
WebSphere® Application

Server,

Version

5.1.1

Security

���

Note

Before

using

this

information,

be

sure

to

read

the

general

information

under

“Notices”

on

page

497.

Compilation

date:

June

25,

2004

©

Copyright

International

Business

Machines

Corporation

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

How

to

send

your

comments

.

.

.

.

. v

Chapter

1.

Welcome

to

Security

.

.

.

. 1

Chapter

2.

Securing

applications

and

their

environments

.

.

.

.

.

.

.

.

.

. 9

Planning

to

secure

your

environment

.

.

.

.

.

. 10

Security

considerations

when

adding

a

Base

Application

Server

node

to

Network

Deployment

19

Creating

login

key

files

.

.

.

.

.

.

.

.

. 20

Preparing

truststore

files

.

.

.

.

.

.

.

.

. 21

Configuring

the

application

server

for

interoperability

.

.

.

.

.

.

.

.

.

.

.

. 21

Implementing

security

considerations

.

.

.

.

.

. 22

Securing

your

environment

before

installation

.

. 22

Securing

your

environment

after

installation

.

. 23

Protecting

plain

text

passwords

.

.

.

.

.

.

. 24

PropFilePasswordEncoder

command

reference

.

. 26

Migrating

security

configurations

from

previous

releases

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

Migrating

custom

user

registries

.

.

.

.

.

. 27

Migrating

trust

association

interceptors

.

.

.

. 30

Migrating

Common

Object

Request

Broker

Architecture

programmatic

login

to

Java

Authentication

and

Authorization

Service

.

.

. 33

Migrating

from

the

CustomLoginServlet

class

to

servlet

filters

.

.

.

.

.

.

.

.

.

.

.

.

. 36

Developing

secured

applications

.

.

.

.

.

.

. 38

Developing

with

programmatic

security

APIs

for

Web

applications

.

.

.

.

.

.

.

.

.

.

. 38

Developing

form

login

pages

.

.

.

.

.

.

. 46

Developing

with

programmatic

APIs

for

EJB

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 50

Programmatic

login

.

.

.

.

.

.

.

.

.

.

. 54

Developing

programmatic

logins

with

the

Java

Authentication

and

Authorization

Service

.

.

. 62

Custom

login

module

development

for

a

system

login

configuration

.

.

.

.

.

.

.

.

.

.

. 67

Example:

Customizing

a

server-side

Java

Authentication

and

Authorization

Service

authentication

and

login

configuration

.

.

.

. 83

Example:

Getting

the

Caller

Subject

from

the

Thread

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

Example:

Getting

the

RunAs

Subject

from

the

Thread

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

Example:

User

revocation

from

a

cache

.

.

.

. 91

Developing

your

own

J2C

principal

mapping

module

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

Developing

custom

user

registries

.

.

.

.

.

. 94

Developing

a

custom

interceptor

for

trust

associations

.

.

.

.

.

.

.

.

.

.

.

.

. 103

Trust

association

interceptor

support

for

Subject

creation

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

Assembling

secured

applications

.

.

.

.

.

.

. 110

Enterprise

bean

component

security

.

.

.

.

. 111

Securing

enterprise

bean

applications

using

the

Assembly

Toolkit

.

.

.

.

.

.

.

.

.

.

. 111

Web

component

security

.

.

.

.

.

.

.

.

. 113

Securing

Web

applications

using

the

Assembly

Toolkit

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

Role-based

authorization

.

.

.

.

.

.

.

. 116

Adding

users

and

groups

to

roles

using

the

Assembly

Toolkit

.

.

.

.

.

.

.

.

.

.

. 121

Mapping

users

to

RunAs

roles

using

the

Assembly

Toolkit

.

.

.

.

.

.

.

.

.

.

. 121

Deploying

secured

applications

.

.

.

.

.

.

. 122

Assigning

users

and

groups

to

roles

.

.

.

.

. 123

Delegations

.

.

.

.

.

.

.

.

.

.

.

.

. 128

Assigning

users

to

RunAs

roles

.

.

.

.

.

. 130

Updating

and

redeploying

secured

applications

134

Testing

security

.

.

.

.

.

.

.

.

.

.

.

.

. 135

Managing

security

.

.

.

.

.

.

.

.

.

.

.

. 136

Global

security

.

.

.

.

.

.

.

.

.

.

.

. 136

Configuring

global

security

.

.

.

.

.

.

.

. 137

Configuring

server

security

.

.

.

.

.

.

.

. 144

Administrative

console

and

naming

service

authorization

.

.

.

.

.

.

.

.

.

.

.

. 147

Assigning

users

to

administrator

roles

.

.

.

. 150

Assigning

users

to

naming

roles

.

.

.

.

.

. 154

Authentication

mechanisms

.

.

.

.

.

.

. 155

Configuring

authentication

mechanisms

.

.

. 156

User

registries

.

.

.

.

.

.

.

.

.

.

.

. 187

Configuring

user

registries

.

.

.

.

.

.

.

. 188

Java

Authentication

and

Authorization

Service

240

Configuring

application

logins

for

Java

Authentication

and

Authorization

Service

.

.

. 243

Identity

mapping

.

.

.

.

.

.

.

.

.

.

. 260

Configuring

inbound

identity

mapping

.

.

.

. 262

Configuring

outbound

mapping

to

a

different

target

realm

.

.

.

.

.

.

.

.

.

.

.

.

. 271

Security

attribute

propagation

.

.

.

.

.

.

. 276

Enabling

security

attribute

propagation

.

.

.

. 282

Default

PropagationToken

.

.

.

.

.

.

.

. 284

Implementing

a

custom

PropagationToken

.

. 290

Default

AuthorizationToken

.

.

.

.

.

.

. 300

Implementing

a

custom

AuthorizationToken

.

. 304

Default

SingleSignonToken

.

.

.

.

.

.

.

. 314

Implementing

a

custom

SingleSignonToken

.

. 315

Default

AuthenticationToken

.

.

.

.

.

.

. 328

Implementing

a

custom

AuthenticationToken

329

Propagating

a

custom

Java

serializable

object

339

Authentication

protocol

for

EJB

security

.

.

. 343

Configuring

Common

Secure

Interoperability

Version

2

and

Security

Authentication

Service

authentication

protocols

.

.

.

.

.

.

.

.

. 353

Secure

Sockets

Layer

.

.

.

.

.

.

.

.

.

. 384

Configuring

Secure

Sockets

Layer

.

.

.

.

. 390

Cryptographic

token

support

.

.

.

.

.

.

. 432

Opening

a

cryptographic

token

using

the

key

management

utility

(iKeyman)

.

.

.

.

.

. 433

Configuring

to

use

cryptographic

tokens

.

.

. 434

©

Copyright

IBM

Corp.

2004

iii

Using

Java

Secure

Socket

Extension

and

Java

Cryptography

Extension

with

Servlets

and

enterprise

bean

files

.

.

.

.

.

.

.

.

.

. 436

Java

2

security

.

.

.

.

.

.

.

.

.

.

.

. 441

Configuring

Java

2

security

.

.

.

.

.

.

.

. 448

Troubleshooting

security

configurations

.

.

.

. 479

Tuning

security

configurations

.

.

.

.

.

.

.

. 479

Tuning

CSIv2

.

.

.

.

.

.

.

.

.

.

.

. 480

Tuning

LDAP

authentication

.

.

.

.

.

.

. 480

Tuning

Web

authentication

.

.

.

.

.

.

.

. 481

Tuning

authorization

.

.

.

.

.

.

.

.

.

. 481

Security

cache

properties

.

.

.

.

.

.

.

. 482

Secure

Sockets

Layer

performance

tips

.

.

.

. 482

Tuning

security

.

.

.

.

.

.

.

.

.

.

.

.

. 484

Chapter

3.

Integrating

IBM

WebSphere

Application

Server

security

with

existing

security

systems

.

.

.

.

.

. 487

Interoperability

issues

for

security

.

.

.

.

.

. 491

Interoperability

with

C++

common

object

request

broker

architecture

client

support

and

limitations

.

.

.

.

.

.

.

.

.

.

.

.

. 491

Interoperating

with

a

C++

common

object

request

broker

architecture

client

.

.

.

.

.

.

.

.

. 492

Interoperating

with

previous

product

versions

.

. 494

Security:

Resources

for

learning

.

.

.

.

.

.

. 495

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 497

Trademarks

and

service

marks

.

.

.

. 499

iv

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

How

to

send

your

comments

Your

feedback

is

important

in

helping

to

provide

the

most

accurate

and

highest

quality

information.

v

To

send

comments

on

articles

in

the

WebSphere

Application

Server

Information

Center

1.

Display

the

article

in

your

Web

browser

and

scroll

to

the

end

of

the

article.

2.

Click

on

the

Feedback

link

at

the

bottom

of

the

article,

and

a

separate

window

containing

an

e-mail

form

appears.

3.

Fill

out

the

e-mail

form

as

instructed,

and

click

on

Submit

feedback

.
v

To

send

comments

on

PDF

books,

you

can

e-mail

your

comments

to:

wasdoc@us.ibm.com

or

fax

them

to

919-254-0206.

Be

sure

to

include

the

document

name

and

number,

the

WebSphere

Application

Server

version

you

are

using,

and,

if

applicable,

the

specific

page,

table,

or

figure

number

on

which

you

are

commenting.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

2004

v

vi

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Chapter

1.

Welcome

to

Security

IBM

WebSphere

Application

Server

Version

5

provides

security

infrastructure

and

mechanisms

to

protect

sensitive

J2EE

resources

and

administrative

resources

and

to

address

enterprise

end-to-end

security

requirements

on

authentication,

resource

access

control,

data

integrity,

confidentiality,

privacy,

and

secure

interoperability.

IBM

WebSphere

Application

Server

security

is

based

on

industry

standards.

Version

5

has

an

open

architecture

that

processes

secure

connectivity

and

interoperability

with

Enterprise

Information

Systems

including:

v

DB2

v

CICS

v

MQ

Series

v

Lotus

Domino

v

IBM

Directory

WebSphere

Application

Server

also

supports

other

security

providers

including:

v

IBM

Tivoli

Access

Manager

(Policy

Director)

v

WebSEAL

secure

proxy

server

Based

on

industry

standards

The

product

provides

a

unified,

policy-based,

and

permission-based

model

for

securing

Web

resources

and

enterprise

JavaBeans

according

to

J2EE

specifications.

Specifically

Version

5

complies

with

J2EE

specification

Version

1.3

and

has

passed

the

J2EE

Compatibility

Test

Suite.

Product

security

is

a

layered

architecture

built

on

top

of

an

operating

system

platform,

a

Java

virtual

machine

(JVM),

and

Java

2

security.

This

security

model

employs

a

rich

set

of

security

technology

including

the:

v

Java

2

security

model,

which

provides

policy-based,

fine-grained,

and

permission-based

access

control

to

system

resources.

v

Common

Secure

Interoperability

Version

2

(CSIv2)

security

protocol,

in

addition

to

the

Secure

Authentication

Services

(SAS)

security

protocol.

Both

protocols

are

supported

by

prior

product

releases.

CSIv2

is

an

integral

part

of

the

J2EE

1.3

Specification

and

is

essential

for

interoperability

among

application

servers

from

different

vendors

and

with

enterprise

CORBA

services.

v

Java

Authentication

and

Authorization

Service

(JAAS)

programming

model

for

Java

applications,

servlets,

and

enterprise

beans.

v

J2EE

Connector

architecture

for

plugging

in

resource

adapters

that

support

access

to

Enterprise

Information

Systems.

The

standard

security

model

and

interface

supported

include

Java

Secure

Socket

Extension

(JSSE)

and

Java

Cryptographic

Extension

(JCE)

provider

for

secure

socket

communication,

message

encryption,

and

data

encryption.

Open

architecture

paradigm

An

application

server

plays

an

integral

part

in

the

multiple-tier

enterprise

computing

framework.

IBM

WebSphere

Application

Server

adopts

the

open

architecture

paradigm

and

provides

many

plug-in

points

to

integrate

with

enterprise

software

components.

Plug-in

points

are

based

on

standard

J2EE

specifications

wherever

applicable.

©

Copyright

IBM

Corp.

2004

1

WebSphere

Application Server

Version 5

Access manager

(Authorization)

Security Role-based

authorization engine

Principal/

credential

mapping

J2EE

connector

Trust

association

interceptor

CSIv2 security protocol

Application

server

Enterprise

Information

System

Secure reverse

proxy server

JAAS

login module
User registry

Credential

mapping

Security server

(Authentication)

UserRegistry

interface

JAAS

login module

The

light

blue

shaded

background

indicates

the

boundary

between

the

product

and

other

business

application

components.

The

product

provides

Simple

WebSphere

Authentication

Mechanism

(SWAM)

and

Lightweight

Third

Party

Authentication

(LTPA)

mechanisms.

Exactly

one

may

be

configured

to

be

the

active

authentication

mechanism

for

the

security

domain

of

the

product.

Exactly

one

user

registry

implementation

may

be

configured

to

be

the

active

user

registry

of

the

product

security

domain.

The

product

provides

the

following

user

registry

implementations:

UNIX,

Windows,

and

AS/400

LocalOS

and

LDAP.

It

also

provides

file-based

and

Java

database

connectivity

(JDBC)-based

user

registry

reference

implementations.

It

supports

a

flexible

combination

of

authentication

mechanisms

and

user

registries.

SWAM

is

simple

to

configure

and

is

useful

for

a

single

application

server

environment.

LTPA

generates

a

security

token

for

authenticated

users,

which

can

propagate

to

downstream

servers

and

is

suitable

for

a

distributed

environment

with

multiple

application

servers.

It

is

possible

to

use

SWAM

in

a

distributed

environment

if

identity

assertion

is

enabled.

Note

that

identity

assertion

feature

is

available

only

on

the

CSIv2

security

protocol.

The

LTPA

authentication

mechanism

is

designed

for

distributed

security.

Downstream

servers

can

validate

the

security

token.

It

also

supports

setting

up

a

trust

association

relationship

with

reverse

secure

proxy

servers

and

single

signon

(SSO),

which

will

be

discussed

later.

Besides

the

combination

of

LTPA

and

LDAP

or

Custom

user

registry

interface,

Version

5

supports

LTPA

with

a

LocalOS

user

registry

interface.

The

new

configuration

is

particularly

useful

for

a

single

node

with

multiple

application

servers.

It

can

function

in

a

distributed

environment

if

the

local

OS

user

registry

implementation

is

a

centralized

user

registry

(such

as

Windows

Domain

Controller)

or

can

be

maintained

in

a

consistent

state

on

multiple

nodes.

The

product

supports

the

J2EE

Connector

architecture

and

offers

container-managed

authentication.

It

provides

a

default

J2C

principal

and

credential

mapping

module

that

maps

any

authenticated

user

credential

to

a

2

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

password

credential

for

the

specified

Enterprise

Information

Systems

(EIS)

security

domain.

The

mapping

module

is

a

special

JAAS

login

module

designed

according

to

the

Java

2

Connector

and

JAAS

specifications.

Other

mapping

login

modules

can

be

plugged

in.

Note:

WebSphere

Application

Server

Version

5.1

does

not

support

Windows

NT.

Backward

compatibility

While

adding

new

security

functions

and

moving

towards

new

industry

standards,

this

version

maintains

backward

compatibility

with

the

4.0.x

and

3.5.x

releases.

Applications

created

in

the

Version

4.x

development

environment

can

deploy

in

Version

5.

When

Java

2

Security

is

enforced

in

Version

5,

give

special

consideration

to

Version

4.0.x

applications

because

Version

4.0

applications

might

not

be

Java

2

security

compliant.

Refer

to

the

Security

migration

section

for

steps

to

port

Version

4.0.x

to

Version

5.

See

also

the

Security

section

of

New

in

this

release.

Security

for

J2EE

resources

is

provided

by

Web

containers

and

EJB

containers

Each

container

provides

two

kinds

of

security:

declarative

security

and

programmatic

security.

In

declarative

security,

the

security

structure

of

an

application,

including

data

integrity

and

confidentiality,

authentication

requirements,

security

roles,

and

access

control,

is

expressed

in

a

form

external

to

the

application.

In

particular

the

deployment

descriptor

is

the

primary

vehicle

for

declarative

security

in

the

J2EE

platform.

The

product

maintains

a

J2EE

security

policy,

including

information

derived

from

the

deployment

descriptor

and

specified

by

deployers

and

administrators

in

a

set

of

XML

descriptor

files.

At

run

time,

the

container

uses

the

security

policy

defined

in

the

XML

descriptor

files

to

enforce

data

constraints

and

access

control.

When

declarative

security

alone

is

not

sufficient

to

express

the

security

model

of

an

application,

the

application

code

can

use

programmatic

security

to

make

access

decisions.

The

API

for

programmatic

security

consists

of

two

methods

of

the

EJB

EJBContext

interface

(isCallerInRole,

getCallerPrincipal)

and

two

methods

of

the

servlet

HttpServletrequest

interface

(isUserInRole,

getUserPrincipal).

From

a

security

perspective,

every

application

server

process

consists

of

a

Web

container,

an

EJB

container,

and

the

administrative

subsystem.

There

are

many

other

components

that

constitute

a

server

process,

which

are

not

discussed

here.

Remote

interfaces

to

the

administrative

subsystem,

including

the

Administrative

Service

interface

through

JMX

connectors,

the

user

registry

interface,

and

the

naming

interface

are

protected

by

extended

security

role-based

access

control.

Java

2

security:The

product

supports

the

Java

2

security

model.

All

the

system

code,

including

the

administrative

subsystem,

the

Web

container,

and

the

EJB

container

code,

are

running

in

the

product

security

domain.

The

system

code,

shown

in

the

WebSphere

Application

Server

security

domain

box

in

the

following

diagram,

is

granted

AllPermission

and

can

access

all

system

resources.

Application

code

running

in

the

application

security

domain,

which

by

default

is

granted

with

permissions

according

to

J2EE

specifications,

only

can

access

a

restricted

set

of

system

resources.

The

product

run-time

classes

are

protected

by

the

product

class

loader

and

are

kept

invisible

to

application

code.

Chapter

1.

Welcome

to

Security

3

WebSphere Application Server security domain

Web

container

Enterprise

beans

container

J2EE application

security domain

Web

modules

EJB

modules

JMX administration service

JMX message beans

Security

services

Naming

services

RMI/IIOP

JMX connector

SOAP/HTTP/HTTPS

JMX connector

WebSphere Application Server process

Security

services

consist

of

an

authentication

mechanism,

a

user

registry,

and

an

access

control

manager.

All

of

the

application

server

processes,

by

default,

share

a

common

security

configuration,

which

is

defined

in

a

cell-level

security

XML

document.

The

security

configuration

determines

whether

product

security

is

enforced,

whether

Java

2

security

is

enforced,

the

authentication

mechanism

and

user

registry

configuration,

security

protocol

configurations,

JAAS

login

configurations,

and

Secure

Sockets

Layer

configurations.

Applications

can

have

their

own

unique

security

requirements.

Each

application

server

process

can

create

a

per

server

security

configuration

to

address

its

own

security

requirement.

Not

all

security

configurations

can

be

modified

at

the

application

server

level.

That

can

be

modified

at

application

server

level

include

whether

application

security

should

be

enforced,

whether

Java

2

security

should

be

enforced,

and

security

protocol

configurations.

The

administrative

subsystem

security

configuration

is

always

determined

by

the

cell

level

security

document.

The

Web

container

and

EJB

container

security

configuration

are

determined

by

the

optional

per

server

level

security

document,

which

has

precedence

over

the

cell-level

security

document.

Security

configuration,

both

at

the

cell

level

and

at

the

application

server

level,

are

managed

either

by

the

Web-based

administrative

console

application

or

by

the

WSADMIN

scripting

application.

Web

security

When

a

security

policy

is

specified

for

a

Web

resource

and

IBM

WebSphere

Application

Server

security

is

enforced,

the

Web

container

performs

access

control

when

the

resource

is

requested

by

a

Web

client.

The

Web

container

challenges

the

Web

client

for

authentication

data

if

none

is

present

according

to

the

specified

authentication

method,

ensure

the

data

constraints

are

met,

and

determine

whether

the

authenticated

user

has

the

required

security

role.

The

product

supports

the

following

login

methods:

HTTP

basic

authentication,

Hypertext

Transfer

Protocol

with

Secure

Sockets

Layer

(HTTPS)

client

authentication,

and

form-based

Login.

Mapping

a

client

certificate

to

a

product

security

credential

uses

the

UserRegistry

implementation

to

perform

the

mapping.

The

LDAP

UserRegistry

supports

the

mapping

function

while

LocalOS

UserRegistry

does

not.

4

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

When

the

LTPA

authentication

mechanism

is

configured

and

single

signon

(SSO)

is

enabled,

an

authenticated

client

is

issued

a

security

cookie,

which

can

represent

the

user

within

the

specified

security

domain.

It

is

recommended

that

you

use

Secure

Sockets

Layer

(SSL)

to

protect

the

security

cookie

from

being

intercepted

and

replayed.

When

a

trust

association

is

configured,

the

product

can

map

an

authenticated

user

identity

to

security

credentials

based

on

the

trust

relationship

established

with

the

secure

reverse

proxy

server.

Reverse secure

proxy server

Trust

association

interceptor

HTTPs

HTTP

X509

Certificate

User ID and password

User identity

Authenticated

user principal

Authenticated

user principal
Client

certificate

HTTP

BasicAuth

Form-based

login

Security

cookie

Security

role-based

access control

Web resources:

servlets,

JSP files, and

HTML files

HTTP

client

Security token

HTTPs

Web Security

Authentication

Validation

Credential

mapping

The

Web

security

collaborator

enforces

role-based

access

control

by

using

an

access

manager

implementation.

An

access

manager

makes

authorization

decisions

based

on

the

security

policy

derived

from

the

deployment

descriptor.

An

authenticated

user

principal

can

access

the

requested

Servlet

or

JSP

file

if

it

has

one

of

the

required

security

roles.

Servlets

and

JSP

files

can

use

the

HttpServletRequest

methods:

isUserInRole

and

getUserPrincipal.

As

an

example,

the

administrative

console

uses

the

isUserInRole

method

to

determine

the

proper

set

of

administrative

functionality

to

expose

to

a

user

principal.

EJB

security

When

security

is

enabled,

the

EJB

container

enforces

access

control

on

EJB

method

invocation.

The

authentication

takes

place

regardless

of

whether

a

method

permission

is

defined

for

the

specific

EJB

method.

A

Java

application

client

can

provide

the

authentication

data

in

several

ways.

Using

the

sas.client.props

file,

a

Java

client

can

specify

whether

to

use

a

user

ID

and

password

to

authenticate

or

to

use

an

SSL

client

certificate

to

authenticate.

The

client

certificate

is

stored

in

the

key

file

or

in

the

hardware

cryptographic

card,

as

defined

in

a

sas.client.props

file.

The

user

ID

and

password

can

be

optionally

Chapter

1.

Welcome

to

Security

5

defined

in

the

sas.client.props

file.

At

run

time,

the

Java

client

can

either

perform

a

programmatic

login

or

perform

a

lazy

authentication.

In

lazy

authentication

when

the

Java

client

is

accessing

a

protected

enterprise

bean

for

the

first

time

the

security

run

time

tries

to

obtain

the

required

authentication

data.

Depending

on

the

configuration

setting

in

sas.client.props

file

the

security

runtime

either

looks

up

the

authentication

data

from

this

file

or

prompts

the

user.

Alternatively,

a

Java

client

can

use

programmatic

login.

The

product

supports

the

JAAS

programming

model

and

the

JAAS

login

(LoginContext)

is

the

recommended

way

of

programmatic

login.

The

login_helper

request_login

helper

function

is

deprecated

in

Version

5.

Java

clients

programmed

to

the

login_helper

APT

can

run

in

this

version.

The

EJB

security

collaborator

enforces

role-based

access

control

by

using

an

access

manager

implementation.

An

access

manager

makes

authorization

decisions

based

on

the

security

policy

derived

from

the

deployment

descriptor.

An

authenticated

user

principal

can

access

the

requested

EJB

method

if

it

has

one

of

the

required

security

roles.

EJB

code

can

use

the

EJBContext

methods

isCallerInRole

and

getCallerPrincipal.

EJB

code

also

can

use

the

JAAS

programming

model

to

perform

JAAS

login

and

WSSubject

doAs

and

doAsPrivileged

methods.

The

code

in

the

doAs

and

doAsPrivileged

PrivilegedAction

block

executes

under

the

Subject

identity.

Otherwise,

the

EJB

method

executes

under

either

the

RunAs

identity

or

the

caller

identity,

depending

on

the

RunAs

configuration.

The

J2EE

RunAs

specification

is

at

the

enterprise

bean

level.

When

RunAs

identity

is

specified,

it

applies

to

all

bean

methods.

The

method

level

IBM

RunAs

extension

introduced

in

Version

4.0

is

still

supported

in

this

version.

The

EJB

security

collaborator

enforces

role-based

access

control

by

using

an

access

manager

implementation.

An

access

manager

makes

authorization

decisions

based

on

the

security

policy

derived

from

the

deployment

descriptor.

An

authenticated

user

principal

can

access

the

requested

EJB

method

if

it

has

one

of

the

required

security

roles.

EJB

code

can

use

the

EJBContext

methods

isCallerInRole

and

getCallerPrincipal.

EJB

code

also

can

use

the

JAAS

programming

model

to

perform

JAAS

login

and

WSSubject

doAs

and

doAsPrivileged

methods.

The

code

in

the

doAs

and

doAsPrivileged

PrivilegedAction

block

executes

under

the

Subject

identity.

Otherwise,

the

EJB

method

executes

under

either

the

RunAs

identity

or

the

caller

identity,

depending

on

the

RunAs

configuration.

Federal

Information

Processing

Standards-approved

Federal

Information

Processing

Standards

(FIPS)

are

standards

and

guidelines

issued

by

the

National

Institute

of

Standards

and

Technology

(NIST)

for

federal

computer

systems.

FIPS

are

developed

when

there

are

compelling

federal

government

requirements

for

standards,

such

as

for

security

and

interoperability,

but

acceptable

industry

standards

or

solutions

do

not

exist.

WebSphere

Application

Server

integrates

cryptographic

modules

including

Java

Secure

Socket

Extension

(JSSE)

and

Java

Cryptography

Extension

(JCE),

which

have

undergone

FIPS

140-2

certification.

Throughout

the

documentation

and

the

product,

the

IBM

JSSE

and

JCE

modules

that

have

undergone

FIPS

certification

are

referred

to

as

IBMJSSEFIPS

and

IBMJCEFIPS,

which

distinguishes

the

FIPS

modules

from

the

IBM

JSSE

and

IBM

JCE

modules.

The

IBMJSSEFIPS

module

supports

the

FIPS-approved

TLS

cipher

suites

including:

v

SHA

6

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

v

DES

v

TripleDES

The

IBMJSSEFIPS

module

supports

the

following

algorithms:

v

RSA

public

key

algorithm

v

ANSI

X9.31

v

IBM

Random

Number

Generator

(Patent

pending)

The

IBMJCEFIPS

module

supports

the

following

symmetric

cipher

suites:

v

AES

(FIPS

197)

v

DES

and

TripleDES

(FIPS

46-3)

v

SHA1

Message

Digest

algorithm

(FIPS

180-1)

The

IBMJCEFIPS

module

supports

the

following

algorithms:

v

Digital

Signature

DSA

and

RSA

algorithms

(FIPS

186-2)

v

ANSI

X

9.31

(FIPS

186-2)

v

IBM

Random

Number

Generator

The

IBMJSSEFIPS

and

IBMJCEFIPS

cryptographic

modules

only

contain

the

algorithms

that

are

approved

by

FIPS,

which

form

a

proper

subset

of

those

in

the

IBM

JSSE

and

IBM

JCE

modules.

Chapter

1.

Welcome

to

Security

7

8

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Chapter

2.

Securing

applications

and

their

environments

WebSphere

Application

Server

supports

the

J2EE

model

for

creating,

assembling,

securing,

and

deploying

applications.

This

article

provides

a

high-level

description

of

what

is

involved

in

securing

resources

in

a

J2EE

environment.

Applications

are

often

created,

assembled

and

deployed

in

different

phases

and

by

different

teams.

Consult

the

J2EE

specifications

for

complete

details.

1.

Plan

to

secure

your

applications

and

environment.

For

more

information,

see

“Planning

to

secure

your

environment”

on

page

10.

Complete

this

step

before

you

install

the

WebSphere

Application

Server.

2.

Consider

pre-installation

and

post-installation

requirements.

For

more

information,

see

“Implementing

security

considerations”

on

page

22.

For

example,

during

this

step,

you

learn

how

to

protect

security

configurations

after

you

install

the

product.

3.

Migrate

your

existing

security

systems.

For

more

information,

see

“Migrating

security

configurations

from

previous

releases”

on

page

26.

4.

Develop

secured

applications.

For

more

information,

see

“Developing

secured

applications”

on

page

38.

5.

Assemble

secured

applications.

For

more

information,

see

“Assembling

secured

applications”

on

page

110.

Development

tools,

such

as

the

Deployment

Tool

for

Enterprise

JavaBeans

(EJBDeploy)

and

the

Assembling

applications

with

the

Assembly

Toolkit

are

used

to

assemble

J2EE

modules

and

to

set

the

attributes

in

the

deployment

descriptors.

Most

of

the

steps

in

assembling

J2EE

applications

involve

deployment

descriptors;

deployment

descriptors

play

a

central

role

in

application

security

in

a

J2EE

environment.

Application

assemblers

combine

J2EE

modules,

resolve

references

between

them,

and

create

from

them

a

single

deployment

unit,

typically

an

Enterprise

Archive

(EAR)

file.

Component

providers

and

application

assemblers

can

be

represented

by

the

same

person

but

do

not

have

to

be.

6.

Deploy

secured

applications.

For

more

information,

see

“Deploying

secured

applications”

on

page

122.

Deployer

link

entities

refer

to

in

an

enterprise

application

to

the

run

time

environment.

The

deployer:

v

Maps

actual

users

and

groups

to

application

roles

v

Installs

the

enterprise

application

into

the

environment

v

Makes

the

final

adjustments

needed

to

run

the

application

7.

Test

secured

applications.

For

more

information,

see

“Testing

security”

on

page

135.

8.

Manage

security

configurations.

For

more

information,

see

“Managing

security”

on

page

136.

9.

Improve

performance

by

tuning

security

configurations.

For

more

information,

see

“Tuning

security

configurations”

on

page

479.

10.

Troubleshoot

security

configurations.

For

more

information,

see

“Troubleshooting

security

configurations”

on

page

479.

Your

applications

and

production

environment

are

secured.

©

Copyright

IBM

Corp.

2004

9

See

“Security:

Resources

for

learning”

on

page

495

for

more

information

on

the

WebSphere

Application

Server

security

architecture.

Planning

to

secure

your

environment

There

are

several

communication

links

from

a

browser

on

the

Internet,

through

web

servers

and

product

servers,

to

the

enterprise

data

at

the

back

end.

This

section

examines

some

typical

configuration

and

common

security

practices.

WebSphere

Application

Server

security

is

built

on

a

layered

security

architecture

as

showed

below.

This

section

also

examines

the

security

protection

offered

by

each

security

layer

and

common

security

practice

for

good

quality

of

protection

in

end-to-end

security.

The

following

figure

illustrates

the

building

blocks

that

comprise

the

operating

environment

of

WebSphere

Security:

WebSphere Application Server resources

Access control

WebSphere Application Server security

Java security

Platform security

WebSphere security

J2EE security API

CORBA security (CSIv2)

Java 2 security

Java Virtual Machine (JVM) 1.4

Operating system security

• Naming

• User r egistry

• JMX m essage

beans

• HTML

• Servlet or JSP file

• Enterprise beans

• Web services

WebSphere Security Layers

v

Operating

System

Security

-

The

security

infrastructure

of

the

underlying

operating

system

provides

certain

security

services

to

the

WebSphere

Security

Application.

This

includes

the

file

system

security

support

to

secure

sensitive

files

in

WebSphere

product

installation.

The

WebSphere

system

administrator

can

configure

the

product

to

obtain

authentication

information

directly

from

the

operating

system

user

registry,

for

example

the

Windows

system

Security

Access

Manager

(SAM).

v

Network

Security

-

The

Network

Security

layers

provide

transport

level

authentication

and

message

integrity

and

encryption.

Communication

between

separate

WebSphere

Application

Servers

can

be

configured

to

use

Secure

Socket

Layer

(SSL)

and

HTTPS.

Additionally

IP

Security

and

Virtual

Private

Network

(VPN)

might

be

used

for

added

message

protection.

v

JVM

1.3.1

-

The

JVM

security

model

provides

a

layer

of

security

above

the

operating

system

layer.

v

Java

2

Security

-

The

Java

2

Security

model

offers

fine

grained

access

control

to

system

resources

including

file

system,

system

property,

socket

connection,

threading,

class

loading,

and

so

on.

Application

code

must

explicitly

grant

the

required

permission

to

access

a

protected

resource.

v

J2EE

Security

-

The

security

collaborator

enforces

J2EE

based

security

policies

and

supports

J2EE

security

APIs.

10

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

v

WebSphere

Security

-

WebSphere

Application

Server

security

enforces

security

policies

and

services

in

a

unified

manner

on

access

to

Web

resources,

enterprise

beans,

and

JMX

administrative

resources.

It

consists

of

WebSphere

Application

Server

security

technologies

and

features

to

support

the

needs

of

a

secure

enterprise

environment.

v

CORBA

Security

-

Any

calls

made

among

secure

ORBs

are

invoked

over

the

Common

Security

Interoperability

Version

2

security

protocol

that

sets

up

the

security

context

and

the

necessary

quality

of

protection.

After

the

session

is

established,

the

call

is

passed

up

to

the

enterprise

bean

layer.

WebSphere

Application

Server

continues

to

support

the

Secure

Authentication

Service

(SAS)

security

protocol

which

was

used

in

prior

releases

of

WebSphere

Application

Server

and

other

IBM

products

for

backward

compatibility.

The

following

picture

shows

a

typical

multiple-tier

business

computing

environment.

Shown

in

the

picture

is

a

WebSphere

Application

Server

Network

Deployment

(ND)

installation.

Note

that

there

is

a

Node

Agent

instance

on

every

computer

node

which

is

omitted

in

the

picture.

Each

product

application

server

consists

of

a

web

container,

an

EJB

container,

and

the

administrative

subsystem.

The

WebSphere

Application

Server

Deployment

Manager

contains

only

WebSphere

administrative

code

and

the

administrative

console

application.

The

administrative

console

is

a

special

J2EE

Web

Application

that

provides

the

GUI

interface

for

performing

administrative

functions.

WebSphere

Application

Server

configuration

data

is

stored

in

XML

descriptor

files.

Those

XML

configuration

files

should

be

protected

by

operating

system

security.

Passwords

and

other

sensitive

configuration

data

can

be

modified

using

the

administrative

console.

Hence,

the

administrative

console

Web

application

has

a

setup

data

constraint

that

requires

the

administrative

console

servlets

and

JSP

files

to

be

accessed

only

through

an

SSL

connection

when

global

security

is

enabled.

After

installation,

the

administrative

console

HTTPS

port

is

configured

to

use

DummyServerKeyFile.jks

and

DummyServerTrustFile.jks

with

the

default

self

signed

certificate.

Using

the

Dummy

key

and

trust

file

certificate

is

not

safe

and

you

should

generate

your

own

certificate

to

replace

dummy

ones

immediately.

It

is

more

secure

if

you

first

enable

global

security

and

complete

other

configuration

tasks

after

global

security

is

enforced.

Chapter

2.

Securing

applications

and

their

environments

11

WebSphere

Application

Server

servers

interact

with

each

other

through

CSIv2

and

SAS

security

protocols

as

well

and

HTTP

and

or

HTTPS

protocols.

Those

protocols

can

be

configured

to

use

SSL

when

WebSphere

Application

Server

global

security

is

enabled.

The

WebSphere

Application

Server

administrative

subsystem

in

every

server

uses

SOAP

JMX

connectors

and

or

RMI/IIOP

JMX

connectors

to

pass

administrative

commands

and

configuration

data.

When

global

security

is

disabled,

the

SOAP

JMX

connector

uses

HTTP

protocol

and

the

RMI/IIOP

connector

uses

TCP/IP

protocol.

When

global

security

is

enabled,

the

SOAP

JMX

connector

always

uses

HTTPS

protocol.

When

global

security

is

enabled,

the

RMI/IIOP

JMX

connector

may

be

configured

to

either

use

SSL

or

to

use

TCP/IP.

Again

it

is

recommended

to

enable

global

security

and

enable

SSL

to

protect

the

sensitive

configuration

data.

Note:

Global

security

and

administrative

security

configuration

is

at

the

cell

level.

While

global

security

is

enabled,

application

security

at

each

individual

application

server

may

be

disabled

by

disabling

the

per

server

level

security

enable

flag.

Disabling

application

server

security

does

not

affect

the

administrative

subsystem

in

that

application

server

which

is

controlled

only

by

the

global

security

configuration.

Both

administrative

subsystem

and

application

code

in

an

application

server

share

the

optional

per

server

security

protocol

configuration.

Security

for

J2EE

resources

is

provided

by

Web

container

and

EJB

container.

Each

container

provides

two

kind

of

security:

declarative

security

and

programmatic

security.

In

declarative

security,

an

application

security

structure

includes

data

integrity

and

confidentiality,

authentication

requirements,

security

roles,

and

access

control.

Access

control

is

expressed

in

a

form

external

to

the

application.

In

particular

the

deployment

descriptor

is

the

primary

vehicle

for

declarative

security

in

the

J2EE

platform.

The

WebSphere

Application

Server

maintains

J2EE

security

policy

including

information

derived

from

the

deployment

descriptor

and

specified

by

Deployment

manager

Machine A
Data tier (optional)

Application

data

Deployment

manager

Clustered application servers

Machines andC D

Web container

cluster manager

EJB container

cluster manager

Cell

JMS server

Node agent

Web server

Machine B

Client

HTTP

requests

HTTP

server

Plug-in

Clients

Figure

1.

Multiple-tier

business

computing

environment.

12

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

deployers

and

administrators

in

a

set

of

XML

descriptor

files.

At

run

time,

the

container

uses

the

security

policy

defined

in

the

XML

descriptor

files

to

enforce

data

constraints

and

access

control.

When

declarative

security

alone

is

not

sufficient

to

express

the

security

model

of

an

application,

“Programmatic

login”

on

page

54

can

be

used

by

application

code

to

make

access

decisions.

When

global

security

is

enabled

and

application

server

security

is

not

disabled

at

the

server

level,

J2EE

applications

security

will

be

enforced.

When

the

security

policy

is

specified

for

a

web

resource,

the

web

container

performs

access

control

when

the

resource

is

requested

by

a

web

client.

The

web

container

would

challenge

the

web

client

for

authentication

data

if

none

is

present

according

to

the

specified

authentication

method,

ensure

the

data

constraints

are

met,

and

determine

whether

the

authenticated

user

has

the

required

security

role.

The

web

security

collaborator

enforces

role-based

access

control

by

using

an

access

manager

implementation.

An

access

manager

makes

authorization

decision

based

on

security

policy

derived

from

the

deployment

descriptor.

An

authenticated

user

principal

is

allowed

to

access

the

requested

Servlet

or

JSP

file

if

it

has

one

of

the

required

security

roles.

Servlets

and

JSP

pages

may

use

the

HttpServletRequest

methods

isUserInRole

and

getUserPrincipal.

When

global

security

is

enabled

and

application

server

security

is

not

disabled,

EJB

container

will

enforce

access

control

on

EJB

method

invocation.

The

authentication

would

take

place

regardless

of

whether

method

permission

was

defined

for

the

specific

EJB

method.

The

EJB

security

collaborator

enforces

role-based

access

control

by

using

an

access

manager

implementation.

An

access

manager

makes

authorization

decisions

based

on

security

policy

derived

from

the

deployment

descriptor.

An

authenticated

user

principal

is

allowed

to

access

the

requested

EJB

method

if

it

has

one

of

the

required

security

roles.

EJB

code

may

use

the

EJBContext

methods

isCallerInRole

and

getCallerPrincipal.

The

J2EE

role

based

access

control

should

be

used

to

protect

valuable

business

data

from

being

accessed

by

unauthorized

users

from

both

the

Internet

and

the

Intranet.

For

enabling

J2EE

application

security,

please

refer

to

“Securing

Web

applications

using

the

Assembly

Toolkit”

on

page

114

and

“Securing

enterprise

bean

applications

using

the

Assembly

Toolkit”

on

page

111.

WebSphere

Application

Server

extends

the

security,

role-based

access

control

to

administrative

resources

including

the

JMX

system

management

subsystem,

user

registries,

and

JNDI

name

space.

WebSphere

administrative

subsystem

defines

four

administrative

security

roles:

v

Monitor

role,

which

can

view

configuration

information

and

status

but

not

anything

more

v

Operator

role,

which

is

a

monitor

that

can

trigger

run

time

state

changes,

such

as

start

an

application

server

or

stop

an

application,

but

cannot

change

configuration

v

Configurator

role,

which

is

a

monitor

that

can

modify

configuration

information

but

cannot

change

run-time

state

v

Administrator

role,

which

is

an

operator

as

well

as

a

configurator

A

user

with

the

configurator

role

can

perform

most

administrative

work

including

installing

new

applications

and

application

servers.

There

are

certain

configuration

tasks

a

configurator

does

not

have

sufficient

authority

to

do

when

global

security

is

enabled,

including

modifying

WebSphere

Application

Server

server

identity

and

password,

LTPA

password

and

keys,

and

assigning

users

to

administrative

security

roles.

Those

sensitive

configuration

tasks

require

the

administrative

role

because

the

server

id

is

mapped

to

the

administrator

role.

Chapter

2.

Securing

applications

and

their

environments

13

WebSphere

Application

Server

administrative

security

is

enforced

when

global

security

is

enabled.

It

is

recommended

that

WebSphere

Application

Server

global

security

be

enabled

to

protect

administrative

subsystem

integrity.

Application

server

security

can

be

selectively

disabled

if

there

is

no

sensitive

information

to

protect.

For

securing

administrative

security,

refer

to

“Assigning

users

to

administrator

roles”

on

page

150

and

“Assigning

users

to

naming

roles”

on

page

154

WebSphere

Application

Server

uses

Java

2

Security

Model

to

create

a

secure

environment

to

run

application

code.

Java

2

Security

provides

a

fine,

grained

and

policy

based

access

control

to

protect

system

resources

such

as

files,

system

properties,

opening

socket

connections,

loading

libraries,

and

so

on.

J2EE

Version

1.3

Specification

defines

typical

set

of

Java

2

Security

permissions

that

Web

and

EJB

components

should

expect

to

have,

which

is

shown

in

the

table

below.

Table

1.

J2EE

Security

Permissions

set

for

Web

components

Security

Permission

Target

Action

java.lang.RuntimePermission

loadLibrary

java.lang.RuntimePermission

queuePrintJob

java.net.SocketPermission

*

connect

java.io.FilePermission

*

read,

write

java.util.PropertyPermission

*

read

Table

2.

J2EE

Security

Permissions

set

for

EJB

components

Security

Permission

Target

Action

java.lang.RuntimePermission

queuePrintJob

java.net.SocketPermission

*

connect

java.util.PropertyPermission

*

read

WebSphere

Application

Server

Java

2

Security

implementation

was

based

on

J2EE

Version

1.3

Specification.

The

Specification

granted

Web

components

read

and

write

file

access

permission

to

any

file

in

the

file

system,

which

may

be

too

broad.

WebSphere

Application

Server

default

policy

gives

Web

components

read

and

write

permission

to

the

sub

directory

and

the

sub

tree

where

the

Web

module

was

installed.

The

default

Java

2

Security

policy

for

all

Java

virtual

machines

and

WebSphere

Application

Server

server

processes

are

contained

in

the

following

policy

files:

${java.home}/jre/lib/security/java.policy

Used

as

the

default

policy

for

the

Java

Virtual

Machine

(JVM).

${user.install.root}/properties/server.policy

Used

as

the

default

policy

for

all

product

server

processes

To

simplify

policy

management,

WebSphere

Application

Server

policy

is

based

on

resource

type

rather

than

code

base

(location).

Default

policy

for

WebSphere

Application

Server

subsystem

that

considered

as

an

extension

of

WebSphere

Application

Server

run

time,

which

is

referred

to

as

SPI,

for

library

shared

by

multiple

applications,

and

for

J2EE

applications,

are:

${was.install.root}/config/cells/<cellname>/nodes/<nodename>/spi.policy

Used

for

embedded

resources

defined

in

the

resources.xml

file,

such

as

the

Java

Messaging

Service

(JMS),

JavaMail

and

JDBC

drivers.

14

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

${was.install.root}/config/cells/<cellname>/nodes/<nodename>/library.policy

Used

by

the

shared

library

defined

by

WebSphere

Application

Server

administrative

console.

${was.install.root}/config/cells/<cellname>/nodes/<nodename>/app.policy

Used

as

the

default

policy

for

J2EE

applications.

In

general,

applications

should

not

require

more

permissions

to

run

than

those

recommended

by

the

J2EE

Specification

in

order

to

be

portable

among

various

application

servers.

But

some

applications

may

require

more

permissions.

WebSphere

Application

Server

allows

a

per

application

policy

file,

was.policy,

to

be

packaged

together

with

each

application

from

granting

extra

permissions

to

that

application.

Note

that

granting

extra

permissions

to

an

application

should

be

handled

with

great

care

because

of

the

potential

of

compromising

system

integrity.

WebSphere

Application

Server

uses

a

permission

filtering

policy

file

to

alert

users

when

an

application

requires

permissions

that

are

on

the

filter

list

during

application

installation

and

cause

the

offended

application

installation

to

fail.

For

example,

the

java.lang.RuntimePermission

exitVM

permission

should

not

be

given

to

an

application

so

that

application

code

is

not

allowed

to

terminate

the

WebSphere

Application

Server.

The

filtering

policy

is

defined

by

the

filterMask

in

${was.install.root}/config/cells/<cellname>/filter.policy.

Moreover,

WebSphere

Application

Server

also

performs

run

time

permission

filtering

based

on

the

run

time

filtering

policy

to

ensure

no

application

code

has

been

granted

any

permission

that

is

considered

harmful

to

system

integrity.

Applying

Java

2

Security

model

to

application

server

is

new.

WebSphere

Application

Server

Version

4

supported

Java

2

Security

but

only

enforced

three

permissions

checking

against

exitVM,

create

and

set

the

Security

Manager.

Other

permission

checking

is

disabled

by

default.

Hence

many

applications

developed

for

prior

releases

of

WebSphere

Application

Server

might

not

be

Java

2

Security

ready.

To

migrate

those

applications

to

WebSphere

Application

Server

Version

5

quickly,

you

might

temporarily

give

those

applications

java.security.AllPermission

in

the

was.policy

file.

It

is

recommended

to

test

or

make

those

applications

Java

2

Security

ready,

for

example,

identity

what

extra

permissions,

if

any,

are

required

and

to

just

grant

those

permissions

to

a

particular

application.

Not

granting

applications

AllPermission

can

certainly

reduce

the

risk

of

compromising

system

integrity.

For

more

information

on

migrating

applications

to

WebSphere

Application

Server

Version

5,

refer

to

“Migrating

Java

2

security

policy”

on

page

476.

WebSphere

Application

Server

run

time

uses

Java

2

Security

to

protect

sensitive

run-time

functions

and

hence

it

is

always

a

good

idea

to

enforce

Java

2

Security.

Applications

that

are

granted

with

AllPermission

not

only

have

access

to

sensitive

system

resources

but

also

WebSphere

Application

Server

run-time

resources

and

can

potential

cause

damage

to

both.

In

cases

where

an

application

can

be

trusted

to

be

safe,

WebSphere

Application

Server

allows

Java

2

Security

to

be

disabled

on

a

per

application

server

basis.

In

other

words,

you

can

enforce

Java

2

Security

by

default

in

security

center

and

disable

the

per

application

server

Java

2

Security

flag

to

disable

it

at

the

particular

application

server.

The

global

security

enable

flag

and

Java

2

Security

enable

flag

along

with

other

sensitive

configuration

data

are

stored

in

a

set

of

XML

configuration

files.

Both

role

based

access

control

and

Java

2

Security

permission

based

access

control

are

Chapter

2.

Securing

applications

and

their

environments

15

employed

to

protect

the

integrity

of

the

configuration

data.

We

will

use

configuration

data

protection

as

an

example

to

illustrate

how

system

integrity

is

maintained.

v

When

Java

2

Security

is

enforced,

application

code

cannot

access

the

WebSphere

Application

Server

run-time

classes

that

manages

the

configuration

data

unless

it

has

been

granted

the

required

WebSphere

Application

Server

run-time

permissions.

v

When

Java

2

Security

is

enforced,

application

code

cannot

access

the

WebSphere

Application

Server

configuration

XML

files

unless

it

has

been

granted

the

required

file

read

and

write

permissions.

v

The

JMX

administrative

subsystem

provides

SOAP

over

HTTP

or

HTTPS

and

RMI/IIOP

remote

interface

to

allow

application

programs

to

extract

and

to

modify

configuration

files

and

data.

When

global

security

is

enabled,

an

application

program

can

modify

WebSphere

Application

Server

configuration

provided

that

the

application

program

has

presented

valid

authentication

data

and

that

the

security

identity

has

the

required

security

roles.

v

If

a

user

is

allowed

to

disable

Java

2

Security,

then

that

user

can

modify

the

WebSphere

Application

Server

configuration

including

the

WebSphere

Application

Server

security

identity

and

authentication

data

along

with

other

sensitive

data.

Hence,

only

users

with

the

administrator

security

role

are

allowed

to

disable

Java

2

Security.

v

Because

WebSphere

Application

Server

security

identity

is

given

the

administrator

role,

only

users

with

the

administrator

role

are

allowed

to

disable

global

security,

to

change

server

ID

and

password,

and

to

map

users

and

groups

to

administrative

roles,

and

so

on.

Other

WebSphere

Application

Server

run

time

resources

are

protected

by

similar

mechanism

as

described

previously.

Hence

it

is

very

important

to

enable

WebSphere

Application

Server

global

security

and

to

enforce

Java

2

Security.

J2EE

Specification

defines

four

authentication

method

for

Web

components.

WebSphere

Application

Server

supports

HTTP

Basic

Authentication,

Form

Based

Authentication,

and

HTTPS

Client

Certificate

Authentication.

When

using

client

certificate

login,

it

is

more

convenient

for

the

browser

client

if

the

web

resources

have

integral

or

confidential

data

constraint.

If

a

browser

uses

HTTP

to

access

the

web

resource,

the

web

container

will

automatically

redirect

it

to

the

HTTPS

port.

The

CSIv2

security

protocol

also

supports

client

certificate

authentication.

SSL

client

authentication

can

also

be

used

to

setup

secure

communication

among

selected

set

of

servers

based

on

trust

relationship.

If

you

start

from

the

WebSphere

Application

Server

plug-in

at

the

Web

server,

SSL

mutual

authentication

can

be

configured

between

it

and

the

WebSphere

Application

Server

HTTPS

server.

When

using

a

self-

signed

certificate,

one

can

restrict

the

WebSphere

Application

Server

plug-in

to

communicate

with

only

the

selected

two

WebSphere

Application

Server

servers

as

shown

in

the

following

picture.

Suppose

you

want

to

restrict

the

HTTPS

server

in

WebSphere

Application

Server

A

and

in

WebSphere

Application

Server

B

to

accept

secure

socket

connections

only

from

the

WebSphere

Application

Server

plug-in

W.

You

can

generate

three

self-signed

certificate

using

the

IKEYMAN

tool

and

certificate

management

utility.

For

example,

use

certificate

W

and

trust

certificate

A

and

B.

The

HTTPS

server

of

WebSphere

Application

Server

A

is

configured

to

use

certificate

A

and

to

trust

certificate

W.

The

HTTPS

server

of

WebSphere

Application

Server

B

is

configured

to

use

certificate

B

and

to

trust

certificate

W.

16

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

The

trust

relationship

depicted

in

the

previous

picture

is

shown

in

the

following

table.

Server

Key

Trust

WebSphere

Application

Server

plug-in

W

A,

B

WebSphere

Application

Server

A

A

W

WebSphere

Application

Server

B

B

W

In

a

Network

Deployment

installation,

the

WebSphere

Application

Server

Deployment

Manager

is

a

central

point

of

administration.

System

management

commands

are

sent

from

the

Deployment

Manager

to

each

individual

application

server.

When

global

security

is

enabled,

all

WebSphere

Application

Server

servers

can

be

configured

to

require

SSL

and

mutual

authentication.

Suppose

you

want

to

further

restrict

that

WebSphere

Application

Server

A

so

that

it

can

only

communicate

with

WebSphere

Application

Server

C

and

WebSphere

Application

Server

B

can

only

communicate

with

WebSphere

Application

Server

D.

Note,

as

mentioned

previously,

all

WebSphere

Application

Server

application

servers

must

be

able

to

communicate

with

WebSphere

Application

Server

Deployment

Manager

E.

Hence,

when

using

self-signed

certificates,

You

might

configure

the

CSIv2

and

SOAP/HTTPS

Key

and

trust

relationship

as

shown

in

the

following

table.

Server

Key

Trust

WebSphere

Application

Server

Server

A

A

C,

E

Browser

In
te

rn
e

t

Demilitarized Zone

(DMZ)

Database

(DB2 V7.1

and so on)

MQ

CICS

IBM Directory

(LDAP)

Internet Enterprise

Information

Systems

D
o

m
a

in
fi
re

w
a

ll

P
ro

to
c
o

l
fi
re

w
a

ll

WebSphere

Application

Server A
Web

server

WebSphere

Application

Server plug-in

Administrative

WebSphere

Application

Server C

Administrative

WebSphere

Application

Server D

Administrative

WebSphere

Application

Server B

Administrative

WebSphere

Application Server

Deployment Manager,

Administrative

Console

Browse

E

W

Chapter

2.

Securing

applications

and

their

environments

17

Server

Key

Trust

WebSphere

Application

Server

Server

B

B

D,

E

WebSphere

Application

Server

Server

C

C

A,

E

WebSphere

Application

Server

Server

D

D

B,

E

WebSphere

Application

Server

Deployment

Manager

E

E

A,

B,

C,

D

When

WebSphere

Application

Server

is

configured

to

use

an

LDAP

user

registry,

SSL

with

mutual

authentication

also

can

be

configured

between

every

application

server

and

the

LDAP

server

with

self-signed

certificate

so

that

no

password

will

be

passed

in

clear

text

from

WebSphere

Application

Server

to

the

LDAP

server.

In

this

example,

the

node

agent

processes

were

not

discussed.

Each

node

agent

needs

to

communicate

with

application

servers

on

the

same

node

and

with

the

Deployment

Manager.

Node

agents

also

need

to

communicate

with

LDAP

servers

when

they

are

configured

to

use

LDAP

user

registry.

It

is

reasonable

to

let

the

Deployment

manager

and

the

node

agents

use

the

same

certificate.

Suppose

application

server

A

and

C

are

on

the

same

computer

node.

The

Node

agent

on

that

node

needs

to

have

certificates

A

and

C

in

its

trust

file.

WebSphere

Application

Server

does

not

provide

a

user

registry

configuration

or

management

utility.

In

addition,

it

does

not

dictate

the

user

registry

password

policy.

It

is

recommended

that

you

use

the

password

policy

recommended

by

your

user

registry,

including

the

password

length

and

expiration

period.

1.

Determine

which

versions

of

WebSphere

Application

Server

you

are

using.

2.

Review

the

WebSphere

Application

Server

security

architecture.

3.

Review

each

of

the

following

topics

as

also

defined

in

Related

reference.

v

“Authentication

protocol

for

EJB

security”

on

page

343

–

“Supported

IBM

protocols:

Secure

Authentication

Service

and

Common

Secure

Interoperability

Version

2”

on

page

353

–

“Common

Secure

Interoperability

Version

2

features”

on

page

348

–

“Identity

assertion”

on

page

348
v

“Authentication

mechanisms”

on

page

155

–

“Simple

WebSphere

authentication

mechanism”

on

page

156

–

“Lightweight

Third

Party

Authentication

settings”

on

page

160

–

“Trust

Associations”

on

page

162

–

“Single

Signon”

on

page

171
v

“User

registries”

on

page

187

–

“Local

operating

system

user

registries”

on

page

189

–

“Lightweight

Directory

Access

Protocol”

on

page

196
v

“Custom

user

registries”

on

page

212

v

“Java

2

security”

on

page

441

–

“Java

2

security

policy

files”

on

page

452
v

“Java

Authentication

and

Authorization

Service”

on

page

240

–

“Programmatic

login”

on

page

54
v

“Java

2

Connector

security”

on

page

257

v

“AccessControlException”

on

page

446

–

“Role-based

authorization”

on

page

116

–

“Administrative

console

and

naming

service

authorization”

on

page

147
v

“Secure

Sockets

Layer”

on

page

384

18

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

–

“Authenticity”

on

page

387

–

“Confidentiality”

on

page

387

–

“Integrity”

on

page

390

Security

considerations

when

adding

a

Base

Application

Server

node

to

Network

Deployment

At

some

point,

you

might

decide

to

centralize

the

configuration

of

your

stand-alone

base

application

servers

by

adding

them

into

a

Network

Deployment

cell.

If

your

base

application

server

is

currently

configured

with

security,

there

are

some

issues

to

be

considered.

The

major

issue

when

adding

a

node

to

the

cell

is

whether

the

user

registries

between

the

base

application

server

and

the

Deployment

Manager

are

the

same.

When

adding

a

node

to

the

cell,

you

automatically

inherit

both

the

user

registry

and

the

authentication

mechanism

of

the

cell.

For

distributed

security,

all

servers

in

the

cell

must

use

the

same

user

registry

and

authentication

mechanism.

In

order

to

recover

from

a

user

registry

change,

you

will

need

to

modify

your

applications

so

that

the

user

and

group

to

role

mappings

are

correct

for

the

new

user

registry.

To

do

this,

see

the

article

on

“Assigning

users

and

groups

to

roles”

on

page

123.

Another

major

issue

is

the

SSL

public-key

infrastructure.

Prior

to

performing

addNode

with

the

Deployment

Manager,

verify

that

addNode

can

communicate

as

an

SSL

client

with

the

Deployment

Manager.

This

requires

that

the

addNode

truststore

(configured

in

sas.client.props)

contains

the

signer

certificate

of

the

Deployment

Manager

personal

certificate

as

found

in

the

keystore

(specified

in

the

administrative

console).

See

the

article,

“Managing

digital

certificates”

on

page

418.

The

following

are

other

issues

to

consider

when

running

the

addNode

command

with

security:

1.

When

attempting

to

run

system

management

commands

such

as

addNode,

you

need

to

explicitly

specify

administrative

credentials

to

perform

the

operation.

The

addNode

command

accepts

-username

and

-password

parameters

to

specify

the

userid

and

password,

respectively.

The

user

ID

and

password,

which

are

specified

should

be

an

administrative

user,

for

example,

a

user

that

is

a

member

of

the

console

users

with

Operator

or

Admistrator

privileges

or

the

admistrative

user

ID

configured

in

the

User

Registry.

An

example

for

addNode,

addNode

CELL_HOST

8879

-includeapps

-username

user

-password

pass.

-includeapps

is

optional,

but

this

option

attempts

to

include

the

server

applications

into

the

Deployment

Manager.

The

addNode

command

might

fail

if

the

user

registries

used

by

the

WebSphere

Application

Server

and

the

Deployment

Manager

are

not

the

same.

To

correct

this

problem,

either

make

the

user

registries

the

same

or

turn

off

security.

If

you

change

the

user

registries,

remember

to

verify

that

the

users

to

roles

and

groups

to

roles

mappings

are

correct.

See

addNode

command

for

more

information

on

the

addNode

syntax.

2.

Adding

a

secured

remote

node

through

the

administrative

console

is

not

supported.

You

can

either

disable

security

on

the

remote

node

before

performing

the

operation

or

perform

the

operation

from

the

command

line

using

the

addNode

script.

3.

Before

running

the

addNode

command,

you

must

verify

that

the

truststore

files

on

the

nodes

can

communicate

with

the

keystore

files

from

the

Deployment

Chapter

2.

Securing

applications

and

their

environments

19

Manager

and

vice

versa.

When

using

the

default

DummyServerKeyFile

and

DummyServerTrustFile,

you

should

not

see

this

problem

as

these

are

already

able

to

communicate.

However,

never

use

these

dummy

files

in

a

production

environment

or

anytime

sensitive

data

is

being

transmitted.

4.

After

running

addNode,

the

application

server

is

in

a

new

SSL

domain.

It

might

contain

SSL

configurations

that

point

to

keystore

and

truststore

files

that

are

not

prepared

to

interoperate

with

other

servers

in

the

same

domain.

Consider

which

servers

will

be

intercommunicating

and

ensure

that

the

servers

are

trusted

within

your

truststore

files.

Proper

understanding

of

the

security

interactions

between

distributed

servers

greatly

reduces

problems

encountered

with

secure

communications.

Security

adds

complexity

because

additional

function

needs

to

be

managed.

For

security

to

function,

it

needs

thorough

consideration

during

the

planning

of

your

infrastructure.

This

document

helps

to

reduce

the

problems

that

could

occur

due

to

inherent

security

interactions.

When

you

have

security

problems

related

to

the

WebSphere

Application

Server

Network

Deployment

environment,

check

the

“Troubleshooting

security

configurations”

on

page

479

section

to

see

if

you

can

get

information

about

the

problem.

When

trace

is

needed

to

solve

a

problem,

because

servers

are

distributed,

quite

often

it

is

required

to

gather

trace

on

all

servers

simultaneously

while

recreating

the

problem.

This

trace

can

be

enabled

dynamically

or

statically,

depending

on

the

type

problem

occurring.

Creating

login

key

files

1.

Create

a

login

key

file.

The

authenticating

user

IDs,

passwords,

and

target

realms

for

each

different

z/OS

target

are

specified

in

the

login

key

file,

which

is

an

ASCII

file.

When

the

security

authentication

service

processes

the

login

key

file,

the

passwords

in

the

file

are

encoded.

2.

Add

information

to

the

login

key

file

in

the

following

format:

Realm_name

User_ID

Password

3.

Make

sure

that

the

data

conforms

to

the

following

rules:

v

One

realm

name

v

One

user

ID,

and

one

password

defined

in

each

entry

v

One

entry

per

line

v

No

blank

lines

between

entries

v

Comments

on

separate

lines

only

v

Begin

any

comment

with

a

pound

sign

(#):

Example:

#

Sample

key

file

#

#

First

target

realm

#

TargetRealm

serverID

serverPassword

#

#

Second

target

realm

#

TargetRealm2

serverID2

serverPassword2

#

#

End

of

key

file

20

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

A

sample

file

named

wsserver.key

also

contains

these

instructions.

After

installation,

you

can

locate

this

sample

file

in

the

install_root/properties

directory.

You

can

use

or

modify

the

sample

file

as

needed

for

testing.

Note:

You

can

place

the

login

key

file

anywhere

on

a

host

machine

running

the

application

server.

However,

it

is

recommended

that

you

place

the

login

key

file

under

a

securable

file

system.

After

creating

the

login

key

files,

read

the

article

entitled,

“Preparing

truststore

files.”

Preparing

truststore

files

Secure

Sockets

Layer

(SSL)

protocol

protects

the

communication

between

WebSphere

Application

Server

and

WebSphere

Application

Server

for

z/OS

application

servers.

To

complete

the

SSL

connection,

establish

a

valid

truststore

file

for

the

WebSphere

Application

Server.

A

truststore

file

is

a

key

database

file

that

contains

the

public

keys

(See

“Creating

login

key

files”

on

page

20

for

information

about

how

to

create

a

new

keystore

file.)

1.

Extract

the

public

key

of

the

z/OS

server

by

using

the

key

management

tool

from

WebSphere

Application

Server

z/OS.

For

details,

see

Configuring

the

server

for

request

decryption:

choosing

the

decryption

method.

2.

With

the

key

management

utility

(iKeyman)

from

WebSphere

Application

Server,

add

the

public

key

from

the

WebSphere

Application

Server

for

z/OS

server

as

a

signer

certificate

into

the

requesting

WebSphere

Application

Server

truststore

file.

For

details,

see

the

related

information

about

how

to

“Importing

signer

certificates”

on

page

427.

The

WebSphere

Application

Server

truststore

file

is

now

ready

to

use

for

SSL

connections

with

the

WebSphere

Application

Server

for

z/OS

servers.

See

“Configuring

the

application

server

for

interoperability”

for

interoperability.

Configuring

the

application

server

for

interoperability

After

the

truststore

file

is

ready,

complete

the

following

steps

to

configure

the

WebSphere

Application

Server.

1.

Configure

the

enterprise

beans

that

access

WebSphere

Application

Server

for

z/OS.

Before

deploying

the

enterprise

beans,

configure

the

RunAs

Identity.

Because

the

Security

Authentication

Service

(SAS)

only

supports

WebSphere

Application

Servers

to

interoperate

with

WebSphere

Application

Server

for

z/OS,

set

the

RunAs

Identity

to

System

Identity.

2.

Enable

security.

3.

Enable

outbound

SAS

authentication

protocol.

4.

Specify

the

truststore

file

in

an

Secure

Sockets

Layer

(SSL)

configuration

alias

and

configure

the

WebSphere

Application

Server

with

that

alias.

5.

Set

the

Request

timeout

and

Locate

request

timeout

values

to

zero

for

the

Object

Request

Broker

(ORB)

service.

When

the

WebSphere

Application

Server

z/OS

application

server

first

starts,

no

server

region

is

available

for

processing

work.

It

is

therefore

recommended

that

you

set

these

two

properties

to

zero

to

prevent

potential

timeouts.

6.

Specify

a

security

property

named

com.ibm.CORBA.keyFileName

for

the

absolute

path

of

the

login

key

file

created

earlier.

Chapter

2.

Securing

applications

and

their

environments

21

7.

Restart

the

WebSphere

Application

Server.

Implementing

security

considerations

Complete

the

following

tasks

to

implement

security

before,

during,

and

after

installing

WebSphere

Application

Server.

1.

“Securing

your

environment

before

installation.”

This

step

describes

how

to

install

WebSphere

Application

Server

with

the

proper

authority.

2.

Install

the

WebSphere

Application

Server.

This

step

describes

how

to

install

WebSphere

Application

Server.

During

installation

you

are

prompted

to

“Migrating

security

configurations

from

previous

releases”

on

page

26.

3.

“Securing

your

environment

after

installation”

on

page

23

This

step

provides

information

on

how

to

protect

password

information

after

you

install

WebSphere

Application

Server.

Securing

your

environment

before

installation

The

following

instructions

explain

how

to

perform

a

product

installation

with

proper

authority

on

UNIX

platforms,

Linux

platforms,

Solaris

operating

environments,

and

Windows

platforms.

UNIX

platforms

On

UNIX

platforms,

log

on

as

root

and

verify

that

the

umask

value

is

022.

To

verify

that

the

umask

value

is

022,

execute

the

umask

command.

To

set

up

the

umask

value

as

022,

execute

the

umask

022

command.

Linux

platforms

and

Solaris

operating

environments

On

Linux

platforms

or

Solaris

operating

environments,

make

sure

that

the

/etc

directory

contains

a

shadow

password

file.

The

shadow

password

file

is

named

shadow

and

is

in

the

/etc

directory.

If

the

shadow

password

file

does

not

exist,

an

error

occurs

after

enabling

global

security

and

configuring

the

user

registry

as

local

operating

system.

To

create

the

shadow

file,

run

the

pwconv

command

(with

no

parameters).

This

command

creates

an

/etc/shadow

file

from

the

/etc/passwd

file.

After

creating

the

shadow

file,

you

can

configure

local

operating

system

security.

Windows

platforms

On

Windows

platforms,

the

logon

user

must

be

a

member

of

the

administrator

group

with

the

rights

of

Act

as

part

of

the

operating

system

and

Log

on

as

a

service.

To

add

the

rights

to

a

user

on

a

Windows

2000

platform:

1.

Click

Start

>

Programs

>

Administrative

Tools

>

Local

Security

Policy

(for

domain

configuration,

select

Domain

Security

Policies,

instead).

2.

From

the

Local

Security

Settings

Panel,

click

Local

Policies

>

User

Rights

Assignment

and

add

the

following

rights

to

the

user

ID:

v

Act

as

part

of

the

operating

system

v

Log

on

as

a

service

22

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Securing

your

environment

after

installation

WebSphere

Application

Server

depends

on

several

configuration

files

created

during

installation.

These

files

contain

password

information

and

need

protection.

Although

the

files

are

protected

to

a

limited

degree

during

installation,

this

basic

level

of

protection

is

probably

not

sufficient

for

your

site.

Verify

that

these

files

are

protected

in

compliance

with

the

policies

of

your

site.

The

files

in

the

install_root\config

and

install_root\

properties,

except

for

those

in

the

following

list,

need

protection.

For

example,

give

permission

to

the

user

who

logs

onto

the

system

for

WebSphere

Application

Server

primary

administrative

tasks.

Other

users

or

groups,

such

as

WebSphere

Application

Server

console

users

and

console

groups,

who

perform

partial

WebSphere

Application

Server

administrative

tasks,

like

configuring,

starting

servers

and

stopping

servers,

need

permissions

as

well.

The

files

in

the

install_root\properties

directory

that

should

not

be

protected

are:

v

TraceSettings.properties

v

client.policy

v

client_types.xml

v

implfactory.properties

v

sas.client.props

v

sas.stdclient.properties

v

sas.tools.properties

v

soap.client.props

v

wsadmin.properties

v

wsjaas_client.conf

1.

Secure

files

on

a

Windows

system:

a.

Open

the

browser

for

a

view

of

the

files

and

directories

on

the

machine.

b.

Locate

and

right-click

the

file

or

the

directory

to

protect.

c.

Click

Properties.

d.

Click

the

Security

tab.

e.

Remove

the

Everyone

entry

and

any

other

user

or

group

that

should

not

have

access

to

the

file.

f.

Add

the

users

who

should

be

allowed

to

access

the

files

with

the

proper

permission.
2.

Secure

files

on

UNIX

systems.

This

procedure

applies

only

to

the

ordinary

UNIX

file

system.

If

your

site

uses

access-control

lists,

secure

the

files

by

using

that

mechanism.

Any

site-specific

requirements

can

affect

the

desired

owner,

group

and

corresponding

privileges.

For

example,

on

AIX,

a.

Go

to

the

install_root

directory

and

change

the

ownership

of

the

directory

configuration

and

properties

to

the

user

who

logs

onto

the

system

for

WebSphere

Application

Server

primary

administrative

tasks.

Execute

the

following

command:

chown

-R

logon_name

directory_name

Where:

v

login_name

is

a

specified

user

or

group.

v

directory_name

is

the

name

of

the

directory

that

contains

the

files.

It

is

recommended

that

you

assign

ownership

of

the

files

containing

password

information

to

the

user

who

runs

the

application

server.

If

more

than

one

user

runs

the

application

server,

provide

permission

to

the

group

in

which

the

users

are

assigned

in

the

user

registry.

b.

Set

up

the

permission

by

executing

the

following

command:

chmod

-R

770

directory_name.

Chapter

2.

Securing

applications

and

their

environments

23

c.

Go

to

the

install_root\properties

directory

and

set

the

following

file

permission

to

everybody

by

executing

the

following

command:

chmod

777

file_names.

where

file_names

are

the

following

files:

v

TraceSettings.properties

v

client.policy

v

client_types.xml

v

implfactory.properties

v

sas.client.props

v

sas.stdclient.properties

v

sas.tools.properties

v

soap.client.props

v

wsadmin.properties

v

wsjaas_client.conf

d.

Create

a

group

for

WebSphere

Application

Server

and

put

the

users

who

perform

full

or

partial

WebSphere

Application

Server

administrative

tasks

in

that

group.

e.

Restrict

access

to

the

/var/mqm

directories

and

log

files

needed

for

WebSphere

embedded

messaging

or

WebSphere

MQ

as

the

JMS

provider.

Give

write

access

only

to

the

user

ID

mqm

or

members

of

the

mqm

user

group.

For

detailed

information,

see

Securing

messaging

directories

and

log

files.

After

securing

your

environment,

only

the

users

given

permission

can

access

the

files.

Failure

to

adequately

secure

these

files

can

lead

to

a

breach

of

security

in

your

WebSphere

Application

Server

applications.

If

there

are

any

failures

caused

by

file

accessing

permissions,

check

the

permission

settings.

Protecting

plain

text

passwords

The

WebSphere

Application

Server

has

several

plain

text

passwords.

These

passwords

are

not

encrypted,

but

are

encoded.

The

following

is

a

list

of

files

with

encoded

passwords:

File

name

Additional

information

security.xml

The

following

fields

contain

encoded

passwords:

v

LTPA

password

v

JAAS

Auth

Data

v

User

Registry

server

password

v

LDAP

User

Registry

bind

password

v

Key

file

password

v

Trust

file

password

v

Crypto

token

device

password

sas.client.props

war/WEB-INF/ibm_web_bnd.xml

Specify

passwords

for

the

default

basic

authentication

for

the

″resource-ref″

bindings

within

all

descriptors

(except

in

the

Java

crytography

architecture)

24

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

File

name

Additional

information

ejb

jar/META-INF/ibm_ejbjar_bnd.xml

Specify

passwords

for

the

default

basic

authentication

for

the

″resource-ref″

bindings

within

all

descriptors

(except

in

the

Java

crytography

architecture)

client

jar/META-INF/ibm-appclient_bnd.xml

Specify

passwords

for

the

default

basic

authentication

for

the

″resource-ref″

bindings

within

all

descriptors

(except

in

the

Java

crytography

architecture)

ear/META-INF/ibm_application_bnd.xml

Specify

passwords

for

the

default

basic

authentication

for

the

″run

as″

bindings

within

all

descriptors

server.xml

The

following

fields

contain

encoded

passwords:

v

key

file

password

v

trust

file

password

v

crypto

token

device

password

v

auth

target

password

v

Session

persistence

password

v

DRS

Client

data

replication

password

(not

available

in

WebSphere

Application

Server,

Version

5

resource.xml

(for

cells,

servers,

and

nodes)

The

following

fields

contain

encoded

passwords:

v

WAS40Datasource

password

v

mailTransport

password

v

mailStore

password

v

MQQueue

queue

mgr

password

ws-security.xml

ibm-webservices-bnd.xmi

ibm-webservicesclient-bnd.xmi

/properties/soap.client.props

/properties/sas.tools.properties

/properties/sas.stdclient.properties

wsserver.key

To

re-encode

a

password

in

one

of

the

previous

files,

complete

the

following

steps:

1.

Access

the

file

using

a

text

editor

and

type

over

the

encoded

password

in

plain

text.

The

new

password

is

shown

in

plain

text

and

must

be

encoded.

2.

Use

the

PropFilePasswordEncoder.bat

or

PropFilePasswordEncode.sh

file

in

the

install_dir/bin/

directory

to

re-encode

the

password.

If

you

are

re-encoding

SAS

properties

files,

type

PropFilePasswordEncoder

file_name

-sas

and

the

PropFilePasswordEncoder

file

encodes

the

known

SAS

properties.

Chapter

2.

Securing

applications

and

their

environments

25

If

you

are

encoding

files

that

are

not

SAS

properties

files,

type

PropFilePasswordEncoder

file_name

password_properties_list

file_name

is

the

name

of

the

z/SAS

properties

file.

password_properties_list

is

the

name

of

the

properties

to

encode

within

the

file.

Use

the

PropFilePasswordEncoder

utility

to

encode

WebSphere

Application

Server

password

files

only.

The

utility

cannot

encode

passwords

contained

in

XML

files

or

other

files

that

contain

open

and

close

tags.

If

you

reopen

the

affected

file

or

files,

the

passwords

do

not

display

in

plain

text.

Instead,

the

passwords

appear

encoded.

WebSphere

Application

Server

does

not

provide

a

utility

for

decoding

the

passwords.

PropFilePasswordEncoder

command

reference

Purpose

The

PropFilePasswordEncoder

command

encodes

passwords

located

in

plain

text

property

files.

This

command

encodes

both

Secure

Authentication

Server

(SAS)

property

files

and

non-SAS

property

files.

After

you

have

encoded

the

passwords,

note

that

a

decoding

command

does

not

exist.

To

encode

passwords,

you

must

run

this

command

from

the

install_dir/bin

directory

of

a

WebSphere

Application

Server

installation.

Syntax

The

command

syntax

is

as

follows:

PropFilePasswordEncoder

file_name

Parameters

The

following

option

is

available

for

the

PropFilePasswordEncoder

command:

-sas

Encodes

SAS

property

files.

The

following

examples

demonstrate

the

correct

syntax.

PropFilePasswordEncoder

file_name

password_properties_list

PropFilePasswordEncoder

file_name

-SAS

Migrating

security

configurations

from

previous

releases

This

article

addresses

the

need

to

migration

your

security

configurations

from

a

previous

release

of

IBM

WebSphere

Application

Server

to

WebSphere

Application

Server,

Version

5.

Complete

the

following

steps

to

migrate

your

security

configurations:

v

Before

migrating

your

configurations,

verify

that

the

administrative

server

of

the

previous

release

is

running.

v

If

security

is

enabled

in

the

previous

release,

obtain

the

server

ID

and

password

of

the

previous

release.

This

information

is

needed

to

log

onto

the

administrative

server

of

the

previous

release

during

migration.

v

You

can

optionally

disable

security

in

the

previous

release

before

migrating

the

installation.

There

is

no

logon

required

during

the

installation.
1.

Start

the

Installation

Wizard

by

running

the

install

command.

26

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

2.

On

the

Installation

Wizard

panel,

click

Specify

previous

version

information

>

Migrate

your

applications

and

configuration

from

the

previous

version.

Complete

the

fields

for

Install

location

and

Configuration

file

with

corresponding

information.

3.

Follow

the

instructions

provided

in

the

Installation

Wizard

to

complete

the

installation.

The

security

configuration

of

previous

WebSphere

Application

Server

releases

and

its

applications

are

migrated

to

the

new

installation

of

WebSphere

Application

Server

Version

5.

This

task

is

for

migrating

an

installation.

After

migration

is

complete,

re-enable

your

security

configurations

with

security

disabled

in

the

migrated

version.

You

must

re-enable

your

security

configurations

even

if

the

previous

version

had

security

enabled.

If

custom

user

registry

is

used

in

the

previous

version,

the

migration

process

does

not

migrate

the

class

files

used

by

the

custom

user

registry

in

the

<previous_install_root>\classes

directory.

Therefore,

after

migration,

copy

your

custom

user

registry

implementation

classes

to

the

<install_root>\classes

directory.

If

you

upgrade

from

WebSphere

Application

Server,

Version

4.0.x

to

WebSphere

Application

Server,

Version

5

or

later,

data

associated

with

Version

4.0.x

trust

associations

is

not

automatically

migrated

to

Version

5

or

later.

To

migrate

trust

associations,

see

“Migrating

trust

association

interceptors”

on

page

30.

Migrating

custom

user

registries

Before

you

perform

this

task,

it

is

assumed

that

you

already

have

a

custom

user

registry

implemented

and

working

in

WebSphere

Application

Server

Version

4.

The

custom

registry

in

WebSphere

Application

Server

Version

4

is

based

on

the

CustomRegistry

interface.

For

WebSphere

Application

Server

Version

5,

the

interface

is

called

the

UserRegistry

interface.

The

WebSphere

Application

Server

Version

4-based

custom

registry

works

without

any

changes

to

the

implementation

in

WebSphere

Application

Server

Version

5

except

when

the

implementation

is

using

data

sources

to

connect

to

a

database

during

initialization.

If

the

previous

implementation

is

using

a

data

source

to

access

a

database,

change

the

implementation

to

use

JDBC

connections

to

connect

to

the

database.

The

WebSphere

Application

Server

Version

4

version

of

the

CustomRegistry

interface

is

deprecated

in

WebSphere

Application

Server

Version

5.

So,

moving

your

implementation

to

the

WebSphere

Application

Server

Version

5-based

interface

is

expected.

In

WebSphere

Application

Server

Version

5,

in

addition

to

the

UserRegistry

interface,

the

custom

user

registry

requires

the

Result

object

to

handle

user

and

group

information.

This

file

is

already

provided

in

the

package

and

you

are

expected

to

use

it

for

the

getUsers,

getGroups

and

the

getUsersForGroup

methods.

In

WebSphere

Application

Server

Version

4,

it

might

have

been

possible

to

use

other

WebSphere

Application

Server

components

(for

example,

datasources)

to

initialize

the

custom

registry.

This

is

no

longer

possible

in

WebSphere

Application

Server

Version

5,

because

other

components

like

the

containers

are

initialized

after

security

and

are

not

available

during

the

registry

initialization.

In

WebSphere

Chapter

2.

Securing

applications

and

their

environments

27

Application

Server

Version

5,

a

custom

registry

implementation

is

a

pure

custom

implementation,

independent

of

other

WebSphere

Application

Server

components.

In

WebSphere

Application

Server

Version

4,

if

you

had

display

names

for

users

the

EJB

method

getCallerPrincipal(

)

and

the

servlet

methods

getUserPrincipal(

)

and

getRemoteUser(

)

returned

the

display

names.

This

behavior

has

changed

in

WebSphere

Application

Server

Version

5.

By

default,

these

methods

now

return

the

security

name

instead

of

the

display

name.

However,

if

you

need

the

display

names

to

return,

set

the

WAS_UseDisplayName

property

to

true.

See

the

getUserDisplayName

method

description

or

the

Javadoc,

for

more

information.

If

the

migration

tool

was

used

to

migrate

the

WebSphere

Application

Server

Version

4

configuration

to

WebSphere

Application

Server

Version

5,

be

aware

that

this

migration

does

not

involve

any

changes

to

your

existing

code.

Since

the

WebSphere

Application

Server

Version

4

custom

registry

works

in

WebSphere

Application

Server

Version

5

without

any

changes

to

the

implementation

(except

when

using

data

sources)

you

can

use

the

Version

4-based

custom

registry

after

the

migration

without

modifying

the

code.

Consider

that

the

migration

tool

might

not

copy

your

implementation

files

from

Version

4

to

Version

5.

You

might

have

to

copy

them

to

the

class

path

in

the

Version

5

setup

(preferably

to

the

classes

subdirectoy,

just

like

in

Version

4).

If

you

are

using

the

WebSphere

Application

Server

Network

Deployment

version,

copy

the

files

to

the

cell

and

to

each

of

the

nodes

class

paths.

In

Version

5,

a

case

insensitive

authorization

can

occur

when

using

the

custom

registry.

This

authorization

is

new

in

Version

5

and

in

effect

only

on

the

authorization

check.

This

function

is

useful

in

cases

where

your

custom

registry

returns

inconsistent

(in

terms

of

case)

results

for

user

and

group

unique

IDs.

Note:

Setting

this

flag

does

not

have

any

effect

on

the

user

names

or

passwords.

Only

the

unique

IDs

returned

from

the

registry

are

changed

to

lower-case

before

comparing

them

with

the

information

in

the

authorization

table,

which

is

also

converted

to

lowercase

during

run

time.

Before

proceeding,

look

at

the

new

UserRegistry

interface.

See

“Developing

custom

user

registries”

on

page

94

for

a

description

of

each

of

these

methods

in

detail

and

the

changes

from

Version

4.

The

following

steps

go

through

in

detail

all

the

changes

required

to

move

your

WebSphere

Application

Server

Version

4

custom

user

registry

to

the

Version

5

custom

user

registry.

The

steps

are

very

simple

and

involve

minimal

code

changes.

The

sample

implementation

file

is

used

as

an

example

when

describing

some

of

the

steps.

1.

Change

your

implementation

to

UserRegistry

instead

of

CustomRegistry.

Change:

public

class

FileRegistrySample

implements

CustomRegistry

to

public

class

FileRegistrySample

implements

UserRegistry

2.

Throw

the

java.rmi.RemoteException

in

the

constructors

public

FileRegistrySample()

throws

java.rmi.RemoteException

3.

Change

the

mapCertificate

method

to

take

a

certificate

chain

instead

of

a

single

certificate.

Change

28

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

public

String

mapCertificate(X509Certificate

cert)

to

public

String

mapCertificate(X509Certificate[]cert)

Having

a

certificate

chain

gives

you

the

flexibility

to

act

on

the

chain

instead

of

one

certificate.

If

you

are

only

interested

in

the

first

certificate

just

take

the

first

certificate

in

the

chain

before

processing.

In

Version

5,

the

mapCertificate

method

is

called

to

map

the

user

in

a

certificate

to

a

valid

user

in

the

registry,

when

certificates

are

used

for

authentication

by

the

Web

or

the

Java

clients

(transport

layer

certificates,

Identity

Assertion

certificates).

In

Version

4,

this

was

only

called

by

Web

clients

since

the

Common

Secure

Interoperability

Version

2

(CSIv2)

protocol

was

not

supported.

4.

Remove

the

getUsers()

method.

5.

Change

the

signature

of

the

getUsers(String)

method

to

return

a

Result

object

and

accept

an

additional

parameter

(int).

Change:

public

List

getUsers(String

pattern)

to

public

Result

getUsers(String

pattern,

int

limit)

In

your

implementation,

construct

the

Result

object

from

the

list

of

the

users

obtained

from

the

registry

(whose

number

is

limited

to

the

value

of

the

limit

parameter)

and

call

the

setHasMore()

method

on

the

Result

object

if

the

total

number

of

users

in

the

registry

exceeds

the

limit

value.

6.

Change

the

signature

of

the

getUsersForGroup(String)

method

to

return

a

Result

object

and

accept

an

additional

parameter

(int)

and

throw

a

new

exception

called

NotImplementedException.

Change

the

following:

public

List

getUsersForGroup(String

groupName)

throws

CustomRegistryException,

EntryNotFoundException

{

to

public

Result

getUsersForGroup(String

groupSecurityName,

int

limit)

throws

NotImplementedException,

EntryNotFoundException,

CustomRegistryException

{

In

Version

5,

this

method

is

not

called

directly

by

the

WebSphere

Application

Server

Security

component.

However,

other

components

of

the

WebSphere

Application

Server

like

the

process

choreographer

use

this

method

when

staff

assignments

are

modeled

using

groups.

Since

this

already

is

implemented

in

WebSphere

Application

Server

Version

4,

it

is

recommended

that

you

change

the

implementation

similar

to

the

getUsers

method

as

explained

in

step

5.

7.

Remove

the

getUniqueUserIds(String)

method.

8.

Remove

the

getGroups()

method.

9.

Change

the

signature

of

the

getGroups(String)

method

to

return

a

Result

object

and

accept

an

additional

parameter

(int).

change

the

following:

public

List

getGroups(String

pattern)

to

Chapter

2.

Securing

applications

and

their

environments

29

public

Result

getGroups(String

pattern,

int

limit)

In

your

implementation,

construct

the

Result

object

from

the

list

of

the

groups

obtained

from

the

registry

(whose

number

is

limited

to

the

value

of

the

limit

parameter)

and

call

the

setHasMore()

method

on

the

Result

object

if

the

total

number

of

groups

in

the

registry

exceeds

the

limit

value.

10.

Add

the

createCredential

method.

This

method

is

not

called

at

this

time,

so

return

as

null.

public

com.ibm.websphere.security.cred.WSCredential

createCredential(String

userSecurityName)

throws

CustomRegistryException,

NotImplementedException,

EntryNotFoundException

{

return

null;

}

The

first

and

second

lines

of

the

previous

code

example

normally

appear

on

one

line.

However,

it

extended

beyond

the

width

of

the

page.

11.

To

build

the

Version

5

implementation

make

sure

you

have

the

sas.jar

and

wssec.jar

in

your

class

path.

%install_root%\java\bin\javac

-classpath

%WAS_HOME%\lib\wssec.jar;

%WAS_HOME%\lib\sas.jar

FileRegistrySample.java

Type

the

previous

lines

as

one

continuous

line.

To

build

the

Version

4

custom

registry

in

Version

5.0.2,

only

the

sas.jar

file

is

required.

12.

Copy

the

implementation

classes

to

the

product

class

path.

The

%install_root%/lib/ext

directory

is

the

preferred

location.

If

you

are

using

the

Network

Deployment

product,

make

sure

that

you

copy

these

files

to

the

cell

and

all

the

nodes.

Without

the

files

in

each

of

the

node

class

paths

the

nodes

and

the

application

servers

in

those

nodes

cannot

start

when

security

is

on.

13.

Use

the

administrative

console

to

set

up

the

custom

registry.

Follow

the

instructions

in

the

“Configuring

custom

user

registries”

on

page

214

article

to

set

up

the

custom

registry

including

the

IgnoreCase

flag.

Make

sure

that

you

add

the

WAS_UseDisplayName

properties,

if

required.

Migrates

a

Version

4

custom

registry

to

the

Version

5

custom

registry.

This

step

is

required

to

migrate

a

custom

registry

from

WebSphere

Application

Server

Version

4

to

WebSphere

Application

Server

Version

5.

If

you

are

enabling

security,

make

sure

you

complete

the

remaining

steps.

Once

completed,

save

the

configuration

and

restart

all

the

servers.

Try

accessing

some

J2EE

resources

to

verify

that

the

custom

registry

migration

was

successful.

Migrating

trust

association

interceptors

The

following

topics

are

addressed

in

this

document:

v

Changes

to

the

product-provided

trust

association

interceptors

v

Migrating

product-provided

trust

association

interceptors

v

Changes

to

the

custom

trust

association

interceptors

v

Migrating

custom

trust

association

interceptors

30

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Changes

to

the

product-provided

trust

association

interceptors

For

the

product

provided

implementation

for

the

WebSeal

server

a

new

optional

property

com.ibm.websphere.security.webseal.ignoreProxy

has

been

added.

If

this

property

is

set

to

true

or

yes,

the

implementation

does

not

check

for

the

proxy

host

names

and

the

proxy

ports

to

match

any

of

the

host

names

and

ports

listed

in

the

com.ibm.websphere.security.webseal.hostnames

and

the

com.ibm.websphere.security.webseal.ports

property

respectively.

For

example,

if

the

VIA

header

contains

the

following

information:

HTTP/1.1

Fred

(Proxy),

1.1

Sam

(Apache/1.1),

HTP/1.1

webseal1:7002,

1.1

webseal2:7001

Note:

The

previous

VIA

header

information

was

split

onto

two

lines

due

to

the

width

of

the

printed

page.

and

the

com.ibm.websphere.security.webseal.ignoreProxy

is

set

to

true

or

yes,

the

host

name

Fred

is

not

be

used

when

matching

the

host

names.

By

default,

this

property

is

not

set,

which

implies

that

any

proxy

host

names

and

ports

expected

in

the

VIA

header

should

be

listed

in

the

host

names

and

the

ports

properties

to

satisfy

the

isTargetInterceptor

method.

Migrating

product-provided

trust

association

interceptors

The

properties

located

in

the

webseal.properties

and

trustedserver.properties

files

are

not

migrated

from

previous

versions

of

the

WebSphere

Application

Server.

You

must

migrate

the

appropriate

properties

to

WebSphere

Application

Server,

Version

5

using

the

trust

association

panels

in

the

administrative

console.

For

more

information,

see

Configuring

trust

association

interceptors.

Changes

to

the

custom

trust

association

interceptors

If

the

custom

interceptor

extends,

com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor,

then

implement

the

following

new

method

to

initialize

the

interceptor:

public

int

init

(java.util.Properties

props);

WebSphere

Application

Server

checks

the

return

status

before

using

the

Trust

Association

implementation.

Zero

(0)

is

the

default

value

for

indicating

the

the

interceptor

was

successfully

initialized.

However,

if

a

previous

implementation

of

the

trust

association

interceptor

returns

a

different

error

status

you

can

either

change

your

implementation

to

match

the

expectations

or

make

one

of

the

following

changes:

Method

1:

Add

the

com.ibm.websphere.security.trustassociation.initStatus

property

in

the

trust

association

interceptor

custom

properties.

Set

the

property

to

the

value

that

indicates

that

the

interceptor

is

successfully

initialized.

All

of

the

other

possible

values

imply

failure.

In

case

of

failure,

the

corresponding

trust

association

interceptor

is

not

used.

Method

2:

Add

the

com.ibm.websphere.security.trustassociation.ignoreInitStatus

property

in

the

trust

association

interceptor

custom

properties.

Set

the

value

of

this

property

to

true,

which

tells

WebSphere

Application

Server

to

ignore

the

status

of

this

method.

If

you

add

this

property

to

the

custom

Chapter

2.

Securing

applications

and

their

environments

31

properties,

WebSphere

Application

Server

does

not

check

the

return

status,

which

is

similar

to

previous

versions

of

WebSphere

Application

Server.

The

public

int

init

(java.util.Properties

props);

method

replaces

the

public

int

init

(String

propsFile)

method.

The

init(Properties)

method

accepts

a

java.util.Properties

object

which

contains

the

set

of

properties

required

to

initialize

the

interceptor.

All

the

properties

set

for

an

interceptor

(by

using

the

Custom

Properties

link

for

that

interceptor

or

using

scripting)

will

be

sent

to

this

method.

The

interceptor

can

then

use

these

properties

to

initialize

itself.

For

example,

in

the

product

provided

implementation

for

the

WebSEAL

server,

this

method

reads

the

hosts

and

ports

so

that

a

request

coming

in

can

be

verified

to

come

from

trusted

hosts

and

ports.

A

return

value

of

0

implies

that

the

interceptor

initialization

is

successful.

Any

other

value

implies

that

the

initialization

was

not

successful

and

the

interceptor

will

not

be

used.

All

the

properties

set

for

an

interceptor

(by

using

the

Custom

Properties

link

in

the

administrative

console

for

that

interceptor

or

using

scripting)

is

sent

to

this

method.

The

interceptor

can

then

use

these

properties

to

initialize

itself.

For

example,

in

the

product-provided

implementation

for

the

WebSEAL

server,

this

method

reads

the

hosts

and

ports

so

that

an

incoming

request

can

be

verified

to

come

from

trusted

hosts

and

ports.

A

return

value

of

0

implies

that

the

interceptor

initialization

is

successful.

Any

other

value

implies

that

the

initialization

was

not

successful

and

the

interceptor

is

ignored.

Note:

The

init(String)

method

still

works

if

you

want

to

use

it

instead

of

implementing

the

init(Properties)

method.

The

only

requirement

is

that

the

file

name

containing

the

custom

trust

association

properties

should

now

be

entered

using

the

Custom

Properties

link

of

the

interceptor

in

the

administrative

console

or

by

using

scripts.

You

can

enter

the

property

using

either

of

the

following

methods.

The

first

method

is

used

for

backward

compatibility

with

previous

versions

of

WebSphere

Application

Server.

Method

1:

The

same

property

names

used

in

the

previous

release

are

used

to

obtain

the

file

name.

The

file

name

is

obtained

by

concatenating

the

.config

to

the

com.ibm.websphere.security.trustassociation.types

property

value.

If

the

file

name

is

called

myTAI.properties

and

is

located

in

the

C:/WebSphere/AppServer/properties

directory,

set

the

following

properties:

v

com.ibm.websphere.security.trustassociation.types

=

myTAItype

v

com.ibm.websphere.security.trustassociation.myTAItype.config

=

C:/WebSphere/AppServer/properties/myTAI.properties
Method

2:

You

can

set

the

com.ibm.websphere.security.trustassociation.initPropsFile

property

in

the

trust

association

custom

properties

to

the

location

of

the

file.

For

example,

set

the

following

property:

com.ibm.websphere.security.trustassociation.initPropsFile=

C:/WebSphere/AppServer/properties/myTAI.properties

The

previous

line

of

code

was

split

into

two

lines

due

to

the

width

of

the

screen.

Type

as

one

continuous

line.

32

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

However,

it

is

highly

recommened

that

your

implementation

be

changed

to

implement

the

init(Properties)

method

instead

of

relying

on

init

(String

propsfile)

method.

Migrating

custom

trust

association

interceptors

The

trust

associations

from

previous

versions

of

WebSphere

Application

Server

are

not

migrated

to

version

5.

Users

can

manually

migrate

these

trust

asociations

using

the

following

steps:

1.

Recompile

the

implementation

file,

if

necessary.

For

more

information,

refer

to

the

″Changes

to

the

custom

trust

association

interceptors″

section

previously

discussed

in

this

document.

To

recompile

the

implementation

file,

type

the

following:

%WAS_HOME%/java/bin/javac

-classpath

%WAS_HOME%/lib/wssec.jar;

%WAS_HOME%/lib/j2ee.jar

<your

implementation

file>.java

Note:

The

previous

line

of

code

was

broken

into

two

lines

due

to

the

width

of

the

page.

Type

the

code

as

one

continuous

line.

2.

Copy

the

custom

trust

association

interceptor

class

files

to

a

location

in

your

product

class

path.

It

is

suggested

that

you

copy

these

class

files

into

the

%WAS_HOME%/lib/ext

directory.

3.

Start

the

WebSphere

Application

Server

4.

Enable

security

to

use

the

trust

association

interceptor.

The

properties

located

in

your

custom

trust

association

properties

file

and

in

the

trustedserver.properties

file

are

not

migrated

from

previous

versions

of

WebSphere

Application

Server

to

version

5.

You

must

migrate

the

appropriate

properties

to

WebSphere

Application

Server,

version

5

using

the

trust

association

panels

in

the

GUI.

For

more

information,

see

Configuring

trust

association

interceptors.

Migrating

Common

Object

Request

Broker

Architecture

programmatic

login

to

Java

Authentication

and

Authorization

Service

WebSphere

Application

Server

Version

5

fully

supports

the

Java

Authentication

and

Authorization

Service

(JAAS)

as

programmatic

login

APIs.

See

Configuring

Java

Authentication

and

Authorization

Service

and

Developing

with

JAAS

to

log

in

programmatically,

for

more

details

on

JAAS

support.

This

document

outlines

the

deprecated

Common

Object

Request

Broker

Architecture

(CORBA)

programmatic

login

APIs

and

the

alternatives

provided

by

JAAS.

The

following

are

the

deprecated

CORBA

programmatic

login

APIs:

v

${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-
INF/classes/LoginHelper.java.

The

sampleApp

is

not

included

in

Version

5.

v

${user.install.root}/installedApps/sampleApp.ear/default_app.war/WEB-
INF/classes/ServerSideAuthenticator.java.

The

sampleApp

is

not

included

in

Version

5.

v

com.ibm.IExtendedSecurity._LoginHelper.

This

API

is

included

with

the

product,

but

is

deprecated.

v

org.omg.SecurityLevel2.Credentials.

This

API

is

included

with

the

product,

but

not

recommended

to

use.

Chapter

2.

Securing

applications

and

their

environments

33

The

alternative

APIs

provided

in

WebSphere

Application

Server

Version

5

are

a

combination

of

standard

JAAS

APIs

and

a

product

implementation

of

standard

JAAS

interfaces.

The

following

information

is

only

a

summary;

refer

to

the

JAAS

documentation

for

your

platform

located

at

http://www.ibm.com/developerworks/java/jdk/security/

and

the

product

Javadoc

(${was.install.root}/web/apidocs/index.html)

for

details.

v

Programmatic

login

APIs:

–

javax.security.auth.login.LoginContext

–

javax.security.auth.callback.CallbackHandler

interface:

The

WebSphere

Application

Server

product

provides

the

following

implementation

of

the

javax.security.auth.callback.CallbackHandler

interface:

-

com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl:

A

non-prompt

CallbackHandler,

application

pushes

basic

authentication

data

(user

ID,

password,

and

security

realm)

or

token

data

to

product

LoginModules.

This

API

is

recommended

for

server-side

login.

-

com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl:

A

GUI

login

prompt

CallbackHandler

to

gather

basic

authentication

data

(user

ID,

password,

and

security

realm).

This

API

is

recommended

for

client-side

login.

Note:

If

this

API

is

used

on

the

server

side,

the

server

is

blocked

for

input.

-

com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl:

A

stdin

login

prompt

CallbackHandler

to

gather

basic

authentication

data

(user

ID,

password,

and

security

realm).

This

API

is

recommended

for

client-side

login.

Note:

If

this

API

is

used

on

the

server

side,

the

server

is

blocked

for

input.
–

javax.security.auth.callback.Callback

interface:

-

javax.security.auth.callback.NameCallback:

Provided

by

JAAS

to

pass

the

user

name

to

the

LoginModules

interface.

-

javax.security.auth.callback.PasswordCallback:

Provided

by

JAAS

to

pass

the

password

to

the

LoginModules

interface.

-

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl:

Provided

by

the

product

to

perform

a

token-based

login.

With

this

API,

an

application

can

pass

a

token-byte

array

to

the

LoginModules

interface.
–

javax.security.auth.spi.LoginModule

interface:

WebSphere

Application

Server

provides

LoginModules

implementation

for

client

and

server-side

login.

Refer

to

Configuring

Java

Authentication

and

Authorization

Service

for

details.
v

javax.security.Subject:

–

com.ibm.websphere.security.auth.WSSubject:

An

extension

provided

by

the

product

to

invoke

remote

J2EE

resources

using

the

credentials

in

the

javax.security.Subject

–

com.ibm.websphere.security.cred.WSCredential:

After

a

successful

JAAS

login

with

the

WebSphere

Application

Server

LoginModules

intefaces,

a

com.ibm.websphere.security.cred.WSCredential

credentials

is

created

and

stored

in

the

Subject.

–

com.ibm.websphere.security.auth.WSPrincipal:

An

authenticated

principal,

that

is

created

and

stored

in

a

Subject

that

is

authenticated

by

the

WebSphere

LoginModules

interface.
1.

Use

the

following

as

an

example

of

how

to

perform

programmatic

login

using

the

CORBA-based

programmatic

login

APIs:

The

CORBA-based

programmatic

login

APIs

are

replaced

by

JAAS

login.

34

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

public

class

TestClient

{

...

private

void

performLogin()

{

//

Get

the

ID

and

password

of

the

user.

String

userid

=

customGetUserid();

String

password

=

customGetPassword();

//

Create

a

new

security

context

to

hold

authentication

data.

LoginHelper

loginHelper

=

new

LoginHelper();

try

{

//

Provide

the

ID

and

password

of

the

user

for

authentication.

org.omg.SecurityLevel2.Credentials

credentials

=

loginHelper.login(userid,

password);

//

Use

the

new

credentials

for

all

future

invocations.

loginHelper.setInvocationCredentials(credentials);

//

Retrieve

the

name

of

the

user

from

the

credentials

//

so

we

can

tell

the

user

that

login

succeeded.

String

username

=

loginHelper.getUserName(credentials);

System.out.println(″Security

context

set

for

user:

″+username);

}

catch

(org.omg.SecurityLevel2.LoginFailed

e)

{

//

Handle

the

LoginFailed

exception.

}

}

...

}

2.

Use

the

following

example

to

migrate

the

CORBA-based

programmatic

login

APIs

to

the

JAAS

programmatic

login

APIs.

The

following

example

assumes

that

the

application

code

is

granted

for

the

required

Java

2

security

permissions.

See

Configuring

Java

Authentication

and

Authorization

Service,

Configuring

Java

2

security

and

JAAS

documentation

located

in

the

${was.install.root}/web/docs/jaas/JaasDocs.zip

file

for

details.

public

class

TestClient

{

...

private

void

performLogin()

{

//

Create

a

new

JAAS

LoginContext.

javax.security.auth.login.LoginContext

lc

=

null;

try

{

//

Use

GUI

prompt

to

gather

the

BasicAuth

data.

lc

=

new

javax.security.auth.login.LoginContext(″WSLogin″,

new

com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

//

create

a

LoginContext

and

specify

a

CallbackHandler

implementation

//

CallbackHandler

implementation

determine

how

authentication

data

is

collected

//

in

this

case,

the

authentication

date

is

collected

by

GUI

login

prompt

//

and

pass

to

the

authentication

mechanism

implemented

by

the

LoginModule.

}

catch

(javax.security.auth.login.LoginException

e)

{

System.err.println(″ERROR:

failed

to

instantiate

a

LoginContext

and

the

exception:

″

+

e.getMessage());

e.printStackTrace();

//

may

be

javax.security.auth.AuthPermission

″createLoginContext″

is

not

granted

//

to

the

application,

or

the

JAAS

Login

Configuration

is

not

defined.

Chapter

2.

Securing

applications

and

their

environments

35

}

if

(lc

!=

null)

try

{

lc.login();

//

perform

login

javax.security.auth.Subject

s

=

lc.getSubject();

//

get

the

authenticated

subject

//

Invoke

a

J2EE

resources

using

the

authenticated

subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new

java.security.PrivilegedAction()

{

public

Object

run()

{

try

{

bankAccount.deposit(100.00);

//

where

bankAccount

is

an

protected

EJB

}

catch

(Exception

e)

{

System.out.println(″ERROR:

error

while

accessing

EJB

resource,

exception:

″

+

e.getMessage());

e.printStackTrace();

}

return

null;

}

}

);

//

Retrieve

the

name

of

the

principal

from

the

Subject

//

so

we

can

tell

the

user

that

login

succeeded,

//

should

only

be

one

WSPrincipal.

java.util.Set

ps

=

s.getPrincipals(com.ibm.websphere.security.auth.WSPrincipal.class);

java.util.Iterator

it

=

ps.iterator();

while

(it.hasNext())

{

com.ibm.websphere.security.auth.WSPrincipal

p

=

(com.ibm.websphere.security.auth.WSPrincipal)

it.next();

System.out.println(″Principal:

″

+

p.getName());

}

}

catch

(javax.security.auth.login.LoginException

e)

{

System.err.println(″ERROR:

login

failed

with

exception:

″

+

e.getMessage());

e.printStackTrace();

//

login

failed,

might

want

to

provide

relogin

logic

}

}

...

}

Migrating

CORBA-based

programmatic

login

application

to

JAAS-based

applications.

Migrating

from

the

CustomLoginServlet

class

to

servlet

filters

The

CustomLoginServlet

class

is

deprecated

in

Version

5.

Those

applications

using

the

CustomLoginServlet

class

to

perform

authentication

now

need

to

use

form-based

login.

Using

the

form-based

login

mechanism,

you

can

control

the

look

and

feel

of

the

login

screen.

In

form-based

login,

a

login

page

is

specified

that

displays

when

retrieving

the

user

ID

and

password

information.

You

also

can

specify

an

error

page

that

displays

when

authentication

fails.

36

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

If

login

and

error

pages

are

not

enough

to

implement

the

CustomLoginServlet

class,

use

servlet

filters.

Servlet

filters

can

dynamically

intercept

requests

and

responses

to

transform

or

use

the

information

contained

in

the

requests

or

responses.

One

or

more

servlet

filters

attach

to

a

servlet

or

a

group

of

servlets.

Servlet

filters

also

can

attach

to

JSP

files

and

HTML

pages.

All

the

attached

servlet

filters

are

called

before

invoking

the

servlet.

Both

form-based

login

and

servlet

filters

are

supported

by

any

Servlet

2.3

specification-compliant

Web

container.

A

form

login

servlet

performs

the

authentication

and

servlet

filters

can

perform

additional

authentication,auditing,

or

logging

tasks.

To

perform

pre-login

and

post-login

actions

using

servlet

filters,

configure

these

servlet

filters

for

either

form

login

page

or

for

/j_security_check

URL.

The

j_security_check

is

posted

by

the

form

login

page

with

the

j_username

parameter,

containing

the

user

name

and

the

j_password

parameter

containing

the

password.

A

servlet

filter

can

use

user

name

and

password

information

to

perform

more

authentication

or

meet

other

special

needs.

1.

Develop

a

form

login

page

and

error

page

for

the

application,

as

described

in

“Developing

form

login

pages”

on

page

46.

2.

Configure

the

form

login

page

and

the

error

page

for

the

application

as

described

in

“Securing

Web

applications

using

the

Assembly

Toolkit”

on

page

114.

3.

Develop

servlet

filters

if

additional

processing

is

required

before

and

after

form

login

authentication.

Refer

to

“Developing

servlet

filters

for

form

login

processing”

on

page

41

for

details.

4.

Configure

the

servlet

filters

developed

in

the

previous

step

for

either

the

form

login

page

URL

or

for

the

/j_security_check

URL.

Use

an

assembly

tool

or

development

tools

like

WebSphere

Application

Development

Studio

to

configure

filters.

After

configuring

the

servlet

filters,

the

web-xml

file

contains

two

stanzas.

The

first

stanza

contains

the

servlet

filter

configuration,

the

servlet

filter,

and

its

implementation

class.

The

second

stanza

contains

the

filter

mapping

section

and

a

mapping

of

the

servlet

filter

to

the

URL.

In

this

case,

the

servlet

filter

maps

to

/j_security_check.

<filter

id=″Filter_1″>

<filter-name>LoginFilter</filter-name>

<filter-class>LoginFilter</filter-class>

<description>Performs

pre-login

and

post-login

operation</description>

<init-param>

<param-name>ParamName</param-name>

<param-value>ParamValue</param-value>

<init-param>

</filet>

<filter-mapping>

<filter-name>LoginFilter</filter-name>

<url-pattern>/j_security_check</url-pattern>

</filter-mapping>

This

migration

results

in

an

application

that

uses

form-based

login

and

servlet

filters

without

the

use

of

the

CustomLoginServlet

class.

Chapter

2.

Securing

applications

and

their

environments

37

The

use

of

form-based

login

and

servlet

filters

by

the

new

application

are

used

to

replace

the

CustomLoginServlet

class.

Servlet

filters

also

are

used

to

perform

additional

authentication,

auditing

and

logging.

Developing

secured

applications

IBM

WebSphere

Application

Server

provides

security

components

that

provide

or

collaborate

with

other

services

to

provide

authentication,

authorization,

delegation,

and

data

protection.

WebSphere

Application

Server

also

supports

the

security

features

described

in

the

Java

2

Enterprise

Edition

(J2EE)

specification.

An

application

goes

through

three

stages

before

it

is

ready

to

run:

v

Development

v

Assembly

v

Deployment

Most

of

the

security

for

an

application

is

configured

during

the

assembly

stage.

The

security

configured

during

the

assembly

stage

is

called

declarative

security

because

the

security

is

declared

or

defined

in

the

deployment

descriptors.

The

declarative

security

is

enforced

by

the

security

run

time.

For

some

applications,

declarative

security

is

not

sufficient

to

express

the

security

model

of

the

application.

For

these

applications,

you

can

use

programmatic

security.

1.

Develop

secure

Web

applications.

For

more

information,

see

“Developing

with

programmatic

security

APIs

for

Web

applications.”

2.

Develop

servlet

filters

for

form

login

processing.

For

more

information,

see

“Developing

servlet

filters

for

form

login

processing”

on

page

41.

3.

Develop

form

login

pages.

For

more

information,

see

“Developing

form

login

pages”

on

page

46.

4.

Develop

enterprise

bean

component

applications.

For

more

information,

see

“Developing

with

programmatic

APIs

for

EJB

applications”

on

page

50.

5.

Develop

with

Java

Authentication

and

Authorization

Service

to

log

in

programmatically.

For

more

information,

see

“Developing

programmatic

logins

with

the

Java

Authentication

and

Authorization

Service”

on

page

62.

6.

Develop

your

own

Java

2

security

mapping

module.

For

more

information,

see

“Configuring

application

logins

for

Java

Authentication

and

Authorization

Service”

on

page

243.

7.

Develop

custom

user

registries.

For

more

information,

see

“Developing

custom

user

registries”

on

page

94.

8.

Develop

a

custom

interceptor

for

trust

associations.

For

more

information,

see

“Trust

association

interceptor

support

for

Subject

creation”

on

page

108

Developing

with

programmatic

security

APIs

for

Web

applications

Programmatic

security

is

used

by

security-aware

applications

when

declarative

security

alone

is

not

sufficient

to

express

the

security

model

of

the

application.

Programmatic

security

consists

of

the

following

methods

of

the

HttpServletRequest

interface:

getRemoteUser()

Returns

the

user

name

the

client

used

for

authentication.

Returns

null

if

no

user

is

authenticated.

38

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

isUserInRole

(String

role

name):

Returns

true

if

the

remote

user

is

granted

the

specified

security

role.

If

the

remote

user

is

not

granted

the

specified

role,

or

if

no

user

is

authenticated,

it

returns

false.

getUserPrincipal()

Returns

the

java.security.Principal

object

containing

the

remote

user

name.

If

no

user

is

authenticated,

it

returns

null.

When

the

isUserInRole()

method

is

used,

declare

a

security-role-ref

element

in

the

deployment

descriptor

with

a

role-name

subelement

containing

the

role

name

passed

to

this

method.

Since

actual

roles

are

created

during

the

assembly

stage

of

the

application,

you

can

use

a

logical

role

as

the

role

name

and

provide

enough

hints

to

the

assembler

in

the

description

of

the

security-role-ref

element

to

link

that

role

to

the

actual

role.

During

assembly,

the

assembler

creates

a

role-link

subelement

to

link

the

role

name

to

the

actual

role.

Creation

of

a

security-role-ref

element

is

possible

if

development

tools

such

as

WebSphere

Studio

Application

Developer

is

used.

You

also

can

create

the

security-role-ref

element

during

assembly

stage

using

the

assembly

tool.

1.

Add

the

required

security

methods

in

the

servlet

code.

2.

Create

a

security-role-ref

element

with

the

role-name

field.

If

a

security-role-ref

element

is

not

created

during

development,

make

sure

it

is

created

during

the

assembly

stage.

A

programmatically

secured

servlet

application.

This

step

is

required

to

secure

an

application

programmatically.

This

action

is

particularly

useful

is

when

a

Web

application

wants

to

access

external

resources

and

wants

to

control

the

access

to

external

resources

using

its

own

authorization

table

(external-resource

to

remote-user

mapping).

In

this

case,

use

the

getUserPrincipal()

or

getRemoteUser()

methods

to

get

the

remote

user

and

then

it

can

consult

its

own

authorization

table

to

perform

authorization.

The

remote

user

information

also

can

help

retrieve

the

corresponding

user

information

from

an

external

source

such

as

a

database

or

from

an

enterprise

bean.

You

can

use

the

isUserInRole()

method

in

a

similar

way.

After

development,

a

security-role-ref

element

can

be

created:

<security-role-ref>

<description>Provide

hints

to

assembler

for

linking

this

role

name

to

an

actual

role

here<\description>

<role-name>Mgr<\role-name>

</security-role-ref>

During

assembly,

the

assembler

creates

a

role-link

element:

<security-role-ref>

<description>Hints

provided

by

developer

to

map

the

role

name

to

the

role-link</description>

<role-name>Mgr</role-name>

<role-link>Manager</role-link>

</security-role-ref>

You

can

add

programmatic

servlet

security

methods

inside

any

servlet

doGet(),

doPost(),

doPut(),

doDelete()

service

methods.

The

following

example

depicts

using

a

programmatic

security

API:

Chapter

2.

Securing

applications

and

their

environments

39

public

void

doGet(HttpServletRequest

request,

HttpServletResponse

response)

{

....

//

to

get

remote

user

using

getUserPrincipal()

java.security.Principal

principal

=

request.getUserPrincipal();

String

remoteUser

=

principal.getName();

//

to

get

remote

user

using

getRemoteUser()

remoteUser

=

request.getRemoteUser();

//

to

check

if

remote

user

is

granted

Mgr

role

boolean

isMgr

=

request.isUserInRole(″Mgr″);

//

use

the

above

information

in

any

way

as

needed

by

//

the

application

....

}

After

developing

an

application,

use

the

Assembly

Toolkit

to

create

roles

and

to

link

the

actual

roles

to

role

names

in

the

security-role-ref

elements.

For

more

information,

see

“Securing

Web

applications

using

the

Assembly

Toolkit”

on

page

114.

Example:

Web

applications

code

The

following

example

depicts

a

Web

application

or

servlet

using

the

programmatic

security

model.

The

following

example

is

one

usage

and

not

necessarily

the

only

usage

of

the

programmatic

security

model.

The

application

can

use

the

information

returned

by

the

getUserPrincipal(),

isUserInRole()

and

getRemoteUser()

methods

in

any

other

way

that

is

meaningful

to

that

application.

Using

the

declarative

security

model

whenever

possible

is

strongly

recommended.

File

:

HelloServlet.java

public

class

HelloServlet

extends

javax.servlet.http.HttpServlet

{

public

void

doPost(

javax.servlet.http.HttpServletRequest

request,

javax.servlet.http.HttpServletResponse

response)

throws

javax.servlet.ServletException,

java.io.IOException

{

}

public

void

doGet(

javax.servlet.http.HttpServletRequest

request,

javax.servlet.http.HttpServletResponse

response)

throws

javax.servlet.ServletException,

java.io.IOException

{

String

s

=

"Hello";

//

get

remote

user

using

getUserPrincipal()

java.security.Principal

principal

=

request.getUserPrincipal();

String

remoteUserName

=

"";

if(

principal

!=

null

)

remoteUserName

=

principal.getName();

//

get

remote

user

using

getRemoteUser()

40

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

String

remoteUser

=

request.getRemoteUser();

//

check

if

remote

user

is

granted

Mgr

role

boolean

isMgr

=

request.isUserInRole("Mgr");

//

display

Hello

username

for

managers

and

bob.

if

(

isMgr

||

remoteUserName.equals("bob")

)

s

=

"Hello

"

+

remoteUserName;

String

message

=

"<html>

\n"

+

"<head><title>Hello

Servlet</title></head>\n"

+

"<body>

/n

+"

"<h1>

"

+s+

</h1>/n

"

+

byte[]

bytes

=

message.getBytes();

//

displays

"Hello"

for

ordinary

users

//

and

displays

"Hello

username"

for

managers

and

"bob".

response.getOutputStream().write(bytes);

}

}

After

developing

the

servlet,

you

can

create

a

security

role

reference

for

the

HelloServlet

as

shown

in

the

following

example:

<security-role-ref>

<description>

</description>

<role-name>Mgr</role-name>

</security-role-ref>

Developing

servlet

filters

for

form

login

processing

You

can

control

the

look

and

feel

of

the

login

screen

using

the

form-based

login

mechanism.

In

form-based

login,

you

specify

a

login

page

that

is

used

to

retrieve

the

user

ID

and

password

information.

You

also

can

specify

an

error

page

that

displays

when

authentication

fails.

If

additional

authentication

or

additional

processing

is

required

before

and

after

authentication,

servlet

filters

are

an

option.

Servlet

filters

can

dynamically

intercept

requests

and

responses

to

transform

or

use

the

information

contained

in

the

requests

or

responses.

One

or

more

servlet

filters

can

attach

to

a

servlet

or

a

group

of

servlets.

Servlet

filters

also

can

attach

to

JSP

files

and

HTML

pages.

All

the

attached

servlet

filters

are

called

before

the

servlet

is

invoked.

Both

form-based

login

and

servlet

filters

are

supported

by

any

servlet

version

2.3

specification

complaint

Web

container.

The

form

login

servlet

performs

the

authentication

and

servlet

filters

perform

additional

authentication,

auditing,

or

logging

information.

To

perform

pre-login

and

post-login

actions

using

servlet

filters,

configure

these

filters

for

either

form

login

page

support

or

for

the

/j_security_check

URL.

The

j_security_check

is

posted

by

a

form

login

page

with

the

j_username

parameter

containing

the

user

name

and

the

j_password

parameter

containing

the

password.

A

servlet

filter

can

use

the

user

name

parameter

and

password

information

to

perform

more

authentication

or

other

special

needs.

Chapter

2.

Securing

applications

and

their

environments

41

A

servlet

filter

implements

the

javax.servlet.Filter

class.

There

are

three

methods

in

the

filter

class

that

need

implementing:

v

init(javax.servlet.FilterConfig

cfg).

This

method

is

called

by

the

container

exactly

once

when

the

servlet

filter

is

placed

into

service.

The

FilterConfig

passed

to

this

method

contains

the

init-parameters

of

the

servlet

filter.

Specify

the

init-parameters

for

a

servlet

filter

during

configuration

using

the

assembly

tool.

v

destroy().

This

method

is

called

by

the

container

when

the

servlet

filter

is

taken

out

of

a

service.

v

doFilter(ServletRequest

req,

ServletResponse

res,

FilterChain

chain).

This

method

is

called

by

the

container

for

every

servlet

request

that

maps

to

this

filter

before

invoking

the

servlet.

FilterChain

passed

to

this

method

can

be

used

to

invoke

the

next

filter

in

the

chain

of

filters.

The

original

requested

servlet

executes

when

the

last

filter

in

the

chain

calls

the

chain.doFilter()

method.

Therefore,

all

filters

should

call

the

chain.doFilter()

method

for

the

original

servlet

to

execute

after

filtering.

If

an

additional

authentication

check

is

implemented

in

the

filter

code

and

results

in

failure,

the

original

servlet

does

not

be

execute.

The

chain.doFilter()

method

is

not

called

and

can

be

redirected

to

some

other

error

page.

If

a

servlet

maps

to

many

servlet

filters,

servlet

filters

are

called

in

the

order

that

is

listed

in

the

deployment

descriptor

of

the

application

(web.xml).

An

example

of

a

servlet

filter

follows:

This

login

filter

can

map

to

/j_security_check

to

perform

pre-login

and

post-login

actions.

import

javax.servlet.*;

public

class

LoginFilter

implements

Filter

{

protected

FilterConfig

filterConfig;

//

Called

once

when

this

filter

is

instantiated.

//

If

mapped

to

j_security_check,

called

//

very

first

time

j_security_check

is

invoked.

public

void

init(FilterConfig

filterConfig)

throws

ServletException

{

this.filterConfig

=

filterConfig;

}

public

void

destroy()

{

this.filterConfig

=

null;

}

//

Called

for

every

request

that

is

mapped

to

this

filter.

//

If

mapped

to

j_security_check,

//

called

for

every

j_security_check

action

public

void

doFilter(ServletRequest

request,

ServletResponse

response,

FilterChain

chain)

throws

java.io.IOException,

ServletException

{

//

perform

pre-login

action

here

chain.doFilter(request,

response);

//

calls

the

next

filter

in

chain.

//

j_security_check

if

this

filter

is

42

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

//

mapped

to

j_security_check.

//

perform

post-login

action

here.

}

}

Place

the

servlet

filter

class

file

in

the

WEB-INF/classes

directory

of

the

application.

Configuring

servlet

filters:

WebSphere

Application

Development

Studio

or

the

Assembly

Toolkit

can

configure

the

servlet

filters.

There

are

two

steps

in

configuring

a

servlet

filter.

1.

Name

the

servlet

filter

and

assign

the

corresponding

implementation

class

to

the

servlet

filter.

Optionally,

assign

initialization

parameters

that

get

passed

to

the

init()

method

of

the

servlet

filter.After

configuring

the

servlet

filter,

the

application

deployment

descriptor,

web.xml,

contains

a

servlet

filter

configuration

similar

to

the

following

example:

<filter

id=″Filter_1″>

<filter-name>LoginFilter</filter-name>

<filter-class>LoginFilter</filter-class>

<description>Performs

pre-login

and

post-login

operation</description>

<init-param>//

optional

<param-name>ParameterName</param-name>

<param-value>ParameterValue</param-value>

</init-param>

</filter>

2.

Map

the

servlet

filter

to

URL

or

servlet.

After

mapping

the

servlet

filter

to

a

servlet

or

a

URL,

the

application

deployment

descriptor

(web.xml)

contains

servlet

mapping

similar

to

the

following

example:

<filter-mapping>

<filter-name>LoginFilter</filter-name>

<url-pattern>/j_security_check</url-pattern>

//

can

be

servlet

<servlet>servletName</servlet>

</filter-mapping>

You

can

use

servlet

filters

to

replace

the

CustomLoginServlet,

and

to

perform

additional

authentication,

auditing,

and

logging.

Example:

Servlet

filters:

This

example

illustrates

one

way

the

servlet

filters

can

perform

pre-login

and

post-login

processing

during

form

login.

Servlet

filter

source

code:

LoginFilter.java

/**

*

A

servlet

filter

example:

This

example

filters

j_security_check

and

*

performs

pre-login

action

to

determine

if

the

user

trying

to

log

in

*

is

in

the

revoked

list.

If

the

user

is

on

the

revoked

list,

an

error

is

Chapter

2.

Securing

applications

and

their

environments

43

*

sent

back

to

the

browser.

*

*

This

filter

reads

the

revoked

list

file

name

from

the

FilterConfig

*

passed

in

the

init()

method.

It

reads

the

revoked

user

list

file

and

*

creates

a

revokedUsers

list.

*

*

When

the

doFilter

method

is

called,

the

user

logging

in

is

checked

*

to

make

sure

that

the

user

is

not

on

the

revoked

Users

list.

*

*/

import

javax.servlet.*;

import

javax.servlet.http.*;

import

java.io.*;

public

class

LoginFilter

implements

Filter

{

protected

FilterConfig

filterConfig;

java.util.List

revokeList;

/**

*

init()

:

init()

method

called

when

the

filter

is

instantiated.

*

This

filter

is

instantiated

the

first

time

j_security_check

is

*

invoked

for

the

application

(When

a

protected

servlet

in

the

*

application

is

accessed).

*/

public

void

init(FilterConfig

filterConfig)

throws

ServletException

{

this.filterConfig

=

filterConfig;

//

read

revoked

user

list

revokeList

=

new

java.util.ArrayList();

readConfig();

}

/**

*

destroy()

:

destroy()

method

called

when

the

filter

is

taken

*

out

of

service.

*/

public

void

destroy()

{

this.filterConfig

=

null;

revokeList

=

null;

}

/**

*

doFilter()

:

doFilter()

method

called

before

the

servlet

to

*

which

this

filteris

mapped

is

invoked.

Since

this

filter

is

*

mapped

to

j_security_check,this

method

is

called

before

*

j_security_check

action

is

posted.

*/

public

void

doFilter(ServletRequest

request,

ServletResponse

response,

FilterChain

chain)

throws

java.io.IOException,

ServletException

{

44

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

HttpServletRequest

req

=

(HttpServletRequest)request;

HttpServletResponse

res

=

(HttpServletResponse)response;

//

pre

login

action

//

get

username

String

username

=

req.getParameter(″j_username″);

//

if

user

is

in

revoked

list

send

error

if

(

revokeList.contains(username)

)

{

res.sendError(javax.servlet.http.HttpServletResponse.SC_UNAUTHORIZED);

return;

}

//

call

next

filter

in

the

chain

:

let

j_security_check

authenticate

//

user

chain.doFilter(request,

response);

//

post

login

action

}

/**

*

readConfig()

:

Reads

revoked

user

list

file

and

creates

a

revoked

*

user

list.

*/

private

void

readConfig()

{

if

(

filterConfig

!=

null

)

{

//

get

the

revoked

user

list

file

and

open

it.

BufferedReader

in;

try

{

String

filename

=

filterConfig.getInitParameter(″RevokedUsers″);

in

=

new

BufferedReader(

new

FileReader(filename));

}

catch

(

FileNotFoundException

fnfe)

{

return;

}

//

read

all

the

revoked

users

and

add

to

revokeList.

String

userName;

try

{

while

(

(userName

=

in.readLine())

!=

null

)

revokeList.add(userName);

}

catch

(IOException

ioe)

{

}

}

}

}

Important:

In

the

previous

code

sample,

the

line

that

begins

public

void

doFilter(ServletRequest

request

was

broken

into

two

lines

due

to

Chapter

2.

Securing

applications

and

their

environments

45

the

width

of

the

page.

The

public

void

doFilter(ServletRequest

request

line

and

the

line

after

it

are

one

continuous

line.

Portion

of

the

web.xml

file

showing

the

LoginFilter

configured

and

mapped

to

j_security_check:

<filter

id=″Filter_1″>

<filter-name>LoginFilter</filter-name>

<filter-class>LoginFilter</filter-class>

<description>Performs

pre-login

and

post-login

operation</description>

<init-param>

<param-name>RevokedUsers</param-name>

<param-value>c:\WebSphere\AppServer\installedApps\

<app-name>\revokedUsers.lst</param-value>

</init-param>

</filter-id>

<filter-mapping>

<filter-name>LoginFilter</filter-name>

<url-pattern>/j_security_check</url-pattern>

</filter-mapping>

An

example

of

a

revoked

user

list

file:

user1

cn=user1,o=ibm,c=us

user99

cn=user99,o=ibm,c=us

Developing

form

login

pages

A

Web

client

or

browser

can

authenticate

a

user

to

a

Web

server

using

one

of

the

following

mechanisms:

v

HTTP

basic

authentication:

A

Web

server

requests

the

Web

client

to

authenticate

and

the

Web

client

passes

a

user

ID

and

password

in

the

HTTP

header.

v

HTTPS

client

authentication:

This

mechanism

requires

a

user

(Web

client)

to

possess

a

public

key

certificate.

The

Web

client

sends

the

certificate

to

a

Web

server

that

requests

the

client

certificates.

This

is

a

strong

authentication

mechanism

and

uses

the

Hypertext

Transfer

Protocol

with

Secure

Sockets

Layer

(HTTPS)

protocol.

v

Form-based

Authentication:

A

developer

controls

the

look

and

feel

of

the

login

screens

using

this

authentication

mechanism.

The

Hypertext

Transfer

Protocol

(HTTP)

basic

authentication

transmits

a

user

password

from

the

Web

client

to

the

Web

server

in

simple

base64

encoding.

Form-based

authentication

transmits

a

user

password

from

the

browser

to

the

Web

server

in

plain

text.

Therefore,

both

HTTP

basic

authentication

and

form-based

authentication

are

not

very

secure

unless

the

HTTPS

protocol

is

used.

The

Web

application

deployment

descriptor

contains

information

about

which

authentication

mechanism

to

use.

When

form-based

authentication

is

used,

the

deployment

descriptor

also

contains

entries

for

login

and

error

pages.

A

login

page

can

be

either

an

HTML

page

or

a

JavaServer

pages

(JSP)

page.

This

login

page

displays

on

the

Web

client

side

when

a

secured

resource

(servlet,

JSP

file,

HTML

page)

is

accessed

from

the

application.

On

authentication

failure,

an

error

page

displays.

You

can

write

login

and

error

pages

to

suit

the

application

needs

and

46

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

control

the

look

and

feel

of

these

pages.

During

assembly

of

the

application,

an

assembler

can

set

the

authentication

mechanism

for

the

application

and

set

the

login

and

error

pages

in

the

deployment

descriptor.

Form

login

uses

the

servlet

sendRedirect()

method,

which

has

several

implications

for

the

user.

The

sendRedirect()

method

is

used

twice

during

form

login:

v

The

sendRedirect()

method

initially

displays

the

form

login

page

in

the

Web

browser.

It

later

redirects

the

Web

browser

back

to

the

originally

requested

protected

page.

The

sendRedirect(String

URL)

method

tells

the

Web

browser

to

use

the

HTTP

GET

(not

the

HTTP

POST)

request

to

get

the

page

specified

in

the

URL.

If

HTTP

POST

is

the

first

request

to

a

protected

servlet

or

JavaServer

pages

(JSP)

file,

and

no

previous

authentication

or

login

occurred,

then

HTTP

POST

is

not

delivered

to

the

requested

page.

However,

HTTP

GET

is

delivered

because

form

login

uses

the

sendRedirect()

method,

which

behaves

as

an

HTTP

GET

request

that

tries

to

display

a

requested

page

after

a

login

occurs.

v

Using

HTTP

POST,

you

might

experience

a

scenario

where

an

unprotected

HTML

form

collects

data

from

users

and

then

posts

this

data

to

protected

servlets

or

JSP

files

for

processing,

but

the

users

are

not

logged

in

for

the

resource.

To

avoid

this

scenario,

structure

your

Web

application

or

permissions

so

that

users

are

forced

to

use

a

form

login

page

before

the

application

performs

any

HTTP

POST

actions

to

protected

servlets

or

JSP

files.

See

the

“Example:

Form

login”

article

for

sample

form

login

pages.

1.

Create

a

form

login

page

with

the

required

look

and

feel

including

the

required

elements

to

perform

form-based

authentication.

For

an

example,

see

“Example:

Form

login”

2.

Create

an

error

page.

You

can

program

error

pages

to

retry

authentication

or

display

an

appropriate

error

message.

3.

Place

the

login

page

and

error

page

in

the

Web

archive

(WAR)

file

relative

to

the

top

directory.

For

example,

if

the

login

page

is

configured

as

/login.html

in

the

deployment

descriptor,

place

it

in

the

top

directory

of

the

WAR

file.

An

assembler

can

also

perform

this

step

using

the

assembly

tool.

4.

Create

a

form

logout

page

and

insert

it

to

the

application

only

if

required.

This

step

is

required

when

a

Web

application

requires

a

form-based

authentication

mechanism.

After

developing

login

and

error

pages,

add

them

to

the

Web

application.

Use

the

assembly

tool

to

configure

an

authentication

mechanism

and

insert

the

developed

login

page

and

error

page

in

the

deployment

descriptor

of

the

application.

Example:

Form

login

For

the

authentication

to

proceed

appropriately,

the

action

of

the

login

form

must

always

be

j_security_check.

The

following

example

shows

how

to

code

the

form

into

the

HTML

page:

<form

method=″POST″

action=″j_security_check″>

<input

type=″text″

name=″j_username″>

<input

type=″text″

name=″j_password″>

<\form>

use

the

j_username

input

field

to

get

the

user

name

and

use

the

j_password

input

field

to

get

the

user

password.

Chapter

2.

Securing

applications

and

their

environments

47

On

receiving

a

request

from

a

Web

client,

the

Web

server

sends

the

configured

form

page

to

the

client

and

preserves

the

original

request.

When

the

Web

server

receives

the

completed

Form

page

from

the

Web

client,

it

extracts

the

user

name

and

password

from

the

form

and

authenticates

the

user.

On

successful

authentication,

the

Web

server

redirects

the

call

to

the

original

request.

If

authentication

fails,

the

Web

server

redirects

the

call

to

the

configured

error

page.

The

following

example

depicts

a

login

page

in

HTML

(login.html):

<!DOCTYPE

HTML

PUBLIC

″-//W3C/DTD

HTML

4.0

Transitional//EN″>

<html>

<META

HTTP-EQUIV

=

″Pragma″

CONTENT=″no-cache″>

<title>

Security

FVT

Login

Page

</title>

<body>

<h2>Form

Login</h2>

<FORM

METHOD=POST

ACTION=″j_security_check″>

<p>

<font

size=″2″>

Enter

user

ID

and

password:

User

ID

<input

type=″text″

size=″20″

name=″j_username″>

Password

<input

type=″password″

size=″20″

name=″j_password″>

<font

size=″2″>

And

then

click

this

button:

<input

type=″submit″

name=″login″

value=″Login″>

</p>

</form>

</body>

</html>

The

following

example

depicts

an

error

page

in

a

JSP

file:

<!DOCTYPE

HTML

PUBLIC

″-//W3C/DTD

HTML

4.0

Transitional//EN″>

<html>

<head><title>A

Form

login

authentication

failure

occurred</head></title>

<body>

<H1>A

Form

login

authentication

failure

occurred</H1>

<P>Authentication

may

fail

for

one

of

many

reasons.

Some

possibilities

include:

The

user-id

or

password

may

be

entered

incorrectly;

either

misspelled

or

the

wrong

case

was

used.

The

user-id

or

password

does

not

exist,

has

expired,

or

has

been

disabled.

</P>

</body>

</html>

After

an

assembler

configures

the

Web

application

to

use

form-based

authentication,

the

deployment

descriptor

contains

the

login

configuration

as

shown:

<login-config

id=″LoginConfig_1″>

<auth-method>FORMauth-method>FORM>

48

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

<realm-name>Example

Form-Based

Authentication

Area</realm-name>

<form-login-config

id=″FormLoginConfig_1″>

<form-login-page>/login.html</form-login-page>

<form-error-page>/error.jsp</form-error-page>

</form-login-config>

</login-config>

A

sample

Web

application

archive

(WAR)

file

directory

structure

showing

login

and

error

pages

for

the

previous

login

configuration:

META-INF

META-INF/MANIFEST.MF

login.html

error.jsp

WEB-INF/

WEB-INF/classes/

WEB-INF/classes/aServlet.class

Form

logout

Form

logout

is

a

mechanism

to

log

out

without

having

to

close

all

Web-browser

sessions.

After

logging

out

the

form

logout

mechanism,

access

to

a

protected

Web

resource

requires

reauthentication.

This

feature

is

not

required

by

J2EE

specifications,

but

is

provided

as

an

additional

feature

in

WebSphere

security.

Suppose

that

it

is

desirable

to

log

out

after

logging

into

a

Web

application

and

perform

some

actions.

A

form

logout

works

in

the

following

manner:

1.

The

logout-form

URI

is

specified

in

the

Web

browser

and

loads

the

form.

2.

The

user

clicks

Submit

on

the

form

to

log

out.

3.

The

WebSphere

security

code

logs

the

user

out.

4.

Upon

logout,

the

user

is

redirected

to

a

logout

exit

page.

Form

logout

does

not

require

any

attributes

in

a

deployment

descriptor.

It

is

an

HTML

or

JSP

file

that

is

included

with

the

Web

application.

The

form-logout

page

is

like

most

HTML

forms

except

that

like

the

form-login

page,

it

has

a

special

post

action.

This

post

action

is

recognized

by

the

Web

container,

which

dispatches

it

to

a

special

internal

WebSphere

form-logout

servlet.

The

post

action

in

the

form-logout

page

must

be

ibm_security_logout.

You

can

specify

a

logout-exit

page

in

the

logout

form

and

the

exit

page

can

represent

an

HTML

or

JSP

file

within

the

same

Web

application

to

which

that

the

user

is

redirected

after

logging

out.

The

logout-exit

page

is

specified

as

a

parameter

in

the

form-logout

page.

If

no

logout-exit

page

is

specified,

a

default

logout

HTML

message

is

returned

to

the

user.

Here

is

a

sample

form

logout

HTML

form.

This

form

configures

the

logout-exit

page

to

redirect

the

user

back

to

the

login

page

after

logout.

<!DOCTYPE

HTML

PUBliC

″-//W3C/DTD

HTML

4.0

Transitional//EN″>

<html>

<META

HTTP-EQUIV

=

″Pragma″

CONTENT=″no-cache″>

<title>Logout

Page

</title>

<body>

<h2>Sample

Form

Logout</h2>

<FORM

METHOD=POST

ACTION=″ibm_security_logout″

NAME=″logout″>

<p>

Chapter

2.

Securing

applications

and

their

environments

49

<font

size=″2″>

Click

this

button

to

log

out:

<input

type=″submit″

name=″logout″

value=″Logout″>

<INPUT

TYPE=″HIDDEN″

name=″logoutExitPage″

VALUE=″/login.html″>

</p>

</form>

</body>

</html>

Developing

with

programmatic

APIs

for

EJB

applications

Programmatic

security

is

used

by

security-aware

applications

when

declarative

security

alone

is

not

sufficient

to

express

the

security

model

of

the

application.

The

javax.ejb.EJBContext

interface

provides

two

methods

whereby

the

bean

provider

can

access

security

information

about

the

enterprise

bean

caller.

v

IsCallerInRole(String

rolename):

Returns

true

if

the

bean

caller

is

granted

the

specified

security

role

(specified

by

role

name).

If

the

caller

is

not

granted

the

specified

role,

or

if

the

caller

is

not

authenticated,

it

returns

false.

If

the

specified

role

is

granted

Everyone

access,

it

always

returns

true.

v

getCallerPrincipal():

Returns

the

java.security.Principal

object

containing

the

bean

caller

name.

If

the

caller

is

not

authenticated,

it

returns

a

principal

containing

UNAUTHENTICATED

name.

When

the

isCallerInRole()

method

is

used,

declare

a

security-role-ref

element

in

the

deployment

descriptor

with

a

role-name

subelement

containing

the

role

name

passed

to

this

method.

Since

actual

roles

are

created

during

the

assembly

stage

of

the

application,

you

can

use

a

logical

role

as

the

role

name

and

provide

enough

hints

to

the

assembler

in

the

description

of

the

security-role-ref

element

to

link

that

role

to

actual

role.

During

assembly,

assembler

creates

a

role-link

sub

element

to

link

the

role-name

to

the

actual

role.

Creation

of

a

security-role-ref

element

is

possible

if

development

tools

such

as

WebSphere

Studio

Application

Developer

is

used.

You

also

can

create

the

security-role-ref

element

during

the

assembly

stage

using

an

assembly

tool.

1.

Add

the

required

security

methods

in

the

EJB

module

code.

2.

Create

a

security-role-ref

element

with

a

role-name

field

for

all

the

role

names

used

in

the

isCallerInRole()

method.

If

a

security-role-ref

element

is

not

created

during

development,

make

sure

it

is

created

during

the

assembly

stage.

A

programmatically

secured

EJB

application.

Hard

coding

security

policies

in

applications

is

strongly

discouraged.

The

Java

2

Platform,

Enterprise

Edition

(J2EE)

security

model

capabilities

of

declaratively

specifying

security

policies

is

encouraged

wherever

possible.

Use

these

APIs

to

develop

security-aware

EJB

applications.

An

example

where

this

implementation

is

useful

is

when

an

EJB

application

wants

to

access

external

resources

and

wants

to

control

the

access

to

these

external

resources

using

its

own

authorization

table

(external-resource

to

user

mapping).

In

this

case,

use

the

getCallerPrincipal()

method

to

get

the

caller

identity

and

then

the

application

can

consult

its

own

authorization

table

to

perform

authorization.

The

caller

identification

also

can

help

retrieve

the

corresponding

user

information

from

an

external

source,

such

as

database

or

from

another

enterprise

bean.

You

can

use

the

isCallerInRole()

method

in

a

similar

way.

After

development,

a

security-role-ref

element

can

be

created:

50

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

<security-role-ref>

<description>Provide

hints

to

assembler

for

linking

this

role-name

to

actual

role

here<\description>

<role-name>Mgr<\role-name>

</security-role-ref>

During

assembly,

the

assembler

creates

a

role-link

element:

<security-role-ref>

<description>Hints

provided

by

developer

to

map

role-name

to

role-link</description>

<role-name>Mgr</role-name>

<role-link>Manager</role-link>

</security-role-ref>

You

can

add

programmatic

EJB

component

security

methods

(isCallerInRole()

and

getCallerPrincipal())

inside

any

business

methods

of

an

enterprise

bean.

The

following

example

of

programmatic

security

APIs

includes

a

session

bean:

public

class

aSessionBean

implements

SessionBean

{

.....

//

SessionContext

extends

EJBContext.

If

it

is

entity

bean

use

EntityContext

javax.ejb.SessionContext

context;

//

The

following

method

will

be

called

by

the

EJB

container

//

automatically

public

void

setSessionContext(javax.ejb.SessionContext

ctx)

{

context

=

ctx;

//

save

the

session

bean’s

context

}

....

private

void

aBusinessMethod()

{

....

//

to

get

bean’s

caller

using

getCallerPrincipal()

java.security.Principal

principal

=

context.getCallerPrincipal();

String

callerId=

principal.getName();

//

to

check

if

bean’s

caller

is

granted

Mgr

role

boolean

isMgr

=

context.isCallerInRole(″Mgr″);

//

use

the

above

information

in

any

way

as

needed

by

the

//application

....

}

....

}

After

developing

an

application,

use

the

Assembly

Toolkit

to

create

roles

and

to

link

the

actual

roles

to

role

names

in

the

security-role-ref

elements.

For

more

information,

see

“Securing

enterprise

bean

applications

using

the

Assembly

Toolkit”

on

page

111.

Chapter

2.

Securing

applications

and

their

environments

51

Example:

Enterprise

bean

application

code

The

following

EJB

component

example

illustrates

the

use

of

isCallerInRole()

and

getCallerPrincipal()

methods

in

an

EJB

module.

Using

that

declarative

security

is

recommended.

The

following

example

is

one

way

of

using

the

isCallerInRole()

and

getCallerPrincipal()

methods.

The

application

can

use

this

result

in

any

way

that

is

suitable.

A

remote

interface

File

:

Hello.java

package

tests;

import

java.rmi.RemoteException;

/**

*

Remote

interface

for

Enterprise

Bean:

Hello

*/

public

interface

Hello

extends

javax.ejb.EJBObject

{

public

abstract

String

getMessage()throws

RemoteException;

public

abstract

void

setMessage(String

s)throws

RemoteException;

}

A

home

interface

File

:

HelloHome.java

package

tests;

/**

*

Home

interface

for

Enterprise

Bean:

Hello

*/

public

interface

HelloHome

extends

javax.ejb.EJBHome

{

/**

*

Creates

a

default

instance

of

Session

Bean:

Hello

*/

public

tests.Hello

create()

throws

javax.ejb.CreateException,

java.rmi.RemoteException;

}

A

bean

implementation

File

:

HelloBean.java

package

tests;

/**

*

Bean

implementation

class

for

Enterprise

Bean:

Hello

*/

public

class

HelloBean

implements

javax.ejb.SessionBean

{

private

javax.ejb.SessionContext

mySessionCtx;

/**

*

getSessionContext

*/

public

javax.ejb.SessionContext

getSessionContext()

{

return

mySessionCtx;

}

/**

*

setSessionContext

*/

public

void

setSessionContext(javax.ejb.SessionContext

ctx)

{

52

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

mySessionCtx

=

ctx;

}

/**

*

ejbActivate

*/

public

void

ejbActivate()

{

}

/**

*

ejbCreate

*/

public

void

ejbCreate()

throws

javax.ejb.CreateException

{

}

/**

*

ejbPassivate

*/

public

void

ejbPassivate()

{

}

/**

*

ejbRemove

*/

public

void

ejbRemove()

{

}

public

java.lang.String

message;

//business

methods

//

all

users

can

call

getMessage()

public

String

getMessage()

throws

java.rmi.RemoteException

{

return

message;

}

//

all

users

can

call

setMessage()

but

only

few

users

can

set

new

message.

public

void

setMessage(String

s)

throws

java.rmi.RemoteException

{

//

get

bean’s

caller

using

getCallerPrincipal()

java.security.Principal

principal

=

mySessionCtx.getCallerPrincipal();

java.lang.String

callerId=

principal.getName();

//

check

if

bean’s

caller

is

granted

Mgr

role

boolean

isMgr

=

mySessionCtx.isCallerInRole(″Mgr″);

//

only

set

supplied

message

if

caller

is

″bob″

or

caller

is

granted

Mgr

role

if

(

isMgr

||

callerId.equals(″bob″)

)

message

=

s;

else

message

=

″Hello″;

}

}

After

development

of

the

entity

bean,

create

a

security

role

reference

in

the

deployment

descriptor

under

the

session

bean,

Hello:

Chapter

2.

Securing

applications

and

their

environments

53

<security-role-ref>

<description>Only

Managers

can

call

setMessage()

on

this

bean

(Hello)</description>

<role-name>Mgr</role-name>

</security-role-ref>

For

an

explanation

of

how

to

create

a

<security-role-ref>

element,

see

“Securing

enterprise

bean

applications

using

the

Assembly

Toolkit”

on

page

111.

Use

the

information

under

Map

security-role-ref

and

role-name

to

role-link

to

create

the

element.

Programmatic

login

Programmatic

login

is

a

type

of

form

login

that

supports

application

presentation

site-specific

login

forms

for

the

purpose

of

authentication.

When

enterprise

bean

client

applications

require

the

user

to

provide

identifying

information,

the

writer

of

the

application

must

collect

that

information

and

authenticate

the

user.

You

can

broadly

classify

the

work

of

the

programmer

in

terms

of

where

the

actual

user

authentication

is

performed:

v

In

a

client

program

v

In

a

server

program

Users

of

Web

applications

can

receive

prompts

for

authentication

data

in

many

ways.

The

<login-config>

element

in

the

Web

application

deployment

descriptor

file

defines

the

mechanism

used

to

collect

this

information.

Programmers

who

want

to

customize

login

procedures,

rather

than

relying

on

general

purpose

devices

like

a

401

dialog

window

in

a

browser,

can

use

a

form-based

login

to

provide

an

application-specific

HTML

form

for

collecting

login

information.

No

authentication

occurs

unless

WebSphere

Application

Server

global

security

is

enabled.

If

you

want

to

use

form-based

login

for

Web

applications,

you

must

specify

FORM

in

the

auth-method

tag

of

the

<login-config>

element

in

the

deployment

descriptor

of

each

Web

application.

Applications

can

present

site-specific

login

forms

by

using

the

WebSphere

Application

Server

form-login

type.

The

Java

2

Platform,

Enterprise

Edition

(J2EE)

specification

defines

form

login

as

one

of

the

authentication

methods

for

Web

applications.

However,

the

Servlet

Version

2.2

specification

does

not

define

a

mechanism

for

logging

out.

WebSphere

Application

Server

extends

J2EE

by

also

providing

a

form-logout

mechanism.

Java

Authentication

and

Authorization

Service

programmatic

login

Java

Authentication

and

Authorization

Service

(JAAS)

is

a

new

feature

in

WebSphere

Application

Server.

It

is

also

mandated

by

the

J2EE

1.3

Specification.

JAAS

is

a

collection

of

WebSphere

strategic

authentication

APIs

and

replace

of

the

CORBA

programmatic

login

APIs.

WebSphere

Application

Server

provides

some

extensions

to

JAAS:

Before

you

begin

developing

with

programmatic

login

APIs,

consider

the

following

points

:

v

For

the

pure

Java

client

application

or

client

container

application,

initialize

the

client

Object

Request

Broker

(ORB)

security

prior

to

performing

a

JAAS

login.

Do

this

by

executing

the

following

code

prior

to

the

JAAS

login:

54

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

...

import

java.util.Hashtable;

import

javax.naming.Context;

import

javax.naming.InitialContext;

...

//

Perform

an

InitialContext

and

default

lookup

prior

to

logging

//

in

to

initialize

ORB

security

and

for

the

bootstrap

host/port

//

to

be

determined

for

SecurityServer

lookup.

If

you

do

not

want

//

to

validate

the

userid/password

during

the

JAAS

login,

disable

//

the

com.ibm.CORBA.validateBasicAuth

property

in

the

//

sas.client.props

file.

Hashtable

env

=

new

Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

″com.ibm.websphere.naming.WsnInitialContextFactory″);

env.put(Context.PROVIDER_URL,

″corbaloc:iiop:myhost.mycompany.com:2809″);

Context

initialContext

=

new

InitialContext(env);

Object

obj

=

initialContext.lookup(″″);

For

more

information,

see

“Example:

Programmatic

logins”

on

page

65.

v

For

the

pure

Java

client

application

or

client

container

application,

make

sure

that

the

host

name

and

the

port

number

of

the

target

JNDI

bootstrap

properties

are

specified

properly.

