profiling

Business process choreographer

You can use the process choreographer to implement businesses processes.

Business process management systems support the definition and execution of

business processes or flows. Review the Process choreographer tuning tips for best

practices.

v Process message-driven beans listener port maximum sessions

– Description: Specifies the maximum number of concurrent JMS server

sessions used by a listener to process messages. Adjust this parameter when

the machine running the process application does not realize the available

capacity and produces less throughput during long running processes.

– How to view or set: Set the maximum sessions through the server.xml file or

through the administrative console. In the server.xml file, change the Max

sessions value as specified under listener ports stanza:

 <listenerPorts xmi:id="ListenerPort_1"

 name="bpeIntListenerPort"

 description="Internal Listener Port for Process Choreographer"

 connectionFactoryJNDIName="jms/bpeCF"

 destinationJNDIName="jms/bpeIntQueue"

 maxSessions="5"

 maxRetries="10"

 maxMessages="1">

<stateManagement xmi:id="StateManageable_5"

 initialState="START"/>

</listenerPorts>

 You can set this parameter through the administrative console by Configuring

a listener port.

– Default value: 5

– Recommended value:

 A value of 25 has given the best throughput with the above configuration.

Based on the amount of work and the resources available, set a value between

15 and 25 to obtain the maximum process throughput. By adjusting this

parameter to the recommended value, the maximum number of concurrent

JMS server sessions used by the process message-driven beans increases,

increasing message processing capacity and application throughput. A 40%

increase in throughput occurs in a process application with long running

processes on a NetFinity 5500 500 MHz, 4-way, 4GB RAM system.

Business Rule Beans (BRBeans)

Business Rule Beans (BRBeans) are used to create and modify rules that keep pace

with complex business practices. Business Rule Beans enable your application’s

core behavior and user interface objects to remain intact and untouched, even as

business practices change. You can improve performance by adjusting the

following parameter:

v Rule properties Firing location

96 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

To learn more about how using BRBeans can improve performance through

caching, using indexes and changing the fire location, see BRBeans performance

enhancements.

Dynamic query service

You can use the dynamic query service to build and execute queries against entity

beans constructed dynamically at runtime, rather than defining them at

deployment time. See Dynamic query service performance considerations for

information about how dynamic query can improve performance.

Object pool

An object pool enables an application to avoid creating new Java objects

repeatedly. Most objects can be created once, used and then reused at a later point.

An object pool allows an object to be pooled while waiting for the point when it

can be reused. These object pools are not meant to be used for pooling JDBC

connections or JMS connections and sessions. WebSphere Application Server

provides specialized mechanisms for dealing with those types of objects. These

object pools are intended for pooling application-defined objects or basic Java

development Kit (JDK) types.

Review suggestions on how object pools can improve performance in Object pool

performance considerations.

WorkArea service

The WorkArea service is designed to address complex data passing patterns that

can quickly grow beyond convenient maintenance. A work area is in essence a

scratchpad that is accessible to any client capable of looking up Java Naming and

Directory Interface (JNDI). Once a work area is established, data can be placed on

it for future use in any subsequent method calls, to both remote and local

resources.

Review suggestions on how work areas can improve performance in WorkArea

service performance considerations

Asynchronous beans

An asynchronous bean is a Java object or enterprise bean that can be executed

asynchronously by a J2EE application, using the J2EE context of the bean’s creator.

Asynchronous beans can improve performance by enabling a J2EE program to

decompose operations into parallel tasks. Asynchronous beans enable the

construction of stateful, ″active″ J2EE applications. These applications address a

segment of the application space that J2EE has not previously addressed (that is,

advanced applications that require application threading, active agents within a

server application, or distributed monitoring capabilities).

Use the following parameters to tune asynchronous beans:

v Work manager

– Number of alarm threads

– Minimum number of threads

– Maximum number of threads

– Thread priority

– Growable

– Service names

Chapter 3. Tuning performance 97

v Work manager service

 By default, the work manager service is enabled at startup. You can enable or

disable the work manager service. The overhead for the service is minimal and

should not pose a problem if left enabled.

