
WebSphere® Business

Integration

Server

Foundation,

Version

5.1.1

Using

the

Common

Event

Infrastructure

���

Note

Before

using

this

information,

be

sure

to

read

the

general

information

under

“Notices”

on

page

99.

Compilation

date:

September

20,

2004

©

Copyright

International

Business

Machines

Corporation

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

this

document

.

.

.

.

.

.

.

.

. v

How

to

send

your

comments

.

.

.

.

.

.

.

.

. v

Chapter

1.

Introduction

to

the

Common

Event

Infrastructure

.

.

.

.

.

.

.

.

. 1

About

the

Common

Event

Infrastructure

in

WebSphere

Application

Server

.

.

.

.

.

.

.

. 1

The

Common

Base

Event

model

.

.

.

.

.

.

.

. 2

Common

base

event

properties

.

.

.

.

.

.

.

. 3

Attributes

of

the

CommonBaseEvent

element

that

are

relevant

to

WebSphere

events

.

.

.

.

.

. 4

Identification

of

the

event

source

.

.

.

.

.

. 4

Event

context

elements

.

.

.

.

.

.

.

.

.

. 5

Situation

elements

.

.

.

.

.

.

.

.

.

.

. 6

Chapter

2.

Planning

to

use

the

Common

Event

Infrastructure

.

.

.

.

.

.

.

.

. 7

Chapter

3.

Installing

and

configuring

the

Common

Event

Infrastructure

.

.

.

.

. 9

Default

configuration

.

.

.

.

.

.

.

.

.

.

. 9

Configuring

the

event

database

.

.

.

.

.

.

.

. 11

Database

configuration

logs

and

messages

.

.

. 11

Configuring

a

Cloudscape

database

.

.

.

.

. 12

Configuring

a

DB2

database

on

a

Linux,

UNIX,

or

Windows

system

.

.

.

.

.

.

.

.

.

. 12

Configuring

an

Oracle

database

.

.

.

.

.

. 13

Creating

a

database

response

file

.

.

.

.

.

. 14

Running

database

configuration

scripts

on

Linux,

UNIX,

and

Windows

systems

.

.

.

.

.

.

. 18

Upgrading

a

Cloudscape

event

database

.

.

.

. 20

Deploying

the

Common

Event

Infrastructure

application

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Configuring

default

event

messaging

.

.

.

.

.

. 22

Configuring

event

messaging

using

another

JMS

provider

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Configuring

the

Common

Event

Infrastructure

.

. 26

Configuring

the

application

events

service

.

.

.

. 26

Creating

an

emitter

factory

profile

.

.

.

.

.

.

. 27

Creating

an

event

group

.

.

.

.

.

.

.

.

.

. 28

Chapter

4.

Administering

the

Common

Event

Infrastructure

.

.

.

.

.

.

.

.

. 29

Logging

and

tracing

in

the

WebSphere

environment

29

Updating

database

statistics

.

.

.

.

.

.

.

.

. 29

Reorganizing

database

tables

.

.

.

.

.

.

.

. 30

Removing

the

Common

Event

Infrastructure

configuration

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Removing

the

Common

Event

Infrastructure

application

.

.

.

.

.

.

.

.

.

.

.

.

. 31

Removing

the

event

messaging

enterprise

application

.

.

.

.

.

.

.

.

.

.

.

.

. 32

Removing

the

event

database

.

.

.

.

.

.

. 32

Chapter

5.

Working

with

events

.

.

.

. 35

Life

cycle

of

an

event

.

.

.

.

.

.

.

.

.

.

. 35

Event

property

data

.

.

.

.

.

.

.

.

.

.

. 36

Creating

an

event

object

.

.

.

.

.

.

.

.

.

. 36

Creating

a

new

event

factory

.

.

.

.

.

.

. 37

Getting

an

event

factory

by

JNDI

lookup

.

.

. 38

Creating

and

populating

an

event

using

the

ECSEmitter

class

.

.

.

.

.

.

.

.

.

.

.

. 38

Creating

and

populating

an

event

using

the

event

factory

directly

.

.

.

.

.

.

.

.

.

. 40

Setting

property

data

automatically

.

.

.

.

. 41

Retrieving

data

from

a

received

event

.

.

.

.

. 42

Converting

XML

events

.

.

.

.

.

.

.

.

.

. 43

Accessing

event

instance

metadata

.

.

.

.

.

. 43

Chapter

6.

Developing

an

event

source

45

Emitters

and

emitter

factories

.

.

.

.

.

.

.

. 45

Obtaining

an

emitter

.

.

.

.

.

.

.

.

.

.

. 46

Sending

events

.

.

.

.

.

.

.

.

.

.

.

.

. 47

Sending

an

event

with

the

current

emitter

settings

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

Overriding

the

current

emitter

settings

.

.

.

. 48

Changing

the

emitter

settings

.

.

.

.

.

.

. 50

Freeing

emitter

resources

.

.

.

.

.

.

.

.

.

. 51

Filtering

events

.

.

.

.

.

.

.

.

.

.

.

.

. 51

Filtering

events

with

the

default

filter

plug-in

.

. 52

Implementing

a

filter

plug-in

.

.

.

.

.

.

. 52

Chapter

7.

Developing

an

event

consumer

.

.

.

.

.

.

.

.

.

.

.

.

. 55

Java

Messaging

Service

interface

and

event

consumers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

Developing

an

event

consumer

as

a

message-driven

bean

(MDB)

.

.

.

.

.

.

.

.

.

.

.

.

.

. 56

Developing

a

non-MDB

event

consumer

.

.

.

.

. 58

Querying

events

from

the

event

server

.

.

.

.

. 59

Creating

an

event

access

bean

.

.

.

.

.

.

. 60

Querying

events

by

global

instance

identifier

.

. 60

Querying

events

by

event

group

.

.

.

.

.

. 61

Querying

events

by

association

type

.

.

.

.

. 63

Purging

events

from

the

data

store

.

.

.

.

. 64

Writing

event

selectors

.

.

.

.

.

.

.

.

.

. 65

Writing

XPath

event

selectors

.

.

.

.

.

.

. 66

Writing

event

selectors

for

the

default

data

store

plug-in

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 66

Implementing

a

data

store

plug-in

.

.

.

.

.

.

. 68

Chapter

8.

Developing

an

event

catalog

application

.

.

.

.

.

.

.

.

.

.

.

.

. 71

Event

definitions

.

.

.

.

.

.

.

.

.

.

.

. 71

Property

descriptions

.

.

.

.

.

.

.

.

.

. 72

Extended

data

element

descriptions

.

.

.

.

. 73

Inheritance

.

.

.

.

.

.

.

.

.

.

.

.

. 74

Change

notification

.

.

.

.

.

.

.

.

.

.

.

. 76

©

Copyright

IBM

Corp.

2004

iii

Creating

an

event

definition

.

.

.

.

.

.

.

.

. 77

Adding

property

descriptions

to

an

event

definition

77

Adding

extended

data

element

descriptions

to

an

event

definition

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Creating

an

event

catalog

bean

.

.

.

.

.

.

.

. 80

Adding

an

event

definition

to

the

event

catalog

.

. 80

Removing

an

event

definition

from

the

catalog

.

. 81

Querying

event

definitions

.

.

.

.

.

.

.

.

. 81

Querying

an

event

definition

by

name

.

.

.

. 81

Querying

event

definitions

by

pattern

.

.

.

. 82

Querying

the

parent

of

an

event

definition

.

.

. 82

Querying

the

ancestors

of

an

event

definition

.

. 83

Querying

the

children

of

an

event

definition

.

. 83

Querying

the

descendants

of

an

event

definition

84

Querying

the

root

event

definition

.

.

.

.

.

. 84

Working

with

event

classes

and

source

categories

. 84

Creating

a

source

category

binding

.

.

.

.

. 85

Removing

a

source

category

binding

.

.

.

.

. 85

Querying

source

category

bindings

.

.

.

.

. 85

Chapter

9.

Viewing

events

with

the

event

browser

.

.

.

.

.

.

.

.

.

.

. 89

Specifying

the

events

to

view

.

.

.

.

.

.

.

. 89

Working

with

the

returned

events

.

.

.

.

.

.

. 90

Appendix.

Command

reference

.

.

.

. 91

emitevent.jacl

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

eventquery.jacl

.

.

.

.

.

.

.

.

.

.

.

.

. 93

eventpurge.jacl

.

.

.

.

.

.

.

.

.

.

.

.

. 94

eventcatalog.jacl

.

.

.

.

.

.

.

.

.

.

.

.

. 95

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 99

Trademarks

and

service

marks

.

.

.

. 101

iv

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

About

this

document

This

document

includes

information

relating

to

technology

preview

code

that

is

provided

to

you

with

the

product.

Such

technology

preview

code

is

provided

on

an

as-is

basis

with

no

warranty.

IBM

provides

no

support

for

this

code.

IBM

does

not

warrant

that:

a)

this

code

meets

your

requirements,

and

or

b)

your

applications

developed

using

this

code

are

compatible

with

subsequent

versions

of

the

code.

Some

or

all

of

the

code

might

not

be

made

generally

available

by

IBM

as

a

product.

Production

use

of

the

technology

preview

code

is

not

authorized.

How

to

send

your

comments

Your

feedback

is

important

in

helping

to

provide

the

most

accurate

and

highest

quality

information.

v

To

send

comments

on

articles

in

the

WebSphere

Application

Server

Information

Center

1.

Display

the

article

in

your

Web

browser

and

scroll

to

the

end

of

the

article.

2.

Click

on

the

Feedback

link

at

the

bottom

of

the

article,

and

a

separate

window

containing

an

e-mail

form

appears.

3.

Fill

out

the

e-mail

form

as

instructed,

and

click

on

Submit

feedback.
v

To

send

comments

on

PDF

books,

you

can

e-mail

your

comments

to:

wasdoc@us.ibm.com

or

fax

them

to

919-254-0206.

Be

sure

to

include

the

document

name

and

number,

the

WebSphere

Application

Server

version

you

are

using,

and,

if

applicable,

the

specific

page,

table,

or

figure

number

on

which

you

are

commenting.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

2004

v

vi

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

Chapter

1.

Introduction

to

the

Common

Event

Infrastructure

The

Common

Event

Infrastructure

is

a

shared

component

that

can

operate

either

inside

or

outside

WebSphere

Application

Server.

The

Common

Event

Infrastructure

provides

facilities

for

the

run-time

environment

to

persistently

store

and

retrieve

events

from

many

different

programming

environments.

Events

are

represented

using

the

Common

Base

Event

model,

a

standard,

XML-based

format

that

defines

the

structure

of

an

event.

The

Common

Event

Infrastructure

provides

WebSphere

Application

Server

with

standard

formats

and

mechanisms

for

managing

event

data.

The

following

facilities

are

provided:

v

Standard

interfaces

and

services

for

WebSphere

applications

to

create

event

objects,

store

them,

send

them,

and

retrieve

them

later.

v

Facilities

that

pass

event

objects

to

registered

applications

either

directly,

in

the

context

of

the

producing

(source)

application,

or

indirectly

through

Java

Message

Service

(JMS).

There

are

event

emitters

for

Business

Process

Execution

Language

(BPEL)-based

processes

and

for

Enterprise

JavaBeans

(EJB)

invocations

based

on

deployment

descriptor

extensions.

v

An

event

browser

for

browsing

stored

events.

About

the

Common

Event

Infrastructure

in

WebSphere

Application

Server

This

topic

gives

an

overview

of

the

Common

Event

Infrastructure

as

it

is

implemented

in

WebSphere

Application

Server.

The

Common

Event

Infrastructure

provides

facilities

for

generation,

propagation,

persistence,

and

consumption

of

events,

but

it

does

not

define

the

actual

events.

Instead,

application

developers

and

administrators

define

event

types,

event

groups,

filtering

criteria,

and

correlation

criteria.

An

event

occurs

when

something

significant

happens

in

the

IT

system.

For

example,

an

application

processing

a

new

customer

order

or

a

failure

occurring

in

a

critical

part

of

the

system.

Information

about

the

event

is

captured

in

an

event

object.

This

event

object

describes

an

event

type,

indicates

when

the

application

generated

the

event,

and

identifies

properties

that

are

relevant

to

the

event.

The

Common

Event

Infrastructure

in

WebSphere

Application

Server

has

the

following

components:

Common

base

event

The

common

base

event

component

supports

the

creation

of

events

and

access

to

the

property

data

of

these

events.

Event

sources

use

the

common

base

event

APIs

to

create

new

events

that

conform

to

the

Common

Base

Event

model.

Event

consumers

use

the

APIs

to

read

property

data

from

received

events.

In

addition,

applications

can

convert

events

to

and

from

XML

text

format,

supporting

interchange

with

other

tools.

The

common

base

event

component

is

part

of

the

Eclipse-based

Hyades

environment.

Emitter

The

emitter

component

supports

the

sending

of

events.

After

an

event

source

creates

an

event

and

populates

it

with

data,

the

event

source

©

Copyright

IBM

Corp.

2004

1

submits

the

event

to

an

emitter.

The

emitter

optionally

performs

automatic

content

completion

and

then

validates

the

event

to

ensure

that

it

conforms

to

the

Common

Base

Event

specification.

It

also

compares

the

event

to

configurable

filter

criteria.

If

the

event

is

valid

and

passes

the

filter

criteria,

the

emitter

sends

the

event

to

the

event

server.

An

emitter

can

send

events

to

the

event

server

either

synchronously

(using

Enterprise

JavaBeans

calls)

or

asynchronously

(using

a

Java

Messaging

Service

queue).

Event

correlation

spheres

An

event

correlation

sphere

is

the

scope

that

allows

an

event

consumer

to

correlate

events.

Each

event

includes

the

identifier

of

the

correlation

sphere

to

which

it

belongs

and

the

identifier

of

its

parent

correlation

sphere

from

the

event

hierarchy.

An

emitter

is

provided

(ECSEmitter

class)

that

adds

correlation

data

automatically

to

events.

Event

server

The

event

server

is

the

conduit

between

event

sources

and

event

consumers.

The

event

server

receives

events

that

are

submitted

to

emitters

by

event

sources,

stores

events

them

in

a

persistent

data

store,

and

then

distributes

them

asynchronously

to

subscribed

event

consumers.

In

addition,

the

event

server

supports

synchronous

queries

of

historical

events

from

the

persistent

store.

Event

catalog

The

event

catalog

is

a

repository

of

event

metadata.

Applications

use

the

event

catalog

to

retrieve

information

about

classes

of

events

and

the

content

of

these

events.

Event

catalog

application

Any

application

that

stores

or

retrieves

event

metadata

in

the

event

catalog.

This

might

be

a

management

or

development

tool;

it

might

also

be

an

event

source

or

event

consumer.

Event

source

Any

application

that

uses

an

emitter

to

send

events

to

the

event

server.

Event

consumer

Any

application

that

receives

events

from

the

event

server.

Event

consumers

process

events

outside

the

environment

of

the

event

source.

Typically,

these

event

consumers

process

events

from

a

number

of

event

sources.

Related

concepts

“The

Common

Base

Event

model”

Related

tasks

Chapter

5,

“Working

with

events,”

on

page

35

Chapter

6,

“Developing

an

event

source,”

on

page

45

Chapter

7,

“Developing

an

event

consumer,”

on

page

55

Chapter

8,

“Developing

an

event

catalog

application,”

on

page

71

The

Common

Base

Event

model

The

Common

Base

Event

model

is

a

standard

that

defines

a

common

representation

of

events.

This

standard,

developed

by

the

IBM

Autonomic

Computing

Architecture

Board,

supports

the

encoding

of

logging,

tracing,

management,

and

business

events

using

a

common

XML-based

format.

Using

this

format

you

can

correlate

different

types

of

events

that

originate

from

different

2

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

applications.

The

Common

Base

Event

model

is

part

of

the

IBM

Autonomic

Computing

Toolkit.

For

more

information,

see

http://www.ibm.com/autonomic.

The

Common

Event

Infrastructure

currently

supports

version

1.0.1

of

the

specification.

The

basic

concept

of

the

Common

Base

Event

model

is

the

situation.

A

situation

can

be

anything

that

happens

anywhere

in

the

computing

infrastructure,

such

as

a

server

shutdown,

a

disk-drive

failure,

or

a

failed

user

login.

The

Common

Base

Event

model

defines

a

set

of

standard

situation

types

that

accommodate

most

of

the

situations

that

can

occur,

for

example,

the

StartSituation

and

the

CreateSituation

situation

types.

An

event

is

a

structured

notification

that

reports

information

related

to

a

situation.

An

event

reports

the

following

kinds

of

information:

v

The

situation

(what

has

happened)

v

The

identity

of

the

affected

component,

for

example,

the

server

that

has

shut

down

v

The

identity

of

the

component

that

is

reporting

the

situation

(which

might

be

the

same

as

the

affected

component)

The

Common

Base

Event

specification

defines

an

event

as

an

XML

element

that

contains

properties

that

provide

all

three

kinds

of

information.

These

properties

are

encoded

as

attributes

and

subelements

of

the

CommonBaseEvent

root

element.

The

Common

Base

Event

format

is

extensible.

In

addition

to

the

standard

event

properties,

an

event

can

also

contain

extended

data

elements,

which

are

application-specific

elements

with

relevant

information

to

the

situation.

The

extensionName

attribute

labels

an

event

with

an

optional

classification

name

(an

event

class),

which

indicates

to

applications

what

sort

of

extended

data

elements

to

expect.

The

event

catalog

stores

event

definitions

that

describe

these

event

classes

and

the

allowed

content

of

the

event.

Related

reference

“Common

base

event

properties”

Common

base

event

properties

The

Common

Base

Event

specification

defines

properties

for

common

base

events.

A

common

base

event

has

the

following

types

of

properties:

v

Attributes

for

the

CommonBaseEvent

element.

See

“Attributes

of

the

CommonBaseEvent

element

that

are

relevant

to

WebSphere

events”

on

page

4.

v

Identifier

of

the

source

component.

For

common

base

events

that

are

generated

within

WebSphere

Application

Server,

this

section

contains

the

attributes

associated

with

the

sourceComponentId

element.

These

attributes

describe

the

run-time

environment

that

was

running

when

the

situation

occurred.

See

“Identification

of

the

event

source”

on

page

4.

v

Event

context

elements.

See

“Event

context

elements”

on

page

5.

v

Event

classification

elements

that

describe

the

situation

element.

See

“Situation

elements”

on

page

6.

For

more

information

on

the

Common

Base

Event

specification,

see

the

Autonomic

Computing

Toolkit

Developers’

Guide

delivered

with

the

IBM

Autonomic

Computing

Toolkit,

http://www.ibm.com/autonomic.

Chapter

1.

Introduction

to

the

Common

Event

Infrastructure

3

http://www.ibm.com/autonomic
http://www.ibm.com/autonomic

Attributes

of

the

CommonBaseEvent

element

that

are

relevant

to

WebSphere

events

The

CommonBaseEvent

element

groups

the

data

for

a

CommonBaseEvent

instance.

The

attributes

of

the

CommonBaseEvent

element

give

basic

information

about

a

CommonBaseEvent

instance.

The

element

has

a

number

of

attributes

that

are

common

to

all

instances

of

common

base

events.

These

attributes

are

described

in

detail

in

the

Common

Base

Event

specification.

For

example,

in

a

WebSphere

Application

Server

environment

if

an

event

is

sent

using

the

ECSEmitter

class,

the

following

attributes

are

required.

Attribute

Description

creationTime

The

local

time

on

the

WebSphere

Application

Server

at

which

the

event

is

created.

This

time

is

set

automatically

by

the

run-time

environment.

extensionName

Identifies

the

structure

and

content

of

the

event.

You

can

use

the

event

catalog

to

publish

guidelines

on

how

to

read

events

with

a

certain

extension

name.

For

example,

all

process

events

sent

by

process

choreographer

have

the

extension

name

of

WPC:ProcessInstanceEvent.

globalInstanceId

The

globally

unique

identifier

of

the

common

base

event

instance.

This

ID

is

set

automatically.

sequenceNumber

The

number

of

common

base

events

generated

so

far

within

a

millisecond

interval.

This

value

is

set

to

1

but

it

can

be

overwritten.

severity

A

number

that

describes

the

impact

that

the

event

has

on

the

creator

of

the

record.

The

value

is

set

to

10

but

it

can

be

overwritten.

version

The

version

of

the

Common

Base

Event

specification.

This

is

set

to

1.0.1.

The

following

example

shows

a

typical

use

of

these

attributes:

<CommonBaseEvent

creationTime="2004-06-11T16:22:55.060Z"

extensionName="WPC:ProcessInstanceEvent"

globalInstandId="CE98004140BBC311D8AC0CE749FC318A97"

sequenceNumber="1"

severity=10"

version="1.0.1">

...

</CommonBaseEvent>

For

more

information

on

the

CommonBaseEvent

element,

see

the

Common

Base

Event

specification

in

the

Autonomic

Computing

Toolkit

Developers’

Guide

delivered

with

the

IBM

Autonomic

Computing

Toolkit,

http://www.ibm.com/autonomic.

Identification

of

the

event

source

This

topic

describes

the

event

data

that

is

automatically

provided

in

common

base

events

that

occur

in

the

WebSphere

Application

Server

environment.

By

default,

common

base

event

instances

from

WebSphere

Application

Server

contain

the

sourceComponentId

element.

The

component

referred

to

by

this

element

is

the

WebSphere

Application

Server

where

the

situation

occurred.

The

reporterComponentId

is

not

set.

4

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

http://www.ibm.com/autonomic

The

following

XML

fragment

shows

the

structure

of

the

sourceComponentId

element.

<sourceComponentId

component="WBI-SF#Platform

5.1

[BASE

5.1.1

a0421.06]

[JDK

1.4.1.1

jdk0409.03]

[PME

5.1.0

a0405.03]"

componentIdType="ProductName"

executionEnvironment="Windows

XP[x86]#5.1"

instanceId="Gemstone3\Gemstone3\server1"

location="Gemstone3.boeblingen.de.ibm.com"

locationType="Hostname"

processId="3260"

componentType="WebSphereApplicationServer"

subComponent="WPC"

threadId="ORB.thread.pool

:

0"

componentType:="http://www.ibm.com/namespaces/autonomic/Workflow_Engine"/>

All

of

the

attribute

values

are

set

automatically

by

the

WebSphere

run-time

environment

unless

the

caller

provides

the

value

explicitly.

However,

it

is

not

recommended

that

you

supply

values

explicitly.

The

attributes

are

defined

as

follows:

Attribute

Description

component

Identifies

the

products

in

the

WebSphere

stack.

Set

to

WBI-SF

followed

by

the

version

information

of

the

WebSphere

components.

componentIdType

Set

to

ProductName.

executionEnvironment

A

string

that

describes

the

operating

system

in

which

the

application

server

is

running.

instanceId

The

identifier

of

the

application

server.

This

ID

has

the

format:

<cell

name>/<node

name>/<server

name>

location

The

host

name

of

the

server

(or

server

region

for

z/OS).

locationType

Set

to

Hostname.

processId

The

identifier

of

the

operating

system

process.

subComponent

The

default

is

J2EE_Application.

threadId

The

identifier

of

the

current

thread.

componentType

The

identifier

of

the

component

that

sent

the

event

as

specified

in

the

Common

Base

Event

specification.

Event

context

elements

If

you

use

the

ECSEmitter

class

to

send

events,

two

context

elements

are

added

automatically

to

the

event

information.

These

two

context

elements

identify

the

current

and

the

parent

event

correlation

sphere

on

behalf

of

which

the

event

was

sent.

The

following

example

shows

the

context

elements

that

are

emitted

on

behalf

of

a

Business

Process

Execution

Language

(BPEL)

process

instance

event:

<contextDataElements

name="ECSCurrentID"

type="ECSID"

<contextValue>_PI:900300fd.385c662b.be7d67f6.c600047</contextValue>

</contextDataElements>

<contextDataElements

name="ECSParentID"

type="ECSID"

<contextValue></contextValue>

</contextDataElements>

The

names

of

the

context

data

elements

are

ECSCurrentID

and

ECSParentID.

The

type

is

a

constant

string

set

to

ECSID.

The

value

of

the

contextValue

subelement

is

Chapter

1.

Introduction

to

the

Common

Event

Infrastructure

5

the

identification

of

the

event

correlation

sphere

that

is

passed

to

the

constructor

of

the

ECSEmitter

class.

The

contextValue

element

can

be

empty.

Situation

elements

The

Common

Base

Event

specification

defines

elements

that

give

more

information

about

an

event.

The

most

important

of

these

elements

is

the

situation

element

that

gives

a

standardized

classification

of

the

situation

in

which

the

event

occurred.

This

element

is

mandatory.

When

events

are

sent

through

the

deployment

descriptor

of

an

Enterprise

JavaBeans

module

or

through

a

Business

Process

Execution

Language

(BPEL)

process,

situation

elements

are

added

automatically

to

the

event

information.

If

an

event

is

sent

using

the

Java

API

and

the

situation

is

not

set,

an

OtherSituation

situation

is

created

automatically.

6

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

Chapter

2.

Planning

to

use

the

Common

Event

Infrastructure

The

Common

Event

Infrastructure

provides

facilities

for

the

generation,

propagation,

persistence,

and

consumption

of

events,

but

it

does

not

define

the

actual

events.

When

you

plan

how

to

use

the

event

infrastructure

in

your

system

design,

you

need

to

understand

the

business

concepts

that

are

relevant,

and

map

them

to

the

appropriate

components

of

your

system

design.

You

should

provide

the

semantics

of

event

management

by

defining

event

types

and

event

groups,

in

the

context

of

an

architecture

of

event

sources

and

event

consumers.

1.

Identify

each

event

source.

The

event

source

is

the

application

that

creates

the

event.

The

event

source

passes

the

event

object

to

the

event

infrastructure.

The

event

infrastructure

also

stores

the

event

object

in

a

database

for

later

retrieval.

The

role

of

the

event

infrastructure

is

to

pass

the

event

object

onto

any

applications

that

express

an

interest

in

receiving

it.

2.

Identify

each

event

consumer.

An

event

consumer

is

an

application

that

can

use

the

information

that

is

contained

in

the

event

object.

Event

consumers

typically

process

events

from

a

number

of

event

sources.

3.

Identify

the

hierarchy

of

the

event

correlation

spheres

and

the

identifiers

for

these

spheres.

Event

consumers

can

use

event

correlation

spheres

to

correlate

events.

The

ECSEmitter

class

supports

a

hierarchy

of

correlation

spheres

by

storing

the

current

identifier

and

the

parent

identifier

of

the

correlation

spheres

of

an

event

in

each

event.

For

example,

a

Business

Process

Execution

Language

(BPEL)

activity

opens

a

correlation

sphere

for

the

current

activity

that

identifies

the

activity

with

the

activity

instance

ID.

The

parent

correlation

sphere

is

the

correlation

sphere

of

the

process

instance

on

behalf

of

which

the

activity

is

run.

The

parent

correlation

sphere

is

identified

by

the

process

instance

ID.

4.

Identify

each

event

group.

An

event

group

defines

the

characteristics

(property

values)

that

all

events

of

interest

to

a

particular

type

of

consumer

can

contain.

Policies,

such

as

access

controls

and

distribution

rules

are

assigned

to

the

event

groups

to

customize

the

behavior

of

the

event

infrastructure

for

each

user

group.

WebSphere

supplies

a

default

event

group

that

is

defined

to

include

all

events.

This

event

group

is

called

Event

groups

list

and

has

a

Java

Naming

and

Directory

Interface

(JNDI)

name

of

com/ibm/events/configuration/event-groups/Default

The

following

figure

shows

the

relationship

between

these

objects:

©

Copyright

IBM

Corp.

2004

7

Figure

1.

The

architecture

of

an

event

source

(which

creates

events),

an

event

consumer

(which

makes

use

of

the

event

data),

and

an

event

group

(which

defines

the

characteristics

and

associated

policies

for

each

type

of

event).

8

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

Chapter

3.

Installing

and

configuring

the

Common

Event

Infrastructure

You

must

configure

the

necessary

resources

and

services

before

you

can

use

the

Common

Event

Infrastructure.

1.

Configure

the

event

database.

See

“Configuring

the

event

database”

on

page

11.

2.

Deploy

the

Common

Event

Infrastructure

application.

See

“Deploying

the

Common

Event

Infrastructure

application”

on

page

21.

3.

Start

the

application

server.

4.

Optional:

Deploy

a

message

driven

bean.

You

can

deploy

a

message

driven

bean

in

one

of

the

following

ways:

v

Use

the

embedded

messaging

service

and

associate

the

message

queue

to

the

default

emitter

profile.

See

“Configuring

default

event

messaging”

on

page

22.

v

Use

the

WebSphere

messaging

service.

See

“Configuring

event

messaging

using

another

JMS

provider”

on

page

23.

The

Common

Event

Infrastructure

is

installed

and

ready

to

use.

By

default,

the

Common

Event

Infrastructure

service

and

the

application

events

service

are

started

when

the

application

server

starts.

5.

Optional:

Change

the

default

configuration

settings

for

services

and

resources.

These

services

and

settings

include:

v

Common

Event

Infrastructure

service.

See

“Configuring

the

Common

Event

Infrastructure”

on

page

26.

v

Application

events

service.

See

“Configuring

the

application

events

service”

on

page

26.

v

Emitter

factory

profile.

See

“Creating

an

emitter

factory

profile”

on

page

27.

v

Event

group.

See

“Creating

an

event

group”

on

page

28.

Default

configuration

The

Common

Event

Infrastructure

components

are

installed

as

a

set

of

WebSphere

Application

Server

applications,

services,

and

default

resources.

You

can

customize

the

Common

Event

Infrastructure

by

configuring

the

provided

resources

or

creating

additional

resources.

The

default

configuration

consists

of

the

following

objects:

Common

Event

Infrastructure

service

A

service

installed

into

the

WebSphere

server.

This

service

enables

WebSphere

applications

and

clients

to

use

the

Common

Event

Infrastructure.

Common

Event

Infrastructure

enterprise

application

The

enterprise

application

for

the

event

server.

The

deployment

descriptor

of

the

enterprise

application

associates

the

event

server

with

the

Common

Event

Infrastructure

resources

it

uses.

Common

Event

Infrastructure

messaging

application

The

enterprise

application

for

the

message-driven

bean

that

supports

©

Copyright

IBM

Corp.

2004

9

asynchronous

event

transmission

to

the

event

server.

This

application

is

available

only

if

you

have

configured

event

messaging.

Common

Event

Infrastructure

Provider

A

collection

object

that

contains

the

resources

used

by

Common

Event

Infrastructure

components,

event

sources,

and

event

consumers.

Data

store

profile

A

data

store

profile

defines

the

properties

that

are

used

by

the

default

data

store

plug-in,

which

is

used

to

persistently

store

events

received

by

the

event

server.

A

default

data

store

profile

is

provided.

Usually,

no

configuration

is

necessary

for

this

resource,

but

in

some

circumstances

you

might

want

to

adjust

some

properties

for

your

environment.

You

might

also

need

to

create

additional

data

store

profiles

if

you

want

to

set

up

multiple

event

servers

in

the

same

cell.

Event

bus

transmission

profile

An

event

bus

transmission

profile

defines

the

properties

that

are

used

by

emitters

to

access

the

event

server

synchronously

using

Enterprise

JavaBeans

(EJB)

calls.

These

profiles

are

used

by

emitter

factory

profiles.

A

default

transmission

profile

is

provided.

Usually,

no

configuration

is

necessary

for

this

resource.

Event

group

profile

list

An

event

group

profile

list

is

a

collection

that

contains

the

event

group

profiles

used

by

the

event

server.

The

event

group

profile

list

used

by

an

event

server

is

specified

in

the

deployment

descriptor

of

the

event

server

enterprise

application.