See

the

Developing

applications

that

use

CosNaming

(CORBA

Naming

interface)

section

for

details.

v

If

the

application

uses

custom

JAAS

login

configuration,

make

sure

that

the

custom

JAAS

login

configuration

is

properly

defined.

See

the

“Configuring

application

logins

for

Java

Authentication

and

Authorization

Service”

on

page

243

section

for

details.

v

Some

of

the

JAAS

APIs

are

protected

by

Java

2

security

permissions.

If

these

APIs

are

used

by

application

code,

make

sure

that

these

permissions

are

added

to

the

application

was.policy

file.

See

“Adding

the

was.policy

file

to

applications”

on

page

467

to

the

application,

“Using

PolicyTool

to

edit

policy

files”

on

page

451

and

“Configuring

the

was.policy

file”

on

page

463

sections

for

details.

For

more

details

of

which

APIs

are

protected

by

Java

2

Security

permissions,

check

the

IBM

Developer

Kit,

Java

edition;

JAAS

and

the

WebSphere

public

APIs

Javadoc

for

more

details.

The

following

list

indicates

the

APIs

used

in

the

samples

code

provided

in

this

documentation.

–

javax.security.auth.login.LoginContext

constructors

are

protected

by

javax.security.auth.AuthPermission

″createLoginContext″.

–

javax.security.auth.Subject.doAs()

and

com.ibm.websphere.security.auth.WSSubject.doAs()

are

protected

by

javax.security.auth.AuthPermission

″doAs″.

–

javax.security.auth.Subject.doAsPrivileged()

and

com.ibm.websphere.security.auth.WSSubject.doAsPrivileged()

are

protected

by

javax.security.auth.AuthPermission

″doAsPrivileged″.
v

com.ibm.websphere.security.auth.WSSubject:

Due

to

a

design

oversight

in

the

JAAS

1.0,

javax.security.auth.Subject.getSubject()

does

not

return

the

Subject

associated

with

the

thread

of

execution

inside

a

java.security.AccessController.doPrivileged()

code

block.

This

can

present

an

inconsistent

behavior

that

is

problematic

and

causes

undesirable

effort.

The

com.ibm.websphere.security.auth.WSSubject

API

provides

a

work

around

to

associate

Subject

to

thread

of

execution.

The

com.ibm.websphere.security.auth.WSSubject

API

extends

the

JAAS

model

to

J2EE

resources

for

authorization

checks.

The

Subject

associated

with

the

thread

Chapter

2.

Securing

applications

and

their

environments

55

of

execution

within

com.ibm.websphere.security.auth.WSSubject.doAs()

or

com.ibm.websphere.security.auth.WSSubject.doAsPrivileged()

code

block

is

used

for

J2EE

resources

authorization

checks.

v

UI

support

for

defining

new

JAAS

login

configuration:

You

can

configure

JAAS

login

configuration

in

the

administrative

console

and

store

it

in

the

WebSphere

Configuration

API.

Applications

can

define

new

JAAS

login

configuration

in

the

administrative

console

and

the

data

is

persisted

in

the

configuration

repository

(stored

in

the

WebSphere

Configuration

API).

However,

WebSphere

Application

Server

still

supports

the

default

JAAS

login

configuration

format

(plain

text

file)

provided

by

the

JAAS

default

implementation.

But

if

there

are

duplication

login

configurations

defined

in

both

the

WebSphere

Configuration

API

and

the

plain

text

file

format,

the

one

in

the

WebSphere

Configuration

API

takes

precedence.

There

are

advantages

to

defining

the

login

configuration

in

the

WebSphere

Configuration

API:

–

UI

support

in

defining

JAAS

login

configuration.

–

You

can

manage

the

JAAS

configuration

login

configuration

centrally.

–

The

JAAS

configuration

login

configuration

is

distributed

in

a

Network

Deployment

installation.
v

WebSphere

Application

Server

JAAS

login

configurations:

WebSphere

Application

Server

provides

JAAS

login

configurations

for

application

to

perform

programmatic

authentication

to

the

WebSphere

Application

Server

security

run

time.

These

WebSphere

Application

Server

JAAS

login

configurations

perform

authentication

to

the

WebSphere

Application

Server

configured

authentication

mechanism

(SWAM

or

LTPA)

and

user

registry

(Local

OS,

LDAP,

or

Custom)

based

on

the

authentication

data

supplied.

The

authenticated

Subject

from

these

JAAS

login

configurations

contain

the

required

Principal

and

Credentials

that

can

be

used

by

WebSphere

Application

Server

security

run

time

to

perform

authorization

checks

on

J2EE

role-based

protected

resources.

Here

is

the

JAAS

login

configurations

provided

by

WebSphere

Application

Server:

–

WSLogin

JAAS

login

configuration:

A

generic

JAAS

login

configuration

that

a

Java

Client,

client

container

application,

servlet,

JSP

file,

enterprise

bean,

and

so

on,

can

use

to

perform

authentication

based

on

a

user

ID

and

password,

or

a

token

to

the

WebSphere

Application

Server

security

run

time.

However,

this

does

not

honor

the

CallbackHandler

specified

in

the

Client

Container

deployment

descriptor.

–

ClientContainer

JAAS

login

configuration:

This

JAAS

login

configuration

honors

the

CallbackHandler

specified

in

the

client

container

deployment

descriptor.

The

login

module

of

this

login

configuration

uses

the

CallbackHandler

in

the

client

container

deployment

descriptor

if

one

is

specified,

even

if

the

application

code

specified

one

CallbackHandler

in

the

LoginContext.

This

is

for

client

container

application.

–

Subject

authenticated

with

the

previously

mentioned

JAAS

login

configurations

contain

a

com.ibm.websphere.security.auth.WSPrincipal

and

a

com.ibm.websphere.security.auth.WSCredential.

If

the

authenticated

Subject

is

passed

the

in

com.ibm.websphere.security.auth.WSSubject.doAs()

(or

the

other

doAs()

methods),

the

WebSphere

Application

Server

security

run

time

can

perform

authorization

checks

on

J2EE

resources,

based

on

the

Subject

com.ibm.websphere.security.auth.WSCredential.
v

Customer-defined

JAAS

login

configurations:

You

can

define

other

JAAS

login

configurations.

See

“Configuring

application

logins

for

Java

Authentication

and

Authorization

Service”

on

page

243

section

for

details.

Use

these

login

configurations

to

perform

programmatic

authentication

to

the

customer

authentication

mechanism.

However,

the

subjects

from

these

customer-defined

56

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

JAAS

login

configurations

might

not

be

used

by

WebSphere

Application

Server

security

run

time

to

perform

authorization

checks

if

the

subject

does

not

contain

the

required

principal

and

credentials.

Finding

the

root

cause

login

exception

from

a

JAAS

login

If

you

get

a

LoginException

after

issuing

the

LoginContext.login()

API,

you

can

find

the

root

cause

exception

from

the

configured

user

registry.

In

the

login

modules,

the

registry

exceptions

are

wrapped

by

a

com.ibm.websphere.security.auth.WSLoginFailedException.

This

exception

has

a

getCause()

method

that

allows

you

to

pull

out

the

exception

that

was

wrapped

after

issuing

the

above

command.

Note:

You

are

not

always

guaranteed

to

get

an

exception

of

type

WSLoginFailedException,

but

you

should

note

that

most

of

the

exceptions

generated

from

the

user

registry

show

up

here.

The

following

is

a

LoginContext.login()

API

example

with

associated

catch

block.

WSLoginFailedException

has

to

be

casted

to

com.ibm.websphere.security.auth.WSLoginFailedException

if

you

want

to

issue

the

getCause()

API.

Note:

The

determineCause()

example

below

can

be

used

for

processing

CustomUserRegistry

exception

types.

try

{

lc.login();

}

catch

(LoginException

le)

{

//

drill

down

through

the

exceptions

as

they

might

cascade

through

the

runtime

Throwable

root_exception

=

determineCause(le);

//

now

you

can

use

″root_exception″

to

compare

to

a

particular

exception

type

//

for

example,

if

you

have

implemented

a

CustomUserRegistry

type,

you

would

//

know

what

to

look

for

here.

}

/*

Method

used

to

drill

down

into

the

WSLoginFailedException

to

find

the

″root

cause″

exception

*/

public

Throwable

determineCause(Throwable

e)

{

Throwable

root_exception

=

e,

temp_exception

=

null;

//

keep

looping

until

there

are

no

more

embedded

WSLoginFailedException

or

//

WSSecurityException

exceptions

while

(true)

{

if

(e

instanceof

com.ibm.websphere.security.auth.WSLoginFailedException)

{

temp_exception

=

((com.ibm.websphere.security.auth.WSLoginFailedException)

e).getCause();

}

Chapter

2.

Securing

applications

and

their

environments

57

else

if

(e

instanceof

com.ibm.websphere.security.WSSecurityException)

{

temp_exception

=

((com.ibm.websphere.security.WSSecurityException)

e).getCause();

}

else

if

(e

instanceof

javax.naming.NamingException)

//

check

for

Ldap

embedded

exception

{

temp_exception

=

((javax.naming.NamingException)e).getRootCause();

}

else

if

(e

instanceof

your_custom_exception_here)

{

//

your

custom

processing

here,

if

necessary

}

else

{

//

this

exception

is

not

one

of

the

types

we

are

looking

for,

//

lets

return

now,

this

is

the

root

from

the

WebSphere

//

Application

Server

perspective

return

root_exception;

}

if

(temp_exception

!=

null)

{

//

we

have

an

exception,

let’s

go

back

an

see

if

this

has

another

//

one

embedded

within

it.

root_exception

=

temp_exception;

e

=

temp_exception;

continue;

}

else

{

//

we

finally

have

the

root

exception

from

this

call

path,

this

//

has

to

occur

at

some

point

return

root_exception;

}

}

}

Finding

the

root

cause

login

exception

from

a

Servlet

filter

You

can

also

receive

the

root

cause

exception

from

a

servlet

filter

when

addressing

post-Form

Login

processing.

This

is

suitable

because

it

shows

the

user

what

happened.

The

following

API

can

be

issued

to

obtain

the

root

cause

exception:

Throwable

t

=

com.ibm.websphere.security.auth.WSSubject.getRootLoginException();

if

(t

!=

null)

t

=

determineCause(t);

Note:

Once

you

have

the

exception

you

can

run

it

through

the

determineCause()

example

above

to

get

the

native

registry

root

cause.

Enabling

root

cause

login

exception

propagation

to

pure

Java

clients

Currently,

the

root

cause

does

not

get

propagated

to

a

pure

client

for

security

reasons.

However,

you

might

want

to

propagate

the

root

cause

to

a

pure

client

in

a

trusted

environment.

If

you

want

to

enable

root

cause

login

exception

propagation

58

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

to

a

pure

client,

click

Security

>

Global

Security

>

Custom

Properties

on

the

WebSphere

Application

Server

administrative

console

and

set

the

following

property:

com.ibm.websphere.security.registry.propagateExceptionsToClient=true

Non-prompt

programmatic

login

WebSphere

Application

Server

provides

a

non-prompt

implementation

of

the

javax.security.auth.callback.CallbackHandler

interface,

which

is

called

com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl.

Using

this

interface,

an

application

can

push

authentication

data

to

the

WebSphere

Application

Server

LoginModule

instance

to

perform

authentication.

This

capability

proves

useful

for

server-side

application

code

to

authenticate

an

identity

and

to

use

that

identity

to

invoke

downstream

J2EE

resources.

javax.security.auth.login.LoginContext

lc

=

null;

try

{

lc

=

new

javax.security.auth.login.LoginContext(″WSLogin″,

new

com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl(″user″,

″securityrealm″,

″securedpassword″));

//

create

a

LoginContext

and

specify

a

CallbackHandler

implementation

//

CallbackHandler

implementation

determine

how

authentication

data

is

collected

//

in

this

case,

the

authentication

data

is

″push″

to

the

authentication

mechanism

//

implemented

by

the

LoginModule.

}

catch

(javax.security.auth.login.LoginException

e)

{

System.err.println(″ERROR:

failed

to

instantiate

a

LoginContext

and

the

exception:

″

+

e.getMessage());

e.printStackTrace();

//

may

be

javax.security.auth.AuthPermission

″createLoginContext″

is

not

granted

//

to

the

application,

or

the

JAAS

login

configuration

is

not

defined.

}

if

(lc

!=

null)

try

{

lc.login();

//

perform

login

javax.security.auth.Subject

s

=

lc.getSubject();

//

get

the

authenticated

subject

//

Invoke

a

J2EE

resource

using

the

authenticated

subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new

java.security.PrivilegedAction()

{

public

Object

run()

{

try

{

bankAccount.deposit(100.00);

//

where

bankAccount

is

a

protected

EJB

}

catch

(Exception

e)

{

System.out.println(″ERROR:

error

while

accessing

EJB

resource,

exception:

″

+

e.getMessage());

e.printStackTrace();

}

return

null;

}

}

Chapter

2.

Securing

applications

and

their

environments

59

);

}

catch

(javax.security.auth.login.LoginException

e)

{

System.err.println(″ERROR:

login

failed

with

exception:

″

+

e.getMessage());

e.printStackTrace();

//

login

failed,

might

want

to

provide

relogin

logic

}

You

can

use

the

com.ibm.websphere.security.auth.callback.WSCallbackHandlerImpl

callback

handler

with

a

pure

Java

client,

a

client

application

container,

enterprise

bean,

JavaServer

page

(JSP)

files,

servlet,

or

other

Java

2

Platform,

Enterprise

Edition

(J2EE)

resources.

See

“Example:

Programmatic

logins”

on

page

65

for

more

information

about

object

request

broker

(ORB)

security

initialization

requirements

in

a

Java

pure

client.

User

interface

prompt

programmatic

login

WebSphere

Application

Server

also

provides

a

user

interface

implementation

of

the

javax.security.auth.callback.CallbackHandler

implementation

to

collect

authentication

data

from

user

through

user

interface

login

prompts.

This

callack

handler,

com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl,

presents

a

user

interface

login

panel

to

prompt

users

for

authentication

data.

javax.security.auth.login.LoginContext

lc

=

null;

try

{

lc

=

new

javax.security.auth.login.LoginContext(″WSLogin″,

new

com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl());

//

create

a

LoginContext

and

specify

a

CallbackHandler

implementation

//

CallbackHandler

implementation

determine

how

authentication

data

is

collected

//

in

this

case,

the

authentication

date

is

collected

by

GUI

login

prompt

//

and

pass

to

the

authentication

mechanism

implemented

by

the

LoginModule.

}

catch

(javax.security.auth.login.LoginException

e)

{

System.err.println(″ERROR:

failed

to

instantiate

a

LoginContext

and

the

exception:

″

+

e.getMessage());

e.printStackTrace();

//

may

be

javax.security.auth.AuthPermission

″createLoginContext″

is

not

granted

//

to

the

application,

or

the

JAAS

login

configuration

is

not

defined.

}

if

(lc

!=

null)

try

{

lc.login();

//

perform

login

javax.security.auth.Subject

s

=

lc.getSubject();

//

get

the

authenticated

subject

//

Invoke

a

J2EE

resources

using

the

authenticated

subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

new

java.security.PrivilegedAction()

{

public

Object

run()

{

try

{

bankAccount.deposit(100.00);

//

where

bankAccount

is

a

protected

enterprise

bean

}

catch

(Exception

e)

{

System.out.println(″ERROR:

error

while

accessing

EJB

resource,

exception:

″

60

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

+

e.getMessage());

e.printStackTrace();

}

return

null;

}

}

);

}

catch

(javax.security.auth.login.LoginException

e)

{

System.err.println(″ERROR:

login

failed

with

exception:

″

+

e.getMessage());

e.printStackTrace();

//

login

failed,

might

want

to

provide

relogin

logic

}

Attention:

Do

not

use

the

com.ibm.websphere.security.auth.callback.WSGUICallbackHandlerImpl

callback

handler

for

server-side

resources

(like

enterprise

bean,

servlet,

JSP

file,

or

any

other

server

side

resources).

The

user

interface

login

prompt

blocks

the

server

for

user

input.

This

behavior

is

not

desirable

for

a

server

process.

Stdin

prompt

programmatic

login

WebSphere

Application

Server

also

provides

a

stdin

implementation

of

the

javax.security.auth.callback.CallbackHandler

interface

to

collect

authentication

data

from

a

user

through

stdin,

which

is

called

com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl.

This

callback

handler

prompts

a

user

for

authentication

data.

javax.security.auth.login.LoginContext

lc

=

null;

try

{

lc

=

new

javax.security.auth.login.LoginContext(″WSLogin″,

new

com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl());

//

create

a

LoginContext

and

specify

a

CallbackHandler

implementation

//

CallbackHandler

implementation

determine

how

authentication

data

is

collected

//

in

this

case,

the

authentication

date

is

collected

by

stdin

prompt

//

and

pass

to

the

authentication

mechanism

implemented

by

the

LoginModule.

}

catch

(javax.security.auth.login.LoginException

e)

{

System.err.println(″ERROR:

failed

to

instantiate

a

LoginContext

and

the

exception:

″

+

e.getMessage());

e.printStackTrace();

//

may

be

javax.security.auth.AuthPermission

″createLoginContext″

is

not

granted

//

to

the

application,

or

the

JAAS

login

configuration

is

not

defined.

}

if

(lc

!=

null)

try

{

lc.login();

//

perform

login

javax.security.auth.Subject

s

=

lc.getSubject();

//

get

the

authenticated

subject

//

Invoke

a

J2EE

resource

using

the

authenticated

subject

com.ibm.websphere.security.auth.WSSubject.doAs(s,

Chapter

2.

Securing

applications

and

their

environments

61

new

java.security.PrivilegedAction()

{

public

Object

run()

{

try

{

bankAccount.deposit(100.00);

//

where

bankAccount

is

a

protected

enterprise

bean

}

catch

(Exception

e)

{

System.out.println(″ERROR:

error

while

accessing

EJB

resource,

exception:

″

+

e.getMessage());

e.printStackTrace();

}

return

null;

}

}

);

}

catch

(javax.security.auth.login.LoginException

e)

{

System.err.println(″ERROR:

login

failed

with

exception:

″

+

e.getMessage());

e.printStackTrace();

//

login

failed,

might

want

to

provide

relogin

logic

}

Do

not

use

the

com.ibm.websphere.security.auth.callback.WSStdinCallbackHandlerImpl

callback

handler

for

server

side

resources

(like

enterprise

beans,

servlets,

JSP

files,

and

so

on).

The

input

from

the

stdin

prompt

is

not

sent

to

the

server

environment.

Most

servers

run

in

the

background

and

do

not

have

a

console.

However,

if

the

server

does

have

a

console,

the

stdin

prompt

blocks

the

server

for

user

input.

This

behavior

is

not

desirable

for

a

server

process.

Developing

programmatic

logins

with

the

Java

Authentication

and

Authorization

Service

Java

Authentication

and

Authorization

Service

(JAAS)

is

a

new

feature

in

WebSphere

Application

Server

Version

5.

Java

Authentication

and

Authorization

Service

represents

the

strategic

application

programming

interfaces

(API)

for

authentication

and

it

replaces

the

CORBA

programmatic

login

APIs.

WebSphere

Application

Server

provides

some

extension

to

JAAS:

v

Refer

to

the

Developing

applications

that

use

CosNaming

(CORBA

Naming

interface)

article

for

details

on

how

to

set

up

the

environment

for

thin

client

applications

to

access

remote

resources

on

a

server.

v

If

the

application

uses

custom

JAAS

login

configuration,

verify

that

it

is

properly

defined.

See

the

“Configuring

application

logins

for

Java

Authentication

and

Authorization

Service”

on

page

243

article

for

details.

v

Some

of

the

JAAS

APIs

are

protected

by

Java

2

Security

permissions.

If

these

APIs

are

used

by

application

code,

verify

that

these

permissions

are

added

to

the

application

was.policy

file.

See

“Adding

the

was.policy

file

to

applications”

on

page

467,

“Using

PolicyTool

to

edit

policy

files”

on

page

451

and

“Configuring

the

was.policy

file”

on

page

463

articles

for

details.

For

more

details

on

which

APIs

are

protected

by

Java

2

Security

permissions,

check

the

IBM

Application

Developer

Kit,

Java

Technology

Edition;

JAAS

and

WebSphere

Application

Server

public

APIs

Javadoc

in

“Security:

Resources

for

learning”

on

page

495.

Some

of

the

APIs

used

in

the

sample

code

in

this

documentation

and

the

Java

2

Security

permissions

required

by

these

APIs

follow:

–

javax.security.auth.login.LoginContext

constructors

are

protected

by

javax.security.auth.AuthPermission

″createLoginContext″

62

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

–

javax.security.auth.Subject.doAs()

and

com.ibm.websphere.security.auth.WSSubject.doAs()

are

protected

by

javax.security.auth.AuthPermission

″doAs″

–

javax.security.auth.Subject.doAsPrivileged()

and

com.ibm.websphere.security.auth.WSSubject.doAsPrivileged()

are

protected

by

javax.security.auth.AuthPermission

″doAsPrivileged″
v

Enhanced

model

to

J2EE

resources

for

authorization

checks.

Due

to

a

design

oversight

in

JAAS

Version

1.0,

the

javax.security.auth.Subject.getSubject()

method

does

not

return

the

Subject

associated

with

the

thread

of

execution

inside

a

java.security.AccessController.doPrivileged()

code

block.

This

can

present

an

inconsistent

behavior,

which

might

have

undesirable

effects.

The

com.ibm.websphere.security.auth.WSSubject

provides

a

workaround

to

associate

a

Subject

to

a

thread

of

execution.

The

com.ibm.websphere.security.auth.WSSubject

extends

the

JAAS

model

to

J2EE

resources

for

authorization

checks.

If

the

Subject

associates

with

the

thread

of

execution

within

the

com.ibm.websphere.security.auth.WSSubject.doAs()

method

or

if

the

com.ibm.websphere.security.auth.WSSubject.doAsPrivileged()

code

block

contains

product

credentials,

the

Subject

is

used

for

J2EE

resources

authorization

checks.

v

User

Interface

support

for

defining

new

JAAS

login

configuration.

You

can

configure

JAAS

login

configuration

in

the

administrative

console

and

store

it

in

the

WebSphere

Common

Configuration

Model.

Applications

can

define

a

new

JAAS

login

configuration

in

the

administrative

console

and

the

data

is

persisted

in

the

configuration

repository

(stored

in

the

WebSphere

Common

Configuration

Model).

However,

WebSphere

Application

Server

still

supports

the

default

JAAS

login

configuration

format

(plain

text

file)

provided

by

the

JAAS

default

implementation.

If

there

are

duplication

login

configurations

defined

in

both

the

WebSphere

Common

Configuration

and

the

plain

text

file

format,

the

one

in

the

WebSphere

Common

Configuration

takes

precedence.

There

are

advantages

to

defining

the

login

configuration

in

the

WebSphere

Common

Configuration:

–

UI

support

in

defining

JAAS

login

configuration

–

JAAS

configuration

login

configuration

can

be

managed

centrally

–

JAAS

configuration

login

configuration

is

distributed

in

a

Network

Deployment

installation
v

Application

support

for

programmatic

authentication.

WebSphere

Application

Server

provides

JAAS

login

configurations

for

applications

to

perform

programmatic

authentication

to

the

WebSphere

security

run

time.

These

configurations

perform

authentication

to

the

WebSphere-configured

authentication

mechanism

(Simple

WebSphere

Authentication

Mechanism

(SWAM)

or

Lightweight

Third

Party

Authentication

(LTPA))

and

user

registry

(Local

OS,

Lightweight

Directory

Access

Protocol

(LDAP)

or

Custom)

based

on

the

authentication

data

supplied.

The

authenticated

Subject

from

these

JAAS

login

configurations

contains

the

required

Principal

and

Credentials

that

the

WebSphere

security

run

time

can

use

to

perform

authorization

checks

on

J2EE

role-based

protected

resources.

Here

are

the

JAAS

login

configurations

provided

by

the

WebSphere

Application

Server:

–

WSLogin

JAAS

login

configuration.

A

generic

JAAS

login

configuration

can

use

Java

clients,

client

container

applications,

servlets,

JSP

files,

and

EJB

components

to

perform

authentication

based

on

a

user

ID

and

password,

or

a

token

to

the

WebSphere

security

run

time.

However,

this

does

not

honor

the

CallbackHandler

specified

in

the

client

container

deployment

descriptor.

–

ClientContainer

JAAS

login

configuration.

This

JAAS

login

configuration

honors

the

CallbackHandler

specified

in

the

client

container

deployment

descriptor.

The

login

module

of

this

login

configuration

uses

the

CallbackHandler

in

the

client

container

deployment

descriptor

if

one

is

Chapter

2.

Securing

applications

and

their

environments

63

specified,

even

if

the

application

code

specified

one

CallbackHandler

in

the

LoginContext.

This

is

for

a

client

container

application.

A

Subject

authenticated

with

the

previously

mentioned

JAAS

login

configurations

contains

a

com.ibm.websphere.security.auth.WSPrincipal

principal

and

a

com.ibm.websphere.security.cred.WSCredential

credential.

If

the

authenticated

Subject

is

passed

in

com.ibm.websphere.security.auth.WSSubject.doAs()

or

the

other

doAs()

methods,

the

product

security

run

time

can

perform

authorization

checks

on

J2EE

resources

based

on

the

Subject

com.ibm.websphere.security.cred.WSCredential

.
v

Customer-defined

JAAS

login

configurations.

You

can

define

other

JAAS

login

configurations

to

perform

programmatic

authentication

to

your

authentication

mechanism.

See

the

“Configuring

application

logins

for

Java

Authentication

and

Authorization

Service”

on

page

243

article

for

details.

For

the

product

security

run

time

to

perform

authorization

checks,

the

subjects

from

these

customer-defined

JAAS

login

configurations

must

contain

the

required

principal

and

credentials.

v

Naming

requirements

for

programmatic

login

on

a

pure

Java

client.

When

programmatic

login

occurs

on

a

pure

Java

client

and

the

property

com.ibm.CORBA.validateBasicAuth

equals

true,

it

is

necessary

for

the

security

code

to

know

where

the

SecurityServer

resides.

Typically,

the

default

InitialContext

is

sufficient

when

a

java.naming.provider.url

property

is

set

as

a

system

property

or

when

the

property

is

set

in

the

jndi.properties

file.

In

other

cases

it

is

not

desirable

to

have

the

same

java.naming.provider.url

properties

set

in

a

system

wide

scope.

In

this

case,

there

is

a

need

to

specify

security

specific

bootstrap

information

in

the

sas.client.props

file.

The

following

steps

present

the

order

of

precedence

for

determining

how

to

find

the

SecurityServer

in

a

pure

Java

client:
1.

Use

the

sas.client.props

file

and

look

for

the

following

properties:

com.ibm.CORBA.securityServerHost=myhost.mydomain

com.ibm.CORBA.securityServerPort=mybootstrap

port

If

you

specify

these

properties,

you

are

guaranteed

that

security

looks

here

for

the

SecurityServer.

The

host

and

port

specified

can

represent

any

valid

WebSphere

host

and

bootstrap

port.

The

SecurityServer

resides

on

all

server

processes

and

therefore

it

is

not

important

which

host

or

port

you

choose.

If

specified,

the

security

infrastructure

within

the

client

process

look

up

the

SecurityServer

based

on

the

information

in

the

sas.client.props

file.

2.

Place

the

following

code

in

your

client

application

to

get

a

new

InitialContext():

...

import

java.util.Hashtable;

import

javax.naming.Context;

import

javax.naming.InitialContext;

...

//

Perform

an

InitialContext

and

default

lookup

prior

to

logging

//

in

so

that

target

realm

and

bootstrap

host/port

can

be

//

determined

for

SecurityServer

lookup.

Hashtable

env

=

new

Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

"

com.ibm.websphere.naming.WsnInitialContextFactory");

env.put(Context.PROVIDER_URL,

"corbaloc:iiop:myhost.mycompany.com:2809");

Context

initialContext

=

new

InitialContext(env);

Object

obj

=

initialContext.lookup("");

//

programmatic

login

code

goes

here.

64

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Complete

this

step

prior

to

executing

any

programmatic

login.

It

is

in

this

code

that

you

specify

a

URL

provider

for

your

naming

context,

but

it

must

point

to

a

valid

WebSphere

Application

Server

within

the

cell

that

you

are

authenticating

to.

This

allows

thread

specific

programmatic

logins

going

to

different

cells

to

have

a

single

system-wide

SecurityServer

location.

3.

Use

the

new

default

InitialContext()

method

relying

on

the

naming

precedence

rules.

These

rules

are

defined

in

the

article,

Example:

Getting

the

default

initial

context.

See

the

article,

Example:

Java

Authentication

and

Authorization

Service

programmatic

login.

Example:

Programmatic

logins

The

following

example

illustrates

how

application

programs

can

perform

a

programmatic

login

using

Java

Authentication

and

Authorization

Service

(JAAS):

LoginContext

lc

=

null;

try

{

lc

=

new

LoginContext(″WSLogin″,

new

WSCallbackHandlerImpl(″userName″,

″realm″,

″password″));

}

catch

(LoginException

le)

{

System.out.println(″Cannot

create

LoginContext.

″

+

le.getMessage());

//

insert

error

processing

code

}

catch(SecurityException

se)

{

System.out.printlin(″Cannot

create

LoginContext.″

+

se.getMessage();

//

Insert

error

processing

}

try

{

lc.login();

}

catch(LoginExcpetion

le)

{

System.out.printlin(″Fails

to

create

Subject.

″

+

le.getMessage());

//

Insert

error

processing

code

As

shown

in

the

example,

the

new

LoginContext

is

initialized

with

the

WSLogin

login

configuration

and

the

WSCallbackHandlerImpl

CallbackHandler.

Use

the

WSCallbackHandlerImpl

instance

on

a

server-side

application

where

prompting

is

not

desirable.

A

WSCallbackHandlerImpl

instance

is

initialized

by

the

specified

user

ID,

password,

and

realm

information.

The

present

WSLoginModuleImpl

class

implementation

that

is

specified

by

WSLogin

can

only

retrieve

authentication

information

from

the

specified

CallbackHandler.

You

can

construct

a

LoginContext

with

a

Subject

object,

but

the

Subject

is

disregarded

by

the

present

WSLoginModuleImpl

implementation.

For

product

client

container

applications,

replace

WSLogin

by

ClientContainer

login

configuration,

which

specifies

the

WSClientLoginModuleImpl

implementation

that

is

tailored

for

client

container

requirements.

For

a

pure

Java

application

client,

the

product

provides

two

other

CallbackHandler

implementations:

WSStdinCallbackHandlerImpl

and

WSGUICallbackHandlerImpl,

which

prompt

for

user

ID,

password,

and

realm

information

on

the

command

line

and

pop-up

panel,

respectively.

You

can

choose

either

of

these

product

CallbackHandler

implementations

depending

on

the

particular

application

environment.

You

can

develop

a

new

CallbackHandler

if

neither

of

these

implementations

fit

your

particular

application

requirement.

Chapter

2.

Securing

applications

and

their

environments

65

You

also

can

develop

your

own

LoginModule

if

the

default

WSLoginModuleImpl

implementation

fails

to

meet

all

your

requirements.

This

product

provides

utility

functions

that

the

custom

LoginModule

can

use,

which

are

described

in

the

next

section.

In

cases

where

there

is

no

java.naming.provider.url

set

as

a

system

property

or

in

the

jndi.properties

file,

a

default

InitialContext

does

not

function

if

the

product

server

is

not

at

the

localhost:2809

location.

In

this

situation,

perform

a

new

InitialContext

programmatically

ahead

of

the

JAAS

login.

JAAS

needs

to

know

where

the

SecurityServer

resides

to

verify

that

the

user

ID

or

password

entered

is

correct,

prior

to

doing

a

commit().

By

performing

a

new

InitialContext

in

the

way

specified

below,

the

security

code

has

the

information

needed

to

find

the

SecurityServer

location

and

the

target

realm.

Attention:

The

first

line

starting

with

env.put

was

split

into

two

lines

because

it

extends

beyond

the

width

of

the

printed

page.

...

import

java.util.Hashtable;

import

javax.naming.Context;

import

javax.naming.InitialContext;

...

//

Perform

an

InitialContext

and

default

lookup

prior

to

logging

in

so

that

target

realm

//

and

bootstrap

host/port

can

be

determined

for

SecurityServer

lookup.

Hashtable

env

=

new

Hashtable();

env.put(Context.INITIAL_CONTEXT_FACTORY,

″com.ibm.websphere.naming.WsnInitialContextFactory″);

env.put(Context.PROVIDER_URL,

″corbaloc:iiop:myhost.mycompany.com:2809″);

Context

initialContext

=

new

InitialContext(env);

Object

obj

=

initialContext.lookup(″″);

LoginContext

lc

=

null;

try

{

lc

=

new

LoginContext(″WSLogin″,

new

WSCallbackHandlerImpl(″userName″,

″realm″,

″password″));

}

catch

(LoginException

le)

{

System.out.println(″Cannot

create

LoginContext.

″

+

le.getMessage());

//

insert

error

processing

code

}

catch(SecurityException

se)

{

System.out.printlin(″Cannot

create

LoginContext.″

+

se.getMessage();

//

Insert

error

processing

}

try

{

lc.login();

}

catch(LoginException

le)

{

System.out.printlin(″Fails

to

create

Subject.

″

+

le.getMessage());

//

Insert

error

processing

code

}

66

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Custom

login

module

development

for

a

system

login

configuration

For

WebSphere

Application

Server,

there

are

multiple

Java

Authentication

and

Authorization

Service

(JAAS)

plug

in

points

for

configuring

system

logins.

WebSphere

Application

Server

uses

system

login

configurations

to

authenticate

incoming

requests,

outgoing

requests,

and

internal

server

logins.

Application

login

configurations

are

called

by

Java

2

Platform,

Enterprise

Edition

(J2EE)

applications

for

obtaining

a

Subject

based

on

specific

authentication

information.

This

login

configuration

enables

the

application

to

associate

the

Subject

with

a

specific

protected

remote

action.

The

Subject

is

picked

up

on

the

outbound

request

processing.

The

following

list

are

the

main

system

plug

in

points.

If

you

write

a

login

module

that

adds

information

to

the

Subject

of

a

system

login,

these

are

the

main

login

configurations

to

plug

in:

v

WEB_INBOUND

v

RMI_OUTBOUND

v

RMI_INBOUND

v

DEFAULT

WEB_INBOUND

login

configuration

The

WEB_INBOUND

login

configuration

authenticates

Web

requests.

Figure

1

shows

an

example

of

a

configuration

using

a

Trust

Association

Interceptor

(TAI)

that

creates

a

Subject

with

the

initial

information

that

is

passed

into

the

WEB_INBOUND

login

configuration.

If

the

trust

association

interceptor

is

not

configured,

the

authentication

process

goes

directly

to

the

WEB_INBOUND

system

login

configuration,

which

consists

of

all

of

the

login

modules

combined

in

Figure

1.

Figure

1

shows

where

you

can

plug

in

custom

login

modules

and

where

the

ltpaLoginModule

and

wsMapDefaultInboundLoginModule

are

required.

Figure

1

Chapter

2.

Securing

applications

and

their

environments

67

Custom

login

module

Authenticated?

Trust

association

interceptor?

Authenticate

Use trust

association

interceptor

Web request

requiring

authorization

Custom

login

module

Web

container

Custom

login

module

Trust

association

interceptor

wsMapDefaultInboundLoginModule

Optional

custom credential

Hashtable

in Subject

ItpaLoginModule

Subject,

security name

or unique I.D.

Already authenticated

IBM required

authentication

modules

Single application server

Web authentication

plug points

For

more

detailed

information

on

the

WEB_INBOUND

configuration

including

its

associated

callbacks,

see

″RMI_INBOUND,

WEB_INBOUND,

DEFAULT″

in

“System

login

configuration

entry

settings

for

Java

Authentication

and

Authorization

Service”

on

page

249.

RMI_OUTBOUND

login

configuration

The

RMI_OUTBOUND

login

configuration

is

a

plug

point

for

handling

outbound

requests.

WebSphere

Application

Server

uses

this

plug

point

to

create

the

serialized

information

that

is

sent

downstream

based

on

the

Subject

passed

in

(the

invocation

Subject)

and

other

security

context

information

such

as

PropagationTokens.

A

custom

login

module

can

use

this

plug

point

to

change

the

identity.

For

more

information,

see

“Configuring

outbound

mapping

to

a

different

target

realm”

on

page

271.

Figure

2

shows

where

you

can

plug

in

custom

login

modules

and

shows

where

the

wsMapCSIv2OutboundLoginModule

is

required.

Figure

2

68

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Custom

login

module

Common Secure

Interoperability version 2

session established

Authenticate

Outbound

RMI request

Single application server

Remote

enterprise bean

container

Possibly modified

Subject and propagation

attributes. Opportunity

for mapping, if needed.

Already established

IBM required

authentication module

Custom

login

module

wsMapCSIv2OutoundLoginModule

RMI outbound

authentication

plug points

For

more

information

on

the

RMI_OUTBOUND

login

configuration

including

its

associated

callbacks,

see

″RMI_OUTBOUND″

in

“System

login

configuration

entry

settings

for

Java

Authentication

and

Authorization

Service”

on

page

249.

RMI_INBOUND

login

configuration

The

RMI_INBOUND

login

configuration

is

a

plug

point

that

handles

inbound

authentication

for

enterprise

bean

requests.

WebSphere

Application

Server

uses

this

plug

point

for

either

an

initial

login

or

a

propagation

login.

For

more

information

about

these

two

login

types,

see

“Security

attribute

propagation”

on

page

276.

During

a

propagation

login,

this

plug

point

is

used

to

de-serialize

the

information

received

from

an

upstream

server.

A

custom

login

module

can

use

this

plug

point

to

change

the

identity,

handle

custom

tokens,

add

custom

objects

into

the

Subject,

and

so

on.

For

more

information

on

changing

the

identity

using

a

Hashtable,

which

is

referenced

in

figure

3,

see

“Configuring

inbound

identity

mapping”

on

page

262.

Figure

3

shows

where

you

can

plug

in

custom

login

modules

and

shows

that

the

ltpaLoginModule

and

wsMapDefaultInboundLoginModule

are

required.

Figure

3

Chapter

2.

Securing

applications

and

their

environments

69

Custom

login

module

Authenticated?

Authenticate

RMI inbound

request

Single application server

Enterprise

bean

container

Custom

login

module

Optional custom credential

Hashtable in Subject

RMI inbound

authentication

plug points

Already authenticated

IBM required

authentication modules

Custom

login

module

wsMapDefaultInboundLoginModuleItpaLoginModule

For

more

information

on

the

RMI_INBOUND

login

configuration

including

its

associated

callbacks,

see

″RMI_INBOUND,

WEB_INBOUND,

DEFAULT″

in

“System

login

configuration

entry

settings

for

Java

Authentication

and

Authorization

Service”

on

page

249.

DEFAULT

login

configuration

The

DEFAULT

login

configuration

is

a

plug

point

that

handles

all

of

the

other

types

of

authentication

requests,

including

administrative

Simple

Object

Access

Protocol

(SOAP)

requests

and

internal

authentication

of

the

server

ID.

Propagation

logins

typically

do

not

occur

at

this

plug

point.

For

more

information

on

the

DEFAULT

login

configuration

including

its

associated

callbacks,

see

″RMI_INBOUND,

WEB_INBOUND,

DEFAULT″

in

“System

login

configuration

entry

settings

for

Java

Authentication

and

Authorization

Service”

on

page

249.

Writing

a

login

module

When

you

write

a

login

module

that

plugs

into

a

WebSphere

Application

Server

application

login

or

system

login

configuration,

read

the

JAAS

programming

model

located

at:http://java.sun.com/products/jaas.

The

JAAS

programming

model

provides

basic

information

about

JAAS.

However,

before

writing

a

login

module

for

the

WebSphere

Application

Server

environment,

read

the

following

sections

in

this

article

v

Useable

callbacks

v

Shared

state

variables

v

Initial

versus

propagation

logins

v

Sample

custom

login

module

70

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

http://java.sun.com/products/jaas

Useable

callbacks

Each

login

configuration

must

document

the

callbacks

that

are

recognized

by

the

login

configuration.

However,

the

callbacks

are

not

always

passed

data.

Thus,

the

login

configuration

must

contain

logic

to

know

when

specific

information

is

present

and

how

to

use

the

information.

For

example,

if

you

write

a

custom

login

module

that

can

plug

into

all

four

of

the

pre-configured

system

login

configurations

mentioned

previously,

three

sets

of

callbacks

might

be

presented

to

authenticate

a

request.

Other

callbacks

might

be

present

for

other

reasons,

including

propagation

and

making

other

information

available

to

the

login

configuration.

Login

information

can

be

presented

in

the

following

combinations:

User

name

(NameCallback)

and

password

(PasswordCallback)

This

information

is

a

typical

authentication

combination.

User

name

only

(NameCallback)

This

information

used

for

identity

assertion,

Trust

Association

Interceptor

(TAI)

logins,

and

certificate

logins.

Token

(WSCredTokenCallbackImpl)

This

information

is

for

Lightweight

Third

Party

Authentication

(LTPA)

token

validation.

Propagation

token

list

(WSTokenHolderCallback)

This

information

is

used

for

a

propagation

login.

The

first

three

combinations

are

used

for

typical

authentication.

However,

when

the

WSTokenHolderCallback

is

present

in

addition

to

one

of

the

first

three

information

combinations,

the

login

is

called

a

propagation

login.

A

propagation

login

means

that

some

security

attributes

are

propagated

to

this

server

from

another

server.

The

servers

can

reuse

these

security

attributes

if

the

authentication

information

validates

successfully.

In

some

cases,

a

WSTokenHolderCallback

might

not

have

sufficient

attributes

for

a

full

login.

Thus,

check

the

requiresLogin()

method

on

the

WSTokenHolderCallback

to

determine

if

a

new

login

is

required.

You

can

always

ignore

the

information

returned

by

the

requiresLogin()

method,

but,

as

a

result,

you

might

duplicate

information.

The

following

is

a

list

of

the

callbacks

that

might

be

present

in

the

system

login

configurations.

The

list

includes

a

description

of

their

responsibility.

Callback

Description

callbacks[0]

=

new

javax.security.

auth.callback.NameCallback

(″Username:

″);

This

callback

handler

collects

the

user

name

for

the

login.

The

result

can

be

the

user

name

for

a

basic

authentication

login

(user

name

and

password)

or

a

user

name

for

an

identity

assertion

login.

callbacks[1]

=

new

javax.security.

auth.callback.PasswordCallback

(″Password:

″,

false);

This

callback

handler

collects

the

password

for

the

login.

callbacks[2]

=

new

com.ibm.

websphere.security.auth.callback.

WSCredTokenCallbackImpl

(″Credential

Token:

″);

This

callback

handler

collects

the

Lightweight

Third

Party

Authentication

(LTPA)

token,

or

other

token

type,

for

the

login.

It

is

typically

present

when

a

user

name

and

password

is

not

present.

Chapter

2.

Securing

applications

and

their

environments

71

Callback

Description

callbacks[3]

=

new

com.ibm.

wsspi.security.auth.callback.

WSTokenHolderCallback

(″Authz

Token

List:

″);

This

callback

handler

collects

the

ArrayList

of

TokenHolder

objects

that

are

returned

from

a

call

to

the

WSOpaqueTokenHelper.

createTokenHolderListFromOpaqueToken

()

API

using

the

Common

Secure

Interoperability

version

2

(CSIv2)

authorization

token

as

input.

callbacks[4]

=

new

com.ibm.

websphere.security.auth.callback.

WSServletRequestCallback

(″HttpServletRequest:

″);

This

callback

handler

collects

the

HTTP

servlet

request

object,

if

present.

It

enables

login

modules

to

get

information

from

the

HTTP

request

for

use

in

the

login.

This

callback

handler

is

presented

from

the

WEB_INBOUND

login

configuration

only.

callbacks[5]

=

new

com.ibm.

websphere.security.auth.callback.

WSServletResponseCallback

(″HttpServletResponse:

″);

This

callback

handler

collects

the

HTTP

servlet

response

object,

if

present.

It

enables

login

modules

to

put

information

into

the

HTTP

response

as

a

result

of

the

login.

An

example

of

this

situation

might

be

adding

the

SingleSignonCookie

to

the

response.This

callback

handler

is

presented

from

the

WEB_INBOUND

login

configuration

only.

callbacks[6]

=

new

com.ibm.

websphere.security.auth.callback.

WSAppContextCallback

(″ApplicationContextCallback:

″);

This

callback

handler

collects

the

Web

application

context

used

during

the

login.

It

consists

of

a

HashMap,

which

contains

the

application

name

and

the

redirect

URL,

if

present.

This

callback

handler

is

presented

from

the

WEB_INBOUND

login

configuration

only.

Shared

state

variables

Shared

state

variables

are

used

to

share

information

between

login

modules

during

the

login

phase.

The

following

list

contains

recommendations

for

using

the

shared

state

variables:

v

When

you

have

a

custom

login

module,

use

the

shared

state

variables

to

communicate

to

a

WebSphere

Application

Server

login

module

using

a

documented

shared

state

variable

as

shown

in

the

following

table.

v

Try

not

to

update

the

Subject

until

the

commit

phase.

If

you

call

the

abort()

method,

you

must

remove

any

objects

added

to

the

Subject.

v

Enable

the

login

module

that

adds

information

into

the

shared

state

Map

during

login

to

remove

this

information

during

commit

in

case

the

same

shared

state

is

used

for

another

login.

v

If

an

abort

or

logout

occurs,

clean

up

the

information

in

the

login

configuration

for

the

shared

state

and

the

Subject.

The

com.ibm.wsspi.security.token.AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY

shared

state

variable

can

inform

the

WebSphere

Application

Server

login

configurations

about

asserted

privilege

attributes.

This

variable

references

the

com.ibm.wsspi.security.cred.propertiesObject

property.

You

should

associate

a

java.util.Hashtable

with

this

property.

This

hashtable

contains

properties

used

by

WebSphere

Application

Server

for

login

purposes

and

ignores

the

callback

information.

This

hashtable

enables

a

custom

login

module,

which

is

carried

out

72

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

first

in

the

login

configuration,

to

map

user

identities

or

enable

WebSphere

Application

Server

to

avoid

making

unnecessary

user

registry

calls

if

you

already

have

the

required

information.

For

more

information,

see

“Configuring

inbound

identity

mapping”

on

page

262.

If

you

want

to

access

the

objects

that

WebSphere

Application

Server

creates

during

a

login,

refer

to

the

following

shared

state

variables.

Login

module

in

which

variables

are

set:

ltpaLoginModule,

swamLoginModule,

and

wsMapDefaultInboundLoginModule

Shared

state

variable

com.ibm.wsspi.security.auth.callback.Constants.WSPRINCIPAL_KEY

Purpose

Specifies

the

com.ibm.websphere.security.auth.WSPrincipal

object.

See

the

WebSphere

Application

Server

Javadoc

for

application

programming

interface

(API)

usage.

This

shared

state

variable

is

for

read-only

purposes.

Do

not

set

this

variable

in

the

shared

state

for

custom

login

modules.

Login

module

in

which

variables

are

set:

ltpaLoginModule,

swamLoginModule,

and

wsMapDefaultInboundLoginModule

Shared

state

variable

com.ibm.wsspi.security.auth.callback.Constants.WSCREDENTIAL_KEY

Purpose

Specifies

the

com.ibm.websphere.security.cred.WSCredential

object.

See

the

WebSphere

Application

Server

Javadoc

for

API

usage.

This

shared

state

variable

is

for

read-only

purposes.

Do

not

set

this

variable

in

the

shared

state

for

custom

login

modules.

Login

module

in

which

variables

are

set:

wsMapDefaultInboundLoginModule

Shared

state

variable

com.ibm.wsspi.security.auth.callback.Constants.WSAUTHZTOKEN_KEY

Purpose

Specifies

the

default

com.ibm.wsspi.security.token.AuthorizationToken

object.

Login

modules

can

use

this

object

to

set

custom

attributes

plugged

in

after

wsMapDefaultInboundLoginModule.

The

information

set

here

is

propagated

downstream

and

available

to

the

Application.

See

the

WebSphere

Application

Server

Javadoc

for

API

usage.

Initial

versus

propagation

logins

As

mentioned

previously,

some

logins

are

considered

initial

logins

because

of

the

following

reasons:

v

It

is

the

first

time

authentication

information

is

presented

to

WebSphere

Application

Server.

v

The

login

information

is

received

from

a

server

that

does

not

propagate

security

attributes

so

this

information

must

be

gathered

from

a

user

registry.

Chapter

2.

Securing

applications

and

their

environments

73

Other

logins

are

considered

propagation

logins

when

a

WSTokenHolderCallback

is

present

and

contains

sufficient

information

from

a

sending

server

to

recreate

all

the

required

objects

needed

by

WebSphere

Application

Server

run

time.

In

cases

where

there

is

sufficient

information

for

WebSphere

Application

Server

run

time,

the

information

you

might

add

to

the

Subject

is

likely

exists

from

the

previous

login.

To

verify

if

your

object

is

present,

you

can

get

access

to

the

ArrayList

present

in

the

WSTokenHolderCallback,

and

search

through

this

list

looking

at

each

TokenHolder

getName()

method.

This

search

is

used

to

determine

if

WebSphere

Application

Server

is

deserializing

your

custom

object

during

this

login.

Check

the

class

name

returned

from

the

getName()

method

using

the

String

startsWith()

method

because

the

run

time

might

add

additional

information

at

the

end

of

the

name

to

know

which

Subject

set

to

add

the

custom

object

after

de-serialization.

The

following

code

snippet

can

be

used

in

your

login()

method

to

determine

when

sufficient

information

is

present.

For

another

example,

see

“Configuring

inbound

identity

mapping”

on

page

262.

Sample

code

//

This

is

a

hint

provided

by

WebSphere

Application

Server

that

//

sufficient

propagation

information

does

not

exist

and,

therefore,

//

a

login

is

required

to

provide

the

sufficient

information.

In

this

//

situation,

a

Hashtable

login

might

be

used.

boolean

requiresLogin

=

((com.ibm.wsspi.security.auth.callback.

WSTokenHolderCallback)

callbacks[1]).requiresLogin();

if

(requiresLogin)

{

//

Check

to

see

if

your

object

exists

in

the

TokenHolder

list,

if

not,

add

it.

java.util.ArrayList

authzTokenList

=

((WSTokenHolderCallback)

callbacks[6]).

getTokenHolderList();boolean

found

=

false;

if

(authzTokenList

!=

null)

{

Iterator

tokenListIterator

=

authzTokenList.iterator();

while

(tokenListIterator.hasNext())

{

com.ibm.wsspi.security.token.TokenHolder

th

=

(com.ibm.wsspi.security.token.

TokenHolder)

tokenListIterator.next();

if

(th

!=

null

&&

th.getName().startsWith(″com.acme.myCustomClass″))

{

found=true;

break;

}

}

if

(!found)

{

//

go

ahead

and

add

your

custom

object.

}

}

}

else

{

74

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

//

This

code

indicates

that

sufficient

propagation

information

is

present.

//

User

registry

calls

are

not

needed

by

WebSphere

Application

Server

to

//

create

a

valid

Subject.

This

code

might

be

a

no-op

in

your

login

module.

}

Sample

custom

login

module

You

can

use

the

following

sample

to

get

ideas

on

how

to

use

some

of

the

callbacks

and

shared

state

variables.

public

customLoginModule()

{

//

Defines

your

login

module

variables

com.ibm.wsspi.security.token.AuthenticationToken

customAuthzToken

=

null;

com.ibm.wsspi.security.token.AuthenticationToken

defaultAuthzToken

=

null;

com.ibm.websphere.security.cred.WSCredential

credential

=

null;

com.ibm.websphere.security.auth.WSPrincipal

principal

=

null;

private

javax.security.auth.Subject

_subject;

private

javax.security.auth.callback.CallbackHandler

_callbackHandler;

private

java.util.Map

_sharedState;

private

java.util.Map

_options;

public

void

initialize(Subject

subject,

CallbackHandler

callbackHandler,

Map

sharedState,

Map

options)

{

_subject

=

subject;

_callbackHandler

=

callbackHandler;

_sharedState

=

sharedState;

_options

=

options;

}

public

boolean

login()

throws

LoginException

{

boolean

succeeded

=

true;

//

Gets

the

CALLBACK

information

javax.security.auth.callback.Callback

callbacks[]

=

new

javax.security.

auth.callback.Callback[7];

callbacks[0]

=

new

javax.security.auth.callback.NameCallback(

″Username:

″);

callbacks[1]

=

new

javax.security.auth.callback.PasswordCallback(

″Password:

″,

false);

callbacks[2]

=

new

com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl

(″Credential

Token:

″);

callbacks[3]

=

new

com.ibm.wsspi.security.auth.callback.

WSServletRequestCallback

(″HttpServletRequest:

″);

callbacks[4]

=

new

com.ibm.wsspi.security.auth.callback.

WSServletResponseCallback

(″HttpServletResponse:

″);

callbacks[5]

=

new

com.ibm.wsspi.security.auth.callback.

WSAppContextCallback

(″ApplicationContextCallback:

″);

callbacks[6]

=

new

com.ibm.wsspi.security.auth.callback.

WSTokenHolderCallback

(″Authz

Token

List:

″);

try

{

callbackHandler.handle(callbacks);

Chapter

2.

Securing

applications

and

their

environments

75

}

catch

(Exception

e)

{

//

Handles

exceptions

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

//

Sees

which

callbacks

contain

information

uid

=

((NameCallback)

callbacks[0]).getName();

char

password[]

=

((PasswordCallback)

callbacks[1]).getPassword();

byte[]

credToken

=

((WSCredTokenCallbackImpl)

callbacks[2]).getCredToken();

javax.servlet.http.HttpServletRequest

request

=

((WSServletRequestCallback)

callbacks[3]).getHttpServletRequest();

javax.servlet.http.HttpServletResponse

response

=

((WSServletResponseCallback)

callbacks[4]).getHttpServletResponse();

java.util.Map

appContext

=

((WSAppContextCallback)

callbacks[5]).getContext();

java.util.List

authzTokenList

=

((WSTokenHolderCallback)

callbacks[6]).getTokenHolderList();

//

Gets

the

SHARED

STATE

information

principal

=

(WSPrincipal)

_sharedState.get(com.ibm.wsspi.security.

auth.callback.Constants.WSPRINCIPAL_KEY);

credential

=

(WSCredential)

_sharedState.get(com.ibm.wsspi.security.

auth.callback.Constants.WSCREDENTIAL_KEY);

defaultAuthzToken

=

(AuthorizationToken)

_sharedState.get(com.ibm.

wsspi.security.auth.callback.Constants.WSAUTHZTOKEN_KEY);

//

What

you

tend

to

do

with

this

information

depends

upon

the

scenario

//

that

you

are

trying

to

accomplish.

This

example

demonstrates

how

to

//

access

various

different

information:

//

-

Determine

if

a

login

is

initial

versus

propagation

//

-

Deserialize

a

custom

authorization

token

(For

more

information,

see

//

“Security

attribute

propagation”

on

page

276

//

-

Add

a

new

custom

authorization

token

(For

more

information,

see

//

“Security

attribute

propagation”

on

page

276

//

-

Look

for

a

WSCredential

and

read

attributes,

if

found.

//

-

Look

for

a

WSPrincipal

and

read

attributes,

if

found.

//

-

Look

for

a

default

AuthorizationToken

and

add

attributes,

if

found.

//

-

Read

the

header

attributes

from

the

HttpServletRequest,

if

found.

//

-

Add

an

attribute

to

the

HttpServletResponse,

if

found.

//

-

Get

the

web

application

name

from

the

appContext,

if

found.

//

-

Determines

if

a

login

is

initial

versus

propagation.

This

is

most

//

useful

when

login

module

is

first.

boolean

requiresLogin

=

((WSTokenHolderCallback)

callbacks[6]).requiresLogin();

//

initial

login

-

asserts

privilege

attributes

based

on

user

identity

if

(requiresLogin)

{

//

If

you

are

validating

a

token

from

another

server,

there

is

an

//

application

programming

interface

(API)

to

get

the

uniqueID

from

it.

if

(credToken

!=

null

&&

uid

==

null)

{

try

76

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

{

String

uniqueID

=

WSSecurityPropagationHelper.

validateLTPAToken(credToken);

String

realm

=

WSSecurityPropagationHelper.getRealmFromUniqueID

(uniqueID);

//

Now

set

it

to

the

UID

so

you

can

use

that

to

either

map

or

//

login

with.

uid

=

WSSecurityPropagationHelper.getUserFromUniqueID

(uniqueID);

}

catch

(Exception

e)

{

//

handle

exception

}

}

//

Adds

a

Hashtable

to

shared

state.

//

Note:

You

can

perform

custom

mapping

on

the

NameCallback

value

returned

//

to

change

the

identity

based

upon

your

own

mapping

rules.

uid

=

mapUser

(uid);

//

Gets

the

default

InitialContext

for

this

server.

javax.naming.InitialContext

ctx

=

new

javax.naming.InitialContext();

//

Gets

the

local

UserRegistry

object.

com.ibm.websphere.security.UserRegistry

reg

=

(com.ibm.websphere.security.

UserRegistry)

ctx.lookup(″UserRegistry″);

//

Gets

the

user

registry

uniqueID

based

on

the

uid

specified

in

the

//

NameCallback.

String

uniqueid

=

reg.getUniqueUserId(uid);

uid

=

WSSecurityPropagationHelper.getUserFromUniqueID

(uniqueID);

//

Gets

the

display

name

from

the

user

registry

based

on

the

uniqueID.

String

securityName

=

reg.getUserSecurityName(uid);

//

Gets

the

groups

associated

with

this

uniqueID.

java.util.List

groupList

=

reg.getUniqueGroupIds(uid);

//

Creates

the

java.util.Hashtable

with

the

information

you

gathered

from

//

the

UserRegistry.

java.util.Hashtable

hashtable

=

new

java.util.Hashtable();

hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_UNIQUEID,

uniqueid);

hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_SECURITYNAME,

securityName);

hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_GROUPS,

groupList);

//

Adds

a

cache

key

that

is

used

as

part

of

the

lookup

mechanism

for

//

the

created

Subject.

The

cache

key

can

be

an

Object,

but

should

//

implement

the

toString()

method.

Make

sure

the

cacheKey

contains

//

enough

information

to

scope

it

to

the

user

and

any

additional

//

attributes

that

you

use.

If

you

do

not

specify

this

property

the

//

Subject

is

scoped

to

the

WSCREDENTIAL_UNIQUEID

returned,

by

default.

hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_CACHE_KEY,

″myCustomAttribute″

+

uniqueid);

Chapter

2.

Securing

applications

and

their

environments

77

//

Adds

the

hashtable

to

the

sharedState

of

the

Subject.

_sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_PROPERTIES_KEY,hashtable);

}

//

propagation

login

-

process

propagated

tokens

else

{

//

-

Deserializes

a

custom

authorization

token.

For

more

information,

see

//

“Security

attribute

propagation”

on

page

276.

//

This

can

be

done

at

any

login

module

plug

in

point

(first,

//

middle,

or

last).

if

(authzTokenList

!=

null)

{

//

Iterates

through

the

list

looking

for

your

custom

token

for

(int

i=0;

i<authzTokenList.size();

i++)

{

TokenHolder

tokenHolder

=

(TokenHolder)authzTokenList.get(i);

//

Looks

for

the

name

and

version

of

your

custom

AuthorizationToken

//

implementation

if

(tokenHolder.getName().equals(″com.ibm.websphere.security.token.

CustomAuthorizationTokenImpl″)

&&

tokenHolder.getVersion()

==

1)

{

//

Passes

the

bytes

into

your

custom

AuthorizationToken

constructor

//

to

deserialize

customAuthzToken

=

new

com.ibm.websphere.security.token.

CustomAuthorizationTokenImpl(tokenHolder.getBytes());

}

}

}

//

-

Adds

a

new

custom

authorization

token

(For

more

information,

//

see

“Security

attribute

propagation”

on

page

276)

//

This

can

be

done

at

any

login

module

plug

in

point

(first,

middle,

//

or

last).

else

{

//

Gets

the

PRINCIPAL

from

the

default

AuthenticationToken.

This

must

//

match

all

of

the

tokens.

defaultAuthToken

=

(com.ibm.wsspi.security.token.AuthenticationToken)

sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.

WSAUTHTOKEN_KEY);

String

principal

=

defaultAuthToken.getPrincipal();

//

Adds

a

new

custom

authorization

token.

This

is

an

initial

login.

//

Pass

the

principal

into

the

constructor

customAuthzToken

=

new

com.ibm.websphere.security.token.

CustomAuthorizationTokenImpl(principal);

//

Adds

any

initial

attributes

if

(customAuthzToken

!=

null)

{

customAuthzToken.addAttribute(″key1″,

″value1″);

customAuthzToken.addAttribute(″key1″,

″value2″);

78

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

customAuthzToken.addAttribute(″key2″,

″value1″);

customAuthzToken.addAttribute(″key3″,

″something

different″);

}

}

}

//

-

Looks

for

a

WSCredential

and

read

attributes,

if

found.

//

This

is

most

useful

when

plugged

in

as

the

last

login

module.

if

(credential

!=

null)

{

try

{

//

Reads

some

data

from

the

credential

String

securityName

=

credential.getSecurityName();

java.util.ArrayList

=

credential.getGroupIds();

}

catch

(Exception

e)

{

//

Handles

exceptions

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

}

//

-

Looks

for

a

WSPrincipal

and

read

attributes,

if

found.

//

This

is

most

useful

when

plugged

as

the

last

login

module.

if

(principal

!=

null)

{

try

{

//

Reads

some

data

from

the

principal

String

principalName

=

principal.getName();

}

catch

(Exception

e)

{

//

Handles

exceptions

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

}

//

-

Looks

for

a

default

AuthorizationToken

and

add

attributes,

if

found.

//

This

is

most

useful

when

plugged

in

as

the

last

login

module.

if

(defaultAuthzToken

!=

null)

{

try

{

//

Reads

some

data

from

the

defaultAuthzToken

String[]

myCustomValue

=

defaultAuthzToken.getAttributes

(″myKey″);

//

Adds

some

data

if

not

present

in

the

defaultAuthzToken

if

(myCustomValue

==

null)

defaultAuthzToken.addAttribute

(″myKey″,

″myCustomData″);

}

catch

(Exception

e)

{

//

Handles

exceptions

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

Chapter

2.

Securing

applications

and

their

environments

79

}

//

-

Reads

the

header

attributes

from

the

HttpServletRequest,

if

found.

//

This

can

be

done

at

any

login

module

plug

in

point

(first,

middle,

//

or

last).

if

(request

!=

null)

{

java.util.Enumeration

headerEnum

=

request.getHeaders();

while

(headerEnum.hasMoreElements())

{

System.out.println

(″Header

element:

″

+

(String)headerEnum.nextElement());

}

}

//

-

Adds

an

attribute

to

the

HttpServletResponse,

if

found

//

This

can

be

done

at

any

login

module

plug

in

point

(first,

middle,

//

or

last).

if

(response

!=

null)

{

response.addHeader

(″myKey″,

″myValue″);

}

//

-

Gets

the

web

application

name

from

the

appContext,

if

found

//

This

can

be

done

at

any

login

module

plug

in

point

(first,

middle,

//

or

last).

if

(appContext

!=

null)

{

String

appName

=

(String)

appContext.get(com.ibm.wsspi.security.auth.

callback.Constants.WEB_APP_NAME);

}

return

succeeded;

}

public

boolean

commit()

throws

LoginException

{

boolean

succeeded

=

true;

//

Add

any

objects

here

that

you

have

created

and

belong

in

the

//

Subject.

Make

sure

the

objects

are

not

already

added.

If

you

added

//

any

sharedState

variables,

remove

them

before

you

exit.

If

the

abort()

//

method

gets

called,

make

sure

you

cleanup

anything

added

to

the

//

Subject

here.

if

(customAuthzToken

!=

null)

{

//

Sets

the

customAuthzToken

token

into

the

Subject

try

{

//

Do

this

in

a

doPrivileged

code

block

so

that

application

code

//

does

not

need

to

add

additional

permissions

java.security.AccessController.doPrivileged(new

java.security.PrivilegedAction()

{

public

Object

run()

{

try

80

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

{

//

Adds

the

custom

authorization

token

if

it

is

not

//

null

and

not

already

in

the

Subject

if

((customAuthzTokenPriv

!=

null)

&&

(!_subject.getPrivateCredentials().contains(customAuthzTokenPriv)))

{

_subject.getPrivateCredentials().add(customAuthzTokenPriv);

}

}

catch

(Exception

e)

{

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

return

null;

}

});

}

catch

(Exception

e)

{

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

}

return

succeeded;

}

public

boolean

abort()

throws

LoginException

{

boolean

succeeded

=

true;

//

Makes

sure

to

remove

all

objects

that

have

already

been

added

(both

into

the

//

Subject

and

shared

state).

if

(customAuthzToken

!=

null)

{

//

remove

the

customAuthzToken

token

from

the

Subject

try

{

final

AuthorizationToken

customAuthzTokenPriv

=

customAuthzToken;

//

Do

this

in

a

doPrivileged

block

so

that

application

code

does

not

need

//

to

add

additional

permissions

java.security.AccessController.doPrivileged(new

java.security.PrivilegedAction()

{

public

Object

run()

{

try

{

//

Removes

the

custom

authorization

token

if

it

is

not

//

null

and

not

already

in

the

Subject

if

((customAuthzTokenPriv

!=

null)

&&

(_subject.getPrivateCredentials().

contains(customAuthzTokenPriv)))

{

_subject.getPrivateCredentials().

remove(customAuthzTokenPriv);

Chapter

2.

Securing

applications

and

their

environments

81

}

}

catch

(Exception

e)

{

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

return

null;

}

});

}

catch

(Exception

e)

{

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

}

return

succeeded;

}

public

boolean

logout()

throws

LoginException

{

boolean

succeeded

=

true;

//

Makes

sure

to

remove

all

objects

that

have

already

been

added

//

(both

into

the

Subject

and

shared

state).

if

(customAuthzToken

!=

null)

{

//

Removes

the

customAuthzToken

token

from

the

Subject

try

{

final

AuthorizationToken

customAuthzTokenPriv

=

customAuthzToken;

//

Do

this

in

a

doPrivileged

code

block

so

that

application

code

does

//

not

need

to

add

additional

permissions

java.security.AccessController.doPrivileged(new

java.security.

PrivilegedAction()

{

public

Object

run()

{

try

{

//

Removes

the

custom

authorization

token

if

it

is

not

null

and

not

//

already

in

the

Subject

if

((customAuthzTokenPriv

!=

null)

&&

(_subject.

getPrivateCredentials().

contains(customAuthzTokenPriv)))

{

_subject.getPrivateCredentials().remove(customAuthzTokenPriv);

}

}

catch

(Exception

e)

{

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

82

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

return

null;

}

});

}

catch

(Exception

e)

{

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

}

return

succeeded;

}

}

The

following

code

snippet

can

be

used

in

your

login()

method

to

determine

when

sufficient

information

is

present.

For

another

example,

see

“Configuring

inbound

identity

mapping”

on

page

262.

After

developing

your

custom

login

module

for

a

system

login

configuration,

you

can

configure

the

system

login

using

either

the

administrative

console

or

using

the

wsadmin

utility.

To

configure

the

system

login

using

the

administrative

console,

click

Security

>

JAAS

Configuration

>

System

logins.

For

more

information

on

using

the

wsadmin

utility

for

system

login

configuration,

see

“Example:

Customizing

a

server-side

Java

Authentication

and

Authorization

Service

authentication

and

login

configuration.”

Also

refer

to

the

“Example:

Customizing

a

server-side

Java

Authentication

and

Authorization

Service

authentication

and

login

configuration”

article

for

information

on

system

login

modules

and

to

determine

whether

to

add

additional

login

modules.

Example:

Customizing

a

server-side

Java

Authentication

and

Authorization

Service

authentication

and

login

configuration

WebSphere

Application

Server

supports

plugging

in

a

custom

Java

Authentication

and

Authorization

Service

(JAAS)

login

module

before

or

after

the

WebSphere

Application

Server

system

login

module.

However,

WebSphere

Application

Server

does

not

support

the

replacement

of

the

WebSphere

Application

Server

system

login

modules,

which

are

used

to

create

WSCredential

and

WSPrincipal

in

the

Subject.

By

using

a

custom

login

module,

you

can

either

make

additional

authentication

decisions

or

add

information

to

the

Subject

to

make

additional,

potentially

finer-grained,

authorization

decisions

inside

a

Java

2

Platform,

Enterprise

Edition

(J2EE)

application.

WebSphere

Application

Server

enables

you

to

propagate

information

downstream

that

is

added

to

the

subject

by

a

custom

login

module.

For

more

information,

see

“Security

attribute

propagation”

on

page

276.

To

determine

which

login

configuration

to

use

for

plugging

in

your

custom

login

modules,

see

the

descriptions

of

the

login

configurations

located

in

the

“System

login

configuration

entry

settings

for

Java

Authentication

and

Authorization

Service”

on

page

249

article.

WebSphere

Application

Server

supports

the

modification

of

the

system

login

configuration

through

the

administrative

console

and

by

using

the

wsadmin

Chapter

2.

Securing

applications

and

their

environments

83

scripting

utility.

To

configure

the

system

login

configuration

using

the

administrative

console,

click

Security

>

JAAS

Configuration

>

System

logins.

Refer

to

the

following

code

sample

to

configure

a

system

login

configuration

using

the

wsadmin

tool.

The

following

sample

JACL

script

adds

a

customLoginModule

into

the

Lightweight

Third-party

Authentication

(LTPA)

Web

system

login

configuration:

Attention:

Lines

32,

33,

and

34

in

the

following

code

sample

were

split

onto

two

lines

because

of

the

width

of

the

printed

page.

1.

###

2.

#

3.

#

Open

security.xml

4.

#

5.

###

6.

7.

8.

set

sec

[$AdminConfig

getid

/Cell:hillside/Security:/]

9.

10.

11.

###

12.

#

13.

#

Locate

systemLoginConfig

14.

#

15.

###

16.

17.

18.

set

slc

[$AdminConfig

showAttribute

$sec

systemLoginConfig]

19.

20.

set

entries

[lindex

[$AdminConfig

showAttribute

$slc

entries]

0]

21.

22.

23.

###

24.

#

25.

#

Append

a

new

LoginModule

to

LTPA_WEB

26.

#

27.

###

28.

29.

foreach

entry

$entries

{

30.

set

alias

[$AdminConfig

showAttribute

$entry

alias]

31.

if

{$alias

==

″LTPA_WEB″}

{

32.

set

newJAASLoginModuleId

[$AdminConfig

create

JAASLoginModule

$entry

{{moduleClassName

″com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy″}}]

33.

set

newPropertyId

[$AdminConfig

create

Property

$newJAASLoginModuleId

{{name

delegate}{value

″com.ABC.security.auth.CustomLoginModule″}}]

34.

$AdminConfig

modify

$newJAASLoginModuleId

{{authenticationStrategy

REQUIRED}}

35.

break

36.

}

37.

}

38.

39.

40.

###

84

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

41.

#

42.

#

save

the

change

43.

#

44.

###

45.

46.

$AdminConfig

save

47.

Attention:

The

wsadmin

scripting

utility

inserts

a

new

object

to

the

end

of

the

list.

To

insert

the

custom

LoginModule

before

the

AuthenLoginModule,

delete

the

AuthenLoginModule

and

then

recreate

it

after

inserting

the

custom

LoginModule.

Save

the

sample

script

into

a

file,

sample.jacl,

executing

the

sample

script

using

the

following

command:

Wsadmin

-f

sample.jacl

You

can

use

the

following

sample

JACL

script

to

remove

the

current

LTPA_WEB

login

configuration

and

all

the

LoginModules:

48.

###

49.

#

50.

#

Open

security.xml

51.

#

52.

###

53.

54.

55.

set

sec

[$AdminConfig

getid

/Cell:hillside/Security:/]

56.

57.

58.

###

59.

#

60.

#

Locate

systemLoginConfig

61.

#

62.

###

63.

64.

65.

set

slc

[$AdminConfig

showAttribute

$sec

systemLoginConfig]

66.

67.

set

entries

[lindex

[$AdminConfig

showAttribute

$slc

entries]

0]

68.

69.

70.

###

71.

#

72.

#

Remove

the

LTPA_WEB

login

configuration

73.

#

74.

###

75.

76.

foreach

entry

$entries

{

77.

set

alias

[$AdminConfig

showAttribute

$entry

alias]

78.

if

{$alias

==

″LTPA_WEB″}

{

79.

$AdminConfig

remove

$entry

80.

break

81.

}

82.

}

83.

84.

Chapter

2.

Securing

applications

and

their

environments

85

85.

###

86.

#

87.

#

save

the

change

88.

#

89.

###

90.

91.

$AdminConfig

save

You

can

use

the

following

sample

JACL

script

to

recover

the

original

LTPA_WEB

configuration:

Attention:

Lines

122,

124,

and

126

in

the

following

code

sample

were

split

onto

two

or

more

lines

because

of

the

width

of

the

printed

page.

The

two

lines

of

code

for

line

122

are

normally

one

continuous

line.

The

three

lines

of

code

for

line

124

are

normally

one

continuous

line.

Also,

the

three

lines

of

code

for

line

126

are

normally

one

continuous

line.

92.

###

93.

#

94.

#

Open

security.xml

95.

#

96.

###

97.

98.

99.

set

sec

[$AdminConfig

getid

/Cell:hillside/Security:/]

100.

101.

102.

###

103.

#

104.

#

Locate

systemLoginConfig

105.

#

106.

###

107.

108.

109.

set

slc

[$AdminConfig

showAttribute

$sec

systemLoginConfig]

110.

111.

set

entries

[lindex

[$AdminConfig

showAttribute

$slc

entries]

0]

112.

113.

114.

115.

###

116.

#

117.

#

Recreate

the

LTPA_WEB

login

configuration

118.

#

119.

###

120.

121.

122.

set

newJAASConfigurationEntryId

[$AdminConfig

create

JAASConfigurationEntry

$slc

{{alias

LTPA_WEB}}]

123.

124.

set

newJAASLoginModuleId

[$AdminConfig

create

JAASLoginModule

$newJAASConfigurationEntryId

{{moduleClassName

″com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy″}}]

125.

126.

set

newPropertyId

[$AdminConfig

create

Property

86

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

$newJAASLoginModuleId

{{name

delegate}

{value

″com.ibm.ws.security.web.AuthenLoginModule″}}]

127.

128.

$AdminConfig

modify

$newJAASLoginModuleId

{{authenticationStrategy

REQUIRED}}

129.

130.

131.

###

132.

#

133.

#

save

the

change

134.

#

135.

###

136.

137.

$AdminConfig

save

The

WebSphere

Application

Server

Version

5.1

ltpaLoginModule

and

AuthenLoginModule

use

the

shared

state

to

save

state

information

so

that

custom

LoginModules

can

modify

the

information.

The

ltpaLoginModule

initializes

the

callback

array

in

the

login()

method

using

the

following

code.

The

callback

array

is

created

by

ltpaLoginModule

only

if

an

array

is

not

defined

in

the

shared

state

area.

In

the

following

code

sample,

the

error

handling

code

was

removed

to

make

the

sample

concise.

If

you

insert

a

custom

LoginModule

before

the

ltpaLoginModule,

custom

LoginModule

might

follow

the

same

style

to

save

the

callback

into

the

shared

state.

Attention:

In

the

following

code

sample,

several

lines

of

code

have

been

split

onto

two

lines

because

of

the

width

of

the

printed

page.

Each

of

these

split

lines

are

one

continuous

line.

138.

Callback

callbacks[]

=

null;

139.

if

(!sharedState.containsKey(

com.ibm.wsspi.security.auth.callback.Constants.

CALLBACK_KEY))

{

140.

callbacks

=

new

Callback[3];

141.

callbacks[0]

=

new

NameCallback(″Username:

″);

142.

callbacks[1]

=

new

PasswordCallback(″Password:

″,

false);

143.

callbacks[2]

=

new

com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl(

″Credential

Token:

″);

144.

try

{

145.

callbackHandler.handle(callbacks);

146.

}

catch

(java.io.IOException

e)

{

147.

.

.

.

148.

}

catch

(UnsupportedCallbackException

uce)

{

149.

.

.

.

150.

}

151.

sharedState.put(

com.ibm.wsspi.security.auth.callback.Constants.CALLBACK_KEY,

callbacks);

152.

}

else

{

153.

callbacks

=

(Callback

[])

sharedState.get(

com.ibm.wsspi.security.auth.callback.

Constants.CALLBACK_KEY);

154.

}

ltpaLoginModule

and

AuthenLoginModule

generate

both

a

WSPrincipal

and

a

WSCredential

object

to

represent

the

authenticated

user

identity

and

security

credentials.

The

WSPrincipal

and

WSCredential

objects

also

are

saved

in

the

shared

Chapter

2.

Securing

applications

and

their

environments

87

state.

A

JAAS

login

uses

a

two-phase

commit

protocol.

First,

the

login

methods

in

login

modules,

which

are

configured

in

the

login

configuration,

are

called.

Then,

their

commit

methods

are

called.

A

custom

LoginModule,

which

is

inserted

after

the

ltpaLoginModule

and

the

AuthenLoginModule,

can

modify

the

WSPrincipal

and

WSCredential

objects

before

they

are

committed.

The

WSCredential

and

WSPrincipal

objects

must

exist

in

the

Subject

after

the

login

is

completed.

Without

these

objects

in

the

Subject,

WebSphere

Application

Server

run-time

code

rejects

the

Subject

when

it

is

used

to

make

any

security

decisions.

AuthenLoginModule

uses

the

following

code

to

initialize

the

callback

array:

Attention:

In

the

following

code

sample,

several

lines

of

code

have

been

split

onto

two

lines

because

of

the

width

of

the

printed

page.

Each

of

these

split

lines

are

one

continuous

line.

155.

Callback

callbacks[]

=

null;

156.

if

(!sharedState.containsKey(

com.ibm.wsspi.security.auth.callback.Constants.

CALLBACK_KEY))

{

157.

callbacks

=

new

Callback[6];

158.

callbacks[0]

=

new

NameCallback(″Username:

″);

159.

callbacks[1]

=

new

PasswordCallback(″Password:

″,

false);

160.

callbacks[2]

=

new

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl(

″Credential

Token:

″);

161.

callbacks[3]

=

new

com.ibm.wsspi.security.auth.callback.WSServletRequestCallback(

″HttpServletRequest:

″);

162.

callbacks[4]

=

new

com.ibm.wsspi.security.auth.callback.WSServletResponseCallback(

″HttpServletResponse:

″);

163.

callbacks[5]

=

new

com.ibm.wsspi.security.auth.callback.WSAppContextCallback(

″ApplicationContextCallback:

″);

164.

try

{

165.

callbackHandler.handle(callbacks);

166.

}

catch

(java.io.IOException

e)

{

167.

.

.

.

168.

}

catch

(UnsupportedCallbackException

uce

{

169.

.

.

.

170.

}

171.

sharedState.put(

com.ibm.wsspi.security.auth.callback.

Constants.CALLBACK_KEY,

callbacks);

172.

}

else

{

173.

callbacks

=

(Callback

[])

sharedState.get(

com.ibm.wsspi.security.auth.callback.

Constants.CALLBACK_KEY);

174.

}

Three

more

objects,

which

contain

callback

information

for

the

login,

are

passed

from

the

Web

container

to

the

AuthenLoginModule:

a

java.util.Map,

a

HttpServletRequest,

and

a

HttpServletResponse

object.

These

objects

represent

the

Web

application

context.

The

WebSphere

Application

Server

Version

5.1

application

context,

java.util.Map

object,

contains

the

application

name

and

the

error

page

URL.

You

can

obtain

the

application

context,

java.util.Map

object,

by

calling

the

88

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

getContext()

method

on

the

WSAppContextCallback

object.

The

java.util.Map

object

is

created

with

the

following

deployment

descriptor

information.

Attention:

In

the

following

code

sample,

several

lines

of

code

have

been

split

onto

two

lines

because

of

the

width

of

the

printed

page.

Each

of

these

split

lines

are

one

continuous

line.

175.

HashMap

appContext

=

new

HashMap(2);

176.

appContext.put(

com.ibm.wsspi.security.auth.callback.Constants.WEB_APP_NAME,

web_application_name);

177.

appContext.put(

com.ibm.wsspi.security.auth.callback.Constants.REDIRECT_URL,

errorPage);

The

application

name

and

the

HttpServletRequest

object

might

be

read

by

the

custom

LoginModule

to

perform

mapping

functions.

The

error

page

of

the

form-based

login

might

be

modified

by

a

custom

LoginModule.

In

addition

to

the

JAAS

framework,

WebSphere

Application

Server

supports

the

Trust

Association

Interface

(TAI).

Other

credential

types

and

information

can

be

added

to

the

caller

Subject

during

the

authentication

process

using

a

custom

LoginModule.

The

third-party

credentials

in

the

caller

Subject

are

managed

by

WebSphere

Application

Server

as

part

of

the

security

context.

The

caller

Subject

is

bound

to

the

thread

of

execution

during

the

request

processing.

When

a

Web

or

EJB

module

is

configured

to

use

the

caller

identity,

the

user

identity

is

propagated

to

the

downstream

service

in

an

EJB

request.

WSCredential

and

any

third-party

credentials

in

the

caller

Subject

are

not

propagated

downstream.

Instead,

some

of

the

information

can

be

regenerated

at

the

target

server

based

on

the

propagated

identity.

Add

third-party

credentials

to

the

caller

Subject

at

the

authentication

stage.

The

caller

Subject,

which

is

returned

from

the

WSSubject.getCallerSubject()

method,

is

read-only

and

thus

cannot

be

modified.

For

more

information

on

the

WSSubject,

see

“Example:

Getting

the

Caller

Subject

from

the

Thread.”

Example:

Getting

the

Caller

Subject

from

the

Thread

The

Caller

subject

(or

″received

subject″)

contains

the

user

authentication

information

used

in

the

call

for

this

request.

This

subject

is

returned

after

issuing

the

WSSubject.getCallerSubject()

API

to

prevent

replacing

existing

objects.

The

subject

is

marked

read-only.

This

API

can

be

used

to

get

access

to

the

WSCredential

(documented

in

the

Javadoc

information)

so

that

you

can

put

or

set

data

in

the

hashmap

within

the

credential.

Most

data

within

the

subject

is

not

propagated

downstream

to

another

server.

Only

the

credential

token

within

the

WSCredential

is

propagated

downstream

(and

a

new

caller

subject

generated).

try

{

javax.security.auth.Subject

caller_subject;

com.ibm.websphere.security.cred.WSCredential

caller_cred;

caller_subject

=

com.ibm.websphere.security.auth.WSSubject.getCallerSubject();

if

(caller_subject

!=

null)

Chapter

2.

Securing

applications

and

their

environments

89

{

caller_cred

=

caller_subject.getPublicCredentials

(com.ibm.websphere.security.cred.WSCredential.class).iterator().next();

String

CALLERDATA

=

(String)

caller_cred.get

(″MYKEY″);

System.out.println(″My

data

from

the

Caller

credential

is:

″

+

CALLERDATA);

}

}

catch

(WSSecurityException

e)

{

//

log

error

}

catch

(Exception

e)

{

//

log

error

}

Requirement:

You

need

the

following

Java

2

Security

permissions

to

execute

this

API:

permission

javax.security.auth.AuthPermission

″wssecurity.getCallerSubject;″.

Example:

Getting

the

RunAs

Subject

from

the

Thread

The

RunAs

subject

(or

invocation

subject)

contains

the

user

authentication

information

for

the

RunAs

mode

set

in

the

application

deployment

descriptor

for

this

method.

The

RunAs

subject

(or

invocation

subject)

contains

the

user

authentication

information

for

the

RunAs

mode

set

in

the

application

deployment

descriptor

for

this

method.

This

subject

is

marked

read-only

when

returned

from

theWSSubject.getRunAsSubject()

application

programming

interface

(API)

to

prevent

replacing

existing

objects.

You

can

use

this

API

to

get

access

to

the

WSCredential

(documented

in

the

Javadoc

information)

so

that

you

can

put

or

set

data

in

the

hashmap

within

the

credential.

Note:

Most

data

within

the

Subject

is

not

propagated

downstream

to

another

server.

Only

the

credential

token

within

the

WSCredential

is

propagated

downstream

and

a

new

Caller

subject

is

generated.

try

{

javax.security.auth.Subject

runas_subject;

com.ibm.websphere.security.cred.WSCredential

runas_cred;

runas_subject

=

com.ibm.websphere.security.auth.WSSubject.getRunAsSubject();

if

(runas_subject

!=

null)

{

runas_cred

=

runas_subject.getPublicCredentials(

com.ibm.websphere.security.cred.WSCredential.class).iterator().next();

String

RUNASDATA

=

(String)

runas_cred.get

(″MYKEY″);

System.out.println(″My

data

from

the

RunAs

credential

is:

″

+

RUNASDATA

);

}

}

catch

(WSSecurityException

e)

{

//

log

error

90

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

}

catch

(Exception

e)

{

//

log

error

}

Requirements:

You

need

the

following

Java

2

Security

permissions

to

run

this

API:

permission

javax.security.auth.AuthPermission

″wssecurity.getRunAsSubject;″.

Example:

User

revocation

from

a

cache

In

WebSphere

Application

Server,

Version

5.0.2

and

later,

revocation

of

a

user

from

the

security

cache

using

an

MBean

interface

is

supported.

The

following

Java

Command

Language

(JACL)

revokes

a

user

when

given

the

realm

and

user

ID,

and

cycles

through

all

security

administration

MBean

instances

returned

for

the

entire

cell

when

run

from

the

Deployment

Manager

WSADMIN.

The

command

also

purges

the

user

from

the

cache

during

each

process.

Note:

This

procedure

can

be

called

from

a

JACL

script.

Attention:

In

some

of

the

following

lines

of

code,

the

lines

have

been

split

onto

two

or

more

lines.

proc

revokeUser

{realm

userid}

{

global

AdminControl

AdminConfig

if

{[catch

{$AdminControl

queryNames

WebSphere:type=SecurityAdmin,*}

result]}

{

puts

stdout

″\$AdminControl

queryNames

WebSphere:type=SecurityAdmin,*

caught

an

exception

$result\n″

return

}

else

{

if

{$result

!=

{}}

{

foreach

secBean

$result

{

if

{$secBean

!=

{}

||

$secBean

!=

″null″}

{

if

{[catch

{$AdminControl

invoke

$secBean

purgeUserFromAuthCache

″$realm

$userid″}

result]}

{

puts

stdout

″\$AdminControl

invoke

$secBean

purgeUserFromAuthCache

$realm

$userid

caught

an

exception

$result\n″

return

}

else

{

puts

stdout

″\nUser

$userid

has

been

purged

from

the

cache

of

process

$secBean\n″

}

}

else

{

puts

stdout

″unable

to

get

securityAdmin

Mbean,

user

$userid

not

revoked″

}

}

}

else

{

puts

stdout

″Security

Mbean

was

not

found\n″

return

}

Chapter

2.

Securing

applications

and

their

environments

91

}

return

true

}

Developing

your

own

J2C

principal

mapping

module

WebSphere

Application

Server

provides

principal

mapping

when

Java

2

Connector

(J2C)

connection

factory

is

configured

to

perform

container

managed

sign-on.

For

example,

the

application

server

can

map

the

caller

principal

to

a

resource

principal

to

open

a

new

connection

to

the

backend

server.

With

the

container-managed

signon,

WebSphere

Application

Server

creates

a

Subject

instance

that

contains

enterprise

information

systems

(EIS)

security

domain

credentials.

A

Subject

object

returned

by

a

principal

mapping

module

contains

a

Principal

object

represents

the

caller

identity

and

a

PasswordCredential

or

a

GenericCredential.

WebSphere

Application

Server

provides

a

default

principal

mapping

module

that

maps

any

authenticated

user

credentials

to

password

credentials

for

the

EIS

security

domain.

The

default

mapping

module

is

defined

in

the

Application

Login

Configuration

panel

in

the

DefaultPrincipalMapping

entry.

The

user

ID

and

password

for

the

EIS

security

domain

is

defined

under

each

connection

factory

by

an

authDataAlias

attribute

container-managed

authentication

alias

in

the

administrative

console.

The

authDataAlias

attribute

does

not

actually

contain

the

user

name

and

password.

An

authDataAlias

attribute

contains

an

alias

that

refers

to

a

user

name

and

password

pair

that

is

defined

in

the

security

configuration

document.

Since

it

contains

sensitive

data,

the

security

configuration

document

requires

the

most

privileged

administrator

role

for

both

read

and

write

access.

This

indirection

avoids

saving

sensitive

user

name

and

password

in

configuration

documents

other

than

the

security

document.

The

J2C

connection

factory

configuration

contains

a

mapping

module,

which

defines

a

principal

mapping

module

alias

(mappingConfigAlias

attribute)

and

an

authentication

data

alias

(authDataAlias

attribute).

At

run

time,

the

J2C-managed

connection

factory

code

passes

a

reference

of

the

ManagedConnectionFactory

and

an

authDataAlias

object

to

the

configured

principal

mapping

module

through

the

WSPrincipalMappingCallbackHandler

object.

WebSphere

Application

Server

supports

plugging

in

a

custom

principal

mapping

module

for

a

connection

factory

if

the

any-authenticated-to-one

mapping

provided

by

the

default

principal

mapping

module

is

insufficient.

A

custom

mapping

module

is

a

special

purpose

Java

Authentication

and

Authorization

Service

(JAAS)

Login

Module

that

performs

principal

or

credential

mapping

in

the

login

method.

The

WSSubject.getCallerPrincipal()

method

can

be

used

to

retrieve

the

application

client

identity.

Plugging

in

a

custom

mapping

module

is

very

simple.

Change

the

value

of

the

mappingConfigAlias

object

to

the

custom

mapping

module.

However,

the

configuration

must

be

done

through

the

wsadmin

tool.

The

following

steps

are

needed

to

perform

this

task.

You

can

use

the

administrative

console

for

these

steps.

However,

you

also

can

use

the

wsadmin

tool

to

configure

the

J2C

Connection

Factory.

1.

Start

the

administrative

console.

To

add

a

custom

mapping

module

for

an

application

server,

click

Servers

>

Application

Servers.

Click

the

particular

server

on

the

right

navigation

panel.

2.

Click

Security

>

JAAS

Configuration.

3.

Select

JAAS

Configuration

and

Application

Logins.

Click

New.

4.

Enter

a

unique

alias

for

the

new

mapping

module,

and

click

Apply.

92

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

5.

Under

Additional

Properties,

click

JAAS

Login

Modules

to

define

the

custom

mapping

module

class.

6.

Click

New

and

enter

the

Module

Classname

and

the

Authentication

Strategy.

7.

Click

Apply.

Click

Save

to

save

the

new

configuration.

8.

Configure

the

J2C

Connection

Factory

to

use

the

new

mapping

module

a.

Using

the

administrative

console

to

configure

the

J2C

Connection

Factory.

1)

Click

Resources

>

Resource

Adapters

>

resource_adapter.

2)

Under

Additional

Properties,

click

CMP

Connection

Factories.

3)

Click

the

name

of

your

connection

factory.

4)

Enter

the

resource

name,

Java

Naming

and

Directory

Interface

(JNDI)

name,

a

description

of

the

resource,

and

a

category

in

which

to

classify

the

resource.

5)

Click

OK.

6)

Click

Save

in

the

upper-left

section

of

the

administrative

console

to

save

your

configuration

changes.
b.

Using

the

wsadmin

tool

to

configure

the

J2C

Connection

Factory.

1)

At

the

wsadmin

prompt,

type

the

following

command

to

show

a

list

of

J2CConnectionFactory

objects:

wsadmin>$AdminConfig

list

J2CConnectionFactory.

2)

Select

the

J2C

Connection

Factory

and

enter

the

following

command

to

show

all

the

attributes.

For

example,

wsadmin>$AdminConfig

show

PetStore_CF(cells/hillsideNetwork/nodes

/hillside/servers/server1:resources.xml#CMPConnectorFactory_4)

The

previous

example

was

split

onto

two

lines

because

it

displayed

beyond

the

width

of

the

page.

3)

Type

the

following

command

to

examine

the

current

mapping

module

configuration:

wsadmin>$AdminConfig

show

{mapping

(cells/hillsideNetwork/nodes

/hillside/servers/server1:resources.xml#MappingModule_7)}

The

previous

example

was

split

onto

two

lines

because

it

displayed

beyond

the

width

of

the

page.

The

following

shows

sample

results

of

the

above

command:

{authDataAlias

{}}

{mappingConfigAlias

DefaultPrincipalMapping}.

As

shown

in

the

previous

example,

the

J2C

Connection

factory

is

configured

to

use

the

DefaultPrincipalMapping

login

configuration.

4)

Type

the

following

command

to

modify

the

mapping

module

configuration

to

use

the

new

mapping

module:

wsadmin>$AdminConfig

modify

{mapping

(cells/hillsideNetwork/nodes

/hillside/servers/server1:resources.xml#MappingModule_7)}

{

{mappingConfigAlias

myMappingModule}}

The

previous

example

was

split

onto

three

lines

because

it

displayed

beyond

the

width

of

the

page.

You

can

check

the

result

by

typing:

wsadmin>$AdminConfig

show

{mapping

(cells/hillsideNetwork/nodes

/hillside/servers/server1:resources.xml#MappingModule_7)}

{authDataAlias

{}}

{mappingConfigAlias

myMappingModule}

Chapter

2.

Securing

applications

and

their

environments

93

The

previous

example

was

split

onto

three

lines

because

it

displayed

beyond

the

width

of

the

page.

5)

Type

save

at

the

wsadmin

prompt

to

save

your

changes.

Note:

The

authDataAlias

is

left

undefined.

In

practice,

the

authDataAlias

passes

at

run

time

to

the

custom

mapping

module.

But

using

the

authDataAlias

to

look

up

user

ID

and

password

requires

the

WebSphere

Configuration

application

programming

interface

(API),

which

is

not

available

at

this

time.

A

mapping

module

is

defined

and

is

configured

for

the

specified

J2C

Connection

factory.

Completing

this

task

allows

you

to

use

your

own

mapping

module

to

fit

your

application

environment.

The

WebSphere

Application

Server

default

principal

mapping

module

maps

all

authenticated

user

credentials

to

the

same

user

id

and

password

credentials

of

the

EIS

security

domain.

The

user

ID

and

password

are

stored

in

the

security

configuration

document

and

is

looked

up

using

the

configured

alias

as

a

key.

Your

mapping

module

may

be

programmed

to

perform

more

sophisticated

mapping

and

store

passwords

in

other

persistent

storage

or

from

a

remote

service.

To

develop

your

own

principal

and

credential

mapping

LoginModule,

refer

to

the

JAAS

documentation

for

general

information.

The

JAAS

documentation

can

be

found

at

http://www.ibm.com/developerworks/java/jdk/security.

Scroll

down

to

find

the

JAAS

documentation

for

your

platform.

Refer

to

the

login.html

file

for

details

of

how

to

develop

JAAS

login

module.

In

particular,

a

mapping

module

needs

to

obtain

the

security

identity

of

the

caller.

The

WSSubject.getCallerPrincipal()

static

method

returns

an

com.ibm.websphere.security.auth.WSPrincipal

object,

which

represents

the

security

identity

of

an

authenticated

caller.

Developing

custom

user

registries

WebSphere

Application

Server

security

supports

the

use

of

custom

registries

in

addition

to

Local

OS

and

Lightweight

Directory

Access

Protocol

(LDAP)

registries

for

authentication

and

authorization

purposes.

A

custom

user

registry

is

a

customer

implemented

user

registry

which

implements

the

UserRegistry

Java

interface

as

provided

by

WebSphere

Application

Server.

A

custom

implemented

user

registry

can

support

virtually

any

type

or

notion

of

an

accounts

repository

from

a

relational

database,

flat

file,

and

so

on.

The

custom

user

registry

provides

considerable

flexibility

in

adapting

WebSphere

Application

Server

security

to

various

environments

where

some

notion

of

a

user

registry,

other

than

LDAP

or

LocalOS,

already

exist

in

the

operational

environment.

Implementing

a

custom

user

registry

is

a

software

development

effort.

Use

the

methods

defined

in

the

UserRegistry

interface

to

make

calls

to

the

desired

registry

to

obtain

user

and

group

information.

The

interface

defines

a

very

general

set

of

methods,

for

encapsulating

a

wide

variety

of

registries.

You

can

configure

a

custom

user

registry

as

the

active

user

registry

when

configuring

WebSphere

Application

Server

global

security.

Make

sure

that

your

implementation

of

the

custom

registry

does

not

depend

on

any

WebSphere

Application

Server

components

such

as

data

sources,

enterprise

94

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

beans,

and

so

on.

Do

not

have

this

dependency

because

security

is

initialized

and

enabled

prior

to

most

of

the

other

WebSphere

Application

Server

components

during

startup.

If

your

previous

implementation

used

these

components,

make

a

change

that

will

eliminate

the

dependency.

For

example,

if

your

previous

implementation

used

data

sources

to

connect

to

a

database,

use

Java

database

connectivity

(JDBC)

to

connect

to

the

database.

For

backward

compatibility,

the

WebSphere

Application

Server

Version

4

custom

registry

is

also

supported.

Refer

to

the

“Migrating

custom

user

registries”

on

page

27

for

more

information

on

migrating.

If

your

previous

implementation

uses

data

sources

to

connect

to

a

database,

change

the

implementation

to

use

Java

database

connectivity

(JDBC)

connections.

However,

it

is

recommended

that

you

use

the

new

interface

to

implement

your

custom

registry.

1.

If

not

familiar

with

the

custom

user

registry

concept,

refer

to

the

article,

“Custom

user

registries”

on

page

212.

This

section

explains

each

of

the

methods

in

the

interface

in

detail

and

the

changes

for

these

methods

from

the

version

4

release.

2.

Implement

all

the

methods

in

the

interface

except

for

the

CreateCredential

method,

which

is

implemented

by

WebSphere

Application

Server.

“FileRegistrySample.java

file

for

WebSphere

Application

Server”

on

page

221

is

provided

for

reference.

3.

Build

your

implementation.

You

need

the

%install_root%/lib/sas.jar

and

%install_root%/lib/wssec.jar

files

in

your

class

path.

For

example:

%install_root%\java\bin\javac

-classpath

%install_root%\lib\wssec.jar;%install_root%\lib\sas.jar

yourImplementationFile.java.

4.

Copy

the

class

files

generated

in

the

previous

step

to

the

product

class

path.

The

preferred

location

is

the

%install_root%/lib/ext

directory.

This

should

be

copied

to

all

the

product

processes

(cell,

all

NodeAgents)

class

path.

5.

Follow

the

steps

in

“Configuring

custom

user

registries”

on

page

214

to

configure

your

implementation

using

the

administrative

console.

This

step

is

required

to

implement

custom

user

registries

in

Version

5.

If

you

enabling

security,

make

sure

you

complete

the

remaining

steps.

Once

this

is

done,

make

sure

you

save

and

synchronize

the

configuration

and

restart

all

the

servers.

Try

accessing

some

J2EE

resources

to

verify

that

the

custom

registry

implementation

is

successful.

Example:

Custom

user

registries

A

custom

user

registry

is

a

customer-implemented

user

registry

that

implements

the

UserRegistry

Java

interface

as

provided

by

WebSphere

Application

Server.

A

custom-implemented

user

registry

can

support

virtually

any

type

or

form

of

an

accounts

repository

from

a

relational

database,

flat

file,

and

so

on.

The

custom

user

registry

provides

considerable

flexibility

in

adapting

WebSphere

Application

Server

security

to

various

environments

where

some

form

of

a

user

registry,

other

than

Lightweight

Directory

Access

Protocol

(LDAP)

or

Local

OS,

already

exist

in

the

operational

environment.

Implementing

a

custom

user

registry

is

a

software

development

effort.

You

must

use

the

methods

defined

in

the

UserRegistry

interface

to

make

calls

to

the

desired

registry

for

obtaining

user

and

group

information.

The

interface

defines

a

very

general

set

of

methods,

so

it

can

encapsulate

a

wide

variety

of

registries.

You

can

configure

a

custom

user

registry

as

the

active

user

registry

when

configuring

the

product

global

security.

Chapter

2.

Securing

applications

and

their

environments

95

If

you

are

using

the

WebSphere

Application

Server

Version

4.0

custom

registry

you

can

plug

in

your

registry

without

any

changes.

However,

using

the

new

interface

to

implement

your

custom

registry

is

recommended.

To

view

a

sample

custom

registry,

refer

to

the

following

files:

v

“FileRegistrySample.java

file

for

WebSphere

Application

Server”

on

page

221

v

“users.props

file”

on

page

239

v

“groups.props

file”

on

page

239

UserRegistry

interface

methods

Implementing

this

interface

enables

WebSphere

Application

Server

security

to

use

custom

registries.

This

capability

should

extend

the

java.rmi

file.

With

a

remote

registry,

you

can

complete

this

process

remotely.

Implementation

of

this

interface

must

provide

implementations

for:

v

initialize(java.util.Properties)

v

checkPassword(String,String)

v

mapCertificate(X509Certificate[])

v

getRealm

v

getUsers(String,int)

v

getUserDisplayName(String)

v

getUniqueUserId(String)

v

getUserSecurityName(String)

v

isValidUser(String)

v

getGroups(String,int)

v

getGroupDisplayName(String)

v

getUniqueGroupId(String)

v

getUniqueGroupIds(String)

v

getGroupSecurityName(String)

v

isValidGroup(String)

v

getGroupsForUser(String)

v

getUsersForGroup(String,int)

v

createCredential(String)

public

void

initialize(java.util.Properties

props)

throws

CustomRegistryException,

RemoteException;

This

method

is

called

to

initialize

the

UserRegistry

method.

All

the

properties

defined

in

the

Custom

User

Registry

panel

propagate

to

this

method.

For

the

sample,

the

initialize

method

retrieves

the

names

of

the

registry

files

containing

the

user

and

group

information.

This

method

is

called

during

server

bring

up

to

initialize

the

registry.

This

method

is

also

called

when

validation

is

performed

by

the

administrative

console,

when

security

is

on.

This

method

remains

the

same

as

in

version

4.0.

public

String

checkPassword(String

userSecurityName,

String

password)

throws

PasswordCheckFailedException,

CustomRegistryException,

RemoteException;

The

checkPassword

method

is

called

to

authenticate

users

when

they

log

in

using

a

name

(or

user

ID)

and

a

password.

This

method

returns

a

string

which,

in

most

cases,

is

the

user

being

authenticated.

Then,

a

credential

is

created

for

the

user

for

96

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

authorization

purposes.

This

user

name

is

also

returned

for

the

enterprise

bean

call,

getCallerPrincipal(),

and

the

servlet

calls,

getUserPrincipal()

and

getRemoteUser().

See

the

getUserDisplayName

method

for

more

information

if

you

have

display

names

in

your

registry.

In

some

situations,

if

you

return

a

user

other

than

the

one

who

is

logged

in,

verify

that

the

user

is

valid

in

the

registry.

For

the

sample,

the

mapCertificate

method

gets

the

distinguished

name

(DN)

from

the

certificate

chain

and

makes

sure

it

is

a

valid

user

in

the

registry

before

returning

the

user.

For

the

sample,

the

checkPassword

method

checks

the

name

and

password

combination

in

the

registry

and

(if

they

match)

returns

the

user

being

authenticated.

This

method

is

called

for

various

scenarios.

It

is

called

by

the

administrative

console

to

validate

the

user

information

once

the

registry

is

initialized.

It

is

also

called

when

you

access

protected

resources

in

the

product

for

authenticating

the

user

and

before

proceeding

with

the

authorization.

This

method

is

the

same

as

in

WebSphere

Application

Server

Version

4.

public

String

mapCertificate(X509Certificate[]

cert)

throws

CertificateMapNotSupportedException,

CertificateMapFailedException,

CustomRegistryException,

RemoteException;

The

mapCertificate

method

is

called

to

obtain

a

user

name

from

an

X.509

certificate

chain

supplied

by

the

browser.

The

complete

certificate

chain

is

passed

to

this

method

and

the

implementation

can

validate

the

chain

if

needed

and

get

the

user

information.

A

credential

is

created

for

this

user

for

authorization

purposes.

If

browser

certificates

are

not

supported

in

your

configuration,

you

can

throw

the

exception,

CertificateMapNotSupportedException.

The

consequence

of

not

supporting

certificates

is

authentication

failure

if

the

challenge

type

is

certificates,

even

if

valid

certificates

are

in

the

browser.

This

method

is

called

when

certificates

are

provided

for

authentication.

For

Web

applications,

when

the

authentication

constraints

are

set

to

CLIENT-CERT

in

the

web.xml

file

of

the

application,

this

method

is

called

to

map

a

certificate

to

a

valid

user

in

the

registry.

For

Java

clients,

this

method

is

called

to

map

the

client

certificates

in

the

transport

layer,

when

using

the

transport

layer

authentication.

Also,

when

the

Identity

Assertion

Token

(when

using

the

CSIv2

authentication

protocol)

is

set

to

contain

certificates,

this

method

is

called

to

map

the

certificates

to

a

valid

user.

In

WebSphere

Application

Server

Version

4.0,

the

input

parameter

was

the

X509Certificate

certificate.

In

WebSphere

Application

Server

Version

5,

this

parameter

changes

to

accept

an

array

of

X509Certificate

certificates

(such

as

a

certificate

chain).

In

version

4,

this

parameter

was

called

only

for

Web

applications,

but

in

version

5.0

you

can

call

this

method

for

both

Web

and

Java

clients.

public

String

getRealm()

throws

CustomRegistryException,

RemoteException;

The

getRealm

method

is

called

to

get

the

name

of

the

security

realm.

The

name

of

the

realm

identifies

the

security

domain

for

which

the

registry

authenticates

users.

If

this

method

returns

a

null

value,

a

default

name

of

customRealm

is

used.

Chapter

2.

Securing

applications

and

their

environments

97

For

the

sample,

the

getRealm

method

returns

the

string,

customRealm.

One

of

the

calls

to

this

method

is

when

the

registry

information

is

validated.

This

method

is

the

same

as

in

version

4.

public

Result

getUsers(String

pattern,

int

limit)

throws

CustomRegistryException,

RemoteException;

The

getUsers

method

returns

the

list

of

users

from

the

registry.

The

names

of

users

depend

on

the

pattern

parameter.

The

number

of

users

are

limited

by

the

limit

parameter.

In

a

registry

that

has

many

users,

getting

all

the

users

is

not

practical.

So

the

limit

parameter

is

introduced

to

limit

the

number

of

users

retrieved

from

the

registry.

A

limit

of

0

indicates

to

return

all

the

users

that

match

the

pattern

and

might

cause

problems

for

large

registries.

Use

this

limit

with

care.

The

custom

registry

implementations

are

expected

to

support

at

least

the

wildcard

search

(*).

For

example,

a

pattern

of

(*)

returns

all

the

users

and

a

pattern

of

(b*)

returns

the

users

starting

with

b.

The

return

parameter

is

an

object

of

type

com.ibm.websphere.security.Result.

This

object

contains

two

attributes,

a

java.util.List

and

a

java.lang.boolean.

The

list

contains

the

users

returned

and

the

Boolean

flag

indicates

if

there

are

more

users

available

in

the

registry

for

the

search

pattern.

This

Boolean

flag

is

used

to

indicate

to

the

client

whether

more

users

are

available

in

the

registry.

In

the

sample,

the

getUsers

retrieves

the

required

number

of

users

from

the

registry

and

sets

them

as

a

list

in

the

result

object.

To

find

out

if

there

are

more

users

than

requested,

the

sample

gets

one

more

user

than

requested

and

if

it

finds

the

additional

user,

it

sets

the

Boolean

flag

to

true.

For

pattern

matching,

the

match

method

in

the

RegExpSample

class

is

used,

which

supports

wildcard

characters

such

as

the

asterisk

(*)

and

question

mark

(?).

This

method

is

called

by

the

administrative

console

to

add

users

to

roles

in

the

various

map

users

to

roles

panels.

The

administrative

console

uses

the

Boolean

set

in

the

result

object

to

indicate

that

more

entries

matching

the

pattern

are

available

in

the

registry.

In

WebSphere

Application

Server

Version

4,

this

method

specifies

to

take

only

the

pattern

parameter.

The

return

is

a

list.

In

WebSphere

Application

Server

Version

5,

this

method

is

changed

to

take

one

additional

parameter,

the

limit.

Ideally,

your

implementation

should

change

to

take

the

limit

value

and

limit

the

users

returned.

The

return

is

changed

to

return

a

result

object,

which

consists

of

the

list

(as

in

version

4)

and

a

flag

indicating

if

more

entries

exist.

So,

when

the

list

returns,

use

the

Result.setList(List)

to

set

the

List

in

the

result

object.

If

there

are

more

entries

than

requested

in

the

limit

parameter,

set

the

Boolean

attribute

to

true

in

the

result

object,

using

Result.setHasMore()

method.

The

default

for

the

Boolean

attribute

in

the

result

object

is

false.

public

String

getUserDisplayName(String

userSecurityName)

throws

EntryNotFoundException,

CustomRegistryException,

RemoteException;

The

getUserDisplayName

method

returns

a

display

name

for

a

user,

if

one

exists.

The

display

name

is

an

optional

string

that

describes

the

user

that

you

can

set

in

some

registries.

This

is

a

descriptive

name

for

the

user

and

does

not

have

to

be

98

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

unique

in

the

registry.

For

example

in

Windows

systems,

you

can

display

the

full

name

of

the

user.

If

you

do

not

need

display

names

in

your

registry,

return

null

or

an

empty

string

for

this

method.

Note:

In

WebSphere

Application

Server

Version

4,

if

display

names

existed

for

any

user

these

names

were

useful

for

the

EJB

method

call

getCallerPrincipal()

and

the

servlet

calls

getUserPrincipal()

and

getRemoteUser().

If

the

display

names

were

not

the

same

as

the

security

name

for

any

user,

the

display

names

are

returned

for

the

previously

mentioned

enterprise

beans

and

servlet

methods.

Returning

display

names

for

these

methods

might

become

problematic

is

some

situations

because

the

display

names

might

not

be

unique

in

the

registry.

Avoid

this

problem

by

changing

the

default

behavior

to

return

the

user’s

security

name

instead

of

the

user’s

display

name

in

this

version

of

the

product.

However,

if

you

want

to

have

the

same

behavior

as

in

version

4,

set

the

property

WAS_UseDisplayName

to

true

in

the

Custom

Registry

Properties

panel

in

the

administrative

console.

For

more

information

on

how

to

set

properties

for

the

custom

registry,

see

the

section

on

Setting

Properties

for

Custom

Registries.

In

the

sample,

this

method

returns

the

display

name

of

the

user

whose

name

matches

the

user

name

provided.

If

the

display

name

does

not

exist

this

returns

an

empty

string.

This

method

can

be

called

by

the

product

to

present

the

display

names

in

the

administrative

console,

or

using

the

command

line

using

the

wsadmin

tool.

Use

this

method

only

for

displaying.

This

method

is

the

same

as

in

Version

4.0.

public

String

getUniqueUserId(String

userSecurityName)

throws

EntryNotFoundException,

CustomRegistryException,

RemoteException;

This

method

returns

the

unique

ID

of

the

user

given

the

security

name.

In

the

sample,

this

method

returns

the

uniqueId

of

the

user

whose

name

matches

the

supplied

name.

This

method

is

called

when

forming

a

credential

for

a

user

and

also

when

creating

the

authorization

table

for

the

application.

public

String

getUserSecurityName(String

uniqueUserId)

throws

EntryNotFoundException,

CustomRegistryException,

RemoteException;

This

method

returns

the

security

name

of

a

user

given

the

unique

ID.

In

the

sample,

this

method

returns

the

security

name

of

the

user

whose

unique

ID

matches

the

supplied

ID.

This

method

is

called

to

make

sure

a

valid

user

exists

for

a

given

uniqueUserId.

This

method

is

called

to

get

the

security

name

of

the

user

when

the

uniqueUserId

is

obtained

from

a

token.

This

method

is

the

same

as

in

Version

4.

public

boolean

isValidUser(String

userSecurityName)

throws

CustomRegistryException,

RemoteException;

This

method

indicates

whether

the

given

user

is

a

valid

user

in

the

registry.

Chapter

2.

Securing

applications

and

their

environments

99

In

the

Sample,

this

method

returns

true

if

the

user

is

found

in

the

registry,

otherwise

this

method

returns

false.

This

method

is

primarily

called

in

situations

where

knowing

if

the

user

exists

in

the

directory

prevents

problems

later.

For

example,

in

the

mapCertificate

call,

once

the

name

is

obtained

from

the

certificate

if

the

user

is

found

to

be

an

invalid

user

in

the

registry,

you

can

avoid

trying

to

create

the

credential

for

the

user.

This

method

is

the

same

as

in

WebSphere

Application

Server

Version

4.0.

public

Result

getGroups(String

pattern,

int

limit)

throws

CustomRegistryException,

RemoteException;

The

getGroups

method

returns

the

list

of

groups

from

the

registry.

The

names

of

groups

depend

on

the

pattern

parameter.

The

number

of

groups

is

limited

by

the

limit

parameter.

In

a

registry

that

has

many

groups,

getting

all

the

groups

is

not

practical.

So,

the

limit

parameter

is

introduced

to

limit

the

number

of

groups

retrieved

from

the

registry.

A

limit

of

0

implies

to

return

all

the

groups

that

match

the

pattern

and

can

cause

problems

for

large

registries.

Use

this

limit

with

care.

The

custom

registry

implementations

are

expected

to

support

at

least

the

wildcard

search

(*).

For

example,

a

pattern

of

(*)

returns

all

the

users

and

a

pattern

of

(b*)

returns

the

users

starting

with

b.

The

return

parameter

is

an

object

of

type

com.ibm.websphere.security.Result.

This

object

contains

two

attributes,

a

java.util.List

and

a

java.lang.boolean.

The

list

contains

the

groups

returned

and

the

Boolean

flag

indicates

whether

there

are

more

groups

available

in

the

registry

for

the

pattern

searched.

This

Boolean

flag

is

used

to

indicate

to

the

client

if

more

groups

are

available

in

the

registry.

In

the

sample,

the

getUsers

retrieves

the

required

number

of

groups

from

the

registry

and

sets

them

as

a

list

in

the

result

object.

To

find

out

if

there

are

more

groups

than

requested,

the

sample

gets

one

more

user

than

requested

and

if

it

finds

the

additional

user,

it

sets

the

Boolean

flag

to

true.

For

pattern

matching,

the

match

method

in

the

RegExpSample

class

is

used.

It

supports

wildcards

like

*,

?.

This

method

is

called

by

the

administrative

console

to

add

groups

to

roles

in

the

various

map

groups

to

roles

panels.

The

administrative

console

will

use

the

boolean

set

in

the

Result

object

to

indicate

that

more

entries

matching

the

pattern

are

available

in

the

registry.

In

WebSphere

Application

Server

Version

4,

this

method

is

used

to

take

the

pattern

parameter

only

and

returns

a

list.

In

WebSphere

Application

Server

Version

5,

this

method

is

changed

to

take

one

additional

parameter,

the

limit.

Change

to

take

the

limit

value

and

limit

the

users

returned.

The

return

is

changed

to

return

a

result

object,

which

consists

of

the

list

(as

in

version

4)

and

a

flag

indicating

whether

more

entries

exist.

Use

the

Result.setList(List)

to

set

the

list

in

the

result

object.

If

there

are

more

entries

than

requested

in

the

limit

parameter,

set

the

Boolean

attribute

to

true

in

the

result

object

using

Result.setHasMore().

The

default

for

the

Boolean

attribute

in

the

result

object

is

false.

public

String

getGroupDisplayName(String

groupSecurityName)

throws

EntryNotFoundException,

CustomRegistryException,

RemoteException;

The

getGroupDisplayName

method

returns

a

display

name

for

a

group

if

one

exists.

The

display

name

is

an

optional

string

describing

the

group

that

you

can

set

in

100

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

some

registries.

This

name

is

a

descriptive

name

for

the

group

and

does

not

have

to

be

unique

in

the

registry.

If

you

do

not

need

to

have

display

names

for

groups

in

your

registry,

return

null

or

an

empty

string

for

this

method.

In

the

sample,

this

method

returns

the

display

name

of

the

group

whose

name

matches

the

group

name

provided.

If

the

display

name

does

not

exist,

this

method

returns

an

empty

string.

The

product

can

call

this

method

to

present

the

display

names

in

the

administrative

console

or

through

command

line

using

the

wsadmin

tool.

This

method

is

only

used

for

displaying

and

is

the

same

as

in

Version

4.0.

public

String

getUniqueGroupId(String

groupSecurityName)

throws

EntryNotFoundException,

CustomRegistryException,

RemoteException;

This

method

returns

the

unique

ID

of

the

group

given

the

security

name.

In

the

sample,

this

method

returns

the

unique

ID

of

the

group

whose

name

matches

the

supplied

name.

This

method

is

called

when

creating

the

authorization

table

for

the

application

and

is

the

same

as

in

Version

4.0.

public

List

getUniqueGroupIds(String

uniqueUserId)

throws

EntryNotFoundException,

CustomRegistryException,

RemoteException;

This

method

returns

the

unique

IDs

of

all

the

groups

to

which

a

user

belongs.

In

the

sample,

this

method

returns

the

unique

ID

of

all

the

groups

that

contain

this

uniqueUserID.

This

method

is

called

when

creating

the

credential

for

the

user.

As

part

of

creating

the

credential,

all

the

groupUniqueIds

in

which

the

user

belongs

are

collected

and

put

in

the

credential

for

authorization

purposes

when

groups

are

given

access

to

a

resource.

This

method

is

the

same

as

in

version

4.

public

String

getGroupSecurityName(String

uniqueGroupId)

throws

EntryNotFoundException,

CustomRegistryException,

RemoteException;

This

method

returns

the

security

name

of

a

group

given

its

unique

ID.

In

the

sample,

this

method

returns

the

security

name

of

the

group

whose

unique

ID

matches

the

supplied

ID.

This

method

verifies

that

a

valid

group

exists

for

a

given

uniqueGroupId.

This

method

is

the

same

as

in

version

4.

public

boolean

isValidGroup(String

groupSecurityName)

throws

CustomRegistryException,

RemoteException;

This

method

indicates

if

the

given

group

is

a

valid

group

in

the

registry.

Chapter

2.

Securing

applications

and

their

environments

101

In

the

sample,

this

method

returns

true

if

the

group

is

found

in

the

registry,

otherwise

the

method

returns

false.

This

method

can

be

used

in

situations

where

knowing

whether

the

group

exists

in

the

directory

might

prevent

problems

later.

This

method

is

the

same

as

in

version

4.

public

List

getGroupsForUser(String

userSecurityName)

throws

EntryNotFoundException,

CustomRegistryException,

RemoteException;

This

method

returns

all

the

groups

to

which

a

user

belongs

whose

name

matches

the

supplied

name.

This

method

is

similar

to

the

getUniqueGroupIds

method

with

the

exception

that

the

security

names

are

used

instead

of

the

unique

IDs.

In

the

sample,

this

method

returns

all

the

group

security

names

that

contain

the

userSecurityName.

This

method

is

called

by

the

administrative

console

or

the

scripting

tool

to

verify

that

the

users

entered

for

the

RunAs

roles

are

already

part

of

that

role

in

the

users

and

groups

to

role

mapping.

This

check

is

required

to

ensure

that

a

user

cannot

be

added

to

a

RunAs

role

unless

that

user

is

assigned

to

the

role

in

the

users

and

groups

to

role

mapping

either

directly

or

indirectly

(through

a

group

that

contains

this

user).

Since

a

group

in

which

the

user

belongs

can

be

part

of

the

role

in

the

users

and

groups

to

role

mapping,

this

method

is

called

to

check

if

any

of

the

groups

that

this

user

belongs

to

mapped

to

that

role.

This

method

is

the

same

as

in

Version

4.0.

public

Result

getUsersForGroup(String

groupSecurityName,

int

limit)

throws

NotImplementedException,

EntryNotFoundException,

CustomRegistryException,

RemoteException;

This

method

retrieves

users

from

the

specified

group.

The

number

of

users

returned

is

limited

by

the

limit

parameter.

A

limit

of

0

indicates

to

return

all

the

users

in

that

group.

This

method

is

not

directly

called

by

the

WebSphere

Application

Server

security

component.

However,

this

can

be

called

by

other

components.

For

example,

this

method

issued

by

the

process

choreographer

when

staff

assignments

are

modeled

using

groups.

In

rare

situations,

if

you

are

working

with

a

registry

where

getting

all

the

users

from

any

of

your

groups

is

not

practical

(for

example,

if

there

are

a

large

number

of

users),

you

can

throw

the

NotImplementedException

exception

for

the

particular

groups.

In

this

case,

verify

that

if

the

process

choreographer

is

installed

(or

if

it

is

installed

later)

the

staff

assignments

are

not

modeled

using

these

particular

groups.

If

there

is

no

concern

about

returning

the

users

from

groups

in

the

registry,

it

is

recommended

that

you

do

not

throw

the

NotImplemented

exception

when

implementing

this

method.

The

return

parameter

is

an

object

of

type

com.ibm.websphere.security.Result.

This

object

contains

two

attributes,

java.util.List

and

java.lang.boolean.

The

list

contains

the

users

returned

and

the

Boolean

flag,

which

indicates

whether

there

are

more

users

available

in

the

registry

for

the

search

pattern.

This

Boolean

flag

indicates

to

the

client

whether

users

are

available

in

the

registry.

In

the

example,

this

method

gets

one

user

more

than

the

requested

number

of

users

for

a

group

if

the

limit

parameter

is

not

set

to

0.

If

it

succeeds

in

getting

one

more

user,

it

sets

the

Boolean

flag

to

true.

102

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

In

WebSphere

Application

Server

Version

4,

this

method

was

mandatory

for

the

product.

For

WebSphere

Application

Server

Version

5,

this

method

can

throw

the

exception

NotImplementedException

exception

in

situations

where

it

is

not

practical

to

get

the

requested

set

of

users.

However,

this

exception

should

be

thrown

in

rare

situations,

as

other

components

can

be

affected.

In

version

4,

this

method

accepted

only

the

pattern

parameter

and

the

returned

a

list.

In

version

5,

this

method

accepts

one

additional

parameter,

the

limit.

Change

your

implementation

to

take

the

limit

value

and

limit

the

users

returned.

The

return

changes

to

return

a

result

object,

which

consists

of

the

list

(as

in

version

4)

and

a

flag

indicating

whether

more

entries

exist.

As

in

version

4,

when

the

list

is

returned,

use

the

Result.setList(List)

method

to

set

the

list

in

the

Result

object.

If

there

are

more

entries

than

requested

in

the

limit

parameter,

set

the

Boolean

attribute

to

true

in

the

result

object

using

Result.setHasMore().

The

default

for

the

Boolean

attribute

in

the

Result

object

is

false.

Attention:

The

first

two

lines

of

the

following

code

sample

is

one

continuous

line.

public

com.ibm.websphere.security.cred.WSCredential

createCredential(String

userSecurityName)

throws

NotImplementedException,

EntryNotFoundException,

CustomRegistryException,

RemoteException;

In

this

release

of

the

WebSphere

Application

Server,

this

method

is

not

called.

You

can

return

null.

In

the

example,

a

null

is

returned.

Developing

a

custom

interceptor

for

trust

associations

If

you

are

using

a

third

party

reverse

proxy

server

other

than

Tivoli

WebSEAL,

you

must

provide

an

implementation

class

for

the

product

interceptor

interface

for

your

proxy

server.

This

article

describes

the

interface

you

must

implement.

Although

WebSphere

Application

Server

Version

5.1.1

supports

com.ibm.websphere.security.TrustAssociationInterceptor,

it

is

recommended

that

you

use

the

new

trust

association

interceptor,

com.ibm.wsspi.security.tai.TrustAssociationInterceptor.

For

more

information,

see

“Trust

association

interceptor

support

for

Subject

creation”

on

page

108.

1.

Define

the

interceptor

class

method.

WebSphere

Application

Server

provides

the

interceptor

Java

interface,

com.ibm.websphere.security.TrustAssociationInterceptor,

which

defines

the

following

methods:

v

public

boolean

isTargetInterceptor(HttpServletRequest

req)

throws

WebTrustAssociationException;.

The

isTargetInterceptor

method

determines

whether

the

request

originated

with

the

proxy

server

associated

with

the

interceptor.

The

implementation

code

must

examine

the

incoming

request

object

and

determine

if

the

proxy

server

forwarding

the

request

is

a

valid

proxy

server

for

this

interceptor.

The

result

of

this

method

determines

whether

the

interceptor

processes

the

request

or

not.

v

public

void

validateEstablishedTrust

(HttpServletRequest

req)

throws

WebTrustAssociationException;.

The

validateEstablishedTrust

method

determines

if

the

proxy

server

from

which

the

request

originated

is

trusted

or

not.

This

method

is

called

after

the

isTargetInterceptor

method.

The

implementation

code

must

authenticate

Chapter

2.

Securing

applications

and

their

environments

103

the

proxy

server.

The

authentication

mechanism

is

proxy-server

specific.

For

example,

in

the

product

implementation

for

the

WebSEAL

server,

this

method

retrieves

the

basic

authentication

information

from

the

HTTP

header

and

validates

the

information

against

the

user

registry

used

by

WebSphere

Application

Server.

If

the

credentials

are

invalid,

the

code

throws

the

WebTrustAssociationException,

indicating

that

the

proxy

server

is

not

trusted

and

the

request

is

to

be

denied.

v

public

String

getAuthenticatedUsername(HttpServletRequest

req)

throws

WebTrustAssociationException;.

The

getAuthenticatedUsername

method

is

called

after

trust

is

established

between

the

proxy

server

and

WebSphere

Application

Server.

The

product

has

accepted

the

proxy

server

authentication

of

the

request

and

must

now

authorize

the

request.

To

authorize

the

request,

the

name

of

the

original

requestor

must

be

subjected

to

an

authorization

policy

to

determine

if

the

requestor

has

the

necessary

privilege.

The

implementation

code

for

this

method

must

extract

the

user

name

from

the

HTTP

request

header

and

determine

if

that

user

is

entitled

to

the

requested

resource.

For

example,

in

the

product

implementation

for

the

WebSEAL

server,

the

method

looks

for

an

iv-user

attribute

in

the

HTTP

request

header

and

extracts

the

user

ID

associated

with

it

for

authorization.
2.

Configuring

the

interceptor.

To

make

an

interceptor

configurable,

the

interceptor

must

extend

com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor.

Implement

the

following

methods:

public

int

init

(java.util.Properties

props);

The

init(Properties)

method

accepts

a

java.util.Properties

object,

which

contains

the

set

of

properties

required

to

initialize

the

interceptor.

All

the

properties

set

for

an

interceptor

(by

using

the

Custom

Properties

link

for

that

interceptor

or

using

scripting)

is

sent

to

this

method.

The

interceptor

then

can

use

these

properties

to

initialize

itself.

For

example,

in

the

productimplementation

for

the

WebSEAL

server,

this

method

reads

the

hosts

and

ports

so

that

a

request

coming

in

can

be

verified

to

originate

from

trusted

hosts

and

ports.

A

return

value

of

0

implies

that

the

interceptor

initialization

is

successful.

Any

other

value

implies

that

the

initialization

is

not

successful

and

the

interceptor

is

ignored.

Applicability

of

the

following

list

If

a

previous

implementation

of

the

trust

association

interceptor

returns

a

different

error

status

you

can

either

change

your

implementation

to

match

the

expectations

or

make

one

of

the

following

changes:

v

Add

the

com.ibm.websphere.security.trustassociation.initStatus

property

in

the

trust

association

interceptor

custom

properties.

Set

the

property

to

the

value

that

indicates

that

the

interceptor

is

successfully

initialized.

All

of

the

other

possible

values

imply

failure.

In

case

of

failure,

the

corresponding

trust

association

interceptor

is

not

used.

v

Add

the

com.ibm.websphere.security.trustassociation.ignoreInitStatus

property

in

the

trust

association

interceptor

custom

properties.

Set

the

value

of

this

property

to

true,

which

tells

WebSphere

Application

Server

to

ignore

the

status

of

this

method.

If

you

add

this

property

to

the

custom

properties,

WebSphere

Application

Server

does

not

check

the

return

status,

which

is

similar

to

previous

versions

of

WebSphere

Application

Server.

104

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

public

void

cleanup

();

This

method

is

called

when

the

application

server

is

stopped.

It

is

used

to

prepare

the

interceptor

for

termination.

public

void

setVersion

(String

s);

This

methods

is

optional.

The

method

is

used

to

set

the

version

and

is

for

informational

purpose

only.

The

default

value

is

Unspecified.
You

must

configure

the

following

methods

implemented

by

the

custom

interceptor

implementation.

This

listing

only

shows

the

methods

and

does

not

include

any

implementation.

**

import

java.util.*;

import

javax.servlet.http.HttpServletRequest;

import

com.ibm.websphere.security.*;

public

class

myTAIImpl

extends

WebSphereBaseTrustAssociationInterceptor

implements

TrustAssociationInterceptor

{

public

myTAIImpl

()

{

}

public

boolean

isTargetInterceptor

(HttpServletRequest

req)

throws

WebTrustAssociationException

{

//return

true

if

this

is

the

target

interceptor,

else

return

false.

}

public

void

validateEstablishedTrust

(HttpServletRequest

req)

throws

WebTrustAssociationFailedException

{

//validate

if

the

request

is

from

the

trusted

proxy

server.

//throw

exception

if

the

request

is

not

from

the

trusted

server.

}

public

String

getAuthenticatedUsername

(HttpServletRequest

req)

throws

WebTrustAssociationUserException

{

//Get

the

user

name

from

the

request

and

if

the

user

is

//entitled

to

the

requested

resource

//return

the

user.

Otherwise,

throw

the

exception

}

public

int

init

(Properties

props)

{

//

Initialize

the

implementation.

//

If

successful

return

0,

else

return

-1.

}

Chapter

2.

Securing

applications

and

their

environments

105

public

void

cleanup

()

{

//Cleanup

code.

}

}

**

Note:

If

the

init(Properties)

method

is

implemented

as

described

previously

in

your

custom

interceptor,

this

note

does

not

apply

to

your

implementation,

and

you

can

move

on

to

the

next

step.

Previous

versions

of

com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor

include

the

public

int

init

(String

propsfile)

method.

This

method

is

no

longer

required

since

the

interceptor

properties

are

not

read

from

a

file.

The

properties

are

now

entered

in

the

administrative

console

Custom

Properties

link

of

the

interceptor

using

the

administrative

console

or

scripts.

These

properties

then

are

made

available

to

your

implementation

in

the

init(Properties)

method.

However,

for

backward

compatibility,

the

init(String)

method

still

is

supported.

The

init(String)

method

is

called

by

the

default

implementation

of

init(Properties)

as

shown

in

the

following

example.

//

Default

implementation

of

init(Properties

props)

method.

A

Custom

//

implementation

should

override

this.

public

int

init

(java.util.Properties

props)

{

String

type

=

props.getProperty(″com.ibm.websphere.security.trustassociation.types″);

String

classfile=

props.getProperty(″com.ibm.websphere.security.trustassociation.″

+type+″.config″);

if

(classfile

!=

null

&&

classfile.length()

>

0

)

{

return

init(classfile);

}

else

{

return

-1;

}

}

Change

your

implementation

to

implement

the

init(Properties)

method

instead

of

relying

on

init(String

propsfile)

method.

As

shown

in

the

previous

example,

this

default

implementation

reads

the

properties

to

load

the

property

file.

The

com.ibm.websphere.security.trustassociation.types

property

gets

the

file

containing

the

properties

by

concatenating

.config

to

its

value.

Note:

The

init(String)

method

still

works

if

you

want

to

use

it

instead

of

implementing

the

init(Properties)

method.

The

only

requirement

is

that

the

file

name

containing

the

custom

trust

association

properties

should

now

be

entered

using

the

Custom

Properties

link

of

the

interceptor

in

the

administrative

console

or

by

using

scripts.

You

can

enter

the

property

using

either

of

the

following

methods.

The

first

method

is

used

for

backward

compatibility

with

previous

versions

of

WebSphere

Application

Server.

106

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

You

can

use

the

second

method

with

WebSphere

Application

Server,

Version

5.0.2

and

later.

Method

1:

The

same

property

names

used

in

the

previous

release

are

used

to

obtain

the

file

name.

The

file

name

is

obtained

by

concatenating

the

.config

to

the

com.ibm.websphere.security.trustassociation.types

property

value.

If

the

file

name

is

called

myTAI.properties

and

is

located

in

the

C:/WebSphere/AppServer/properties

directory,

set

the

following

properties:

v

com.ibm.websphere.security.trustassociation.types

=

myTAItype

v

com.ibm.websphere.security.trustassociation.myTAItype.config

=

C:/WebSphere/AppServer/properties/myTAI.properties
Method

2:

You

can

set

the

com.ibm.websphere.security.trustassociation.initPropsFile

property

in

the

trust

association

custom

properties

to

the

location

of

the

file.

For

example,

set

the

following

property:

com.ibm.websphere.security.trustassociation.initPropsFile=

c:/WebSphere/AppServer/properties/myTAI.properties

Type

the

previous

code

as

one

continuous

line.
The

location

of

the

properties

file

is

fully

qualified.

For

example:

C:/WebSphere/AppServer/properties/myTAI.properties

Since

the

location

can

be

different

in

a

Network

Deployment

environment,

use

variables

such

as

${USER_INSTALL_ROOT}

to

refer

to

the

WebSphere

Application

Server

installation

directory.

For

example,

if

the

file

name

is

called

myTAI.properties,

and

it

is

located

in

the

properties

directory,

then

set

the

following

properties:

v

com.ibm.websphere.security.trustassociation.types

=

myTAItype

v

com.ibm.websphere.security.trustassociation.myTAItype.config

=

c:/WebSphere/AppServer/properties/myTAI.properties

3.

Compile

the

implementation

once

you

have

implemented

it.

For

example,

install_root/java/bin/javac

-classpath

install_root/lib/wssec.jar;<install_root>/lib/j2ee.jar

myTAIImpl.java

a.

Copy

the

class

file

to

a

location

in

the

class

path

(preferably

the

install_root/lib/ext

directory).

b.

Restart

all

the

servers.
4.

Delete

the

default

WebSEAL

interceptor

in

the

administrative

console

and

click

New

to

add

your

custom

interceptor.

Verify

that

the

class

name

is

dot

separated

and

appears

in

the

class

path.

5.

Click

the

Custom

Properties

link

to

add

additional

properties

that

are

required

to

initialize

the

custom

interceptor.

These

properties

are

passed

to

the

init(Properties)

method

of

your

implementation

when

it

extends

the

com.ibm.websphere.security.WebSphereBaseTrustAssociationInterceptor

as

described

in

the

previous

step.

6.

Save

and

synchronize

(if

applicable)

the

configuration.

7.

Restart

the

servers

for

the

custom

interceptor

to

take

effect.

Chapter

2.

Securing

applications

and

their

environments

107

Refer

to

the

“Security:

Resources

for

learning”

on

page

495

article,

which

references

the

WebSphere

Application

Server

Version

5

Redbook

to

view

an

example

of

a

custom

interceptor.

Trust

association

interceptor

support

for

Subject

creation

The

new

Trust

Association

Interceptor

(TAI)

interface,

com.ibm.wsspi.security.tai.TrustAssociationInterceptor,

supports

several

new

features

and

is

different

from

the

existing

com.ibm.websphere.security.TrustAssociationInterceptor

interface.

Although

the

existing

interface

is

still

supported,

it

is

being

deprecated

in

a

future

release.

The

new

TAI

interface

supports

a

multi-phase,

negotiated

authentication

process.

For

example,

some

systems

require

a

challenge

response

protocol

back

to

the

client.

The

two

key

methods

in

this

new

interface

are:

Key

method

name

public

boolean

isTargetInterceptor

(HttpServletRequest

req)

The

isTargetInterceptor

method

determines

whether

the

request

originated

with

the

proxy

server

associated

with

the

interceptor.

The

implementation

code

must

examine

the

incoming

request

object

and

determine

if

the

proxy

server

forwarding

the

request

is

a

valid

proxy

server

for

this

interceptor.

The

result

of

this

method

determines

whether

the

interceptor

processes

the

request.

Method

result

A

true

value

tells

WebSphere

Application

Server

to

have

the

TAI

handle

the

request.

A

false

value,

tells

WebSphere

Application

Server

to

ignore

the

TAI.

The

negotiateValidateandEstablishTrust

method

determines

whether

to

trust

the

proxy

server

from

which

the

request

originated.

The

implementation

code

must

authenticate

the

proxy

server.

The

authentication

mechanism

is

proxy-server

specific.

For

example,

in

the

product

implementation

for

the

WebSEAL

server,

this

method

retrieves

the

basic

authentication

information

from

the

HTTP

header

and

validates

the

information

against

the

user

registry

used

by

WebSphere

Application

Server.

If

the

credentials

are

invalid,

the

code

throws

the

WebTrustAssociationException,

which

indicates

that

the

proxy

server

is

not

trusted

and

the

request

is

denied.

If

the

credentials

are

valid,

the

code

returns

a

TAIResult,

which

indicates

the

status

of

the

request

processing

along

with

the

client

identity

(Subject

and

principal

name)

to

be

used

for

authorizing

the

Web

resource.

Key

method

name

public

TAIResult

negotiateValidateandEstablishTrust

(HttpServletRequest

req,

HttpServletResponse

res)

Method

result

Returns

a

TAIResult,

which

indicates

the

status

of

the

request

processing.

The

request

object

can

be

queried

and

the

response

object

can

be

modified.

The

TAIResult

class

has

three

static

methods

for

creating

a

TAIResult.

The

TAIResult

create

methods

take

an

int

type

as

the

first

parameter.

WebSphere

Application

Server

expects

the

result

to

be

a

valid

HTTP

request

return

code

and

is

interpreted

in

one

of

the

following

ways:

108

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

v

If

the

value

is

HttpServletResponse.SC_OK,

this

response

tells

WebSphere

Application

Server

that

the

TAI

has

completed

its

negotiation.

The

response

also

tells

WebSphere

Application

Server

use

the

information

in

the

TAIResult

to

create

a

user

identity.

v

Other

values

tell

WebSphere

Application

Server

to

return

the

TAI

output,

which

is

placed

into

the

HttpServletResponse,

to

the

Web

client.

Typically,

the

Web

client

provides

additional

information

and

then

places

another

call

to

the

TAI.

The

created

TAIResults

have

the

following

meanings:

TAIResult

Explanation

public

static

TAIResult

create(int

status);

Indicates

a

status

to

WebSphere

Application

Server.

The

status

should

not

be

SC_OK

because

the

identity

information

is

provided.

public

static

TAIResult

create(int

status,

String

principal);

Indicates

a

status

to

WebSphere

Application

Server

and

provides

the

user

ID

or

the

unique

ID

for

this

user.

WebSphere

Application

Server

creates

credentials

by

querying

the

user

registry.

public

static

TAIResult

create(int

status,

String

principal,

Subject

subject);

Indicates

a

status

to

WebSphere

Application

Server,

the

user

ID

or

the

unique

ID

for

the

user,

and

a

custom

Subject.

If

the

Subject

contains

a

Hashtable,

the

principal

is

ignored.

The

contents

of

the

Subject

becomes

part

of

the

eventual

user

Subject.

All

of

the

following

examples

are

within

the

negotiateValidateandEstablishTrust()

method

of

a

TAI.

The

following

code

sample

indicates

that

additional

negotiation

is

required:

//

Modify

the

HttpServletResponse

object

//

The

response

code

is

meaningful

only

on

the

client

return

TAIResult.create(HttpServletResponse.SC_CONTINUE);

The

following

code

sample

indicates

that

the

TAI

has

determined

the

user

identity.

WebSphere

Application

Server

receives

the

user

ID

only

and

then

it

queries

the

user

registry

for

additional

information:

//

modify

the

HttpServletResponse

object

return

TAIResult.create(HttpServletResponse.SC_OK,

userid);

The

following

code

sample

indicates

that

the

TAI

had

determined

the

user

identity.

WebSphere

Application

Server

receives

the

complete

user

information

that

is

contained

in

the

Hashtable.

For

more

information

on

the

Hashtable,

see

“Configuring

inbound

identity

mapping”

on

page

262.

In

this

code

sample,

the

Hashtable

is

placed

in

the

public

credential

portion

of

the

Subject:

//

create

Subject

and

place

Hashtable

in

it

Subject

subject

=

new

Subject;

subject.getPublicCredentials().add(hashtable);

//the

response

code

is

meaningful

only

the

client

return

TAIResult.create(HttpServletResponse.SC_OK,

″ignored″,

subject);

The

following

code

sample

indicates

that

there

is

an

authentication

failure.

WebSphere

Application

Server

fails

the

authentication

request:

Chapter

2.

Securing

applications

and

their

environments

109

//log

error

message

//

....

throw

new

WebTrustAssociationFailedException(″TAI

failed

for

this

reason″);

There

are

a

few

additional

methods

on

the

TrustAssociationInterceptor

interface

that

are

discussed

in

the

Java

documentation.

These

methods

are

used

for

initialization,

shut

down,

and

for

identifying

the

TAI

to

WebSphere

Application

Server.

Assembling

secured

applications

The

Assembly

Toolkit

is

a

graphical

user

interface

for

assembling

enterprise

(J2EE)

applications.

For

additional

information

on

the

Assembly

Toolkit,

see

Assembling

applications

with

the

Assembly

Toolkit.

You

can

use

the

tool

to

assemble

an

application

and

secure

EJB

and

Web

modules

in

that

application.

An

EJB

module

consists

of

one

or

more

beans.

You

can

enforce

security

at

the

EJB

method

level.

A

Web

module

consists

of

one

or

more

Web

resources

(an

HTML

page,

a

JSP

file

or

a

servlet).

You

can

also

enforce

security

for

each

Web

resource.

You

can

use

the

tool

to

secure

an

EJB

module

(Java

archive

(JAR)

file)

or

a

Web

module

(Web

archive

(WAR)

file)

or

an

application

(enterprise

archive

(EAR)

file).

You

can

create

an

application,

an

EJB

module,

or

a

Web

Module

and

secure

them

using

the

Assembly

Toolkit

or

development

tools

like

the

IBM

WebSphere

Studio

Application

Developer.

1.

Secure

EJB

applications

using

the

Assembly

Toolkit.

For

more

information,

see“Securing

enterprise

bean

applications

using

the

Assembly

Toolkit”

on

page

111.

2.

Secure

Web

applications

using

the

Assembly

Toolkit.

For

more

information,

see

“Securing

Web

applications

using

the

Assembly

Toolkit”

on

page

114.

3.

Add

users

and

groups

to

roles

while

assembling

secured

application

using

the

Assembly

Toolkit.

For

more

information,

see

“Adding

users

and

groups

to

roles

using

the

Assembly

Toolkit”

on

page

121.

4.

Map

users

to

RunAs

roles

using

the

Assembly

Toolkit.

For

more

information,

see

“Mapping

users

to

RunAs

roles

using

the

Assembly

Toolkit”

on

page

121

5.

Add

the

was.policy

file

to

applications

for

Java

2

security.

For

more

information,

see

“Adding

the

was.policy

file

to

applications”

on

page

467

6.

Assemble

the

application

components

that

you

just

secured

using

the

Assembly

Toolkit.

For

more

information,

see

Assembling

applications

with

the

Assembly

Toolkit.

After

securing

an

application,

the

resulting

.ear

file

contains

security

information

in

its

deployment

descriptor.

The

EJB

module

security

information

is

stored

in

the

ejb-jar.xml

file

and

the

Web

module

security

information

is

stored

in

the

web.xml

file.

The

application.xml

file

of

the

application

EAR

file

contains

all

the

roles

used

in

the

application.

The

user

and

group

to

roles

mapping

is

stored

in

the

ibm-application-bnd.xmi

file

of

the

application

EAR

file.

The

was.policy

file

of

the

application

EAR

contains

the

permissions

granted

for

the

application

to

access

system

resources.

This

task

is

required

to

secure

EJB

modules

and

Web

modules

in

an

application.

This

task

is

also

required

for

applications

to

run

properly

when

Java

2

security

is

110

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

enabled.

If

the

was.policy

file

is

not

created

and

it

does

not

contain

required

permissions,

the

application

might

not

be

able

to

access

system

resources.

After

securing

an

application,

you

can

install

an

application

using

the

administrative

console.

When

you

install

a

secured

application,

see

“Deploying

secured

applications”

on

page

122

to

complete

this

task.

Enterprise

bean

component

security

An

EJB

module

consists

of

one

or

more

beans.

You

can

use

development

tools

such

as

WebSphere

Studio

Application

Developer

to

develop

an

EJB

module.

You

can

also

enforce

security

at

the

EJB

method

level.

You

can

assign

a

set

of

EJB

methods

to

a

set

of

one

or

more

roles.

When

an

EJB

method

is

secured

by

associating

a

set

of

roles,

grant

at

least

one

role

in

that

set

so

that

you

can

access

that

method.

To

exclude

a

set

of

EJB

methods

from

being

accessed

by

anyone

mark

them

excluded.

You

can

give

everyone

access

to

a

set

of

enterprise

beans

method

by

clearing

those

methods.

You

can

run

enterprise

beans

as

a

different

identity

(runAs

identity)

before

invoking

other

enterprise

beans.

Securing

enterprise

bean

applications

using

the

Assembly

Toolkit

You

can

protect

enterprise

bean

methods

by

assigning

security

roles

to

them.

Before

you

assign

security

roles,

you

need

to

know

which

EJB

methods

need

protecting

and

how.

1.

Open

the

EJB

application

file.

This

file

can

be

an

EJB

.jar

file

or

an

application

.ear

file

that

contains

one

or

more

EJB

modules.

In

the

Assembly

Toolkit,

open

a

deployment

descriptor

editor

on

the

EJB

application

file.

In

a

J2EE

Hierarchy

view,

right-click

the

file

and

click

Open

With

>

Deployment

Descriptor

Editor.

If

you

selected

an

EJB

.jar

file,

an

EJB

deployment

descriptor

editor

opens.

If

you

selected

an

application

.ear

file,

an

application

deployment

descriptor

editor

opens.

To

see

online

information

about

the

editor,

press

F1

and

click

the

editor

name.

2.

Create

security

roles.

You

can

create

security

roles

at

the

application

level

or

at

the

EJB

module

level.

If

you

create

a

security

role

at

the

EJB

module

level,

the

role

displays

in

the

application

level.

If

a

security

role

is

created

at

the

application

level,

the

role

does

not

appear

in

all

the

EJB

modules.

You

can

copy

and

paste

one

or

more

EJB

module

security

roles

that

you

create

at

application

level:

v

Create

a

role

at

an

EJB

module

level.

In

an

EJB

deployment

descriptor

editor,

select

the

Assembly

Descriptor

tab.

Under

Security

Roles,

click

Add.

In

the

Add

Security

Role

wizard,

name

and

describe

the

security

role;

then

click

Finish.

v

Create

a

role

at

the

application

level.

In

an

application

deployment

descriptor

editor,

select

the

Security

tab.

Under

the

list

of

security

roles,

click

Add.

In

the

Add

Security

Role

wizard,

name

and

describe

the

security

role;

then

click

Finish.
3.

Create

method

permissions.

Method

permissions

map

one

or

more

methods

to

a

set

of

roles.

An

enterprise

bean

has

four

types

of

methods:

Home

methods,

Remote

methods,

LocalHome

methods

and

Local

methods.

You

can

add

permissions

to

enterprise

beans

on

the

method

level.

You

cannot

add

a

method

permission

to

an

enterprise

bean

unless

you

already

have

one

or

more

security

roles

defined.

For

version

2.0

EJB

projects,

there

is

an

unchecked

option

that

Chapter

2.

Securing

applications

and

their

environments

111

specifies

that

the

selected

methods

from

the

selected

beans

do

not

require

authorization

to

execute.

To

add

a

method

permission

to

an

enterprise

bean:

a.

On

the

Assembly

Descriptor

tab

of

an

EJB

deployment

descriptor

editor,

under

Method

Permissions,

click

Add.

The

Add

Method

Permission

wizard

opens.

b.

Select

a

security

role

from

the

list

of

roles

found

and

click

Next.

c.

Select

one

or

more

enterprise

beans

from

the

list

of

beans

found.

You

can

click

Select

All

or

Deselect

All

to

select

or

deselect

all

of

the

enterprise

beans

in

the

list.

Click

Next.

d.

Select

the

methods

that

you

want

to

bind

to

your

security

role.

The

Method

Elements

page

lists

all

methods

associated

with

the

enterprise

bean(s).

You

can

click

Apply

to

All

or

Deselect

All

to

quickly

select

or

clear

multiple

methods.

It

selects

only

the

*

method

for

each

bean.

Creating

a

method

permission

for

the

exact

method

signature

overrides

the

default

(*)

method

permission

setting.

The

*

method

represents

all

methods

within

the

bean.

There

are

*

for

each

interface

as

well.

By

not

selecting

all

of

the

individual

methods

in

the

tree,

you

can

set

other

permissions

on

the

remaining

methods.

e.

Click

Finish.

After

the

method

permission

is

created,

you

can

see

the

new

method

permission

in

the

tree.

Expand

the

tree

to

see

the

bean

and

methods

defined

in

the

method

permission.

4.

Exclude

user

access

to

methods.

Users

cannot

access

excluded

methods.

Any

method

in

the

enterprise

beans

that

is

not

assigned

to

a

role

or

is

not

excluded,

is

deselected

during

the

application

installation

by

the

deployer.

a.

On

the

Assembly

Descriptor

tab

of

an

EJB

deployment

descriptor

editor,

under

Excludes

List,

click

Add.

The

Exclude

List

wizard

opens.

b.

Select

one

or

more

enterprise

beans

from

the

list

of

beans

found

and

click

Next.

c.

Select

one

or

more

of

the

method

elements

for

the

security

identity

and

click

Finish.
5.

Map

security-role-ref

and

role-name

to

role-link.

When

developing

enterprise

beans,

you

can

create

the

security-role-ref

element.

The

security-role-ref

element

contains

only

the

role-name

field.