– Startup

ActivitySession

v Description: Provides an alternative unit-of-work (UOW) scope to that provided

by global transaction contexts. An ActivitySession context can live longer than a

global transaction context, and can encapsulate global transactions. Disabling the

service provides slight performance improvement for remote requests.

v How to view or set: In the administrative console, disable or enable the

ActivitySession service.

v Default value: Enabled

v Recommended value: Disable this parameter if applications are not using the

ActivitySession service, either through the UserActivitySession API or through

deployment descriptors, and the ActivitySession samples are not installed.

Application profiling

Application profiling enables assembly configuration techniques that improve your

application runtime, performance and scalability. You can configure tasks that

identify incoming requests, identify access intents determining concurrency and

other data access characteristics, and profiles that map the tasks to the access

intents. The capability to configure the application server can improve

performance, efficiency and scalability, while reducing development and

maintenance costs.

Review suggestions on how application profiling can improve performance in

Application profiling performance considerations.

Using the Runtime Performance Advisor

5.0.2

The Runtime Performance Advisor provides advice to help tune systems for

optimal performance and is configured using the WebSphere Application Server

administrative console. The Runtime Performance Advisor uses Performance

Monitoring Infrastructure (PMI) data to provide recommendations for performance

tuning. Running in the JVM of the application server, this advisor periodically

checks for inefficient settings, and issues recommendations as standard product

warning messages. These recommendations are displayed both as warnings in the

administrative console under WebSphere Runtime Messages in the WebSphere

Status panel and as text in the application server SystemOut.log file. Enabling the

Runtime Performance Advisor has minimal system performance impact.

Steps for this task

 1. Enable PMI services in WebSphere Application Server through the

administrative console, and Enable PMI services in NodeAgent through the

administrative console if running WebSphere Application Server Network

Deployment.

 In order to obtain advice, you must first enable the performance monitoring

service through the administrative console and restart the server. If running

Network Deployment, you must enable PMI service on both the server and on

the node agent and restart the server and node agent. The Runtime

Performance Advisor enables the appropriate monitoring counter levels for all

98 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

enabled advice. If there are specific counters that are not wanted, disable the

corresponding advice in the Runtime Performance Advisor Panel, and disable

unwanted counters.

 2. Enable PMI services in NodeAgent through the administrative console. In

order to obtain advice, you must enable PMI service on both the server and

on the node agent, and restart the server and node agent.

 3. Start the administrative console.

 4. Click Servers > Application Servers in the console navigation tree.

 5. Click server_name > Runtime Performance Advisor Configuration.

 6. Click the Configuration tab.

 7. Select the Number of Processors.

 Select the appropriate settings for your system configuration to ensure

accurate advice.

 8. (Optional) Select the Interval.

 PMI data is taken over an interval of time and averaged to provide advice.

The interval specifies the length of the time over which data is taken for this

advice. Therefore, details within the advice messages appear as averages over

this interval.

 9. (Optional) Select the Maximum Warning Sequence.

 The maximum warning sequence refers to the number of consecutive

warnings issued before the threshold is updated. For example, if the

maximum warning sequence is set to 3, then the advisor only sends three

warnings to indicate that the prepared statement cache is overflowing. After

that, a new alert is only issued if the rate of discards exceeds the new

threshold setting.

10. Click Apply.

11. Click Save.

12. Click the Runtime tab.

13. Click Restart.

 Selecting Restart on the Runtime tab reinitializes the Runtime Performance

Advisor using the last configuration information saved to disk.

 Note: This action also resets the state of the Runtime Performance Advisor.

For example, the current warning count is reset to zero for each message.

14. Simulate a production level load.

 If you are using the Runtime Performance Advisor in a test environment, or

doing any other tuning for performance, simulate a realistic production load

for your application. The application should run this load without errors. This

simulation includes numbers of concurrent users typical of peak periods, and

drives system resources, such as CPU and memory to the levels expected in

production. The Runtime Performance Advisor only provides advice when

CPU utilization exceeds a sufficiently high level. For a list of IBM business

partners providing tools to drive this type of load, see the article,

Performance: Resources for learning in the sub-section of Monitoring

performance with third party tools.