Usually,

no

configuration

is

necessary

for

this

resource,

but

you

might

need

to

create

additional

event

group

profile

lists

if

you

want

to

set

up

multiple

event

servers

in

the

same

cell.

Event

group

profile

An

event

group

profile

defines

an

event

group

(a

logical

collection

of

events).

Event

groups

are

used

to

categorize

events

according

to

their

content.

When

querying

events

from

the

event

server

or

subscribing

to

event

distribution,

an

event

consumer

can

specify

an

event

group

to

retrieve

only

the

events

in

that

group.

A

default

event

group

profile

is

provided.

This

profile

defines

an

event

group

that

contains

all

of

the

events.

This

event

group

is

associated

with

the

Java

Message

Service

(JMS)

topic

jms/cei/notification/AllEventsTopic.

You

can

create

additional

event

group

profiles

specifying

whatever

event

criteria

are

appropriate

for

your

application.

Emitter

factory

profile

An

emitter

factory

profile

defines

the

properties

that

are

used

by

emitters.

The

properties

in

an

emitter

factory

profile

affect

the

behavior

of

any

emitter

that

is

created

using

the

associated

emitter

factory.

The

default

emitter

factory

profile

specifies

synchronous

transmission,

no

filtering,

and

sending

each

event

as

part

of

the

current

transaction.

You

might

want

to

create

an

additional

emitter

factory

profile

to

specify

a

different

transaction

mode

or

transmission

profile.

Event

server

profile

An

event

server

profile

defines

the

properties

that

are

used

by

the

event

server.

The

default

event

server

profile

enables

event

distribution

and

persistence,

and

it

is

configured

to

use

the

default

data

store

plug-in.

Usually,

no

configuration

is

necessary

for

this

resource,

but

you

might

10

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

need

to

create

additional

event

server

profiles

if

you

want

to

set

up

multiple

event

servers

in

the

same

cell.

JMS

Transmission

Profile

A

JMS

transmission

profile

defines

the

properties

that

are

used

by

emitters

to

access

the

event

server

asynchronously

using

a

JMS

queue.

This

profile

is

referenced

by

emitter

factory

profiles.

This

profile

is

available

only

if

you

have

configured

event

messaging.

Related

tasks

“Configuring

the

Common

Event

Infrastructure”

on

page

26

“Configuring

the

application

events

service”

on

page

26
Complete

this

task

to

switch

the

application

events

service

on

or

off.

“Creating

an

emitter

factory

profile”

on

page

27

“Creating

an

event

group”

on

page

28

Configuring

the

event

database

Before

you

can

use

the

Common

Event

Infrastructure,

you

must

configure

the

event

database.

On

the

machine

hosting

your

database,

create

the

event

database

according

to

the

description

for

your

database

system.

You

can

create

an

event

database

for

the

following

database

systems:

v

“Configuring

a

Cloudscape

database”

on

page

12

v

“Configuring

a

DB2

database

on

a

Linux,

UNIX,

or

Windows

system”

on

page

12

v

“Configuring

an

Oracle

database”

on

page

13

The

database

exists

and

it

is

ready

to

use.

Database

configuration

logs

and

messages

The

scripts

for

configuring

and

removing

the

event

database

create

two

log

files:

v

The

install_root/logs/event/event_db.log

log

file

contains

detailed

trace

information.

v

The

install_root/logs/event/event_db_msg.log

log

file

contains

any

messages

generated

by

the

database

configuration

script.

Log

file

messages

are

in

the

following

format:

<Date>

<month><year>

<time><Class>

<Methods><Type>

<Message>

The

fields

in

the

message

statements

are

as

follows:

Class

The

name

of

the

class

generating

the

message.

Method

The

method

generating

the

log

message.

Type

The

type

of

message.

This

can

be

any

of

the

following:

v

Entry

v

Exit

v

Error

v

Information

v

Warning

Message

The

text

of

the

message.

Chapter

3.

Installing

and

configuring

the

Common

Event

Infrastructure

11

Configuring

a

Cloudscape

database

Follow

these

steps

to

configure

a

Cloudscape

event

database.

1.

Create

a

database

response

file.

A

database

response

file

is

a

text

file

that

specifies

parameters

for

configuring

the

event

database.

These

parameters

vary

depending

on

the

type

of

database

being

used.

2.

Run

the

database

configuration

scripts.

The

Common

Event

Infrastructure

provides

scripts

for

configuring

or

upgrading

the

event

database.

These

scripts

in

turn

generate

customized,

database-specific

scripts

for

creating

or

modifying

the

necessary

database

configuration

using

the

parameters

in

your

response

file.

Related

tasks

“Creating

a

database

response

file”

on

page

14
A

database

response

file

is

a

text

file

specifying

parameters

for

configuring

the

event

database.

These

parameters

vary

depending

on

the

type

of

database

being

used.

“Running

database

configuration

scripts

on

Linux,

UNIX,

and

Windows

systems”

on

page

18
The

Common

Event

Infrastructure

provides

a

script

for

configuring

the

event

database.

This

script

generates

customized,

database-specific

scripts

for

creating

the

database

configuration

using

the

parameters

in

your

response

file.

Configuring

a

DB2

database

on

a

Linux,

UNIX,

or

Windows

system

Follow

these

steps

to

configure

a

DB2

event

database

on

a

Linux,

UNIX,

or

Windows

system.

1.

If

you

are

configuring

a

DB2

database

on

a

DB2

client

with

the

server

on

a

remote

system,

make

sure

the

client

system

is

configured

to

communicate

with

the

server

and

that

the

DB2

node

is

cataloged.

For

more

information,

refer

to

the

DB2

Universal

Database

documentation.

2.

If

you

are

configuring

a

DB2

database

on

a

Linux

or

UNIX

system,

source

the

database

environment:

a.

Modify

/etc/group

and

make

sure

root

is

in

the

same

group

as

the

db2instance.

b.

Source

the

database

environment

by

running

the

db2instance/sqllib/db2profile

script

(replace

db2instance

with

the

name

of

your

database

instance).
3.

Create

a

database

response

file.

A

database

response

file

is

a

text

file

that

specifies

parameters

for

configuring

the

event

database.

These

parameters

vary

depending

on

the

type

of

database

being

used.

4.

Run

the

database

configuration

scripts.

The

Common

Event

Infrastructure

provides

scripts

for

configuring

the

event

database.

These

scripts

generate

customized,

database-specific

scripts

for

creating

the

database

configuration

using

the

parameters

in

your

response

file.

Related

tasks

“Creating

a

database

response

file”

on

page

14
A

database

response

file

is

a

text

file

specifying

parameters

for

configuring

the

event

database.

These

parameters

vary

depending

on

the

type

of

database

being

used.

“Running

database

configuration

scripts

on

Linux,

UNIX,

and

Windows

systems”

on

page

18
The

Common

Event

Infrastructure

provides

a

script

for

configuring

the

event

12

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

database.

This

script

generates

customized,

database-specific

scripts

for

creating

the

database

configuration

using

the

parameters

in

your

response

file.

Configuring

an

Oracle

database

Follow

these

steps

to

configure

an

Oracle

event

database.

1.

If

you

are

using

Oracle8i

Database

Release

8.1.7

and

a

type

2

JDBC

driver,

use

the

WebSphere

administrative

console

to

modify

the

Common

Event

Infrastructure

data

source

Event_Oracle_JDBC_Provider

to

use

the

class

path

$ORACLE_HOME/jdbc/lib/classes12.zip.

2.

If

you

are

using

Oracle8i

Database

Release

8.1.7

and

a

type

4

JDBC

driver,

do

one

of

the

following:

v

Use

the

WebSphere

administrative

console

to

modify

the

Common

Event

Infrastructure

data

source

Event_Oracle_JDBC_Provider

to

use

class

path

$ORACLE_HOME/jdbc/lib/classes12.zip

v

Download

the

ojdbc14.jar

file

from

http://www.oracle.com

and

place

the

file

in

the

$ORACLE_HOME/jdbc/lib

directory.

(You

do

not

need

to

modify

the

data

source.)
3.

Create

a

database

to

use

for

the

event

database.

When

you

create

the

database,

select

the

appropriate

character

set:

v

For

an

Oracle

9

database,

select

Unicode

(AL32UTF8).

v

For

an

Oracle

8

database,

select

UTF-8.

If

you

are

configuring

the

event

database

from

an

Oracle

client,

the

client

must

be

configured

to

communicate

with

this

database

instance.

In

the

next

step,

specify

the

Oracle

system

identifier

(SID)

in

the

database

response

file;

the

default

value

is

event.

4.

Create

a

database

response

file.

A

database

response

file

is

a

text

file

that

specifies

parameters

for

configuring

the

event

database.

These

parameters

vary

depending

on

the

type

of

database

being

used.

If

you

are

installing

multiple

event

servers

using

the

same

Oracle

database,

remember

that

table

space

names

must

be

unique

within

a

database

instance.

Therefore,

you

must

modify

the

response

file

to

specify

different

table

space

names

for

each

event

server

you

install.

5.

Run

the

database

configuration

scripts.

The

Common

Event

Infrastructure

provides

scripts

for

configuring

the

event

database.

These

scripts

generate

customized,

database-specific

scripts

for

creating

the

database

configuration

using

the

parameters

specified

in

your

response

file.

6.

Make

sure

the

following

environment

variables

are

set:

v

ORACLE_HOME

must

be

set

to

the

Oracle

installation

directory.

v

PATH

must

include

$ORACLE_HOME/bin

and

$ORACLE_HOME/lib.

v

LD_LIBRARY_PATH

and

LIBPATH

must

be

set

to

$ORACLE_HOME/lib.

v

CLASSPATH

must

contain

$ORACLE_HOME/jdbc/lib/ojdbc14.jar

and

$ORACLE_HOME/jdbc/lib/nls_charset12.zip.

Related

tasks

“Creating

a

database

response

file”

on

page

14
A

database

response

file

is

a

text

file

specifying

parameters

for

configuring

the

event

database.

These

parameters

vary

depending

on

the

type

of

database

being

used.

“Running

database

configuration

scripts

on

Linux,

UNIX,

and

Windows

systems”

on

page

18
The

Common

Event

Infrastructure

provides

a

script

for

configuring

the

event

Chapter

3.

Installing

and

configuring

the

Common

Event

Infrastructure

13

http://oracle.com/

database.

This

script

generates

customized,

database-specific

scripts

for

creating

the

database

configuration

using

the

parameters

in

your

response

file.

Creating

a

database

response

file

A

database

response

file

is

a

text

file

specifying

parameters

for

configuring

the

event

database.

These

parameters

vary

depending

on

the

type

of

database

being

used.

If

you

are

upgrading

an

existing

Cloudscape

event

database,

you

must

use

the

same

response

file

you

used

when

you

originally

configured

the

database.

A

backup

copy

of

this

response

file

is

created

during

the

Common

Event

Infrastructure

installation

and

saved

as

install_root/event/dbconfig/CloudscapeResponseFile.bak.

To

create

a

database

response

file,

follow

these

steps:

1.

Using

an

ASCII

text

editor,

open

one

of

the

sample

database

response

files.

These

files

are

located

in

the

install_root/event/dbconfig

directory.

Select

the

sample

response

file

for

the

database

software

you

are

using:

Database

Sample

response

file

Cloudscape

CloudscapeResponseFile.txt

DB2

Universal

Database

for

Linux,

UNIX,

and

Windows

DB2ResponseFile.txt

Oracle

Database

OracleResponseFile.txt

2.

Modify

the

parameters

in

the

response

file

as

appropriate

for

your

database

configuration.

3.

Save

the

file

to

your

Common

Event

Infrastructure

installation

directory.

You

can

give

the

modified

response

file

any

name

you

want

to

use;

you

specify

this

file

when

you

run

the

database

configuration

script.

Cloudscape

database

response

file

A

Cloudscape

database

response

file

specifies

parameters

for

configuring

a

Cloudscape

event

database.

A

sample

Cloudscape

database

response

file

called

CloudscapeResponseFile.txt

is

available

in

the

install_root/event/dbconfig

directory.

This

response

file

specifies

the

following

parameters:

SHARE_DB=[

server|

node|

cell]

The

scope

in

which

the

configured

database

is

shared.

This

is

the

scope

in

which

Java

database

connectivity

(JDBC)

data

sources

is

created.

This

parameter

is

optional;

the

default

value

is

server.

WAS_SERVER=

server

The

name

of

the

WebSphere

Application

Server

where

the

database

is

installed.

This

parameter

is

applicable

only

if

the

SHARE_DB

parameter

is

set

to

server.

If

you

do

not

specify

a

server

name,

the

default

value

is

server1.

DB_NAME=

name

The

name

of

the

event

database.

This

parameter

is

optional.

The

default

value

is

event.

JDBC_PROVIDER=

provider

The

name

of

the

JDBC

provider

to

configure.

The

value

must

be

the

name

of

a

14

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

JDBC

driver

supported

by

WebSphere

Application

Server

Version

5.1,

and

later.

The

Cloudscape

JDBC

Provider

(XA)

driver

is

recommended.

DB_TYPE=

CLOUDSCAPE

The

type

of

database

to

be

configured.

For

a

Cloudscape

database,

this

must

be

CLOUDSCAPE.

PAGE_CACHE_SIZE=

size

The

number

of

memory

pages

to

use

for

caching

data.

Increasing

the

page

cache

size

can

improve

performance,

but

also

requires

more

memory.

See

the

Cloudscape

documentation

for

more

information

about

caching.

This

parameter

is

optional.

The

default

value

is

4000.

LOG_DEVICE=

path

The

path

to

the

location

where

the

transaction

logs

are

written.

Using

a

separate

device

for

logs

can

improve

performance,

but

it

also

complicates

backup

and

recovery.

This

parameter

is

optional.

DB2

database

response

file

for

Linux,

UNIX,

and

Windows

systems

A

DB2

database

response

file

for

Linux,

UNIX,

and

Windows

systems

specifies

parameters

for

configuring

a

DB2

event

database

that

runs

on

any

of

these

operating

systems.

A

sample

DB2

database

response

file

for

Linux,

UNIX,

and

Windows,

called

DB2ResponseFile.txt,

is

available

in

the

install_root/event/dbconfig

directory.

This

response

file

for

Linux,

UNIX,

and

Windows

systems

specifies

the

following

parameters:

WAS_SERVER=

server

The

name

of

the

WebSphere

Application

Server

where

the

database

is

installed.

This

parameter

is

applicable

only

if

the

SHARE_DB

parameter

is

set

to

server.

If

you

do

not

specify

a

server

name,

the

default

value

is

server1.

SHARE_DB=[

server|

node|

cell]

The

scope

in

which

the

configured

database

is

shared.

This

is

the

scope

in

which

Java

database

connectivity

(JDBC)

data

sources

are

created.

This

parameter

is

optional.

The

default

value

is

server.

DB_NAME=

name

The

name

of

the

event

database.

This

name

must

be

no

longer

than

8

characters.

This

parameter

is

optional;

the

default

value

is

event.

DB_NODE_NAME=

name

The

database

server

node

name.

This

parameter

is

required

only

if

the

database

server

is

remote;

it

is

not

required

if

the

database

server

is

on

the

local

machine.

JDBC_PROVIDER=

provider

The

name

of

the

JDBC

provider

to

configure.

The

value

must

be

the

name

of

a

JDBC

driver

supported

by

WebSphere

Application

Server

Version

5.1,

and

later.

The

following

drivers

are

recommended:

v

DB2

Universal

JDBC

Driver

Provider

(XA)

v

DB2

Legacy

CLI-based

Type

2

JDBC

Provider

(XA)

JDBC_CLASSPATH=

path

The

path

to

the

JDBC

driver

(not

including

file

name).

This

should

be

one

of

the

following:

v

For

DB2

Universal

JDBC

Driver

Provider

(XA):

the

path

to

the

db2jcc_license_cu.jar

and

db2jcc_license_cisuz.jar

files

Chapter

3.

Installing

and

configuring

the

Common

Event

Infrastructure

15

v

For

DB2

Legacy

CLI-based

Type

2

JDBC

Driver

(XA),

the

path

to

the

db2java.zip

file

UNIVERSAL_JDBC_CLASSPATH=

path

For

DB2

Universal

JDBC

Driver

Provider

or

DB2

Universal

JDBC

Driver

Provider

(XA),

the

path

to

the

JDBC

driver

(not

including

file

name).

This

should

be

the

path

to

the

db2jcc_license_cu.jar

file.

This

parameter

is

optional.

JDBC_DRIVER_TYPE=

type

The

JDBC

driver

type.

This

should

be

either

2

or

4.

DB_HOST_NAME=

hostname

The

database

server

host

name.

This

parameter

is

required

if

JDBC_DRIVER_TYPE

is

set

to

4.

The

default

value

is

localhost.

DB_INSTANCE_PORT=

port

The

database

instance

port

number.

This

parameter

is

required

if

JDBC_DRIVER_TYPE

is

set

to

4.

The

default

port

number

is

50000.

EXECUTE_SCRIPTS=[

YES|

NO]

Specifies

whether

the

database

configuration

scripts

are

automatically

run.

If

this

parameter

is

set

to

NO,

the

scripts

for

configuring

the

database

are

generated

but

do

not

run.

For

information

about

running

the

scripts

separately,

see

“Running

database

configuration

scripts

on

Linux,

UNIX,

and

Windows

systems”

on

page

18.

DB_TYPE=

DB2

The

type

of

database

to

configure.

For

a

DB2

database,

this

must

be

DB2.

PAGE_SIZE_4K_BUFFER_POOL=

size

The

database

4K

buffer

pool

size,

in

KB.

The

default

value

is

1500.

PAGE_SIZE_8K_BUFFER_POOL=

size

The

database

8K

buffer

pool

size,

in

KB.

The

default

value

is

1500.

PAGE_SIZE_16K_BUFFER_POOL=

size

The

database

16K

buffer

pool

page

size,

in

KB.

The

default

value

is

1000.

LOG_FILE_SIZE=

size

The

size

of

the

primary

and

secondary

log

files,

in

4

KB

pages.

This

parameter

is

optional.

The

default

value

is

1000.

NUM_PRIMARY_LOG=

n

The

number

of

primary

log

files

to

use.

This

parameter

is

optional.

The

default

value

is

3.

NUM_SECONDARY_LOG=

n

The

number

of

primary

log

files

to

use.

This

parameter

is

optional.

The

default

value

is

2.

TRANSACTION_LOG_FILE=

path

The

path

to

the

location

where

the

transaction

log

files

are

written.

If

you

place

the

database

transaction

logs

on

a

different

disk

from

the

event

database

tables

and

indexes,

this

can

significantly

improve

performance.

This

parameter

is

optional.

If

no

value

is

specified,

the

default

location

is

used.

Oracle

database

response

file

An

Oracle

database

response

file

specifies

parameters

for

configuring

an

Oracle

event

database.

16

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

A

sample

Oracle

database

response

file

called

OracleResponseFile.txt

is

available

in

the

install_root/event/dbconfig

directory.

This

response

file

specifies

the

following

parameters:

SHARE_DB=[

server|

node|

cell]

The

scope

in

which

the

configured

database

is

shared.

This

is

the

scope

in

which

Java

database

connectivity

(JDBC)

data

sources

are

created.

This

parameter

is

optional.

The

default

value

is

server.

WAS_SERVER=

server

The

name

of

the

WebSphere

Application

Server

where

the

database

is

installed.

This

parameter

is

applicable

only

if

the

SHARE_DB

parameter

is

set

to

server.

If

you

do

not

specify

a

server

name,

the

default

value

is

server1.

ORACLE_HOME=

path

The

path

to

the

Oracle

home

directory.

DB_NAME=

name

The

name

of

the

event

database.

This

must

be

the

Oracle

System

ID

(SID)

of

an

existing

database.

This

parameter

is

optional;

the

default

value

is

event.

JDBC_PROVIDER=

provider

The

name

of

the

JDBC

provider

to

configure.

The

value

must

be

the

name

of

a

JDBC

driver

supported

by

WebSphere

Application

Server

Version

5.1,

and

later.

The

Oracle

JDBC

Provider

(XA)

driver

is

recommended.

JDBC_CLASSPATH=

path

The

path

to

the

JDBC

driver

(not

including

file

name).

JDBC_DRIVER_TYPE=[

thin|

oci8]

The

JDBC

driver

type.

DB_HOST_NAME=

hostname

The

host

name

of

the

database

server.

DB_INSTANCE_PORT=

port

The

database

instance

port

number.

EXECUTE_SCRIPTS=[

YES|

NO]

Specifies

whether

the

database

configuration

scripts

are

automatically

run.

If

this

parameter

is

set

to

NO,

the

scripts

for

configuring

the

database

are

generated

but

do

not

run.

For

information

about

running

the

scripts

separately,

see

“Running

database

configuration

scripts

on

Linux,

UNIX,

and

Windows

systems”

on

page

18.

DB_TYPE=

ORACLE

The

type

of

database

to

configure.

For

an

Oracle

database,

this

must

be

ORACLE.

PROFILE=

profile

Specifies

the

profile

for

the

schema

user

in

the

Oracle

database.

The

default

value

is

cei_profile.

ROLE=

role

Specifies

the

application

role

for

the

schema

user

in

the

Oracle

database.

The

default

value

is

cei_role.

TABLE_SPACE_BASE_NAME=

name

Specifies

the

default

table

space

name.

This

name

must

be

no

longer

than

18

characters.

The

default

value

is

cei_ts_base.

TABLE_SPACE_BASE_PATH=

path

Specifies

the

default

table

space

path.

The

default

value

is

cei_ts_base.

Chapter

3.

Installing

and

configuring

the

Common

Event

Infrastructure

17

TABLE_SPACE_BASE_INITIAL_SIZE_MB=

size

Specifies

the

initial

size

(in

MB)

of

the

default

table

space.

The

default

size

is

102

MB.

TABLE_SPACE_NEXT_EXTENT_SIZE_MB=

size

Specifies

the

automatic

increment

size

(in

MB)

of

the

default

table

space.

The

default

size

is

10

MB.

TABLE_SPACE_TEMP_NAME=

temp

Specifies

the

temporary

table

space

name.

This

name

must

be

no

longer

than

18

characters.

The

default

value

is

cei_ts_temp.

TABLE_SPACE_TEMP_PATH=

path

Specifies

the

temporary

table

space

path.

The

default

value

is

cei_ts_temp.

TABLE_SPACE_TEMP_SIZE_MB=

size

Specifies

the

initial

size

(in

MB)

of

the

temporary

table

space.

The

default

size

is

7

MB.

TABLE_SPACE_EXTENDED_NAME=

name

Specifies

the

extended

table

space

name.

This

name

must

be

no

longer

than

18

characters.

The

default

value

is

cei_ts_extended.

TABLE_SPACE_EXTENDED_PATH=

path

Specifies

the

extended

table

space

path.

The

default

value

is

cei_ts_extended.

TABLE_SPACE_EXTENDED_INITIAL_SIZE_MB=

size

Specifies

the

initial

size

(in

MB)

of

the

extended

table

space.

The

default

size

is

204

MB.

TABLE_SPACE_EXTENDED_NEXT_EXTENT_SIZE_MB=

size

Specifies

the

automatic

increment

size

(in

MB)

of

the

extended

table

space.

The

default

size

is

20

MB.

TABLE_SPACE_CATALOG_NAME=

name

Specifies

the

table

space

name

for

the

event

catalog.

This

name

must

be

no

longer

than

18

characters.

The

default

value

is

cei_ts_catalog.

TABLE_SPACE_CATALOG_PATH

Specifies

the

table

space

path

for

the

event

catalog.

The

default

value

is

cei_ts_catalog_path.

TABLE_SPACE_CATALOG_INITIAL_SIZE_MB

Specifies

the

initial

size

(in

MB)

of

the

event

catalog

table

space.

The

default

size

is

10

MB.

TABLE_SPACE_CATALOG_NEXT_EXTENT_SIZE_MB=

size

Specifies

the

automatic

increment

size

(in

MB)

of

the

event

catalog

table

space.

The

default

size

is

5

MB.

Running

database

configuration

scripts

on

Linux,

UNIX,

and

Windows

systems

The

Common

Event

Infrastructure

provides

a

script

for

configuring

the

event

database.

This

script

generates

customized,

database-specific

scripts

for

creating

the

database

configuration

using

the

parameters

in

your

response

file.

If

you

are

upgrading

from

an

earlier

version

of

the

Common

Event

Infrastructure

with

a

Cloudscape

event

database,

you

can

upgrade

the

existing

database.

To

generate

the

event

database

configuration

scripts,

use

the

config_event_database

script.

This

script

is

located

in

the

18

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

install_root/event/dbconfig

directory.

Specify

the

name

of

the

database

response

file

with

the

command.

Use

one

of

the

following

commands:

v

To

configure

a

new

event

database

on

a

Windows

system,

run

the

following

command:

install_root\event\dbconfig\config_event_database

response_file

v

To

configure

a

new

event

database

on

a

Linux

or

UNIX

system,

run

the

following

command:

install_root/event/dbconfig/config_event_database.sh

response_file

The

response_file

parameter

specifies

the

name

of

the

database

response

file.

The

config_event_database

command

generates

the

appropriate

scripts

for

configuring

the

event

database

and

JDBC

provider,

based

on

the

parameters

in

the

response

file.

If

the

EXECUTE_SCRIPTS

parameter

in

your

response

file

is

set

to

true,

the

command

also

runs

the

scripts

automatically,

completing

the

database

configuration.

If

EXECUTE_SCRIPTS

is

set

to

false,

the

scripts

must

be

run

separately

after

they

are

generated.

These

scripts

configure

the

event

database

and

create

two

Java

database

connectivity

(JDBC)

data

sources:

one

for

the

event

database

and

one

for

the

event

catalog.

The

generated

scripts

for

creating

the

event

database

are

placed

in

database-specific

subdirectories

of

the

install_root/event/dbscripts

directory.

The

scripts

for

configuring

the

JDBC

provider

are

placed

in

database-specific

subdirectories

of

the

install_root/event/dsscripts

directory.

The

names

of

the

generated

scripts

depend

on

the

database

type

and

operating

system:

Type

Operating

system

Database

script

JDBC

configuration

script

Cloudscape

Windows

cr_event_cloudscape.bat

cr_cloudscape_jdbc_provider.bat

Cloudscape

Linux/UNIX

cr_event_cloudscape.sh

cr_cloudscape_jdbc_provider.sh

DB2

Windows

cr_event_db2.bat

cr_db2_jdbc_provider.sh

DB2

Linux/UNIX

cr_event_db2.sh

cr_db2_jdbc_provider.sh

Oracle

Windows

cr_event_oracle.bat

cr_oracle_jdbc_provider.bat

Oracle

Linux/UNIX

cr_event_oracle.sh

cr_oracle_jdbc_provider.sh

You

can

create

the

event

database

or

configure

the

JDBC

provider

at

any

time

by

running

the

appropriate

script.

To

configure

the

JDBC

provider,

use

the

appropriate

script

and

specify

the

scope

in

which

the

JDBC

provider

is

to

be

configured:

cr_db_jdbc_provider

scope

[server_name]

The

generated

scripts

use

these

parameters:

scope

The

scope

at

which

you

want

to

configure

the

JDBC

provider.

The

valid

values

are

cell,

node,

and

server.

server_name

The

name

of

the

WebSphere

Application

Server

where

you

want

to

configure

the

JDBC

provider,

if

scope

is

server.

(If

scope

is

cell

or

node,

this

parameter

is

ignored.)

After

the

event

database

is

configured,

you

must

restart

the

application

server.

Related

tasks

Chapter

3.

Installing

and

configuring

the

Common

Event

Infrastructure

19

“Upgrading

a

Cloudscape

event

database”
The

Common

Event

Infrastructure

provides

a

script

for

upgrading

a

Cloudscape

event

database.

This

script

generates

customized,

database-specific

scripts

for

creating

or

modifying

the

database

configuration

using

the

parameters

that

you

specify

in

your

response

file.

Upgrading

a

Cloudscape

event

database

The

Common

Event

Infrastructure

provides

a

script

for

upgrading

a

Cloudscape

event

database.

This

script

generates

customized,

database-specific

scripts

for

creating

or

modifying

the

database

configuration

using

the

parameters

that

you

specify

in

your

response

file.

To

generate

the

event

database

configuration

scripts,

use

the

upgrade_event_database

script.

This

script

is

located

in

the

install_root/event/dbconfig

directory.

After

the

command,

specify

the

name

of

the

database

response

file.

Use

one

of

the

following

commands:

v

To

upgrade

an

existing

Cloudscape

event

database

on

a

Windows

system,

run

the

following

command:

upgrade_event_database

response_file

v

To

upgrade

an

existing

Cloudscape

event

database

on

a

Linux

or

UNIX

system,

run

the

following

command:

upgrade_event_database.sh

response_file

The

response_file

parameter

specifies

the

name

of

the

database

response

file.

Note:

The

upgrade_event_database

script

is

supported

only

if

you

are

upgrading

a

Cloudscape

database.

For

any

other

database

type,

you

must

configure

a

new

event

database.

The

upgrade_event_database

command

generates

the

appropriate

scripts

for

configuring

the

event

database

and

the

Java

database

connectivity

(JDBC)

provider,

based

on

the

parameters

in

the

response

file.

If

the

EXECUTE_SCRIPTS

parameter

in

your

response

file

is

set

to

true,

the

command

also

runs

the

scripts

automatically,

completing

the

database

configuration.

If

EXECUTE_SCRIPTS

is

set

to

false,

the

scripts

must

be

run

separately

after

they

are

generated.

These

scripts

configure

the

event

database

and

create

two

JDBC

data

sources:

one

for

the

event

database

and

one

for

the

event

catalog.

The

generated

scripts

for

creating

the

event

database

are

placed

in

database-specific

subdirectories

of

the

install_root/event/dbscripts

directory.

The

scripts

for

configuring

the

JDBC

provider

are

placed

in

database-specific

subdirectories

of

the

install_root/event/dsscripts

directory.

The

names

of

the

generated

scripts

depend

on

the

database

type

and

operating

system:

Type

Operating

system

Database

script

JDBC

configuration

script

Cloudscape

Windows

cr_event_cloudscape.bat

cr_cloudscape_jdbc_provider.bat

Cloudscape

Linux/UNIX

cr_event_cloudscape.sh

cr_cloudscape_jdbc_provider.sh

20

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

You

can

create

the

event

database

or

configure

the

JDBC

provider

at

any

time

by

running

the

appropriate

script.

To

configure

the

JDBC

provider,

use

the

appropriate

script

and

specify

the

scope

in

which

the

JDBC

provider

is

to

be

configured:

cr_db_jdbc_provider

scope

[server_name]

The

generated

scripts

use

these

parameters:

scope

The

scope

in

which

you

want

to

configure

the

JDBC

provider.

The

valid

values

are

cell,

node,

and

server.

server_name

The

name

of

the

WebSphere

Application

Server

where

you

want

to

configure

the

JDBC

provider,

if

scope

is

server.

(If

scope

is

cell

or

node,

this

parameter

is

ignored.)

After

the

event

database

is

configured,

you

must

restart

the

application

server.

Deploying

the

Common

Event

Infrastructure

application

After

installation,

you

must

deploy

the

event

server

enterprise

application

in

the

WebSphere

Application

Server.

The

event

server

enterprise

application

is

packaged

in

the

event-application.ear

EAR

file.

The

event-application.jacl

script

installs

this

application

in

the

WebSphere

Application

Server.