The

role-name

field

determines

if

the

caller

is

in

a

specified

role(isCallerInRole())

and

contains

the

name

of

the

role

that

is

referenced

in

the

code.

Since

you

create

security

roles

during

the

assembly

stage,

the

developer

uses

a

logical

rolename

in

the

role-name

field

and

provides

enough

information

in

the

description

field

for

the

assembler

to

map

the

actual

role

(role-link).

The

security-role-ref

element

is

located

at

the

EJB

level.

Enterprise

beans

can

have

zero

or

more

security-role-ref

elements.

a.

On

the

References

tab

of

an

EJB

deployment

descriptor

editor,

under

the

list

of

references,

click

Add.

The

Add

Reference

wizard

opens.

b.

Select

Security

role

reference

and

click

Next.

c.

Name

the

security

role

reference,

select

a

security

role

to

link

the

reference

to,

describe

the

security

role

reference,

and

click

Finish.

d.

Map

every

role-name

used

during

development

to

the

role

(role-link)

using

the

previous

steps.
6.

Specify

the

RunAs

Identity

for

enterprise

beans

components.

The

RunAs

Identity

of

the

enterprise

bean

is

used

to

invoke

the

next

enterprise

beans

in

the

chain

of

EJB

invocations.

When

the

next

enterprise

beans

are

invoked,

the

RunAsIdentity

passes

to

the

next

enterprise

beans

for

performing

an

authorization

check

on

the

next

enterprise

bean.

If

the

RunAs

Identity

is

not

112

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

specified,

the

client

identity

is

propagated

to

the

next

enterprise

bean.

The

RunAs

Identity

can

represent

each

of

the

enterprise

beans

or

can

represent

each

method

in

the

enterprise

beans.

a.

On

the

Access

tab

of

an

EJB

deployment

descriptor

editor,

under

Security

Identity

(Bean

Level),

click

Add.

The

Add

Security

Identity

wizard

opens.

b.

Select

the

run

as

mode,

describe

the

security

identity,

and

click

Next.

Select

the

Use

identity

of

caller

mode

to

instruct

the

security

service

to

make

no

changes

to

the

principal’s

credential

settings.

Select

the

Use

identity

assigned

to

specific

role

(below)

mode

to

use

a

principal

that

has

been

assigned

to

the

specified

security

role

for

running

of

the

bean’s

methods.

This

association

is

part

of

the

application

binding

in

which

the

role

is

associated

with

a

user

ID

and

password

of

a

user

who

is

granted

that

role.

If

you

selected

Use

identity

assigned

to

specific

role

(below),

you

must

specify

a

role

name

and

role

description.

c.

Select

one

or

more

enterprise

beans

from

the

list

of

beans

found

and

click

Next.

If

Next

is

unavailable,

click

Finish.

d.

Optional:

On

the

Method

Elements

page,

select

one

or

more

of

the

method

elements

for

the

security

identity

and

click

Finish.
7.

Close

the

deployment

descriptor

editor

and,

when

prompted,

click

Yes

to

save

the

changes.

After

securing

an

EJB

application,

the

resulting

.jar

file

contains

security

information

in

its

deployment

descriptor.

The

security

information

of

the

EJB

modules

is

stored

in

the

ejb-jar.xml

file.

After

securing

an

EJB

application

using

an

assembly

tool,

you

can

install

the

EJB

application

using

the

administrative

console.

During

the

installation

of

a

secured

EJB

application,

follow

the

steps

in

the

Deploying

secured

applications

article

to

complete

the

task

of

securing

the

EJB

application.

Web

component

security

A

Web

module

consists

of

servlets,

JSP

files,

server-side

utility

classes,

static

Web

content

(HTML,

images,

sound

files,

Cascading

Style

Sheets

(CSS)),

and

client-side

classes

(applets).

You

can

use

development

tools

such

as

IBM

WebSphere

Studio

Application

Developer

to

develop

a

Web

module

and

enforce

security

at

the

method

level

of

each

Web

resource.

You

can

identify

a

Web

resource

by

its

URI

pattern.

A

Web

resource

method

can

be

any

HTTP

method

(GET,

POST,

DELETE,

PUT,

for

example).

You

can

group

a

set

of

URI

patterns

and

a

set

of

HTTP

methods

together

and

assign

this

grouping

a

set

of

roles.

When

a

Web

resource

method

is

secured

by

associating

a

set

of

roles,

grant

a

user

at

least

one

role

in

that

set

to

access

that

method.

You

can

exclude

anyone

from

accessing

a

set

of

Web

resources

by

assigning

an

empty

set

of

roles.

A

servlet

or

a

JSP

file

can

run

as

different

identities

(RunAs

identity)

before

invoking

another

enterprise

bean

component.

All

the

secured

Web

resources

require

the

user

to

log

in

by

using

a

configured

login

mechanism.

There

are

three

types

of

Web

login

authentication

mechanisms:

basic

authentication,

form-based

authentication

and

client

certificate-based

authentication.

For

more

detailed

information

on

Web

security

see

the

product

architectural

overview

article.

Chapter

2.

Securing

applications

and

their

environments

113

Securing

Web

applications

using

the

Assembly

Toolkit

There

are

three

types

of

Web

login

authentication

mechanisms

that

you

can

configure

on

a

Web

application:

basic

authentication,

form-based

authentication

and

client

certificate-based

authentication.

Protect

Web

resources

in

a

Web

application

by

assigning

security

roles

to

those

resources.

To

secure

Web

applications,

determine

the

Web

resources

that

need

protecting

and

determine

how

to

protect

them.

1.

Open

the

Web

application

file.

This

file

can

be

a

Web

archive

(WAR)

file

or

an

application

archive

(EAR)

file

that

contains

one

or

more

Web

modules.

In

the

Assembly

Toolkit,

open

a

deployment

descriptor

editor

on

the

Web

application

file.

In

a

J2EE

Hierarchy

view,

right-click

the

file

and

click

Open

With

>

Deployment

Descriptor

Editor.

If

you

selected

Web

archive

(WAR)

file,

a

Web

deployment

descriptor

editor

opens.

If

you

selected

an

enterprise

application

(EAR)

file,

an

application

deployment

descriptor

editor

opens.

To

see

online

information

about

the

editor,

press

F1

and

click

the

editor

name.

2.

Create

security

roles

either

at

the

application

level

or

at

Web

module

level.

If

a

security

role

is

created

at

the

Web

module

level,

the

role

also

displays

in

the

application

level.

If

a

security

role

is

created

at

the

application

level,

the

role

does

not

display

in

all

the

Web

modules.

You

can

copy

and

paste

a

security

role

at

the

application

level

to

one

or

more

Web

module

security

roles.

v

Create

a

role

at

a

Web-module

level.

In

a

Web

deployment

descriptor

editor,

select

the

Security

tab.

Under

Security

Roles,

click

Add.

Double-click

(New

Security

Role)

and

type

the

security

role.

Under

Details,

describe

the

security

role.

v

Create

a

role

at

the

application

level.

In

an

application

deployment

descriptor

editor,

select

the

Security

tab.

Under

the

list

of

security

roles,

click

Add.

In

the

Add

Security

Role

wizard,

name

and

describe

the

security

role;

then

click

Finish.
3.

Create

security

constraints.

Security

constraints

are

a

mapping

of

one

or

more

Web

resources

to

a

set

of

roles.

a.

On

the

Security

tab

of

a

Web

deployment

descriptor

editor,

click

Security

Constraints.

On

the

Security

Constraints

tab

that

opens,

you

can

do

the

following:

v

Add

or

remove

security

constraints

for

specific

security

roles.

v

Add

or

remove

Web

resources

and

their

HTTP

methods.

v

Define

which

security

roles

are

authorized

to

access

the

Web

resources.

v

Specify

None,

Integral,

or

Confidential

constraints

on

user

data.

None

means

that

the

application

requires

no

transport

guarantees.

Integral

means

that

data

cannot

be

changes

in

transit

between

client

and

server.

And

Confidential

means

that

data

content

cannot

be

observed

while

it

is

in

transit.

Integral

and

Confidential

usually

require

the

use

of

SSL.
b.

Under

Security

Constraints,

click

Add.

c.

Under

Details,

specify

a

display

name

for

the

security

constraint.

d.

Under

Web

Resource

Collections,

click

Add.

The

Web

Resource

Collections

wizard

opens.

e.

Type

a

name

and

description

for

the

Web

resource

collection.

f.

Select

one

or

more

HTTP

methods.

The

HTTP

method

options

are:

GET,

PUT,

HEAD,

TRACE,

POST,

DELETE,

and

OPTIONS.

g.

Beside

URL

Patterns,

click

Add.

Double-click

on

(New

URL

pattern)

and

type

a

URL

pattern

(for

example:

-

/*,

*.jsp,

/hello).

Consult

the

Servlet

specification

Version

2.3

for

instructions

on

mapping

URL

patterns

to

114

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

servlets.

Security

run

time

uses

the

exact

match

first

to

map

the

incoming

URL

with

URL

patterns.

If

the

exact

match

is

not

present,

the

security

run

time

uses

the

longest

match.

The

wild

card

(*.,*.jsp)

URL

pattern

matching

is

used

last.

h.

Repeat

these

steps

to

create

multiple

security

constraints.
4.

Map

security-role-ref

and

role-name

elements

to

the

role-link

element.

During

the

development

of

a

Web

application,

you

can

create

the

security-role-ref

element.

The

security-role-ref

element

contains

only

the

role-name

field

at

this

stage.

The

role-name

field

contains

the

name

of

the

role

that

is

referenced

in

the

servlet

or

JSP

code

to

determine

if

the

caller

is

in

a

specified

role

(isUserInRole()).

Since

security

roles

are

created

during

the

assembly

stage,

the

developer

uses

a

logical

role

name

in

the

role-name

field

and

provides

enough

description

in

the

description

field

for

the

assembler

to

map

the

role

actual

(role-link).

The

Security-role-ref

element

is

at

the

servlet

level.

A

servlet

or

JSP

file

can

have

zero

or

more

security-role-ref

elements.

a.

Go

to

the

References

tab

of

a

Web

deployment

descriptor

editor.

On

the

References

tab,

you

can

add

or

remove

the

name

of

an

enterprise

bean

reference

to

the

deployment

descriptor.

There

are

5

types

of

references

you

can

define

on

this

tab:

v

EJB

v

EJB

Local

(J2EE

1.3

only)

v

Resource

v

Resource

Environment

(J2EE

1.3

only)

v

JSP

Tag

Library
b.

Under

the

list

of

EJB

references,

click

Add.

Double-click

on

(New

EJB

Ref)

and

type

an

EJB

reference.

c.

Under

Details,

click

Browse

beside

Link

and

select

a

link

for

the

EJB

reference.

Select

a

link

type

of

ENTITY

or

SESSION.

Select

Home

and

Remote

values,

and

describe

the

link.

d.

Map

every

role-name

used

during

development

to

the

role

(role-link)

using

the

previous

steps.

Every

role

name

used

during

development

maps

to

the

actual

role.
5.

Specify

the

RunAs

identity

for

servlets

and

JSP

files.

The

RunAs

identity

of

a

servlet

is

used

to

invoke

enterprise

beans

from

within

the

servlet

code.

When

enterprise

beans

are

invoked,

the

RunAs

identity

is

passed

to

the

enterprise

bean

for

performing

an

authorization

check

on

the

enterprise

beans.

If

the

RunAs

identity

is

not

specified,

the

client

identity

is

propagated

to

the

enterprise

beans.

The

RunAs

identity

is

assigned

at

the

servlet

level.

a.

On

the

Servlets

tab

of

a

Web

deployment

descriptor

editor,

under

Servlets

and

JSPs,

click

Add.

The

Add

Servlet

or

JSP

wizard

opens.

b.

Select

whether

to

add

a

servlet

or

JavaServer

page

(JSP),

define

which

servlet

or

JSP

to

add,

and

click

OK.

c.

Under

Run

As,

select

the

security

role

and

describe

the

role.

d.

Specify

a

RunAs

identity

for

each

servlet

and

JSP

file

used

by

your

Web

application.
6.

Configure

the

login

mechanism

for

the

Web

module.

This

configured

login

mechanism

applies

to

all

the

servlets,

JavaServer

page

(JSP)

files

and

HTML

resources

in

the

Web

module.

a.

On

the

Pages

tab

of

a

Web

deployment

descriptor

editor,

under

Login,

select

the

required

authentication

method.

Available

method

values

include:

Unspecified,

Basic,

Digest,

Form,

and

Client-Cert.

b.

Specify

a

realm

name.

Chapter

2.

Securing

applications

and

their

environments

115

c.

If

you

select

the

Form

authentication

method,

select

a

login

page

and

an

error

page

URLs

(for

example:

/login.jsp

and

/error.jsp).

The

specified

login

and

error

pages

are

present

in

the

.war

file.

d.

Install

the

client

certificate

on

the

browser

or

Web

client

and

place

the

client

certificate

in

the

server

trust

keyring

file,

if

ClientCert

is

selected.
7.

Close

the

deployment

descriptor

editor

and,

when

prompted,

click

Yes

to

save

the

changes.

After

securing

a

Web

application,

the

resulting

WAR

file

contains

security

information

in

its

deployment

descriptor.

The

Web

module

security

information

is

stored

in

the

web.xml

file.

When

you

work

in

the

Web

deployment

descriptor

editor,

you

also

can

edit

other

deployment

descriptors

in

the

Web

project,

including

information

on

bindings

and

IBM

extensions

in

the

ibm-web-bnd.xmi

and

ibm-web-ext.xmi

files.

After

using

the

Assembly

Toolkit

to

secure

a

Web

application,

you

can

install

the

Web

application

using

the

administrative

console.

During

the

Web

application

installation,

complete

the

steps

in

the

“Deploying

secured

applications”

on

page

122

article

to

finish

securing

the

Web

application.

Role-based

authorization

Use

authorization

information

to

determine

whether

a

caller

has

the

necessary

privileges

to

request

a

service.

The

following

figure

illustrates

the

process

used

during

authorization.

Web

resource

access

from

a

Web

client

is

handled

by

a

Web

collaborator.

The

EJB

resource

access

from

a

Java

client

(can

be

enterprise

beans

or

a

servlet)

is

handled

by

an

EJB

Collaborator.

The

EJB

collaborator

and

the

Web

collaborator

extract

the

client

credentials

from

the

object

request

broker

(ORB)

current

object.

The

client

credentials

are

set

during

the

authentication

process

as

received

credentials

in

the

ORB

Current.

The

resource

and

the

received

credentials

are

presented

to

WSAccessManager

to

check

whether

access

is

permitted

to

the

client

for

accessing

the

requested

resource.

The

access

manager

module

contains

two

main

modules:

v

Resource

permission

module

helps

determine

the

required

roles

for

a

given

resource.

It

uses

a

resource

to

roles

mapping

table

that

is

built

by

the

security

run

time

during

application

startup.

To

build

the

resource-to-role

mapping

table,

the

security

run

time

reads

the

deployment

descriptor

of

the

enterprise

beans

or

the

Web

module

(ejb-jar.xml

or

web.xml)

v

Authorization

table

module

consults

a

role

to

user

or

group

table

to

determine

whether

a

client

is

granted

one

of

the

required

roles.

The

role

to

user

or

group

mapping

table,

also

known

as

the

authorization

table,

is

created

by

the

security

run

time

during

application

startup.

To

build

the

authorization

table,

the

security

run

time

reads

the

application

binding

file

(ibm-application-bnd.xmi

file).

116

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Use

authorization

information

to

determine

whether

a

caller

has

the

necessary

privilege

to

request

a

service.

You

can

store

authorization

information

many

ways.

For

example,

with

each

resource,

you

can

store

an

access-control

list,

which

contains

a

list

of

users

and

user

privileges.

Another

way

to

store

the

information

is

to

associate

a

list

of

resources

and

the

corresponding

privileges

with

each

user.

This

list

is

called

a

capability

list.

WebSphere

Application

Server

uses

the

Java

2

Enterprise

Edition

(J2EE)

authorization

model.

In

this

model,

authorization

information

is

organized

as

follows:

v

During

the

assembly

of

an

application,

permission

to

invoke

methods

is

granted

to

one

or

more

roles.

A

role

is

a

set

of

permissions;

for

example,

in

a

banking

application,

roles

can

include

teller,

supervisor,

clerk,

and

other

industry-related

positions.

The

teller

role

is

associated

with

permissions

to

run

methods

related

to

managing

the

money

in

an

account,

such

as

the

withdraw

and

deposit

methods.

The

teller

role

is

not

granted

permission

to

close

accounts;

this

permission

is

given

to

the

supervisor

role.

The

application

assembler

defines

a

list

of

method

permissions

for

each

role;

this

list

is

stored

in

the

deployment

descriptor

for

the

application.

There

are

two

special

subjects

that

are

not

defined

by

J2EE:

AllAuthenticatedUsers,

Everyone.

A

special

subject

is

a

product-defined

entity

independent

of

the

user

registry.

It

is

used

to

generically

represent

a

class

of

users

or

groups

in

the

registry.

v

AllAuthenticatedUsers

is

a

special

subject

that

permits

all

authenticated

users

to

access

protected

methods.

As

long

as

the

user

can

authenticate

successfully,

the

user

is

permitted

access

to

the

protected

resource.

v

Everyone

is

a

special

subject

that

permits

unrestricted

access

to

a

protected

resource.

Users

do

not

have

to

authenticate

to

get

access;

this

special

subject

provides

access

to

protected

methods

as

if

the

resources

were

unprotected.

Access manager

module

WebSphere Application Server

(1)

(1)

(2)

(2)

CSIV2/SAS, TCP/IP,

SSL

EJB

resource access

HTTP or HTTPS

Web resource access

authorization

table

resource

permission

WebSphere

Access

Manager

Enterprise beans

collaborator

Web

collaborator

ORB

current object

Java client

Web client

(2)

(4)

(5)

authorization

data

received

credentials

(2)

received

credentials

(3)

(3)

resource and

credentials

resource and

credentials

resource

True/False

roles

roles, credentials

authorization

data

Authentication

role
users/
groups

resource roles

Chapter

2.

Securing

applications

and

their

environments

117

During

the

deployment

of

an

application,

real

users

or

groups

of

users

are

assigned

to

the

roles.

The

application

deployer

does

not

need

to

understand

the

individual

methods.

By

assigning

roles

to

methods,

the

application

assembler

simplifies

the

job

of

the

application

deployer.

Instead

of

working

with

a

set

of

methods,

the

deployer

works

with

the

roles,

which

represent

semantic

groupings

of

the

methods.

When

a

user

is

assigned

to

a

role,

the

user

gets

all

the

method

permissions

that

are

granted

to

that

role.

Users

can

be

assigned

to

more

than

one

role;

the

permissions

granted

to

the

user

are

the

union

of

the

permissions

granted

to

each

role.

Additionally,

if

the

authentication

mechanism

supports

the

grouping

of

users,

these

groups

can

be

assigned

to

roles.

Assigning

a

group

to

a

role

has

the

same

effect

as

assigning

each

individual

user

to

the

role.

A

best

practice

during

deployment

is

to

assign

groups,

rather

than

individual

users

to

roles

for

the

following

reasons:

v

Improves

performance

during

the

authorization

check.

Typically

far

fewer

groups

exist

than

users.

v

Provides

greater

flexibility,

by

using

group

membership

to

control

resource

access.

v

Supports

the

addition

and

deletion

of

users

from

groups

outside

of

the

product

environment.

This

action

is

preferred

to

adding

and

removing

them

to

WebSphere

Application

Server

roles.

Stop

and

restart

the

enterprise

application

for

these

changes

to

take

effect.

This

action

can

be

very

disruptive

in

a

production

environment.

At

run

time,

WebSphere

Application

Server

authorizes

incoming

requests

based

on

the

user’s

identification

information

and

the

mapping

of

the

user

to

roles.

If

the

user

belongs

to

any

role

that

has

permission

to

execute

a

method,

the

request

is

authorized.

If

the

user

does

not

belong

to

any

role

that

has

permission,

the

request

is

denied.

The

J2EE

approach

represents

a

declarative

approach

to

authorization,

but

it

also

recognizes

that

you

cannot

deal

with

all

situations

declaratively.

For

these

situations,

methods

are

provided

for

determining

user

and

role

information

programmatically.

For

Enterprise

JavaBeans,

the

following

two

methods

are

supported

by

WebSphere

Application

Server:

v

getCallerPrincipal:

This

method

retrieves

the

user

identification

information.

v

isCallerInRole:

This

method

checks

the

user

identification

information

against

a

specific

role.

For

servlets,

the

following

methods

are

supported

by

WebSphere

Application

Server:

v

getRemoteUser

v

isUserInRole

v

getUserPrincipal

These

methods

correspond

in

purpose

to

the

enterprise

bean

methods.

For

more

information

on

the

J2EE

security

authorization

model

see

the

following

Web

site:

http://java.sun.com

Admin

roles

The

J2EE

role-based

authorization

concept

has

been

extended

to

protect

the

WebSphere

Application

Server

administrative

subsystem.

A

number

of

administrative

roles

have

been

defined

to

provide

degrees

of

authority

needed

to

perform

certain

WebSphere

administrative

functions

from

either

the

Web-based

118

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

http://java.sun.com

administrative

console

or

the

system

management

scripting

interface.

The

authorization

policy

is

only

enforced

when

global

security

is

enabled.

The

following

table

describes

the

admin

roles:

Admin

roles

Role

Description

monitor

Least

privileged

that

basically

allows

a

user

to

view

the

WebSphere

Application

Server

configuration

and

current

state.

configurator

Monitor

privilege

plus

the

ability

to

change

the

WebSphere

Application

Server

configuration.

operator

Monitor

privilege

plus

the

ability

to

change

run-time

state,

such

as

starting

or

stopping

services

for

example.

administrator

Operator

plus

configuration

privilege.

The

identity

specified

when

enabling

global

security

is

automatically

mapped

to

the

administrator

role.

Users,

groups,

can

be

added

or

removed

from

the

admin

roles

from

the

WebSphere

Application

Server

administrative

console

at

anytime.

However,

a

server

restart

is

required

for

the

changes

to

take

effect.

A

best

practice

is

to

map

a

group

or

groups,

rather

than

specific

users,

to

admin

roles

because

it

is

more

flexible

and

easier

to

administer

in

the

long

run.

By

mapping

a

group

to

an

admin

role,

adding

or

removing

users

to

or

from

the

group

occurs

outside

of

WebSphere

Application

Server

and

does

not

require

a

server

restart

for

the

change

to

take

effect.

In

addition

to

mapping

user

or

groups,

a

special-subject

can

also

be

mapped

to

the

admin

roles.

A

special-subject

is

a

generalization

of

a

particular

class

of

users.

The

AllAuthenticated

special

subject

means

that

the

access

check

of

the

admin

role

ensures

that

the

user

making

the

request

has

at

least

been

authenticated.

The

Everyone

special

subject

means

that

anyone,

authenticated

or

not,

can

perform

the

action,

as

if

security

was

not

enabled.

Naming

roles

The

J2EE

role-based

authorization

concept

has

been

extended

to

protect

the

WebSphere

CosNaming

service.

CosNaming

security

offers

increased

granularity

of

security

control

over

CosNaming

functions.

CosNaming

functions

are

available

on

CosNaming

servers

such

as

the

WebSphere

Application

Server.

They

affect

the

content

of

the

WebSphere

Name

Space.

There

are

generally

two

ways

in

which

client

programs

will

result

in

CosNaming

calls.

The

first

is

through

the

JNDI

interfaces.

The

second

is

CORBA

clients

invoking

CosNaming

methods

directly.

Four

security

roles

are

introduced:

CosNamingRead,

CosNamingWrite,

CosNamingCreate,

and

CosNamingDelete.

The

name

of

the

four

roles

are

the

same

with

WebSphere

Advanced

Edition

Version

4.0.2.

However,

the

roles

now

have

authority

level

from

low

to

high

as

follows:

v

CosNamingRead.

Users

who

have

been

assigned

the

CosNamingRead

role

will

be

allowed

to

do

queries

of

the

WebSphere

Name

Space,

such

as

through

the

JNDI

″lookup″

method.

The

special-subject

Everyone

is

the

default

policy

for

this

role.

Chapter

2.

Securing

applications

and

their

environments

119

v

CosNamingWrite.

Users

who

have

been

assigned

the

CosNamingWrite

role

will

be

allowed

to

do

write

operations

such

as

JNDI

″bind″,

″rebind″,

or

″unbind″,

plus

CosNamingRead

operations.

The

special-subject

AllAuthenticated

is

the

default

policy

for

this

role.

v

CosNamingCreate.

Users

who

have

been

assigned

the

CosNamingCreate

role

will

be

allowed

to

create

new

objects

in

the

Name

Space

through

such

operations

as

JNDI

″createSubcontext″,

plus

CosNamingWrite

operations.

The

special-subject

AllAuthenticated

is

the

default

policy

for

this

role.

v

CosNamingDelete.

And

finally

users

who

have

been

assigned

CosNamingDelete

role

will

be

able

to

destroy

objects

in

the

Name

Space,

for

example

using

the

JNDI

″destroySubcontext″

method,

as

well

as

CosNamingCreate

operations.

The

special-subject

AllAuthenticated

is

the

default

policy

for

this

role.

Users,

groups,

or

the

special

subjects

AllAuthenticated

and

Everyone

can

be

added

or

removed

to

or

from

the

naming

roles

from

the

WebSphere

Application

Server

administrative

console

at

anytime.

However,

you

must

restart

the

server

for

the

changes

to

take

effect.

A

best

practice

is

to

map

groups

or

one

of

the

special-subjects,

rather

than

specific

users,

to

Naming

roles

because

it

is

more

flexible

and

easier

to

administer

in

the

long

run.

By

mapping

a

group

to

an

naming

role,

adding

or

removing

users

to

or

from

the

group

occurs

outside

of

WebSphere

Application

Server

and

does

not

require

a

server

restart

for

the

change

to

take

effect.

If

a

user

is

assigned

a

particular

naming

role

and

that

user

is

a

member

of

a

group

that

has

been

assigned

a

different

naming

role,

the

user

will

be

granted

the

most

permissive

access

between

the

role

he

was

assigned

and

the

role

his

group

was

assigned.

For

example,

assume

that

user

MyUser

has

been

assigned

the

CosNamingRead

role.

Also,

assume

that

group

MyGroup

has

been

assigned

the

CosNamingCreate

role.

If

MyUser

is

a

member

of

MyGroup,

MyUser

will

be

assigned

the

CosNamingCreate

role

because

he

is

a

member

of

MyGroup.

If

MyUser

were

not

a

member

of

MyGroup,

he

would

be

assigned

the

CosNamingRead

role.

The

CosNaming

authorization

policy

is

only

enforced

when

global

security

is

enabled.

When

global

security

is

enabled,

attempts

to

do

CosNaming

operations

without

the

proper

role

assignment

will

result

in

a

org.omg.CORBA.NO_PERMISSION

exception

from

the

CosNaming

Server.

In

WebSphere

Application

Server

Version

4.0.2,

each

CosNaming

function

is

assigned

to

only

one

role.

Therefore,

users

who

have

been

assigned

CosNamingCreate

role

will

not

be

able

to

query

the

Name

Space

unless

they

have

also

been

assigned

CosNamingRead.

In

most

cases

a

creator

would

need

to

be

assigned

three

roles:

CosNamingRead,

CosNamingWrite,

and

CosNamingCreate.

This

has

been

changed

in

the

release.

The

CosNamingRead

and

CosNamingWrite

roles

assignment

for

the

creator

example

in

above

have

been

included

in

CosNamingCreate

role.

In

most

of

the

cases,

WebSphere

Application

Server

administrators

do

not

have

to

change

the

roles

assignment

for

every

user

or

group

when

they

move

to

this

release

from

previous

one.

Although

the

ability

exist

to

greatly

restrict

access

to

the

Name

space

by

changing

the

default

policy,

doing

so

may

result

in

unexpected

org.omg.CORBA.NO_PERMISSION

exceptions

at

run

time.

Typically,

J2EE

applications

access

the

Name

space

and

the

identity

they

use

is

that

of

the

user

that

authenticated

to

WebSphere

Application

Server

when

they

access

the

J2EE

120

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

application.

Unless

the

J2EE

application

provider

clearly

communicates

the

expected

Naming

roles,

care

should

be

taken

when

changing

the

default

naming

authorization

policy.

Adding

users

and

groups

to

roles

using

the

Assembly

Toolkit

Before

you

perform

this

task,

you

should

have

already

completed

the

steps

in

the

Securing

Web

applications

and

Securing

EJB

applications

articles

where

you

created

new

roles

and

assigned

those

roles

to

EJB

and

Web

resources.

Complete

these

steps

during

application

installation.

This

is

because

the

environment

(user

registry)

under

which

the

application

is

running

is

not

known

until

deployment.

If

you

already

know

the

environment

in

which

the

application

is

running

and

the

user

registry

that

is

used,

then

you

can

use

the

Assembly

Toolkit

to

assign

users

and

groups

to

roles.

Using

the

administrative

console

to

assign

users

and

groups

to

roles

is

recommended.

1.

In

the

J2EE

Hierarchy

view

of

the

Assembly

Toolkit,

right-click

an

enterprise

application

project

(EAR

file)

and

click

Open

With

>

Deployment

Descriptor

Editor.

An

application

deployment

descriptor

editor

opens

on

the

EAR

file.

To

access

information

about

the

editor,

press

F1

and

click

Application

deployment

descriptor

editor.

2.

Click

the

Security

tab

and,

under

the

main

pane,

click

Add.

3.

In

the

Add

Security

Role

wizard,

name

and

describe

the

security

role.

Then

click

Finish.

4.

Under

WebSphere

Bindings,

select

the

user

or

group

extension

properties

for

the

security

role.

Available

values

include:

Everyone,

All

authenticated

users,

and

Users/Groups.

5.

If

you

selected

Users/Groups,

click

Add

beside

the

Users

or

Groups

panes.

In

the

wizard

that

opens,

specify

a

user

or

group

name

and

click

Finish.

Repeat

this

step

until

you

have

added

all

users

and

groups

to

which

the

security

role

applies.

6.

Close

the

application

deployment

descriptor

editor

and,

when

prompted,

click

Yes

to

save

the

changes.

The

ibm-application-bnd.xmi

file

in

the

application

contains

the

users

and

groups

to

roles

mapping

table

(authorization

table).

After

securing

an

application,

install

the

application

using

the

administrative

console.

Mapping

users

to

RunAs

roles

using

the

Assembly

Toolkit

RunAs

roles

are

used

for

delegation.

A

servlet

or

enterprise

bean

component

uses

the

RunAs

role

to

invoke

another

enterprise

bean

by

impersonating

that

role.

You

must

define

RunAs

roles

when

a

servlet

or

an

enterprise

bean

in

an

application

is

configured

with

RunAs

settings.

Before

you

perform

this

task:

v

Secure

the

Web

application

and

enterprise

bean

applications,

including

creating

and

assigning

new

roles

to

enterprise

bean

and

Web

resources.

v

Assign

users

and

groups

to

roles.

Complete

this

step

during

the

installation

of

the

application.

The

environment

or

user

registry

under

which

the

application

is

going

to

run

is

not

known

until

deployment.

If

you

already

know

the

environment

in

which

the

application

is

going

to

run

and

you

know

the

user

registry,

then

you

can

use

the

Assembly

Toolkit

to

assign

users

to

RunAs

roles.

Chapter

2.

Securing

applications

and

their

environments

121

1.

In

the

J2EE

Hierarchy

view

of

the

Assembly

Toolkit,

right-click

an

enterprise

application

project

(EAR

file)

and

click

Open

With

>

Deployment

Descriptor

Editor.

An

application

deployment

descriptor

editor

opens

on

the

EAR

file.

To

access

information

about

the

editor,

press

F1

and

click

Application

deployment

descriptor

editor.

2.

On

the

Security

tab,

under

Security

Role

Run

As

Bindings,

click

Add.

3.

Click

Add

under

RunAs

Bindings.

4.

In

the

Security

Role

wizard,

select

one

or

more

roles

and

click

Finish.

5.

Repeat

steps

3

through

5

for

all

the

RunAs

roles

in

the

application.

6.

Close

the

application

deployment

descriptor

editor

and,

when

prompted,

click

Yes

to

save

the

changes.

The

ibm-application-bnd.xmi

file

in

the

application

contains

the

user

to

RunAs

role

mapping

table.

After

securing

an

application,

you

can

install

the

application

using

the

administrative

console.

You

can

change

the

RunAs

role

mappings

of

an

installed

application.

Deploying

secured

applications

Before

you

perform

this

task,

verify

that

you

have

already

designed,

developed

and

assembled

an

application

with

all

the

relevant

security

configurations.

For

more

information

on

these

tasks

refer

to

the

“Developing

secured

applications”

on

page

38

and

“Assembling

secured

applications”

on

page

110

articles.

In

this

context,

deploying

and

installing

an

application

are

considered

the

same

task.

Deploying

applications

that

have

security

constraints

(secured

applications)

is

not

much

different

than

deploying

applications

any

security

constraints.

The

only

difference

is

that

you

might

need

to

assign

users

and

groups

to

roles

for

a

secured

application,

which

requires

that

you

have

the

correct

active

registry.

To

deploy

a

newly

secured

application

click

Applications

>

Install

New

Application

in

the

navigation

panel

on

the

left

and

follow

the

prompts.

If

you

are

installing

a

secured

application,

roles

would

have

been

defined

in

the

application.

If

delegation

was

required

in

the

application,

RunAs

roles

also

are

defined.

One

of

the

steps

required

to

deploy

secured

applications

is

to

assign

users

and

groups

to

roles

defined

in

the

application.

This

task

is

completed

as

part

of

the

step

titled

Map

security

roles

to

users

and

groups.

This

assignment

might

have

already

been

done

through

the

Assembly

Toolkit.

In

that

case

you

can

confirm

the

mapping

by

going

through

this

step.

You

can

add

new

users

and

groups

and

modify

existing

information

during

this

step.

If

the

applications

support

delegation,

then

a

RunAs

role

is

already

defined

in

the

application.

If

the

delegation

policy

is

set

to

Specified

Identity

(during

assembly)

the

intermediary

invokes

a

method

using

an

identity

setup

during

deployment.

Use

the

RunAs

role

to

specify

the

identity

under

which

the

downstream

invocations

are

made.

For

example,

if

the

RunAs

role

is

assigned

user

″bob″

and

the

client

″alice″

is

invoking

a

servlet,

with

delegation

set,

which

in

turn

calls

the

enterprise

beans,

then

the

method

on

the

enterprise

beans

is

invoked

with

″bob″

as

the

identity.

As

part

of

the

deployment

process

one

of

the

steps

is

to

assign

or

modify

users

to

the

RunAs

roles.

This

step

is

titled

″Map

RunAs

roles

to

users″.

122

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Use

this

step

to

assign

new

users

or

modify

existing

users

to

RunAs

roles

when

the

delegation

policy

is

set

to

Specified

Identity.

These

steps

are

common

for

both

installing

an

application

and

modifying

an

existing

application.

If

the

application

contains

roles,

you

see

the

″Map

security

roles

to

users

and

groups″

link

during

application

installation

and

also

during

managing

applications,

as

a

link

in

the

Additional

Properties

section.

1.

Click

Applications

>

Install

New

Application.

Complete

the

steps

(non-security

related)

required

prior

to

the

step

titled

Map

security

roles

to

users

and

groups.

2.

“Assigning

users

and

groups

to

roles.”

3.

“Assigning

users

to

RunAs

roles”

on

page

130

if

RunAs

roles

exist

in

the

application.

4.

Click

Correct

use

of

System

Identity

to

specify

RunAs

roles

if

needed.

Complete

this

action

if

the

application

has

delegation

set

to

use

System

Identity

(applicable

to

enterprise

beans

only).

System

Identity

uses

the

WebSphere

Application

Server

security

server

ID

to

invoke

downstream

methods

and

should

be

used

with

caution

as

this

ID

has

more

privileges

than

other

identities

in

terms

of

accessing

WebSphere

Application

Server

internal

methods.

This

task

is

provided

to

make

sure

that

the

deployer

is

aware

that

the

methods

listed

in

the

panel

have

System

Identity

set

up

for

delegation

and

to

correct

them

if

necessary.

If

no

changes

are

necessary,

skip

this

task.

5.

Complete

the

remaining

(non-security

related)

steps

to

finish

installing

and

deploying

the

application.

Once

a

secured

application

is

deployed,

verify

that

you

can

access

the

resources

in

the

application

with

the

correct

credentials.

For

example,

if

your

application

has

a

protected

Web

module,

make

sure

only

the

users

that

you

assigned

to

the

roles

are

able

to

use

the

application.

Assigning

users

and

groups

to

roles

Before

you

perform

this

task:

v

Secure

the

Web

applications

and

EJB

applications

where

new

roles

were

created

and

assigned

to

Web

and

EJB

resources.

v

Create

all

the

roles

in

your

application.

v

Verify

that

you

have

properly

configured

the

user

registry

that

contains

the

users

that

you

want

to

assign.

It

is

preferable

to

have

security

turned

on

with

the

user

registry

of

your

choice

before

beginning

this

process.

v

Make

sure

that

if

you

change

anything

in

the

security

configuration

(for

example,

enable

security

or

change

the

user

registry)

you

save

the

configuration

and

restart

the

server

before

the

changes

become

effective.

Since

the

default

active

registry

is

LocalOS,

it

is

not

necessary,

although

it

is

recommended,

that

you

enable

security

if

you

want

to

use

the

LocalOS

registry

to

assign

users

and

groups

to

roles.

You

can

enable

security

once

the

users

and

groups

are

assigned

in

this

case.

The

advantage

of

enabling

security

with

the

appropriate

registry

before

proceeding

with

this

task

is

that

you

can

validate

the

security

setup

(which

includes

checking

the

user

registry

configuration)

and

avoid

any

problems

using

the

registry.

These

steps

are

common

for

both

installing

an

application

and

modifying

an

existing

application.

If

the

application

contains

roles,

you

see

the

Map

security

Chapter

2.

Securing

applications

and

their

environments

123

roles

to

users/groups

link

during

application

installation

and

also

during

application

management,

as

a

link

in

the

Additional

Properties

section

at

the

bottom.

1.

Access

the

administrative

console

by

typing

http://localhost:9090/admin

in

a

Web

browser.

2.

Click

Map

security

roles

to

users/groups.

A

list

of

all

the

roles

that

belong

to

this

application

displays.

If

the

roles

already

had

users

or

special

subjects

(All

Authenticated,

Everyone)

assigned,

they

display

here.

3.

To

assign

the

special

subjects,

select

either

the

Everyone

or

the

All

Authenticated

check

box

for

the

appropriate

roles.

4.

Click

Apply

to

save

any

changes

and

then

continue

working

with

user

or

group

roles.

5.

To

assign

users

or

groups,

select

the

role.

You

can

select

multiple

roles

at

the

same

time,

if

the

same

users

or

groups

are

assigned

to

all

the

roles.

6.

Click

Lookup

Users

or

Lookup

groups.

7.

Get

the

appropriate

users

and

groups

from

the

registry

by

completing

the

limit

(number

of

items)

and

the

Search

String

fields

and

clicking

Search.

The

limit

field

limits

the

number

of

users

that

are

obtained

and

displayed

from

the

registry.

The

pattern

is

a

searchable

pattern

matching

one

or

more

users

and

groups.

For

example,

user*

lists

users

like

user1,

user2.

A

pattern

of

asterisk

(*)

indicates

all

users

or

groups.

Use

the

limit

and

the

search

strings

cautiously

so

as

not

to

overwhelm

the

registry.

When

using

large

registries

(like

Lightweight

Directory

Access

Protocol

(LDAP))

where

information

on

thousands

of

users

and

groups

resides,

a

search

for

a

large

number

of

users

or

groups

can

make

the

system

very

slow

and

can

make

it

fail.

When

there

are

more

entries

than

requests

for

entries,

a

message

displays

on

top

of

the

panel.

You

can

refine

your

search

until

you

have

the

required

list.

8.

Select

the

users

and

groups

to

include

as

members

of

these

roles

from

the

Available

box

and

click

>>

to

add

them

to

the

roles.

9.

To

remove

existing

users

and

groups,

select

them

from

the

Selected

box

and

click

<<.

When

removing

existing

users

and

groups

from

roles

use

caution

if

those

same

roles

are

used

as

RunAs

roles.

For

example,

if

user1

is

assigned

to

RunAs

role,

role1,

and

you

try

to

remove

user1

from

role1,

the

administrative

console

validation

does

not

delete

the

user

since

a

user

can

only

be

a

part

of

a

RunAs

role

if

the

user

is

already

in

a

role

(User1

should

be

in

role1

in

this

case)

either

directly

or

indirectly

through

a

group.

For

more

information

on

the

validation

checks

that

are

performed

between

RunAs

role

mapping

and

user

and

group

mapping

to

roles,

see

the

“Assigning

users

to

RunAs

roles”

on

page

130

section.

10.

Click

OK.

If

there

are

any

validation

problems

between

the

role

assignments

and

the

RunAs

role

assignments

the

changes

are

not

committed

and

an

error

message

indicating

the

problem

dispalys

at

the

top

of

the

panel.

If

there

is

a

problem,

make

sure

that

the

user

in

the

RunAs

role

is

also

a

member

of

the

regular

role.

If

the

regular

role

contains

a

group

which

contains

the

user

in

the

RunAs

role,

make

sure

that

the

group

is

assigned

to

the

role

using

the

administrative

console.

Follow

steps

4

and

5.

Avoid

using

the

Assembly

Toolkit

or

any

other

manual

process

where

the

complete

name

of

the

group,

host

name,

group

name,

or

distinguished

name

(DN)

is

not

used.

The

user

and

group

information

is

added

to

the

binding

file

in

the

application.

This

information

is

used

later

for

authorization

purposes.

124

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

This

task

is

required

to

assign

users

and

groups

to

roles,

which

enables

the

correct

users

and

groups

to

access

a

secured

application.

If

you

are

installing

an

application,

complete

your

installation.

Once

the

application

is

installed

and

running

you

can

access

your

resources

according

to

the

user

and

group

mapping

you

did

in

this

task.

If

you

are

managing

applications

and

have

modified

the

users

and

groups

to

role

mapping,

make

sure

you

save,

stop

and

restart

the

application

so

that

the

changes

become

effective.

Try

accessing

the

J2EE

resources

in

the

application

to

verify

that

the

changes

are

effective.

Security

role

to

user

and

group

mappings

Use

this

page

to

map

security

roles

to

users.

You

can

map

roles

to

specific

users,

to

specific

groups,

or

to

different

categories.

To

view

this

administrative

console

page,

click

Application

>

Install

New

Application.

While

running

the

Application

Installation

Wizard,

prompts

appear

to

help

you

map

security

roles

to

users

or

groups.

To

change

role

to

user

or

group

mappings

for

deployed

applications,

click

Application

>

Enterprise

Application

>

deployed_application

>

Map

security

roles

to

users/groups.

Users:

Specifies

the

users

for

role

mapping.

Verify

that

the

users

are

defined

in

your

chosen

user

registry.

To

change

the

roles

to

users

mapping,

click

Manage

Application

>application

>

Map

security

roles

to

users.

Data

type:

String

Groups:

Specifies

the

groups

for

role

mapping.

Verify

that

the

groups

are

defined

in

your

chosen

user

registry.

To

change

the

roles

to

users

mapping,

click

Manage

Application

>application

>

Map

security

roles

to

groups.

Data

type:

String

Roles:

Specifies

the

roles

to

which

you

want

to

map

users

and

groups.

Role

privileges

give

users

and

groups

permission

to

run

as

specified.

Select

the

check

boxes

to

choose

a

role

or

a

set

of

roles.

Click

Look-up

Users

to

map

users

to

the

roles

that

you

have

selected.

Click

Look-up

Groups

to

map

groups

to

the

selected

roles.

Use

the

check

boxes

to

map

roles

to

EVERYONE

or

ALL

AUTHENTICATED

special

subject.

Data

type:

String

Everyone:

Chapter

2.

Securing

applications

and

their

environments

125

Specifies

to

map

roles

to

everyone.

Mapping

a

role

to

everyone

means

that

anyone

can

access

resources

protected

by

this

role,

and

essentially,

there

is

no

security.

Data

type:

Boolean

All

Authenticated:

Specifies

to

authenticate

all

users.

Roles

are

mapped

to

all

authenticated

users,

and

all

authenticated

users

in

the

selected

user

registry

are

granted

access

to

the

role.

Data

type:

Boolean

Security

role

to

user

and

group

selections

Use

this

page

to

select

users

and

groups

for

security

roles.

To

view

this

administrative

console

page,

click

Application

>

Install

New

Application.

While

using

the

Install

New

Application

Wizard,

prompts

appear

to

help

you

map

security

roles

to

users.

You

also

can

configure

security

roles

to

user

mappings

of

deployed

applications.

Different

roles

can

have

different

security

authorizations.

Mapping

users

or

groups

to

a

role

authorizes

those

users

or

groups

to

access

applications

defined

by

the

role.

Users,

groups

and

roles

are

defined

when

an

application

is

installed

or

configured.

You

also

can

select

role

to

user

and

group

mappings

while

you

are

deploying

applications.

After

deployment

in

Additional

Properties,

click

Map

Security

roles

to

users

to

change

user

and

group

mappings

to

a

role.

Look

up

users:

Specifies

whether

the

server

looks

up

selected

users.

Choose

the

role

by

selecting

the

check

box

beside

the

role

and

clicking

Lookup

users.

Complete

the

Limit

and

the

Pattern

fields.

The

Limit

field

contains

the

number

of

entries

that

the

search

function

returns.

The

Pattern

field

contains

the

search

pattern

used

for

searching

entries.

For

example,

bob*

searches

all

users

or

groups

starting

with

bob.

A

limit

of

zero

returns

all

the

entries

that

match

the

pattern.

Use

this

value

only

when

a

small

number

of

users

or

groups

match

this

pattern

in

the

registry.

If

the

registry

contains

more

entries

that

match

the

pattern

than

requested,

a

message

appears

in

the

console

to

indicate

that

there

are

more

entries

in

the

registry.

You

can

either

increase

the

limit

or

refine

the

search

pattern

to

get

all

the

entries.

Look

up

groups:

Specifies

whether

the

server

looks

up

selected

groups.

Choose

the

role

by

selecting

the

check

box

beside

the

role

and

clicking

Lookup

groups.

Complete

the

Limit

and

the

Pattern

fields.

The

Limit

field

contains

the

number

of

entries

that

the

search

function

returns.

The

Pattern

field

contains

the

search

pattern

used

for

searching

entries.

For

example,

bob*

searches

all

users

or

groups

starting

with

bob.

A

limit

of

zero

returns

all

the

entries

that

match

the

pattern.

Use

this

value

only

when

a

small

number

of

users

or

groups

match

this

pattern

in

the

registry.

If

the

registry

contains

more

entries

that

match

the

pattern

126

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

than

requested,

a

message

appears

in

the

console

to

indicate

that

there

are

more

entries

in

the

registry.

You

can

either

increase

the

limit

or

refine

the

search

pattern

to

get

all

the

entries.

Role:

Specifies

user

roles.

A

number

of

administrative

roles

are

defined

to

provide

degrees

of

authority

needed

to

perform

certain

WebSphere

administrative

functions

from

either

the

Web-based

administrative

console

or

the

system

management

scripting

interface.

The

authorization

policy

is

only

enforced

when

global

security

is

enabled.

The

following

roles

are

valid:

v

Monitor--least

privileged

that

basically

allows

a

user

to

view

the

server

configuration

and

current

state

v

Configurator--monitor

privilege

plus

the

ability

to

change

the

server

configuration

v

Operator--monitor

privilege

plus

the

ability

to

change

the

run

time

state,

such

as

starting

or

stopping

services

v

Administrator--operator

plus

configurator

privilege

Range

Monitor,

Configurator,

Operator,

Administrator

Everyone:

Specifies

to

authenticate

everyone.

Range

Monitor,

Configurator,

Operator,

Administrator

All

authenticated:

Range

Monitor,

Configurator,

Operator,

Administrator

Mapped

users:

Mapped

groups:

Look

up

users

and

groups

settings

Use

this

page

to

select

users

and

groups

for

security

roles.

To

view

this

administrative

console

page,

click

Applications

>

Enterprise

Applications

>

application_name

>

Map

security

roles

to

users/groups

>

Look

up

users

or

groups

button.

Different

roles

can

have

different

security

authorizations.

Mapping

users

or

groups

to

a

role

authorizes

those

users

or

groups

to

access

applications

defined

by

the

role.

Users,

groups

and

roles

are

defined

when

an

application

is

installed

or

configured.

Use

the

Search

field

to

display

users

in

the

Available

Users

list.

Click

the

arrows

to

add

users

from

the

Available

Users

list

to

the

Selected

Users

list.

Limit:

Chapter

2.

Securing

applications

and

their

environments

127

Specifies

the

maximum

number

of

users/groups

that

can

be

returned

when

assigning

users/groups

to

roles.

A

value

of

0

implies

a

return

of

all

users/groups

that

match

the

pattern.

You

can

either

increase

the

limit

or

refine

the

search

pattern

to

get

all

the

entries.

Data

type

Integer

Units

User

name

Default

20

Range

0

or

more

Pattern:

Indicates

the

search

pattern

used

to

search

for

the

entries.

The

pattern

field

should

contain

the

search

pattern

that

should

be

used

to

search

for

the

entries.

For

example,

bob*

will

search

all

users

or

groups

starting

with

bob.

A

limit

of

0

gets

all

the

entries

that

match

the

pattern

and

should

be

used

only

when

a

small

number

users/groups

match

that

pattern

in

the

registry.

If

the

registry

contains

more

entries

that

match

the

pattern

than

requested

for,

a

message

shows

in

the

console

to

indicate

that

there

are

more

entries

in

the

registry.

Data

type

String

Units

Number

of

users

Default

20

Range

A-Z

with

*

Delegations

Delegation

is

a

process

security

identity

propagation

from

a

caller

to

a

called

object.

As

per

the

J2EE

specification,

a

servlet

and

enterprise

beans

can

propagate

either

the

client

(remote

user)

identity

when

invoking

enterprise

beans

or

they

can

use

another

specified

identity

as

indicated

in

the

corresponding

deployment

descriptor.

The

IBM

extension

supports

Enterprise

JavaBeans

(EJB)

to

propagate

to

the

server

ID

when

invoking

other

entity

beans.

There

are

three

types

of

delegations:

v

Delegate

(RunAs)

Client

Identity

v

Delegate

(RunAs)

Specified

Identity

v

Delegate

(RunAs)

System

Identity

Delegate

(RunAs)

Client

Identity

ID=user1

Enterprise beans

or Web Client

RunAs client ID

Enterprise beans

or Servlet

Other

enterprise beans

ID=user1

Delegate Client Identity

128

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Delegate

(RunAs)

Specified

Identity

Delegate

(RunAs)

System

Identity

The

EJB

specification

only

supports

delegation

(RunAs)

at

the

EJB

level.

But

an

IBM

extension

allows

EJB

method

level

RunAs

specification.

Method

EJB

method

level

runAs

specification

allows

one

to

specify

a

different

RunAs

role

for

different

methods

within

the

same

enterprise

beans.

The

RunAs

specification

is

detailed

in

the

deployment

descriptor

(the

ejb-jar.xml

file

in

the

EJB

module

and

the

web.xml

file

in

the

Web

module).

The

IBM

extension

to

the

RunAs

specification

is

included

in

the

ibm-ejb-jar-ext.xmi

file.

There

is

also

an

IBM

specific

binding

file

for

each

application

that

contains

a

mapping

from

the

RunAs

role

to

the

user.

This

file

is

specified

in

the

ibm-application-bnd.xmi

file.

These

specifications

are

read

by

the

run

time

during

application

startup.

The

following

figure

illustrates

the

delegation

mechanism

as

implemented

in

the

WebSphere

Application

Server

security

model.

ID=user1

Delegate Specified Identity

Other

enterprise beans

Run As specified role

mapped to user2

Enterprise beans

or Web client

Enterprise beans

or servlet

ID=user2

ID=user1

RunAs system ID

ID=user1

Delegate System Identity

Enterprise beans

or Web servlet
Enterprise beans

Other

enterprise beans

server1

Chapter

2.

Securing

applications

and

their

environments

129

Delegation

Process

There

are

two

tables

that

help

in

the

delegation

process:

v

Resource

to

RunAs

role

mapping

table

v

RunAs

role

to

user

ID

and

password

mapping

table

Use

the

Resource

to

RunAs

role

mapping

table

to

get

the

role

that

is

used

by

a

servlet

or

by

enterprise

beans

to

propagate

to

the

next

enterprise

beans

call.

Use

the

RunAsRole

to

User

ID

and

Password

mapping

table

to

get

the

user

ID

that

belongs

to

the

RunAs

role

and

its

password.

Delegation

is

performed

after

successful

authentication

and

authorization.

During

this

process,

the

delegation

module

consults

the

Resource

to

RunAs

role

mapping

table

to

get

the

RunAs

role

(3).

The

delegation

module

consults

the

RunAs

role

to

user

ID

and

password

mapping

table

to

get

the

user

that

belongs

to

the

RunAs

role

(4).

The

user

ID

and

password

is

used

to

create

a

new

credential

using

the

authentication

module,

which

is

not

shown

in

figure.The

resulting

credential

is

stored

in

the

ORB

Current

as

an

invocation

credential

(5).

Servlet

and

enterprise

beans

when

invoking

other

enterprise

beans

pick

up

the

invocation

credential

from

the

ORB

Current

(6)

and

call

the

next

enterprise

beans

(7).

Assigning

users

to

RunAs

roles

Before

you

perform

this

task,

v

Secure

the

Web

applications

and

EJB

applications

where

new

RunAs

roles

were

created

and

assigned

to

Web

and

EJB

resources.

v

Create

all

the

RunAs

roles

in

your

application.

The

user

in

the

RunAs

role

can

only

be

entered

if

that

user

or

a

group

to

which

that

user

belongs

is

already

part

of

the

regular

role.

Delegation process

WebSphere Application Server

(1)

(1)

CSIV2/SAS, TCP/IP,

SSL

EJB

resource access

HTTP or HTTPS

Web resource access

Enterprise beans

collaborator

Web

authenticator

Java client

Web client

(2)

resource

(2)

resource

Delegation

Run As role to

credentials

resource

to Run As role

(3)

(4)

(5)

(6)

(7)

(7)

(6)

resource

Credentials

Run As roles

Run As roles

Run As
role

users and
passwords

resource
Run As
roles

Delegate

module

Invoke credentials ORB

current

Enterprise

beans

Servlet

130

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

v

Assign

users

and

groups

to

security

roles.

Refer

to

Assigning

users

and

groups

to

security

roles

for

more

information.

v

Verify

that

the

user

registry

requirements

are

met.

These

requirements

are

the

same

as

those

discussed

in

the

same

as

in

the

case

of

Assigning

users

and

groups

to

security

roles

task.

For

example,

if

role1

is

a

role

that

is

also

used

as

a

RunAs

role,

then

the

user,

user1,

can

be

added

to

the

RunAs

role.

role1,

if

user1

or

a

group

that

user1

belongs

to,

already

is

assigned

to

role1.

The

administrative

console

checks

this

logic

when

Apply

or

OK

is

clicked.

If

the

check

fails,

the

change

is

not

made

and

an

error

message

displays

at

the

top

of

the

panel.

If

the

special

subjects

″Everyone″

or

″All

Authenticated″

are

assigned

to

a

role,

then

no

check

takes

place

for

that

role.

The

checking

is

done

every

time

Apply

in

this

panel

is

clicked

or

when

OK

is

clicked

in

the

Map

security

roles

to

users

and

groups

panel.

The

check

verifies

that

all

the

users

in

all

the

RunAs

roles

do

exist

directly

or

indirectly

(through

a

group)

in

those

roles

in

the

Map

security

roles

to

users

and

groups

panel.

If

a

role

is

assigned

both

a

user

and

a

group

to

which

that

user

belongs,

then

either

the

user

or

the

group

(not

both)

can

be

deleted

from

Map

security

roles

to

users

and

groups

panel.

If

the

RunAs

role

user

belongs

to

a

group

and

if

that

group

is

assigned

to

that

role,

make

sure

that

the

assignment

of

this

group

to

the

role

is

done

through

administrative

console

and

not

through

the

Assembly

Toolkit

or

any

other

method.

When

using

the

administrative

console,

the

full

name

of

the

group

is

used

(for

example,

hostname\groupName

in

windows

systems,

and

distinguished

names

(DN)

in

Lightweight

Directory

Access

Protocol

(LDAP)).

During

the

check,

all

the

groups

to

which

the

RunAs

role

user

belongs

are

obtained

from

the

registry.

Since

the

list

of

groups

obtained

from

the

registry

are

the

full

names

of

the

groups,

the

check

works

correctly.

If

the

short

name

of

a

group

is

entered

using

the

Assembly

Toolkit

(for

example,

group1

instead

of

CN=group1,

o=myCompany.com)

then

this

check

fails.

These

steps

are

common

to

both

installing

an

application

and

modifying

an

existing

application.

If

the

application

contains

RunAs

roles,

you

see

the

Map

RunAs

roles

to

users

link

during

application

installation

and

also

during

managing

applications

as

a

link

in

the

Additional

Properties

section

at

the

bottom.

1.

Click

Map

RunAs

roles

to

users.

A

list

of

all

the

RunAs

roles

that

belong

to

this

application

displays.

If

the

roles

already

had

users

assigned,

they

display

here.

2.

To

assign

a

user,

select

the

role.

You

can

select

multiple

roles

at

the

same

time

if

the

same

user

is

assigned

to

all

the

roles.

3.

Enter

the

user’s

name

and

password

in

the

designated

fields.

The

user

name

entered

can

be

either

the

short

name

(preferred)

or

the

full

name

(as

seen

when

getting

users

and

groups

from

the

registry).

4.

Click

Apply.

The

user

is

authenticated

using

the

active

user

registry.

If

authentication

is

successful,

a

check

is

made

to

verify

that

this

user

or

group

is

mapped

to

the

role

in

the

Map

security

roles

to

users

and

groups

panel.

If

authentication

fails,

verify

that

the

user

and

password

are

correct

and

that

the

active

registry

configuration

is

correct.

5.

To

remove

a

user

from

a

RunAs

role,

select

the

roles

and

click

Remove.

The

RunAs

role

user

is

added

to

the

binding

file

in

the

application.

This

file

is

used

for

delegation

purposes

when

accessing

J2EE

resources.

Chapter

2.

Securing

applications

and

their

environments

131

This

step

is

required

to

assign

users

to

RunAs

roles

so

that

during

delegation

the

appropriate

user

is

used

to

invoke

the

EJB

methods.

If

you

are

installing

the

application,

complete

installation.

Once

the

application

is

installed

and

running

you

can

access

your

resources

according

to

the

RunAS

role

mapping.

Save

the

configuration.

If

you

are

managing

applications

and

have

modified

the

RunAs

roles

to

users

mapping,

make

sure

you

save,

stop

and

restart

the

application

so

that

the

changes

become

effective.

Try

accessing

your

J2EE

resources

to

verify

that

the

new

changes

are

in

effect.

Unprotected

EJB

2.0

methods

protection

settings

Use

this

page

to

verify

that

unprotected

EJB

2.0

methods

have

the

correct

level

of

protection

before

you

map

users

to

roles.

To

view

this

administrative

console

page,

click

Application

>

Install

New

Application.

While

running

the

Install

New

Application

Wizard,

prompts

appear

to

help

you

map

security

roles

to

users.

Exclude:

Specifies

that

the

method

is

completely

protected.

Data

type:

Check

box

Default:

Cleared

Uncheck:

Specifies

that

everyone

can

access

the

security

method.

Data

type:

Check

box

Default:

Uncheck

Specify

role:

Specifies

the

EJB

level

of

protection

based

on

the

security

role.

The

roles

listed

in

this

menu

are

obtained

from

the

application

scope.

If

the

selected

role

is

not

in

the

module,

then

it

is

added

to

the

modules

or

Java

archive

(JAR)

files.

Data

type:

String

Units:

Role

Module

name:

Specifies

the

name

of

the

module.

If

a

module

name

appears

in

this

list,

then

the

module

contains

unprotected

EJB

methods.

Data

type:

String

Units:

Module

name

132

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Protection:

Specifies

the

level

of

protection

assigned

to

a

particular

module

name.

Data

type:

String

Default:

Cleared

EJB

1.0

method

protection

level

settings

Use

this

page

to

verify

that

all

unprotected

EJB

1.0

methods

have

the

correct

level

of

protection

before

you

map

users

to

roles.

To

view

this

administrative

console

page,

click

Applications

>

Install

New

Application.

While

running

the

Install

New

Application

Wizard,

prompts

appear

to

help

you

determine

that

all

unprotected

EJB

1.0

methods

have

the

correct

level

of

protection.

EJB

Module:

Specifies

the

enterprise

bean

module

name.

Data

Type:

String

Units:

EJB

module

name

Module

URI:

Specifies

the

Java

archive

(JAR)

file

name.

Data

Type:

String

Units:

JAR

file

name

Method

protection:

Specifies

the

level

of

protection

assigned

to

the

EJB

module.

A

selected

box

means

to

Deny

All

and

that

the

method

is

completely

protected.

Data

Type:

Check

box

Default:

Cleared

Range:

Yes

or

No

RunAs

roles

to

users

mapping

Use

this

page

to

map

RunAs

roles

to

users.

You

can

change

the

RunAs

settings

after

an

application

deploys.

To

view

this

administrative

console

page,

click

Applications

>

Install

New

Application.

While

running

the

application

installation

wizard,

prompts

appear

to

help

you

map

RunAs

roles

to

users.

You

can

change

the

RunAs

roles

to

users

mappings

for

deployed

applications.

Click

Applications

>

application_name

>

Map

RunAs

roles

to

users

in

the

Additional

Properties

section.

The

enterprise

beans

you

are

installing

contain

predefined

RunAs

roles.

RunAs

roles

are

used

by

enterprise

beans

that

need

to

run

as

a

particular

role

for

recognition

while

interacting

with

another

enterprise

bean.

Chapter

2.

Securing

applications

and

their

environments

133

User

name:

Specifies

a

user

name

for

the

RunAs

role

user.

This

user

already

maps

to

the

role

specified

in

the

Mapping

users

and

groups

to

roles

panel.

You

can

map

the

user

to

its

appropriate

role

by

either

mapping

the

user

to

that

role

directly

or

mapping

a

group

that

contains

the

user

to

that

role.

Data

type:

String

Password:

Specifies

the

password

for

the

RunAs

user.

Data

type:

String

Confirm

password:

Specifies

the

confirmed

password

of

the

administrative

user.

Data

type

String

Role:

Specifies

administrative

user

roles.

A

number

of

administrative

roles

have

been

defined

to

provide

degrees

of

authority

needed

to

perform

certain

WebSphere

administrative

functions

from

either

the

web

based

administrative

console

or

the

system

management

scripting

interface.

The

authorization

policy

is

only

enforced

when

global

security

is

enabled.

The

following

roles

are

valid:

v

Monitor--least

privileged

that

basically

allows

a

user

to

view

the

WebSphere

configuration

and

current

state

v

Configurator--monitor

privilege

plus

the

ability

to

change

the

WebSphere

configuration

v

Operator--monitor

privilege

plus

the

ability

to

change

runtime

state,

such

as

starting

or

stopping

services

for

example

v

Administrator--operator

plus

configurator

privilege

Updating

and

redeploying

secured

applications

Before

you

perform

this

task,

secure

Web

applications,

secure

EJB

applications,

and

deploy

them

in

WebSphere

Application

Server.

This

section

addresses

the

way

to

update

existing

applications.

1.

Use

the

administrative

console

to

modify

the

existing

users

and

groups

mapping

to

roles.

The

task

titled

Assigning

users

and

groups

to

roles

details

the

required

steps.

2.

Use

the

administrative

console

to

modify

the

users

for

the

RunAs

roles.

The

task

entitled,

Assigning

users

to

RunAs

roles

details

the

required

steps.

3.

Complete

the

changes

and

save

them.

4.

Stop

and

restart

the

application

for

the

changes

to

become

effective.

5.

Use

the

Assembly

Toolkit

to

update

any

other

security

related

information.

134

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

6.

Use

the

Assembly

Toolkit

to

modify

roles,

method

permissions,

auth-constraints,

data-constraints

and

so

on.

7.

Save

the

Enterprise

Archive

(EAR)

file,

uninstall

the

old

application,

deploy

the

modified

application

and

start

the

application

to

make

the

changes

effective.

The

applications

are

modified

and

redeployed.

This

step

is

required

to

modify

existing

secured

applications.

If

information

about

roles

is

modified

make

sure

you

update

the

user

and

group

information

using

the

administrative

console.

Once

the

secured

applications

are

modified

and

either

restarted

or

redeployed,

make

sure

that

the

changes

are

effective

by

accessing

the

resources

in

the

application.

Testing

security

After

configuring

global

security

and

restarting

all

of

your

servers

in

a

secure

mode,

it

is

best

to

validate

that

security

is

properly

enabled.

There

are

a

few

techniques

that

you

can

use

to

test

the

various

security

login

types.

For

example,

you

can

test

the

Web-based

BasicAuth

login,

Web-based

form

login,

and

the

Java

client

BasicAuth

login.

There

are

basic

tests

that

show

that

the

fundamental

security

components

are

working

properly.

Complete

the

following

steps

to

validate

your

security

configuration:

1.

Test

the

Web-based

BasicAuth

with

Snoop,

by

accessing

the

following

URL:

http://hostname.domain:9080/snoop.

A

login

panel

appears.

If

a

login

panel

does

not

appear,

then

a

problem

exists.

If

the

panel

appears,

type

in

any

valid

user

ID

and

password

in

your

configured

user

registry.

Note:

In

a

Network

Deployment

environment,

the

Snoop

servlet

is

only

available

in

the

domain

if

you

included

the

DefaultApplication

option

when

adding

the

application

server

to

the

cell.

The

-includeapps

option

for

the

addNode

command

migrates

the

DefaultApplication

option

to

the

cell.

Otherwise,

skip

this

step.

2.

Test

the

Web-based

form

login

by

bringing

up

the

administrative

console:

http://hostname.domain:9090/admin.

A

form-based

login

page

appears.

If

a

login

page

does

not

appear,

try

accessing

the

administrative

console

by

typing

https://myhost.domain:9043/admin.

Type

in

the

administrative

user

ID

and

password

used

for

configuring

your

user

registry

when

configuring

security.

When

the

authentication

mechanism

is

set

as

Lightweight

Third

Party

Authentication

(LTPA),

represent

the

host

name

as

a

fully

qualified

host

name

(that

is,

myhost.mycompany.com:9090

rather

than

just

myhost:9090).

3.

Test

Java

Client

BasicAuth

with

dumpNameSpace

by

executing

the

install_root\bin\dumpNameSpace.bat

file.

A

login

panel

appears.

If

a

login

panel

does

not

appear,

there

is

a

problem.

Type

in

any

valid

user

ID

and

password

in

your

configured

user

registry.

4.

Thoroughly

test

all

of

your

applications

in

secure

mode.

5.

After

enabling

security,

verify

that

your

system

comes

up

in

secure

mode.

6.

If

all

tests

pass,

proceed

with

more

rigorous

testing

of

your

secured

applications.

If

you

have

any

problems,

review

the

output

logs

in

the

WebSphere

Application

Server

/logs/nodeagent

or

WebSphere

Application

Server

/logs/server_name

directories,

respectively.

Then

check

the

security

troubleshooting

article

to

see

if

it

references

any

common

problems.

Chapter

2.

Securing

applications

and

their

environments

135

The

results

of

these

tests,

if

successful,

indicate

that

security

is

fully

enabled

and

working

properly.

Managing

security

Administering

secure

applications

requires

access

to

the

WebSphere

Application

Server

administrative

console.

Otherwise,

log

in

with

a

valid

user

ID

and

password

that

have

administrative

access.

To

administer

security,

complete

these

steps:

1.

Configure

global

security.

For

more

information,

see

“Configuring

global

security”

on

page

137.

2.

Assign

users

to

administrative

roles.

For

more

information,

see

“Assigning

users

to

administrator

roles”

on

page

150.

3.

Assign

users

to

naming

roles.

For

more

information,

see

“Assigning

users

to

naming

roles”

on

page

154.

4.

Configure

authentication

mechanisms.

For

more

information,

see

“Configuring

authentication

mechanisms”

on

page

156.

5.

Configure

Lightweight

Third

Party

Authentication.

For

more

information,

see

“Configuring

Lightweight

Third

Party

Authentication”

on

page

158.

6.

Configure

trust

association

interceptors.

For

more

information,

see

“Configuring

WebSEAL

or

custom

trust

association

interceptors”

on

page

166.

7.

Configure

single

signon.

For

more

information,

see

“Configuring

single

signon”

on

page

173.

8.

Configure

user

registries.

For

more

information,

see

“Configuring

user

registries”

on

page

188.

a.

Configure

local

operating

system

user

registries.

For

more

information,

see

“Configuring

local

operating

system

user

registries”

on

page

193.

b.

Configure

Lightweight

Directory

Access

Protocol

user

registries.

For

more

information,

see

tsec_ldap.ditaae-base

ae-qos

zos

wbifz

ee-prog.

c.

Configure

custom

user

registries.

For

more

information,

see

“Configuring

custom

user

registries”

on

page

214.

9.

Configure

Java

Authentication

and

Authorization

Service

login.

For

more

information,

see

“Configuring

application

logins

for

Java

Authentication

and

Authorization

Service”

on

page

243.

10.

Configure

the

Common

Secure

Interoperability

Version

2

and

Security

Authentication

Service

authentication

protocols.

For

more

information,

see

“Configuring

Common

Secure

Interoperability

Version

2

and

Security

Authentication

Service

authentication

protocols”

on

page

353.

11.

Configure

Secure

Sockets

Layer.

For

more

information,

see

“Configuring

Secure

Sockets

Layer”

on

page

390.

12.

Configure

Java

2

Security

Manager.

For

more

information,

see

“Configuring

Java

2

security”

on

page

448.

13.

Optional:

Configure

security

attribute

propagation.

For

more

information,

see

“Security

attribute

propagation”

on

page

276.

Global

security

Global

security

applies

to

all

applications

running

in

the

environment

and

determines

whether

security

is

used

at

all,

the

type

of

registry

against

which

authentication

takes

place,

and

other

values,

many

of

which

act

as

defaults.

The

term

global

security

represents

the

security

configuration

that

is

effective

for

the

entire

security

domain.

A

security

domain

consists

of

all

servers

configured

with

the

136

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

same

user

registry

realm

name.

In

some

cases,

the

realm

can

be

the

machine

name

of

a

Local

OS

user

registry.

In

this

case,

all

application

servers

must

reside

on

the

same

physical

machine.

In

other

cases,

the

realm

can

be

the

machine

name

of

an

Lightweight

Directory

Access

Protocol

(LDAP)

user

registry.

Since

LDAP

is

a

distributed

user

registry,

a

multiple

node

configuration

is

supported,

such

as

the

case

for

a

Network

Deployment

environment.

The

basic

requirement

for

a

security

domain

is

that

the

access

ID

returned

by

the

registry

from

one

server

within

the

security

domain

is

the

same

access

ID

as

that

returned

from

the

registry

on

any

other

server

within

the

same

security

domain.

The

access

ID

is

the

unique

identification

of

a

user

and

is

used

during

authorization

to

determine

if

access

is

permitted

to

the

resource.

Configuration

of

global

security

for

a

security

domain

consists

of

configuring

the

common

user

registry,

the

authentication

mechanism,

and

other

security

information,

which

defines

the

behavior

of

a

security

domain.

The

other

security

information

that

you

can

configure

includes

Java

2

Security

Manager,

Java

Authentication

and

Authorization

Service

(JAAS),

Java

2

Connector

authentication

data

entries,

Common

Secure

Interoperability

Version

2

(CSIv2)/Security

Authentication

Service

(SAS)

authentication

protocol

(Remote

Method

Invocation

over

the

Internet

Inter-ORB

Protocol

(RMI/IIOP)

security),

and

other

miscellaneous

attributes.

The

global

security

configuration

usually

applies

to

every

server

within

the

security

domain.

Configuring

global

security

It

is

helpful

to

understand

security

from

an

infrastructure

standpoint

so

that

you

know

the

advantages

of

different

authentication

mechanisms,

user

registries,

authentication

protocols,

and

so

on.

Picking

the

right

security

components

to

meet

your

needs

is

a

part

of

configuring

global

security.

The

following

sections

help

you

make

these

decisions.

Read

the

following

articles

before

continuing

with

the

security

configuration.

v

“Global

security”

on

page

136

v

Chapter

1,

“Welcome

to

Security,”

on

page

1

After

you

understand

the

security

components,

you

can

proceed

to

configure

global

security

in

WebSphere

Application

Server.

1.

Start

the

WebSphere

Application

Server

administrative

console

by

clicking

http://yourhost.domain:9090/admin

after

starting

the

WebSphere

Application

Server.

If

security

is

currently

disabled,

log

in

with

any

user

ID.

If

security

is

currently

enabled,

log

in

with

a

predefined

administrative

ID

and

password

(this

is

typically

the

server

user

ID

specified

when

you

configured

the

user

registry).

2.

Click

Security

from

the

left

navigation

menu.

Configure

the

authentication

mechanism,

user

registry,

and

so

on.

The

configuration

order

is

not

important.

However,

when

you

select

the

Enabled

flag

in

the

Global

Security

panel,

verify

that

all

these

tasks

are

completed.

When

you

click

Apply

or

OK

and

the

Enabled

flag

is

set,

a

verification

occurs

to

see

if

the

administrative

user

ID

and

password

can

be

authenticated

to

the

configured

user

registry.

If

you

do

not

configured

these,

the

validation

fails.

3.

Configure

a

user

registry.

For

more

information,

see

“Configuring

user

registries”

on

page

188.

Configure

(LocalOS,

LDAP,

or

Custom),

and

then

specify

details

about

that

registry.

One

of

the

details

common

to

all

user

registries

is

the

server

user

ID.

This

ID

is

a

member

of

the

chosen

user

registry,

but

also

has

special

privileges

in

WebSphere

Application

Server.

The

privileges

for

this

ID

and

the

privileges

Chapter

2.

Securing

applications

and

their

environments

137

associated

with

the

administrative

role

ID

are

the

same.

The

server

user

ID

can

access

all

protected

administrative

methods.

On

Windows

systems,

the

ID

must

not

be

the

same

name

as

the

machine

name

of

your

system,

since

the

registry

sometimes

returns

machine-specific

information

when

querying

a

user

of

the

same

name.

In

LDAP

user

registries,

verify

that

the

server

user

ID

is

a

member

of

the

registry

and

not

just

the

LDAP

administrative

role

ID.

The

entry

must

be

searchable.

The

server

user

ID

does

not

run

WebSphere

Application

Server

processes.

Rather,

the

process

ID

runs

the

WebSphere

Application

Server

processes.

The

process

ID

is

determined

by

the

way

the

process

starts.

For

example,

if

you

use

a

command

line

to

start

processes,

the

user

ID

that

is

logged

into

the

system

is

the

process

ID.

If

running

as

a

service,

the

user

ID

that

is

logged

into

the

system

is

the

user

ID

running

the

service.

If

you

choose

the

LocalOS

registry,

the

process

ID

requires

special

privileges

to

call

the

operating

system

APIs.

Specifically,

the

process

ID

must

have

the

Act

as

Part

of

Operating

System

privileges

on

Windows

systems

or

root

privileges

on

a

UNIX

system.

4.

Configure

the

authentication

mechanism.

To

get

details

about

configuring

authentication

mechanisms,

read

the

“Configuring

authentication

mechanisms”

on

page

156

article.

There

are

two

authentication

mechanisms

to

choose

from

in

the

Global

Security

panel:

Simple

WebSphere

Authentication

Mechanism

(SWAM)

and

Lightweight

Third-Party

Authentication

(LTPA).

However,

only

LTPA

requires

any

additional

configuration

parameters.

Use

the

SWAM

option

for

single

server

requirements.

Use

the

LTPA

option

for

multi-server

distributed

requirements.

SWAM

credentials

are

not

forwardable

to

other

machines

and

for

that

reason

do

not

expire.

Credentials

for

LTPA

are

forwardable

to

other

machines

and

for

security

reasons

do

expire.

This

expiration

time

is

configurable.

If

you

choose

to

go

with

LTPA,

then

“Configuring

single

signon”

on

page

173

support.

This

support

permits

browsers

to

visit

different

product

servers

without

having

to

authenticate

multiple

times.

5.

Configure

the

authentication

protocol

for

special

security

requirements

from

Java

clients,

if

needed.

This

task

entails

choosing

a

protocol,

either

Common

Secure

Interoperability

Version

2

(CSIv2)

or

Security

Authentication

Service

(SAS).

The

CSIv2

protocol

is

new

to

WebSphere

Application

Server

Version

5

and

has

many

new

and

improved

features.

The

SAS

protocol

is

still

provided

as

a

backwards

compatibility

to

previous

product

releases,

but

is

being

deprecated.

For

details

on

configuring

CSIv2

or

SAS,

see

the

article,

“Configuring

Common

Secure

Interoperability

Version

2

and

Security

Authentication

Service

authentication

protocols”

on

page

353.

6.

Modify

the

default

Secure

Sockets

Layer

(SSL)

keystore

and

truststore

files

that

are

packaged

with

the

product.

This

action

protects

the

integrity

of

the

messages

sent

across

the

Internet.

The

product

provides

a

single

location

where

you

can

specify

SSL

configurations

that

the

various

WebSphere

Application

Server

features

that

use

SSL

can

utilize,

including

the

LDAP

user

registry,

Web

container

and

the

authentication

protocol

(CSIv2

and

SAS).

Create

a

new

keystore

and

truststore,

by

referring

to

the

“Creating

a

keystore

file”

on

page

422

and

“Creating

truststore

files”

on

page

426

articles.

You

can

create

different

keystore

files

and

truststore

files

for

different

uses

or

you

can

create

just

one

set

for

everything

that

the

server

uses

SSL

for.

Once

you

create

these

new

keystore

and

truststore

files,

specify

them

in

the

SSL

Configuration

repertoire.

To

get

to

the

SSL

Configuration

Repertoire,

click

Security

>

SSL.

You

can

either

edit

the

DefaultSSLConfig

file

or

create

a

new

SSL

configuration

with

a

new

alias

name.

If

you

create

a

new

alias

name

for

138

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

your

new

keystore

and

truststore

files,

change

every

location

that

references

the

DefaultSSLConfig

SSL

configuration

alias.

The

following

list

provides

these

locations:

v

Security

>

User

Registries

>

LDAP

(at

the

bottom

of

the

panel)

v

Security

>

Authentication

Protocol

>

CSIv2

Inbound

Transport

v

Security

>

Authentication

Protocol

>

CSIv2

Outbound

Transport

v

Security

>

Authentication

Protocol

>

SAS

Inbound

Transport

v

Security

>

Authentication

Protocol

>

SAS

Outbound

Transport

v

Servers

>

Application

Servers

>

application_server_name

>

Web

Container

>

HTTP

transports

>

host_link

7.

Click

Security

>

Global

Security

to

configure

the

rest

of

the

security

settings

and

enable

security.

This

panel

performs

a

final

validation

of

the

security

configuration.

When

you

click

OK

or

Apply

from

this

panel,

the

security

validation

routine

is

performed

and

any

problems

are

reported

at

the

top

of

the

page.

See

the

“Global

security

settings”

on

page

140

article

for

detailed

information

about

these

fields.

When

you

complete

all

of

the

fields,

click

OK

or

Apply

to

accept

the

selected

settings.

Click

Save

to

persist

these

settings

out

to

a

file.

If

you

see

any

informational

messages

in

red

text

color,

then

a

problem

has

occurred

with

the

security

validation.

Typically,

the

message

indicates

the

problem.

So,

review

your

configuration

to

verify

that

the

user

registry

settings

are

accurate

and

the

correct

registry

is

selected.

In

some

cases

the

LTPA

configuration

might

not

be

fully

specified.

8.

Store

the

configuration

for

the

server

to

use

once

it

restarts.

Complete

this

action

if

you

have

clicked

OK

or

Apply

on

the

Security

>

Global

Security

panel,

and

there

are

no

validation

problems.

To

save

the

configuration,

click

Save

in

the

menu

bar

at

the

top.

This

action

writes

the

settings

out

to

the

configuration

repository.

If

you

do

not

click

Apply

or

OK

in

the

Global

Security

panel

before

clicking

Save

on

the

main

menu,

your

changes

are

not

written

to

the

repository.

9.

Start

the

WebSphere

Application

Server

administrative

console

by

typing

http://yourhost.domain:9090/admin

after

the

WebSphere

Application

Server

deployment

manager

has

been

started.

If

security

is

currently

disabled,

log

in

with

any

user

ID.

If

security

is

currently

enabled,

log

in

with

a

predefined

administrative

ID

and

password,

which

is

typically

the

server

user

ID

specified

when

you

configure

the

user

registry.

Enabling

and

disabling

global

security

You

can

decide

whether

to

enable

IBM

WebSphere

Application

Server

security.

You

must

enable

security

for

all

other

security

settings

to

function.

1.

“Configuring

global

security”

on

page

137.

It

is

important

to

click

Security

>

Global

Security

and

set

the

Enabled

flag

to

on

so

that

security

is

enabled

upon

a

server

restart.

2.

Before

restarting

the

server,

log

off

the

administrative

console.

You

can

log

off

by

clicking

Logout

at

the

top

menu

bar.

3.

Stop

the

server

by

going

to

the

command

line

in

the

WebSphere

Application

Server

/bin

directory

and

issue

a

stopServer

server_name

command.

4.

Restart

the

server

in

secure

mode

by

issuing

the

command

startServer

server_name.

Once

the

server

is

secure,

you

cannot

stop

the

server

again

without

specifying

an

administrative

user

name

and

password.

To

stop

the

server

once

security

is

enabled,

issue

the

command,

stopServer

server_name

-username

user_id

-password

password.

Alternatively,

you

can

edit

the

Chapter

2.

Securing

applications

and

their

environments

139

soap.client.props

file

in

the

install_root/properties

directory

and

edit

the

com.ibm.SOAP.loginUserid

or

com.ibm.SOAP.loginPassword

properties

to

contain

these

administrative

IDs.

If

you

have

any

problems

restarting

the

server,

review

the

output

logs

in

the

install_root/logs/server_name

directory.

Check

the

“Troubleshooting

security

configurations”

on

page

479

article

for

any

common

problems.

Disabling

global

security:

1.

Click

Security

>

Global

Security

and

set

the

Enabled

flag

to

off

so

that

security

gets

disabled

upon

a

server

restart.

2.

Before

restarting

the

server,

log

off

of

the

administrative

console.

You

can

log

out

by

clicking

Log

off

at

the

top

menu

bar.

3.

Stop

the

server

by

going

to

the

command

line,

accessing

the

WebSphere

Application

Server

/bin

directory,

and

issuing

the

following

command

on

one

continuous

line:

4.

Issue

the

following

command

to

restart

the

server

in

secure

mode:

5.

If

you

have

any

problems

restarting

the

server,

review

the

output

logs

in

the

install_root/logs/server_name

directory.

This

scenario

is

specifically

for

a

stand-alone

setup

where

you

have

a

single

application

server

and

likely

utilize

your

Local

OS

registry

for

your

repository

of

users.

The

authentication

mechanism

is

probably

Simple

WebSphere

Authentication

Mechanism

(SWAM).

The

application

server

cannot

communicate

securely

to

other

application

servers

as

the

SWAM

authentication

mechanism

does

not

contain

a

forwardable

token

to

send

to

downstream

servers.

After

restarting

the

server

in

secure

mode,

run

a

couple

of

simple

tests

to

verify

that

most

facets

of

security

are

working

properly.

1.

Test

basic

authentication

with

snoop

by

accessing

the

following

URL:

http://hostname.domain:9080/snoop.

A

login

panel

appears.

Type

in

any

valid

user

ID

and

password

in

your

configured

user

registry.

If

the

login

panel

fails

to

appear,

there

is

a

problem.

2.

Test

the

Java

client

with

dumpNameSpace

by

executing

the

install_dir\bin\dumpNameSpace.bat

file.

A

login

panel

appears.

Type

in

any

valid

user

ID

and

password

in

your

configured

user

registry.

If

the

login

panel

fails

to

appear,

there

is

a

problem.

3.

Test

form

login

by

bringing

up

the

administrative

console:

http://hostname.domain:9090/admin.

A

form-based

login

page

appears.

Type

in

the

administrative

user

ID

and

password

that

was

used

for

configuring

your

user

registry

when

configuring

security.

When

the

Authentication

Mechanism

is

set

as

LTPA,

provide

a

fully

qualified

host

name

(for

example,

myhost.mycompany.com:9090,

rather

than

just

myhost:9090).

If

the

login

panel

fails

to

appear,

there

is

a

problem.

If

you

encountered

a

problem

with

any

of

these

tests,

check

the

WebSphere

Application

Server

/logs/server_name/SystemOut.log

file

for

hints

about

the

problems

that

occurred.

Also

refer

to

“Troubleshooting

security

configurations”

on

page

479

for

solutions.

Global

security

settings:

Use

this

page

to

configure

security.

When

you

enable

security,

you

are

enabling

security

settings

on

a

global

level.

When

security

is

disabled,

WebSphere

Application

Server

performance

is

increased

between

10-20%.

Therefore,

consider

disabling

security

when

it

is

not

needed.

140

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

To

view

this

administrative

console

page,

click

Security

>

Global

Security.

If

you

are

configuring

security

for

the

first

time,

complete

the

steps

in

“Configuring

server

security”

on

page

144

to

avoid

problems.

When

security

is

configured,

validate

any

changes

to

the

registry

or

authentication

mechanism

panels.

Click

Apply

to

validate

the

user

registry

settings.

An

attempt

is

made

to

authenticate

the

server

ID

to

the

configured

user

registry.

Validating

the

user

registry

settings

after

enabling

global

security

can

avoid

problems

when

you

restart

the

server

for

the

first

time.

Enabled:

Specifies

for

the

server

to

enable

security

subsystems.

This

flag

is

commonly

referred

to

as

the

global

security

flag

in

WebSphere

Application

Server

information.

When

enabling

security,

set

the

authentication

mechanism

configuration

and

specify

a

valid

user

ID

and

password

in

the

selected

user

registry

configuration.

Data

type:

Boolean

Default:

Disable

Enforce

Java

2

Security:

Specifies

whether

to

enable

or

disable

Java

2

security

permission

checking.

By

default,

Java

2

security

is

disabled.

However,

enabling

global

security,

automatically

enables

Java

2

security.

You

can

choose

to

disable

Java

2

security,

even

when

global

security

is

enabled.

When

Java

2

security

is

enabled

and

if

an

application

requires

more

Java

2

security

permissions

than

are

granted

in

the

default

policy,

then

the

application

might

fail

to

run

properly

until

the

required

permissions

are

granted

in

either

the

app.policy

file

or

the

was.policy

file

of

the

application.

AccessControl

exceptions

are

generated

by

applications

that

do

have

all

the

required

permissions.

Consult

the

WebSphere

Application

Server

documentation

and

review

the

Java

2

Security

and

Dynamic

Policy

sections

if

you

are

unfamiliar

with

Java

2

security.

If

your

server

does

not

restart

after

you

enable

global

security,

you

can

disable

security.

Go

to

your

$install_root\bin

directory

and

execute

the

wsadmin

-conntype

NONE

command.

At

the

wsadmin>

prompt,

enter

securityoff

and

then

type

exit

to

return

to

a

command

prompt.

Restart

the

server

with

security

disabled

to

check

any

incorrect

settings

through

the

administrative

console.

Data

type:

Boolean

Default:

Disabled

Range:

Enabled

or

Disabled

Use

Domain

Qualified

User

Names:

Specifies

the

user

names

to

qualify

with

the

security

domain

within

which

they

reside.

Data

type:

Boolean

Default:

Disabled

Range:

Enable

or

Disable

Chapter

2.

Securing

applications

and

their

environments

141

When

you

specify

Use

Domain

Qualified

User

Names

from

the

Security

>

Global

Security

configuration

panel,

the

run-time

call

to

the

getCallerPrincipal()

API

from

an

enterprise

bean

returns

the

qualified

name

with

the

realm

prepended

twice.

For

example,

the

format

return

is

realm/realm/user.

You

can

strip

the

first

realm

from

the

returned

value

when

making

API

calls.

The

servlet

API

getUserPrincipal()

works

correctly.

Cache

Timeout:

Specifies

the

timeout

value

in

seconds

for

security

cache.

This

value

is

a

relative

timeout.

If

WebSphere

Application

Server

security

is

enabled,

the

security

cache

timeout

can

influence

performance.

The

timeout

setting

specifies

how

often

to

refresh

the

security-related

caches.

Security

information

pertaining

to

beans,

permissions,

and

credentials

is

cached.

When

the

cache

timeout

expires,

all

cached

information

becomes

invalid.

Subsequent

requests

for

the

information

result

in

a

database

lookup.

Sometimes,

acquiring

the

information

requires

invoking

a

Lightweight

Directory

Access

Protocol

(LDAP)-bind

or

native

authentication.

Both

invocations

are

relatively

costly

operations

for

performance.

Determine

the

best

trade

off

for

the

application,

by

looking

at

usage

patterns

and

security

needs

for

the

site.

In

a

20-minute

performance

test,

setting

the

cache

timeout

so

that

a

timeout

does

not

occur

yields

a

40%

performance

improvement.

Data

type:

Integer

Units:

Seconds

Default:

600

Range:

Greater

than

30

seconds

Issue

Permission

Warning:

Specifies

that

when

the

Issue

permission

warning

option

is

enabled,

during

application

deployment

and

application

start,

the

security

run

time

emits

a

warning

if

applications

are

granted

any

custom

permissions.

Custom

permissions

are

permissions

defined

by

the

user

applications,

not

Java

API

permissions.

Java

API

permissions

are

permissions

in

package

java.*

and

javax.*.

The

WebSphere

product

provides

support

for

policy

file

management.

A

number

of

policy

files

are

available

in

this

product,

some

of

them

are

static

and

some

of

them

are

dynamic.

Dynamic

policy

is

a

template

of

permissions

for

a

particular

type

of

resource.

There

is

no

code

base

defined

or

relative

code

base

used

in

the

dynamic

policy

template.

The

real

code

base

is

dynamically

created

from

the

configuration

and

run-time

data.

The

filter.policy

file

contains

a

list

of

permissions

that

an

application

should

not

have

according

to

the

J2EE

1.3

specification.

For

more

information

on

permissions,

see

“Java

2

security

policy

files”

on

page

452.

Data

type:

Boolean

Default:

Disabled

Range:

Enable

or

Disable

142

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Active

Protocol:

Specifies

the

active

authentication

protocol

for

Remote

Method

Invocation

over

the

Internet

Inter-ORB

Protocol

(RMI

IIOP)

requests

when

security

is

enabled.

In

previous

releases

the

Security

Authentication

Service

(SAS)

platform

(or

z/OS

Security

Authentication

Service

on

the

z/OS

platform)

was

the

only

available

protocol.

An

Object

Management

Group

(OMG)

protocol

called

Common

Secure

Interoperability

Version

2

(CSIv2)

supports

increased

vendor

interoperability

and

additional

features.

If

all

of

the

servers

in

your

security

domain

are

Version

5

servers,

specify

CSI

as

your

protocol.

If

some

servers

are

3.x

or

4.x

servers,

specify

CSI

and

SAS.

Data

type:

String

Default:

BOTH

Range:

CSI

and

SAS,

CSI

Active

Authentication

Mechanism:

Specifies

the

active

authentication

mechanism

when

security

is

enabled.

WebSphere

Application

Server,

Version

5

supports

the

following

authentication

mechanisms:

Simple

WebSphere

Authentication

Mechanism

(SWAM)

and

Lightweight

Third

Party

Authentication

(LTPA).

Data

type:

String

Default:

SWAM

(WebSphere

Application

Server)

Range:

SWAM,

LTPA

Active

User

Registry:

Specifies

the

active

user

registry,

when

security

is

enabled.

LDAP

or

a

custom

user

registry

is

required

when

running

as

a

UNIX

non-root

user

or

in

a

multi-node

environment.

You

can

configure

settings

for

one

of

the

following

user

registries:

v

Local

operating

system.

v

LDAP

user

registry.

The

LDAP

user

registry

settings

are

used

when

users

and

groups

reside

in

an

external

LDAP

directory.

When

security

is

enabled

and

any

of

these

properties

change,

go

to

the

Global

Security

panel

and

click

Apply

or

OK

to

validate

the

changes.

v

Custom

user

registry

Data

type:

String

Default:

Local

OS

Range:

Local

OS,

LDAP,

Custom

Use

FIPS:

Enables

the

use

of

FIPS

(Federal

Information

Processing

Standard)-approved

cryptographic

algorithms.

Chapter

2.

Securing

applications

and

their

environments

143

The

IBM

JSSE

Federal

Information

Processing

Standards

(FIPS)

provider

is

not

supported

on

the

HP-UX

platform.

When

Use

FIPS

is

enabled,

the

Lightweight

Third

Party

Authentication

(LTPA)

implementation

uses

IBMJCEFIPS.

IBMJCEFIPS

supports

the

Federal

Information

Processing

Standard

(FIPS)-approved

cryptographic

algorithms

for

DES,

Triple

DES,

and

AES.

Although

the

LTPA

keys

are

backwards

compatible

with

prior

releases

of

WebSphere

Application

Server,

the

LTPA

token

is

not

compatible

with

prior

releases.

Important:

The

IBMJSSEFIPS

and

IBMJCEFIPS

modules

are

undergoing

certification.

WebSphere

Application

Server

provides

a

FIPS-approved

Java

Secure

Socket

Extension

(JSSE)

provider

called

IBMJSSEFIPS.

A

FIPS-approved

JSSE

requires

the

Transport

Layer

Security

(TLS)

protocol

as

it

is

not

compatible

with

the

Secure

Sockets

Layer

(SSL)

protocol.

If

you

select

the

Use

FIPS

checkbox

prior

to

specifying

a

FIPS-approved

JSSE

provider

and

a

TLS

protocol,

the

following

error

message

displays

at

the

top

of

the

Global

Security

panel:

The

security

policy

is

set

to

use

only

FIPS

approved

cryptographic

algorithms.

However

at

least

one

SSL

configuration

may

not

be

using

a

FIPS

approved

JSSE

provider.

FIPS

approved

cryptographic

algorithms

may

not

be

used

in

those

cases.

To

correct

this

problem,

configure

your

JSSE

provider

and

security

protocol

on

the

SSL

Configuration

Repertoires

panel

by

completing

one

of

the

following

tasks:

v

Clicking

Security

>

SSL

and

modifying

an

existing

configuration

v

Clicking

New

and

creating

a

new

configuration

Configuring

server

security

You

can

customize

security

to

some

extent

at

the

application

server

level.

You

can

disable

user

security

on

an

application

server

(administrative

security

remains

enabled

when

global

security

is

enabled).

You

cannot

configure

a

different

authentication

mechanism

or

user

registry

on

an

individual

server

basis.

This

feature

is

limited

to

cell-level

configuration

only.

Also,

when

global

security

is

disabled,

you

cannot

enable

application

server

security.

1.

Start

the

administrative

console

for

the

deployment

manager.

To

get

to

the

administrative

console,

go

to

http://host.domain:9090/admin.

If

security

is

disabled,

you

can

enter

any

ID.

If

security

is

enabled,

you

must

enter

a

valid

user

ID

and

password,

which

is

either

the

administrative

ID

(configured

for

the

user

registry)

or

a

user

ID

entered

as

an

administrative

user.

To

add

a

user

ID

as

an

administrative

user,

click

System

Administration

>

Console

Users.

2.

Configure

global

security

if

you

have

not

already

done

so.

Read

the

“Configuring

global

security”

on

page

137

article

for

detailed

steps.

After

global

security

is

configured,

configure

server-level

security.

3.

To

configure

server-level

security,

click

Servers

>

Application

Servers

>

server

name.

Under

Additional

Properties,

click

Server

Security.

The

status

of

the

security

level

that

is

in

use

for

this

application

server

is

displayed.

The

Server

Level

Security

panel

lists

attributes

that

are

on

the

Global

Security

panel

and

can

be

overridden

at

the

server

level.

Not

all

of

the

attributes

on

the

Global

Security

panel

can

be

overridden

at

the

server

level,

including

Active

Authentication

Mechanism

and

Active

User

Registry.

144

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

4.

To

disable

security

for

this

application

server,

go

to

the

Server

Level

Security

panel,

clear

the

Enabled

flag

and

click

OK

or

Apply.

Click

Save.

By

modifying

the

Server

Level

Security

panel,

you

can

see

that

this

flag

overrides

the

cell-level

security.

5.

To

configure

CSI

at

the

server

level,

you

can

change

any

panel

that

starts

with

CSI.

By

doing

so,

all

panels

that

start

with

CSI

will

override

the

CSI

settings

specified

at

the

Cell-level.

This

includes

all

authentication

and

transport

panels

for

CSI.

See

the

“Configuring

Common

Secure

Interoperability

Version

2

and

Security

Authentication

Service

authentication

protocols”

on

page

353

article

for

more

detailed

steps

regarding

configuring

CSI

authentication

protocol.

Typically

server-level

security

is

used

to

disable

user

security

for

a

specific

application

server.

However,

this

can

also

be

used

to

disable

(or

enable)

the

Java

2

Security

Manager,

and

configure

the

authentication

requirements

for

RMI/IIOP

requests

both

incoming

and

outgoing

from

this

application

server.

Once

you

have

modified

the

configuration

for

a

particular

application

server,

you

must

restart

the

application

server

for

the

changes

to

become

effective.

To

restart

the

application

server,

go

to

Servers

>

Application

Servers

and

click

the

server

name

that

you

recently

modified.

Then,

click

the

Stop

button

and

then

the

Start

button.

If

you

disabled

security

for

the

application

server,

you

can

typically

test

a

URL

which

is

protected

when

security

is

enabled.

Server-level

security

settings

Use

this

page

to

enable

server

level

security

and

specify

other

server

level

security

configurations.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

server_name

>

Server

Security

>

Server

Level

Security.

Enabled:

Use

this

flag

to

disable

or

enable

security

again

for

this

application

server

while

global

security

is

enabled.

Server

security

is

enabled

by

default

when

global

security

is

enabled.

You

cannot

enable

security

on

an

application

server

while

global

security

is

disabled.

Administrative

(administrative

console

and

wsadmin)

and

naming

security

remain

enabled

while

global

security

is

enabled,

regardless

of

the

status

of

this

flag.

Data

type

Boolean

Default

Disable

Enforce

Java

2

Security:

Specifies

that

the

server

enforces

Java

2

Security

permission

checking

at

the

server

level.

When

cleared,

the

Java

2

server-level

security

manager

is

not

installed

and

all

of

the

Java

2

Security

permission

checking

is

disabled

at

the

server

level.

If

your

application

policy

file

is

not

set

up

correctly,

see

“Configuring

the

was.policy

file”

on

page

463

for

information

on

how

to

configure

an

application

policy

file.

Data

type

Boolean

Chapter

2.

Securing

applications

and

their

environments

145

Default

Disabled

Range

Enabled

or

Disabled

Use

Domain

Qualified

User

IDs:

Specifies

whether

user

IDs

returned

by

getUserPrincipal()-like

calls

are

qualified

with

the

server

level

security

domain

within

which

they

reside.

Data

type

Boolean

Default

Disabled

Range

Enable

or

Disable

Cache

Timeout:

Specifies

the

timeout

value

for

server

level

security

cache

in

seconds.

Data

type

Integer

Units

Seconds

Default

600

Range

Greater

than

30

seconds.

Avoid

setting

cache

timeout

value

to

30

seconds

or

less.

Issue

Permission

Warning:

Specifies

whether

a

warning

is

issued

during

application

installation

when

an

application

requires

a

Java

2

permission

that

is

normally

not

granted

to

an

application.

WebSphere

Application

Server

provides

support

for

policy

file

management.

A

number

of

policy

files

are

included

in

WebSphere

Application

Server.

Some

of

these

policy

files

are

static

and

some

of

them

are

dynamic.

Dynamic

policy

is

a

template

of

permissions

for

a

particular

type

of

resource.

In

dynamic

policy

files,

the

code

bases

are

evaluated

at

run

time

using

configuration

data.

You

can

add

or

remove

permissions,

as

needed,

for

each

code

base.

However,

do

not

add,

remove,

or

modify

the

existing

code

bases.

The

real

code

base

is

dynamically

created

from

the

configuration

and

run-time

data.

The

filter.policy

file

contains

a

list

of

permissions

that

an

application

does

not

have,

according

to

the

J2EE

1.3

Specification.

For

more

information

on

permissions,

see

“Java

2

security

policy

files”

on

page

452.

Data

type

Boolean

Default

Enabled

Range

Enable

or

Disable

Active

Protocol:

Specifies

the

active

server

level

security

authentication

protocol

when

server

level

security

is

enabled.

You

can

use

an

Object

Management

Group

(OMG)

protocol

called

Common

Secure

Interoperability

Version

2

(CSIv2)

for

more

vendor

interoperability

and

additional

features.

If

all

of

the

servers

in

your

entire

security

domain

are

Version

5.0

servers,

it

is

best

to

specify

CSI

as

your

protocol.

146

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

If

some

servers

are

Version

3.x

or

Version

4.x

servers,

it

is

best

to

specify

CSI

and

SAS.

However,

by

specifying

CSI

and

SAS,

you

now

have

two

interceptors

invoking

each

request.

However,

by

specifying

CSI

and

SAS,

you

now

have

two

interceptors

invoking

each

request.

If

some

servers

are

Version

3.x

or

Version

4.x

servers,

it

is

best

to

specify

CSI

and

z/SAS.

Data

type

String

Default

CSI

and

SAS

Range

CSI,

CSI

and

SAS

Administrative

console

and

naming

service

authorization

WebSphere

Application

Server

extends

the

Java

2

Platform,

Enterprise

Edition

(J2EE)

security

role-based

access

control

to

protect

the

product

administrative

and

naming

subsystems.

Administrative

console

Four

administrative

roles

are

defined

to

provide

degrees

of

authority

needed

to

perform

certain

WebSphere

Application

Server

administrative

functions

from

either

the

administrative

console

or

the

system

management

scripting

interface.

The

authorization

policy

is

only

enforced

when

global

security

is

enabled.

The

four

administrative

security

roles

are

defined

in

the

following

table:

administrative

roles

Role

Description

monitor

Least

privileged

where

a

user

can

view

the

WebSphere

Application

Server

configuration

and

current

state.

configurator

Monitor

privilege

plus

the

ability

to

change

the

WebSphere

Application

Server

configuration.

operator

Monitor

privilege

plus

the

ability

to

change

the

run-time

state,

such

as

starting

or

stopping

services.

administrator

Operator

plus

configuration

privilege

and

the

permission

required

to

access

sensitive

data

including

the

server

password,

LTPA

password,

LTPA,

keys,

and

so

on.

When

WebSphere

Application

Server

global

security

is

enabled,

the

administrative

subsystem

role-based

access

control

is

enforced.

The

administrative

subsystem

includes

security

server,

user

registry,

and

all

the

Java

Management

Extensions

(JMX)

MBeans.

When

security

is

enabled,

both

the

administrative

console

and

the

administrative

scripting

tool

require

users

to

provide

the

required

authentication

data.

Moreover,

the

administrative

console

is

designed

so

the

control

functions

that

display

on

the

pages

are

adjusted

according

to

the

security

roles

that

a

user

has.

For

example,

a

user

who

has

only

the

monitor

role

can

see

only

the

non-sensitive

configuration

data.

A

user

with

the

operator

role

can

change

the

system

state.

When

local

OS

is

the

configured

user

registry,

WebSphere

Application

Server

for

z/OS

servers

in

the

cell

do

not

have

to

use

the

same

security

name

(enabled

with

Chapter

2.

Securing

applications

and

their

environments

147

PQ81586).

Instead,

all

WebSphere

Application

Server

for

z/OS

processes

(as

well

as

the

default

administrative

user

IDs)

are

configured

to

a

WebSphere

configuration

group

as

part

of

customization.

This

customization

process

grants

the

Console

Group

administrative

role

to

this

WebSphere

configuration

group.

The

server

identity

specified

when

enabling

global

security

is

automatically

mapped

to

the

administrative

role.

You

can

add

or

remove

users

and

groups

to

or

from

the

administrative

roles

from

the

WebSphere

Application

Server

administrative

console.

However,

a

server

restart

is

required

for

the

changes

to

take

effect.

A

best

practice

is

to

map

a

group,

rather

than

specific

users,

to

administrative

roles

because

it

is

more

flexible

and

easier

to

administer.

By

mapping

a

group

to

an

administrative

role,

adding

or

removing

users

to

or

from

the

group

occurs

outside

of

WebSphere

Application

Server

and

does

not

require

a

server

restart

for

the

change

to

take

effect.

In

addition

to

mapping

users

or

groups,

you

can

map

a

special-subject

to

the

administrative

roles.

A

special-subject

is

a

generalization

of

a

particular

class

of

users.

The

AllAuthenticated

special

subject

means

that

the

access

check

of

the

administrative

role

ensures

that

the

user

making

the

request

has

at

least

been

authenticated.

The

Everyone

special

subject

means

that

anyone,

authenticated

or

not,

can

perform

the

action,

as

if

security

is

not

enabled.

When

global

security

is

enabled,

WebSphere

Application

Servers

run

under

the

server

identity

that

is

defined

under

the

active

user

registry

configuration.

Although

it

is

not

shown

on

the

administrative

console

and

in

other

tools,

a

special

Server

subject

is

mapped

to

the

administrator

role.

The

WebSphere

Application

Server

run-time

code,

which

runs

under

the

server

identity,

requires

authorization

to

run

run-time

operations.

If

no

other

user

is

assigned

administrative

roles,

you

can

log

into

the

administrative

console

or

to

the

wsadmin

scripting

tool

using

the

server

identity

to

perform

administrative

operations

and

to

assign

other

users

or

groups

to

administrative

roles.

Because

the

server

identity

is

assigned

to

the

administrative

role

by

default,

the

administrative

security

policy

requires

the

administrative

role

to

perform

the

following

operations:

v

Change

server

ID

and

server

password

v

Enable

or

disable

WebSphere

Application

Server

global

security

v

Enforce

or

disable

Java

2

Security

v

Change

the

LTPA

password

or

generate

keys

v

Assign

users

and

groups

to

administrative

roles

When

enabling

security,

you

can

assign

one

or

more

users

and

groups

to

administrative

roles.

For

more

information,

see

Assigning

users

to

naming

roles.

However,

before

assigning

users

to

naming

roles,

configure

the

active

user

registry.

User

and

group

validation

depends

on

the

active

user

registry.

For

more

information,

see

Configuring

user

registries.

Naming

service

authorization

CosNaming

security

offers

increased

granularity

of

security

control

over

CosNaming

functions.

CosNaming

functions

are

available

on

CosNaming

servers

such

as

the

WebSphere

Application

Server.

They

affect

the

content

of

the

WebSphere

Application

Server

name

space.

There

are

generally

two

ways

in

which

client

programs

result

in

CosNaming

calls.

The

first

is

through

the

JNDI

interfaces.

The

second

is

with

CORBA

clients

invoking

CosNaming

methods

directly.

Four

security

roles

are

introduced

:

148

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

v

CosNamingRead

v

CosNamingWrite

v

CosNamingCreate

v

CosNamingDelete

The

names

of

the

four

roles

are

the

same

with

WebSphere

Application

Server

Advanced

Edition

Version

4.0.2.

The

roles

now

have

authority

levels

from

low

to

high:

CosNamingRead

Users

can

query

of

the

WebSphere

Application

Server

name

space,

using,

for

example,

the

JNDI

lookup

method.

The

special-subject

Everyone

is

the

default

policy

for

this

role.

CosNamingWrite

Users

can

perform

write

operations

such

as

JNDI

bind,

rebind,

or

unbind,

and

CosNamingRead

operations.

The

special-subject

AllAuthenticated

is

the

default

policy

for

this

role.

CosNamingCreate

Users

can

create

new

objects

in

the

name

space

through

such

operations

as

JNDI

createSubcontext

and

CosNamingWrite

operations.

The

special

subject

AllAuthenticated

is

the

default

policy

for

this

role.

CosNamingDelete

Users

can

destroy

objects

in

the

name

space,

for

example

using

the

JNDI

destroySubcontext

method

and

CosNamingCreate

operations.

The

special-subject

AllAuthenticated

is

the

default

policy

for

this

role.

Additionally,

a

Server

special-subject

is

assigned

to

all

the

four

CosNaming

roles

by

default.

The

Server

special-subject

provides

a

WebSphere

Application

Server

server

process,

which

runs

under

the

server

identity,

access

to

all

the

CosNaming

operations.

Note

that

the

Server

special-subject

does

not

display

and

cannot

be

modified

through

the

administrative

console

or

other

administrative

tools.

Users,

groups,

or

the

special

subjects

AllAuthenticated

and

Everyone

can

be

added

or

removed

to

or

from

the

naming

roles

from

the

WebSphere

Application

Server

administrative

console

at

any

time.

However,

a

server

restart

is

required

for

the

changes

to

take

effect.

A

best

practice

is

to

map

groups

or

one

of

the

special-subjects,

rather

than

specific

users,

to

naming

roles

because

it

is

more

flexible

and

easier

to

administer

in

the

long

run.

By

mapping

a

group

to

a

naming

role,

adding

or

removing

users

to

or

from

the

group

occurs

outside

of

WebSphere

Application

Server

and

does

not

require

a

server

restart

for

the

change

to

take

effect.

The

CosNaming

authorization

policy

is

only

enforced

when

global

security

is

enabled.

When

global

security

is

enabled,

attempts

to

do

CosNaming

operations

without

the

proper

role

assignment

result

in

an

org.omg.CORBA.NO_PERMISSION

exception

from

the

CosNaming

Server.

In

WebSphere

Application

Server

Version

4.0.2,

each

CosNaming

function

is

assigned

to

only

one

role.

Therefore,

users

who

are

assigned

the

CosNamingCreate

role

cannot

query

the

name

space

unless

they

have

also

been

assigned

CosNamingRead.

And

in

most

cases

a

creator

needs

to

be

assigned

three

roles:

CosNamingRead,

CosNamingWrite,

and

CosNamingCreate.

The

CosNamingRead

and

CosNamingWrite

roles

assignment

for

the

creator

example

are

included

in

the

CosNamingCreate

role.

In

most

of

the

cases,

WebSphere

Application

Server

administrators

do

not

have

to

change

the

roles

assignment

for

every

user

or

group

when

they

move

to

this

release

from

a

previous

one.

Chapter

2.

Securing

applications

and

their

environments

149

Although

the

ability

exists

to

greatly

restrict

access

to

the

name

space

by

changing

the

default

policy,

unexpected

org.omg.CORBA.NO_PERMISSION

exceptions

can

occur

at

run

time.

Typically,

J2EE

applications

access

the

name

space

and

the

identity

they

use

is

that

of

the

user

that

authenticated

to

WebSphere

Application

Server

when

they

access

the

J2EE

application.

Unless

the

J2EE

application

provider

clearly

communicates

the

expected

Naming

roles,

use

caution

when

changing

the

default

naming

authorization

policy.

Assigning

users

to

administrator

roles

The

following

steps

are

needed

to

assign

users

to

administrative

roles.

In

the

administrative

console,

expand

the

System

Administration

folder

and

click

Console

Users

or

Console

Groups.

1.

To

add

a

user

or

a

group,

click

Add

on

the

Console

users

or

Console

groups

panel.

2.

To

add

a

new

administrative

user,

enter

a

user

identity

in

the

User

field,

highlight

Administrator,

and

click

OK.

If

there

is

no

validation

error,

the

specified

user

is

displayed

with

the

assigned

security

role.

3.

To

add

a

new

administrative

group,

either

enter

a

group

name

in

the

Specify

group

field

or

select

EVERYONE

or

ALL

AUTHENTICATED

from

the

Select

from

special

subject

menu,

and

click

OK.

If

no

validation

error

exists,

the

specified

group

or

special

subject

displays

with

the

assigned

security

role.

4.

To

remove

a

user

or

group

assignment,

click

Remove

on

the

Console

Users

or

the

Console

Groups

panel.

On

the

Console

Users

or

the

Console

Groups

panel,

select

the

check

box

of

the

user

or

group

to

remove

and

click

OK.

5.

To

manage

the

set

of

users

or

groups

to

display,

expand

the

filter

folder

on

the

right

panel

and

modify

the

filter.

For

example,

setting

the

filter

to

user*

only

displays

users

with

the

user

prefix.

6.

After

the

modifications

are

complete,

click

Save

to

save

the

mappings.

7.

Restart

the

server

for

changes

to

take

effect.

The

task

of

assigning

users

and

groups

to

administrative

roles

is

performed

to

identify

users

for

performing

WebSphere

Application

Server

administrative

functions.

There

are

four

roles:

administrator,

configurator,

operator

and

monitor.

Users

and

groups

assigned

to

the

administrator

role

can

perform

all

administrative

operations

and

can

set

up

both

J2EE

role-based

and

Java

2

security

policy.

Users

assigned

to

the

configurator

role

can

perform

all

day-to-day

configuration

tasks

including

installing

and

uninstalling

applications,

assigning

users

and

groups

to

role

mapping

for

applications,

setting

run-as

configurations,

setting

up

Java

2

security

permissions

for

applications,

and

customizing

Common

Secure

Interoperability

Version

2

(CSIv2),

Security

Authentication

Service

(SAS),

and

Secure

Sockets

Layer

(SSL)

configurations.

Users

assigned

to

the

operator

role

can

view

the

WebSphere

Application

Server

configuration

and

its

current

state,

but

also

can

change

the

run-time

state

such

as

stopping

and

starting

services.

Users

assigned

the

monitor

state

can

view

the

WebSphere

Application

server

configuration

and

its

current

state

only.

Before

you

assign

users

to

administrative

roles

(administrator,

configurator,

operator,

and

monitor),

you

must

set

up

your

user

registry,

which

can

be

LDAP,

local

OS,

or

a

custom

registry.

You

can

set

up

your

user

registries

without

enabling

security.

Once

you

assign

users

to

administrative

roles,

you

must

restart

the

server

for

the

new

roles

to

take

effect.

However,

the

administrative

resources

are

not

protected

until

you

enable

security.

150

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Console

users

settings

and

CORBA

naming

service

user

settings

Use

the

Console

users

settings

page

to

give

users

specific

authority

to

administer

WebSphere

Application

Server

using

tools

such

as

the

administrative

console

or

wsadmin

scripting.

The

authority

requirements

are

only

effective

when

global

security

is

enabled.

Use

the

common

object

request

broker

architecture

(CORBA)

naming

service

users

settings

page

to

manage

CORBA

naming

service

users

settings.

To

view

the

Console

users

administrative

console

page,

click

System

Administration

>

Console

Users.

To

view

the

CORBA

naming

service

users

administrative

console

page,

click

Environment

>

Naming

>

CORBA

Naming

Service

users.

User

(Console

users):

Specifies

users.

The

users

entered

must

exist

in

the

configured

active

user

registry.

Data

type:

String

User

(CORBA

naming

service

users):

Specifies

CORBA

naming

service

users.

The

users

entered

must

exist

in

the

configured

active

user

registry.

Data

type:

String

Role

(Console

users):

Specifies

user

roles.

The

following

administrative

roles

provide

different

degrees

of

authority

needed

to

perform

certain

WebSphere

Application

Server

administrative

functions:

Administrator

The

administrator

role

has

operator

permissions,

configurator

permissions,

and

the

permission

required

to

access

sensitive

data

including

server

password,

Lightweight

Third

Party

Authentication

(LTPA)

password

and

keys,

and

so

on.

Configurator

The

configurator

role

has

monitor

permissions

and

can

change

the

WebSphere

Application

Server

configuration.

Operator

The

operator

role

has

monitor

permissions

and

can

change

the

run-time

state.

For

example,

the

operator

can

start

or

stop

services.

Monitor

The

monitor

role

has

the

least

permissions.

This

role

primarily

confines

the

user

to

viewing

the

WebSphere

Application

Server

configuration

and

current

state.

Data

type:

String

Range:

Administrator,

Configurator,

Operator,

and

Monitor

Chapter

2.

Securing

applications

and

their

environments

151

Role

(CORBA

naming

service

users):

Specifies

naming

service

user

roles.

A

number

of

naming

roles

are

defined

to

provide

degrees

of

authority

needed

to

perform

certain

WebSphere

naming

service

functions.

The

authorization

policy

is

only

enforced

when

global

security

is

enabled.

The

following

roles

are

valid:

CosNamingRead,

CosNamingWrite,

CosNamingCreate,

and

CosNamingDelete.

The

names

of

the

four

roles

are

the

same

with

WebSphere

Application

Server,

Advanced

Edition

Version

4.0.2.

However,

the

roles

now

have

authority

levels

from

low

to

high:

CosNamingRead

Users

can

query

the

WebSphere

name

space

using,

for

example,

the

Java

Naming

and

Directory

Interface

(JNDI)

lookup

method.

The

special-subject

EVERYONE

is

the

default

policy

for

this

role.

CosNamingWrite

Users

can

perform

write

operations

such

as

JNDI

bind,

rebind,

or

unbind,

plus

CosNamingRead

operations.

The

special-subject

ALL

AUTHENTICATED

is

the

default

policy

for

this

role.

CosNamingCreate

Users

can

create

new

objects

in

the

name

space

through

operations

such

as

JNDI

createSubcontext

and

CosNamingWrite

operations.

The

special-subject

ALL

AUTHENTICATED

is

the

default

policy

for

this

role.

CosNamingDelete

Users

can

destroy

objects

in

the

name

space,

for

example

using

the

JNDI

destroySubcontext

method

and

CosNamingCreate

operations.

The

special-subject

ALL

AUTHENTICATED

is

the

default

policy

for

this

role.

Data

type:

String

Range:

CosNamingRead,

CosNamingWrite,

CosNamingCreate

and

CosNamingDelete

Console

groups

and

CORBA

naming

service

groups

Use

the

Console

Groups

page

to

give

groups

specific

authority

to

administer

the

WebSphere

Application

Server

using

tools

such

as

the

administrative

console

or

wsadmin

scripting.

The

authority

requirements

are

only

effective

when

global

security

is

enabled.

Use

the

CORBA

naming

service

groups

page

to

manage

CORBA

Naming

Service

groups

settings.

To

view

the

Console

Groups

administrative

console

page,

click

System

Administration

>

Console

Groups.

To

view

the

CORBA

naming

service

groups

administrative

console

page,

click

Environment

>

Naming

>

CORBA

Naming

Service

Groups.

Group

(Console

groups):

Specifies

groups.

The

ALL_AUTHENTICATED

and

the

EVERYONE

groups

can

have

the

following

role

privileges:

Administrator,

Configurator,

Operator,

and

Monitor.

152

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Data

type:

String

Range:

ALL_AUTHENTICATED,

EVERYONE

Group

(CORBA

naming

service

groups):

Identifies

CORBA

naming

service

groups.

The

ALL_AUTHENTICATED

group

has

the

following

role

privileges:

CosNamingRead,

CosNamingWrite,

CosNamingCreate,

and

CosNamingDelete.

The

EVERYONE

group

indicates

that

the

users

in

this

group

have

CosNamingRead

privileges

only.

Data

type:

String

Range:

ALL_AUTHENTICATED,

EVERYONE

Role

(Console

group):

Specifies

user

roles.

The

following

administrative

roles

provide

different

degrees

of

authority

needed

to

perform

certain

WebSphere

Application

Server

administrative

functions:

Administrator

The

administrator

role

has

operator

permissions,

configurator

permissions,

and

the

permission

required

to

access

sensitive

data

including

server

password,

LTPA

password

and

keys,

and

so

on.

Configurator

The

configurator

role

has

monitor

permissions

and

can

change

the

WebSphere

Application

Server

configuration.

Operator

The

operator

role

has

monitor

permissions

and

can

change

the

run-time

state.

For

example,

the

operator

can

start

or

stop

services.

Monitor

The

monitor

role

has

the

least

permissions.

This

role

primarily

confines

the

user

to

viewing

the

WebSphere

Application

Server

configuration

and

current

state.

Data

type:

String

Range:

Administrator,

Configurator,

Operator,

and

Monitor

Role

(CORBA

naming

service

groups):

Identifies

naming

service

group

roles.

A

number

of

naming

roles

are

defined

to

provide

degrees

of

authority

needed

to

perform

certain

WebSphere

naming

service

functions.

The

authorization

policy

is

only

enforced

when

global

security

is

enabled.

Four

name

space

security

roles

are

available:

CosNamingRead,

CosNamingWrite,

CosNamingCreate,

and

CosNamingDelete.

The

names

of

the

four

roles

are

the

same

with

WebSphere

Advanced

Edition,

Version

4.0.2.

However,

the

roles

now

have

authority

levels

from

low

to

high:

CosNamingRead

Users

can

query

the

WebSphere

name

space

using,

for

example,

the

Java

Chapter

2.

Securing

applications

and

their

environments

153

Naming

and

Directory

Interface

(JNDI)

lookup

method.

The

special-subject

EVERYONE

is

the

default

policy

for

this

role.

CosNamingWrite

Users

can

perform

write

operations

such

as

JNDI

bind,

rebind,

or

unbind,

and

CosNamingRead

operations.

The

special-subject

ALL_AUTHENTICATED

is

the

default

policy

for

this

role.

CosNamingCreate

Users

can

create

new

objects

in

the

name

space

through

operations

such

as

JNDI

createSubcontext

and

CosNamingWrite

operations.

The

special-subject

ALL_AUTHENTICATED

is

the

default

policy

for

this

role.

CosNamingDelete

Users

can

destroy

objects

in

the

name

space,

for

example

using

the

JNDI

destroySubcontext

method

and

CosNamingCreate

operations.

The

special-subject

ALL_AUTHENTICATED

is

the

default

policy

for

this

role.

Data

type:

String

Range:

CosNamingRead,

CosNamingWrite,

CosNamingCreate,

and

CosNamingDelete

Assigning

users

to

naming

roles

The

following

steps

are

needed

to

assign

users

to

naming

roles.

In

the

administrative

console,

expand

Environment

>

Naming,

and

click

CORBA

Naming

Service

Users

or

CORBA

Naming

Service

Groups.

1.

Click

Add

on

the

CORBA

Naming

Service

Users

or

CORBA

Naming

Service

Groups

panel.

2.

To

add

a

new

naming

service

user,

enter

a

user

identity

in

the

User

field,

highlight

one

or

more

naming

roles,

and

click

OK.

If

no

validation

errors

occur,

the

specified

user

is

displayed

with

the

assigned

security

role.

3.

To

add

a

new

naming

service

group,

either

select

Specify

group

and

enter

a

group

name

or

select

Select

from

special

subject

and

then

select

either

EVERYONE

or

ALL

AUTHENTICATED.

Click

OK.

If

no

validation

errors

occur,

the

specified

group

or

special

subject

is

displayed

with

the

assigned

security

role.

4.

To

remove

a

user

or

group

assignment,

go

to

the

CORBA

Naming

Service

Users

or

CORBA

Naming

Service

Groups

panel.

Select

the

check

box

next

to

the

user

or

group

that

you

want

to

remove

and

click

Remove.

5.

To

manage

the

set

of

users

or

groups

to

display,

expand

the

Filter

folder

on

the

right

panel,

and

modify

the

filter

text

box.

For

example,

setting

the

filter

to

user*

displays

only

users

with

the

user

prefix.

6.

After

modifications

are

complete,

click

Save

to

save

the

mappings.

Restart

the

server

for

the

changes

to

take

effect.

The

default

naming

security

policy

is

to

grant

all

users

read

access

to

the

CosNaming

space

and

to

grant

any

valid

user

the

privilege

to

modify

the

contents

of

the

CosNaming

space.

You

can

perform

the

previously

mentioned

steps

to

restrict

user

access

to

the

CosNaming

space.

However,

use

caution

when

changing

the

naming

security

policy.

Unless

a

Java

2

Platform,

Enterprise

Edition

(J2EE)

application

has

clearly

specified

its

naming

space

access

requirements,

changing

the

default

policy

can

result

in

unexpected

org.omg.CORBA.NO_PERMISSION

exceptions

at

run

time.

154

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Authentication

mechanisms

An

authentication

mechanism

defines

rules

about

security

information

(for

example,

whether

a

credential

is

forwardable

to

another

Java

process),

and

the

format

of

how

security

information

is

stored

in

both

credentials

and

tokens.

Authentication

is

the

process

of

establishing

whether

a

client

is

valid

in

a

particular

context.

A

client

can

be

either

an

end

user,

a

machine,

or

an

application.

An

authentication

mechanism

in

WebSphere

Application

Server

typically

collaborates

closely

with

a

user

registry.

The

user

registry

is

the

user

and

groups

account

repository

that

the

authentication

mechanism

consults

with

when

performing

authentication.

The

authentication

mechanism

is

responsible

for

creating

a

credential,

which

is

an

internal

product

representation

of

a

successfully

authenticated

client

user.

Not

all

credentials

are

created

equally.

The

abilities

of

the

credential

are

determined

by

the

configured

authentication

mechanism.

Although

this

product

provides

several

authentication

mechanisms,

you

can

only

configure

a

single

active

authentication

mechanism

at

a

time.

The

active

authentication

mechanism

is

selected

when

configuring

WebSphere

Application

Server

global

security.

Authentication

Process

The

figure

demonstrates

the

authentication

process.

Basically,

authentication

is

required

for

enterprise

bean

clients

and

Web

clients

when

they

access

protected

resources.

Enterprise

bean

clients

(a

servlet

or

other

enterprise

beans

or

a

pure

client)

send

the

authentication

information

to

a

Web

application

server

using

the

Common

Secure

Interoperability

Version

2

(CSIv2)

or

the

Security

Authentication

Authentication

module

WebSphere Application Server

(1)

(1)

(2)

(2)

CSIV2/SAS, TCP/IP,

SSL

Basic or

token credentials

HTTP or HTTPS

Basic, token, or

certificate

SWAN

module

LTPA

module

Login

module

Local OS

registry

LDAP

registry

Custom

registry

Enterprise beans

authenticator

Web

authenticator

ORB

current

Java client

Web client

(6) (3)

(3)

(4)

(4)

authorization

data

received

credentials

(6)

received

credentials

(5)

(5)

credentials

credentials

authorization

data

Authentication

Chapter

2.

Securing

applications

and

their

environments

155

Service

(SAS)

protocol.

Web

clients

use

the

HTTP

or

HTTPS

protocol

to

send

the

authentication

information

as

shown

in

the

previous

figure.

The

authentication

information

can

be

BasicAuth

(user

ID

and

password),

credential

token

(in

case

of

Lightweight

Third

Party

Authentication

(LTPA)

),

or

client

certificate.

The

Web

authentication

is

performed

by

the

Web

Authentication

module

and

the

enterprise

bean

authentication

is

performed

by

the

Enterprise

JavaBean

(EJB)

authentication

module,

which

resides

in

the

CSIv2

and

SAS

layer.

The

authentication

module

is

implemented

using

the

Java

Authentication

and

Authorization

Service

(JAAS)

login

module.

The

Web

authenticator

and

the

EJB

authenticator

pass

the

authentication

data

to

the

login

module

(2),

which

can

be

either

Lightweight

Third

Party

Authentication

(LTPA)

or

Simple

WebSphere

Authentication

Mechanism

(SWAM).

The

authentication

module

uses

the

registry

that

is

configured

on

the

system

to

perform

the

authentication

(4).

Three

types

of

registries

are

supported:

LocalOS,

Lightweight

Directory

Access

Protocol

(LDAP),

and

custom

registry.

External

registry

implementation

following

the

registry

interface

specified

by

IBM

can

replace

either

the

LocalOS

or

the

LDAP

registry.

The

login

module

creates

a

JAAS

subject

after

authentication

and

stores

the

Common

Object

Request

Broker

Architecture

(CORBA)

credential

derived

from

the

authentication

data

in

the

public

credentials

list

of

the

subject.

The

credential

is

returned

to

the

Web

authenticator

or

EJB

authenticator

(5).

The

Web

authenticator

and

the

EJB

authenticator

store

the

received

credentials

in

the

Object

Request

Broker

(ORB)

current

for

the

authorization

service

to

use

in

performing

further

access

control

checks.

WebSphere

Application

Server

provides

two

authentication

mechanisms:

SWAM

and

LTPA.

These

authentication

mechanisms

differ

primarily

in

the

distributed

security

features

that

each

supports.

Configuring

authentication

mechanisms

Configure

authentication

mechanisms

by

clicking

Authentication

Mechanisms

under

Security

in

the

administrative

console.

v

If

you

are

using

Simple

WebSphere

Authentication

Mechanism

(SWAM),

no

setup

is

needed.

Follow

the

instructions

in

“Configuring

Lightweight

Third

Party

Authentication”

on

page

158

to

set

up

Lightweight

Third

Party

Authentication

(LTPA).

v

For

LTPA,

follow

the

steps

in

“Configuring

single

signon”

on

page

173

for

most

situations.

If

trust

association

is

required,

follow

the

steps

in

“Configuring

WebSEAL

or

custom

trust

association

interceptors”

on

page

166.

v

If

you

are

using

Tivoli

Access

Manager,

follow

the

instructions

in

“Configuring

WebSphere

Application

Server

to

use

Tivoli

Access

Manager

for

authentication”

on

page

180.

Simple

WebSphere

authentication

mechanism

The

Simple

WebSphere

authentication

mechanism

(SWAM)

is

intended

for

simple,

non-distributed,

single

application

server

run-time

environments.

The

single

application

server

restriction

is

due

to

the

fact

that

SWAM

does

not

support

forwardable

credentials.

If

a

servlet

or

enterprise

bean

in

application

server

process

1,

invokes

a

remote

method

on

an

enterprise

bean

living

in

another

application

156

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

server

process

2,

the

identity

of

the

caller

identity

in

process

1

is

not

transmitted

to

server

process

2.

What

is

transmitted

is

an

unauthenticated

credential,

which,

depending

on

the

security

permissions

configured

on

the

EJB

methods,

can

cause

authorization

failures.

Since

SWAM

is

intended

for

a

single

application

server

process,

single

signon

(SSO)

is

not

supported.

The

SWAM

authentication

mechanism

is

suitable

for

simple

environments,

software

development

environments,

or

other

environments

that

do

not

require

a

distributed

security

solution.

Lightweight

Third

Party

Authentication

Lightweight

Third

Party

Authentication

(LTPA)

is

intended

for

distributed,

multiple

application

server

and

machine

environments.

It

supports

forwardable

credentials

and

single

signon

(SSO).

LTPA

can

support

security

in

a

distributed

environment

through

cryptography.

This

supports

permits

LTPA

to

encrypt,

digitally

sign,

and

securely

transmit

authentication-related

data,

and

later

decrypt

and

verify

the

signature.

The

Lightweight

Third

Party

Authentication

(LTPA)

protocol

enables

the

WebSphere

Application

Server

to

provide

security

in

a

distributed

environment

using

cryptography.

Application

servers

distributed

in

multiple

nodes

and

cells

can

securely

communicate

using

this

protocol.

It

also

provides

the

single

signon

(SSO)

feature

wherein

a

user

is

required

to

authenticate

only

once

in

a

domain

name

system

(DNS)

domain

and

can

access

resources

in

other

WebSphere

Application

Server

cells

without

getting

prompted.

The

realm

names

on

each

system

in

the

SSO

domain

are

case

sensitive

and

must

match

identically.

For

local

OS

on

the

Windows

platform,

the

realm

name

is

the

domain

name,

if

a

domain

is

in

use,

or

the

machine

name.

On

the

UNIX

platform,

the

realm

name

is

the

same

as

the

host

name.

For

the

Lightweight

Directory

Access

Protocol

(LDAP),

the

realm

name

is

the

host:port

of

the

LDAP

server.

The

LTPA

protocol

uses

cryptographic

keys

(LTPA

keys)

to

encrypt

and

decrypt

user

data

that

passes

between

the

servers.

These

keys

need

to

be

shared

between

the

different

cells

for

the

resources

in

one

cell

to

access

resources

in

other

cells

(assuming

that

all

the

cells

involved

use

the

same

LDAP

or

custom

registry).

When

using

LTPA,

a

token

is

created

with

the

user

information

and

an

expiration

time

and

is

signed

by

the

keys.

The

LTPA

token

is

time

sensitive.

All

product

servers

participating

in

a

protection

domain

must

have

their

time,

date,

and

time

zone

synchronized.

If

not,

LTPA

tokens

appear

prematurely

expired

and

cause

authentication

or

validation

failures.

This

token

passes

to

other

servers,

in

the

same

cell

or

in

a

different

cell,

either

through

cookies

(for

Web

resources

when

SSO

is

enabled)

or

through

the

authentication

layer

(Security

Authentication

Service

(SAS)

or

Common

Secure

Interoperability

Version

2

(CSIv2)

for

enterprise

beans).

If

the

receiving

servers

share

the

same

keys

as

the

originating

server,

the

token

can

be

decrypted

to

obtain

the

user

information,

which

then

is

validated

to

make

sure

it

has

not

expired

and

the

user

information

in

the

token

is

valid

in

its

registry.

On

successful

validation,

the

resources

in

the

receiving

servers

are

accessible

after

the

authorization

check.

All

the

WebSphere

Application

Server

processes

in

a

cell

(cell,

nodes,

application

servers)

share

the

same

set

of

keys.

If

key

sharing

is

required

between

different

cells,

export

them

from

one

cell

and

import

them

to

the

other.

For

security

Chapter

2.

Securing

applications

and

their

environments

157

purposes,

the

exported

keys

are

encrypted

with

a

user-defined

password.

This

same

password

is

needed

when

importing

the

keys

into

another

cell.

In

the

base

version

of

WebSphere

Application

Server,

LTPA,

ICSF,

and

the

Simple

WebSphere

Authentication

Mechanism

(SWAM)

protocols

are

supported.

When

security

is

enabled

for

the

first

time

in

WebSphere

Application

Server

with

LTPA,

configuring

LTPA

is

normally

the

initial

step

performed.

LTPA

requires

that

the

configured

user

registry

be

a

centrally

shared

repository

such

as

LDAP

or

a

Windows

domain

type

registry

so

that

users

and

groups

are

the

same

regardless

of

the

machine.

The

following

table

summarizes

the

authentication

mechanism

capabilities

and

user

registries

with

which

LTPA

can

work.

Forwardable

Credentials

SSO

LocalOS

User

Registry

LDAP

User

Registry

Custom

User

Registry

SWAM

No

No

Yes

Yes

Yes

LTPA

Yes

Yes

Yes

Yes

Yes

ICSF

Yes

Yes

Yes

Yes

Yes

Configuring

Lightweight

Third

Party

Authentication

The

following

steps

are

needed

to

configure

Lightweight

Third

Party

Authentication

(LTPA)

when

setting

up

security

for

the

first

time:

1.

Access

the

administrative

console

by

typing

http://localhost:9090/admin

in

a

Web

browser.

2.

Click

Security

>

Authentication

mechanisms

>

LTPA

in

the

Navigation

panel

on

the

left.

3.

Enter

the

password

and

confirm

it

in

the

password

fields.

This

password

is

used

to

encrypt

and

decrypt

the

LTPA

keys

during

export

and

import

of

the

keys.

Remember

this

password

because

you

enter

it

again

when

the

keys

from

this

cell

are

exported

to

another

cell.

4.

Enter

a

positive

integer

value

in

the

Timeout

field.

This

timeout

value

refers

to

how

long

an

LTPA

token

is

valid

in

minutes.

The

token

contains

this

expiration

time

so

that

any

server

that

receives

the

token

can

verify

that

the

token

is

valid

before

proceeding

further.

When

the

token

expires,

the

user

is

prompted

to

log

in.

An

optimal

value

for

this

field

depends

on

your

configuration.

The

default

value

is

30

minutes.

5.

Click

Apply

or

OK.

The

LTPA

configuration

is

now

set.

Do

not

generate

the

LTPA

keys

in

this

step

because

they

are

automatically

generated

later.

Proceed

with

the

rest

of

the

steps

required

to

enable

security,

starting

with

single

signon

(SSO)

(if

SSO

is

required).

6.

Complete

the

information

in

the

Global

Security

panel

and

click

OK.

The

LTPA

keys

are

generated

automatically

the

first

time.

Do

not

generate

the

keys

manually.

The

previous

steps

configure

LTPA

by

setting

passwords

that

generate

LTPA

keys.

After

configuring

LTPA,

complete

the

following

steps

to

work

with

your

key

files:

1.

Generate

key

files.

2.

Export

key

files.

158

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

3.

Import

key

files.

4.

If

you

are

enabling

security,

make

sure

that

you

complete

the

remaining

steps

starting

with

enabling

single

signon

(SSO).

5.

If

you

generated

a

new

set

of

keys

or

imported

a

new

set

of

keys,

verify

that

the

keys

are

saved

by

clicking

Save

at

the

top

of

the

panel.

Because

LTPA

authentication

uses

time

sensitive

tokens,

verify

that

the

time,

date,

and

time

zone

are

synchronized

among

all

product

servers

that

are

participating

in

the

protection

domain.

If

the

clock

skew

is

too

high

between

servers,

the

LTPA

token

appears

prematurely

expired

and

causes

authentication

or

validation

failures.

Configuring

Lightweight

Third

Party

Authentication

keys:

Generating

keys:

Lightweight

Third

Party

Authentication

(LTPA)

keys

are

automatically

generated

when

a

password

change

is

detected.

The

first

time

that

you

set

the

LTPA

password,

as

part

of

enabling

security,

the

LTPA

keys

are

automatically

generated

after

OK

or

Apply

is

clicked

in

the

LTPA

panel.

You

do

not

have

to

click

Generate

Keys

in

this

situation.

Complete

the

following

steps

in

the

administrative

console

to

generate

a

new

set

of

LTPA

keys:

1.

Access

the

administrative

console

by

typing

http://localhost:9090/admin

in

a

Web

browser.

2.

Verify

that

all

the

WebSphere

Application

Server

processes

are

running

(cell,

nodes,

and

all

of

the

application

servers).

If

any

of

the

servers

are

down

at

the

time

of

key

generation

and

then

brought

back

up

later,

these

servers

might

contain

old

keys.

Copy

the

new

set

of

keys

to

these

servers

to

bring

them

back

up.

3.

Click

Security

>

Authentication

mechanisms

>

LTPA

in

the

navigation

panel

on

the

left.

4.

Click

Generate

Keys

if

you

want

to

use

the

existing

password.

This

action

generates

a

new

set

of

keys

that

are

encrypted

with

the

same

password

as

the

old

set

of

keys.

Regardless

of

the

password

change,

a

new

set

of

keys

is

generated

when

you

click

Generate

Keys.

This

new

set

of

keys

is

not

propagated

to

the

run

time

unless

saved;

save

the

files

immediately.

5.

Enter

the

new

password

and

confirm

it,

to

use

a

new

password

to

generate

keys.

Click

OK

or

Apply.

A

new

set

of

keys

is

generated.

A

message

indicating

that

a

new

set

of

keys

is

generated

displays

on

the

console.

Do

not

click

Generate

Keys.

These

new

keys

are

propagated

to

the

run

time

once

you

save

them.

6.

Click

Save

to

save

the

keys.

After

a

new

set

of

keys

is

generated

and

saved,

the

key

propagation

is

dynamic.

All

of

the

processes

running

at

that

time

(cells,

node

agents,

application

servers)

are

updated

with

the

new

set

of

keys.

The

next

sections

describe

the

process

of

exporting

and

importing

the

keys.

Exporting

keys:

To

support

single

signon

(SSO)

in

WebSphere

Application

Server

across

multiple

WebSphere

Application

Server

domains

or

cells,

share

the

LTPA

keys

and

the

password

among

the

domains.

Make

sure

that

the

time

on

the

domains

is

similar

to

prevent

the

tokens

from

appearing

as

expired

between

the

cells.

You

can

use

Export

Keys

to

export

the

LTPA

keys

to

other

domains

or

cells.

Complete

the

following

steps

in

the

administrative

console

to

export

key

files

for

LTPA:

Chapter

2.

Securing

applications

and

their

environments

159

1.

Access

the

administrative

console

by

typing

http://localhost:9090/admin

in

a

Web

browser.

2.

Click

Security

>

Authentication

mechanisms

>

LTPA

in

the

navigation

panel

on

the

left.

3.

In

the

Key

File

Name

field,

enter

the

full

path

of

a

file

for

key

storage.

This

file

needs

write

permissions.

4.

Click

Export

Keys.

A

file

is

created

with

the

LTPA

keys.

Exporting

keys

fails

if

a

new

set

of

keys

is

generated

or

imported

and

not

saved

prior

to

exporting.

To

avoid

failure,

make

sure

that

you

save

the

new

set

of

keys

(if

any)

prior

to

exporting

them.

5.

Click

Save

to

save

the

configuration.

Importing

keys:

To

support

single

signon

(SSO)

in

WebSphere

Application

Server

across

multiple

WebSphere

Application

Server

domains

or

cells,

share

the

LTPA

keys

and

the

password

among

the

domains.

You

can

use

Import

Keys

to

import

the

LTPA

keys

from

other

domains.

Verify

that

key

files

are

exported

from

one

of

the

cells

involved,

into

a

file.

Complete

the

following

steps

in

the

administrative

console

to

import

key

files

for

LTPA.

Importing

keys

is

a

dynamic

operation.

All

of

the

servers

that

are

running

at

this

time

are

updated

with

the

new

set

of

keys.

Any

back-level

tokens

signed

with

the

back-level

keys

fail

validation

and

the

user

is

prompted

to

log

in

again.

1.

Access

the

administrative

console

by

typing

http://localhost:9090/admin

in

a

Web

browser.

2.

Click

Security

>

Authentication

mechanisms

>

LTPA

in

the

navigation

panel

on

the

left.

3.

Change

the

password

in

the

password

fields

to

match

the

password

in

the

cell

from

which

you

are

importing

the

keys.

4.

Click

Save

to

save

the

new

set

of

keys

in

the

repository.

This

step

is

important

to

complete

before

importing

the

keys.

If

the

password

and

the

keys

do

not

match,

the

servers

fail.

If

the

servers

fail,

turn

off

security

and

redo

these

steps.

5.

In

the

Key

File

Name

field,

enter

the

full

path

of

a

file

for

key

storage.

This

file

needs

read

permissions.

6.

Click

Import

Keys.

The

keys

are

now

imported

into

the

system.

7.

Click

Save

to

save

the

new

set

of

keys

in

the

repository.

It

is

important

to

save

the

new

set

of

keys

to

match

the

new

password

so

that

no

problems

are

encountered

starting

the

servers

later.

Lightweight

Third

Party

Authentication

settings:

Use

this

page

to

configure

Lightweight

Third

Party

Authentication

(LTPA)

settings.

To

view

this

administrative

console

page,

click

Security

>

Authentication

Mechanisms

>

LTPA.

If

you

are

configuring

security

for

the

first

time,

only

the

password

is

required.

After

the

password

is

entered,

click

Apply.

Click

Single

signon

(SSO)

and

enter

the

domain

name.

Make

sure

that

SSO

is

enabled.

Click

Apply.

To

complete

the

security

setup,

make

sure

that

the

appropriate

registry

is

set

up

and

click

Apply

160

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

from

the

Global

Security

panel.

When

security

is

enabled

and

any

of

these

properties

change,

go

to

the

Global

Security

panel

and

click

Apply

to

validate

the

changes.

Generate

Keys:

Specifies

whether

the

server

generates

new

Lightweight

Third

Party

Authentication

(LTPA)

keys.

When

security

is

turned

on

for

the

first

time

with

LTPA

as

the

authentication

mechanism,

the

LTPA

keys

are

automatically

generated

with

the

password

entered

in

the

panel.

If

you

need

a

new

set

of

keys

to

generate

using

the

previously

set

password,

click

Generate

Keys.

If

a

new

password

is

used,

do

not

click

this

option.

After

the

new

password

is

entered

and

OK

or

Apply

is

clicked,

a

new

set

of

keys

is

generated.

A

new

set

of

generated

keys

is

not

used

until

you

save

them.

Import

Keys:

Specifies

whether

the

server

imports

new

LTPA

keys.

To

support

single

signon

(SSO)

in

the

WebSphere

product

across

multiple

WebSphere

domains

(cells),

share

the

LTPA

keys

and

the

password

among

the

domains.

You

can

use

the

Import

Keys

option

to

import

the

LTPA

keys

from

other

domains.

The

LTPA

keys

are

exported

from

one

of

the

cells

to

a

file.

To

import

a

new

set

of

LTPA

keys,

enter

the

appropriate

password,

click

OK

and

click

Save.

Then,

enter

the

directory

location

where

the

LTPA

keys

are

located

prior

to

clicking

Import

keys.

Do

not

click

OK

or

Apply,

but

save

the

settings.

Export

Keys:

Specifies

whether

the

server

exports

LTPA

keys.

To

support

single

signon

(SSO)

in

the

WebSphere

product

across

multiple

WebSphere

Application

Server

domains

(cells),

share

the

LTPA

keys

and

the

password

among

the

domains.

Use

the

Export

Keys

option

to

export

the

LTPA

keys

to

other

domains.

To

export

the

LTPA

keys,

make

sure

that

the

system

is

running

with

security

enabled

and

is

using

LTPA.

Enter

the

file

name

in

the

Key

File

Name

field

and

click

Export

Keys.

The

encrypted

keys

are

stored

in

the

specified

file.

Password:

Specifies

the

password

to

encrypt

and

decrypt

the

LTPA

keys.

Use

this

password

when

importing

these

keys

into

other

WebSphere

Application

Server

administrative

domain

configurations

(if

any)

and

when

configuring

SSO

for

a

Lotus

Domino

server.

After

the

keys

are

generated

or

imported,

they

are

used

to

encrypt

and

decrypt

the

LTPA

token.

Whenever

the

password

is

changed,

a

new

set

of

LTPA

keys

are

automatically

generated

when

you

click

OK

or

Apply.

This

new

set

of

keys

is

used

only

when

you

save.

Data

type

String

Confirm

Password:

Chapter

2.

Securing

applications

and

their

environments

161

Specifies

the

confirmed

password

used

to

encrypt

and

decrypt

the

LTPA

keys.

Use

this

password

when

importing

these

keys

into

other

WebSphere

Application

Server

administrative

domain

configurations

(if

any)

and

when

configuring

SSO

for

a

Lotus

Domino

server.

Data

type

String

Timeout:

Specifies

the

time

period

in

minutes

at

which

an

LTPA

token

expires.

Verify

that

this

time

period

is

longer

than

the

cache

timeout

configured

in

the

Global

Security

panel.

Data

type

Integer

Units

Minutes

Default

120

Key

File

Name:

Specifies

the

name

of

the

file

used

when

importing

or

exporting

keys.

Enter

a

fully

qualified

key

file

name,

and

click

Import

Keys

or

Export

Keys.

Data

type

String

Trust

Associations

Trust

Association

enables

the

integration

of

IBM

WebSphere

Application

Server

security

and

third-party

security

servers.

More

specifically,

a

reverse

proxy

server

can

act

as

a

front-end

authentication

server

while

the

product

applies

its

own

authorization

policy

onto

the

resulting

credentials

passed

by

the

proxy

server.

Demand

for

such

an

integrated

configuration

has

become

more

compelling,

especially

when

a

single

product

cannot

meet

all

of

the

customer

needs

or

when

migration

is

not

a

viable

solution.

This

article

provides

a

conceptual

background

behind

the

approach.

The

demand

is

growing

to

provide

customers

with

a

trust

association

solution

between

IBM

WebSphere

Application

Server

and

other

Web

authentication

servers

that

act

as

a

reverse

proxy

security

server

(IBM

Tivoli

Access

Manager

for

e-business

-

WebSEAL,

Caching

Proxy)

as

an

entry

point

to

all

service

requests

(see

the

first

figure).

This

implementation

design

intends

to

have

the

proxy

server

as

the

only

exposed

entry

point.

The

proxy

server

authenticates

all

requests

that

come

in

and

provides

coarse,

granularity

junction

point

authorization.

In

this

setup,

the

WebSphere

Application

Server

is

used

as

a

back-end

server

to

further

exploit

its

fine-grained

access

control.

The

reverse

proxy

server

passes

the

HTTP

request

to

the

WebSphere

Application

Server

that

includes

the

credentials

of

the

authenticated

user.

WebSphere

Application

Server

then

uses

these

credentials

to

authorize

the

request.

162

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Trust

association

model

The

idea

that

WebSphere

Application

Server

can

support

trust

association

implies

that

the

product

application

security

recognizes

and

processes

HTTP

requests

received

from

a

reverse

proxy

server.

WebSphere

Application

Server

and

the

proxy

server

engage

in

a

contract

in

which

the

product

gives

its

full

trust

to

the

proxy

server

and

the

proxy

server

applies

its

authentication

policies

on

every

Web

request

that

is

dispatched

to

WebSphere

Application

Server.

This

trust

is

validated

by

the

interceptors

that

reside

in

the

product

environment

for

every

request

received.

The

method

of

validation

is

agreed

upon

by

the

proxy

server

and

the

interceptor.

Running

in

trust

association

mode

does

not

prohibit

WebSphere

Application

Server

from

accepting

requests

that

did

not

pass

through

the

proxy

server.

In

this

case,

no

interceptor

is

needed

for

validating

trust.

It

is

possible,

however,

to

configure

WebSphere

Application

Server

to

strictly

require

that

all

HTTP

requests

go

through

a

reverse

proxy

server.

In

this

case,

all

requests

that

do

not

come

from

a

proxy

server

are

immediately

denied

by

WebSphere

Application

Server.

IBM

WebSphere

Application

Server--WebSEAL

Integration

The

integration

of

WebSEAL

and

WebSphere

Application

Server

security

is

achieved

by

placing

the

WebSEAL

server

at

the

front-end

as

a

reverse

proxy

server.

See

Figure

2.

From

a

WebSEAL

management

perspective,

a

junction

is

created

with

WebSEAL

on

one

end,

and

the

product

Web

server

on

the

other

end.

A

junction

is

a

logical

connection

created

to

establish

a

path

from

the

WebSEAL

server

to

another

server.

In

this

setup,

a

request

for

Web

resources

stored

in

a

protected

domain

of

the

product

is

submitted

to

the

WebSEAL

server

where

it

is

authenticated

against

the

WebSEAL

security

realm.