15. Select the check box to enable the Runtime Performance Advisor to achieve

the best results for performance tuning, when a stable production level load is

being applied.

 Note: Enable the Runtime Performance Advisor once conditions have reached

a fully loaded condition to achieve the best results for performance tuning.

16. Click OK.

Chapter 3. Tuning performance 99

17. Select Warnings in the administrative console under the WebSphere Runtime

Messages in the WebSphere Status panel or look in the SystemOut.log file,

located in the install_root\logs\servername directory to view tuning advice.

Some messages are not issued immediately.

18. Update the product configuration for improved performance, based on advice.

 Although the performance advisors attempt to distinguish between loaded

and idle conditions, misleading advice might be issued if the advisor is

enabled while the system is ramping up or down. This result is especially

likely when running short tests. Although the advice helps in most

configurations, there might be situations where the advice hinders

performance. Due to these conditions, advice is not guaranteed. Therefore, test

the environment with the updated configuration to ensure it functions and

performs well.

What to do next

WebSphere Application Server also allows you to enable and disable advice in the

Advice Configuration panel. Some advice applies only to certain configurations,

and can only be enabled for those configurations. For example, Unbounded ORB

Service Thread Pool Advice is only relevant when the ORB Service thread pool is

unbounded, and can only be enabled when the ORB thread pool is unbounded.

For more information on Advice configuration, see the article, Advice configuration

settings.

Runtime Performance Advisor configuration settings

5.0.2

Use this page to specify settings for the Runtime Performance Advisor.

To view this administrative page, click Servers > Application Servers >

server_name > Runtime Performance Advisor Configuration.

Enable Runtime Performance Advisor

Specifies whether the Runtime Performance Advisor runs.

Interval

PMI data is taken over an interval of time and averaged to provide advice. The

interval specifies the length of the time over which data is taken for this advice.

Therefore, details within the advice messages will appear as averages over this

interval.

Maximum warning sequence

Specifies the number of consecutive warnings issued before the threshold is

updated.

Number of processors

Specifies the number of processors on the server.

Restart button

Selecting Restart on the Runtime tab reinitializes the Runtime Performance Advisor

using the last information saved to disk. Note that this action also resets the state

of the Runtime Performance Advisor. For example, the current warning count is

reset to zero for each message.

Advice configuration settings

5.0.2

Use this page to select the advice you wish to enable or disable.

100 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

To view this administrative page, click Servers > Application Servers >

server_name > Runtime Performance Advisor Configuration > Advice

Configuration.

Advice name

Specifies the advice that you can enable or disable.

Advice applied to component

Specifies the WebSphere Application Server component to which the runtime

performance advice applies.

Advice status

Specifies whether advice is stopped or started.

There are only two values — Started and Stopped. Started means that the advice

runs if the advice applies. Stopped means that the advice does not run.

Advice status

Specifies whether advice is stopped, started or unavailable.

The advice status has one of three values — Started, Stopped or Unavailable.

Started means that the advice is being applied. Stopped means that the advice is

not applied. Unavailable means that the advice does not apply to the current

configuration (such as Persisted Session Size advice in a configuration without

persistent sessions).

Using the Performance Advisor in Tivoli Performance Viewer

5.0.2

The Performance Advisor in Tivoli Performance Viewer (TPV) provides

advice to help tune systems for optimal performance and gives recommendations

on inefficient settings by using collected Performance Monitoring Infrastructure

(PMI) data. Advice is obtained by selecting the Performance Advisor icon in TPV.

The Performance Advisor in TPV provides more extensive advice than the Runtime

Performance Advisor. For example, TPV provides advice on setting the dynamic

cache size, setting the JVM heap size and using the DB2 Performance

Configuration Wizard.

Steps for this task

 1. Enable PMI services in WebSphere Application Server through the

administrative console, and Enable PMI services in NodeAgent through the

administrative console

 In order to obtain advice, you must first enable the performance monitoring

service through the administrative console and restart the server. If running

Network Deployment, you must enable PMI service on both the server and on

the node agent and restart the server and node agent.