To

deploy

the

application,

use

the

wsadmin

tool

to

run

the

event-
application.jacl

script:

To

run

the

script

on

a

Windows

system,

change

to

the

install_root\event\application

directory

and

run

the

following

command

(all

on

one

line):

wsadmin

-f

event-application.jacl

-profile

event-profile.jacl

-wsadmin_classpath

install_root\event\lib\cei_installer.jar

-action

action

-earfile

event-application.ear

-backendid

backend_id

-node

node_name

-server

server_name

[-appname

app_name]

[-trace]

To

run

the

script

on

a

Linux

or

UNIX

system,

change

to

the

install_root/event/application

directory

and

run

the

following

command

(all

on

one

line):

wsadmin.sh

-f

event-application.jacl

-profile

event-profile.jacl

-wsadmin_classpath

install_root/event/lib/cei_installer.jar

-action

action

-earfile

event-application.ear

-backendid

backend_id

-node

node_name

-server

server_name

[-appname

app_name]

[-trace]

The

parameters

of

the

event-application.jacl

script

are

as

follows:

action

The

action

to

perform.

To

install

the

enterprise

application,

specify

install.

To

update

an

existing

event

server

application

that

is

already

installed,

specify

update.

During

an

update,

the

script

makes

a

backup

copy

of

the

existing

application

EAR

file

in

the

current

directory.

If

necessary,

you

can

later

use

this

backup

copy

to

restore

the

previous

version

of

the

application.

backend_id

The

type

of

database

backend

to

be

used

by

the

enterprise

application.

This

must

be

one

of

the

following

values:

Chapter

3.

Installing

and

configuring

the

Common

Event

Infrastructure

21

v

CLOUDSCAPE_V51_1

v

DB2UDBNT_V8_1

v

ORACLE_V9_1

v

DB2UDBNT_V72_1

v

ORACLE_V8_1

node_name

The

WebSphere

Application

Server

node

in

which

the

event

server

is

installed.

To

find

out

the

node

name,

do

one

of

the

following:

v

On

Windows

systems,

run

the

install_root\bin\setupCmdLine

script

and

then

the

echo

%WAS_NODE%

command.

v

On

Linux

and

UNIX

systems,

run

the

install_root/bin/setupCmdLine

and

then

the

echo

$WAS_NODE

command.

server_name

The

WebSphere

Application

Server

into

which

the

event

server

enterprise

application

is

to

be

deployed.

app_name

The

name

to

use

for

the

Common

Event

Infrastructure

enterprise

application.

This

parameter

is

optional.

The

default

value

is

CommonEventInfrastructureServer.

The

optional

-trace

parameter

causes

additional

debugging

information

to

display

on

the

standard

output.

After

the

event-application.jacl

script

completes,

the

Common

Event

Infrastructure

enterprise

application

is

deployed

in

the

specified

node.

In

a

WebSphere

Application

Server

Network

Deployment

environment,

if

the

application

is

already

installed,

the

script

adds

only

the

deployment

information

for

the

specified

node

and

server.

Configuring

default

event

messaging

The

create-default-event-message.jacl

script

provides

a

way

to

quickly

set

up

a

default

messaging

configuration

that

uses

the

WebSphere

embedded

messaging

feature

as

the

JMS

provider.

This

script

sets

up

all

of

the

configuration

objects

required

for

asynchronous

event

transmission:

v

It

creates

a

JMS

queue

and

a

queue

connection

factory

using

the

embedded

messaging

feature.

v

It

creates

a

message

listener

port

associating

the

JMS

queue

and

queue

connection

factory.

v

It

creates

a

JMS

transmission

profile

using

the

created

queue

and

connection

factory.

v

It

configures

the

default

emitter

factory

profile

to

use

the

created

JMS

transmission

profile

for

asynchronous

event

transmission.

v

It

deploys

the

message-driven

bean

used

by

the

Common

Event

Infrastructure

to

receive

events

sent

asynchronously

to

the

event

server.

For

more

information

about

JMS

transmission

profiles

and

emitter

factory

profiles,

see

Chapter

6,

“Developing

an

event

source,”

on

page

45.

If

you

want

to

use

a

different

JMS

provider,

use

the

event-message.jacl

script,

see

“Configuring

event

messaging

using

another

JMS

provider”

on

page

23.

22

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

1.

To

run

the

create-default-event-message.jacl

script,

use

the

wsadmin

tool:

To

run

the

script

on

a

Windows

system,

change

to

the

install_root\event\application

directory

and

run

the

following

command

(all

on

one

line):

wsadmin

-f

create-default-event-message.jacl

-profile

event-profile.jacl

-wsadmin_classpath

install_root\event\lib\cei_installer.jar

-earfile

event-message.ear

-node

node_name

-server

server_name

[-appname

app_name]

[-trace]

To

run

the

script

on

a

Linux

or

UNIX

system,

change

to

the

install_root/event/application

directory

and

run

the

following

command

(all

on

one

line):

wsadmin.sh

-f

create-default-event-message.jacl

-profile

event-profile.jacl

-wsadmin_classpath

install_root/event/lib/cei_installer.jar

-earfile

event-message.ear

-node

node_name

-server

server_name

[-appname

app_name]

[-trace]

The

parameters

of

the

create-default-event-message.jacl

script

are

as

follows:

node_name

The

WebSphere

Application

Server

node

where

you

want

to

install

the

event

messaging

enterprise

application.

To

find

out

the

node

name,

do

one

of

the

following:

v

On

Windows

systems,

run

the

install_root\bin\setupCmdLine

script

and

then

the

echo

%WAS_NODE%

command.

v

On

Linux

and

UNIX

systems,

run

the

install_root/bin/setupCmdLine

and

then

the

echo

$WAS_NODE

command.

server_name

The

WebSphere

server

into

which

the

event

server

enterprise

application

is

to

be

deployed.

app_name

The

name

to

use

for

the

messaging

enterprise

application.

This

parameter

is

optional;

the

default

value

is

CommonEventInfrastructureMessageApp.
The

optional

-trace

parameter

causes

additional

debugging

information

to

be

displayed

on

the

standard

output.

After

you

start

the

script,

you

are

prompted

for

your

JMS

user

ID

and

password.

2.

Stop

and

restart

the

application

server.

The

configuration

is

successful

if

the

SystemOut.log

file

shows

that

the

CommonEventInfrastructureMessageApp

application

is

up

and

running.

ApplicationMg

A

WSVR0200I:

Starting

application:

CommonEventInfrastructureMessageApp

EJBContainerI

I

WSVR0207I:

Preparing

to

start

EJB

jar:

EventServerMdb.jar

EJBContainerI

I

WSVR0037I:

Starting

EJB

jar:

EventServerMdb.jar

MDBListenerIm

I

WMSG0042I:

MDB

Listener

CommonEventInfrastructureMessageApp-ListenerPort

started

successfully

for

JMSDestination

jms/cei/messageq

ApplicationMg

A

WSVR0221I:

Application

started:

CommonEventInfrastructureMessageApp

Configuring

event

messaging

using

another

JMS

provider

You

can

use

the

event-message.jacl

script

to

configure

event

messaging

using

any

Java

Messaging

Service

(JMS)

provider.

You

must

create

the

necessary

JMS

resources

separately.

Chapter

3.

Installing

and

configuring

the

Common

Event

Infrastructure

23

Before

you

can

configure

event

messaging

using

the

event-message.jacl

script,

you

must

first

create

a

JMS

queue

and

connection

factory,

using

the

appropriate

interfaces

for

your

JMS

provider.

This

script

sets

up

the

configuration

objects

required

for

asynchronous

event

transmission

using

a

JMS

provider

that

you

have

configured

separately:

v

It

creates

a

JMS

transmission

profile

using

the

JMS

queue

and

connection

factory

you

specify.

v

It

creates

a

message

listener

port

associating

the

JMS

queue

and

queue

connection

factory.

v

It

creates

an

emitter

factory

profile

using

the

created

JMS

transmission

profile

for

asynchronous

event

transmission.

v

It

deploys

the

message-driven

bean

used

by

the

Common

Event

Infrastructure

to

receive

events

sent

asynchronously

to

the

event

server.

For

more

information

about

JMS

transmission

profiles

and

emitter

factory

profiles,

see

Chapter

6,

“Developing

an

event

source,”

on

page

45.

1.

Create

a

JMS

connection

factory.

On

Windows

systems,

set

the

Java

Naming

and

Directory

Interface

(JNDI)

name

of

the

connection

factory

to

jms\cei\messageqcf.

On

Linux

and

UNIX

systems,

set

the

JNDI

name

of

the

connection

factory

to

jms/cei/messageqcf.

2.

Create

a

JMS

queue.

On

Windows

systems,

set

the

JNDI

name

of

the

queue

to

jms\cei\messageq.

On

Linux

and

UNIX

systems,

set

the

JNDI

name

of

the

queue

to

jms/cei/messageq.

3.

Copy

the

cei_installer.jar

file

from

the

lib

directory

to

the

classes

directory.

On

Windows

systems,

copy

the

file

from

the

install_root\event\lib

directory

to

the

install_root\event\classes

directory.

On

Linux

and

UNIX

systems,

copy

the

file

from

the

install_root/event/lib

directory

to

the

install_root/event/classes

directory.

4.

Change

to

the

classes

directory.

5.

Use

the

wsadmin

tool

to

run

the

event-message.jacl

script.

To

run

the

script

on

a

Windows

system,

change

to

the

install_root\event\application

directory

and

run

the

following

command

(all

on

one

line):

install_root\bin\wsadmin

-f

event-message.jacl

-profile

event-profile.jacl

-action

install

-earfile

event-message.ear

-node

node_name

-server

server_name

-qjndi

queue

-qcfjndi

connection_factory

[-eventprofilescope

scope]

-appname

app_name

[-trace]

To

run

the

script

on

a

Linux

or

UNIX

system,

change

to

the

install_root/event/application

directory

and

run

the

following

command

(all

on

one

line):

install_root/bin/wsadmin.sh

-f

event-message.jacl

-profile

event-profile.jacl

-action

install

-earfile

event-message.ear

-node

node_name

-server

server_name

-qjndi

queue

-qcfjndi

connection_factory

[-eventprofilescope

scope]

-appname

app_name

[-trace]

The

parameters

of

the

event-message.jacl

script

are

as

follows:

24

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

node_name

The

WebSphere

Application

Server

node

where

you

want

to

install

the

event

messaging

enterprise

application.

To

find

out

the

node

name,

do

one

of

the

following:

v

On

Windows

systems,

run

the

install_root\bin\setupCmdLine

script

and

then

the

echo

%WAS_NODE%

command.

v

On

Linux

and

UNIX

systems,

run

the

install_root/bin/setupCmdLine

and

then

the

echo

$WAS_NODE

command.

server_name

The

WebSphere

Application

Server

into

which

the

event

messaging

enterprise

application

is

to

be

deployed.

queue

The

JNDI

name

of

the

JMS

queue

to

be

used

by

the

messaging

enterprise

application.

This

queue

is

used

for

asynchronous

message

transport

to

the

event

server.

On

Windows

systems,

this

parameter

must

be

set

to

jms\cei\messageq.

On

Linux

and

UNIX

systems,

this

parameter

must

be

set

to

jms/cei/messageq.

connection_factory

The

JNDI

name

of

the

JMS

connection

factory

to

be

used

by

the

messaging

enterprise

application.

On

Windows

systems,

this

parameter

must

be

set

to

jms\cei\messageqcf.

On

Linux

and

UNIX

systems,

this

parameter

must

be

set

to

jms/cei/messageqcf.

scope

The

scope

of

the

configuration

profile

objects

to

be

created

for

event

messaging.

This

parameter

is

optional.

If

you

specify

a

scope,

a

JMS

transmission

profile

and

emitter

factory

profile

are

created

at

the

specified

scope.

The

valid

values

are

cell,

node,

and

server.

app_name

The

name

to

use

for

the

messaging

enterprise

application.

This

parameter

must

be

set

to

CommonEventInfrastructureMessageApp.
The

optional

-trace

parameter

causes

additional

debugging

information

to

be

displayed

on

the

standard

output.

After

you

start

the

script,

you

are

prompted

for

your

JMS

user

ID

and

password.

For

example,

on

a

Windows

server:

install_root\bin\wsadmin

-f

event-message.jacl

-profile

event-profile.jacl

-action

install

-earfile

event-message.ear

-node

fmct2109

-server

server1

-qjndi

jms\cei\messageq

-qcfjndi

jms\cei\messageqcf

-appname

CommonEventInfrastructureMessageApp

6.

Stop

and

restart

the

application

server.

The

configuration

is

successful

if

the

SystemOut.log

file

shows

that

the

CommonEventInfrastructureMessageApp

application

is

up

and

running.

ApplicationMg

A

WSVR0200I:

Starting

application:

CommonEventInfrastructureMessageApp

EJBContainerI

I

WSVR0207I:

Preparing

to

start

EJB

jar:

EventServerMdb.jar

EJBContainerI

I

WSVR0037I:

Starting

EJB

jar:

EventServerMdb.jar

Chapter

3.

Installing

and

configuring

the

Common

Event

Infrastructure

25

MDBListenerIm

I

WMSG0042I:

MDB

Listener

CommonEventInfrastructureMessageApp-ListenerPort

started

successfully

for

JMSDestination

jms/cei/messageq

ApplicationMg

A

WSVR0221I:

Application

started:

CommonEventInfrastructureMessageApp

Configuring

the

Common

Event

Infrastructure

Use

the

Common

Event

Infrastructure

service

to

process

events

in

WebSphere

applications

and

processes.

You

can

use

the

Common

Event

Infrastructure

service

Startup

property

to

specify

whether

the

service

is

started

automatically

for

an

application

server.

To

configure

the

Common

Event

Infrastructure

service

Startup

property

for

an

application

server,

use

the

administrative

console

to

complete

the

following

steps:

1.

Start

the

administrative

console.

2.

In

the

navigation

pane,

click

Servers

>

Application

Servers.

A

list

of

the

application

servers

is

displayed

in

the

content

pane.

3.

In

the

Content

pane,

select

the

application

server

that

you

want

to

configure.

The

properties

for

the

application

server

are

displayed

in

the

content

pane.

4.

In

the

Additional

Properties

table,

select

Common

Event

Infrastructure

service.

The

Common

Event

Infrastructure

properties

are

displayed

in

the

content

pane.

5.

Select

or

clear

the

Startup

property

as

needed:

Selected

[Default]

The

Common

Event

Infrastructure

service

starts

when

the

application

server

starts.

This

enables

applications

that

generate

events

to

run

on

such

an

application

server.

Cleared

The

Common

Event

Infrastructure

service

does

not

start

when

the

application

server

starts.

Applications

that

generate

events

cannot

start

on

such

an

application

server.

Any

attempt

to

start

an

application

that

uses

Common

Event

Infrastructure

is

rejected

and

a

message

is

issued.

The

server

continues

to

start

without

the

application.
6.

Click

OK.

7.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

administrative

console.

8.

Stop

and

then

restart

the

application

server

for

the

changes

to

take

effect.

Configuring

the

application

events

service

Complete

this

task

to

switch

the

application

events

service

on

or

off.

The

application

events

service

provides

access

to

the

common

event

infrastructure

for

WebSphere

applications.

This

service

ensures

that

information

about

the

WebSphere

server

is

automatically

included

in

each

event

passed

to

the

Common

Event

Infrastructure.

You

can

use

the

Events

Service

Startup

property

to

specify

whether

the

service

is

started

automatically

for

an

application

server.

To

configure

the

Events

Service

Startup

property

for

an

application

server,

use

the

administrative

console

to

complete

the

following

steps:

1.

Start

the

administrative

console.

26

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

2.

In

the

navigation

pane,

click

Servers

>

Application

Servers.

A

list

of

the

application

servers

is

displayed

in

the

content

pane.

3.

In

the

Content

pane,

select

the

application

server

that

you

want

to

configure.

The

properties

for

the

application

server

are

displayed

in

the

content

pane.

4.

In

the

Additional

Properties

table,

select

Application

Events

Service.

The

events

service

properties

are

displayed

in

the

content

pane.

5.

Select

or

clear

the

Startup

property

as

needed:

Selected

[Default]

The

application

events

service

starts

when

the

application

server

starts.

This

enables

applications

that

specify

use

of

the

Common

Event

Infrastructure

in

the

deployment

descriptors

to

run

on

such

an

application

server.

Cleared

The

application

events

service

does

not

started

when

the

application

server

starts.

Applications

that

specify

use

of

the

Common

Event

Infrastructure

in

their

deployment

descriptors

cannot

start

on

such

an

application

server.

Any

attempt

to

start

an

application

that

uses

events

is

rejected

and

a

message

is

issued.

The

server

continues

to

start

without

the

application.
6.

Click

OK.

7.

Review

the

Java

Naming

and

Directory

Interface

(JNDI)

name

of

the

event

emitter

profile

factory

that

is

used

to

submit

events

to

the

Common

Event

Infrastructure.

The

name

that

is

provided

is

part

of

the

WebSphere

default

profile.

Unless

you

have

generated

an

alternative

profile,

accept

the

default

name.

8.

To

save

your

configuration,

click

Save

on

the

task

bar

of

the

administrative

console.

9.

Stop

and

then

restart

the

application

server

for

the

changes

to

take

effect.

Creating

an

emitter

factory

profile

An

emitter

factory

profile

defines

properties

that

are

used

for

an

emitter

factory,

which

event

sources

use

to

create

emitters.

The

properties

in

an

emitter

factory

profile

affect

the

behavior

of

any

emitter

that

is

created

using

the

associated

emitter

factory.

You

can

use

the

default

emitter

factory

profile

or

create

additional

profiles

for

your

event

sources

to

use.

You

might

want

to

create

an

additional

emitter

factory

profile

to

specify

a

different

transaction

mode

or

synchronous

transmission

profile.

For

more

information

about

how

these

options

affect

the

behavior

of

the

emitter,

see

Chapter

6,

“Developing

an

event

source,”

on

page

45.

To

create

an

emitter

factory

profile,

follow

these

steps:

1.

In

the

WebSphere

administrative

console,

click

Resources

>

Common

Event

Infrastructure

Provider

>

Emitter

Factory

Profile

>

New.

2.

Specify

the

properties

of

the

new

profile.

Refer

to

the

online

help

for

the

Emitter

Factory

Profile

Settings

page

for

detailed

information

about

these

properties.

3.

Click

OK

to

save

your

changes

and

create

the

emitter

factory

profile.

Event

sources

can

now

use

the

configured

emitter

factory

to

obtain

emitters.

Chapter

3.

Installing

and

configuring

the

Common

Event

Infrastructure

27

Creating

an

event

group

An

event

group

defines

a

logical

collection

of

events

based

on

the

content

of

their

property

data.

You

can

use

an

event

group

to

query

events

from

the

event

server.

You

can

also

associate

an

event

group

with

a

Java

Message

Service

(JMS)

destination

for

asynchronous

event

distribution.

To

create

an

event

group,

follow

these

steps:

1.

Optional:

Set

up

one

or

more

JMS

destinations

for

the

event

group.

An

event

group

can

be

associated

with

one

JMS

topic,

and

one

or

more

JMS

queues.

Refer

to

the

documentation

for

your

JMS

provider

for

information

on

how

to

create

JMS

destinations

and

connection

factories

and

bind

them

into

a

Java

Naming

and

Directory

Interface

(JNDI)

namespace.

2.

Create

a

new

event

group

profile.

In

the

WebSphere

administrative

console,

click

Resources

>

Common

Event

Infrastructure

Provider

>

Event

Group

Profile

List

>

event_group_profile_list

>

Event

Group

Profiles

>

New.

3.

Specify

the

properties

of

the

event

group

profile.

Refer

to

the

online

help

for

the

Event

Group

Profile

Settings

page

for

detailed

information

about

these

properties.

4.

Click

OK

to

save

your

changes

and

create

the

event

group

profile.

Event

consumers

can

now

specify

the

event

group

when

querying

events.

If

event

distribution

is

enabled

in

the

event

server

profile,

events

belonging

to

the

event

group

are

also

published

to

JMS

destinations

that

are

specified

in

the

event

group

profile.

Event

consumers

can

then

receive

events

asynchronously

by

subscribing

to

the

appropriate

destinations.

28

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

Chapter

4.

Administering

the

Common

Event

Infrastructure

You

can

perform

the

following

administrative

tasks

to

control

the

operation

of

the

Common

Event

Infrastructure

components

at

run

time.

v

“Logging

and

tracing

in

the

WebSphere

environment”

v

“Updating

database

statistics”

v

“Reorganizing

database

tables”

on

page

30

v

“Removing

the

Common

Event

Infrastructure

configuration”

on

page

31

Logging

and

tracing

in

the

WebSphere

environment

For

components

that

run

within

the

WebSphere

Application

Server

environment,

you

can

enable

logging

and

tracing

using

the

WebSphere

administrative

console.

To

enable

logging

and

tracing

in

the

WebSphere

environment,

follow

these

steps:

1.

In

the

WebSphere

administrative

console,

click

Troubleshooting

>

Logs

and

Trace.

2.

In

the

list

of

servers,

click

the

server

where

the

Common

Event

Infrastructure

is

installed.

3.

Click

Diagnostic

Trace.

4.

In

the

Trace

Specification

field,

click

Modify.

5.

In

the

list

of

groups,

click

CommonEventInfrastructure.

6.

Click

the

trace

type

you

want

to

enable.

7.

Click

Apply.

The

trace

specification

is

updated

to

reflect

the

trace

type

that

you

selected.

For

example,

to

turn

on

all

tracing

for

the

Common

Event

Infrastructure

components,

the

trace

specification

is

CommonEventInfrastructure=all=enabled.

Log

files

are

written

to

the

location

configured

for

the

application

server.

Updating

database

statistics

To

enable

the

DB2

database

to

optimize

queries

and

find

free

space,

update

the

database

statistics

using

the

runstats

script.

It

is

recommended

that

you

update

the

database

statistics

regularly,

and

especially

under

any

of

these

circumstances:

v

Events

have

been

purged

from

the

database

v

A

large

number

of

events

have

been

inserted

into

the

database

v

Tables

have

been

reorganized

using

the

reorg

script

v

Indexes

have

been

added

or

removed

from

a

table

The

runstats

script

is

located

in

the

install_root/event/dbscripts/db2

directory.

To

update

the

database

statistics,

run

one

of

the

following

commands:

v

On

Windows

systems:

runstats.bat

db_user

[db_password]

v

On

Linux

and

UNIX

systems:

©

Copyright

IBM

Corp.

2004

29

runstats.sh

db_user

[db_password]

The

parameters

are

as

follows:

db_user

The

database

user

ID

to

use.

This

parameter

is

required.

db_password

The

database

password.

This

parameter

is

optional.

If

you

do

not

specify

the

password

on

the

command

line,

the

DB2

database

prompts

you.

For

example,

the

following

command

updates

the

DB2

database

statistics

on

a

Windows

system,

using

the

database

user

ID

dbadmin

and

the

password

mypassword:

runstats.bat

dbadmin

mypassword

Reorganizing

database

tables

After

events

are

purged

from

a

DB2

event

database,

reorganize

the

database

tables

using

the

reorg

script.

The

reorg

script

is

located

in

the

install_root/event/dbscripts/db2

directory.

Note:

DB2

Universal

Database

Version

7.2

cannot

perform

inline

table

and

index

reorganization.

Therefore,

the

reorg

script

must

have

exclusive

access

to

the

event

database

tables

during

the

reorganization.

This

means

that

events

cannot

be

inserted,

queried,

or

purged

while

the

script

is

running.

To

reorganize

the

event

database

tables,

run

one

of

the

following

commands:

v

On

Windows

systems:

reorg.bat

db2_version

db_user

[db_password]

v

On

Linux

and

UNIX

systems:

reorg.sh

db2_version

db_user

[db_password]

The

parameters

are

as

follows:

db2_version

The

DB2

Universal

Database

major

release

number;

this

must

be

either

7

or

8.

This

parameter

is

required.

db_user

The

database

user

ID

to

use.

This

parameter

is

required.

db_password

The

database

password.

This

parameter

is

optional.

If

you

do

not

specify

the

password

on

the

command

line,

the

DB2

database

prompts

you.

For

example,

the

following

command

reorganizes

the

event

database

tables

on

a

Windows

system

running

DB2

Universal

Database

Version

7.2,

using

the

database

user

ID

dbadmin

and

the

password

mypassword:

reorg.bat

7

dbadmin

mypassword

After

you

run

the

reorg

script,

you

should

update

the

database

statistics

using

the

runstats

script.

For

more

information,

see

“Updating

database

statistics”

on

page

29.

30

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

Removing

the

Common

Event

Infrastructure

configuration

If

you

need

to

uninstall

the

Common

Event

Infrastructure,

you

must

first

remove

the

deployed

enterprise

applications

and

the

database

configuration.

To

remove

the

Common

Event

Infrastructure,

follow

these

steps:

1.

Remove

the

Common

Event

Infrastructure

application.

2.

Remove

the

event

messaging

application.

3.

Remove

the

event

database.

Removing

the

Common

Event

Infrastructure

application

If

you

need

to

remove

the

event

server

enterprise

application

and

resources

from

WebSphere

Application

Server,

you

can

use

the

event-application.jacl

script.

If

you

prefer,

you

can

remove

the

event

server

enterprise

applications

manually

using

the

administrative

console

rather

than

using

the

event-application.jacl

script.

If

use

the

administrative

console,

you

must

also

manually

remove

the

Common

Event

Infrastructure

resources.

For

more

information

about

these

resources,

see

“Default

configuration”

on

page

9.

To

remove

the

event

server

enterprise

application,

use

the

wsadmin

tool

to

run

the

event-application.jacl

script.

To

run

the

script

on

a

Windows

system,

go

to

the

install_root\event\application

directory

and

run

the

following

command

(all

on

one

line):

wsadmin

-f

event-application.jacl

-profile

event-profile.jacl

-wsadmin_classpath

install_root\event\lib\cei_installer.jar

-action

uninstall

-node

node_name

-server

server_name

[-appname

app_name]

[-trace]

To

run

the

script

on

a

Linux

or

UNIX

system,

go

to

the

install_root/event/application

directory

and

run

the

following

command

(all

on

one

line):

wsadmin.sh

-f

event-application.jacl

-profile

event-profile.jacl

-wsadmin_classpath

install_root/event/lib/cei_installer.jar

-action

uninstall

-node

node_name

-server

server_name

[-appname

app_name]

[-trace]

The

event-application.jacl

script

uses

these

parameters:

node_name

The

WebSphere

Application

Server

node

from

which

you

want

to

remove

the

event

server

enterprise

application.

server_name

The

WebSphere

Application

Server

from

which

you

want

to

remove

the

event

server

enterprise

application.

This

parameter

is

optional.

If

you

do

not

specify

a

server,

the

enterprise

application

is

removed

from

all

servers

in

the

node.

app_name

The

name

of

the

deployed

event

server

enterprise

application

you

want

to

remove.

This

parameter

is

optional.

If

you

do

not

specify

an

application

name,

all

registered

Common

Event

Infrastructure

enterprise

applications

are

removed.

The

optional

-trace

parameter

causes

additional

debugging

information

to

display

on

the

standard

output.

Chapter

4.

Administering

the

Common

Event

Infrastructure

31

Removing

the

event

messaging

enterprise

application

Before

uninstalling

the

Common

Event

Infrastructure,

you

must

remove

the

event

messaging

enterprise

application.

To

remove

the

event

messaging

enterprise

application,

use

the

wsadmin

tool

to

run

the

event-message.jacl

script.

To

run

the

script

on

a

Windows

system,

go

to

the

install_root\event\application

directory

and

run

the

following

command

(all

on

one

line):

wsadmin

-f

event-message.jacl

-profile

event-profile.jacl

-wsadmin_classpath

install_root\event\lib\cei_installer.jar

-action

uninstall

-node

node_name

-server

server_name

[-eventprofilescope

scope]

-appname

app_name

[-trace]

To

run

the

script

on

a

Linux

or

UNIX

system,

go

to

the

install_root/event/application

directory

and

run

the

following

command

(all

on

one

line):

wsadmin.sh

-f

event-message.jacl

-profile

event-profile.jacl

-wsadmin_classpath

install_root/event/lib/cei_installer.jar

-action

install

-node

node_name

-server

server_name

[-eventprofilescope

scope]

-appname

app_name

[-trace]

The

parameters

of

the

event-message.jacl

script

are

as

follows:

node_name

The

WebSphere

Application

Server

node

from

which

you

want

to

remove

the

event

messaging

enterprise

application.

To

find

out

the

node

name,

do

one

of

the

following:

v

On

Windows

systems,

run

the

install_root\bin\setupCmdLine

script

and

then

the

echo

%WAS_NODE%

command.

v

On

Linux

and

UNIX

systems,

run

the

install_root/bin/setupCmdLine

and

then

the

echo

$WAS_NODE

command.

server_name

The

WebSphere

Application

Server

from

which

you

want

to

remove

the

event

messaging

enterprise

application.

This

parameter

is

optional.

If

you

do

not

specify

a

server,

the

application

is

removed

from

all

servers

in

the

specified

node.

scope

The

scope

of

the

Common

Event

Infrastructure

configuration

profile

objects

to

be

removed.

This

parameter

is

optional.

If

you

specify

a

scope,

a

the

JMS

transmission

profile

and

emitter

factory

profiles

in

the

specified

scope

are

removed.

The

valid

values

are

cell,

node,

and

server.

app_name

The

name

of

the

deployed

messaging

enterprise

application

you

want

to

remove.

This

parameter

is

required.

The

optional

-trace

parameter

causes

additional

debugging

information

to

display

on

the

standard

output.

Removing

the

event

database

If

you

need

to

remove

the

event

database,

you

can

use

the

provided

scripts.

You

must

remove

the

database

before

you

uninstall

the

Common

Event

Infrastructure.

32

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

When

the

database

is

configured,

the

configuration

script

also

creates

scripts

for

removing

the

database

and

the

Java

database

connectivity

(JDBC)

provider.

The

scripts

for

removing

the

event

database

are

placed

in

database-specific

subdirectories

of

the

install_root/event/dbscripts

directory.

The

scripts

for

removing

the

JDBC

provider

are

placed

in

database-specific

subdirectories

of

the

install_root/event/dsscripts

directory.

Note:

The

event

database

can

be

shared

among

multiple

event

servers

using

the

same

JDBC

provider

configuration.

Therefore,

remove

the

JDBC

provider

configuration

only

if

you

have

uninstalled

the

associated

event

database.

To

remove

the

event

database

and

JDBC

provider,

run

the

appropriate

scripts

from

the

following

table.

Type

Operating

system

Database

script

JDBC

configuration

script

Cloudscape

Windows

rm_event_cloudscape.bat

rm_cloudscape_jdbc_provider.bat

Cloudscape

Linux/UNIX

rm_event_cloudscape.sh

rm_cloudscape_jdbc_provider.sh

DB2

Windows

rm_event_db2.bat

rm_db2_jdbc_provider.bat

DB2

Linux/UNIX

rm_event_db2.sh

rm_db2_jdbc_provider.sh

Oracle

Windows

rm_event_oracle.bat

rm_oracle_jdbc_provider.bat

Oracle

Linux/UNIX

rm_event_oracle.sh

rm_oracle_jdbc_provider.sh

You

can

remove

the

event

database

or

JDBC

provider

at

any

time

by

running

the

appropriate

script.

To

remove

the

JDBC

provider,

use

the

appropriate

script

and

specify

the

scope

in

which

you

want

to

remove

the

JDBC

provider:

rm_db_jdbc_provider

scope

[server_name]

The

generated

scripts

use

these

parameters:

scope

The

scope

in

which

you

want

to

remove

the

JDBC

provider.

The

valid

values

are

cell,

node,

and

server.

server_name

The

name

of

the

WebSphere

Application

Server

from

which

you

want

to

remove

the

JDBC

provider,

if

scope

is

server.

(If

scope

is

cell

or

node,

this

parameter

is

ignored.

Chapter

4.

Administering

the

Common

Event

Infrastructure

33

34

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

Chapter

5.

Working

with

events

The

Common

Event

Infrastructure

represents

events

as

Java

objects.