If

the

requesting

user

has

access

to

the

junction,

the

request

is

transmitted

to

the

WebSphere

Application

Server

HTTP

server

through

the

junction,

and

then

to

the

application

server.

Trust association model

User ID and password in BasicAuth data

Trusted server ID and password in BasicAuth data

and user ID in the HTTP request header

Web application server

Requested

resource

HTTP

request

Web

client

Reverse

proxy

server

Modified

HTTP

request

Requested

resource

(4)

(1)

(6)

(2)

(5)

(3)

User ID

User ID

or Subject

if trust is valid

(user old TAI interface)

(using the Version 5.1.1

+ TAI interface)

Credentials

Modified HTTP

HTTP Request:

Modified HTTP Request:

Trust

association

interceptor

User

request

Web

authenticator

Chapter

2.

Securing

applications

and

their

environments

163

Meanwhile,

the

WebSphere

Application

Server

validates

every

request

that

comes

through

the

junction

to

ensure

that

the

source

is

a

trusted

party.

This

process

is

referenced

as

validating

the

trust

and

it

is

performed

by

a

WebSEAL

product-designated

interceptor.

If

the

validation

is

successful,

the

WebSphere

Application

Server

authorizes

the

request

by

checking

whether

the

client

user

has

the

required

permissions

to

access

the

Web

resource.

If

so,

the

Web

resource

is

delivered

to

the

WebSEAL

server,

through

the

Web

server,

which

then

gives

it

to

the

client

user.

WebSEAL

server

The

policy

director

delegates

all

of

the

Web

requests

to

its

Web

component,

the

WebSEAL

server.

One

of

the

major

functions

of

the

server

is

to

perform

authentication

of

the

requesting

user.

The

WebSEAL

server

consults

a

Lightweight

Directory

Access

Protocol

(LDAP)

directory.

It

can

also

map

the

original

user

ID

to

another

user

ID,

such

as

when

global

single

signon

(GSO)

is

used.

For

successful

authentication,

the

server

plays

the

role

of

a

client

to

WebSphere

Application

Server

when

channeling

the

request.

The

server

needs

its

own

user

ID

and

password

to

identify

itself

to

WebSphere

Application

Server.

This

identity

must

be

valid

in

the

security

realm

of

WebSphere

Application

Server.

The

WebSEAL

server

replaces

the

basic

authentication

information

in

the

HTTP

request

with

its

own

user

ID

and

password.

In

addition,

WebSphere

Application

Server

must

determine

the

credentials

of

the

requesting

client

so

that

the

application

server

has

an

identity

to

use

as

a

basis

for

its

authorization

decisions.

This

information

is

transmitted

through

the

HTTP

request

by

creating

a

header

called

iv-creds

with

the

Tivoli

Access

Manager

user

credentials

as

its

value.

HTTP

server

The

junction

created

in

the

WebSEAL

server

must

get

to

the

HTTP

server

that

serves

as

the

product

front

end.

However,

the

HTTP

server

is

shielded

from

HitCount

servlet

HitCountBean

Servlet engine

Enterprise beans

container

WebSEAL

trust

Security

collaborator

Security

application

Authorization

and delegation

Product

resources

Trust

validation

Requested

resource

HTTP

request with

credentials

Web Server

Web server and

WebSphere Application Server

Web server

plug-in

Web server

resource

Requested

resource

HTTP

request

Web

client

Policy

Director

(WebSEAL)

164

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

knowing

that

trust

association

is

used.

As

far

as

it

is

concerned,

the

WebSEAL

product

is

just

another

HTTP

client,

and

as

part

of

its

normal

routines,

it

sends

the

HTTP

request

to

the

product.

The

only

requirement

on

the

HTTP

server

is

a

Secure

Sockets

Layer

(SSL)

configuration

using

server

authentication

only.

This

requirement

protects

the

requests

that

flow

within

the

junction.

Web

collaborator

When

trust

association

is

enabled,

the

Web

collaborator

manages

the

interceptors

that

are

configured

in

the

system.

It

loads

and

initializes

these

interceptors

when

you

restart

your

servers.

When

a

request

is

passed

to

WebSphere

Application

Server

by

the

Web

server,

the

Web

collaborator

eventually

receives

the

request

for

a

security

check.

Two

actions

must

take

place:

1.

The

request

must

be

authenticated.

2.

The

request

must

be

authorized.

The

Web

authenticator

is

called

to

authenticate

the

request

by

passing

the

HTTP

request.

If

successful,

a

good

credential

record

is

returned

by

the

authenticator,

which

the

Web

collaborator

uses

to

base

its

authorization

for

the

requested

resource.

If

the

authorization

succeeds,

the

Web

collaborator

indicates

to

WebSphere

Application

Server

that

the

security

check

has

succeeded

and

that

the

requested

resource

can

be

served.

Web

authenticator

The

Web

authenticator

is

asked

by

the

Web

collaborator

to

authenticate

a

given

HTTP

request.

Knowing

that

trust

association

is

enabled,

the

task

of

the

Web

authenticator

is

to

find

the

appropriate

trust

association

interceptor

to

direct

the

request

for

processing.

The

Web

authenticator

queries

every

available

interceptor.

If

no

target

interceptor

is

found,

the

Web

authenticator

processes

the

request

as

though

trust

association

is

not

enabled.

HTTP

request

HTTP

request
HTTP

server

WebSphere Application Server

WebSEAL

WebSEAL

trust association

interceptor

HTTP request

HTTP

request

Authorization

policy

HitCount

servlet

HitCountBean

Servlet engine

Enterprise beans

container

Web

collaborator

Web

authenticator

Chapter

2.

Securing

applications

and

their

environments

165

For

an

HTTP

request

sent

by

the

WebSEAL

server,

the

WebSEAL

trust

association

interceptor

replies

with

a

positive

response

to

the

Web

authenticator.

Subsequently,

the

interceptor

is

asked

to

validate

its

trust

association

with

the

WebSEAL

server

and

retrieve

the

Subject,

using

the

new

trust

association

interface

(TAI)

interface,

or

user

ID,

using

the

old

TAI

interface,

of

the

original

user

client.

For

more

information,

see“Trust

association

interceptor

support

for

Subject

creation”

on

page

108.

Trust

association

interceptor

feature

The

intent

of

the

trust

association

interceptor

feature

is

to

have

reverse

proxy

security

servers

(RPSS)

exist

as

the

exposed

entry

points

to

perform

authentication

and

coarse-grained

authorization,

while

the

WebSphere

Application

Server

enforces

further

fine-grained

access

control.

Trust

associations

improve

security

by

reducing

the

scope

and

risk

of

exposure.

In

a

typical

e-business

infrastructure,

the

distributed

environment

of

a

company

consists

of

Web

application

servers,

Web

servers,

legacy

systems,

and

one

or

more

RPSS,

such

as

the

Tivoli

WebSEAL

product.

Such

reverse

proxy

servers,

front-end

security

servers,

or

security

plug-ins

registered

within

Web

servers,

guard

the

HTTP

access

requests

to

the

Web

servers

and

the

Web

application

servers.

While

protecting

access

to

the

Uniform

Resource

Identifiers

(URIs),

these

RPSS

perform

authentication,

coarse-grained

authorization,

and

request

routing

to

the

target

application

server.

Using

the

trust

association

interceptor

feature

The

following

points

further

describe

the

benefits

of

the

trust

association

interceptor

(TAI)

feature:

v

RPSS

can

authenticate

WebSphere

Application

Server

users

up

front

and

send

credential

information

about

the

authenticated

user

to

the

product

so

that

the

product

can

trust

the

RPSS

to

perform

authentication

and

not

prompt

the

end

user

for

authentication

data

later.

The

strength

of

the

trust

relationship

between

RPSS

and

the

product

is

based

on

the

criteria

of

trust

association

that

is

particular

to

a

RPSS

and

enforced

through

the

TAI

implementation.

This

level

of

trust

might

need

relaxing

based

on

the

environment.

Be

aware

of

the

vulnerabilities

in

cases

where

the

RPSS

is

not

trusted,

based

on

a

security

technology.

v

The

end

user

credentials

most

likely

are

sent

in

a

special

format

as

part

of

the

Hypertext

Transfer

Protocol

(HTTP)

headers

as

in

the

case

of

RPSS

authentication.

The

credentials

can

be

a

special

header

or

a

cookie.

The

data

that

passes

is

implementation

specific,

and

the

TAI

feature

considers

this

fact

and

accommodates

the

idea.

The

TAI

implementation

works

with

the

credential

data

and

returns

a

Subject,

using

the

new

TAI

interface,

or

a

user

ID,

using

the

old

TAI

interface,

that

represents

the

end

user.

WebSphere

Application

Server

uses

the

information

to

enforce

security

policies.

Configuring

WebSEAL

or

custom

trust

association

interceptors

These

steps

are

required

to

use

either

the

WebSEAL

trust

association

interceptor

or

your

own

trust

association

interceptor

with

a

reverse

proxy

security

server.

1.

Access

the

administrative

console

by

typing

http://localhost:9090/admin

in

a

Web

browser.

2.

Click

Security

>

Authentication

mechanisms

>

LTPA

in

the

left

navigation

panel.

166

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

3.

Click

Trust

Association

under

Additional

Properties.

4.

Select

the

Trust

Association

Enabled

option.

5.

Click

Interceptors

under

Additional

Properties.

The

default

value

appears.

6.

Click

New.

7.

Type

com.ibm.ws.security.web.TAMTrustAssociationInterceptorPlus

into

the

Interceptor

Classname

field

if

you

are

using

the

new

WebSEAL

interceptor.

8.

Click

OK.

9.

Click

Custom

Properties

under

Additional

Properties.

10.

Click

New

to

enter

the

property

name

and

value

pairs.

The

name

and

value

pairs

for

the

WebSEAL

server

to

follow.

For

a

new

interceptor,

enter

the

name

and

value

pairs

that

correspond

to

your

interceptor.

com.ibm.websphere.security.webseal.mutualSSL

Use

this

property

to

configure

the

trust

association

interceptor

so

that

trust

with

the

reverse

proxy

is

already

validated

using

a

mutually-authenticated

Secure

Sockets

Layer

(SSL)

connection.

If

value

of

the

mutual

SSL

property

is

true,

then

authentication

is

not

performed

for

the

single

signon

(SSO)

user.

Therefore,

if

the

value

of

the

mutual

SSL

property

is

true,

then

the

com.ibm.websphere.security.webseal.loginId

property

and

the

Single

sign-on

password

expiry

property

do

not

have

any

influence.

Attention:

When

you

set

this

property

to

true,

the

login

ID

and

header

password

combination

is

not

verified.

It

is

recommended

that

you

use

some

form

of

transport

level

filtering

so

that

the

connections

to

WebSphere

Application

Server

are

Secure

Sockets

Layer

(SSL)

connections

originating

from

WebSEAL

only.

Default:

False

Range:

True

or

false

com.ibm.websphere.security.webseal.loginId

Use

this

property

to

configure

the

trust

association

interceptor

using

the

user

name

of

the

WebSEAL

trusted

user.

This

user

is

the

single

signon

(SSO)

user

that

is

authenticated

using

the

password

in

the

basic

authentication

header

that

is

inserted

in

the

request

by

WebSEAL.

The

format

of

the

user

name

is

the

short

name

representation.

This

property

is

mandatory;

if

the

property

is

not

set

in

the

WebSphere

Application

Server

then

the

trust

association

interceptor

initialization

fails.

Data

type:

String

com.ibm.websphere.security.webseal.id

Use

this

property

to

configure

the

trust

association

interceptor

to

ensure

that

specified

headers

exist

in

the

request.

If

not

all

of

the

configured

headers

exist

in

the

request,

then

trust

can

not

be

established.

This

property

is

mandatory

and

there

is

no

default

value.

If

this

property

is

not

set,

the

trust

association

initialization

fails.

Data

type:

Comma

separated

list

of

strings

com.ibm.websphere.security.webseal.hostnames

Chapter

2.

Securing

applications

and

their

environments

167

Use

this

property

to

list

any

hosts

that

are

trusted.

WebSphere

Application

Server

depends

upon

the

value

of

the

com.ibm.websphere.security.webseal.viaDepth

and

the

com.ibm.websphere.security.webseal.ignoreProxy

properties

to

determine

whether

to

trust

requests

that

arrive

from

hosts

listed

in

this

property.

If

a

host

is

not

listed

in

this

property,

then

WebSphere

Application

Server

might

not

trust

requests

arriving

from

that

host.

The

host

names

are

case-sensitive.

This

request

header

also

includes

the

proxy

host

names

(if

any)

unless

the

com.ibm.websphere.security.webseal.ignoreProxy

interceptor

is

set

to

true.

Data

type:

Comma

separated

list

of

strings

com.ibm.websphere.security.webseal.ports

Use

this

property

to

list

the

port

numbers

of

any

hosts

that

are

trusted.

WebSphere

Application

Server

depends

upon

the

value

of

the

com.ibm.websphere.security.webseal.viaDepth

and

the

com.ibm.websphere.security.webseal.ignoreProxy

properties

to

determine

whether

to

trust

requests

that

arrive

from

ports

listed

in

this

property.

If

a

port

is

not

listed

in

this

property,

then

WebSphere

Application

Server

might

not

trust

any

requests

arriving

from

that

port.

This

request

header

also

includes

the

proxy

ports

(if

any)

unless

the

com.ibm.websphere.security.webseal.ignoreProxy

interceptor

is

set

to

true.

Data

type:

Comma

separated

list

of

integers

com.ibm.websphere.security.webseal.viaDepth

Use

this

property

to

configure

the

trust

association

interceptor

to

check

only

a

specified

number

of

source

hosts

in

the

VIA

header

to

ensure

that

those

hosts

are

trusted

sources.

By

default,

every

host

in

the

VIA

header

is

checked

for

trust

and

if

any

of

the

hosts

are

not

trusted,

then

trust

is

not

established.

If

all

of

the

hosts

in

the

VIA

header

are

not

required

to

be

trusted,

then

you

can

set

the

com.ibm.websphere.security.webseal.viaDepth

property

to

indicate

the

number

of

hosts

that

are

required

to

be

trusted.For

example:

Via:

HTTP/1.1

webseal1:7002,

1.1

webseal2:7001

If

the

com.ibm.websphere.security.webseal.viaDepth

property

is

not

set,

is

set

to

2,

or

is

set

to

0,

and

a

request

with

the

above

VIA

header

is

received,

then

both

webseal1:7002

and

webseal2:7001

need

to

be

trusted.

v

com.ibm.websphere.security.webseal.hostnames

=

webseal1,webseal2

v

com.ibm.websphere.security.webseal.ports

=

7002,7001

If

the

via

depth

property

is

set

to

1

and

the

above

request

is

received,

then

only

the

last

host

in

the

VIA

header

needs

to

be

trusted.

v

com.ibm.websphere.security.webseal.hostnames

=

webseal2

v

com.ibm.websphere.security.webseal.ports

=

7001

If

the

via

depth

property

is

set

to

0,

then

all

of

the

hosts

in

the

VIA

header

are

checked

for

trust.

168

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

If

the

via

depth

property

is

set

to

a

negative

value

and

the

check

VIA

header

property

is

set

to

true,

then

the

trust

association

interceptor

initialization

fails..

Default:

1

com.ibm.websphere.security.webseal.ignoreProxy

Use

this

property

to

configure

the

trust

association

interceptor

so

that

any

hosts

in

the

VIA

header

that

are

proxies

do

not

need

to

be

trusted

hosts.

This

property

works

by

checking

the

comments

field

of

the

hosts

entry

in

the

VIA

header

to

see

if

that

host

is

a

proxy.

This

process

is

not

a

fail

safe

method

because

not

all

of

the

proxies

insert

comments

in

the

VIA

header

to

indicate

that

they

are

proxies.If

this

optional

property

is

set

to

true

or

yes,

it

ignores

the

proxy

host

names

and

ports

in

the

VIA

header.

By

default,

this

property

is

set

to

false.

Default:

False

Data

type:

String

Range:

True,

false,

yes,

no

com.ibm.websphere.security.webseal.configURL

Use

this

property

to

configure

the

trust

association

interceptor

to

be

able

to

establish

trust

for

a

request.

The

property

requires

that

SvrSslCfg

has

run

for

the

WebSphere

Java

Virtual

Machine

(JVM)

resulting

in

a

properties

file

being

created.

If

the

configuration

is

to

occur

across

multiple

WebSphere

Application

Servers

in

a

Network

Deployment

environment,

then

the

properties

file

generated

during

server

SSL

configuration

must

be

in

the

same

location

on

all

servers.

This

location

must

be

the

same

relative

to

the

WebSphere

Application

Server

install

directory

if

the

${WAS_INSTALL_ROOT}

variable

is

used.

For

example:

com.ibm.websphere.security.webseal.configURL

=

${WAS_INSTALL_ROOT}\java\jre\PdPerm.properties

When

you

use

the

previous

property

in

a

Network

Deployment

environment,

the

properties

file

generated

during

server

SSL

configuration

must

be

located

in

the

java\jre

location

relative

to

the

WebSphere

Applictaion

Server

installation

directory

on

all

servers.

This

property

is

mandatory

and

there

is

no

default

value.

If

this

property

is

not

set,

the

trust

association

interceptor

initialization

fails.

Data

type:

String

com.ibm.websphere.security.webseal.ssoPwdExpiry

Use

this

property

to

save

the

trust

association

interceptor

from

needing

to

re-authenticate

the

single

signon

user

with

Tivoli

Access

Manager

for

every

request.

After

trust

is

established

for

the

request,

the

password

for

the

single

signon

user

is

cached

for

use

with

subsequent

requests

for

trust

validation.

Therefore,

you

might

find

an

increase

in

performance.

You

can

modify

the

cache

timeout

period

by

setting

the

single

signon

password

expiry

property

to

the

required

time

in

seconds.

If

the

password

expiry

property

is

set

to

0,

the

cached

Chapter

2.

Securing

applications

and

their

environments

169

password

never

expires.

If

the

password

expiry

is

set

to

a

negative

value

then

the

trust

association

interceptor

initialization

fails.

Data

type:

Positive

integer

11.

Click

OK.

Enables

trust

association.

A

typical

scenario

using

the

trust

association

interceptor

(TAI)

includes

an

environment

where

IBM

Tivoli

WebSEAL

product

is

deployed

and

used

with

WebSphere

Application

Server.

For

the

WebSEAL

product,

an

implementation

of

the

TAI

is

already

provided

with

the

product.

The

following

steps

outline

the

typical

flow

of

an

HTTP

request

for

a

secured

WebSphere

Application

Server

resource

authenticated

by

the

WebSEAL

server

through

a

Web

trust

association:

1.

The

browser

makes

a

request

for

a

secured

WebSphere

resource.

2.

The

WebSEAL

server

sends

back

a

challenge,

either

an

HTTP

basic

authentication

or

a

form-based

challenge.

3.

A

user

name

and

password

are

supplied.

4.

The

WebSEAL

product

authenticates

the

user

to

Lightweight

Directory

Access

Protocol

(LDAP).

5.

The

modified

request

is

forwarded

by

the

WebSEAL

product

to

the

WebSphere

Application

Server.

6.

The

plug-in

TAI

establishes

trust

between

WebSphere

Application

Server

and

the

WebSEAL

server

by

using

the

negotiateAndValidateEstablishedTrust

method.

7.

The

plug-in

extracts

the

end-user

credentials

from

the

iv-creds

header

field

and

passes

it

to

WebSphere

Application

Server

for

authorization.

1.

If

you

are

enabling

security,

make

sure

that

you

complete

the

remaining

steps

for

enabling

security.

1.

HTTP request

3.

ID:joanna

password:joanna

5.

HTTP request

ID:WebSEAL,

password: password,

iv-user: joanna

4.

Bind: joanna,

joanna authenticate

WebSphere Application Server

LDAP

Trust association interceptor

Validate

established trust

get AuthenticatedUsername

Security server

7.

joanna

2.

Challenge

6.

Bind:WebSEAL,

password

Web trust association authentication flow

Browser WebSEAL

170

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

2.

Save,

stop

and

restart

all

of

the

product

servers

(cell,

nodes,

and

all

of

the

application

servers)

for

the

changes

to

take

effect.

Trust

association

settings:

Trust

association

enables

the

integration

of

IBM

WebSphere

Application

Server

security

and

third-party

security

servers.

More

specifically,

a

reverse

proxy

server

can

act

as

a

front-end

authentication

server

while

the

product

applies

its

own

authorization

policy

onto

the

resulting

credentials

passed

by

the

proxy

server.

Use

this

page

to

configure

trust

association

settings.

To

view

this

administrative

console

page,

click

Security

Center

>

Authentication

Mechanisms

>

LTPA

>

Trust

Association.

When

security

is

enabled

and

any

of

these

properties

change,

go

to

the

Global

Security

panel

and

click

Apply

to

validate

the

changes.

Enabled:

Specifies

whether

trust

association

is

enabled.

Data

type:

Boolean

Default:

Disable

Range:

Enable

or

Disable

Trust

association

interceptor

collection:

Use

this

page

to

specify

trust

information

for

reverse

security

proxy

servers.

To

view

this

administrative

console

page,

click

Security

>

Authentication

Mechanisms

>

LTPA

>

Trust

Association

>

Interceptors.

When

security

is

enabled

and

any

of

these

properties

are

changed,

go

to

the

Global

Security

panel

and

click

Apply

to

validate

the

changes.

Interceptor

Class

Name:

Specifies

the

trust

association

interceptor

class

name.

Data

type

String

Default

com.ibm.ws.security.web.WebSealTrustAssociationInterceptor

Single

Signon

With

single

signon

(SSO)

support,

Web

users

can

authenticate

once

when

accessing

both

WebSphere

Application

Server

resources,

such

as

HTML,

JavaServer

page

(JSP)

files,

servlets,

enterprise

beans,

and

Lotus

Domino

resources,

such

as

documents

in

a

Domino

database,

or

accessing

resources

in

multiple

WebSphere

domains.

Web

users

can

authenticate

once

to

a

WebSphere

Application

Server

or

to

a

Domino

server.

Without

logging

in

again,

Web

users

can

access

any

other

WebSphere

Application

Servers

or

Domino

servers

in

the

same

Domain

Name

Service

(DNS)

domain

that

are

enabled

for

SSO.

This

authentication

is

Chapter

2.

Securing

applications

and

their

environments

171

accomplished

by

configuring

the

WebSphere

Application

Servers

and

the

Domino

servers

to

share

authentication

information.

Enable

SSO

among

WebSphere

Application

Servers

by

configuring

SSO

for

WebSphere

Application

Server.

To

enable

SSO

between

WebSphere

Application

Servers

and

Domino

servers,

you

must

configure

SSO

for

both

WebSphere

Application

Server

and

for

Domino.

Prerequisites

and

conditions

To

take

advantage

of

support

for

single

signon

between

WebSphere

Application

Servers

or

between

WebSphere

Application

Server

and

a

Domino

server,

applications

must

meet

the

following

prerequisites

and

conditions:

v

Verify

that

all

servers

are

configured

as

part

of

the

same

DNS

domain.

For

example,

if

the

DNS

domain

is

specified

as

mycompany.com,

then

SSO

is

effective

with

any

Domino

server

or

WebSphere

Application

Server

on

a

host

that

is

part

of

the

mycompany.com

domain,

for

example,

a.mycompany.com

and

b.mycompany.com.

v

Verify

that

all

servers

share

the

same

user

registry.

This

registry

can

be

either

a

supported

Lightweight

Directory

Access

Protocol

(LDAP)

directory

server

or,

if

SSO

is

configured

between

two

WebSphere

Application

Servers,

a

custom

user

registry.

Domino

servers

do

not

support

custom

registries,

but

you

can

use

a

Domino-supported

registry

as

a

custom

registry

within

WebSphere

Application

Server.

For

more

information

on

custom

registries,

see

Introduction

to

custom

registries.

You

can

use

a

Domino

directory

(configured

for

LDAP

access)

or

other

LDAP

directory

for

the

user

registry.

The

LDAP

directory

product

must

have

WebSphere

Application

Server

support.

Supported

products

include

both

Domino

and

IBM

SecureWay

LDAP

directory

servers.

Regardless

of

the

choice

to

use

an

LDAP

or

a

custom

registry,

the

SSO

configuration

is

the

same.

The

difference

is

in

the

configuration

of

the

registry.

v

Define

all

users

in

a

single

LDAP

directory.

Using

LDAP

referrals

to

connect

more

than

one

directory

together

is

not

supported.

Using

multiple

Domino

directory

assistance

documents

to

access

multiple

directories

also

is

not

supported.

v

Enable

HTTP

cookies

in

browsers

because

the

authentication

information

that

is

generated

by

the

server

is

transported

to

the

browser

in

a

cookie.

The

cookie

is

then

used

to

propagate

the

authentication

information

for

the

user

to

other

servers,

exempting

the

user

from

entering

the

authentication

information

for

every

request

to

a

different

server.

v

For

a

Domino

server:

–

Domino

Release

5.0.6a

for

iSeries

400

or

later

and

Domino

Release

5.0.5

or

later

for

other

platforms

are

supported.

–

A

Lotus

Notes

client

Release

5.0.5

or

later

is

required

for

configuring

the

Domino

server

for

SSO.

–

You

can

share

authentication

information

across

multiple

Domino

domains.
v

For

WebSphere

Application

Server:

–

WebSphere

Application

Server

Version

3.5

or

later

for

all

platforms

is

supported.

–

You

can

use

any

HTTP

Web

server

supported

by

WebSphere

Application

Server.

–

You

can

share

authentication

information

across

multiple

product

administrative

domains.

–

Basic

authentication

(user

ID

and

password)

using

the

basic

and

form-login

mechanisms

is

supported.

172

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

–

By

default,

WebSphere

Application

Server

does

a

case-sensitive

comparison

for

authorization.

This

comparison

implies

that

a

user

who

is

authenticated

by

Domino

matches

the

entry

exactly

(including

the

base

distinguished

name)

in

the

WebSphere

Application

Server

authorization

table.

If

case

sensitivity

is

not

considered

for

the

authorization,

enable

the

Ignore

Case

property

in

the

LDAP

user

registry

settings.

Configuring

single

signon

With

single

signon

(SSO)

support,

Web

users

can

authenticate

once

when

accessing

Web

resources

across

multiple

WebSphere

Application

Servers.

Form

login

mechanisms

for

Web

applications

require

that

SSO

is

enabled.

SSO

is

supported

only

when

Lightweight

Third

Party

Authentication

(LTPA)

is

the

authentication

mechanism.

When

SSO

is

enabled,

a

cookie

is

created

containing

the

LTPA

token

and

inserted

into

the

HTTP

response.

When

the

user

accesses

other

Web

resources

in

any

other

WebSphere

Application

Server

process

in

the

same

domain

name

service

(DNS)

domain,

the

cookie

is

sent

in

the

request.

The

LTPA

token

is

then

extracted

from

the

cookie

and

validated.

If

the

request

is

between

different

cells

of

WebSphere

Application

Servers,

you

must

share

the

LTPA

keys

and

the

user

registry

between

the

cells

for

SSO

to

work.

The

realm

names

on

each

system

in

the

SSO

domain

are

case

sensitive

and

must

match

identically.

For

local

OS

on

the

Windows

platform,

the

realm

name

is

the

domain

name

if

a

domain

is

in

use

or

the

machine

name.

On

the

Linux

or

UNIX

platforms,

the

release

name

is

the

same

as

the

host

name.

For

the

Lightweight

Directory

Access

Protocol

(LDAP),

the

realm

name

is

the

host:port

realm

of

the

LDAP

server.

The

LTPA

authentication

mechanism

requires

that

you

enable

SSO

if

any

of

the

Web

applications

have

form

login

as

the

authentication

method.

When

you

enable

security

attribute

propagation,

the

following

cookies

are

added

to

the

response:

LtpaToken

The

LtpaToken

is

used

for

interoperating

with

previous

releases

of

WebSphere

Application

Server.

This

token

contains

the

authentication

identity

attribute

only.

LtpaToken2

LtpaToken2

contains

stronger

encryption

and

enables

you

to

add

multiple

attributes

to

the

token.

This

token

contains

the

authentication

identity

and

additional

information

such

as

the

attributes

used

for

contacting

the

original

login

server

and

the

unique

cache

key

for

looking

up

the

Subject

when

considering

more

than

just

the

identity

in

determining

uniqueness.

For

more

information,

see

“Security

attribute

propagation”

on

page

276.

Chapter

2.

Securing

applications

and

their

environments

173

Token

type

Purpose

How

to

specify

LtpaToken

only

This

token

type

is

used

for

the

same

SSO

behavior

existing

in

WebSphere

Application

Server

Version

5.1

and

previous

releases.

Also,

this

token

type

is

interoperable

with

those

previous

releases.

Disable

the

Web

inbound

security

attribute

propagation

option

located

in

the

SSO

configuration

panel

in

the

administrative

console.

To

access

this

panel,

complete

the

following

steps:

1.

Click

Security

>

Authentication

mechanisms

>

LTPA.

2.

Under

Additional

properties,

click

Single

signon

(SSO).

LtpaToken2

only

This

token

type

is

used

for

Web

inbound

security

attribute

propagation

and

uses

the

AES,

CBC,

PKCS5

padding

encryption

strength

(128

bit

key

size).

However,

this

token

type

is

not

interoperable

with

releases

prior

to

WebSphere

Application

Server

Version

5.1.1.

The

token

type

allows

for

multiple

attributes

specified

in

the

token

(mostly

containing

information

to

contact

the

original

login

server).

Enable

the

Web

inbound

security

attribute

propagation

option

in

the

SSO

configuration

panel

within

the

administrative

console.

Disable

the

Interoperability

mode

option

in

the

SSO

configuration

panel

within

the

administrative

console.

To

access

this

panel,

complete

the

following

steps:

1.

Click

Security

>

Authentication

mechanisms

>

LTPA.

2.

Under

Additional

properties,

click

Single

signon

(SSO).

LtpaToken

and

LtpaToken2

These

tokens

together

support

both

of

the

previous

two

options.

The

token

types

are

interoperable

with

releases

prior

to

WebSphere

Application

Server

Version

5.1.1

because

LtpaToken

is

present.

The

security

attribute

propagation

function

is

enabled

because

the

LtpaToken2

is

present.

Enable

the

Web

inbound

security

attribute

propagation

option

in

the

SSO

configuration

panel

within

the

administrative

console.

Enable

the

Interoperability

mode

option

in

the

SSO

configuration

panel

within

the

administrative

console.

To

access

this

panel,

complete

the

following

steps:

1.

Click

Security

>

Authentication

mechanisms

>

LTPA.

2.

Under

Additional

properties,

click

Single

signon

(SSO).

The

following

steps

are

required

to

configure

SSO

for

the

first

time.

1.

Access

the

administrative

console

by

typing

http://localhost:9090/admin

in

a

Web

browser.

2.

Click

Security

>

Authentication

mechanisms

>

LTPA

in

the

Navigation

panel

on

the

left.

Click

Single

Signon

(SSO)

in

the

Additional

Properties

section.

174

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

3.

Click

Enable,

if

SSO

is

disabled.

After

you

click

Enable,

make

sure

that

you

complete

the

remaining

steps

to

enable

security.

4.

Enable

the

Requires

SSL

field

if

all

of

the

requests

are

expected

on

HTTPS.

5.

Optional:

Enable

the

Interoperability

mode

option

if

you

want

to

allow

SSO

connections

in

WebSphere

Application

Server

version

5.1.1

to

interoperate

with

previous

versions

of

the

application

server.

This

option

sets

the

old-style

LtpaToken

into

the

response

so

it

can

be

sent

to

other

servers

that

only

work

with

this

token

type.

However,

this

option

applies

only

when

the

Web

inbound

security

attribute

propagation

option

is

enabled.

In

this

case,

both

the

LtpaToken

and

LtpaToken2

are

added

to

the

response.

Otherwise,

only

the

LtpaToken2

is

added

to

the

response.

If

the

Web

inbound

security

attribute

propagation

option

is

disabled,

then

only

the

LtpaToken

is

added

to

the

response.

6.

Optional:

Enable

the

Web

inbound

security

attribute

propagation

option

if

you

want

information

added

during

the

login

at

a

specific

front-end

server

to

propagate

to

other

front-end

servers.

The

SSO

token

does

not

contain

any

sensitive

attributes,

but

does

understand

where

the

original

login

server

exists

in

cases

where

it

needs

to

contact

that

server

to

retrieve

serialized

information.

It

also

contains

the

cache

look

up

value

for

finding

the

serialized

information

in

DynaCache,

if

both

front-end

servers

are

configured

in

the

same

DRS

replication

domain.

For

more

information,

see

“Security

attribute

propagation”

on

page

276.

Important:

If

the

following

statements

are

true,

it

is

recommended

that

you

disable

the

Web

inbound

security

attribute

propagation

option

for

performance

reasons:

v

You

do

not

have

any

specific

information

added

to

the

Subject

during

a

login

that

cannot

be

obtained

at

a

different

front-end

server.

v

You

did

not

add

custom

attributes

to

the

PropagationToken

using

WSSecurityHelper

application

programming

interfaces

(APIs).

If

you

find

you

are

missing

custom

information

in

the

Subject,

re-enable

the

Web

inbound

security

attribute

propagation

option

to

see

if

the

information

is

propagated

successfully

to

other

front-end

application

servers.

If

you

disable

SSO,

but

use

a

trust

association

interceptor

instead,

you

might

still

need

to

enable

the

Web

inbound

security

attribute

propagation

option

if

you

want

to

retrieve

the

same

Subject

generated

at

different

front-end

servers.

7.

Optional:

Enter

the

fully

qualified

domain

names

in

the

Domain

name

field

where

SSO

is

effective.

The

cookie

is

sent

for

all

of

the

servers

that

are

contained

within

the

domains

that

you

specify

in

this

field.

If

you

specify

domain

names,

they

must

be

fully

qualified.

If

the

domain

name

is

not

fully

qualified,

WebSphere

Application

Server

does

not

set

a

domain

name

value

for

the

LtpaToken

cookie

and

SSO

is

only

valid

for

the

server

that

created

the

cookie.

You

can

configure

the

Domain

name

field

using

any

of

the

following

types

of

values:

v

Leave

the

field

value

blank.

v

Provide

a

single

domain

name.

For

example,

enter

austin.ibm.com.

v

Enter

the

value,

UseDomainFromURL.

v

Provide

multiple

domain

names.

For

example,

enter

austin.ibm.com;raleigh.ibm.com.

Chapter

2.

Securing

applications

and

their

environments

175

v

Provide

multiple

domain

names

and

enter

the

UseDomainFromURL

value.

For

example,

enter

austin.ibm.com;raleigh.ibm.com;UseDomainFromURL

If

you

specify

the

UseDomainFromURL

value

type,

WebSphere

Application

Server

sets

the

SSO

domain

name

value

to

the

domain

of

the

host

that

makes

the

request.

For

example,

if

an

HTTP

request

comes

from

server1.raleigh.ibm.com,

WebSphere

Application

Server

sets

the

SSO

domain

name

value

to

raleigh.ibm.com.

Tip:

The

value,

UseDomainFromURL,

is

case

insensitive.

You

can

type

usedomainfromurl

to

use

this

value.

When

you

specify

multiple

domains,

you

can

use

the

following

delimiters:

a

semicolon

(;),

a

space

(

),

a

comma

(,),

or

a

pipe

(|).

WebSphere

Application

Server

searches

the

specified

domains

in

order

from

left

to

right.

Each

domain

is

compared

with

the

host

name

of

the

HTTP

request

until

the

first

match

is

located.

For

example,

if

you

specify

ibm.com;

austin.ibm.com

and

a

match

is

found

in

the

ibm.com

domain

first,

WebSphere

Application

server

does

not

continue

to

search

for

a

match

in

the

austin.ibm.com

domain.

However,

if

a

match

is

not

found

in

either

the

ibm.com

or

austin.ibm.com

domains,

then

WebSphere

Application

Server

does

not

set

a

domain

for

the

LtpaToken

cookie.

8.

Click

OK.

For

the

changes

to

take

effect,

save,

stop,

and

restart

all

the

product

servers

(cell,

nodes

and

all

the

WebSphere

Application

Server

systems).

Single

signon

settings:

Use

this

page

to

set

the

configuration

values

for

single

signon

(SSO).

To

view

this

administrative

console

page,

click

Security

>

Authentication

Mechanisms

>

LTPA

>

Single

Signon

(SSO).

Requires

SSL:

Specifies

that

the

single

signon

function

is

enabled

only

when

requests

are

made

over

HTTPS

Secure

Sockets

Layer

(SSL)

connections.

Data

type:

Boolean

Default:

Disable

Range:

Enable

or

Disable

Domain

Name:

Specifies

a

fully

qualified

domain

name

(.ibm.com,

for

example)

for

all

single

signon

hosts.

If

the

domain

name

is

not

fully

qualified,

WebSphere

Application

Server

does

not

set

a

domain

name

value

for

the

LtpaToken

cookie

and

SSO

is

only

valid

for

the

server

that

created

the

cookie.

You

can

specify

multiple

domains

separated

by

a

semicolon

(;),

a

space

(

),

a

comma

(,),

or

a

pipe

(|).

WebSphere

Application

Server

searches

the

specified

domains

in

order

from

left

to

right.

Each

domain

is

compared

with

the

host

name

of

the

HTTP

request

until

the

first

match

is

located.

For

example,

if

you

specify

ibm.com;austin.ibm.com

and

a

match

is

found

in

the

ibm.com

domain

first,

WebSphere

Application

server

does

not

match

the

austin.ibm.com

domain.

176

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

However,

if

a

match

is

not

found

in

either

the

ibm.com

or

the

austin.ibm.com

domains,

then

WebSphere

Application

Server

does

not

set

a

domain

for

the

LtpaToken

cookie.

If

you

specify

UseDomainFromURL,

WebSphere

Application

Server

sets

the

SSO

domain

name

value

to

the

domain

of

the

host

used

in

the

URL.

For

example,

if

an

HTTP

request

comes

from

server1.raleigh.ibm.com,

WebSphere

Application

Server

sets

the

SSO

domain

name

value

to

raleigh.ibm.com.

Tip:

The

UseDomainFromURL

value,

is

case

insensitive.

You

can

type

usedomainfromurl

to

use

this

value.

Data

type:

String

Enabled:

Specifies

that

the

single

signon

function

is

enabled.

Web

applications

that

use

Java

2

Enterprise

Edition

(J2EE)

FormLogin

style

login

pages

(such

as

the

WebSphere

Application

Server

administrative

console)

require

single

signon

(SSO)

enablement.

Only

disable

SSO

for

certain

advanced

configurations

where

LTPA

SSO-type

cookies

are

not

required.

Data

type:

Boolean

Default:

Enabled

Range:

Enabled

or

Disabled

Interoperability

mode:

Specifies

that

an

interoperable

cookie

is

sent

to

the

browser

to

support

back-level

servers.

A

new

cookie

format

is

needed

by

the

security

attribute

propagation

functionality.

When

the

interoperability

mode

flag

is

enabled,

the

server

can

send

a

maximum

of

two

single

signon

(SSO)

cookies

back

to

the

browser.

In

some

cases,

the

server

just

sends

the

interoperable

SSO

cookie.

Web

inbound

security

attribute

propagation:

When

Web

inbound

security

attribution

propagation

is

enabled,

security

attributes

are

propagated

to

front-end

application

servers.

When

this

option

is

disabled,

the

single

signon

(SSO)

token

is

used

to

log

in

and

recreate

the

Subject

from

the

user

registry.

If

you

disable

this

option,

the

Web

inbound

login

module

functions

the

same

as

it

did

in

previous

releases.

If

the

application

server

is

a

member

of

a

cluster

and

the

cluster

is

configured

with

a

distributed

replication

service

(DRS)

domain,

then

propagation

occurs.

If

DRS

is

not

configured,

then

the

SSO

token

contains

the

originating

server

information.

With

this

information

the

receiving

server

can

contact

the

originating

server

using

an

MBean

call

to

get

the

original

serialized

security

attributes.

Troubleshooting

single

signon

configurations:

Chapter

2.

Securing

applications

and

their

environments

177

This

article

describes

common

problems

in

configuring

single

signon

(SSO)

between

a

WebSphere

Application

Server

and

a

Domino

server

and

suggests

possible

solutions.

v

Failure

to

save

the

Domino

Web

SSO

configuration

document

The

client

must

be

able

to

find

Domino

server

documents

for

the

participating

SSO

Domino

servers.

The

Web

SSO

configuration

document

is

encrypted

for

the

servers

that

you

specify,

so

the

home

server

indicated

by

the

client

location

record

must

point

to

a

server

in

the

Domino

domain

where

the

participating

servers

reside.

This

pointer

ensures

that

lookups

can

find

the

public

keys

of

the

servers.

If

you

receive

a

message

stating

that

one

or

more

of

the

participating

Domino

servers

cannot

be

found,

then

those

servers

cannot

decrypt

the

Web

SSO

configuration

document

or

perform

SSO.

When

the

Web

SSO

configuration

document

is

saved,

the

status

bar

indicates

how

many

public

keys

were

used

to

encrypt

the

document

by

finding

the

listed

servers,

authors,

and

administrators

on

the

document.

v

Failure

of

the

Domino

server

console

to

load

the

Web

SSO

configuration

document

at

Domino

HTTP

server

startup

During

configuration

of

SSO,

the

server

document

is

configured

for

Multi-Server

in

the

Session

Authentication

field.

The

Domino

HTTP

server

tries

to

find

and

load

a

Web

SSO

configuration

document

during

startup.

The

Domino

server

console

reports

the

following

information

if

a

valid

document

is

found

and

decrypted:

HTTP:

Successfully

loaded

Web

SSO

Configuration.

If

a

server

cannot

load

the

Web

SSO

configuration

document,

SSO

does

not

work.

In

this

case,

a

server

reports

the

following

message:

HTTP:

Error

Loading

Web

SSO

configuration.

Reverting

to

single-server

session

authentication.

Verify

that

only

one

Web

SSO

Configuration

document

is

in

the

Web

Configurations

view

of

the

Domino

directory

and

in

the

$WebSSOConfigs

hidden

view.

You

cannot

create

more

than

one

document,

but

you

can

insert

additional

documents

during

replication.

If

you

can

verify

only

one

Web

SSO

Configuration

document,

consider

another

condition.

When

the

public

key

of

the

Server

document

does

not

match

the

public

key

in

the

ID

file,

this

same

error

message

can

display.

In

this

case,

attempts

to

decrypt

the

Web

SSO

configuration

document

fail

and

the

error

message

is

generated.

This

situation

can

occur

when

the

ID

file

is

created

multiple

times

but

the

Server

document

is

not

updated

correctly.

Usually,

an

error

message

is

displayed

on

the

Domino

server

console

stating

that

the

public

key

does

not

match

the

server

ID.

If

this

situation

occurs,

then

SSO

does

not

work

because

the

document

is

encrypted

with

a

public

key

for

which

the

server

does

not

possess

the

corresponding

private

key.

To

correct

a

key-mismatch

problem:

1.

Copy

the

public

key

from

the

server

ID

file

and

paste

it

into

the

Server

document.

2.

Create

the

Web

SSO

configuration

document

again.
v

Authentication

fails

when

accessing

a

protected

resource.

If

a

Web

user

is

repeatedly

prompted

for

a

user

ID

and

password,

SSO

is

not

working

because

either

the

Domino

or

the

WebSphere

Application

Server

security

server

cannot

authenticate

the

user

with

the

Lightweight

Directory

Access

Protocol

(LDAP)

server.

Check

the

following

possibilities:

–

Verify

that

the

LDAP

server

is

accessible

from

the

Domino

server

machine.

Use

the

TCP/IP

ping

utility

to

check

TCP/IP

connectivity

and

to

verify

that

the

host

machine

is

running.

178

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

–

Verify

that

the

LDAP

user

is

defined

in

the

LDAP

directory.

Use

the

ldapsearch

utility

to

confirm

that

the

user

ID

exists

and

that

the

password

is

correct.

For

example,

you

can

run

the

following

command,

entered

as

a

single

line,

from

the

OS/400

Qshell,

a

UNIX

shell,

or

a

Windows

DOS

prompt:

%

ldapsearch

-D

"cn=John

Doe,

ou=Rochester,

o=IBM,

c=US"

-w

mypassword

-h

myhost.mycompany.com

-p

389

-b

"ou=Rochester,

o=IBM,

c=US"

(objectclass=*)

(The

percent

character

(%)

indicates

the

prompt

and

is

not

part

of

the

command.)

A

list

of

directory

entries

is

expected.

Possible

error

conditions

and

causes

are

contained

in

the

following

list:

-

No

such

object:

This

error

indicates

that

the

directory

entry

referenced

by

either

the

user’s

distinguished

name

(DN)

value,

which

is

specified

after

the

-D

option,

or

the

base

DN

value,

which

is

specified

after

the

-b

option,

does

not

exist.

-

Invalid

credentials:

This

error

indicates

that

the

password

is

invalid.

-

Cannot

contact

the

LDAP

server:

This

error

indicates

that

the

host

name

or

port

specified

for

the

server

is

invalid

or

that

the

LDAP

server

is

not

running.

-

An

empty

list

means

that

the

base

directory

specified

by

the

-b

option

does

not

contain

any

directory

entries.
–

If

you

are

using

the

user’s

short

name

(or

user

ID)

instead

of

the

distinguished

name,

verify

that

the

directory

entry

is

configured

with

the

short

name.

For

a

Domino

directory,

verify

the

Short

name/UserID

field

of

the

Person

document.

For

other

LDAP

directories,

verify

the

userid

property

of

the

directory

entry.

–

If

Domino

authentication

fails

when

using

an

LDAP

directory

other

than

a

Domino

directory,

verify

the

configuration

settings

of

the

LDAP

server

in

the

Directory

assistance

document

in

the

Directory

assistance

database.

Also

verify

that

the

Server

document

refers

to

the

correct

Directory

assistance

document.

The

following

LDAP

values

specified

in

the

Directory

Assistance

document

must

match

the

values

specified

for

the

user

registry

in

the

WebSphere

administrative

domain:

-

Domain

name

-

LDAP

host

name

-

LDAP

port

-

Base

DN

Additionally,

the

rules

defined

in

the

Directory

assistance

document

must

refer

to

the

base

distinguished

name

(DN)

of

the

directory

containing

the

directory

entries

of

the

users.

You

can

trace

Domino

server

requests

to

the

LDAP

server

by

adding

the

following

line

to

the

server

notes.ini

file:

webauth_verbose_trace=1

After

restarting

the

Domino

server,

trace

messages

are

displayed

in

the

Domino

server

console

as

Web

users

attempt

to

authenticate

to

the

Domino

server.
v

Authorization

failure

when

accessing

a

protected

resource.

After

authenticating

successfully,

if

an

authorization

error

message

is

displayed,

security

is

not

configured

correctly.

Check

the

following

possibilities:

–

For

Domino

databases,

verify

that

the

user

is

defined

in

the

access-control

settings

for

the

database.

Refer

to

the

Domino

Administrative

documentation

for

the

correct

way

to

specify

the

user’s

DN.

For

example,

for

the

DN

cn=John

Doe,

ou=Rochester,

o=IBM,

c=US,

the

value

on

the

access-control

list

must

be

set

as

John

Doe/Rochester/IBM/US.

Chapter

2.

Securing

applications

and

their

environments

179

–

For

resources

protected

by

WebSphere

Application

Server,

verify

that

the

security

permissions

are

set

correctly.

-

If

granting

permissions

to

selected

groups,

make

sure

that

the

user

attempting

to

access

the

resource

is

a

member

of

the

group.

For

example,

you

can

verify

the

members

of

the

groups

by

using

the

following

Web

site

to

display

the

directory

contents:

Ldap://myhost.mycompany.com:389/ou=Rochester,

o=IBM,

c=US??sub

-

If

you

have

changed

the

LDAP

configuration

information

(host,

port,

and

base

DN)

in

a

WebSphere

Application

Server

administrative

domain

since

the

permissions

were

set,

the

existing

permissions

are

probably

invalid

and

need

to

be

recreated.
v

SSO

failure

when

accessing

protected

resources.

If

a

Web

user

is

prompted

to

authenticate

with

each

resource,

SSO

is

not

configured

correctly.

Check

the

following

possibilities:

1.

Configure

both

the

WebSphere

Application

Server

and

the

Domino

server

to

use

the

same

LDAP

directory.

The

HTTP

cookie

used

for

SSO

stores

the

full

DN

of

the

user,

for

example,

cn=John

Doe,

ou=Rochester,

o=IBM,

c=US,

and

the

domain

name

service

(DNS)

domain.

2.

Define

Web

users

by

hierarchical

names

if

the

Domino

Directory

is

used.

For

example,

update

the

User

name

field

in

the

Person

document

to

include

names

of

this

format

as

the

first

value:

John

Doe/Rochester/IBM/US.

3.

Specify

the

full

DNS

server

name,

not

just

the

host

name

or

TCP/IP

address

for

Web

sites

issued

to

Domino

servers

and

WebSphere

Application

Servers

configured

for

SSO.

For

browsers

to

send

cookies

to

a

group

of

servers,

the

DNS

domain

must

be

included

in

the

cookie,

and

the

DNS

domain

in

the

cookie

must

match

the

Web

address.

(This

requirement

is

why

you

cannot

use

cookies

across

TCP/IP

domains.)

4.

Configure

both

Domino

and

the

WebSphere

Application

Server

to

use

the

same

DNS

domain.

Verify

that

the

DNS

domain

value

is

exactly

the

same,

including

capitalization.

The

DNS

domain

value

is

found

on

the

Configure

Global

Security

Settings

panel

of

the

WebSphere

Application

Server

administrative

console

and

in

the

Web

SSO

Configuration

document

of

a

Domino

server.

If

you

make

a

change

to

the

Domino

Web

SSO

Configuration

document,

replicate

the

modified

document

to

all

of

the

Domino

servers

participating

in

SSO.

5.

Verify

that

the

clustered

Domino

servers

have

the

host

name

populated

with

the

full

DNS

server

name

in

the

Server

document.

By

using

the

full

DNS

server

name,

Domino

Internet

Cluster

Manager

(ICM)

can

redirect

to

cluster

members

using

SSO.

If

this

field

is

not

populated,

by

default,

ICM

redirects

Web

addresses

to

clustered

Web

servers

by

using

the

host

name

of

the

server

only.

It

cannot

send

the

SSO

cookie

because

the

DNS

domain

is

not

included

in

the

Web

address.

To

correct

the

problem:

a.

Edit

the

Server

document.

b.

Click

Internet

Protocols

>

HTTP

tab.

c.

Enter

the

full

DNS

name

of

the

server

in

the

Host

names

field.
6.

If

a

port

value

for

an

LDAP

server

was

specified

for

a

WebSphere

Application

Server

administrative

domain,

edit

the

Domino

Web

SSO

configuration

document

and

insert

a

backslash

character

(\)

into

the

value

of

the

LDAP

Realm

field

before

the

colon

character

(:).

For

example,

replace

myhost.mycompany.com:389

with

myhost.mycompany.com\:389.

Configuring

WebSphere

Application

Server

to

use

Tivoli

Access

Manager

for

authentication

Use

WebSphere

Application

Server

Version

5.1

to

install

and

pre-configure

the

Tivoli

Access

Manager

Java

run-time

component,

which

uses

the

WebSphere

180

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Application

Server

version

of

the

Java

run

time

during

the

installation.

This

article

does

not

provide

support

for

the

HP-UX

operating

system,

and

the

steps

assume

that

an

external

Tivoli

Access

Manager

server

Version

5.1

already

exists.

Refer

to

the

IBM

Tivoli

Access

Manager

for

e-business

documentation

for

more

information,

including

theIBM

Tivoli

Access

Manager

for

WebSphere

Application

Server

documentation.

To

enable

and

disable

Tivoli

Access

Manager

for

authentication,

complete

the

following

steps:

1.

To

enable

and

disable

Tivoli

Access

Manager

for

authentication,

complete

the

following

steps:

a.

Issue

the

PDJrteCfg

command.

In

a

cell,

run

the

following

command

on

the

Deployment

Manager

first

and

then

on

the

nodes.

Attention:

The

first

two

lines

of

the

following

code

sample

are

one

continuous

line.

The

line

was

split

to

fit

within

the

width

of

the

printed

page.

java

-Djava.ext.dirs

-Dpd.home=″%WAS_HOME%\java\jre\PolicyDirector″

com.tivoli.pd.jcfg.PDJrteCfg

-action

[

config

|

unconfig

]

-was

-config_type

[

full

|

standalone

]

-java_home

<jre_home>

-host

<Policy_Server_host_name>

Detailed

information

on

the

PDJrteCfg

class

is

located

in

the

com.tivoli.pd.jcfg.PDJrteCfg

in

the

Command

Reference

of

the

Tivoli

Access

Manager

Version

5.1

product

documentation.

Here

is

an

example

of

the

configuration

script

to

run.

Attention:

The

following

code

example

should

be

written

as

one

line

of

code.

%WAS_HOME%\java\jre\bin\java

-Djava.ext.dirs

-Dpd.home=″%WAS_HOME%\java\jre\PolicyDirector″

\

-cp

″%WAS_HOME%\java\jre\lib\ext\PD.jar;

%WAS_HOME%\java\jre\lib\ext\ibmjceprovider.jar;

%WAS_HOME%\java\jre\lib\ext\ibmpkcs.jar;

%CLASSPATH%″

\com.tivoli.pd.jcfg.PDJrteCfg

-action

config

-was

-config_type

full

-host

TAM_policy_server_host_name

b.

Issue

the

SvrSslCfg

command.

In

a

cell,

run

the

following

command

on

the

Deployment

Manager

first

and

then

on

the

nodes.

Refer

to

SvrSslCfg

usage

syntax

for

more

information.

Also,

see

the

following

example

for

issuing

this

command:

Note:

The

following

code

example

should

be

written

as

one

line

of

code.

%WAS_HOME%\java\jre\bin\java

com.tivoli.pd.jcfg.SvrSslCfg

-action

config

-admin_id

sec_master

-admin_pwd

password

-appsvr_id

appsvr_name

-appsvr_pwd

security

-port

8888

-mode

remote

-host

was_server_host_name

-policysvr

TAM_policysvr_host_name:7135:1

-authzsvr

TAM_authzsvr_host_name:7136:1

Chapter

2.

Securing

applications

and

their

environments

181

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html
http://publib.boulder.ibm.com/tividd/td/tdprodlist.html
http://publib.boulder.ibm.com/tividd/td/tdprodlist.html
http://publib.boulder.ibm.com/tividd/td/tdprodlist.html
http://publib.boulder.ibm.com/tividd/td/tdprodlist.html

-cfg_file

%WAS_HOME%\java\jre\PdPerm.properties

-key_file

%WAS_HOME%\java\jre\lib\security\PdPerm.ks

-cfg_action

create

c.

Start

WebSphere

Application

Server,

if

not

started

already.

d.

Enable

Tivoli

Access

Manager

in

the

WebSphere

Application

Server

administrative

console.

Check

the

Use

Tivoli

Access

Manager

for

Account

Policies

check

box

on

the

Security

>

User

Registries

>

LDAP

page.

If

security

within

the

LDAP

user

registry

is

not

already

enabled,

then

refer

to

“Configuring

Lightweight

Directory

Access

Protocol

user

registries”

on

page

196

for

more

information.

e.

Stop

and

restart

WebSphere

Application

Server

for

your

changes

to

take

effect.
2.

To

disable

Tivoli

Access

Manager

for

authentication,

complete

the

following

steps:

a.

Deselect

the

Use

Tivoli

Access

Manager

for

Account

Policies

option

on

the

LDAP

user

registry

page

in

the

administrative

console.

b.

Stop

the

WebSphere

Application

Server.

c.

Run

the

SvrSslCfg

command

to

unconfigure

the

WebSphere

Application

Server

to

use

an

existing

Tivoli

Access

Manager

server.

For

more

information,

see

“Configuring

WebSphere

Application

Server

to

use

Tivoli

Access

Manager

server”

on

page

183.

For

example,

Attention:

The

following

code

example

should

be

written

as

one

line

of

code.

%WAS_HOME%\java\jre\bin\java

com.tivoli.pd.jcfg.SvrSslCfg

-action

unconfig

-admin_id

sec_master

-admin_pwd

password

-appsvr_id

appsvr_name

-policysvr

TAM_policysvr_host_name:7135:1

-cfg_file

%WAS_HOME%\java\jre\PdPerm.properties

-host

was_server_host_name

d.

Run

the

PDJrteCfg

command

with

the

unconfig

action.

Command

usage:

Attention:

The

following

code

example

should

be

written

as

one

line

of

code.

java

-Djava.ext.dirs

-Dpd.home=″%WAS_HOME%\java\jre\PolicyDirector″

com.tivoli.pd.jcfg.PDJrteCfg

-action

[

config

|

unconfig

]

-was

-config_type

[

full

|

standalone

]

-java_home

<jre_home>

-host

<Policy_Server_host_name>

Detailed

information

on

the

PDJrteCfg

class

is

located

in

the

com.tivoli.pd.jcfg.PDJrteCfg

in

the

Command

Reference

of

the

Tivoli

Access

Manager

Version

5.1

product

documentation.

Here

is

an

example

of

the

unconfiguration

script.

Attention:

The

following

code

example

should

be

written

as

one

line

of

code.

%WAS_HOME%\java\jre\bin\java

-Djava.ext.dirs

-Dpd.home=″%WAS_HOME%\java\jre\PolicyDirector″

\

-cp

″%WAS_HOME%\java\jre\lib\ext\PD.jar;

182

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html
http://publib.boulder.ibm.com/tividd/td/tdprodlist.html

%WAS_HOME%\java\jre\lib\ext\ibmjceprovider.jar;

%WAS_HOME%\java\jre\lib\ext\ibmpkcs.jar;%CLASSPATH%″

\

com.tivoli.pd.jcfg.PDJrteCfg

-action

unconfig

-was

-java_home

%WAS_HOME%\java\jre

Configuring

WebSphere

Application

Server

to

use

Tivoli

Access

Manager

server:

The

SvrSslCfg

utility

is

used

to

configure

every

WebSphere

Developer

Kit,

Java

Technology

Edition

installation.

For

example,

in

a

Network

Deployment

environment,

run

the

SvrSslCfg

utility

on

the

Deployment

Manager

first

and

then

run

the

utility

on

all

of

the

application

server

nodes,

even

if

the

nodes

are

on

the

same

machine.

1.

Configure

WebSphere

Application

Server

to

use

Tivoli

Access

Manager

by

using

the

“SvrSslCfg

usage

syntax”

on

page

186.

This

utility

is

used

to

configure,

to

remove,

and

to

modify

the

configuration

information

associated

with

the

WebSphere

Application

Server

and

the

Tivoli

Access

Manager

server

that

you

have

configured.

After

running

the

SvrSslCfg

utility

successfully

on

WebSphere

Application

Server,

a

user

account

and

server

entries

representing

the

WebSphere

Application

Server

are

created

in

the

Tivoli

Access

Manager

user

registry.

In

addition,

a

configuration

file

and

a

Java

key

store

file,

which

securely

stores

a

client

certificate,

are

created

locally

on

the

Application

Server.

This

client

certificate

permits

callers

to

use

Tivoli

Access

Manager

authentication

services.

2.

Use

the

“SvrSslCfg

usage

syntax”

on

page

186

also

to

unconfigure

the

communication

of

the

WebSphere

Application

Server

with

Tivoli

Access

Manager.

When

unconfiguring,

you

are

choosing

to

remove

the

user

and

server

entries

from

the

user

registry,

and

clean

up

the

local

configuration

and

key

store

files.

Configuring

an

application

server

in

remote

mode:

1.

After

obtaining

the

necessary

information,

use

the

SvrSslCfg

class

to

create

the

Tivoli

Access

Manager

application

name,

the

configuration

file,

and

the

key

store

file.

Configuring

an

application

server

creates

user

and

server

information

in

the

user

registry

as

well

as

local

configuration

and

key

store

files.

2.

Based

on

the

sample

information

shown

in

the

SvrSslCfg

syntax

article,

the

following

example

script

establishes

a

connection

between

austin.ibm.com

and

the

Tivoli

Access

Manager

secure

domain:

java

com.tivoli.pd.jcfg.SvrSslCfg

-action

config

\

-admin_id

sec_master

-admin_pwd

secpw

\

-appsvr_id

PDPermissionjapp

-appsvr_pwd

pw

-host

austin.ibm.com

\

-mode

remote

-port

999

-policysvr

ampolicy.ibm.com:7135:1

\

-authzsvr

amazn.ibm.com:7136:1

-cfg_file

<install_root>/java/jre/PdPerm.properties

\

-key_file

<install_root>/java/jre/lib/security/pdperm.ks

\

-cfg_action

create

Use

the

-cfg_action

create

option

to

initially

create

the

configuration

and

keystore

files.

Use

the

-cfg_action

replace

option

if

these

files

already

exist.

If

the

-cfg_action

create

option

is

used

and

the

configuration

or

keystore

files

already

exist,

an

exception

is

thrown.

Removing

configuration

information

from

an

application

server:

Chapter

2.

Securing

applications

and

their

environments

183

The

-action

unconfig

option

removes

the

user

and

server

information

from

the

user

registry,

deletes

the

local

keystore

file,

and

removes

information

for

this

application

from

the

configuration

file.

The

configuration

file

is

not

deleted.

This

option

is

illustrated

in

the

following

example:

java

com.tivoli.pd.jcfg.SvrSslCfg

-action

unconfig

\

-admin_id

sec_master

-admin_pwd

secpw

\

-appsvr_id

PDPermissionjapp

-host

austin.ibm.com

\

-policysvr

ampolicy.ibm.com:7135:1

This

operation

fails

when

the

caller

is

unauthorized.

Errors

encountered

during

this

process

are

ignored

to

ensure

that

all

steps

are

attempted.

This

procedure

succeeds

even

if

local

configuration

information

or

information

in

the

user

registry

is

accidentally

deleted.

Enabling

WebSphere

Application

Server

to

use

Tivoli

Access

Manager

for

authentication:

The

WebSphere

Application

Server

can

use

the

Tivoli

Access

Manager

for

authenticating

users

only

when

the

following

LDAP

directory

servers

are

used

as

the

user

registry:

v

IBM

Directory

Server

v

Sun

ONE

directory

server

v

Lotus

Domino

Enterprise

Server

v

Novell

Directory

Server

eDirectory

v

Microsoft

Windows

Active

Directory

v

z/OS

LDAP

Server

When

one

of

these

directory

servers

is

used

as

the

registry,

you

can

use

the

Tivoli

Access

Manager

to

authenticate

users

instead

of

directly

binding

to

the

LDAP

registry

by

accepting

the

password

and

the

account

policies

set

in

the

Tivoli

Access

Manager.

The

following

steps

explain

how

to

set

a

property

in

the

LDAP

custom

properties

section

when

enabling

security.

1.

Verify

that

the

PDJrteCfg

and

SvrSslCfg

commands

have

been

run

as

detailed

in

Configuring

WebSphere

Application

Server

to

use

Tivoli

Access

Manager

for

authentication

and

Configuring

WebSphere

Application

Server

to

use

Tivoli

Access

Manager

server.

2.

Select

the

LDAP

user

registry

by

clicking

Security

>

User

Registries

>

LDAP

in

the

administrative

console.

Confirm

that

you

selected

one

of

the

supported

LDAP

directory

servers

listed

previously.

3.

On

the

LDAP

user

registry

page,

select

the

Use

Tivoli

Access

Manager

for

Account

Policies

check

box

in

the

administrative

console.

Tivoli

Access

Manager

authentication

is

valid

only

when

you

select

LDAP.

The

login

polices

set

in

Tivoli

Access

Manager

are

honored

only

when

the

user

logs

in

with

a

password.

The

login

policies,

however,

are

not

honored

when

a

user

logs

in

without

a

password

(If

the

user

uses

X.509

certificates

instead

of

passwords,

for

example).

For

more

information

see

the

Tivoli

Access

Manager

documentation.

4.

If

you

create

groups

using

Tivoli

Access

Manager,

add

the

objectClass=accessGroup

value

to

the

IBM_Directory_Server

group

filter.

For

example

the

following

code

is

one

continuous

line:

(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=accessGroup)

(objectclass=groupOfUniqueNames)))

184

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html

This

addition

is

required

because

by

default,

the

Tivoli

Access

Manager

creates

the

accessGroup

object

class

and

uses

it

for

all

the

groups

it

creates.

The

default

WebSphere

Application

Server

LDAP

filters

only

look

for

the

groupOfNames

or

groupOfUniqueNames

object

classes.

If

this

change

is

not

made,

authorization

problems

result

when

groups

are

assigned

to

roles.

If

the

groups

are

first

created

in

the

IBM_Directory_Server

registry

and

then

imported

into

the

Tivoli

Access

Manager,

you

do

not

need

to

change

the

filters

because

the

groups

have

the

object

classes

that

the

WebSphere

Application

Server

requires.

5.

Enable

security.

If

security

is

already

enabled,

save

these

changes

and

restart

the

servers

for

the

Tivoli

Access

Manager

authentication

to

take

effect.

Best

practices

for

establishing

Secure

Sockets

Layer

communications

with

Tivoli

Access

Manager

server:

To

create

the

files

necessary

for

establishing

Secure

Sockets

Layer

(SSL)

communications

in

the

secure

domain,

the

SvrSslCfg

class

requires

information

about

the

secure

domain

as

well

as

information

related

to

the

application.

The

following

information

about

the

Tivoli

Access

Manager

secure

domain

is

required:

v

Administrative

user

password

The

password

associated

with

the

Tivoli

Access

Manager

administrative

user.

Typically,

the

user

name

is

sec_master.

v

Policy

server

name

The

name

of

the

system

running

the

Tivoli

Access

Manager

policy

server

named

ivmgrd.

v

Authorization

server

name

The

name

of

the

system

running

the

Tivoli

Access

Manager

authorization

server

named

ivacld.

This

system

might

be

the

same

system

as

the

policy

server.

v

Policy

server

SSL

port

number

The

number

of

the

port

used

for

SSL

communications

with

the

policy

server.

The

default

is

7135.

v

Authorization

server

SSL

port

number

The

number

of

the

port

used

for

SSL

communications

with

the

authorization

server.

The

default

is

7136.

Note:

If

either

the

pdPerm.properties

file

or

the

SSL

keystore

file

becomes

damaged,

you

must

repeat

the

configuration

steps.

Creating

backups

of

these

files

is

recommended.

–

Configuration

file

URL

The

URL

to

the

configuration

file

that

is

manipulated

by

the

SvrSslCfg

class.

–

Keystore

file

URL

The

URL

to

the

keystore

file

that

is

manipulated

by

the

SvrSslCfg

class.

–

Tivoli

Access

Manager

application

name

The

name

of

the

Tivoli

Access

Manager

application

name

that

is

created

and

associated

with

the

SSL

connection

between

this

system

and

the

Tivoli

Access

Manager

servers.

The

configuration

and

keystore

files

are

sensitive

files

that

need

protection.

The

contents

of

the

configuration

file

are

not

externalized

and

are

subject

to

change

without

notice

in

future

releases

of

Tivoli

Access

Manager.

Do

not

use

the

information

in

the

configuration

file

directly.

Use

the

previously

mentioned

information

about

the

secure

domain

to

configure

WebSphere

Application

Server

to

use

Tivoli

Access

Manager.

Chapter

2.

Securing

applications

and

their

environments

185

SvrSslCfg

usage

syntax:

The

following

information

is

a

summary

of

how

to

use

the

com.tivoli.pd.jcfg.SvrSslCfg

class:

java

com.tivoli.pd.jcfg.SvrSslCfg

-action

{config

|unconfig

|

addsvr

|

rmsvr

|chgsvr

|

setport

|setdblisten

|

replcert

}

-admin_id

administrator_user_ID

-admin_pwd

administrator_password

-appsvr_id

application_server_name

-port

port_number

-mode

{

local

|

remote

}

[Note:

local

mode

is

not

supported

in

this

release.]

-policysvr

policy_server_name:port:rank

[,...]

-authzsvr

authorization_server_name:port:rank

[,...]

-cfg_file

fully_qualified_name_of_configuration_file

-key_file

fully_qualified_name_of_keystore_file

-appsvr_pwd

application_server_password

-host

host_name_of_application_server

-dblisten

{

true

|

false

}

-dbdir

name_of_directory_for_local_policy_database

-dbrefresh

refresh_interval_in_seconds

-cfg_action

{

create

|

replace

}

Detailed

information

on

the

SvrSslCfg

class

is

located

in

the

com.tivoli.pd.jcfg.SvrSslCfg

class

description

in

the

Authorization

Java

Classes

Developer’s

Reference

of

the

Tivoli

Access

Manager

product

documentation.

Information

required

to

run

SvrSslCfg

command

Information

Value

Administrator

user

ID

Sec_master

Administrator

password

Secpw

Policy

server,

TCP/IP

communications

port

number,

and

rank

(default

port

is

7135)

ampolicy.Tivoli.com:7135:1

Authorization

server,

TCP/IP

communications

port

number,

and

rank

(default

port

is

7136)

amazn.Tivoli.com:7136:1

Host

name

of

Java

application

system

(used

in

remote

mode

examples)

Jsys.Tivoli.com

TCP/IP

port

on

which

the

application

server

listens

for

communications

from

the

policy

server

999

Application

server

password

pw

Tivoli

Access

Manager

application

ID

PDPermissionjapp

The

application

ID

must

be

unique.

Other

instances

of

the

application

running

on

this

system

or

other

systems

must

each

have

a

unique

ID.

You

can

use

a

distinguished

name

if

an

LDAP-based

user

registry

is

used

by

Tivoli

Access

Manager.

Configuration

file

<install_root>/java/jre/PdPerm.properties

Key

store

file

<install_root>/java/jre

/lib/security/pdperm.ks

186

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Best

practices

for

mapping

credentials

using

IBM

Tivoli

Access

Manager

IBM

Tivoli

Access

Manager

credential

mapping

Currently,

IBM

Tivoli

Access

Manager

supports

a

flexible

global

signon

(GSO)

solution

that

features

the

ability

to

provide

alternate

user

names

and

passwords

to

the

back-end

Web

application

server.

For

detailed

information

on

a

global

signon

solution,

refer

to

Chapter

8

of

the

WebSEAL

Administrator’s

Guide,

which

is

located

in

the

Tivoli

software

information

center.

After

accessing

the

Tivoli

software

information

center,

click

IBM

Tivoli

Access

Manager

for

e-business

and

locate

the

WebSEAL

Administrator’s

Guide.

For

more

information,

access

the

Tivoli

software

information

center.

Click

IBM

Tivoli

Access

Manager

for

e-business

and

locate

the

WebSphere

Application

Server

Integration

Guide.

Global

signon

and

IBM

Tivoli

Access

Manager

user

and

group

management

For

global

signon

resource

management

and

IBM

Tivoli

Access

Manager

user

and

group

management,

access

the

Tivoli

software

information

center

and

click

IBM

Tivoli

Access

Manager

for

e-business.

For

more

information

on

when

you

might

use

the

credential

mapping

services

found

in

Tivoli

Access

Manager

with

WebSphere

Application

Server,

see

“Configuring

inbound

identity

mapping”

on

page

262

and

“Configuring

outbound

mapping

to

a

different

target

realm”

on

page

271.

User

registries

Information

about

users

and

groups

reside

in

a

user

registry.

With

WebSphere

Application

Server,

a

user

registry

authenticates

a

user

and

retrieves

information

about

users

and

groups

to

perform

security-related

functions,

including

authentication

and

authorization.

WebSphere

Application

Server

provides

several

implementations

to

support

multiple

types

of

operating

system

base

user

registries.

You

can

use

the

custom

LDAP

feature

to

support

any

LDAP

server

by

setting

up

the

correct

configuration

(user

and

group

filters).

However,

support

is

not

extended

to

these

custom

LDAP

servers

because

there

are

many

configuration

possibilities.

In

addition

to

Local

operating

system

(OS)

and

LDAP

registries,

WebSphere

Application

Server

also

provides

a

plug-in

that

supports

any

registry

by

using

the

custom

registry

feature

(also

referred

to

as

a

custom

user

registry).

The

custom

registry

feature

supports

any

user

registry

that

is

not

implemented

by

WebSphere

Application

Server.

You

can

use

any

registry

used

in

the

product

environment

by

implementing

the

UserRegistry

interface

interface.

The

UserRegistry

interface

is

very

helpful

in

situations

where

the

current

user

and

group

information

exists

in

some

other

format

(for

example,

a

database)

and

cannot

move

to

Local

OS

or

LDAP.

In

such

a

case,

implement

the

UserRegistry

interface

so

that

WebSphere

Application

Server

can

use

the

existing

registry

for

all

of

the

security-related

operations.

Using

a

custom

registry

is

a

software

implementation

effort,

it

is

expected

that

the

implementation

does

not

depend

on

other

WebSphere

Application

Server

resources,

for

example,

data

sources,

for

its

operation.

Chapter

2.

Securing

applications

and

their

environments

187

http://publib.boulder.ibm.com/tividd/td/tdprodlist.html
http://publib.boulder.ibm.com/tividd/td/tdprodlist.html
http://publib.boulder.ibm.com/tividd/td/tdprodlist.html

Although

WebSphere

Application

Server

supports

different

types

of

user

registries,

only

one

user

registry

can

be

active.

This

active

registry

is

shared

by

all

of

the

product

server

processes.

If

the

product

processes

in

one

node

or

cell

need

to

communicate

with

other

product

processes

in

other

nodes

or

cells

using

Lightweight

Third

Party

Authentication

(LTPA),

all

of

the

nodes

and

cells

share

the

same

user

registry.

Configuring

user

registries

Before

configuring

the

user

registry,

decide

which

registry

to

use.

Though

different

types

of

registries

are

supported,

all

of

the

processes

in

WebSphere

Application

Server

can

use

one

active

registry.

Configuring

the

correct

registry

is

a

prerequisite

to

assigning

users

and

groups

to

roles

for

applications.

When

no

registry

is

configured,

the

LocalOS

registry

is

used

by

default.

So,

if

your

choice

of

registry

is

not

Local

OS

you

need

to

first

configure

the

registry,

which

is

normally

done

as

part

of

enabling

security,

restart

the

servers,

and

then

assign

users

and

groups

to

roles

for

all

your

applications.

After

the

applications

are

assigned

users

and

groups,

and

you

need

to

change

the

registries

(for

example

from

Lightweight

Directory

Access

Protocol

(LDAP)

to

Custom),

delete

all

the

users

and

groups

(including

any

RunAs

role)

from

the

applications,

and

reassign

them

after

changing

the

registry

through

the

administrative

console

or

by

using

wsadmin

scripting.

The

following

wsadmin

command

removes

all

of

the

users

and

groups

(including

the

RunAs

role)

from

any

application:

$AdminApp

deleteUserAndGroupEntries

yourAppName

where

yourAppName

is

the

name

of

the

application.

Backing

up

the

old

application

is

advised

before

performing

this

operation.

However,

if

both

of

the

following

conditions

are

true,

you

might

be

able

to

switch

the

registries

without

having

to

delete

the

users

and

groups

information:

v

All

of

the

user

and

group

names

(including

the

password

for

the

RunAs

role

users)

in

all

of

the

applications

match

in

both

registries.

v

The

application

bindings

file

does

not

contain

the

accessIDs,

which

are

unique

for

each

registry

even

for

the

same

user

or

group

name.

By

default,

an

application

does

not

contain

accessIDs

in

the

bindings

file

(these

IDs

are

generated

when

the

applications

start).

However,

if

you

migrated

an

existing

application

from

an

earlier

release,

or

if

you

used

the

wsadmin

script

to

add

accessIDs

for

the

applications

to

improve

performance

you

have

to

remove

the

existing

user

and

group

information

and

add

the

information

after

configuring

the

new

registry.

For

more

information

on

updating

accessIDs,

see

updateAccessIDs

in

the

AdminApp

object

for

scripted

administration

article.

Complete

one

of

the

following

steps

to

configure

your

user

registry:

v

Configure

the

local

operating

system

user

registry.

v

Configure

the

LDAP

user

registry.

v

Configure

the

custom

user

registry.

This

step

is

required

as

part

of

enabling

security

in

WebSphere

Application

Server.

188

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

1.

If

you

are

enabling

security,

make

sure

that

you

complete

the

remaining

steps.

Verify

that

the

Active

User

Registry

field

in

the

Global

Security

panel

is

set

to

the

appropriate

registry.

As

the

final

step,

validate

the

user

ID

and

the

password

by

clicking

OK

or

Apply

in

the

Global

Security

panel.

Save,

stop

and

start

all

the

WebSphere

Application

Servers.

2.

For

any

changes

in

user

registry

panels

to

be

effective,

you

must

validate

the

changes

by

clicking

OK

or

Apply

in

the

Global

Security

panel.

After

validation,

save

the

configuration,

stop

and

start

all

of

the

WebSphere

Application

Servers

(cells,

nodes

and

all

the

application

servers).

To

avoid

inconsistencies

between

the

WebSphere

Application

Server

processes,

make

sure

that

any

changes

to

the

registry

are

done

when

all

of

the

processes

are

running.

If

any

of

the

processes

are

down,

force

synchronization

to

make

sure

that

the

process

can

start

later.

3.

If

the

server

or

servers

start

without

any

problems,

the

setup

is

correct.

Local

operating

system

user

registries

With

the

local

operating

system,

or

Local

OS,

user

registry

implementation,

the

WebSphere

authentication

mechanism

can

use

the

user

accounts

database

of

the

local

operating

system.

WebSphere

Application

Server

provides

implementations

for

the

Windows

local

accounts

registry

and

domain

registry,

as

well

as

implementations

for

the

Linux,

Solaris,

and

AIX

user

accounts

registries.

Windows

Active

Directory

is

supported

through

the

Lightweight

Directory

Access

Protocol

(LDAP)

user

registry

implementation

discussed

later.

A

Local

OS

user

registry

is

not

a

centralized

user

registry

like

LDAP.

Do

not

use

a

Local

OS

user

registry

in

a

WebSphere

Application

Server

environment,

where

application

servers

are

dispersed

across

more

than

one

machine

because

each

machine

has

its

own

user

registry.

Exceptions

include

a

Windows

domain

registry,

which

is

a

centralized

registry

and

Network

Information

Services

(NIS),

which

is

not

supported

by

WebSphere

Application

Server.

As

mentioned

previously,

the

access-IDs

taken

from

the

user

registry

are

used

during

authorization

checks.

Because

these

IDs

are

typically

unique

identifiers,

they

vary

from

machine

to

machine,

even

if

the

exact

users

and

passwords

exist

on

each

machine.

Web

client

certificate

authentication

is

not

currently

supported

when

using

the

local

operating

system

user

registry.

However,

Java

client

certificate

authentication

does

function

with

a

local

operating

user

registry.

Java

client

certificate

authentication

maps

the

first

attribute

of

the

certificate

domain

name

to

the

user

ID

in

the

user

registry.

Even

though

Java

client

certificates

function

correctly,

the

following

error

displays

in

the

SystemOut.log

file:

SECJ0337E:

The

mapCertificate

method

is

not

supported

The

error

is

intended

for

Web

client

certificates;

however,

it

also

displays

for

Java

client

certificates.

Ignore

this

error

for

Java

client

certificates.

Chapter

2.

Securing

applications

and

their

environments

189

Using

Windows

operating

system

registries

When

enabling

security

on

Windows

operating

systems,

if

the

local

operating

system

(LocalOS)

is

selected

as

the

registry,

consider

the

following

points:

Required

privileges

The

user

that

is

running

the

WebSphere

Application

Server

process

requires

enough

operating

system

privilege

to

call

the

Windows

systems

application

programming

interface

(API)

for

authenticating

and

obtaining

user

and

group

information

from

the

Windows

operating

system.

This

user

logs

into

the

machine,

or

if

running

as

a

service,

is

the

Log

On

As

user.

Depending

on

the

machine

(whether

the

machine

is

a

stand-alone

machine

or

a

machine

that

is

part

of

a

domain

or

is

the

domain

controller),

the

access

requirements

vary.

v

For

a

stand-alone

machine,

the

user:

–

Is

a

member

of

the

administrative

group.

–

Has

the

Act

as

part

of

the

operating

system

privilege.

–

Hase

the

Log

on

as

a

service

privilege,

if

the

server

is

run

as

a

service.
v

For

a

machine

that

is

a

member

of

a

domain,

only

a

domain

user

can

start

the

server

process

and:

–

Is

a

member

of

the

domain

administrative

groups

in

the

domain

controller.

–

Has

the

Act

as

part

of

the

operating

system

privilege

in

the

Domain

Security

Policy

on

the

domain

controller.

–

Has

the

Act

as

part

of

the

operating

system

privilege

in

the

Local

Security

Policy

on

the

local

machine.

–

Has

the

Log

on

as

a

service

privilege

on

the

local

machine,

if

the

server

is

run

as

a

service.

The

user

is

a

domain

user

and

not

a

local

user,

which

implies

that

when

a

machine

is

part

of

a

domain,

only

a

domain

user

can

start

the

server.
v

For

a

domain

controller

machine,

the

user:

–

Is

a

member

of

the

domain

administrative

groups

in

the

domain

controller.

–

Has

the

Act

as

part

of

the

operating

system

privilege

in

the

Domain

Security

Policy

on

the

domain

controller.

–

Has

the

Log

on

as

a

service

privilege

on

the

domain

controller,

if

the

server

is

run

as

a

service.

To

give

a

user

the

Act

as

part

of

the

operating

system

or

Log

on

as

a

service

on

Windows

2000

systems:

1.

Click

Start

>

Settings

>

Control

Panel

>

Administrative

Tools

>

Local

Security

Policy

>

Local

Policies

>

User

Rights

Assignments

>

Act

as

part

of

the

operating

system

(or

Log

on

as

a

service)

.

2.

Add

the

user

name

by

clicking

Add.

3.

Restart

the

machine.

Windows

2000

domain

controller

users:

For

a

Windows

2000

domain

controller

replace

Local

Security

Policy

with

Domain

Security

Policy

in

the

previous

step.

Note:

In

all

of

the

previous

configurations,

the

server

can

be

run

as

a

service

using

the

LocalSystem

for

the

Log

On

As

entry.

LocalSystem

has

the

required

privileges

and

there

is

no

need

to

give

any

user

special

privilege.

However,

because

the

LocalSystem

has

special

privileges,

make

sure

that

it

is

appropriate

to

use

it

in

your

environment.

If

the

user

running

the

server

does

not

have

the

required

privilege,

you

might

see

one

of

the

following

exception

messages

in

the

log

files:

190

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

v

A

required

privilege

is

not

held

by

the

client.

v

Access

is

denied.

Domain

and

local

registries

When

WebSphere

Application

Server

is

started,

the

security

run

time

initialization

process

dynamically

attempts

to

determine

if

the

local

machine

is

a

member

of

a

Windows

domain.

If

the

machine

is

part

of

a

domain

then

by

default

both

the

local

registry

users

or

groups

and

the

domain

registry

users

or

groups

can

be

used

for

authentication

and

authorization

purposes

with

the

domain

registry

taking

precedence.

The

list

of

users

and

groups

presented

during

the

security

role

mapping

would

then

include

users

and

groups

from

both

the

local

user

registry

and

the

domain

user

registry.

The

users

and

groups

can

be

distinguished

by

the

host

names

associated

with

them.

WebSphere

Application

Server

does

not

support

trusted

domains.

If

the

machine

is

not

a

member

of

a

Windows

system

domain,

the

user

registry

local

to

that

machine

is

used.

Using

both

the

domain

registry

and

the

local

registry

When

the

machine

hosting

the

WebSphere

Application

Server

process

is

a

member

of

a

domain,

both

the

local

and

the

domain

registries

are

used

by

default.

The

following

section

describes

more

on

this

topic

and

recommends

some

best

practices

to

avoid

undesirable

consequences.

v

Best

Practices

In

general,

if

the

local

and

the

domain

registries

do

not

contain

common

users

or

groups,

it

is

simpler

to

administer

and

it

eliminates

undesirable

side

effects.

So

if

possible,

give

users

and

groups

access

to

unique

security

roles

(including

the

server

ID

and

administrative

roles).

In

this

situation,

select

the

users

and

groups

from

either

the

local

registry

or

the

domain

registry

to

map

to

the

roles.

In

cases

where

the

same

users

or

groups

exist

in

both

the

local

registry

and

the

domain

registry,

it

is

recommended

that

at

least

the

server

ID

and

the

users

and

groups

that

are

mapped

to

the

administrative

roles

be

unique

in

the

registries

(exist

only

on

the

domain).

If

a

common

set

of

users

exists,

set

a

different

password

to

make

sure

that

the

appropriate

user

is

authenticated.

v

How

it

works

When

a

machine

is

part

of

a

domain,

the

domain

user

registry

takes

precedence

over

the

local

user

registry.

For

example,

when

a

user

logs

into

the

system,

the

domain

registry

tries

to

authenticate

the

user

first.

If

the

authentication

fails

the

local

registry

is

used.

When

a

user

or

a

group

is

mapped

to

a

role,

the

user

and

group

information

is

first

obtained

from

the

domain

registry.

In

case

of

failure,

the

local

registry

is

tried.

However,

when

a

fully

qualified

user

or

a

group

name

(one

that

has

a

domain

or

host

name

attached

to

it)

is

mapped

to

a

role,

then

only

that

registry

is

used

to

get

the

information.

Use

the

administrative

console

or

scripts

to

get

the

fully

qualified

user

and

group

names

and

is

the

recommended

way

to

map

users

and

groups

to

roles.

Note:

A

user

Bob

on

one

machine

(the

local

registry,

for

example)

is

not

the

same

as

the

user

Bob

on

another

machine

(say

the

domain

registry)

because

the

uniqueID

of

Bob

(the

security

identifier

[SID],

in

this

case)

is

different

in

different

registries.

v

Examples

Chapter

2.

Securing

applications

and

their

environments

191

The

machine

MyMachine

is

part

of

the

domain

MyDomain.

MyMachine

contains

the

following

users

and

groups:

–

MyMachine\user2

–

MyMachine\user3

–

MyMachine\group2

MyDomain

contains

the

following

users

and

groups:

–

MyDomain\user1

–

MyDomain\user2

–

MyDomain\group1

–

MyDomain\group2

Here

are

some

scenarios

that

assume

the

previous

set

of

users

and

groups.

1.

When

user2

logs

into

the

system,

the

domain

registry

is

used

for

authentication.

If

the

authentication

fails

(the

password

is

different)

the

local

registry

is

used.

2.

If

the

user

MyMachine\user2

is

mapped

to

a

role,

only

the

user2

in

MyMachine

has

access.

So

if

the

user2

password

is

the

same

on

both

the

local

and

the

domain

registries,

user2

cannot

access

the

resource,

because

user2

is

always

authenticated

using

the

domain

registry.

Hence,

if

both

registries

have

common

users,

it

is

recommended

that

the

password

be

different.

3.

If

the

group2

is

mapped

to

a

role,

only

the

users

who

are

members

of

the

MyDomain\group2

can

access

the

resource

because

group2

information

is

first

obtained

from

the

domain

registry.

4.

If

the

group

MyMachine\group2

is

mapped

to

a

role,

only

the

users

who

are

members

of

the

MyMachine\group2

can

access

the

resource.

A

specific

group

is

mapped

to

the

role

(MyMachine\group2

instead

of

just

group2).

5.

Use

either

user3

or

MyMachine\user3

to

map

to

a

role,

because

user3

is

unique;

it

exists

in

one

registry

only.

Authorizing

with

the

domain

user

registry

first

can

cause

problems

if

a

user

exists

in

both

the

domain

and

local

user

registries

with

the

same

password.

Role-based

authorization

can

fail

in

this

situation

because

the

user

is

first

authenticated

within

the

domain

user

registry.

This

authentication

produces

a

unique

domain

security

ID

that

is

used

in

WebSphere

Application

Server

during

the

authorization

check.

However,

the

local

user

registry

is

used

for

role

assignment.

The

domain

security

ID

does

not

match

the

unique

security

ID

associated

with

the

role.

To

avoid

this

problem,

map

security

roles

to

domain

users

instead

of

local

users.

Using

either

the

local

or

the

domain

registry.

If

you

want

to

access

users

and

groups

from

either

the

local

registry

or

the

domain

registry,

instead

of

both,

set

the

property

com.ibm.websphere.registry.UseRegistry.

This

property

can

be

set

to

either

local

or

domain.

When

this

property

is

set

to

local

(case

insensitive)

only

the

local

registry

is

used.

When

this

property

is

set

to

domain

(case

insensitive)

only

the

domain

registry

is

used.

Set

this

property

by

clicking

Custom

Properties

in

the

Security

>

User

Registries

>

Local

OS

panel

in

the

administrative

console

or

by

using

scripts.

When

the

property

is

set,

the

privilege

requirement

for

the

user

who

is

running

the

product

process

does

not

change.

For

example,

if

this

property

is

set

to

local,

the

user

running

the

process

requires

the

same

privilege,

as

if

the

property

was

not

set.

Using

UNIX

system

registries

When

using

UNIX

system

registries,

the

process

ID

that

runs

the

WebSphere

Application

Server

process

needs

the

root

authority

to

call

the

local

operating

system

APIs

for

authentication

and

for

obtaining

user

or

group

information.

192

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Note:

In

UNIX

systems,

only

the

local

machine

registry

is

used.

Network

Information

Service

(NIS)

(Yellow

Pages)

is

not

supported.

Using

Linux

and

Solaris

system

registries

For

WebSphere

Application

Server

Local

OS

security

registry

to

work

on

the

Linux

and

Solaris

platforms,

a

shadow

password

file

must

exist.

The

shadow

password

file

is

named

shadow

and

is

located

in

the

/etc

directory.

If

the

shadow

password

file

does

not

exist,

an

error

occurs

after

enabling

global

security

and

configuring

the

user

registry

as

Local

OS.

To

create

the

shadow

file,

run

the

pwconv

command

(with

no

parameters).

This

command

creates

an

/etc/shadow

file

from

the

/etc/passwd

file.

After

creating

the

shadow

file,

you

can

enable

local

operating

system

security

successfully.

Remote

registries

By

default,

the

registry

is

local

to

all

of

the

product

processes.

The

performance

is

higher,

(no

need

for

remote

calls)

and

the

registry

also

increases

availability.

Any

process

failing

does

not

effect

other

processes.

When

using

LocalOS

as

the

registry,

every

product

process

must

run

with

privilege

access

(root

in

UNIX,

Act

as

part

of

operating

system

in

Windows

systems).

If

this

process

is

not

practical

in

some

situations,

you

can

use

a

remote

registry

from

the

node

(or

in

very

rare

situations

from

the

cell).

Using

a

remote

registry

affects

performance

and

creates

a

single

point

of

failure.

Use

remote

registries

only

in

rare

situations.

The

node

and

the

cell

processes

are

meant

for

manipulating

configuration

information

and

using

them

to

host

the

registry

for

all

the

application

servers

creates

traffic

and

can

cause

problems.

Using

a

node

agent

(instead

of

the

cell)

to

host

the

remote

registry

is

preferable

because

since

the

cell

process

is

not

designed

to

be

highly

available.

Also,

using

a

node

to

host

the

remote

registry

indicates

that

only

the

application

servers

in

that

node

are

using

it.

Because

the

Node

Agent

does

not

contain

any

application

code,

giving

it

the

access

required,

privilege

is

not

a

concern.

You

can

set

up

a

remote

registry

by

setting

the

WAS_UseRemoteRegistry

property

in

the

Global

Security

panel

using

the

Custom

Properties

link

at

the

bottom

of

the

administrative

console

panel.

Use

either

the

Cell

or

the

Node

(case

insensitive)

value.

If

the

value

is

Cell,

the

cell

registry

is

used

by

all

of

the

product

processes

including

the

node

agent

and

all

of

the

application

servers.

If

the

cell

process

is

down

for

any

reason,

restart

all

of

the

processes

after

the

cell

is

restarted.

If

the

node

agent

registry

needs

is

used

for

the

remote

registry,

set

the

value,

WAS_UseRemoteRegistry,

to

node.

In

this

case,

all

the

application

server

processes

use

the

node

agent

registry.

In

this

case,

if

the

node

agent

fails

and

does

not

start

automatically,

then

depending

on

that

node

agent,

you

might

need

to

restart

all

the

application

servers,

after

the

node

agent

is

started.

Configuring

local

operating

system

user

registries

For

security

purposes,

the

WebSphere

Application

Server

provides

and

supports

the

implementation

for

Windows

operating

system

registries,

AIX,

Solaris

and

multiple

versions

of

Linux

operating

systems.

The

respective

operating

system

APIs

are

called

by

the

product

processes

(servers)

for

authenticating

a

user

and

other

security-related

tasks

(for

example,

getting

user

or

group

information).

Access

to

these

APIs

are

restricted

to

users

who

have

special

privileges.

These

privileges

depend

on

the

operating

system

and

are

described

below.

Chapter

2.

Securing

applications

and

their

environments

193

Before

configuring

the

LocalOS

registry

you

need

to

know

the

user

name

(ID)

and

password

to

use

here.

This

user

can

be

any

valid

user

in

the

registry.

This

user

is

referred

to

as

either

a

product

security

server

ID,

a

server

ID

or

a

server

user

ID

in

the

documentation.

Having

a

server

ID

means

that

a

user

has

special

privileges

when

calling

protected

internal

methods.

Normally,

this

ID

and

password

are

used

to

log

into

the

administrative

console

after

security

is

turned

on.

You

can

use

other

users

to

log

in

if

those

users

are

part

of

the

administrative

roles.

When

security

is

enabled

in

the

product,

this

server

ID

and

password

are

authenticated

with

the

registry

during

product

startup.

If

authentication

fails,

the

server

does

not

come

up.

So

it

is

important

to

choose

an

ID

and

password

that

do

not

expire

or

change

often.

If

the

product

server

user

ID

or

password

need

to

change

in

the

registry,

ensure

that

the

changes

are

performed

when

all

the

product

servers

are

up

and

running.

After

the

changes

are

completed

in

the

registry,

use

the

following

steps

to

change

the

ID

and

the

password

information.

Save,

stop,

and

restart

all

the

servers

so

that

the

product

can

use

the

new

ID

or

password.

If

any

problem

arises

after

starting

the

product

because

of

authentication

problems

(that

cannot

be

fixed),

disable

security

before

the

server

can

start

up.

To

avoid

this

step,

make

sure

that

the

changes

are

validated

in

the

Global

Security

panel.

After

the

server

is

up,

change

the

ID

and

password

information

and

enable

security.

When

using

the

Windows

operating

system,

consider

the

following

issues:

v

The

server

ID

needs

to

be

different

from

the

Windows

machine

name

where

the

product

is

installed.

For

example,

if

the

Windows

machine

name

is

vicky

and

the

security

server

ID

is

vicky,

the

Windows

system

fails

when

getting

the

information

(group

information,

for

example)

for

user

vicky.

v

WebSphere

Application

Server

dynamically

determines

whether

the

machine

is

a

member

of

a

Windows

system

domain.

v

WebSphere

Application

Server

does

not

support

Windows

trusted

domains.

v

If

a

machine

is

a

member

of

a

Windows

domain,

both

the

domain

user

registry

and

the

local

user

registry

of

the

machine

participate

in

authentication

and

security

role

mapping.

v

The

domain

user

registry

takes

precedence

over

the

local

user

registry

of

the

machine

and

can

have

undesirable

implications

if

users

with

the

same

password

exist

in

both

user

registries.

v

The

user

that

the

product

processes

run

under

requires

the

Administrative

and

Act

as

part

of

the

operating

system

privileges

to

call

the

Windows

operating

system

APIs

that

authenticate

or

collect

user

and

group

information.

The

process

needs

special

authority,

which

is

given

by

these

privileges.

The

user

in

this

example

might

not

be

the

same

as

the

security

server

ID

(the

requirement

for

which

is

a

valid

user

in

the

registry).

This

user

logs

into

the

machine

(if

using

the

command

line

to

start

the

product

process)

or

the

Log

On

User

setting

in

the

services

panel

if

the

product

processes

have

started

using

the

services.

If

the

machine

is

also

part

of

a

domain,

this

user

is

a

part

of

the

Domain

Admin

group

in

the

domain

to

call

the

operating

system

APIs

in

the

domain

in

addition

to

having

the

Act

as

part

of

operating

system

privilege

in

the

local

machine.

When

using

the

UNIX

operating

systems

(AIX

and

Solaris)

and

Linux,

consider

the

following

points:

v

The

user

that

the

product

processes

run

under

requires

the

root

privilege.

This

privilege

is

needed

to

call

the

UNIX

operating

system

APIs

to

authenticate

or

to

collect

user

and

group

information.

The

process

needs

special

authority,

which

is

given

by

the

root

privilege.

This

user

may

not

be

the

same

as

the

security

server

ID

(the

requirement

is

that

it

should

be

a

valid

user

in

the

registry).

This

user

logs

into

the

machine

and

is

running

the

product

processes.

v

When

using

the

Linux

operating

system,

you

might

need

to

have

the

password

shadow

file

in

your

system.

194

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

The

following

steps

are

needed

to

perform

this

task

initially

when

setting

up

security

for

the

first

time.

1.

Click

Security

>

User

Registries

>

LocalOS

in

the

left

navigation

panel

of

the

administrative

console.

2.

Enter

a

valid

user

name

in

the

Server

User

ID

field.

3.

Enter

the

user

password

in

the

Server

User

Password

field.

4.

Click

OK.

Validation

of

the

user

and

password

does

not

happen

in

this

panel.

Validation

is

only

done

when

you

click

OK

or

Apply

in

the

Global

Security

panel.

If

you

are

enabling

security

for

the

first

time,

complete

the

other

steps

and

go

to

the

Global

Security

panel.

Make

sure

that

LocalOS

is

the

Active

User

Registry.

If

security

was

already

enabled

and

you

had

changed

either

the

user

or

the

password

information

in

this

panel,

make

sure

to

go

to

the

Global

Security

panel

and

click

OK

or

Apply

to

validate

your

changes.

If

your

changes

are

not

validated,

the

server

might

not

come

up.

The

Local

OS

user

registry

has

been

configured.

1.

If

you

are

enabling

security,

complete

the

remaining

steps.

As

the

final

step,

ensure

that

you

validate

the

user

and

password

by

clicking

OK

or

Apply

in

the

Global

Security

panel.

Save,

stop,

and

start

all

the

product

servers.

2.

For

any

changes

in

this

panel

to

be

effective,

you

need

to

save,

stop

and

start

all

the

product

servers

(cell,

nodes

and

all

the

application

servers).

3.

If

the

server

comes

up

without

any

problems

the

setup

is

correct.

Local

operating

system

user

registry

settings:

Use

this

page

to

configure

local

operating

system

user

registry

settings.

To

view

this

administrative

console

page,

click

Security

>

User

Registries

>

Local

OS.

Server

user

ID:

Specifies

a

valid

user

ID

in

the

Local

OS

registry.

This

ID

is

the

security

server

ID,

which

is

only

used

for

WebSphere

Application

Server

security

and

is

not

associated

with

the

system

process

that

runs

the

server.

The

server

calls

the

Local

OS

registry

to

authenticate

and

obtain

privilege

information

about

users

by

calling

the

native

APIs

in

that

particular

registry.

Access

to

native

APIs

is

normally

restricted

to

users

having

special

privileges

(for

example,

root

in

UNIX

systems

and

Act

as

part

of

operating

system

in

Windows

systems).

To

use

security

in

the

application

server,

the

process

ID

(not

the

security

server

ID)

on

which

WebSphere

Application

Server

runs

requires

enough

privileges

to

call

the

system

APIs.

The

special

privilege

means

that

the

process

running

the

WebSphere

Application

Server

needs

to

be

part

of

the

Administrators

group

and

have

the

Act

as

part

of

operating

system

privilege

on

Windows

systems,

and

be

root,

or

have

root

authority

on

UNIX

systems.

When

using

a

Windows

system

registry,

this

ID

cannot

match

the

name

of

the

Windows

machine.

Windows

systems

treat

the

machine

name

bob

as

having

an

account

similar

to

user

bob.

Data

type:

String

Units:

Alphanumeric

characters

Server

user

password:

Chapter

2.

Securing

applications

and

their

environments

195

Specifies

a

valid

user

password

that

corresponds

to

a

valid

user

ID

in

the

Local

OS

registry.

Data

type

String

Lightweight

Directory

Access

Protocol

Lightweight

Directory

Access

Protocol

(LDAP)

is

a

user

registry

in

which

authentication

is

performed

using

an

LDAP

binding.

WebSphere

Application

Server

security

provides

and

supports

implementation

of

most

major

LDAP

directory

servers,

which

can

act

as

the

repository

for

user

and

group

information.

These

LDAP

servers

are

called

by

the

product

processes

(servers)

for

authenticating

a

user

and

other

security-related

tasks

(for

example,

getting

user

or

group

information).

This

support

is

provided

by

using

different

user

and

group

filters

to

obtain

the

user

and

group

information.

These

filters

have

default

values

that

you

can

modify

to

fit

your

needs.

The

custom

LDAP

feature

enables

you

to

use

any

other

LDAP

server

(which

is

not

in

the

product

supported

list

of

LDAP

servers)

for

its

user

registry

by

using

the

appropriate

filters.

To

use

LDAP

as

the

user

registry,

you

need

to

know

a

valid

user

name

(ID),

the

user

password,

the

server

host

and

port,

the

base

distinguished

name

(DN)

and

if

necessary

the

bind

DN

and

the

bind

password.

You

can

choose

any

valid

user

in

the

registry

that

is

searchable.

In

some

LDAP

servers,

the

administrative

users

are

not

searchable

and

cannot

be

used

(for

example,

cn=root

in

SecureWay).

This

user

is

referred

to

as

WebSphere

Application

Server

security

server

ID,

server

ID,

or

server

user

ID

in

the

documentation.

Being

a

server

ID

means

a

user

has

special

privileges

when

calling

some

protected

internal

methods.

Normally,

this

ID

and

password

are

used

to

log

into

the

administrative

console

after

security

is

turned

on.

You

can

use

other

users

to

log

in

if

those

users

are

part

of

the

administrative

roles.

When

security

is

enabled

in

the

product,

this

server

ID

and

password

are

authenticated

with

the

registry

during

the

product

startup.

If

authentication

fails,

the

server

does

not

start.

Choosing

an

ID

and

password

that

do

not

expire

or

change

often

is

important.

If

the

product

server

user

ID

or

password

need

to

change

in

the

registry,

make

sure

that

the

changes

are

performed

when

all

the

product

servers

are

up

and

running.

When

the

changes

are

done

in

the

registry,

use

the

steps

described

in

Configuring

LDAP

user

registries.

Change

the

ID,

password,

and

other

configuration

information,

save,

stop,

and

restart

all

the

servers

so

that

the

new

ID

or

password

is

used

by

the

product.

If

any

problems

occur

starting

the

product

when

security

is

enabled,

disable

security

before

the

server

can

start

up

(to

avoid

these

problems,

make

sure

that

any

changes

in

this

panel

are

validated

in

the

Global

Security

panel).

When

the

server

is

up,

you

can

change

the

ID,

password

and

other

configuration

information

and

then

enable

security.

Configuring

Lightweight

Directory

Access

Protocol

user

registries

Review

the

article

on

Lightweight

Directory

Access

Protocol

(LDAP)

before

beginning

this

task.

1.

In

the

administrative

console,

click

Security

>

User

Registries

>

LDAP

in

the

left

navigation

panel.

196

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

2.

Enter

a

valid

user

name

in

the

Server

User

ID

field.

You

can

either

enter

the

complete

distinguished

name

(DN)

of

the

user

or

the

short

name

of

the

user

as

defined

by

the

User

Filter

in

the

Advanced

LDAP

settings

panel.

For

example,

enter

the

user

ID

for

Netscape.

3.

Enter

the

password

of

the

user

in

the

Server

User

Password

field.

4.

Select

the

type

of

LDAP

server

that

is

used

from

the

Type

list.

The

type

of

LDAP

server

determines

the

default

filters

that

are

used

by

the

WebSphere

Application

Server.

These

default

filters

change

the

Type

field

to

Custom,

which

indicates

that

custom

filters

are

used.

This

action

occurs

after

you

click

OK

or

Apply

in

the

Advanced

LDAP

settings

panel.

Choose

the

Custom

type

from

the

list

and

modify

the

user

and

group

filters

to

use

other

LDAP

servers,

if

required.

If

either

the

IBM

Directory

Server

or

the

iPlanet

Directory

Server

is

selected,

also

select

the

Ignore

Case

field.

5.

Enter

the

fully

qualified

host

name

of

the

LDAP

server

in

the

Host

field.

6.

Enter

the

LDAP

server

port

number

in

the

Port

field.

The

host

name

and

the

port

number

represent

the

realm

for

this

LDAP

server

in

the

WebSphere

Application

Server

cell.

So,

if

servers

in

different

cells

are

communicating

with

each

other

using

Lightweight

Third

Party

Authentication

(LTPA)

tokens,

these

realms

must

match

exactly

in

all

the

cells.

Important:

If

you

are

using

single

signon

between

a

WebSphere

Application

Server

Version

5.0.x

or

5.1

server

and

a

WebSphere

Application

Server

Version

4.0.x

application

server,

you

must

specify

an

LDAP

server

port

number

in

the

administrative

console

by

clicking

Security

>

User

registries

>

LDAP.

You

must

set

the

LDAP

ports

numbers

to

the

same

numerical

value

because

for

WebSphere

Application

Server

Version

5.0.x

or

5.1

the

default

value

is

0

and

for

WebSphere

Application

Server

Version

4.0.x

the

default

value

for

the

port

is

not

0.

7.

Enter

the

Base

distinguished

name

(DN)

in

the

Base

Distinguished

Name

field.

The

Base

DN

indicates

the

starting

point

for

searches

in

this

LDAP

directory

server.

For

example,

for

a

user

with

a

DN

of

cn=John

Doe,

ou=Rochester,

o=IBM,

c=US,

specify

the

Base

DN

as

any

of

the

following

options

(assuming

a

suffix

of

c=us):

ou=Rochester,

o=IBM,

c=us

or

o=IBM

c=us

or

c=us.

This

field

can

be

case

sensitive.

Match

the

case

in

your

directory

server.

This

field

is

required

for

all

LDAP

directories

except

the

Domino

Directory.

The

Base

DN

field

is

optional

for

the

Domino

server.

8.

Enter

the

Bind

DN

name

in

the

Bind

Distinguished

Name

field,

if

necessary.

The

Bind

DN

is

required

if

anonymous

binds

are

not

possible

on

the

LDAP

server

to

obtain

user

and

group

information.

If

the

LDAP

server

is

set

up

to

use

anonymous

binds,

leave

this

field

blank.

9.

Enter

the

password

corresponding

to

the

Bind

DN

in

the

Bind

password

field,

if

necessary.

10.

Modify

the

Search

Time

Out

value

if

required.

This

timeout

value

is

the

maximum

amount

of

time

that

the

LDAP

server

waits

to

send

a

response

to

the

product

client

before

aborting

the

request.

The

default

is

120

seconds.

11.

Disable

the

Reuse

Connection

field

only

if

you

use

routers

to

send

requests

to

multiple

LDAP

servers,

and

if

the

routers

do

not

support

affinity.

Leave

this

field

enabled

for

all

other

situations.

12.

Enable

the

Ignore

Case

flag,

if

required.

When

this

flag

is

enabled,

the

authorization

check

is

case

insensitive.

Normally,

an

authorization

check

involves

checking

the

complete

DN

of

a

user,

which

is

unique

in

the

LDAP

server

and

is

case

sensitive.

However,

when

using

either

the

IBM

Directory

Server

or

the

iPlanet

Directory

Server

LDAP

servers,

this

flag

needs

enabling

because

the

group

information

obtained

from

the

LDAP

servers

is

not

consistent

in

case.

This

inconsistency

only

effects

the

authorization

check.

Chapter

2.

Securing

applications

and

their

environments

197

13.

Enable

Secure

Sockets

Layer

(SSL)

if

the

communication

to

the

LDAP

server

is

through

SSL.

For

more

information

on

setting

up

LDAP

for

SSL,

refer

to

Configuring

SSL

for

LDAP

clients.

14.

If

SSL

is

enabled,

select

the

appropriate

SSL

alias

configuration

from

the

list

in

the

SSL

configuration

field.

15.

Click

OK.

The

validation

of

the

user,

password,

and

the

setup

do

not

take

place

in

this

panel.

Validation

is

only

done

when

you

click

OK

or

Apply

in

the

Global

Security

panel.

If

you

are

enabling

security

for

the

first

time,

complete

the

remaining

steps

and

go

to

the

Global

Security

panel.

Select

LDAP

as

the

Active

User

Registry.

If

security

is

already

enabled,

but

information

on

this

panel

changes,

go

to

the

Global

Security

panel

and

click

OK

or

Apply

to

validate

your

changes.

If

your

changes

are

not

validated,

the

server

might

not

come

up.

Sets

the

LDAP

registry

configuration.

This

step

is

required

to

set

up

the

LDAP

registry.

This

step

is

required

as

part

of

enabling

security

in

the

WebSphere

Application

Server.

1.

If

you

are

enabling

security,

complete

the

remaining

steps.

As

the

final

step,

validate

this

setup

by

clicking

OK

or

Apply

in

the

Global

Security

panel.

2.

Save,

stop,

and

restart

all

the

product

servers

(cell,

nodes

and

all

the

application

servers)

for

changes

in

this

panel

to

take

effect.

3.

If

the

server

comes

up

without

any

problems

the

setup

is

correct.

Lightweight

Directory

Access

Protocol

settings:

Use

this

page

to

configure

Lightweight

Directory

Access

Protocol

(LDAP)

settings

when

users

and

groups

reside

in

an

external

LDAP

directory.

To

view

this

administrative

console

page,

click

Security

>

User

Registries

>

LDAP.

When

security

is

enabled

and

any

of

these

properties

change,

go

to

the

Global

Security

panel

and

click

Apply

to

validate

the

changes.

Server

User

ID:

Specifies

the

user

ID

under

which

the

server

runs,

for

security

purposes.

Although

this

ID

is

not

the

LDAP

administrator

user

ID,

specify

a

valid

entry

in

the

LDAP

directory

located

under

the

Base

Distinguished

Name.

Server

User

Password:

Specifies

the

password

corresponding

to

the

security

server

ID.

Type:

Specifies

the

type

of

LDAP

server

to

which

you

connect.

The

type

is

used

to

preload

default

LDAP

properties.

IBM

Directory

Server

users

can

choose

either

IBM_Directory_Server

or

SecureWay

as

the

directory

type.

Use

the

IBM_Directory_server

directory

type

for

better

performance.

Users

of

the

iPlanet

Directory

Server

can

choose

either

iPlanet

Directory

Server

or

NetScape

as

the

directory

type.

Use

the

iPlanet

Directory

Server

directory

type

for

better

performance

after

configuring

iPlanet

to

use

role

(nsRole)

as

the

grouping

method.

198

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

IBM

SecureWay

Directory

Server

is

not

supported.

For

a

list

of

supported

LDAP

servers,

see

″Supported

directory

services.″

in

the

documentation.

Host:

Specifies

the

host

ID

(IP

address

or

domain

name

service

(DNS)

name)

of

the

LDAP

server.

Port:

Specifies

the

host

port

of

the

LDAP

server.

If

multiple

WebSphere

Application

Servers

are

installed

and

configured

to

run

in

the

same

single

signon

domain,

or

if

the

WebSphere

Application

Server

interoperates

with

a

previous

version

of

the

WebSphere

Application

Server,

then

it

is

important

that

the

port

number

match

all

configurations.

For

example,

if

the

LDAP

port

is

explicitly

specified

as

389

in

a

Version

4.0.x

configuration,

and

a

WebSphere

Application

Server

at

Version

5

is

going

to

interoperate

with

the

Version

4.0.x

server,

then

verify

that

port

389

is

specified

explicitly

for

the

Version

5

server.

Default:

389

Base

Distinguished

Name:

Specifies

the

base

distinguished

name

of

the

directory

service,

indicating

the

starting

point

for

LDAP

searches

of

the

directory

service.

For

example,

for

a

user

with

a

distinguished

name

(DN)

of

cn=John

Doe,

ou=Rochester,

o=IBM,

c=US,

you

can

specify

the

base

DN

as

(assuming

a

suffix

of

c=us):

ou=Rochester,o=IBM,c=us

or

o=IBM,c=us.

For

authorization

purposes,

this

field

is

case

sensitive.

This

specification

implies

that

if

a

token

is

received

(for

example,

from

another

cell

or

Domino)

the

base

DN

in

the

server

must

match

the

base

DN

from

the

other

cell

or

Domino

server

exactly.

If

case

sensitivity

is

not

a

consideration

for

authorization,

enable

the

Ignore

Case

field.

If

you

need

to

interoperate

between

WebSphere

Application

Server

Version

5

and

a

Version

5.0.1

or

later

server,

you

must

enter

a

normalized

base

distinguished

name.

A

normalized

base

distinguished

name

does

not

contain

spaces

before

or

after

commas

and

equal

symbols.

An

example

of

a

non-normalized

base

distinguished

name

is

o

=

ibm,

c

=

us

or

o=ibm,

c=us.

An

example

of

a

normalized

base

distinguished

name

is

o=ibm,c=us.

In

WebSphere

Application

Server,

Version

5.0.1

or

later,

the

normalization

occurs

automatically

at

the

run

time

This

field

is

required

for

all

Lightweight

Directory

Access

Protocol

(LDAP)

directories

except

for

the

Domino

Directory,

where

this

field

is

optional.

Bind

Distinguished

Name:

Specifies

the

distinguished

name

for

the

application

server

to

use

when

binding

to

the

directory

service.

If

no

name

is

specified,

the

application

server

binds

anonymously.

See

the

Base

Distinguished

Name

field

description

for

examples

of

distinguished

names.

Chapter

2.

Securing

applications

and

their

environments

199

Bind

Password:

Specifies

the

password

for

the

application

server

to

use

when

binding

to

the

directory

service.

Search

Timeout:

Specifies

the

timeout

value

in

seconds

for

an

Lightweight

Directory

Access

Protocol

(LDAP)

server

to

respond

before

aborting

a

request.

Default:

120

Reuse

connection:

Specifies

whether

the

server

reuses

the

Lightweight

Directory

Access

Protocol

(LDAP)

connection.

Clear

this

option

only

in

rare

situations

where

a

router

is

used

to

spray

requests

to

multiple

LDAP

servers

and

when

the

router

does

not

support

affinity.

Default:

Enabled

Range:

Enabled

or

Disabled

Ignore

Case:

Specifies

that

a

case

insensitive

authorization

check

is

performed.

This

field

is

required

when

IBM

Directory

Server

is

selected

as

the

LDAP

directory

server.

This

field

is

required

when

Sun

ONE

Directory

Server

is

selected

as

the

LDAP

directory

server.

For

more

information,

see

″Using

specific

directory

servers

as

the

LDAP

server″

in

the

documentation.

Otherwise,

this

field

is

optional

and

can

be

enabled

when

a

case-sensitive

authorization

check

is

required.

For

example,

use

this

field

when

the

certificates

and

the

certificate

contents

do

not

match

the

case

used

for

the

entry

in

the

LDAP

server.

You

can

enable

the

Ignore

Case

field

when

using

single

signon

(SSO)

between

WebSphere

Application

Server

and

Lotus

Domino.

Default:

Disabled

Range:

Enabled

or

Disabled

SSL

Enabled:

Specifies

whether

secure

socket

communication

is

enabled

to

the

Lightweight

Directory

Access

Protocol

(LDAP)

server.

When

enabled,

the

LDAP

Secure

Sockets

Layer

(SSL)

settings

are

used,

if

specified.

SSL

Configuration:

Specifies

the

Secure

Sockets

Layer

configuration

to

use

for

the

Lightweight

Directory

Access

Protocol

(LDAP)

connection.

This

configuration

is

used

only

when

SSL

is

enabled

for

LDAP.

Default:

DefaultSSLSettings

200

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Use

Tivoli

Access

Manager

for

Account

Policies:

Select

this

option

to

indicate

that

the

Tivoli

Access

Manager

is

used

for

authentication

to

honor

password

and

account

policies.

This

option

requires

that

you

have

previously

installed

the

Tivoli

Access

Manager.

Do

not

select

this

option

unless

you

have

a

Tivoli

Access

Manager

Server

installed

and

configured

to

be

used

by

WebSphere

Application

Server.

The

Lightweight

Directory

Access

Protocol

(LDAP)

directory

server

used

by

the

Tivoli

Access

Manager

must

be

the

same

LDAP

directory

server

that

is

used

by

WebSphere

Application

Server.

Important:

When

you

select

this

option,

IBM

SecureWay

Directory

Server

is

not

supported

as

an

LDAP

directory

server.

Lightweight

Directory

Access

Protocol

advanced

settings:

Use

this

page

to

configure

advanced

Lightweight

Directory

Access

Protocol

(LDAP)

user

registry

settings

when

users

and

groups

reside

in

an

external

LDAP

directory.

To

view

this

administrative

page,

click

Security

>

User

Registries

>

LDAP

Advanced

LDAP

settings.

Default

values

for

all

the

user

and

group

related

filters

are

already

completed

in

the

appropriate

fields.

You

can

change

these

values

depending

on

your

requirements.

These

default

values

are

based

on

the

type

of

LDAP

server

selected

in

the

LDAP

settings

panel.

If

this

type

changes

(for

example

from

Netscape

to

Secureway)

the

default

filters

automatically

change.

When

the

default

filter

values

change,

the

LDAP

server

type

changes

to

Custom

to

indicate

that

custom

filters

are

used.

When

security

is

enabled

and

any

of

these

properties

change,

go

to

the

Global

Security

panel

and

click

Apply

or

OK

to

validate

the

changes.

User

Filter:

Specifies

the

LDAP

user

filter

that

searches

the

registry

for

users.

This

option

is

typically

used

for

Security

Role

to

User

assignments.

It

specifies

the

property

by

which

to

look

up

users

in

the

directory

service.

For

example,

to

look

up

users

based

on

their

user

IDs,

specify

(&(uid=%v)(objectclass=inetOrgPerson)).

For

more

information

about

this

syntax,

see

the

LDAP

directory

service

documentation.

Data

type:

String

Group

Filter:

Specifies

the

LDAP

group

filter

that

searches

the

user

registry

for

groups

This

option

is

typically

used

for

Security

Role

to

Group

assignments.

It

specifies

the

property

by

which

to

look

up

groups

in

the

directory

service.

For

more

information

about

this

syntax,

see

the

LDAP

directory

service

documentation.

Data

type:

String

Chapter

2.

Securing

applications

and

their

environments

201

User

ID

Map:

Specifies

the

LDAP

filter

that

maps

the

short

name

of

a

user

to

an

LDAP

entry.

Specifies

the

piece

of

information

that

represents

users

when

users

appear.

For

example,

to

display

entries

of

the

type

object

class

=

inetOrgPerson

by

their

IDs,

specify

inetOrgPerson:uid.

This

field

takes

multiple

objectclass:property

pairs

delimited

by

a

semicolon

(;).

Data

type:

String

Group

ID

Map:

Specifies

the

LDAP

filter

that

maps

the

short

name

of

a

group

to

an

LDAP

entry.

Specifies

the

piece

of

information

that

represents

groups

when

groups

appear.

For

example,

to

display

groups

by

their

names,

specify

*:cn.

The

asterisk

(*)

is

a

wildcard

character

that

searches

on

any

object

class

in

this

case.

This

field

takes

multiple

objectclass:property

pairs

delimited

by

a

semicolon

(;).

Data

type:

String

Group

Member

ID

Map:

Specifies

the

LDAP

filter

which

identifies

user

to

group

relationships.

For

directory

types

SecureWay,

Netscape,

and

Domino,

this

field

takes

multiple

objectclass:property

pairs,

delimited

by

a

semicolon

(;).

In

an

objectclass:property

pair,

the

objectclass

value

is

the

same

objectclass

that

is

defined

in

the

Group

Filter,

and

the

property

is

the

member

attribute.

If

the

objectclass

value

does

not

match

the

objectclass

in

Group

Filter,

authorization

might

fail

if

groups

are

mapped

to

security

roles.

For

more

information

about

this

syntax,

see

your

LDAP

directory

service

documentation.

For

IBM

Directory

Server,

iPlanet

Directory

Server

and

Active

Directory,

this

field

takes

multiple

(group

attribute:member

attribute)

pairs

delimited

by

a

semicolon

(;).

They

are

used

to

find

the

group

memberships

of

a

user

by

enumerating

all

the

group

attributes

possessed

by

a

given

user.

For

example,

attribute

pair

(memberof:member)

is

used

by

Active

Directory,

and

(ibm-allGroup:member)

is

used

by

IBM

Directory

Server

.

This

field

also

specifies

which

property

of

an

objectclass

stores

the

list

of

members

belonging

to

the

group

represented

by

the

objectclass.

For

supported

LDAP

directory

servers,

see

″Supported

directory

services″.

Data

type:

String

Perform

a

nested

group

search:

Specifies

a

recursive

nested

group

search.

Select

this

option

if

the

Lightweight

Directory

Access

Protocol

(LDAP)

server

does

not

support

recursive

server-side

group

member

searches

(and

if

recursive

group

member

search

is

required).

It

is

not

recommended

that

you

select

this

option

to

locate

recursive

group

memberships

for

LDAP

servers.

WebSphere

security

202

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

leverages

the

LDAP

server’s

recursive

search

functionality

to

search

a

user‘s

group

memberships,

including

recursive

group

memberships.

For

example:

v

IBM

Directory

Server

is

pre-configured

by

WebSphere

Application

Server

security

to

recursively

calculate

a

user‘s

group

memberships

using

the

ibm-allGroup

attribute

v

SunONE

directory

server

is

pre-configured

to

calculate

nested

group

memberships

using

the

nsRole

attribute

Data

type:

String

Certificate

Map

Mode:

Specifies

whether

to

map

X.509

certificates

into

an

LDAP

directory

by

EXACT_DN

or

CERTIFICATE_FILTER.

Specify

CERTIFICATE_FILTER

to

use

the

specified

certificate

filter

for

the

mapping.

Data

type:

String

Certificate

Filter:

Specifies

whether

to

use

the

filter

certificate

mapping

property

to

specify

the

LDAP

filter,

which

is

used

to

map

attributes

in

the

client

certificate

to

entries

in

the

LDAP

registry.

To

enable

this

field,

click

CERTIFICATE_FILTER

for

the

certificate

mapping.

If

more

than

one

LDAP

entry

matches

the

filter

specification

at

run

time,

then

authentication

fails

because

it

results

in

an

ambiguous

match.

The

syntax

or

structure

of

this

filter

is:

LDAP

attribute=${Client

certificate

attribute}

(for

example,

uid=${SubjectCN}).

The

left

side

of

the

filter

specification

is

an

LDAP

attribute

that

depends

on

the

schema

that

your

LDAP

server

is

configured

to

use.

The

right

side

of

the

filter

specification

is

one

of

the

public

attributes

in

your

client

certificate.

The

right

side

must

begin

with

a

dollar

sign

($)

and

open

bracket

({)

and

end

with

a

close

bracket

(}).

You

can

use

the

following

certificate

attribute

values

on

the

right

side

of

the

filter

specification.

The

case

of

the

strings

is

important:

v

${UniqueKey}

v

${PublicKey}

v

${PublicKey}

v

${Issuer}

v

${NotAfter}

v

${NotBefore}

v

${SerialNumber}

v

${SigAlgName}

v

${SigAlgOID}

v

${SigAlgParams}

v

${SubjectCN}

v

${Version}

Data

type:

String

Configuring

Lightweight

Directory

Access

Protocol

search

filters

The

WebSphere

Application

Server

uses

Lightweight

Directory

Access

Protocol

(LDAP)

filters

to

search

and

obtain

information

about

users

and

groups

from

an

Chapter

2.

Securing

applications

and

their

environments

203

LDAP

directory

server.

A

default

set

of

filters

is

provided

for

each

LDAP

server

that

the

product

supports.

You

can

modify

these

filters

to

fit

your

LDAP

configuration.

After

the

filters

are

modified

(and

OK

or

Apply

is

clicked)

the

directory

type

in

the

LDAP

Registry

panel

changes

to

custom,

which

indicates

that

custom

filters

are

used.

Also,

you

can

develop

filters

to

support

any

additional

type

of

LDAP

server.

The

effort

to

support

additional

LDAP

directories

is

optional

and

other

LDAP

directory

types

are

not

supported.

1.

In

the

administrative

console,

click

Security

>

User

Registries

>

LDAP

in

the

left

navigation

panel.

Click

Advanced

LDAP

Setting

in

Additional

Properties.

2.

Modify

the

User

filter,

if

necessary.

The

user

filter

is

used

for

searching

the

registry

for

users

and

is

typically

used

for

the

security

role

to

user

assignment.

Also,

the

filter

is

used

to

authenticate

a

user

using

the

attribute

specified

in

the

filter.

The

filter

specifies

the

property

used

to

look

up

users

in

the

directory

service.

In

the

following

example,

the

property

that

is

assigned

to

%v,

which

is

the

short

name

of

the

user,

must

be

a

unique

key.

Two

LDAP

entries

with

the

same

object

class

cannot

have

the

same

short

name.

To

look

up

users

based

on

their

user

IDs

(uid)

and

to

use

the

inetOrgPerson

object

class,

specify

the

following

syntax:

(&(uid=%v)(objectclass=inetOrgPerson)

For

more

information

about

this

syntax,

see

the

LDAP

directory

service

documentation.

3.

Modify

the

Group

filter,

if

necessary.

The

group

filter

is

used

in

searching

the

registry

for

groups

and

is

typically

used

for

the

security

role

to

group

assignment.

Also,

the

filter

is

used

to

specify

the

property

by

which

to

look

up

groups

in

the

directory

service.

In

the

following

example,

the

property

that

is

assigned

to

%v,

which

is

the

short

name

of

the

group,

must

be

a

unique

key.

Two

LDAP

entries

with

the

same

object

class

cannot

have

the

same

short

name.

To

look

up

groups

based

on

their

common

names

(CN)

and

to

use

either

the

groupOfNames

or

the

groupOfUniqueNames

object

class,

specify

the

following

syntax:

(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)))

For

more

information

about

this

syntax,

see

the

LDAP

directory

service

documentation.

4.

Modify

the

User

ID

map

filter,

if

necessary.

This

filter

maps

the

short

name

of

a

user

to

an

LDAP

entry.

It

specifies

the

piece

of

information

that

represents

users

when

these

users

are

displayed

with

their

short

names.

For

example,

to

display

entries

of

the

type

object

class

=

inetOrgPerson

by

their

IDs,

specify

inetOrgPerson:uid.

This

field

takes

multiple

objectclass:property

pairs

delimited

by

a

semicolon

(;).

To

provide

a

consistent

value

for

methods

like

getCallerPrincipal(

),

getUserPrincipal()

the

short

name

obtained

by

using

this

filter

is

used.

For

example,

the

user

CN=Bob

Smith,

ou=austin.ibm.com,

o=IBM,

c=US

can

log

in

using

any

attributes

that

are

defined

(for

example,

e-mail

address,

social

security

number,

and

so

on)

but

when

these

methods

are

called,

the

user

ID

bob

is

returned

no

matter

how

the

user

logs

in.

5.

Modify

the

Group

ID

Map

filter,

if

necessary.

This

filter

maps

the

short

name

of

a

group

to

an

LDAP

entry.

It

specifies

the

piece

of

information

that

represents

groups

when

groups

display.

For

example,

to

display

groups

by

their

names,

specify

*:cn.

The

(*)

is

a

wildcard

character

that

searches

on

any

object

class

in

this

case.

This

field

takes

multiple

objectclass:property

pairs

delimited

by

a

semicolon

(;).

6.

Modify

the

Group

Member

ID

Map

filter,

if

necessary.

This

filter

identifies

user

to

group

memberships.

For

SecureWay,

Netscape,

and

Domino

directory

204

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

types,

this

field

is

used

to

query

all

the

groups

that

match

the

specified

object

classes

to

find

if

the

user

is

contained

in

the

attribute

specified.

For

example,

to

get

all

the

users

belonging

to

groups

with

the

groupOfNames

object

class

and

the

users

contained

in

the

member

attributes,

specify

groupOfNames:member.

This

syntax

which

property

of

an

objectclass

stores

the

list

of

members

belonging

to

the

group

represented

by

the

objectclass.

This

field

takes

multiple

objectclass:property

pairs

delimited

by

a

semicolon

(;).

For

more

information

about

this

syntax,

see

the

LDAP

directory

service

documentation.

For

the

IBM

Directory

Server,

iPlanet

Directory

Server,

and

Active

Directory,

this

field

is

used

to

query

all

users

in

a

group

by

using

the

information

stored

in

the

user

object

(instead

of

querying

all

the

groups

individually

to

find

if

the

user

exists

in

that

group).

For

example,

the

memberof:member

filter

(for

Active

Directory)

is

used

to

get

the

memberof

attribute

of

the

user

object

to

get

all

the

groups

to

which

the

user

belongs.

The

member

attribute

is

used

to

get

all

the

users

in

a

group

using

the

group

object.

Using

the

user

object

to

obtain

the

group

information

is

expected

to

improve

performance.

7.

Modify

the

Certificate

Map

Mode,

if

necessary.

You

can

use

the

X.590

certificates

for

user

authentication

when

LDAP

is

selected

as

the

user

registry.

This

field

is

used

to

indicate

whether

to

map

the

X.509

certificates

into

an

LDAP

directory

user

by

EXACT_DN

or

CERTIFICATE_FILTER.

If

EXACT_DN

is

selected,

the

DN

in

the

certificate

must

exactly

match

the

user

entry

in

the

LDAP

server

(including

case

and

spaces).

Use

the

Ignore

Case

field

in

the

LDAP

settings

to

make

the

authorization

case

insensitive.

If

you

select

CERTIFICATE_FILTER,

fill

in

the

appropriate

certificate

filter

(in

the

next

field)

to

use

for

mapping

the

certificate

to

a

user

in

LDAP.

8.

If

you

specify

the

filter

certificate

mapping

in

step

7,

use

this

property

to

specify

the

LDAP

filter

for

mapping

attributes

in

the

client

certificate

to

entries

in

LDAP.

If

more

than

one

LDAP

entry

matches

the

filter

specification

at

run

time,

authentication

fails

because

an

ambiguous

match

results.

The

syntax

or

structure

of

this

filter

is:

LDAP

attribute=${Client

certificate

attribute}

(for

example,

uid=${SubjectCN}).

The

left

side

of

the

filter

specification

is

an

LDAP

attribute

that

depends

on

the

schema

that

your

LDAP

server

is

configured

to

use.

The

right

side

of

the

filter

specification

is

one

of

the

public

attributes

in

your

client

certificate.

Note

that

the

right

side

must

begin

with

a

dollar

sign

($),

open

bracket

({),

and

end

with

a

close

bracket

({).

Use

the

following

certificate

attribute

values

on

the

right

side

of

the

filter

specification.

The

case

of

the

strings

is

important.

v

${UniqueKey}

v

${PublicKey}

v

${Issuer}

v

${NotAfter}

v

${NotBefore}

v

${SerialNumber}

v

${SigAlgName}

v

${SigAlgOID}

v

${SigAlgParams}

v

${SubjectDN}

v

${Version}

To

enable

this

field,

select

CERTIFICATE_FILTER

for

the

certificate

mapping.

9.

Click

Apply.

When

any

LDAP

user

or

group

filter

is

modified

in

the

Advanced

LDAP

Settings

panel

click

Apply.

Clicking

OK

navigates

you

to

the

LDAP

User

Registry

panel,

which

contains

the

previous

LDAP

directory

type,

rather

than

the

custom

LDAP

directory

type.

Clicking

OK

or

Apply

in

the

LDAP

User

Chapter

2.

Securing

applications

and

their

environments

205

Registry

panel

saves

the

back-level

LDAP

directory

type

and

the

default

filters

of

that

directory.

This

action

overwrites

any

changes

to

the

filters

that

you

made.

To

avoid

overwriting

changes,

you

can

take

either

of

the

following

actions:

v

Click

Apply

in

the

Advanced

LDAP

Settings

panel.

To

proceed

to

another

panel,

use

the

left

navigation.

Using

the

navigation

to

access

the

LDAP

User

Registry

panel

changes

the

directory

type

to

Custom.

v

Choose

Custom

type

from

the

LDAP

User

Registry

panel.

Click

Apply

and

then

change

the

filters

by

clicking

the

Advanced

LDAP

Settings

panel.

After

you

complete

your

changes,

click

Apply

or

OK.

The

validation

of

the

changes

(if

any)

does

not

take

place

in

this

panel.

Validation

is

done

when

you

click

OK

or

Apply

in

the

Global

Security

panel.

If

you

are

in

the

process

of

enabling

security

for

the

first

time,

complete

the

remaining

steps

and

go

to

the

Global

Security

panel.

Select

LDAP

as

the

Active

User

Registry.

If

security

already

is

enabled

and

any

information

on

this

panel

changes,

go

to

the

Global

Security

panel

and

click

OK

or

Apply

to

validate

your

changes.

If

your

changes

are

not

validated,

the

server

might

not

come

up.

Sets

the

LDAP

search

filters.

This

step

is

required

to

modify

existing

user

and

group

filters

for

a

particular

LDAP

directory

type.

It

is

also

used

to

set

up

certificate

filters

to

map

certificates

to

entries

in

the

LDAP

server.

1.

If

you

are

enabling

security,

complete

the

remaining

steps.

As

the

final

step

make

sure

that

you

validate

this

setup

by

clicking

OK

or

Apply

in

the

Global

Security

panel.

2.

Save,

stop,

and

start

all

the

product

servers

(cell,

nodes

and

all

the

application

servers)

for

any

changes

in

this

panel

to

become

effective.

3.

After

the

server

comes

up,

go

through

all

the

security-related

tasks

(getting

users,

getting

groups

and

so

on)

to

verify

that

the

changes

to

the

filters

function.

Using

specific

directory

servers

as

the

LDAP

server

For

Using

MS

Active

Directory

server

as

the

LDAP

server

below,

note

that

to

use

Microsoft

Active

Directory

as

the

LDAP

server

for

authentication

with

WebSphere

Application

Server

you

must

take

specific

steps.

By

default,

Microsoft

Active

Directory

does

not

permit

anonymous

LDAP

queries.

To

create

LDAP

queries

or

to

browse

the

directory,

an

LDAP

client

must

bind

to

the

LDAP

server

using

the

distinguished

name

(DN)

of

an

account

that

belongs

to

the

administrator

group

of

the

Windows

system.

A

group

membership

search

in

the

Active

Directory

is

done

by

enumerating

the

memberof

attribute

possessed

by

a

given

user

entry,

rather

than

browsing

through

the

member

list

in

each

group.

If

you

change

this

default

behavior

to

browse

each

group,

you

can

change

the

Group

Member

ID

Map

field

from

memberof:member

to

group:member.

Using

Tivoli

Directory

Server

as

the

LDAP

server

To

use

IBM

Directory

Server,

choose

IBM

Directory

Server

as

the

directory

type.

You

can

choose

the

directory

type

of

either

IBM

Directory

Server

or

SecureWay

for

the

IBM

Directory

Server.

For

supported

directory

servers,

refer

to

the

article,

Supported

directory

services.

The

difference

between

these

two

types

is

group

membership

lookup.

It

is

recommended

that

you

choose

the

IBM

Directory

Server

for

optimum

performance

206

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

during

run

time.

In

the

IBM

Directory

Server,

the

group

membership

is

an

operational

attribute.

With

this

attribute,

a

group

membership

lookup

is

done

using

the

ibm-allGroups

attribute

for

the

entry.

All

group

memberships,

including

the

static

groups,

dynamic

groups,

and

nested

groups,

can

be

returned

with

the

ibm-allGroups

attribute.

WebSphere

Application

Server

supports

dynamic

groups,

nested

groups,

and

static

groups

in

IBM

Directory

Server

using

the

ibm-allGroups

attribute.

To

utilize

this

attribute

in

a

security

authorization

application,

use

a

case-insensitive

match

so

that

attribute

values

returned

by

the

ibm-allGroups

attribute

are

all

in

uppercase.

Important:

It

is

recommended

that

you

do

not

install

Tivoli

Directory

Server

Version

5.2

on

the

same

machine

that

you

install

WebSphere

Application

Server,

Version

5.1.x.

Tivoli

Directory

Server,

Version

5.2

includes

WebSphere

Application

Server

Express,

Version

5.0.2,

which

the

directory

server

uses

for

its

administrative

console.

Install

the

Web

Administration

tool

Version

5.2

and

WebSphere

Application

Server

Express,

Version

5.0.2,

which

are

both

bundled

with

Tivoli

Directory

Server,

Version

5.2,

on

a

different

machine

from

WebSphere

Application

Server,

Version

5.1.x.

You

cannot

use

WebSphere

Application

Server,

Version

5.1.x

as

the

administrative

console

for

Tivoli

Directory

Server.

If

Tivoli

Directory

Server,

Version

5.2

and

WebSphere

Application

Server,

Version

5.1.x

are

installed

on

the

same

machine,

you

might

encounter

port

conflicts.

If

you

must

install

Tivoli

Directory

Server

Version

5.2

and

WebSphere

Application

Server

Version

5.1.x

on

the

same

machine,

consider

the

following

information:

v

During

the

Tivoli

Directory

Server

installation

process,

you

must

select

both

the

Web

Administration

tool

and

WebSphere

Application

Server

Express,

Version

5.0.2.

v

Install

WebSphere

Application

Server,

Version

5.1.x.

v

When

you

install

WebSphere

Application

Server,

Version

5.1.x,

change

the

port

number

for

the

application

server.

For

more

information,

see

Changing

HTTP

transport

ports.

v

You

might

need

to

adjust

the

WebSphere

Application

Server

environment

variables

on

the

version

5.1.x

application

server

for

WAS_HOME

and

WAS_INSTALL_ROOT.

To

change

the

variables

using

the

administrative

console,

click

Environment

>

Manage

WebSphere

Variables.

Using

a

Lotus

Domino

Server

as

the

LDAP

server

If

you

choose

the

Lotus

Domino

LDAP

server

Version

6

and

the

attribute

short

name

is

not

defined

in

the

schema,

you

can

take

either

of

the

following

actions:

v

Change

the

schema

to

add

the

short

name

attribute.

v

Change

the

user

ID

map

filter

to

replace

the

short

name

with

any

other

defined

attribute

(preferably

to

UID).

For

example,

change

person:shortname

to

person:uid.

The

userID

map

filter

has

been

changed

to

use

the

uid

attribute

instead

of

the

shortname

attribute

as

the

current

version

of

Lotus

Domino

does

not

create

the

shortname

attribute

by

default.

If

you

want

to

use

the

shortname

attribute,

define

the

attribute

in

the

schema

and

change

the

userID

map

filter

to

the

following:

User

ID

Map

:

person:shortname

Chapter

2.

Securing

applications

and

their

environments

207

Roles

unify

entries.

Roles

are

designed

to

be

more

efficient

and

easier

to

use

for

applications.

For

example,

an

application

can

locate

the

role

of

an

entry

by

enumerating

all

the

roles

possessed

by

a

given

entry,

rather

than

selecting

a

group

and

browsing

through

the

members

list.

With

the

iPlanet

Directory

Server

directory,

WebSphere

Application

Server

security

supports

groups

defined

by

nsRole

only.

If

you

plan

to

use

traditional

grouping

methods

to

group

entries

in

the

iPlanet

Directory

Server,

select

Netscape

as

the

directory

type.

Using

Sun

ONE

Directory

Server

as

the

LDAP

server

You

can

choose

Sun

ONE

Directory

Server

for

your

Sun

ONE

Directory

Server

system.

For

supported

directory

servers,

refer

to

the

article,

Supported

directory

services.

In

Sun

ONE

Directory

Server,

the

default

object

class

is

groupOfUniqueName

when

you

create

a

group.

For

better

performance,

WebSphere

Application

Server

uses

the

user

object

to

locate

the

user

group

membership

from

the

nsRole

attribute.

Thus,

create

the

group

from

the

role.

If

you

want

to

use

groupOfUniqueName

to

search

groups,

specify

your

own

filter

setting.

Roles

unify

entries.

Roles

are

designed

to

be

more

efficient

and

easier

to

use

for

applications.

For

example,

an

application

can

locate

the

role

of

an

entry

by

enumerating

all

the

roles

possessed

by

a

given

entry,

rather

than

selecting

a

group

and

browsing

through

the

members

list.

When

using

roles,

you

can

create

a

group

could

be

created

using

a:

v

Managed

role

v

Filtered

role

v

Nested

role

All

of

these

roles

are

computable

by

nsRole

attribute.

Using

Microsoft

Active

Directory

server

as

the

LDAP

server

To

set

up

Microsoft

Active

Directory

as

your

LDAP

server,

complete

the

following

steps.

1.

Determine

the

full

DN

and

password

of

an

account

in

the

administrators

group.

For

example,

if

the

Active

Directory

administrator

creates

an

account

in

the

Users

folder

of

the

Active

Directory

Users

and

Computers

Windows

control

panel

and

the

DNS

domain

is

ibm.com,

the

resulting

DN

has

the

following

structure:

cn=<adminUsername>,

cn=users,

dc=ibm,

dc=com

2.

Determine

the

short

name

and

password

of

any

account

in

the

Microsoft

Active

Directory.

This

password

does

not

have

to

be

the

same

account

that

is

used

in

the

previous

step.

3.

Use

the

WebSphere

Application

Server

administrative

console

to

set

up

the

information

needed

to

use

Microsoft

Active

Directory:

a.

Start

the

administrative

server

for

the

domain,

if

necessary.

b.

On

the

administrative

console,

click

Security

on

the

left

navigation

panel.

c.

Click

the

Authentication

mechanisms

tabbed

page.

Select

Lightweight

Third

Party

Authentication

(LTPA)

as

the

authentication

mechanism.

d.

Enter

the

following

information

in

the

LDAP

settings

fields:

v

Security

Server

ID:

The

short

name

of

the

account

chosen

in

2

v

Security

Server

Password:

The

password

of

the

account

chosen

in

step

2

v

Directory

Type:

Active

Directory

208

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

v

Host:

The

domain

name

service

(DNS)

name

of

the

machine

running

Microsoft

Active

Directory

v

Base

Distinguished

Name:

The

domain

components

of

the

DN

of

the

account

chosen

in

step

1.

For

example:

dc=ibm,

dc=com

Bind

v

Distinguished

Name:

The

full

DN

of

the

account

chosen

in

step

1.

For

example:

cn=<adminUsername>,

cn=users,

dc=ibm,

dc=com

v

Bind

Password:

The

password

of

the

account

chosen

in

step

1
e.

Click

OK

to

save

the

changes.

f.

Stop

and

restart

the

administrative

server

so

that

the

changes

take

effect.

Supported

directory

services:

WebSphere

Application

Server

security

supports

several

different

LDAP

servers.

For

a

list

of

supported

LDAP

servers,

refer

to

the

Supported

hardware,

software

and

APIs

prerequisite

Web

site

in

the

“Security:

Resources

for

learning”

on

page

495

article.

The

z/OS

Security

Server

LDAP

is

supported

when

the

DB2

TDBM

backend

is

used.

Use

the

SecureWay

Directory

Server

filters

to

connect

to

the

z/os

LDAP.

It

is

expected

that

other

LDAP

servers

follow

the

LDAP

specification

function.

Support

is

limited

to

these

specific

directory

servers

only.

You

can

use

any

other

directory

server

by

using

the

custom

directory

type

in

the

list

and

by

filling

in

the

filters

required

for

that

directory.

To

improve

performance

for

LDAP

searches,

the

default

filters

for

IBM

Directory

Server,

iPlanet

Directory

Server,

and

Active

Directory

are

defined

such

that

when

you

search

for

a

user,

the

result

contains

all

the

relevant

information

about

the

user

(user

ID,

groups,

and

so

on).

As

a

result,

the

product

does

not

call

the

LDAP

server

multiple

times.

This

definition

is

possible

only

in

these

directory

types,

which

support

searches

where

the

complete

user

information

is

obtained.

If

you

use

the

IBM

Directory

Server,

enable

the

Ignore

case

flag.

This

flag

is

required

because

when

the

group

information

is

obtained

from

the

user

object

attributes,

the

case

is

not

the

same

as

when

you

get

the

group

information

directly.

For

the

authorization

to

work

in

this

case,

perform

a

case

insensitive

check

and

verify

the

requirement

for

the

Ignore

case

flag.

Locating

a

user’s

group

memberships

in

Lightweight

Directory

Access

Protocol

WebSphere

Application

Server

security

can

be

configured

to

search

group

memberships

directly

or

indirectly.

It

can

also

be

configured

to

search

only

a

static

group,

or

it

can

be

configured

to

search

static

groups,

recursive

(or

nested)

groups,

and

dynamic

groups

for

some

Lightweight

Directory

Access

Protocol

(LDAP)

servers.

Evaluate

group

memberships

from

user

object

directly

Several

popular

LDAP

servers

enable

user

objects

to

contain

information

about

the

groups

to

which

they

belong

(such

as

Microsoft

Active

Directory

Server,

or

eDirectory).

Or,

a

user’s

group

memberships

can

be

computable

attributes

from

the

user

object

itself

(such

as

IBM

Directory

Server

or

SunOne

directory

server).

In

some

LDAP

servers,

this

attribute

can

be

used

to

include

a

user’s

dynamic

group

memberships,

nesting

group

memberships,

and

static

group

memberships

in

order

to

locate

all

group

memberships

from

a

single

attribute.

For

example,

in

IBM

Directory

Server

all

group

memberships,

including

the

static

groups,

dynamic

groups,

and

nested

groups,

can

be

returned

using

the

ibm-allGroups

attribute.

In

Sun

Chapter

2.

Securing

applications

and

their

environments

209

ONE,

all

roles,

including

managed

roles,

filtered

roles,

and

nested

roles,

are

calculated

using

the

nsRole

attribute.

If

an

LDAP

server

has

such

an

attribute

in

a

user

object

to

include

dynamic

groups,

nested

groups,

and

static

groups,

WebSphere

Application

Server

security

can

be

configured

to

use

this

attribute

to

support

dynamic

groups,

nested

groups,

and

static

groups.

Evaluate

group

memberships

from

group

object

indirectly

Some

LDAP

servers

enable

only

group

objects

such

as

the

Lotus

Domino

LDAP

server

to

contain

information

about

users,

The

LDAP

server

does

not

enable

the

user

object

to

contain

information

about

groups.

For

this

type

of

LDAP

server,

group

membership

searches

are

performed

by

locating

the

user

on

the

member

list

of

groups.

The

member

list

evaluation

is

currently

used

in

the

static

group

membership

search

for

all

of

the

releases

before

WebSphere

Application

Server

Version

5.

It

is

recommended

that

you

use

the

direct

method

for

searching

group

memberships

if

your

LDAP

server

has

such

an

attribute

in

user

object

to

include

group

information.

To

use

the

direct

method

or

the

indirect

method,

enter

the

appropriate

value

in

the

Group

Member

ID

Map

field

on

the

Advanced

LDAP

Settings

panel

using:

v

objectclass:attribute

pairs

for

the

indirect

method

v

attribute:attribute

pairs

for

the

direct

method

Sample

entries

of

attribute:attribute

pairs

in

Group

Member

ID

Map

fields

include:

v

ibm-allGroups:member

for

IBM

Directory

server

v

nsRole:nsRole

for

SunONE

directory

if

groups

are

created

with

Role

inside

SunONE

v

memberOf:member

in

Microsoft

Active

Directory

Server

Sample

entries

of

objectClass:attribute

pairs

in

the

Group

Member

ID

Map

field

include:

v

dominoGroup:member

for

Domino

v

groupOfNames:member

for

eDirectory

While

using

the

direct

method

dynamic

groups,

recursive

groups,

and

static

groups

can

be

returned

as

multiple

values

of

a

single

attribute.

For

example,

in

IBM

Directory

Server

all

group

memberships,

including

the

static

groups,

dynamic

groups,

and

nested

groups,

can

be

returned

using

the

ibm-allGroups

attribute.

In

Sun

ONE,

all

roles,

including

managed

roles,

filtered

roles,

and

nested

roles,

are

calculated

using

the

nsRole

attribute.

If

an

LDAP

server

can

use

the

nsRole

attribute,

dynamic

groups,

nested

groups,

and

static

groups

are

all

supported

by

WebSphere

Application

Server.

Some

LDAP

servers

do

not

have

recursive

computing

functionality.

For

example,

although

Microsoft

Active

Directory

server

has

direct

group

search

capability

using

the

memberOf

attribute,

memberOf

lists

the

groups

beneath

which

the

group

is

directly

nested

only

and

does

not

contain

the

recursive

list

of

nested

predecessors.

Another

example

is

that

the

Lotus

Domino

LDAP

server,

which

only

allows

you

to

use

the

indirect

method

to

locate

the

group

memberships

for

a

user

(you

cannot

obtain

recursive

group

memberships

from

a

Domino

server

directly).

For

LDAP

servers

without

recursive

searching

capability,

WebSphere

Application

Server

security

provides

a

recursive

function

that

is

enabled

by

clicking

Perform

a

Nested

210

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Group

Search

in

the

Advanced

LDAP

user

registry

settings.

Check

this

option

only

if

your

LDAP

server

does

not

provide

recursive

searches

(and

only

if

a

recursive

search

is

desired).

Dynamic

groups

and

nested

group

support

Dynamic

groups

contain

a

group

name

and

membership

criteria:

1.

The

group

membership

information

is

as

current

as

the

information

on

the

user

object.

2.

There

is

no

need

to

manually

maintain

members

on

the

group

object.

3.

Dynamic

groups

are

designed

such

so

an

application

does

not

need

to

pull

a

large

amount

of

information

from

the

directory

to

find

out

if

someone

is

a

member

of

a

group.

Nested

groups

enable

the

creation

of

hierarchical

relationships

used

to

define

inherited

group

membership.

A

nested

group

is

defined

as

a

child

group

entry

whose

distinguished

name

(DN)

is

referenced

by

a

parent

group

entry

attribute.

Dynamic

and

nested

groups

simplify

WebSphere

Application

Server

security

management

and

increase

its

effectiveness

and

flexibility.

You

only

need

to

assign

a

larger

parent

group

if

all

nested

groups

share

the

same

privilege.

Assigning

a

role

to

a

single

parent

group

simplifies

the

runtime

authorization

table.