 2. Enable data collection.

 The monitoring levels that determine which data counters are enabled can be

set dynamically, without restarting the server. These monitoring levels and the

data selected determine the type of advice you obtain. The Performance

Advisor in TPV uses the standard monitoring level; however, the Performance

Advisor in TPV can use a few of the more expensive counters (to provide

additional advice) and provide advice on which counters can be enabled. This

action can be completed in one of the following ways:

a. Enable data collection through the administrative console.

Chapter 3. Tuning performance 101

b. Enable performance monitoring services through Tivoli Performance

Viewer.

c. Enable performance monitoring services using the command line.
 3. Start the Tivoli Performance Viewer.

 4. Simulate a production level load.

 Simulate a realistic production load for your application, if you are using the

Performance Advisor in a test environment, or doing any other performance

tuning. The application should run this load without errors. This simulation

includes numbers of concurrent users typical of peak periods, and drives

system resources such as CPU and memory to the levels expected in

production. The Performance Advisor only provides advice when CPU

utilization exceeds a sufficiently high level. For a list of IBM business partners

providing tools to drive this type of load, see the article, Performance:

Resources for learning in the sub-section of Monitoring performance with

third party tools.

 5. (Optional) Store data to a log file.

 6. (Optional) Replay a performance data log file.

 7. (Optional) Refresh data.

 Clicking refresh with server selected under the viewer icon causes TPV to:

v Query the server for new PMI and product configuration information.

Click refresh with server selected under the advisor icon causes TPV to:

v Refresh advice that is provided in a single instant in time.

v Not query the server for new PMI and product configuration information.
 8. Tuning advice appears when the Advisor icon is chosen in the TPV

Performance Advisor. Double-click an individual message for details.

 Since PMI data is taken over an interval of time and averaged to provide

advice, details within the advice message appear as averages.

 9. Update the product configuration for improved performance, based on advice.

Since Tivoli Performance Viewer refreshes advice at a single instant in time,

take the advice from the peak load time.

 Although the performance advisors attempt to distinguish between loaded

and idle conditions, misleading advice might be issued if the advisor is

enabled while the system is ramping up or down. This result is especially

likely when running short tests. Although the advice helps in most

configurations, there might be situations where the advice hinders

performance. Due to these conditions, advice is not guaranteed. Therefore, test

the environment with the updated configuration to ensure it functions and

performs well.

10. (Optional) Clear values from tables and charts.

11. (Optional) Reset counters to zero.

Performance Advisor Report in Tivoli Performance Viewer

5.0.2

View recommendations and data from the Performance Advisor in Tivoli

Performance Viewer by expanding the Performance Advisor icon under Data

Collection in Tivoli Performance Viewer and selecting the server.

Message

Specifies recommendations for performance tuning.

Double click the message to obtain more details.

102 IBM WebSphere Application Server Enterprise, Version 5.0.2: Monitoring and Tuning Performance

Performance data

Displays performance data for the WebSphere Application Server.

The first table represents the number of requests per second and the response time

in milliseconds for both the Web and EJB containers.

The pie graph displays the processor activity, percentage busy and idle.

The bar graph displays the total size and number of busy and idle threads and

connections in the Web container thread pool, the Object Request Broker (ORB)

Service thread pool and any database connection pools.

Chapter 3. Tuning performance 103

	Contents
	Trademarks and service marks
	Chapter 1. Welcome to monitoring and tuning performance
	Chapter 2. Monitoring performance
	Performance Monitoring Infrastructure
	Performance data organization
	BeanModule data counters
	Data counter definitions