Specifically,

each

event

is

an

instance

of

a

class

that

implements

the

org.eclipse.hyades.logging.events.cbe.CommonBaseEvent

interface,

which

is

a

Java

representation

of

the

Common

Base

Event

specification.

The

org.eclipse.hyades.logging.events.cbe

package

is

part

of

the

Eclipse-based

Hyades

environment,

which

is

a

set

of

standards

and

open-source

tools

for

testing,

tracing,

and

monitoring.

For

more

information,

see

http://www.eclipse.org/hyades/.

For

more

information

about

the

XML

Schema

specification,

see

http://www.w3.org/XML/Schema.

Working

with

events

involves

the

following

tasks.

1.

“Creating

an

event

object”

on

page

36

2.

“Retrieving

data

from

a

received

event”

on

page

42

3.

Optional:

“Converting

XML

events”

on

page

43

4.

“Accessing

event

instance

metadata”

on

page

43

Related

concepts

“The

Common

Base

Event

model”

on

page

2

Life

cycle

of

an

event

The

typical

life

cycle

of

an

event

is

as

follows:

1.

To

send

an

event,

an

event

source

creates

a

CommonBaseEvent

instance,

populates

it

with

property

data,

and

then

submits

it

to

an

emitter.

2.

The

emitter

optionally

uses

the

content

completion

mechanism

(if

implemented)

to

populate

the

event

with

required

property

data.

The

emitter

then

validates

the

event

and

checks

it

against

the

currently

configured

filter

criteria.

If

the

event

is

valid

and

passes

the

filter

criteria,

the

emitter

sends

the

event

to

the

event

server.

3.

If

persistence

is

enabled,

the

event

server

stores

the

event

in

a

persistent

data

store.

4.

If

publishing

is

enabled,

the

event

server

publishes

the

event

to

one

or

more

Java

Messaging

Service

(JMS)

destinations.

Event

consumers

subscribing

to

these

destinations

then

receive

notifications

of

the

new

event.

The

event

consumers

then

use

the

notification

helper

to

convert

the

received

JMS

messages

back

into

a

CommonBaseEvent

instance.

An

event

consumer

might

also

submit

a

query

to

retrieve

the

event

from

the

data

store.

Typically,

a

consumer

uses

the

query

interface

to

retrieve

historical

events,

especially

during

startup

processing.

After

receiving

the

event,

an

event

consumer

reads

the

event

property

data

and

processes

the

event.

5.

When

it

is

no

longer

needed,

the

event

can

be

purged

from

the

data

store.

Related

tasks

“Sending

events”

on

page

47

Chapter

7,

“Developing

an

event

consumer,”

on

page

55

©

Copyright

IBM

Corp.

2004

35

http://www.eclipse.org/hyades/
http://www.w3.org/XML/Schema

Event

property

data

The

Common

Base

Event

specification,

which

is

based

on

the

XML

Schema

definition

language,

defines

two

kinds

of

event

property

data:

v

Properties

that

are

represented

by

simple

data

types,

encoded

in

XML

as

attributes

of

the

CommonBaseEvent

element.

These

properties

include

globalInstanceId,

severity,

and

msg.

The

CommonBaseEvent

Java

class

represents

these

values

as

strings

or

integers,

as

appropriate.

v

Properties

that

are

represented

by

complex

data

types

and

encoded

in

XML

as

subelements

of

the

CommonBaseEvent

element.

These

properties

include

situation,

sourceComponentId,

and

extendedDataElements,

each

of

which

has

nested

properties

of

its

own.

These

complex

types

are

represented

by

specialized

Java

classes

defined

in

the

org.eclipse.hyades.logging.events.cbe

package.

For

example,

the

sourceComponentId

property

is

represented

by

a

ComponentIdentifier

instance.

Most

event

properties

are

defined

as

optional

by

the

Common

Base

Event

specification,

but

the

following

properties

are

required:

v

version

(a

string

attribute)

v

creationTime

(an

XML

Schema

dateTime

attribute;

see

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#dateTime)

v

sourceComponentId

(a

complex

ComponentIdentification

element)

v

situation

(a

complex

Situation

element)

The

version

attribute

is

defined

as

optional

by

the

Common

Base

Event

specification,

but

if

it

is

not

specified,

the

default

value

1.0

is

assumed.

Because

the

Common

Event

Infrastructure

supports

only

version

1.0.1

of

the

specification,

you

must

specify

1.0.1.

For

more

information

on

the

Common

Base

Event

specification,

see

the

Autonomic

Computing

Toolkit

Developers’

Guide

delivered

with

the

IBM

Autonomic

Computing

Toolkit,

http://www.ibm.com/autonomic.

If

you

try

to

send

an

event

that

is

missing

any

of

these

properties,

the

emitter

rejects

the

event

and

throws

an

EventsException

exception.

The

CommonBaseEvent

class

defines

getter

and

setter

methods

for

each

property,

and

helper

methods

to

simplify

creation

of

complex

properties.

An

event

source

uses

the

setter

methods

(or

the

helper

methods)

to

populate

an

event

with

property

data

before

submitting

it

to

an

emitter.

An

event

consumer

uses

the

getter

methods

to

retrieve

the

property

data

from

a

received

event.

Creating

an

event

object

To

create

new

events

in

your

event

source,

you

use

an

event

factory,

which

is

an

object

that

returns

new

CommonBaseEvent

instances

or

the

specialized

classes

that

represent

complex

property

data

types.

1.

Access

an

event

factory.

v

Create

an

event

factory

using

the

event-factory

factory.

Use

this

approach

if

no

appropriate

event

factory

is

already

available.

When

you

create

a

new

36

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#dateTime
http://www.ibm.com/autonomic

event

factory,

you

can

optionally

specify

a

content

handler

to

provide

automatic

content

completion.

See

“Creating

a

new

event

factory.”

v

Use

an

existing

event

factory

that

is

bound

into

a

Java

Naming

and

Directory

Interface

(JNDI)

namespace.

Use

this

approach

if

an

administrator

has

provided

an

event

factory

for

you

to

use.

This

approach

ensures

that

any

events

that

you

create

conform

to

the

appropriate

business

rules,

because

the

event

factory

might

be

configured

with

a

content

handler.

See

“Getting

an

event

factory

by

JNDI

lookup”

on

page

38.

v

Access

the

event

factory

indirectly

by

using

the

com.ibm.websphere.cem.ECSEmitter

class

to

create

a

common

base

event

object.

Use

this

approach

if

an

event

factory

is

bound

into

the

JNDI

namespace;

this

is

usually

done

automatically

in

the

WebSphere

Application

Server

context.

See

“Creating

and

populating

an

event

using

the

ECSEmitter

class”

on

page

38.
2.

Create

and

populate

an

event.

v

Create

and

populate

an

event

using

the

ECSEmitter

class.

The

option

uses

the

event

factory

indirectly.

See

“Creating

and

populating

an

event

using

the

ECSEmitter

class”

on

page

38.

v

Create

and

populate

an

event

using

the

event

factory

directly.

See

“Creating

and

populating

an

event

using

the

event

factory

directly”

on

page

40.

v

Set

property

data

automatically.

See

“Setting

property

data

automatically”

on

page

41.

Related

concepts

“Event

property

data”

on

page

36

Creating

a

new

event

factory

To

create

a

new

event

factory,

use

the

event-factory

factory,

implemented

as

the

EventFactoryFactory

class.

This

class

has

no

instances.

Instead,

this

class

provides

two

static

methods

to

create

event

factories.

The

choice

of

which

method

to

use

depends

upon

whether

you

want

to

use

a

content

handler

to

set

property

data

automatically.

v

To

create

a

generic

event

factory

with

no

content

handler,

use

the

createEventFactory

static

method.

EventFactory

eventFactory

=

(EventFactory)

EventFactoryFactory.createEventFactory();

v

To

create

an

event

factory

with

a

content

handler,

use

the

createEventFactory(ContentHandler)

method

and

specify

the

content

handler

you

want

to

use.

EventFactory

eventFactory

=

(EventFactory)

EventFactoryFactory.createEventFactory(contentHandler);

In

both

cases,

the

returned

object

is

an

event

factory

that

you

can

use

to

create

new

events.

You

can

now

create

event

objects

and

populate

them

with

property

data.

Related

tasks

“Setting

property

data

automatically”

on

page

41

“Creating

and

populating

an

event

using

the

event

factory

directly”

on

page

40

Chapter

5.

Working

with

events

37

Getting

an

event

factory

by

JNDI

lookup

If

an

administrator

has

bound

an

existing

event

factory

into

a

Java

Naming

and

Directory

(JNDI)

for

event

sources

to

use,

perform

a

standard

JNDI

lookup

to

retrieve

the

event

factory:

Context

context

=

new

InitialContext();

EventFactory

eventFactory

=

(EventFactory)

context.lookup("com/ibm/events/EventFactory");

The

returned

object

is

the

provided

event

factory.

If

the

event

factory

is

configured

with

a

content

handler,

an

instance

of

the

content

handler

is

also

created

locally.

For

more

information

about

content

handlers

and

JNDI,

see

“Setting

property

data

automatically”

on

page

41.

Create

event

objects

and

populate

them

with

property

data.

Related

tasks

“Creating

and

populating

an

event

using

the

event

factory

directly”

on

page

40

Creating

and

populating

an

event

using

the

ECSEmitter

class

If

an

event

factory

is

bound

into

the

Java

Naming

and

Directory

Interface

(JNDI)

namespace,

you

can

access

the

event

factory

indirectly.

You

can

use

the

com.ibm.websphere.cem.ECSEmitter

class

to

create

and

populate

a

common

base

event.

This

class

provides

the

following

methods:

v

createCommonBaseEvent

method.

If

you

use

this

method,

you

need

provide

only

the

extension

name

and

the

situation

properties

for

the

common

base

event.

All

other

properties

are

set

automatically.

v

addUserDataEvent

method.

If

you

use

this

method,

all

of

the

mandatory

properties

are

set

automatically.

The

extension

name

is

set

to

ECS:UserDataEvent

and

the

situation

is

set

to

ReportSituation.

You

can

set

extended

data

elements

for

the

common

base

event

by

passing

a

set

of

properties.

You

can

create

and

populate

a

common

base

event

in

one

of

the

following

ways.

v

Use

the

createCommonBaseEvent

method

to

create

and

populate

an

event.

The

following

code

fragment

starts

a

new

event

correlation

sphere,

newECSID,

and

then

uses

the

createCommonBaseEvent

method

to

create

an

event

object.

For

more

information

on

event

correlation

spheres,

see

“Event

context

elements”

on

page

5

ECSEmitter

myEmitter

=

new

ECSEmitter("JNDI

Emitter

Factory

Name",

"newECSID");

CommonBaseEvent

myEvent

=

myEmitter.createCommonBaseEvent("myEventType");

//

get

situation

object

Situation

mySituation

=

myEvent.getSituation();

//

set

situation

properties

mySituation.setCategoryName("ReportSituation");

mySituation.setReportSituation("EXTERNAL",

"STATUS");

//

add

other

information

to

the

the

event

//

send

the

event

myEmitter.sendEvent(myEvent);

This

example

uses

the

constructor

method

of

the

ECSEmitter

class

to

create

an

emitter,

passing

the

JNDI

name

of

an

existing

Common

Event

Infrastructure

emitter

and

the

identification

of

a

new

event

correlation

sphere.

38

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

The

new

emitter

is

then

used

to

create

a

common

base

event

that

contains

a

situation

object

that

is

accessed

using

the

getSituation

call.

The

setCategoryName

and

setReportSituation

methods

are

used

to

set

the

mandatory

data

in

the

situation

object

to

emit

an

event

with

a

ReportSituation.

To

create

other

situation

types,

use

different

category

names

in

the

setCategoryName

call

and

different

setter

method

calls

for

the

situation.

All

other

mandatory

information

is

provided

automatically

by

the

run-time

environment.

If

mandatory

information

is

set

explicitly

in

the

common

base

event,

this

information

is

not

overwritten

with

the

default

information.

The

event

is

now

valid

and

can

be

submitted

to

an

emitter

using

the

sendEvent

method.

In

an

actual

application,

a

useful

event

needs

to

include

more

information

than

is

shown

in

this

example,

but

these

properties

are

the

minimum

required

by

the

Common

Base

Event

specification

and

the

Common

Event

Infrastructure.

v

Use

the

addUserDataEvent

method

to

create

and

populate

an

event.

The

following

code

fragment

uses

the

addUserDataEvent

method

to

create

an

event

object

in

the

current

event

correlation

sphere.

ECSEmitter

myEmitter

=

new

ECSEmitter("JNDI

Emitter

Factory

Name",

null);

//

prepare

a

set

of

user

data

properties

Properties

myUserData

=

new

Properties();

myUserData.setProperty("UserData1","UserDataValue1");

myUserData.setProperty("UserData2","UserDataValue2");

//

create

and

send

the

event

myEmitter.addUserDataEvent(myUserData);

This

example

uses

the

constructor

method

of

the

ECSEmitter

class

to

create

an

emitter,

passing

the

JNDI

name

of

an

existing

Common

Event

Infrastructure

emitter.

An

event

correlation

sphere

identifier

is

not

passed

(null)

and

therefore

a

new

event

correlation

sphere

is

not

started.

If

an

event

correlation

sphere

exists,

the

user

data

event

is

added

to

this

correlation

sphere.

A

set

of

user

data

properties

is

then

prepared.

Name

and

value

pairs

are

added

to

a

property

list.

The

last

step

in

the

example

creates

and

sends

a

common

base

event

using

the

addUserDataEvent

method

of

the

new

emitter.

The

extensionName

property

of

the

new

common

base

event

is

set

to

ECS:UserDataEvent,

the

situation

is

set

to

ReportSituation,

and

all

other

mandatory

information

is

provided

automatically

by

the

run-time

environment.

Related

concepts

“Event

property

data”

on

page

36

Related

tasks

“Obtaining

an

emitter”

on

page

46

Related

reference

“Identification

of

the

event

source”

on

page

4
This

topic

describes

the

event

data

that

is

automatically

provided

in

common

base

events

that

occur

in

the

WebSphere

Application

Server

environment.

“Event

context

elements”

on

page

5

Chapter

5.

Working

with

events

39

Creating

and

populating

an

event

using

the

event

factory

directly

If

you

do

not

use

the

com.ibm.websphere.cem.ECSEmitter

class

to

create

and

populate

an

event,

you

must

use

the

event

factory

directly.

The

following

code

fragment

uses

an

event

factory

to

create

an

event

and

populates

it

with

the

minimal

required

property

data:

CommonBaseEvent

event

=

eventFactory.createCommonBaseEvent();

event.setVersion("1.0.1");

//

set

version

long

currentTime

=

System.currentTimeMillis();

//

get

current

time

event.setCreationTimeAsLong(currentTime);

//

and

set

creationTime

//

set

sourceComponentId

(a

complex

type)

event.setSourceComponentId("Windows",

//

application

"svchost.exe",

//

component

"tlntsvr.exe",

//

subcomponent

"http://www.ibm.com/namespaces/autonomic/Windows",

//

componentType

"win386_svc",

//

componentIdType

"9.45.72.138",

//

location

"IPV4"

//

locationType

);

//

create

situation

object

Situation

situation

=

eventFactory.createSituation();

//

set

situationType

to

AvailableSituation

(a

complex

type)

situation.setAvailableSituation("EXTERNAL",

//

reasoningScope

"NOT

AVAILABLE",

//

availabilityDisposition

"STARTABLE",

//

operationDisposition

"FUNCTION_PROCESS");

//

processingDisposition

//

set

situation

event.setSituation(situation);

This

example

uses

an

event

factory

to

create

an

event

instance.

First

the

version

property

is

set.

Then

the

current

system

time

is

retrieved

and

the

setCreationTimeAsLong(long)

method

is

used

to

set

the

value

of

the

creationTime

property.

An

alternative

approach

is

to

use

the

setCreationTime(String)

method,

which

sets

the

creation

time

using

the

XML

dateTime

format,

for

example,

"2004-07-29T13:12:00-05:00".

The

next

required

property,

sourceComponentId,

is

a

complex

property

that

is

represented

by

a

ComponentIdentification

instance,

which

has

properties

of

its

own.

However,

it

is

not

necessary

to

directly

instantiate

or

interact

with

this

object.

Instead,

the

next

statement

in

the

example

uses

the

setSourceComponentId

helper

method,

to

specify

the

nested

properties.

The

helper

method

uses

these

values

to

create

a

ComponentIdentification

instance,

which

it

then

uses

to

set

the

value

of

the

sourceComponentId

property

of

the

event.

Similar

helper

methods

exist

for

setting

other

complex

properties,

for

example,

the

setMsgDataElement,

addAssociatedEvent,

and

addExtendedDataElement

methods.

Many

of

these

methods

exist

in

multiple

versions

with

different

signatures,

making

it

possible

to

specify

property

values

in

different

ways.

Refer

to

the

Javadoc

API

documentation

for

complete

information

on

these

methods.

40

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

The

last

required

property

in

the

example,

situation,

is

another

complex

property.

In

this

case,

the

situation

object

must

be

instantiated

directly

using

an

event

factory.

The

example

then

uses

a

helper

method

to

set

the

situationType

property,

which

is

itself

a

complex

subelement.

In

an

actual

application,

a

useful

event

needs

to

include

more

information

than

is

shown

in

this

example,

but

these

properties

are

the

minimum

required

by

the

Common

Base

Event

specification

and

the

Common

Event

Infrastructure.

The

event

is

now

valid

and

can

be

submitted

to

an

emitter.

Related

concepts

“Event

property

data”

on

page

36

Related

tasks

“Creating

and

populating

an

event

using

the

ECSEmitter

class”

on

page

38

“Obtaining

an

emitter”

on

page

46

Related

reference

“Identification

of

the

event

source”

on

page

4
This

topic

describes

the

event

data

that

is

automatically

provided

in

common

base

events

that

occur

in

the

WebSphere

Application

Server

environment.

Setting

property

data

automatically

In

some

situations,

you

might

want

some

event

property

data

set

automatically

for

every

event

that

you

create.

This

is

a

way

to

fill

in

certain

standard

values

that

do

not

change

(such

as

the

application

name),

or

to

set

some

properties

based

on

information

that

is

available

from

the

run-time

environment

(such

as

creation

time

or

thread

information).

You

can

also

set

policies

that

govern

event

content

according

to

business

rules.

For

example,

you

might

require

that

events

with

a

particular

extension

name

have

the

severity

set

to

a

certain

value.

You

can

set

property

data

automatically

by

creating

a

content

handler.

A

content

handler

is

an

object

that

automatically

sets

the

property

values

of

each

event

based

on

any

arbitrary

policies

that

you

want

to

use.

The

Common

Event

Infrastructure

does

not

restrict

how

a

content

handler

can

modify

event

data,

so

long

as

the

event

still

conforms

to

the

Common

Base

Event

specification.

To

ensure

that

all

event

sources

comply

with

the

same

policies,

you

can

create

an

event

factory

associated

with

a

content

handler

(using

the

EventFactoryFactory

class)

and

then

bind

the

created

event

factory

into

a

Java

Naming

and

Directory

Interface

(JNDI)

namespace.

Instead

of

creating

event

factories,

event

sources

can

perform

JNDI

lookups

to

access

the

existing

event

factory,

without

any

knowledge

of

the

content

handler.

If

your

business

rules

change,

you

can

modify

the

content

handler

in

one

place.

An

event

source

does

not

need

to

do

anything

to

set

property

data

automatically.

If

an

event

factory

is

associated

with

a

content

handler,

each

event

that

the

factory

creates

carries

a

reference

to

that

content

handler.

When

the

event

is

submitted

to

an

emitter,

the

event

calls

the

completeEvent

method

of

the

content

handler,

passing

a

reference

to

itself.

This

ensures

that

the

correct

policies

are

applied

to

the

event

after

the

event

source

is

finished

setting

event-specific

properties,

but

before

the

event

is

validated

and

processed

by

the

emitter.

Chapter

5.

Working

with

events

41

When

an

event

is

transmitted

from

one

process

to

another,

the

reference

to

the

content

handler

is

not

transmitted

with

it.

This

is

because

content

completion

relies

upon

the

environment

where

the

event

originates,

and

the

necessary

information

might

not

be

available

elsewhere.

This

restriction

does

not

affect

calls

between

applications

that

are

local

to

one

another,

for

example,

a

call

to

an

enterprise

bean

using

its

local

interface.

To

create

a

content

handler,

follow

these

steps:

1.

Create

a

new

Java

class

that

mplements

the

org.eclipse.hyades.logging.events.cbe.ContentHandler

interface.

This

interface

defines

a

single

completeEvent(CommonBaseEvent)

method.

The

parameter

is

the

event

for

which

the

content

is

to

be

set.

In

your

implementation

of

this

method,

you

can

use

the

getter

and

setter

methods

of

the

CommonBaseEvent

interface

to

process

the

event

property

data

in

accordance

with

any

policies

that

apply.

When

an

event

source

uses

JNDI

to

retrieve

an

event

factory,

the

content

handler

and

the

event

factory

are

returned.

For

this

reason,

the

content

handler

must

be

serializable.

The

following

example

is

a

simple

content

handler

that

automatically

sets

the

extension

name

of

each

event:

import

java.io.Serializable;

import

org.eclipse.hyades.logging.events.cbe.*;

public

class

BusinessContentHandler

implements

ContentHandler,

Serializable

{

public

void

completeEvent(CommonBaseEvent

event)

throws

CompletionException

{

event.setExtensionName("business");

}

}

2.

Associate

the

content

handler

with

an

event

factory.

To

do

this,

specify

the

content

handler

when

you

create

the

event

factory:

import

org.eclipse.hyades.logging.events.cbe.*;

EventFactory

eventFactory

=

(EventFactory)

EventFactoryFactory.createEventFactory(contentHandler);

The

returned

event

factory

is

permanently

associated

with

the

specified

content

handler.

Retrieving

data

from

a

received

event

When

an

event

source

receives

an

event,

it

can

then

use

the

getter

methods

of

the

CommonBaseEvent

interface

to

retrieve

the

event

property

data.

For

example,

the

following

code

fragment

retrieves

a

single

event

and

then

reads

the

content

of

the

msg

property.

CommonBaseEvent

event

=

eventAccess.queryEventByGlobalInstanceId(eventId);

String

eventMessage

=

event.getMsg();

If

the

property

that

you

want

to

retrieve

is

a

complex

property

(a

CommonBaseEvent

subelement

in

the

Common

Base

Event

specification),

the

returned

value

is

an

instance

of

the

specialized

class

representing

the

complex

data

type.

You

can

then

use

the

getter

methods

of

the

returned

object

to

retrieve

the

property

data

from

that

object.

For

example,

the

following

code

fragment

retrieves

42

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

the

value

of

componentId

property,

which

is

a

complex

property.

The

code

then

retrieves

the

content

of

the

nested

component

property,

which

is

a

string,

to

read

the

name

of

the

source

component.

CommonBaseEvent

event

=

eventAccess.queryEventByGlobalInstanceId(eventId);

ComponentIdentification

componentId

=

event.getSourceComponentId();

String

componentName

=

componentId.getComponent();

Related

tasks

“Querying

events

from

the

event

server”

on

page

59

Converting

XML

events

In

addition

to

creating

new

events,

an

event

source

might

convert

events

in

XML

format

that

it

received

from

other

applications.

Similarly,

an

event

consumer

might

convert

events

to

XML

format

for

forwarding

to

another

application.

The

org.eclipse.hyades.logging.events.cbe.EventFormatter

class

provides

methods

you

can

use

to

convert

between

CommonBaseEvent

instances

and

XML.

Use

the

EventFormatter

class

to

convert

a

CommonBaseEvent

instance

into

a

string

containing

either

an

XML

document

or

an

XML

fragment.

Similarly,

you

can

convert

from

an

XML

document

or

fragment

to

a

CommonBaseEvent

instance.

For

more

information

about

the

EventFormatter

class,

refer

to

the

Javadoc

documentation

in

the

org.eclipse.hyades.logging.events.cbe

package.

Accessing

event

instance

metadata

The

org.eclipse.hyades.logging.events.cbe

package,

which

provides

the

classes

and

interfaces

that

are

required

for

working

with

event

objects,

is

based

on

the

Eclipse

Modeling

Framework

(EMF).

EMF

is

a

Java

framework

used

to

generate

application

code

that

is

based

on

a

structured

data

model.

It

also

provides

interfaces

in

the

generated

code

that

can

be

used

to

access

metadata

that

describes

the

data

model.

Refer

to

the

Eclipse

Modeling

Framework

documentation

at

http://www.eclipse.org/emf

for

more

information

about

EMF.

By

using

these

interfaces,

EMF-compatible

tools

can

interact

with

CommonBaseEvent

event

data

without

any

prior

knowledge

of

the

data

model

or

access

to

the

implementation.

This

interaction

makes

it

possible

for

development

tools

to

generate

code

that

transfers

data

from

other

data

models

into

the

CommonBaseEvent

model.

Application

developers

can

then

focus

on

writing

code

that

uses

the

data

rather

than

the

code

that

builds

the

data.

For

example,

consider

an

event

source

that

monitors

network

events

and

describes

its

own

data

model

in

terms

of

EMF.

With

access

to

both

data

models,

a

development

tool

can

display

the

fields

of

the

event

source

data

model

alongside

the

fields

of

the

CommonBaseEvent

data

model.

A

developer

can

then

use

a

graphical

interface

to

indicate

how

the

fields

in

the

event

source

model

map

to

fields

in

the

CommonBaseEvent

model.

For

example,

a

Workstation.name

field

in

the

event

source

data

model

might

correspond

to

the

CommonBaseEvent.sourceComponentId.location

field

in

the

CommonBaseEvent

data

model.

Because

both

data

models

are

described

using

standard

EMF

interfaces,

the

tool

can

generate

code

that

handles

the

transfer

of

data

between

the

two

models.

Chapter

5.

Working

with

events

43

http://www.eclipse.org/emf

The

following

code

fragment

is

a

simple

example

of

how

a

development

tool

might

use

EMF

interfaces

to

query

information

about

the

CommonBaseEvent

data

model

and

then

use

that

information

to

interact

with

an

event

instance.

This

example

can

be

part

of

a

simple

event

consumer.

The

example

iterates

through

all

of

the

fields

of

an

event

instance

and

prints

the

name

and

the

value

of

each

field.

//

event

is

a

valid

CommonBaseEvent

instance

//

Get

list

of

event

instance

structural

features

(fields)

List

features

=

event.eClass().getEAllStructuralFeatures();

//

iterate

through

list;

print

names

and

values

for

(int

i

=

0

;

i

<

features.size()

;

i++)

{

EStructuralFeature

feature

=

(EStructuralFeature)features.get(i);

Object

value

=

eObj.eGet(feature);

System.out.println(feature.getName()

+

":"

+

value);

}

The

CommonBaseEvent

data

model

is

described

in

the

cbe.ecore

and

cbe.genmodel

EMF

files.

These

files

are

included

with

the

Common

Event

Infrastructure

SDK.

You

can

import

the

files

into

an

Eclipse-based

development

environment

and

then

use

EMF

to

generate

code

that

interacts

with

CommonBaseEvent

objects.

44

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

Chapter

6.

Developing

an

event

source

If

your

event

source

is

running

with

Java

2

security

enabled,

you

must

modify

your

policy

file

to

enable

the

correct

processing

of

globally

unique

identifiers

(GUIDs).

Add

an

entry

to

the

file

that

allows

read,

write,

and

delete

access

to

the

guid.lock

file:

permission

java.io.FilePermission

"${java.io.tmpdir}${/}guid.lock",

"read,

write,

delete";

An

event

source

is

any

application

that

uses

an

emitter

to

send

events

to

the

event

server.

The

following

applications

are

examples

of

event

sources:

v

An

adapter

or

monitor

that

generates

events

related

to

monitored

resources

v

An

application

that

generates

notification

events

v

An

application

that

forwards

events

from

other

sources

An

event

source

is

implemented

in

the

Java

programming

language,

using

either

the

Java

2

Platform,

Standard

Edition

(J2SE)

or

the

Java

2

Platform,

Enterprise

Edition

(J2EE).

An

event

source

must

submit

valid

events

conforming

to

the

Common

Base

Event

model.

Each

event

is

represented

as

a

Java

object.

An

administrator

can

create

multiple

emitter

factory

profiles,

each

one

defining

a

different

emitter

configuration.

An

event

source

obtains

an

emitter

using

the

emitter

factory

associated

with

an

existing

emitter

factory

profile.

Therefore,

all

of

the

emitters

that

are

created

by

a

particular

emitter

factory

have

the

same

default

behavior.

1.

Obtain

an

emitter.

See

“Obtaining

an

emitter”

on

page

46.

2.

Send

the

event.

When

you

send

a

event

you

can

specify

different

emitter

settings.

See

“Sending

events”

on

page

47.

3.

Free

emitter

resources.

When

an

event

source

finishes

sending

events,

free

the

resources

that

the

emitter

is

using.

See

“Freeing

emitter

resources”

on

page

51.

4.

Filter

events.

Event

filtering

provides

a

way

to

reduce

traffic

by

screening

out

events

that

are

not

important.

See

“Filtering

events”

on

page

51.

Related

concepts

“The

Common

Base

Event

model”

on

page

2

Emitters

and

emitter

factories

An

event

source

does

not

interact

directly

with

the

event

server.

Instead,

it

interacts

with

an

object

called

an

emitter,

an

implementation

of

the

com.ibm.events.emitter.Emitter

interface.

An

emitter

is

a

local

object

that

provides

methods

for

sending

events.

In

general,

the

emitter

handles

the

details

of

event

transmission.

The

developer

of

an

event

source

does

not

need

to

know

the

event

server

location,

the

filter

settings,

or

the

underlying

transmission

mechanism.

These

details

are

governed

by

the

emitter

factory,

an

object

that

is

configured

by

an

administrator

and

bound

in

a

Java

Naming

and

Directory

Interface

(JNDI)

namespace.

An

emitter

factory

is

an

instance

of

com.ibm.events.emitter.EmitterFactory

and

is

used

to

create

emitter

objects.

It

also

defines

the

behavior

of

the

emitters

it

creates.

An

emitter

factory

includes

the

following

settings:

©

Copyright

IBM

Corp.

2004

45

v

The

preferred

transaction

mode.

This

setting

specifies

whether

the

emitter

attempts

to

send

each

event

in

a

new

transaction

or

within

the

current

transaction.

An

event

source

can

change

this

setting

for

a

particular

emitter

or

event

submission,

but

the

profile

specifies

the

default

value.

This

setting

is

valid

only

in

a

Java

2

Platform,

Enterprise

Edition

(J2EE)

container.

The

Java

2

Platform,

Standard

Edition

(J2SE)

platform

does

not

provide

transaction

controls.

v

The

preferred

synchronization

mode.

This

setting

specifies

whether

events

are

sent

using

synchronous

or

asynchronous

transmission.

Synchronous

transmission

means

that

the

sendEvent

method

does

not

return

control

to

the

caller

until

the

event

is

processed.

Asynchronous

transmission

means

that

the

method

returns

immediately

after

the

event

is

submitted,

and

the

caller

has

no

further

information

about

event

processing.

An

event

source

can

change

this

setting

for

an

emitter

or

for

an

event

submission,

but

the

default

value

is

specified

by

the

profile.

v

The

transmission

profiles

to

use.

A

transmission

profile

is

a

configuration

object

that

defines

a

specific

transmission

mechanism

for

sending

events

to

the

event

server.

An

emitter

factory

profile

can

specify

two

transmission

profiles,

one

for

synchronous

transmission

and

one

for

asynchronous

transmission.

An

event

source

cannot

change

the

transmission

profiles

used

by

an

emitter.

v

The

filter

configuration

to

use

for

the

emitter.

The

filter

configuration

defines

what

filtering

plug-in

is

used

to

filter

events

submitted

to

the

emitter.