Dynamic

and

nested

group

support

for

the

SunONE

or

iPlanet

Directory

Server

The

SunONE

or

iPlanet

Directory

Server

uses

two

grouping

mechanisms:

Groups

Groups

are

entries

that

name

other

entries

as

a

list

of

members

or

as

a

filter

for

members.

Roles

Roles

are

also

entries

that

name

other

entries

as

a

list

of

members

or

as

a

filter

for

members.

Additional

functionality

is

provided

by

generating

the

nsrole

attribute

on

each

role

member.

There

are

three

types

of

roles:

Filtered

roles

Entries

are

members

if

they

match

a

specified

LDAP

filter.

In

this

way,

the

role

depends

upon

the

attributes

contained

in

each

entry.

This

is

equivalent

to

a

dynamic

group.

Nested

roles

Allows

you

to

create

roles

that

contain

other

roles.

This

is

equivalent

to

a

nested

group.

Managed

roles

Explicitly

assigns

a

role

to

member

entries.

This

is

equivalent

to

a

static

group.

Roles

and

groups

are

defined

and

administered

similarly.

An

additional

function

allows

member

entries

to

have

a

generated

attribute

to

indicate

active

roles.

For

example,

an

application

can

simply

read

the

roles

of

an

entry

rather

than

select

a

group

and

browse

the

members

list.

This

simplifies

and

eases

administration.

Refer

to

“Configuring

dynamic

and

nested

group

support

for

the

SunONE

or

iPlanet

Directory

Server”

on

page

212

for

more

information.

Chapter

2.

Securing

applications

and

their

environments

211

Configuring

dynamic

and

nested

group

support

for

the

SunONE

or

iPlanet

Directory

Server

To

use

dynamic

and

nested

groups

with

WebSphere

Application

Server

security,

you

must

be

running

WebSphere

Application

Server

Version

5.1.1.

Refer

to

Dynamic

and

nested

group

support

for

the

SunONE

or

iPlanet

Directory

Server

for

more

information

on

this

topic.

1.

On

the

LDAP

registry

panel,

select

SunONE

for

the

LDAP

server.

2.

Select

the

Ignore

case

option

3.

On

LDAP

settings

panel

change

the

Group

Filter

setting

to

&(cn=%v)(objectclass=ldapsubentry))

4.

On

LDAP

settings

panel

change

the

Group

Member

ID

Map

setting

to

nsRole:nsRole.

Dynamic

groups

and

nested

group

support

for

the

IBM

Directory

Server

WebSphere

Application

Server

Version

5

supports

all

LDAP

dynamic

and

nested

groups

when

using

IBM

Directory

Server

4.1

(or

a

more

current

version).

This

function

is

enabled

by

default

and

is

enabled

by

taking

advantage

a

new

feature

in

IBM

Directory

Server.

IBM

Directory

Server

4.1

uses

the

ibm-allGroups

forward

reference

group

attribute

that

automatically

calculates

all

group

memberships

(including

dynamic

and

recursive

memberships)

for

a

user.

Security

directly

locates

a

user

group

membership

from

a

user

object

rather

than

indirectly

search

all

groups

to

match

group

members.

Refer

to

“Configuring

dynamic

and

nested

group

support

for

the

IBM

Directory

Server”

for

more

information.

Configuring

dynamic

and

nested

group

support

for

the

IBM

Directory

Server

When

creating

groups

follow

the

steps

below

to

ensure

that

nested

and

dynamic

group

memberships

work

correctly,

.

Refer

to

“Dynamic

groups

and

nested

group

support

for

the

IBM

Directory

Server”

for

more

information

on

this

topic.

1.

In

the

WebSphere

Application

Server

security

LDAP

user

registry

configuration

panel,

select

IBM_Directory_Server

for

the

LDAP

server.

2.

On

LDAP

settings

panel

change

the

Group

Filter

setting.

Change

the

setting

to

the

following

value:

(&(cn=%v)(|(objectclass=groupOfNames)(objectclass=groupOfUniqueNames)

(objectclass=groupOfURLs))).

3.

On

LDAP

settings

panel

change

the

Group

Member

ID

Map

setting.

Change

the

setting

to

the

following

value:

ibm-allGroups:member;ibm-allGroups:uniqueMember

4.

On

the

Add

an

LDAP

entry

panel

the

Auxiliary

object

class

value

is

ibm-nestedGroup

when

creating

a

nested

group.

On

the

Add

an

LDAP

entry

panel

the

Auxiliary

object

class

value

is

ibm-dynamicGroup

when

creating

a

dynamic

group.

Custom

user

registries

A

custom

user

registry

is

a

customer-implemented

user

registry,

which

implements

the

UserRegistry

Java

interface

as

provided

by

the

product.

A

custom-implemented

user

registry

can

support

virtually

any

type

of

an

account

repository

from

a

212

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

relational

database,

flat

file,

and

so

on.

The

custom

user

registry

provides

considerable

flexibility

in

adapting

product

security

to

various

environments

where

some

form

of

a

user

registry,

other

than

Lightweight

Directory

Access

Protocol

(LDAP)

or

Local

Operating

System

(LocalOS),

already

exists

in

the

operational

environment.

WebSphere

Application

Server

security

provides

an

implementation

that

uses

various

local

operating

system-based

registries

(Windows,

AIX,

Solaris,

Linux)

and

various

Lightweight

Directory

Access

Protocol

(LDAP)-based

registries.

However,

situations

can

exist

where

your

user

and

group

data

resides

in

other

repositories

or

custom

registries

(a

database,

for

example)

and

moving

this

information

to

either

a

LocalOS

or

an

LDAP

registry

implementation

might

not

be

feasible.

For

these

situations

WebSphere

Application

Server

security

provides

a

service

provider

interface

(SPI)

that

you

can

implement

to

interact

with

your

current

registry.

The

SPI

is

the

UserRegistry

interface.

This

interface

has

a

set

of

methods

to

implement

for

the

product

security

to

interact

with

your

registries

for

all

security-related

tasks.

The

LocalOS

and

LDAP

registry

implementations

that

are

provided

also

implement

this

interface.

Custom

user

registries

are

sometimes

called

the

pluggable

user

registries

or

custom

registries

for

short.

Your

custom

user

registry

implementation

is

expected

to

be

thread-safe.

The

UserRegistry

interface

is

a

collection

of

methods

required

to

authenticate

individual

users

using

either

password

or

certificates

and

to

collect

information

about

the

user

(privilege

attributes)

for

authorization

purposes.

This

interface

also

includes

methods

that

obtain

user

and

group

information

so

that

they

can

be

given

access

to

resources.

When

implementing

the

methods

in

the

interface,

you

must

decide

how

to

map

the

information

manipulated

by

the

UserRegistry

interface

to

the

information

in

your

registry.

Make

sure

that

your

implementation

of

the

custom

registry

does

not

depend

on

any

WebSphere

Application

Server

components

such

as

data

sources,

enterprise

beans,

and

so

on.

Do

not

have

this

dependency

because

security

is

initialized

and

enabled

prior

to

most

of

the

other

WebSphere

Application

Server

components

during

startup.

If

your

previous

implementation

used

these

components,

make

a

change

that

eliminates

the

dependency.

For

example,

if

your

previous

implementation

used

data

sources

to

connect

to

a

database,

use

Java

database

connectivity

(JDBC)

to

connect

to

the

database.

The

methods

in

the

UserRegistry

interface

operate

on

the

following

information

for

users:

User

Security

Name

The

user

name,

which

is

similar

to

the

user

name

in

the

Windows

systems

and

the

UNIX

systems

Local

OS

registries.

This

name

is

used

to

log

in

when

prompted

by

a

secured

application.

By

default,

the

Enterprise

JavaBean

(EJB)

method

getCallerPrincipal

and

the

servlet

methods

getRemoteUser

and

getUserPrincipal

return

this

name.

The

user

security

name

is

also

referred

to

as

userSecurityName,

userName

or

user

name.

Unique

ID

This

ID

represents

a

unique

identifier

for

the

user.

The

UserRegistry

interface

requires

this

identifier

to

be

unique.

The

unique

ID

similar

to

the

system

ID

(SID)

in

Windows

systems,

Unique

ID

(UID)

in

UNIX

systems,

distinguished

name

(DN)

in

Lightweight

Directory

Authentication

Protocol

(LDAP).

This

ID

is

also

referred

to

as

uniqueUserId.

The

unique

ID

is

used

to

make

the

authorization

decisions

for

protected

resources.

Display

name

This

name

is

an

optional

string

that

describes

a

user,

and

it

is

similar

to

the

Chapter

2.

Securing

applications

and

their

environments

213

FullName

attribute

in

Windows

operating

systems.

The

implementation

can

use

display

names

for

informational

purposes

only;

these

names

are

not

required

to

exist

or

to

be

unique.

The

user

interface

can

use

the

display

name

to

present

more

information

about

the

user.

Group

Security

name

This

name,

which

represents

the

security

group,

is

also

referred

to

as

groupSecurityName,

groupName

and

group

name.

Unique

ID

The

unique

ID

is

the

identifier

for

a

group.

This

name

is

also

referred

to

as

uniqueGroupId.

Display

name

The

display

name

is

an

optional

string

that

describes

a

group.

The

article

on

UserRegistry

interface

describes

each

of

the

methods

in

the

UserRegistry

interface

that

need

implementing.

An

explanation

of

each

of

the

methods

and

their

usage

in

the

Sample

and

any

changes

from

the

Version

4

interface

are

provided.

The

Related

references

section

provides

links

to

all

other

custom

user

registries

documentation,

including

a

file-based

registry

Sample.

The

Sample

provided

is

very

simple

and

is

intended

to

familiarize

you

with

this

feature.

Do

not

use

this

sample

in

an

actual

production

environment.

Configuring

custom

user

registries

Before

you

begin

this

task,

implement

and

build

the

UserRegistry

interface.

For

more

information

on

developing

custom

user

registries

refer

to

the

article,

“Developing

custom

user

registries”

on

page

94.

The

following

steps

are

required

to

configure

custom

user

registries

through

the

administrative

console.

1.

In

the

administrative

console,

click

Security

>

User

Registries

>

Custom

in

the

left

navigation

panel.

2.

Enter

a

valid

user

name

in

the

Server

User

ID

field.

3.

Enter

the

password

of

the

user

in

the

Server

User

Password

field.

4.

Enter

the

full

name

of

the

location

of

the

implementation

class

file

in

the

Custom

Registry

Classname

field

a

dot-separated

file

name.

For

the

sample,

this

file

name

is

com.ibm.websphere.security.FileRegistrySample.

The

file

exists

in

the

WebSphere

Application

Server

class

path

(preferably

in

the

install_root/lib/ext

directory).

This

file

exists

in

all

the

product

processes.

So,

if

you

are

operating

in

a

Network

Deployment

environment,

this

file

exists

in

the

cell

class

path

and

in

all

of

the

node

class

paths.

5.

Select

the

Ignore

Case

option

for

the

authorization

to

perform

a

case

insensitive

check.

Enabling

this

option

is

necessary

only

when

your

registry

is

case

insensitive

and

does

not

provide

a

consistent

case

when

queried

for

users

and

groups.

6.

Click

Apply

if

you

have

any

other

additional

properties

to

enter

for

the

registry

initialization.

Otherwise

click

OK

and

complete

the

steps

required

to

turn

on

security.

7.

If

you

need

to

enter

additional

properties

to

initialize

your

implementation,

click

Custom

Properties

at

the

bottom

of

the

panel.

Click

New.

Enter

the

property

name

and

value.

Click

OK.

Repeat

this

step

to

add

other

additional

properties.

For

the

sample,

enter

the

following

two

properties:

(assuming

that

the

users.props

and

the

groups.props

file

are

in

the

myDir

directory

under

the

product

installation

directory).

Property

name

Property

value

usersFile

${USER_INSTALL_ROOT}/myDir/users.props

214

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Property

name

Property

value

groupsFile

${USER_INSTALL_ROOT}/myDir/groups.props

The

Description,

Required,

and

Validation

Expression

fields

are

not

used

and

you

can

leave

them

blank.

Note:

In

a

Network

Deployment

environment

where

multiple

WebSphere

Application

Server

processes

exist

(cell

and

multiple

nodes

in

different

machines),

these

properties

are

available

for

each

process.

Use

the

relative

name

${USER_INSTALL_ROOT}

to

locate

any

files,

as

this

name

expands

to

the

product

installation

directory.

If

this

name

is

not

used,

ensure

that

the

files

exist

in

the

same

location

in

all

the

nodes.

This

step

is

required

to

set

up

the

custom

user

registry

and

to

enable

security

in

WebSphere

Application

Server.

1.

Complete

the

remaining

steps,

if

you

are

enabling

security.

2.

After

security

is

turned

on,

save,

stop,

and

start

all

the

product

servers

(cell,

nodes

and

all

the

application

servers)

for

any

changes

in

this

panel

to

take

effect.

3.

If

the

server

comes

up

without

any

problems,

the

setup

is

correct.

4.

Validate

the

user

and

password

by

clicking

OK

or

Apply

in

the

Global

Security

panel.

Save,

synchronize

(in

the

cell

environment),

stop

and

start

all

the

product

servers.

UserRegistry.java

files:

//

5639-D57,

5630-A36,

5630-A37,

5724-D18

//

(C)

COPYRIGHT

International

Business

Machines

Corp.

1997,

2003

//

All

Rights

Reserved

*

Licensed

Materials

-

Property

of

IBM

//

//

DESCRIPTION:

//

//

This

file

is

the

UserRegistry

interface

that

custom

registries

in

WebSphere

//

Application

Server

implement

to

enable

WebSphere

security

to

use

the

custom

//

registry.

//package

com.ibm.websphere.security;

import

java.util.*;

import

java.rmi.*;

import

java.security.cert.X509Certificate;

import

com.ibm.websphere.security.cred.WSCredential;/**

*

Implementing

this

interface

enables

WebSphere

Application

Server

Security

*

to

use

custom

registries.

This

interface

extends

java.rmi.Remote

because

the

*

registry

can

be

in

a

remote

process.

*

*

Implementation

of

this

interface

must

provide

implementations

for:

*

*

initialize(java.util.Properties)

*

checkPassword(String,String)

*

mapCertificate(X509Certificate[])

*

getRealm

*

getUsers(String,int)

*

getUserDisplayName(String)

*

getUniqueUserId(String)

*

getUserSecurityName(String)

*

isValidUser(String)

*

getGroups(String,int)

*

getGroupDisplayName(String)

*

getUniqueGroupId(String)

*

getUniqueGroupIds(String)

*

getGroupSecurityName(String)

*

isValidGroup(String)

*

getGroupsForUser(String)

Chapter

2.

Securing

applications

and

their

environments

215

*

getUsersForGroup(String,int)

*

createCredential(String)

**/

public

interface

UserRegistry

extends

java.rmi.Remote

{

/**

*

Initializes

the

registry.

This

method

is

called

when

creating

the

*

registry.

*

*

@param

props

the

registry-specific

properties

with

which

to

*

initialize

the

custom

registry

*

@exception

CustomRegistryException

*

if

there

is

any

registry

specific

problem

*

@exception

RemoteException

*

as

this

extends

java.rmi.Remote

**/

public

void

initialize(java.util.Properties

props)

throws

CustomRegistryException,

RemoteException;

/**

*

Checks

the

password

of

the

user.

This

method

is

called

to

authenticate

a

*

user

when

the

user’s

name

and

password

are

given.

*

*

@param

userSecurityName

the

name

of

user

*

@param

password

the

password

of

the

user

*

@return

a

valid

userSecurityName.

Normally

this

is

*

the

name

of

same

user

whose

password

was

checked

but

if

the

*

implementation

wants

to

return

any

other

valid

*

userSecurityName

in

the

registry

it

can

do

so

*

@exception

CheckPasswordFailedException

if

userSecurityName/

*

password

combination

does

not

exist

in

the

registry

*

@exception

CustomRegistryException

if

there

is

any

registry

specific

*

problem

*

@exception

RemoteException

as

this

extends

java.rmi.Remote

**/

public

String

checkPassword(String

userSecurityName,

String

password)

throws

PasswordCheckFailedException,

CustomRegistryException,

RemoteException;

/**

*

Maps

a

certificate

(of

X509

format)

to

a

valid

user

in

the

registry.

*

This

is

used

to

map

the

name

in

the

certificate

supplied

by

a

browser

*

to

a

valid

userSecurityName

in

the

registry

*

*

@param

cert

the

X509

certificate

chain

*

@return

the

mapped

name

of

the

user

userSecurityName

*

@exception

CertificateMapNotSupportedException

if

the

particular

*

certificate

is

not

supported.

*

@exception

CertificateMapFailedException

if

the

mapping

of

the

*

certificate

fails.

*

@exception

CustomRegistryException

if

there

is

any

registry

specific

*

problem

*

@exception

RemoteException

as

this

extends

java.rmi.Remote

**/

public

String

mapCertificate(X509Certificate[]

cert)

throws

CertificateMapNotSupportedException,

CertificateMapFailedException,

CustomRegistryException,

RemoteException;

/**

*

Returns

the

realm

of

the

registry.

*

*

@return

the

realm.

The

realm

is

a

registry-specific

string

indicating

*

the

realm

or

domain

for

which

this

registry

*

applies.

For

example,

for

OS400

or

AIX

this

would

be

the

*

host

name

of

the

system

whose

user

registry

this

object

*

represents.

*

If

null

is

returned

by

this

method

realm

defaults

to

the

216

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

*

value

of

"customRealm".

It

is

recommended

that

you

use

*

your

own

value

for

realm.

*

@exception

CustomRegistryException

if

there

is

any

registry

specific

*

problem

*

@exception

RemoteException

as

this

extends

java.rmi.Remote

**/

public

String

getRealm()

throws

CustomRegistryException,

RemoteException;

/**

*

Gets

a

list

of

users

that

match

a

pattern

in

the

registry.

*

The

maximum

number

of

users

returned

is

defined

by

the

limit

*

argument.

*

This

method

is

called

by

administrative

console

and

by

scripting

(command

*

line)

to

make

available

the

users

in

the

registry

for

adding

them

(users)

*

to

roles.

*

*

@parameter

pattern

the

pattern

to

match.

(For

example.,

a*

will

match

all

*

userSecurityNames

starting

with

a)

*

@parameter

limit

the

maximum

number

of

users

that

should

be

returned.

*

This

is

very

useful

in

situations

where

there

are

thousands

of

*

users

in

the

registry

and

getting

all

of

them

at

once

is

not

*

practical.

A

value

of

0

implies

get

all

the

users

and

hence

*

must

be

used

with

care.

*

@return

a

Result

object

that

contains

the

list

of

users

*

requested

and

a

flag

to

indicate

if

more

users

exist.

*

@exception

CustomRegistryException

if

there

is

any

registry

specific

*

problem

*

@exception

RemoteException

as

this

extends

java.rmi.Remote

**/

public

Result

getUsers(String

pattern,

int

limit)

throws

CustomRegistryException,

RemoteException;

/**

*

Returns

the

display

name

for

the

user

specified

by

userSecurityName.

*

*

This

method

is

called

only

when

the

user

information

displays

*

(information

purposes

only,

for

example,

in

the

administrative

console)

and

not

used

*

in

the

actual

authentication

or

authorization

purposes.

If

there

are

no

*

display

names

in

the

registry

return

null

or

empty

string.

*

*

In

WebSphere

Application

Server

Version

4.0

custom

registry,

if

you

had

a

display

*

name

for

the

user

and

if

it

was

different

from

the

security

name,

the

display

name

*

was

returned

for

the

EJB

methods

getCallerPrincipal()

and

the

servlet

methods

*

getUserPrincipal()

and

getRemoteUser().

*

In

WebSphere

Application

Server

Version

5.0

for

the

same

methods

the

security

*

name

is

returned

by

default.

This

is

the

recommended

way

as

the

display

name

*

is

not

unique

and

might

create

security

holes.

*

However,

for

backward

compatibility

if

one

needs

the

display

name

to

*

be

returned

set

the

property

WAS_UseDisplayName

to

true.

*

*

See

the

documentation

for

more

information.

*

*

@parameter

userSecurityName

the

name

of

the

user.

*

@return

the

display

name

for

the

user.

The

display

name

*

is

a

registry-specific

string

that

represents

a

descriptive,

not

*

necessarily

unique,

name

for

a

user.

If

a

display

name

does

*

not

exist

return

null

or

empty

string.

*

@exception

EntryNotFoundException

if

userSecurityName

does

not

exist.

*

@exception

CustomRegistryException

if

there

is

any

registry

specific

*

problem

*

@exception

RemoteException

as

this

extends

java.rmi.Remote

**/

public

String

getUserDisplayName(String

userSecurityName)

throws

EntryNotFoundException,

CustomRegistryException,

RemoteException;

/**

*

Returns

the

unique

ID

for

a

userSecurityName.

This

method

is

called

when

*

creating

a

credential

for

a

user.

Chapter

2.

Securing

applications

and

their

environments

217

*

*

@parameter

userSecurityName

the

name

of

the

user.

*

@return

the

unique

ID

of

the

user.

The

unique

ID

for

an

user

is

*

the

stringified

form

of

some

unique,

registry-specific,

data

*

that

serves

to

represent

the

user.

For

example,

for

the

UNIX

*

user

registry,

the

unique

ID

for

a

user

can

be

the

UID.

*

@exception

EntryNotFoundException

if

userSecurityName

does

not

exist.

*

@exception

CustomRegistryException

if

there

is

any

registry

specific

*

problem

*

@exception

RemoteException

as

this

extends

java.rmi.Remote

**/

public

String

getUniqueUserId(String

userSecurityName)

throws

EntryNotFoundException,

CustomRegistryException,

RemoteException;

/**

*

Returns

the

name

for

a

user

given

its

unique

ID.

*

*

@parameter

uniqueUserId

the

unique

ID

of

the

user.

*

@return

the

userSecurityName

of

the

user.

*

@exception

EntryNotFoundException

if

the

uniqueUserID

does

not

exist.

*

@exception

CustomRegistryException

if

there

is

any

registry

specific

*

problem

*

@exception

RemoteException

as

this

extends

java.rmi.Remote

**/

public

String

getUserSecurityName(String

uniqueUserId)

throws

EntryNotFoundException,

CustomRegistryException,

RemoteException;

/**

*

Determines

if

the

userSecurityName

exists

in

the

registry

*

*

@parameter

userSecurityName

the

name

of

the

user

*

@return

true

if

the

user

is

valid.

false

otherwise

*

@exception

CustomRegistryException

if

there

is

any

registry

specific

*

problem

*

@exception

RemoteException

as

this

extends

java.rmi.Remote

**/

public

boolean

isValidUser(String

userSecurityName)

throws

CustomRegistryException,

RemoteException;

/**

*

Gets

a

list

of

groups

that

match

a

pattern

in

the

registy.

*

The

maximum

number

of

groups

returned

is

defined

by

the

limit

*

argument.

*

This

method

is

called

by

the

administrative

console

and

scripting

*

(command

line)

to

make

available

the

groups

in

the

registry

for

adding

*

them

(groups)

to

roles.

*

*

@parameter

pattern

the

pattern

to

match.

(For

e.g.,

a*

will

match

all

*

groupSecurityNames

starting

with

a)

*

@parameter

limit

the

maximum

number

of

groups

to

return.

*

This

is

very

useful

in

situations

where

there

are

thousands

of

*

groups

in

the

registry

and

getting

all

of

them

at

once

is

not

*

practical.

A

value

of

0

implies

get

all

the

groups

and

hence

*

must

be

used

with

care.

*

@return

a

Result

object

that

contains

the

list

of

groups

*

requested

and

a

flag

to

indicate

if

more

groups

exist.

*

@exception

CustomRegistryException

if

there

is

any

registry-specific

*

problem

*

@exception

RemoteException

as

this

extends

java.rmi.Remote

**/

public

Result

getGroups(String

pattern,

int

limit)

throws

CustomRegistryException,

RemoteException;

218

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

/**

*

Returns

the

display

name

for

the

group

specified

by

groupSecurityName.

*

*

This

method

may

be

called

only

when

the

group

information

displayed

*

(for

example,

the

administrative

console)

and

not

used

in

the

actual

*

authentication

or

authorization

purposes.

If

there

are

no

display

names

*

in

the

registry

return

null

or

empty

string.

*

*

@parameter

groupSecurityName

the

name

of

the

group.

*

@return

the

display

name

for

the

group.

The

display

name

*

is

a

registry-specific

string

that

represents

a

descriptive,

not

*

necessarily

unique,

name

for

a

group.

If

a

display

name

does

*

not

exist

return

null

or

empty

string.

*

@exception

EntryNotFoundException

if

groupSecurityName

does

not

exist.

*

@exception

CustomRegistryException

if

there

is

any

registry

specific

*

problem

*

@exception

RemoteException

as

this

extends

java.rmi.Remote

**/

public

String

getGroupDisplayName(String

groupSecurityName)

throws

EntryNotFoundException,

CustomRegistryException,

RemoteException;

/**

*

Returns

the

unique

ID

for

a

group.

*

@parameter

groupSecurityName

the

name

of

the

group.

*

@return

the

unique

ID

of

the

group.

The

unique

ID

for

*

a

group

is

the

stringified

form

of

some

unique,

*

registry-specific,

data

that

serves

to

represent

the

group.

*

For

example,

for

the

UNIX

user

registry,

the

unique

IDd

could

*

be

the

GID.

*

@exception

EntryNotFoundException

if

groupSecurityName

does

not

exist.

*

@exception

CustomRegistryException

if

there

is

any

registry

specific

*

problem

*

@exception

RemoteException

as

this

extends

java.rmi.Remote

**/

public

String

getUniqueGroupId(String

groupSecurityName)

throws

EntryNotFoundException,

CustomRegistryException,

RemoteException;

/**

*

Returns

the

unique

IDs

for

all

the

groups

that

contain

the

unique

ID

of

*

a

user.

*

Called

during

creation

of

a

user’s

credential.

*

*

@parameter

uniqueUserId

the

unique

ID

of

the

user.

*

@return

a

list

of

all

the

group

unique

IDs

that

the

unique

user

ID

*

belongs

to.

The

unique

ID

for

an

entry

is

the

stringified

*

form

of

some

unique,

registry-specific,

data

that

serves

*

to

represent

the

entry.

For

example,

for

the

*

UNIX

user

registry,

the

unique

ID

for

a

group

could

be

the

GID

*

and

the

unique

ID

for

the

user

could

be

the

UID.

*

@exception

EntryNotFoundException

if

unique

user

ID

does

not

exist.

*

@exception

CustomRegistryException

if

there

is

any

registry

specific

*

problem

*

@exception

RemoteException

as

this

extends

java.rmi.Remote

**/

public

List

getUniqueGroupIds(String

uniqueUserId)

throws

EntryNotFoundException,

CustomRegistryException,

RemoteException;

/**

*

Returns

the

name

for

a

group

given

its

unique

ID.

Chapter

2.

Securing

applications

and

their

environments

219

*

*

@parameter

uniqueGroupId

the

unique

ID

of

the

group.

*

@return

the

name

of

the

group.

*

@exception

EntryNotFoundException

if

the

uniqueGroupId

does

not

exist.

*

@exception

CustomRegistryException

if

there

is

any

registry-specific

*

problem

*

@exception

RemoteException

as

this

extends

java.rmi.Remote

**/

public

String

getGroupSecurityName(String

uniqueGroupId)

throws

EntryNotFoundException,

CustomRegistryException,

RemoteException;

/**

*

Determines

if

the

groupSecurityName

exists

in

the

registry

*

*

@parameter

groupSecurityName

the

name

of

the

group

*

@return

true

if

the

groups

exists,

false

otherwise

*

@exception

CustomRegistryException

if

there

is

any

registry

specific

*

problem

*

@exception

RemoteException

as

this

extends

java.rmi.Remote

**/

public

boolean

isValidGroup(String

groupSecurityName)

throws

CustomRegistryException,

RemoteException;

/**

*

Returns

the

securityNames

of

all

the

groups

that

contain

the

user

*

*

This

method

is

called

by

administrative

console

and

scripting

*

(command

line)

to

verify

the

user

entered

for

RunAsRole

mapping

belongs

*

to

that

role

in

the

roles

to

user

mapping.

Initially,

the

check

is

done

*

to

see

if

the

role

contains

the

user.

If

the

role

does

not

contain

the

user

*

explicitly,

this

method

is

called

to

get

the

groups

that

this

user

*

belongs

to

so

that

checks

are

made

on

the

groups

that

the

role

contains.

*

*

@parameter

userSecurityName

the

name

of

the

user

*

@return

a

List

of

all

the

group

securityNames

that

the

user

*

belongs

to.

*

@exception

EntryNotFoundException

if

user

does

not

exist.

*

@exception

CustomRegistryException

if

there

is

any

registry

specific

*

problem

*

@exception

RemoteException

as

this

extends

java.rmi.Remote

**/

public

List

getGroupsForUser(String

userSecurityName)

throws

EntryNotFoundException,

CustomRegistryException,

RemoteException;

/**

*

Gets

a

list

of

users

in

a

group.

*

*

The

maximum

number

of

users

returned

is

defined

by

the

limit

*

argument.

*

*

This

method

is

used

by

the

process

choreographer

when

staff

*

assignments

are

modeled

using

groups.

*

*

In

rare

situations

if

you

are

working

with

a

registry

where

getting

all

of

*

the

users

from

any

of

your

groups

is

not

practical

(for

example

if

*

a

large

number

of

users

exist)

you

can

throw

the

NotImplementedException

*

for

that

particular

groups.

Make

sure

that

if

the

Process

Choreographer

*

is

installed

(or

if

installed

later)

that

are

not

modeled

using

these

*

particular

groups.

If

no

concern

exists

about

the

staff

assignments

*

returning

the

users

from

groups

in

the

registry

it

is

recommended

that

*

this

method

be

implemented

without

throwing

the

NotImplemented

exception.

220

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

*

*

@parameter

groupSecurityName

that

represents

the

name

of

the

group

*

@parameter

limit

the

maximum

number

of

users

to

return.

*

This

option

is

very

useful

in

situations

where

lots

of

*

users

are

in

the

registry

and

getting

all

of

them

at

*

once

is

not

practical.

A

value

of

0

means

get

all

of

*

the

users

and

must

be

used

with

care.

*

@return

a

Result

object

that

contains

the

list

of

users

*

requested

and

a

flag

to

indicate

if

more

users

exist.

*

@deprecated

This

method

will

be

deprecated

in

the

future.

*

@exception

NotImplementedException

throw

this

exception

in

rare

situations

*

if

it

is

not

practical

to

get

this

information

for

any

of

the

*

groups

from

the

registry.

*

@exception

EntryNotFoundException

if

the

group

does

not

exist

in

*

the

registry

*

@exception

CustomRegistryException

if

any

registry-specific

*

problem

occurs

*

@exception

RemoteException

as

this

extends

java.rmi.Remote

interface

**/

public

Result

getUsersForGroup(String

groupSecurityName,

int

limit)

throws

NotImplementedException,

EntryNotFoundException,

CustomRegistryException,

RemoteException;

/**

*

This

method

is

implemented

internally

by

the

WebSphere

Application

Server

*

code

in

this

release.

This

method

is

not

called

for

the

custom

registry

*

implementations

for

this

release.

Return

null

in

the

implementation.

*

*

Note

that

because

this

method

is

not

called

you

can

also

return

the

*

NotImplementedException

as

the

previous

documentation

says.

*

**/

public

com.ibm.websphere.security.cred.WSCredential

createCredential(String

userSecurityName)

throws

NotImplementedException,

EntryNotFoundException,

CustomRegistryException,

RemoteException;

}

FileRegistrySample.java

file

for

WebSphere

Application

Server:

The

user

and

group

information

required

by

this

sample

is

contained

in

the

users.props

and

groups.props

files.

The

contents

of

the

FileRegistrySample.java

file:

//

//

5639-D57,

5630-A36,

5630-A37,

5724-D18

//

(C)

COPYRIGHT

International

Business

Machines

Corp.

1997,

2003

//

All

Rights

Reserved

*

Licensed

Materials

-

Property

of

IBM

////--

//

This

program

may

be

used,

executed,

copied,

modified

and

distributed

//

without

royalty

for

the

purpose

of

developing,

using,

marketing,

or

//

distributing.

//--

//

//

This

sample

is

for

the

custom

user

registry

feature

in

WebSphere

//

Application

Server.

import

java.util.*;

import

java.io.*;

import

java.security.cert.X509Certificate;

import

com.ibm.websphere.security.*;

/**

Chapter

2.

Securing

applications

and

their

environments

221

*

The

main

purpose

of

this

sample

is

to

demonstrate

the

use

of

the

*

custom

user

registry

feature

available

in

WebSphere

Application

Server.

This

*

sample

is

a

file-based

registry

sample

where

the

users

and

the

groups

*

information

is

listed

in

files

(users.props

and

groups.props).

As

such

*

simplicity

and

not

the

performance

was

a

major

factor

behind

this.

This

*

sample

should

be

used

only

to

get

familiarized

with

this

feature.

An

*

actual

implementation

of

a

realistic

registry

should

consider

various

*

factors

like

performance,

scalability,

thread

safety,

and

so

on.

**/

public

class

FileRegistrySample

implements

UserRegistry

{

private

static

String

USERFILENAME

=

null;

private

static

String

GROUPFILENAME

=

null;

/**

Default

Constructor

**/

public

FileRegistrySample()

throws

java.rmi.RemoteException

{

}

/**

*

Initializes

the

registry.

This

method

is

called

when

creating

the

*

registry.

*

*

@param

props

-

The

registry-specific

properties

with

which

to

*

initialize

the

custom

registry

*

@exception

CustomRegistryException

*

if

there

is

any

registry-specific

problem

**/

public

void

initialize(java.util.Properties

props)

throws

CustomRegistryException

{

try

{

/*

try

getting

the

USERFILENAME

and

the

GROUPFILENAME

from

*

properties

that

are

passed

in

(For

example,

from

the

*

administrative

console).

Set

these

values

in

the

administrative

*

console.

Go

to

the

special

custom

settings

in

the

custom

*

user

registry

section

of

the

Authentication

panel.

*

For

example:

*

usersFile

c:/temp/users.props

*

groupsFile

c:/temp/groups.props

*/

if

(props

!=

null)

{

USERFILENAME

=

props.getProperty("usersFile");

GROUPFILENAME

=

props.getProperty("groupsFile");

}

}

catch(Exception

ex)

{

throw

new

CustomRegistryException(ex.getMessage(),ex);

}

if

(USERFILENAME

==

null

||

GROUPFILENAME

==

null)

{

throw

new

CustomRegistryException("users/groups

information

missing");

}

}

/**

*

Checks

the

password

of

the

user.

This

method

is

called

to

authenticate

*

a

user

when

the

user’s

name

and

password

are

given.

*

*

@param

userSecurityName

the

name

of

user

*

@param

password

the

password

of

the

user

*

@return

a

valid

userSecurityName.

Normally

this

is

*

the

name

of

same

user

whose

password

was

checked

*

but

if

the

implementation

wants

to

return

any

other

*

valid

userSecurityName

in

the

registry

it

can

do

so

*

@exception

CheckPasswordFailedException

if

userSecurityName/

*

password

combination

does

not

exist

*

in

the

registry

*

@exception

CustomRegistryException

if

there

is

any

registry-

*

specific

problem

222

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

**/

public

String

checkPassword(String

userSecurityName,

String

passwd)

throws

PasswordCheckFailedException,

CustomRegistryException

{

String

s,userName

=

null;

BufferedReader

in

=

null;

try

{

in

=

fileOpen(USERFILENAME);

while

((s=in.readLine())!=null)

{

if

(!(s.startsWith("#")

||

s.trim().length()

<=0

))

{

int

index

=

s.indexOf(":");

int

index1

=

s.indexOf(":",index+1);

//

check

if

the

userSecurityName:passwd

combination

exists

if

((s.substring(0,index)).equals(userSecurityName)

&&

s.substring(index+1,index1).equals(passwd))

{

//

Authentication

successful,

return

the

userId.

userName

=

userSecurityName;

break;

}

}

}

}

catch(Exception

ex)

{

throw

new

CustomRegistryException(ex.getMessage(),ex);

}

finally

{

fileClose(in);

}

if

(userName

==

null)

{

throw

new

PasswordCheckFailedException("Password

check

failed

for

user:

"

+

userSecurityName);

}

return

userName;

}

/**

*

Maps

a

X.509

format

certificate

to

a

valid

user

in

the

registry.

*

This

is

used

to

map

the

name

in

the

certificate

supplied

by

a

browser

*

to

a

valid

userSecurityName

in

the

registry

*

*

@param

cert

the

X509

certificate

chain

*

@return

The

mapped

name

of

the

user

userSecurityName

*

@exception

CertificateMapNotSupportedException

if

the

*

particular

certificate

is

not

supported.

*

@exception

CertificateMapFailedException

if

the

mapping

of

*

the

certificate

fails.

*

@exception

CustomRegistryException

if

there

is

any

registry

*

-specific

problem

**/

public

String

mapCertificate(X509Certificate[]

cert)

throws

CertificateMapNotSupportedException,

CertificateMapFailedException,

CustomRegistryException

{

String

name=null;

X509Certificate

cert1

=

cert[0];

try

{

//

map

the

SubjectDN

in

the

certificate

to

a

userID.

name

=

cert1.getSubjectDN().getName();

}

catch(Exception

ex)

{

throw

new

CertificateMapNotSupportedException(ex.getMessage(),ex);

}

if(!isValidUser(name))

{

throw

new

CertificateMapFailedException("user:

"

+

name

+

"

is

not

valid");

}

Chapter

2.

Securing

applications

and

their

environments

223

return

name;

}

/**

*

Returns

the

realm

of

the

registry.

*

*

@return

the

realm.

The

realm

is

a

registry-specific

string

*

indicating

the

realm

or

domain

for

which

this

registry

*

applies.

For

example,

for

OS/400

or

AIX

this

would

be

*

the

host

name

of

the

system

whose

user

registry

this

*

object

represents.

If

null

is

returned

by

this

method,

*

realm

defaults

to

the

value

of

"customRealm".

It

is

*

recommended

that

you

use

your

own

value

for

realm.

*

*

@exception

CustomRegistryException

if

there

is

any

registry-

*

specific

problem

**/

public

String

getRealm()

throws

CustomRegistryException

{

String

name

=

"customRealm";

return

name;

}

/**

*

Gets

a

list

of

users

that

match

a

pattern

in

the

registry.

*

The

maximum

number

of

users

returned

is

defined

by

the

limit

*

argument.

*

This

method

is

called

by

the

administrative

console

and

scripting

*

(command

line)

to

make

the

users

in

the

registry

available

for

*

adding

them

(users)

to

roles.

*

*

@param

pattern

the

pattern

to

match.

(For

example,

a*

will

*

match

all

userSecurityNames

starting

with

a)

*

@param

limit

the

maximum

number

of

users

that

should

be

*

returned.

This

is

very

useful

in

situations

where

*

there

are

thousands

of

users

in

the

registry

and

*

getting

all

of

them

at

once

is

not

practical.

The

*

default

is

100.

A

value

of

0

implies

get

all

the

*

users

and

hence

must

be

used

with

care.

*

@return

a

Result

object

that

contains

the

list

of

users

*

requested

and

a

flag

to

indicate

if

more

users

*

exist.

*

@exception

CustomRegistryException

if

there

is

any

registry-

*

specificproblem

**/

public

Result

getUsers(String

pattern,

int

limit)

throws

CustomRegistryException

{

String

s;

BufferedReader

in

=

null;

List

allUsers

=

new

ArrayList();

Result

result

=

new

Result();

int

count

=

0;

int

newLimit

=

limit+1;

try

{

in

=

fileOpen(USERFILENAME);

while

((s=in.readLine())!=null)

{

if

(!(s.startsWith("#")

||

s.trim().length()

<=0

))

{

int

index

=

s.indexOf(":");

String

user

=

s.substring(0,index);

if

(match(user,pattern))

{

allUsers.add(user);

if

(limit

!=0

&&

++count

==

newLimit)

{

allUsers.remove(user);

result.setHasMore();

break;

}

}

}

}

}

catch

(Exception

ex)

{

224

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

throw

new

CustomRegistryException(ex.getMessage(),ex);

}

finally

{

fileClose(in);

}

result.setList(allUsers);

return

result;

}

/**

*

Returns

the

display

name

for

the

user

specified

by

*

userSecurityName.

*

*

This

method

may

be

called

only

when

the

user

information

*

is

displayed

(information

purposes

only,

for

example,

in

*

the

administrative

console)

and

hence

not

used

in

the

actual

*

authentication

or

authorization

purposes.

If

there

are

no

*

display

names

in

the

registry

return

null

or

empty

string.

*

*

In

WebSphere

Application

Server

4

custom

registry,

if

you

*

had

a

display

name

for

the

user

and

if

it

was

different

from

the

*

security

name,

the

display

name

was

returned

for

the

EJB

*

methods

getCallerPrincipal()

and

the

servlet

methods

*

getUserPrincipal()

and

getRemoteUser().

*

In

WebSphere

Application

Server

Version

5,

for

the

same

*

methods,

the

security

name

will

be

returned

by

default.

This

*

is

the

recommended

way

as

the

display

name

is

not

unique

*

and

might

create

security

holes.

However,

for

backward

*

compatibility

if

one

needs

the

display

name

to

be

returned

*

set

the

property

WAS_UseDisplayName

to

true.

*

*See

the

InfoCenter

documentation

for

more

information.

*

*

@param

userSecurityName

the

name

of

the

user.

*

@return

the

display

name

for

the

user.

The

display

*

name

is

a

registry-specific

string

that

*

represents

a

descriptive,

not

necessarily

*

unique,

name

for

a

user.

If

a

display

name

*

does

not

exist

return

null

or

empty

string.

*

@exception

EntryNotFoundException

if

userSecurityName

*

does

not

exist.

*

@exception

CustomRegistryException

if

there

is

any

registry-

*

specific

problem

**/

public

String

getUserDisplayName(String

userSecurityName)

throws

CustomRegistryException,

EntryNotFoundException

{

String

s,displayName

=

null;

BufferedReader

in

=

null;

if(!isValidUser(userSecurityName))

{

EntryNotFoundException

nsee

=

new

EntryNotFoundException("user:

"

+

userSecurityName

+

"

is

not

valid");

throw

nsee;

}

try

{

in

=

fileOpen(USERFILENAME);

while

((s=in.readLine())!=null)

{

if

(!(s.startsWith("#")

||

s.trim().length()

<=0

))

{

int

index

=

s.indexOf(":");

int

index1

=

s.lastIndexOf(":");

if

((s.substring(0,index)).equals(userSecurityName))

{

displayName

=

s.substring(index1+1);

break;

}

}

Chapter

2.

Securing

applications

and

their

environments

225

}

}

catch(Exception

ex)

{

throw

new

CustomRegistryException(ex.getMessage(),

ex);

}

finally

{

fileClose(in);

}

return

displayName;

}

/**

*

Returns

the

unique

ID

for

a

userSecurityName.

This

method

is

called

*

when

creating

a

credential

for

a

user.

*

*

@param

userSecurityName

-

The

name

of

the

user.

*

@return

The

unique

ID

of

the

user.

The

unique

ID

for

an

user

*

is

the

stringified

form

of

some

unique,

registry-specific,

*

data

that

serves

to

represent

the

user.

For

example,

for

*

the

UNIX

user

registry,

the

unique

ID

for

a

user

can

be

*

the

UID.

*

@exception

EntryNotFoundException

if

userSecurityName

does

not

*

exist.

*

@exception

CustomRegistryException

if

there

is

any

registry-

*

specific

problem

**/

public

String

getUniqueUserId(String

userSecurityName)

throws

CustomRegistryException,

EntryNotFoundException

{

String

s,uniqueUsrId

=

null;

BufferedReader

in

=

null;

try

{

in

=

fileOpen(USERFILENAME);

while

((s=in.readLine())!=null)

{

if

(!(s.startsWith("#")

||

s.trim().length()

<=0

))

{

int

index

=

s.indexOf(":");

int

index1

=

s.indexOf(":",

index+1);

if

((s.substring(0,index)).equals(userSecurityName))

{

int

index2

=

s.indexOf(":",

index1+1);

uniqueUsrId

=

s.substring(index1+1,index2);

break;

}

}

}

}

catch(Exception

ex)

{

throw

new

CustomRegistryException(ex.getMessage(),ex);

}

finally

{

fileClose(in);

}

if

(uniqueUsrId

==

null)

{

EntryNotFoundException

nsee

=

new

EntryNotFoundException("Cannot

obtain

uniqueId

for

user:

"

+

userSecurityName);

throw

nsee;

}

return

uniqueUsrId;

}

/**

*

Returns

the

name

for

a

user

given

its

uniqueId.

*

*

@param

uniqueUserId

-

The

unique

ID

of

the

user.

*

@return

The

userSecurityName

of

the

user.

*

@exception

EntryNotFoundException

if

the

unique

user

ID

does

not

exist.

*

@exception

CustomRegistryException

if

there

is

any

registry-specific

*

problem

226

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

**/

public

String

getUserSecurityName(String

uniqueUserId)

throws

CustomRegistryException,

EntryNotFoundException

{

String

s,usrSecName

=

null;

BufferedReader

in

=

null;

try

{

in

=

fileOpen(USERFILENAME);

while

((s=in.readLine())!=null)

{

if

(!(s.startsWith("#")

||

s.trim().length()

<=0

))

{

int

index

=

s.indexOf(":");

int

index1

=

s.indexOf(":",

index+1);

int

index2

=

s.indexOf(":",

index1+1);

if

((s.substring(index1+1,index2)).equals(uniqueUserId))

{

usrSecName

=

s.substring(0,index);

break;

}

}

}

}

catch

(Exception

ex)

{

throw

new

CustomRegistryException(ex.getMessage(),

ex);

}

finally

{

fileClose(in);

}

if

(usrSecName

==

null)

{

EntryNotFoundException

ex

=

new

EntryNotFoundException("Cannot

obtain

the

user

securityName

for

"

+

uniqueUserId);

throw

ex;

}

return

usrSecName;

}

/**

*

Determines

if

the

userSecurityName

exists

in

the

registry

*

*

@param

userSecurityName

-

The

name

of

the

user

*

@return

True

if

the

user

is

valid;

otherwise

false

*

@exception

CustomRegistryException

if

there

is

any

registry-

*

specific

problem

*

@exception

RemoteException

as

this

extends

java.rmi.Remote

*

interface

**/

public

boolean

isValidUser(String

userSecurityName)

throws

CustomRegistryException

{

String

s;

boolean

isValid

=

false;

BufferedReader

in

=

null;

try

{

in

=

fileOpen(USERFILENAME);

while

((s=in.readLine())!=null)

{

if

(!(s.startsWith("#")

||

s.trim().length()

<=0

))

{

int

index

=

s.indexOf(":");

if

((s.substring(0,index)).equals(userSecurityName))

{

isValid=true;

break;

}

}

}

}

catch

(Exception

ex)

{

throw

new

CustomRegistryException(ex.getMessage(),

ex);

}

finally

{

fileClose(in);

}

Chapter

2.

Securing

applications

and

their

environments

227

return

isValid;

}

/**

*

Gets

a

list

of

groups

that

match

a

pattern

in

the

registry

*

The

maximum

number

of

groups

returned

is

defined

by

the

*

limit

argument.

This

method

is

called

by

administrative

console

*

and

scripting

(command

line)

to

make

available

the

groups

in

*

the

registry

for

adding

them

(groups)

to

roles.

*

*

@param

pattern

the

pattern

to

match.

(For

example,

a*

matches

*

all

groupSecurityNames

starting

with

a)

*

@param

Limits

the

maximum

number

of

groups

to

return

*

This

is

very

useful

in

situations

where

there

*

are

thousands

of

groups

in

the

registry

and

getting

all

*

of

them

at

once

is

not

practical.

The

default

is

100.

*

A

value

of

0

implies

get

all

the

groups

and

hence

must

*

be

used

with

care.

*

@return

A

Result

object

that

contains

the

list

of

groups

*

requested

and

a

flag

to

indicate

if

more

groups

exist.

*

@exception

CustomRegistryException

if

there

is

any

registry-specific

*

problem

**/

public

Result

getGroups(String

pattern,

int

limit)

throws

CustomRegistryException

{

String

s;

BufferedReader

in

=

null;

List

allGroups

=

new

ArrayList();

Result

result

=

new

Result();

int

count

=

0;

int

newLimit

=

limit+1;

try

{

in

=

fileOpen(GROUPFILENAME);

while

((s=in.readLine())!=null)

{

if

(!(s.startsWith("#")

||

s.trim().length()

<=0

))

{

int

index

=

s.indexOf(":");

String

group

=

s.substring(0,index);

if

(match(group,pattern))

{

allGroups.add(group);

if

(limit

!=0

&&

++count

==

newLimit)

{

allGroups.remove(group);

result.setHasMore();

break;

}

}

}

}

}

catch

(Exception

ex)

{

throw

new

CustomRegistryException(ex.getMessage(),ex);

}

finally

{

fileClose(in);

}

result.setList(allGroups);

return

result;

}

/**

*

Returns

the

display

name

for

the

group

specified

by

groupSecurityName.

*

For

this

version

of

WebSphere

Application

Server,

the

only

usage

of

*

this

method

is

by

the

clients

(administrative

console

and

scripting)

*

to

present

a

descriptive

name

of

the

user

if

it

exists.

*

*

@param

groupSecurityName

the

name

of

the

group.

*

@return

the

display

name

for

the

group.

The

display

name

*

is

a

registry-specific

string

that

represents

a

*

descriptive,

not

necessarily

unique,

name

for

a

group.

*

If

a

display

name

does

not

exist

return

null

or

empty

228

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

*

string.

*

@exception

EntryNotFoundException

if

groupSecurityName

does

*

not

exist.

*

@exception

CustomRegistryException

if

there

is

any

registry-

*

specific

problem

**/

public

String

getGroupDisplayName(String

groupSecurityName)

throws

CustomRegistryException,

EntryNotFoundException

{

String

s,displayName

=

null;

BufferedReader

in

=

null;

if(!isValidGroup(groupSecurityName))

{

EntryNotFoundException

nsee

=

new

EntryNotFoundException("group:

"

+

groupSecurityName

+

"

is

not

valid");

throw

nsee;

}

try

{

in

=

fileOpen(GROUPFILENAME);

while

((s=in.readLine())!=null)

{

if

(!(s.startsWith("#")

||

s.trim().length()

<=0

))

{

int

index

=

s.indexOf(":");

int

index1

=

s.lastIndexOf(":");

if

((s.substring(0,index)).equals(groupSecurityName))

{

displayName

=

s.substring(index1+1);

break;

}

}

}

}

catch(Exception

ex)

{

throw

new

CustomRegistryException(ex.getMessage(),ex);

}

finally

{

fileClose(in);

}

return

displayName;

}

/**

*

Returns

the

Unique

ID

for

a

group.

*

@param

groupSecurityName

the

name

of

the

group.

*

@return

The

unique

ID

of

the

group.

The

unique

ID

for

*

a

group

is

the

stringified

form

of

some

unique,

*

registry-specific,

data

that

serves

to

represent

*

the

group.

For

example,

for

the

UNIX

user

registry,

*

the

unique

ID

might

be

the

GID.

*

@exception

EntryNotFoundException

if

groupSecurityName

does

*

not

exist.

*

@exception

CustomRegistryException

if

there

is

any

registry-

*

specific

problem

*

@exception

RemoteException

as

this

extends

java.rmi.Remote

**/

public

String

getUniqueGroupId(String

groupSecurityName)

throws

CustomRegistryException,

EntryNotFoundException

{

String

s,uniqueGrpId

=

null;

BufferedReader

in

=

null;

try

{

in

=

fileOpen(GROUPFILENAME);

while

((s=in.readLine())!=null)

{

if

(!(s.startsWith("#")

||

s.trim().length()

<=0

))

{

int

index

=

s.indexOf(":");

int

index1

=

s.indexOf(":",

index+1);

Chapter

2.

Securing

applications

and

their

environments

229

if

((s.substring(0,index)).equals(groupSecurityName))

{

uniqueGrpId

=

s.substring(index+1,index1);

break;

}

}

}

}

catch(Exception

ex)

{

throw

new

CustomRegistryException(ex.getMessage(),ex);

}

finally

{

fileClose(in);

}

if

(uniqueGrpId

==

null)

{

EntryNotFoundException

nsee

=

new

EntryNotFoundException("Cannot

obtain

the

uniqueId

for

group:

"

+

groupSecurityName);

throw

nsee;

}

return

uniqueGrpId;

}

/**

*

Returns

the

Unique

IDs

for

all

the

groups

that

contain

the

UniqueId

*

of

a

user.

Called

during

creation

of

a

user’s

credential.

*

*

@param

uniqueUserId

the

unique

ID

of

the

user.

*

@return

A

list

of

all

the

group

unique

IDs

that

the

unique

user

*

ID

belongs

to.

The

unique

ID

for

an

entry

is

the

*

stringified

form

of

some

unique,

registry-specific,

data

*

that

serves

to

represent

the

entry.

For

example,

for

the

*

UNIX

user

registry,

the

unique

ID

for

a

group

might

be

*

the

GID

and

the

Unique

ID

for

the

user

might

be

the

UID.

*

@exception

EntryNotFoundException

if

uniqueUserId

does

not

exist.

*

@exception

CustomRegistryException

if

there

is

any

registry-specific

*

problem

**/

public

List

getUniqueGroupIds(String

uniqueUserId)

throws

CustomRegistryException,

EntryNotFoundException

{

String

s,uniqueGrpId

=

null;

BufferedReader

in

=

null;

List

uniqueGrpIds=new

ArrayList();

try

{

in

=

fileOpen(USERFILENAME);

while

((s=in.readLine())!=null)

{

if

(!(s.startsWith("#")

||

s.trim().length()

<=0

))

{

int

index

=

s.indexOf(":");

int

index1

=

s.indexOf(":",

index+1);

int

index2

=

s.indexOf(":",

index1+1);

if

((s.substring(index1+1,index2)).equals(uniqueUserId))

{

int

lastIndex

=

s.lastIndexOf(":");

String

subs

=

s.substring(index2+1,lastIndex);

StringTokenizer

st1

=

new

StringTokenizer(subs,

",");

while

(st1.hasMoreTokens())

uniqueGrpIds.add(st1.nextToken());

break;

}

}

}

}

catch(Exception

ex)

{

throw

new

CustomRegistryException(ex.getMessage(),ex);

}

finally

{

fileClose(in);

}

230

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

return

uniqueGrpIds;

}

/**

*

Returns

the

name

for

a

group

given

its

uniqueId.

*

*

@param

uniqueGroupId

the

unique

ID

of

the

group.

*

@return

The

name

of

the

group.

*

@exception

EntryNotFoundException

if

the

uniqueGroupId

does

*

not

exist.

*

@exception

CustomRegistryException

if

there

is

any

registry-

*

specific

problem

**/

public

String

getGroupSecurityName(String

uniqueGroupId)

throws

CustomRegistryException,

EntryNotFoundException

{

String

s,grpSecName

=

null;

BufferedReader

in

=

null;

try

{

in

=

fileOpen(GROUPFILENAME);

while

((s=in.readLine())!=null)

{

if

(!(s.startsWith("#")

||

s.trim().length()

<=0

))

{

int

index

=

s.indexOf(":");

int

index1

=

s.indexOf(":",

index+1);

if

((s.substring(index+1,index1)).equals(uniqueGroupId))

{

grpSecName

=

s.substring(0,index);

break;

}

}

}

}

catch

(Exception

ex)

{

throw

new

CustomRegistryException(ex.getMessage(),ex);

}

finally

{

fileClose(in);

}

if

(grpSecName

==

null)

{

EntryNotFoundException

ex

=

new

EntryNotFoundException("Cannot

obtain

the

group

security

name

for:

"

+

uniqueGroupId);

throw

ex;

}

return

grpSecName;

}

/**

*

Determines

if

the

groupSecurityName

exists

in

the

registry

*

*

@param

groupSecurityName

the

name

of

the

group

*

@return

True

if

the

groups

exists;

otherwise

false

*

@exception

CustomRegistryException

if

there

is

any

registry-

*

specific

problem

**/

public

boolean

isValidGroup(String

groupSecurityName)

throws

CustomRegistryException

{

String

s;

boolean

isValid

=

false;

BufferedReader

in

=

null;

try

{

in

=

fileOpen(GROUPFILENAME);

while

((s=in.readLine())!=null)

{

if

(!(s.startsWith("#")

||

s.trim().length()

<=0

))

{

int

index

=

s.indexOf(":");

Chapter

2.

Securing

applications

and

their

environments

231

if

((s.substring(0,index)).equals(groupSecurityName))

{

isValid=true;

break;

}

}

}

}

catch

(Exception

ex)

{

throw

new

CustomRegistryException(ex.getMessage(),ex);

}

finally

{

fileClose(in);

}

return

isValid;

}

/**

*

Returns

the

securityNames

of

all

the

groups

that

contain

the

user

*

*

This

method

is

called

by

the

administrative

console

and

scripting

*

(command

line)

to

verify

the

user

entered

for

RunAsRole

mapping

*

belongs

to

that

role

in

the

roles

to

user

mapping.

Initially,

the

*

check

is

done

to

see

if

the

role

contains

the

user.

If

the

role

does

*

not

contain

the

user

explicitly,

this

method

is

called

to

get

the

groups

*

that

this

user

belongs

to

so

that

check

can

be

made

on

the

groups

that

*

the

role

contains.

*

*

@param

userSecurityName

the

name

of

the

user

*

@return

A

list

of

all

the

group

securityNames

that

the

user

*

belongs

to.

*

@exception

EntryNotFoundException

if

user

does

not

exist.

*

@exception

CustomRegistryException

if

there

is

any

registry-

*

specific

problem

*

@exception

RemoteException

as

this

extends

the

java.rmi.Remote

*

interface

**/

public

List

getGroupsForUser(String

userName)

throws

CustomRegistryException,

EntryNotFoundException

{

String

s;

List

grpsForUser

=

new

ArrayList();

BufferedReader

in

=

null;

try

{

in

=

fileOpen(GROUPFILENAME);

while

((s=in.readLine())!=null)

{

if

(!(s.startsWith("#")

||

s.trim().length()

<=0

))

{

StringTokenizer

st

=

new

StringTokenizer(s,

":");

for

(int

i=0;

i<2;

i++)

st.nextToken();

String

subs

=

st.nextToken();

StringTokenizer

st1

=

new

StringTokenizer(subs,

",");

while

(st1.hasMoreTokens())

{

if((st1.nextToken()).equals(userName))

{

int

index

=

s.indexOf(":");

grpsForUser.add(s.substring(0,index));

}

}

}

}

}

catch

(Exception

ex)

{

if

(!isValidUser(userName))

{

throw

new

EntryNotFoundException("user:

"

+

userName

+

"

is

not

valid");

}

throw

new

CustomRegistryException(ex.getMessage(),ex);

}

finally

{

fileClose(in);

232

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

}

return

grpsForUser;

}

/**

*

Gets

a

list

of

users

in

a

group.

*

*

The

maximum

number

of

users

returned

is

defined

by

the

*

limit

argument.

*

*

This

method

is

being

used

by

the

process

choreographer

*

when

staff

assignments

are

modeled

using

groups.

*

*

In

rare

situations,

if

you

are

working

with

a

registry

where

*

getting

all

the

users

from

any

of

your

groups

is

not

practical

*

(for

example

if

there

are

a

large

number

of

users)

you

can

throw

*

the

NotImplementedException

for

that

particular

group.

Make

sure

*

that

if

the

process

choreographer

is

installed

(or

if

installed

later)

*

the

staff

assignments

are

not

modeled

using

these

particular

groups.

*

If

there

is

no

concern

about

returning

the

users

from

groups

*

in

the

registry

it

is

recommended

that

this

method

be

implemented

*

without

throwing

the

NotImplemented

exception.

*

@param

groupSecurityName

the

name

of

the

group

*

@param

Limits

the

maximum

number

of

users

that

should

be

*

returned.

This

is

very

useful

in

situations

where

there

*

are

lot

of

users

in

the

registry

and

getting

all

of

*

them

at

once

is

not

practical.

A

value

of

0

implies

*

get

all

the

users

and

hence

must

be

used

with

care.

*

@return

A

result

object

that

contains

the

list

of

users

*

requested

and

a

flag

to

indicate

if

more

users

exist.

*

@deprecated

This

method

will

be

deprecated

in

future.

*

@exception

NotImplementedException

throw

this

exception

in

rare

*

situations

if

it

is

not

practical

to

get

this

information

*

for

any

of

the

group

or

groups

from

the

registry.

*

@exception

EntryNotFoundException

if

the

group

does

not

exist

in

*

the

registry

*

@exception

CustomRegistryException

if

there

is

any

registry-specific

*

problem

**/

public

Result

getUsersForGroup(String

groupSecurityName,

int

limit)

throws

NotImplementedException,

EntryNotFoundException,

CustomRegistryException

{

String

s,

user;

BufferedReader

in

=

null;

List

usrsForGroup

=

new

ArrayList();

int

count

=

0;

int

newLimit

=

limit+1;

Result

result

=

new

Result();

try

{

in

=

fileOpen(GROUPFILENAME);

while

((s=in.readLine())!=null)

{

if

(!(s.startsWith("#")

||

s.trim().length()

<=0

))

{

int

index

=

s.indexOf(":");

if

((s.substring(0,index)).equals(groupSecurityName))

{

StringTokenizer

st

=

new

StringTokenizer(s,

":");

for

(int

i=0;

i<2;

i++)

st.nextToken();

String

subs

=

st.nextToken();

StringTokenizer

st1

=

new

StringTokenizer(subs,

",");

while

(st1.hasMoreTokens())

{

user

=

st1.nextToken();

Chapter

2.

Securing

applications

and

their

environments

233

usrsForGroup.add(user);

if

(limit

!=0

&&

++count

==

newLimit)

{

usrsForGroup.remove(user);

result.setHasMore();

break;

}

}

}

}

}

}

catch

(Exception

ex)

{

if

(!isValidGroup(groupSecurityName))

{

throw

new

EntryNotFoundException("group:

"

+

groupSecurityName

+

"

is

not

valid");

}

throw

new

CustomRegistryException(ex.getMessage(),ex);

}

finally

{

fileClose(in);

}

result.setList(usrsForGroup);

return

result;

}

/**

*

This

method

is

implemented

internally

by

the

WebSphere

Application

*

Server

code

in

this

release.

This

method

is

not

called

for

the

custom

*

registry

implementations

for

this

release.

Return

null

in

the

*

implementation.

*

**/

public

com.ibm.websphere.security.cred.WSCredential

createCredential(String

userSecurityName)

throws

CustomRegistryException,

NotImplementedException,

EntryNotFoundException

{

//

This

method

is

not

called.

return

null;

}

//

private

methods

private

BufferedReader

fileOpen(String

fileName)

throws

FileNotFoundException

{

try

{

return

new

BufferedReader(new

FileReader(fileName));

}

catch(FileNotFoundException

e)

{

throw

e;

}

}

private

void

fileClose(BufferedReader

in)

{

try

{

if

(in

!=

null)

in.close();

}

catch(Exception

e)

{

System.out.println("Error

closing

file"

+

e);

}

}

private

boolean

match(String

name,

String

pattern)

{

RegExpSample

regexp

=

new

RegExpSample(pattern);

boolean

matches

=

false;

if(regexp.match(name))

matches

=

true;

return

matches;

}

234

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

}

//--

//

The

program

provides

the

Regular

Expression

implementation

//

used

in

the

sample

for

the

custom

user

registry

(FileRegistrySample).

//

The

pattern

matching

in

the

sample

uses

this

program

to

search

for

the

//

pattern

(for

users

and

groups).

//--

class

RegExpSample

{

private

boolean

match(String

s,

int

i,

int

j,

int

k)

{

for(;

k

<

expr.length;

k++)

label0:

{

Object

obj

=

expr[k];

if(obj

==

STAR)

{

if(++k

>=

expr.length)

return

true;

if(expr[k]

instanceof

String)

{

String

s1

=

(String)expr[k++];

int

l

=

s1.length();

for(;

(i

=

s.indexOf(s1,

i))

>=

0;

i++)

if(match(s,

i

+

l,

j,

k))

return

true;

return

false;

}

for(;

i

<

j;

i++)

if(match(s,

i,

j,

k))

return

true;

return

false;

}

if(obj

==

ANY)

{

if(++i

>

j)

return

false;

break

label0;

}

if(obj

instanceof

char[][])

{

if(i

>=

j)

return

false;

char

c

=

s.charAt(i++);

char

ac[][]

=

(char[][])obj;

if(ac[0]

==

NOT)

{

for(int

j1

=

1;

j1

<

ac.length;

j1++)

if(ac[j1][0]

<=

c

&&

c

<=

ac[j1][1])

return

false;

break

label0;

}

for(int

k1

=

0;

k1

<

ac.length;

k1++)

if(ac[k1][0]

<=

c

&&

c

<=

ac[k1][1])

break

label0;

return

false;

}

if(obj

instanceof

String)

{

Chapter

2.

Securing

applications

and

their

environments

235

String

s2

=

(String)obj;

int

i1

=

s2.length();

if(!s.regionMatches(i,

s2,

0,

i1))

return

false;

i

+=

i1;

}

}

return

i

==

j;

}

public

boolean

match(String

s)

{

return

match(s,

0,

s.length(),

0);

}

public

boolean

match(String

s,

int

i,

int

j)

{

return

match(s,

i,

j,

0);

}

public

RegExpSample(String

s)

{

Vector

vector

=

new

Vector();

int

i

=

s.length();

StringBuffer

stringbuffer

=

null;

Object

obj

=

null;

for(int

j

=

0;

j

<

i;

j++)

{

char

c

=

s.charAt(j);

switch(c)

{

case

63:

/*

’?’

*/

obj

=

ANY;

break;

case

42:

/*

’*’

*/

obj

=

STAR;

break;

case

91:

/*

’[’

*/

int

k

=

++j;

Vector

vector1

=

new

Vector();

for(;

j

<

i;

j++)

{

c

=

s.charAt(j);

if(j

==

k

&&

c

==

’^’)

{

vector1.addElement(NOT);

continue;

}

if(c

==

’\\’)

{

if(j

+

1

<

i)

c

=

s.charAt(++j);

}

else

if(c

==

’]’)

break;

char

c1

=

c;

if(j

+

2

<

i

&&

s.charAt(j

+

1)

==

’-’)

c1

=

s.charAt(j

+=

2);

char

ac1[]

=

{

c,

c1

};

vector1.addElement(ac1);

}

236

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

char

ac[][]

=

new

char[vector1.size()][];

vector1.copyInto(ac);

obj

=

ac;

break;

case

92:

/*

’\\’

*/

if(j

+

1

<

i)

c

=

s.charAt(++j);

break;

}

if(obj

!=

null)

{

if(stringbuffer

!=

null)

{

vector.addElement(stringbuffer.toString());

stringbuffer

=

null;

}

vector.addElement(obj);

obj

=

null;

}

else

{

if(stringbuffer

==

null)

stringbuffer

=

new

StringBuffer();

stringbuffer.append(c);

}

}

if(stringbuffer

!=

null)

vector.addElement(stringbuffer.toString());

expr

=

new

Object[vector.size()];

vector.copyInto(expr);

}

static

final

char

NOT[]

=

new

char[2];

static

final

Integer

ANY

=

new

Integer(0);

static

final

Integer

STAR

=

new

Integer(1);

Object

expr[];

}

Result.java

file:

This

module

is

used

by

user

registries

in

WebSphere

Application

Server

when

calling

the

getUsers

and

getGroups

methods.

The

user

registries

use

this

method

to

set

the

list

of

users

and

groups

and

to

indicate

if

there

are

more

users

and

groups

in

the

registry

than

requested.

//

@(#)

1.20

src/en/ae/rsec_result.xml,

WEBSJAVA.INFO.DOCSRC,

//

ASVINFO1

10/17/02

16:43:01

[10/18/02

07:31:30]

//

5639-D57,

5630-A36,

5630-A37,

5724-D18

//

(C)

COPYRIGHT

International

Business

Machines

Corp.

1997,

2003

//

All

Rights

Reserved

*

Licensed

Materials

-

Property

of

IBM

//

package

com.ibm.websphere.security;

import

java.util.List;

public

class

Result

implements

java.io.Serializable

{

/**

Default

constructor

*/

public

Result()

{

Chapter

2.

Securing

applications

and

their

environments

237

}

/**

Returns

the

list

of

users

and

groups

@return

the

list

of

users

and

groups

*/

public

List

getList()

{

return

list;

}

/**

indicates

if

there

are

more

users

and

groups

in

the

registry

*/

public

boolean

hasMore()

{

return

more;

}

/**

Set

the

flag

to

indicate

that

there

are

more

users

and

groups

in

the

registry

to

true

*/

public

void

setHasMore()

{

more

=

true;

}

/*

Set

the

list

of

users

and

groups

@param

list

list

of

users/groups

*/

public

void

setList(List

list)

{

this.list

=

list;

}

private

boolean

more

=

false;

private

List

list;

}

Custom

user

registry

settings:

Use

this

page

to

configure

the

custom

user

registry.

To

view

this

administrative

console

page,

click

Security

>

User

Registries

>

Custom.

After

the

properties

are

set

in

this

panel,

click

Apply.

Use

the

Properties

panel

for

additional

properties

that

the

custom

registry

requires.

When

security

is

enabled

and

any

of

these

properties

change,

go

to

the

Global

Security

panel

and

click

Apply

to

validate

the

changes.

Server

User

ID:

Specifies

the

user

ID

under

which

the

server

runs,

for

security

purposes.

This

server

ID

represents

a

valid

user

in

the

custom

registry.

Data

type:

String

238

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Server

User

Password:

Specifies

the

password

corresponding

to

the

security

server

ID.

Data

type:

String

Custom

Registry

Classname:

Specifies

a

dot-separated

class

name

that

implements

the

com.ibm.websphere.security.UserRegistry

interface.

Put

the

custom

registry

class

name

in

the

class

path.

A

suggested

location

is

the

%install_root%/lib/ext

directory.

Although

the

custom

registry

implements

the

com.ibm.websphere.security.UserRegistry

interface,

for

backward

compatibility,

a

user

registry

can

alternately

implement

the

com.ibm.websphere.security.CustomRegistry

interface.

Data

type:

String

Default:

com.ibm.websphere.security.FileRegistrySample

Ignore

Case:

Specifies

that

a

case

insensitive

authorization

check

is

performed.

Default:

Enabled

Range:

Enabled

or

Disabled

Use

Custom

Properties

to

add

any

additional

properties

required

to

initialize

the

custom

registry.

The

following

property

is

predefined

by

the

product;

set

this

property

when

required

only:

v

WAS_UseDisplayName--When

set

to

true,

the

getCallerPrincipal(),

getUserPrincipal(),

and

getRemoteUser()

methods

return

the

display

name.

By

default,

the

securityName

of

the

user

is

returned.

This

default

is

introduced

to

support

backward

compatibility

with

the

Version

4.0

custom

registry.

users.props

file:

Following

is

the

format

for

the

users.props

file:

#

5639-D57,

5630-A36,

5630-A37,

5724-D18

#

(C)

COPYRIGHT

International

Business

Machines

Corp.

1997,

2003

#

All

Rights

Reserved

*

Licensed

Materials

-

Property

of

IBM

#

#

Format:

#

name:passwd:uid:gids:display

name

#

where

name

=

userId/userName

of

the

user

#

passwd

=

password

of

the

user

#

uid

=

uniqueId

of

the

user

#

gid

=

groupIds

of

the

groups

that

the

user

belongs

to

#

display

name

=

a

(optional)

display

name

for

the

user.

bob:bob1:123:567:bob

dave:dave1:234:678:

jay:jay1:345:678,789:Jay-Jay

ted:ted1:456:678:Teddy

G

jeff:jeff1:222:789:Jeff

vikas:vikas1:333:789:vikas

bobby:bobby1:444:789:

groups.props

file:

The

following

example

illustrates

the

format

for

the

groups.props

file:

Chapter

2.

Securing

applications

and

their

environments

239

#

5639-D57,

5630-A36,

5630-A37,

5724-D18

#

(C)

COPYRIGHT

International

Business

Machines

Corp.

1997,

2003

#

All

Rights

Reserved

*

Licensed

Materials

-

Property

of

IBM

#

#

Format:

#

name:gid:users:display

name

#

where

name

=

groupId

of

the

group

#

gid

=

uniqueId

of

the

group

#

users

=

list

of

all

the

userIds

that

the

group

contains

#

display

name

=

a

(optional)

display

name

for

the

group.

admins:567:bob:Administrative

group

operators:678:jay,ted,dave:Operators

group

users:789:jay,jeff,vikas,bobby:

Java

Authentication

and

Authorization

Service

The

standard

Java

2

security

API

helps

enforce

access

control,

based

on

the

location

of

the

code

and

who

signed

it.

The

current

principal

of

the

running

thread

is

not

considered

in

the

Java

2

security

authorization.

Instances

where

authorization

is

based

on

the

principal,

rather

than

the

code

base

and

the

signer

exist.

The

Java

Authentication

and

Authorization

Service

is

a

standard

Java

API

that

supports

the

Java

2

security

authorization

to

extend

the

code

base

on

the

principal

as

well

as

the

code

base

and

signers.

The

Java

Authentication

and

Authorization

Service

(JAAS)

Version

1.0

extends

the

Java

2

security

architecture

of

the

Java

2

platform

with

additional

support

to

authenticate

and

enforce

access

control

with

users.

It

implements

a

Java

version

of

the

standard

Pluggable

Authentication

Module

(PAM)

framework,

and

extends

the

access

control

architecture

of

the

Java

2

platform

in

a

compatible

fashion

to

support

user-based

authorization.

WebSphere

Application

Server

fully

supports

the

JAAS

architecture

and

extends

the

access

control

architecture

to

support

role-based

authorization

for

Java

2

Platform,

Enterprise

Edition

(J2EE)

resources

including

servlets,

JavaServer

Pages

(JSP)

files,

and

Enterprise

JavaBeans

(EJB)

components.

The

following

sections

cover

the

JAAS

implementation

and

programming

model:

v

Java

Authentication

and

Authorization

Service

login

configuration

v

Programmatic

Login

v

Java

Authentication

and

Authorization

Service

authorization

The

JAAS

documentation

can

be

found

at

http://www.ibm.com/developerworks/java/jdk/security.

Scroll

down

to

find

the

JAAS

documentation

for

your

platform.

Java

Authentication

and

Authorization

Service

authorization

Java

2

security

architecture

uses

a

security

policy

to

specify

which

access

rights

are

granted

to

running

code.

This

architecture

is

code-centric.

That

is,

the

permissions

are

granted

based

on

code

characteristics

including

where

the

code

is

coming

from,

whether

it

is

digitally

signed,

and

by

whom.

Authorization

of

the

Java

Authentication

and

Authorization

Service

(JAAS)

augments

the

existing

code-centric

access

controls

with

new

user-centric

access

controls.

Permissions

are

granted

based

on

what

code

is

running

and

who

is

running

it.

When

using

JAAS

authentication

to

authenticate

a

user,

a

subject

is

created

to

represent

the

authenticated

user.

A

subject

is

comprised

of

a

set

of

principals,

where

each

principal

represents

an

identity

for

that

user.

You

can

grant

permissions

in

the

policy

to

specific

principals.

After

the

user

is

authenticated,

the

application

can

associate

the

subject

with

the

current

access

control

context.

For

each

subsequent

security-checked

operation,

the

Java

run

time

automatically

240

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

determines

whether

the

policy

grants

the

required

permission

to

a

specific

principal

only.

If

so,

the

operation

is

supported

if

the

subject

associated

with

the

access

control

context

contains

the

designated

principal

only.

Associate

a

subject

with

the

current

access

control

context

by

calling

the

static

doAs

method

from

the

subject

class,

passing

it

an

authenticated

subject

and

java.security.PrivilegedAction

or

java.security.PrivilegedExceptionAction.

The

doAs

method

associates

the

provided

subject

with

the

current

access

control

context

and

then

invokes

the

run

method

from

the

action.

The

run

method

implementation

contains

all

the

code

that

ran

as

the

specified

subject.

The

action

runs

as

the

specified

subject.

In

the

Java

2

Platform,

Enterprise

Edition

(J2EE)

programming

model,

when

invoking

the

EJB

method

from

an

enterprise

bean

or

servlet,

the

method

runs

under

the

user

identity

that

is

determined

by

the

run-as

setting.

The

J2EE

Version

1.3

Specification

does

not

indicate

which

user

identity

to

use

when

invoking

an

enterprise

bean

from

a

Subject.doAs

action

block

within

either

the

EJB

code

or

the

servlet

code.

A

logical

extension

is

to

use

the

proper

identity

specified

in

the

subject

when

invoking

the

EJB

method

within

the

Subject

doAs

action

block.

This

simple

rule

of

letting

Subject.doAs

overwrite

the

run-as

identity

setting

is

an

ideal

way

to

integrate

the

JAAS

programming

model

with

the

J2EE

run-time

environment.

However,

a

design

oversight

was

introduced

into

IBM

Developer

Kit,

Java

Technology

Edition

Version

1.3

when

integrating

the

JAAS

Version

1.0

implementation

with

the

Java

2

security

architecture.

A

subject,

which

is

associated

with

the

access

control

context

is

cut

off

by

a

doPrivileged

call

when

a

doPrivileged

call

occurs

within

the

Subject.doAs

action

block.

Until

this

problem

is

corrected,

no

reliable

and

run-time

efficient

way

is

available

to

guarantee

the

correct

behavior

of

Subject.doAs

in

a

J2EE

run-time

environment.

The

problem

can

be

explained

better

with

the

following

example:

Subject.doAs(subject,

new

java.security.PrivilegedAction()

{

Public

Object

run()

{

//

Subject

is

associated

with

the

current

thread

context

java.security.AccessController.doPrivileged(

new

java.security.PrivilegedAction()

{

public

Object

run()

{

//

Subject

was

cut

off

from

the

current

//

thread

context

return

null;

}

});

//

Subject

is

associated

with

the

current

thread

context

return

null;

}

});

At

line

three,

the

subject

object

is

associated

with

the

context

of

the

current

thread.

As

indicated

on

line

7

within

the

run

method

of

a

doPrivileged

action

block,

the

subject

object

is

removed

from

the

thread

context.

After

leaving

the

doPrivileged

block,

the

subject

object

is

restored

to

the

current

thread

context.

Because

doPrivileged

blocks

can

be

placed

anywhere

along

the

running

path

and

instrumented

quite

often

in

a

server

environment,

the

run-time

behavior

of

a

doAs

action

block

becomes

difficult

to

manage.

Chapter

2.

Securing

applications

and

their

environments

241

The

credential

is

used

by

the

Security

Authentication

Service

(SAS)

run

time

for

EJB

invocation.

The

WSSubject.doAs

and

WSSubject.doAsPrivileged

methods

then

invoke

the

corresponding

Subject.doAs

and

Subject.doAsPrivileged

methods.

The

original

credential

is

restored

and

associated

with

the

running

thread

upon

leaving

the

WSSubject.doAs

and

WSSubject.doAsPrivileged

methods.

To

resolve

this

difficulty,

WebSphere

Application

Server

provides

a

WSSubject

helper

class

to

extend

the

JAAS

authorization

to

a

J2EE

EJB

method

invocation

as

described

previously.

The

WSSubject

class

provides

static

doAs

and

doAsPrivileged

methods

that

have

identical

signatures

to

the

subject

class.

The

WSSubject.doAs

method

associates

the

Subject

to

the

currently

running

thread.

The

credential

is

used

by

the

Security

Authentication

Service

(SAS)

run

time

for

EJB

invocation.

The

WSSubject.doAs

and

WSSubject.doAsPrivileged

methods

then

invoke

the

corresponding

Subject.doAs

and

Subject.doAsPrivileged

methods.

The

original

credential

is

restored

and

associated

with

the

running

thread

upon

leaving

the

WSSubject.doAs

and

WSSubject.doAsPrivileged

methods.

Note

that

the

WSSubject

class

is

not

a

replacement

of

the

subject

object,

but

rather

a

helper

class

to

ensure

consistent

run-time

behavior

as

long

as

an

EJB

method

invocation

is

a

concern.

Note:

When

using

application

Sync

to

OS

thread

the

operating

system

identity

is

modified

to

match

the

subject

identity.

Refer

to

Understanding

application

Synch

to

OS

Thread

Allowed

for

more

information.

The

following

example

illustrates

the

run-time

behavior

of

the

WSSubject.doAs

method:

WSSubject.doAs(subject,

new

java.security.PrivilegedAction()

{

Public

Object

run()

{

//

Subject

is

associated

with

the

current

thread

context

java.security.AccessController.doPrivileged(

new

java.security.PrivilegedAction()

{

public

Object

run()

{

//

Subject

was

cut

off

from

the

current

thread

//

context.

return

null;

}

});

//

Subject

is

associated

with

the

current

thread

context

return

null;

}

});

The

Subject.doAs

and

Subject.doAsPrivileged

methods

are

not

integrated

with

the

J2EE

run-time

environment.

EJB

methods

that

are

invoked

within

the

Subject.doAs

and

Subject.doAsPrivileged

action

blocks

run

under

the

identity

specified

by

the

run-as

setting

and

not

by

the

subject

identity.

v

The

subject

object

generated

by

the

WSLoginModuleImpl

instance

and

the

WSClientLoginModuleImpl

instance

contains

a

principal

that

implements

the

WSPrincipal

interface.

Using

the

getCredential()

method

for

a

WSPrincipal

object

242

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

returns

an

object

that

implements

the

WSCredential

interface.

You

can

also

find

the

WSCredential

object

instance

in

the

PublicCredentials

list

of

the

subject

instance.

Retrieve

the

WSCredential

object

from

the

PublicCredentials

list

instead

of

using

the

getCredential()

method.

v

The

getCallerPrincipal()

method

for

the

WSSubject

class

returns

a

string

representing

the

caller

security

identity.

The

return

type

differs

from

the

getCallerPrincipal

method

of

the

EJBContext

interface,

which

is

java.security.Principal.

v

The

Subject

object

generated

by

the

J2C

DefaultPrincipalMapping

module

contains

a

resource

principal

and

a

PasswordCredentials

list.

The

resource

principal

represents

the

caller.

Refer

to

“Java

2

Connector

security”

on

page

257

for

more

information

Configuring

application

logins

for

Java

Authentication

and

Authorization

Service

Java

Authentication

and

Authorization

Service

(JAAS)

is

a

new

feature

in

WebSphere

Application

Server.

It

is

a

collection

of

WebSphere

Application

Server

strategic

authentication

APIs

and

replaces

the

Common

Object

Request

Broker

Architecture

(CORBA)

programmatic

login

APIs.

WebSphere

Application

Server

provides

some

extensions

to

JAAS:

v

com.ibm.websphere.security.auth.WSSubject.

Due

to

a

design

oversight

in

the

JAAS

V1.0,

javax.security.auth.Subject.getSubject()

method

does

not

return

the

subject

associated

with

the

running

thread

inside

a

java.security.AccessController.doPrivileged()

code

block.

This

problem

presents

an

inconsistent

behavior

that

is

problematic

and

causes

undesirable

effort.

The

com.ibm.websphere.security.auth.WSSubject

API

provides

a

workaround

to

associate

the

subject

to

a

running

thread.

The

com.ibm.websphere.security.auth.WSSubject

API

extends

the

JAAS

authorization

model

to

J2EE

resources.

v

You

can

configure

JAAS

login

in

the

administrative

console

and

store

this

configuration

in

the

WebSphere

configuration

application

programming

interface

(API).

However,

WebSphere

Application

Server

still

supports

the

default

JAAS

login

configuration

format

(plain

text

file)

provided

by

the

JAAS

default

implementation.

If

duplicate

login

configurations

are

defined

in

both

the

WebSphere

configuration

API

and

the

plain

text

file

format,

the

one

in

the

WebSphere

configuration

API

takes

precedence.

Advantages

to

defining

the

login

configuration

in

the

WebSphere

configuration

API

include:

–

User

interface

support

in

defining

JAAS

login

configuration

–

Central

management

of

the

JAAS

login

configuration

–

Distribution

of

the

JAAS

login

configuration

in

a

Network

Deployment

product

installation
v

Proxy

LoginModule.

The

default

JAAS

implementation

does

not

use

the

thread

context

class

loader

to

load

classes.

The

LoginModule

module

cannot

load

if

the

LoginModule

class

file

is

not

in

the

application

class

loader

or

the

Java

extension

class

loader

class

path.

Due

to

this

class

loader

visibility

problem,

WebSphere

Application

Server

provides

a

proxy

LoginModule

module

to

load

the

JAAS

LoginModule

using

the

thread

context

class

loader.

You

do

not

need

to

place

the

LoginModule

implementation

on

the

application

class

loader

or

the

Java

extension

class

loader

class

path

with

this

proxy

LoginModule

module.

If

you

do

not

want

to

use

the

Proxy

LoginModule,

you

can

place

the

LoginModule

in

the

jre/lib/ext

directory.

However,

this

is

not

recommended

due

to

the

security

risks.

Chapter

2.

Securing

applications

and

their

environments

243

Two

JAAS

login

configurations

are

defined

in

the

WebSphere

Configuration

API

security

document

for

applications

to

use.

In

the

left

navigation

pane,

click

Security

>

JAAS

Configuration

>

Application

Login

>WSLogin

and

ClientContainer.

The

following

three

JAAS

login

configurations

are

available:

WSLogin

Defines

a

login

configuration

and

a

LoginModule

implementation

that

applications

can

use

in

general.

ClientContainer

Defines

a

login

configuration

and

a

LoginModule

implementation

that

is

similar

to

that

of

the

WSLogin

configuration,

but

enforces

the

requirements

of

the

WebSphere

Application

Server

client

container.

DefaultPrincipalMapping,

Defines

a

special

LoginModule

module

that

is

typically

used

by

Java

2

Connector

to

map

an

authenticated

WebSphere

user

identity

to

a

set

of

user

authentication

data

(user

ID

and

password)

for

the

specified

back-end

enterprise

information

system

(EIS).

For

more

information

about

Java

2

Connector

and

the

DefaultMappingModule

module,

refer

to

the

Java

2

security

section.

A

new

JAAS

login

configuration

can

be

added

and

modified

using

the

administrative

console.

The

changes

are

saved

in

the

cell-level

security

document

and

are

available

to

all

managed

application

servers.

An

application

server

restart

is

required

for

the

changes

to

take

effect

at

run

time.

Attention:

Do

not

remove

or

delete

the

predefined

JAAS

login

configurations

(ClientContainer,

WSLogin

and

DefaultPrincipalMapping).

Deleting

or

removing

them

can

cause

other

enterprise

applications

to

fail.

1.

Delete

a

JAAS

login

configuration.

a.

Click

Security

in

the

navigation

tree.

b.

Click

JAAS

Configuration

>

Application

Logins.

The

Application

Login

Configuration

panel

appears.

c.

Select

the

check

box

for

the

login

configurations

to

delete

and

click

Delete.
2.

Create

a

new

JAAS

login

configuration.

a.

Click

Security

in

the

navigation

tree.

b.

Click

JAAS

Configuration

>

Application

Logins.

c.

Click

New.

The

Application

Login

Configuration

panel

appears.

d.

Specify

the

alias

name

of

the

new

JAAS

login

configuration

and

click

Apply.

This

value

is

the

name

of

the

login

configuration

that

you

pass

in

the

javax.security.auth.login.LoginContext

implementation

for

creating

a

new

LoginContext.

Click

Apply

to

save

changes

and

to

add

the

extra

node

name

that

precedes

the

original

alias

name.

Clicking

OK

does

not

save

the

new

changes

in

the

security.xml

file.

e.

Click

JAAS

Login

Modules.

f.

Click

New.

g.

Specify

the

Module

Classname.

Specify

WebSphere

Proxy

LoginModule

because

of

the

limitation

of

the

class

loader

visibility

problem.

h.

Specify

the

LoginModule

implementation

as

the

delegate

property

of

the

Proxy

LoginModule.

The

WebSphere

Proxy

LoginModule

class

name

is

com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy.

i.

Select

Authentication

Strategy

from

the

list

and

click

Apply.

244

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

j.

Click

Custom

Properties.

The

Custom

Properties

panel

is

displayed

for

the

selected

LoginModule.

k.

Create

a

new

property

with

the

name

delegate

and

the

value

of

the

real

LoginModule

implementation.

You

can

specify

other

properties

like

debug

with

the

value

true.

These

properties

are

passed

to

the

LoginModule

class

as

options

to

the

initialize()

method

of

the

LoginModule

instance.

l.

Click

Save.

There

are

several

locations

within

the

WebSphere

Application

Server

directory

structure

where

you

can

place

a

JAAS

login

module.

The

following

list

provides

locations

for

the

JAAS

login

module

in

order

of

recommendation:

v

Within

an

Enterprise

Archive

(EAR)

file

for

a

specific

Java

2

Enterprise

Edition

(J2EE)

application.

If

you

place

the

login

module

within

the

EAR

file,

it

is

accessible

to

the

specific

application

only.

v

In

the

WebSphere

Application

Server

shared

library.

If

you

place

the

login

module

in

the

shared

library,

you

must

specify

which

applications

can

access

the

module.

For

more

information

on

shared

libraries,

see

Managing

shared

libraries.

v

In

the

Java

extensions

directory

(WAS_HOME\jre\lib\ext)

If

you

place

the

JAAS

login

module

in

the

Java

extensions

directory,

the

login

module

is

available

to

all

applications.

Although

the

Java

extensions

directory

provides

the

greatest

availability

for

the

login

module,

it

is

recommended

that

you

place

the

login

module

in

an

application

EAR

file.

If

other

applications

need

to

access

the

same

login

module,

consider

using

shared

libraries.

3.

Change

the

plain

text

file.

WebSphere

Application

Server

supports

the

default

JAAS

login

configuration

format

(plain

text

file)

provided

by

the

JAAS

default

implementation.

However,

a

tool

is

not

provided

that

edits

plain

text

files

in

this

format.

You

can

define

the

JAAS

login

configuration

in

the

plain

text

file

(install_root/properties/wsjaas.conf).

Any

syntax

errors

can

cause

the

incorrect

parsing

of

the

plain

JAAS

login

configuration

text

file.

This

problem

can

cause

other

applications

to

fail.

Java

client

programs

that

use

the

Java

Authentication

and

Authorization

Service

(JAAS)

for

authentication

must

invoke

with

the

JAAS

configuration

file

specified.

This

configuration

file

is

set

in

the

/install_root/bin/launchClient.bat

file

as

set

JAAS_LOGIN_CONFIG=-
Djava.security.auth.login.config=%install_root%\properties\wsjaas_client.conf.

If

the

launchClient.bat

file

is

not

used

to

invoke

the

Java

client

program,

verify

that

the

appropriate

JAAS

configuration

file

is

passed

to

the

Java

virtual

machine

with

the

-Djava.security.auth.login.config

flag.

A

new

JAAS

login

configuration

is

created

or

an

old

JAAS

login

configuration

is

removed.

An

enterprise

application

can

use

a

newly

created

JAAS

login

configuration

without

restarting

the

application

server

process.

However,

new

JAAS

login

configurations

defined

in

the

install_root/properties/wsjaas.conf

file,

do

not

refresh

automatically.

Restart

the

application

servers

to

validate

changes.

These

JAAS

login

configurations

are

specific

to

a

particular

node

and

are

not

available

for

other

application

servers

running

on

other

nodes.

Create

new

JAAS

login

configurations

used

by

enterprise

applications

to

perform

custom

authentication.

Chapter

2.

Securing

applications

and

their

environments

245

Use

these

newly

defined

JAAS

login

configurations

to

perform

programmatic

login.

Login

configuration

for

Java

Authentication

and

Authorization

Service

Java

Authentication

and

Authorization

Service

(JAAS)

is

a

new

feature

in

WebSphere

Application

Server.

JAAS

is

WebSphere

strategic

APIs

for

authentication

and

it

will

replace

of

the

CORBA

programmatic

login

APIs.

WebSphere

Application

Server

provides

some

extensions

to

JAAS:

v

com.ibm.websphere.security.auth.WSSubject:

Due

to

a

design

oversight

in

the

JAAS

1.0,

javax.security.auth.Subject.getSubject()

does

not

return

the

Subject

associated

with

the

thread

of

execution

inside

a

java.security.AccessController.doPrivileged()

code

block.

This

can

present

a

inconsistent

behavior

that

is

problematic

and

causes

undesirable

effort.

com.ibm.websphere.security.auth.WSSubject

provides

a

work

around

to

associate

Subject

to

thread

of

execution.

com.ibm.websphere.security.auth.WSSubject

extends

the

JAAS

authorization

model

to

J2EE

resources.

Note:

You

can

retrieve

the

subjects

in

a

Subject.doAs()

block

with

the

Subject.getSubject()

call.

However,

this

procedure

does

not

work

if

there

is

an

AccessController.doPrivileged()

call

within

the

Subject.doAs()

block.

In

the

following

example,

s1

is

equal

to

s,

but

s2

is

null:

*

AccessController.doPrivileged()

not

only

truncates

the

Subject

propagation,

*

but

also

reduces

the

permissions.

It

does

not

include

the

JAAS

security

*

policy

defined

for

the

principals

in

the

Subject.

Subject.doAs(s,

new

PrivilegedAction()

{

public

Object

run()

{

System.out.println(″Within

Subject.doAsPrivileged()″);

Subject

s1

=

Subject.getSubject(AccessController.getContext());

AccessController.doPrivileged(new

PrivilegedAction()

{

public

Object

run()

{

Subject

s2

=

Subject.getSubject(AccessController.getContext());

return

null;

}

});

return

null;

}

});

v

JAAS

Login

Configuration

can

be

configured

in

administrative

console

and

stored

in

the

WebSphere

configuration

application

programming

interface

(API).

An

application

can

define

new

JAAS

login

configuration

in

the

administrative

console

and

the

data

is

persisted

in

the

configuration

repository

(stored

in

the

WebSphere

configuration

API).

However,

WebSphere

still

support

the

default

JAAS

login

configuration

format

(plan

text

file)

provided

by

the

JAAS

default

implementation.

But

if

there

are

duplication

login

configurations

defined

in

both

the

WebSphere

configuration

API

and

the

plan

text

file

format,

the

one

in

the

WebSphere

configuration

API

takes

precedence.

There

are

advantages

to

define

the

login

configuration

in

the

WebSphere

configuration

API:

–

UI

support

in

defining

JAAS

login

configuration.

–

The

JAAS

configuration

login

configuration

can

be

managed

centrally.

–

The

JAAS

configuration

login

configuration

is

distributed

in

a

Network

Deployment

installation.
v

Proxy

LoginModule:

The

default

JAAS

implementation

does

not

use

the

thread

context

class

loader

to

load

classes,

the

LoginModule

could

not

be

loaded

if

the

246

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

LoginModule

class

file

is

not

in

the

application

class

loader

or

the

Java

extension

class

loader

classpath.

Due

to

this

class

loader

visibility

problem,

WebSphere

provides

a

proxy

LoginModule

to

load

JAAS

LoginModule

using

the

thread

context

class

loader.

The

LoginModule

implementation

does

not

have

to

be

placed

on

the

application

class

loader

or

the

Java

extension

class

loader

classpath

with

this

proxy

LoginModule.

Note:

Do

not

remove

or

delete

the

pre-defined

JAAS

Login

Configurations

(ClientContainer,

WSLogin

and

DefaultPrincipalMapping).

Deleting

or

removing

them

could

cause

other

enterprise

applications

to

fail.

A

system

administrator

determines

the

authentication

technologies,

or

LoginModules,

to

be

used

for

each

application

and

configures

them

in

a

login

configuration.

The

source

of

the

configuration

information

(for

example,

a

file

or

a

database)

is

up

to

the

current

javax.security.auth.login.Configuration

implementation.

The

WebSphere

Application

Server

implementation

permits

the

login

configuration

to

be

defined

in

both

the

WebSphere

configuration

API

security

document

and

in

a

JAAS

configuration

file

where

the

former

takes

precedence.

Two

JAAS

login

configurations

are

defined

in

the

WebSphere

configuration

API

security

document

for

applications

to

use.

They

may

be

found

in

the

left

navigation

pane

at

Security

>

JAAS

Configuration

>

Application

Login

Config:

WSLogin

and

ClientContainer.

The

WSLogin

defines

a

login

configuration

and

LoginModule

implementation

that

may

be

used

by

applications

in

general.

The

ClientContainer

defines

a

login

configuration

and

LoginModule

implementation

that

is

similar

to

that

of

WSLogin

but

enforces

the

requirements

of

the

WebSphere

Application

Server

Client

Container.

The

third

entry,

DefaultPrincipalMapping,

defines

a

special

LoginModule

that

is

typically

used

by

Java

2

Connector

to

map

an

authenticated

WebSphere

user

identity

to

a

set

of

user

authentication

data

(user

ID

and

password)

for

the

specified

back

end

enterprise

information

system

(EIS).

For

more

information

about

Java

2

Connector

and

the

DefaultMappingModule

please

refer

to

the

Java

2

Security

section.

New

JAAS

login

configuration

may

be

added

and

modified

using

Security

Center.

The

changes

are

saved

in

the

cell

level

security

document

and

are

available

to

all

managed

application

servers.

An

application

server

restart

is

required

for

the

changes

to

take

effect

at

run

time.

WebSphere

Application

Server

also

reads

JAAS

Configuration

information

from

the

wsjaas.conf

file

under

the

properties

sub

directory

of

the

root

directory

under

which

WebSphere

Application

Server

is

installed.

Changes

made

to

the

wsjaas.conf

file

is

used

only

by

the

local

application

server

and

will

take

effect

after

restarting

the

application

server.

Note

that

JAAS

configuration

in

the

WebSphere

configuration

API

security

document

takes

precedence

over

that

defined

in

the

wsjaas.conf

file.

In

other

words,

a

configuration

entry

in

wsjaas.conf

will

be

overridden

by

an

entry

of

the

same

alias

name

in

the

WebSphere

configuration

API

security

document.

Note:

The

Java

Authentication

and

Authorization

Service

(JAAS)

login

configuration

entries

in

the

Security

Center

are

propagated

to

the

server

run

time

when

they

are

created,

not

when

the

configuration

is

saved.

However,

the

deleted

JAAS

login

configuration

entries

are

not

removed

from

the

server

run

time.

To

remove

the

entries,

save

the

new

configuration,

then

stop

and

restart

the

server.

Chapter

2.

Securing

applications

and

their

environments

247

Configuration

entry

settings

for

Java

Authentication

and

Authorization

Service

Use

this

page

to

specify

a

list

of

Java

Authentication

and

Authorization

Service

(JAAS)

login

configurations

for

the

application

code

to

use,

including

enterprise

beans,

Java

ServerPages

(JSP)

files,

servlets

and

resource

adapters.

To

view

this

administrative

console

page,

click

Security

>

JAAS

Configuration

>

Application

Login

Configuration.

Read

the

JAAS

documentation

before

you

begin

defining

additional

login

modules

for

authenticating

to

the

WebSphere

Application

Server

security

run

time.

You

can

define

additional

login

configurations

for

your

applications.

However,

if

the

WebSphere

Application

Server

LoginModule

(com.ibm.ws.security.common.auth.module.WSLoginModuleImpl)

is

not

used

or

the

LoginModule

does

not

produce

a

credential

that

is

recognized

by

WebSphere

Application

Server,

then

the

WebSphere

Application

Server

security

run

time

cannot

use

the

authenticated

subject

from

these

login

configurations

for

an

authorization

check

for

resource

access.

Note:

You

must

invoke

Java

client

programs

that

use

Java

Authentication

and

Authorization

Service

(JAAS)

for

authentication

with

a

JAAS

configuration

file

specified.

The

WebSphere

product

supplies

the

default

JAAS

configuration

file,

wsjaas_client.conf

under

the

install_root/properties

directory.

This

configuration

file

is

set

in

the

/install_root/bin/launchClient.bat

file

as:

set

JAAS_LOGIN_CONFIG=-
Djava.security.auth.login.config=%WAS_HOME%\properties\wsjaas_client.conf

If

launchClient.bat

file

is

not

used

to

invoke

Java

client

programs,

make

sure

that

the

appropriate

JAAS

configuration

file

is

passed

to

the

Java

virtual

machine

with

the

-Djava.security.auth.login.config

flag.

ClientContainer:

Specifies

the

login

configuration

used

by

the

client

container

application,

which

uses

the

CallbackHandler

API

defined

in

the

client

container

deployment

descriptor.

ClientContainer

is

the

default

login

configuration

for

the

WebSphere

Application

Server.

Do

not

remove

this

default,

as

other

applications

that

use

it

fail.

Default:

ClientContainer

DefaultPrincipalMapping:

Specifies

the

login

configuration

used

by

Java

2

Connectors

to

map

users

to

principals

that

are

defined

in

the

J2C

Authentication

Data

Entries.

ClientContainer

is

the

default

login

configuration

for

the

WebSphere

Application

Server.

Do

not

remove

this

default,

as

other

applications

that

use

it

fail.

Default:

ClientContainer

WSLogin:

248

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Specifies

whether

all

applications

can

use

the

WSLogin

configuration

to

perform

authentication

for

the

WebSphere

Application

Server

security

run

time.

This

login

configuration

does

not

honor

the

CallbackHandler

defined

in

the

client

container

deployment

descriptor.

To

use

this

functionality,

use

the

ClientContainer

login

configuration.

The

WSLogin

configuration

is

the

default

login

configuration

for

the

WebSphere

Application

Server.

Do

not

remove

this

default,

as

other

applications

that

use

it

fail.

This

login

configuration

authenticates

users

for

the

WebSphere

Application

Server

security

run

time.

Use

credentials

from

the

authenticated

subject

returned

from

this

login

configurations

as

an

authorization

check

for

access

to

WebSphere

Application

Server

resources.

Default:

ClientContainer

System

login

configuration

entry

settings

for

Java

Authentication

and

Authorization

Service

Use

this

page

to

specify

a

list

of

Java

Authentication

and

Authorization

Service

(JAAS)

system

login

configurations.

To

view

this

administrative

console

page,

click

Security

>

JAAS

Configuration

>

System

logins.

Read

“Java

Authentication

and

Authorization

Service”

on

page

240

before

you

begin

defining

additional

login

modules

for

authenticating

to

the

WebSphere

Application

Server

security

run

time.

Do

not

remove

the

following

system

login

modules:

v

RMI_INBOUND

v

WEB_INBOUND

v

DEFAULT

v

RMI_OUTBOUND

v

SWAM

v

wssecurity.IDAssertion

v

wssecurity.signature

v

LTPA

v

LTPA_WEB

RMI_INBOUND,

WEB_INBOUND,

DEFAULT:

Processes

inbound

login

requests

for

Remote

Method

Invocation

(RMI),

Web

applications,

and

most

of

the

other

login

protocols.

These

login

configurations

are

used

by

WebSphere

Application

Server

Version

5.1.1

RMI_INBOUND

The

RMI_INBOUND

login

configuration

handles

logins

for

inbound

RMI

requests.

Typically,

these

logins

are

requests

for

authenticated

access

to

EJB

files.

Also,

these

logins

might

be

Java

Management

Extensions

(JMX)

requests

when

using

the

RMI

connector.

WEB_INBOUND

The

WEB_INBOUND

login

configuration

handles

logins

for

Web

application

requests,

which

includes

servlets

and

JavaServer

pages

(JSP).

This

login

configuration

can

interact

with

the

output

generated

from

a

Chapter

2.

Securing

applications

and

their

environments

249

Trust

Association

Interceptor

(TAI),

if

configured.

The

Subject

passed

into

the

WEB_INBOUND

login

configuration

might

contain

objects

generated

by

the

TAI.

DEFAULT

The

DEFAULT

login

configuration

handles

the

logins

for

inbound

requests

made

by

most

of

the

other

protocols

and

internal

authentications.

These

three

login

configurations

can

pass

in

the

following

callback

information,

which

is

handled

by

the

login

modules

within

these

configurations.

These

callbacks

are

not

passed

in

at

the

same

time.

However,

the

combination

of

these

callbacks

determines

how

WebSphere

Application

Server

authenticates

the

user.

Callback

callbacks[0]

=

new

javax.security.auth.callback.

NameCallback(″Username:

″);

Responsibility

Collects

the

user

name

provided

during

a

login.

This

information

can

be

the

user

name

for

the

following

types

of

logins:

v

User

name

and

password

login,

which

is

known

as

basic

authentication.

v

User

name

only

for

identity

assertion.

Callback

callbacks[1]

=

new

javax.security.auth.callback.

PasswordCallback(″Password:

″,

false);

Responsibility

Collects

the

password

provided

during

a

login.

Callback

callbacks[2]

=

new

com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl(″Credential

Token:

″);

Responsibility

Collects

the

Lightweight

Third

Party

Authentication

(LTPA)

token

(or

other

token

type)

during

a

login.

Typically,

this

information

is

present

when

a

user

name

and

password

is

not

present.

Callback

callbacks[3]

=

new

com.ibm.wsspi.security.auth.callback.

WSTokenHolderCallback(″Authz

Token

List:

″);

Responsibility

Collects

the

ArrayList

of

the

TokenHolder

objects

that

are

returned

from

the

call

to

the

WSOpaqueTokenHelper.

createTokenHolderListFromOpaqueToken

()

method

using

the

Common

Secure

Interoperability

version

2

(CSIv2)

authorization

token

as

input.

Restriction:

This

callback

is

present

only

when

the

Security

Attribute

Propagation

option

is

enabled

and

this

login

is

a

propagation

login.

In

a

propagation

login,

(sufficient

security

attributes

are

propagated

with

the

request

to

prevent

having

to

access

the

user

registry

for

additional

attributes.

In

system

login

configurations,

WebSphere

Application

Server

authenticates

the

user

based

upon

the

information

collected

by

the

callbacks.

However,

a

custom

login

module

does

not

need

to

act

upon

any

of

these

callbacks.

The

following

list

explains

the

typical

combinations

of

these

callbacks:

250

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

v

The

callbacks[0]

=

new

javax.security.auth.callback.NameCallback(″Username:

″);

callback

only

This

callback

occurs

for

CSIv2

Identity

Assertion;

Web

and

CSIv2

X509

certificate

logins;

old-style

Trust

Association

Interceptor

logins,

and

so

on.

In

Web

and

CSIv2

X509

certificate

logins,

WebSphere

Application

Server

maps

the

certificate

to

a

user

name.

This

callback

is

used

when

by

any

login

type

that

establishes

trust

using

just

the

user

name.

v

Both

the

callbacks[0]

=

new

javax.security.auth.callback.NameCallback(″Username:

″);

callback

and

the

callbacks[1]

=

new

javax.security.auth.callback.PasswordCallback(″Password:

″,

false);

callbacks.

This

combination

of

callbacks

is

typical

for

basic

authentication

logins.

Most

user

authentications

occur

using

these

two

callbacks.

v

The

callbacks[2]

=

new

com.ibm.websphere.security.auth.callback.WSCredTokenCallbackImpl(″Credential

Token:

″);

only

This

callback

is

used

to

validate

a

Lightweight

Third

Party

Authentication

(LTPA)

token.

This

validation

typically

occurs

during

an

single

sign-on

(SSO)

or

downstream

login.

Any

time

a

request

originates

from

a

WebSphere

Application

Server,

instead

of

a

pure

client,

the

LTPA

token

typically

flows

to

the

target

server.

For

single

signon

(SSO),

the

LTPA

token

is

received

in

the

cookie

and

the

token

is

used

for

login.

If

a

custom

login

module

needs

the

user

name

from

an

LTPA

token,

the

module

can

use

the

following

method

to

retrieve

the

uniqueID

from

the

token:

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.

validateLTPAToken(byte[])

After

retrieving

the

uniqueID,

use

the

following

method

to

get

the

user

name:

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.

getUserFromUniqueID(uniqueID)

Important:

Any

time

a

custom

login

module

is

plugged

in

ahead

of

the

WebSphere

Application

Server

login

modules

and

it

changes

the

identity

using

the

credential

mapping

services,

it

is

important

that

this

login

module

validates

the

LTPA

token,

if

present.

Calling

the

following

method

is

sufficient

to

validate

the

trust

in

the

LTPA

token:

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.

validateLTPAToken(byte[])

The

receiving

server

must

have

the

same

LTPA

keys

as

the

sending

server

in

order

for

this

to

be

successful.

There

is

a

possible

security

exposure

if

you

do

not

validate

this

LTPA

token,

when

present.

v

A

combination

of

any

of

the

previously

mentioned

callbacks

plus

the

callbacks[3]

=

new

com.ibm.wsspi.security.auth.callback.WSTokenHolderCallback(″Authz

Token

List:

″);

callback.

This

callback

indicates

that

some

propagated

attributes

have

arrived

at

the

server.

The

propagated

attributes

still

require

one

of

the

following

authentication

methods:

Chapter

2.

Securing

applications

and

their

environments

251

–

callbacks[0]

=

new

javax.security.auth.callback.

NameCallback(″Username:

″);

–

callbacks[1]

=

new

javax.security.auth.callback.

PasswordCallback(″Password:

″,

false);

–

callbacks[2]

=

new

com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl(″Credential

Token:

″);

If

the

attributes

are

added

to

the

Subject

from

a

pure

client,

then

the

NameCallback

and

PasswordCallback

callbacks

authenticate

the

information

and

the

objects

that

are

serialized

in

the

token

holder

are

added

to

the

authenticated

Subject.

If

both

CSIv2

Identity

Assertion

and

propagation

are

enabled,

WebSphere

Application

Server

uses

the

NameCallback

and

the

token

holder,

which

contains

all

of

the

propagated

attributes,

to

deserialize

most

of

the

objects.

WebSphere

Application

Server

uses

the

NameCallback

only

because

trust

is

established

with

the

servers

that

you

indicate

in

the

CSIv2

trusted

server

list.

To

specify

trusted

servers,

click

Security

>

Authentication

protocol

>

CSIv2

Inbound

authentication.

Custom

serialization

only

needs

to

be

handled

by

a

custom

login

module.

For

more

information,

see

″Security

Attribute

Propagation″.

In

addition

to

the

callbacks

defined

previously,

the

WEB_INBOUND

login

configuration

only

can

contain

the

following

additional

callbacks

Callback

callbacks[4]

=

new

com.ibm.websphere.security.auth.callback.

WSServletRequestCallback(″HttpServletRequest:

″);

Responsibility

Collects

the

HTTP

servlet

request

object,

if

presented.

This

callback

enables

login

modules

to

retrieve

information

from

the

HTTP

request

to

use

during

a

login.

Callback

callbacks[5]

=

new

com.ibm.websphere.security.auth.callback.

WSServletResponseCallback(″HttpServletResponse:

″);

Responsibility

Collects

the

HTTP

servlet

response

object,

if

presented.

This

callback

enables

login

modules

to

add

information

into

the

HTTP

response

as

a

result

of

the

login.

For

example,

login

modules

might

add

the

SingleSignonCookie

to

the

response.

Callback

callbacks[6]

=

new

com.ibm.websphere.security.auth.callback.

WSAppContextCallback(″ApplicationContextCallback:

″);

Responsibility

Collects

the

Web

application

context

used

during

the

login.

This

callback

consists

of

a

Hashtable,

which

contains

the

application

name

and

the

redirect

Web

address,

if

present.

The

following

login

modules

are

pre-defined

for

the

RMI_INBOUND,

WEB_INBOUND,

and

DEFAULT

system

login

configurations.

You

can

add

custom

login

modules

before,

between,

or

after

any

of

these

login

modules,

but

you

cannot

remove

these

pre-defined

login

modules.

v

com.ibm.ws.security.server.lm.ltpaLoginModule

252

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

This

login

module

performs

the

primary

login

when

attribute

propagation

is

either

enabled

or

disabled.

A

primary

login

uses

normal

authentication

information

such

as

a

user

ID

and

password;

an

LTPA

token;

or

a

trust

association

interceptor

(TAI)

and

a

certificate

distinguished

name

(DN).

If

any

of

the

following

scenarios

are

true,

this

login

module

is

not

used

and

the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule

performs

the

primary

login:

–

The

java.util.Hashtable

object

with

the

required

user

attributes

is

contained

in

the

Subject.

–

The

java.util.Hashtable

object

with

the

required

user

attributes

is

present

in

the

sharedState

HashMap

of

the

LoginContext.

–

The

WSTokenHolderCallback

is

present

without

a

specified

password.

If

a

user

name

and

a

password

are

present

with

a

WSTokenHolderCallback,

which

indicates

propagated

information,

the

request

likely

originates

from

either

a

pure

client

or

a

server

from

a

different

realm

that

mapped

the

existing

identity

to

a

user

ID

and

password.
v

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule

This

login

module

performs

the

primary

login

using

the

normal

authentication

information

if

any

of

the

following

conditions

are

true:

–

A

java.util.Hashtable

object

with

required

user

attributes

is

contained

in

the

Subject

–

A

java.util.Hashtable

object

with

required

user

attributes

is

present

in

the

sharedState

HashMap

of

the

LoginContext

–

The

WSTokenHolderCallback

is

present

without

a

PasswordCallback.

When

the

java.util.Hashtable

object

is

present,

the

login

module

maps

the

object

attributes

into

a

valid

Subject.

When

WSTokenHolderCallback

is

present,

the

login

module

deserializes

the

byte

token

objects

and

regenerates

the

serialized

Subject

contents.

The

java.util.Hashtable

takes

precedence

over

all

of

the

other

forms

of

login.

Thus,

be

careful

to

avoid

duplicating

or

overriding

what

WebSphere

Application

Server

might

have

propagated

previously.

By

specifying

a

java.util.Hashtable

to

take

precedence

over

other

authentication

information,

the

custom

login

module

must

have

already

verified

the

LTPA

token,

if

present,

to

establish

sufficient

trust.

The

custom

login

module

can

use

the

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.validationLTPAToken(byte[])

method

to

validate

the

LTPA

token

present

in

the

WSCredTokenCallback.

Failure

to

validate

the

LTPA

token

presents

a

security

risk.

For

more

information

on

adding

a

Hashtable

containing

well-known

and

well-formed

attributes

used

by

WebSphere

Application

Server

as

sufficient

login

information,

see

″Configuring

inbound

identity

mapping″.

RMI_OUTBOUND:

Processes

RMI

requests

that

are

sent

outbound

to

another

server

when

either

the

com.ibm.CSI.rmiOutboundLoginEnabled

or

the

com.ibm.CSIOutboundPropagationEnabled

properties

are

true.

These

properties

are

set

in

the

CSIv2

authentication

panel.

To

access

the

panel,

click

Security

>

Authentication

protocol

>

CSIv2

Outbound

authentication.

To

set

the

com.ibm.CSI.rmiOutboundLoginEnabled

property,

select

Custom

outbound

mapping.

To

set

the

com.ibm.CSIOutboundPropagationEnabled

property,

select

the

Security

attribute

propagation

option.

This

login

configuration

determines

the

security

capabilities

of

the

target

server

and

its

security

domain.

For

example,

if

WebSphere

Application

Server

Version

Chapter

2.

Securing

applications

and

their

environments

253

5.1.1

communicates

with

a

version

5.x

application

server,

then

the

version

5.1.1

application

server

sends

the

authentication

information

only,

using

an

LTPA

token,

to

the

version

5.x

application

server.

However,

if

WebSphere

Application

Server

Version

5.1.1

communicates

with

a

version

5.1.x

application

server,

the

authentication

and

authorization

information

is

sent

to

the

receiving

application

server

if

propagation

is

enabled

at

both

the

sending

and

receiving

servers.

When

the

application

server

sends

both

the

authentication

and

authorization

information

downstream,

it

removes

the

need

to

re-access

the

user

registry

and

look

up

the

security

attributes

of

the

user

for

authorization

purposes.

Additionally,

any

custom

objects

added

at

the

sending

server

should

be

present

in

the

Subject

at

the

downstream

server.

The

following

callback

is

available

to

in

the

RMI_OUTBOUND

login

configuration.

You

can

use

the

com.ibm.wsspi.security.csiv2.CSIv2PerformPolicy

object

returned

by

this

callback

to

query

the

security

policy

for

this

particular

outbound

request.

This

query

can

help

determine

if

the

target

realm

is

different

than

the

current

realm

and

if

WebSphere

Application

Server

must

map

the

realm.

For

more

information,

see

″Configuring

outbound

mapping

to

a

different

target

realm″.

Callback

callbacks[0]

=

new

WSProtocolPolicyCallback(″Protocol

Policy

Callback:

″);

Responsibility

Provides

protocol-specific

policy

information

for

the

login

modules

on

this

outbound

invocation.

This

information

is

used

to

determine

the

level

of

security,

including

the

target

realm,

target

security

requirements,

and

coalesced

security

requirements.

The

following

method

obtains

the

CSIv2PerformPolicy

from

this

specific

login

module:

csiv2PerformPolicy

=

(CSIv2PerformPolicy)

((WSProtocolPolicyCallback)callbacks[0]).getProtocolPolicy();

A

different

protocol

other

than

RMI

might

have

a

different

type

of

policy

object.

The

following

login

module

is

pre-defined

in

the

RMI_OUTBOUND

login

configuration.

You

can

add

custom

login

modules

before,

between,

or

after

any

of

these

login

modules,

but

you

cannot

remove

these

pre-defined

login

modules.

com.ibm.ws.security.lm.wsMapCSIv2OutboundLoginModule

Retrieves

the

following

tokens

and

objects

before

creating

an

opaque

byte

that

is

sent

to

another

server

using

the

Common

Secure

Interoperability

version

2

(CSIv2)

authorization

token

layer:

v

Forwardable

com.ibm.wsspi.security.token.Token

implementations

from

the

Subject

v

Serializable

custom

objects

from

the

Subject

v

Propagation

tokens

from

the

thread

You

can

use

a

custom

login

module

prior

to

this

login

module

to

perform

credential

mapping.

However,

it

is

recommended

that

the

login

module

change

the

contents

of

the

Subject

that

is

passed

in

during

the

login

phase.

If

this

recommendation

is

followed,

the

login

modules

processed

after

this

login

module

act

on

the

new

Subject

contents.

254

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

For

more

information,

see

″Configuring

outbound

mapping

to

a

different

target

realm″.

SWAM:

Processes

login

requests

in

a

single

server

environment

when

SWAM

is

used

as

the

authentication

method.

Simple

WebSphere

Authentication

Mechanism

(SWAM)

does

not

support

forwardable

credentials.

When

SWAM

is

the

authentication

method,

WebSphere

Application

Server

cannot

send

requests

from

server

to

server.

In

this

case,

you

must

use

LTPA.

wssecurity.IDAssertion:

Processes

login

configuration

requests

for

Web

services

security

using

identity

assertion.

wssecurity.signature:

Processes

login

configuration

requests

for

Web

services

security

using

digital

signature

validation.

LTPA_WEB:

Processes

login

requests

used

by

the

Web

container

such

as

servlets,

JavaServer

pages.

This

login

configuration

is

used

by

WebSphere

Application

Server

Version

5.1.

This

login

configuration

was

introduced

in

version

5.1

and

is

no

longer

used

in

version

5.1.1.

The

com.ibm.ws.security.web.AuthenLoginModule

login

module

is

pre-defined

in

the

LTPA

login

configuration.

You

can

add

custom

login

modules

before

or

after

this

module

in

the

LTPA_WEB

login

configuration.

The

LTPA_WEB

login

configuration

can

process

the

HttpServletRequest

object,

the

HttpServletResponse

object,

and

the

Web

application

name

that

are

passed

in

using

a

callback

handler.

For

more

information,

see

″Customizing

a

server-side

Java

Authentication

and

Authorization

Service

authentication

and

login

configuration″

in

the

documentation.

LTPA:

Processes

login

requests

that

are

not

handled

by

the

LTPA_WEB

login

configuration.

This

login

configuration

is

used

by

WebSphere

Application

Server

Version

5.1

and

previous

versions.

The

com.ibm.ws.security.server.lm.ltpaLoginModule

login

module

is

pre-defined

in

the

LTPA

login

configuration.

You

can

add

custom

login

modules

before

or

after

this

module

in

the

LTPA

login

configuration.

For

more

information,

see

″Customizing

a

server-side

Java

Authentication

and

Authorization

Service

authentication

and

login

configuration″

in

the

documentation.

Chapter

2.

Securing

applications

and

their

environments

255

Login

module

settings

for

Java

Authentication

and

Authorization

Service

Use

this

page

to

define

the

login

module

for

a

Java

Authentication

and

Authorization

Service

(JAAS)

login

configuration.

You

can

define

the

JAAS

login

modules

for

application

and

system

logins.

To

define

these

login

module

in

the

administrative

console,

use

one

of

the

following

paths:

v

Click

Security

>

JAAS

Configuration

>

Application

Logins

>

alias_name.

Under

Additional

Properties,

click

JAAS

Login

Modules.

v

Click

Security

>

JAAS

Configuration

>

System

Logins

>

alias_name.

Under

Additional

Properties,

click

JAAS

Login

Modules.

Module

Class

Name:

Specifies

the

class

name

of

the

given

login

module.

Data

type:

String

Proxy

class

name:

Specifies

the

name

of

the

proxy

login

module

class.

The

default

login

modules

defined

by

the

WebSphere

product

use

a

proxy

LoginModule

class,

com.ibm.ws.security.common.auth.module.WSLoginModuleProxy.

This

proxy

class

loads

the

WebSphere

login

module

with

the

thread

context

class

loader

and

delegates

all

the

operations

to

the

real

login

module

implementation.

The

real

login

module

implementation

is

specified

as

the

delegate

option

in

the

option

configuration.

The

proxy

class

is

needed

because

the

Developer

Kit

application

class

loaders

do

not

have

visibility

of

the

WebSphere

product

class

loaders.

Data

type:

String

Authentication

Strategy:

Specifies

the

authentication

behavior

as

authentication

proceeds

down

the

list

of

login

modules.

A

JAAS

authentication

provider

supplies

the

authentication

strategy.

In

JAAS,

an

authentication

strategy

is

implemented

through

the

LoginModule

interface.

Data

type:

String

Default:

Required

Range:

Required,

Requisite,

Sufficient

and

Optional

Specify

additional

options

by

clicking

Custom

Properties

under

Additional

Properties.

These

name

and

value

pairs

are

passed

to

the

login

modules

during

initialization.

This

process

is

one

of

the

mechanisms

used

to

passed

information

to

login

modules.

Module

Order:

256

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Specifies

the

order

in

which

the

Java

Authentication

and

Authorization

Service

(JAAS)

login

modules

are

processed.

Click

Set

Order

to

change

the

processing

order

of

the

login

modules.

Login

module

order

settings

for

Java

Authentication

and

Authorization

Service

Use

this

page

to

specify

the

order

in

which

WebSphere

Application

Server

processes

the

login

configuration

modules.

You

can

specify

the

order

of

the

login

modules

for

application

and

system

logins.

To

define

these

login

modules

in

the

administrative

console,

use

one

of

the

following

paths:

v

Click

Security

>

Application

logins

>

alias.

Under

Additional

Properties,

click

JAAS

login

modules

>

Set

Order.

v

Click

Security

>

System

logins

>

alias.

Under

Additional

Properties,

click

JAAS

login

modules

>

Set

Order.

When

you

select

one

of

the

JAAS

login

module

class

names,

you

can

move

that

class

name

up

and

down

the

list.

After

you

press

OK

and

save

the

changes,

the

new

order

is

reflected

on

either

the

Application

login

configuration

or

System

login

configuration

panel.

Application

login

configuration

settings

for

Java

Authentication

and

Authorization

Service

Use

this

page

to

configure

application

login

configurations.

To

view

this

administrative

console

page,

click

Security

>

JAAS

Configuration

>

Application

Logins

>

alias_name.

Click

Apply

to

save

changes

and

to

add

the

extra

node

name

that

precedes

the

original

alias

name.

Clicking

OK

does

not

save

the

new

changes

in

the

security.xml

file.

Alias:

Specifies

the

alias

name

of

the

application

login.

Do

not

use

the

forward

slash

character

(/)

in

the

alias

name

when

defining

JAAS

login

configuration

entries.

The

JAAS

login

configuration

parser

cannot

process

the

forward

slash

character.

Data

type:

String

Java

2

Connector

security

Java

2

Connector

authentication

data

entries

are

used

by

resource

adapters

and

Java

database

connectivity

(JDBC)

data

sources.

A

Java

2

Connector

authentication

data

entry

contains

authentication

data.

The

connector

architecture

defines

a

standard

architecture

for

connecting

the

Java

2

Platform,

Enterprise

Edition

(J2EE)

to

heterogeneous

enterprise

information

systems

(EIS).

Examples

of

EIS

include

Enterprise

Resource

Planning

(ERP),

mainframe

transaction

processing

(TP)

and

database

systems.

Chapter

2.

Securing

applications

and

their

environments

257

The

connector

architecture

enables

an

EIS

vendor

to

provide

a

standard

resource

adapter

for

its

EIS.

A

resource

adapter

is

a

system-level

software

driver

that

is

used

by

a

Java

application

to

connect

to

an

EIS.

The

resource

adapter

plugs

into

an

application

server

and

provides

connectivity

between

the

EIS,

the

application

server,

and

the

enterprise

application.

You

must

protect

information

in

EIS

from

unauthorized

access.

The

Java

2

Connector

security

architecture

is

designed

to

extend

the

end-to-end

security

model

for

J2EE-based

applications

to

include

integration

with

EISs.

An

application

server

and

an

EIS

collaborate

to

ensure

the

proper

authentication

of

a

resource

principal,

which

establishes

a

connection

to

an

underlying

EIS.

The

connector

architecture

identifies

the

following

mechanisms

as

the

commonly-supported

authentication

mechanisms:

v

BasicPassword:

Basic

user-password-based

authentication

mechanism

specific

to

an

EIS

v

Kerbv5:

Kerberos

Version

5-based

authentication

mechanism

WebSphere

Application

Server

implementation

of

a

Java

2

connection

supports

basic

password

authentication

mechanisms.

The

user

ID

and

password

for

the

target

EIS

is

either

supplied

by

applications

or

by

the

application

server.

WebSphere

Application

Server

uses

a

Java

Authentication

and

Authorization

Service

(JAAS)

pluggable

authentication

mechanism

to

perform

principal

mapping

to

convert

a

WebSphere

principal

to

a

resource

principal.

WebSphere

Application

Server

provides

a

DefaultPrincipalMapping

LoginModule,

which

basically

converts

any

authenticated

principal

to

the

pre-configured

EIS

resource

principal

and

password.

Subsequently,

you

can

plug

in

a

principal

mapping

LoginModule

through

the

JAAS

plug-in

mechanism.

J2C

mapping

module

configuration

When

a

Java

2

connection

factory

is

configured

for

container-managed

signon,

WebSphere

Application

Server

uses

the

configured

principal

mapping

module

to

create

a

Subject

instance

that

contains

a

user

ID

and

a

password

for

the

target

EIS.

Mapping

modules

are

special

JAAS

login

modules

that

provide

principal

and

credential

mapping

functionality.

You

can

define

and

configure

custom

mapping

modules

through

the

administrative

console.

Associated

with

the

mapping

module

configuration

is

a

set

of

user

IDs

and

passwords

that

you

can

define

in

the

security

configuration

with

a

specified

alias

name.

The

WebSphere

Application

Server

run

time

passes

the

user

ID,

password

and

a

reference

of

the

connection

factory

manager

to

the

configured

mapping

module

to

create

a

subject.

For

more

information

about

mapping

module

requirements,

refer

to

the

Javadoc

of

the

WSDefaultPrincipalMapping

class.

For

more

detailed

information

about

developing

a

mapping

module,

refer

to

the

Developing

your

own

Java

2

security

mapping

module

article.

J2C

mapping

module

programming

reference

You

can

develop

your

own

mapping

module

if

your

application

requires

more

sophisticated

mapping

functions.

You

can

use

the

WSSubject.getRunAsSubject()

method

to

retrieve

the

subject

that

represents

the

identity

of

the

current

thread

of

execution.

The

identity

of

the

current

thread

of

execution

is

known

as

the

RunAs

identity.

The

RunAs

subject

typically

contains

a

WSPrincipal

in

the

principal

set

and

a

WSCredential

in

the

public

credential

set.

The

subject

instance

that

is

created

by

your

mapping

module

contains

a

Principal

instance

in

the

principals

set

and

a

PasswordCredential

or

GenericCredential

instance

in

the

set

of

private

credentials.

258

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Managing

J2EE

Connector

Architecture

authentication

data

entries

Java

2

Connector

authentication

data

entries

are

used

by

resource

adapters

and

Java

database

connectivity

(JDBC)

data

sources.

A

Java

2

Connector

authentication

data

entry

contains

authentication

data,

which

contains

the

following

information:

Alias

An

identifier

used

to

identify

the

authenticated

data

entry.

When

configuring

resource

adapters

or

Java

database

connectivity

(JDBC)

data

sources,

the

administrator

can

specify

which

authentication

data

to

choose

for

the

corresponding

alias.

User

ID

A

user

identity

of

the

intended

security

domain.

For

example,

if

a

particular

authentication

data

entry

is

used

to

open

a

new

connection

to

DB2,

this

entry

contains

a

DB2

user

identity.

Password

The

password

of

the

user

identity

is

encoded

in

the

configuration

respository.

Description

A

short

text

description.

This

task

creates

and

deletes

Java

2

Connector

(J2C)

authentication

data

entries.

1.

Delete

a

J2C

authentication

data

entry.

a.

Click

Security

in

the

navigation

tree,

then

click

JAAS

Configuration

>

J2C

Authentication

Data.

The

J2C

Authentication

Data

Entries

panel

is

displayed.

b.

Select

the

check

boxes

for

the

entries

to

delete

and

click

Delete.

Before

deleting

or

removing

an

authentication

data

entry,

make

sure

that

it

is

not

used

or

referenced

by

any

resource

adapter

or

JDBC

data

source.

If

the

deleted

authentication

data

entry

is

used

or

referenced

by

a

resource,

the

application

that

uses

the

resource

adapter

or

JDBC

data

source

fails

to

connect

to

the

resources.
2.

Create

a

new

J2C

authentication

data

entry.

a.

Click

Security

in

the

navigation

tree,

then

click

JAAS

Configuration

>

J2C

Authentication

Data.

The

J2C

Authentication

Data

Entries

panel

is

displayed.

b.

Click

New.

c.

Enter

a

unique

alias,

a

value

user

ID,

a

valid

password,

and

a

short

description

(optional).

d.

Click

OK

or

Apply.

No

validation

for

the

user

ID

and

password

is

required.

e.

Click

Save.

For

a

Network

Deployment

installation,

make

sure

that

a

file

synchronized

operation

is

performed

to

propagate

the

changes

to

other

nodes.

A

new

J2C

authentication

data

entry

is

created

or

an

old

entry

is

removed.

The

newly

created

entry

is

visible

without

restarting

the

application

server

process

for

use

in

the

data

source

definition.

But

the

entry

is

only

in

effect

after

the

server

is

restarted.

Specifically,

the

authentication

data

is

loaded

by

an

application

server

when

starting

an

application

and

is

shared

among

applications

in

the

same

application

server.

If

you

create

or

update

a

data

source

that

points

to

a

newly

created

J2C

authentication

data

alias,

Test

Connection

fails

to

connect

until

you

restart

the

deployment

manager.

After

you

restart

the

deployment

manager,

the

J2C

Chapter

2.

Securing

applications

and

their

environments

259

authentication

data

is

reflected

in

the

run-time

configuration.

Any

changes

to

the

J2C

authentication

data

fields

require

a

deployment

manager

restart

for

the

changes

to

take

effect.

This

step

defines

authentication

data

that

you

can

share

among

resource

adapters

and

JDBC

data

sources.

Use

the

authentication

data

entry

defined

in

the

resource

adapters

or

JDBC

data

sources.

Java

2

Connector

authentication

data

entry

settings:

Use

this

page

as

a

central

place

for

administrators

to

define

authentication

data,

which

includes

user

identities

and

passwords.

These

values

can

reference

authentication

data

entries

by

resource

adapters,

data

sources,

and

other

configurations

that

require

authentication

data

using

an

alias.

You

can

display

this

page

directly

from

the

JAAS

configuration

page

or

from

other

pages

for

resources

that

use

J2C

authentication

data

entries.

For

example,

to

view

this

administrative

page,

you

can

click

either

Security

>

JAAS

Configuration

>

J2C

Authentication

Data

Entries

or

Resources

>

WebSphere

JMS

Provider

>

WebSphere

Queue

Connection

Factories

>

connection_factory

>

J2C

Authentication

Data

Entries.

Deleting

authentication

data

entries:

Be

careful

when

deleting

authentication

data

entries.

If

the

deleted

authentication

data

is

used

by

other

configurations,

the

initializing

resources

process

fails.

Define

a

new

authentication

data

entry

by

clicking

New.

Alias:

Specifies

the

name

of

the

authentication

data

entry.

Data

type:

String

Units:

String

Default:

None

User

ID:

Specifies

the

user

identity.

Data

type:

String

Description:

Specifies

an

optional

description

of

the

authentication

data

entry.

For

example,

this

authentication

data

entry

is

used

to

connect

to

DB2.

Data

type:

String

Identity

mapping

Identity

mapping

is

a

one-to-one

mapping

of

a

user

identity

between

two

servers

to

reflect

the

correct

identity

of

the

downstream

server

so

that

the

proper

260

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

authorization

decisions

are

made.

Identity

mapping

is

necessary

when

the

integration

of

servers

is

needed,

but

the

user

registries

are

different

and

not

shared

between

the

systems.

In

most

cases,

requests

flow

downstream

between

two

servers

that

are

part

of

the

same

security

domain.

In

WebSphere

Application

Server,

two

servers

that

are

members

of

the

same

cell

are

also

members

of

the

same

security

domain.

In

the

same

cell,

the

two

servers

have

the

same

user

registry

and

the

same

Lightweight

Third

Party

Authentication

(LTPA)

keys

for

token

encryption.

These

two

commonalities

ensure

that

the

LTPA

token

(among

other

user

attributes),

which

flows

between

the

two

servers,

not

only

can

be

decrypted

and

validated,

but

also

the

user

identity

in

the

token

can

be

mapped

to

attributes

that

are

recognized

by

the

authorization

engine.

The

most

reliable

and

recommended

configuration

involves

two

servers

within

the

same

cell.

However,

sometimes

you

need

to

integrate

multiple

systems

that

cannot

use

the

same

user

registry.

When

the

user

registries

are

different

between

two

servers,

the

security

domain

or

realm

of

the

target

server

does

not

match

the

security

domain

of

the

sending

server.

In

previous

releases

of

WebSphere

Application

Server,

the

difference

in

user

registries

results

in

a

NO_PERMISSION

exception

by

the

sending

server

due

to

a

realm

mismatch

unless

the

install_dir/properties/wsserver.key

file

is

configured

with

a

many-to-one

mapping

of

the

target

realm

to

a

user

ID

and

password.

This

configuration

alternative

still

exists

in

WebSphere

Application

Server.

However,

in

most

cases,

a

one-to-one

mapping

is

needed

to

keep

the

identity

of

the

sender

so

that

proper

authorization

decisions

are

made

by

downstream

servers.

Previous

releases

of

WebSphere

Application

Server

rejected

the

requests

sent

to

target

servers

in

a

different

realm

due

to

security

concerns.

If

you

allow

sensitive

security

and

user

information

to

be

sent

to

a

target

server

with

a

different

realm

that

is

not

trusted,

it

might

be

possible

for

a

rogue

target

server

to

intercept

and

record

the

security

and

user

information

it

receives.

WebSphere

Application

Server

now

enables

mapping

to

occur

either

before

sending

the

request

outbound

or

enables

the

existing

security

credentials

to

flow

to

the

target

server

as-is

with

the

knowledge

that

it

is

mapped

inbound

and

with

the

specification

that

the

target

realm

is

trusted.

An

alternative

to

mapping

is

to

send

the

user

identity

without

the

token

or

password

to

a

target

server

without

actually

mapping

the

identity.

The

use

of

the

user

identity

is

based

on

trust

between

the

two

servers.

To

do

this

alternative,

use

Common

Secure

Interoperability

version

2

(CSIv2)

identity

assertion.

This

alternative

feature,

when

enabled,

sends

just

the

X.509

certificate,

principal

name,

or

distinguished

name

(DN)

based

upon

what

was

used

by

the

original

client

to

perform

the

initial

authentication.

During

CSIv2

identity

assertion,

trust

is

established

between

the

WebSphere

Application

Servers.

The

user

identity

must

exist

in

the

target

user

registry

for

identity

assertion

to

work.

This

process

can

also

enable

interoperability

between

other

Java

2

Platform,

Enterprise

Edition

(J2EE)

Version

1.3

and

higher

compliant

application

servers.

When

using

identity

assertion,

if

both

the

sending

server

and

target

servers

have

identity

assertion

configured,

WebSphere

Application

Server

always

uses

this

method

of

authentication,

even

when

both

servers

are

in

the

same

security

domain.

For

more

information

on

CSIv2

identity

assertion,

see

“Identity

assertion”

on

page

348.

When

the

user

identity

is

not

present

in

the

user

registry

of

the

target

server,

identity

mapping

must

occur

either

before

the

request

is

sent

outbound

or

when

the

request

comes

inbound.

This

decision

depends

upon

your

environment

and

Chapter

2.

Securing

applications

and

their

environments

261

requirements.

However,

it

is

typically

easier

to

map

the

identity

before

the

request

is

sent

outbound

because

of

the

following

reasons:

v

You

know

the

identity

of

the

existing

credential

as

it

comes

from

the

user

registry

of

the

sending

server.

v

You

do

not

have

to

worry

about

sharing

LTPA

keys

with

the

other

target

realm

because

you

are

not

mapping

the

identity

to

LTPA

credentials.

Typically,

you

are

mapping

the

identity

to

a

user

ID

and

password

that

is

present

in

the

user

registry

of

the

target

realm.

When

you

do

perform

outbound

mapping,

in

most

cases,

it

is

recommended

that

you

use

Secure

Sockets

Layer

(SSL)

to

protect

the

integrity

and

confidentiality

of

the

security

information

sent

across

the

network.

If

LTPA

keys

are

not

shared

between

servers,

an

LTPA

token

cannot

be

validated

at

the

inbound

server.

In

this

case,

outbound

mapping

is

necessary

because

the

identity

can

not

be

determined

at

the

inbound

server

to

do

inbound

mapping.

For

more

information,

see

“Configuring

outbound

mapping

to

a

different

target

realm”

on

page

271.

When

you

need

inbound

mapping,

potentially

due

to

the

mapping

capabilities

of

the

inbound

server,

you

must

ensure

that

both

servers

have

the

same

LTPA

keys

so

that

you

can

get

access

to

the

user

identity.

Typically,

in

secure

communications

between

servers,

an

LTPA

token

is

passed

into

the

WSCredTokenCallback

of

the

inbound

JAAS

login

configuration

for

the

purposes

of

client

authentication.

A

method

is

available

that

enables

you

to

open

the

LTPA

token,

if

valid,

and

get

access

to

the

user

unique

ID

so

that

mapping

can

be

performed.

For

more

information,

see

“Configuring

inbound

identity

mapping.”

In

other

cases,

such

as

identity

assertion,

you

might

receive

a

user

name

in

the

NameCallback

of

the

inbound

login

configuration

that

enables

you

to

map

the

identity.

Configuring

inbound

identity

mapping

For

inbound

identity

mapping,

it

is

recommend

that

you

write

a

custom

login

module

and

configure

WebSphere

Application

Server

to

run

the

login

module

first

within

the

system

login

configurations.

Consider

the

following

steps

when

you

write

your

custom

login

module:

1.

Get

the

inbound

user

identity

from

the

callbacks

and

map

the

identity,

if

necessary

This

step

occurs

in

the

login()

method

of

the

login

module.

A

valid

authentication

has

either

or

both

of

the

following

callbacks

present:

NameCallback

and

the

WSCredTokenCallback.

The

following

code

sample

shows

you

how

to

determine

the

user

identity:

javax.security.auth.callback.Callback

callbacks[]

=

new

javax.security.auth.callback.Callback[3];

callbacks[0]

=

new

javax.security.auth.callback.NameCallback(″″);

callbacks[1]

=

new

javax.security.auth.callback.PasswordCallback

(″Password:

″,

false);

callbacks[2]

=

new

com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl(″″);

callbacks[3]

=

new

com.ibm.wsspi.security.auth.callback.

WSTokenHolderCallback(″″);

try

{

callbackHandler.handle(callbacks);

}

catch

(Exception

e)

262

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

{

//

Handles

exceptions

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

//

Shows

which

callbacks

contain

information

boolean

identitySwitched

=

false;

String

uid

=

((NameCallback)

callbacks[0]).getName();

char

password[]

=

((PasswordCallback)

callbacks[1]).getPassword();

byte[]

credToken

=

((WSCredTokenCallbackImpl)

callbacks[2]).getCredToken();

java.util.List

authzTokenList

=

((WSTokenHolderCallback)

callbacks[3]).getTokenHolderList();

if

(credToken

!=

null)

{

try

{

String

uniqueID

=

WSSecurityPropagationHelper.validateLTPAToken(credToken);

String

realm

=

WSSecurityPropagationHelper.getRealmFromUniqueID

(uniqueID);

//

Now

set

the

string

to

the

UID

so

that

you

can

use

the

result

for

either

//

mapping

or

logging

in.

uid

=

WSSecurityPropagationHelper.getUserFromUniqueID

(uniqueID);

}

catch

(Exception

e)

{

//

Handles

the

exception

}

}

else

if

(uid

==

null)

{

//

Throws

an

except

if

invalid

authentication

data

exists.

//

You

must

have

either

UID

or

CredToken

throw

new

WSLoginFailedException(″invalid

authentication

data.″);

}

else

if

(uid

!=

null

&&

password

!=

null)

{

//

This

is

a

typical

authentication.

You

can

choose

to

map

this

ID

to

//

another

ID

or

you

can

skip

it

and

allow

WebSphere

Application

Server

//

to

login

for

you.

When

passwords

are

presented,

be

very

careful

to

not

//

validate

the

password

because

this

is

the

initial

authentication.

return

true;

}

//

If

desired,

map

this

uid

to

something

else

and

set

the

identitySwitched

//

boolean.

If

the

identity

was

changed,

clear

the

propagated

attributes

//

below

so

they

are

not

used

incorrectly.

uid

=

myCustomMappingRoutine

(uid);

//

Clear

the

propagated

attributes

because

they

no

longer

applicable

to

the

//

new

identity

if

(identitySwitched)

{

((WSTokenHolderCallback)

callbacks[3]).setTokenHolderList(null);

}

Chapter

2.

Securing

applications

and

their

environments

263

2.

Check

to

see

if

attribute

propagation

occurred

and

if

the

attributes

for

the

user

are

already

present

when

the

identity

remains

the

same.

Check

to

see

if

the

user

attributes

are

already

present

from

the

sending

server

to

avoid

duplicate

calls

to

the

user

registry

lookup.

To

check

for

the

user

attributes,

use

a

method

on

the

WSTokenHolderCallback

that

analyzes

the

information

present

in

the

callback

to

determine

if

the

information

is

sufficient

for

WebSphere

Application

Server

to

create

a

Subject.

The

following

code

sample

checks

for

the

user

attributes:

boolean

requiresLogin

=

((com.ibm.wsspi.security.auth.callback.WSTokenHolderCallback)

callbacks[2]).requiresLogin();

If

sufficient

attributes

are

not

present

to

form

the

WSCredential

and

WSPrincipal

objects

needed

to

perform

authorization,

the

previous

code

sample

returns

a

true

result.

When

the

result

is

false,

you

can

choose

to

discontinue

processing

as

the

necessary

information

exists

to

create

the

Subject

without

performing

additional

remote

user

registry

calls.

3.

Optional:

Look

up

the

required

attributes

from

the

user

registry,

put

the

attributes

in

hashtable,

and

add

the

hashtable

to

the

shared

state.

If

the

identity

is

switched

in

this

login

module,

you

must

complete

the

following

steps:

a.

Create

the

hashtable

of

attributes

as

shown

in

the

following

example.

b.

Add

the

hashtable

to

shared

state.

If

the

identity

is

not

switched,

but

the

value

of

the

requiresLogin

code

sample

shown

previously

is

true,

you

can

create

the

hashtable

of

attributes.

However,

you

are

not

required

to

create

a

hashtable

in

this

situation

as

WebSphere

Application

Server

handles

the

login

for

you.

However,

you

might

consider

creating

a

hashtable

to

gather

attributes

in

special

cases

where

you

are

using

your

own

special

user

registry.

Creating

a

UserRegistry

implementation,

using

a

hashtable,

and

letting

WebSphere

Application

Server

gather

the

user

attributes

for

you

might

be

the

easiest

solution.

The

following

table

shows

how

to

create

a

hashtable

of

user

attributes:

if

(requiresLogin

||

identitySwitched)

{

//

Retrives

the

default

InitialContext

for

this

server.

javax.naming.InitialContext

ctx

=

new

javax.naming.InitialContext();

//

Retrieves

the

local

UserRegistry

implementation.

com.ibm.websphere.security.UserRegistry

reg

=

(com.ibm.websphere.

security.UserRegistry)

ctx.lookup(″UserRegistry″);

//

Retrieves

the

user

registry

uniqueID

based

on

the

uid

specified

//

in

the

NameCallback.

String

uniqueid

=

reg.getUniqueUserId(uid);

uid

=

WSSecurityPropagationHelper.getUserFromUniqueID

(uniqueID);

//

Retrieves

the

display

name

from

the

user

registry

based

on

the

uniqueID.

String

securityName

=

reg.getUserSecurityName(uid);

//

Retrieves

the

groups

associated

with

the

uniqueID.

java.util.List

groupList

=

reg.getUniqueGroupIds(uid);

//

Creates

the

java.util.Hashtable

with

the

information

that

you

gathered

264

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

//

from

the

UserRegistry

implementation.

java.util.Hashtable

hashtable

=

new

java.util.Hashtable();

hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_UNIQUEID,

uniqueid);

hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_SECURITYNAME,

securityName);

hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_GROUPS,

groupList);

//

Adds

a

cache

key

that

is

used

as

part

of

the

look

up

mechanism

for

//

the

created

Subject.

The

cache

key

can

be

an

object,

but

should

have

//

an

implemented

toString()

method.

Make

sure

that

the

cacheKey

contains

//

enough

information

to

scope

it

to

the

user

and

any

additional

attributes

//

that

you

are

using.

If

you

do

not

specify

this

property

the

Subject

is

//

scoped

to

the

returned

WSCREDENTIAL_UNIQUEID,

by

default.

hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_CACHE_KEY,

″myCustomAttribute″

+

uniqueid);

//

Adds

the

hashtable

to

the

sharedState

of

the

Subject.

_sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_PROPERTIES_KEY,

hashtable);

}

The

following

rules

define

in

more

detail

how

a

hashtable

login

is

performed.

You

must

use

a

java.util.Hashtable

object

in

either

the

Subject

(public

or

private

credential

set)

or

shared

state

HashMap.

The

com.ibm.wsspi.security.token.AttributeNameConstants

class

defines

the

keys

that

contain

the

user

information.

If

the

hashtable

object

is

put

into

the

shared

state

of

the

login

context

using

a

custom

login

module

that

is

listed

prior

to

the

Lightweight

Third

Party

Authentication

(LTPA)

login

module,

the

value

of

the

java.util.Hashtable

object

is

searched

using

the

following

key

within

the

shared

state

hashMap:

Property

com.ibm.wsspi.security.cred.propertiesObject

Reference

to

the

property

AttributeNameConstants.WSCREDENTIAL_PROPERTIES_KEY

Explanation

This

key

searches

for

the

hashtable

object

that

contains

the

required

properties

in

sharedState

of

the

login

context.

Expected

result

A

java.util.Hashtable

object.
If

a

java.util.Hashtable

object

is

found

either

inside

the

Subject

or

within

the

sharedState

area,

verify

that

the

following

properties

are

present

in

the

hashtable:

Property

com.ibm.wsspi.security.cred.uniqueId

Reference

to

the

property

AttributeNameConstants.WSCREDENTIAL_UNIQUEID

Returns

java.util.String

Explanation

The

value

of

the

property

must

be

a

unique

representation

of

the

user.

For

the

WebSphere

Application

Server

default

implementation,

this

Chapter

2.

Securing

applications

and

their

environments

265

property

represents

the

information

that

is

stored

in

the

application

authorization

table.

The

information

is

located

in

the

application

deployment

descriptor

after

it

is

deployed

and

user-to-role

mapping

is

performed.

See

the

expected

format

examples

if

the

user

to

role

mapping

is

performed

using

a

lookup

to

a

WebSphere

Application

Server

user

registry

implementation.

If

a

third-party

authorization

provider

overrides

the

user

to

role

mapping,

then

the

third-party

authorization

provider

defines

the

format.

To

ensure

compatibility

with

the

WebSphere

Application

Server

default

implementation

for

the

unique

ID

value,

call

the

WebSphere

Application

Server

public

String

getUniqueUserId(String

userSecurityName)

UserRegistry

method.

Expected

format

examples

Realm

Format

(uniqueUserId)

Lightweight

Directory

Access

Protocol

(LDAP)

ldaphost.austin.ibm.com:389/cn=user,o=ibm,c=us

Windows

MYWINHOST/S-1-5-21-963918322-163748893-4247568029-500

UNIX

MYUNIXHOST/32

The

com.ibm.wsspi.security.cred.uniqueId

property

is

required.

Property

com.ibm.wsspi.security.cred.securityName

Reference

to

the

property

AttributeNameConstants.

WSCREDENTIAL_

SECURITYNAME

Returns

java.util.String

Explanation

This

property

searches

for

the

securityName

of

the

authentication

user.

This

name

is

commonly

called

the

display

name

or

short

name.

WebSphere

Application

Server

uses

the

securityName

attribute

for

the

getRemoteUser(),

getUserPrincipal()

and

getCallerPrincipal()

application

programming

interfaces

(APIs).

To

ensure

compatibility

with

the

WebSphere

Application

Server

default

implementation

for

the

securityName

value,

call

the

WebSphere

Application

Server

public

String

getUserSecurityName(String

uniqueUserId)

UserRegistry

method.

Expected

format

examples

Realm

Format

(uniqueUserId)

LDAP

user

(LDAP

UID)

Windows

user

(Windows

username)

UNIX

user

(UNIX

username)

The

com.ibm.wsspi.security.cred.securityName

property

is

required.