	JDBC connection pool data counters
	Data counter definitions

	J2C connection pool data counters
	Data counter definitions

	Java Virtual Machine data counters
	Data counter definitions

	Object Request Broker data counters
	Data counter definitions

	Session data counters
	Data counter definitions

	Transaction data counters
	Data counter definitions

	ThreadPool data counters
	Data counter definitions

	Web application data counters
	Data counter definitions

	Workload Management data counters
	Data counter definitions

	System data counters
	Data counter definitions

	Dynamic cache data counters
	Data counter definitions

	Web Services Gateway (WSGW) data counters
	Data counter definitions

	Web services data counters
	Data counter definitions

	Alarm Manager data counters
	Data counter definitions

	Object Pool data counters
	Data counter definitions

	Scheduler data counters
	Data counter definitions

	Performance data classification
	Enabling performance monitoring services in the application server through the administrative console
	Enabling performance monitoring services in the NodeAgent through the administrative console
	Enabling performance data collection through the administrative console
	Performance monitoring service settings
	Startup
	Initial specification level
	Specifications

	Enabling performance monitoring services using the command line
	Enabling Java Virtual Machine Profiler Interface data reporting
	Java Virtual Machine Profiler Interface

	Monitoring performance with Tivoli Performance Viewer (formerly Resource Analyzer)
	Tivoli Performance Viewer features
	Starting the Tivoli Performance Viewer
	Setting performance monitoring levels
	Setting monitoring levels for individual enterprise bean methods

	Viewing summary reports
	Changing the refresh rate of data retrieval
	Changing the display buffer size
	Viewing and modifying performance chart data
	Scaling the performance data chart display
	Refreshing data
	Performance data refresh behavior

	Clearing values from tables and charts
	Storing data to a log file
	Performance data log file

	Replaying a performance data log file
	Resetting counters to zero

	Tivoli performance monitoring and management solutions
	Developing your own monitoring applications
	Developing your own monitoring application using Performance Monitoring Infrastructure client
	Performance Monitoring Infrastructure client
	Performance Monitoring Infrastructure client interface
	Using Version 5.0 PMI API in Version 3.5.5+ and Version 4.0.x
	Example: Performance Monitoring Infrastructure client (Version 4.0)
	Example: Performance Monitoring Infrastructure client with new data structure

	Developing your own monitoring applications with Performance Monitoring Infrastructure servlet
	Performance Monitoring Infrastructure servlet

	Compiling your monitoring applications
	Running your new monitoring applications
	Performance Monitoring Infrastructure client package
	Running your monitoring applications with security enabled

	Accessing Performance Monitoring Infrastructure data through the Java Management Extension interface
	Example: Administering Java Management Extension-based interface

	Developing Performance Monitoring Infrastructure interfaces (Version 4.0)

	Third-party performance monitoring and management solutions
	Measuring data requests (Performance Monitoring Infrastructure Request Metrics)
	Performance Monitoring Infrastructure Request Metrics
	Application Response Measurement
	Performance Monitoring Infrastructure Request Metrics trace filters
	Performance Monitoring Infrastructure Request Metrics data output
	Configuring Request Metrics
	Enabling Performance Monitoring Infrastructure Request Metrics
	Enabling Application Response Measurement
	Enabling Performance Monitoring Infrastructure Request Metrics filters
	Adding and removing Performance Monitoring Infrastructure Request Metrics filters
	Setting the trace level in Performance Monitoring Infrastructure Request Metrics
	Performance Monitoring Infrastructure Request Metrics
	PMIRM Filter collection
	PMIRM Filter settings
	filterValues collection
	filterValues settings
	Regenerating the Web server plug-in configuration file

	Example: Generating trace records from Performance Monitoring Infrastructure Request Metrics

	Performance monitoring service settings
	Startup
	Initial specification level
	Specifications

	Performance: Resources for learning

	Chapter 3. Tuning performance
	Tuning parameter index
	Business process choreographer
	Business Rule Beans (BRBeans)
	Dynamic query service
	Object pool
	WorkArea service
	Asynchronous beans
	ActivitySession
	Application profiling

	Using the Runtime Performance Advisor
	Runtime Performance Advisor configuration settings
	Enable Runtime Performance Advisor
	Interval
	Maximum warning sequence
	Number of processors
	Restart button

	Advice configuration settings
	Advice name
	Advice applied to component
	Advice status
	Advice status

	Using the Performance Advisor in Tivoli Performance Viewer
	Performance Advisor Report in Tivoli Performance Viewer
	Message
	Performance data