The

Common

Event

Infrastructure

includes

a

default

filter

plug-in,

but

you

can

also

implement

your

own

filter

plug-in

if

you

want

to

use

a

different

filtering

engine.

Related

tasks

“Filtering

events”

on

page

51

Obtaining

an

emitter

Before

you

can

obtain

an

emitter,

there

must

be

at

least

one

emitter

factory

profile

configured.

For

each

emitter

factory

profile,

an

emitter

factory

is

automatically

created

and

is

accessible

using

the

Java

Naming

and

Directory

Interface

(JNDI)

name

of

the

emitter

factory

profile.

For

more

information,

see

“Default

configuration”

on

page

9.

You

can

obtain

an

emitter

in

one

of

the

following

ways:

v

Use

the

constructor

method

of

the

com.ibm.websphere.cem.ECSEmitter

class

v

Use

the

registered

Common

Event

Infrastructure

emitter

factory

directly

In

a

WebSphere

environment,

it

is

recommended

that

you

use

the

ECSEmitter

class.

This

approach

guarantees

that

the

chain

of

correlation

information

is

preserved.

You

can

obtain

an

emitter

in

one

of

the

following

ways.

v

Use

the

constructor

method

of

the

ECSEmitter

class

to

obtain

an

emitter.

The

following

code

fragment

obtains

an

emitter

configured

with

the

default

profile.

import

com.ibm.websphere.cem.ECSEmitter;

ECSEmitter

myEmitter

=

new

ECSEmitter("com/ibm/events/configuration/emitter/Default",

null);

46

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

In

this

example,

the

identifier

of

an

event

correlation

sphere

is

not

passed

(null).

This

means

that

a

new

correlation

sphere

is

not

started

for

the

event.

v

Use

the

registered

Common

Event

Infrastructure

emitter

factory

directly

to

obtain

an

emitter.

1.

Perform

a

JNDI

lookup

specifying

the

name

of

the

emitter

factory

that

you

want

to

use

for

your

emitter.

This

is

the

JNDI

name

that

was

specified

by

an

administrator

when

the

emitter

factory

profile

was

defined.

2.

Call

the

getEmitter

method

of

the

emitter

factory.

If

your

event

source

is

a

Java

2

Platform,

Standard

Edition

(J2SE)

client

application

running

in

a

secure

environment,

and

the

emitter

profile

you

are

using

specifies

asynchronous

transmission

profiles,

you

must

specify

a

Java

Message

Service

(JMS)

user

name

and

password

when

getting

an

emitter.

To

do

this,

use

the

getEmitter(String,

String)

method,

passing

the

JMS

user

name

and

password

that

you

want

to

use.

For

more

information,

refer

to

the

Javadoc

API

documentation

for

the

com.ibm.events.emitter.Emitter

class.

The

following

code

fragment

obtains

an

emitter

that

is

configured

with

the

default

profile:

import

javax.naming.*

import

com.ibm.events.emitter.*

Context

context

=

new

InitialContext();

EmitterFactory

emitterFactory

=

(EmitterFactory)

context.lookup

("com/ibm/events/configuration/emitter/Default");

Emitter

emitter

=

emitterFactory.getEmitter();

The

returned

object

is

an

emitter

that

is

configured

according

to

the

options

that

are

defined

in

the

emitter

factory

profile.

If

the

emitter

factory

cannot

obtain

an

emitter,

it

throws

an

EmitterException

exception.

Sending

events

An

event

source

sends

events

in

the

form

of

Java

objects.

Specifically,

each

event

is

an

instance

of

a

class

implementing

the

org.eclipse.hyades.logging.events.cbe.CommonBaseEvent

interface,

which

is

a

Java

representation

of

the

Common

Base

Event

specification.

To

send

an

event,

use

the

sendEvent

methods

of

the

ECSEmitter

class

or

the

Emitter

interface.

If

you

use

the

ECSEmitter

class,

you

can

use

the

addUserDataEvent

method.

This

method

creates

a

common

base

event

with

predefined

properties

before

the

event

is

sent.

See

“Creating

and

populating

an

event

using

the

ECSEmitter

class”

on

page

38

for

more

information.

When

you

submit

an

event

to

an

emitter,

the

following

things

happen:

1.

The

emitter

calls

the

complete

method

of

the

event,

triggering

optional

content

completion.

See

“Setting

property

data

automatically”

on

page

41

for

more

information.

2.

The

emitter

assigns

a

sequence

number

and

a

global

instance

identifier

to

any

event

that

does

not

already

have

them.

The

emitter

then

validates

the

event

to

ensure

that

it

conforms

to

the

Common

Base

Event

specification.

3.

If

filtering

is

active,

the

emitter

checks

the

event

against

the

current

filter

criteria

to

determine

whether

the

event

should

be

sent

or

discarded.

4.

If

the

event

is

valid

and

passes

the

filter

criteria,

the

emitter

sends

the

event

to

the

event

server

for

persistence

and

distribution

to

event

consumers.

Chapter

6.

Developing

an

event

source

47

If

the

event

is

not

valid,

or

if

the

emitter

encounters

a

problem

when

it

sends

the

event

to

the

event

server,

an

exception

is

thrown.

The

current

Common

Base

Event

specification

allows

only

one

extended

data

element

with

a

given

name

at

each

level

of

the

event

containment

hierarchy,

but

this

restriction

is

not

enforced

by

the

Common

Event

Infrastructure.

You

can

send

an

event

in

the

following

ways.

v

Send

an

event

with

the

current

emitter

settings.

See

“Sending

an

event

with

the

current

emitter

settings.”

v

Send

an

event

that

overrides

the

current

emitter

settings.

See

“Overriding

the

current

emitter

settings.”

v

Change

the

emitter

settings.

See

“Changing

the

emitter

settings”

on

page

50.

Related

concepts

“The

Common

Base

Event

model”

on

page

2

Sending

an

event

with

the

current

emitter

settings

If

you

do

not

need

to

specify

a

particular

transmission

mode

or

transaction

mode,

you

can

send

an

event

using

the

current

emitter

settings.

These

settings

are

initially

defined

by

an

administrator

in

the

emitter

factory

profile,

but

they

can

later

be

changed

by

event

consumers.

You

can

send

an

event

with

the

current

emitter

settings

in

one

of

the

following

ways.

v

Use

the

sendEvent(CommonBaseEvent)

method

to

send

an

event

using

the

current

emitter

settings.

String

eventId

=

emitter.sendEvent(event);

In

this

example,

emitter

is

an

Emitter

instance

or

an

ECSEmitter

instance,

and

event

is

a

CommonBaseEvent

instance.

The

returned

value,

eventId,

is

the

globally

unique

identifier

of

the

event,

which

is

the

value

of

the

globalInstanceId

field

of

the

CommonBaseEvent

instance.

If

the

event

does

not

have

a

global

instance

identifier,

the

emitter

assigns

one

automatically.

v

Use

the

addUserDataEvent(Properties)

method

of

the

ECSEmitter

class

to

send

a

user

data

event

using

the

current

emitter

settings.

emitter.addUserDataEvent(userData);

In

this

example,

emitter

is

an

ECSEmitter

instance

and

userData

is

a

java.util.Properties

instance.

If

an

event

is

submitted

to

an

emitter,

this

action

does

not

guarantee

that

the

event

is

sent

to

the

event

server,

because

the

filter

settings

might

cause

the

event

to

be

discarded.

A

successful

call

to

the

sendEvent

method

means

only

that

the

event

was

successfully

processed

by

the

emitter.

Overriding

the

current

emitter

settings

When

sending

an

event,

you

can

specify

options

that

override

the

current

transaction

mode

and

the

synchronization

mode

that

are

configured

for

the

emitter.

These

settings

are

initially

defined

by

an

administrator

in

the

emitter

factory

profile,

but

they

can

be

changed

by

event

consumers.

48

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

An

emitter

might

not

support

all

synchronization

and

transaction

modes.

The

available

modes

are

subject

to

the

following

limitations:

v

The

synchronization

modes

supported

by

an

emitter

are

defined

by

the

emitter

factory

profile.

You

can

find

out

which

modes

are

supported

by

a

particular

emitter

by

calling

the

isSynchronizationModeSupported

method.

See

the

Javadoc

API

documentation

for

com.ibm.events.emitter.Emitter

for

more

information.

v

Transactions

are

supported

only

in

a

J2EE

container.

If

you

attempt

to

use

a

mode

that

is

not

supported,

the

emitter

throws

a

TransactionModeNotSupportedException

or

SynchronizationModeNotSupportedException

exception.

To

override

the

emitter

settings,

use

the

sendEvent(CommonBaseEvent,

int,

int)

method.

String

eventId

=

emitter.sendEvent(event,

synchronizationMode,

transactionMode);

The

parameters

are

as

follows:

event

The

event

object,

a

CommonBaseEvent

instance,

that

you

want

to

send.

synchronizationMode

An

integer

constant

that

is

defined

by

the

SynchronizationMode

interface.

This

value

is

one

of

the

following

constants:

v

SynchronizationMode.ASYNCHRONOUS

(send

the

event

asynchronously)

v

SynchronizationMode.SYNCHRONOUS

(send

the

event

synchronously)

v

SynchronizationMode.DEFAULT

(use

the

current

emitter

setting)

transactionMode

An

integer

constant

that

is

defined

by

the

TransactionMode

interface:

v

TransactionMode.NEW

(send

the

event

in

a

new

transaction)

v

TransactionMode.SAME

(send

the

event

in

the

current

transaction)

v

TransactionMode.DEFAULT

(use

the

current

emitter

setting)

The

event

is

sent

with

the

options

you

specify.

These

options

apply

only

to

the

single

event

that

is

sent.

No

changes

are

made

to

the

emitter

settings,

and

subsequent

event

submissions

are

not

affected.

The

returned

value,

eventId,

is

the

globally

unique

identifier

of

the

event,

which

is

the

value

of

the

globalInstanceId

field

of

the

CommonBaseEvent

instance.

If

the

event

does

not

have

a

global

instance

identifier,

the

emitter

assigns

one

automatically.

If

an

event

is

submitted

to

an

emitter,

this

action

does

not

guarantee

that

the

event

is

sent

to

the

event

server,

because

the

filter

settings

might

cause

the

event

to

be

discarded.

A

successful

call

to

the

sendEvent

method

means

only

that

the

event

was

successfully

processed

by

the

emitter.

The

following

example

overrides

the

emitter

setting

to

send

an

event

in

a

new

transaction,

but

it

does

not

override

the

synchronization

mode:

String

eventId

=

sendEvent(event,

SynchronizationMode.DEFAULT,

TransactionMode.NEW);

Chapter

6.

Developing

an

event

source

49

Changing

the

emitter

settings

An

event

source

can

make

changes

to

the

transaction

mode

and

synchronization

mode

configured

for

the

emitter.

These

settings

are

initially

defined

by

the

emitter

factory

profile.

In

addition,

an

event

source

can

query

the

current

transaction

mode

to

determine

what

setting

is

currently

in

effect

for

the

emitter.

You

can

change

the

emitter

settings

in

the

following

ways:

v

“Changing

the

synchronization

mode”

v

“Changing

the

transaction

mode”

v

“Querying

the

transaction

mode”

on

page

51

Changing

the

synchronization

mode

An

event

source

can

change

the

synchronization

mode

that

is

used

by

an

emitter.

This

change

remains

in

effect

for

subsequent

event

submissions,

but

it

does

not

change

the

preferred

synchronization

mode

defined

in

the

emitter

factory

profile.

The

synchronization

modes

supported

by

an

emitter

are

defined

by

the

emitter

factory

profile.

You

can

find

out

which

modes

are

supported

by

a

particular

emitter

by

calling

the

isSynchronizationModeSupported

method.

See

the

Javadoc

API

documentation

for

com.ibm.events.emitter.Emitter

for

more

information.

If

you

use

a

mode

that

is

not

supported,

the

emitter

throws

a

SynchronizationModeNotSupportedException

exception.

To

change

the

synchronization

mode,

use

the

setSynchronizationMode(int)

method.

emitter.setSynchronizationMode(synchronizationMode);

The

synchronizationMode

is

an

integer

constant

defined

by

the

interface

SynchronizationMode:

v

SynchronizationMode.ASYNCHRONOUS

(send

the

event

asynchronously)

v

SynchronizationMode.SYNCHRONOUS

(send

the

event

synchronously)

v

SynchronizationMode.DEFAULT

(send

the

event

using

the

current

emitter

settings)

Changing

the

transaction

mode

An

event

source

can

change

the

transaction

mode

that

is

used

by

an

emitter.

This

change

remains

in

effect

for

subsequent

event

submissions,

but

it

does

not

change

the

transaction

mode

defined

in

the

emitter

factory

profile.

Note:

Transactions

are

supported

only

in

a

Java

2

Platform,

Enterprise

Edition

(J2EE)

container.

To

change

the

transaction

mode,

use

the

setTransactionMode(int)

method.

emitter.setTransactionMode(transactionMode);

The

transactionMode

is

an

integer

constant

defined

by

the

TransactionMode

interface:

v

TransactionMode.NEW

(send

the

event

in

a

new

transaction)

v

TransactionMode.SAME

(send

the

event

in

the

current

transaction)

v

TransactionMode.DEFAULT

(send

the

event

using

the

current

emitter

settings)

50

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

Querying

the

transaction

mode

An

event

source

can

query

the

transaction

mode

that

is

used

by

an

emitter.

Note:

Transactions

are

supported

only

in

a

J2EE

container.

To

query

the

current

transaction

mode,

use

the

getTransactionMode

method.

int

transactionMode

=

emitter.getTransactionMode();

The

returned

value

is

an

integer

that

corresponds

to

one

of

the

transaction

mode

constants:

v

TransactionMode.NEW

v

TransactionMode.SAME

Freeing

emitter

resources

If

your

event

source

has

finished

sending

events

with

a

particular

emitter,

you

should

free

the

resources

the

emitter

is

using.

If

you

are

using

the

ECSEmitter

class

for

correlation-aware

events,

you

should

also

close

the

correlation

sphere.

1.

To

free

the

emitter

resources,

use

the

close

method:

emitter.close();

This

method

releases

all

that

resources

that

the

emitter

uses.

2.

Optional:

Close

the

correlation

sphere.

emitter.releaseAndEndECS(id);

The

correlation

sphere

is

closed.

You

cannot

send

anymore

events

with

this

emitter.

Filtering

events

An

emitter

can

optionally

be

configured

to

filter

events

at

the

source.

Event

filtering

provides

a

mechanism

for

reducing

event

traffic

by

screening

out

events

that

are

not

important.

Each

time

an

event

source

submits

an

event

to

an

emitter,

the

emitter

checks

the

event

against

the

current

filter

criteria.

If

the

event

passes

the

filter

criteria,

the

emitter

sends

the

event

to

the

event

server;

otherwise,

the

emitter

discards

the

event.

In

any

case,

an

event

source

cannot

change

the

filter

settings,

which

are

configured

by

an

administrator.

The

emitter

filter

is

implemented

as

a

separate

component

called

a

filter

plug-in.

If

you

want

to

use

a

different

filter

mechanism,

you

can

implement

your

own

filter

plug-in.

In

the

Common

Event

Infrastructure

configuration,

each

emitter

factory

is

associated

with

a

filter

factory.

A

filter

factory

is

an

object

used

to

create

instances

of

a

filter

plug-in.

When

you

create

an

emitter

using

an

emitter

factory,

the

emitter

is

automatically

associated

with

an

instance

of

the

specified

filter

plug-in,

which

provides

filtering

of

events

submitted

to

that

emitter.

v

Filter

events

with

the

default

filter

plug-in.

The

Common

Event

Infrastructure

includes

a

default

filter

plug-in,

which

provides

filtering

of

submitted

events

based

on

XPath

event

selectors.

See

“Filtering

events

with

the

default

filter

plug-in”

on

page

52.

Chapter

6.

Developing

an

event

source

51

v

Filter

events

with

a

custom

filter

plug-in.

If

you

do

not

want

to

use

the

default

filter

plug-in,

you

can

implement

your

own

plug-in

to

filter

events.

See

“Implementing

a

filter

plug-in.”

Filtering

events

with

the

default

filter

plug-in

The

Common

Event

Infrastructure

includes

a

default

emitter

filter

plug-in.

You

can

configure

this

plug-in

with

an

XPath

event

selector

to

define

which

events

are

sent

to

the

event

server

and

which

are

discarded.

For

example,

the

filter

settings

might

specify

that

only

events

with

a

severity

greater

than

20

(harmless)

should

be

sent.

To

filter

events

using

the

default

filter

plug-in,

follow

these

steps:

1.

In

the

WebSphere

administrative

console,

navigate

to

the

Common

Event

Infrastructure

Provider

>

Filter

Factory

Profile

page.

2.

Create

a

new

filter

factory

profile.

For

more

information,

see

the

online

help

for

the

administrative

console.

3.

In

the

Filter

Configuration

String

field,

specify

an

XPath

event

selector

that

describes

the

events

you

want

to

use

for

filtering

events.

Events

that

match

this

event

selector

are

sent

to

the

event

server;

events

that

do

not

match

the

event

selector

are

discarded

by

the

emitter.

4.

Navigate

to

the

Common

Event

Infrastructure

Provider

>

Emitter

Factory

Profile

page.

5.

Create

a

new

emitter

factory

profile,

or

go

to

an

existing

emitter

factory

profile.

For

more

information,

see

the

online

help

for

the

administrative

console.

6.

In

the

Filter

Factory

JNDI

Name

field,

specify

the

JNDI

name

of

the

new

filter

factory

profile

you

created.

Event

sources

can

now

use

the

new

emitter

factory

to

create

instances

of

an

emitter

using

the

new

filter

configuration.

If

you

want

to

adjust

the

filter

settings

for

event

sources

that

use

this

emitter

factory,

you

can

modify

the

event

selector

that

is

specified

in

the

filter

factory.

The

default

filter

plug-in

uses

the

Apache

JXPath

component

to

process

XPath

event

selectors.

If

Java

2

security

is

enabled,

you

must

modify

your

policy

file

to

include

an

entry

that

allows

read

access

to

the

jxpath.properties

file:

permission

java.io.FilePermission

"${was.install.root}${/}java${/}jre${/}lib${/}jxpath.properties",

"read";

Related

tasks

“Writing

event

selectors”

on

page

65

Implementing

a

filter

plug-in

If

you

want

to

use

your

own

filtering

engine

as

an

emitter

filter,

you

can

implement

a

custom

filter

plug-in

by

following

these

steps:

1.

Develop

your

filter

plug-in

as

a

Java

class

that

implements

the

com.ibm.events.filter.Filter

interface.

This

interface

defines

the

following

methods:

isEventEnabled(CommonBaseEvent)

method

Returns

a

boolean

value

indicating

whether

the

specified

event

passes

the

filter

criteria.

Each

time

an

event

is

submitted

to

an

emitter,

the

emitter

calls

this

method,

passing

the

submitted

event.

If

the

return

52

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

value

is

true,

the

emitter

sends

the

event

to

the

event

server

for

persistence

and

distribution.

If

the

return

value

is

false,

the

emitter

discards

the

event.

getMetaData

method

Returns

information

about

the

filter

plug-in,

such

as

the

provider

name

and

the

version

number.

close

method

Frees

all

of

the

resources

used

by

the

filter

plug-in.

This

method

is

called

when

the

close

method

of

an

emitter

is

called.
2.

Develop

a

filter

factory

class

that

implements

the

interface

com.ibm.events.filter.FilterFactory.

This

interface

defines

a

single

getFilter

method,

which

returns

an

instance

of

your

filter

class

(an

implementation

of

the

Filter

interface).

3.

Bind

an

instance

of

your

filter

factory

into

a

Java

Naming

and

Directory

Interface

(JNDI)

namespace.

During

initialization,

an

emitter

performs

a

JNDI

lookup

to

access

the

filter

factory.

4.

In

the

WebSphere

Application

Server

administrative

console,

modify

your

emitter

factory

profile

or

create

a

new

profile.

In

the

Filter

Factory

JNDI

Name

field,

specify

the

JNDI

name

of

your

FilterFactory

implementation.

For

more

information

about

emitter

factory

profiles,

see

the

online

help

for

the

administrative

console.

When

you

create

an

emitter

using

the

emitter

factory

profile

that

specifies

your

filter

factory,

the

new

emitter

uses

an

instance

of

your

filter

implementation.

You

can

now

send

events

using

the

standard

emitter

interfaces,

and

your

filter

plug-in

is

used.

Chapter

6.

Developing

an

event

source

53

54

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

Chapter

7.

Developing

an

event

consumer

An

event

consumer

is

any

application

that

receives

events

from

the

event

server.

This

might

be

an

application

that

receives

asynchronous

event

notifications,

or

it

might

be

an

application

that

queries

and

processes

historical

event

data

from

the

persistent

data

store.

The

event

consumer

receives

events

in

the

form

of

Java

objects

and

then

uses

the

CommonBaseEvent

interface

to

retrieve

event

property

data,

or

convert

the

event

to

another

supported

format

(such

as

XML)

for

forwarding

to

another

application.

1.

Receive

an

event.

v

Use

the

Java

Messaging

Service

(JMS)

interface

to

subscribe

to

a

queue

or

topic,

and

receive

events

asynchronously

as

JMS

messages.

This

is

the

most

efficient

approach

for

an

event

consumer

that

needs

to

receive

events

as

they

arrive

at

the

event

server.

You

can

implement

the

event

consumer

as

a

standard

Java

class

or

as

a

Message-Driven

Bean

(MDB).

See

“Developing

an

event

consumer

as

a

message-driven

bean

(MDB)”

on

page

56

and

“Developing

a

non-MDB

event

consumer”

on

page

58.

v

Use

the

Event

Access

interface

to

query

historical

events

from

the

persistent

data

store

and

retrieve

the

requested

events

synchronously.

This

is

useful

for

startup

processing.

By

querying

the

data

store

for

historical

events,

an

event

consumer

can

determine

current

state

information

before

beginning

to

receive

new

events

through

JMS.

In

addition

to

receiving

events,

an

event

consumer

can

also

purge

old

events

from

the

data

store.

See

“Querying

events

from

the

event

server”

on

page

59.
2.

Write

event

selectors

to

define

event

groups,

specify

filter

criteria,

and

query

the

event

server.

See

“Writing

event

selectors”

on

page

65.

3.

Implement

a

data

store

plug-in

for

the

persistent

storage

of

events.

See

“Implementing

a

data

store

plug-in”

on

page

68.

Java

Messaging

Service

interface

and

event

consumers

By

using

the

Java

Messaging

Service

(JMS)

interface,

you

can

implement

your

event

consumer

using

standard

Java

tools

and

programming

models,

and

you

can

avoid

the

performance

disadvantages

of

directly

querying

the

event

data

store.

Instead

of

interacting

with

the

Common

Event

Infrastructure

directly,

your

event

consumer

subscribes

to

JMS

destinations

(queues

and

topics)

and

receives

events

in

the

form

of

JMS

messages.

The

Common

Event

Infrastructure

organizes

events

in

event

groups,

which

are

logical

collections

of

events

defined

in

the

Common

Event

Infrastructure

configuration.

A

particular

event

consumer

typically

needs

to

receive

only

events

from

specific

event

groups.

The

configuration

profile

for

each

event

group

associates

that

event

group

with

one

or

more

JMS

destinations

through

which

notifications

related

to

that

event

group

are

distributed.

The

relationships

between

event

groups

and

JMS

destinations

are

as

follows:

v

An

event

group

can

be

associated

with

multiple

queues.

v

An

event

group

can

be

associated

with

only

one

topic.

(Multiple

event

consumers

can

subscribe

to

the

same

topic,

so

publishing

the

same

event

group

to

more

than

one

topic

is

redundant.)

©

Copyright

IBM

Corp.

2004

55

v

A

JMS

destination

(queue

or

topic)

should

typically

be

associated

with

only

one

event

group.

To

receive

messages

from

an

event

group,

a

JMS

consumer

subscribes

to

the

appropriate

destination.

Each

event

is

then

delivered

in

the

form

of

a

JMS

message

containing

an

event

notification.

This

notification

can

then

be

converted

into

a

CommonBaseEvent

instance.

In

addition

to

the

standard

JMS

interfaces,

a

JMS

event

consumer

interacts

with

a

facility

called

the

notification

helper.

The

notification

helper

translates

between

Common

Event

Infrastructure

entities

(events

and

event

groups)

and

equivalent

JMS

entities

(messages

and

destinations).

The

notification

helper

provides

the

following

functions:

v

It

can

identify

the

JMS

topic

or

queues

associated

with

a

specified

event

group.

Your

event

consumer

can

then

use

the

appropriate

destination

to

create

subscriptions.

v

It

can

convert

a

JMS

message

notification

into

a

CommonBaseEvent

instance.

v

It

can

filter

events

at

the

consumer.

Each

notification

helper

can

be

associated

with

an

event

selector

that

specifyies

which

events

should

be

returned

to

consumers.

When

a

consumer

uses

the

notification

helper

to

convert

an

event

notification

into

an

event

instance,

the

event

instance

is

returned

only

if

it

matches

the

specified

event

selector.

The

notification

helper

uses

the

Apache

JXPath

component

to

process

XPath

event

selectors.

If

Java

2

security

is

enabled,

you

must

modify

your

policy

file

to

include

an

entry

allowing

read

access

to

the

jxpath.properties

file:

permission

java.io.FilePermission

"${was.install.root}${/}java${/}jre${/}lib${/}jxpath.properties",

"read";

Related

tasks

“Developing

an

event

consumer

as

a

message-driven

bean

(MDB)”

“Developing

a

non-MDB

event

consumer”

on

page

58

Developing

an

event

consumer

as

a

message-driven

bean

(MDB)

A

J2EE

event

consumer

is

implemented

as

a

message-driven

bean,

which

is

associated

with

a

JMS

destination

and

a

connection

factory

at

deployment

time.

To

receive

events,

follow

these

steps:

1.

Obtain

a

notification

helper.

A

Java

Message

Service

(JMS)

event

consumer

uses

a

notification

helper

to

identify

JMS

destinations

associated

with

an

event

group,

to

convert

received

JMS

messages

into

CommonBaseEvent

instances,

and

to

filter

received

events.

To

obtain

a

notification

helper,

use

a

notification

helper

factory,

which

is

a

NotificationHelperFactory

instance

that

is

bound

into

a

Java

Naming

and

Directory

Interface

(JNDI)

namespace.

The

following

code

fragment

uses

a

notification

helper

factory

to

obtain

a

notification

helper.

//

Get

notification

helper

factory

from

JNDI

InitialContext

context

=

new

InitialContext();

Object

notificationHelperFactoryObject

=

context.lookup("com/ibm/events/NotificationHelperFactory");

NotificationHelperFactory

nhFactory

=

(NotificationHelperFactory)

PortableRemoteObject.narrow(notificationHelperFactoryObject,

NotificationHelperFactory.class);

56

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

//

Create

notification

helper

NotificationHelper

notificationHelper

=

nhFactory.getNotificationHelper();

2.

Optional:

Specify

the

event

selector.

If

you

want

to

filter

received

events,

you

can

use

the

setEventSelector

method

to

set

an

event

selector

on

the

notification

helper.

Your

event

consumer

can

then

use

the

notification

helper

to

check

received

events

against

the

event

selector.

The

following

code

fragment

sets

an

event

selector

that

specifies

events

with

a

severity

greater

than

30

(warning).

notificationHelper.setEventSelector("CommonBaseEvent[@severity

>

30]");

3.

Convert

received

messages

into

CommonBaseEvent

instances.

In

the

onMessage

method

of

your

listener,

you

can

use

the

notification

helper

to

convert

each

received

JMS

message

into

an

event

represented

by

a

CommonBaseEvent

instance.

To

do

this,

use

the

getCreatedEvent(Message)

method

of

the

NotificationHelper

interface.

Each

message

received

by

an

event

consumer

has

a

property

called

the

notification

type.

This

is

an

integer

with

a

value

of

one

of

the

notification

type

constants

that

are

defined

by

the

com.ibm.events.notification.NotificationHelper

interface.

Currently,

the

only

supported

notification

type

is

CREATE_EVENT_NOTIFICATION_TYPE,

which

indicates

a

notification

of

a

new

event.

However,

additional

notification

types

might

be

added

in

future

releases,

so

an

event

consumer

should

generally

check

this

field

using

the

NotificationHelper.getNotificationType

method

before

processing

received

notifications.

public

void

onMessage(Message

msg)

{

int

msgType

=

notificationHelper.getNotificationType(msg);

if(msgType

==

NotificationHelper.CREATE_EVENT_NOTIFICATION_TYPE)

{

CommonBaseEvent

event

=

notificationHelper.getCreatedEvent(msg);

...

}

If

the

received

event

does

not

match

the

event

selector

specified

on

the

notification

helper,

the

returned

value

is

null.

4.

Process

the

event.

Your

consumer

can

then

process

the

event

as

appropriate.

if

(event

!=

null)

{

//

Process

the

event

.....

}

In

its

deployment

descriptor,

a

message-driven

bean

must

be

associated

with

a

listener

port,

which

specifies

a

JMS

destination

and

a

connection

factory.

You

must

create

a

listener

port

for

your

event

consumer

before

you

deploy

the

MDB.

This

listener

port

must

specify

the

destination

and

the

connection

factory

associated

with

the

event

group

from

which

you

want

to

receive

events.

These

parameters

are

defined

in

the

event

group

profile.

Note:

Do

not

use

the

CommonEventInfrastructure_ListenerPort

listener

port

when

you

deploy

your

MDB.

This

listener

port

is

used

by

the

event

server

and

is

not

intended

for

use

by

event

consumers.

Chapter

7.

Developing

an

event

consumer

57

Developing

a

non-MDB

event

consumer

To

write

an

event

consumer

that

is

not

a

message-driven

bean,

follow

these

steps:

1.

Obtain

a

notification

helper.

A

Java

Message

Service

(JMS)

event

consumer

uses

a

notification

helper

to

identify

JMS

destinations

associated

with

an

event

group,

to

convert

received

JMS

messages

into

CommonBaseEvent

instances,

and

to

perform

filtering

of

received

events.

To

obtain

a

notification

helper,

use

a

notification

helper

factory,

which

is

a

NotificationHelperFactory

instance

that

is

bound

into

a

Java

Naming

and

Directory

Interface

(JNDI)

namespace.

The

following

code

fragment

uses

a

notification

helper

factory

to

obtain

a

notification

helper.

//

Get

notification

helper

factory

from

JNDI

InitialContext

context

=

new

InitialContext();

Object

notificationHelperFactoryObject

=

context.lookup("com/ibm/events/NotificationHelperFactory");

NotificationHelperFactory

nhFactory

=

(NotificationHelperFactory)

PortableRemoteObject.narrow(notificationHelperFactoryObject,

NotificationHelperFactory.class);

//

Create

notification

helper

NotificationHelper

notificationHelper

=

nhFactory.getNotificationHelper();

2.

Optional:

Specify

the

event

selector.

If

you

want

to

filter

received

events,

you

can

use

the

setEventSelector

method

to

set

an

event

selector

on

the

notification

helper.

If

you

specify

an

event

selector,

the

notification

helper

returns

only

events

that

match

the

event

selector.

The

following

code

fragment

sets

an

event

selector

that

specifies

events

with

a

severity

greater

than

30

(warning).

notificationHelper.setEventSelector("CommonBaseEvent[@severity

>

30]");

3.

Use

the

notification

helper

to

find

the

JMS

destination

to

subscribe

to.

Each

event

group

can

be

associated

with

a

single

JMS

topic

and

any

number

of

JMS

queues.

You

can

query

the

notification

helper

to

find

out

what

destinations

are

associated

with

a

particular

event

group.