Property

com.ibm.wsspi.security.cred.groups

Reference

to

the

property

AttributeNameConstants.

WSCREDENTIAL_GROUPS

Returns

java.util.ArrayList

266

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Explanation

This

key

searches

for

the

ArrayList

of

realm-qualified

groups

to

which

this

user

belongs.

The

format

of

these

groups

is

important

as

the

groups

are

used

by

the

WebSphere

Application

Server

authorization

engine

for

group-to-role

mappings

in

the

deployment

descriptor.

The

format

provided

must

match

the

format

expected

by

the

WebSphere

Application

Server

default

implementation.

When

you

use

a

third-party

authorization

provider,

you

must

use

the

format

expected

by

the

third-party

provider.

To

ensure

compatibility

with

the

WebSphere

Application

Server

default

implementation

for

the

unique

group

IDs

value,

call

the

WebSphere

Application

Server

public

List

getUniqueGroupIds(String

uniqueUserId)

UserRegistry

method.

Expected

format

examples

for

each

group

in

the

ArrayList

Realm

Format

LDAP

ldap1.austin.ibm.com:389/cn=group1,o=ibm,c=us

Windows

MYWINREALM/S-1-5-32-544

UNIX

MY/S-1-5-32-544

The

com.ibm.wsspi.security.cred.groups

property

is

not

required.

A

user

is

not

required

to

have

associated

groups.

Property

com.ibm.wsspi.security.cred.cacheKey

Reference

to

the

property

AttributeNameConstants.

WSCREDENTIAL_CACHE_KEY

Returns

java.lang.Object

Explanation

This

key

property

can

specify

an

Object

that

represents

the

unique

properties

of

the

login

including

the

user-specific

information

and

the

user

dynamic

attributes

that

might

affect

uniqueness.

For

example,

when

the

user

logs

in

from

location

A,

which

might

affect

their

access

control,

the

cacheKey

needs

to

include

location

A

so

that

the

Subject

received

is

the

correct

Subject

for

the

current

location.
This

com.ibm.wsspi.security.cred.cacheKey

property

is

not

required.

When

this

property

is

not

specified,

the

cache

lookup

is

the

value

specified

for

WSCREDENTIAL_UNIQUEID.

When

this

information

is

found

in

the

java.util.Hashtable

object,

WebSphere

Application

Server

creates

a

Subject

similar

to

the

Subject

that

goes

through

the

normal

login

process

(at

least

for

LTPA).

The

new

Subject

contains

a

WSCredential

object

and

a

WSPrincipal

object

that

is

fully

populated

with

the

information

found

in

the

Hashtable

object.

4.

Add

your

custom

login

module

into

the

RMI_INBOUND,

WEB_INBOUND,

and

DEFAULT

Java

Authentication

and

Authorization

Service

(JAAS)

system

login

configurations.

Configure

the

RMI_INBOUND

login

configuration

so

that

WebSphere

Application

Server

loads

your

new

custom

login

module

first.

a.

Click

Security

>

JAAS

Configuration

>

System

logins

>

RMI_INBOUND.

b.

Under

Additional

Properties,

click

JAAS

login

modules

>

New

to

add

your

login

module

to

the

RMI_INBOUND

configuration.

Chapter

2.

Securing

applications

and

their

environments

267

c.

Return

to

the

JAAS

login

modules

panel

for

RMI_INBOUND

and

click

Set

order

to

change

the

order

that

the

login

modules

are

loaded

so

that

WebSphere

Application

Server

loads

your

custom

login

module

first.

d.

Repeat

the

previous

three

steps

for

the

WEB_INBOUND

and

DEFAULT

login

configurations.

This

process

configures

identity

mapping

for

an

inbound

request.

The

“Example:

Custom

login

module

for

inbound

mapping”

article

shows

a

custom

login

module

that

creates

a

java.util.Hashtable

based

on

the

specified

NameCallback.

The

java.util.Hashtable

is

added

to

the

sharedState

java.util.Map

so

that

the

WebSphere

Application

Server

login

modules

can

locate

the

information

in

the

Hashtable.

Example:

Custom

login

module

for

inbound

mapping

This

sample

shows

a

custom

login

module

that

creates

a

java.util.Hashtable

based

on

the

specified

NameCallback.

The

java.util.Hashtable

is

added

to

the

sharedState

java.util.Map

so

that

the

WebSphere

Application

Server

login

modules

can

locate

the

information

in

the

Hashtable.

public

customLoginModule()

{

public

void

initialize(Subject

subject,

CallbackHandler

callbackHandler,

Map

sharedState,

Map

options)

{

//

(For

more

information

on

initialization,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

_sharedState

=

sharedState;

}

public

boolean

login()

throws

LoginException

{

//

(For

more

information

on

what

to

do

during

login,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

//

Handles

the

WSTokenHolderCallback

to

see

if

this

is

an

initial

or

//

propagation

login.

javax.security.auth.callback.Callback

callbacks[]

=

new

javax.security.auth.callback.Callback[3];

callbacks[0]

=

new

javax.security.auth.callback.NameCallback(″″);

callbacks[1]

=

new

javax.security.auth.callback.PasswordCallback(

″Password:

″,

false);

callbacks[2]

=

new

com.ibm.websphere.security.auth.callback.

WSCredTokenCallbackImpl(″″);

callbacks[3]

=

new

com.ibm.wsspi.security.auth.callback.

WSTokenHolderCallback(″″);

try

{

callbackHandler.handle(callbacks);

}

catch

(Exception

e)

{

//

Handles

the

exception

}

268

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

//

Determines

which

callbacks

contain

information

boolean

identitySwitched

=

false;

String

uid

=

((NameCallback)

callbacks[0]).getName();

char

password[]

=

((PasswordCallback)

callbacks[1]).getPassword();

byte[]

credToken

=

((WSCredTokenCallbackImpl)

callbacks[2]).getCredToken();

java.util.List

authzTokenList

=

((WSTokenHolderCallback)

callbacks[3]).

getTokenHolderList();

if

(credToken

!=

null)

{

try

{

String

uniqueID

=

WSSecurityPropagationHelper.validateLTPAToken(credToken);

String

realm

=

WSSecurityPropagationHelper.getRealmFromUniqueID

(uniqueID);

//

Set

the

string

to

the

UID

so

you

can

use

the

information

to

either

//

map

or

login.

uid

=

WSSecurityPropagationHelper.getUserFromUniqueID

(uniqueID);

}

catch

(Exception

e)

{

//

handle

exception

}

}

else

if

(uid

==

null)

{

//

Invalid

authentication

data.

You

must

have

either

UID

or

CredToken

throw

new

WSLoginFailedException(″invalid

authentication

data.″);

}

else

if

(uid

!=

null

&&

password

!=

null)

{

//

This

is

a

typical

authentication.

You

can

choose

to

map

this

ID

to

//

another

ID

or

you

can

skip

it

and

allow

WebSphere

Application

Server

//

to

login

for

you.

When

passwords

are

presented,

be

very

careful

not

to

//

validate

the

password

because

this

is

the

initial

authentication.

return

true;

}

//

If

desired,

map

this

uid

to

something

else

and

set

the

identitySwitched

//

boolean.

If

the

identity

is

changed,

clear

the

propagated

attributes

below

//

so

they

are

not

used

incorrectly.

uid

=

myCustomMappingRoutine

(uid);

//

Clear

the

propagated

attributes

because

they

no

longer

apply

to

the

new

identity

if

(identitySwitched)

{

((WSTokenHolderCallback)

callbacks[3]).setTokenHolderList(null);

}

boolean

requiresLogin

=

((com.ibm.wsspi.security.auth.callback.

WSTokenHolderCallback)

callbacks[2]).requiresLogin();

if

(requiresLogin

||

identitySwitched)

{

//

Retrieves

the

default

InitialContext

for

this

server.

javax.naming.InitialContext

ctx

=

new

javax.naming.InitialContext();

Chapter

2.

Securing

applications

and

their

environments

269

//

Retrieves

the

local

UserRegistry

object.

com.ibm.websphere.security.UserRegistry

reg

=

(com.ibm.websphere.security.UserRegistry)

ctx.lookup(″UserRegistry″);

//

Retrieves

the

registry

uniqueID

based

on

the

uid

that

is

specified

//

in

the

NameCallback.

String

uniqueid

=

reg.getUniqueUserId(uid);

uid

=

WSSecurityPropagationHelper.getUserFromUniqueID

(uniqueID);

//

Retrieves

the

display

name

from

the

user

registry

based

on

the

uniqueID.

String

securityName

=

reg.getUserSecurityName(uid);

//

Retrieves

the

groups

associated

with

this

uniqueID.

java.util.List

groupList

=

reg.getUniqueGroupIds(uid);

//

Creates

the

java.util.Hashtable

with

the

information

that

you

gathered

//

from

the

UserRegistry.

java.util.Hashtable

hashtable

=

new

java.util.Hashtable();

hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_UNIQUEID,

uniqueid);

hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_SECURITYNAME,

securityName);

hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_GROUPS,

groupList);

//

Adds

a

cache

key

that

is

used

as

part

of

the

look

up

mechanism

for

//

the

created

Subject.

The

cache

key

can

be

an

object,

but

should

have

//

an

implemented

toString()

method.

Make

sure

the

cacheKey

contains

enough

//

information

to

scope

it

to

the

user

and

any

additional

attributes

you

are

//

using.

If

you

do

not

specify

this

property,

the

Subject

is

scoped

to

the

//

WSCREDENTIAL_UNIQUEID

returned,

by

default.

hashtable.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_CACHE_KEY,

″myCustomAttribute″

+

uniqueid);

//

Adds

the

hashtable

to

the

sharedState

of

the

Subject.

_sharedState.put(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_PROPERTIES_KEY,

hashtable);

}

else

if

(requiresLogin

==

false)

{

//

For

more

information

on

this

section,

see

//

“Security

attribute

propagation”

on

page

276.

//

If

you

added

a

custom

Token

implementation,

you

can

search

through

the

//

token

holder

list

for

it

to

deserialize.

//

Note:

Any

Java

objects

are

automatically

deserialized

by

//

wsMapDefaultInboundLoginModule

for

(int

i=0;

i<authzTokenList.size();

i++)

{

if

(authzTokenList[i].getName().equals(″com.acme.MyCustomTokenImpl″)

{

byte[]

myTokenBytes

=

authzTokenList[i].getBytes();

//

Passes

these

bytes

into

the

constructor

of

your

implementation

//

class

for

deserialization.

com.acme.MyCustomTokenImpl

myTokenImpl

=

270

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

new

com.acme.MyCustomTokenImpl(myTokenBytes);

}

}

}

}

public

boolean

commit()

throws

LoginException

{

//

(For

more

information

on

what

to

do

during

a

commit,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

//

Not

doing

anything

here

for

this

specific

example

}

//

Defines

your

login

module

variables

com.ibm.wsspi.security.token.AuthorizationToken

customAuthzToken

=

null;

com.ibm.wsspi.security.token.AuthenticationToken

defaultAuthToken

=

null;

java.util.Map

_sharedState

=

null;

}

Configuring

outbound

mapping

to

a

different

target

realm

By

default,

when

WebSphere

Application

Server

makes

an

outbound

request

from

one

server

to

another

server

in

a

different

security

realm,

the

request

is

rejected.

This

request

is

rejected

to

protect

against

a

rogue

server

reading

potentially

sensitive

information

if

successfully

impersonating

the

home

of

the

object.

The

following

alternatives

are

available

to

enable

one

server

to

send

outbound

requests

to

a

target

server

in

a

different

realm:

v

Do

not

perform

mapping,

instead,

allow

the

existing

security

information

to

flow

to

a

trusted

target

server

even

if

the

target

server

resides

in

a

different

realm.

To

allow

information

to

flow

to

a

server

in

a

different

realm,

complete

the

following

steps

in

the

administrative

console:

1.

Click

Security

>

Authentication

Protocol

>

CSIv2

Outbound

authentication.

2.

Specify

the

target

realms

in

the

Trusted

target

realms

field.

You

can

specify

each

trusted

target

realm

separated

by

a

pipe

(|)

character.

For

example,

specify

server_name.domain:port_number

for

a

Lightweight

Directory

Access

Protocol

(LDAP)

server

or

the

machine

name

for

Local

OS.

If

you

want

to

propagate

security

attributes

to

a

different

target

realm,

you

must

specify

that

target

realm

in

the

Trusted

target

realms

field.
v

Use

the

Java

Authentication

and

Authorization

Service

(JAAS)

WSLogin

application

login

configuration

to

create

a

basic

authentication

Subject

that

contains

the

credentials

of

the

new

target

realm.

This

configuration

enables

you

to

login

with

a

realm,

user

ID,

and

password

that

are

specific

to

the

user

registry

of

the

target

realm.

You

can

provide

the

login

information

from

within

the

Java

2

Platform,

Enterprise

Edition

(J2EE)

application

that

is

making

the

outbound

request

or

from

within

the

RMI_OUTBOUND

system

login

configuration.

These

two

login

options

are

described

in

the

following

information:

1.

Use

the

WSLogin

application

login

configuration

from

within

the

J2EE

application

to

login

and

get

a

Subject

that

contains

the

user

ID

and

the

password

of

the

target

realm.

The

application

then

can

wrap

the

remote

call

with

a

WSSubject.doAs()

call.

For

an

example,

see

“Example:

Using

WSLogin

to

create

a

basic

authentication

subject”

on

page

273.

2.

Use

the

code

sample

in

“Example:

Using

WSLogin

to

create

a

basic

authentication

subject”

on

page

273

from

this

plug

point

within

the

Chapter

2.

Securing

applications

and

their

environments

271

RMI_OUTBOUND

login

configuration.

Every

outbound

Remote

Method

Invocation

(RMI)

request

passes

through

this

login

configuration

when

it

is

enabled.

Complete

the

following

steps

to

enable

and

plug

in

this

login

configuration:

a.

Click

Security

>

Authentication

Protocol

>

CSIv2

Outbound

authentication.

b.

Select

the

Custom

outbound

mapping

option.

If

the

Security

Attribute

Propagation

option

is

selected,

then

WebSphere

Application

Server

is

already

using

this

login

configuration

and

you

do

not

need

to

enable

custom

outbound

mapping.

c.

Write

a

custom

login

module.

For

more

information,

see

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.

The

“Example:

Sample

login

configuration

for

RMI_OUTBOUND”

on

page

274

article

shows

a

custom

login

module

that

determines

whether

the

realm

names

match.

In

this

example,

the

realm

names

do

not

match

so

WSLogin

is

used

to

create

a

basic

authentication

Subject

based

on

custom

mapping

rules.

The

custom

mapping

rules

are

specific

to

the

customer

environment

and

must

be

implemented

using

a

realm

to

user

ID

and

password

mapping

utility.

d.

Configure

the

RMI_OUTBOUND

login

configuration

so

that

your

new

custom

login

module

is

first

in

the

list.

1)

Click

Security

>

JAAS

Configuration

>

System

logins

>

RMI_OUTBOUND.

2)

Under

Additional

Properties,

click

JAAS

login

modules

>

New

to

add

your

login

module

to

the

RMI_OUTBOUND

configuration.

3)

Return

to

the

JAAS

login

modules

panel

for

RMI_OUTBOUND

and

click

Set

order

to

change

the

order

that

the

login

modules

are

loaded

so

that

your

custom

login

is

loaded

first.
v

Add

the

use_realm_callback

and

use_appcontext_callback

options

to

the

outbound

mapping

module

for

WSLogin.

To

add

these

options,

complete

the

following

steps:

1.

Click

Security

>

JAAS

Configuration

>

Application

Logins

>

WSLogin.

2.

Under

Additional

Properties,

click

JAAS

Login

Modules

>

com.ibm.ws.security.common.auth.module.WSLoginModuleImpl.

3.

Under

Additional

Properties,

click

Custom

Properties

>

New.

4.

On

the

Custom

Properties

panel,

enter

use_realm_callback

in

the

Name

field

and

true

in

the

Value

field.

5.

Click

OK.

6.

Click

New

to

enter

the

second

custom

property.

7.

On

the

Custom

Properties

panel,

enter

use_appcontext_callback

in

the

Name

field

and

true

in

the

Value

field.

8.

Click

OK.

As

a

result

of

these

custom

property

additions,

the

following

changes

are

made

to

the

security.xml

file:

<entries

xmi:id=″JAASConfigurationEntry_2″

alias=″WSLogin″>

<loginModules

xmi:id=″JAASLoginModule_2″

moduleClassName=″com.ibm.ws.security.common.auth.module.proxy.WSLoginModuleProxy″

authenticationStrategy=″REQUIRED″>

<options

xmi:id=″Property_2″

name=″delegate″

value=″com.ibm.ws.security.common.auth.module.WSLoginModuleImpl″/>

272

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

<options

xmi:id=″Property_3″

name=″use_realm_callback″

value=″true″/>

<options

xmi:id=″Property_4″

name=″use_appcontext_callback″

value=″true″/>

</loginModules>

</entries>

Example:

Using

WSLogin

to

create

a

basic

authentication

subject

This

example

shows

how

to

use

the

WSLogin

application

login

configuration

from

within

a

Java

2

Platform,

Enterprise

Edition

(J2EE)

application

to

login

and

get

a

Subject

that

contains

the

user

ID

and

the

password

of

the

target

realm

javax.security.auth.Subject

subject

=

null;

try

{

//

Create

a

login

context

using

the

WSLogin

login

configuration

and

specify

a

//

user

ID,

target

realm,

and

password.

Note:

If

the

target_realm_name

is

the

//

same

as

the

current

realm,

an

authenticated

Subject

is

created.

However,

if

//

the

target_realm_name

is

different

from

the

current

realm,

a

basic

//

authentication

Subject

is

created

that

is

not

validated.

This

unvalidated

//

Subject

is

created

so

that

you

can

send

a

request

to

the

different

target

//

realm

with

valid

security

credentials

for

that

realm.

javax.security.auth.login.LoginContext

ctx

=

new

LoginContext(″WSLogin″,

new

WSCallbackHandlerImpl(″userid″,

″target_realm_name″,

″password″));

//

Note:

The

following

is

an

alternative

that

validates

the

user

ID

and

//

password

specified

against

the

target

realm.

It

will

perform

a

remote

call

//

to

the

target

server

and

will

return

true

if

the

user

ID

and

password

are

//

valid

and

false

if

the

user

ID

and

password

are

invalid.

If

false

is

//

returned,

a

WSLoginFailedException

is

thrown.

You

can

catch

that

exception

and

//

perform

a

retry

or

stop

the

request

from

flowing

by

allowing

that

exception

to

//

surface

out

of

this

login.

//

ALTERNATIVE

LOGIN

CONTEXT

THAT

VALIDATES

THE

USER

ID

AND

PASSWORD

TO

THE

//

TARGET

REALM

/****

currently

remarked

out

java.util.Map

appContext

=

new

java.util.HashMap();

appContext.put(javax.naming.Context.INITIAL_CONTEXT_FACTORY,

″com.ibm.websphere.naming.WsnInitialContextFactory″);

appContext.put(javax.naming.Context.PROVIDER_URL,

″corbaloc:iiop:target_host:2809″);

javax.security.auth.login.LoginContext

ctx

=

new

LoginContext(″WSLogin″,

new

WSCallbackHandlerImpl(″userid″,

″target_realm_name″,

″password″,

appContext));

currently

remarked

out

****/

//

Starts

the

login

ctx.login();

//

Gets

the

Subject

from

the

context

subject

=

ctx.getSubject();

}

catch

(javax.security.auth.login.LoginException

e)

{

throw

new

com.ibm.websphere.security.auth.WSLoginFailedException

(e.getMessage(),

e);

Chapter

2.

Securing

applications

and

their

environments

273

}

if

(subject

!=

null)

{

//

Defines

a

privileged

action

that

encapsulates

your

remote

request.

java.security.PrivilegedAction

myAction

=

java.security.PrivilegedAction()

{

public

Object

run()

{

//

Assumes

a

proxy

is

already

defined.

This

example

method

returns

a

String

return

proxy.remoteRequest();

}

});

//

Executes

this

action

using

the

basic

authentication

Subject

needed

for

//

the

target

realm

security

requirements.

String

myResult

=

(String)

com.ibm.websphere.security.auth.WSSubject.doAs

(subject,

myAction);

}

Example:

Sample

login

configuration

for

RMI_OUTBOUND

This

example

shows

a

sample

login

configuration

for

RMI_OUTBOUND

that

determines

whether

the

realm

names

match

between

two

servers.

public

customLoginModule()

{

public

void

initialize(Subject

subject,

CallbackHandler

callbackHandler,

Map

sharedState,

Map

options)

{

//

(For

more

information

on

what

to

do

during

initialization,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

}

public

boolean

login()

throws

LoginException

{

//

(For

more

information

on

what

to

do

during

login,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

//

Gets

the

WSProtocolPolicyCallback

object

Callback

callbacks[]

=

new

Callback[1];

callbacks[0]

=

new

com.ibm.wsspi.security.auth.callback.

WSProtocolPolicyCallback(″Protocol

Policy

Callback:

″);

try

{

callbackHandler.handle(callbacks);

}

catch

(Exception

e)

{

//

Handles

the

exception

}

//

Receives

the

RMI

(CSIv2)

policy

object

for

checking

the

target

realm

//

based

upon

information

from

the

IOR.

//

Note:

This

object

can

be

used

to

perform

additional

security

checks.

//

See

the

Javadoc

for

more

information.

274

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

csiv2PerformPolicy

=

(CSIv2PerformPolicy)

((WSProtocolPolicyCallback)callbacks[0]).

getProtocolPolicy();

//

Checks

if

the

realms

do

not

match.

If

they

do

not

match,

then

login

to

//

perform

a

mapping

if

(!csiv2PerformPolicy.getTargetSecurityName().equalsIgnoreCase(csiv2PerformPolicy.

getCurrentSecurityName()))

{

try

{

//

Do

some

custom

realm

->

user

ID

and

password

mapping

MyBasicAuthDataObject

myBasicAuthData

=

MyMappingLogin.lookup

(csiv2PerformPolicy.getTargetSecurityName());

//

Creates

the

login

context

with

basic

authentication

data

gathered

from

//

custom

mapping

javax.security.auth.login.LoginContext

ctx

=

new

LoginContext(″WSLogin″,

new

WSCallbackHandlerImpl(myBasicAuthData.userid,

csiv2PerformPolicy.getTargetSecurityName(),

myBasicAuthData.password));

//

Starts

the

login

ctx.login();

//

Gets

the

Subject

from

the

context.

This

subject

is

used

to

replace

//

the

passed-in

Subject

during

the

commit

phase.

basic_auth_subject

=

ctx.getSubject();

}

catch

(javax.security.auth.login.LoginException

e)

{

throw

new

com.ibm.websphere.security.auth.

WSLoginFailedException

(e.getMessage(),

e);

}

}

}

public

boolean

commit()

throws

LoginException

{

//

(For

more

information

on

what

to

do

during

commit,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

if

(basic_auth_subject

!=

null)

{

//

Removes

everything

from

the

current

Subject

and

adds

everything

from

the

//

basic_auth_subject

try

{

public

final

Subject

basic_auth_subject_priv

=

basic_auth_subject;

//

Do

this

in

a

doPrivileged

code

block

so

that

application

code

//

does

not

need

to

add

additional

permissions

java.security.AccessController.doPrivileged(new

java.security.

PrivilegedExceptionAction()

{

public

Object

run()

throws

WSLoginFailedException

{

//

Removes

everything

user-specific

from

the

current

outbound

Chapter

2.

Securing

applications

and

their

environments

275

//

Subject.

This

a

temporary

Subject

for

this

specific

invocation

//

so

you

are

not

affecting

the

Subject

set

on

the

thread.

You

may

//

keep

any

custom

objects

that

you

want

to

propagate

in

the

Subject.

//

This

example

removes

everything

and

adds

just

the

new

stuff

//

back

in.

try

{

subject.getPublicCredentials().clear();

subject.getPrivateCredentials().clear();

subject.getPrincipals().clear();

}

catch

(Exception

e)

{

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

//

Adds

everything

from

basic_auth_subject

into

the

login

subject.

//

This

completes

the

mapping

to

the

new

user.

try

{

subject.getPublicCredentials().addAll(basic_auth_subject.

getPublicCredentials());

subject.getPrivateCredentials().addAll(basic_auth_subject.

getPrivateCredentials());

subject.getPrincipals().addAll(basic_auth_subject.

getPrincipals());

}

catch

(Exception

e)

{

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

return

null;

}

});

}

catch

(PrivilegedActionException

e)

{

throw

new

WSLoginFailedException

(e.getException().getMessage(),

e.getException());

}

}

}

//

Defines

your

login

module

variables

com.ibm.wsspi.security.csiv2.CSIv2PerformPolicy

csiv2PerformPolicy

=

null;

javax.security.auth.Subject

basic_auth_subject

=

null;

}

Security

attribute

propagation

Security

attribute

propagation

enables

WebSphere

Application

Server

to

transport

security

attributes

(authenticated

Subject

contents

and

security

context

information)

from

one

server

to

another

in

your

configuration.

WebSphere

Application

Server

might

obtain

these

security

attributes

from

either

an

enterprise

user

registry,

which

queries

static

attributes,

or

a

custom

login

module,

which

can

query

static

or

276

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

dynamic

attributes.

Dynamic

security

attributes,

which

are

custom

in

nature,

might

include

the

authentication

strength

used

for

the

connection,

the

identity

of

the

original

caller,

the

location

of

the

original

caller,

the

IP

address

of

the

original

caller,

and

so

on.

Security

attribute

propagation

provides

propagation

services

using

Java

serialization

for

any

objects

contained

in

the

Subject.

However,

Java

must

be

able

to

serialize

and

de-serialize

these

objects.

The

Java

programming

language

specifies

the

rules

for

how

Java

can

serialize

an

object.

Because

there

can

be

problems

when

dealing

with

different

platforms

and

versions

of

software,

WebSphere

Application

Server

also

offers

a

token

framework

that

enables

custom

serialization

functionality.

The

token

framework

has

other

benefits

that

include

the

ability

to

identify

the

uniqueness

of

the

token.

This

uniqueness

determines

how

the

Subject

gets

cached

and

the

purpose

of

the

token.

The

token

framework

defines

four

marker

token

interfaces

that

enable

the

WebSphere

Application

Server

run

time

to

determine

how

to

propagate

the

token.

Important:

Any

custom

tokens

that

are

used

in

this

framework

are

not

used

by

WebSphere

Application

Server

for

authorization

or

authentication.

The

framework

serves

as

a

way

to

notify

WebSphere

Application

Server

that

you

want

these

tokens

propagated

in

a

particular

way.

WebSphere

Application

Server

handles

the

propagation

details,

but

does

not

handle

serialization

or

de-serialization

of

custom

tokens.

The

serialization

of

custom

tokens

is

handled

by

the

token

framework

calling

the

getBytes()

method

on

all

forwardable

tokens

in

the

invocation

Subject.

The

implementation

of

the

getBytes()

method

determines

whether

the

byte

array

is

encoded

or

encrypted.

The

de-serialization

of

custom

tokens

is

handled

by

a

custom

login

module

plugged

into

inbound

system

login

configurations.

The

token

byte

array

is

found

by

iterating

through

the

information

provided

in

the

WSTokenHolderCallback

passed

into

the

inbound

login

configuration.

When

a

request

is

being

authenticated,

a

determination

is

made

by

the

login

modules

whether

this

is

an

initial

login

or

a

propagation

login.

An

initial

login

is

the

process

of

authenticating

the

user

information,

typically

a

user

ID

and

password,

and

then

calling

the

application

programming

interfaces

(APIs)

for

the

remote

user

registry

to

look

up

secure

attributes

that

represent

the

user

access

rights.

A

propagation

login

is

the

process

of

validating

the

user

information,

typically

an

Lightweight

Third

Party

Authentication

(LTPA)

token,

and

then

deserializing

a

series

of

tokens

that

constitute

both

custom

objects

and

token

framework

objects

known

to

the

WebSphere

Application

Server.

The

following

marker

tokens

are

introduced

in

the

framework:

Authorization

token

The

authorization

token

contains

most

of

the

authorization-related

security

attributes

that

are

propagated.

The

default

AuthorizationToken

is

used

by

the

WebSphere

Application

Server

authorization

engine

to

make

Java

2

Platform,

Enterprise

Edition

(J2EE)

authorization

decisions.

Service

providers

can

use

custom

AuthorizationToken

implementations

to

isolate

their

data

in

a

different

token;

perform

custom

serialization

and

de-serialization;

and

make

custom

authorization

decisions

using

the

information

in

their

token

at

the

appropriate

time.

For

information

on

how

to

use

and

implement

this

token

type,

see

“Default

AuthorizationToken”

on

page

300

and

“Implementing

a

custom

AuthorizationToken”

on

page

304.

Chapter

2.

Securing

applications

and

their

environments

277

Single

signon

(SSO)

token

A

custom

SingleSignonToken

added

to

the

Subject

is

automatically

added

to

the

response

as

an

HTTP

cookie

and

contains

the

attributes

sent

back

to

Web

browsers.

The

token

interface

getName()

method

together

with

the

getVersion()

method

defines

the

cookie

name.

WebSphere

Application

Server

defines

a

default

SingleSignonToken

with

the

LtpaToken

name

and

version

2.

The

cookie

name

added

is

LtpaToken2.

Do

not

add

sensitive

information,

confidential

information,

or

unencrypted

data

to

the

response

cookie.

It

is

also

recommended

that

any

time

that

you

use

cookies,

use

the

Secure

Sockets

Layer

(SSL)

protocol

to

protect

the

request.

Using

an

SSO

token,

Web

users

can

authenticate

once

when

accessing

Web

resources

across

multiple

WebSphere

Application

Servers.

A

custom

SSO

token

extends

this

functionality

by

adding

custom

processing

to

the

single

signon

scenario.

For

more

information

on

SSO

tokens,

see

“Configuring

single

signon”

on

page

173.

For

information

on

how

to

use

and

implement

this

token

type,

see

“Default

SingleSignonToken”

on

page

314

and

“Implementing

a

custom

SingleSignonToken”

on

page

315.

Propagation

token

The

PropagationToken

is

not

associated

with

the

authenticated

user

thus

it

is

not

stored

in

the

Subject.

Instead,

the

PropagationToken

is

stored

on

the

thread

and

follows

the

invocation

wherever

it

goes.

When

a

request

is

sent

outbound

to

another

server,

the

propagation

tokens

on

that

thread

are

sent

with

the

request

and

are

carried

out

by

the

target

server.

The

attributes

stored

on

the

thread

are

propagated

regardless

of

the

Java

2

Platform,

Enterprise

Edition

(J2EE)

RunAs

user

switches.

The

default

PropagationToken

monitors

and

logs

all

user

switches

and

host

switches.

You

can

add

additional

information

to

the

default

PropagationToken

using

the

WSSecurityHelper

application

programming

interfaces

(APIs).

To

retrieve

and

set

custom

implementations

of

a

propagation

token,

you

can

use

the

WSSecurityPropagationHelper

class.

For

information

on

how

to

use

and

implement

this

token

type,

see

“Default

PropagationToken”

on

page

284

and

“Implementing

a

custom

PropagationToken”

on

page

290.

Authentication

token

The

AuthenticationToken

flows

to

downstream

servers

and

contains

the

identity

of

the

user.

This

token

type

serves

the

same

function

as

the

Lightweight

Third

Party

Authentication

(LTPA)

token

in

previous

versions.

Although

this

token

type

is

typically

reserved

for

internal

WebSphere

Application

Server

purposes,

you

can

add

this

token

to

the

Subject

and

the

token

is

propagated

using

the

getBytes()

method

of

the

token

interface.

A

custom

AuthenticationToken

is

used

solely

for

the

purpose

of

the

service

provider

that

adds

it

to

the

Subject.

WebSphere

Application

Server

do

not

use

it

for

authentication

purposes,

because

a

default

AuthenticationToken

exists

that

is

used

for

WebSphere

Application

Server

authentication.

This

token

type

is

available

for

the

service

provider

to

identify

the

purpose

of

the

custom

data

to

use

the

token

to

perform

custom

authentication

decisions.

For

information

on

hot

to

use

and

implement

this

token

type,

see

“Default

AuthenticationToken”

on

page

328

and

“Implementing

a

custom

AuthenticationToken”

on

page

329.

Horizontal

propagation

versus

downstream

propagation

In

WebSphere

Application

Server,

both

horizontal

propagation,

which

is

uses

single

signon

for

Web

requests,

and

downstream

propagation,

which

uses

Remote

Method

Invocation

over

the

Internet

Inter-ORB

Protocol

(RMI/IIOP)

to

access

enterprise

beans,

are

available.

278

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Horizontal

propagation

In

horizontal

propagation,

security

attributes

are

propagated

amongst

front-end

servers.

The

serialized

security

attributes,

which

are

the

Subject

contents

and

the

PropagationTokens,

can

contain

both

static

and

dynamic

attributes.

The

single

signon

(SSO)

token

stores

additional

system-specific

information

that

is

needed

for

horizontal

propagation.

The

information

contained

in

the

SSO

token

tells

the

receiving

server

where

the

originating

server

is

located

and

how

to

communicate

with

that

server.

Additionally,

the

SSO

token

also

contains

the

key

to

lookup

the

serialized

attributes.

In

order

to

enable

horizontal

propagation,

you

must

configure

the

single

signon

token

and

the

Web

inbound

security

attribute

propagation

features.

You

can

configure

both

of

these

features

using

the

administrative

console

by

clicking

Security

>

Authentication

Mechanisms

>

LTPA.

Under

Additional

Properties,

click

Single

signon

(SSO).

For

more

information,

see

“Enabling

security

attribute

propagation”

on

page

282.

When

front-end

servers

are

configured

and

in

the

same

distributed

replication

service

(DRS)

replication

domain,

the

application

server

automatically

propagates

the

serialized

information

to

all

of

the

servers

within

the

same

domain.

In

figure

1,

application

1

is

deployed

on

server

1

and

server

2,

and

both

servers

are

members

of

the

same

DRS

replication

domain.

If

a

request

originates

from

application

1

on

server

and

then

gets

redirected

to

application

1

on

server

2,

the

original

login

attributes

are

found

on

server

2

without

additional

remote

requests.

However,

if

the

request

originates

from

application

1

on

either

server

1

or

server

2,

but

the

request

is

redirected

to

application

2

on

either

server

1

or

server

2,

the

serialized

information

is

not

found

in

the

DRS

cache

because

the

servers

are

not

configured

in

the

same

replication

domain.

As

a

result,

a

remote

Java

Management

Extensions

(JMX)

request

is

sent

back

to

the

originating

server

that

hosts

application

1

to

obtain

the

serialized

information

so

that

original

login

information

is

available

to

the

application.

By

getting

the

serialized

information

using

a

single

JMX

remote

call

back

to

the

originating

server,

the

following

benefits

are

realized:

v

You

gain

the

function

of

retrieving

login

information

from

the

original

server.

v

You

do

not

need

to

perform

any

remote

user

registry

calls

because

the

application

server

can

regenerate

the

Subject

from

the

serialized

information.

Without

this

ability,

the

application

server

might

make

5

to

6

separate

remote

calls.

Figure

1

Chapter

2.

Securing

applications

and

their

environments

279

Initial HTTP

authentication

Later HTTP request

with single signon

Data Replication Service

(DRS)

attribute replication

Application 1 in server 1

Application 1 in server 2

Application 2 in server 3

Application 3 in server 5

Application 2 in server 4

Data Replication Service

(DRS)

attribute replication

Java Management Extensions (JMX)

request for subject

The subject is kept in the

Common Secure Interoperability version 2 (CSIV2) session

Application 1 in server 1

Application 3 in server 5

Application 1 in server 2 Application 2 in server 4

Application 2 in server 3

The Subject is requested from original server

because it is not found in DynaCache

The Subject is replicated

using DynaCache in this cluster.

There is no return to the

original cluster
The Subject and propagation attributes

are sent using RMI/IIOP

1. User authenticates to server 1.

2. Server 1 makes an RMI request to server 5.

3. User accesses another Web application on server 3.

Security

cache

DynaCache

DynaCache

Security

cache

DynaCache

DynaCache

CSIV2 session

cache

Performance

implications

for

horizontal

propagation

The

performance

implications

of

either

the

DRS

or

JMX

remote

call

alternative

for

obtaining

the

original

login

attributes

depends

upon

your

environment.

Horizontal

propagation

reduces

many

of

the

remote

user

registry

calls

in

cases

where

these

calls

cause

the

most

performance

problems

for

an

application.

However,

the

de-serialization

of

these

objects

also

might

cause

performance

degradation,

but

this

degradation

might

be

less

than

the

remote

user

registry

calls.

It

is

recommended

that

you

test

your

environment

with

horizontal

propagation

enabled

and

disabled.

In

cases

where

you

must

use

horizontal

propagation

for

preserving

original

login

attributes,

test

whether

DRS

or

JMX

provides

better

performance

in

your

environment.

Typically,

it

is

recommended

that

you

configure

DRS

both

for

failover

and

performance

reasons.

However,

because

DRS

propagates

the

information

to

all

of

the

servers

in

the

same

replication

domain,

whether

the

servers

are

accessed,

,

there

may

be

a

performance

degradation

if

too

many

servers

are

in

the

same

replication

domain.

In

this

case,

either

reduce

the

number

of

servers

in

the

replication

domain

or

do

not

configure

the

servers

in

a

DRS

replication

domain.

The

later

suggestion

causes

a

JMX

remote

call

to

retrieve

the

attributes,

when

needed,

which

might

be

quicker

overall.

Downstream

propagation

In

downstream

propagation,

a

Subject

is

generated

at

the

Web

front-end

server,

either

by

a

propagation

login

or

a

user

registry

login.

WebSphere

Application

Server

propagates

the

security

information

downstream

for

enterprise

bean

invocations

when

both

Remote

Method

Invocation

(RMI)

outbound

and

inbound

propagation

is

enabled.

280

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Benefits

of

propagating

security

attributes

The

security

attribute

propagation

feature

of

WebSphere

Application

Server

has

the

following

benefits:

v

Enables

WebSphere

Application

Server

to

use

the

security

attribute

information

for

authentication

and

authorization

purposes.

The

propagation

of

security

attributes

can

eliminate

the

need

for

user

registry

calls

at

each

remote

hop

along

an

invocation.

Previous

versions

of

WebSphere

Application

Server

propagated

only

the

user

name

of

the

authenticated

user,

but

ignored

other

security

attribute

information

that

needed

to

be

regenerated

downstream

using

remote

user

registry

calls.

To

accentuate

the

benefits

of

this

new

functionality,

consider

the

following

example:

In

previous

releases,

you

might

use

a

Reverse

Proxy

Server

(RPS),

such

as

WebSEAL,

to

authenticate

the

user,

gather

group

information,

and

gather

other

security

attributes.

Prior

to

WebSphere

Application

Server

Version

5.1.1,

the

application

server

used

to

accept

only

the

identity

of

the

authenticated

user,

but

disregarded

the

additional

security

attribute

information.

To

create

a

Java

Authentication

and

Authorization

Service

(JAAS)

Subject

containing

the

needed

WSCredential

and

WSPrincipal

objects,

WebSphere

Application

Server

made

5

to

6

calls

to

the

user

registry.

The

WSCredential

object

contains

various

security

information

required

to

authorize

a

J2EE

resource.

The

WSPrincipal

object

contains

the

realm

name

and

the

user

that

represents

the

principal

for

the

Subject.

In

the

current

release

of

the

application

server,

information

obtained

from

the

RPS

can

be

used

by

WebSphere

Application

Server

and

propagated

downstream

to

other

server

resources

without

additional

calls

to

the

user

registry.

The

retaining

of

the

security

attribute

information

enables

you

to

protect

server

resources

properly

by

making

appropriate

authorization

and

trust-based

decisions

User

switches

that

occur

due

to

J2EE

RunAs

configurations

do

not

cause

the

application

server

to

lose

the

original

caller

information.

This

information

is

stored

in

the

PropagationToken

located

on

the

running

thread.

v

Enables

third-party

providers

to

plug

in

custom

tokens.

The

token

interface

contains

a

getBytes()

method

that

enables

the

token

implementation

to

define

custom

serialization,

encryption

methods,

or

both.

v

Provides

the

ability

to

have

multiple

tokens

of

the

same

type

within

a

Subject

created

by

different

providers.

WebSphere

Application

Server

can

handle

multiple

tokens

for

the

same

purpose.

For

example,

you

might

have

multiple

authorization

tokens

in

the

Subject

and

each

token

might

have

distinct

authorization

attributes

that

are

generated

by

different

providers.

v

Provides

the

ability

to

have

a

unique

ID

for

each

token

type

that

is

used

to

formulate

a

more

unique

subject

identifier

than

just

the

user

name

in

cases

where

dynamic

attributes

might

change

the

context

of

a

user

login.

The

token

type

has

a

getUniqueId()

method

that

is

used

for

returning

a

unique

string

for

caching

purposes.

For

example,

you

might

need

to

propagate

a

location

ID,

which

indicates

the

location

from

which

the

user

logged

into

the

system.

This

location

ID

can

be

generated

during

the

original

login

using

either

an

RPS

or

the

WEB_INBOUND

login

configuration

and

added

to

the

Subject

prior

to

serialization.

Other

attributes

might

be

added

to

the

Subject

as

well

and

use

a

unique

ID.

All

of

the

unique

IDs

must

be

considered

for

the

uniqueness

of

the

entire

Subject.

WebSphere

Application

Server

has

the

ability

to

specify

what

is

unique

about

the

information

in

the

subject,

which

might

affect

how

the

used

access

the

Subject

later.

Chapter

2.

Securing

applications

and

their

environments

281

Enabling

security

attribute

propagation

The

security

attribute

propagation

feature

of

WebSphere

Application

Server

enables

you

to

send

security

attribute

information

regarding

the

original

login

to

other

servers

using

a

token.

To

fully

enable

security

attribute

propagation,

you

must

configure

the

single

signon

(SSO),

CSIv2

inbound,

and

CSIv2

outbound

panels

in

the

WebSphere

Application

Server

Administrative

Console.

You

can

enable

just

the

portions

of

security

attribute

propagation

relevant

to

your

configuration.

For

example,

you

can

enable

Web

propagation,

which

is

propagation

amongst

front-end

application

servers,

using

either

the

push

technique

(DynaCache)

or

the

pull

technique

(remote

method

to

originating

server).

You

also

can

choose

whether

to

enable

Remote

Method

Invocation

(RMI)

outbound

and

inbound

propagation,

which

is

commonly

called

downstream

propagation.

Typically

both

types

of

propagation

are

enabled

for

any

given

cell.

In

some

cases,

you

might

want

to

choose

a

different

option

for

a

specific

application

server

using

the

server

security

panel

within

the

specific

application

server

settings.

To

access

the

server

security

panel

in

the

administrative

console,

click

Servers

>

Application

Servers

>

server_name.

Under

Additional

properties,

click

Server

security

>

Server

level

security.

Complete

the

following

steps

to

configure

WebSphere

Application

Server

for

security

attribute

propagation:

1.

Access

the

WebSphere

Application

Server

administrative

console

by

typing

http://server_name:9090/admin

The

administrative

console

address

might

differ

if

you

have

previously

changed

the

port

number.

2.

Click

Security

>

Authentication

Mechanisms

>

LTPA.

Under

Additional

Properties,

click

Single

Signon

(SSO).

3.

Optional:

Select

the

Interoperability

Mode

option

if

you

need

to

interoperate

with

servers

that

do

not

support

security

attribute

propagation.

Servers

that

do

not

support

security

attribute

propagation

receive

the

Lightweight

Third

Party

Authentication

(LTPA)

token

and

the

PropagationToken,

but

ignore

the

security

attribute

information

that

it

does

not

understand.

4.

Select

the

Web

inbound

security

attribute

propagation

option.

The

Web

inbound

security

attribute

propagation

option

enables

horizontal

propagation,

which

allows

the

receiving

SSO

token

to

retrieve

the

login

information

from

the

original

login

server.

If

you

do

not

enable

this

option,

downstream

propagation

can

occur

if

you

enable

the

Security

Attribute

Propagation

option

on

both

the

CSIv2

Inbound

authentication

and

CSIv2

outbound

authentication

panels.

Typically,

you

enable

the

Web

inbound

security

attribute

propagation

option

if

you

need

to

gather

dynamic

security

attributes

set

at

the

original

login

server

that

cannot

be

regenerated

at

the

new

front-end

server.

This

attributes

include

any

custom

attributes

that

might

be

set

in

the

PropagationToken

using

the

com.ibm.websphere.security.WSSecurityHelper

application

programming

interfaces

(APIs).

You

must

determine

whether

enabling

this

option

improves

or

degrades

the

performance

of

your

system.

While

the

option

prevents

some

remote

user

registry

calls,

the

deserialization

and

decryption

of

some

tokens

might

impact

performance.

In

some

cases,

propagation

is

faster

especially

if

your

user

registry

is

the

bottleneck

of

your

topology.

It

is

recommended

that

you

measurement

the

performance

of

your

environment

using

and

not

using

this

option.

When

you

test

the

performance,

it

is

recommended

that

you

test

in

the

operating

environment

of

the

typical

production

environment

with

the

typical

number

of

unique

users

accessing

the

system

simultaneously.

282

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

5.

Click

Security

>

Authentication

Protocol

>

CSIv2

Inbound

authentication.

The

Login

configuration

field

specifies

RMI_INBOUND

as

the

system

login

configuration

used

for

inbound

requests.

To

add

custom

Java

Authentication

and

Authorization

Service

(JAAS)

login

modules,

complete

the

following

steps:

a.

Click

Security

>

JAAS

Configuration

>

System

Logins.

A

list

of

the

system

login

configurations

is

displayed.

WebSphere

Application

Server

provides

the

following

pre-configured

system

login

configurations:

DEFAULT,

LTPA,

LTPA_WEB,

RMI_INBOUND,

RMI_OUTBOUND,

SWAM,

WEB_INBOUND,

wssecurity.IDAssertion,

and

wssecurity.Signature.

Do

not

delete

these

predefined

configurations.

b.

Click

the

name

of

the

login

configuration

that

you

want

to

modify.

c.

Under

Additional

Properties,

click

JAAS

Login

Modules.

The

JAAS

Login

Modules

panel

is

displayed,

which

lists

all

of

the

login

modules

processed

in

the

login

configuration.

Do

not

delete

the

required

JAAS

login

modules.

Instead,

you

can

add

custom

login

modules

before

or

after

the

required

login

modules.

If

you

add

custom

login

modules,

do

not

begin

their

names

with

com.ibm.ws.security.server

because

this

prefix

is

reserved

for

WebSphere

Application

Server

internal

use.

You

can

specify

the

order

in

which

the

login

modules

are

processed

by

clicking

Set

Order.

6.

Select

the

Security

Attribute

Propagation

option

on

the

CSIv2

Inbound

authentication

panel.

When

you

select

Security

Attribute

Propagation,

the

server

advertises

to

other

application

servers

that

it

can

receive

propagated

security

attributes

from

another

server

in

the

same

realm

over

the

Common

Secure

Interoperability

version

2

(CSIv2)

protocol.

7.

Click

Security

>

Authentication

protocol

>

CSIv2

Outbound

authentication.

The

CSIv2

outbound

authentication

panel

is

displayed.

The

Login

configuration

field

specifies

RMI_OUTBOUND

as

JAAS

login

configuration

that

is

used

for

outbound

configuration.

You

cannot

change

this

login

configuration.

Instead,

you

can

customize

this

login

configuration

by

completing

the

substeps

listed

previously

for

CSIv2

Inbound

authentication.

8.

Optional:

Select

the

Custom

Outbound

Mapping

option

if

the

Security

Attribute

Propagation

option,

on

this

same

panel,

is

not

selected

and

you

want

to

use

the

RMI_OUTBOUND

login

configuration.

If

the

Custom

Outbound

Mapping

option

nor

the

Security

Attribute

Propagation

option

is

selected,

WebSphere

Application

Server

does

not

call

the

RMI_OUTBOUND

login

configuration.

If

you

need

to

plug

in

a

credential

mapping

login

module,

you

must

select

the

Custom

Outbound

Mapping

option.

9.

Optional:

Select

the

Security

Attribute

Propagation

option

to

enable

outbound

Subject

and

security

context

token

propagation

for

the

Remote

Method

Invocation

(RMI)

protocol.

When

you

select

this

option,

WebSphere

Application

Server

serializes

the

Subject

contents

and

the

PropagationToken

contents.

After

the

contents

are

serialized,

the

server

uses

the

Common

Secure

Interoperability

version

2

(CSIv2)

protocol

to

send

the

Subject

and

PropagationToken

to

the

target

servers

that

support

security

attribute

propagation.

If

the

receiving

server

does

not

support

security

attribute

tokens,

WebSphere

Application

Server

sends

the

Lightweight

Third

Party

Authentication

(LTPA)

token

only.

Important:

WebSphere

Application

Server

propagates

only

the

objects

within

the

Subject

that

it

can

serialize.

The

server

propagates

custom

objects

on

a

best-effort

basis.

Chapter

2.

Securing

applications

and

their

environments

283

When

Security

Attribute

Propagation

is

enabled,

WebSphere

Application

Server

adds

marker

tokens

to

the

Subject

to

enable

the

target

server

to

add

additional

attributes

during

the

inbound

login.

During

the

commit

phase

of

the

login,

the

marker

tokens

and

the

Subject

are

marked

as

read-only

and

cannot

be

modified

thereafter.

10.

Optional:

Specify

trusted

target

realm

names

in

the

Trusted

Target

Realms

field.

By

specifying

these

realm

names,

information

can

be

sent

to

servers

that

reside

outside

the

realm

of

the

sending

server

to

allow

for

inbound

mapping

to

occur

at

these

downstream

servers.

To

perform

outbound

mapping

to

a

realm

different

from

the

current

realm,

you

must

specify

the

realm

in

this

field

so

that

you

can

get

to

this

point

without

the

request

being

rejected

due

to

a

realm

mismatch.

If

you

need

WebSphere

Application

Server

to

propagate

security

attributes

to

another

realm

when

a

request

is

sent,

you

must

specify

the

realm

name

in

the

Trusted

Target

Realms

field.

Otherwise,

the

security

attributes

are

not

propagated

to

the

unspecified

realm.

You

can

add

multiple

target

realms

by

adding

a

pipe

(|)

delimiter

between

each

entry.

11.

Optional:

Enable

propagation

for

a

pure

client.

For

a

pure

client

to

propagate

attributes

added

to

the

invocation

Subject,

you

must

add

the

following

property

to

the

sas.client.props

file:

com.ibm.CSI.rmiOutboundPropagationEnabled=true

After

completing

these

steps,

you

have

configured

WebSphere

Application

Server

to

propagate

security

attributes

to

other

servers.

After

you

have

configured

WebSphere

Application

Server

for

security

attribute

propagation

and

need

to

disable

this

functionality,

you

can

disable

propagation

for

either

the

server

level

or

the

cell

level.

To

disable

security

attribute

propagation

on

the

server

level,

click

Server

>

Application

Servers

>server_name.

Under

Additional

Properties,

click

Server

security.

You

can

disable

security

attribute

propagation

for

inbound

requests

by

clicking

CSI

Authentication

>

Inbound

under

Additional

Properties

and

deselecting

Security

attribute

propagation.

You

can

disable

security

attribute

propagation

for

outbound

requests

by

clicking

CSI

Authentication

>

Outbound

under

Additional

Properties

and

deselecting

Security

attribute

propagation.

To

disable

security

attribute

propagation

on

the

cell

level,

undo

each

of

the

steps

that

you

completed

to

enable

security

attribute

propagation

in

this

task.

Default

PropagationToken

A

default

PropagationToken

is

located

on

the

thread

of

execution

for

applications

and

the

security

infrastructure

to

use.

WebSphere

Application

Server

propagates

this

default

PropagationToken

downstream

and

the

token

stays

on

the

thread

where

the

invocation

lands

at

each

hop.

The

data

should

be

available

from

within

the

container

of

any

resource

where

the

PropagationToken

lands.

Remember

that

you

must

enable

the

propagation

feature

at

each

server

where

a

request

is

sent

in

order

for

propagation

to

work.

See

“Enabling

security

attribute

propagation”

on

page

282

to

make

sure

that

you

have

enabled

security

attribute

propagation

for

all

of

the

cells

in

your

environment

where

you

want

propagation

There

is

a

WSSecurityHelper

class

that

has

application

programming

interfaces

(APIs)

for

accessing

the

PropagationToken

attributes.

This

article

documents

the

usage

scenarios

and

includes

examples.

A

close

relationship

exists

between

PropagationToken

and

the

WorkArea

feature.

The

main

difference

between

these

features

is

that

after

you

add

attributes

to

the

PropagationToken,

you

cannot

change

the

attributes.

You

cannot

change

these

attributes

so

that

the

security

run

time

can

add

auditable

information

and

have

that

information

remain

there

for

the

284

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

life

of

the

invocation.

Any

time

that

you

add

an

attribute

to

a

specific

key,

an

ArrayList

is

stored

to

hold

that

attribute.

Any

new

attribute

added

with

the

same

key

is

added

to

the

ArrayList.

When

you

call

getAttributes,

the

ArrayList

is

converted

to

a

String[]

and

the

order

is

preserved.

The

first

element

in

the

String[]

is

the

first

attribute

added

for

that

specific

key.

In

the

default

PropagationToken,

a

change

flag

is

kept

that

logs

any

data

changes

to

the

token.

These

changes

are

tracked

to

enable

WebSphere

Application

Server

to

know

when

to

re-send

the

authentication

information

downstream

so

that

the

downstream

server

has

those

changes.

Normally,

Common

Secure

Interoperability

Version

2

(CSIv2)

maintains

a

session

between

servers

for

an

authenticated

client.

If

the

PropagationToken

changes,

a

new

session

is

generated

and

subsequently

a

new

authentication

occurs.

Frequent

changes

to

the

PropagationToken

during

a

method

causes

frequent

downstream

calls.

If

you

change

the

token

prior

to

making

many

downstream

calls,

but

you

change

the

token

between

each

downstream

call,

you

might

impact

security

performance.

Getting

the

server

list

from

the

default

PropagationToken

Every

time

the

PropagationToken

is

propagated

and

used

to

create

the

authenticated

Subject,

either

horizontally

or

downstream,

the

name

of

the

receiving

application

server

is

logged

into

the

PropagationToken.

The

format

of

the

host

is

″Cell:Node:Server″,

which

provides

you

access

to

the

cell

name,

node

name,

and

server

name

of

each

application

server

that

receives

the

invocation.

The

following

code

provides

you

with

this

list

of

names

and

can

be

called

from

a

Java

2

Platform,

Enterprise

Edition

(J2EE)

application:

String[]

server_list

=

null;

//

If

security

is

disabled

on

this

application

server,

do

not

bother

checking

if

(com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

{

try

{

//

Gets

the

server_list

string

array

server_list

=

com.ibm.websphere.security.WSSecurityHelper.getServerList();

}

catch

(Exception

e)

{

//

Performs

normal

exception

handling

for

your

application

}

if

(server_list

!=

null)

{

//

print

out

each

server

in

the

list,

server_list[0]

is

the

first

server

for

(int

i=0;

i<server_list.length;

i++)

{

System.out.println(″Server[″

+

i

+

″]

=

″

+

server_list[i]);

}

}

}

The

format

of

each

server

in

the

list

is:

cell:node:server.

The

output,

for

example,

is:

myManager:node1:server1

Chapter

2.

Securing

applications

and

their

environments

285

Getting

the

caller

list

from

the

default

PropagationToken

A

default

PropagationToken

is

generated

any

time

an

authenticated

user

is

set

on

the

thread

of

execution

or

any

one

tries

to

add

attributes

to

the

PropagationToken.

Whenever

an

authenticated

user

is

set

on

the

thread,

the

user

is

logged

in

the

default

PropagationToken.

There

may

be

some

pushing

and

popping

of

Subjects

by

the

authorization

code.

At

times,

the

same

user

might

be

logged

in

multiple

times

if

the

RunAs

user

is

different

from

the

caller.

The

following

list

provides

the

rules

that

are

used

to

determine

if

a

user

added

to

the

thread

gets

logged

into

the

PropagationToken:

v

The

current

Subject

must

be

authenticated.

For

example,

an

unauthenticated

Subject

is

not

logged.

v

The

current

authenticated

Subject

is

logged

if

a

Subject

has

not

been

previously

logged.

v

The

current

authenticated

Subject

is

logged

if

the

last

authenticated

Subject

logged

does

not

contain

the

same

user.

v

The

current

authenticated

Subject

is

logged

on

each

unique

application

server

involved

in

the

propagation

process.

The

following

code

sample

shows

how

to

use

the

getCallerList()

API:

String[]

caller_list

=

null;

//

If

security

is

disabled

on

this

application

server,

do

not

check

the

caller

list

if

(com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

{

try

{

//

Gets

the

caller_list

string

array

caller_list

=

com.ibm.websphere.security.WSSecurityHelper.getCallerList();

}

catch

(Exception

e)

{

//

Performs

normal

exception

handling

for

your

application

}

if

(caller_list

!=

null)

{

//

Prints

out

each

caller

in

the

list,

caller_list[0]

is

the

first

caller

for

(int

i=0;

i<caller_list.length;i++)

{

System.out.println(″Caller[″

+

i

+

″]

=

″

+

caller_list[i]);

}

}

}

The

format

of

each

caller

in

the

list

is:

cell:node:server:realm/securityName.

The

output,

for

example,

is:

myManager:node1:server1:ldap.austin.ibm.com:389/jsmith.

Getting

the

first

caller

from

the

default

PropagationToken

Whenever

you

want

to

know

which

authenticated

caller

started

the

request,

you

can

call

the

getFirstCaller

method

and

the

caller

list

is

parsed.

However,

this

method

returns

the

securityName

of

the

caller

only.

If

you

need

to

know

more

286

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

than

the

securityName,

call

the

getCallerList()

method

and

retrieve

the

first

entry

in

the

String[].

This

entry

provides

the

entire

caller

information.

The

following

code

sample

retrieves

the

securityName

of

the

first

authenticated

caller

using

the

getFirstCaller()

API:

String

first_caller

=

null;

//

If

security

is

disabled

on

this

application

server,

do

not

bother

checking

if

(com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

{

try

{

//

Gets

the

first

caller

first_caller

=

com.ibm.websphere.security.WSSecurityHelper.getFirstCaller();

//

Prints

out

the

caller

name

System.out.println(″First

caller:

″

+

first_caller);

}

catch

(Exception

e)

{

//

Performs

normal

exception

handling

for

your

application

}

}

The

output,

for

example,

is:

jsmith.

Getting

the

first

host

from

the

default

PropagationToken

Whenever

you

want

to

know

what

the

first

application

server

is

for

this

request,

you

can

call

the

getFirstServer()

method

directly.

The

following

code

sample

retrieves

the

name

of

the

first

application

server

using

the

getFirstServer()

API:

String

first_server

=

null;

//

If

security

is

disabled

on

this

application

server,

do

not

bother

checking

if

(com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

{

try

{

//

Gets

the

first

server

first_server

=

com.ibm.websphere.security.WSSecurityHelper.getFirstServer();

//

Prints

out

the

server

name

System.out.println(″First

server:

″

+

first_server);

}

catch

(Exception

e)

{

//

Performs

normal

exception

handling

for

your

application

}

}

The

output,

for

example,

is:

myManager:node1:server1.

Chapter

2.

Securing

applications

and

their

environments

287

Adding

custom

attributes

to

the

default

PropagationToken

You

can

add

custom

attributes

to

the

default

PropagationToken

for

application

usage.

This

token

follows

the

request

downstream

so

that

the

attributes

are

available

when

they

are

needed.

When

you

use

the

default

PropagationToken

to

add

attributes,

you

must

understand

the

following

issues:

v

When

you

add

information

to

the

PropagationToken,

it

affects

CSIv2

session

caching.

Add

information

sparingly

between

remote

requests.

v

After

you

add

information

with

a

specific

key,

the

information

cannot

be

removed.

v

You

can

add

as

many

values

to

a

specific

key

as

your

need.

However,

all

of

the

values

must

be

available

from

a

returned

String[]

in

the

order

they

were

added.

v

The

PropagationToken

is

available

only

on

servers

where

propagation

and

security

are

enabled.

v

The

Java

2

Security

javax.security.auth.AuthPermission

wssecurity.addPropagationAttribute

is

needed

to

add

attributes

to

the

default

PropagationToken.

v

An

application

cannot

use

keys

that

begin

with

either

com.ibm.websphere.security

or

com.ibm.wsspi.security.

These

prefixes

are

reserved

for

system

usage.

The

following

code

sample

shows

how

to

use

the

addPropagationAttribute

API:

//

If

security

is

disabled

on

this

application

server,

//

do

not

check

the

status

of

server

security

if

(com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

{

try

{

//

Specifies

the

key

and

values

String

key

=

″mykey″;

String

value1

=

″value1″;

String

value2

=

″value2″;

//

Sets

key,

value1

com.ibm.websphere.security.WSSecurityHelper.

addPropagationAttribute

(key,

value1);

//

Sets

key,

value2

String[]

previous_values

=

com.ibm.websphere.security.WSSecurityHelper.

addPropagationAttribute

(key,

value2);

//

Note:

previous_values

should

contain

value1

}

catch

(Exception

e)

{

//

Performs

normal

exception

handling

for

your

application

}

}

See

Getting

custom

attributes

from

the

default

PropagationToken

to

retrieve

attributes

using

the

getPropagationAttributes

application

programming

interface

(API).

288

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Getting

custom

attributes

from

the

default

PropagationToken

Custom

attributes

are

added

to

the

default

PropagationToken

using

the

addPropagationAttribute

API.

These

attributes

can

be

retrieved

using

the

getPropagationAttributes

API.

This

token

follows

the

request

downstream

so

the

attributes

are

available

when

they

are

needed.

When

you

use

the

default

PropagationToken

to

retrieve

attributes,

you

must

understand

the

following

issues.

v

The

PropagationToken

is

available

only

on

servers

where

propagation

and

security

are

enabled.

v

The

Java

2

Security

javax.security.auth.AuthPermission

wssecurity.getPropagationAttributes

is

needed

to

retrieve

attributes

from

the

default

PropagationToken.

The

following

code

sample

shows

how

to

use

the

getPropagationAttributes

API:

//

If

security

is

disabled

on

this

application

server,

do

not

bother

checking

if

(com.ibm.websphere.security.WSSecurityHelper.isServerSecurityEnabled())

{

try

{

String

key

=

″mykey″;

String[]

values

=

null;

//

Sets

key,

value1

values

=

com.ibm.websphere.security.WSSecurityHelper.

getPropagationAttributes

(key);

//

Prints

the

values

for

(int

i=0;

i<values.length;

i++)

{

System.out.println(″Value[″

+

i

+

″]

=

″

+

values[i]);

}

}

catch

(Exception

e)

{

//

Performs

normal

exception

handling

for

your

application

}

}

The

output,

for

example,

is:

Value[0]

=

value1

Value[1]

=

value2

See

Adding

custom

attributes

to

the

default

PropagationToken

to

add

attributes

using

the

addPropagationAttributes

API.

Changing

the

TokenFactory

associated

with

the

default

PropagationToken

When

WebSphere

Application

Server

generates

a

default

PropagationToken,

the

application

server

utilizes

the

TokenFactory

class

that

is

specified

using

the

com.ibm.wsspi.security.token.propagationTokenFactory

property.

To

modify

this

property

using

the

administrative

console,

complete

the

following

steps:

1.

Click

Security

>

Global

Security.

2.

Under

Additional

properties,

click

Custom

properties.

Chapter

2.

Securing

applications

and

their

environments

289

The

default

TokenFactory

specified

for

this

property

is

called

com.ibm.ws.security.ltpa.AuthzPropTokenFactory.

This

token

factory

encodes

the

data

in

the

PropagationToken

and

does

not

encrypt

the

data.

Because

the

PropagationToken

typically

flows

over

Common

Secure

Interoperability

version

2

(CSIv2)

using

Secure

Sockets

Layer

(SSL),

there

is

no

need

to

encrypt

the

token

itself.

However,

if

you

need

additional

security

for

the

PropagationToken,

you

can

associate

a

different

TokenFactory

implementation

with

this

property

to

get

encryption.

For

example,

if

you

choose

to

associate

com.ibm.ws.security.ltpa.LTPAToken2Factory

with

this

property,

the

token

is

AES

encrypted.

However,

you

need

to

weigh

the

performance

impacts

against

your

security

needs.

Adding

sensitive

information

to

the

PropagationToken

is

a

good

reason

to

change

the

TokenFactory

implementation

to

something

that

encrypts

rather

than

just

encodes.

If

you

want

to

perform

your

own

signing

and

encryption

of

the

default

PropagationToken,

you

must

implement

the

following

classes:

v

com.ibm.wsspi.security.ltpa.Token

v

com.ibm.wsspi.security.ltpa.TokenFactory

Your

TokenFactory

implementation

instantiates

and

validates

your

token

implementation.

You

can

choose

to

use

the

Lightweight

Third

Party

Authentication

(LTPA)

keys

passed

into

the

initialize

method

of

the

TokenFactory

or

you

can

use

your

own

keys.

If

you

use

your

own

keys,

they

must

be

the

same

everywhere

in

order

to

validate

the

tokens

that

are

generated

using

those

keys.

See

the

Javadoc,

available

through

a

link

on

the

front

page

of

the

information

center,

for

more

information

on

implementing

your

own

custom

TokenFactory.

To

associate

your

TokenFactory

with

the

default

PropagationToken,

using

the

administrative

console,

complete

the

following

steps:

1.

Click

Security

>

Global

Security.

2.

Under

Additional

properties,

click

Custom

properties.

3.

Locate

the

com.ibm.wsspi.security.token.propagationTokenFactory

property

and

verify

that

the

value

of

this

property

matches

your

custom

TokenFactory

implementation.

4.

Verify

that

your

implementation

classes

are

put

into

the

install

directory/classes

directory

so

that

the

WebSphere

class

loader

can

load

the

classes.

Implementing

a

custom

PropagationToken

This

task

explains

how

you

might

create

your

own

PropagationToken

implementation,

which

is

set

on

the

thread

of

execution

and

propagated

downstream.

The

default

PropagationToken

usually

is

sufficient

for

propagating

attributes

that

are

not

user-specific.

Consider

writing

your

own

implementation

if

you

want

to

accomplish

one

of

the

following

tasks:

v

Isolate

your

attributes

within

your

own

implementation.

v

Serialize

the

information

using

custom

serialization.

You

must

deserialize

the

bytes

at

the

target

and

add

that

information

back

on

the

thread

by

plugging

in

a

custom

login

module

into

the

inbound

system

login

configurations.

This

task

also

might

include

encryption

and

decryption.

To

implement

a

custom

Propagation

token,

you

must

complete

the

following

steps:

1.

Write

a

custom

implementation

of

the

PropagationToken

interface.

There

are

many

different

methods

for

implementing

the

PropagationToken

interface.

290

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

However,

make

sure

that

the

methods

required

by

the

PropagationToken

interface

and

the

token

interface

are

fully

implemented.

After

you

implement

this

interface,

you

can

place

it

in

the

install_dir/classes

directory.

Alternatively,

you

can

place

the

class

in

any

private

directory

.

However,

make

sure

that

the

WebSphere

Application

Server

class

loader

can

locate

the

class

and

that

it

is

granted

the

appropriate

permissions.

You

can

add

the

Java

archive

(JAR)

file

or

directory

that

contains

this

class

into

the

server.policy

file

so

that

it

has

the

necessary

permissions

that

are

needed

by

the

server

code.

Tip:

All

of

the

token

types

defined

by

the

propagation

framework

have

similar

interfaces.

Basically,

the

token

types

are

marker

interfaces

that

implement

the

com.ibm.wsspi.security.token.Token

interface.

This

interface

defines

most

of

the

methods.

If

you

plan

to

implement

more

than

one

token

type,

consider

creating

an

abstract

class

that

implements

the

com.ibm.wsspi.security.token.Token

interface.

All

of

your

token

implementations,

including

the

PropagationToken,

might

extend

the

abstract

class

and

then

most

of

the

work

is

completed.

To

see

an

implementation

of

PropagationToken,

see

“Example:

com.ibm.wsspi.security.token.PropagationToken

implementation”

on

page

292

2.

Add

and

receive

the

custom

PropagationToken

during

WebSphere

Application

Server

logins

This

task

is

typically

accomplished

by

adding

a

custom

login

module

to

the

various

application

and

system

login

configurations.

You

also

can

add

the

implementation

from

an

application.

However,

in

order

to

deserialize

the

information,

you

will

need

to

plug

in

a

custom

login

module,

which

is

discussed

in

“Propagating

a

custom

Java

serializable

object”

on

page

339.

The

WSSecurityPropagationHelper

class

has

APIs

that

are

used

to

set

a

PropagationToken

on

the

thread

and

to

retrieve

it

from

the

thread

to

make

updates.

The

code

sample

in

“Example:

custom

PropagationToken

login

module”

on

page

298

shows

how

to

determine

if

the

login

is

an

initial

login

or

a

propagation

login.

The

difference

between

these

login

types

is

whether

the

WSTokenHolderCallback

contains

propagation

data.

If

the

callback

does

not

contain

propagation

data,

initialize

a

new

custom

PropagationToken

implementation

and

set

it

on

the

thread.

If

the

callback

contains

propagation

data,

look

for

your

specific

custom

PropagationToken

TokenHolder

instance,

convert

the

byte[]

back

into

your

customer

PropagationToken

object,

and

set

it

back

on

the

thread.

The

code

sample

shows

both

instances.

You

can

add

attributes

any

time

your

custom

PropagationToken

is

added

to

the

thread.

If

you

add

attributes

between

requests

and

the

getUniqueId

method

changes,

then

the

CSIv2

client

session

is

invalidated

so

that

it

can

send

the

new

information

downstream.

Keep

in

mind

that

adding

attributes

between

requests

can

affect

performance.

In

many

cases,

this

is

the

desired

behavior

so

that

downstream

requests

receive

the

new

PropagationToken

information.

To

add

the

custom

PropagationToken

to

the

thread,

call

WSSecurityPropagationHelper.addPropagationToken.

This

call

requires

the

following

Java

2

Security

permission:

WebSphereRuntimePerMission

″setPropagationToken″

3.

Add

your

custom

login

module

to

WebSphere

Application

Server

system

login

configurations

that

already

contain

the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule

for

receiving

serialized

versions

of

your

custom

propagation

token

Also,

you

can

add

this

login

module

to

any

of

the

application

logins

where

you

might

want

to

generate

your

custom

PropagationToken

on

the

thread

during

the

login.

Alternatively,

you

can

generate

the

custom

PropagationToken

implementation

Chapter

2.

Securing

applications

and

their

environments

291

from

within

your

application.

However,

to

deserialize

it,

you

need

to

add

the

implementation

to

the

system

login

modules.

For

information

on

how

to

add

your

custom

login

module

to

the

existing

login

configurations,

see

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67

After

completing

these

steps,

you

have

implemented

a

custom

PropagationToken.

Example:

com.ibm.wsspi.security.token.PropagationToken

implementation

Use

this

file

to

see

an

example

of

a

PropagationToken

implementation.

The

following

sample

code

does

not

extend

an

abstract

class,

but

rather

implements

the

com.ibm.wsspi.security.token.PropagationToken

interface

directly.

You

can

implement

the

interface

directly,

but

it

might

cause

you

to

write

duplicate

code.

However,

you

might

choose

to

implement

the

interface

directly

if

there

are

considerable

differences

between

how

you

handle

the

various

token

implementations.

For

information

on

how

to

implement

a

custom

PropagationToken,

see

“Implementing

a

custom

PropagationToken”

on

page

290.

package

com.ibm.websphere.security.token;

import

com.ibm.websphere.security.WSSecurityException;

import

com.ibm.websphere.security.auth.WSLoginFailedException;

import

com.ibm.wsspi.security.token.*;

import

com.ibm.websphere.security.WebSphereRuntimePermission;

import

java.io.ByteArrayOutputStream;

import

java.io.ByteArrayInputStream;

import

java.io.DataOutputStream;

import

java.io.DataInputStream;

import

java.io.ObjectOutputStream;

import

java.io.ObjectInputStream;

import

java.io.OutputStream;

import

java.io.InputStream;

import

java.util.ArrayList;

public

class

CustomPropagationTokenImpl

implements

com.ibm.wsspi.security.

token.PropagationToken

{

private

java.util.Hashtable

hashtable

=

new

java.util.Hashtable();

private

byte[]

tokenBytes

=

null;

//

2

hours

in

millis,

by

default

private

static

long

expire_period_in_millis

=

2*60*60*1000;

private

long

counter

=

0;

/**

*

The

constructor

that

is

used

to

create

initial

PropagationToken

instance

*/

public

CustomAbstractTokenImpl

()

{

//

set

the

token

version

addAttribute(″version″,

″1″);

//

set

the

token

expiration

addAttribute(″expiration″,

new

Long(System.currentTimeMillis()

+

292

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

expire_period_in_millis).toString());

}

/**

*

The

constructor

that

is

used

to

deserialize

the

token

bytes

received

*

during

a

propagation

login.

*/

public

CustomAbstractTokenImpl

(byte[]

token_bytes)

{

try

{

hashtable

=

(java.util.Hashtable)

com.ibm.wsspi.security.token.

WSOpaqueTokenHelper.deserialize(token_bytes);

}

catch

(Exception

e)

{

e.printStackTrace();

}

}

/**

*

Validates

the

token

including

expiration,

signature,

and

so

on.

*

@return

boolean

*/

public

boolean

isValid

()

{

long

expiration

=

getExpiration();

//

if

you

set

the

expiration

to

0,

it’s

does

not

expire

if

(expiration

!=

0)

{

//

return

if

this

token

is

still

valid

long

current_time

=

System.currentTimeMillis();

boolean

valid

=

((current_time

<

expiration)

?

true

:

false);

System.out.println(″isValid:

returning

″

+

valid);

return

valid;

}

else

{

System.out.println(″isValid:

returning

true

by

default″);

return

true;

}

}

/**

*

Gets

the

expiration

as

a

long

type.

*

@return

long

*/

public

long

getExpiration()

{

//

get

the

expiration

value

from

the

hashtable

String[]

expiration

=

getAttributes(″expiration″);

if

(expiration

!=

null

&&

expiration[0]

!=

null)

Chapter

2.

Securing

applications

and

their

environments

293

{

//

expiration

is

the

first

element

(should

only

be

one)

System.out.println(″getExpiration:

returning

″

+

expiration[0]);

return

new

Long(expiration[0]).longValue();

}

System.out.println(″getExpiration:

returning

0″);

return

0;

}

/**

*

Returns

if

this

token

should

be

forwarded/propagated

downstream.

*

@return

boolean

*/

public

boolean

isForwardable()

{

//

You

can

choose

whether

your

token

gets

propagated.

In

some

cases

//

you

might

want

the

token

to

be

local

only.

return

true;

}

/**

*

Gets

the

principal

that

this

token

belongs

to.

If

this

token

is

an

*

authorization

token,

this

principal

string

must

match

the

authentication

*

token

principal

string

or

the

message

is

rejected.

*

@return

String

*/

public

String

getPrincipal()

{

//

It

is

not

necessary

for

the

PropagtionToken

to

return

a

principal,

//

because

it

is

not

user-centric.

return

″″;

}

/**

*

Returns

the

unique

identifier

of

the

token

based

upon

information

that

*

the

provider

considers

makes

it

a

unique

token.

This

identifier

is

used

*

for

caching

purposes

and

might

be

used

in

combination

with

other

token

*

unique

IDs

that

are

part

of

the

same

Subject.

*

*

This

method

should

return

null

if

you

want

the

accessID

of

the

user

to

*

represent

its

uniqueness.

This

is

the

typical

scenario.

*

*

@return

String

*/

public

String

getUniqueID()

{

//

If

you

want

to

propagate

the

changes

to

this

token,

change

the

//

value

that

this

unique

ID

returns

whenever

the

token

is

changed.

//

Otherwise,

CSIv2

uses

an

existing

session

when

everything

else

is

//

the

same.

This

getUniqueID

ischecked

by

CSIv2

to

determine

the

//

session

lookup.

return

counter;

}

/**

294

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

*

Gets

the

bytes

to

be

sent

across

the

wire.

The

information

in

the

byte[]

*

needs

to

be

enough

to

recreate

the

Token

object

at

the

target

server.

*

@return

byte[]

*/

public

byte[]

getBytes

()

{

if

(hashtable

!=

null)

{

try

{

//

Do

this

if

the

object

is

set

to

read-only

during

login

commit

//

because

this

guarantees

that

no

new

data

is

set.

if

(isReadOnly()

&&

tokenBytes

==

null)

tokenBytes

=

com.ibm.wsspi.security.token.WSOpaqueTokenHelper.

serialize(hashtable);

//

You

can

deserialize

this

in

the

downstream

login

module

using

//

WSOpaqueTokenHelper.deserialize()

return

tokenBytes;

}

catch

(Exception

e)

{

e.printStackTrace();

return

null;

}

}

System.out.println(″getBytes:

returning

null″);

return

null;

}

/**

*

Gets

the

name

of

the

token,

which

is

used

to

identify

the

byte[]

in

the

*

protocol

message.

*

@return

String

*/

public

String

getName()

{

return

this.getClass().getName();

}

/**

*

Gets

the

version

of

the

token

as

an

short

type.

This

code

also

is

used

*

to

identify

the

byte[]

in

the

protocol

message.

*

@return

short

*/

public

short

getVersion()

{

String[]

version

=

getAttributes(″version″);

if

(version

!=

null

&&

version[0]

!=

null)

return

new

Short(version[0]).shortValue();

System.out.println(″getVersion:

returning

default

of

1″);

return

1;

}

Chapter

2.

Securing

applications

and

their

environments

295

/**

*

When

called,

the

token

becomes

irreversibly

read-only.

The

implementation

*

needs

to

ensure

that

any

setter

methods

check

that

this

read-only

flag

has

*

been

set.

*/

public

void

setReadOnly()

{

addAttribute(″readonly″,

″true″);

}

/**

*

Called

internally

to

see

if

the

token

is

readonly

*/

private

boolean

isReadOnly()

{

String[]

readonly

=

getAttributes(″readonly″);

if

(readonly

!=

null

&&

readonly[0]

!=

null)

return

new

Boolean(readonly[0]).booleanValue();

System.out.println(″isReadOnly:

returning

default

of

false″);

return

false;

}

/**

*

Gets

the

attribute

value

based

on

the

named

value.

*

@param

String

key

*

@return

String[]

*/

public

String[]

getAttributes(String

key)

{

ArrayList

array

=

(ArrayList)

hashtable.get(key);

if

(array

!=

null

&&

array.size()

>

0)

{

return

(String[])

array.toArray(new

String[0]);

}

return

null;

}

/**

*

Sets

the

attribute

name

and

value

pair.

Returns

the

previous

values

set

*

for

the

key,

or

returns

null

if

the

value

is

not

previously

set.

*

@param

String

key

*

@param

String

value

*

@returns

String[];

*/

public

String[]

addAttribute(String

key,

String

value)

{

//

Gets

the

current

value

for

the

key

ArrayList

array

=

(ArrayList)

hashtable.get(key);

if

(!isReadOnly())

{

296

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

//

Increments

the

counter

to

change

the

uniqueID

counter++;

//

Copies

the

ArrayList

to

a

String[]

as

it

currently

exists

String[]

old_array

=

null;

if

(array

!=

null

&&

array.size()

>

0)

old_array

=

(String[])

array.toArray(new

String[0]);

//

Allocates

a

new

ArrayList

if

one

was

not

found

if

(array

==

null)

array

=

new

ArrayList();

//

Adds

the

String

to

the

current

array

list

array.add(value);

//

Adds

the

current

ArrayList

to

the

Hashtable

hashtable.put(key,

array);

//

Returns

the

old

array

return

old_array;

}

return

(String[])

array.toArray(new

String[0]);

}

/**

*

Gets

the

list

of

all

of

the

attribute

names

present

in

the

token.

*

@return

java.util.Enumeration

*/

public

java.util.Enumeration

getAttributeNames()

{

return

hashtable.keys();

}

/**

*

Returns

a

deep

clone

of

this

token.

This

is

typically

used

by

the

session

*

logic

of

the

CSIv2

server

to

create

a

copy

of

the

token

as

it

exists

in

the

*

session.

*

@return

Object

*/

public

Object

clone()

{

com.ibm.websphere.security.token.CustomPropagationTokenImpl

deep_clone

=

new

com.ibm.websphere.security.token.CustomPropagationTokenImpl();

java.util.Enumeration

keys

=

getAttributeNames();

while

(keys.hasMoreElements())

{

String

key

=

(String)

keys.nextElement();

String[]

list

=

(String[])

getAttributes(key);

for

(int

i=0;

i<list.length;

i++)

deep_clone.addAttribute(key,

list[i]);

Chapter

2.

Securing

applications

and

their

environments

297

}

return

deep_clone;

}

}

Example:

custom

PropagationToken

login

module

This

file

shows

how

to

determine

if

the

login

is

an

initial

login

or

a

propagation

login

public

customLoginModule()

{

public

void

initialize(Subject

subject,

CallbackHandler

callbackHandler,

Map

sharedState,

Map

options)

{

//

(For

more

information

on

what

to

do

during

initialization,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

}

public

boolean

login()

throws

LoginException

{

//

(For

more

information

on

what

to

do

during

login,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

//

Handles

the

WSTokenHolderCallback

to

see

if

this

is

an

initial

//

or

propagation

login.

Callback

callbacks[]

=

new

Callback[1];

callbacks[0]

=

new

WSTokenHolderCallback(″Authz

Token

List:

″);

try

{

callbackHandler.handle(callbacks);

}

catch

(Exception

e)

{

//

handle

exception

}

//

Receives

the

ArrayList

of

TokenHolder

objects

(the

serialized

tokens)

List

authzTokenList

=

((WSTokenHolderCallback)

callbacks[0]).getTokenHolderList();

if

(authzTokenList

!=

null)

{

//

Iterates

through

the

list

looking

for

your

custom

token

for

(int

i=0;

i<authzTokenList.size();

i++)

{

TokenHolder

tokenHolder

=

(TokenHolder)authzTokenList.get(i);

//

Looks

for

the

name

and

version

of

your

custom

PropagationToken

implementation

if

(tokenHolder.getName().equals(″

com.ibm.websphere.security.token.CustomPropagationTokenImpl″)

&&

tokenHolder.getVersion()

==

1)

{

//

Passes

the

bytes

into

your

custom

PropagationToken

constructor

//

to

deserialize

customPropToken

=

new

298

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

com.ibm.websphere.security.token.CustomPropagationTokenImpl(tokenHolder.

getBytes());

}

}

}

else

//

This

is

not

a

propagation

login.

Create

a

new

instance

of

//

your

PropagationToken

implementation

{

//

Adds

a

new

custom

propagation

token.

This

is

an

initial

login

customPropToken

=

new

com.ibm.websphere.security.token.CustomPropagationTokenImpl();

//

Adds

any

initial

attributes

if

(customPropToken

!=

null)

{

customPropToken.addAttribute(″key1″,

″value1″);

customPropToken.addAttribute(″key1″,

″value2″);

customPropToken.addAttribute(″key2″,

″value1″);

customPropToken.addAttribute(″key3″,

″something

different″);

}

}

//

Note:

You

can

add

the

token

to

the

thread

during

commit

in

case

//

something

happens

during

the

login.

}

public

boolean

commit()

throws

LoginException

{

//

For

more

information

on

what

to

do

during

commit,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67

if

(customPropToken

!=

null)

{

//

Sets

the

propagation

token

on

the

thread

try

{

System.out.println(tc,

″***

ADDED

MY

CUSTOM

PROPAGATION

TOKEN

TO

THE

THREAD

***″);

//

Prints

out

the

values

in

the

deserialized

propagation

token

java.util.Enumeration

keys

=

customPropToken.getAttributeNames();

while

(keys.hasMoreElements())

{

String

key

=

(String)

keys.nextElement();

String[]

list

=

(String[])

customPropToken.getAttributes(key);

for

(int

k=0;

k<list.length;

k++)

System.out.println(″Key/Value:

″

+

key

+

″/″

+

list[k]);

}

//

This

sets

it

on

the

thread

using

getName()

+

getVersion()

as

the

key

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.addPropagationToken(

customPropToken);

}

catch

(Exception

e)

{

//

Handles

exception

}

Chapter

2.

Securing

applications

and

their

environments

299

//

Now

you

can

verify

that

you

have

set

it

properly

by

trying

to

get

//

it

back

from

the

thread

and

print

the

values.

try

{

//

This

gets

the

PropagationToken

from

the

thread

using

getName()

//

and

getVersion()

parameters.

com.ibm.wsspi.security.token.PropagationToken

tempPropagationToken

=

com.ibm.wsspi.security.token.WSSecurityPropagationHelper.getPropagationToken

(″com.ibm.websphere.security.token.CustomPropagationTokenImpl″,

1);

if

(tempPropagationToken

!=

null)

{

System.out.println(tc,

″***

RECEIVED

MY

CUSTOM

PROPAGATION

TOKEN

FROM

THE

THREAD

***″);

//

Prints

out

the

values

in

the

deserialized

propagation

token

java.util.Enumeration

keys

=

tempPropagationToken.getAttributeNames();

while

(keys.hasMoreElements())

{

String

key

=

(String)

keys.nextElement();

String[]

list

=

(String[])

tempPropagationToken.getAttributes(key);

for

(int

k=0;

k<list.length;

k++)

System.out.println(″Key/Value:

″

+

key

+

″/″

+

list[k]);

}

}

}

catch

(Exception

e)

{

//

Handles

exception

}

}

}

//

Defines

your

login

module

variables

com.ibm.wsspi.security.token.PropagationToken

customPropToken

=

null;

}

Default

AuthorizationToken

This

article

explains

how

WebSphere

Application

Server

uses

the

default

AuthorizationToken.

Consider

using

the

default

AuthorizationToken

when

you

are

looking

for

a

place

to

add

string

attributes

that

will

get

propagated

downstream.

However,

make

sure

that

the

attributes

that

you

add

to

the

AuthorizationToken

are

specific

to

the

user

associated

with

the

authenticated

Subject.

If

they

are

not

specific

to

a

user,

the

attributes

probably

belong

in

the

PropagationToken,

which

is

also

propagated

with

the

request.

For

more

information

on

the

PropagationToken,

see

“Default

PropagationToken”

on

page

284.

To

add

attributes

into

the

AuthorizationToken,

you

must

plug

in

a

custom

login

module

into

the

various

system

login

modules

that

are

configured.

Any

login

module

configuration

that

has

the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule

implementation

configured

can

receive

propagated

information

and

can

generate

propagation

information

that

can

be

sent

outbound

to

another

server

If

propagated

attributes

are

not

presented

to

the

login

configuration

during

an

initial

login,

a

default

AuthorizationToken

is

created

in

the

300

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

wsMapDefaultInboundLoginModule

after

the

login

occurs

in

the

ltpaLoginModule.

A

reference

to

the

default

AuthorizationToken

can

be

obtained

from

the

login()

method

using

the

sharedState

hashmap.

You

must

plug

in

the

custom

login

module

after

the

wsMapDefaultInboundLoginModule

implementation

for

WebSphere

Application

Server

to

see

the

default

AuthorizationToken..

For

more

information

on

the

Java

Authentication

and

Authorization

Service

(JAAS)

programming

model,

see

“Security:

Resources

for

learning”

on

page

495.

Important:

Whenever

you

plug

in

a

custom

login

module

into

the

WebSphere

Application

Server

login

infrastructure,

you

must

ensure

that

the

code

is

trusted.

When

you

add

the

login

module

into

the

install_dir/classes

directory,

it

has

Java

2

Security

AllPermissions.

It

is

recommended

that

you

add

your

login

module

and

other

infrastructure

classes

into

a

private

directory.

However,

if

you

use

a

private

directory,

modify

the

$(WAS_INSTALL_ROOT)/properties/server.policy

file

so

that

the

private

directory,

Java

archive

(JAR)

file,

or

both

have

the

permissions

needed

to

execute

the

application

programming

interfaces

(API)

called

from

the

login

module.

Because

the

login

module

might

run

after

the

application

code

on

the

call

stack,

you

might

consider

adding

a

doPrivileged

code

block

so

that

you

do

not

need

to

add

additional

permissions

to

your

applications.

The

following

sample

code

shows

you

how

to

obtain

a

reference

to

the

default

AuthorizationToken

from

the

login()

method,

how

to

add

attributes

to

the

token,

and

how

to

read

from

the

existing

attributes

that

are

used

for

authorization.

public

customLoginModule()

{

public

void

initialize(Subject

subject,

CallbackHandler

callbackHandler,

Map

sharedState,

Map

options)

{

//

(For

more

information

on

initialization,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

//

Get

a

reference

to

the

sharedState

map

that

is

passed

in

during

initialization.

_sharedState

=

sharedState;

}

public

boolean

login()

throws

LoginException

{

//

(For

more

information

on

what

to

during

login,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

//

Look

for

the

default

AuthorizationToken

in

the

shared

state

defaultAuthzToken

=

(com.ibm.wsspi.security.token.AuthorizationToken)

sharedState.get

(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHZTOKEN_KEY);

//

Might

not

always

have

one

of

these

generated.

It

depends

on

the

login

//

configuration

setup.

if

(defaultAuthzToken

!=

null)

{

try

{

Chapter

2.

Securing

applications

and

their

environments

301

//

Add

a

custom

attribute

defaultAuthzToken.addAttribute(″key1″,

″value1″);

//

Determine

all

of

the

attributes

and

values

that

exist

in

the

token.

java.util.Enumeration

listOfAttributes

=

defaultAuthorizationToken.

getAttributeNames();

while

(listOfAttributes.hasMoreElements())

{

String

key

=

(String)

listOfAttributes.nextElement();

String[]

values

=

(String[])

defaultAuthorizationToken.getAttributes

(key);

for

(int

i=0;

i<values.length;

i++)

{

System.out.println

(″Key:

″

+

key

+

″,

Value[″

+

i

+

″]:

″

+

values[i]);

}

}

//

Read

the

existing

uniqueID

attribute.

String[]

uniqueID

=

defaultAuthzToken.getAttributes

(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_UNIQUEID);

//

Getthe

uniqueID

from

the

String[]

String

unique_id

=

(uniqueID

!=

null

&&

uniqueID[0]

!=

null)

?

uniqueID[0]

:

″″;

//

Read

the

existing

expiration

attribute.

String[]

expiration

=

defaultAuthzToken.getAttributes

(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_EXPIRATION);

//

An

example

of

getting

a

long

expiration

value

from

the

string

array.

long

expire_time

=

0;

if

(expiration

!=

null

&&

expiration[0]

!=

null)

expire_time

=

Long.parseLong(expiration[0]);

//

Read

the

existing

display

name

attribute.

String[]

securityName

=

defaultAuthzToken.getAttributes

(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_SECURITYNAME);

//

Get

the

display

name

from

the

String[]

String

display_name

=

(securityName

!=

null

&&

securityName[0]

!=

null)

?

securityName[0]

:

″″;

//

Read

the

existing

long

securityName

attribute.

String[]

longSecurityName

=

defaultAuthzToken.getAttributes

(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_LONGSECURITYNAME);

//

Get

the

long

security

name

from

the

String[]

String

long_security_name

=

(longSecurityName

!=

null

&&

302

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

longSecurityName[0]

!=

null)

?

longSecurityName[0]

:

″″;

//

Read

the

existing

group

attribute.

String[]

groupList

=

defaultAuthzToken.getAttributes

(com.ibm.wsspi.security.token.AttributeNameConstants.

WSCREDENTIAL_GROUPS);

//

Get

the

groups

from

the

String[]

ArrayList

groups

=

new

ArrayList();

if

(groupList

!=

null)

{

for

(int

i=0;

i<groupList.length;

i++)

{

System.out.println

(″group[″

+

i

+

″]

=

″

+

groupList[i]);

groups.add(groupList[i]);

}

}

}

catch

(Exception

e)

{

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

}

}

public

boolean

commit()

throws

LoginException

{

//

(For

more

information

on

what

to

do

during

commit,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

}

private

java.util.Map

_sharedState

=

null;

private

com.ibm.wsspi.security.token.AuthorizationToken

defaultAuthzToken

=

null;

}

Changing

the

TokenFactory

associated

with

the

default

AuthorizationToken

When

WebSphere

Application

Server

generates

a

default

AuthorizationToken,

the

application

server

utilizes

the

TokenFactory

class

that

is

specified

using

the

com.ibm.wsspi.security.token.authorizationTokenFactory

property.

To

modify

this

property

using

the

administrative

console,

complete

the

following

steps:

1.

Click

Security

>

Global

Security.

2.

Under

Additional

properties,

click

Custom

properties.

The

default

TokenFactory

that

used

is

called

com.ibm.ws.security.ltpa.AuthzPropTokenFactory.

This

token

factory

encodes

the

data,

but

does

not

encrypt

the

data

in

the

AuthorizationToken.

Because

the

AuthorizationToken

typically

flows

over

Common

Secure

Interoperability

version

2

(CSIv2)

using

Secure

Sockets

Layer

(SSL),

there

is

no

need

to

encrypt

the

token

itself.

However,

if

you

need

addition

security

for

the

AuthorizationToken,

you

can

associate

a

different

TokenFactory

implementation

with

this

property

to

get

encryption.

For

example,

if

you

associate

Chapter

2.

Securing

applications

and

their

environments

303

com.ibm.ws.security.ltpa.LTPAToken2Factory

with

this

property,

the

token

uses

AES

encryption.

However,

you

need

to

weigh

the

performance

impacts

against

your

security

needs.

Adding

sensitive

information

to

the

AuthorizationToken

is

one

reason

to

change

the

TokenFactory

implementation

to

something

that

encrypts

rather

than

just

encodes.

If

you

want

to

perform

your

own

signing

and

encryption

of

the

default

AuthorizationToken

you

must

implement

the

following

classes:

v

com.ibm.wsspi.security.ltpa.Token

v

com.ibm.wsspi.security.ltpa.TokenFactory

Your

TokenFactory

implementation

instantiates

and

validates

your

token

implementation.

You

can

use

the

Lightweight

Third

Party

Authentication

(LTPA)

keys

that

are

passed

into

the

initialize

method

of

the

TokenFactory

or

you

can

use

your

own

keys.

If

you

use

your

own

keys,

they

must

be

the

same

everywhere

in

order

to

validate

the

tokens

that

are

generated

using

those

keys.

See

the

Javadoc,

available

through

a

link

on

the

front

page

of

the

information

center,

for

more

information

on

implementing

your

own

custom

TokenFactory.

To

associate

your

TokenFactory

with

the

default

AuthorizationToken,

using

the

administrative

console,

complete

the

following

steps:

1.

Click

Security

>

Global

Security.

2.

Under

Additional

properties,

click

Custom

properties.

3.

Locate

the

com.ibm.wsspi.security.token.authorizationTokenFactory

property

and

verify

that

the

value

of

this

property

matches

your

custom

TokenFactory

implementation.

4.

Verify

that

your

implementation

classes

are

put

into

the

install

directory/classes

directory

so

that

the

WebSphere

class

loader

can

load

the

classes.

Implementing

a

custom

AuthorizationToken

This

task

explains

how

you

might

create

your

own

AuthorizationToken

implementation,

which

is

set

in

the

login

Subject

and

propagated

downstream.

The

default

AuthorizationToken

usually

is

sufficient

for

propagating

attributes

that

are

user-specific.

Consider

writing

your

own

implementation

if

you

want

to

accomplish

one

of

the

following

tasks:

v

Isolate

your

attributes

within

your

own

implementation.

v

Serialize

the

information

using

custom

serialization.

You

must

deserialize

the

bytes

at

the

target

and

add

that

information

back

on

the

thread.

This

task

also

might

include

encryption

and

decryption.

v

Affect

the

overall

uniqueness

of

the

Subject

using

the

getUniqueID()

API.

To

implement

a

custom

authorization

token,

you

must

complete

the

following

steps:

1.

Write

a

custom

implementation

of

the

AuthorizationToken

interface.

There

are

many

different

methods

for

implementing

the

AuthorizationToken

interface.

However,

make

sure

that

the

methods

required

by

the

AuthorizationToken

interface

and

the

token

interface

are

fully

implemented.

After

you

implement

this

interface,

you

can

place

it

in

the

install_dir/classes

directory.

Alternatively,

you

can

place

the

class

in

any

private

directory

.

However,

make

sure

that

the

WebSphere

Application

Server

class

loader

can

locate

the

class

and

that

it

is

granted

the

appropriate

permissions.

You

can

add

the

Java

archive

304

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

(JAR)

file

or

directory

that

contains

this

class

into

the

server.policy

file

so

that

it

has

the

necessary

permissions

that

are

needed

by

the

server

code.

Tip:

All

of

the

token

types

defined

by

the

propagation

framework

have

similar

interfaces.

Basically,

the

token

types

are

marker

interfaces

that

implement

the

com.ibm.wsspi.security.token.Token

interface.

This

interface

defines

most

of

the

methods.

If

you

plan

to

implement

more

than

one

token

type,

consider

creating

an

abstract

class

that

implements

the

com.ibm.wsspi.security.token.Token

interface.

All

of

your

token

implementations,

including

the

AuthorizationToken,

might

extend

the

abstract

class

and

then

most

of

the

work

is

completed.

To

see

an

implementation

of

AuthorizationToken,

see

“Example:

com.ibm.wsspi.security.token.AuthorizationToken

implementation”

on

page

306

2.

Add

and

receive

the

custom

AuthorizationToken

during

WebSphere

Application

Server

logins

This

task

is

typically

accomplished

by

adding

a

custom

login

module

to

the

various

application

and

system

login

configurations.

However,

in

order

to

deserialize

the

information,

you

must

plug

in

a

custom

login

module,

which

is

discussed

in

“Propagating

a

custom

Java

serializable

object”

on

page

339.

After

the

object

is

instantiated

in

the

login

module,

you

can

the

object

to

the

Subject

during

the

commit()

method.

If

you

only

want

to

add

information

to

the

Subject

to

get

propagated,

see

“Propagating

a

custom

Java

serializable

object”

on

page

339.

If

you

want

to

ensure

that

the

information

is

propagated,

want

to

do

you

own

custom

serialization,

or

want

to

specify

the

uniqueness

for

Subject

caching

purposes,

then

consider

writing

your

own

AuthorizationToken

implementation.

The

code

sample

in

“Example:

custom

AuthorizationToken

login

module”

on

page

312

shows

how

to

determine

if

the

login

is

an

initial

login

or

a

propagation

login.

The

difference

between

these

login

types

is

whether

the

WSTokenHolderCallback

contains

propagation

data.

If

the

callback

does

not

contain

propagation

data,

initialize

a

new

custom

AuthorizationToken

implementation

and

set

it

into

the

Subject.

If

the

callback

contains

propagation

data,

look

for

your

specific

custom

AuthorizationToken

TokenHolder

instance,

convert

the

byte[]

back

into

your

custom

AuthorizationToken

object,

and

set

it

back

into

the

Subject.

The

code

sample

shows

both

instances.

You

can

make

your

AuthorizationToken

read-only

in

the

commit

phase

of

the

login

module.

If

you

do

not

make

the

token

read-only,

then

attributes

can

be

added

within

your

applications.

3.

Add

your

custom

login

module

to

WebSphere

Application

Server

system

login

configurations

that

already

contain

the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule

for

receiving

serialized

versions

of

your

custom

authorization

token

Because

this

login

module

relies

on

information

in

the

sharedState

added

by

the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule,

add

this

login

module

after

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule.

For

information

on

how

to

add

your

custom

login

module

to

the

existing

login

configurations,

see

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67

After

completing

these

steps,

you

have

implemented

a

custom

AuthorizationToken.

Chapter

2.

Securing

applications

and

their

environments

305

Example:

com.ibm.wsspi.security.token.AuthorizationToken

implementation

Use

this

file

to

see

an

example

of

a

AuthorizationToken

implementation.

The

following

sample

code

does

not

extend

an

abstract

class,

but

rather

implements

the

com.ibm.wsspi.security.token.AuthorizationToken

interface

directly.

You

can

implement

the

interface

directly,

but

it

might

cause

you

to

write

duplicate

code.

However,

you

might

choose

to

implement

the

interface

directly

if

there

are

considerable

differences

between

how

you

handle

the

various

token

implementations.

For

information

on

how

to

implement

a

custom

AuthorizationToken,

see

“Implementing

a

custom

AuthorizationToken”

on

page

304.

package

com.ibm.websphere.security.token;

import

com.ibm.websphere.security.WSSecurityException;

import

com.ibm.websphere.security.auth.WSLoginFailedException;

import

com.ibm.wsspi.security.token.*;

import

com.ibm.websphere.security.WebSphereRuntimePermission;

import

java.io.ByteArrayOutputStream;

import

java.io.ByteArrayInputStream;

import

java.io.DataOutputStream;

import

java.io.DataInputStream;

import

java.io.ObjectOutputStream;

import

java.io.ObjectInputStream;

import

java.io.OutputStream;

import

java.io.InputStream;

import

java.util.ArrayList;

public

class

CustomAuthorizationTokenImpl

implements

com.ibm.wsspi.security.

token.AuthorizationToken

{

private

java.util.Hashtable

hashtable

=

new

java.util.Hashtable();

private

byte[]

tokenBytes

=

null;

private

static

long

expire_period_in_millis

=

2*60*60*1000;

//

2

hours

in

millis,

by

default

/**

*

Constructor

used

to

create

initial

AuthorizationToken

instance

*/

public

CustomAuthorizationTokenImpl

(String

principal)

{

//

Sets

the

principal

in

the

token

addAttribute(″principal″,

principal);

//

Sets

the

token

version

addAttribute(″version″,

″1″);

//

Sets

the

token

expiration

addAttribute(″expiration″,

new

Long(System.currentTimeMillis()

+

expire_period_in_millis).toString());

}

/**

*

Constructor

used

to

deserialize

the

token

bytes

received

during

a

*

propagation

login.

*/

306

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

public

CustomAuthorizationTokenImpl

(byte[]

token_bytes)

{

try

{

hashtable

=

(java.util.Hashtable)

com.ibm.wsspi.security.token.

WSOpaqueTokenHelper.deserialize(token_bytes);

}

catch

(Exception

e)

{

e.printStackTrace();

}

}

/**

*

Validates

the

token

including

expiration,

signature,

and

so

on.

*

@return

boolean

*/

public

boolean

isValid

()

{

long

expiration

=

getExpiration();

//

if

you

set

the

expiration

to

0,

it

does

not

expire

if

(expiration

!=

0)

{

//

return

if

this

token

is

still

valid

long

current_time

=

System.currentTimeMillis();

boolean

valid

=

((current_time

<

expiration)

?

true

:

false);

System.out.println(″isValid:

returning

″

+

valid);

return

valid;

}

else

{

System.out.println(″isValid:

returning

true

by

default″);

return

true;

}

}

/**

*

Gets

the

expiration

as

a

long.

*

@return

long

*/

public

long

getExpiration()

{

//

Gets

the

expiration

value

from

the

hashtable

String[]

expiration

=

getAttributes(″expiration″);

if

(expiration

!=

null

&&

expiration[0]

!=

null)

{

//

The

expiration

is

the

first

element.

There

should

be

only

one

expiration.

System.out.println(″getExpiration:

returning

″

+

expiration[0]);

return

new

Long(expiration[0]).longValue();

}

System.out.println(″getExpiration:

returning

0″);

Chapter

2.

Securing

applications

and

their

environments

307

return

0;

}

/**

*

Returns

if

this

token

should

be

forwarded/propagated

downstream.

*

@return

boolean

*/

public

boolean

isForwardable()

{

//

You

can

choose

whether

your

token

gets

propagated.

In

some

cases,

//

you

might

want

it

to

be

local

only.

return

true;

}

/**

*

Gets

the

principal

that

this

Token

belongs

to.

If

this

is

an

authorization

token,

*

this

principal

string

must

match

the

authentication

token

principal

string

or

the

*

message

will

be

rejected.

*

@return

String

*/

public

String

getPrincipal()

{

//

this

might

be

any

combination

of

attributes

String[]

principal

=

getAttributes(″principal″);

if

(principal

!=

null

&&

principal[0]

!=

null)

{

return

principal[0];

}

System.out.println(″getExpiration:

returning

null″);

return

null;

}

/**

*

Returns

a

unique

identifier

of

the

token

based

upon

the

information

that

provider

*

considers

makes

this

a

unique

token.

This

will

be

used

for

caching

purposes

*

and

might

be

used

in

combination

with

other

token

unique

IDs

that

are

part

of

*

the

same

Subject.

*

*

This

method

should

return

null

if

you

want

the

accessID

of

the

user

to

represent

*

uniqueness.

This

is

the

typical

scenario.

*

*

@return

String

*/

public

String

getUniqueID()

{

//

if

you

don’t

want

to

affect

the

cache

lookup,

just

return

NULL

here.

//

return

null;

String

cacheKeyForThisToken

=

″dynamic

attributes″;

//

if

you

do

want

to

affect

the

cache

lookup,

return

a

string

of

//

attributes

that

you

want

factored

into

the

lookup.

return

cacheKeyForThisToken;

}

308

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

/**

*

Gets

the

bytes

to

be

sent

across

the

wire.

The

information

in

the

byte[]

*

needs

to

be

enough

to

recreate

the

Token

object

at

the

target

server.

*

@return

byte[]

*/

public

byte[]

getBytes

()

{

if

(hashtable

!=

null)

{

try

{

//

Do

this

if

the

object

is

set

to

read-only

during

login

commit,

//

because

this

makes

sure

that

no

new

data

gets

set.

if

(isReadOnly()

&&

tokenBytes

==

null)

tokenBytes

=

com.ibm.wsspi.security.token.WSOpaqueTokenHelper.

serialize(hashtable);

//

You

can

deserialize

this

in

the

downstream

login

module

using

//

WSOpaqueTokenHelper.deserialize()

return

tokenBytes;

}

catch

(Exception

e)

{

e.printStackTrace();

return

null;

}

}

System.out.println(″getBytes:

returning

null″);

return

null;

}

/**

*

Gets

the

name

of

the

token

used

to

identify

the

byte[]

in

the

protocol

message.

*

@return

String

*/

public

String

getName()

{

return

this.getClass().getName();

}

/**

*

Gets

the

version

of

the

token

as

an

short.

This

also

is

used

to

identify

the

*

byte[]

in

the

protocol

message.

*

@return

short

*/

public

short

getVersion()

{

String[]

version

=

getAttributes(″version″);

if

(version

!=

null

&&

version[0]

!=

null)

return

new

Short(version[0]).shortValue();

System.out.println(″getVersion:

returning

default

of

1″);

return

1;

Chapter

2.

Securing

applications

and

their

environments

309

}

/**

*

When

called,

the

token

becomes

irreversibly

read-only.

The

implementation

*

needs

to

ensure

that

any

setter

methods

check

that

this

flag

has

been

set.

*/

public

void

setReadOnly()

{

addAttribute(″readonly″,

″true″);

}

/**

*

Called

internally

to

see

if

the

token

is

read-only

*/

private

boolean

isReadOnly()

{

String[]

readonly

=

getAttributes(″readonly″);

if

(readonly

!=

null

&&

readonly[0]

!=

null)

return

new

Boolean(readonly[0]).booleanValue();

System.out.println(″isReadOnly:

returning

default

of

false″);

return

false;

}

/**

*

Gets

the

attribute

value

based

on

the

named

value.

*

@param

String

key

*

@return

String[]

*/

public

String[]

getAttributes(String

key)

{

ArrayList

array

=

(ArrayList)

hashtable.get(key);

if

(array

!=

null

&&

array.size()

>

0)

{

return

(String[])

array.toArray(new

String[0]);

}

return

null;

}

/**

*

Sets

the

attribute

name

and

value

pair.

Returns

the

previous

values

set

for

key,

*

or

null

if

not

previously

set.

*

@param

String

key

*

@param

String

value

*

@returns

String[];

*/

public

String[]

addAttribute(String

key,

String

value)

{

//

Gets

the

current

value

for

the

key

ArrayList

array

=

(ArrayList)

hashtable.get(key);

if

(!isReadOnly())

{

310

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

//

Copies

the

ArrayList

to

a

String[]

as

it

currently

exists

String[]

old_array

=

null;

if

(array

!=

null

&&

array.size()

>

0)

old_array

=

(String[])

array.toArray(new

String[0]);

//

Allocates

a

new

ArrayList

if

one

was

not

found

if

(array

==

null)

array

=

new

ArrayList();

//

Adds

the

String

to

the

current

array

list

array.add(value);

//

Adds

the

current

ArrayList

to

the

Hashtable

hashtable.put(key,

array);

//

Returns

the

old

array

return

old_array;

}

return

(String[])

array.toArray(new

String[0]);

}

/**

*

Gets

the

list

of

all

attribute

names

present

in

the

token.

*

@return

java.util.Enumeration

*/

public

java.util.Enumeration

getAttributeNames()

{

return

hashtable.keys();

}

/**

*

Returns

a

deep

copying

of

this

token,

if

necessary.

*

@return

Object

*/

public

Object

clone()

{

com.ibm.websphere.security.token.CustomAuthorizationTokenImpl

deep_clone

=

new

com.ibm.websphere.security.token.CustomAuthorizationTokenImpl();

java.util.Enumeration

keys

=

getAttributeNames();

while

(keys.hasMoreElements())

{

String

key

=

(String)

keys.nextElement();

String[]

list

=

(String[])

getAttributes(key);

for

(int

i=0;

i<list.length;

i++)

deep_clone.addAttribute(key,

list[i]);

}

return

deep_clone;

}

}

Chapter

2.

Securing

applications

and

their

environments

311

Example:

custom

AuthorizationToken

login

module

This

file

shows

how

to

determine

if

the

login

is

an

initial

login

or

a

propagation

login

public

customLoginModule()

{

public

void

initialize(Subject

subject,

CallbackHandler

callbackHandler,

Map

sharedState,

Map

options)

{

//

(For

more

information

on

what

to

do

during

initialization,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

_sharedState

=

sharedState;

}

public

boolean

login()

throws

LoginException

{

//

(For

more

information

on

what

do

during

login,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

//

Handles

the

WSTokenHolderCallback

to

see

if

this

is

an

initial

or

//

propagation

login.

Callback

callbacks[]

=

new

Callback[1];

callbacks[0]

=

new

WSTokenHolderCallback(″Authz

Token

List:

″);

try

{

callbackHandler.handle(callbacks);

}

catch

(Exception

e)

{

//

Handles

exception

}

//

Receives

the

ArrayList

of

TokenHolder

objects

(the

serialized

tokens)

List

authzTokenList

=

((WSTokenHolderCallback)

callbacks[0]).getTokenHolderList();

if

(authzTokenList

!=

null)

{

//

Iterates

through

the

list

looking

for

your

custom

token

for

(int

i=0;

i

for

(int

i=0;

i<authzTokenList.size();

i++)

{

TokenHolder

tokenHolder

=

(TokenHolder)authzTokenList.get(i);

//

Looks

for

the

name

and

version

of

your

custom

AuthorizationToken

//

implementation

if

(tokenHolder.getName().equals(″com.ibm.websphere.security.token.

CustomAuthorizationTokenImpl″)

&&

tokenHolder.getVersion()

==

1)

{

//

Passes

the

bytes

into

your

custom

AuthorizationToken

constructor

//

to

deserialize

customAuthzToken

=

new

com.ibm.websphere.security.token.CustomAuthorizationTokenImpl(

tokenHolder.getBytes());

312

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

}

}

}

else

//

This

is

not

a

propagation

login.

Create

a

new

instance

of

your

//

AuthorizationToken

implementation

{

//

Gets

the

prinicpal

from

the

default

AuthenticationToken.

This

must

match

//

all

tokens.

defaultAuthToken

=

(com.ibm.wsspi.security.token.AuthenticationToken)

sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHTOKEN_KEY);

String

principal

=

defaultAuthToken.getPrincipal();

//

Adds

a

new

custom

authorization

token.

This

is

an

initial

login.

Pass

the

//

principal

into

the

constructor

customAuthzToken

=

new

com.ibm.websphere.security.token.

CustomAuthorizationTokenImpl(principal);

//

Adds

any

initial

attributes

if

(customAuthzToken

!=

null)

{

customAuthzToken.addAttribute(″key1″,

″value1″);

customAuthzToken.addAttribute(″key1″,

″value2″);

customAuthzToken.addAttribute(″key2″,

″value1″);

customAuthzToken.addAttribute(″key3″,

″something

different″);

}

}

//

Note:

You

can

add

the

token

to

the

Subject

during

commit

in

case

something

//

happens

during

the

login.

}

public

boolean

commit()

throws

LoginException

{

//

(For

more

information

on

what

to

do

during

a

commit,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

if

(customAut

//

(hzToken

!=

null)

{

//

sSets

the

customAuthzToken

token

into

the

Subject

try

{

public

final

AuthorizationToken

customAuthzTokenPriv

=

customAuthzToken;

//

Do

this

in

a

doPrivileged

code

block

so

that

application

code

does

not

//

need

to

add

additional

permissions

java.security.AccessController.doPrivileged(new

java.security.PrivilegedAction()

{

public

Object

run()

{

try

{

//

Adds

the

custom

authorization

token

if

it

is

not

null

//

and

not

already

in

the

Subject

if

((customAuthzTokenPriv

!=

null)

&&

(!subject.getPrivateCredentials().contains(customAuthzTokenPriv)))

{

Chapter

2.

Securing

applications

and

their

environments

313

subject.getPrivateCredentials().add(customAuthzTokenPriv);

}

}

catch

(Exception

e)

{

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

return

null;

}

});

}

catch

(Exception

e)

{

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

}

}

//

Defines

your

login

module

variables

com.ibm.wsspi.security.token.AuthorizationToken

customAuthzToken

=

null;

com.ibm.wsspi.security.token.AuthenticationToken

defaultAuthToken

=

null;

java.util.Map

_sharedState

=

null;

}

Default

SingleSignonToken

Do

not

use

the

default

SingleSignonToken

in

service

provider

code.

This

default

token

is

used

by

the

WebSphere

Application

Server

run-time

code

only.

There

are

size

limitations

for

this

token

when

it

is

added

as

an

HTTP

cookie.

If

you

need

to

create

an

HTTP

cookie

using

this

token

framework,

you

can

implement

a

custom

SingleSignonToken.

To

implement

a

custom

SingleSignonToken,

see

“Implementing

a

custom

SingleSignonToken”

on

page

315

for

more

information.

Changing

the

TokenFactory

associated

with

the

default

SingleSignonToken

When

default

SingleSignonToken

is

generated,

the

application

server

utilizes

the

TokenFactory

class

that

is

specified

using

the

com.ibm.wsspi.security.token.singleSignonTokenFactory

property.

To

modify

this

property

using

the

administrative

console,

complete

the

following

steps:

1.

Click

Security

>

Global

Security.

2.

Under

Additional

properties,

click

Custom

properties.

The

default

TokenFactory

specified

for

this

property

is

called

com.ibm.ws.security.ltpa.LTPAToken2Factory.

This

token

factory

creates

an

SSO

token

called

LtpaToken2,

which

WebSphere

Application

Server

uses

for

propagation.

This

TokenFactory

uses

the

AES/CBC/PKCS5Padding

cipher.

If

you

change

this

TokenFactory,

you

lose

the

interoperability

with

any

servers

running

a

version

of

WebSphere

Application

Server

prior

to

version

5.1.1

that

use

the

default

TokenFactory.

Only

servers

running

WebSphere

Application

Server

Version

5.1.1

with

propagation

enabled

are

aware

of

the

LtpaToken2

cookie.

However,

this

is

not

a

problem

if

all

of

your

application

servers

use

WebSphere

Application

Server

Version

5.1.1

and

all

of

your

servers

use

your

new

TokenFactory.

314

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

If

you

need

to

perform

your

own

signing

and

encryption

of

the

default

SingleSignonToken,

you

must

implement

the

following

classes:

v

com.ibm.wsspi.security.ltpa.Token

v

com.ibm.wsspi.security.ltpa.TokenFactory

Your

TokenFactory

implementation

instantiates

(createToken)

and

validates

(validateTokenBytes)

your

token

implementation.

You

can

use

the

LTPA

keys

passed

into

the

initialize

method

of

the

TokenFactory

or

you

can

use

your

own

keys.

If

you

use

your

own

keys,

they

must

be

the

same

everywhere

in

order

to

validate

the

tokens

that

are

generated

using

those

keys.

See

the

Javadoc,

available

through

a

link

on

the

front

page

of

the

information

center,

for

more

information

on

implementing

your

own

custom

TokenFactory.

To

associate

your

TokenFactory

with

the

default

SingleSignonToken

using

the

administrative

console,

complete

the

following

steps:

1.

Click

Security

>

Global

Security.

2.

Under

Additional

properties,

click

Custom

properties.

3.

Locate

the

com.ibm.wsspi.security.token.singleSignonTokenFactory

property

and

verify

that

the

value

of

this

property

matches

your

custom

TokenFactory

implementation.

4.

Verify

that

your

implementation

classes

are

put

into

the

install

directory/classes

directory

so

that

the

WebSphere

class

loader

can

load

the

classes.

Implementing

a

custom

SingleSignonToken

This

task

explains

how

to

create

your

own

SingleSignonToken

implementation,

which

is

set

in

the

login

Subject

and

added

to

the

HTTP

response

as

an

HTTP

cookie.

The

cookie

name

is

the

concatenation

of

the

SingleSignonToken.getName()

application

programming

interface

(API)

and

the

SingleSignonToken.getVersion()

API.

There

is

no

delimiter.

When

you

add

a

SingleSignonToken

to

the

Subject,

it

also

gets

propagated

horizontally

and

downstream

in

case

the

Subject

is

used

for

other

Web

requests.

You

must

deserialize

your

custom

SingleSignonToken

when

you

receive

it

from

a

propagation

login.

Consider

writing

your

own

implementation

if

you

want

to

accomplish

one

of

the

following:

v

Isolate

your

attributes

within

your

own

implementation.

v

Serialize

the

information

using

custom

serialization.

It

is

recommended

that

you

encrypt

the

information

because

it

is

out

to

the

HTTP

response

and

is

available

on

the

Internet.

You

must

deserialize

or

decrypt

the

bytes

at

the

target

and

add

that

information

back

into

the

Subject.

v

Affect

the

overall

uniqueness

of

the

Subject

using

the

getUniqueID()

API

To

implement

a

custom

SingleSignonToken,

you

must

complete

the

following

steps:

1.

Write

a

custom

implementation

of

the

SingleSignonToken

interface.

There

are

many

different

methods

for

implementing

the

SingleSignonToken

interface.

However,

make

sure

that

the

methods

required

by

the

SingleSignonToken

interface

and

the

token

interface

are

fully

implemented.

After

you

implement

this

interface,

you

can

place

it

in

the

install_dir/classes

directory.

Alternatively,

you

can

place

the

class

in

any

private

directory

.

However,

make

sure

that

the

WebSphere

Application

Server

class

loader

can

locate

the

class

and

that

it

is

granted

the

appropriate

permissions.

You

can

add

Chapter

2.

Securing

applications

and

their

environments

315

the

Java

archive

(JAR)

file

or

directory

that

contains

this

class

into

the

server.policy

file

so

that

it

has

the

necessary

permissions

that

are

needed

by

the

server

code.

Tip:

All

of

the

token

types

defined

by

the

propagation

framework

have

similar

interfaces.

Basically,

the

token

types

are

marker

interfaces

that

implement

the

com.ibm.wsspi.security.token.Token

interface.

This

interface

defines

most

of

the

methods.

If

you

plan

to

implement

more

than

one

token

type,

consider

creating

an

abstract

class

that

implements

the

com.ibm.wsspi.security.token.Token

interface.

All

of

your

token

implementations,

including

the

SingleSignonToken,

might

extend

the

abstract

class

and

then

most

of

the

work

is

completed.

To

see

an

implementation

of

the

SingleSignonToken,

see

“Example:

com.ibm.wsspi.security.token.SingleSignonToken

implementation”

on

page

317

2.

Add

and

receive

the

custom

SingleSignonToken

during

WebSphere

Application

Server

logins.

This

task

is

typically

accomplished

by

adding

a

custom

login

module

to

the

various

application

and

system

login

configurations.

However,

in

order

to

deserialize

the

information,

you

will

need

to

plug

in

a

custom

login

module,

which

is

discussed

in

a

subsequent

step.

After

the

object

is

instantiated

in

the

login

module,

you

can

add

it

to

the

Subject

during

the

commit()

method.

The

code

sample

in

“Example:

custom

SingleSignonToken

login

module”

on

page

323

shows

how

to

determine

if

the

login

is

an

initial

login

or

a

propagation

login.

The

difference

is

whether

the

WSTokenHolderCallback

contains

propagation

data.

If

the

token

does

not

contain

propagation

data,

initialize

a

new

custom

SingleSignonToken

implementation

and

set

it

into

the

Subject.

Also,

look

for

the

HTTP

cookie

from

the

HTTP

request

if

the

HTTP

request

object

is

available

in

the

callback.

You

can

get

your

custom

SingleSignonToken

both

from

a

horizontal

propagation

login

and

from

the

HTTP

request.

However,

it

is

recommended

that

you

make

the

token

available

in

both

places

because

then

the

information

arrives

at

any

front-end

application

server

even

if

that

server

that

does

not

support

propagation.

You

can

make

your

SingleSignonToken

read-only

in

the

commit

phase

of

the

login

module.

If

you

make

the

token

read-only,

additional

attributes

cannot

be

added

within

your

applications.

Restriction:

v

HTTP

cookies

have

a

size

limitation

so

do

not

add

too

much

data

to

this

token.

v

The

WebSphere

Application

Server

run

time

does

not

handle

cookies

that

it

does

not

generate,

so

this

cookie

is

not

used

by

the

run

time.

v

The

SingleSignonToken

object,

when

in

the

Subject,

does

affect

the

cache

lookup

of

the

Subject

if

you

return

something

in

the

getUniqueID()

method.
3.

Get

the

HTTP

cookie

from

the

HTTP

request

object

during

login

or

from

an

application.

The

sample

code,

found

in

“Example:

HTTP

cookie

retrieval”

on

page

325

shows

how

you

can

retrieve

the

HTTP

cookie

from

the

HTTP

request,

decode

the

cookieso

that

it

is

back

to

your

original

bytes,

and

create

your

custom

SingleSignonToken

object

from

the

bytes.

4.

Add

your

custom

login

module

to

WebSphere

Application

Server

system

login

configurations

that

already

contain

the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule

for

receiving

serialized

versions

of

your

custom

propagation

token

Because

this

login

module

relies

on

information

in

the

sharedState

added

by

the

316

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule,

add

this

login

module

after

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule.

For

information

on

adding

your

custom

login

module

into

the

existing

login

configurations,

see

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67

After

completing

these

steps,

you

have

implemented

a

custom

AuthorizationToken.

Example:

com.ibm.wsspi.security.token.SingleSignonToken

implementation

Use

this

file

to

see

an

example

of

a

SingleSignon

implementation.

The

following

sample

code

does

not

extend

an

abstract

class,

but

rather

implements

the

com.ibm.wsspi.security.token.SingleSignonToken

interface

directly.

You

can

implement

the

interface

directly,

but

it

might

cause

you

to

write

duplicate

code.

However,

you

might

choose

to

implement

the

interface

directly

if

there

are

considerable

differences

between

how

you

handle

the

various

token

implementations.

For

information

on

how

to

implement

a

custom

SingleSignonToken,

see

“Implementing

a

custom

SingleSignonToken”

on

page

315.

package

com.ibm.websphere.security.token;

import

com.ibm.websphere.security.WSSecurityException;

import

com.ibm.websphere.security.auth.WSLoginFailedException;

import

com.ibm.wsspi.security.token.*;

import

com.ibm.websphere.security.WebSphereRuntimePermission;

import

java.io.ByteArrayOutputStream;

import

java.io.ByteArrayInputStream;

import

java.io.DataOutputStream;

import

java.io.DataInputStream;

import

java.io.ObjectOutputStream;

import

java.io.ObjectInputStream;

import

java.io.OutputStream;

import

java.io.InputStream;

import

java.util.ArrayList;

public

class

CustomSingleSignonTokenImpl

implements

com.ibm.wsspi.security.

token.SingleSignonToken

{

private

java.util.Hashtable

hashtable

=

new

java.util.Hashtable();

private

byte[]

tokenBytes

=

null;

//

2

hours

in

millis,

by

default

private

static

long

expire_period_in_millis

=

2*60*60*1000;

/**

*

Constructor

used

to

create

initial

SingleSignonToken

instance

*/

public

CustomSingleSignonTokenImpl

(String

principal)

{

//

set

the

principal

in

the

token

addAttribute(″principal″,

principal);

//

set

the

token

version

addAttribute(″version″,

″1″);

Chapter

2.

Securing

applications

and

their

environments

317

//

set

the

token

expiration

addAttribute(″expiration″,

new

Long(System.currentTimeMillis()

+

expire_period_in_millis).toString());

}

/**

*

Constructor

used

to

deserialize

the

token

bytes

received

during

a

propagation

login.

*/

public

CustomSingleSignonTokenImpl

(byte[]

token_bytes)

{

try

{

//

you

should

implement

a

decryption

algorithm

to

decrypt

the

cookie

bytes

hashtable

=

(java.util.Hashtable)

some_decryption_algorithm

(token_bytes);

}

catch

(Exception

e)

{

e.printStackTrace();

}

}

/**

*

Validates

the

token

including

expiration,

signature,

and

so

on.

*

@return

boolean

*/

public

boolean

isValid

()

{

long

expiration

=

getExpiration();

//

if

you

set

the

expiration

to

0,

it’s

does

not

expire

if

(expiration

!=

0)

{

//

return

if

this

token

is

still

valid

long

current_time

=

System.currentTimeMillis();

boolean

valid

=

((current_time

<

expiration)

?

true

:

false);

System.out.println(″isValid:

returning

″

+

valid);

return

valid;

}

else

{

System.out.println(″isValid:

returning

true

by

default″);

return

true;

}

}

/**

*

Gets

the

expiration

as

a

long.

*

@return

long

*/

public

long

getExpiration()

{

//

get

the

expiration

value

from

the

hashtable

String[]

expiration

=

getAttributes(″expiration″);

318

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

if

(expiration

!=

null

&&

expiration[0]

!=

null)

{

//

expiration

will

always

be

the

first

element

(should

only

be

one)

System.out.println(″getExpiration:

returning

″

+

expiration[0]);

return

new

Long(expiration[0]).longValue();

}

System.out.println(″getExpiration:

returning

0″);

return

0;

}

/**

*

Returns

if

this

token

should

be

forwarded/propagated

downstream.

*

@return

boolean

*/

public

boolean

isForwardable()

{

//

You

can

choose

whether

your

token

gets

propagated

or

not,

in

some

cases

//

you

might

want

it

to

be

local

only.

return

true;

}

/**

*

Gets

the

principal

that

this

Token

belongs

to.

If

this

is

an

authorization

token,

*

this

principal

string

must

match

the

authentication

token

principal

string

or

the

*

message

will

be

rejected.

*

@return

String

*/

public

String

getPrincipal()

{

//

this

could

be

any

combination

of

attributes

String[]

principal

=

getAttributes(″principal″);

if

(principal

!=

null

&&

principal[0]

!=

null)

{

return

principal[0];

}

System.out.println(″getExpiration:

returning

null″);

return

null;

}

/**

*

Returns

a

unique

identifier

of

the

token

based

upon

information

the

provider

*

considers

makes

this

a

unique

token.

This

will

be

used

for

caching

purposes

*

and

may

be

used

in

combination

with

outher

token

unique

IDs

that

are

part

of

*

the

same

Subject.

*

*

This

method

should

return

null

if

you

want

the

accessID

of

the

user

to

represent

*

uniqueness.

This

is

the

typical

scenario.

*

*

@return

String

*/

public

String

getUniqueID()

{

//

this

could

be

any

combination

of

attributes

Chapter

2.

Securing

applications

and

their

environments

319

return

getPrincipal();

}

/**

*

Gets

the

bytes

to

be

sent

across

the

wire.

The

information

in

the

byte[]

*

needs

to

be

enough

to

recreate

the

Token

object

at

the

target

server.

*

@return

byte[]

*/

public

byte[]

getBytes

()

{

if

(hashtable

!=

null)

{

try

{

//

do

this

if

the

object

is

set

read-only

during

login

commit,

//

since

this

guarantees

no

new

data

gets

set.

if

(isReadOnly()

&&

tokenBytes

==

null)

tokenBytes

=

some_encryption_algorithm

(hashtable);

//

you

can

deserialize

the

tokenBytes

using

a

similiar

decryption

algorithm.

return

tokenBytes;

}

catch

(Exception

e)

{

e.printStackTrace();

return

null;

}

}

System.out.println(″getBytes:

returning

null″);

return

null;

}

/**

*

Gets

the

name

of

the

token,

used

to

identify

the

byte[]

in

the

protocol

message.

*

@return

String

*/

public

String

getName()

{

return

″myCookieName″;

}

/**

*

Gets

the

version

of

the

token

as

an

short.

This

is

also

used

to

identify

the

*

byte[]

in

the

protocol

message.

*

@return

short

*/

public

short

getVersion()

{

String[]

version

=

getAttributes(″version″);

if

(version

!=

null

&&

version[0]

!=

null)

return

new

Short(version[0]).shortValue();

System.out.println(″getVersion:

returning

default

of

1″);

return

1;

320

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

}

/**

*

When

called,

the

token

becomes

irreversibly

read-only.

The

implementation

*

needs

to

ensure

any

setter

methods

check

that

this

has

been

set.

*/

public

void

setReadOnly()

{

addAttribute(″readonly″,

″true″);

}

/**

*

Called

internally

to

see

if

the

token

is

readonly

*/

private

boolean

isReadOnly()

{

String[]

readonly

=

getAttributes(″readonly″);

if

(readonly

!=

null

&&

readonly[0]

!=

null)

return

new

Boolean(readonly[0]).booleanValue();

System.out.println(″isReadOnly:

returning

default

of

false″);

return

false;

}

/**

*

Gets

the

attribute

value

based

on

the

named

value.

*

@param

String

key

*

@return

String[]

*/

public

String[]

getAttributes(String

key)

{

ArrayList

array

=

(ArrayList)

hashtable.get(key);

if

(array

!=

null

&&

array.size()

>

0)

{

return

(String[])

array.toArray(new

String[0]);

}

return

null;

}

/**

*

Sets

the

attribute

name/value

pair.

Returns

the

previous

values

set

for

key,

*

or

null

if

not

previously

set.

*

@param

String

key

*

@param

String

value

*

@returns

String[];

*/

public

String[]

addAttribute(String

key,

String

value)

{

//

get

the

current

value

for

the

key

ArrayList

array

=

(ArrayList)

hashtable.get(key);

if

(!isReadOnly())

{

Chapter

2.

Securing

applications

and

their

environments

321

//

copy

the

ArrayList

to

a

String[]

as

it

currently

exists

String[]

old_array

=

null;

if

(array

!=

null

&&

array.size()

>

0)

old_array

=

(String[])

array.toArray(new

String[0]);

//

allocate

a

new

ArrayList

if

one

was

not

found

if

(array

==

null)

array

=

new

ArrayList();

//

add

the

String

to

the

current

array

list

array.add(value);

//

add

the

current

ArrayList

to

the

Hashtable

hashtable.put(key,

array);

//

return

the

old

array

return

old_array;

}

return

(String[])

array.toArray(new

String[0]);

}

/**

*

Gets

the

List

of

all

attribute

names

present

in

the

token.

*

@return

java.util.Enumeration

*/

public

java.util.Enumeration

getAttributeNames()

{

return

hashtable.keys();

}

/**

*

Returns

a

deep

copying

of

this

token,

if

necessary.

*

@return

Object

*/

public

Object

clone()

{

com.ibm.websphere.security.token.CustomSingleSignonImpl

deep_clone

=

new

com.ibm.websphere.security.token.CustomSingleSignonTokenImpl();

java.util.Enumeration

keys

=

getAttributeNames();

while

(keys.hasMoreElements())

{

String

key

=

(String)

keys.nextElement();

String[]

list

=

(String[])

getAttributes(key);

for

(int

i=0;

i<list.length;

i++)

deep_clone.addAttribute(key,

list[i]);

}

return

deep_clone;

}

}

322

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Example:

custom

SingleSignonToken

login

module

This

file

shows

how

to

determine

if

the

login

is

an

initial

login

or

a

propagation

login

public

customLoginModule()

{

public

void

initialize(Subject

subject,

CallbackHandler

callbackHandler,

Map

sharedState,

Map

options)

{

//

(For

more

information

on

initialization,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

_sharedState

=

sharedState;

}

public

boolean

login()

throws

LoginException

{

//

(For

more

information

on

what

to

do

during

login,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

//

Handles

the

WSTokenHolderCallback

to

see

if

this

is

an

initial

or

//

propagation

login.

Callback

callbacks[]

=

new

Callback[1];

callbacks[0]

=

new

WSTokenHolderCallback(″Authz

Token

List:

″);

try

{

callbackHandler.handle(callbacks);

}

catch

(Exception

e)

{

//

handle

exception

}

//

Receives

the

ArrayList

of

TokenHolder

objects

(the

serialized

tokens)

List

authzTokenList

=

((WSTokenHolderCallback)

callbacks[0]).getTokenHolderList();

if

(authzTokenList

!=

null)

{

//

iterate

through

the

list

looking

for

your

custom

token

for

(int

i=0;

i

for

(int

i=0;

i<authzTokenList.size();

i++)

{

TokenHolder

tokenHolder

=

(TokenHolder)authzTokenList.get(i);

//

Looks

for

the

name

and

version

of

your

custom

SingleSignonToken

//

implementation

if

(tokenHolder.getName().equals(″myCookieName″)

&&

tokenHolder.getVersion()

==

1)

{

//

Passes

the

bytes

into

your

custom

SingleSignonToken

constructor

//

to

deserialize

customSSOToken

=

new

com.ibm.websphere.security.token.CustomSingleSignonTokenImpl

(tokenHolder.getBytes());

}

Chapter

2.

Securing

applications

and

their

environments

323

}

}

else

//

This

is

not

a

propagation

login.

Create

a

new

instance

of

your

//

SingleSignonToken

implementation

{

//

Gets

the

principal

from

the

default

SingleSignonToken.

This

principal

//

must

match

all

tokens.

defaultAuthToken

=

(com.ibm.wsspi.security.token.AuthenticationToken)

sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHTOKEN_KEY);

String

principal

=

defaultAuthToken.getPrincipal();

//

Adds

a

new

custom

single

signon

(SSO)

token.

This

is

an

initial

login.

//

Pass

the

principal

into

the

constructor

customSSOToken

=

new

com.ibm.websphere.security.token.

CustomSingleSignonTokenImpl(principal);

//

add

any

initial

attributes

if

(customSSOToken

!=

null)

{

customSSOToken.addAttribute(″key1″,

″value1″);

customSSOToken.addAttribute(″key1″,

″value2″);

customSSOToken.addAttribute(″key2″,

″value1″);

customSSOToken.addAttribute(″key3″,

″something

different″);

}

}

//

Note:

You

can

add

the

token

to

the

Subject

during

commit

in

case

something

//

happens

during

the

login.

}

public

boolean

commit()

throws

LoginException

{

//

(For

more

information

on

what

to

do

during

commit,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

if

(customSSOToken

!=

null)

{

//

Sets

the

customSSOToken

token

into

the

Subject

try

{

public

final

SingleSignonToken

customSSOTokenPriv

=

customSSOToken;

//

Do

this

in

a

doPrivileged

code

block

so

that

application

code

does

not

//

need

to

add

additional

permissions

java.security.AccessController.doPrivileged(new

java.security.PrivilegedAction()

{

public

Object

run()

{

try

{

//

Adds

the

custom

SSO

token

if

it

is

not

null

and

//

not

already

in

the

Subject

if

((customSSOTokenPriv

!=

null)

&&

(!subject.getPrivateCredentials().

contains(customSSOTokenPriv)))

{

324

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

subject.getPrivateCredentials().

add(customSSOTokenPriv);

}

}

catch

(Exception

e)

{

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

return

null;

}

});

}

catch

(Exception

e)

{

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

}

}

//

Defines

your

login

module

variables

com.ibm.wsspi.security.token.SingleSignonToken

customSSOToken

=

null;

com.ibm.wsspi.security.token.AuthenticationToken

defaultAuthToken

=

null;

java.util.Map

_sharedState

=

null;

}

Example:

HTTP

cookie

retrieval

Use

this

file

to

see

an

example

of

how

to

retrieve

a

cookie

from

an

HTTP

request,

decode

the

cookie

so

that

it

is

back

to

your

original

byes,

and

create

your

custom

SingleSignonToken

object

from

the

bytes.

This

example

shows

how

to

complete

these

steps

from

a

login

module.

However,

you

also

can

complete

these

steps

using

a

servlet.

For

information

on

how

to

implement

a

custom

SingleSignonToken,

see

“Implementing

a

custom

SingleSignonToken”

on

page

315.

public

customLoginModule()

{

public

void

initialize(Subject

subject,

CallbackHandler

callbackHandler,

Map

sharedState,

Map

options)

{

//

(For

more

information

on

what

to

do

during

initialization,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

_sharedState

=

sharedState;

}

public

boolean

login()

throws

LoginException

{

//

(For

more

information

on

what

to

do

during

login,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

//

Handles

the

WSTokenHolderCallback

to

see

if

this

is

an

initial

//

or

propagation

login.

Callback

callbacks[]

=

new

Callback[2];

callbacks[0]

=

new

WSTokenHolderCallback(″Authz

Token

List:

″);

callbacks[1]

=

new

WSServletRequestCallback(″HttpServletRequest:

″);

Chapter

2.

Securing

applications

and

their

environments

325

try

{

callbackHandler.handle(callbacks);

}

catch

(Exception

e)

{

//

Handles

the

exception

}

//

receive

the

ArrayList

of

TokenHolder

objects

(the

serialized

tokens)

List

authzTokenList

=

((WSTokenHolderCallback)

callbacks[0]).getTokenHolderList();

javax.servlet.http.HttpServletRequest

request

=

((WSServletRequestCallback)

callbacks[1]).getHttpServletRequest();

if

(request

!=

null)

{

//

Checks

if

the

cookie

is

present

javax.servlet.http.Cookie[]

cookies

=

request.getCookies();

String[]

cookieStrings

=

getCookieValues

(cookies,

″myCookeName1″);

if

(cookieStrings

!=

null)

{

String

cookieVal

=

null;

for

(int

n=0;n<cookieStrings.length;n++)

{

cookieVal

=

cookieStrings[n];

if

(cookieVal.length()>0)

{

//

Removes

the

cookie

encoding

from

the

cookie

to

get

//

your

custom

bytes

byte[]

cookieBytes

=

com.ibm.websphere.security.WSSecurityHelper.

convertCookieStringToBytes(cookieVal);

customSSOToken

=

new

com.ibm.websphere.security.token.

CustomSingleSignonTokenImpl(cookieBytes);

//

Now

that

you

have

your

cookie

from

the

request,

//

you

can

do

something

with

it

here,

or

add

it

//

to

the

Subject

in

the

commit()

method

for

use

later.

if

(debug

||

tc.isDebugEnabled())

{

Systen.out.println(″***

GOT

MY

CUSTOM

SSO

TOKEN

FROM

THE

REQUEST

***″);

}

}

}

}

}

}

public

boolean

commit()

throws

LoginException

{

326

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

//

(For

more

information

on

what

to

during

a

commit,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

if

(customSSOToken

!=

null)

{

//

Sets

the

customSSOToken

token

into

the

Subject

try

{

public

final

SingleSignonToken

customSSOTokenPriv

=

customSSOToken;

//

Do

this

in

a

doPrivileged

code

block

so

that

application

code

does

not

//

need

to

add

additional

permissions

java.security.AccessController.doPrivileged(new

java.security.PrivilegedAction()

{

public

Object

run()

{

try

{

//

Add

the

custom

SSO

token

if

it

is

not

null

and

not

//

already

in

the

Subject

if

((customSSOTokenPriv

!=

null)

&&

(!subject.getPrivateCredentials().

contains(customSSOTokenPriv)))

{

subject.getPrivateCredentials().add(customSSOTokenPriv);

}

}

catch

(Exception

e)

{

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

return

null;

}

});

}

catch

(Exception

e)

{

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

}

}

//

Private

method

to

get

the

specific

cookie

from

the

request

private

String[]

getCookieValues

(Cookie[]

cookies,

String

hdrName)

{

Vector

retValues

=

new

Vector();

int

numMatches=0;

if

(cookies

!=

null)

{

for

(int

i

=

0;

i

<

cookies.length;

++i)

{

if

(hdrName.equals(cookies[i].getName()))

{

retValues.add(cookies[i].getValue());

numMatches++;

System.out.println(cookies[i].getValue());

Chapter

2.

Securing

applications

and

their

environments

327

}

}

}

if

(retValues.size()>0)

return

(String[])

retValues.toArray(new

String[numMatches]);

else

return

null;

}

//

Defines

your

login

module

variables

com.ibm.wsspi.security.token.SingleSignonToken

customSSOToken

=

null;

com.ibm.wsspi.security.token.AuthenticationToken

defaultAuthToken

=

null;

java.util.Map

_sharedState

=

null;

}

Default

AuthenticationToken

Do

not

use

the

default

AuthenticationToken

in

service

provider

code.

This

default

token

is

used

by

the

WebSphere

Application

Server

run-time

code

only

and

is

authentication

mechanism

specific.

Any

modifications

to

this

token

by

service

provider

code

can

potentially

cause

interoperability

problems.

If

you

need

to

create

an

authentication

token

for

custom

usage,

see

“Implementing

a

custom

AuthenticationToken”

on

page

329

for

more

information.

Changing

the

TokenFactory

associated

with

the

default

AuthenticationToken

When

WebSphere

Application

Server

generates

a

default

AuthenticationToken,

the

application

server

utilizes

the

TokenFactory

class

that

is

specified

using

the

com.ibm.wsspi.security.token.authenticationTokenFactory

property.

To

modify

this

property

using

the

administrative

console,

complete

the

following

steps:

1.

Click

Security

>

Global

Security.

2.

Under

Additional

properties,

click

Custom

properties.

The

default

TokenFactory

specified

for

this

property

is

called

com.ibm.ws.security.ltpa.LTPATokenFactory.

The

LTPATokenFactory

uses

the

DESede/ECB/PKCS5Padding

cipher.

This

token

factory

creates

an

interoperable

Lightweight

Third

Party

Authentication

(LTPA)

token.

If

you

change

this

TokenFactory,

you

lose

the

interoperability

with

any

servers

running

a

version

of

WebSphere

Application

Server

prior

to

version

5.1.1

and

any

other

servers

that

do

not

support

the

new

TokenFactory

implementation.

However,

this

is

not

a

problem

if

all

of

your

application

servers

use

WebSphere

Application

Server

Version

5.1.1

and

all

of

your

servers

use

your

new

TokenFactory.

If

you

associate

com.ibm.ws.security.ltpa.LTPAToken2Factory

with

the

com.ibm.wsspi.security.token.authenticationTokenFactory

property,

the

token

is

AES

encrypted.

However,

you

need

to

weigh

the

performance

against

your

security

needs.

By

doing

this,

you

might

add

additional

attributes

to

the

AuthenticationToken

in

the

Subject

during

a

login

that

are

available

downstream.

If

you

need

to

perform

your

own

signing

and

encryption

of

the

default

AuthenticationToken,

you

must

implement

the

following

classes:

v

com.ibm.wsspi.security.ltpa.Token

v

com.ibm.wsspi.security.ltpa.TokenFactory

328

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Your

TokenFactory

implementation

instantiates

(createToken)

and

validates

(validateTokenBytes)

your

token

implementation.

You

can

use

the

LTPA

keys

passed

into

the

initialize

method

of

the

TokenFactory

or

you

can

use

your

own

keys.

If

you

use

your

own

keys,

they

must

be

the

same

everywhere

in

order

to

validate

the

tokens

that

are

generated

using

those

keys.

See

the

Javadoc,

available

through

a

link

on

the

front

page

of

the

information

center,

for

more

information

on

implementing

your

own

custom

TokenFactory.

To

associate

your

TokenFactory

with

the

default

AuthenticationToken

using

the

administrative

console,

complete

the

following

steps:

1.

Click

Security

>

Global

Security.

2.

Under

Additional

properties,

click

Custom

properties.

3.

Locate

the

com.ibm.wsspi.security.token.authenticationTokenFactory

property

and

verify

that

the

value

of

this

property

matches

your

custom

TokenFactory

implementation.

4.

Verify

that

your

implementation

classes

are

put

into

the

install

directory/classes

directory

so

that

the

WebSphere

class

loader

can

load

the

classes.

Implementing

a

custom

AuthenticationToken

This

task

explains

how

you

might

create

your

own

AuthenticationToken

implementation,

which

is

set

in

the

login

Subject

and

propagated

downstream.

This

implementation

enables

you

to

specify

an

authentication

token

that

can

be

used

by

a

custom

login

module

or

application.

Consider

writing

your

own

implementation

if

you

want

to

accomplish

one

of

the

following

tasks:

v

Isolate

your

attributes

within

your

own

implementation.

v

Serialize

the

information

using

custom

serialization.

You

must

deserialize

the

bytes

at

the

target

and

add

that

information

back

on

the

thread.

This

task

also

might

include

encryption

and

decryption.

v

Affect

the

overall

uniqueness

of

the

Subject

using

the

getUniqueID()

API.

Important:

Custom

AuthenticationToken

implementations

are

not

used

by

the

security

run

time

in

WebSphere

Application

Server

to

enforce

authentication.

WebSphere

Application

Security

run

time

uses

this

token

in

the

following

situations

only:

v

Call

the

getBytes()

method

for

serialization

v

Call

the

getForwardable()

method

to

determine

whether

to

serialize

the

AuthenticationToken.

v

Call

the

getUniqueId()

method

for

uniqueness

v

Call

the

getName()

and

the

getVersion()

methods

for

adding

serialized

bytes

to

the

TokenHolder

that

is

sent

downstream

All

of

the

other

uses

are

custom

implementations.

To

implement

a

custom

authentication

token,

you

must

complete

the

following

steps:

1.

Write

a

custom

implementation

of

the

AuthenticationToken

interface.

There

are

many

different

methods

for

implementing

the

AuthenticationToken

interface.

However,

make

sure

that

the

methods

required

by

the

AuthenticationToken

interface

and

the

token

interface

are

fully

implemented.

After

you

implement

this

interface,

you

can

place

it

in

the

install_dir/classes

directory.

Alternatively,

you

can

place

the

class

in

any

private

directory.

However,

make

sure

that

the

WebSphere

Application

Server

class

loader

can

locate

the

class

and

Chapter

2.

Securing

applications

and

their

environments

329

that

it

is

granted

the

appropriate

permissions.

You

can

add

the

Java

archive

(JAR)

file

or

directory

that

contains

this

class

into

the

server.policy

file

so

that

it

has

the

necessary

permissions

that

are

needed

by

the

server

code.

Tip:

All

of

the

token

types

defined

by

the

propagation

framework

have

similar

interfaces.

Basically,

the

token

types

are

marker

interfaces

that

implement

the

com.ibm.wsspi.security.token.Token

interface.

This

interface

defines

most

of

the

methods.

If

you

plan

to

implement

more

than

one

token

type,

consider

creating

an

abstract

class

that

implements

the

com.ibm.wsspi.security.token.Token

interface.

All

of

your

token

implementations,

including

the

AuthenticationToken,

might

extend

the

abstract

class

and

then

most

of

the

work

is

completed.

To

see

an

implementation

of

AuthenticationToken,

see

“Example:

com.ibm.wsspi.security.token.AuthorizationToken

implementation”

on

page

306

2.

Add

and

receive

the

custom

AuthenticationToken

during

WebSphere

Application

Server

logins

This

task

is

typically

accomplished

by

adding

a

custom

login

module

to

the

various

application

and

system

login

configurations.

However,

in

order

to

deserialize

the

information,

you

must

plug

in

a

custom

login

module.

After

the

object

is

instantiated

in

the

login

module,

you

can

the

object

to

the

Subject

during

the

commit()

method.

If

you

only

want

to

add

information

to

the

Subject

to

get

propagated,

see

“Propagating

a

custom

Java

serializable

object”

on

page

339.

If

you

want

to

ensure

that

the

information

is

propagated,

if

you

want

to

do

your

own

custom

serialization,

or

if

you

want

to

specify

the

uniqueness

for

Subject

caching

purposes,

then

consider

writing

your

own

AuthenticationToken

implementation.

The

code

sample

in

“Example:

custom

AuthenticationToken

login

module”

on

page

337

shows

how

to

determine

if

the

login

is

an

initial

login

or

a

propagation

login.

The

difference

between

these

login

types

is

whether

the

WSTokenHolderCallback

contains

propagation

data.

If

the

callback

does

not

contain

propagation

data,

initialize

a

new

custom

AuthenticationToken

implementation

and

set

it

into

the

Subject.

If

the

callback

contains

propagation

data,

look

for

your

specific

custom

AuthenticationToken

TokenHolder

instance,

convert

the

byte[]

back

into

your

custom

AuthenticationToken

object,

and

set

it

back

into

the

Subject.

The

code

sample

shows

both

instances.

You

can

make

your

AuthenticationToken

read-only

in

the

commit

phase

of

the

login

module.

If

you

do

not

make

the

token

read-only,

then

attributes

can

be

added

within

your

applications.

3.

Add

your

custom

login

module

to

WebSphere

Application

Server

system

login

configurations

that

already

contain

the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule

for

receiving

serialized

versions

of

your

custom

authorization

token

Because

this

login

module

relies

on

information

in

the

sharedState

added

by

the

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule,

add

this

login

module

after

com.ibm.ws.security.server.lm.wsMapDefaultInboundLoginModule.

For

information

on

how

to

add

your

custom

login

module

to

the

existing

login

configurations,

see

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67

After

completing

these

steps,

you

have

implemented

a

custom

AuthenticationToken.

330

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Example:

com.ibm.wsspi.security.token.AuthenticationToken

implementation

Use

this

file

to

see

an

example

of

a

AuthenticationToken

implementation.

The

following

sample

code

does

not

extend

an

abstract

class,

but

rather

implements

the

com.ibm.wsspi.security.token.AuthenticationToken

interface

directly.