To

find

the

topic

associated

with

an

event

group,

use

the

getJmsTopic(String)

method

of

the

NotificationHelper

interface,

specifying

the

name

of

the

event

group:

MessagePort

msgPort

=

notificationHelper.getJmsTopic("critical_events");

To

find

the

queues

associated

with

an

event

group,

use

the

getJmsQueues(String)

method:

MessagePort[]

msgPorts

=

notificationHelper.getJmsQueues("critical_events");

The

returned

object

is

either

a

single

MessagePort

object

representing

a

JMS

topic

or

an

array

of

MessagePort

objects

representing

JMS

queues.

A

MessagePort

instance

is

a

wrapper

object

containing

the

JNDI

names

of

the

destination

and

its

connection

factory.

4.

Connect

to

the

destination.

Use

the

getter

methods

of

the

MessagePort

interface

to

retrieve

the

JNDI

names

of

the

destination

and

the

connection

factory.

You

can

then

use

the

standard

JMS

interfaces

to

connect

to

the

destination.

The

following

code

fragment

subscribes

to

a

JMS

topic:

String

connectionFactoryName

=

msgPort.getConnectionFactoryJndiName();

String

destinationName

=

msgPort.getDestinationJndiName();

//

create

connection

and

session

ConnectionFactory

connectionFactory

=

(ConnectionFactory)

context.lookup(connectionFactoryName);

Connection

connection

=

connectionFactory.createConnection();

Session

session

=

connection.createSesion(false,

58

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

CLIENT_ACKNOWLEDGE);

//

Create

consumer

and

register

listener

Topic

topic

=

(Topic)

context.lookup(destinationName);

MessageConsumer

consumer

=

session.createConsumer(topic);

consumer.setMessageListener(this);

connection.start();

5.

Convert

received

event

notification

messages

into

CommonBaseEvent

instances.

In

the

onMessage

method

of

your

listener,

you

can

use

the

notification

helper

to

convert

each

received

JMS

message

into

an

event

that

is

represented

by

a

CommonBaseEvent

instance.

To

do

this,

use

the

getCreatedEvent(Message)

method

of

the

NotificationHelper

interface.

Each

message

received

by

an

event

consumer

has

a

property

called

the

notification

type.

This

is

an

integer,

the

value

of

which

is

one

of

the

notification

type

constants

defined

by

the

com.ibm.events.notification.NotificationHelper

interface.

Currently,

the

only

supported

notification

type

is

CREATE_EVENT_NOTIFICATION_TYPE,

which

indicates

a

notification

of

a

new

event.

However,

additional

notification

types

might

be

added

in

future

releases,

so

an

event

consumer

should

generally

check

this

field

using

the

NotificationHelper.getNotificationType

method

before

processing

received

notifications.

public

void

onMessage(Message

msg)

{

int

msgType

=

notificationHelper.getNotificationType(msg);

if(msgType

==

NotificationHelper.CREATE_EVENT_NOTIFICATION_TYPE)

{

CommonBaseEvent

event

=

notificationHelper.getCreatedEvent(msg);

...

}

If

the

received

event

does

not

match

the

event

selector

specified

on

the

notification

helper,

the

returned

value

is

null.

6.

Process

the

event.

Your

consumer

can

then

process

the

event

as

appropriate.

if

(event

!=

null)

{

//

Process

the

event

.....

}

Querying

events

from

the

event

server

An

event

consumer

can

synchronously

retrieve

historical

events

from

the

persistent

data

store

by

querying

the

event

server.

The

persistent

data

store

is

implemented

as

a

separate

component

called

a

data

store

plug-in.

The

Common

Event

Infrastructure

includes

a

default

data

store

plug-in,

which

supports

event

queries

based

on

a

subset

of

XPath

syntax.

If

you

want

to

use

a

different

data

store,

you

can

implement

your

own

data

store

plug-in.

To

query

the

event

server,

use

the

event

access

interface.

1.

Create

an

event

access

bean.

This

bean

is

a

Java

2

Platform,

Enterprise

Edition

(J2EE)

stateless

session

bean.

The

bean

interface

provides

methods

for

querying

the

event

server.

An

event

consumer

uses

an

instance

of

the

event

access

bean

for

all

synchronous

event

queries.

See

“Creating

an

event

access

bean”

on

page

60.

2.

Query

events.

You

can

query

events

in

the

following

ways:

v

Specify

a

global

instance

identifier

to

retrieve

a

specific

single

event.

See

“Querying

events

by

global

instance

identifier”

on

page

60.

Chapter

7.

Developing

an

event

consumer

59

v

Specify

an

event

group

to

retrieve

events

associated

with

that

event

group.

You

can

optionally

refine

the

query

by

specifying

an

additional

event

selector.

This

action

retrieves

only

those

events

that

match

both

the

event

group

and

the

event

selector.

See

“Querying

events

by

event

group”

on

page

61.

v

Specify

a

known

event

and

an

association

type

to

retrieve

events

that

are

associated

with

the

known

event.

See

“Querying

events

by

association

type”

on

page

63.

v

Query

and

purge

events.

See

“Purging

events

from

the

data

store”

on

page

64.

Creating

an

event

access

bean

The

event

access

interface

is

implemented

as

a

stateless

session

bean

using

the

Enterprise

JavaBeans

architecture.

To

query

the

event

server

using

the

event

access

interface,

an

event

source

must

first

create

an

instance

of

the

event

access

session

bean.

The

event

access

bean

can

be

either

local

or

remote.

To

create

an

instance

of

the

event

access

session

bean,

use

the

appropriate

home

interface:

com.ibm.events.access.EventAccessHome

or

com.ibm.events.access.EventAccessLocalHome.

//

use

home

interface

to

create

remote

event

access

bean

InitialContext

context

=

new

InitialContext();

Object

eventAccessHomeObj

=

context.lookup("ejb/com/ibm/events/access/EventAccess");

EventAccessHome

eventAccessHome

=

(EventAccessHome)

PortableRemoteObject.narrow(eventAccessHomeObj,

EventAccessHome.class);

eventAccess

=

(EventAccess)

eventAccessHome.create();

Querying

events

by

global

instance

identifier

The

Common

Base

Event

specification

defines

a

globalInstanceId

event

property

that

can

be

used

as

a

primary

key

for

event

identification.

The

content

of

this

property

is

a

globally

unique

identifier

that

is

generated

either

by

the

application

or

by

the

emitter.

Although

the

Common

Base

Event

specification

defines

the

globalInstanceId

property

as

optional,

the

event

emitter

automatically

assigns

an

identifier

to

any

event

that

does

not

already

have

an

identifier.

You

can

retrieve

a

specific

single

event

from

the

event

server

by

querying

with

the

globalInstanceId

property

of

the

event

that

you

want

to

retrieve.

This

query

can

be

useful

for

testing

purposes

(to

confirm

that

events

are

stored

in

the

event

database),

or

to

retrieve

an

event

associated

with

one

that

was

received

previously.

To

query

an

event

by

the

global

instance

identifier,

use

the

queryEventByGlobalInstanceId

method

of

the

event

access

bean.

1.

Optional:

Create

an

event

access

bean.

2.

Call

the

queryEventByGlobalInstanceId(String)

method

of

the

EventAccess

bean,

specifying

the

global

instance

identifier

of

the

event

that

you

want

to

retrieve.

CommonBaseEvent

event

=

eventAccess.queryEventByGlobalInstanceId(eventId);

The

returned

object

is

the

event

with

the

specified

global

instance

identifier.

If

there

is

no

matching

event

in

the

persistent

data

store,

the

returned

object

is

null.

Related

tasks

60

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

“Creating

an

event

access

bean”

on

page

60

“Sending

events”

on

page

47

Querying

events

by

event

group

You

can

associate

an

event

with

one

or

more

event

groups.

An

event

group

is

a

logical

grouping

of

events

that

match

a

particular

event

selector.

Event

groups

are

defined

in

the

event

infrastructure

configuration.

For

more

information

about

event

groups,

see

“Default

configuration”

on

page

9.

You

can

use

the

event

access

interface

to

retrieve

events

that

belong

to

a

specified

event

group.

You

can

restrict

the

query

results

by

specifying

an

additional

event

selector.

You

can

also

query

events

without

retrieving

them.

You

can

query

event

groups

in

the

following

ways:

v

Query

a

limited

number

of

events

from

an

event

group.

v

Query

all

events

from

an

event

group.

v

Query

whether

an

event

exists.

Querying

a

limited

number

of

events

from

an

event

group

To

query

a

limited

number

of

events

from

an

event

group,

use

the

queryEventsByEventGroup(String,

String,

boolean,

int)

method

of

the

EventAccess

bean.

1.

Optional:

Create

an

event

access

bean.

2.

Call

the

EventAccess.queryEventsByEventGroup(String,

String,

boolean,

int)

method.

CommonBaseEvent[]

events

=

eventAccess.queryEventsByEventGroup(eventGroup,

eventSelector,

ascendingOrder,

maxEvents);

The

parameters

of

this

method

are

as

follows:

eventGroup

A

string

that

contains

the

name

of

the

event

group

that

you

want

to

query

for

events.

This

name

must

be

the

name

of

an

existing

event

group

defined

in

the

event

infrastructure

configuration.

eventSelector

A

string

that

contains

an

optional

event

selector

that

refines

the

query.

The

query

returns

events

that

match

both

the

specified

event

group

and

the

additional

event

selector.

An

event

selector

is

specified

in

the

form

of

an

XPath

expression.

If

you

do

not

want

to

specify

an

additional

event

selector,

this

parameter

can

be

null.

ascendingOrder

A

boolean

value

that

specifies

whether

the

returned

events

are

sorted

in

ascending

or

descending

order

according

to

the

value

of

the

creationTime

property.

If

this

parameter

is

true,

the

events

are

sorted

in

ascending

(chronological)

order.

If

this

parameter

is

false,

the

events

are

sorted

in

descending

(reverse

chronological)

order.

maxEvents

An

integer

that

specifies

the

maximum

number

of

events

that

you

want

returned.

Chapter

7.

Developing

an

event

consumer

61

The

returned

object

is

an

array

that

contains

the

events

from

the

specified

event

group.

If

the

number

of

matching

events

exceeds

the

query

threshold

that

is

defined

in

the

data

store

profile,

a

QueryThresholdExceededException

exception

is

thrown.

The

default

query

threshold

is

100

000.

The

following

code

fragment

returns

all

of

the

events

that

belong

to

an

event

group

called

critical_hosts

with

a

severity

greater

than

30

(warning).

No

more

than

5000

matching

events

should

be

returned:

CommonBaseEvent[]

events

=

eventAccess.queryByEventGroup("critical_hosts",

"CommonBaseEvent[@severity

>

30]",

true,

5000);

Related

tasks

“Creating

an

event

access

bean”

on

page

60

“Writing

event

selectors”

on

page

65

Querying

all

events

from

an

event

group

To

query

all

events

from

an

event

group,

use

the

queryEventsByEventGroup(String,

String,

boolean)

method

of

the

EventAccess

bean.

1.

Optional:

Create

an

event

access

bean.

2.

Call

the

EventAccess.queryEventsByEventGroup(String,

String,

boolean)

method.

CommonBaseEvent[]

events

=

eventAccess.queryEventsByEventGroup(eventGroup,

eventSelector,

ascendingOrder);

The

parameters

of

this

method

are

as

follows:

eventGroup

A

string

that

contains

the

name

of

the

event

group

that

you

want

to

query

for

events.

This

name

must

be

the

name

of

an

existing

event

group

defined

in

the

event

infrastructure

configuration.

eventSelector

A

string

that

contains

an

optional

event

selector

that

further

refines

the

query.

The

query

returns

events

that

match

both

the

specified

event

group

and

the

additional

event

selector.

An

event

selector

is

specified

in

the

form

of

an

XPath

expression.

If

you

do

not

want

to

specify

an

additional

event

selector,

this

parameter

can

be

null.

ascendingOrder

A

boolean

value

that

specifies

whether

the

returned

events

are

sorted

in

ascending

or

descending

order

according

to

the

value

of

the

creationTime

property.

If

this

parameter

is

true,

the

events

are

sorted

in

ascending

(chronological)

order.

If

this

parameter

is

false,

the

events

are

sorted

in

descending

(reverse

chronological)

order.

The

returned

object

is

an

array

that

contains

the

events

from

the

specified

event

group.

If

the

number

of

matching

events

exceeds

the

query

threshold

that

is

defined

in

the

data

store

profile,

a

QueryThresholdExceededException

exception

is

thrown.

The

default

query

threshold

is

100

000.

62

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

The

following

code

fragment

returns

all

of

the

events

that

belong

to

an

event

group

called

critical_hosts

with

a

severity

greater

than

30

(warning):

CommonBaseEvent[]

events

=

eventAccess.queryByEventGroup("critical_hosts",

"CommonBaseEvent[@severity

>

30]",

true);

Related

tasks

“Creating

an

event

access

bean”

on

page

60

“Writing

event

selectors”

on

page

65

Querying

the

existence

of

events

in

an

event

group

In

some

situations,

you

might

want

to

find

out

whether

any

events

exist

in

a

particular

event

group

without

actually

retrieving

the

events.

To

do

this,

use

the

eventExists

method

of

the

event

access

bean.

1.

Optional:

Create

an

event

access

bean.

2.

Call

the

eventExists(String,

String)

method

of

the

EventAccess

bean.

boolean

hasEvents

=

eventAccess.eventExists(eventGroup,

eventSelector);

The

parameters

of

this

method

are

as

follows:

eventGroup

A

string

that

contains

the

name

of

the

event

group

that

you

want

to

check

for

events.

This

name

must

be

the

name

of

an

existing

event

group

defined

in

the

event

infrastructure

configuration.

eventSelector

A

string

that

contains

an

optional

event

selector

that

refines

the

query.

The

query

checks

for

events

that

match

both

the

specified

event

group

and

the

additional

event

selector.

An

event

selector

is

specified

in

the

form

of

an

XPath

expression.

If

you

do

not

want

to

specify

an

additional

event

selector,

this

parameter

can

be

null.

The

returned

boolean

object

equals

true

if

any

events

exist

that

match

the

specified

event

group

and

event

selector,

false

if

none

exist.

The

following

code

fragment

checks

for

the

existence

of

any

events

in

an

event

group

called

critical_hosts

and

retrieves

any

events

that

exist.

if

(eventAccess.eventExists("critical_hosts",null))

{

CommonBaseEvent[]

events

=

eventAccess.queryByEventGroup("critical_hosts",

null,

true);

}

Related

tasks

“Creating

an

event

access

bean”

on

page

60

“Writing

event

selectors”

on

page

65

Querying

events

by

association

type

The

Common

Base

Event

specification

defines

properties

that

establish

relationships

between

events.

The

associatedEvents

property

is

a

complex

element

that

contains

one

or

more

subelements

of

the

AssociatedEvent

type,

each

representing

an

associated

event.

Each

AssociatedEvent

element,

contains

Chapter

7.

Developing

an

event

consumer

63

subelements

that

identify

the

type

of

association

and

the

application

that

established

the

association.

Examples

of

association

types

might

include

CausedBy

or

Correlated.

By

specifying

the

global

instance

identifier

of

a

known

event

and

a

type

of

association,

you

can

retrieve

events

that

satisfy

the

specified

association.

To

query

events

by

association

type,

use

the

EventAccess.queryEventsByAssocation(String,

String)

method.

1.

Optional:

Create

an

event

access

bean.

2.

Call

the

EventAccess.queryEventsByAssociation(String,

String)

method.

CommonBaseEvent[]

events

=

eventAccess.queryEventsByAssocation(associationType,

eventId);

The

parameters

of

this

method

are

as

follows:

associationType

The

type

of

association.

This

is

the

name

of

an

association

type

specified

by

the

associationEngineInfo

property.

eventId

The

global

instance

identifier

of

a

known

event.

The

returned

object

is

an

array

that

contains

the

events

that

satisfy

the

specified

type

of

association

with

the

known

event.

Only

events

that

are

still

in

the

event

database

at

the

time

of

the

query

are

returned

(an

associated

event

might

be

purged

from

the

database).

The

following

code

fragment

returns

all

of

the

events

from

the

event

database

that

have

a

CausedBy

association

with

a

known

event:

String

eventId

=

causeEvent.getGlobalInstanceId();

CommonBaseEvent[]

resultEvents

=

eventAccess.queryEventsByAssociation("CausedBy",

eventId);

Related

tasks

“Creating

an

event

access

bean”

on

page

60

Purging

events

from

the

data

store

An

event

consumer

or

an

administrative

tool

can

purge

events

from

the

data

store

using

the

event

access

interface.

You

can

purge

all

of

the

events

from

the

data

store,

or

you

can

limit

the

purge

to

event

groups,

event

selectors,

or

both.

To

purge

events

from

the

data

store,

use

the

purgeEvents

method

of

the

event

access

bean.

int

purged

=

eventAccess.purgeEvents(eventGroup,

eventSelector,

transactionSize);

The

parameters

are

as

follows:

eventGroup

A

string

that

contains

the

name

of

the

event

group

that

includes

the

events

you

want

to

purge.

This

name

must

be

the

name

of

an

existing

event

group

that

is

defined

in

the

event

infrastructure

configuration.

If

you

do

not

want

to

specify

an

event

group,

this

parameter

can

be

null.

eventSelector

A

string

that

contains

an

optional

event

selector

that

identifies

the

events

to

purge.

An

event

selector

is

specified

in

the

form

of

an

XPath

expression.

If

you

do

not

want

to

specify

an

event

selector,

this

parameter

can

be

null.

64

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

transactionSize

A

nonzero

integer

that

specifies

the

number

of

events

that

you

want

to

purge

in

a

single

database

transaction.

In

most

cases,

you

can

use

the

DEFAULT_PURGE_TRANSACTION_SIZE

constant,

which

is

defined

by

the

EventAccess

interface.

The

purgeEvents

method

purges

all

of

the

events

that

match

all

of

the

criteria

that

you

specify.

If

the

eventGroup

and

eventSelector

parameters

are

both

null,

all

of

the

events

in

the

data

store

are

purged.

Events

that

arrive

after

the

purge

operation

starts

are

not

purged.

The

returned

value

is

an

integer

that

specifies

how

many

events

were

purged.

If

the

value

of

the

transactionSize

parameter

exceeds

the

maximum

purge

transaction

size

defined

in

the

data

store

profile,

a

PurgeThresholdExceededException

exception

is

thrown

and

no

events

are

purged.

The

default

maximum

purge

transaction

size

is

100

000.

Related

tasks

“Writing

event

selectors”

Writing

event

selectors

An

event

selector

is

a

regular

expression

that

defines

a

set

of

events

based

on

the

property

data

(attributes

or

subelements)

of

these

events.

For

example,

an

event

selector

might

specify

all

of

the

events

from

a

particular

host

with

a

severity

that

is

greater

than

30

(warning).

Use

event

selectors

to

define

event

groups,

specify

filter

criteria,

and

query

the

event

server.

Because

the

Common

Base

Event

specification

is

based

on

XML,

event

selectors

are

written

using

a

subset

of

the

XPath

syntax.

The

specific

syntax

you

can

use

for

an

event

selector

depends

on

how

the

event

selector

is

to

be

used,

as

summarized

by

the

following

table.

Event

selector

purpose

Syntax

Event

group

definition

Limited

to

the

XPath

subset

supported

by

the

default

data

store

plug-in

Event

query

and

purge

through

the

event

access

interface

Limited

to

the

XPath

subset

supported

by

the

default

data

store

plug-in

Emitter

filter

configuration

Any

valid

XPath

Subscription

through

the

NotificationHelper

interface

Any

valid

XPath

The

default

data

store

plug-in

uses

a

subset

of

the

XPath

syntax.

However,

if

you

are

using

a

different

data

store

plug-in,

it

might

support

a

different

subset

of

the

XPath

syntax.

The

event

selectors

you

write

for

event

group

definitions

and

for

the

event

access

interface

must

use

the

syntax

that

is

supported

by

your

data

store

plug-in.

v

Write

XPath

event

selectors.

v

Write

event

selectors

for

the

default

data

store

plug-in.

Chapter

7.

Developing

an

event

consumer

65

Writing

XPath

event

selectors

XPath

is

a

standard

language

that

is

used

to

identify

parts

of

an

XML

document.

For

more

information,

see

the

XPath

specification

at

http://www.w3.org/TR/xpath.

A

simple

XPath

event

selector

that

specifies

an

attribute

value

takes

the

following

form:

CommonBaseEvent[@attribute

=

value]

The

value

can

be

either

a

numeric

value

or

a

string

enclosed

in

single

or

double

quotation

marks.

You

can

also

specify

an

attribute

of

a

subelement:

CommonBaseEvent[/subelement/@attribute

=

value]

When

using

XPath

operators,

remember

the

following

rules:

v

When

used

to

compare

XML

dateTime

values,

the

comparison

operators

perform

logical

comparisons

that

recognize

time

zone

differences.

v

Logical

operators

and

function

names

must

be

specified

using

all

lowercase

letters

(for

example,

and

rather

than

AND).

v

Operators

must

be

separated

with

white

space

from

the

surrounding

attribute

names

and

values

(@severity

>

30

rather

than

@severity>30).

v

Parentheses

can

be

used

to

change

operator

precedence.

The

following

examples

are

valid

XPath

event

selectors.

CommonBaseEvent[@extensionName

=

’ApplicationStarted’]

All

events

with

the

extensionName

attribute

ApplicationStarted

CommonBaseEvent[sourceComponentId/

@location

=

"server1"]

All

events

containing

a

sourceComponentId

element

with

the

location

attribute

server1

CommonBaseEvent[@severity]

All

events

with

a

severity

attribute,

regardless

of

its

value

CommonBaseEvent[@creationTime

<

’2003-12-10T12:00:00-05:00’

and

@severity

>

30]

All

events

created

before

noon

EST

on

10

December

2003

and

with

severity

greater

than

30

(warning):

CommonBaseEvent[contains(@msg,

’disk

full’)]

All

events

with

the

phrase

disk

full

occurring

within

the

msg

attribute

CommonBaseEvent[(@severity

=

30

or

@severity

=

50)

and

@priority

=

100]

All

events

with

a

severity

attribute

equal

to

30

or

50,

and

a

priority

attribute

equal

to

100.

Related

tasks

“Writing

event

selectors

for

the

default

data

store

plug-in”

Writing

event

selectors

for

the

default

data

store

plug-in

If

your

event

selector

might

be

used

to

define

an

event

group

or

to

query

the

persistent

data

store,

it

is

subject

to

the

restrictions

of

the

default

data

store

plug-in.

These

restrictions

are

as

follows:

v

An

event

property

can

be

specified

only

on

the

left

side

of

an

operator

or

an

XPath

function.

The

value

on

the

right

side

of

an

operator

must

be

a

literal

value.

The

following

example

is

not

a

valid

event

selector:

66

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

http://www.w3.org/TR/xpath

CommonBaseEvent[30

<

@priority

and

contains(’this

message’,

@msg)]

The

example

can

be

rewritten

as

follows:

CommonBaseEvent[@priority

>

30

and

contains(@msg,

’this

message’)]

v

Only

the

following

XPath

functions

are

supported:

–

contains

–

starts-with

–

false

–

true

–

not
v

The

union

operator

(|)

is

not

supported.

v

An

event

selector

must

take

the

following

form:

CommonBaseEvent[predicate_expression]

Only

a

single

predicate

expression

can

be

associated

with

the

CommonBaseEvent

element.

Stacked

predicates

are

not

supported,

for

example:

CommonBaseEvent[@extensionName

=

"server_down"][@severity

=

10]

v

A

predicate

can

be

only

be

associated

with

the

last

step

of

a

location

path.

The

following

example

is

not

a

valid

event

selector:

CommonBaseEvent[contextDataElement[@contextValue

=

"myContextValue"]

/@contextId

=

"myContextId"]

The

example

can

be

rewritten

as

follows:

CommonBaseEvent[contextDataElement[@contextValue

=

"myContextValue"

and

@contextId

=

"myContextId"]]

v

If

an

event

selector

refers

to

properties

of

extended

data

elements

that

are

at

different

levels

of

the

XML

containment

hierarchy,

these

elements

must

be

grouped

together

by

level.

The

following

example

is

not

a

valid

event

selector,

because

the

references

to

the

type

and

value

attributes

(both

top-level)

of

extendedDataElements

are

separated:

CommonBaseEvent[extendedDataElements[@type

=

’int’

and

children/@type

=

’intArray’

and

children/@name

=

’myName’

and

@value

=

10]]

The

example

can

be

rewritten

as

follows,

grouping

the

top-level

and

second-level

attributes

together:

CommonBaseEvent[extendedDataElements[@type

=

’int’

and

@value

=

10

and

children/@type

=

’intArray’

and

children/@type

=

’myName’]]

v

Node

indexes

are

not

supported,

for

example:

CommonBaseEvent[extendedDataElements[1]]

v

Wildcard

characters

are

not

supported,

for

example:

CommonBaseEvent[extendedDataElements/*/children/values

=

"text"]

v

When

referring

to

the

values

property

of

an

extended

data

element,

you

must

specify

the

value

and

the

type

of

the

property:

CommonBaseEvent[extendedDataElements[values

=

"myVal"

and

@type

=

"string"]]

You

can

specify

the

type

for

multiple

comparisons

within

a

compound

expression

by

grouping

the

comparisons

with

parentheses:

CommonBaseEvent[extendedDataElements[(values

=

"myVal"

or

values

=

"yourVal")

and

@type

=

"string"]]

Chapter

7.

Developing

an

event

consumer

67

In

this

example,

the

type

expression

applies

to

both

parts

of

the

compound

expression

in

parentheses.

You

cannot

override

this

restriction

by

specifying

a

different

type

expression

inside

the

parentheses.

You

can

group

multiple

related

types

by

using

the

starts-with

or

contains

functions.

For

example,

the

following

expression

matches

a

property

with

either

the

string

or

the

stringArray

type:

CommonBaseEvent[extendedDataElements[values

=

"myVal"

and

starts-with(@type,

’string’)]]

Related

tasks

“Writing

XPath

event

selectors”

on

page

66

Implementing

a

data

store

plug-in

To

use

your

own

data

store

for

the

persistent

storage

of

events,

implement

a

custom

data

store

plug-in

by

following

these

steps:

1.

Develop

your

data

store

plug-in

as

an

enterprise

bean

with

the

provided

local

interface.

Your

data

store

plug-in

must

implement

the

com.ibm.events.datastore.DataStoreLocal

interface.

The

DataStoreLocal

interface

defines

the

following

methods.

Refer

to

the

Javadoc

API

documentation

for

more

information.

createEvent(CommonBaseEvent)

method

Stores

a

new

event

in

the

data

store.

eventExists(String)

method

Returns

a

boolean

that

indicates

whether

any

events

currently

in

the

data

store

match

the

specified

event

selector.

purgeEvents(String[])

method

Deletes

events

that

match

the

specified

global

instance

identifiers.

queryEventByGlobalInstanceId(String)

method

Returns

the

event

with

the

global

instance

identifier

that

matches

the

specified

value

(or

null

if

no

matching

event

is

found).

queryEvents(String,

boolean)

method

Returns

an

array

of

events

that

match

the

specified

event

selector.

queryEvents(String,

boolean,

int)

method

Returns

an

array

of

events

that

match

the

specified

event

selector,

limiting

the

array

to

the

specified

size.

queryEventsByAssociation(String,

String)

method

Returns

an

array

of

events

that

satisfy

the

specified

relationship

to

a

known

event.

queryGlobalInstanceIds(String,

int)

method

Returns

an

array

of

global

instance

identifiers

for

events

that

match

a

specified

event

selector,

limiting

the

array

to

the

specified

size.

getMetaData

method

Returns

metadata

that

describes

the

data

store

plug-in,

including

the

version

of

the

Common

Base

Event

specification

it

supports.
A

data

store

plug-in

must

also

satisfy

the

following

requirements:

v

It

must

use

XPath

syntax,

or

a

subset

of

XPath

syntax,

for

specifying

event

selectors.

v

It

must

store

all

of

the

data

associated

with

each

received

event.

68

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

v

Its

query

methods

must

return

event

objects

that

are

identical

to

those

originally

stored.
2.

Deploy

your

data

store

plug-in

in

WebSphere

Application

Server.

See

the

WebSphere

Application

Server

documentation

for

more

information

about

how

to

deploy

an

application.

3.

In

the

administrative

console,

modify

the

default

event

server

profile.

In

the

Data

Store

JNDI

Name

field,

specify

the

Java

Naming

and

Directory

Interface

(JNDI)

name

of

your

data

store

plug-in.

For

more

information

about

the

event

server

profile,

see

the

online

help

for

the

administrative

console.

When

you

start

the

Common

Event

Infrastructure

server,

the

event

server

uses

the

specified

JNDI

name

to

access

the

local

home

interface

of

the

data

store

enterprise

bean.

It

then

uses

the

local

home

interface

to

create

an

instance

of

the

data

store

plug-in

bean.

Chapter

7.

Developing

an

event

consumer

69

70

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

Chapter

8.

Developing

an

event

catalog

application

The

event

catalog

is

a

repository

of

event

metadata.

This

metadata

consists

of

event

definitions,

which

describe

classes

of

events

and

their

allowed

content.

(This

is

distinct

from

the

event

instance

metadata

that

you

can

access

using

the

Eclipse

Modeling

Framework

interfaces

that

is

described

in

“Accessing

event

instance

metadata”

on

page

43.)

Applications

can

use

the

event

catalog

to

manage

their

enterprise-specific

event

definitions.

However,

these

applications

must

implement

validation

logic

to

ensure

that

events

conform

to

these

definitions.

Events

defined

according

to

the

Common

Base

Event

specification

can

be

categorized

into

event

classes

based

upon

the

extension

name

(the

value

of

the

extensionName

attribute).

Using

the

event

catalog,

you

can

define

the

permitted

content

of

a

particular

class

of

event

by

specifying

the

extended

data

elements

that

events

of

that

class

can

contain,

and

the

permitted

values

for

other

Common

Base

Event

properties.

An

event

definition

defines

constraints

on

event

content

that

extend

those

of

the

Common

Base

Event

specification.

Use

the

Event

Catalog

interfaces

to

create,

delete,

and

query

event

definitions.

You

cannot

modify

an

event

definition.

You

can

also

list

existing

event

definitions

in

a

readable

format,

and

import

and

export

event

definitions

in

XML

format.

1.

“Creating

an

event

definition”

on

page

77

2.

“Adding

property

descriptions

to

an

event

definition”

on

page

77

3.

“Adding

extended

data

element

descriptions

to

an

event

definition”

on

page

78

4.

“Creating

an

event

catalog

bean”

on

page

80

5.

“Adding

an

event

definition

to

the

event

catalog”

on

page

80

6.

“Removing

an

event

definition

from

the

catalog”

on

page

81

7.

“Querying

event

definitions”

on

page

81

8.

“Working

with

event

classes

and

source

categories”

on

page

84

Event

definitions

Event

definitions

are

defined

hierarchically

and

inherit

the

definitions

of

the

parent

definitions.

A

single

root

event

definition,

event,

defines

the

basic

requirements

of

any

event

that

conforms

to

the

Common

Base

Event

specification.

All

other

event

definitions

inherit

from

this

root

definition.

By

default,

this

root

event

definition

is

automatically

installed

in

the

event

catalog,

along

with

event

definitions

for

event

catalog

notification

events.

Currently,

event

definitions

do

not

support

all

of

the

constraints

that

are

required

to

fully

describe

the

Common

Base

Event

specification,

for

example,

the

requirement

that

the

globalInstanceId

property

must

begin

with

an

alphabetic

character.

Therefore,

an

event

might

conform

to

the

root

event

definition

and

still

not

pass

validation

by

the

event

emitter.

An

event

definition

contains

several

kinds

of

information:

Name

The

name

of

the

event

definition,

which

is

the

same

as

the

extension

name

of

the

events

described

by

the

definition.

All

events

with

a

particular

extension

name

share

the

same

event

definition.

Parent

The

name

of

the

parent

event

definition.

Any

event

definition

(with

the

©

Copyright

IBM

Corp.

2004

71

exception

of

the

root

definition

event)

has

a

parent

event

definition

from

which

it

inherits

property

descriptions

and

extended

data

element

descriptions

(although

some

aspects

of

the

inherited

data

can

be

overriden).

The

parent

can

be

any

valid

event

definition

that

exists

in

the

event

catalog.

Property

descriptions

Descriptions

of

the

permitted

common

base

event

properties

for

the

event

definition.

A

property

description

can

describe

any

property

defined

in

the

Common

Base

Event

specification

as

a

simple

type,

including

properties

of

complex

subelements.

Extended

data

element

descriptions

Descriptions

of

the

permitted

extended

data

elements

for

the

event

definition.

An

extended

data

element

description

defines

the

name

and

type

of

the

extended

data

element.

The

description

can

also

define

default

values,

how

many

of

the

extended

data

element

are

allowed,

and

descriptions

of

child

extended

data

elements.

Represented

as

an

XML

document,

an

event

definition

takes

the

following

general

form:

<eventDefinition

name="eventDefinitionName"

parent="parentEventDefinitionName">

<property

name="propertyName"

...

/>

<extendedDataElement

name="extendedDataElementName"

type="type"

...

/>

</eventDefinition>

Related

concepts

“Change

notification”

on

page

76

Property

descriptions

A

property

description

describes

a

property

that

an

event

can

contain.

This

can

be

any

property

that

is

defined

by

the

Common

Base

Event

specification

as

a

simple

type.

A

property

description

cannot

describe

a

complex

property,

such

as

msgDataElement,

but

it

can

describe

a

simple

property

that

is

a

child

of

a

complex

property.

An

event

definition

can

contain

any

number

of

property

descriptions

(including

none).

A

property

description

includes

the

following

fields:

name

The

name

of

the

property.

This

must

be

the

name

of

an

attribute

of

the

CommonBaseEvent

element,

or

an

attribute

of

a

complex

subelement

of

the

CommonBaseEvent

element.

Some

examples

are

severity,

priority,

and

globalInstanceId.

path

An

XPath

location

path

specifying

the

path

to

the

property,

if

the

property

is

not

an

attribute

of

the

CommonBaseEvent

element.

The

path

identifies

the

parent

property

of

the

property

that

is

described.

These

are

examples:

v

To

describe

a

property

of

the

CommonBaseEvent

element,

such

as

severity,

do

not

specify

a

path.

A

null

path

specifies

a

top-level

property.

v

To

describe

a

property

of

the

msgDataElement

element,

which

is

a

complex

property

of

the

CommonBaseEvent

element,

specify

the

path

msgDataElement.

v

To

describe

a

property

of

the

msgHelp

element,

which

is

a

complex

property

of

msgDataElement,

specify

the

path

msgDataElement/msgHelp.

72

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

The

path

can

also

describe

a

specific

instance

of

a

repeated

property.

For

example,

if

an

event

definition

describes

several

contextDataElements

properties,

you

might

specify

a

property

called

businessContext,

and

use

the

path

contextDataElements[@name=’businessContext’].

defaultValue

The

default

value

of

the

property.

The

default

value

represents

the

value

that

is

used

during

content

completion

for

an

event

that

is

missing

a

required

property.

Therefore,

it

is

meaningful

for

a

property

description

to

be

required

and

to

define

a

default

value.

This

field

is

optional.

required

A

boolean

value

that

specifies

whether

the

property

is

required.

If

this

field

is

equal

to

true,

the

property

is

required.

This

field

is

optional.

If

a

value

is

not

specified,

the

property

is

assumed

to

be

optional.

permittedValue

A

permitted

value

for

the

property.

If

an

event

definition

allows

only

certain

values

for

a

property,

each

one

is

represented

by

a

permittedValue

field

in

the

property

description.

A

property

description

can

include

any

number

of

permitted

values.

This

field

is

optional

and

must

not

be

specified

if

you

specify

values

for

the

minValue

or

maxValue

fields.

minValue

maxValue

The

minimum

and

maximum

permitted

values

for

the

property.

If

an

event

definition

allows

a

range

of

values

for

a

property,

these

fields

define

the

lower

and

upper

limits

of

that

range.

If

you

specify

only

minValue,

the

permitted

range

has

no

upper

limit.

Similarly,

if

you

specify

only

maxValue,

the

permitted

range

has

no

lower

limit.

These

fields

are

optional.

Do

not

specify

values

for

these

fields

if

you

specify

values

for

the

permittedValue

fields.

Extended

data

element

descriptions

An

extended

data

element

description

describes

an

extended

data

element

that

an

event

of

a

particular

event

class

can

contain.

An

event

definition

can

contain

any

number

of

extended

data

element

descriptions

(including

none).

An

extended

data

element

description

includes

the

following

fields:

name

The

name

of

the

extended

data

element.

This

defines

the

value

of

the

name

attribute

of

the

element.

type

The

data

type

of

the

extended

data

element.

This

defines

the

value

of

the

type

attribute

of

the

element.

This

must

be

one

of

the

following

supported

data

types:

v

noValue

v

byte

v

short

v

int

v

long

v

float

v

double

v

string

v

dateTime

v

boolean

v

byteArray

v

shortArray

Chapter

8.

Developing

an

event

catalog

application

73

v

intArray

v

longArray

v

floatArray

v

doubleArray

v

stringArray

v

dateTimeArray

v

booleanArray

v

hexBinary

defaultValue

The

default

value

of

the

extended

data

element,

or

multiple

default

values

if

the

type

is

an

array.

The

default

value

represents

the

value

that

is

used

during

content

completion

for

an

event

that

is

missing

a

required

extended

data

element.

This

field

is

optional.

minOccurs

The

minimum

number

of

instances

of

the

extended

data

element

that

must

appear.

This

field

is

optional.

The

default

value

is

1.

maxOccurs

The

maximum

number

of

instances

of

the

extended

data

element

that

can

appear.

This

field

is

optional.

The

default

value

is

1.

The

current

Common

Base

Event

specification

allows

only

one

extended

data

element

with

a

given

name

at

each

level

of

the

event

containment

hierarchy.

This

restriction

will

not

be

included

in

future

versions

of

the

specification

and

is

not

enforced

by

the

Common

Event

Infrastructure.

Inheritance

By

default,

an

event

definition

inherits

the

property

descriptions

and

extended

data

element

descriptions

of

the

parent

definition.

However,

a

child

event

definition

can

override

these

inherited

descriptions,

subject

to

certain

restrictions.

When

you

add

an

event

definition

to

the

event

catalog,

the

catalog

verifies

that

the

new

event

definition

does

not

violate

the

rules

that

govern

inheritance.

If

an

event

does

not

adhere

to

the

rules,

an

InheritanceNotValidException

exception

is

thrown.

Similarly,

if

you

replace

an

existing

event

definition

that

has

descendants,

the

event

catalog

verifies

the

validity

of

the

existing

inheritance

relationships

and

throws

an

InheritanceNotValidException

exception

if

any

of

these

relationships

are

no

longer

valid.

In

either

case,

the

new

event

definition

is

not

added

to

the

catalog

unless

all

of

the

inheritance

relationships

are

valid.

An

event

definition

can

be

either

unresolved

or

resolved:

v

An

unresolved

event

definition

includes

only

those

property

definitions

and

extended

data

element

descriptions

that

are

defined

within

the

event

definition.

v

A

resolved

event

definition

includes

the

data

in

the

unresolved

event

definition

and

the

property

definitions

and

extended

data

element

descriptions

it

inherits.

Overriding

inherited

property

descriptions

A

child

event

definition

inherits

each

property

description

from

its

parent

without

change

unless

it

already

has

a

locally

defined

property

description

of

the

same

name

and

path

(note

that

case

is

significant).

If

the

child

has

a

property

description

of

the

same

name

and

path,

the

fields

of

the

child

description

can

override

the

fields

of

the

parent

description

as

follows:

74

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

Default

value

The

child

can

override

the

default

value

specified

by

the

parent

property

description.

If

the

child

does

not

specify

a

default

value,

it

inherits

the

value

from

the

parent.

Required

or

optional

The

child

always

overrides

the

parent.

However,

if

the

parent

defines

a

property

as

required,

the

child

must

also

specify

that

the

property

is

required.

An

inherited

required

property

cannot

be

redefined

as

optional.

Permitted

values

or

minimum

and

maximum

values

If

the

parent

defines

permitted

values

or

minimum

and

maximum

values,

the

child

can

override

these

by

specifying

either

permitted

values

or

minimum

and

maximum

values.

An

event

definition

can

contain

only

permitted

values

or

minimum

and

maximum

values,

not

both.

For

example:

v

If

the

parent

defines

minimum

and

maximum

values,

but

the

child

defines

permitted

values,

the

minimum

and

maximum

values

defined

by

the

parent

are

ignored.

v

If

the

parent

defines

permitted

values,

but

the

child

defines

minimum

and

maximum

values,

the

permitted

values

defined

by

the

parent

are

ignored.

v

If

the

parent

defines

only

a

maximum

value,

but

the

child

defines

only

a

minimum

value,

the

child

inherits

the

maximum

value

defined

by

the

parent.

v

If

the

child

does

not

specify

permitted

values

or

minimum

and

maximum

values,

the

values

specified

by

the

parent

are

inherited.

Overriding

inherited

extended

data

element

descriptions

A

child

event

definition

inherits

each

extended

data

element

description

from

its

parent

without

change

unless

it

already

has

a

locally

defined

extended

data

element

description

of

the

same

name.

If

the

child

does

have

an

extended

data

element

description

of

the

same

name,

the

fields

of

the

child

description

can

override

the

fields

of

the

parent

description

as

follows:

Type

The

child

must

specify

the

same

type

as

the

parent.

Minimum

occurrence

The

child

always

overrides

the

parent.

Maximum

occurrence

The

child

always

overrides

the

parent.

Default

values

The

child

can

override

the

default

values

specified

by

the

parent

extended

data

element

description.

If

the

child

does

not

specify

default

values,

it

inherits

the

values

from

the

parent.

Default

hexadecimal

value

The

child

can

override

the

default

hexadecimal

value

specified

by

the

parent

extended

data

element

description.

If

the

child

does

not

specify

a

default

hexadecimal

value,

it

inherits

the

value

from

the

parent.

Nested

extended

data

element

description

The

child

can

override

a

nested

extended

data

element

description

by

defining

a

nested

description

of

the

same

name.

If

the

child

overrides

an

inherited

nested

description,

the

same

rules

apply

to

overriding

the

Chapter

8.

Developing

an

event

catalog

application

75

individual

fields.

If

the

child

does

not

specify

a

nested

extended

data

element

description

of

the

same

name,

it

inherits

the

nested

description

from

the

parent.

Change

notification

Each

time

an

event

definition

is

added,

removed,

or

replaced,

the

event

catalog

sends

an

event

to

the

event

server

that

indicates

that

this

action

happened.

An

event

consumer

can

subscribe

to

these

events

to

receive

notification

of

changes

in

the

event

catalog.

By

default,

the

event

catalog

uses

the

default

emitter

factory

to

obtain

an

emitter

for

sending

these

events.

You

can

change

the

emitter

factory

in

the

event

catalog

configuration.

The

event

catalog

can

send

three

classes

of

notification

events,

using

the

following

extension

names:

v

cei_event_definition_added

v

cei_event_definition_replaced

v

cei_event_definition_removed

These

three

event

classes

inherit

property

descriptions

from

a

common

cei_event_definition

parent

class.

Event

definitions

for

all

four

event

classes

are

automatically

loaded

into

the

event

catalog

during

installation,

with

the

default

root

event

definition.

When

an

event

definition

is

removed

from

the

event

catalog,

any

children

or

other

descendants

of

that

event

definition

are

also

removed.

The

event

catalog

sends

a

separate

change

notification

event

for

each

event

definition

that

is

removed.

Each

change

notification

event

contains

the

following

properties:

Property

Value

version

1.0.1

globalInstanceId

A

globally

unique

identifier

for

the

event.

creationTime

Current

date

and

time

when

the

event

is

generated.

severity

10

(information)

priority

10

(low)

sourceComponentId

Identification

of

the

event

catalog

component

and

event

server

host

machine.

situation

Situation

data,

including

one

of

the

following

values

for

the

situation

category:

v

CreateSituation

(event

definition

added)

v

ConfigureSituation

(event

definition

replaced)

v

DestroySituation

(event

definition

removed)

extensionName

One

of

the

following

values:

v

cei_event_definition_added

v

cei_event_definition_replaced

v

cei_event_definition_removed

extendedDataElements

A

single

extended

data

element

with

one

attribute,

eventDefinitionName.

This

attribute

is

a

string

that

specifies

the

name

of

the

event

definition

that

has

been

added,

replaced,

or

removed.

76

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

Creating

an

event

definition

An

event

definition

is

an

instance

of

the

com.ibm.events.catalog.EventDefinition

class.

To

create

an

event

definition,

create

an

instance

of

this

class

and

then

populate

it

with

property

descriptions

and

extended

data

element

descriptions.

To

create

a

new,

empty

event

definition,

create

an

instance

of

the

EventDefinition

class:

EventDefinition

definition

=

new

EventDefinition(name,

parent);

The

parameters

of

this

constructor

are

as

follows:

name

The

name

of

the

event

definition.

This

is

the

value

of

the

extensionName

attribute

for

the

events

that

you

are

describing.

parent

The

name

of

the

parent

event

definition.

If

you

do

not

want

your

event

definition

to

inherit

any

property

descriptions

or

extended

data

element

descriptions

other

than

those

required

by

the

Common

Base

Event

specification,

set

this

parameter

to

event.

If

this

parameter

is

null,

the

new

event

definition

is

defined

as

a

root

event

definition.

A

root

event

definition

can

only

be

added

to

the

catalog

if

it

is

empty,

or

if

you

intend

to

replace

the

current

root

event

definition.

The

returned

object

is

a

new

unresolved

event

definition

that

contains

no

property

descriptions

or

extended

data

element

descriptions.

The

following

code

fragment

creates

a

new

event

definition

called

insurance_claim_start_auto,

which

is

a

child

of

the

event

definition

insurance_claim_start:

EventDefinition

definition

=

new

EventDefinition("insurance_claim_start_auto",

"insurance_claim_start");

You

can

now

populate

the

event

definition

with

property

descriptions

and

extended

data

element

descriptions.

After

you

create

an

event

definition,

you

can

add

it

to

the

event

catalog.

Related

tasks

“Adding

property

descriptions

to

an

event

definition”

“Adding

extended

data

element

descriptions

to

an

event

definition”

on

page

78

“Adding

an

event

definition

to

the

event

catalog”

on

page

80

Adding

property

descriptions

to

an

event

definition

A

property

description

is

an

instance

of

the

com.ibm.events.catalog.PropertyDescription

class.

To

add

a

property

description

to

an

event

definition,

you

must

create

a

property

description

and

then

set

the

values

of

its

fields.

You

can

then

add

the

property

description

to

the

event

definition.

1.

To

create

a

new

property

description,

create

an

instance

of

the

PropertyDescription

class,

specifying

the

name

and

path

of

the

property.

PropertyDescription

propDesc

=

new

PropertyDescription(name,

path);

The

parameters

of

this

constructor

are

as

follows:

Chapter

8.

Developing

an

event

catalog

application

77

name

The

name

of

the

property.

This

must

be

the

name

of

a

simple

property

either

of

the

CommonBaseEvent

element

or

one

of

its

children.

path

An

XPath

location

path

that

specifies

the

path

to

the

property.

For

a

top-level

property

of

the

CommonBaseEvent

element,

such

as

severity

or

priority,

path

should

be

null.

The

returned

object

is

a

new

PropertyDescription

object.

2.

Populate

the

fields

of

the

property

description.

The

PropertyDescription

class

provides

a

setter

method

for

each

of

the

fields

in

a

property

description.

Refer

to

the

Javadoc

API

documentation

for

more

information

about

these

methods.

For

example,

to

specify

that

a

property

is

required,

set

the

required

property

to

true

using

the

setRequired(boolean)

method:

propDesc.setRequired(true);

3.

Add

the

property

description

to

the

event

definition

using

the

EventDefinition.addPropertyDescription

method.

definition.addPropertyDescription(propDesc);

If

the

event

definition

already

includes

another

property

description

with

the

same

name

and

path,

a

DescriptionExistsException

exception

is

thrown.

The

following

code

fragment

creates

a

property

description,

populates

it

with

data,

and

adds

it

to

an

event

definition.

PropertyDescription

propDesc

=

new

PropertyDescription("severity",null);

propDesc.setRequired(true);

propDesc.setMinValue(’30’);

//

definition

is

a

valid

event

definition

definition.addPropertyDescription(propDesc);

Adding

extended

data

element

descriptions

to

an

event

definition

An

extended

data

element

description

is

an

instance

of

the

ExtendedDataElementDescription

class.

To

add

an

extended

data

element

description

to

an

event

definition,

you

must

create

an

extended

data

element

description

and

then

set

the

values

of

its

fields.

You

can

also

add

nested

(child)

extended

data

element

descriptions,

which

describe

nested

extended

data

elements.

You

can

then

add

the

extended

data

element

description

to

the

event

definition.

1.

To

create

an

extended

data

element

description,

create

an

ExtendedDataElementDescription

instance,

specifying

the

name

and

type

of

the

extended

data

element.

ExtendedDataElementDescription

edeDesc

=

new

ExtendedDataElementDescription(name,

type);

The

parameters

of

this

constructor

are

as

follows:

name

The

name

of

the

extended

data

element.

This

must

be

the

value

of

the

name

property

of

the

extended

data

element

that

you

want

to

describe.

type

The

data

type

of

the

extended

data

element.

This

must

be

one

of

the

following

integer

constants

that

are

defined

by

the

org.eclipse.hyades.logging.events.cbe.ExtendedDataElement

class:

v

TYPE_BOOLEAN_ARRAY_VALUE

v

TYPE_BOOLEAN_VALUE

78

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

v

TYPE_BYTE_ARRAY_VALUE

v

TYPE_BYTE_ARRAY

v

TYPE_DATE_TIME_ARRAY_VALUE

v

TYPE_DATE_TIME_VALUE

v

TYPE_DOUBLE_ARRAY_VALUE

v

TYPE_DOUBLE_VALUE

v

TYPE_FLOAT_ARRAY_VALUE

v

TYPE_FLOAT_VALUE

v

TYPE_HEX_BINARY_VALUE

v

TYPE_INT_ARRAY_VALUE

v

TYPE_INT_VALUE

v

TYPE_LONG_ARRAY_VALUE

v

TYPE_LONG_VALUE

v

TYPE_NO_VALUE_VALUE

v

TYPE_SHORT_ARRAY_VALUE

v

TYPE_SHORT_VALUE

v

TYPE_STRING_ARRAY_VALUE

v

TYPE_STRING_VALUE

The

returned

object

is

a

new

ExtendedDataElementDescription

object.

2.

Populate

the

fields

of

the

extended

data

element

description.

The

ExtendedDataElementDescription

class

provides

a

setter

method

for

each

of

the

fields

in

an

extended

data

element

description.

Refer

to

the

Javadoc

API

documentation

for

more

information

about

these

methods.

For

example,

to

specify

that

an

extended

data

element

must

occur

at

least

once,

you

can

set

the

maxOccurs

property

to

4

using

the

setMaxOccurs(int)

method:

edeDesc.setMaxOccurs(4);

3.

Optional:

To

add

a

child

extended

data

element

description,

use

the

ExtendedDataElementDescription.addChild

method.

edeDesc.addChild(childEdeDesc);

The

childEdeDesc

parameter

must

be

a

valid

extended

data

element

description.

4.

Add

the

extended

data

element

description

to

the

event

definition

using

the

EventDefinition.addExtendedDataElementDescription

method.

definition.addExtendedDataElementDescription(edeDesc);

If

the

event

definition

already

includes

another

extended

data

element

description

with

the

same

name

and

path,

a

DescriptionExistsException

exception

is

thrown.

The

following

code

fragment

creates

an

extended

data

element

description,

populates

it

with

data,

and

adds

it

to

an

event

definition.

ExtendedDataElementDescription

edeDesc

=

new

ExtendedDataElementDescription("age",

TYPE_SHORT_VALUE);

edeDesc.setMinOccurs(1);

edeDesc.setMaxOccurs(1);

//

definition

is

a

valid

event

definition

definition.addExtendedDataElementDescription(edeDesc);

Chapter

8.

Developing

an

event

catalog

application

79

Creating

an

event

catalog

bean

The

event

catalog

is

implemented

as

a

stateless

session

bean

using

the

Enterprise

JavaBeans

architecture.

To

access

the

event

catalog,

an

event

catalog

application

must

first

create

an

instance

of

the

event

catalog

session

bean.

Use

the

home

interface

to

create

an

instance

of

the

event

catalog

session

bean.

//use

home

interface

to

create

event

catalog

bean

InitialContext

context

=

new

InitialContext();

Object

eventCatalogHomeObj

=

context.lookup("ejb/com/ibm/events/catalog/EventCatalog");

EventCatalogHome

eventCatalogHome

=

(EventCatalogHome)

PortableRemoteObject.narrow(eventCatalogHomeObj,

EventCatalogHome.class);

eventCatalog

=

(EventCatalog)

eventCatalogHome.create();

Adding

an

event

definition

to

the

event

catalog

After

you

have

created

a

new

event

definition

and

populated

it

with

property

descriptions

and

extended

data

element

descriptions,

you

can

add

it

to

the

event

catalog.

After

an

event

is

added

to

the

event

catalog,

the

event

definition

cannot

be

modified,

but

it

can

be

replaced.

To

add

an

event

definition

to

the

event

catalog,

use

the

addEventDefinition

method.

boolean

result

=

eventCatalog.addEventDefinition(definition,

replace)

The

parameters

of

this

method

are

as

follows:

definition

The

event

definition

you

want

to

add.

This

must

be

a

valid

EventDefinition

instance.

replace

A

boolean

value

that

indicates

whether

the

specified

event

definition

replaces

an

existing

definition

that

has

the

same

name.

If

the

replace

parameter

is

false,

the

name

of

the

specified

event

definition

must

not

match

the

name

of

an

existing

event

definition

in

the

catalog.

If

the

name

exists,

an

EventDefinitionExistsException

exception

is

thrown.

If

the

replace

parameter

is

true,

the

new

event

definition

replaces

any

existing

event

definition

with

the

same

name

that

is

already

in

the

catalog.

However,

to

preserve

the

inheritance

hierarchy,

the

new

event

definition

must

name

the

same

parent

as

the

old

event

definition.

If

the

parent

is

not

the

same,

a

ParentNotValidException

exception

is

thrown.

The

returned

boolean

indicates

whether

an

existing

event

definition

was

replaced.

This

is

equal

to

true

only

if

replace

is

equal

to

true

and

an

event

definition

with

the

same

name

was

replaced

by

the

new

definition.

When

an

event

definition

is

added

to

the

event

catalog,

the

event

catalog

sends

an

event

to

the

event

server

notifying

event

consumers

that

this

change

has

taken

place.

If

you

attempt

to

add

an

event

definition

that

violates

inheritance

rules,

an

InheritanceNotValidException

exception

is

thrown

and

the

event

definition

is

not

added

to

the

catalog.

This

can

happen

if

a

new

event

definition

overrides

inherited

80

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

property

or

extended

data

element

descriptions

in

ways

that

are

not

valid,

or

if

replacing

an

existing

event

definition

causes

descendants

to

override

inherited

descriptions

in

ways

that

are

not

valid.

Related

concepts

“Change

notification”

on

page

76

“Inheritance”

on

page

74

Removing

an

event

definition

from

the

catalog

When

an

event

definition

is

removed,

the

event

catalog

does

not

check

the

event

server

to

determine

whether

any

existing

events

in

the

event

data

store

are

described

by

that

event

definition.

Therefore,

you

ensure

that

an

event

definition

is

no

longer

needed

before

you

remove

it

from

the

event

catalog.

If

an

event

definition

is

no

longer

needed,

you

can

remove

it

from

the

event

catalog.

To

remove

an

event

definition

from

the

event

catalog,

use

the

removeEventDefinition

method.

eventCatalog.removeEventDefinition(name)

The

name

parameter

is

the

name

of

the

event

definition

that

you

want

to

remove

from

the

event

catalog.

If

no

matching

event

definition

exists

in

the

event

catalog,

an

EventDefinitionNotFoundException

exception

is

thrown.

When

an

event

definition

is

removed

from

the

event

catalog,

its

children

and

all

other

descendants

are

also

removed.

For

each

event

definition

that

is

removed,

the

event

catalog

sends

an

event

to

the

event

server

notifying

event

consumers

that

this

change

has

taken

place.

Related

concepts

“Change

notification”

on

page

76

Querying

event

definitions

You

can

use

the

methods

of

the

event

catalog

bean

to

query

existing

event

definitions.

Queries

exist

for

retrieving

event

definitions

by

name

and

for

retrieving

event

definitions

that

satisfy

specific

inheritance

relationships.

To

query

event

definitions,

use

the

appropriate

method

of

the

com.ibm.events.catalog.EventCatalog

class.

Methods

exist

for

querying

specific

event

definition

or

querying

multiple

event

definitions

based

on

name

or

inheritance.

You

can

also

query

the

root

event

definition.

You

can

perform

the

following

queries:

v

Query

an

event

definition

by

name

v

Query

an

event

definition

by

pattern

v

Query

the

parent

of

an

event

definition

v

Query

the

ancestors

of

an

event

definition

v

Query

the

children

of

an

event

definition

v

Query

the

descendants

of

an

event

definition

v

Query

the

root

event

definition

Querying

an

event

definition

by

name

To

query

a

specific

event

definition

by

name,

use

the

getEventDefinition

method:

Chapter

8.

Developing

an

event

catalog

application

81

EventDefinition

definition

=

eventCatalog.getEventDefinition(name,

resolve);

The

parameters

of

this

method

are

as

follows:

name

A

string

that

specifies

the

name

of

the

event

definition

you

want

to

query.

resolve

A

boolean

value

that

indicates

whether

you

want

the

returned

event

definition

to

be

resolved

(true)

or

unresolved

(false).

The

returned

object

is

the

event

definition

that

matches

the

specified

name.

If

no

matching

event

definition

exists

in

the

catalog,

the

returned

object

is

null.

Related

concepts

“Inheritance”

on

page

74

Querying

event

definitions

by

pattern

To

query

all

of

the

event

definitions

whose

names

match

a

specified

pattern,

use

the

getEventDefinitions

method:

EventDefinition[]

definitions

=

eventCatalog.getEventDefinitions(pattern,

resolve);

The

parameters

of

this

method

are

as

follows:

pattern

A

string

that

specifies

the

pattern

to

be

compared

to

the

names

of

the

event

definitions.

In

this

string,

a

percent

character

(%)

matches

any

sequence

of

zero

or

more

characters,

and

an

underscore

(_)

matches

any

single

character.

All

other

characters

are

treated

literally.

For

example,

the

pattern

insurance%

matches

all

of

the

event

definitions

with

names

that

begin

with

the

word

insurance.

You

can

use

a

backslash

(\)

escape

character

to

specify

a

literal

percent

or

underscore

character.

For

example,

the

pattern

insurance_

matches

all

of

the

event

definitions

with

names

that

begin

with

the

string

insurance_.

To

specify

a

backslash

as

part

of

the

pattern,

type

two

backslashes.

resolve

A

boolean

value

that

indicates

whether

you

want

the

returned

event

definitions

to

be

resolved

(true)

or

unresolved

(false).

The

returned

object

is

an

array

that

contains

all

of

the

event

definitions

that

match

the

specified

pattern.

If

no

matching

event

definitions

exist

in

the

event

catalog,

the

returned

array

is

empty.

Related

concepts

“Inheritance”

on

page

74

Querying

the

parent

of

an

event

definition

To

query

the

immediate

parent

of

a

specified

event

definition,

use

the

getParent

method:

EventDefinition

definition

=

eventCatalog.getParent(name,

resolve);

The

parameters

of

this

method

are

as

follows:

82

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

name

A

string

that

specifies

the

name

of

the

event

definition

for

which

you

want

to

query

the

parent.

resolve

A

boolean

value

that

indicates

whether

you

want

the

returned

event

definition

to

be

resolved

(true)

or

unresolved

(false).

The

returned

object

is

the

immediate

parent

event

definition

of

the

specified

event

definition.

If

the

specified

event

definition

has

no

parent

(which

is

true

only

of

the

root

definition),

this

method

returns

null.

If

no

event

definition

in

the

catalog

matches

the

specified

name,

an

EventDefinitionNotFoundException

exception

is

thrown.

Related

concepts

“Inheritance”

on

page

74

Querying

the

ancestors

of

an

event

definition

To

query

the

ancestors

of

a

specified

event

definition

(all

of

the

event

definitions

from

which

it

inherits,

either

directly

or

indirectly),

use

the

getAncestors

method:

EventDefinition[]

definitions

=

eventCatalog.getAncestors(name,

resolve);

The

parameters

of

this

method

are

as

follows:

name

A

string

that

specifies

the

name

of

the

event

definition

for

which

you

want

to

query

the

ancestors.

resolve

A

boolean

value

that

indicates

whether

you

want

the

returned

event

definitions

to

be

resolved

(true)

or

unresolved

(false).

The

returned

object

is

an

array

that

contains

all

of

the

ancestors

of

the

specified

event

definition.

If

the

specified

event

definition

has

no

ancestors

(which

is

true

only

of

the

root

definition),

this

method

returns

an

empty

array.

If

no

event

definition

in

the

catalog

matches

the

specified

name,

an

EventDefinitionNotFoundException

exception

is

thrown.

Related

concepts

“Inheritance”

on

page

74

Querying

the

children

of

an

event

definition

To

query

the

immediate

children

of

a

specified

event

definition,

use

the

getChildren

method:

EventDefinition[]

definitions

=

eventCatalog.getChildren(name,

resolve);

The

parameters

of

this

method

are

as

follows:

name

A

string

that

specifies

the

name

of

the

event

definition

for

which

you

want

to

query

the

children.

resolve

A

boolean

value

that

indicates

whether

you

want

the

returned

event

definitions

to

be

resolved

(true)

or

unresolved

(false).

Chapter

8.

Developing

an

event

catalog

application

83

The

returned

object

is

an

array

that

contains

all

of

the

immediate

children

of

the

specified

event

definition.

If

the

specified

event

definition

has

no

children,

the

returned

array

is

empty.

If

no

event

definition

in

the

catalog

matches

the

specified

name,

an

EventDefinitionNotFoundException

exception

is

thrown.

Related

concepts

“Inheritance”

on

page

74

Querying

the

descendants

of

an

event

definition

To

query

the

descendants

of

a

specified

event

definition

(all

of

the

event

definitions

that

inherit

from

it,

either

directly

or

indirectly),

use

the

getDescendants

method:

EventDefinition[]

definitions

=

eventCatalog.getDescendants(name,

resolve);

The

parameters

of

this

method

are

as

follows:

name

A

string

that

specifies

the

name

of

the

event

definition

whose

descendants

you

want

to

query.

resolve

A

boolean

value

that

indicates

whether

you

want

the

returned

event

definitions

to

be

resolved

(true)

or

unresolved

(false).

The

returned

object

is

an

array

that

contains

all

of

the

descendants

of

the

specified

event

definition.

If

the

specified

event

definition

has

no

descendants,

this

method

returns

an

empty

array.

If

no

event

definition

in

the

catalog

matches

the

specified

name,

an

EventDefinitionNotFoundException

exception

is

thrown.

Related

concepts

“Inheritance”

on

page

74

Querying

the

root

event

definition

To

query

the

root

event

definition,

use

the

getRoot

method:

EventDefinition

definition

=

eventCatalog.getRoot();

The

returned

object

is

the

root

event

definition,

which

by

default

is

event.