You

can

implement

the

interface

directly,

but

it

might

cause

you

to

write

duplicate

code.

However,

you

might

choose

to

implement

the

interface

directly

if

there

are

considerable

differences

between

how

you

handle

the

various

token

implementations.

For

information

on

how

to

implement

a

custom

AuthenticationToken,

see

“Implementing

a

custom

AuthenticationToken”

on

page

329.

package

com.ibm.websphere.security.token;

import

com.ibm.websphere.security.WSSecurityException;

import

com.ibm.websphere.security.auth.WSLoginFailedException;

import

com.ibm.wsspi.security.token.*;

import

com.ibm.websphere.security.WebSphereRuntimePermission;

import

java.io.ByteArrayOutputStream;

import

java.io.ByteArrayInputStream;

import

java.io.DataOutputStream;

import

java.io.DataInputStream;

import

java.io.ObjectOutputStream;

import

java.io.ObjectInputStream;

import

java.io.OutputStream;

import

java.io.InputStream;

import

java.util.ArrayList;

public

class

CustomAuthenticationTokenImpl

implements

com.ibm.wsspi.security.

token.AuthenticationToken

{

private

java.util.Hashtable

hashtable

=

new

java.util.Hashtable();

private

byte[]

tokenBytes

=

null;

//

2

hours

in

millis,

by

default

private

static

long

expire_period_in_millis

=

2*60*60*1000;

private

String

oidName

=

″your_oid_name″;

//

This

string

can

really

be

anything

if

you

do

not

want

to

use

an

OID.

/**

*

Constructor

used

to

create

initial

AuthenticationToken

instance

*/

public

CustomAuthenticationTokenImpl

(String

principal)

{

//

Sets

the

principal

in

the

token

addAttribute(″principal″,

principal);

//

Sets

the

token

version

addAttribute(″version″,

″1″);

//

Sets

the

token

expiration

addAttribute(″expiration″,

new

Long(System.currentTimeMillis()

+

expire_period_in_millis).toString());

}

/**

*

Constructor

used

to

deserialize

the

token

bytes

received

during

a

*

propagation

login.

Chapter

2.

Securing

applications

and

their

environments

331

*/

public

CustomAuthenticationTokenImpl

(byte[]

token_bytes)

{

try

{

//

The

data

in

token_bytes

should

be

signed

and

encrypted

if

the

//

hashtable

is

acting

as

an

authentication

token.

hashtable

=

(java.util.Hashtable)

custom_decryption_algorithm

(token_bytes);

}

catch

(Exception

e)

{

e.printStackTrace();

}

}

/**

*

Validates

the

token

including

expiration,

signature,

and

so

on.

*

@return

boolean

*/

public

boolean

isValid

()

{

long

expiration

=

getExpiration();

//

If

you

set

the

expiration

to

0,

the

token

does

not

expire

if

(expiration

!=

0)

{

//

Returns

a

response

that

identifies

whether

this

token

is

still

valid

long

current_time

=

System.currentTimeMillis();

boolean

valid

=

((current_time

<

expiration)

?

true

:

false);

System.out.println(″isValid:

returning

″

+

valid);

return

valid;

}

else

{

System.out.println(″isValid:

returning

true

by

default″);

return

true;

}

}

/**

*

Gets

the

expiration

as

a

long

type.

*

@return

long

*/

public

long

getExpiration()

{

//

Gets

the

expiration

value

from

the

hashtable

String[]

expiration

=

getAttributes(″expiration″);

if

(expiration

!=

null

&&

expiration[0]

!=

null)

{

//

The

expiration

is

the

first

element

and

there

should

only

be

one

expiration

System.out.println(″getExpiration:

returning

″

+

expiration[0]);

return

new

Long(expiration[0]).longValue();

}

332

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

System.out.println(″getExpiration:

returning

0″);

return

0;

}

/**

*

Returns

if

this

token

should

be

forwarded/propagated

downstream.

*

@return

boolean

*/

public

boolean

isForwardable()

{

//

You

can

choose

whether

your

token

gets

propagated.

In

some

cases

//

you

might

want

it

to

be

local

only.

return

true;

}

/**

*

Gets

the

principal

to

which

this

token

belongs.

If

this

is

an

*

authorization

token,

this

principal

string

must

match

the

*

authentication

token

principal

string

or

the

message

is

rejected.

*

@return

String

*/

public

String

getPrincipal()

{

//

This

value

might

be

any

combination

of

attributes

String[]

principal

=

getAttributes(″principal″);

if

(principal

!=

null

&&

principal[0]

!=

null)

{

return

principal[0];

}

System.out.println(″getExpiration:

returning

null″);

return

null;

}

/**

*

Returns

a

unique

identifier

of

the

token

based

upon

information

the

provider

*

considers

makes

this

a

unique

token.

This

identifier

is

used

for

caching

purposes

*

and

can

be

used

in

combination

with

other

token

unique

IDs

that

are

part

of

*

the

same

Subject.

*

*

This

method

should

return

null

if

you

want

the

accessID

of

the

user

to

represent

*

uniqueness.

This

is

the

typical

scenario.

*

*

@return

String

*/

public

String

getUniqueID()

{

//

If

you

do

not

want

to

affect

the

cache

lookup,

just

return

NULL

here.

return

null;

String

cacheKeyForThisToken

=

″dynamic

attributes″;

//

If

you

do

want

to

affect

the

cache

lookup,

return

a

string

of

//

attributes

that

you

want

factored

into

the

lookup.

Chapter

2.

Securing

applications

and

their

environments

333

return

cacheKeyForThisToken;

}

/**

*

Gets

the

bytes

to

be

sent

across

the

wire.

The

information

in

the

byte[]

*

needs

to

be

enough

to

recreate

the

token

object

at

the

target

server.

*

@return

byte[]

*/

public

byte[]

getBytes

()

{

if

(hashtable

!=

null)

{

try

{

//

Do

this

if

the

object

is

set

read-only

during

login

commit

//

because

this

ensures

that

new

data

is

not

set.

if

(isReadOnly()

&&

tokenBytes

==

null)

tokenBytes

=

custom_encryption_algorithm

(hashtable);

return

tokenBytes;

}

catch

(Exception

e)

{

e.printStackTrace();

return

null;

}

}

System.out.println(″getBytes:

returning

null″);

return

null;

}

/**

*

Gets

the

name

of

the

token,

which

is

used

to

identify

the

byte[]

in

the

*

protocol

message.

*

@return

String

*/

public

String

getName()

{

return

oidName;

}

/**

*

Gets

the

version

of

the

token

as

an

short

type.

This

also

is

used

*

to

identify

the

byte[]

in

the

protocol

message.

*

@return

short

*/

public

short

getVersion()

{

String[]

version

=

getAttributes(″version″);

if

(version

!=

null

&&

version[0]

!=

null)

return

new

Short(version[0]).shortValue();

System.out.println(″getVersion:

returning

default

of

1″);

return

1;

334

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

}

/**

*

When

called,

the

token

becomes

irreversibly

read-only.

The

implementation

*

needs

to

ensure

that

any

set

methods

check

that

this

state

has

been

set.

*/

public

void

setReadOnly()

{

addAttribute(″readonly″,

″true″);

}

/**

*

Called

internally

to

see

if

the

token

is

read-only

*/

private

boolean

isReadOnly()

{

String[]

readonly

=

getAttributes(″readonly″);

if

(readonly

!=

null

&&

readonly[0]

!=

null)

return

new

Boolean(readonly[0]).booleanValue();

System.out.println(″isReadOnly:

returning

default

of

false″);

return

false;

}

/**

*

Gets

the

attribute

value

based

on

the

named

value.

*

@param

String

key

*

@return

String[]

*/

public

String[]

getAttributes(String

key)

{

ArrayList

array

=

(ArrayList)

hashtable.get(key);

if

(array

!=

null

&&

array.size()

>

0)

{

return

(String[])

array.toArray(new

String[0]);

}

return

null;

}

/**

*

Sets

the

attribute

name/value

pair.

Returns

the

previous

values

set

for

key,

*

or

null

if

not

previously

set.

*

@param

String

key

*

@param

String

value

*

@returns

String[];

*/

public

String[]

addAttribute(String

key,

String

value)

{

//

Gets

the

current

value

for

the

key

ArrayList

array

=

(ArrayList)

hashtable.get(key);

if

(!isReadOnly())

{

Chapter

2.

Securing

applications

and

their

environments

335

//

Copies

the

ArrayList

to

a

String[]

as

it

currently

exists

String[]

old_array

=

null;

if

(array

!=

null

&&

array.size()

>

0)

old_array

=

(String[])

array.toArray(new

String[0]);

//

Allocates

a

new

ArrayList

if

one

was

not

found

if

(array

==

null)

array

=

new

ArrayList();

//

Adds

the

String

to

the

current

array

list

array.add(value);

//

Adds

the

current

ArrayList

to

the

Hashtable

hashtable.put(key,

array);

//

Returns

the

old

array

return

old_array;

}

return

(String[])

array.toArray(new

String[0]);

}

/**

*

Gets

the

list

of

all

attribute

names

present

in

the

token.

*

@return

java.util.Enumeration

*/

public

java.util.Enumeration

getAttributeNames()

{

return

hashtable.keys();

}

/**

*

Returns

a

deep

copying

of

this

token,

if

necessary.

*

@return

Object

*/

public

Object

clone()

{

com.ibm.wsspi.security.token.AuthenticationToken

deep_clone

=

new

com.ibm.websphere.security.token.CustomAuthenticationTokenImpl();

java.util.Enumeration

keys

=

getAttributeNames();

while

(keys.hasMoreElements())

{

String

key

=

(String)

keys.nextElement();

String[]

list

=

(String[])

getAttributes(key);

for

(int

i=0;

i<list.length;

i++)

deep_clone.addAttribute(key,

list[i]);

}

return

deep_clone;

}

336

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

/**

*

This

method

returns

true

if

this

token

is

storing

a

user

ID

and

password

*

instead

of

a

token.

*

@return

boolean

*/

public

boolean

isBasicAuth()

{

return

false;

}

}

Example:

custom

AuthenticationToken

login

module

This

file

shows

how

to

determine

if

the

login

is

an

initial

login

or

a

propagation

login

public

customLoginModule()

{

public

void

initialize(Subject

subject,

CallbackHandler

callbackHandler,

Map

sharedState,

Map

options)

{

//

(For

more

information

on

what

to

do

during

initialization,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

_sharedState

=

sharedState;

}

public

boolean

login()

throws

LoginException

{

//

(For

information

on

what

to

do

during

login,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

//

Handles

the

WSTokenHolderCallback

to

see

if

this

is

an

initial

or

//

propagation

login.

Callback

callbacks[]

=

new

Callback[1];

callbacks[0]

=

new

WSTokenHolderCallback(″Authz

Token

List:

″);

try

{

callbackHandler.handle(callbacks);

}

catch

(Exception

e)

{

//

Handles

exception

}

//

Receives

the

ArrayList

of

TokenHolder

objects

(the

serialized

tokens)

List

authzTokenList

=

((WSTokenHolderCallback)

callbacks[0]).getTokenHolderList();

if

(authzTokenList

!=

null)

{

//

Iterates

through

the

list

looking

for

your

custom

token

for

(int

i=0;

i<authzTokenList.size();

i++)

{

TokenHolder

tokenHolder

=

(TokenHolder)authzTokenList.get(i);

//

Looks

for

the

name

and

version

of

your

custom

AuthenticationToken

//

implementation

Chapter

2.

Securing

applications

and

their

environments

337

if

(tokenHolder.getName().equals(″your_oid_name″)

&&

tokenHolder.getVersion()

==

1)

{

//

Passes

the

bytes

into

your

custom

AuthenticationToken

constructor

//

to

deserialize

customAuthzToken

=

new

com.ibm.websphere.security.token.

CustomAuthenticationTokenImpl(tokenHolder.getBytes());

}

}

}

else

//

This

is

not

a

propagation

login.

Create

a

new

instance

of

your

//

AuthenticationToken

implementation

{

//

Gets

the

principal

from

the

default

AuthenticationToken.

This

principal

//

should

match

all

default

tokens.

//

Note:

WebSphere

Application

Server

run

time

only

enforces

this

for

//

default

tokens.

Thus,

you

can

choose

//

to

do

this

for

custom

tokens,

but

it

is

not

required.

defaultAuthToken

=

(com.ibm.wsspi.security.token.AuthenticationToken)

sharedState.get(com.ibm.wsspi.security.auth.callback.Constants.WSAUTHTOKEN_KEY);

String

principal

=

defaultAuthToken.getPrincipal();

//

Adds

a

new

custom

authentication

token.

This

is

an

initial

login.

Pass

//

the

principal

into

the

constructor

customAuthToken

=

new

com.ibm.websphere.security.token.

CustomAuthenticationTokenImpl(principal);

//

Adds

any

initial

attributes

if

(customAuthToken

!=

null)

{

customAuthToken.addAttribute(″key1″,

″value1″);

customAuthToken.addAttribute(″key1″,

″value2″);

customAuthToken.addAttribute(″key2″,

″value1″);

customAuthToken.addAttribute(″key3″,

″something

different″);

}

}

//

Note:

You

can

add

the

token

to

the

Subject

during

commit

in

case

//

something

happens

during

the

login.

}

public

boolean

commit()

throws

LoginException

{

//

(For

more

information

on

what

do

during

commit,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

if

(customAuthToken

!=

null)

{

//

Sets

the

customAuthToken

token

into

the

Subject

try

{

private

final

AuthenticationToken

customAuthTokenPriv

=

customAuthToken;

//

Do

this

in

a

doPrivileged

code

block

so

that

application

code

does

//

not

need

to

add

additional

permissions

338

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

java.security.AccessController.doPrivileged(new

java.security.PrivilegedAction()

{

public

Object

run()

{

try

{

//

Adds

the

custom

Authentication

token

if

it

is

not

//

null

and

not

already

in

the

Subject

if

((customAuthTokenPriv

!=

null)

&&

(!subject.getPrivateCredentials().

contains(customAuthTokenPriv)))

{

subject.getPrivateCredentials().add(customAuthTokenPriv);

}

}

catch

(Exception

e)

{

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

return

null;

}

});

}

catch

(Exception

e)

{

throw

new

WSLoginFailedException

(e.getMessage(),

e);

}

}

}

//

Defines

your

login

module

variables

com.ibm.wsspi.security.token.AuthenticationToken

customAuthToken

=

null;

com.ibm.wsspi.security.token.AuthenticationToken

defaultAuthToken

=

null;

java.util.Map

_sharedState

=

null;

}

Propagating

a

custom

Java

serializable

object

Prior

to

completing

this

task,

verify

that

security

propagation

is

enabled

in

the

administrative

console.

With

security

attribute

propagation

enabled,

you

can

propagate

data

either

horizontally

with

single

signon

(SSO)

enabled

or

downstream

using

Common

Secure

Interoperability

version

2

(CSIv2).

When

a

login

occurs,

either

through

an

application

login

configuration

or

a

system

login

configuration,

a

custom

login

module

can

be

plugged

in

to

add

Java

serializable

objects

into

the

Subject

during

login.

This

document

describes

how

to

add

an

object

into

the

Subject

from

a

login

module

and

describes

other

infrastructure

considerations

to

make

sure

that

the

Java

object

gets

propagated.

1.

Add

your

custom

Java

object

into

the

Subject

from

a

custom

login

module

There

is

a

two

phase

process

for

each

Java

Authentication

and

Authorization

Service

(JAAS)

login

module.

WebSphere

Application

Server

completes

the

following

processes

for

each

login

module

present

in

the

configuration:

Chapter

2.

Securing

applications

and

their

environments

339

login()

method

In

this

step,

the

login

configuration

callbacks

are

analyzed,

if

necessary,

and

the

new

objects

or

credentials

are

created.

commit()

method

In

this

step,

the

objects

or

credentials

that

are

created

during

login

are

added

into

the

Subject.
After

a

custom

Java

object

is

added

into

the

Subject,

WebSphere

Application

Server

serializes

the

object,

deserializes

the

object,

and

adds

the

object

back

into

the

Subject

downstream.

However,

there

are

some

requirements

for

this

process

to

occur

successfully.

For

more

information

on

the

JAAS

programming

model,

see

the

JAAS

information

provided

in

“Security:

Resources

for

learning”

on

page

495.

Important:

Whenever

you

plug

in

a

custom

login

module

into

the

login

infrastructure

of

WebSphere

Application

Server,

make

sure

that

the

code

is

trusted.

When

you

add

the

login

module

into

the

install_root/classes

directory,

the

login

module

has

Java

2

Security

AllPermissions.

It

is

recommended

that

you

add

your

login

module

and

other

infrastructure

classes

into

any

private

directory.

However,

you

must

modify

the

install_root/properties/server.policy

file

to

make

sure

that

your

private

directory,

Java

archive

(JAR)

file,

or

both

have

the

permissions

need

to

execute

the

application

programming

interfaces

(API)

that

are

called

from

the

login

module.

Because

the

login

module

might

be

executed

after

the

application

code

on

the

call

stack,

you

might

add

doPrivileged

code

so

that

you

do

not

need

to

add

additional

properties

to

your

applications.

The

following

code

sample

shows

how

to

add

doPrivileged:

public

customLoginModule()

{

public

void

initialize(Subject

subject,

CallbackHandler

callbackHandler,

Map

sharedState,

Map

options)

{

//

(For

more

information

on

what

to

do

during

initialization,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

}

public

boolean

login()

throws

LoginException

{

//

(For

more

information

on

what

to

do

during

login

phase,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

//

Construct

callback

for

the

WSTokenHolderCallback

so

that

you

//

can

determine

if

//

your

custom

object

has

propagated

Callback

callbacks[]

=

new

Callback[1];

callbacks[0]

=

new

WSTokenHolderCallback(″Authz

Token

List:

″);

try

{

_callbackHandler.handle(callbacks);

}

catch

(Exception

e)

{

340

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

throw

new

LoginException

(e.getLocalizedMessage());

}

//

Checks

to

see

if

any

information

is

propagated

into

this

login

List

authzTokenList

=

((WSTokenHolderCallback)

callbacks[1]).

getTokenHolderList();

if

(authzTokenList

!=

null)

{

for

(int

i

=

0;

i<

authzTokenList.size();

i++)

{

TokenHolder

tokenHolder

=

(TokenHolder)authzTokenList.get(i);

//

Look

for

your

custom

object.

Make

sure

you

use

//

″startsWith″because

there

is

some

data

appended

//

to

the

end

of

the

name

indicating

in

which

Subject

//

Set

it

belongs.

Example

from

getName():

//

″com.acme.CustomObject

(1)″.

The

class

name

is

//

generated

at

the

sending

side

by

calling

the

//

object.getClass().getName()

method.

If

this

object

//

is

deserialized

by

WebSphere

Application

Server,

//

then

return

it

and

you

do

not

need

to

add

it

here.

//

Otherwise,

you

can

add

it

below.

//

Note:

If

your

class

appears

in

this

list

and

does

//

not

use

custom

serialization

(for

example,

an

//

implementation

of

the

Token

interface

described

in

//

the

Propagation

Token

Framework),

then

WebSphere

//

Application

Server

automatically

deserializes

the

//

Java

object

for

you.

You

might

just

return

here

if

//

it

is

found

in

the

list.

if

(tokenHolder.getName().startsWith(″com.acme.CustomObject″))

return

true;

}

}

//

If

you

get

to

this

point,

then

your

custom

object

has

not

propagated

myCustomObject

=

new

com.acme.CustomObject();

myCustomObject.put(″mykey″,

″mydata″);

}

public

boolean

commit()

throws

LoginException

{

//

(For

more

information

on

what

to

do

during

the

commit

phase,

see

//

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.)

try

{

//

Assigns

a

reference

to

a

final

variable

so

it

can

be

used

in

//

the

doPrivileged

block

final

com.acme.CustomObject

myCustomObjectFinal

=

myCustomObject;

//

Prevents

your

applications

from

needing

a

JAAS

getPrivateCredential

//

permission.

java.security.AccessController.doPrivileged(new

java.security.

PrivilegedExceptionAction()

{

public

Object

run()

throws

java.lang.Exception

Chapter

2.

Securing

applications

and

their

environments

341

{

//

Try

not

to

add

a

null

object

to

the

Subject

or

an

object

//

that

already

exists.

if

(myCustomObjectFinal

!=

null

&&

!subject.getPrivateCredentials().

contains(myCustomObjectFinal))

{

//

This

call

requires

a

special

Java

2

Security

permission,

//

see

the

JAAS

Javadoc.

subject.getPrivateCredentials().add(myCustomObjectFinal);

}

return

null;

}

});

}

catch

(java.security.PrivilegedActionException

e)

{

//

Wraps

the

exception

in

a

WSLoginFailedException

java.lang.Throwable

myException

=

e.getException();

throw

new

WSLoginFailedException

(myException.getMessage(),

myException);

}

}

//

Defines

your

login

module

variables

com.acme.CustomObject

myCustomObject

=

null;

}

2.

Verify

that

your

custom

Java

class

implements

the

java.io.Serializable

interface.

An

object

that

is

added

to

the

Subject

must

be

serializable

if

you

want

the

object

to

propagate.

For

example,

the

object

must

implement

the

java.io.Serializable

interface.

If

the

object

is

not

serializable,

the

request

does

not

fail,

but

the

object

does

not

propagate.

To

make

sure

that

an

object

added

to

the

Subject

is

propagated,

implement

one

of

the

token

interfaces

defined

in

the

“Security

attribute

propagation”

on

page

276

article

or

add

attributes

to

one

of

the

following

existing

default

token

implementations:

AuthorizationToken

Add

attributes

if

they

are

user-specific.

For

more

information,

see

“Default

AuthorizationToken”

on

page

300.

PropagationToken

Add

attributes

that

are

specific

to

an

invocation.

For

more

information,

see

“Default

PropagationToken”

on

page

284

If

you

are

careful

adding

custom

objects

and

follow

all

the

steps

to

make

sure

that

WebSphere

Application

Server

can

serialize

and

deserialize

the

object

at

each

hop,

then

it

is

sufficient

to

use

custom

Java

objects

only.

3.

Verify

that

your

custom

Java

class

exists

on

all

of

the

systems

that

might

receive

the

request

When

you

add

a

custom

object

into

the

Subject

and

expect

WebSphere

Application

Server

to

propagate

the

object,

make

sure

the

class

definition

for

that

custom

object

exists

in

the

install_root/classes

directory

on

all

of

the

nodes

where

serialization

or

deserialization

might

occur.

Also,

verify

that

the

Java

class

versions

are

the

same.

4.

Verify

that

your

custom

login

module

is

configured

in

all

of

the

login

configurations

used

in

your

environment

where

you

would

need

to

add

your

custom

object

during

a

login.

Any

login

configuration

that

interacts

with

WebSphere

Application

Server

generates

a

Subject

that

might

be

propagated

outbound

for

an

EJB

request.

If

you

want

WebSphere

Application

Server

to

342

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

propagate

a

custom

object

in

all

cases,

make

sure

that

the

custom

login

module

is

added

to

every

login

configuration

that

is

used

in

your

environment.

For

more

information,

see

“Custom

login

module

development

for

a

system

login

configuration”

on

page

67.

5.

Verify

that

security

attribute

propagation

is

enabled

on

all

of

the

downstream

servers

that

receive

the

propagated

information

When

an

EJB

request

is

sent

to

a

downstream

server

and

security

attribute

propagation

is

disabled

on

that

server,

only

the

authentication

token

is

sent

for

backwards

compatibility.

Therefore,

you

must

review

the

configuration

to

verify

that

propagation

is

enabled

in

all

of

the

cells

that

might

receive

requests.

There

are

several

places

in

the

administrative

console

that

you

must

check

to

make

sure

propagation

is

fully

enabled.

For

more

information,

see

“Enabling

security

attribute

propagation”

on

page

282.

6.

Add

any

custom

objects

to

the

propagation

exclude

list

that

you

do

not

want

to

propagate.

You

can

configure

a

property

to

exclude

the

propagation

of

objects

that

match

specific

class

names,

package

names,

or

both.

For

example,

you

can

have

a

custom

object

that

is

related

to

a

specific

process.

If

the

object

is

propagated,

it

does

not

contain

valid

information.

You

must

tell

WebSphere

Application

Server

not

to

propagate

this

object.

Complete

the

following

instructions

to

specify

the

object

in

the

propagation

exclude

list

using

the

administrative

console:

a.

Click

Security

>

Global

Security

>.

b.

Under

Additional

Properties,

click

Custom

Properties

>

New.

c.

Add

com.ibm.ws.security.propagationExcludeList

in

the

Name

field.

d.

Add

the

name

of

the

custom

object

in

the

Value

field.

You

can

add

a

list

of

custom

objects

to

the

propagation

exclude

list

separated

by

a

colon.

For

example,

you

might

enter

com.acme.CustomLocalObject:com.acme.private.*.

You

can

enter

a

class

name

such

as

com.acme.CustomLocalObject

or

a

package

name

such

as

com.acme.private.*.

In

this

example,

WebSphere

Application

Server

does

not

propagate

any

class

that

equals

com.acme.CustomLocalObject

or

begins

with

com.acme.private..

Although

you

can

add

custom

objects

to

the

propagation

exclude

list,

you

must

be

aware

of

a

side

effect.

WebSphere

Application

Server

stores

the

opaque

token,

or

the

serialized

Subject

contents,

in

a

local

cache

for

the

life

of

the

single

signon

(SSO)

token.

The

life

of

the

SSO

token,

which

has

a

default

of

two

hours,

is

configured

in

the

SSO

properties

on

the

administrative

console.

The

information

that

is

added

to

the

opaque

token

only

includes

the

objects

not

in

the

exclude

list.

If

your

authentication

cache

does

not

match

your

SSO

token

timeout,

you

might

get

a

Subject

on

the

local

server

that

is

regenerated

from

the

opaque

token

but

does

not

contain

the

objects

on

the

exclude

list.

The

authentication

cache,

which

has

a

default

of

ten

minutes,

is

configured

on

the

Global

Security

panel

on

the

administrative

console.

It

is

recommended

that

you

make

your

authentication

cache

timeout

value

equal

to

the

SSO

token

timeout

so

that

the

Subject

contents

are

consistent

locally.

As

a

result

of

this

task,

custom

Java

serializable

objects

are

propagated

horizontally

or

downstream.

For

more

information

on

the

differences

between

horizontal

and

downstream

propagation,

see

“Security

attribute

propagation”

on

page

276.

Authentication

protocol

for

EJB

security

In

WebSphere

Application

Server

Version

5,

two

authentication

protocols

are

available

to

choose

from:

Secure

Authentication

Service

(SAS)

and

Common

Secure

Chapter

2.

Securing

applications

and

their

environments

343

Interoperability

Version

2

(CSIv2).

SAS

is

the

authentication

protocol

used

by

all

previous

releases

of

WebSphere

Application

Server

and

is

maintained

for

backwards

compatibility.

The

Object

Management

Group

(OMG)

has

defined

a

new

authentication

protocol,

called

CSIv2,

so

that

vendors

can

interoperate

securely.

CSIv2

is

implemented

in

WebSphere

Application

Server

with

more

features

than

SAS

and

is

considered

the

strategic

protocol.

Invoking

EJB

methods

in

a

secure

WebSphere

Application

Server

environment

requires

an

authentication

protocol

to

determine

the

level

of

security

and

the

type

of

authentication,

which

occur

between

any

given

client

and

server

for

each

request.

It

is

the

job

of

the

authentication

protocol

during

a

method

invocation

to

merge

the

server

authentication

requirements

(determined

by

the

object

Interoperable

Object

Reference

(IOR))

with

the

client

authentication

requirements

(determined

by

the

client

configuration)

and

come

up

with

an

authentication

policy

specific

to

that

client

and

server

pair.

The

authentication

policy

makes

the

following

decisions,

among

others,

which

are

all

based

on

the

client

and

server

configurations:

v

What

kind

of

connection

can

you

make

to

this

server--SSL

or

TCP/IP?

v

If

Secure

Sockets

Layer

(SSL)

is

chosen,

how

strong

is

the

encryption

of

the

data?

v

If

SSL

is

chosen,

do

you

authenticate

the

client

using

client

certificates?

v

Do

you

authenticate

the

client

with

a

user

ID

and

password?

Does

an

existing

credential

exist?

v

Do

you

assert

the

client

identity

to

downstream

servers?

v

Given

the

configuration

of

the

client

and

server,

can

a

secure

request

proceed?

You

can

configure

both

protocols

(SAS

and

CSIv2)

to

work

simultaneously.

If

a

server

supports

both

protocols,

it

exports

an

IOR

containing

tagged

components

describing

the

configuration

for

SAS

and

CSIv2.

If

a

client

supports

both

protocols,

it

reads

tagged

components

for

both

CSIv2

and

SAS.

If

the

client

supports

both

and

the

server

supports

both,

CSIv2

is

used.

However,

if

the

server

supports

SAS

(for

example,

it

is

a

previous

WebSphere

Application

Server

release)

and

the

client

supports

both,

the

client

chooses

SAS

for

this

request,

since

the

SAS

protocol

is

what

both

have

in

common.

Choose

a

protocol

by

specifying

the

com.ibm.CSI.protocol

property

on

the

client

side

and

configuring

through

the

administrative

console

on

the

server

side.

More

details

are

included

in

the

SAS

and

CSIv2

properties

articles.

Common

Secure

Interoperability

Specification,

Version

2

The

Common

Secure

Interoperability

Specification,

Version

2

(CSIv2)

defines

the

Security

Attribute

Service

(SAS)

that

enables

interoperable

authentication,

delegation

and

privileges.

The

CSIv2

SAS

and

SAS

protocols

are

entirely

different.

The

CSIv2SAS

protocol

is

a

subcomponent

of

CSIv2

that

supports

SSL

and

interoperability

with

the

EJB

Specification,

Version

2.0.

Security

Attribute

Service

The

Common

Secure

Interoperability

Specification,

Version

2

Security

Attribute

Service

(CSIv2

SAS)

protocol

is

designed

to

exchange

its

protocol

elements

in

the

service

context

of

a

General

Inter-ORB

Protocol

(GIOP)

request

and

reply

messages

that

are

communicated

over

a

connection-based

transport.

The

protocol

is

intended

for

use

in

environments

where

transport

layer

security,

such

as

that

available

through

Secure

Sockets

Layer

(SSL)

and

Transport

Layer

Security

(TLS),

is

used

to

provide

message

protection

(that

is,

integrity

and

or

confidentiality)

and

344

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

server-to-client

authentication.

The

protocol

provides

client

authentication,

delegation,

and

privilege

functionality

that

might

be

applied

to

overcome

corresponding

deficiencies

in

an

underlying

transport.

The

CSIv2

SAS

protocol

facilitates

interoperability

by

serving

as

the

higher-level

protocol

under

which

secure

transports

can

be

unified.

Connection

and

request

interceptors

The

authentication

protocols

used

by

WebSphere

Application

Server

are

add-on

Interoperable

Inter-ORB

Protocol

(IIOP)

services.

IIOP

is

a

request-and-reply

communications

protocol

used

to

send

messages

between

two

Object

Request

Brokers

(ORBs).

For

each

request

made

by

a

client

ORB

to

a

server

ORB,

an

associated

reply

is

made

by

the

server

ORB

back

to

the

client

ORB.

Prior

to

any

request

flowing,

a

connection

between

the

client

ORB

and

the

server

ORB

must

be

established

over

the

TCP/IP

transport

(SSL

is

a

secure

version

of

TCP/IP).

The

client

ORB

invokes

the

authentication

protocol

client

connection

interceptor,

which

is

used

to

read

the

tagged

components

in

the

IOR

of

the

object

located

on

the

server.

As

mentioned

previously,

this

is

where

the

authentication

policy

is

established

for

the

request.

Given

the

authentication

policy

(a

coalescing

of

the

server

configuration

with

the

client

configuration),

the

strength

of

the

connection

is

returned

to

the

ORB.

The

ORB

makes

the

appropriate

connection,

usually

over

SSL.

After

the

connection

is

established,

the

client

ORB

invokes

the

authentication

protocol

client

request

interceptor,

which

is

used

to

send

security

information

other

than

what

is

established

by

the

transport.

The

security

information

includes

the

user

ID

and

password

token

(authenticated

by

the

server),

an

authentication

mechanism-specific

token

(validated

by

the

server),

or

an

identity

assertion

token.

Identity

assertion

is

a

way

for

one

server

to

trust

another

server

without

the

need

to

reauthenticate

or

revalidate

the

originating

client.

However,

some

work

is

required

for

the

server

to

trust

the

upstream

server.

This

additional

security

information

is

sent

with

the

message

in

a

service

context.

A

service

context

has

a

registered

identifier

so

that

the

server

ORB

can

identify

which

protocol

is

sending

the

information.

The

fact

that

a

service

context

contains

a

unique

identity

is

another

way

for

WebSphere

Application

Server

to

support

both

SAS

and

CSIv2

simultaneously

because

both

protocols

have

different

service

context

IDs.

After

the

client

request

interceptor

finishes

adding

the

service

context

to

the

message,

the

message

is

sent

to

the

server

ORB.

When

the

message

is

received

by

the

server

ORB,

the

ORB

invokes

the

authentication

protocol

server

request

interceptor.

This

interceptor

looks

for

the

service

context

ID

known

by

the

protocol.

When

both

SAS

and

CSIv2

are

supported

by

a

server,

two

different

server

request

interceptors

are

invoked

and

both

interceptors

look

for

different

service

context

IDs.

However,

only

one

finds

a

service

context

for

any

given

request.

When

the

server

request

interceptor

finds

a

service

context,

it

reads

the

information

in

the

service

context.

A

method

is

invoked

to

the

security

server

to

authenticate

or

validate

client

identity.

The

security

server

either

rejects

the

information

or

returns

a

credential.

A

credential

contains

additional

information

about

the

client,

retrieved

from

the

user

registry

so

that

authorization

can

make

the

appropriate

decision.

Authorization

is

the

process

of

determining

if

the

user

can

invoke

the

request

based

on

the

roles

applied

to

the

method

and

the

roles

given

to

the

user.

If

the

request

is

rejected

by

the

security

server,

a

reply

is

sent

back

to

the

client

without

ever

invoking

the

business

method.

Chapter

2.

Securing

applications

and

their

environments

345

If

a

service

context

is

not

found

by

the

CSIv2

server

request

interceptor,

the

interceptor

then

looks

at

the

transport

connection

to

see

if

a

client

certificate

chain

was

sent.

This

is

done

when

SSL

client

authentication

is

configured

between

the

client

and

server.

If

a

client

certificate

chain

is

found,

the

distinguished

name

(DN)

is

extracted

from

the

certificate

and

is

used

to

map

to

an

identity

in

the

user

registry.

If

the

user

registry

is

Lightweight

Directory

Access

Protocol

(LDAP),

the

search

filters

defined

in

the

LDAP

registry

configuration

determine

how

the

certificate

maps

to

an

entry

in

the

registry.

If

the

user

registry

is

local

OS,

the

first

attribute

of

the

distinguished

name

(DN)

maps

to

the

user

ID

of

the

registry.

This

attribute

is

typically

the

common

name.

If

the

certificate

does

not

map,

no

credential

is

created

and

the

request

is

rejected.

When

invalid

security

information

is

presented,

the

method

request

is

rejected

and

a

NO_PERMISSION

exception

is

sent

back

with

the

reply.

However,

when

no

security

information

is

presented,

an

unauthenticated

credential

is

created

for

the

request

and

the

authorization

engine

determines

if

the

method

gets

invoked

or

not.

For

an

unauthenticated

credential

to

invoke

an

Enterprise

JavaBean

(EJB)

method,

either

no

security

roles

are

defined

for

the

method

or

a

special

Everyone

role

is

defined

for

the

method.

When

the

method

invocation

is

completed

in

the

EJB

container,

the

server

request

interceptor

is

invoked

again

to

complete

server

authentication

and

a

new

reply

service

context

is

created

to

inform

the

client

request

interceptor

of

the

outcome.

This

process

is

typically

for

making

the

request

stateful.

When

a

stateful

request

is

made,

only

the

first

request

between

a

client

and

server

requires

that

security

information

is

sent.

All

subsequent

method

requests

need

to

send

a

unique

context

ID

only

so

that

the

server

can

look

up

the

credential

stored

in

a

session

table.

The

context

ID

is

unique

within

the

connection

between

a

client

and

server.

Finally,

the

method

request

cycle

is

completed

by

the

client

request

interceptor

receiving

a

reply

from

the

server

with

a

reply

service

context

providing

information

so

the

client

side

stateful

context

ID

can

be

confirmed

and

reused.

Specifying

a

stateful

client

is

done

through

the

property

com.ibm.CSI.performStateful

(true/false).

Specifying

a

stateful

server

is

done

through

the

administrative

console

configuration.

346

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Authentication

policy

for

each

request

The

authentication

policy

of

a

given

request

determines

the

security

protection

between

a

client

and

a

server.

A

client

or

server

authentication

protocol

configuration

can

describe

required

features,

supported

features

and

non-supported

features.

When

a

client

requires

a

feature,

it

can

only

talk

to

servers

that

either

require

or

support

that

feature.

When

a

server

requires

a

feature,

it

can

only

talk

to

clients

that

either

require

or

support

that

feature.

When

a

client

supports

a

feature,

it

can

talk

to

a

server

that

supports

or

requires

that

feature,

but

can

also

talk

to

servers

that

do

not

support

the

feature.

When

a

server

supports

a

feature,

it

can

talk

to

a

client

that

supports

or

requires

the

feature,

but

can

also

talk

to

clients

that

do

not

support

the

feature

(or

chose

not

to

support

the

feature).

For

example,

for

a

client

to

support

client

certificate

authentication,

some

setup

is

required

to

either

generate

a

self-signed

certificate

or

to

get

one

from

a

certificate

authority

(CA).

Some

clients

might

not

need

to

complete

these

actions,

therefore,

you

can

configure

this

feature

as

not

supported.

By

making

this

decision,

the

client

cannot

communicate

with

a

secure

server

requiring

client

certificate

authentication.

Instead,

this

client

can

choose

to

use

the

user

ID

and

password

as

the

method

of

authenticating

itself

to

the

server.

Typically,

supporting

a

feature

is

the

most

common

way

of

configuring

features.

It

is

also

the

most

successful

during

run

time

because

it

is

more

forgiving

than

requiring

a

feature.

Knowing

how

secure

servers

are

configured

in

your

domain,

Authentication protocol flow

Step 1:

Client ORB calls the connection

interceptor to create the connection.

Step 5:

Client ORB calls the request

interceptor to allow the client to

clean up and set the session status

as good or bad.

Client request

interceptor -

receive_reply()

Client connection

interceptor

Client request

interceptor -

send_request()

Server request

interceptor -

receive_request()

Server request

interceptor -

send_reply()

Step 3:

Server ORB calls the request interceptor

to receive the security information,

authenticate, and set the received credential.

Step 4:

Server ORB calls the request interceptor

to allow security to send information back

to the client along with the reply.

Step 2:

Client ORB calls the request

interceptor to get client security

information.

Client ORB Server ORB

Invocation

credential:

user: peter

pass: beans

1

2

Request

Service context

Service context

3

Received

credential:

security

token

45
Reply

User: peter,

Password: beans

foo.getCoffee()

Coffee

Stateful request

valid

Transport connectionfoo.getCoffee() Server enterprise
beans Foo

.

Authentication

protocol

flow

Chapter

2.

Securing

applications

and

their

environments

347

you

can

choose

the

right

combination

for

the

client

to

ensure

successful

method

invocations

and

still

get

the

most

security.

If

you

know

that

all

of

your

servers

support

both

client

certificate

and

user

ID

and

password

authentication

for

the

client,

you

might

want

to

require

one

and

not

support

the

other.

If

both

the

user

ID

and

password

and

the

client

certificate

are

supported

on

the

client

and

server,

both

are

performed

but

user

ID

and

password

take

precedence

at

the

server.

This

action

is

based

on

the

CSIv2

specification

requirements.

Common

Secure

Interoperability

Version

2

features

The

following

Common

Secure

Interoperability

Version

2

(CSIv2)

features

are

available

in

IBM

WebSphere

Application

Server:

SSL

client

certificate

authentication,

message

layer

authentication,

and

identity

assertion.

In

WebSphere

Application

Server,

the

security

attribute

propagation

feature

is

also

available.

v

SSL

Client

Certificate

authentication.

An

additional

way

to

authenticate

a

client

to

a

server

using

SSL

client

authentication.

v

Message

Layer

Authentication.

Authenticates

credential

information

and

sends

that

information

across

the

network

so

that

a

receiving

server

can

interpret

it.

v

Identity

Assertion.

Supports

a

downstream

server

in

accepting

the

client

identity

established

on

an

upstream

server,

without

having

to

reauthenticate.

The

downstream

server

trusts

the

upstream

server.

v

Security

attribute

propagation

Supports

the

use

of

the

authorization

token

to

propagate

serialized

Subject

contents

and

PropagationToken

contents

with

the

request.

You

can

propagate

these

objects

using

a

pure

client

or

a

server

login

that

adds

custom

objects

to

the

Subject.

Propagating

security

attributes

prevents

downstream

logins

from

having

to

make

UserRegistry

calls

to

look

up

these

attributes.

Identity

assertion

Identity

assertion

is

the

invocation

credential

that

is

asserted

to

the

downstream

server.

When

a

client

authenticates

to

a

server,

the

received

credential

is

set.

When

authorization

checks

the

credential

to

determine

whether

access

is

permitted,

it

also

sets

the

invocation

credential

so

that

if

the

EJB

method

calls

another

EJB

method

located

on

other

servers,

the

invocation

credential

can

be

the

identity

used

to

invoke

the

downstream

method.

Depending

on

the

RunAs

mode

for

the

enterprise

beans,

the

invocation

credential

is

set

as

the

originating

client

identity,

the

server

identity,

or

a

specified

different

identity.

Regardless

of

the

identity

that

is

set,

when

identity

assertion

is

enabled,

it

is

the

invocation

credential

that

is

asserted

to

the

downstream

server.

The

invocation

credential

identity

is

sent

to

the

downstream

server

in

an

identity

token.

In

addition,

the

sending

server

identity,

including

the

password

or

token,

is

sent

in

the

client

authentication

token

when

basic

authentication

is

enabled.

The

sending

server

identity

is

sent

through

a

Secure

Sockets

Layer

(SSL)

client

certification

authentication

when

client

certificate

authentication

is

enabled.

Basic

authentication

takes

precedence

over

client

certificate

authentication.

Both

tokens

are

needed

by

the

receiving

server

to

accept

the

asserted

identity.

The

receiving

server

completes

the

following

actions

to

accept

the

asserted

identity:

348

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

v

The

server

determines

whether

the

sending

server

identity,

sent

with

a

basic

authentication

token

or

with

a

SSL

client

certificate,

is

on

the

trusted

principal

list

of

the

receiving

server.

The

server

determines

whether

the

sending

server

can

send

an

identity

token

to

the

receiving

server.

v

After

it

is

determined

that

the

sending

server

is

on

the

trusted

list,

the

server

authenticates

the

sending

server

to

verify

its

identity.

v

The

server

is

authenticated

by

comparing

the

user

ID

and

password

from

the

sending

server

to

the

receiving

server,

or

it

might

require

a

real

authenticated

call.

If

the

credentials

of

the

sending

server

are

authenticated

and

on

the

trusted

principal

list,

then

the

server

proceeds

to

evaluate

the

identity

token.

Evaluation

of

the

identity

token

consists

of

the

following

four

identity

formats

that

exist

in

an

identity

token:

v

Principal

name

v

Distinguished

name

v

Certificate

chain

v

Anonymous

identity

The

product

servers

that

receive

authentication

information

typically

support

all

four

identity

types.

The

sending

server

decides

which

one

is

chosen,

based

on

how

the

original

client

authenticated.

The

existing

type

depends

on

how

the

client

originally

authenticates

to

the

sending

server.

For

example,

if

the

client

uses

Secure

Sockets

Layer

(SSL)

client

authentication

to

authenticate

to

the

sending

server,

then

the

identity

token

sent

to

the

downstream

server

contains

the

certificate

chain.

This

information

is

important

because

it

permits

the

receiving

server

to

perform

its

own

certificate

chain

mapping.

It

enables

more

interoperability

with

other

vendors

and

platforms.

After

the

identity

format

is

understood

and

parsed,

the

identity

maps

to

a

credential.

For

an

ITTPrincipal

identity

token,

this

identity

maps

one-to-one

with

the

user

ID

fields.

For

an

ITTDistinguishedName

identity

token,

the

mapping

depends

on

the

user

registry.

For

Lightweight

Directory

Access

Protocol

(LDAP),

the

configured

search

filter

determines

how

the

mapping

occurs.

For

LocalOS,

the

first

attribute

of

the

distinguished

name

(DN),

which

is

typically

the

same

as

the

common

name,

maps

to

the

user

ID

of

the

registry.

For

an

ITTCertChain

identity

token,

see

the

section,

Map

certificates

to

users

for

details

on

how

this

action

is

performed

for

the

LDAP

user

registry.

For

LocalOS,

the

first

attribute

of

the

DN

in

the

certificate

is

used

to

map

to

the

user

ID

in

the

registry.

Some

user

registry

methods

are

called

to

gather

additional

credential

information

used

by

authorization.

In

a

stateful

server,

this

action

completes

once

for

the

sending

server

and

receiving

server

pair

where

the

identity

tokens

are

the

same.

Subsequent

requests

are

made

through

a

session

ID.

Identity

assertion

is

only

available

using

the

Common

Secure

Interoperability

Version

2

(CSIv2)

protocol.

Message

layer

authentication

Defines

the

credential

information

and

sends

that

information

across

the

network

so

that

a

receiving

server

can

interpret

it.

When

you

send

authentication

information

across

the

network

using

a

token

(whether

the

token

is

a

user

ID

and

password

token,

that

is,

Generic

Security

Services

Username

Password

(GSSUP),

or

a

mechanism-specific

format

token,

Chapter

2.

Securing

applications

and

their

environments

349

Lightweight

Third

Party

Authentication

(LTPA),

for

example),

the

transmission

is

considered

message

layer

authentication

because

the

data

is

sent

along

with

the

message

inside

a

service

context.

A

pure

Java

client

uses

basic

authentication

(GSSUP)

as

the

authentication

mechanism

to

establish

client

identity.

However,

a

servlet

can

use

either

basic

authentication

(GSSUP)

or

the

authentication

mechanism

of

the

server

(LTPA)

to

send

security

information

in

the

message

layer.

Use

LTPA

by

authenticating

or

mapping

the

basic

authentication

credentials

to

the

security

mechanism

of

the

server.

The

security

token

contained

in

a

token-based

credential

is

authentication

mechanism-specific.

That

is,

the

way

the

token

is

interpreted

is

only

known

by

the

authentication

mechanism.

Therefore,

each

authentication

mechanism

has

an

object

ID

(OID)

representing

it.

The

OID

and

the

client

token

are

sent

to

the

server,

so

that

the

server

knows

which

mechanism

to

use

when

reading

and

validating

the

token.

The

following

list

contains

the

OIDs

for

each

mechanism:

BasicAuth

(GSSUP):

oid:2.23.130.1.1.1

LTPA:

oid:1.3.18.0.2.30.2

SWAM:

No

OID

because

it

is

not

forwardable

On

the

server,

the

authentication

mechanisms

can

interpret

the

token

and

create

a

credential,

or

they

can

authenticate

basic

authentication

data

from

the

client,

and

create

a

credential.

Either

way,

the

created

credential

is

the

received

credential

that

the

authorization

check

uses

to

determine

if

the

user

has

access

to

invoke

the

method.

You

can

specify

the

authentication

mechanism

by

using

the

com.ibm.CORBA.authenticationTarget

property

on

the

client

side.

(Basic

authentication

is

currently

the

only

valid

value.)

You

can

configure

the

server

through

the

administrative

console.

While

this

property

tells

you

which

authentication

mechanism

to

use,

you

also

need

to

specify

whether

you

want

to

perform

authentication

over

the

message

layer

(that

is,

get

a

BasicAuth

or

token-based

credential).

To

complete

this

task,

specify

the

com.ibm.CSI.performClientAuthenticationRequired

(True

or

False)

and

com.ibm.CSI.performClientAuthenticationSupported

(True

or

False)

properties.

Indicating

that

client

authentication

is

required

implies

that

it

must

be

done

for

every

request.

Indicating

that

the

authentication

mechanism

is

supported

implies

that

it

might

be

done

but

is

not

required.

For

some

servers,

this

option

is

appropriate

if

no

resources

are

protected.

In

most

cases

it

is

a

best

practice

to

indicate

that

this

mechanism

is

supported

so

that

client

authentication

is

performed

if

both

the

client

and

server

support

it.

Client

authentication

it

is

not

performed

when

communicating

with

certain

servers

that

do

not

want

security,

yet

the

method

requests

still

succeed.

Configuring

authentication

retries

Situations

occur

where

you

want

a

prompt

to

reappear

if

you

entered

your

user

ID

and

password

incorrectly

or

you

want

a

method

to

retry

when

a

particular

error

occurs

back

at

the

client.

If

you

can

correct

the

error

by

information

at

the

client

side,

the

system

automatically

performs

a

retry

without

the

client

seeing

the

failure,

if

the

system

is

configured

appropriately.

Some

of

these

errors

include:

v

Entering

an

invalid

user

ID

and

password

v

Having

an

expired

credential

on

the

server

350

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

v

Failing

to

find

the

stateful

session

on

the

server

By

default,

authentication

retries

are

enabled

and

perform

three

retries

before

returning

the

error

to

the

client.

The

property

used

to

enable

or

disable

authentication

retries

is

com.ibm.CORBA.authenticationRetryEnabled

(True

or

False).

The

property

used

to

specify

the

number

of

retry

attempts

is

com.ibm.CORBA.authenticationRetryCount.

Immediate

validating

of

a

basic

authentication

login

In

WebSphere

Application

Server

Version

5,

a

new

behavior

is

defined

during

request_login

for

a

BasicAuth

login.

In

prior

releases,

a

BasicAuth

login

takes

the

user

ID

and

password

entered

through

the

loginSource

method

and

creates

a

BasicAuth

credential.

If

the

user

ID

or

password

is

invalid,

the

client

program

does

not

find

out

until

the

first

method

request

is

attempted.

When

the

user

ID

or

password

is

specified

during

a

prompt

or

programmatic

login,

the

user

ID

and

password

are

authenticated

by

default

with

the

security

server,

with

a

True

or

False

being

returned

as

the

result.

If

False,

an

org.omg.SecurityLevel2.LoginFailed

exception

is

returned

to

the

client

indicating

the

user

ID

and

password

are

invalid.

If

True,

then

the

BasicAuth

credential

is

returned

to

the

caller

of

the

request_login.

To

disable

this

feature

on

the

pure

client,

specify

com.ibm.CORBA.validateBasicAuth=false.

By

default

this

feature

is

set

to

True.

On

the

server

side,

specify

this

property

in

the

security

dynamic

properties.

Secure

Sockets

Layer

client

certificate

authentication

An

additional

way

to

authenticate

a

client

to

a

server

is

using

Secure

Sockets

Layer

(SSL)

client

authentication.

Using

SSL

client

authentication

is

another

way

of

authenticating

a

client

to

a

server.

This

form

of

authentication

does

not

occur

at

the

message

layer

as

described

previously

(using

a

user

ID

and

password

or

tokens).

This

authentication

occurs

during

the

connection

handshake

using

SSL

certificates.

When

the

client

is

configured

with

a

personal

certificate

in

the

SSL

keystore

file,

which

indicates

that

SSL

client

authentication

is

desired

and

the

server

supports

SSL

client

authentication,

the

following

actions

occur

to

establish

the

identity

on

the

client

side.

Using

SSL

client

authentication

is

another

way

of

authenticating

a

client

to

a

server.

This

form

of

authentication

does

not

occur

at

the

message

layer

as

described

previously

(using

a

user

ID

and

password

or

tokens).

This

authentication

occurs

during

the

connection

handshake

using

SSL

certificates.

When

the

client

is

configured

with

a

personal

certificate

in

the

SSL

keystore

or

keyring

file,

which

indicates

that

SSL

client

authentication

is

desired

and

the

server

supports

SSL

client

authentication,

the

following

actions

occur

to

establish

the

identity

on

the

client

side.

When

a

method

request

is

invoked

in

the

client

code

to

a

remote

enterprise

bean,

the

Object

Request

Broker

(ORB)

invokes

the

client

connection

interceptor

to

establish

a

connection

with

the

server.

Because

the

configuration

specifies

SSL,

and

SSL

client

authentication,

the

connection

type

is

SSL

and

the

SSL

handshake

sends

the

client

certificate

to

the

server

to

validate.

If

the

client

certificate

does

not

validate,

the

connection

is

not

established

and

an

exception

is

sent

back

to

the

client

code

where

the

method

is

invoked,

which

indicates

the

failure.

If

the

client

certificate

is

validated,

then

a

connection

opens

between

the

client

and

the

server.

Chapter

2.

Securing

applications

and

their

environments

351

The

ORB

proceeds

to

call

the

client

request

interceptor,

which

might

be

busy.

If

basic

authentication

is

also

configured,

for

example,

then

the

user

might

be

prompted

for

a

user

ID

and

password.

Because

this

action

is

not

necessary,

disable

this

option

in

the

configuration

if

the

SSL

certificate

is

the

desired

identity

against

which

to

invoke

the

method.

If

no

message

layer

security

exists,

then

no

security

context

is

created

and

associated

with

the

request.

After

the

server

receives

the

request,

the

server-side

request

interceptor

checks

for

a

security

context.

Because

the

server

does

not

find

a

service

context,

it

checks

the

server

socket

for

a

client

certificate

chain

that

contains

the

client

identity.

In

this

case,

the

server

finds

the

certificate

chain

from

the

client.

The

identity

in

the

certificate

chain

is

valid

because

the

connection

was

made.

To

create

a

credential,

map

the

identity

from

the

certificate

to

the

user

registry.

This

action

is

done

differently

based

on

the

type

of

authentication

mechanism.

Mapping

a

certificate

to

a

credential

is

done

differently

based

on

the

user

registry

type.

See

the,

Map

certificates

to

users

article,

for

details

on

how

this

mapping

is

performed

for

the

Lightweight

Directory

Access

Protocol

(LDAP)

user

registry.

For

local

OS,

the

first

attribute

of

the

distinguished

name

(DN)

in

the

certificate

is

used

to

map

to

the

user

ID

in

the

registry.

One

benefit

of

SSL

client

certificate

authentication

is

that

it

optimizes

authentication

performance,

because

an

SSL

connection

is

typically

created

anyway.

The

extra

overhead

of

sending

the

client

certificate

is

minimal.

While

the

client-side

request

interceptor

performs

no

activity,

the

server

side

request

interceptor

maps

the

certificate

to

a

credential.

One

disadvantage

to

this

type

of

authentication

is

the

complexity

of

setting

up

the

keystore

file

on

each

client

system.

To

enable

SSL

client

certificate

authentication

on

the

client

side,

you

must

enable

the

properties,

such

as

SSL.

This

action

is

completed

using

the

following

two

properties:

v

com.ibm.CSI.performTransportAssocSSLTLSRequired

(true

or

false)

v

com.ibm.CSI.performTransportAssocSSLTLSSupported

(true

or

false)

Indicating

SSL

is

required

implies

that

every

request

must

generate

an

SSL

connection

key.

If

a

server

does

not

support

SSL,

then

the

request

fails.

After

you

enable

SSL

by

either

supporting

it

or

requiring

it,

you

can

enable

some

of

the

SSL

features.

To

enable

SSL

client

authentication,

you

can

specify

the

following

two

properties:

v

com.ibm.CSI.performTLClientAuthenticationRequired

(true

or

false)

v

com.ibm.CSI.performTLClientAuthenticationSupported

(true

or

false)

The

TL

means

transport

layer.

If

you

indicate

that

SSL

client

authentication

is

required,

then

you

only

limit

the

ability

to

communicate

with

servers

that

support

SSL

client

authentication.

For

a

server

to

support

SSL

client

authentication,

that

server

must

have

similarly

configured

properties

through

the

administrative

console,

and

have

an

SSL

listener

port

that

is

open

to

handle

mutual

authentication

handshakes.

Configuration

of

server

properties

are

done

through

the

administrative

console.

SSL

client

certificate

authentication

from

a

Java

client

is

only

available

using

the

Common

Secure

Interoperability

Version

2

(CSIv2)

protocol.

352

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Supported

IBM

protocols:

Secure

Authentication

Service

and

Common

Secure

Interoperability

Version

2

There

are

two

authentication

protocols

supported

by

IBM.

Secure

Authentication

Service

(SAS)

(z/SAS

on

the

z/OS

platform)

is

the

authentication

protocol

used

by

all

previous

releases

of

the

WebSphere

Application

Server

product.

Common

Secure

Interoperability

Version

2

(CSIv2)

is

implemented

in

WebSphere

Application

Server,

Version

5

and

is

considered

the

strategic

protocol.

You

can

configure

both

protocols

to

work

simultaneously.

If

a

server

supports

both

protocols,

it

exports

an

IOR

containing

tagged

components

describing

the

configuration

for

SAS

and

CSIv2.

If

a

client

supports

both

protocols,

it

reads

tagged

components

for

both

CSIv2

and

SAS.

If

the

client

and

the

server

support

both

protocols,

CSIv2

is

used.

However,

if

the

server

supports

SAS

(for

example,

it

is

a

previous

WebSphere

Application

Server

release)

and

the

client

supports

both

protocols,

the

client

chooses

SAS

for

this

request.

Choose

a

protocol

using

the

com.ibm.CSI.protocol

property

on

the

client

side

and

configure

this

protocol

through

the

GUI

on

the

server

side.

You

can

configure

both

protocols

to

work

simultaneously.

If

a

server

supports

both

protocols,

it

exports

an

IOR

containing

tagged

components

describing

the

configuration

for

z/SAS

and

CSIv2.

If

a

client

supports

both

protocols,

it

reads

tagged

components

for

both

CSIv2

and

z/SAS.

If

the

client

and

the

server

support

both

protocols,

CSIv2

is

used.

However,

if

the

server

supports

z/SAS

(for

example,

it

is

a

previous

WebSphere

Application

Server

release)

and

the

client

supports

both

protocols,

the

client

chooses

z/SAS

for

this

request.

CSIv2

is

considered

enabled

on

the

client

with

the

existence

of

the

com.ibm.CORBA.ConfigURL

java

property.

If

the

property

is

not

specified

or

the

property

does

not

exist,

CSIv2

is

not

enabled.

Configuring

Common

Secure

Interoperability

Version

2

and

Security

Authentication

Service

authentication

protocols

1.

Determine

how

to

configure

security

inbound

and

outbound

at

each

point

in

your

infrastructure.

For

example,

you

might

have

a

Java

client

communicating

with

an

Enterprise

JavaBean

(EJB)

application

server,

which

in

turn

communicates

to

a

downstream

EJB

application

server.

The

Java

client

utilizes

the

sas.client.props

file

to

configure

outbound

security

(pure

clients

only

need

to

configure

outbound

security).

The

upstream

EJB

application

server

configures

inbound

security

to

handle

the

right

type

of

authentication

from

the

Java

client.

The

upstream

EJB

application

server

utilizes

the

outbound

security

configuration

when

going

to

the

downstream

EJB

application

server.

This

type

of

authentication

might

be

different

than

what

you

expect

from

the

Java

client

into

the

upstream

EJB

application

server.

Security

might

be

tighter

between

the

pure

client

and

the

first

EJB

server,

depending

on

your

infrastructure.

The

downstream

EJB

server

utilizes

the

inbound

security

configuration

to

accept

requests

from

the

upstream

EJB

server.

These

two

servers

require

similar

configuration

options

as

well.

If

the

downstream

EJB

application

server

communicates

to

other

downstream

servers,

then

the

outbound

security

might

require

a

special

configuration.

2.

Specify

the

type

of

authentication.

By

default,

authentication

using

a

user

ID

and

password

is

performed.

Both

Java

client

certificate

authentication

and

identity

assertion

are

disabled

by

default.

If

you

want

this

type

of

basic

authentication

performed

at

every

tier,

use

the

CSIv2

authentication

protocol

configuration

as

is.

However,

if

you

have

any

special

requirements

where

some

Chapter

2.

Securing

applications

and

their

environments

353

servers

authenticate

differently

from

other

servers,

then

consider

how

to

configure

CSIv2

to

take

advantage

of

its

features.

3.

Configure

clients

and

servers.

Configuring

a

pure

Java

client

is

done

through

the

sas.client.props

file

where

properties

are

modified.

Configuring

servers

is

always

done

from

the

administrative

console,

either

from

the

Security

navigation

for

cell-level

configurations

or

from

the

application

server

Server

security

for

server-level

configurations.

If

you

want

some

servers

to

authenticate

differently

from

others,

modify

some

of

the

server

level

configurations.

When

you

modify

the

server-level

configurations,

you

are

overriding

the

cell-level

configurations.

Common

Secure

Interoperability

Version

2

and

Security

Authentication

Service

client

configuration

A

secure

Java

client

requires

configuration

properties

to

determine

how

to

perform

security

with

a

server.

These

configuration

properties

are

typically

put

into

a

properties

file

somewhere

on

the

client

machine

and

referenced

by

specifying

the

following

system

property

on

the

command

line

of

the

Java

client.

The

syntax

of

this

property

accepts

a

valid

URL

with

the

protocol

type,

file.

-Dcom.ibm.CORBA.ConfigURL=file:/C:/WebSphere/AppServer/properties/sas.client.props

A

secure

Java

client

requires

configuration

properties

to

determine

how

to

perform

security

with

a

server.

These

configuration

properties

are

typically

put

into

a

properties

file

somewhere

on

the

client

system

and

referenced

by

specifying

the

following

system

property

on

the

command

line

of

the

Java

client.

The

syntax

of

this

property

accepts

a

valid

URL

with

the

protocol

type,

file.

-Dcom.ibm.CORBA.ConfigURL=file:/WebSphere/V5R0M0/AppServer/sas.client.props

When

this

file

is

processed

by

the

object

request

broker

(ORB),

security

can

be

enabled

between

the

Java

client

and

the

target

server.

If

any

syntax

problems

exist

with

the

ConfigURL

property

and

the

sas.client.props

file

is

not

found,

the

Java

client

proceeds

to

connect

insecurely.

Errors

display

indicating

the

failure

to

read

the

ConfigURL

property.

Typically

the

problem

is

related

to

having

two

slashes

after

file,

which

is

invalid.

When

this

file

is

processed

by

the

object

request

broker

(ORB),

security

can

be

enabled

between

the

Java

client

and

the

target

server.

If

there

are

any

problems

with

the

client

properties

file

or

there

is

no

match

with

the

server

security,

the

Java

client

examines

the

server

securities

for

non-Common

Secure

Interoperability

Version

2

(CSIv2)

securities

that

might

be

available.

If

there

is

no

match

with

the

old,

non-CSIv2

securities

either,

the

Java

client

attempts

a

nonsecure

connection.

The

following

properties

are

used

to

configure

the

SAS

and

CSIv2

authentication

protocols:

v

“Security

Authentication

Service

and

Common

Secure

Interoperability

Version

2

authentication

protocol

common

settings

for

a

client

configuration”

on

page

355

v

“CSIv2

authentication

protocol

client

settings”

on

page

358

v

“Security

Authentication

Service

Authentication

Protocol

client

settings”

on

page

361

The

following

properties

are

used

to

configure

the

CSIv2

authentication

protocol:

v

“Security

Authentication

Service

and

Common

Secure

Interoperability

Version

2

authentication

protocol

common

settings

for

a

client

configuration”

on

page

355

v

“CSIv2

authentication

protocol

client

settings”

on

page

358

354

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Security

Authentication

Service

and

Common

Secure

Interoperability

Version

2

authentication

protocol

common

settings

for

a

client

configuration:

Use

the

following

settings

in

the

install_dir\properties\sas.client.props

file

to

configure

Security

Authentication

Service

(SAS)

and

Common

Secure

Interoperability

Version

2

(CSIv2)

clients.

com.ibm.CORBA.securityEnabled:

Use

to

determine

if

security

is

enabled

for

the

client

process.

Data

type:

Boolean

Default:

True

Valid

values:

True

or

False

com.ibm.CSI.protocol:

Use

to

determine

which

authentication

protocols

are

active.

The

client

can

configure

protocols

of

ibm,

csiv2

or

both

as

active.

The

only

possible

values

for

an

authentication

protocol

are

ibm,

csiv2

and

both.

Do

not

use

sas

for

the

value

of

an

authentication

protocol.

This

restriction

applies

to

both

client

and

server

configurations.

The

following

list

provides

information

about

using

each

of

these

protocol

options:

ibm

Use

this

authentication

protocol

option

when

you

are

communicating

with

WebSphere

Application

Server

version

4.x

or

previous

version

servers.

csiv2

Use

this

authentication

protocol

option

when

you

are

communicating

with

WebSphere

Application

Server

Version

5

or

later

servers

because

the

SAS

interceptors

are

not

loaded

and

running

for

each

method

request.

both

Use

this

authentication

protocol

option

for

interoperability

between

WebSphere

Application

Server

Version

4.x

or

previous

version

servers

and

WebSphere

Application

Server

Version

5

or

later

servers.

Typically,

specifying

both

provides

greater

interoperability

with

other

servers.

Data

type:

String

Default:

Both

Valid

values:

ibm,

csiv2,

both

com.ibm.CORBA.authenticationTarget:

Use

to

determine

the

type

of

authentication

mechanism

for

sending

security

information

from

the

client

to

the

server.

If

basic

authentication

is

specified,

the

user

ID

and

password

are

sent

to

the

server.

Using

the

SSL

transport

with

this

type

of

authentication

is

recommended

because

otherwise

the

password

is

not

encrypted.

The

target

server

must

support

the

specified

authenticationTarget.

If

you

specify

Lightweight

Third

Party

Authentication

(LTPA),

then

LTPA

must

be

the

mechanism

configured

at

the

server

for

a

method

request

to

proceed

securely.

Data

type:

String

Default:

BasicAuth

Valid

values:

BasicAuth,

LTPA

Chapter

2.

Securing

applications

and

their

environments

355

com.ibm.CORBA.validateBasicAuth:

Use

to

determine

if

the

user

ID

and

password

get

validated

immediately

after

the

login

data

is

entered

when

the

authenticationTarget

property

is

set

to

BasicAuth.

In

past

releases,

BasicAuth

logins

only

validated

with

the

initial

method

request.

During

the

first

request,

the

user

ID

and

password

is

sent

to

the

server.

This

is

the

first

time

that

the

client

can

notice

an

error,

if

the

user

ID

or

password

is

incorrect.

The

validateBasicAuth

method

is

specified

and

the

validation

of

the

user

ID

and

password

occurs

immediately

to

the

security

server.

For

performance

reasons,

you

might

want

to

disable

this

property

if

it

is

not

desirable

to

verify

the

user

ID

and

password

immediately.

If

the

client

program

can

wait,

it

is

better

to

have

the

initial

method

request

flow

to

the

user

ID

and

password.

However,

program

logic

might

not

be

as

simple

because

of

error

handling

considerations.

Data

type:

Boolean

Default:

True

Valid

values:

True

or

False

com.ibm.CORBA.authenticationRetryEnabled:

Use

to

specify

that

a

failed

login

attempt

is

retried.

This

property

determines

if

a

retry

occurs

for

other

errors,

such

as

stateful

sessions

that

are

not

found

on

a

server

or

validation

failures

at

the

server

because

of

an

expiring

credential.

The

minor

code

in

the

exception

that

is

returned

to

a

client

determines

which

errors

are

retried.

The

number

of

retry

attempts

is

dependent

upon

the

property

com.ibm.CORBA.authenticationRetryCount.

Data

type:

Boolean

Default:

True

Valid

values:

True

or

False

com.ibm.CORBA.authenticationRetryCount:

Use

to

specify

the

number

of

retries

that

occur

until

either

a

successful

authentication

occurs

or

the

maximum

retry

value

is

reached.

When

the

maximum

retry

value

is

reached,

the

authentication

exception

is

returned

to

the

client.

Data

type:

Integer

Default:

3

Range:

1-10

com.ibm.CORBA.loginSource:

Use

to

specify

how

the

request

interceptor

attempts

to

log

in

if

it

does

not

find

an

invocation

credential

already

set.

356

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

This

property

is

only

valid

if

message

layer

authentication

occurs.

If

only

transport

layer

authentication

occurs,

this

property

is

ignored.

When

specifying

properties,

the

following

two

additional

properties

need

to

be

defined:

v

com.ibm.CORBA.loginUserid

v

com.ibm.CORBA.loginPassword

When

performing

a

programmatic

login,

it

is

not

necessary

to

specify

none

as

the

login

source.

Unless

you

want

the

request

to

fail,

do

not

set

a

credential

as

the

invocation

credential

during

a

method

request.

Data

type:

String

Default:

Prompt

Valid

values:

prompt,

key

file,

stdin,

none,

properties

com.ibm.CORBA.loginUserid:

Use

to

specify

the

user

ID

when

a

properties

login

is

configured

and

message

layer

authentication

occurs.

This

property

is

only

valid

when

com.ibm.CORBA.loginSource=properties.

Also,

set

the

com.ibm.CORBA.loginPassword

property.

Data

type:

String

Range:

Any

string

appropriate

for

a

user

ID

in

the

configured

user

registry

of

the

server.

com.ibm.CORBA.loginPassword:

Use

to

specify

the

password

when

a

properties

login

is

configured

and

message

layer

authentication

occurs.

This

property

is

only

valid

when

com.ibm.CORBA.loginSource=properties.

Also,

set

the

com.ibm.CORBA.loginUserid

property.

Data

type:

String

Range:

Any

string

appropriate

for

a

password

in

the

configured

user

registry

of

the

server

com.ibm.CORBA.keyFileName:

Use

to

specify

the

key

file

that

is

used

to

log

in.

A

key

file

is

a

file

that

contains

a

list

of

realm,

user

ID,

and

password

combinations

that

a

client

uses

to

log

into

multiple

realms.

The

realm

used

is

the

one

found

in

the

Interoperable

Object

Reference

(IOR)

for

the

current

method

request.

The

value

of

this

property

is

used

when

com.ibm.CORBA.loginSource=key

file

is

used.

Data

type:

String

Default:

C:/WebSphere/AppServer/properties/wsserver.key

Range:

Any

fully

qualified

path

and

file

name

of

a

WebSphere

Application

Server

key

file

com.ibm.CORBA.loginTimeout:

Chapter

2.

Securing

applications

and

their

environments

357

Use

to

specify

the

length

in

time

that

the

login

prompt

stays

available

before

it

is

considered

a

failed

login.

Data

type:

Integer

Units:

Seconds

Default:

300

(5

minute

intervals)

Range:

0

-

600

(10

minute

intervals)

CSIv2

authentication

protocol

client

settings:

In

addition

to

the

properties

that

are

valid

for

both

Security

Authentication

Service

(SAS)

and

Common

Secure

Interoperability

Version

2

(CSIv2),

this

page

documents

the

properties

that

are

valid

for

the

CSIv2

protocol

only.

com.ibm.CSI.performStateful:

Used

to

determine

if

the

CSIv2

protocol

maintains

stateful

sessions

between

a

client

and

server

after

the

initial

secure

association

(authentication

between

a

particular

client

and

server).

For

performance

reasons,

it

is

beneficial

to

enable

this

property.

Considerations

for

disabling

this

property

include

troubleshooting

an

authentication

protocol

session-related

problem.

Data

type:

Boolean

Default:

True

Range:

True

or

False

com.ibm.CSI.performClientAuthenticationSupported:

Use

to

determine

if

message

layer

client

authentication

is

supported.

When

supported,

message

layer

client

authentication

is

performed

when

communicating

with

any

server

that

supports

or

requires

the

authentication.

Message

layer

client

authentication

involves

transmitting

either

a

user

ID

and

password

or

a

token

from

an

already

authenticated

credential.

If

the

authenticationTarget

property

is

BasicAuth,

the

user

ID

and

password

are

transmitted

to

the

target

server.

If

the

authenticationTarget

password

is

a

token-based

mechanism

such

as

Lightweight

Third

Party

Authentication

(LTPA)

or

Kerberos,

then

the

credential

token

is

transmitted

to

the

server

after

authenticating

the

user

ID

and

password

directly

to

the

security

server.

Data

type:

Boolean

Default:

True

Range:

True

or

False

com.ibm.CSI.performClientAuthenticationRequired:

Use

to

determine

if

message

layer

client

authentication

is

required.

When

required,

message

layer

client

authentication

must

occur

when

communicating

with

any

server.

If

transport

layer

client

authentication

is

also

enabled,

both

authentications

are

performed,

but

message

layer

client

authentication

takes

precedence

at

the

server.

358

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Data

type:

Boolean

Default:

True

Range:

True

or

False

com.ibm.CSI.performTransportAssocSSLTLSSupported:

Use

to

determine

if

Secure

Sockets

Layer

(SSL)

is

supported.

When

SSL

is

supported,

this

client

causes

either

SSL

or

TCP/IP

to

communicate

with

a

server.

If

SSL

is

not

supported,

then

the

client

must

communicate

over

TCP/IP

to

the

server.

Supporting

SSL

is

recommended

so

that

any

sensitive

information

is

encrypted

and

digitally

signed.

When

the

associated

com.ibm.CSI.performTransportAssocSSLTLSRequired

property

is

enabled

(set

to

true),

this

property

is

ignored.

In

this

case,

SSL

is

always

required.

Data

type:

Boolean

Default:

True

Range:

True

or

False

com.ibm.CSI.performTransportAssocSSLTLSRequired:

Use

to

determine

if

SSL

is

required.

When

SSL

is

required,

this

client

must

use

SSL

to

communicate

to

a

server.

If

SSL

is

not

supported

by

a

server,

this

client

does

not

attempt

a

connection

to

that

server.

When

this

property

is

enabled,

the

associated

com.ibm.CSI.performTransportAssocSSLTLSSupported

property

is

ignored.

Data

type:

Boolean

Default:

True

Range:

True

or

False

com.ibm.CSI.performTLClientAuthenticationSupported:

Use

to

determine

if

transport

layer

client

authentication

is

supported.

When

performing

client

authentication

using

SSL,

the

client

key

file

must

have

a

personal

certificate

configured.

Without

a

personal

certificate,

the

client

cannot

authenticate

to

the

server

over

SSL.

If

the

personal

certificate

is

a

self-signed

certificate,

the

server

must

contain

the

public

key

of

the

client

in

the

server

trust

file.

If

the

personal

certificate

is

a

Certificate

Authority

(CA)

granted

certificate,

the

server

must

contain

the

root

public

key

of

the

CA

in

the

server

trust

file.

This

property

is

only

valid

when

SSL

is

supported

or

required.

If

the

associated

com.ibm.CSI.performTLClientAuthenticationRequired

property

is

enabled,

this

property

is

ignored.

Data

type:

Boolean

Default:

True

Range:

True

or

False

com.ibm.CSI.performTLClientAuthenticationRequired:

Use

to

determine

if

transport

layer

client

authentication

is

required.

Chapter

2.

Securing

applications

and

their

environments

359

If

required,

every

secure

socket

opened

between

a

client

and

server

authenticates

using

SSL

mutual

authentication.

When

performing

client

authentication

using

SSL,

the

client

key

file

must

have

a

personal

certificate

configured.

Without

a

personal

certificate,

the

client

cannot

authenticate

to

the

server

over

SSL.

If

the

personal

certificate

is

a

self-signed

certificate,

the

server

must

contain

the

public

key

of

the

client

in

the

server

trust

file.

If

the

personal

certificate

is

a

certificate

authority

(CA)

granted

certificate,

the

server

must

contain

the

root

public

key

of

the

CA

in

the

server

trust

file.

When

this

property

is

specified,

the

associated

com.ibm.CSI.performTLClientAuthenticationSupported

property

is

ignored.

Data

type:

Boolean

Default:

True

Range:

True

or

False

com.ibm.CSI.performMessageConfidentialitySupported:

Use

to

determine

if

128-bit

ciphers

are

supported

to

make

SSL

connections.

If

a

target

server

does

not

support

128-bit

ciphers,

you

can

make

a

connection

at

a

lower

encryption

strength.

This

property

is

only

valid

when

SSL

is

enabled.

Data

type:

Boolean

Default:

True

Range:

True

or

False

com.ibm.CSI.performMessageConfidentialityRequired:

Use

to

determine

if

128-bit

ciphers

must

be

used

to

make

SSL

connections.

If

a

target

server

does

not

support

128-bit

ciphers,

a

connection

to

that

server

fails.

This

property

is

only

valid

when

SSL

is

enabled.

When

this

property

is

enabled,

the

associated

com.ibm.CSI.performMessageConfidentialitySupported

property

is

ignored.

Data

type:

Boolean

Default:

True

Range:

True

or

False

com.ibm.CSI.performMessageIntegritySupported:

Use

to

determine

if

40-bit

ciphers

are

supported

to

make

SSL

connections.

If

a

target

server

does

not

support

40-bit

ciphers,

you

can

make

a

connection

using

only

digital

signing

ciphers.

This

property

is

only

valid

when

SSL

is

enabled.

This

property

is

ignored

if

the

associated

com.ibm.CSI.performMessageIntegrityRequired

property

is

enabled.

Data

type:

Boolean

Default:

True

Range:

True

or

False

com.ibm.CSI.performMessageIntegrityRequired:

360

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Use

to

determine

if

40-bit

ciphers

must

be

used

to

make

SSL

connections.

If

a

target

server

does

not

support

40-bit

ciphers,

a

connection

to

that

server

fails.

This

property

is

only

valid

when

SSL

is

enabled.

When

this

property

is

enabled,

the

associated

com.ibm.CSI.performMessageIntegritySupported

property

is

ignored.

Data

type:

Boolean

Default:

True

Range:

True

or

False

com.ibm.CSI.rmiOutboundPropagationEnabled:

Enables

the

propagation

of

custom

objects

that

are

added

to

the

Subject.

On

a

pure

client,

add

this

property

to

the

sas.client.props

file.

For

more

information,

see

″Security

Attribute

Propagation″.

Security

Authentication

Service

Authentication

Protocol

client

settings:

In

addition

to

those

properties

which

are

valid

for

both

Security

Authentication

Service

(SAS)

and

Common

Secure

Interoperability

Version

2

(CSIv2),

this

article

documents

properties

which

are

valid

only

for

the

SAS

authentication

protocol.

com.ibm.CORBA.standardPerformQOPModels:

Specifies

the

strength

of

the

ciphers

when

making

an

SSL

connection.

Data

type:

String

Default:

High

Range

Low,

Medium,

High

Configuring

Common

Secure

Interoperability

Version

2

inbound

authentication

Inbound

authentication

refers

to

the

configuration

that

determines

the

type

of

accepted

authentication

for

inbound

requests.

This

authentication

is

advertised

in

the

Interoperable

Object

Reference

(IOR)

that

the

client

retrieves

from

the

name

server.

1.

Start

the

administrative

console.

Click

Security

>

Authentication

Protocol

>

CSI

Inbound

Authentication.

2.

Consider

the

following

three

layers

of

security:

v

Identity

assertion

(attribute

layer).

When

selected,

this

server

accepts

identity

tokens

from

upstream

servers.

If

the

server

receives

an

identity

token,

the

identity

is

taken

from

an

originating

client.

For

example,

the

identity

is

in

the

same

form

that

the

originating

client

presented

to

the

first

server.

An

upstream

server

sends

the

identity

of

the

originating

client.

The

format

of

the

identity

can

be

either

a

principal

name,

a

distinguished

name,

or

a

certificate

chain.

In

some

cases,

the

identity

is

anonymous.

It

is

important

to

trust

the

upstream

server

that

sends

the

identity

token

because

the

identity

is

authenticating

on

this

server.

Trust

of

the

upstream

server

is

established

either

using

Secure

Sockets

Layer

(SSL)

client

certificate

authentication

or

basic

authentication.

You

must

select

one

of

the

two

layers

of

authentication

in

both

inbound

and

outbound

authentication

when

you

choose

identity

assertion.

The

server

ID

is

sent

in

the

client

authentication

token

with

the

identity

token.

The

server

ID

is

checked

against

the

trusted

server

ID

list.

If

the

server

ID

is

on

the

trusted

Chapter

2.

Securing

applications

and

their

environments

361

server

list,

the

server

ID

is

authenticated.

If

the

server

ID

is

valid,

then

the

identity

token

identity

is

put

into

a

credential

and

used

for

authorization

of

the

request.

v

User

ID

and

password

(message

layer).

This

type

of

authentication

is

the

most

typical.

The

user

ID

and

password

or

authenticated

token

is

sent

from

a

pure

client

or

from

an

upstream

server.

However,

the

upstream

server

can

not

be

a

z/OS

server

because

z/OS

does

not

support

a

user

ID

or

password

from

a

server

acting

as

a

client.

Usually,

a

token

is

sent

from

an

upstream

server

and

a

user

ID

and

password

are

sent

from

a

client

(including

a

servlet).

When

a

user

ID

and

password

are

received

at

the

server,

they

are

authenticated

with

the

user

registry.

When

a

token

is

received

at

the

server

level,

the

token

is

validated

to

determine

whether

it

has

been

tampered

with

or

has

expired.

v

Secure

Sockets

Layer

client

certificate

authentication

(transport

layer).

This

type

of

authentication

typically

occurs

from

pure

clients

using

the

certificate

identity

and

from

servers

trusting

the

upstream

server.

Usually,

when

a

server

delegates

an

identity

to

a

downstream

server,

the

identity

comes

from

either

the

message

layer

(a

client

authentication

token)

or

the

attribute

layer

(an

identity

token),

not

from

the

transport

layer,

through

the

client

certificate

authentication.

A

client

has

an

SSL

client

certificate

stored

in

the

keystore

file

of

the

client

configuration.

When

SSL

client

authentication

is

enabled

on

this

server,

the

server

requests

that

the

client

send

the

SSL

client

certificate

when

the

connection

is

established.

The

certificate

chain

is

available

on

the

socket

whenever

a

request

is

sent

to

the

server.

The

server

request

interceptor

gets

the

certificate

chain

from

the

socket

and

maps

this

certificate

chain

to

a

user

in

the

registry.

This

type

of

authentication

is

optimal

for

communicating

directly

from

a

client

to

a

server.

However,

when

you

have

to

go

downstream,

the

identity

typically

flows

over

the

message

layer

or

through

identity

assertion.
3.

Consider

the

following

points

when

deciding

what

type

of

authentication

to

accept:

v

A

server

can

receive

multiple

layers

simultaneously,

so

an

order

of

precedence

rule

decides

which

identity

to

use.

The

identity

assertion

layer

has

the

highest

priority,

the

message

layer

follows,

and

the

transport

layer

has

the

lowest

priority.

The

SSL

client

certificate

authentication

is

used

when

it

is

the

only

layer

provided.

If

the

message

layer

and

the

transport

layer

are

provided,

the

message

layer

is

used

to

establish

the

identity

for

authorization.

The

identity

assertion

layer

is

used

to

establish

precedence

when

provided.

v

Does

this

server

usually

receive

requests

from

a

client,

from

a

server

or

both?

If

the

server

always

receives

requests

from

a

client,

identity

assertion

is

not

needed.

You

can

then

choose

either

the

message

layer,

the

transport

layer,

or

both.

You

also

can

decide

when

authentication

is

required

or

just

supported.

To

select

a

layer

as

required,

the

sending

client

must

supply

this

layer,

or

the

request

is

rejected.

However,

if

the

layer

is

only

supported,

the

layer

might

not

be

supplied.

v

What

kind

of

client

identity

is

supplied?

If

the

client

identity

is

client

certificates

authentication

and

you

want

the

certificate

chain

to

flow

downstream

so

that

it

maps

to

the

downstream

server

user

registries,

then

identity

assertion

is

the

appropriate

choice.

Identity

assertion

preserves

the

format

of

the

originating

client.

If

the

originating

client

authenticated

with

a

user

ID

and

password,

then

a

principal

identity

is

sent.

If

authentication

is

done

with

a

certificate,

then

the

certificate

chain

is

sent.

In

some

cases,

if

the

362

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

client

authenticated

with

a

token

and

a

Lightweight

Directory

Access

Protocol

(LDAP)

server

is

the

user

registry,

then

a

distinguished

name

(DN)

is

sent.
4.

Configure

a

trusted

server

list.

When

identity

assertion

is

selected

for

inbound

requests,

insert

a

pipe-separated

(|)

list

of

server

administrator

IDs

to

which

this

server

can

support

identity

token

submission.

For

backwards

compatibility,

you

can

still

use

a

comma-delimited

list.

However,

if

the

server

ID

is

a

Distinguished

Name

(DN),

then

you

must

use

a

pipe-delimited

(|)

list

as

a

comma

delimiter

does

not

work.

If

you

choose

to

support

any

server

sending

an

identity

token,

you

can

enter

an

asterisk

(*)

in

this

field.

This

action

is

called

presumed

trust.

In

this

case,

use

SSL

client

certificate

authentication

between

servers

to

establish

the

trust.

5.

Configure

session

management.

You

can

choose

either

stateful

or

stateless

security.

Performance

is

optimum

when

choosing

stateful

sessions.

The

first

method

request

between

a

client

and

server

is

authenticated.

All

subsequent

requests

(or

until

the

credential

token

expires)

reuse

the

session

information,

including

the

credential.

A

client

sends

a

context

ID

for

subsequent

requests.

The

context

ID

is

scoped

to

the

connection

for

uniqueness.

When

you

finish

configuring

this

panel,

you

have

configured

most

of

the

information

that

a

client

coalesces

when

determining

what

to

send

to

this

server.

A

client

or

server

outbound

configuration

with

this

server

inbound

configuration,

determines

the

security

that

is

applied.

When

you

know

what

clients

send,

the

configuration

is

simple.

However,

if

you

have

a

diverse

set

of

clients

with

differing

security

requirements,

your

server

considers

various

layers

of

authentication.

For

an

enterprise

bean

server,

the

authentication

choice

is

usually

either

identity

assertion

or

message

layer

because

you

want

the

identity

of

the

originating

client

delegated

downstream.

You

cannot

easily

delegate

a

client

certificate

using

an

SSL

connection.

It

is

acceptable

to

enable

the

transport

layer

because

additional

server

security,

as

the

additional

client

certificate

portion

of

the

SSL

handshake,

adds

some

overhead

to

the

overall

SSL

connection

establishment.

After

you

determine

which

type

of

authentication

data

this

server

might

receive,

you

can

determine

what

to

select

for

outbound

security.

Refer

to

the

article,

Configuring

Common

Secure

Interoperability

Version

2

outbound

authentication.

Common

Secure

Interoperability

inbound

authentication

settings:

Use

this

page

to

specify

the

features

that

a

server

supports

for

a

client

accessing

its

resources.

To

view

this

administrative

console

page,

click

Security

>

Authentication

Protocol

>

CSI

Inbound

Authentication.

Use

CSI

inbound

authentication

settings

for

configuring

the

type

of

authentication

information

contained

in

an

incoming

request

or

transport.

Authentication

features

include

three

layers

of

authentication

that

you

can

use

simultaneously:

v

Transport

layer.

The

transport

layer,

which

is

the

lowest

layer,

might

contain

a

Secure

Sockets

Layer

(SSL)

client

certificate

as

the

identity.

v

Message

layer.

The

message

layer

might

contain

a

user

ID

and

password

or

an

expirable

authenticated

token.

Chapter

2.

Securing

applications

and

their

environments

363

v

Attribute

layer.

The

attribute

layer

might

contain

an

identity

token,

which

is

an

identity

from

an

upstream

server

that

already

is

authenticated.

The

identity

layer

has

the

highest

priority,

followed

by

the

message

layer,

and

then

the

transport

layer.

If

a

client

sends

all

three,

only

the

identity

layer

is

used.

The

only

way

to

use

the

SSL

client

certificate

as

the

identity

is

if

it

is

the

only

information

presented

during

the

request.

The

client

picks

up

the

Interoperable

Object

Reference

(IOR)

from

the

name

space

and

reads

the

values

from

the

tagged

component

to

determine

what

the

server

needs

for

security.

Basic

Authentication:

Specifies

that

basic

authentication

occurs

over

the

message

layer.

In

the

message

layer,

basic

authentication

(user

ID

and

password)

takes

place.

This

type

of

authentication

typically

involves

sending

a

user

ID

and

a

password

from

the

client

to

the

server

for

authentication.

This

authentication

also

involves

delegating

a

credential

token

from

an

already

authenticated

credential,

provided

the

credential

type

is

forwardable

(for

example,

Lightweight

Third

Party

Authentication

(LTPA)).

If

you

specify

Basic

Authentication

and

LTPA

is

the

configured

authentication

protocol,

user

name,

password,

and

LTPA

tokens

are

accepted.a

When

you

select

Basic

Authentication,

decide

whether

it

is

Required

or

Supported.

Selecting

Required,

indicates

that

only

clients

configured

to

authenticate

to

this

server

through

the

message

layer

can

invoke

requests

on

the

server.

Selecting

Supported,

indicates

that

this

server

accepts

basic

authentication.

However,

other

methods

of

authentication

can

occur

if

configured

and

anonymous

requests

are

accepted.

Select

Never

to

indicate

that

the

server

is

not

configured

to

accept

message

layer

authentication

from

any

client.

Data

type:

String

Client

Certificate

Authentication:

Specifies

that

authentication

occurs

when

the

initial

connection

is

made

between

the

client

and

the

server

during

a

method

request.

In

the

transport

layer,

Secure

Sockets

Layer

(SSL)

client

certificate

authentication

takes

place.

In

the

message

layer,

basic

authentication

(user

ID

and

password)

is

performed.

Client

certificate

authentication

typically

performs

better

than

message

layer

authentication,

but

requires

some

additional

setup

steps.

These

additional

steps

involve

verifying

that

the

server

has

the

signer

certificate

of

each

client

to

which

it

is

connected.

If

the

client

uses

a

certificate

authority

(CA)

to

create

its

personal

certificate,

then

you

only

need

the

CA

root

certificate

in

the

server

signer

section

of

the

SSL

trust

file.

When

the

certificate

is

authenticated

to

a

Lightweight

Directory

Access

Protocol

(LDAP)

user

registry,

the

distinguished

name

(DN)

is

mapped

based

on

the

filter

specified

when

configuring

LDAP.

When

the

certificate

is

authenticated

to

a

LocalOS

user

registry,

the

first

attribute

of

the

DN

in

the

certificate

(typically

the

common

name)

is

mapped

to

the

user

ID

in

the

registry.

The

identity

from

client

certificates

is

used

only

if

no

other

layer

of

authentication

is

presented

to

the

server.

364

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

When

you

select

Client

Certificate

Authentication,

decide

whether

it

is

Required

or

Supported.

When

You

select

Required,

only

clients

that

are

configured

to

authenticate

to

this

server

through

SSL

client

certificates

can

invoke

requests

on

the

server.

When

you

select

Supported,

this

server

accepts

SSL

client

certificate

authentication,

however,

other

methods

of

authentication

can

occur

(if

configured)

and

anonymous

requests

are

accepted.

When

you

select

Never,

this

server

is

not

configured

to

accept

client

certificate

authentication

from

any

client.

Data

type

String

Identity

Assertion:

Specifies

that

identity

assertion

is

a

way

to

assert

identities

from

one

server

to

another

during

a

downstream

Enterprise

JavaBean

(EJB)

invocation.

Identity

assertion

is

performed

in

the

attribute

layer

and

is

only

applicable

on

servers.

The

principal

determined

at

the

server

is

based

on

precedence

rules.

If

identity

assertion

is

performed,

the

identity

is

always

derived

from

the

attribute.

If

basic

authentication

is

performed

without

identity

assertion,

the

identity

is

always

derived

from

the

message

layer.

Finally,

if

SSL

client

certificate

authentication

is

performed

without

either

basic

authentication,

or

identity

assertion,

then

the

identity

is

derived

from

the

transport

layer.

The

identity

asserted

is

the

invocation

credential

that

is

determined

by

the

RunAs

mode

for

the

enterprise

bean.

If

the

RunAs

mode

is

Client,

the

identity

is

the

client

identity.

If

the

RunAs

mode

is

System,

the

identity

is

the

server

identity.

If

the

RunAs

mode

is

Specified,

the

identity

is

the

one

specified.

The

receiving

server

receives

the

identity

in

an

identity

token

and

also

receives

the

sending

server

identity

in

a

client

authentication

token.

The

receiving

server

validates

the

sending

server

identity

as

a

trusted

identity

through

the

Trusted

Server

IDs

entry

box.

Enter

a

list

of

pipe-separated

(|)

principal

names,

for

example,

serverid1|serverid2|serverid3.

When

authenticating

to

a

LocalOS

user

registry,

all

identity

token

types

map

to

the

user

ID

field

of

the

active

user

registry.

For

an

ITTPrincipal

identity

token,

this

token

maps

one-to-one

with

the

user

ID

fields.

For

an

ITTDistinguishedName

identity

token,

the

value

from

the

first

equal

sign

is

mapped

to

the

user

ID

field.

For

an

ITTCertChain

identity

token,

the

value

from

the

first

equal

sign

of

the

distinguished

name

is

mapped

to

the

user

ID

field.

When

authenticating

to

an

LDAP

user

registry,

the

LDAP

filters

determine

how

an

identity

of

type

ITTCertChain

and

ITTDistinguishedName

get

mapped

to

the

registry.

If

the

token

type

is

ITTPrincipal,

then

the

principal

gets

mapped

to

the

UID

field

in

the

LDAP

registry.

Data

type:

String

Trusted

servers:

Specifies

a

pipe-separated

(|)

list

of

trusted

server

IDs,

which

are

trusted

to

perform

identity

assertion

to

this

server.

For

example,

serverid1|serverid2|serverid3.

WebSphere

Application

Server

supports

the

comma

(,)

character

as

the

list

delimiter

for

backwards

compatibility.

WebSphere

Application

Server

checks

the

comma

character

when

the

pipe

character

fails

to

find

a

valid

trusted

server

ID.

Chapter

2.

Securing

applications

and

their

environments

365

Use

this

list

to

quickly

decide

whether

a

server

is

trusted.

Even

if

the

server

is

on

the

list,

the

sending

server

must

still

authenticate

with

the

receiving

server

to

accept

the

identity

token

of

the

sending

server.

Data

type

String

Stateful:

Specifies

stateful

sessions

that

are

used

mostly

for

performance

improvements.

The

first

contact

between

a

client

and

server

must

fully

authenticate.

However,

all

subsequent

contacts

with

valid

sessions

reuse

the

security

information.

The

client

passes

a

context

ID

to

the

server,

and

the

ID

is

used

to

look

up

the

session.

The

context

ID

is

scoped

to

the

connection,

which

guarantees

uniqueness.

Whenever

the

security

session

is

invalid

and

the

authentication

retry

is

enabled

(it

is

by

default),

the

client-side

security

interceptor

invalidates

the

client-side

session

and

resubmits

the

request

without

user

awareness.

This

situation

might

occur

if

the

session

does

not

exist

on

the

server

(the

server

failed

and

resumed

operation).

When

this

value

is

disabled,

every

method

invocation

must

re-authenticate.

Data

type

String

Login

configuration:

Specifies

the

type

of

system

login

configuration

used

for

inbound

authentication.

You

can

add

custom

login

modules

by

clicking

Security

>

JAAS

configuration

>

System

login.

Security

attribute

propagation:

Specifies

whether

to

support

security

attribute

propagation

during

login

requests.

When

you

select

this

option,

WebSphere

Application

Server

retains

additional

information

about

the

login

request,

such

as

the

authentication

strength

used,

and

retains

the

identity

and

location

of

the

request

originator.

Verify

that

you

are

using

Lightweight

Third

Party

Authentication

(LTPA)

as

your

authentication

mechanism.

LTPA

is

the

only

authentication

mechanism

supported

when

you

enable

the

security

attribute

propagation

feature.

To

configure

LTPA,

click

Security

>

Authentication

mechanisms

>

LTPA.

If

you

do

not

select

this

option,

WebSphere

Application

Server

does

not

accept

any

additional

login

information

to

propagate

to

downstream

servers.

Configuring

Common

Secure

Interoperability

Version

2

outbound

authentication

Outbound

authentication

refers

to

the

configuration

that

determines

the

type

of

authentication

performed

for

outbound

requests

to

downstream

servers.

Several

layers

or

methods

of

authentication

can

occur.

The

downstream

server

inbound

authentication

configuration

must

support

at

least

one

choice

made

in

this

server

outbound

authentication

configuration.

If

nothing

is

supported,

the

request

might

go

outbound

as

unauthenticated.

This

situation

does

not

create

a

security

problem

because

the

authorization

run

time

is

responsible

for

preventing

access

to

protected

resources.

However,

if

you

choose

to

prevent

an

unauthenticated

credential

to

go

366

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

outbound,

you

might

want

to

designate

one

of

the

authentication

layers

as

required,

rather

than

supported.

If

a

downstream

server

does

not

support

authentication,

then

when

authentication

is

required,

the

method

request

fails

to

go

outbound.

The

following

choices

are

available

in

the

Common

Secure

Interoperability

Version

2

(CSIv2)

Outbound

Authentication

panel.

Remember

that

you

are

not

required

to

complete

these

steps

in

the

displayed

order.

Rather,

these

steps

are

provided

to

help

you

understand

your

choices

for

configuring

outbound

authentication.

1.

Select

Identity

Assertion

(attribute

layer).

When

selected,

this

server

submits

an

identity

token

to

a

downstream

server,

if

the

downstream

server

supports

identity

assertion.

When

an

originating

client

authenticates

to

this

server,

the

authentication

information

supplied

is

preserved

in

the

outbound

identity

token.

If

the

client

authenticating

to

this

server

uses

client

certificate

authentication,

then

the

identity

token

format

is

a

certificate

chain,

containing

the

exact

client

certificate

chain

on

the

socket.

The

same

scenario

is

true

for

other

mechanisms

of

authentication.

Read

theIdentity

Assertion

article

for

more

information.

2.

Select

User

ID

and

Password

(message

layer).

This

type

of

authentication

is

the

most

typical.

The

user

ID

and

password

(if

BasicAuth

credential)

or

authenticated

token

(if

authenticated

credential)

are

sent

outbound

to

the

downstream

server

if

the

downstream

server

supports

message

layer

authentication

in

the

inbound

authentication

panel.

Refer

to

the

Message

Layer

Authentication

article

for

more

information.

3.

Select

SSL

Client

certificate

authentication

(transport

layer).

The

main

reason

to

enable

outbound

Secure

Sockets

Layer

(SSL)

client

authentication

from

one

server

to

a

downstream

server

is

to

create

a

trusted

environment

between

those

servers.

For

delegating

client

credentials,

use

one

of

the

two

layers

mentioned

previously.

However,

you

might

want

to

create

SSL

personal

certificates

for

all

the

servers

in

your

domain,

and

only

trust

those

servers

in

your

SSL

truststore

file.

No

other

servers

or

clients

can

connect

to

the

servers

in

your

domain,

except

at

the

tiers

where

you

want

them.

This

process

can

protect

your

enterprise

bean

servers

from

access

by

anything

other

than

your

servlet

servers.

Refer

to

the

SSL

Client

Certificate

Authentication

article

for

more

information.

A

server

can

send

multiple

layers

simultaneously,

therefore,

an

order

of

precedence

rule

decides

which

identity

to

use.

The

identity

assertion

layer

has

the

highest

priority,

the

message

layer

follows,

and

the

transport

layer

has

the

lowest

priority.

SSL

client

certificates

are

only

used

as

the

identity

for

invoking

method

requests,

when

that

is

the

only

layer

provided.

SSL

client

certificates

are

useful

for

trust

purposes,

even

if

the

identity

is

not

used

for

the

request.

If

only

the

message

layer

and

transport

layer

are

provided,

the

message

layer

is

used

to

establish

the

identity

for

authorization.

If

the

identity

assertion

layer

is

provided

(regardless

of

what

is

provided),

then

the

identity

from

the

identity

token

is

always

used

by

the

authorization

engine

as

the

identity

for

that

request.

Configuring

session

management:

You

can

choose

either

stateful

or

stateless

security.

Performance

is

optimum

when

choosing

stateful

sessions.

The

first

method

request

between

this

server

and

the

downstream

server

is

authenticated.

All

subsequent

requests

reuse

the

session

information,

including

the

credential.

A

unique

session

entry

is

defined

as

the

combination

of

a

unique

client

authentication

token

and

an

identity

token,

scoped

to

the

connection.

Chapter

2.

Securing

applications

and

their

environments

367

When

you

finish

configuring

this

panel,

you

configured

the

information

that

this

server

uses

to

make

decisions

about

the

type

of

authentication

to

perform

with

downstream

servers.

If

the

downstream

server

is

configured

not

to

support

the

outbound

configuration

of

the

server,

the

following

exception

likely

occurs:

Exception

received:

org.omg.CORBA.INITIALIZE:

JSAS1477W:

SECURITY

CLIENT/SERVER

CONFIG

MISMATCH:

The

client

security

configuration

(sas.client.props

or

outbound

settings

in

GUI)

does

not

support

the

server

security

configuration

for

the

following

reasons:

ERROR

1:

JSAS0607E:

The

client

requires

SSL

Confidentiality

but

the

server

does

not

support

it.

ERROR

2:

JSAS0610E:

The

server

requires

SSL

Integrity

but

the

client

does

not

support

it.

ERROR

3:

JSAS0612E:

The

client

requires

client

(e.g.,

userid/password

or

token),

but

the

server

does

not

support

it.

minor

code:

0

completed:

No

at

com.ibm.ISecurityLocalObjectBaseL13Impl.SecurityConnectionInterceptor.

getConnectionKey(SecurityConnectionInterceptor.java:1770)

at

com.ibm.ws.orbimpl.transport.WSTransport.getConnection(Unknown

Source)

at

com.ibm.rmi.iiop.TransportManager.get(TransportManager.java:79)

at

com.ibm.rmi.iiop.GIOPImpl.locate(GIOPImpl.java:167)

at

com.ibm.CORBA.iiop.ClientDelegate._createRequest(ClientDelegate.java:2088)

at

com.ibm.CORBA.iiop.ClientDelegate.createRequest(ClientDelegate.java:1264)

at

com.ibm.CORBA.iiop.ClientDelegate.createRequest(ClientDelegate.java:1177)

at

com.ibm.CORBA.iiop.ClientDelegate.request(ClientDelegate.java:1726)

at

org.omg.CORBA.portable.ObjectImpl._request(ObjectImpl.java:245)

at

com.ibm.WsnOptimizedNaming._NamingContextStub.get_compatibility_level

(Unknown

Source)

at

com.ibm.websphere.naming.DumpNameSpace.getIdlLevel(DumpNameSpace.java:300)

at

com.ibm.websphere.naming.DumpNameSpace.getStartingContext

(DumpNameSpace.java:329)

at

com.ibm.websphere.naming.DumpNameSpace.main(DumpNameSpace.java:268)

at

java.lang.reflect.Method.invoke(Native

Method)

at

com.ibm.ws.bootstrap.WSLauncher.main(WSLauncher.java:163)

The

reasons

for

the

mismatch

are

explained

in

the

exception.

You

can

make

the

corrections

when

you

configure

the

outbound

configuration

for

this

server,

or

when

you

configure

the

inbound

configuration

of

the

downstream

server.

If

multiple

reasons

exist

for

a

failure,

the

reasons

are

explained

as

message

text

in

the

exception.

Typically,

the

outbound

authentication

configuration

is

for

an

upstream

server

to

communicate

with

a

downstream

server.

Most

likely,

the

upstream

server

is

a

servlet

server

and

the

downstream

server

is

an

EJB

server.

On

a

servlet

server,

the

client

authentication

performed

to

access

the

servlet

can

be

one

of

many

different

types

of

authentication,

including

client

certificate

and

basic

authentication.

When

receiving

basic

authentication

data,

whether

through

a

prompt

login

or

a

form

based

login,

the

basic

authentication

information

is

typically

authenticated

to

form

a

credential

of

the

mechanism

type

that

is

supported

by

the

server,

such

as

Lightweight

Third

Party

Authentication

(LTPA)

or

LocalOS.

When

LTPA

is

the

mechanism,

a

forwardable

token

exists

in

the

credential.

Choose

the

message

layer

(BasicAuth)

authentication

to

propagate

the

client

credentials.

If

the

credential

was

created

using

a

certificate

login

and

you

want

to

preserve

sending

the

certificate

downstream,

you

might

decide

to

go

outbound

with

identity

assertion.

Save

the

configuration

and

restart

the

server

for

the

changes

to

take

effect.

368

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Common

Secure

Interoperability

outbound

authentication

settings:

Use

this

page

to

specify

the

features

that

a

server

supports

when

acting

as

a

client

to

another

downstream

server.

To

view

this

administrative

console

page,

click

Security

>

Authentication

Protocol

>

CSI

Outbound

Authentication.

Authentication

features

include

three

layers

of

authentication

that

you

can

use

simultaneously:

Basic

Authentication:

Specifies

whether

to

send

a

user

ID

and

a

password

from

the

client

to

the

server

for

authentication.

This

type

of

authentication

occurs

over

the

message

layer.

Basic

authentication

also

involves

delegating

a

credential

token

from

an

already

authenticated

credential,

provided

the

credential

type

is

forwardable

(for

example,

Lightweight

Third

Party

Authentication

(LTPA)).

Basic

authentication

refers

to

any

authentication

over

the

message

layer

and

indicates

user

ID

and

password

as

well

as

token-based

authentication.

Select

Basic

Authentication

and

determine

whether

this

authentication

method

is

required

or

supported.

Select

Required

to

indicate

that

when

the

server

goes

outbound

to

downstream

servers,

the

downstream

server

must

support

basic

authentication

for

this

server

to

connect.

Select

Supported

to

indicate

that

this

server

might

or

might

not

perform

basic

authentication

to

a

downstream

server.

Other

methods

of

authentication

can

occur

if

configured.

Select

Never

to

indicate

that

this

server

never

sends

a

message

layer

token

outbound

to

a

downstream

server.

If

the

downstream

server

requires

basic

authentication,

then

the

connection

is

not

attempted.

Data

type:

String

Client

Certificate

Authentication:

Specifies

whether

a

client

certificate

from

the

configured

keystore

file

is

used

to

authenticate

to

the

server

when

the

SSL

connection

is

made

between

this

server

and

a

downstream

server

(provided

that

the

downstream

server

supports

client

certificate

authentication).

Typically,

client

certificate

authentication

has

a

higher

performance

than

message

layer

authentication,

but

requires

some

additional

setup

steps.

These

additional

steps

include

verifying

that

this

server

has

a

personal

certificate

and

that

the

downstream

server

has

the

signer

certificate

of

this

server.

If

you

select

client

certificate

authentication,

decide

whether

it

is

required

or

supported.

Select

Required

to

indicate

that

this

server

can

only

connect

to

downstream

servers

with

client

certificate

authentication

also

configured.

Select

Supported

to

indicate

that

this

server

performs

client

certificate

authentication

with

any

downstream

server,

but

might

not

use

client

certificate

authentication

depending

on

whether

it

is

supported

by

the

downstream

server.

Select

Never

to

indicate

that

this

client

does

not

perform

client

certificate

authentication

to

any

downstream

server.

This

limitation

prevents

access

to

any

downstream

server

that

requires

client

certificate

authentication.

Chapter

2.

Securing

applications

and

their

environments

369

Data

type:

String

Identity

Assertion:

Specifies

whether

to

assert

identities

from

one

server

to

another

during

a

downstream

enterprise

bean

invocation.

The

identity

asserted

is

the

invocation

credential

that

is

determined

by

the

RunAs

mode

for

the

enterprise

bean.

If

the

RunAs

mode

is

Client,

the

identity

is

the

client

identity.

If

the

RunAs

mode

is

System,

the

identity

is

the

server

identity.

If

the

RunAs

mode

is

Specified,

the

identity

is

the

identity

specified.

The

receiving

server

receives

the

identity

in

an

identity

token

and

also

receives

the

sending

server

identity

in

a

client

authentication

token.

The

receiving

server

validates

the

identity

of

the

sending

server

to

ensure

a

trusted

identity.

When

specifying

identity

assertion

on

the

CSIv2

Authentication

Outbound

panel,

you

must

also

select

basic

authentication

as

supported

or

required

on

the

CSIv2

Authentication

Outbound

panel.

The

server

identity

can

then

be

submitted

with

the

identity

token,

so

that

the

receiving

server

can

trust

the

sending

server.

Without

specifying

basic

authentication

as

supported

or

required,

trust

is

not

established

and

the

identity

assertion

fails.

Data

type:

String

Stateful:

Specifies

whether

to

reuse

security

information

during

authentication.

This

option

is

usually

used

to

increase

performance.

The

first

contact

between

a

client

and

server

must

fully

authenticate.

However,

all

subsequent

contacts

with

valid

sessions,

reuse

the

security

information.

The

client

passes

a

context

ID

to

the

server,

and

that

ID

is

used

to

look

up

the

session.

The

context

ID

is

scoped

to

the

connection,

which

guarantees

uniqueness.

Whenever

the

security

session

is

invalid

and

if

authentication

retry

is

enabled

(it

is

enabled

by

default),

the

client-side

security

interceptor

invalidates

the

client-side

session

and

resubmits

the

request

transparently.

For

example,

if

the

session

does

not

exist

on

the

server;

the

server

fails

and

resumes

operation.

When

this

value

is

disabled,

every

method

invocation

must

re-authenticate.

Data

type:

String

Login

configuration:

Specifies

the

type

of

system

login

configuration

used

for

outbound

authentication.

You

can

add

custom

login

modules

before

or

after

this

login

module

by

clicking

Security

>

JAAS

configuration

>

System

login.

Custom

outbound

mapping:

Enables

the

use

of

custom

RMI

outbound

login

modules.

370

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

The

custom

login

module

maps

or

performs

other

functions

before

the

pre-defined

RMI

outbound

call.

To

declare

a

custom

outbound

mapping,

click

Security

>

JAAS

Configuration

>

System

Logins

>

New.

Security

attribute

propagation:

Enables

WebSphere

Application

Server

to

propagate

the

Subject

and

the

security

content

token

to

other

application

servers

using

the

Remote

Method

Invocation

(RMI)

protocol.

Verify

that

you

are

using

Lightweight

Third

Party

Authentication

(LTPA)

as

your

authentication

mechanism.

LTPA

is

the

only

authentication

mechanism

supported

when

you

enable

the

security

attribute

propagation

feature.

To

configure

LTPA,

click

Security

>

Authentication

mechanisms

>

LTPA.

If

you

do

not

select

this

check

box,

WebSphere

Application

Server

does

not

propagate

any

additional

login

information

to

downstream

servers.

However,

if

you

select

this

check

box,

the

outbound

login

configuration

is

invoked.

Trusted

target

realms:

Specifies

a

list

of

trusted

target

realms,

separated

by

a

pipe

(|),

that

differ

from

the

current

realm.

Prior

to

WebSphere

Application

Server,

Version

5.1.1,

if

the

current

realm

does

not

match

the

target

realm,

the

authentication

request

is

not

sent

outbound

to

other

application

servers.

Configuring

inbound

transports

Inbound

transports

refer

to

the

types

of

listener

ports

and

their

attributes

that

are

opened

to

receive

requests

for

this

server.

Both

Common

Secure

Interoperability

Specification,

Version

2

(CSIv2)

and

Secure

Authentication

Service

(SAS)

have

the

ability

to

configure

the

transport.

However,

the

following

differences

between

the

two

protocols

exist:

v

CSIv2

is

much

more

flexible

than

SAS,

which

requires

Secure

Sockets

Layer

(SSL);

CSIv2

does

not

require

SSL.

v

SAS

does

not

support

SSL

client

certificate

authentication,

while

CSIv2

does.

v

CSIv2

can

require

SSL

connections,

while

SAS

only

supports

SSL

connections.

v

SAS

always

has

two

listener

ports

open:

TCP/IP

and

SSL.

v

CSIv2

can

have

as

few

as

one

listener

port

and

as

many

as

three

listener

ports.

You

can

open

one

port

for

just

TCP/IP

or

when

SSL

is

required.

You

can

open

two

ports

when

SSL

is

supported,

and

open

three

ports

when

SSL

and

SSL

client

certificate

authentication

is

supported.

Complete

the

following

steps

to

configure

the

Inbound

Transport

panels

in

the

administrative

console:

1.

Click

Security

>

Authentication

Protocol

>

CSIv2

Inbound

Transport

to

select

the

type

of

transport

and

the

SSL

settings.

By

selecting

the

type

of

transport,

as

noted

previously,

you

choose

which

listener

ports

you

want

to

open.

In

addition,

you

disable

the

SSL

client

certificate

authentication

feature

if

you

choose

TCP/IP

as

the

transport.

2.

Select

the

SSL

settings

that

correspond

to

an

SSL

transport.

These

SSL

settings

are

defined

in

the

Security

>

SSL

panel

and

define

the

SSL

configuration

including

the

keyring,

security

level,

ciphers,

and

so

on.

3.

Consider

fixing

the

listener

ports

that

you

configured.

Chapter

2.

Securing

applications

and

their

environments

371

You

complete

this

action

in

a

different

panel,

but

this

is

the

time

to

think

about

it.

Most

end

points

are

managed

at

a

single

location,

which

is

why

they

do

not

appear

in

the

Inbound

Transport

panels.

Managing

end

points

at

a

single

location

helps

you

decrease

the

number

of

conflicts

in

your

configuration

when

you

assign

the

end

points.

The

location

for

SSL

end

points

is

at

each

server.

The

following

port

names

are

defined

in

the

End

Points

panel

and

are

used

for

object

request

broker

(ORB)

security:

v

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS

-

CSIv2

Client

Authentication

SSL

Port

v

CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS

-

CSIv2

SSL

Port

v

SAS_SSL_SERVERAUTH_LISTENER_ADDRESS

-

SAS

SSL

Port

v

ORB_LISTENER_PORT

-

TCP/IP

Port

For

an

application

server,

click

Servers

>

Application

Servers

>

server_name.

Under

Additional

Properties,

click

End

Points.

The

End

Points

panel

is

displayed

for

the

specified

server.

For

an

application

server,

click

Servers

>

Application

Servers

>

server_name

>

End

Points.

The

Object

Request

Broker

(ORB)

on

WebSphere

Application

Server

uses

a

listener

port

for

Remote

Method

Invocation

over

the

Internet

Inter-ORB

Protocol

(RMI/IIOP)

communications,

which

is

generally

not

specified

and

selected

dynamically

during

run

time.

If

you

are

working

with

a

firewall,

you

must

specify

a

static

port

for

the

ORB

listener

and

open

that

port

on

the

firewall

so

that

communication

can

pass

through

the

specified

port.

The

endPoint

property

for

setting

the

ORB

listener

port

is:

ORB_LISTENER_ADDRESS.

Complete

the

following

steps

using

the

administrative

console

to

specify

the

ORB_LISTENER_ADDRESS

port

or

ports.

a.

Click

Servers

>

Application

Servers

>

server_name.

b.

Click

End

Points

>

New

under

Additional

Properties.

c.

Select

ORB_LISTENER_ADDRESS

from

the

End

Point

Name

field

in

the

Configuration

panel.

d.

Enter

the

IP

address,

the

fully

qualified

DNS

host

name,

or

the

DNS

host

name

by

itself

in

the

Host

field.

For

example,

if

the

host

name

is

myhost,

the

fully

qualified

DNS

name

can

be

myhost.myco.com

and

the

IP

address

can

be

155.123.88.201.

e.

Enter

the

port

number

in

the

Port

field.

The

port

number

specifies

the

port

for

which

the

service

is

configured

to

accept

client

requests.

The

port

value

is

used

in

conjunction

with

the

host

name.

Using

the

previous

example,

the

port

number

might

be

9000.
4.

Click

Security

>

Authentication

Protocol

>

SAS

Inbound

to

select

the

SSL

settings

used

for

inbound

requests

from

SAS

clients.

Remember

that

the

SAS

protocol

is

used

to

interoperate

with

previous

releases.

When

configuring

the

key

store

and

trust

store

files

in

the

SSL

configuration,

these

files

need

the

right

information

for

interoperating

with

previous

releases

of

WebSphere

Application

Server.

For

example,

a

previous

release

has

a

different

trust

store

file

than

the

Version

5

release.

If

you

use

the

Version

5

key

store

file,

add

the

signer

to

the

trust

store

file

of

the

previous

release

for

those

clients

connecting

to

this

server.

The

inbound

transport

configuration

is

complete.

With

this

configuration,

you

can

configure

a

different

transport

for

inbound

security

versus

outbound

security.

For

example,

if

the

application

server

is

the

first

server

used

by

users,

the

security

configuration

might

be

more

secure.

When

372

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

requests

go

to

back-end

enterprise

bean

servers,

you

might

lessen

the

security

for

performance

reasons

when

you

go

outbound.

With

this

flexibility

you

can

design

the

right

transport

infrastructure

to

meet

your

needs.

When

you

finish

configuring

security,

perform

the

following

steps

to

save,

synchronize,

and

restart

the

servers:

1.

Click

Save

in

the

administrative

console

to

save

any

modifications

to

the

configuration.

2.

Stop

and

restart

all

servers,

when

synchronized.

Common

Secure

Interoperability

transport

inbound

settings:

Use

this

page

to

specify

which

listener

ports

to

open

and

which

Secure

Sockets

Layer

(SSL)

settings

to

use.

These

specifications

determine

which

transport

a

client

or

upstream

server

uses

to

communicate

with

this

server

for

incoming

requests.

To

view

this

administrative

console

page,

click

Security

>

Authentication

Protocol

>

CSI

Inbound

Transport.

Transport:

Specifies

whether

client

processes

connect

to

the

server

using

one

of

its

connected

transports.

You

can

choose

to

use

either

Secure

Sockets

Layer

(SSL),

TCP/IP

or

both

as

the

inbound

transport

that

a

server

supports.

If

you

specify

TCP/IP,

the

server

only

supports

TCP/IP

and

cannot

accept

SSL

connections.

If

you

specify

SSL

Supported,

this

server

can

support

either

TCP/IP

or

SSL

connections.

If

you

specify

SSL-Required,

then

any

server

communicating

with

this

one

must

use

SSL.

If

you

specify

SSL-Supported

or

SSL-Required,

decide

which

set

of

SSL

configuration

settings

you

want

to

use

for

the

inbound

configuration.

This

decision

determines

which

key

file

and

trust

file

are

used

for

inbound

connections

to

this

server.

By

default,

SSL

ports

for

Common

Secure

Interoperability

Version

2

(CSIv2)

and

Security

Authentication

Service

(SAS)

are

dynamically

generated.

In

cases

where

you

need

to

fix

the

SSL

ports

on

application

servers,

click

Servers

>

Application

Servers

>

server_name

>

End

Points.

Provide

a

fixed

port

number

for

the

following

port

or

ports.

A

zero

port

number

indicates

that

a

dynamic

assignment

is

made

at

run

time.

CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS

CSIV2_SSL_SERVERAUTH_LISTENER_ADDRESS

SAS_SSL_SERVERAUTH_LISTENER_ADDRESS

v

TCP/IP:

Only

a

TCP/IP

listener

port

is

opened

and

all

requests

inbound

do

not

have

SSL

protection.

v

SSL-Supported:

Both

a

TCP/IP

and

SSL

listener

port

are

opened

and

most

requests

come

inbound

by

SSL.

v

SSL-Required:

Only

an

SSL

listener

port

is

opened,

and

all

requests

come

through

SSL

connections.

If

you

choose

SSL-Required,

you

must

also

choose

CSI

as

the

active

authentication

protocol.

If

you

choose

CSI

and

SAS,

SAS

requires

an

open

TCP/IP

socket

for

some

special

requests.

Default:

SSL-Supported

Range:

TCP/IP,

SSL

Required,

SSL-Supported

Chapter

2.

Securing

applications

and

their

environments

373

SSL

settings:

Specifies

a

list

of

predefined

SSL

settings

to

choose

from

for

inbound

connections.

These

settings

are

configured

at

the

SSL

Repertoire

panel.

Data

type:

String

Default:

DefaultSSLSettings

Range:

Any

SSL

settings

configured

in

the

SSL

Configuration

Repertoire

Secure

Authentication

Service

transport

inbound

settings:

Use

this

page

to

specify

transport

settings

for

connections

that

are

accepted

by

this

server

using

the

Secure

Authentication

Service

(SAS)

authentication

protocol.

The

SAS

protocol

is

used

to

communicate

securely

to

enterprise

beans

with

previous

releases

of

the

WebSphere

Application

Server.

To

view

this

administrative

console

page,

click

Security

>

Authentication

Protocol

>

SAS

Inbound

Transport.

SSL

Settings:

Specifies

a

list

of

predefined

SSL

settings

to

choose

from

for

inbound

connections.

These

settings

are

configured

at

the

SSL

Repertoire

panel.

Data

type:

String

Default:

DefaultSSLSettings

Configuring

outbound

transports

Outbound

transports

refers

to

the

transport

used

to

connect

to

a

downstream

server.

When

you

configure

the

outbound

transport,

consider

the

transports

that

the

downstream

servers

support.

If

you

are

considering

Secure

Sockets

Layer

(SSL),

also

consider

including

the

signers

of

the

downstream

servers

in

this

server

truststore

file

for

the

handshake

to

succeed.

When

you

select

an

SSL

configuration,

that

configuration

points

to

keystore

and

truststore

files

that

contain

the

necessary

signers.

If

you

configured

client

certificate

authentication

for

this

server

in

the

Security

>

Authentication

Protocols

>

CSIv2

Outbound

Authentication

panel,

then

the

downstream

servers

contain

the

signer

certificate

belonging

to

the

server

personal

certificate.

Complete

the

following

steps

to

configure

the

Outbound

Transport

panels.

1.

Select

the

type

of

transport

and

the

SSL

settings

by

clicking

Security

>

Authentication

Protocol

>

CSIv2

Outbound

Transport

panel.

By

selecting

the

type

of

transport,

you

are

choosing

the

transport

to

use

when

connecting

to

downstream

servers.

The

downstream

servers

support

the

transport

that

you

choose.

If

you

choose

SSL-Supported,

the

transport

used

is

negotiated

during

the

connection.

If

both

the

client

and

server

support

SSL,

always

choose

SSL-Supported

unless

the

request

is

considered

a

special

request

that

does

not

require

SSL,

such

as

if

an

object

request

broker

(ORB)

is

a

request.

2.

Pick

the

SSL

settings

that

correspond

to

an

SSL

transport.

Click

Security

>

SSL.

This

panel

includes

the

SSL

configuration

of

keystore

files,

truststore

files,

file

formats,

security

levels,

ciphers,

cryptographic

token

selections,

and

so

on.

Verify

that

the

truststore

file

in

the

selected

SSL

configuration

contains

the

374

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

signers

for

any

downstream

servers.

Also,

verify

that

the

downstream

servers

contain

the

server

signer

certificates

when

outbound

client

certificate

authentication

is

used.

3.

Select

the

SSL

settings

used

for

outbound

requests

to

downstream

Secure

Authentication

Service

(SAS)

servers.

Click

Security

>

Authentication

Protocol

>

SAS

Outbound.

Remember

that

the

SAS

protocol

allows

interoperability

with

previous

releases.

When

configuring

the

keystore

and

truststore

files

in

the

SSL

configuration,

these

files

have

the

correct

information

for

interoperating

with

previous

releases

of

WebSphere

Application

Server.

For

example,

a

previous

release

has

a

different

personal

certificate

than

the

Version

5

release.

If

you

use

the

keystore

file

from

the

Version

5.0

release,

you

must

add

the

signer

to

the

truststore

file

of

the

previous

release.

Also,

you

must

extract

the

signer

for

the

Version

5.0

release

and

import

that

signer

into

the

truststore

file

of

the

previous

release.

The

outbound

transport

configuration

is

complete.

With

this

configuration

you

can

configure

a

different

transport

for

inbound

security

versus

outbound

security.

For

example,

if

the

application

server

is

the

first

server

used

by

end

users,

the

security

configuration

might

be

more

secure.

When

requests

go

to

back-end

enterprise

beans

servers,

you

might

consider

less

security

for

performance

reasons

when

you

go

outbound.

With

this

flexibility

you

can

design

a

transport

infrastructure

that

meets

your

needs.

When

you

finish

configuring

security,

perform

the

following

steps

to

save,

synchronize,

and

restart

the

servers.

v

Click

Save

in

the

administrative

console

to

save

any

modifications

to

the

configuration.

v

Stop

and

restart

all

servers,

after

synchronization.

Common

secure

interoperability

transport

outbound

settings:

Use

this

page

to

specify

which

transports

and

Secure

Sockets

Layer

(SSL)

settings

this

server

uses

when

communicating

with

downstream

servers

for

outbound

requests.

To

view

this

administrative

console

page,

click

Security

>

Authentication

Protocol

>

CSI

Outbound

Transport.

Transport:

Specifies

whether

the

client

processes

connect

to

the

server

using

one

of

the

server-connected

transports.

You

can

choose

to

use

either

SSL,

TCP/IP

or

Both

as

the

outbound

transport

which

a

server

supports.

If

you

specify

TCP/IP,

the

server

only

supports

TCP/IP

and

cannot

initiate

SSL

connections

with

downstream

servers.

If

you

specify

SSL

Supported,

this

server

can

initiate

either

TCP/IP

or

SSL

connections.

If

you

specify

SSL

Required,

then

this

server

must

use

SSL

to

initiate

connections

to

downstream

servers.

When

you

do

specify

SSL,

decide

which

set

of

SSL

configuration

settings

you

want

to

use

for

the

outbound

configuration.

This

decision

determines

which

key

file

and

trust

file

to

use

for

outbound

connections

to

downstream

servers.

For

example,

consider

the

following

options:

Chapter

2.

Securing

applications

and

their

environments

375

TCP/IP

This

server

opens

TCP/IP

connections

with

downstream

servers

only.

SSL

Supported

This

server

opens

SSL

connections

with

any

downstream

servers

that

support

them,

and

TCP/IP

connections

with

any

downstream

servers

that

do

not

support

these

SSL

connections.

SSL

Required

This

server

always

opens

SSL

connections

with

downstream

servers.

Default:

SSL-Supported

Range:

TCP/IP,

SSL-Required,

SSL-Supported

SSL

settings:

Specifies

a

list

of

predefined

SSL

settings

for

outbound

connections.

These

settings

are

configured

at

the

SSL

Configuration

Repertoires

panel.

Data

type:

String

Default:

DefaultSSLSettings

Range:

Any

SSL

settings

configured

in

the

SSL

Configuration

Repertoires

panel

Secure

Authentication

Service

transport

outbound

settings:

Use

this

page

to

specify

transport

settings

for

connections

that

are

accepted

by

this

server

using

the

Secure

Authentication

Service

(SAS)

authentication

protocol.

Use

the

SAS

protocol

to

communicate

securely

to

enterprise

beans

with

previous

releases

of

WebSphere

Application

Server.

To

view

this

administrative

console

page,

click

Security

>

Authentication

Protocol

>

SAS

Outbound

Transport.

SSL

Settings:

Specifies

a

list

of

predefined

Secure

Sockets

Layer

(SSL)

settings

to

choose

from

for

outbound

connections.

These

settings

are

configured

at

the

SSL

Repertoire

panel.

Data

type:

String

Default:

DefaultSSLSettings

Example:

Common

Secure

Interoperability

Version

2

scenarios

The

articles

included

in

this

section

are

intended

to

demonstrate

how

to

configure

specific

Common

Secure

Interoperability

Version

2

(CSIv2)

configuration

examples.

Scenario

1:

Basic

authentication

and

identity

assertion:

376

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

This

example

presents

a

pure

Java

client,

C,

that

accesses

a

secure

enterprise

bean

on

server,

S1,

through

user

″bob.″

The

enterprise

bean

code

on

S1

accesses

another

enterprise

bean

on

server,

S2.

This

configuration

uses

identity

assertion

to

propagate

the

identity

of

″bob″

to

the

downstream

server,

S2.

S2

trusts

that

″bob″

already

is

authenticated

by

S1

because

it

trusts

S1.

To

gain

this

trust,

the

identity

of

S1

also

flows

to

S2

simultaneously

and

S2

validates

the

identity

by

checking

the

trustedPrincipalList

to

verify

that

it

is

a

valid

server

principal.

S2

also

authenticates

S1.

The

following

steps

take

you

through

the

configuration

of

C,

S1,

and

S2.

Configuring

client,

C

Client

C

requires

message

layer

authentication

with

a

Secure

Sockets

Layer

(SSL)

transport.

To

accomplish

this

task:

1.

Point

the

client

to

the

sas.client.props

file

using

the

com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props

property.

All

further

configuration

involves

setting

properties

within

this

file.

2.

Enable

SSL.

In

this

case,

SSL

is

supported

but

not

required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3.

Enable

client

authentication

at

the

message

layer.

In

this

case,

client

authentication

is

supported

but

not

required:

com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=true

4.

Use

all

of

the

remaining

defaults

in

the

sas.client.props

file.

Configuring

server,

S1

In

the

administrative

console,

server

S1

is

configured

for

incoming

requests

to

support

message

layer

client

authentication

and

incoming

connections

to

support

SSL

without

client

certificate

authentication.

Server

S1

is

configured

for

outgoing

requests

to

support

identity

assertion.

1.

Configure

S1

for

incoming

connections.

a.

Disable

identity

assertion.

b.

Enable

user

ID

and

password

authentication.

c.

Enable

SSL.

server1/passwordbob/password

Java client Enterprise beans

Invocation credentials: bob

Message layerMessage layer

Transport layer Transport layer

Identity assertion layer

SSLSSL

bob

C S1 S2

Received credentials: bob

Enterprise beans

Chapter

2.

Securing

applications

and

their

environments

377

d.

Disable

SSL

client

certificate

authentication.
2.

Configure

S1

for

outgoing

connections.

a.

Enable

identity

assertion.

b.

Disable

user

ID

and

password

authentication.

c.

Enable

SSL.

d.

Disable

SSL

client

certificate

authentication.

Configuring

server,

S2

In

the

administrative

console,

server

S2

is

configured

for

incoming

requests

to

support

identity

assertion

and

to

accept

SSL

connections.

Complete

the

following

steps

to

configure

incoming

connections.

Configuration

for

outgoing

requests

and

connections

are

not

relevant

for

this

scenario.

1.

Enable

identity

assertion.

2.

Disable

user

ID

and

password

authentication.

3.

Enable

SSL.

4.

Disable

SSL

client

authentication.

Scenario

2:

Basic

authentication,

identity

assertion

and

client

certificates:

This

scenario

is

the

same

as

Scenario

1,

except

for

the

interaction

from

client

C2

to

server

S2.

Therefore,

the

configuration

of

Scenario

1

still

is

valid,

but

you

have

to

modify

server

S2

slightly

and

add

a

configuration

for

client

C2.

The

configuration

is

not

modified

for

C1

or

S1.

server1/passwordbob/password

Java client Enterprise beans

Invocation credentials: bob

Message layerMessage layer

Transport layer Transport layer

Identity assertion layer

SSLSSL

bob

C S1 S2

Received credentials: bob

Enterprise beans

Transport layer

SSL: cn=bob, o=ibm, c=us

C S1

378

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Configuring

client

C2

Client

C2

requires

transport

layer

authentication

(Secure

Sockets

Layer

(SSL)

client

certificates).

To

configure

transport

layer

authentication:

1.

Point

the

client

to

the

sas.client.props

file

using

the

com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props

property.

All

further

configuration

involves

setting

properties

within

this

file.

2.

Enable

SSL.

In

this

case,

SSL

is

supported

but

not

required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3.

Disable

client

authentication

at

the

message

layer.

com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=false

4.

Enable

client

authentication

at

the

transport

layer

where

it

is

supported,

but

not

required:

com.ibm.CSI.performTLClientAuthenticationRequired=false,

com.ibm.CSI.performTLClientAuthenticationSupported=true

Configuring

server,

S2

In

the

administrative

console,

server

S2

is

configured

for

incoming

requests

to

SSL

client

authentication

and

identity

assertion.

Configuration

for

outgoing

requests

is

not

relevant

for

this

scenario.

1.

Enable

identity

assertion.

2.

Disable

user

ID

and

password

authentication.

3.

Enable

SSL.

4.

Enable

SSL

client

authentication.

You

can

mix

and

match

these

configuration

options.

However,

there

is

a

precedence

to

which

authentication

features

become

the

identity

in

the

received

credential:

1.

Identity

assertion

2.

Message

layer

client

authentication

(basic

authentication

or

token)

3.

Transport

layer

client

authentication

(SSL

certificates)

Scenario

3:

Client

certificate

authentication

and

RunAs

system:

Chapter

2.

Securing

applications

and

their

environments

379

This

example

presents

a

pure

Java

client,

C,

accessing

a

secure

enterprise

bean

on

S1.

C

authenticates

to

S1

using

Secure

Sockets

Layer

(SSL)

client

certificates.

S1

maps

the

common

name

of

the

distinguished

name

(DN)

in

the

certificate

to

a

user

in

the

local

registry.

The

user

in

this

case

is

bob.

The

enterprise

bean

code

on

S1

accesses

another

enterprise

bean

on

S2.

Because

the

RunAs

mode

is

system,

the

invocation

credential

is

set

as

server1

for

any

outbound

requests.

Configuring

C

C

requires

transport

layer

authentication

(SSL

client

certificates):

1.

Point

the

client

to

the

sas.client.props

file

using

the

com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props

property.

All

further

configuration

involves

setting

properties

within

this

file.

2.

Enable

SSL.

In

this

case,

SSL

is

supported

but

not

required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3.

Disable

client

authentication

at

the

message

layer:com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=false

4.

Enable

client

authentication

at

the

transport

layer.

It

is

supported,

but

not

required:

com.ibm.CSI.performTLClientAuthenticationRequired=false,

com.ibm.CSI.performTLClientAuthenticationSupported=true

Configuring

S1

In

the

administrative

console,

S1

is

configured

for

incoming

connections

to

support

SSL

with

client

certificate

authentication.

The

S1

server

is

configured

for

outgoing

requests

to

support

message

layer

client

authentication.

1.

Configure

S1

for

incoming

connections:

a.

Disable

identity

assertion.

b.

Disable

user

ID

and

password

authentication.

c.

Enable

SSL.

d.

Enable

SSL

client

certificate

authentication.

server1/password

Java client Enterprise beans

Invocation credentials: bob

RunAs system

Message layer

Transport layer Transport layer

SSLSSL: cn=bob, o=ibm, c=us

C S1 S2

Received credentials: server1

Enterprise beans

380

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

2.

Configure

S1

for

outgoing

connections:

a.

Disable

identity

assertion.

b.

Disable

user

ID

and

password

authentication.

c.

Enable

SSL.

d.

Enable

SSL

client

certificate

authentication.

Configuring

S2

In

the

administrative

console,

the

S2

server

is

configured

for

incoming

requests

to

support

message

layer

authentication

over

SSL.

Configuration

for

outgoing

requests

is

not

relevant

for

this

scenario.

1.

Disable

identity

assertion.

2.

Enable

user

ID

and

password

authentication.

3.

Enable

SSL.

4.

Disable

SSL

client

authentication.

Scenario

4:

TCP/IP

transport

using

a

Virtual

Private

Network:

This

scenario

illustrates

the

ability

to

choose

TCP/IP

as

the

transport

when

it

is

appropriate.

In

some

cases,

when

two

servers

are

on

the

same

Virtual

Private

Network

(VPN),

it

can

be

appropriate

to

select

TCP/IP

as

the

transport

for

performance

reasons

because

the

VPN

already

encrypts

the

message.

tom/password
token

Java client Enterprise

beans

Virtual Private Network

Invocation

credentials: tom

Received

credentials: tom

Message layer
Message layer

Transport layer

TCP/IP

C S1 S2

Transport layer

SSL

Enterprise

beans

Chapter

2.

Securing

applications

and

their

environments

381

Configuring

C

C

requires

message

layer

authentication

with

an

SSL

transport:

1.

Point

the

client

to

the

sas.client.props

file

using

the

com.ibm.CORBA.ConfigURL=file:/C:/was/properties/sas.client.props

property.

All

further

configuration

involves

setting

properties

within

this

file.

2.

Enable

SSL.

In

this

case,

SSL

is

supported

but

not

required:

com.ibm.CSI.performTransportAssocSSLTLSSupported=true,

com.ibm.CSI.performTransportAssocSSLTLSRequired=false

3.

Enable

client

authentication

at

the

message

layer.

In

this

case,

client

authentication

is

supported

but

not

required:

com.ibm.CSI.performClientAuthenticationRequired=false,

com.ibm.CSI.performClientAuthenticationSupported=true

4.

Use

the

remaining

defaults

in

the

sas.client.props

file.

Configuring

the

S1

server

In

the

administrative

console,

the

S1

server

is

configured

for

incoming

requests

to

support

message

layer

client

authentication

and

incoming

connections

to

support

SSL

without

client

certificate

authentication.

The

S1

server

is

configured

for

outgoing

requests

to

support

identity

assertion.

1.

Configure

S1

for

incoming

connections:

a.

Disable

identity

assertion.

b.

Enable

user

ID

and

password

authentication.

c.

Enable

SSL.

d.

Disable

SSL

client

certificate

authentication.
2.

Configure

S1

for

outgoing

connections:

a.

Disable

identity

assertion.

b.

Enable

user

ID

and

password

authentication.

c.

Disable

SSL.

It

is

possible

to

enable

SSL

for

inbound

connections

and

disable

SSL

for

outbound

connections.

The

same

is

true

in

reverse.

Configuring

the

S2

server

In

the

administrative

console,

the

S2

server

is

configured

for

incoming

requests

to

support

identity

assertion

and

to

accept

SSL

connections.

Configuration

for

outgoing

requests

and

connections

are

not

relevant

for

this

scenario.

1.

Disable

identity

assertion.

2.

Enable

user

ID

and

password

authentication.

3.

Disable

SSL.

Scenario

5:

Interoperability

with

WebSphere

Application

Server

Version:

382

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

S2

WebSphere Application

Server Version 4

(SAS only)

message layer:

bob/”password”

message layer:

bob/”password”

transport layer:

SSL

transport layer:

SSL

WebSphere Application

Server Version 5

(IBM and CSIv2)

S3

Interoperability with WebSphere

Application Server Version V4.x

WebSphere Application

Server Version 5

(IBM and CSIv2)

S1

The

purpose

of

this

scenario

is

to

show

how

secure

interoperability

can

occur

between

different

releases

simultaneously

while

using

multiple

authentication

protocols

(Security

Authentication

Service

(SAS)

and

Common

Secure

Interoperability

Version

2

(CSIv2)).

For

WebSphere

Application

Server

Version

5

to

communicate

with

a

WebSphere

Application

Server

Version

4,

Version

5

server

must

support

either

IBM

or

BOTH

as

the

protocol

choice.

By

choosing

BOTH,

the

Version

5

server

also

can

communicate

with

other

Version

5

servers

that

support

CSI.

If

the

only

servers

in

your

security

domain

are

version

5,

it

is

recommended

that

you

choose

CSI

as

the

protocol

because

this

prevents

the

IBM

interceptors

from

loading.

However,

a

chance

exists

that

any

server

has

to

communicate

with

a

previous

release

of

WebSphere

Application

Server,

select

the

protocol

choice

of

BOTH.

Configuring

the

S1

server

The

S1

server

requires

message

layer

authentication

with

an

SSL

transport.

The

protocol

for

the

S1

server

must

be

BOTH.

Configuration

for

incoming

requests

for

the

S1

server

is

not

relevant

for

this

scenario.

To

configure

the

S1

server

for

outgoing

connections:

1.

Disable

identity

assertion.

2.

Enable

user

ID

and

password

authentication.

3.

Enable

Secure

Sockets

Layer

(SSL).

4.

Disable

SSL

client

certificate

authentication.

5.

Set

authentication

protocol

to

BOTH

in

the

global

security

settings.

Chapter

2.

Securing

applications

and

their

environments

383

Configuring

the

S2

server

All

previous

releases

of

WebSphere

Application

Server

support

the

SAS

authentication

protocol

only.

No

special

configuration

steps

are

needed

other

than

enabling

global

security

on

the

server

(S2).

Configuring

the

S3

server

In

the

administrative

console,

the

S3

server

is

configured

for

incoming

requests

to

support

message

layer

authentication

and

to

accept

SSL

connections.

Configuration

for

outgoing

requests

and

connections

are

not

relevant

for

this

scenario.

1.

Enable

identity

assertion.

2.

Disable

user

ID

and

password

authentication.

3.

Enable

SSL.

4.

Disable

SSL

client

authentication.

5.

Set

authentication

protocol

to

either

CSI

or

BOTH.

Secure

Sockets

Layer

The

Secure

Sockets

Layer

(SSL)

protocol

provides

transport

layer

security:

authenticity,

integrity,

and

confidentiality,

for

a

secure

connection

between

a

client

and

server

in

the

WebSphere

Application

Server.

The

protocol

runs

above

TCP/IP

and

below

application

protocols

such

as

Hypertext

Transfer

Protocol

(HTTP),

Lightweight

Directory

Access

Protocol

(LDAP),

and

Internet

Inter-ORB

Protocol

(IIOP),

and

provides

trust

and

privacy

for

the

transport

data.

Depending

upon

the

SSL

configurations

of

both

the

client

and

server,

various

levels

of

trust,

data

integrity,

and

privacy

can

be

established.

Understanding

the

basic

operation

of

SSL

is

very

important

to

proper

configuration

and

to

achieve

the

desired

protection

level

for

both

client

and

application

data.

Some

of

the

security

features

provided

by

SSL

are

data

encryption

to

prevent

the

exposure

of

sensitive

information

while

data

flows

across

the

wire.

Data

signing

prevents

unauthorized

modification

of

data

while

data

flows

across

the

wire.

Client

and

server

authentication

ensures

that

you

talk

to

the

appropriate

person

or

machine.

SSL

can

be

effective

in

securing

an

enterprise

environment.

SSL

is

used

by

multiple

components

within

WebSphere

Application

Server

to

provide

trust

and

privacy.

These

components

are

the

built-in

HTTP

transport,

the

Object

Request

Broker

(ORB),

and

the

secure

LDAP

client.

384

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

In

this

figure:

v

The

built-in

HTTP

transport

in

a

WebSphere

Application

Server

accepts

HTTP

requests

over

SSL

from

a

Web

client

like

a

browser.

v

The

Object

Request

Broker

used

in

WebSphere

Application

Server

can

perform

Internet

Inter-ORB

Protocol

(IIOP)

over

SSL

to

secure

the

message.

v

The

secure

LDAP

client

uses

LDAP

over

SSL

to

securely

connect

to

an

LDAP

user

registry

and

is

present

only

when

LDAP

is

configured

as

the

user

registry.

WebSphere

Application

Server

and

the

IBMJSSE

provider

The

SSL

implementation

used

by

the

WebSphere

Application

Server

is

IBM

Java

Secure

Sockets

Extension

(IBMJSSE).

The

IBMJSSE

provider

contains

a

reference

implementation

supporting

SSL

and

Transport

Layer

Security

(TLS)

protocols

and

an

application

programming

interface

(API)

framework.

The

IBMJSSE

provider

also

comes

with

a

standard

provider,

which

supplies

Rivest

Shamir

Adleman

(RSA)

support

for

the

signature-related

JCA

features

of

the

Java

2

platform,

common

SSL

and

TLS

cipher

suites,

hardware

cryptographic

token

device,

X.509-based

key

and

trust

managers,

and

PKCS12

implementation

for

a

JCA

keystore.

A

graphical

tool

called

Key

Management

Tool

(iKeyman)

also

is

provided

to

manage

digital

certificates.

With

this

tool,

you

can

create

a

new

key

database

or

a

test

digital

certificate,

add

certificate

authority

(CA)

roots

to

the

database,

copy

certificates

from

one

database

to

another,

as

well

as

request

and

receive

a

digital

certificate

from

a

CA.

Configuring

the

JSSE

provider

is

very

similar

to

configuring

most

other

SSL

implementations

(for

example,

GSKit);

however,

a

couple

of

differences

are

worth

noting.

Browser
HTTP

transport

WebSphere

Application Server

ORB

JSSE

ORB

Enterprise

beans client

JSSE

Web server

LDAP

client

LDAP

client
GSkit

(A)

HTTP or HTTPS

request/response

over SSL

(D)

HTTP or HTTPS

request/response

over SSL

(C)

RMI/IIOP

over SSL

(B)

HTTP or HTTPS

request/response

over SSL

IBM HTTP

Server

(IHS)

Plug-in

GSKit

Figure

2.

SSL

and

WebSphere

Application

Server

Chapter

2.

Securing

applications

and

their

environments

385

v

The

JSSE

provider

support

both

signer

and

personal

certificate

storage

in

an

SSL

key

file,

but

it

also

supports

a

separate

file

called

a

trust

file.

A

trust

file

can

contain

only

signer

certificates.

You

can

put

all

of

your

personal

certificates

in

an

SSL

key

file

and

your

signer

certificates

in

a

trust

file.

This

might

be

desirable,

for

example,

if

you

have

an

inexpensive

hardware

cryptographic

device

with

only

enough

memory

to

hold

a

personal

certificate.

In

this

case,

the

key

file

refers

to

the

hardware

device

and

the

trust

file

to

a

file

on

disk

containing

all

of

the

signer

certificates.

v

The

JSSE

provider

does

not

recognize

the

proprietary

SSL

key

file

format,

which

is

used

by

the

plug-in

(.kdb

files).

Instead,

the

JSSE

provider

recognizes

standard

file

formats

such

as

Java

Key

Store

(JKS).

SSL

key

files

might

not

be

shared

between

the

plug-in

and

application

server.

Furthermore,

a

different

implementation

of

the

key

management

utility

must

be

used

to

manage

application

server

key

and

trust

files.

Certain

limitations

exist

with

the

Java

Secure

Socket

Extension

(JSSE)

provider:

v

Customer

code

using

JSSE

and

Java

Cryptography

Extension

(JCE)

APIs

must

reside

within

a

WebSphere

Application

Server

environment.

This

restriction

includes

applications

deployed

in

WebSphere

Application

Server

and

client

applications

in

the

J2EE

application

client

environment.

v

Only

com.ibm.crypto.provider.IBMJCE,

com.ibm.jsse.IBMJSSEProvider,

com.ibm.security.cert.IBMCertPath,

and

com.ibm.crypto.pkcs11.provider.IBMPKCS11

are

provided

as

the

cryptography

package

providers.

v

Interoperability

of

the

IBM

JSSE

implementation

with

other

SSL

implementations

by

vendors

is

limited

to

tested

implementations.

The

tested

implementations

include

Microsoft

Internet

Information

Services

(IIS),

BEA

WebLogic

Server,

IBM

AIX,

and

IBM

AS/400.

v

Hardware

token

support

is

limited

to

supported

cryptographic

token

devices.

.

Tested

for

SSL

clients

Tested

for

SSL

clients

or

servers

IBM

Security

Kit

Smartcard

IBM

4758-23

GemPlus

Smartcards

IBM

4758-23

Rainbow

iKey

1000/2000(USB

″Smartcard″

device)

IBM

4758-23

v

The

SSL

protocol

of

Version

2.0

is

not

supported.

In

addition,

the

JSSE

and

JCE

APIs

are

not

supported

with

Java

applet

applications.

WebSphere

Application

Server

and

the

Federal

Information

Processing

Standards

for

Java

Secure

Socket

Extension

and

Java

Cryptography

Extension

providers

The

Federal

Information

Processing

Standards

(FIPS)-approved

Java

Secure

Socket

Extension

(JSSE)

and

Java

Cryptography

Extension

(JCE)

providers

are

optional

in

WebSphere

Application

Server.

By

default,

the

FIPS-approved

JSSE

and

JCE

providers

are

disabled.

When

these

providers

are

enabled,

WebSphere

Application

Server

uses

FIPS-approved

cryptographic

algorithms

in

the

IBMJSSEFIPS

and

IBMJCEFIPS

provider

packages

only.

Important:

The

IBMJSSEFIPS

and

IBMJCEFIPS

modules

are

undergoing

FIPS

140-2

certification.

For

more

information

on

the

FIPS

certification

process

and

to

check

the

status

of

the

IBM

submission,

see

the

Cryptographic

Module

Validation

Program

FIPS

140-1

and

FIPS

140-2

Pre-validation

List

Web

site.

386

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

http://csrc.nist.gov/cryptval/preval.htm
http://csrc.nist.gov/cryptval/preval.htm
http://csrc.nist.gov/cryptval/preval.htm

Authenticity

Authenticity

of

client

and

server

identities

during

a

Secure

Sockets

Layer

(SSL)

connection

is

validated

by

both

communicating

parties

using

public

key

cryptography

or

asymmetric

cryptography,

to

prove

the

claimed

identity

from

each

other.

Public

key

cryptography

is

a

cryptographic

method

that

uses

public

and

private

keys

to

encrypt

and

decrypt

messages.

The

public

key

is

distributed

as

a

public

key

certificate

while

the

private

key

is

kept

private.

The

public

key

is

also

a

cryptographic

inverse

of

the

private

key.

Well

known

public

key

cryptographic

algorithms

such

as

the

Rivest

Shamir

Adleman

(RSA)

algorithm

and

Diffie-Hellman

(DH)

algorithm

are

supported

in

the

WebSphere

Application

Server.

Public

key

certificates

are

either

issued

by

a

trusted

organization

like

a

certificate

authority

(CA)

or

extracted

from

a

self-signed

personal

certificate

by

using

the

IBM

Key

Management

Tool

(iKeyman).

A

self-signed

certificate

is

less

secure

and

is

not

recommended

for

use

in

a

production

environment.

The

public

key

certificate

includes

the

following

information:

v

Issuer

of

the

certificate

v

Expiration

date

v

Subject

that

the

certificate

represents

v

Public

key

belonging

to

the

subject

v

Signature

by

the

issuer

You

can

link

multiple

key

certificates

into

a

certificate

chain.

In

a

certificate

chain,

the

client

is

always

first,

while

the

certificate

for

a

root

CA

is

last.

In

between,

each

certificate

belongs

to

the

authority

that

issued

the

previous

one.

During

the

Secure

Sockets

Layer

(SSL)

connection,

a

digital

signature

is

also

applied

to

avoid

forged

keys.

The

digital

signature

is

an

encrypted

hash

and

cannot

be

reversed.

It

is

very

useful

for

validating

the

public

keys.

SSL

supports

reciprocal

authentication

between

the

client

and

the

server.