If

the

event

catalog

is

empty,

this

method

returns

null.

Working

with

event

classes

and

source

categories

The

event

catalog

supports

binding

event

definitions

to

source

categories.

This

binding

associates

an

event

class

(identified

by

extension

name)

to

the

name

of

an

arbitrarily

defined

source

category.

Applications

can

use

these

categories

to

manage

event

classes

in

logical

groups.

These

categories

are

entirely

distinct

from

event

groups,

which

are

used

to

categorize

event

instances

according

to

their

content.

The

event

catalog

does

not

parse

or

interpret

the

source

category.

The

mapping

between

event

classes

and

categories

can

be

anything

that

is

meaningful

to

applications

that

use

the

event

catalog.

An

event

class

can

belong

to

multiple

source

categories.

You

can

write

event

catalog

applications

to

manage

event

classes

in

the

following

ways.

v

Create

new

bindings

v

Remove

an

existing

binding

84

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

v

Query

source

category

bindings

Creating

a

source

category

binding

To

bind

an

event

class

to

a

source

category,

use

the

EventCatalog.bindEventExtensionToSourceCategory

method:

eventCatalog.bindEventExtensionToSourceCategory(extensionName,

sourceCategory);

The

parameters

of

this

method

are

as

follows:

extensionName

A

string

that

specifies

the

extension

name

of

an

event

class

(the

value

of

the

extensionName

attribute).

This

must

be

a

legal

extension

name

as

defined

by

the

CommonBaseEvent

specification.

sourceCategory

A

string

that

specifies

a

source

category.

This

can

be

any

string,

provided

it

is

no

longer

than

64

characters.

Removing

a

source

category

binding

To

remove

a

binding

between

an

event

class

and

a

source

category,

use

the

EventCatalog.unbindEventExtensionFromSourceCategory

method:

eventCatalog.unbindEventExtensionFromSourceCategory(extensionName,

sourceCategory);

The

parameters

of

this

method

are

as

follows:

extensionName

A

string

that

specifies

the

extension

name

of

an

event

class

(the

value

of

the

extensionName

attribute).

This

must

be

a

legal

extension

name

as

defined

by

the

CommonBaseEvent

specification.

sourceCategory

A

string

that

specifies

a

source

category.

This

can

be

any

string,

provided

it

is

no

longer

than

64

characters.

Querying

source

category

bindings

You

can

use

the

methods

of

the

event

catalog

bean

to

query

source

category

bindings.

Queries

exist

for

retrieving

the

event

classes

that

belong

to

a

source

category,

the

source

categories

associated

with

an

event

class,

or

a

set

of

source

category

bindings

that

match

a

specified

pattern.

To

query

source

category

bindings,

use

the

appropriate

method

of

the

com.ibm.events.catalog.EventCatalog

class.

getEventExtensionNamesForSourceCategory

method

Queries

the

event

classes

that

belong

to

a

specified

source

category:

String[]

evClasses

=

eventCatalog.getEventExtensionNamesForSourceCategory(name);

The

parameters

of

this

method

are

as

follows:

name

A

string

that

specifies

the

name

of

a

source

category.

This

value

cannot

be

longer

than

64

characters.

Chapter

8.

Developing

an

event

catalog

application

85

The

returned

object

is

an

array

of

strings,

each

string

specifies

an

event

class

(the

value

of

the

extensionName

attribute

of

events

belonging

to

the

class).

If

no

event

classes

are

bound

to

the

specified

source

category,

the

returned

array

is

empty.

getSourceCategoriesForEventExtension

method

Queries

the

source

categories

associated

with

a

specified

event

class:

String[]

categories

=

eventCatalog.getSourceCategoriesForEventExtension(name);

The

parameters

of

this

method

are

as

follows:

name

A

string

that

specifies

the

name

of

an

event

class.

This

is

the

value

of

the

extensionName

attribute

of

events

that

belong

to

the

class.

The

returned

object

is

an

array

of

strings,

each

string

specifies

the

name

of

a

source

category

to

which

the

specified

event

class

belongs.

If

the

specified

event

class

is

a

member

of

any

source

categories,

the

returned

array

is

empty.

getEventExtensionToSourceCategoryBindings

method

Queries

source

category

bindings

for

those

that

match

a

specified

pattern:

java.util.Collection

bindings

=

eventCatalog.getEventExtensionToSourceCategoryBindings

(eventClassPattern,

categoryPattern);

The

parameters

of

this

method

are

as

follows:

eventClassPattern

A

string

that

specifies

the

pattern

you

want

to

compare

to

the

event

class

names.

Only

bindings

with

an

event

class

name

that

matches

the

specified

pattern

are

returned.

In

this

string,

a

percent

character

(%)

matches

any

sequence

of

zero

or

more

characters,

and

an

underscore

(_)

matches

any

single

character.

All

other

characters

are

treated

literally.

categoryPattern

A

string

that

specifies

the

pattern

you

want

to

compare

to

the

source

category

names.

Only

bindings

with

a

source

category

name

that

matches

the

specified

pattern

are

returned.

In

this

string,

a

percent

character

(%)

matches

any

sequence

of

zero

or

more

characters,

and

an

underscore

(_)

matches

any

single

character.

All

other

characters

are

treated

literally.

The

returned

object

is

a

collection

of

two-element

arrays,

each

representing

a

source

category

binding.

In

each

array,

the

first

element

is

a

string

that

specifies

the

name

of

an

event

class.

The

second

element

is

a

string

that

specifies

the

name

of

a

source

category.

These

arrays

are

sorted

in

ascending

order,

first

by

the

source

category

name

and

then

by

the

event

class

name.

If

no

bindings

exist,

or

no

existing

bindings

match

the

specified

patterns,

the

collection

is

empty.

For

example,

the

following

code

fragment

queries

all

bindings

of

event

classes

for

names

beginning

with

insurance_claim:

Collection

bindings

=

catalog.getEventExtensionToSourceCategoryBindings("insurance_claim%",

"%");

86

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

Source

category

bindings

only

associate

event

class

names

with

source

category

names.

The

existence

of

a

source

category

binding

for

a

particular

class

name

does

not

guarantee

that

an

event

definition

exists

for

that

event

class.

To

retrieve

the

event

definition

associated

with

an

event

class,

you

must

use

the

EventCatalog

methods

for

querying

event

definitions.

Related

tasks

“Querying

event

definitions”

on

page

81

Chapter

8.

Developing

an

event

catalog

application

87

88

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

Chapter

9.

Viewing

events

with

the

event

browser

Use

the

event

browser

to

select

and

review

common

base

events

in

the

event

database.

The

event

browser

uses

the

event

access

interface

to

query

event

data.

The

results

of

the

query

are

shown

in

the

browser.

1.

Start

the

event

browser.

a.

Click

Enterprise

applications

in

the

navigation

pane

of

the

administrative

console.

b.

Select

the

CBEViewer

check

box,

and

click

Start.

c.

Check

that

the

status

icon

is

green.

Start

the

CBEViewer

in

your

Web

browser,

using

the

server

name

and

port

9080.

The

Web

address

has

the

format

http://<localhost>:9080/cbeviewer/

2.

Specify

the

events

you

want

to

view.

See

“Specifying

the

events

to

view.”

3.

Select

the

view

of

the

returned

events.

See

“Working

with

the

returned

events”

on

page

90.

Related

tasks

“Querying

events

from

the

event

server”

on

page

59

Specifying

the

events

to

view

This

task

describes

how

to

use

the

event

browser

to

specify

search

criteria

for

querying

events

in

the

event

database.

This

task

assumes

that

you

have

already

started

the

event

browser.

1.

Optional:

Specify

the

calendar

period

for

the

report.

Enter

the

start

and

end

dates.

2.

Enter

the

maximum

number

of

records

that

you

want

to

search

with

the

specified

criteria.

The

default

number

of

records

is

200.

3.

Required:

Specify

the

event

group

to

search.

The

default

is

All

events.

For

more

information

on

the

event

group

profile,

see

“Default

configuration”

on

page

9.

4.

Required:

Specify

the

data

store

to

search.

The

field

is

a

Java

Naming

and

Directory

Interface

(JNDI)

name,

an

Enterprise

JavaBeans

(EJB)

reference

that

can

be

configured

in

the

administrative

console.

The

WebSphere

Application

Server

default

is

java:/comp/env/events/access.

For

more

information

on

the

data

store

profile,

see

“Default

configuration”

on

page

9.

5.

Optional:

Enter

your

other

search

criteria

in

the

appropriate

fields.

6.

Click

Get

data.

The

number

of

common

base

events

that

match

the

search

criteria

is

displayed.

To

view

the

returned

events,

select

a

view

from

the

navigation

bar.

When

you

view

event

data,

you

can

change

your

search

criteria

at

any

time

by

clicking

Get

data.

Related

tasks

Chapter

9,

“Viewing

events

with

the

event

browser”
Use

the

event

browser

to

select

and

review

common

base

events

in

the

event

database.

©

Copyright

IBM

Corp.

2004

89

Working

with

the

returned

events

This

task

describes

how

to

use

the

event

browser

to

view

the

events

returned

from

a

query.

This

task

acts

on

data

that

is

returned

by

a

submitted

query,

as

described

in

“Specifying

the

events

to

view”

on

page

89.

The

query

returns

all

the

events

that

meet

your

criteria.

1.

Select

a

view

from

the

navigation

bar.

The

navigation

bar

contains

the

following

views

of

the

previous

query:

All

All

the

events

returned.

Processes

Process

choreographer

events

for

a

specific

process

instance.

Data

Events

with

the

extension

name

ECS:UserDataEvent.

This

event

type

is

created

by

the

addUserDataEvent

method

of

the

ECSEmitter

class.

Servers

Events

for

a

specific

server.
2.

Perform

one

of

the

following

actions.

v

If

you

selected

Processes

in

step

1,

select

a

process

template,

and

then

a

process

instance.

v

If

you

selected

Servers

in

step

1,

select

a

server.
3.

Click

an

event

to

display

the

event

data

in

the

pane

at

the

bottom

of

the

browser

window.

Related

tasks

“Creating

and

populating

an

event

using

the

ECSEmitter

class”

on

page

38

90

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

Appendix.

Command

reference

Command-line

scripts

are

available

to

access

some

functions

of

the

Common

Event

Infrastructure.

These

scripts

are

implemented

as

Jacl

scripts,

which

must

be

run

using

the

WebSphere

wsadmin

tool

(located

in

the

install_root/bin

directory).

For

more

information

about

the

wsadmin

tool,

see

the

WebSphere

Application

Server

documentation.

Use

the

following

syntax

to

run

the

scripts:

wsadmin

-f

scriptname.jacl

You

can

shorten

parameter

names,

as

long

as

you

provide

enough

of

the

name

to

distinguish

it

from

other

parameters.

For

example,

when

you

use

the

eventquery.jacl

script,

you

can

type

-ex

instead

of

-extensionname.

However,

-e

is

not

valid,

because

it

can

represent

either

-extensionname

or

-end.

To

get

help

with

the

syntax

and

usage

for

a

command,

type

the

command

followed

by

the

word

help:

wsadmin

-f

scriptname.jacl

help

If

you

are

using

the

wsadmin

tool

with

the

SOAP

protocol,

a

command

might

time

out

before

the

operation

can

complete.

For

example,

this

might

happen

if

you

query

or

purge

a

large

number

of

events

from

the

event

server.

If

this

happens,

the

wsadmin

tool

displays

an

error

message

indicating

a

failed

SOAP

RPC

call:

Failed

to

make

the

SOAP

RPC

call:

invoke

If

you

get

this

error

message,

try

the

command

again,

specifying

RMI

as

the

connection

type

and

2809

as

the

destination

port.

For

example,

the

following

command

purges

events

from

the

event

server

using

an

RMI

connection:

wsadmin

-conntype

rmi

-port

2809

eventpurge.jacl

-seconds

0

For

more

information

about

the

-conntype

parameter

of

the

wsadmin

tool,

refer

to

the

WebSphere

Application

Server

documentation.

emitevent.jacl

Purpose

Sends

an

event

to

the

event

server.

wsadmin

-f

emitevent.jacl

[-xml

url]

[-msg

message]

[-severity

severity]

[-extensionname

extension_name]

[-emitter

profile_name]

[-synchronous

|

-asynchronous]

Description

The

emitevent.jacl

script

provides

a

command-line

interface

for

submitting

events

to

the

event

server.

You

can

provide

the

event

content

by

providing

a

source

XML

file

or

by

specifying

property

values

on

the

command

line.

Events

generated

by

this

script

have

the

following

default

content:

©

Copyright

IBM

Corp.

2004

91

<CommonBaseEvent

creationTime=current_system_time

version="1.0.1">

<sourceComponentId

component="emitevent.jacl"

componentIdType="Application"

location=local_hostname

locationType="Hostname"

subComponent="com.ibm.events.cli.util.EmitEventCliHelper"

componentType="http://www.ibm.com/namespaces/autonomic/Tivoli/EventInfrastructure"/>

<situation

categoryName="ReportSituation">

<situationType

xsi:type="ReportSituation"

reasoningScope="EXTERNAL"

reportCategory="CLI"/>

</situation>

</CommonBaseEvent>

The

current_system_time

parameter

is

the

system

time

at

which

the

event

is

generated,

specified

as

an

XML

dateTime

string.

Parameters

-xml

url

A

uniform

resource

locator

(URL)

that

specifies

the

location

of

an

XML

document

that

contains

the

event

to

be

submitted.

This

XML

document

must

conform

to

the

Common

Base

Event

version

1.0.1

XSD

schema.

If

no

URL

scheme

(such

as

http://)

is

specified,

a

local

file

is

assumed.

This

parameter

is

optional.

Two

sample

XML

files,

eventsample1.xml

and

eventsample2.xml,

are

available

in

the

install_root/events/samples

directory.

-msg

message

The

value

to

use

for

the

message

property

of

the

event.

If

the

message

contains

spaces,

enclose

this

value

in

quotation

marks.

This

parameter

is

optional.

If

you

specify

this

parameter

in

addition

to

an

XML

file,

the

value

of

the

-msg

parameter

overrides

any

value

specified

in

the

XML

file

for

the

msg

property.

-severity

severity

The

value

to

use

for

the

severity

property

of

the

event.

This

parameter

is

optional.

If

you

specify

this

parameter

in

addition

to

an

XML

file,

the

value

of

the

-severity

parameter

overrides

any

value

specified

in

the

XML

file

for

the

severity

property.

-extensionname

extension_name

The

value

to

use

for

the

extensionName

property

of

the

event.

If

the

extension

name

contains

spaces,

enclose

this

value

in

quotation

marks.

This

parameter

is

optional.

If

you

specify

this

parameter

in

addition

to

an

XML

file,

the

value

of

the

-extensionname

parameter

overrides

any

value

specified

in

the

XML

file

for

the

extensionName

property.

-emitter

profile_name

The

Java

Naming

and

Directory

Interface

(JNDI)

name

of

the

emitter

factory

profile

to

use

when

obtaining

an

emitter.

This

parameter

is

optional.

If

this

parameter

is

not

specified,

the

default

emitter

factory

profile

(/com/ibm/events/configuration/emitter/Default)

is

used.

-synchronous

|

-asynchronous

The

synchronization

mode

to

use

for

event

transmission.

This

parameter

is

optional.

If

it

is

not

specified,

the

preferred

synchronization

mode

configured

for

the

emitter

is

used.

Examples

The

following

example

sends

an

event

to

the

event

server

with

a

severity

of

30

and

the

extension

name

test_event

(all

other

properties

have

the

default

values):

wsadmin

-f

emitevent.jacl

-severity

30

-extensionname

test_event

92

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

The

following

example

sends

an

event

using

the

properties

specified

in

eventsample1.xml:

wsadmin

-f

emitevent.jacl

-xml

../samples/eventsample1.xml

eventquery.jacl

Purpose

Generates

a

report

listing

events

in

the

event

database.

wsadmin

-f

eventquery.jacl

[

-globalinstanceid

global_instance_id

|

-group

event_group]

[

-severity

severity]

[

-extensionname

extension_name]

[

-start

start_time]

[

-end

end_time]

[

-number

number]

[

-ascending|

-descending]

Description

The

eventquery.jacl

script

queries

the

event

database

and

generates

a

report

that

lists

the

result.

You

can

query

events

based

on

the

event

group,

the

severity,

or

the

extension

name.

You

can

also

query

events

that

were

created

during

a

specified

period

of

time.

Parameters

-globalinstanceid

global_instance_id

The

global

instance

identifier

of

the

event

to

query.

Either

this

parameter

or

-group

(but

not

both)

is

required.

-group

event_group

The

event

group

from

which

to

query

events.

The

event_group

value

must

be

the

name

of

an

event

group

defined

in

the

Common

Event

Infrastructure

configuration.

Either

this

parameter

or

-globalinstanceid

(but

not

both)

is

required.

-severity

severity

The

severity

of

the

events

that

you

want

to

include

in

the

report.

The

severity

value

must

be

an

integer.

Only

events

with

a

severity

equal

to

the

value

that

you

specify

are

included

in

the

report.

This

parameter

is

optional.

-extensionname

extension_name

The

extension

name

of

events

that

you

want

include

in

the

report.

Use

this

parameter

to

restrict

the

query

to

events

of

a

specific

type.

Only

events

with

the

extensionName

property

equal

to

extensionName

are

included

in

the

report.

This

parameter

is

optional.

-start

start_time

The

earliest

time

of

the

events

that

you

want

to

include

in

the

report.

Use

this

parameter

to

restrict

the

query

to

events

that

were

generated

after

a

specified

date

and

time.

This

parameter

must

be

a

date

and

time

that

is

specified

according

to

the

XML

dateTime

data

type.

The

basic

format

is

CCYY-MM-DDThh:mm:ss,

optionally

followed

by

a

time

zone

indicator.

For

example,

noon

on

1

January

2004

in

Eastern

Standard

Time

is

2004-01-01T12:00:00-05:00.

For

more

information

about

the

dateTime

data

type,

refer

to

the

XML

schema

at

www.w3.org.

-end

end_time

The

latest

time

of

the

events

that

you

want

to

include

in

the

report.

Use

this

parameter

to

restrict

the

query

to

events

that

were

generated

before

a

specified

Appendix.

Command

reference

93

http://www.w3.org/TR/xmlschema-2/#dateTime

date

and

time.

This

parameter

must

be

a

date

and

time

that

is

specified

according

to

the

XML

dateTime

data

type.

For

more

information,

see

the

description

of

the

-start

parameter.

-number

number

The

maximum

number

of

events

that

you

want

to

include

in

the

report.

This

parameter

must

be

an

integer.

If

the

number

of

matching

events

in

the

database

exceeds

the

specified

value,

the

report

is

truncated.

If

the

report

is

sorted

in

ascending

order,

this

means

that

the

most

recent

matching

events

are

omitted.

If

the

report

is

sorted

in

descending

order,

the

oldest

matching

events

are

omitted.

-ascending|

-descending

The

chronological

order

in

which

the

events

in

the

report

are

sorted.

This

must

be

one

of

the

following

values:

ascending

Ascending

(chronological)

order,

with

the

oldest

events

first.

This

is

the

default

value.

descending

Descending

(reverse

chronological)

order,

with

the

most

recent

events

first.

Example

The

following

example

lists

all

of

the

events

from

the

database

that

belong

to

the

All

events

event

group

and

were

generated

on

17

February

2004.

The

report

is

sorted

in

reverse

chronological

order:

eventquery.jacl

-group

"All

events"

-start

"2004-02-17T00:00:00-05:00"

-end

"2004-02-17T23:59:59-05:00"

-order

DESC

eventpurge.jacl

Purpose

Purges

events

from

the

event

database.

wsadmin

-f

eventpurge.jacl

-group

event_group

[

-severity

severity]

[

-extensionname

extension_name]

-seconds

seconds

[

-size

size]

Description

The

eventpurge.jacl

script

purges

events

from

the

event

database.

You

can

purge

all

events

from

the

event

database,

or

you

can

limit

the

purge

to

events

meeting

certain

criteria.

Parameters

-group

eventGroup

The

event

group

from

which

to

purge

the

events.

The

event_group

value

must

be

the

name

of

an

event

group

that

is

defined

in

the

Common

Event

Infrastructure

configuration.

This

parameter

is

required.

-severity

severity

The

severity

of

the

events

that

you

want

to

purge.

The

severity

value

must

be

an

integer.

Only

events

with

a

severity

equal

to

the

value

that

you

specify

are

purged.

This

parameter

is

optional.

94

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

-name

extension_name

The

extension

name

of

the

events

that

you

want

to

purge.

Use

this

parameter

to

restrict

the

purge

to

events

of

a

specific

type.

Only

events

with

an

extensionName

property

equal

to

extensionName

are

purged.

This

parameter

is

optional.

-seconds

seconds

The

minimum

age

of

the

events

that

you

want

to

purge.

The

seconds

value

must

be

an

integer.

Only

events

older

than

the

specified

number

of

seconds

are

purged.

This

parameter

is

required.

-size

size

The

number

of

events

to

purge

in

a

single

transaction.

The

size

value

must

be

an

integer.

After

this

number

of

events

is

purged,

the

command

commits

the

transaction

before

continuing

in

a

new

transaction.

This

parameter

is

optional.

Example

The

following

example

purges

all

of

the

events

from

the

database

with

a

severity

of

20

(harmless)

that

were

generated

earlier

than

10

minutes

ago.

eventpurge.jacl

-group

"All

events"

-severity

20

-seconds

600

eventcatalog.jacl

Purpose

Lists

event

definitions

or

source

categories

in

the

event

catalog

and

imports

and

exports

event

definitions.

wsadmin

-f

eventcatalog.jacl

[

-listdefinitions

|

-listcategories

|

-exportdefinitions

|

-importdefinitions]

[

-file

filename]

[

-name

event_def_name]

[

-pattern]

[

-resolve]

[

-replace]

Description

The

eventcatalog.jacl

script

provides

command-line

access

to

the

contents

of

the

event

catalog.

It

also

provides

support

for

importing

and

exporting

event

definitions.

Parameters

-listdefinitions

Lists

the

specified

event

definitions

in

a

readable

format,

sorted

by

name

in

ascending

order.

The

listing

is

written

to

the

file

specified

by

the

-file

parameter.

If

this

parameter

is

not

specified,

the

listing

is

written

to

the

standard

output.

-listcategories

Lists

all

of

the

defined

event

source

categories

and

the

event

classes

they

contain,

sorted

by

source

category

in

ascending

order.

The

listing

is

written

to

the

file

specified

by

the

-file

parameter.

If

this

parameter

is

not

specified,

the

listing

is

written

to

the

standard

output.

-exportdefinitions

Lists

the

specified

event

definitions

in

a

format

that

is

suitable

for

importing.

The

listing

is

written

as

an

XML

document

conforming

to

the

eventdefinition5_0_1.xsd

XSD

schema,

which

is

packaged

in

the

Appendix.

Command

reference

95

events-client.jar

file.

The

listing

is

written

to

the

file

specified

by

the

-file

parameter.

If

this

parameter

is

not

specified,

the

listing

is

written

to

the

standard

output.

-importdefinitions

Reads

a

listing

of

event

definitions

from

a

file

and

adds

the

event

definitions

to

the

event

catalog.

The

listing

of

event

definitions

to

import

must

be

written

as

an

XML

document

that

conforms

to

the

eventdefinition.xsd

XSD

schema.

-file

filename

For

a

list

or

export

operation,

the

name

of

the

file

to

which

the

output

is

written.

For

an

import

operation,

the

file

that

contains

the

event

definitions

to

be

imported.

This

parameter

is

required

for

import

operations

and

optional

for

list

and

export

operations.

If

this

parameter

is

not

specified

for

a

list

or

export

operation,

the

output

is

written

to

the

standard

output.

-name

event_def_name

A

name

that

identifies

the

event

definitions

to

be

listed

or

exported.

If

the

-pattern

parameter

is

not

specified,

the

-name

parameter

identifies

a

single

specific

event

definition.

If

-pattern

is

specified,

-name

specifies

a

pattern

against

which

event

definition

names

are

compared.

In

this

pattern,

a

percent

character

(%)

matches

any

sequence

of

zero

or

more

characters,

and

an

underscore

(_)

matches

any

single

character.

All

other

characters

are

treated

literally.

This

parameter

is

valid

only

with

the

-listdefinitions

and

-exportdefinitions

options.

It

is

not

valid

with

the

-listcategories

or

-importdefinitions

options.

-pattern

Specifies

that

the

value

specified

with

the

-name

parameter

is

to

be

treated

as

a

pattern.

This

parameter

is

valid

only

with

the

-listdefinitions

and

-exportdefinitions

options.

It

is

not

valid

with

the

-listcategories

or

-importdefinitions

options.

-resolve

Specifies

that

the

event

definitions

to

be

listed

or

exported

are

resolved.

A

resolved

event

definition

includes

the

property

and

extended

data

element

descriptions

that

are

inherited

from

its

ancestors

in

the

inheritance

hierarchy.

If

this

parameter

is

not

specified,

the

event

definition

listing

contains

only

the

raw

event

definitions.

This

parameter

is

valid

only

with

the

-listdefinitions

and

-exportdefinitions

options.

It

is

not

valid

with

the

-listcategories

or

-importdefinitions

options.

-replace

Specifies

that

the

event

definitions

to

be

imported

replace

existing

event

definitions

with

the

same

names.

If

this

parameter

is

not

specified,

a

name

collision

between

an

existing

event

definition

and

an

imported

event

definition

results

in

an

error,

and

no

event

definitions

are

imported.

This

parameter

is

valid

only

with

the

-importdefinitions

option.

It

is

not

valid

with

the

-listdefinitions,

-listcategories,

or

-exportdefinitions

options.

Examples

This

example

displays

the

contents

of

a

single,

resolved

event

definition

named

insurance_claim_start

and

writes

the

result

to

standard

output:

wsadmin

-f

eventcatalog.jacl

-listdefinitions

-name

insurance_claim_start

-resolve

96

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

This

example

exports

a

set

of

event

definitions,

the

names

of

which

begin

with

the

string

insurance_claim_start

and

writes

the

result

to

an

XML

file:

wsadmin

-f

eventcatalog.jacl

-exportdefinitions

-file

d:\myexport.xml

-name

insurance_claim_start%

-pattern

This

example

imports

a

set

of

event

definitions

from

the

file

myimport.xmland

replaces

existing

definitions

with

the

same

names:

wsadmin

-f

eventcatalog.jacl

-importdefinitions

-file

d:\myimport.xml

-replace

This

example

displays

a

listing

of

all

defined

event

source

categories

and

the

events

they

contain.

The

result

is

written

to

standard

output:

wsadmin

-f

eventcatalog.jacl

-listcategories

Appendix.

Command

reference

97

98

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

Notices

References

in

this

publication

to

IBM

products,

programs,

or

services

do

not

imply

that

IBM

intends

to

make

these

available

in

all

countries

in

which

IBM

operates.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

IBM’s

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

of

IBM’s

intellectual

property

rights

may

be

used

instead

of

the

IBM

product,

program,

or

service.

Evaluation

and

verification

of

operation

in

conjunction

with

other

products,

except

those

expressly

designated

by

IBM,

is

the

user’s

responsibility.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

500

Columbus

Avenue

Thornwood,

New

York

10594

USA

©

Copyright

IBM

Corp.

2004

99

100

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

Trademarks

and

service

marks

The

following

terms

are

trademarks

of

IBM

Corporation

in

the

United

States,

other

countries,

or

both:

v

AIX

v

AS/400

v

CICS

v

Cloudscape

v

DB2

v

DFSMS

v

Domino

v

Everyplace

v

iSeries

v

IBM

v

IMS

v

Informix

v

iSeries

v

Language

Environment

v

Lotus

v

MQSeries

v

MVS

v

OS/390

v

RACF

v

Redbooks

v

RMF

v

SecureWay

v

SupportPac

v

Tivoli

v

ViaVoice

v

VisualAge

v

VTAM

v

WebSphere

v

z/OS

v

zSeries

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

©

Copyright

IBM

Corp.

2004

101

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

102

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1.1:

Using

the

Common

Event

Infrastructure

	Contents
	About this document
	How to send your comments

	Chapter 1. Introduction to the Common Event Infrastructure
	About the Common Event Infrastructure in WebSphere Application Server
	The Common Base Event model
	Common base event properties
	Attributes of the CommonBaseEvent element that are relevant to WebSphere events
	Identification of the event source
	Event context elements
	Situation elements

	Chapter 2. Planning to use the Common Event Infrastructure
	Chapter 3. Installing and configuring the Common Event Infrastructure
	Default configuration
	Configuring the event database
	Database configuration logs and messages
	Configuring a Cloudscape database
	Configuring a DB2 database on a Linux, UNIX, or Windows system
	Configuring an Oracle database
	Creating a database response file
	Cloudscape database response file
	DB2 database response file for Linux, UNIX, and Windows systems
	Oracle database response file

	Running database configuration scripts on Linux, UNIX, and Windows systems
	Upgrading a Cloudscape event database

	Deploying the Common Event Infrastructure application
	Configuring default event messaging
	Configuring event messaging using another JMS provider
	Configuring the Common Event Infrastructure
	Configuring the application events service
	Creating an emitter factory profile
	Creating an event group

	Chapter 4. Administering the Common Event Infrastructure
	Logging and tracing in the WebSphere environment
	Updating database statistics
	Reorganizing database tables
	Removing the Common Event Infrastructure configuration
	Removing the Common Event Infrastructure application
	Removing the event messaging enterprise application
	Removing the event database

	Chapter 5. Working with events
	Life cycle of an event
	Event property data
	Creating an event object
	Creating a new event factory
	Getting an event factory by JNDI lookup
	Creating and populating an event using the ECSEmitter class
	Creating and populating an event using the event factory directly
	Setting property data automatically

	Retrieving data from a received event
	Converting XML events
	Accessing event instance metadata

	Chapter 6. Developing an event source
	Emitters and emitter factories
	Obtaining an emitter
	Sending events
	Sending an event with the current emitter settings
	Overriding the current emitter settings
	Changing the emitter settings
	Changing the synchronization mode
	Changing the transaction mode
	Querying the transaction mode

	Freeing emitter resources
	Filtering events
	Filtering events with the default filter plug-in
	Implementing a filter plug-in

	Chapter 7. Developing an event consumer
	Java Messaging Service interface and event consumers
	Developing an event consumer as a message-driven bean (MDB)
	Developing a non-MDB event consumer
	Querying events from the event server
	Creating an event access bean
	Querying events by global instance identifier
	Querying events by event group
	Querying a limited number of events from an event group
	Querying all events from an event group
	Querying the existence of events in an event group

	Querying events by association type
	Purging events from the data store

	Writing event selectors
	Writing XPath event selectors
	Writing event selectors for the default data store plug-in

	Implementing a data store plug-in

	Chapter 8. Developing an event catalog application
	Event definitions
	Property descriptions
	Extended data element descriptions
	Inheritance

	Change notification
	Creating an event definition
	Adding property descriptions to an event definition
	Adding extended data element descriptions to an event definition
	Creating an event catalog bean
	Adding an event definition to the event catalog
	Removing an event definition from the catalog
	Querying event definitions
	Querying an event definition by name
	Querying event definitions by pattern
	Querying the parent of an event definition
	Querying the ancestors of an event definition
	Querying the children of an event definition
	Querying the descendants of an event definition
	Querying the root event definition

	Working with event classes and source categories
	Creating a source category binding
	Removing a source category binding
	Querying source category bindings

	Chapter 9. Viewing events with the event browser
	Specifying the events to view
	Working with the returned events

	Appendix. Command reference
	emitevent.jacl
	eventquery.jacl
	eventpurge.jacl
	eventcatalog.jacl

	Notices
	Trademarks and service marks