This

process

is

optional

during

the

handshake.

By

default,

a

WebSphere

Application

Server

client

always

authenticates

its

server

during

the

SSL

connection.

For

further

protection,

you

can

configure

a

WebSphere

Application

Server

for

client

authentication.

Refer

to

the

Transport

Layer

Security

(TLS)

specification

at

http://www.ietf.org/rfc/rfc2246.txt

for

further

information.

Confidentiality

Secure

Sockets

Layer

(SSL)

uses

private

or

secret

key

cryptography

or

symmetric

cryptography

to

support

message

confidentiality

or

privacy.

After

an

initial

handshake

(a

negotiation

process

by

message

exchange),

the

client

and

server

decide

on

a

secret

key

and

a

cipher

suite.

Between

the

communicating

parties,

each

message

encryption

and

decryption

using

the

secret

key

occurs

based

on

the

cipher

suite.

Private

key

cryptography

requires

the

two

communicating

parties

to

use

the

same

key

for

encryption

and

decryption.

Both

parties

must

have

the

key

and

keep

the

key

private.

Well

known

secret

key

cryptographic

algorithms

include

the

Data

Encryption

Standard

(DES),

triple-strength

DES

(3DES),

and

Rivest

Cipher

4

(RC4),

which

are

all

supported

in

WebSphere

Application

Server.

These

algorithms

provide

excellent

security

and

quick

encryption.

Chapter

2.

Securing

applications

and

their

environments

387

A

cryptographic

algorithm

is

a

cipher,

while

a

set

of

ciphers

is

a

cipher

suite.

A

cipher

suite

is

a

combination

of

cryptographic

parameters

that

define

the

security

algorithms

and

the

key

sizes

used

for

authentication,

key

agreement,

encryption

strength

and

integrity

protection.

The

following

cipher

suites

are

supported

in

WebSphere

Application

Server:

v

SSL_RSA_WITH_RC4_128_MD5

v

SSL_RSA_WITH_RC4_128_SHA

v

SSL_RSA_WITH_AES_128_CBC_SHA

v

SSL_RSA_WITH_AES_256_CBC_SHA

v

SSL_RSA_FIPS_WITH_DES_CBC_SHA

v

SSL_RSA_WITH_3DES_EDE_CBC_SHA

v

SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA

v

SSL_DHE_RSA_WITH_AES_128_CBC_SHA

v

SSL_DHE_RSA_WITH_AES_256_CBC_SHA

v

SSL_DHE_RSA_WITH_DES_CBC_SHA

v

SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

v

SSL_DHE_DSS_WITH_AES_128_CBC_SHA

v

SSL_DHE_DSS_WITH_AES_256_CBC_SHA

v

SSL_DHE_DSS_WITH_RC4_128_SHA

v

SSL_DHE_DSS_WITH_DES_CBC_SHA

v

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

v

SSL_RSA_EXPORT_WITH_RC4_40_MD5

v

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

v

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

v

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

v

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

v

SSL_RSA_WITH_NULL_MD5

v

SSL_RSA_WITH_NULL_SHA

v

SSL_DH_anon_WITH_AES_128_CBC_SHA

*

v

SSL_DH_anon_WITH_AES_256_CBC_SHA

*

v

SSL_DH_anon_WITH_RC4_128_MD5

*

v

SSL_DH_anon_WITH_DES_CBC_SHA

*

v

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

*

v

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

*

v

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

*

Important:

*

Although

anonymous

cipher

suites

are

enabled,

the

IBM

Java

Secure

Sockets

Extension

(JSSE)

client

trust

manager

does

not

allow

anonymous

cipher

suites.

The

default

implementation

can

be

overwritten

by

providing

your

own

trust

manager

that

allows

anonymous

cipher

suites.

All

of

the

previously

mentioned

cipher

suites

provide

data

integrity

protection

by

using

hash

algorithms

like

MD5

and

SHA-1.

The

cipher

suite

names

ending

with

_SHA

indicate

that

the

SHA-1

algorithm

is

used.

SHA-1

is

considered

a

stronger

hash,

while

MD5

provides

better

performance.

The

SSL_DH_anon_xxx

cipher

suites

(for

example,

those

cipher

suites

that

begin

with

SSL_DH_anon_,

where,

anon

is

anonymous)

are

not

enabled

on

the

product

client

side.

Because

the

JSSE

client

trust

manager

does

not

support

anonymous

connections,

the

JSSE

client

must

always

establish

trust

in

the

server.

However,

the

SSL_DH_anon_xxx

cipher

suites

are

enabled

on

the

server

side

to

support

another

type

of

client

connection.

That

client

might

not

require

trust

in

the

server.

These

cipher

suites

are

vulnerable

to

man-in-the-middle

attacks

and

are

strongly

388

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

discouraged.

In

a

man-in-the-middle

attack,

an

attacker

is

able

to

intercept

and

potentially

modify

communications

between

two

parties

without

either

party

being

cognizant

of

the

attack.

Where:

Name

Description

SSL

Secure

Sockets

Layer

RSA

v

Public

key

algorithm

developed

by

Rivest,

Shamir

and

Adleman

v

Requires

RSA

or

DSS

key

exchange

DH

v

Diffie-Hellman

public

key

algorithm

v

Server

certificate

contains

the

Diffie-Hellman

parameters

signed

by

the

certificate

authority

(CA)

DHE

v

Ephemeral

Diffie-Hellman

public

key

algorithm

v

Diffie-Hellman

parameters

are

signed

by

a

DSS

or

RSA

certificate,

which

is

signed

by

the

certificate

authority

(CA)

DSS

Digital

Signature

Standard,

using

the

Digital

Signature

Algorithm

for

digital

signatures

DES

v

Data

Encryption

Standard,

an

symmetric

encryption

algorithm

v

Block

cipher

v

Performance

cost

is

high

when

using

software

without

the

support

of

a

hardware

cryptographic

device

3DES

v

Triple

DES,

increasing

the

security

of

DES

by

encrypting

three

times

with

different

keys

v

Strongest

of

the

ciphers

v

Performance

cost

is

very

high

when

using

software

without

the

support

of

a

hardware

cryptographic

device

support

RC4

v

A

stream

cipher

designed

for

RSA

v

Variable

key-size

stream

cipher

with

key

length

from

40

bits

to

128

bits

EDE

Encrypt-decrypt-encrypt

for

the

triple

DES

algorithm

CBC

v

Cipher

block

chaining

v

A

mode

in

which

every

plain

text

block

encrypted

with

the

block

cipher

is

first

exclusive-ORed

with

the

previous

ciphertext

block

128

128-bit

key

size

40

40-bit

key

size

EXPORT

Exportable

MD5

v

Secure

hashing

function

that

converts

an

arbitrarily

long

data

stream

into

a

digest

of

fixed

size

v

Produces

128-bit

hash

Chapter

2.

Securing

applications

and

their

environments

389

Name

Description

SHA

v

Secure

Hash

Algorithm,

same

as

SHA-1

v

Produces

160-bit

hash

anon

For

anonymous

connections

NULL

No

encryption

WITH

The

cryptographic

algorithm

is

defined

after

this

key

word

Refer

to

the

Transport

Layer

Security

(TLS)

specification

at

http://www.ietf.org/rfc/rfc2246.txt

for

further

information.

Integrity

Secure

Sockets

Layer

(SSL)

uses

a

cryptographic

hash

function

similar

to

checksum,

to

ensure

data

integrity

in

transit.

Use

the

cryptographic

hash

function

to

detect

accidental

alterations

in

the

data.

This

function

does

not

require

a

cryptographic

key.

After

a

cryptographic

hash

is

created,

the

hash

is

encrypted

with

a

secret

key.

The

private

key

belonging

to

the

sender

encrypts

the

hash

for

the

digital

signature

of

the

message.

When

secret

key

information

is

included

with

the

cryptographic

hash,

the

resulting

hash

is

known

as

a

Key-Hashing

Message

Authentication

Code

(HMAC)

value.

HMAC

is

a

mechanism

for

message

authentication

that

uses

cryptographic

hash

functions.

Use

this

mechanism

with

any

iterative

cryptographic

hash

function,

in

combination

with

a

secret

shared

key.

In

the

product,

both

well

known

one-way

hash

algorithms,

MD5

and

SHA-1,

are

supported.

One-way

hash

is

an

algorithm

that

converts

processing

data

into

a

string

of

bits

known

as

a

hash

value

or

a

message

digest.

One-way

means

that

it

is

extremely

difficult

to

turn

the

fixed

string

back

into

the

original

data.

The

following

explanation

includes

both

the

MD5

and

SHA-1

one-way

hash

algorithms:

v

MD5

is

a

hash

algorithm

designed

for

a

32-bit

machine.

It

takes

a

message

of

arbitrary

length

as

input

and

produces

a

128-bit

hash

value

as

output.

Although

this

process

is

less

secure

than

SHA-1,

MD5

provides

better

performance.

v

SHA-1

is

a

secure

hash

algorithm

specified

in

the

Secure

Hash

Standard.

It

is

designed

to

produce

a

160-bit

hash.

Although

it

is

slightly

slower

than

MD5,

the

larger

message

digest

makes

it

more

secure

against

attacks

like

brute-force

collision.

Refer

to

the

Transport

Layer

Security

(TLS)

specification

at

http://www.ietf.org/rfc/rfc2246.txt

for

further

information.

Configuring

Secure

Sockets

Layer

Secure

Sockets

Layer

(SSL)

is

used

by

multiple

components

within

WebSphere

Application

Server

to

provide

trust

and

privacy.

These

components

are

the

built-in

HTTP

Transport,

the

Object

Request

Broker

(ORB)

(for

client

and

server)

and

the

secure

Lightweight

Directory

Access

Protocol

(LDAP)

client.

Configuring

SSL

is

different

between

client

and

server

with

WebSphere

Application

Server

.

1.

Configure

the

client

(JSSE).

Use

the

sas.client.props

file

located

in

the

${install_root}/properties

directory.

The

sas.client.props

file

is

a

configuration

file

that

contains

lists

of

property-value

pairs,

using

the

syntax

<property>

=

<value>.

The

property

names

are

case

sensitive,

but

the

values

are

not;

the

values

are

converted

to

lowercase

when

the

file

is

read.

By

default,

the

390

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

http://www.ietf.org/rfc/rfc2246.txt

sas.client.props

file

is

located

in

the

properties

directory

under

the

install_root

of

your

WebSphere

Application

Server

installation.

Specify

the

following

properties

for

an

SSL

connection:

v

com.ibm.ssl.protocol

v

com.ibm.ssl.keyStoreType

v

com.ibm.ssl.keyStore

v

com.ibm.ssl.keyStorePassword

v

com.ibm.ssl.trustStoreType

v

com.ibm.ssl.trustStore

v

com.ibm.ssl.trustStorePassword

v

com.ibm.ssl.enabledCipherSuites

v

com.ibm.ssl.contextProvider

v

com.ibm.ssl.keyStoreServerAlias

v

com.ibm.ssl.keyStoreClientAlias
v

For

the

Secure

Authentication

Services

(SAS)

authentication

protocol

only:

com.ibm.CORBA.standardPerformQOPModels

v

For

the

cryptographic

token

device:

–

com.ibm.ssl.tokenType

–

com.ibm.ssl.tokenLibraryFile

–

com.ibm.ssl.tokenPassword

Note:

Although

WebSphere

Application

Server

supports

the

IBM

Federal

Information

Processing

Standard-approved

Java

Secure

Socket

Extension

(IBMJSSEFIPS),

IBMJSSEFIPS

is

not

supported

on

the

HP-UX

platform.

2.

Configure

the

server.

Use

the

administrative

console

to

configure

an

application

server

that

makes

SSL

connections.

To

start

the

administrative

console,

specify

the

following

Web

address:

http://server_hostname:9090/admin.

3.

Create

an

SSL

configuration

repertoires

alias

or

entry.

You

can

select

the

alias

later

when

a

component

is

configured

for

SSL

support.

An

SSL

configuration

repertoires

entry

contains

the

following

fields:

v

Typical

configuration

settings:

–

Alias

–

Key

file

name

–

Key

file

password

–

Key

file

format

–

Trust

file

name

–

Trust

file

password

–

Trust

file

format

–

Client

authentication

–

Security

level

–

Cipher

suites
v

For

the

cryptographic

token

device:

–

Cryptographic

token

(Create

the

alias

first

so

you

can

configure

these

fields).

-

Token

type

-

Library

file

-

Password
v

For

additional

Java

properties:

–

Custom

properties

(Create

the

alias

first

so

you

can

configure

these

fields).

-

com.ibm.ssl.contextProvider

-

com.ibm.ssl.protocol

Note:

WebSphere

Application

Server

contains

IBM

Developer

Kit

for

Java

Technology

Edition

Version

1.4.x

,

which

includes

changes

from

IBM

Chapter

2.

Securing

applications

and

their

environments

391

Developer

Kit

for

Java

Technology

Edition

Version

1.3.

See

Changes

to

IBM

Developer

Kit

for

Java

Technology

Edition

Version

1.4.x

for

more

information.

Configuring

Secure

Sockets

Layer

for

Web

client

authentication

To

enable

client-side

certificate-based

authentication,

you

must

modify

the

authentication

method

defined

on

the

J2EE

Web

module

that

you

want

to

manage.

The

Web

module

might

already

be

configured

to

use

the

basic

challenge

authentication

method.

In

this

case,

modify

the

challenge

type

to

client

certificate.

This

functionality

is

delivered

to

the

WebSphere

Application

Server

administrator

in

the

Assembly

Toolkit.

However,

developers

can

use

the

WebSphere

Application

Server

Studio

Application

Development

environment

to

achieve

the

same

result.

1.

Launch

the

Assembly

Toolkit.

This

step

can

be

done

either

before

an

enterprise

application

archive

.ear

file

is

deployed

into

the

WebSphere

Application

Server

or

after

deployment

into

the

product.

The

latter

option

is

discouraged

in

a

production

environment

because

it

involves

opening

the

expanded

archive

correlating

to

the

enterprise

application

archive,

found

in

the

installedApps

directory.

2.

Locate

and

expand

the

Web

module

package

under

the

application

for

which

you

wish

to

enable

the

client-side

certificate

authentication

method.

3.

Select

the

appropriate

Web

application,

and

switch

to

the

Advanced

tab.

Modify

the

authentication

method

to

client

certificate.

The

realm

name

is

the

scope

of

the

login

operation

and

is

the

same

for

all

participating

resources.

4.

Click

OK,

and

save

the

changes

you

made

with

Assembly

Toolkit.

5.

Stop

and

restart

the

associated

application

server

containing

the

resource,

so

that

the

security

modification

is

included

in

the

run

time.

Complete

this

action

if

the

modification

was

made

to

a

resource

that

already

is

deployed

in

the

WebSphere

Application

Server.

Now

your

enterprise

application

prompts

the

user

for

proof

of

identity

with

a

certificate.

The

Web

server

must

also

be

configured

to

request

a

client

certificate.

If

the

Web

server

is

external,

refer

to

the

appropriate

configuration

documentation.

If

the

Web

server

is

the

Web

container

transport

(for

example,

9043)

within

WebSphere

Application

Server,

verify

that

the

client

authentication

flag

is

selected

in

the

referenced

SSL

configuration.

Refer

to

the

Map

certificates

to

users

article

to

determine

how

a

certificate

is

authenticated

within

the

product.

Configuring

Secure

Sockets

Layer

for

the

Lightweight

Directory

Access

Protocol

client

This

topic

describes

how

to

establish

a

Secure

Sockets

Layer

(SSL)

connection

between

WebSphere

Application

Server

and

a

Lightweight

Directory

Access

Protocol

(LDAP)

server.

This

page

provides

an

overview.

Refer

to

the

linked

pages

for

more

details.

To

understand

SSL

concepts,

refer

to

“Secure

Sockets

Layer”

on

page

384.

Setting

up

an

SSL

connection

between

WebSphere

Application

Server

and

an

LDAP

server

requires

the

following

steps:

392

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

1.

Set

up

an

LDAP

server

with

users.

The

server

configured

in

this

example

is

IBM

Directory

Server.

Other

servers

are

configured

differently.

Refer

to

the

documentation

of

the

directory

server

you

are

using

for

details

on

SSL

enablement.

For

a

product-supported

LDAP

directory

server,

see

the

“Supported

directory

services”

on

page

209

article.

2.

Configure

certificates

for

the

LDAP

server

using

the

key

management

utility

(iKeyman)

that

is

shipped

with

the

IBM

HTTP

Server

product.

3.

Click

Key

Database

File

>

New.

4.

Type

LDAPkey.kdb

as

the

file

name

and

a

proper

path.

5.

Click

Personal

Certificates

>

New

Self-Signed

Certificate.

The

Create

New

Self-Signed

Certificate

panel

is

displayed.

Type

the

following

information

in

the

fields

and

click

OK:

Key

Label

LDAP_Cert

Common

Name

droplet.austin.ibm.com

This

common

name

is

the

host

name

where

the

WebSphere

Application

Server

plug-in

runs.

Organization

ibm

Country

US

6.

Return

to

the

Personal

Certificates

panel

and

click

Extract

Certificate.

7.

Click

the

Base64-encoded

ASCII

data

data

type.

Type

LDAP_cert.arm

as

the

file

name

and

a

proper

path.

Click

OK.

8.

Enable

SSL

on

the

LDAP

server:

a.

Copy

the

LDAPkey.kdb,

LDAPkey.sth,

LDAPkey.rdb,

and

LDAPkey.crl

files

created

previously

to

the

LDAP

server

system,

for

example,

the

\Program

Files\IBM\LDAP\ssl\

directory.

b.

Open

the

LDAP

Web

administrator

from

a

browser

(http://secnt3.austin.ibm.com/ldap,

for

example).

IBM

HTTP

Server

is

running

on

secnt3.

c.

Click

SSL

properties

to

open

the

SSL

Settings

window.

d.

Click

SSL

On

>

Server

Authentication

and

type

an

SSL

port

(636,

for

example)

and

a

full

path

to

the

LDAPkey.kdb

file.

e.

Click

Apply,

and

restart

the

LDAP

server.

9.

Manage

certificates

for

WebSphere

Application

Server

using

the

default

SSL

key

files.

a.

Open

the

install_root\etc\DummyServerTrustFile.jks

file

using

the

key

management

utility

that

shipped

with

WebSphere

Application

Server.

The

password

is

WebAS.

b.

Click

Personal

Certificates

>

Import.

The

Import

Key

panel

is

displayed.

Specify

LDAP_cert.arm

for

the

file

name.

Complete

this

step

for

all

the

servers

including

the

deployment

manager.
10.

Establish

a

connection

between

the

WebSphere

Application

Server

and

the

LDAP

server.

a.

In

the

administrative

console,

click

User

Registry

>

LDAP

User

Registry

>

LDAP

Settings.

Fill

in

the

Server

ID,

Server

Password,

Type,

Host,

Port,

and

Base

Distinguished

Name

fields.

Select

the

SSL

Enabled

check

box.

The

port

is

the

one

that

the

LDAP

server

is

using

for

SSL

(636,

for

example).

Click

Apply.

Chapter

2.

Securing

applications

and

their

environments

393

b.

Click

Authentication

Mechanisms

>

LTPA

>

Single

SignOn

(SSO).

Type

in

a

domain

name

(austin.ibm.com,

for

example).

Click

Apply.
11.

Enable

global

security.

a.

Click

Security

>

Global

Security.

Select

the

Enabled

check

box.

Choose

LTPA

as

the

active

authentication

mechanism

and

LDAP

as

the

active

user

registry.

Click

Apply

and

Save.

Note:

Verify

that

the

security

level

for

the

LDAP

server

is

set

to

HIGH.

The

default

security

level

is

HIGH

(128-bit).

b.

Check

the

LDAP_install_root\etc\slapd32.conf

file;

verify

that

the

ibm-slapdSSLCipherSpecs

parameter

has

the

value,

15360,

instead

of

12288.

c.

Restart

the

servers.

Restarting

the

servers

ensures

that

the

security

settings

are

synchronized

between

the

deployment

manager

and

the

application

servers.

You

can

test

the

configuration

by

accessing

https://fully_qualified_host_name:9443/snoop.

You

are

presented

with

a

login

challenge.

This

test

can

be

beneficial

when

using

LDAP

as

your

user

registry.

Sensitive

information

can

flow

between

the

WebSphere

Application

Server

and

the

LDAP

server,

including

passwords.

Using

SSL

to

encrypt

the

data

protects

this

sensitive

information.

1.

If

you

are

enabling

security,

make

sure

that

you

complete

the

remaining

steps.

As

the

final

step,

validate

this

configuration

by

clicking

OK

or

Apply

in

the

Global

Security

panel.

Refer

to

the

“Configuring

global

security”

on

page

137

article

for

detailed

steps

on

enabling

global

security.

2.

For

changes

in

this

panel

to

become

effective,

save,

stop,

and

start

all

WebSphere

Application

Servers

(cells,

nodes

and

all

the

application

servers).

3.

After

the

server

starts

up,

go

through

all

the

security-related

tasks

(getting

users,

getting

groups,

and

so

on)

to

make

sure

that

the

changes

to

the

filters

are

functioning.

Configuring

IBM

HTTP

Server

for

secure

sockets

layer

mutual

authentication

IBM

HTTP

Server

supports

Secure

Sockets

Layer

(SSL)

Version

2

and

Version

3

and

Transport

Layer

Security

(TLS)

Version

1.

IBM

HTTP

Server

is

based

on

the

Apache

Web

server,

but

for

SSL

configuration

it

requires

the

IBM-supplied

SSL

modules,

rather

than

the

OpenSSL

modules.

This

document

describes

configuration

of

IBM

HTTP

Server,

although

it

is

possible

to

use

another

supported

Web

server.

SSL

is

disabled

by

default

and

it

is

necessary

to

modify

a

configuration

file

and

generate

a

server-side

certificate

using

the

key

management

utility

(iKeyman)

provided

with

IBM

HTTP

Server

to

enable

SSL.

1.

For

a

single

server,

enable

SSL

on

IBM

HTTP

Server

(port

443,for

example).

2.

To

set

up

certificates

complete

the

following:

Start

the

key

management

utility

by

clicking

Start

>

Programs

>

IBM

HTTP

Server

>

Start

Key

Management

Utility.

Refer

to

Requesting

a

CA-signed

personal

certificate,

Creating

a

certificate

signing

request

(CSR),

Receiving

a

CA-signed

personal

certificate,

and

Extracting

a

public

certificate

for

use

in

a

truststore

file

3.

Create

a

key

database

and

click

Key

Database

File

>

New.

4.

Type

a

file

name,

serverkey.kdb,

for

example,

and

the

location

path.

Click

OK.

394

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

5.

Type

a

password,

select

the

Stash

the

password

to

a

file

check

box

and

click

OK.

6.

Obtain

a

personal

certificate

for

IBM

HTTP

Server:

Click

Personal

Certificate

Requests

in

the

key

management

utility

menu.

Click

New.

The

Create

New

Key

and

Certificate

Request

panel

appears.

Complete

the

following

information:

Key

label

Server_Cert

Common

name

droplet.austin.ibm.com

Organization

IBM

Country

US

File

name

Server_certreq.arm

The

Verisign

Test

CA

Root

Certificate

is

in

the

set

of

signer

certificates

shipped

with

the

IKeyMan

for

IBM

HTTP

Server.

7.

Go

to

URL

http://www.verisign.com,

click

Get

Free

Trial

SSL

ID.

Complete

the

profile

information,

click

Submit,

and

click

Continue

twice.

8.

Use

your

favorite

text

editor

to

edit

the

request

file

Server_certreq.arm,

and

copy

the

entire

contents

of

the

file

into

the

browser

request

panel.

Click

Continue.

VeriSign

displays

the

Personal

Certificate

in

the

browser.

9.

Copy

and

paste

this

certificate

into

a

file,

for

example

Server_Cert.arm.

Click

Personal

Certificate

from

the

menu

in

the

key

management

utility.

Click

Receive.

Specify

the

file

name,

Server_Cert.arm,

and

click

OK.

Close

the

serverkey.kdb

file.

10.

To

allow

IBM

HTTP

Server

to

support

HTTPS,

port

443,

for

example,

enable

SSL

on

IBM

HTTP

Server.

Modify

the

configuration

file

of

IBM

HTTP

Server,

IHS_HOME/conf/httpd.conf.

You

also

can

enable

SSL

can

be

enabled

through

the

IBM

HTTP

Server

administrative

console

also.

Open

the

file

IHS_HOME/conf/httpd.conf

and

then

add

the

following

lines

above

the

line

Alias

/IBMWebAS/

″install_root/web″:

LoadModule

ibm_ssl_module

modules/IBMModuleSSL128.dll

install_root/bin/mod_ibm_app_server_http.dll

Listen

443

VirtualHost

droplet.austin.ibm.com:443

ServerName

droplet.austin.ibm.com

DocumentRoot

install_root\htdocs

SSLEnable

#SSLClientAuth

required

SSLDisable

Keyfile

IHS_HOME/serverkey.kdb

Note:

Change

the

host

name

and

the

path

for

the

key

file

accordingly.

Modify

the

Web

server

to

support

client

certificates

by

uncommenting

the

SSLClientAuth

directive

shown

in

the

httpd.conf

file.

SSLClientAuth

required

11.

Restart

IBM

HTTP

Server.

Chapter

2.

Securing

applications

and

their

environments

395

12.

Test

SSL

between

a

browser

and

IBM

HTTP

Server.

For

more

information

on

the

default

IBM

HTTP

Server

port

number,

see

Port

number

settings

in

WebSphere

Application

Server

versions.

13.

Follow

the

prompts

to

select

a

personal

certificate

if

the

SSLClientAuth

directive

is

set

to

required.

14.

To

enable

the

application

server

to

communicate

with

IBM

HTTP

Server

using

port

443,

add

the

host

alias

on

the

default_host.

Click

Environment

>

Virtual

Hosts

>

default

host

>

Host

Aliases

>

New.

Enter

the

following

information

in

the

appropriate

fields:

Host

name

*

Port

type

443

15.

Click

Apply

and

Save

to

write

to

the

security.xml

file.

16.

Click

Update

Web

Server

Plugin,

and

then

click

OK.

17.

Restart

WebSphere

Application

Server.

18.

Test

your

connection.

You

can

connect

to

the

Snoop

servlet.

Enable

Secure

Sockets

Layer

communication

between

IBM

HTTP

Server

and

the

WebSphere

Application

Server.

Configuring

the

IBM

HTTP

Server

for

distributed

platforms

and

the

Web

server

plug-in

for

Secure

Sockets

Layer

This

section

documents

the

configuration

necessary

to

instantiate

a

secure

connection

between

the

Web

server

plug-in

and

the

internal

HTTP

transport

in

the

WebSphere

Application

Server

Web

container

on

a

distributed

platform.

By

default,

this

connection

is

not

secure,

even

when

global

security

is

enabled.

This

document

discusses

the

configuration

for

the

IBM

HTTP

Server;

however,

the

Web

server

related

configuration

in

this

situation

is

not

specific

to

any

distributed

platform

Web

server.

1.

Create

a

self-signed

certificate

for

the

Web

server

plug-in.

The

Web

server

plug-in

requires

a

key

ring

file

to

store

its

own

private

and

public

key

files

and

to

store

the

public

certificate

from

the

Web

container

key

file.

The

following

steps

are

required

to

generate

a

self-signed

certificate

for

the

Web

server

plug-in.

a.

Create

a

directory

on

the

Web

server

host

for

storing

the

key

ring

file

referenced

by

the

plug-in

and

associated

files,

for

example:

IHS_install_root\conf\keys.

b.

Launch

the

key

management

utility

(iKeyman)

packaged

with

the

IBM

HTTP

Server.

c.

From

the

iKeyman

menu,

click

Key

Database

File

>

New.

d.

Enter

the

following

settings:

Key

database

file

CMS

Key

Database

File

File

name

WASplugin.kdb

Location

C:\http1324\conf\keys\(or

file

of

your

choice)
e.

Click

OK.

396

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

f.

Set

the

password

of

your

choice

at

the

password

prompt.

Select

the

Stash

the

Password

to

a

File

check

box

to

save

the

password

to

a

stash

file.

This

action

allows

the

plug-in

to

use

the

password,

which

provides

access

to

the

certificates

contained

in

the

key

database.

g.

From

the

iKeyman

menu,

click

Create

>

New

Self-Signed

Certificate

to

create

a

new

self-signed

certificate

key

pair.

Specify

the

following

options.

Optionally,

you

can

choose

to

complete

all

of

the

remaining

fields.

Key

label

WASplugin

Version

X509

V3

Key

size

1024

Common

name

droplet.austin.ibm.com

Organization

IBM

Country

US

Validity

period

365

h.

Click

OK.

i.

Extract

the

public

self-signed

certificate

key:

this

key

is

used

later

by

the

embedded

HTTP

server

peer

to

authenticate

connections

originating

from

the

plug-in.

j.

Click

Personal

Certificates

in

the

menu

and

select

the

WASplugin

certificate

that

you

just

created.

k.

Click

Extract

Certificate.

Extract

the

certificate

to

a

file:

Data

type

Base64-encoded

ASCII

data

Certificate

file

name

WASpluginPubCert.arm

Location

C:\http1324\conf\keys

(or

directory

of

your

choice)
l.

Click

OK.

m.

Close

the

key

database

and

exit

the

iKeyman

when

you

finish.
2.

Generate

a

self-signed

certificate

for

the

Web

container.

a.

Launch

the

JKS

capable

iKeyman

version

located

the

product

/bin

directory.

b.

Click

Key

Database

File

>

New

from

the

iKeyman

menu.

c.

Enter

the

following

settings:

Key

database

file

JKS

File

name

WASWebContainer.jks

Location

C:\WebSphere\AppServer\etc\

(or

directory

of

your

choice)
d.

Click

OK.

e.

Enter

the

password

of

your

choice

at

the

password

prompt

window.

f.

Click

Create

>

New

Self-Signed

Certificate

from

the

iKeyman

menu.

The

following

values

were

used

in

this

example:

Key

Label

WASWebContainer

Chapter

2.

Securing

applications

and

their

environments

397

Version

X509

V3

Key

size

1024

Common

name

droplet.austin.ibm.com

Organization

IBM

Country

US

Validity

Period

365

g.

Click

OK.

h.

Extract

the

public

self-signed

certificate

key:

this

key

is

used

later

by

the

Web

server

plug-in

peer

to

authenticate

connections

originating

from

the

embedded

HTTP

server

in

the

product.

i.

Click

Personal

Certificates

from

the

list.

Select

the

WASWebContainer

certificate

that

you

just

created.

Click

Extract

Certificate.

Extract

the

certificate

to

a

file:

Data

type

Base64-encoded

ASCII

data

Certificate

file

name

WASWebContainerPubCert.arm

Location

C:\WebSphere\AppServer\etc\

j.

Click

OK.

k.

Close

the

database

and

exit

the

key

management

utility.
3.

Exchange

the

public

certificates.

a.

Copy

the

WASpluginPubCert.arm

file

from

the

Web

server

machine

to

the

WebSphere

Application

Server

machine.

The

source

directory

in

this

case

is

C:\http1324\conf\keys,

while

the

destination

is

C:\WebSphere\Appserver\etc.

b.

Copy

the

WASWebContainerPubCert.arm

file

from

the

product

machine

to

the

Web

server

machine.

The

source

directory

in

this

case

is

C:\WebSphere\Appserver\etc,

while

the

destination

is

C:\http1324\conf\keys.
4.

Import

the

certificate

into

the

Web

server

plug-in

key

file.

a.

On

the

Web

server

machine,

launch

the

key

management

utility

that

supports

the

CMS

key

database

format.

b.

From

the

iKeyman

menu,

click

Key

Database

File

>

Open

and

select

the

previously

created

key

database

file:

WASplugin.kdb.

c.

In

the

password

prompt

window,

enter

the

password.

Click

OK.

d.

Click

Signer

Certificates

from

the

list

and

click

Add.

This

action

imports

the

public

certificate

previously

extracted

from

the

embedded

HTTP

server

(Web

container)

keystore

file.

Data

type

Base64-encoded

ASCII

data

Certificate

file

name

WASWebContainerPubCert.arm

Location

C:\WebSphere\Appserver\etc\

398

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

e.

Click

OK.

You

are

prompted

for

a

label

name

that

represents

the

trusted

signer

public

certificate.

f.

Enter

a

label

for

the

certificate:

WASWebContainer.

g.

Close

the

key

database

and

exit

IKeyman

when

you

finish.
5.

Import

the

certificate

into

the

Web

container

keystore

file.

a.

On

the

WebSphere

Application

Server

machine,

launch

the

JKS

capable

iKeyman

version,

located

in

the

product

/bin

directory.

b.

From

the

iKeyman

menu,

select

Key

Database

File

>

Open.

Select

the

previously

created

WASWebContainer.jks

file.

c.

In

the

password

prompt

window,

enter

the

password.

Click

OK.

d.

Click

Signer

Certificates

from

the

list.

Click

Add.

This

action

imports

the

public

certificate

previously

extracted

from

the

embedded

HTTP

server

(Web

container)

keystore

file.

Data

type

Base64-encoded

ASCII

data

Certificate

file

name

WASpluginPubCert.arm

Location

C:\WebSphere\Appserver\etc\

e.

Click

OK.

You

are

prompted

for

a

label

name

that

represents

the

trusted

signer

public

certificate.

f.

Enter

a

label

for

the

certificate:

WASplugin.

g.

Close

the

key

database

and

exit

iKeyman

when

you

finish.
6.

Modify

the

Web

server

plug-in

file.

In

a

production

environment,

add

the

secure

transport

definition,

port

9443,

to

the

plugin-cfg.xml

file.

For

example,

your

modified

plugin-key.kdb

file

contains

the

following

lines:

<Transport

Hostname=″hpws07″

Port=″9080″

Protocol=″http″/>

<Transport

Hostname=″hpws07″

Port=″9443″

Protocol=″https″/>

After

you

verify

that

the

proper

plugin-key.kdb

and

plugin-key.sth

files

exist

on

the

Web

server,

modify

the

plugin-cfg.xml

file

that

resides

on

the

Web

server.

You

must

specify

the

local

path

to

both

the

plugin-key.kdb

and

plugin-key.sth

files

in

the

plugin-cfg.xml

file.

For

more

information,

see

plugin-cfg.xml

file

and

Situations

requiring

manual

editing

of

the

plug-in

configuration.

Important:

If

you

manually

edit

the

plugin-cfg.xml

file

and

an

automatic

regeneration

of

the

file

occurs,

you

must

replace

your

manual

edits.

7.

Modify

the

Web

container

to

support

SSL.

To

complete

the

configuration

between

Web

server

plug-in

and

Web

container,

modify

the

WebSphere

Application

Server

Web

container

to

use

the

previously

created

self-signed

certificates.

a.

Start

the

WebSphere

Application

Server

administrative

console.

b.

Click

Security

>

SSL

Configuration

Repertoires.

c.

Click

New

to

create

a

new

entry

in

the

repertoire.

Provide

the

following

values

to

complete

the

form:

Alias

WebContainerSSLSettings

Key

file

name

C:\WebSphere\Appserver\etc\WASWebContainer.jks

Key

file

password

<key_file_password>

Chapter

2.

Securing

applications

and

their

environments

399

Key

file

format

JKS

Trust

file

name

C:\WebSphere\Appserver\etc\WASWebContainer.jks

Trust

file

password

<trust_file_password>

Trust

file

format

JKS

Client

authentication

Security

level

HIGH

d.

Click

OK.

e.

If

you

want

mutual

SSL

between

the

two

parties,

select

the

Client

Authentication

check

box.

f.

Save

the

configuration

in

the

administrative

console.

g.

Click

Servers

>

Application

Servers,

server_name,

in

this

example,

server1.

h.

Click

the

Web

container

located

in

the

server

navigation

tree.

i.

Click

HTTP

Transport

located

in

the

Web

container

navigation

tree.

j.

Select

the

entry

for

the

transfer

you

want

to

secure.

Click

the

item

under

the

Host

column.

Select

the

asterisk

(*),

in

this

case,

in

the

line

of

port

9443.

k.

On

the

configuration

panel,

select

the

Enable

SSL

check

box.

Click

the

desired

SSL

entry

from

the

SSL

repertoire

list.

In

this

example,

the

WebContainerSSLSettings.

l.

Click

OK.
8.

Test

the

secure

connection.

Test

the

secure

connection

by

accessing

a

Web

application

on

the

WebSphere

Application

Server

using

port

9443.

For

example,

https://droplet.austin.ibm.com:9443/snoop.

9.

Import

the

correct

certificate

with

public

and

private

keys

into

the

browser

to

test

the

secured

connection,

when

client-side

certification

is

required.

a.

Launch

the

iKeyman

utility

that

supports

the

CMS

key

database

file,

on

the

Web

server

machine.

b.

Open

the

key

file

for

the

plug-in,

C:\http1324\conf\keys\WASplugin.kdb.

Provide

the

password

when

prompted.

c.

Click

WASplugin

certificate,

located

under

the

Personal

Certificates.

Click

Export.

d.

Save

the

certificate

in

PKCS12

format

to

a

file,

for

example

C:\http1324\conf\keys\WASplugin.p12

.

Provide

a

password

to

secure

the

PKCS12

certificate

file.

e.

Close

the

key

file

and

exit

iKeyman.

f.

Copy

the

saved

WASplugin.p12

file

to

the

client

machine

from

where

you

access

the

product

server.

g.

Import

the

PKCS12

file

into

your

browser.

Then,

access

https://your_server_address:9443/snoop.

h.

The

browser

asks

which

personal

certificate

to

use

for

the

connection.

Select

the

certificate,

and

continue

connecting.

i.

Once

the

browser

test

with

direct

product

access

is

successful,

test

the

connection

through

the

Web

server

using

port

9443.

For

example,

https://your_server_address:9443/snoop.

The

IBM

HTTP

Server

plug-in

and

the

internal

Web

server

are

configured

for

SSL.

400

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Enabling

Secure

Sockets

Layer

(SSL)

communication

between

the

IBM

HTTP

Server

plug-in

and

the

embedded

HTTP

server

(Web

container)

in

the

WebSphere

Application

Server.

Configuring

Secure

Sockets

Layer

for

Java

client

authentication

WebSphere

Application

Server

supports

Java

client

authentication

using

a

digital

certificate

when

the

client

attempts

to

make

a

Secure

Sockets

Layer

(SSL)

connection.

The

authentication

occurs

during

an

SSL

handshake.

The

SSL

handshake

is

a

series

of

messages

exchanged

over

the

SSL

protocol

to

negotiate

for

connection-specific

protection.

During

the

handshake,

the

secure

server

requests

the

client

to

send

back

a

certificate

or

certificate

chain

for

the

authentication.

To

configure

SSL

for

Java

client

authentication,

consider

the

following

questions:

v

Have

you

enabled

security

with

your

WebSphere

Application

Server?

Refer

to

Configuring

global

security

for

more

details.

v

Have

you

configured

Common

Secure

Interoperability

(CSI)

authentication

protocol

for

your

target

application

server?

Refer

to

“Configuring

global

security”

on

page

137

for

more

details.

Note:

The

Security

Authentication

Service

(SAS)

authentication

protocol

does

not

support

Java

client

authentication

with

SSL

transport.

v

Have

you

configured

your

server

to

support

secure

transport

for

the

inbound

CSI

authentication

protocol?

v

Have

you

configured

your

server

to

support

client

authentication

at

the

transport

layer

for

the

inbound

CSI

authentication

protocol?

v

If

you

are

using

a

self-signed

personal

certificate,

have

you

exported

the

public

certificate

from

your

client

application

Java

keystore

file

or

cryptographic

token

device?

v

If

you

are

using

a

certificate

authority

(CA)-signed

personal

certificate,

have

you

received

the

root

certificate

of

the

CA?

v

If

you

are

using

a

self-signed

personal

certificate,

have

you

imported

the

public

certificate

into

your

target

Java

truststore

file

as

a

signer

certificate?

v

If

you

are

using

a

CA-signed

(certificate

authority)

personal

certificate,

have

you

imported

the

CA

root

certificate

into

your

target

Java

trust

store

file

as

a

signer

certificate?

v

Does

the

common

name

(CN)

specified

in

your

personal

certificate

name

exist

in

your

configured

user

registry?

If

you

answer

yes

to

all

of

these

questions,

you

can

configure

SSL

for

Java

client

authentication.

Note:

Java

client

authentication

using

digital

certificates

is

supported

only

by

the

Common

Secure

Interoperability

Version

2

(CSIv2)

authentication

protocol.

1.

“Configuring

Common

Secure

Interoperability

Version

2

for

Secure

Sockets

Layer

client

authentication”

on

page

402.

2.

“Adding

keystore

files”

on

page

403.

3.

“Adding

truststore

files”

on

page

403.

4.

Save

changes.

5.

Restart

the

server

if

you

have

configured

the

server.

A

secure

client

connects

to

a

secure

Internet

InterORB

Protocol

(IIOP)

server

that

requires

client

authentication

at

the

transport

layer.

If

a

connection

problem

occurs,

you

can

set

a

Java

property,

javax.net.debug=true,

before

you

run

your

client

or

your

server

to

generate

debugging

information.

See

Chapter

2.

Securing

applications

and

their

environments

401

“Troubleshooting

security

configurations”

on

page

479

for

further

information

about

how

to

debug

an

IBM

JSSE

problem.

Configuring

Common

Secure

Interoperability

Version

2

for

Secure

Sockets

Layer

client

authentication:

Configure

the

Secure

Sockets

Layer

(SSL)

client

authentication

using

the

sas.client.props

configuration

file

or

the

administrative

console.

To

configure

a

Java

client

application,

use

the

sas.client.props

configuration

file.

By

default,

the

sas.client.props

file

is

located

in

the

properties

directory

under

the

<install_root>

of

your

WebSphere

Application

Server

installation.

To

configure

a

WebSphere

Application

Server,

use

the

administrative

console.

To

start

the

administrative

console,

specify

URL:

http://<server

host_name>:9090/admin.

To

configure

a

Java

client

application,

complete

the

following

steps,

which

explain

how

to

edit

the

sas.client.props

file.

1.

To

require

SSL

client

authentication,

set

property

com.ibm.CSI.performTLClientAuthenticationRequired=true.

Do

not

set

this

property

unless

you

know

your

target

server

also

supports

SSL

client

authentication

for

the

inbound

CSI

authentication

protocol.

2.

To

support

SSL

client

authentication,

set

the

property

com.ibm.CSI.performTLClientAuthenticationSupported=true.

3.

To

specify

the

CSI

protocol,

set

the

property

com.ibm.CSI.protocol=csiv2.

4.

To

match

the

SSL

protocol

configured

with

your

server,

set

the

property,

com.ibm.ssl.protocol,

accordingly.

5.

Specify

the

com.ibm.CORBA.ConfigURL

property

with

the

fully

qualified

path

of

your

Java

property

file

when

you

run

your

application.

For

example,

-Dcom.ibm.CORBA.ConfigURL=file:/c:/WebSphere/AppServer/properties/sas.client.props

To

configure

a

WebSphere

Application

Server,

complete

the

following

steps

1.

Start

the

administrative

console.

2.

Expand

Security

>

Authentication

Protocol.

3.

Click

CSIv2

Inbound

Authentication.

4.

Select

Supported

or

Required

for

Client

Certificate

Authentication.

5.

Click

OK.

6.

If

you

selected

Required

in

step

4,

configure

the

CSIv2

outbound

authentication

as

well

to

support

the

client

certificate

authentication.

Otherwise,

you

can

skip

this

step.

Click

CSIv2

Outbound

Authentication

and

select

either

Supported

or

Required

for

Client

Certificate

Authentication.

7.

Click

CSIv2

Outbound

Transport.

Select

an

SSL

setting

from

the

SSLSettings

list

for

keystore,

truststore,

cryptographic

token,

SSL

protocol,

and

ciphers

use.

Create

an

alias

from

the

SSL

Configuration

Repertoires

panel

for

an

SSL

setting.

Update

the

SSL

setting

selected

in

CSIv2

Inbound

Transport

accordingly.

8.

Save

your

configuration.

9.

Restart

the

server

for

the

changes

to

become

effective.

Client

authentication

using

digital

certificates

is

performed

during

SSL

connection.

A

secure

client

connects

using

SSL

to

a

secure

Internet

InterORB

Protocol

(IIOP)

server

with

client

authentication

at

the

transport

layer.

402

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Specify

the

keystore

and

truststore

files

in

your

configuration.

Adding

keystore

files:

A

keystore

file

contains

both

public

keys

and

private

keys.

Public

keys

are

stored

as

signer

certificates

while

private

keys

are

stored

in

the

personal

certificates.

In

WebSphere

Application

Server,

adding

keystore

files

to

the

configuration

is

different

between

client

and

server.

For

the

client,

a

keystore

file

is

added

to

a

property

file

like

sas.client.props.

For

the

server,

a

keystore

file

is

added

through

the

WebSphere

Application

Server

administrative

console.

Before

you

add

the

keystore

file

to

your

configuration,

consider

the

following

questions:

v

Is

a

self-signed

or

a

certificate

authority

(CA)-signed

personal

certificate

created

in

the

keystore

file?

v

If

you

configure

client

authentication

using

digital

certificates,

is

the

public

key

of

the

signed

personal

certificate

imported

as

a

signer

certificate

into

the

server

truststore

file?
1.

Add

a

keystore

file

into

a

client

configuration

by

editing

the

sas.client.props

file

and

setting

the

following

properties:

v

com.ibm.ssl.keyStoreType

for

the

keystore

format.

Range:

JKS

(default),

PKCS12KS,

JCEK.

v

com.ibm.ssl.keyStore

for

a

fully

qualified

path

to

the

keystore

file.

The

keystore

file

contains

private

keys

and

sometimes

public

keys.

v

com.ibm.ssl.keyStorePassword

for

the

password

to

access

the

keystore

file.
2.

Add

a

keystore

file

into

a

server

configuration:

a.

Start

the

WebSphere

administrative

console

by

specifying:

http://server_hostname:9090/admin.

b.

Click

Security

>

SSL

Configuration

Repertoires.

c.

Create

a

new

Secure

Sockets

Layer

(SSL)

setting

alias

if

one

does

not

exist.

d.

Select

the

alias

that

you

want

to

add

into

the

keystore

file.

e.

Type

in

the

Key

File

Name

for

the

path

of

the

keystore

file.

f.

Type

in

the

Key

File

Password

for

the

password

to

access

the

keystore

file.

g.

Select

the

Key

File

Format

for

the

keystore

type.

Range:

JKS

(default),

PKCS12KS,

or

JCEK.

h.

Click

OK

and

Save

to

save

the

configuration.

The

SSL

configuration

alias

now

has

a

valid

keystore

file

for

an

SSL

connection.

Note:

If

the

Cryptographic

Token

field

is

selected

and

you

only

want

to

use

cryptographic

tokens

for

your

keystore

file,

leave

the

Key

File

Name

field

and

the

Key

File

Password

field

blank.

v

SSL

connection

for

Internet

InterORB

Protocol

(IIOP)

v

SSL

connection

for

Lightweight

Directory

Access

Protocol

(LDAP)

v

SSL

connection

for

Hypertext

Transfer

Protocol

(HTTP)

Adding

truststore

files:

A

truststore

file

is

a

key

database

file

that

contains

public

keys.

The

public

key

is

stored

as

a

signer

certificate.

The

keys

are

used

for

a

variety

of

purposes,

including

authentication

and

data

integrity.

In

WebSphere

Application

Server,

adding

truststore

files

to

the

configuration

is

different

between

client

and

server.

For

the

Chapter

2.

Securing

applications

and

their

environments

403

client,

a

truststore

file

is

added

to

a

property

file,

like

sas.client.props.

For

the

server,

a

truststore

file

is

added

through

the

WebSphere

Application

Server

administrative

console.

Before

you

add

the

truststore

file

to

your

configuration,

ask

the

following

questions:

v

If

you

configure

for

client

authentication

using

digital

certificate,

has

the

public

key

of

the

client

personal

certificate

been

imported

as

a

signer

certificate

into

the

server

truststore

file?

v

Does

the

truststore

file

contain

all

the

required

signer

certificates

with

respect

to

the

keystore

files

of

the

target

servers?
1.

Add

a

truststore

file

into

a

client

configuration,

by

editing

the

sas.client.props

file

and

setting

the

following

properties:

v

com.ibm.ssl.trustStoreType

for

the

truststore

format.

Range:

JKS

(default),

PKCS12KS,

JCEK,

JCERACFKS.

Use

JCERACFKS

if

you

are

using

a

RACF

key

ring

as

the

truststore.

v

com.ibm.ssl.trustStore

for

a

fully

qualified

path

to

the

truststore

file.

The

truststore

file

contains

the

public

keys.

v

com.ibm.ssl.trustStorePassword

for

the

password

to

access

the

truststore

file.

The

com.ibm.ssl.trustStorePassword

property

should

be

set

to

password

if

you

are

using

a

RACF

key

ring

as

a

trust

store.
2.

Add

a

truststore

file

into

a

server

configuration:

a.

Start

the

WebSphere

administrative

console

by

specifying

:

http://server_host_name:9090/admin.

b.

Click

Security

>

SSL.

c.

Create

a

new

Secure

Sockets

Layer

(SSL)

setting

alias

if

one

does

not

exist.

d.

Select

the

alias

that

you

want

to

add

into

the

truststore

file.

e.

Type

the

Trust

File

Password

for

the

password

to

access

the

truststore

file.

Type

password

if

you

are

using

a

RACF

key

ring

for

the

trust

store.

f.

Select

the

Trust

File

Format

for

the

truststore

type.

JKS

(Default),

PKCS12KS,

JCEK.

g.

Click

OK

and

Save

to

save

the

configuration.

The

SSL

configuration

alias

now

contains

a

valid

truststore

file

for

an

SSL

connection.

v

SSL

connection

for

Internet

InterORB

Protocol

(IIOP)

v

SSL

connection

for

Lightweight

Directory

Access

Protocol

(LDAP)

v

SSL

connection

for

Hypertext

Transfer

Protocol

(HTTP)

Secure

Sockets

Layer

configuration

repertoire

settings

Use

this

page

to

define

a

new

Secure

Sockets

Layer

(SSL)

alias.

Using

the

SSL

configuration

repertoire,

administrators

can

define

any

number

of

SSL

settings

to

use

in

configuring

the

Hypertext

Transfer

Protocol

with

SSL

(HTTPS),

Internet

InterORB

Protocol

with

SSL

(IIOPS)

or

Lightweight

Directory

Access

Protocol

with

SSL

(LDAPS)

connections.

You

can

pick

one

of

the

SSL

settings

defined

here

from

any

location

within

the

administrative

console

that

supports

SSL

connections.

This

flexibility

simplifies

the

SSL

configuration

process

because

you

can

reuse

many

of

these

SSL

configurations

by

specifying

the

alias

in

multiple

places.

To

view

this

administrative

console

page,

click

Security

>

SSL.

Click

New

to

create

a

new

SSL

Configuration

Repertoire

alias.

404

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Click

Delete

to

remove

an

SSL

Configuration

Repertoire

alias.

If

an

SSL

configuration

alias

is

referenced

in

the

configuration

and

is

deleted

here,

then

an

SSL

connection

fails

when

the

deleted

alias

is

accessed.

Alias:

Specifies

the

name

of

the

specific

SSL

setting.

Type:

Specifies

the

type

of

repertoire

configured

for

the

alias

listed.

The

value

is

either

SSSL

for

System

Secure

Sockets

Layer

repertoire

or

JSSE

for

Java

Secure

Sockets

Extension

repertoire.

Repertoire

settings:

Use

this

page

to

configure

the

repertoire

settings

for

the

server.

To

view

this

administrative

console

page,

click

Security

>

SSL

>alias_name.

Alias:

Specifies

the

name

of

the

specific

SSL

setting

Data

type:

String

Key

File

Name:

Specifies

the

fully

qualified

path

to

the

SSL

key

file

that

contains

public

keys

and

private

keys.

You

can

create

an

SSL

key

file

with

the

key

management

utility,

or

this

file

can

correspond

to

a

hardware

device

if

one

is

available.

In

either

case,

this

option

indicates

the

source

for

personal

certificates

and

for

signer

certificates

unless

a

trust

file

is

specified.

The

default

SSL

key

files,

DummyClientKeyFile.jks

and

DummyServerKeyFile.jks,

contais

a

self-signed

personal

test

certificate

expiring

on

March

17,

2005.

The

test

certificate

is

only

intended

for

use

in

a

test

environment.

The

default

SSL

key

files

should

never

be

used

in

a

production

environment

because

the

private

keys

are

the

same

on

all

the

WebSphere

Application

Server

installations.

Refer

to

the

Managing

certificates

article

for

information

about

creating

and

managing

digital

certificates

for

your

WebSphere

Application

Server

domain.

Data

type:

String

Key

File

Password:

Specifies

the

password

for

accessing

the

SSL

key

file.

Data

type:

String

Key

File

Format:

Specifies

the

format

of

the

SSL

key

file.

Chapter

2.

Securing

applications

and

their

environments

405

Data

type:

String

Default:

JKS

Range:

JKS,

JCEK,

PKCS12

Trust

File

Name:

Specifies

the

fully

qualified

path

to

a

trust

file

containing

the

public

keys.

You

can

create

a

trust

file

with

the

key

management

utility

included

in

the

WebSphere

bin

directory.

Using

the

key

management

utility

from

Global

Security

Kit

(GSKit)

(another

SSL

implementation)

does

not

work

with

the

Java

Secure

Socket

Extension

(JSSE)

implementation.

Unlike

the

SSL

key

file,

no

personal

certificates

are

referenced;

only

signer

certificates

are

retrieved.

The

default

SSL

trust

files,

DummyClientTrustFile.jks

and

DummyServerTrustFile.jks,

contain

multiple

test

public

keys

as

signer

certificates

that

can

expire.

The

public

key

for

the

WebSphere

Application

Server

Version

4.0

test

certificates

expires

on

January

15,

2004,

and

the

public

key

for

the

WebSphere

Application

Server

Version

5

test

certificates

and

WebSphere

Application

Server

CORBA

C++

client

expires

on

March

17,

2005.

The

test

certificate

is

only

intended

for

use

in

a

test

environment.

If

a

trust

file

is

not

specified

but

the

SSL

key

file

is

specified,

then

the

SSL

key

file

is

used

for

retrieval

of

signer

certificates

as

well

as

personal

certificates.

Data

type:

String

Trust

File

Password:

Specifies

the

password

for

accessing

the

SSL

trust

file.

Data

type:

String

Trust

File

Format:

Specifies

the

format

of

the

SSL

trust

file.

Data

type:

String

Default:

JKS

Range:

JKS,

JCEK,

PKCS12

Client

Authentication:

Specifies

whether

to

request

a

certificate

from

the

client

for

authentication

purposes

when

making

a

connection.

This

attribute

is

only

valid

when

used

by

the

Web

container

HTTP

transport.

When

performing

client

authentication

with

the

Internet

InterORB

Protocol

(IIOP)

for

EJB

requests,

click

Security

>

Authentication

Protocol

>

CSIv2

Inbound

or

Outbound

Authentication

from

the

left

navigation

pane

of

the

administrative

console.

Click

SSL

Client

Certificate

Authentication

to

enable

it

for

these

requests.

406

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Data

type:

Boolean

Default:

Disabled

Range:

Enabled

or

Disabled

Security

Level:

Specifies

whether

the

server

selects

from

a

preconfigured

set

of

security

levels.

Data

type:

Valid

values

include

Low,

Medium

or

High.

v

Low

specifies

only

digital

signing

ciphers

(no

encryption)

v

Medium

specifies

only

40-bit

ciphers

(including

digital

signing)

v

High

specifies

only

128-bit

ciphers

(including

digital

signing).

To

specify

all

ciphers

or

any

particular

range,

you

can

set

the

com.ibm.ssl.enabledCipherSuites

property.

See

the

SSL

documentation

for

more

information.

Default:

High

Range:

Low,

Medium,

or

High

Cipher

Suites:

Specifies

a

list

of

supported

cipher

suites

that

can

be

selected

during

the

SSL

handshake.

If

you

select

cipher

suites

individually

here,

you

override

the

cipher

suites

set

in

the

Security

Level

field.

Data

type:

Default:

Range:

Cryptographic

Token:

Specifies

whether

the

server

enables

or

disables

cryptographic

hardware

and

software

support.

The

SOAP

connector

does

not

use

hardware

cryptography.

Data

type:

Boolean

Default:

Disabled

Range:

Enabled

or

Disabled

Provider:

Refers

to

a

package

that

supplies

a

concrete

implementation

of

a

subset

of

the

cryptography

aspects

of

the

Java

Security

API.

If

you

select

the

first

button,

select

a

provider

from

the

menu.

WebSphere

Application

Server

has

the

IBMJSSE

predefined

provider.

WebSphere

Application

Server

has

the

IBMJSSE

predefined

provider

and

the

IBMJSSEFIPS

predefined

provider.

IBMJSSEFIPS

is

a

version

of

the

IBMJSSE

Chapter

2.

Securing

applications

and

their

environments

407

provider

that

is

undergoing

Federal

Information

Processing

Standard

(FIPS)

certification.

If

you

select

the

second

option,

enter

a

custom

provider.

For

a

custom

provider,

you

first

must

enter

the

cipher

suites

through

Custom

Properties

under

Additional

Properties,

Cipher

suites

and

protocol

values

depend

on

the

Provider.

Data

type

integer

Default

100

Range

1

to

86400

Protocol:

Specifies

the

SSL

protocol

that

is

used.

If

you

are

using

a

FIPS-approved

JSSE

such

as

IBMJSSEFIPS,

you

must

select

a

TLS

protocol.

Because

the

FIPS-approved

JSSE

providers

are

not

backwards-compatible,

a

server

that

uses

the

TLS

protocol

cannot

communicate

with

a

client

that

uses

an

SSL

protocol.

Secure

Sockets

Layer

settings

for

custom

properties:

Use

this

page

to

configure

additional

Secure

Sockets

Layer

(SSL)

settings

for

a

defined

alias.

To

view

this

administrative

console

page,

click

Security

>

SSL

>

alias_name

>

Custom

properties.

Custom

Properties:

Specifies

the

name-value

pairs

that

you

can

use

to

configure

additional

SSL

settings

beyond

those

available

in

the

com.ibm.ssl.protocol

administrative

interface.

This

value

is

the

SSL

protocol

used

(including

its

version).

The

possible

values

are

SSL,

SSLv2,

SSLv3,

TLS,

or

TLSv1.

The

default

value,

SSL,

is

backward-compatible

with

the

other

SSL

protocols.

com.ibm.ssl.keyStoreProvider

The

name

of

the

key

store

provider

to

use.

Specify

one

of

the

security

providers

listed

in

your

java.security

file,

which

has

a

keystore

implementation.

The

default

value

is

IBMJCE.

com.ibm.ssl.keyManager

The

name

of

the

key

management

algorithm

to

use.

Specify

any

key

management

algorithm

that

is

implemented

by

one

of

the

security

providers

listed

in

your

java.security

file.

The

default

value

is

IbmX509.

com.ibm.ssl.trustStoreProvider

The

name

of

the

trust

store

provider

to

use.

Specify

one

of

the

security

providers

listed

in

your

java.security

file,

which

has

a

truststore

implementation.

The

default

value

is

IBMJCE.

com.ibm.ssl.trustManager

The

name

of

the

trust

management

algorithm

to

use.

Specify

any

trust

management

algorithm

that

is

implemented

by

one

of

the

security

providers

listed

in

your

java.security

file.

The

default

value

is

IbmX509.

com.ibm.ssl.trustStoreType

The

type

or

format

of

the

truststore

file.

The

possible

values

are

JKS,

PKCS12,

JCEK.

The

default

value

is

JKS.

com.ibm.ssl.enabledCipherSuites

The

list

of

cipher

suites

to

enable.

By

default,

this

is

not

set

and

the

set

of

408

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

cipher

suites

used

is

determined

by

the

value

of

the

security

level

(high,

medium,

or

low).

A

cipher

suite

is

a

combination

of

cryptographic

algorithms

used

for

an

SSL

connection.

Enter

a

space-separated

list

of

any

of

the

following

cipher

suites:

v

SSL_RSA_WITH_RC4_128_MD5

v

SSL_RSA_WITH_RC4_128_SHA

v

SSL_RSA_WITH_DES_CBC_SHA

v

SSL_RSA_WITH_3DES_EDE_CBC_SHA

v

SSL_DHE_RSA_WITH_DES_CBC_SHA

v

SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

v

SSL_DHE_DSS_WITH_DES_CBC_SHA

v

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

v

SSL_RSA_EXPORT_WITH_RC4_40_MD5

v

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

v

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

v

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

v

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

v

SSL_RSA_WITH_NULL_MD5

v

SSL_RSA_WITH_NULL_SHA

v

SSL_DH_anon_WITH_RC4_128_MD5

v

SSL_DH_anon_WITH_DES_CBC_SHA

v

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

v

SSL_DH_anon_EXPORT_WITH_RC4_40_MD5

v

SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA

Data

type:

String

Cryptographic

token:

Specifies

information

about

the

cryptographic

tokens

related

to

SSL

support.

A

cryptographic

token

is

a

hardware

or

software

device

that

has

a

built-in

keystore

implementation.

Document

the

exact

values

for

the

following

fields

in

the

found

in

the

literature

of

your

supported

cryptographic

device.

Creating

a

Secure

Sockets

Layer

repertoire

configuration

entry

The

first

step

in

configuring

Secure

Sockets

Layer

(SSL)

is

to

define

an

SSL

configuration

repertoire.

A

repertoire

contains

the

details

necessary

for

building

an

SSL

connection,

such

as

the

location

of

the

key

files,

their

type

and

the

available

ciphers.

WebSphere

Application

Server

provides

a

default

repertoire

called

DefaultSSLSettings.

To

view

this

page

in

the

administrative

console,

click

Security

>

SSL

to

see

the

list

of

SSL

repertoire

settings.

The

appropriate

repertoire

is

referenced

during

the

configuration

of

a

service

that

sends

and

receives

requests

encrypted

using

SSL,

such

as

the

Web

and

enterprise

beans

containers.

If

an

SSL

configuration

alias

is

referenced

elsewhere,

but

the

alias

is

deleted

from

the

SSL

Configuration

Repertoires

panel,

the

SSL

connection

fails

if

the

deleted

alias

is

accessed.

With

the

SSL

configuration

repertoire,

administrators

can

define

SSL

settings

to

use

for

making

Hypertext

Transfer

Protocol

with

SSL

(HTTPS),

Internet

InterORB

Protocol

with

SSL

(IIOPS)

or

Lightweight

Directory

Access

Protocol

with

SSL

(LDAPS)

connections.

You

can

pick

one

of

the

SSL

settings

defined

here

from

any

location

within

the

administrative

console,

which

supports

SSL

connections.

This

Chapter

2.

Securing

applications

and

their

environments

409

selection

simplifies

the

SSL

configuration

process

because

you

can

reuse

many

of

these

SSL

configurations

by

specifying

the

alias

in

multiple

places.

1.

From

the

SSL

Configuration

Repertoire

window,

click

New.

2.

Enter

the

information

needed

to

access

the

key

file.

a.

Type

the

name

of

the

key

file,

which

must

include

the

fully

qualified

path

to

the

key

file,

in

the

Key

File

Name

field.

b.

Type

the

password

needed

to

access

the

key

file

in

the

Key

File

Password

field.

c.

Select

the

format

of

the

key

file

from

the

Key

File

Format

menu.

3.

Enter

the

information

needed

to

access

the

trust

file.

a.

Type

the

name

of

the

trust

file,

which

must

include

the

fully

qualified

path

to

the

trust

file,

in

the

Trust

File

Name

field.

b.

Type

the

password

needed

to

access

the

trust

file

in

the

Trust

File

Password

field.

c.

Select

the

format

of

the

trust

file

from

the

Trust

File

Format

menu.

4.

Select

the

Client

Authentication

option

if

this

configuration

supports

client

authentication.

This

selection

only

affects

HTTP

and

LDAP

requests.

5.

Select

the

appropriate

security

level

from

the

Security

Level

menu.

Valid

values

are

low,

medium,

and

high.

Low

specifies

digital

signing

ciphers

only

(no

encryption),

medium

specifies

40-bit

ciphers

only

(including

digital

signing),

high

specifies

128-bit

ciphers

only

(including

digital

signing).

If

you

are

using

a

Federal

Information

Processing

Standards

(FIPS)-supported

Java

Secure

Socket

Extension

(JSSE),

you

must

select

High

from

the

Security

Level

menu.

6.

Select

a

cipher

suite

from

the

Cipher

Suites

menu.

If

you

chose

a

cipher

suite,

WebSphere

Application

Server

uses

this

selection

to

override

the

security

level

setting.

7.

Select

the

Cryptographic

Token

check

box

if

hardware

or

software

cryptographic

support

is

available.

See

“Configuring

to

use

cryptographic

tokens”

on

page

434

for

details

regarding

cryptographic

support.

8.

Indicate

which

JSSE

provider

you

are

using

by

either

selecting

IBMJSSE

or

IBMJSSEFIPS

from

the

menu,

or

by

typing

the

name

of

the

provider.

WebSphere

Application

Server

includes

the

IBMJSSE

JSSE

provider

and

the

IBMJSSEFIPS

JSSE

provider.

Use

IBMJSSEFIPS

only

if

you

are

using

the

Transport

Layer

Security

(TLS)

protocol

and

not

the

Secure

Sockets

Layer

(SSL)

protocol.

See

“Configuring

Federal

Information

Processing

Standard

Java

Secure

Socket

Extension

files”

on

page

411

for

more

information

On

the

HP-UX

platform,

WebSphere

Application

Server

uses

the

Sun

JSSE

framework

and

provider.

The

Sun

JSSE

framework

is

not

pluggable

for

export

control

reasons.

The

lack

of

pluggability

within

the

Sun

JSSE

framework

prohibits

WebSphere

Application

Server

from

using

the

IBMJSSE

or

the

IBMJSSEFIPS

provider.

The

Sun

JSSE

framework

is

part

of

the

core

IBM

Developer

Kit

for

HP-UX,

Java

Technology

Edition,

Version

1.4.x,

which

is

located

in

the

java/jre/lib/jsse.jar

file.

For

more

information,

see

“Changes

to

IBM

Developer

Kit

for

Java

Technology

Edition

Version

1.4.x”

on

page

430.

Configure

the

JSSE

provider

as

a

custom

provider.

If

you

are

not

using

the

predefined

providers,

configure

the

custom

provider

by

clicking

Apply,

then

Custom

Properties

>

New

in

the

Additional

Properties

section.

After

the

custom

provider

is

configured,

return

to

the

SSL

Configuration

Repertoires

window

and

continue

with

these

instructions.

410

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

9.

Select

an

SSL

or

TLS

protocol

version.

If

you

are

using

a

FIPS-approved

JSSE,

you

must

select

a

TLS

protocol

version.

10.

Click

Apply

to

apply

the

changes.

11.

If

no

errors

occur,

save

the

changes

to

the

master

configuration

and

restart

the

WebSphere

Application

Server.

For

more

information

on

the

FIPS

certification

process

and

to

check

the

status

of

the

IBM

submission,

see

the

Cryptographic

Module

Validation

Program

FIPS

140-1

and

FIPS

140-2

Pre-validation

List

Web

site.

You

included

additional

SSL

configuration

repertoires

with

the

default

DefaultSSLSettings

repertoire.

The

appropriate

repertoire

is

referenced

during

the

configuration

of

a

service

that

sends

and

receives

requests

encrypted

using

SSL,

such

as

the

Web

and

enterprise

bean

containers,

and

Lightweight

Directory

Access

Protocol

(LDAP)

servers.

For

the

changes

to

take

effect,

restart

the

server

after

saving

the

configuration.

Configuring

Federal

Information

Processing

Standard

Java

Secure

Socket

Extension

files

The

Federal

Information

Processing

Standard

(FIPS)-approved

Java

Secure

Socket

Extension

(JSSE)

provider

has

increased

data

encryption

capabilities.

FIPS-approved

JSEE

providers

support

Data

Encryption

Standard

(DES)

or

Triple

DES

with

at

least

56-bits

of

encryption.

Although

this

additional

encryption

capability

is

available,

you

must

use

Transport

Layer

Security

(TLS)

and

not

Secure

Sockets

Layer

(SSL)

as

FIPS-approved

JSSE

files

are

not

backwards-compatible

and

SSL

is

not

FIPS-approved.

If

the

server

uses

TLS,

a

client

using

SSL

cannot

communicate

with

the

server.

Thus,

use

FIPS-approved

JSSE

providers

if

your

servers

and

clients

are

using

WebSphere

Application

Server,

Version

5.0.2

or

later

as

this

version

supports

FIPS.

Attention:

The

IBMJSSEFIPS

and

IBMJCEFIPS

underwent

FIPS

140-2

certification.

For

more

information

on

the

FIPS

certification

process,

see

the

Cryptographic

Module

Validation

Program

FIPS

140-1

and

FIPS

140-2

Pre-validation

List

Web

site.

If

you

create

your

own

encryption

configurations

and

enable

FIPS,

you

must

add

a

FIPS-approved

JSSE

to

all

of

your

server

and

client

configurations.

Important:

Although

WebSphere

Application

Server

supports

the

IBM

Federal

Information

Processing

Standard-approved

Java

Secure

Socket

Extension

(IBMJSSEFIPS),

IBMJSSEFIPS

is

not

supported

on

the

HP-UX

platform.

To

configure

the

WebSphere

Application

Server

to

use

IBMJSSEFIPS

and

IBMJCEFIPS

providers,

complete

the

following

steps

using

the

administrative

console:

1.

Click

Security

>

Global

Security.

2.

Select

the

Use

FIPS

check

box

and

click

OK.

IBMJCEFIPS

is

enabled.

However,

IBMJSSEFIPS

is

not

configured

until

you

complete

the

remaining

steps.

3.

Click

Security

>

SSL.

4.

Click

the

name

of

your

SSL

configuration

or

click

New

to

create

a

new

configuration.

For

more

information

on

SSL

configurations,

see

“Creating

a

Secure

Sockets

Layer

repertoire

configuration

entry”

on

page

409.

Chapter

2.

Securing

applications

and

their

environments

411

http://csrc.nist.gov/cryptval/preval.htm
http://csrc.nist.gov/cryptval/preval.htm
http://csrc.nist.gov/cryptval/preval.htm
http://csrc.nist.gov/cryptval/preval.htm

5.

Select

High

from

the

Security

Level

menu.

This

action

sets

the

encryption

strength

to

56-bits

and

higher.

6.

Indicate

which

JSSE

FIPS

provider

to

use.

Do

one

of

the

following

actions:

v

Select

IBMJSSEFIPS

from

the

Provider

menu

and

select

Predefined

JSSE

provider.

For

a

list

of

providers

that

were

previously

configured,

click

Custom

Properties

under

Additional

Properties.

v

Type

the

name

of

your

custom

JSSE

FIPS

provider

and

select

Custom

JSSE

provider.

To

create

a

custom

JSSE

FIPS

provider,

click

Custom

Properties

>

New

under

Additional

Properties.

After

configuring

your

custom

FIPS-approved

provider,

return

to

the

SSL

Configuration

Repertoires

panel

for

your

SSL

configuration

and

enter

the

name

in

the

Provider

field.

7.

Select

the

TLS

or

TLSV1

option

from

the

Protocol

menu.

To

use

a

FIPS-approved

JSSE,

you

must

choose

either

the

TLS

or

TLSV1

option.

SSL

protocol

is

not

FIPS-approved.

After

you

select

the

protocol,

the

corresponding

custom

property

value

is

updated

for

com.ibm.ssl.protocol.

You

can

view

this

updated

property

value

under

Custom

Properties

after

you

click

Apply

or

OK.

8.

Click

OK.

9.

If

you

have

a

Java

client

that

must

access

enterprise

beans,

modify

the

install_dir>/properties/sas.client.props

file

to

comment

out

the

SSL

protocol

and

add

the

Transport

Layer

Security

(TLS)

protocol.

To

change

the

protocol

to

TLS,

make

the

following

changes

to

the

install_dir>/properties/sas.client.props

file:

#com.ibm.ssl.protocol=SSL

com.ibm.ssl.protocol=TLS

10.

If

the

server

uses

a

FIPS-approved

provider

for

the

CSIv2/SAS

protocol,

add

IBMJSSEFIPS

as

the

contextProvider

and

TLS

as

the

protocol

to

the

install_dir/properties/sas.client.props

file

on

the

application

client.

In

the

install_dir/properties/sas.client.props

file,

add

the

following

information:

com.ibm.ssl.contextProvider=IBMJSSEFIPS

com.ibm.ssl.protocol=TLS

11.

If

the

server-side

SOAP

connector

configuration

uses

a

FIPS-approved

IBMJSSEFIPS

provider,

add

com.ibm.fips.jsse.JSSESocketFactory

as

the

provider

and

IBMJSSEFIPS

as

the

contextProvider

in

the

install_dir/properties/soap.client.props

file

on

the

administrative

client.

In

the

install_dir/properties/soap.client.props

file,

add

the

following

information:

ssl.SocketFactory.provider=com.ibm.fips.jsse.JSSESocketFactory

com.ibm.ssl.contextProvider=IBMJSSEFIPS

12.

Verify

that

a

FIPS-approved

configuration

is

specified

correctly

throughout

the

administrative

console.

Verify

the

configuration

settings

in

the

following

panels:

v

Click

Servers

>

Application

Servers

>

server_name.

Under

Additional

properties,

click

Administration

Services

>

JMX

Connectors

>

SOAPConnector

>

Custom

Properties

>sslConfig.

v

Click

Servers

>

Application

Servers

>

server_name.

Under

Additional

properties,

click

Web

Container

>

HTTP

Transport.

v

Click

Environment

>

Virtual

Hosts

>

host_name.

Under

Additional

properties,

click

Host

Aliases

>

<alias_name>.

412

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

v

Click

Applications

>

Enterprise

Applications

>application_name.

Under

Additional

properties,

click

Map

virtual

hosts

for

web

modules.

v

Click

Security

>

User

Registries

>

LDAP.

v

Click

Enterprise

Applications

>

application_name.

Under

Related

Items,

click

Web

Module

>URI_file_name

>

Web

Services:

Client

Security

Bindings.

Verify

the

configuration

settings

listed

under

HTTP

Basic

Authentication

and

HTTP

SSL

Authentication.

After

completing

these

steps,

a

FIPS-approved

JSSE

provides

increased

encryption

capabilities.

However,

when

you

use

FIPS-approved

providers,

consider

the

following

points:

v

By

default,

Microsoft

Internet

Explorer

Version

5.5

might

not

have

TLS

enabled.

To

enable

TLS,

open

the

Internet

Explorer

browser

and

click

Tools

>

Internet

Options.

On

the

Advanced

tab,

select

the

Use

TLS

1.0

checkbox.

v

Netscape

Version

4.7.x

and

earlier

versions

might

not

support

TLS.

v

IBM

Directory

Server

Version

4.1

and

earlier

versions

do

not

support

TLS.

v

If

you

select

IBMJSSEFIPS

from

the

Provider

menu

before

changing

the

Security

Level

to

High

and

the

Protocol

menu

to

TLS

or

TLSV1,

WebSphere

Application

Server

changes

the

Security

Level

and

Protocol

menu

options

automatically.

However,

if

you

change

the

Provider

menu

option

from

IBMJSSEFIPS

to

IBMJSSE,

you

must

manually

change

the

Protocol

option

to

the

correct

setting.

The

setting

does

not

change

automatically

because

IBMJSSE

supports

both

SSL

and

TLS.

v

If

you

have

an

administrative

client

that

uses

a

SOAP

connector

and

you

enable

FIPS,

add

the

following

lines

to

the

install_dir/properties/soap.client.props

file:

ssl.SocketFactory.provider=com.ibm.fips.jsse.JSSESocketFactory

com.ibm.ssl.contextProvider=IBMJSSEFIPS

v

When

you

select

the

Use

FIPS

check

box

on

the

Security

>

Global

Security

panel,

the

LTPA

token

format

is

not

backwards-compatible

with

prior

releases

of

WebSphere

Application

Server.

However,

you

can

continue

to

use

the

LTPA

keys

configured

using

a

previous

version

of

WebSpere

Application

Server.

Attention:

If

you

select

USE

FIPS

on

the

Global

Security

panel

and

select

an

SSL

configuration

on

the

SSL

Configuration

Repertoires

panel,

the

following

error

message

is

displayed

at

the

top

of

the

Global

Security

panel:

The

security

policy

is

set

to

use

only

FIPS-approved

cryptographic

algorithms.

However

at

least

one

SSL

configuration

may

not

be

using

a

FIPS-approved

JSSE

provider.

FIPS-approved

cryptographic

algorithms

may

not

be

used

in

those

cases.

Attention:

If

you

use

the

FIPS-approved

JSSE

provided

with

WebSphere

Application

Server,

you

must

choose

IBMJSSEFIPS

from

the

Provider

menu

on

the

SSL

Configuration

Repertoires

panel.

Otherwise,

the

following

message

is

displayed

at

the

top

of

the

panel:

″Use

FIPS″

is

enabled,

but

the

SSL

provider

is

not

IBMJSSEFIPS.

FIPS

approved

cryptographic

algorithms

may

not

be

used.

Digital

certificates

Certificates

provide

a

way

of

authenticating

users.

Instead

of

requiring

each

participant

in

an

application

to

authenticate

every

user,

third-party

authentication

relies

on

the

use

of

digital

certificates.

Chapter

2.

Securing

applications

and

their

environments

413

A

digital

certificate

is

equivalent

to

an

electronic

ID

card.

It

serves

two

purposes:

v

Establishes

the

identity

of

the

owner

of

the

certificate

v

Distributes

the

owner’s

public

key

Certificates

are

issued

by

trusted

parties,

called

certificate

authorities

(CAs).

These

authorities

can

be

commercial

ventures

or

they

can

be

local

entities,

depending

on

the

requirements

of

your

application.

Regardless,

the

CA

is

trusted

to

adequately

authenticate

users

before

issuing

certificates.

A

CA

issues

certificates

with

digital

signatures.

When

a

user

presents

a

certificate,

the

recipient

of

the

certificate

validates

it

by

using

the

digital

signature.

If

the

digital

signature

validates

the

certificate,

the

certificate

is

recognized

as

intact

and

authentic.

Participants

in

an

application

only

need

to

validate

certificates;

they

do

not

need

to

authenticate

users.

The

fact

that

a

user

can

present

a

valid

certificate

proves

that

the

CA

has

authenticated

the

user.

The

descriptor,

trusted

third-party,

indicates

that

the

system

relies

on

the

trustworthiness

of

the

CAs.

Contents

of

a

digital

certificate

A

certificate

contains

several

pieces

of

information,

including

information

about

the

owner

of

the

certificate

and

the

issuing

CA.

Specifically,

a

certificate

includes:

v

The

distinguished

name

(DN)

of

the

owner.

A

DN

is

a

unique

identifier,

a

fully

qualified

name

including

not

only

the

common

name

(CN)

of

the

owner

but

the

owner’s

organization

and

other

distinguishing

information.

v

The

public

key

of

the

owner.

v

The

date

on

which

the

certificate

was

issued.

v

The

date

on

which

the

certificate

expires.

v

The

distinguished

name

of

the

issuing

CA.

v

The

digital

signature

of

the

issuing

CA.

(The

message-digest

function

is

run

over

all

the

preceding

fields.)

The

core

idea

of

a

certificate

is

that

a

CA

takes

the

owner’s

public

key,

signs

the

public

key

with

its

own

private

key,

and

returns

the

information

to

the

owner

as

a

certificate.

When

the

owner

distributes

the

certificate

to

another

party,

it

signs

the

certificate

with

its

private

key.

The

receiver

can

extract

the

certificate

(containing

the

CA

signature)

with

the

owner’s

public

key.

By

using

the

CA

public

key

and

the

CA

signature

on

the

extracted

certificate,

the

receiver

can

validate

the

CA

signature.

If

it

is

valid,

the

public

key

used

to

extract

the

certificate

is

recognized

as

good.

The

owner

signature

is

then

validated,

and

if

the

validation

succeeds,

the

owner

is

successfully

authenticated

to

the

receiver.

The

additional

information

in

a

certificate

helps

an

application

decide

whether

to

honor

the

certificate.

With

the

expiration

date,

the

application

can

determine

if

the

certificate

is

still

valid.

With

the

name

of

the

issuing

CA,

the

application

can

check

that

the

CA

is

considered

trustworthy

by

the

site.

A

process

that

uses

certificates

must

provide

its

personal

certificate,

the

one

containing

its

public

key,

and

the

certificate

of

the

CA

that

signed

its

certificate,

called

a

signer

certificate.

In

cases

where

chains

of

trust

are

established,

several

signer

certificates

can

be

involved.

Requesting

certificates

To

get

a

certificate,

send

a

certificate

request

to

the

CA.

The

certificate

request

includes:

v

The

distinguished

name

of

the

owner

(the

user

for

whom

the

certificate

is

requested).

414

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

v

The

public

key

of

the

owner.

v

The

digital

signature

of

the

owner.

The

message-digest

function

is

run

over

all

these

fields.

The

CA

verifies

the

signature

with

the

public

key

in

the

request

to

ensure

that

the

request

is

intact

and

authentic.

The

CA

then

authenticates

the

owner.

Exactly

what

the

authentication

consists

of

depends

on

a

prior

agreement

between

the

CA

and

the

requesting

organization.

If

the

owner

in

the

request

is

successfully

authenticated,

the

CA

issues

a

certificate

for

that

owner.

Using

certificates:

Chain

of

trust

and

self-signed

certificate

To

verify

the

digital

signature

on

a

certificate,

you

must

have

the

public

key

of

the

issuing

CA.

Because

public

keys

are

distributed

in

certificates,

you

must

have

a

certificate

for

the

issuing

CA

that

is

signed

by

the

issuer.

One

CA

can

certify

other

CAs,

so

a

chain

of

CAs

can

issue

certificates

for

other

CAs,

all

of

whose

public

keys

you

need.

Eventually,

you

reach

a

root

CA

that

issues

itself

a

self-signed

certificate.

To

validate

a

user’s

certificate,

you

need

certificates

for

all

intervening

participants,

back

to

the

root

CA.

Then

you

have

the

public

keys

you

need

to

validate

each

certificate,

including

the

user’s.

A

self-signed

certificate

contains

the

public

key

of

the

issuer

and

is

signed

with

the

private

key.

The

digital

signature

is

validated

like

any

other,

and

if

the

certificate

is

valid,

the

public

key

it

contains

is

used

to

check

the

validity

of

other

certificates

issued

by

the

CA.

However,

anyone

can

generate

a

self-signed

certificate.

In

fact,

you

can

probably

generate

self-signed

certificates

for

testing

purposes

before

installing

production

certificates.

The

fact

that

a

self-signed

certificate

contains

a

valid

public

key

does

not

mean

that

the

issuer

is

really

a

trusted

certificate

authority.

To

ensure

that

self-signed

certificates

are

generated

by

trusted

CAs,

such

certificates

must

be

distributed

by

secure

means

(hand-delivered

on

floppy

disks,

downloaded

from

secure

sites,

and

so

on).

Applications

that

use

certificates

store

these

certificates

in

a

keystore

file.

This

file

typically

contains

the

necessary

personal

certificates,

its

signing

certificates,

and

its

private

key.

The

private

key

is

used

by

the

application

to

create

digital

signatures.

Servers

always

have

personal

certificates

in

their

keystore

files.

A

client

requires

a

personal

certificate

only

if

the

client

must

authenticate

to

the

server

when

mutual

authentication

is

enabled.

To

allow

a

client

to

authenticate

to

a

server,

a

server

keystore

file

contains

the

private

key

and

the

certificate

of

the

server

and

the

certificates

of

its

CA.

A

client

truststore

file

must

contain

the

signer

certificates

of

the

CAs

of

each

server

to

which

the

client

must

authenticate.

If

mutual

authentication

is

needed,

the

client

keystore

file

must

contain

the

client

private

key

and

certificate.

The

server

truststore

file

requires

a

copy

of

the

certificate

of

the

client

CA.

Digital

signatures:

A

digital

signature

is

a

number

attached

to

a

document.

For

example,

in

an

authentication

system

that

uses

public-key

encryption,

digital

signatures

are

used

to

sign

certificates.

This

signature

establishes

the

following

information:

Chapter

2.

Securing

applications

and

their

environments

415

v

The

integrity

of

the

message:

Is

the

message

intact?

That

is,

has

the

message

been

modified

between

the

time

it

was

digitally

signed

and

now?

v

The

identity

of

the

signer

of

the

message:

Is

the

message

authentic?

That

is,

was

the

message

actually

signed

by

the

user

who

claims

to

have

signed

it?

A

digital

signature

is

created

in

two

steps.

The

first

step

distills

the

document

into

a

large

number.

This

number

is

the

digest

code

or

fingerprint.

The

digest

code

is

then

encrypted,

resulting

in

the

digital

signature.

The

digital

signature

is

appended

to

the

document

from

which

the

digest

code

was

generated.

Several

options

are

available

for

generating

the

digest

code.

WebSphere

Application

Server

supports

the

MD5

message

digest

function

and

the

SHA1

secure

hash

algorithm,

but

these

procedures

reduce

a

message

to

a

number.

This

process

is

not

encryption,

but

a

sophisticated

checksum.

The

message

cannot

regenerate

from

the

resulting

digest

code.

The

crucial

aspect

of

distilling

the

document

to

a

number

is

that

if

the

message

changes,

even

in

a

trivial

way,

a

different

digest

code

results.

When

the

recipient

gets

a

message

and

verifies

the

digest

code

by

recomputing

it,

any

changes

in

the

document

result

in

a

mismatch

between

the

stated

and

the

computed

digest

codes.

To

stop

someone

from

intercepting

a

message,

changing

it,

recomputing

the

digest

code,

and

retransmitting

the

modified

message

and

code,

you

need

a

way

to

verify

the

digest

code

as

well.

To

verify

the

digest

code,

reverse

the

use

of

the

public

and

private

keys.

For

private

communication,

it

makes

no

sense

to

encrypt

messages

with

your

private

key;

these

keys

can

be

decrypted

by

anyone

with

your

public

key.

This

technique

can

be

useful

for

proving

that

a

message

came

from

you.

No

one

can

create

it

because

no

one

else

has

your

private

key.

If

some

meaningful

message

results

from

decrypting

a

document

by

using

someone’s

public

key,

the

decryption

process

verifies

that

the

holder

of

the

corresponding

private

key

did

encrypt

the

message.

The

second

step

in

creating

a

digital

signature

takes

advantage

of

this

reverse

application

of

public

and

private

keys.

After

a

digest

code

is

computed

for

a

document,

the

digest

code

is

encrypted

with

the

sender’s

private

key.

The

result

is

the

digital

signature,

which

is

attached

to

the

end

of

the

message.

When

the

message

is

received,

the

recipient

follows

these

steps

to

verify

the

signature:

1.

Recomputes

the

digest

code

for

the

message.

2.

Decrypts

the

signature

by

using

the

sender’s

public

key.

This

decryption

yields

the

original

digest

code

for

the

message.

3.

Compares

the

original

and

recomputed

digest

codes.

If

these

codes

match,

the

message

is

both

intact

and

authentic.

If

not,

something

has

changed

and

the

message

is

not

to

be

trusted.

Public

key

cryptography:

All

encryption

systems

rely

on

the

concept

of

a

key.

A

key

is

the

basis

for

a

transformation,

usually

mathematical,

of

an

ordinary

message

into

an

unreadable

message.

For

centuries,

most

encryption

systems

have

relied

on

what

is

called

private-key

encryption.

Only

within

the

last

30

years

has

a

challenge

to

private-key

encryption

appeared:

public-key

encryption.

416

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Private

key

encryption

Private-key

encryption

systems

use

a

single

key

that

is

shared

between

the

sender

and

the

receiver.

Both

must

have

the

key;

the

sender

encrypts

the

message

by

using

the

key,

and

the

receiver

decrypts

the

message

with

the

same

key.

Both

must

keep

the

key

private

to

keep

their

communication

private.

This

kind

of

encryption

has

characteristics

that

make

it

unsuitable

for

widespread,

general

use:

v

Private

key

encryption

requires

a

key

for

every

pair

of

individuals

who

need

to

communicate

privately.

The

necessary

number

of

keys

rises

dramatically

as

the

number

of

participants

increases.

v

The

fact

that

keys

must

be

shared

between

pairs

of

communicators

means

the

keys

must

somehow

be

distributed

to

the

participants.

The

need

to

transmit

secret

keys

makes

them

vulnerable

to

theft.

v

Participants

can

communicate

only

by

prior

arrangement.

There

is

no

way

to

send

a

usable

encrypted

message

to

someone

spontaneously.

You

and

the

other

participant

must

make

arrangements

to

communicate

by

sharing

keys.

Private-key

encryption

is

also

called

symmetric

encryption,

because

the

same

key

is

used

to

encrypt

and

decrypt

the

message.

Public

key

encryption

Public-key

encryption

uses

a

pair

of

mathematically

related

keys.

A

message

encrypted

with

the

first

key

must

be

decrypted

with

the

second

key,

and

a

message

encrypted

with

the

second

key

must

be

decrypted

with

the

first

key.

Each

participant

in

a

public-key

system

has

a

pair

of

keys.

The

private

key

is

kept

secret.

The

other

key

is

distributed

to

anyone

who

wants

it;

this

key

is

the

public

key.

To

send

an

encrypted

message

to

you,

the

sender

encrypts

the

message

by

using

your

public

key.

When

you

receive

the

message,

you

decrypt

it

by

using

your

private

key.

To

send

a

message

to

someone,

you

encrypt

the

message

by

using

the

recipient’s

public

key.

The

message

can

be

decrypted

with

the

recipient’s

private

key

only.

This

kind

of

encryption

has

characteristics

that

make

it

very

suitable

for

general

use:

v

Public-key

encryption

requires

only

two

keys

per

participant.

The

increase

in

the

total

number

of

keys

is

less

dramatic

as

the

number

of

participants

increases,

compared

to

private-key

encryption.

v

The

need

for

secrecy

is

more

easily

met.

Only

the

private

key

needs

to

be

kept

private

and

because

it

does

not

need

to

be

shared,

the

private

key

is

less

vulnerable

to

theft

in

transmission

than

the

shared

key

in

a

private-key

system.

v

Public

keys

can

be

published,

which

eliminates

the

need

for

prior

sharing

of

a

secret

key

before

communication.

Anyone

who

knows

your

public

key

can

use

it

to

send

you

a

message

that

only

you

can

read.

Public-key

encryption

is

also

called

asymmetric

encryption,

because

the

same

key

cannot

be

used

to

encrypt

and

decrypt

the

message.

Instead,

one

key

of

a

pair

is

used

to

undo

the

work

of

the

other.

WebSphere

Application

Server

uses

the

Rivest

Shamir

Adleman

(RSA)

public

and

private

key-encryption

algorithm.

With

private-key

encryption,

you

have

to

be

careful

of

stolen

or

intercepted

keys.

In

public-key

encryption,

where

anyone

can

create

a

key

pair

and

publish

the

public

key,

the

challenge

is

in

verifying

that

the

owner

of

the

public

key

is

really

the

person

you

think

it

is.

Nothing

prevents

a

user

from

creating

a

key

pair

and

publishing

the

public

key

under

a

false

name.

The

listed

owner

of

the

public

key

Chapter

2.

Securing

applications

and

their

environments

417

cannot

read

messages

encrypted

with

that

key

because

the

owner

does

not

have

the

private

key.

If

the

creator

of

the

false

public

key

can

intercept

these

messages,

that

person

can

decrypt

and

read

messages

intended

for

someone

else.

To

counteract

the

potential

for

forged

keys,

public-key

systems

provide

mechanisms

for

validating

public

keys

and

other

information

with

digital

signatures

and

digital

certificates.

Managing

digital

certificates

Secure

Sockets

Layer

(SSL)

connections

rely

on

the

existence

of

digital

certificates.

A

digital

certificate

reveals

information

about

its

owner,

including

their

identity.

During

the

initialization

of

an

SSL

connection,

the

server

must

present

its

certificate

to

the

client

for

the

client

to

determine

the

server

identity.

The

client

can

also

present

the

server

with

its

own

certificate

for

the

server

to

determine

the

client

identity.

SSL

is

therefore,

a

means

of

propagating

identity

between

components.

Refer

to

“Configuring

Secure

Sockets

Layer”

on

page

390

and

“Creating

a

Secure

Sockets

Layer

repertoire

configuration

entry”

on

page

409.

A

client

can

trust

the

contents

of

a

certificate

if

that

certificate

is

digitally

signed

by

a

trusted

third

party.

A

Certificate

Authority

(CA)

acts

as

a

trusted

third

party

and

signs

certificates

on

the

basis

of

its

knowledge

of

the

certificate

requestor.

Complete

the

following

steps

to

manage

digital

certificates

using

either

the

key

management

utility

(iKeyman)

or

the

keytool

utility:

v

Use

the

supplied

key

management

utility.

Refer

to

“Starting

the

key

management

utility

(iKeyman)”

on

page

421.

There

are

two

options

for

creating

a

new

certificate.

–

Request

that

a

CA

generates

the

certificates

on

your

behalf.

The

CA

creates

a

new

certificate,

digitally

signs

it,

and

delivers

it

to

the

requester.

Popular

Web

browsers

are

preconfigured

to

trust

certificates

that

are

signed

by

certain

CAs.

No

further

client

configuration

is

necessary

for

a

client

to

connect

to

the

server

through

an

SSL

connection.

Therefore,

CA

signed

certificates

are

useful

where

configuration

for

each

and

every

client

that

accesses

the

server

is

impractical.

Refer

to

“Requesting

certificate

authority-signed

personal

certificates”

on

page

423,

“Creating

certificate

signing

requests”

on

page

424,

“Receiving

certificate

authority-signed

personal

certificates”

on

page

425,

and

“Extracting

public

certificates

for

truststore

files”

on

page

426.

–

Generate

a

self-signed

certificate.

This

option

might

be

the

quickest

and

require

the

fewest

details

to

create

the

certificate.

However,

the

certificate

is

not

signed

by

a

CA.

Any

client

that

connects

to

this

server

over

an

SSL

connection

needs

configuration

to

trust

the

signer

of

this

certificate.

Therefore,

self-signed

certificates

are

only

useful

when

you

can

configure

each

of

the

clients

to

trust

the

certificate.

It

is

possible

in

some

cases

to

present

a

self-signed

certificate

to

an

untrusting

client.

In

some

Web

browsers,

when

the

certificate

is

received

and

does

not

match

any

of

those

listed

in

the

client

trust

file,

a

prompt

appears

asking

if

the

certificate

should

be

trusted

for

the

connection

and

added

to

the

trust

file.

Refer

to

“Creating

a

keystore

file”

on

page

422,

“Creating

truststore

files”

on

page

426,

“Adding

keystore

files”

on

page

403,

“Adding

truststore

files”

on

page

403,

“Creating

self-signed

personal

certificates”

on

page

422,

and

“Importing

signer

certificates”

on

page

427.

You

must

configure

the

server

side

options.

The

WebSphere

Application

Server

stores

the

keystore

information

in

the

repository

and

the

keystore

files

are

referred

to

in

the

security.xml

file.

Therefore,

complete

all

server-side

configuration

through

the

administration

console.

For

Java

clients,

refer

to

“Configuring

Secure

Sockets

Layer

for

Java

client

authentication”

on

page

401.

418

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

v

Use

the

command

line

Java

utility

called

keytool.

With

keytool,

you

can

create

a

private

and

public

self-signed

certificate

key

pair.

For

this

example,

the

first

user

is

cn=rocaj.

1.

Specify

RSA

for

the

private

key

to

ensure

that

the

MD5

with

RSA

signature

algorithm

is

used.

Not

all

Web

browsers

support

the

DSA

cryptograph

algorithm,

which

is

the

default

when

RSA

is

not

specified.

Set

a

password

of

at

least

six

characters

to

protect

the

private

key.

Finally,

specify

the

keystore

file

and

keystore

password

(the

option

is

storepass):

${WAS_HOME}/java/bin/keytool

-genkey

-keyalg

RSA

-dname

″cn=rocaj,

ou=users,

u=uk,

DC=internetchaos,

DC=com″

-alias

rocaj

-keypass

websphere

-keystore

testkeyring.jks

-storepass

websphere

The

previous

three

lines

of

code

belong

on

one

line,

but

were

split

onto

three

lines

due

to

the

width

of

the

page.

The

keytool

utility

creates

the

key

store

called

testkeyring.jks.

2.

Create

the

second

private

and

public

self-signed

certificate

key

pair

in

the

same

manner

for

the

user

cn=amorv.

${WAS_HOME}/java/bin/keytool

-genkey

-keyalg

RSA

-dname

″cn=amorv,

ou=users,

ou=uk,

DC=internetchaos,

DC=com″

-alias

amorv

-keypass

websphere

-keystore

testkeyring.jks

-storepass

websphere

The

previous

three

lines

of

code

belong

on

one

line,

but

were

split

onto

three

lines

due

to

the

width

of

the

page.

Now

the

keystore

testkeyring.jks

contains

two

self-signed

certificates

with

the

owner

being

the

same

as

the

issuer

for

each

certificate.

3.

Verify

the

integrity

and

authenticity

of

the

certificates

by

getting

each

certificate

signed

by

the

certificate

authority.

a.

Generate

the

Certificate

Signing

Request,

CSR-1

(for

the

first

user

cn=rocaj).

${WAS_HOME}/java/bin/keytool

-v

certreq

-alias

rocaj

-file

rocajReq.csr

-keypass

websphere

-keystore

testkeyring.jks

-storepass

websphere

The

previous

two

lines

of

code

belong

on

one

line,

but

were

split

onto

two

lines

due

to

the

width

of

the

page.

b.

On

UNIX-based

platforms,

remove

the

end

of

line

characters

(^M)

from

the

certificate

signing

request.

To

remove

the

end

of

line

characters,

type

the

following

command:

cat

rocajReq.csr

|tr

-d

″\r″

c.

Generate

the

CSR-2

(for

the

second

user

cn=amorv).

${WAS_HOME}/java/bin/keytool

-v

-certreq

-alias

amorv

-file

amorvReq.csr

-keypass

websphere

-keystore

testkeyring.jks

-storepass

websphere

The

previous

two

lines

of

code

belong

on

one

line,

but

were

split

onto

two

lines

due

to

the

width

of

the

page.

d.

On

UNIX-based

platforms,

remove

the

end

of

line

characters

(^M)

from

the

certificate

signing

request.

To

remove

the

end

of

line

characters,

type

the

following

command:

cat

amoryReq.csr

|tr

-d

″\r″

4.

Use

the

free

Test

SSL

certificate

program

offered

by

Thawte

Consulting

to

sign

the

Certificate

Signing

Requests

(CSRs)

for

this

example.

In

each

case,

select

the

Custom

Cert

option

and

set

the

certificate

format

to

use

the

Chapter

2.

Securing

applications

and

their

environments

419

default

for

your

kind

of

certificate.

The

example

also

selects

the

Generate

an

X.509v3

Certificate

option

and

saves

the

two

resulting

files

as

rocajRes.arm

and

amorvRes.arm,

respectively.

5.

Import

the

CA

trusted

root

certificate

into

the

keystore.

Copy

and

paste

the

Thawte

test

root

certificate

in

BASE64-encoded

ASCII

data

format

to

a

file

called

ThawteTestCA.arm.

Add

the

test

root

CA

certificate

into

the

keystore

file

with

the

following

command:

${WAS_HOME}/java/bin/keytool

-import

-alias

″Thawte

Test

CA

Root″

-file

ThawteTestCA.arm

-keystore

testkeyring.jks

-storepass

websphere

The

previous

two

lines

of

code

belong

on

one

line,

but

were

split

onto

two

lines

due

to

the

width

of

the

page.

6.

Import

the

two

certificate

responses

from

the

CA

into

the

keystore

file

using

the

same

alias

name

that

was

first

given

to

the

self-signed

certificates.

In

this

example,

these

alias

names

are

rocaj

and

amorv

respectively.

Using

an

alternative

alias

name

generates

a

new

signer

certificate

and

not

a

personal

certificate

chain.

–

Import

the

certificate

response

-1

(for

the

first

user

cn=rocaj).

${WAS_HOME}/java/bin/keytool

-import

-trustcacerts

-alias

rocaj

-file

rocajRec.arm

-keystore

testkeyring.jks

-storepass

websphere.

Certificate

reply

was

installed

in

keystore

The

previous

three

lines

of

code

belong

on

one

line,

but

were

split

onto

three

lines

due

to

the

width

of

the

page.

–

Import

the

certificate

response

-2

(for

the

second

user

cn=amorv).

${WAS_HOME}/java/bin/keytool

-import

-trustcacerts

-alias

amorv

-file

amorvRec.arm

-keystore

testkeyring.jks

-storepass

websphere.

Certificate

reply

was

installed

in

keystore

The

previous

three

lines

of

code

belong

on

one

line,

but

were

split

onto

three

lines

due

to

the

width

of

the

page.

7.

Launch

the

JSSE

ikeyman

utility,

which

supports

the

PKCS12

format

and

the

private

key

exporting

associated

with

any

certificate

(the

public

key

is

also

exported).

8.

Open

the

testkeyring.jks

keystore

file

and

select

the

first

certificate

from

the

Personal

Certificates

menu.

9.

Click

Export

and

name

the

file,

rocajprivate.p12.

Export

the

second

personal

certificate

and

name

it

amorvprivate.p12.

10.

Verify

that

the

same

root

certificate

of

the

authenticating

CA

is

installed

as

a

trusted

authority

in

the

browser.

11.

To

install

either

of

the

personal

certificates

into

Netscape

Communicator,

click

Communicator

>

Tools

>

Security

Info

>

Certificates

>

Yours.

Use

the

Import

a

Certificate

option.

12.

Enter

a

password

or

PIN

for

the

communicator

certificate

database,

when

you

attempt

to

import

the

certificate.

Enter

the

password

used

when

first

initializing

your

certificate

database.

Enter

the

password

protecting

the

PKCS#12

certificate

file,

as

set

when

you

exported

the

personal

private

and

public

certificate

key

pair

in

iKeyman.

13.

Click

Verify

to

check

integrity

and

validity

of

the

certificate.

If

you

did

not

install

the

root

CA

certificate,

your

certificate

fails

the

verification.

14.

Verify

that

you

modified

your

Web

server

to

support

client

side

certificate

requests.

420

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

15.

Go

to

the

following

URL:

https://server_name/snoop;

the

Web

browser

prompts

you

to

select

a

personal

certificate

when

accessing

a

resource

protected

by

the

SSLClientAuth

directive.

16.

Select

the

HTTPS

information

displayed

by

the

snoop

servlet;

you

see

the

certificate

SubjectDN

matching

the

following:

Subject:

CN=amorv,

OU=users,

OU=uk,

DC=internetchaos,

DC=com.
v

Refer

to

“Creating

a

Secure

Sockets

Layer

repertoire

configuration

entry”

on

page

409

to

create

a

new

SSL

definition

entry

for

WebSphere

Application

Server

using

the

administrative

console.

Once

a

keystore

file

is

configured,

either

by

creating

a

self-signed

certificate

or

by

creating

a

certificate

request

and

importing

the

reply,

you

can

configure

WebSphere

Application

Server

to

use

the

certificates.

The

product

uses

the

certificates

to

establish

a

secure

connection

with

a

client

through

SSL.

v

Set

up

the

appropriate

components

to

use

the

newly-defined

SSL

configuration.

To

ensure

a

secure

connection,

configure

some

non-WebSphere

components,

such

as

a

Web

server.

A

digital

certificate

is

created

for

each

component.

The

WebSphere

Application

Server

owns

a

certificate

and

the

Web

server

owns

another

certificate.

Refer

to

“Configuring

IBM

HTTP

Server

for

secure

sockets

layer

mutual

authentication”

on

page

394.

Setting

up

SSL

communication

between

the

Web

browser

and

WebSphere

Application

Server.

Using

digital

signatures,

you

can

communicate

securely

from

the

Web

browser

through

the

Web

server

to

WebSphere

Application

Server.

Once

you

finish

configuring

security,

perform

the

following

steps

to

save,

synchronize,

and

restart

the

servers:

1.

Click

Save

in

the

administrative

console

to

save

any

modifications

to

the

configuration.

2.

Synchronize

the

configuration

with

all

node

agents

(Network

Deployment

only).

3.

Once

synchronized,

stop

all

servers

and

restart

them.

Starting

the

key

management

utility

(iKeyman):

It

is

recommended

to

read

the

documentation

located

in

the

http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip

file

for

further

information.

WebSphere

Application

Server

provides

a

graphical

tool,

the

key

management

utility

(iKeyman),

for

managing

keys

and

certificates.

With

the

key

management

utility,

you

can:

v

Create

a

new

key

database

v

Create

a

self-signed

digital

certificate

v

Add

certificate

authority

(CA)

roots

to

the

key

database

as

a

signer

certificate

v

Request

and

receive

a

digital

certificate

from

a

CA

To

start

the

key

management

utility,

complete

the

following

steps:

1.

Move

to

the

install_root/bin

directory.

2.

Issue

one

of

the

following

commands:

v

On

Windows

systems,

ikeyman.bat

v

On

UNIX

systems,

ikeyman.sh

A

graphical

user

interface

of

the

key

management

utility

appears.

Manage

keys

and

digital

certificates.

Chapter

2.

Securing

applications

and

their

environments

421

Creating

a

keystore

file:

The

keystore

file

is

a

key

database

file

that

contains

both

public

keys

and

private

keys.

Public

keys

are

stored

as

signer

certificates

while

private

keys

are

stored

in

the

personal

certificates.

The

keys

are

used

for

a

variety

of

purposes,

including

authentication

and

data

integrity.

You

can

use

both

the

key

management

utility

(iKeyman)

and

the

keytool

utility

to

create

keystore

files.

Read

the

documentation

located

at

http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip

for

further

information.

1.

Start

the

iKeyman

utility,

if

it

is

not

already

running.

2.

Open

a

new

key

database

file

by

clicking

Key

Database

File

>

New

from

the

menu

bar.

3.

Select

the

Key

Database

Type:

JKS

(default),

PKCS12,

and

JCEKS.

This

is

the

key

file

format

(or

the

value

of

com.ibm.ssl.keyStoreType

property

in

the

sas.client.props

file)

when

you

configure

the

SSL

setting

for

your

application.

4.

Type

in

the

file

name

and

location.

The

full

path

of

this

key

database

file

is

used

as

the

key

file

name

(or

the

value

of

the

com.ibm.ssl.keyStore

property

in

the

sas.client.props

file)

when

you

configure

the

SSL

setting

for

your

application.

5.

Click

OK

to

continue.

6.

Then,

type

in

password

to

restrict

access

to

the

file.

This

password

is

used

as

the

key

file

password

(or

the

value

of

com.ibm.ssl.keyStorePassword

property

in

the

sas.client.props

file)

when

you

configure

the

SSL

setting

for

your

application.

Do

not

set

an

expiration

date

on

the

password

or

save

the

password

to

a

file;

you

must

then

reset

the

password

when

it

expires

or

protect

the

password

file.

This

password

is

used

only

to

release

the

information

stored

by

the

key

management

utility

during

run

time.

7.

Click

OK

to

continue.

The

tool

displays

all

of

the

available

default

signer

certificates.

These

certificates

are

the

public

keys

of

the

most

common

certificate

authorities

(CAs).

You

can

add,

view

or

delete

signer

certificates

from

this

panel.

A

new

SSL

keystore

file

is

created.

Prepare

keystore

files

for

an

SSL

connection.

Specify

the

keystore

file

in

the

configuration

of

WebSphere

Application

Server.

Create

a

truststore

if

one

does

not

yet

exist.

Creating

self-signed

personal

certificates:

A

self-signed

personal

certificate

is

a

temporary

digital

certificate

you

issue

to

yourself,

acting

as

the

certificate

authority

(CA).

Creating

a

self-signed

certificate

creates

a

private

key

and

a

public

key

within

the

key

database

file.

The

self-signed

certificate

is

created

in

a

keystore

file

and

it

is

useful

when

you

develop

and

test

your

application.

You

can

also

create

a

self-signed

personal

certificate

from

your

cryptographic

token

device.

If

you

want

to

create

a

self-signed

certificate

for

a

keystore,

you

must

have

already

created

the

keystore

file.

You

can

later

extract

the

public

key

and

add

the

key

as

a

signer

certificate

to

other

truststore

files.

422

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Read

the

documentation

in

the

http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip

file

for

further

information

about

how

to

create

a

self-signed

personal

certificate

within

a

key

database

file.

1.

Start

the

key

management

utility,

if

it

is

not

already

running.

2.

Click

New

Self-Signed

from

the

tool

bar

or

click

Create

>

New

Self-Signed

Certificate.

3.

Select

the

X509

version

and

the

key

size

that

suits

your

application.

4.

Enter

the

appropriate

information

for

your

self-signed

certificate:

Key

Label

Give

the

certificate

a

key

label,

which

is

used

to

uniquely

identify

the

certificate

within

the

keystore

file.

If

you

have

only

one

certificate

in

each

keystore

file,

you

can

assign

any

value

to

the

label.

However,

it

is

good

practice

to

use

a

unique

label

related

to

the

server

name.

Common

Name

Enter

the

common

name.

This

name

is

the

primary,

universal

identity

for

the

certificate;

it

should

uniquely

identify

the

principal

that

it

represents.

In

a

WebSphere

environment,

certificates

frequently

represent

server

principals,

and

the

common

convention

is

to

use

common

names

of

the

form

host_name

and

server_name.

The

common

name

must

be

valid

in

the

configured

user

registry

for

the

secured

WebSphere

environment.

Organization

Enter

the

name

of

your

organization.

Optional

fields

Enter

the

organization

unit

(a

department

or

division),

location

(city),

state

and

province

(if

applicable),

zip

code

(if

applicable),

and

select

the

two-letter

identifier

of

the

country

in

which

the

server

belongs.

For

a

self-signed

certificate,

these

fields

are

optional.

However,

commercial

CAs

might

require

them.

Validity

period

Specify

the

lifetime

of

the

certificate

in

days,

or

accept

the

default.
5.

Click

OK.

Your

key

database

file

now

contains

a

self-signed

personal

certificate.

Create

a

self-signed

test

certificate

for

testing

purposes.

If

you

need

a

test

certificate

signed

by

a

certificate

authority,

follow

the

procedure

in

Creating

a

certification

request.

Requesting

certificate

authority-signed

personal

certificates:

In

a

production

environment,

use

a

personal

certificate

signed

by

a

certificate

authority

(CA).

The

principal

or

the

owner

of

the

CA-signed

personal

certificate

is

authenticated

by

a

CA

when

the

CA

signs

the

principal

certificate.

Since

the

certificate

authorities

(CAs)

keep

their

private

keys

secure,

the

signed

certificate

is

more

trustworthy

than

a

self-signed

certificate.

Certificate

authorities

are

entities

that

issue

valid

certificates

for

other

entities.

Well-known

CAs

include

VeriSign,

Entrust,

and

GTE

CyberTrust.

You

can

request

a

test

certificate

or

a

production

certificate

from

some

of

the

CAs

like

VeriSign.

The

authentication

process

by

a

CA

can

take

time.

Commercial

CAs

often

require

up

to

a

week

to

complete

their

authentication

process.

Even

on-site

CAs

can

take

Chapter

2.

Securing

applications

and

their

environments

423

several

minutes,

if

not

hours,

or

even

days,

to

complete

their

authentication

process.

Therefore,

you

must

plan

for

the

certificates

that

you

need.

Considering

the

following

points

when

you

plan

for

the

CA-signed

certificate:

v

On

the

certificate

signing

request

that

you

send

to

the

CA,

specify

the

common

name

for

the

certificate.

The

common

name

is

the

primary,

universal

identity

for

the

certificate.

It

should

uniquely

identify

the

principal

that

it

represents.

Verify

that

the

common

name

is

valid

in

the

configured

user

registry

for

the

WebSphere

domain.

v

Check

the

formating

of

the

address

fields

that

your

CA

requires

when

planning

the

address

for

a

certificate

request.
1.

Create

and

send

a

certificate

signing

request

(CSR)

to

the

CA.

2.

Visit

the

CA

Web

site

and

follow

the

instructions

to

request

a

test

or

production

certificate.

Once

the

request

is

accepted,

the

certificate

authority

verifies

your

identity

and

finally

issues

a

signed

certificate

to

you.

The

certificate

is

usually

sent

through

e-mail.

Request

a

production

certificate

from

a

trusted

CA

for

the

production

WebSphere

Application

Server

environment.

Once

you

receive

the

e-mail

from

the

CA,

follow

the

instructions

to

store

your

signed

certificate

as

a

file.

Receive

or

store

the

certificate

into

the

keystore

file

as

a

personal

certificate.

Creating

certificate

signing

requests:

To

obtain

a

certificate

from

a

certificate

authority,

submit

a

certificate

signing

request

(CSR)

using

the

key

management

utility

(iKeyman).

You

can

request

either

production

or

test

certificates

from

a

CA

with

a

CSR.

With

the

key

management

utility,

generating

a

certificate

signing

request

also

generates

a

private

key

for

the

application

for

which

the

certificate

is

requested.

The

private

key

remains

in

the

application

keystore

file,

so

it

stays

private.

The

public

key

is

included

in

the

certificate

requested.

Read

the

file

install_root/web/docs/ikeyman/ikmuserguide.pdf

for

further

information

about

how

to

create

a

certificate

signing

request

from

a

key

database

file.

1.

Start

the

key

management

utility,

if

it

is

not

already

running.

2.

Open

the

key

database

file

from

which

you

want

to

generate

the

request.

3.

Type

the

password

and

click

OK.

4.

Click

Create

>

New

Certificate

Request.

The

Create

New

Key

and

Certificate

Request

window

displays.

5.

Type

a

Key

Label,

a

Common

Name,

and

Organization;

and

select

a

Country.

For

the

remaining

fields,

accept

the

default

value,

type

a

value,

or

select

new

values.

The

common

name

must

be

valid

in

the

configured

user

registry

for

the

secured

WebSphere

environment.

6.

Type

in

a

name

for

the

file,

such

as

certreq.arm.

7.

Click

OK

to

complete.

8.

Optional:

On

UNIX-based

platforms,

remove

the

end

of

line

characters

(^M)

from

the

certificate

signing

request.

To

remove

the

end

of

line

characters,

type

the

following

command:

424

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

cat

certreq.arm

|tr

-d

″\r″

>

new_certreq.arm

9.

Send

the

certreq.arm

file

to

the

certificate

authority

(CA)

following

the

instructions

from

the

CA

Web

site

for

requesting

a

new

certificate.

The

Personal

Certificate

Requests

list

shows

the

key

label

of

the

new

digital

certificate

request

you

just

created.

Send

the

file

to

a

CA

to

request

a

new

digital

certificate,

or

cut

and

paste

the

request

into

the

request

forms

of

the

CA

Web

site.

You

need

to

request

a

certificate

authority-signed

digital

certificate

for

your

secure

WebSphere

domain.

Once

you

submit

the

certificate

signing

request,

wait

for

the

CA

to

accept

the

request.

After

the

CA

has

verified

your

identity,

it

sends

back

the

signed

certificate

usually

through

e-mail.

Receive

the

signed

certificate

back

to

the

keystore

file

from

which

you

generated

the

CSR.

Receiving

certificate

authority-signed

personal

certificates:

Once

the

certificate

signing

request

(CSR)

is

accepted,

a

certificate

authority

(CA)

processes

the

request

and

verifies

your

identity.

Once

approved,

the

CA

sends

the

signed

certificate

back

through

e-mail.

Store

the

signed

certificate

in

a

keystore

database

file.

This

procedure

describes

how

to

receive

the

CA-signed

certificate

into

a

keystore

file

using

the

key

management

utility

(iKeyman).

You

use

this

utility

the

same

way

for

both

test

certificates

and

production

certificates.

The

primary

difference

between

the

two

certificate

types

is

the

amount

of

time

it

takes

for

the

CA

to

authenticate

the

principal

your

certificate

represents.

Test

certificates

are

authenticated

automatically

based

on

some

simple

edit

checks

and

returned

to

you

within

a

few

hours.

Production

certificates

may

take

several

days

or

a

week

to

authenticate

and

return

to

you.

If

the

CSR

request

is

made

for

the

cryptographic

token,

the

certificate

must

be

received

into

that

token.

If

the

request

is

made

for

the

secondary

key

database

of

the

token,

the

certificate

must

be

received

into

that

database.

Receive

the

signed

certificate

from

the

CA

through

e-mail.

Follow

the

instructions

from

the

CA

to

store

the

certificate

into

a

file.

Read

the

http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip

file

for

further

information

about

how

to

receive

a

personal

certificate

into

a

key

database

file

from

the

CA.

1.

Start

IKeyman,

if

it

is

not

already

running.

2.

Open

the

key

database

file

from

which

you

generated

the

request.

3.

Type

the

password

and

click

OK.

4.

Select

Personal

Certificates

from

the

pull-down

list.

5.

Click

Receive.

6.

Click

Data

type

and

select

the

data

type

of

the

new

digital

certificate,

such

as

Base64-encoded

ASCII

data.

Select

the

data

type

that

matches

the

CA-signed

certificate.

If

the

CA

sends

the

certificate

as

part

of

an

E-mail

message,

you

may

first

need

to

cut

and

paste

the

certificate

into

a

separate

file.

7.

Type

the

certificate

file

name

and

location

for

the

new

digital

certificate,

or

click

Browse

to

locate

the

CA-signed

certificate.

8.

Click

OK.

9.

Type

a

label

for

the

new

digital

certificate

and

click

OK.

The

personal

certificate

list

now

displays

the

label

you

just

gave

for

the

new

CA-signed

certificate.

Chapter

2.

Securing

applications

and

their

environments

425

Needs

digital

certificate

to

support

SSL

for

security

over

the

WebSphere

domain.

Once

the

CA-signed

certificate

is

successfully

received,

you

can

extract

or

export

the

public

key

of

the

certificate

to

a

file

for

distribution

to

the

network.

Extracting

public

certificates

for

truststore

files:

Use

this

procedure

to

extract

a

public

certificate,

which

includes

its

public

key,

from

a

keystore

file.

If

a

target

truststore

file

already

contains

the

signer

certificate

of

the

certificate

authority

(CA)

that

signed

the

certificate,

you

do

not

need

to

extract

and

add

the

certificate

to

the

target

truststore

file.

However,

in

general,

you

need

to

complete

this

procedure

for

a

self-signed

certificate.

Extracting

a

certificate

from

one

keystore

file

and

adding

it

to

a

truststore

file

is

not

the

same

as

exporting

the

certificate

and

then

importing

it.

Exporting

a

certificate

copies

all

the

certificate

information,

including

its

private

key,

and

is

normally

only

used

if

you

want

to

copy

a

personal

certificate

into

another

keystore

file

as

a

personal

certificate.

If

a

certificate

is

self-signed,

extract

the

certificate

and

its

public

key

from

the

keystore

file

and

add

it

to

the

target

truststore

file.

If

a

certificate

is

CA-signed,

verify

that

the

CA

certificate

used

to

sign

the

certificate

is

listed

as

a

signer

certificate

in

the

target

truststore

file.

The

keystore

file

must

already

exist

and

contain

the

certificate

to

be

extracted.

Read

the

http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip

file

for

further

information

about

how

to

extract

a

public

certificate

from

a

key

database

file.

1.

Start

the

key

management

utility

(iKeyman),

if

it

is

not

already

running.

2.

Open

the

keystore

file

from

which

the

public

certificate

will

be

extracted.

3.

Select

Personal

Certificates.

4.

Click

Extract

Certificate.

5.

Click

Base64-encoded

ASCII

data

under

Data

type.

6.

Enter

the

Certificate

File

Name

and

Location.

7.

Click

OK

to

export

the

public

certificate

into

the

specified

file.

A

certificate

file

that

contains

the

public

key

of

the

signed

personal

certificate

is

now

available

for

the

target

truststore

file.

Prepare

truststore

files

for

distributing

the

public

keys

to

support

the

secure

WebSphere

domain

using

Secure

Sockets

Layer

(SSL).

Once

the

keystore

and

truststore

files

are

ready,

make

them

accessible

by

specifying

them

in

your

client

and

server

configurations.

Creating

truststore

files:

A

truststore

file

is

a

key

database

file

that

contains

the

public

keys

for

target

servers.

The

public

key

is

stored

as

a

signer

certificate.

If

the

target

uses

a

self-signed

certificate,

extract

the

public

certificate

from

the

server

keystore

file.

Add

the

extracted

certificate

into

the

truststore

file

as

a

signer

certificate.

For

a

426

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

commercial

certificate

authority

(CA),

the

CA

root

certificate

is

added.

The

truststore

file

can

be

a

more

publicly

accessible

key

database

file

that

contains

all

the

trusted

certificates.

Read

the

documentation

located

at

http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip

for

further

information.

1.

Start

the

key

management

utility

(iKeyman),

if

it

is

not

already

running.

2.

Open

a

new

key

database

file

by

clicking

Key

Database

File

>

New

from

the

menu

bar.

3.

Click

the

Key

Database

Type:

JKS(Default),

PKCS12,

and

JCEKS.

The

key

database

type

is

the

trust

file

format

(or

the

value

of

the

com.ibm.ssl.trustStoreType

property

in

the

sas.client.props

file)

when

you

configure

the

SSL

setting

for

your

application.

4.

Type

in

the

file

name

and

location.

The

full

path

of

this

key

database

file

is

used

as

the

trust

file

name

(or

the

value

of

com.ibm.ssl.trustStore

property

in

the

sas.client.props)

when

you

configure

the

SSL

setting

for

your

application.

5.

Click

OK

to

continue.

6.

Type

in

a

password

to

restrict

access

to

the

file.

This

password

is

used

as

the

trust

file

password

(or

the

value

of

the

com.ibm.ssl.trustStorePassword

property

in

the

sas.client.props

file)

when

you

configure

the

SSL

setting

for

your

application.

Do

not

set

an

expiration

date

on

the

password

or

save

the

password

to

a

file.

You

must

reset

the

password

when

it

expires

or

protect

the

password

file.

This

password

is

used

only

to

release

the

information

stored

by

the

key

management

utility

during

run

time.

7.

Click

OK

to

continue.

The

tool

now

displays

all

of

the

available

default

signer

certificates.

These

are

the

public

keys

of

the

most

common

CAs.

You

can

add,

view

or

delete

signer

certificates

from

this

screen.

A

new

SSL

truststore

file

is

created.

Prepare

truststore

files

for

an

SSL

connection.

Specify

the

truststore

file

in

the

configuration

of

WebSphere

Application

Server.

Create

a

keystore

file

if

one

does

not

exist.

Importing

signer

certificates:

A

signer

certificate

is

the

trusted

certificate

entry

that

is

usually

in

a

truststore

file.

You

can

import

a

certificate

authority

(CA)

root

certificate

from

the

CA,

or

a

public

certificate

from

the

self-signed

personal

certificate

of

the

target

into

your

truststore

file,

as

a

signer

certificate.

Read

the

documentation

located

in

http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip

file

for

further

information.

1.

Start

the

key

management

utility

(iKeyman),

if

it

is

not

already

running.

2.

Open

the

truststore

file.

The

Password

Prompt

window

displays.

3.

Type

the

password

and

click

OK.

4.

Select

Signer

Certificates

from

the

menu.

5.

Click

Add.

6.

Click

Data

type

and

select

a

data

type,

such

as

Base64-encoded

ASCII

data.

This

data

type

must

match

the

data

type

of

the

importing

certificate.

Chapter

2.

Securing

applications

and

their

environments

427

7.

Type

a

certificate

file

name

and

location

for

the

CA

root

digital

certificate

or

click

Browse

to

select

the

name

and

location.

8.

Click

OK.

9.

Type

a

label

for

the

importing

certificate.

10.

Click

OK.

The

Signer

Certificates

field

now

displays

the

label

of

the

signer

certificate

you

just

added.

Receive

a

CA

root

certificate

or

the

public

key

from

your

secure

target.

Map

certificates

to

users:

Client-side

certificates

support

access

to

secured

resources

from

Web

or

Java

clients.

A

client

presents

an

X.509-compliant

digital

certificate

to

perform

mutual

authentication

with

a

single

sockets

layer-enabled

server.

The

product

security

run

time

attempts

to

map

the

certificate

to

a

known

user

in

the

associated

Lightweight

Directory

Access

Protocol

(LDAP)

directory.

If

the

certificate

successfully

maps

to

a

user,

then

the

holder

of

the

certificate

is

regarded

as

the

user

in

the

registry

and

is

authorized

as

this

user.

After

the

single

sockets

layer-enabled

server

gets

the

client

certificate,

the

server

needs

to

map

the

certificate

to

a

user.

WebSphere

Application

Server

supports

two

techniques

for

mapping

certificates

to

entries

in

LDAP

registries:

v

By

exact

distinguished

name

v

By

matching

attributes

in

the

certificate

to

attributes

of

LDAP

entries
1.

Map

by

exact

distinguished

name

(DN).

This

approach

attempts

to

map

the

distinguished

name

(DN)

associated

with

the

Subject

field

in

the

certificate

to

an

entry

in

the

LDAP

directory.

If

the

mapping

is

successful,

the

user

is

authenticated

and

is

authorized

according

to

the

privileges

granted

to

the

identity

in

the

LDAP

directory.

The

mapping

is

case

insensitive.

For

example,

the

following

two

DNs

match

on

a

case-insensitive

comparison:

"cn=Smith,

ou=NewUnit,

o=NewCompany,

c=us"

"cn=smith,

ou=newunit,

o=NewCompany,

c=US"

If

a

match

is

found,

authentication

succeeds;

if

no

match

is

found,

authentication

fails.

2.

Map

by

filtering

certificate

attributes.

This

approach

maps

certificate

attributes

to

attributes

of

entries

in

an

LDAP

directory.

For

example,

you

can

specify

that

the

common

name

(CN)

attribute

of

the

Subject

field

in

the

certificate

must

match

the

uid

attribute

of

your

LDAP

entry.

If

the

mapping

is

successful,

the

user

is

authenticated

and

is

authorized

according

to

the

privileges

granted

to

the

identity

in

the

LDAP

directory.

If

you

are

matching

the

Subject

CN

field

in

the

certificate

to

the

uid

attribute

of

the

LDAP

entry,

a

certificate

with

the

Subject

DN

″cn=Smith,

ou=NewUnit,

o=NewCompany,

c=us″

matches

an

LDAP

user

entry

with

uid=Smith.

To

use

this

mapping

technique,

you

must

request

certificate

mapping

and

set

up

the

certificate

filter

in

the

administrative

console.

428

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

This

specification

extracts

the

CN

field

from

the

Subject

attribute

in

the

certificate

(Smith)

and

creates

a

filter

(user

ID

=

Smith)

from

it.

The

LDAP

directory

is

searched

for

a

user

entry

that

matches

the

filter.

If

an

entry

matches

the

filter,

authentication

succeeds.

Note:

The

search

and

match

of

the

LDAP

directory

are

based

in

part

on

how

your

LDAP

directory

is

configured.

Troubleshooting

secure

sockets

layer

interoperability

The

Secure

Sockets

Layer

(SSL)

protocol

provides

transport

layer

security:

authenticity,

integrity,

and

confidentiality,

for

a

secure

connection

between

a

client

and

server

in

the

WebSphere

Application

Server.

The

following

topics

are

addressed

in

this

article:

v

Secure

Sockets

Layer

Interoperability

issues

might

occur

between

different

releases

of

WebSphere

Application

Server

v

Interoperability

issue

might

occur

between

WebSphere

Application

Server

for

z/OS

and

WebSphere

Application

Server

when

Secure

Sockets

Layer

is

supported,

but

not

required

Secure

Sockets

Layer

Interoperability

issues

might

occur

with

default

key

files

and

trust

store

files

Symptom

In

WebSphere

Application

Server

Version

5.1,

the

secure

sockets

later

protocol

fails

when

you

use

the

default

key

files

and

trust

files

between

version

5.1

and

previous

releases

of

the

server.

For

example,

when

you

add

a

version

5.0.x

node

to

the

deployment

manager

on

WebSphere

Application

Server

Network

Deployment

Version

5.1.x

that

has

security

enabled,

errors

similar

to

the

following

might

occur:

com.ibm.websphere.management.exception.ConnectorException:

ADMC0016E:

Cannot

create

SOAP

Connector

port

8879

or

javax.net.ssl.SSLHandShakeException:

unknown

certificate;

Explanation

WebSphere

Application

Server

Version

5.1

creates

a

dummy

certificate

with

a

later

expiration

date.

In

previous

versions

of

WebSphere

Application

Server,

the

signer

of

the

certificate

does

not

exist

in

the

trust

files.

Because

the

signer

is

missing,

certificate

errors

occur

when

attempting

to

establish

secure

sockets

layer

(SSL)

connections

between

WebSphere

Application

Server

Version

5.1

and

previous

releases

of

the

server.

Recommended

response

Copy

the

dummy

key

files

and

trust

files

provided

with

WebSphere

Application

Server

Version

5.1

into

the

previous

releases

for

test

interoperability.

However,

do

not

use

these

dummy

certificates,

key

stores,

or

trust

stores

in

a

production

environment.

These

dummy

certificates

are

widely

used

and

thus

considered

insecure

for

a

production

environment.

When

you

apply

an

interim

fix,

the

installer

overwrites

these

files.

An

update

to

the

Java

keystore

(JKS)

files

for

WebSphere

Application

Server

Version

4.x

and

5.0.x

is

available.

For

version

4.x

servers,

see

APAR

Chapter

2.

Securing

applications

and

their

environments

429

PQ77261.

For

version

5.0.x

servers,

see

APAR

PQ77264.

Both

of

these

APARs

are

available

through

the

WebSphere

Application

Server

support

Web

site.

Interoperability

issue

might

occur

between

WebSphere

Application

Server

for

z/OS

and

WebSphere

Application

Server

when

Secure

Sockets

Layer

is

supported,

but

not

required

Symptom

An

interoperability

issue

exists

between

WebSphere

Application

Server

for

z/OS

and

WebSphere

Application

Server

when

Secure

Sockets

Layer

is

supported,

but

not

required.

Explanation

WebSphere

Application

Server

sets

an

integrity

required

flag

for

the

Common

Secure

Interoperability

Version

2

(CSIv2)

inbound

configuration

to

true,

by

default,

because

Secure

Sockets

Layer

(SSL)

requires

integrity

at

a

minimum.

However,

WebSphere

Application

Server

for

z/OS

interprets

this

flag

as

an

SSL

requirement.

Recommended

response

In

the

security.xml

file

for

WebSphere

Application

Server

(not

WebSphere

Application

Server

for

z/OS),

change

the

following

line

from:

<CSI

xmi:id=″IIOPSecurityProtocol_1066667906706″>

<claims

xmi:type=″orb.securityprotocol:CommonSecureInterop″

xmi:id=″CommonSecureInterop_1066667906706″

stateful=″true″>

...

<requiredQOP

xmi:type=″orb.securityprotocol:TransportQOP″

xmi:id=″TransportQOP_1066667906706″

establishTrustInClient=″false″

enableProtection=″false″

confidentiality=″false″

integrity=″true″/>

...

</claims>

to

<CSI

xmi:id=″IIOPSecurityProtocol_1066667906706″>

<claims

xmi:type=″orb.securityprotocol:CommonSecureInterop″

xmi:id=″CommonSecureInterop_1066667906706″

stateful=″true″>

...

<requiredQOP

xmi:type=″orb.securityprotocol:TransportQOP″

xmi:id=″TransportQOP_1066667906706″

establishTrustInClient=″false″

enableProtection=″false″

confidentiality=″false″

integrity=″false″/>

...

</claims>

You

also

can

make

the

previous

change

using

the

WebSphere

Application

Server

administrative

scripting

commands.

Changes

to

IBM

Developer

Kit

for

Java

Technology

Edition

Version

1.4.x

WebSphere

Application

Server,

Version

5.1

includes

the

IBM

Developer

Kit,

Java

Technology

Edition

Version

1.4.x,

which

contains

changes

to

the

IBM

Developer

Kit,

Java

Technology

Edition

Version

1.3.x.

This

document

is

intended

to

assist

application

developers

and

system

administrators

in

understanding

the

changes.

430

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

http://www.ibm.com/software/webservers/appserv/was/support/
http://www.ibm.com/software/webservers/appserv/was/support/

Security

packaging

changes

in

IBM

Developer

Kit,

Java

Technology

Edition

Version

1.4.x

In

IBM

Developer

Kit,

Java

Technology

Edition

Version

1.4.x,

many

of

the

security

technologies

have

been

included

in

the

core

of

the

IBM

Developer

Kit,

Java

Technology

Edition

Version

1.4.x.

Because

of

the

packaging

changes,

we

are

supporting

specific

java.security

configurations

for

each

platform.

This

document

discusses

the

impact

these

java.security

configuration

changes

have

on

each

platform.

Security

providers

for

the

Windows,

Linux,

and

AIX

platforms

The

Windows,

Linux,

and

AIX

platforms

use

all

of

the

IBM

security

provider

implementations,

which

is

similar

to

how

IBM

Developer

Kit,

Java

Technology

Edition

Version

1.3.x

shipped.

Because

the

security

technologies

in

IBM

Developer

Kit,

Java

Technology

Edition

Version

1.3.x,

were

not

part

of

the

core,

these

technologies

were

shipped

in

the

java/jre/lib/ext

directory

and

provided

more

flexibility

in

implementing

the

technologies.

The

following

list

shows

the

providers

and

sequence

of

how

these

providers

are

supported

on

the

Windows,

Linux,

and

AIX

platforms.

Add

any

additional

providers

at

the

end

of

this

list

of

providers.

Only

those

JSSE

providers

configured

by

WebSphere

Application

Server

are

supported

security.provider.1=com.ibm.crypto.provider.IBMJCE

security.provider.2=com.ibm.jsse.IBMJSSEProvider

security.provider.3=com.ibm.security.jgss.IBMJGSSProvider

security.provider.4=com.ibm.security.cert.IBMCertPath

security.provider.5=com.ibm.crypto.pkcs11.provider.IBMPKCS11

Security

providers

for

the

Sun

Solaris

environment

In

the

Sun

Solaris

environment,

by

default,

we

are

using

the

IBM

JSSE

framework

classes.

These

classes

enable

you

to

plug-in

the

IBMJSSE

and

IBMJSSEFIPS

providers.

The

following

list

shows

the

default

provider

lists

for

the

Sun

Solaris

environment.

Add

any

additional

providers

to

the

end

of

this

list.

security.provider.1=com.ibm.security.cert.IBMCertPath

security.provider.2=com.ibm.security.jgss.IBMJGSSProvider

security.provider.3=sun.security.provider.Sun

security.provider.4=com.ibm.crypto.provider.IBMJCE

security.provider.5=com.ibm.jsse.IBMJSSEProvider

#

security.provider.6=com.ibm.crypto.pkcs11.provider.IBMPKCS11

Security

providers

for

the

HP-UX

platform

On

the

HP-UX

platform,

you

must

use

the

SunJSSE

and

the

SunJCE

providers

due

to

license

restrictions.

The

IBMJSSE

and

IBMJSSEFIPS

providers

are

not

supported

on

the

HP-UX

platform

because

of

a

lack

of

flexibility

in

plugging

into

the

Sun

JSSE

framework.

Any

code

that

specifically

uses

the

IBMJSSE

provider

within

Java

Secure

Socket

Extension

(JSSE)

getInstance

methods

does

not

work

on

the

HP-UX

platform.

To

get

the

default

provider,

you

can

call

getInstance

Chapter

2.

Securing

applications

and

their

environments

431

methods

without

explicitly

specifying

the

provider.

The

following

provider

list

must

be

used

in

the

java.security

file

on

the

HP-UX

platform.

Add

additional

providers

after

those

listed

in

the

following

list.

Attention:

Some

functions

that

worked

using

the

IBMJSSE

provider

might

not

work

using

the

SunJSSE

provider

including

hardware

cryptographic

token

configurations

and

certificate

alias

selection.

security.provider.1=com.ibm.security.cert.IBMCertPath

security.provider.2=com.ibm.security.jgss.IBMJGSSProvider

security.provider.3=sun.security.provider.Sun

security.provider.4=com.ibm.crypto.provider.IBMJCE

security.provider.5=com.ibm.jsse.IBMJSSEProvider

#

security.provider.6=com.ibm.crypto.pkcs11.provider.IBMPKCS11

Changes

to

the

CertPath

API

package

name

In

IBM

Developer

Kit,

Java

Technology

Edition

Version

1.3.x,

the

package

for

CertPath

APIs

was

javax.security.cert.*.

However,

in

IBM

Developer

Kit,

Java

Technology

Edition

Version

1.4.x,

the

package

has

changed

to

java.security.cert.*.

While

your

applications

might

still

work

using

javax.security.cert.*

due

to

the

oldcertpath.jar

packaged

in

${WAS_INSTALL_ROOT}/java/jre/lib/ext/oldcertpath.jar

file,

change

your

applications

to

use

the

new

package

name

for

CertPath

from

this

point

forward.

In

this

release,

either

package

name

should

work,

but

it

is

recommended

that

you

use

the

correct

package,

which

is

java.security.cert.*.

Known

problems

with

IBM

Developer

Kit,

Java

Technology

Edition

Version

1.4.x

For

a

list

of

known

problems

with

the

various

platforms

related

to

the

IBM

Developer

Kit,

Java

Technology

Edition

Version

1.4.x

changes,

please

review

the

release

notes

for

WebSphere

Application

Server,

Version

5.1.

Cryptographic

token

support

A

cryptographic

token

is

a

hardware

or

software

device

with

a

built-in

key

store

implementation.

The

cryptographic

device

is

used

to

manage

certificates

stored

on

the

cryptographic

tokens

(also

known

as

smartcards).

Both

cryptographic

accelerators,

where

the

cryptographic

hardware

device

has

no

persistent

key

storage,

and

secure

cryptographic

hardware,

where

a

cryptographic

token

generates

and

securely

stores

the

private

key

used

for

Secure

Sockets

Layer

(SSL)

key

exchange,

are

supported

in

the

product.

The

following

token

types

are

supported:

v

PKCS#7

v

PKCS#11

v

PKCS#12

v

MSCAPI

(only

on

Windows

platforms)

Cryptographic

token

support

is

limited

to

tested

devices.

These

devices

include

support

tested

for

SSL

clients:

v

IBM

Security

Kit

Smartcard

v

GemPlus

Smartcards

v

Rainbow

iKey

1000/2000(USB

″Smartcard″

device)

432

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Cryptographic

token

support

has

also

been

tested

for

the

following

SSL

clients

and

servers:

v

IBM

4758-23

v

nCipher

nForce

v

Rainbow

Cryptoswift

v

Eracom

CSA8000

WebSphere

Application

Server

uses

IBMJSSE

to

support

cryptographic

token

devices.

Refer

to

the

document

install_root\web\docs\jsse\readme.jsse.ibm.html

for

further

information.

Opening

a

cryptographic

token

using

the

key

management

utility

(iKeyman)

Verify

that

your

cryptographic

token

device

is

installed

and

functions

properly.

Create

a

cryptographic

token,

following

the

instructions

provided

by

the

manual

of

the

cryptographic

device.

From

your

cryptographic

token

device

documentation,

identify

the

token

library.

For

example,

the

IBM

4758

PCI

Cryptographic

Card

uses

CRYPTOKI.DLL

as

the

PKCS#11-type

token

library

(see

http://www.ibm.com/security/cryptocards/html/library.shtml

for

details).

Read

the

documentation

located

in

the

http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip

file

for

further

information

about

using

the

key

management

utility

(iKeyman).

You

can

use

the

key

management

utility

to

open

a

cryptographic

token.

Once

opened,

you

can

manage

your

keys

and

certificates

just

like

you

do

with

keystore

and

truststore

files:

v

Create

a

self-signed

digital

certificate

v

Add

certificate

authority

(CA)

roots

as

a

signer

certificate

v

Request

and

receive

a

digital

certificate

from

a

CA
1.

Start

the

key

management

utility,

if

it

is

not

already

running.

2.

Click

Key

DataBase

File

>

Open.

3.

Click

Cryptographic

Token

from

the

list

of

key

database

types.

4.

Fill

in

the

information

for

File

Name

and

Location,

or

browse

for

the

cryptographic

device

library.

5.

Click

OK

to

open

the

library.

6.

Type

in

the

slot

number

in

the

next

panel.

This

is

the

number

of

the

slot

in

which

you

previously

created

the

cryptographic

token.

7.

Enter

the

password.

This

is

the

password

configured

for

the

cryptographic

token

that

you

created.

All

of

the

personal

and

signer

certificates

are

stored

on

the

cryptographic

token

card.

With

the

token

open,

you

can

create

or

request

digital

certificates

and

receive

CA-signed

certificates.

Using

a

cryptographic

token

device

as

a

key

database

to

manage

keys

and

certificates

for

an

SSL

connection.

Once

the

cryptographic

token

is

open,

you

can

add

or

delete

keys

and

certificates.

Configure

the

cryptographic

token

settings

in

WebSphere

Application

Server.

Chapter

2.

Securing

applications

and

their

environments

433

http://www.ibm.com/security/cryptocards/html/library.shtml

Configuring

to

use

cryptographic

tokens

You

can

configure

cryptographic

token

support

in

both

client

and

server

configuration.

To

configure

a

Java

client

application,

use

the

sas.client.props

configuration

file.

By

default,

the

sas.client.props

is

located

in

the

properties

directory

under

the

<install_root>

of

your

WebSphere

Application

Server

installation.

To

configure

a

WebSphere

Application

Server,

use

the

administrative

console.

To

start

the

administrative

console,

specify

URL:

http://<server_hostname>:9090/admin.

To

understand

how

to

make

WebSphere

Application

Server

(both

the

run

time

and

the

key

management

utility)

work

correctly

with

any

cryptographic

token

device,

become

familiar

with

the

Java

Secure

Socket

Extension

(JSSE)

documentation

available

from

the

application

server

product

installation

http://www.ibm.com/developerworks/java/jdk/security/jsseDocs.zip

and

http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip.

Unzip

the

install_root/web/docs/jsse/native-support.zip

file

and

copy

the

correct

libraries,

with

respect

to

target

operating

system,

to

the

appropriate

location.

Otherwise,

link

errors

might

occur

at

run

time,

or

the

key

management

tool

might

not

work

properly

with

the

cryptographic

device

library.

Follow

the

documentation

that

accompanies

your

device

to

install

your

cryptographic

device.

Installation

instructions

for

IBM

cryptographic

hardware

devices

can

be

found

in

the

Administration

section

of

Resources

for

learning.

Important:

To

use

cryptographic

token

devices

in

the

Solaris

Operating

Environment,

you

must

edit

the

${WAS_INSTALL_ROOT}/java/jre/lib/security/java.security

file.

Uncomment

the

line

containing

com.ibm.crypto.pkcs11.provider.IBMPKCS11.

By

default,

the

line

is

commented

out

because

the

algorithm

MD4

is

not

present

in

the

IBMPKCS11

provider.

1.

To

configure

a

client

to

use

a

cryptographic

token,

edit

the

sas.client.props

file

and

set

the

following

properties.

Leave

the

KeyStore

File

Name,

KeyStore

File

Password,

TrustStore

File

Name,

TrustStore

File

Password

fields

in

a

Secure

Sockets

Layer

(SSL)

configuration

blank,

if

you

want

to

use

only

cryptographic

tokens

as

your

keystore.

com.ibm.ssl.tokenType

Specifies

the

type

of

built-in

keystore

file

that

is

implemented

in

the

cryptographic

token.

(For

example,

com.ibm.ssl.tokenType=PKCS\#11).

The

valid

values

are:

PKCS\#7,

PKCS\#11,

PKCS\#12,

and

MSCAPI.

com.ibm.ssl.tokenLibraryFile

Specifies

the

token

file

name

for

PKCS#7

tokens,

PKCS#12

tokens,

and

the

library

name

for

PKCS#11,

MSCAPI

tokens.

Make

sure

the

cryptographic

token

device

is

installed

and

functions

properly

with

a

cryptographic

token

created.

Unzip

the

native-support.zip

file

from

install_root/web/docs/jsse

directory

to

copy

the

required

libraries

with

respect

to

the

target

operating

system.

com.ibm.ssl.tokenPassword

Specifies

the

password

to

unlock

the

cryptographic

token.
2.

Configure

your

server

to

use

the

cryptographic

device.

Leave

the

KeyStore

File

Name,

KeyStore

File

Password,

TrustStore

File

Name,

TrustStore

File

Password

fields

in

an

SSL

configuration

blank,

if

you

want

to

use

only

cryptographic

tokens

as

your

keystore.

You

can

modify

an

existing

configuration

if

you

click

Security

>

SSL

>

alias.

You

must

specify

an

alias

and

434

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

select

the

Cryptographic

token

option.

If

you

are

using

the

default

cryptographic

device,

unzip

the

native-support.zip

file

from

install_root/web/docs/jsse

directory

to

copy

the

required

libraries

with

respect

to

the

target

operating

system.

The

following

directions

explain

how

to

configure

WebSphere

Application

Server

for

a

new

cryptographic

device.

a.

Specify

http://server_hostname:9090/admin

to

start

the

administrative

console.

b.

Click

Security

>

SSL

to

open

the

SSL

Configuration

Repertoires

panel.

c.

Click

New

to

create

a

new

SSL

setting

alias

if

you

do

not

want

to

use

the

default.

d.

Specify

an

alias

name

in

the

alias

field

for

the

new

cryptographic

device

After

you

configure

the

cryptographic

device,

this

alias

appears

on

the

Security

>

SSL

panel

and

in

the

Authentication

protocol

>

SAS

outbound

transport

list.

e.

Select

Cryptographic

token

and

click

OK.

The

SAS

outbound

transport

panel

opens.

f.

Complete

the

information

for

Token

Type

to

specify

the

type

of

built-in

keystore

file

that

is

implemented

in

the

cryptographic

token.

The

valid

values

are:

PKCS#7,

PKCS#11,

PKCS#12,or

MSCAPI.

g.

Complete

the

information

for

Library

File

to

specify

the

path

to

the

cryptographic

device

driver.

Make

sure

the

cryptographic

token

device

is

installed

and

functions

properly

with

a

new

cryptographic

token.

h.

Complete

the

information

for

Password

to

specify

the

password

for

unlocking

the

cryptographic

device.

i.

Click

Apply

and

OK.

WebSphere

Application

Server

displays

the

Authentication

protocol

>

SAS

outbound

transport

list.

j.

Select

the

appropriate

cryptographic

device

from

the

SSLSettings

menu.

The

configuration

is

enabled

to

support

the

specified

cryptographic

token

for

and

SSL

connection.

WebSphere

Application

Server

uses

the

cryptographic

token

as

a

keystore

file

for

and

SSL

connection.

If

the

server

configuration

has

changed,

restart

the

configured

server.

To

use

cryptographic

token

devices

in

the

Solaris

Operating

Environment,

you

must

edit

the

${WAS_INSTALL_ROOT}/java/jre/lib/security/java.security

file.

Uncomment

the

line

containing

com.ibm.crypto.pkcs11.provider.IBMPKCS11.

By

default,

the

line

is

commented

out

because

the

algorithm

MD4

is

not

present

in

the

IBMPKCS11

provider.

Cryptographic

token

settings

Use

this

page

to

configure

cryptographic

token

settings.

To

view

this

administrative

console

page,

click

Security

>

SSL

>

alias_name

>

Cryptographic

Token.

Token

Type:

Specifies

the

type

of

built-in

keystore

file

that

is

implemented

in

the

cryptographic

token,

such

as

PKCS#11.

Chapter

2.

Securing

applications

and

their

environments

435

The

WebSphere

Application

Server

uses

an

implementation

of

Java

Secure

Socket

Extension

(JSSE)

to

support

cryptographic

token

with

Secure

Sockets

Layer

(SSL).

Different

cryptographic

devices

are

supported.

For

an

SSL

server,

the

following

devices

are

supported:

v

IBM

4758-23

v

nCipher

nForce

v

Rainbow

Cryptoswift

v

Eracom

CSA8000

For

an

SSL

client,

the

following

devices

are

supported:

v

IBM

4758-23

v

nCipher

nForce

v

Rainbow

Cryptoswift

v

IBM

Security

Kit

Smartcard

v

GemPlus

Smartcards

v

Rainbow

iKey

1000/2000

(USB

″Smartcard″

device)

v

Eracom

CSA8000

Follow

the

documentation

that

accompanies

your

device

to

install

your

cryptographic

token.

Data

type:

String

Library

File:

Specifies

the

dynamic

link

library

(DLL)

or

shared

object

that

implements

the

interface

to

the

cryptographic

token

device.

Data

type:

String

Password:

Specifies

the

password

for

the

cryptographic

token

device.

Data

type:

String

Using

Java

Secure

Socket

Extension

and

Java

Cryptography

Extension

with

Servlets

and

enterprise

bean

files

Java

Secure

Socket

Extension

Java

Secure

Socket

Extension

(JSSE)

provides

the

transport

security

for

WebSphere

Application

Server.

It

provides

application

programming

interface

(API)

framework

and

the

implementation

of

the

APIs,

for

Secure

Sockets

Layer

(SSL)

and

Transport

Layer

Security

(TLS)

protocols,

including

functionality

for

data

encryption,

message

integrity

and

authentication.

With

the

JSSE

APIs,

other

SSL

or

TLS

protocols,

and

Public

Key

Infrastructure

(PKI),

implementations

can

plug

in.

IBM

Java

Secure

Socket

Extension

The

WebSphere

Application

Server

uses

the

IBMJSSE

provider,

which

is

pre-installed

and

pre-registered

with

the

Java

Cryptography

Architecture

(JCA)

of

the

Java

2

platform.

IBMJSSE

supports

the

following

cryptographic

services:

v

Rivest

Shamir

Adleman

(RSA)

public

key

cryptography

support

v

SSL

and

TLS

security

protocols

and

common

cipher

suites

436

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

v

X.509-based

key

and

trust

managers

v

PKCS12

as

JCA

keystore

type

The

IBMJSSE

provider

is

pre-registered

in

the

java.security

properties

file

located

at

install_root/java/jre/lib/security

directory.

It

also

supports

cryptographic

token

types

PKCS#7,

PKCS#11,

PKCS#12

and

MSCAPI

(only

on

Windows

platforms)

for

cryptographic

token

support.

Note:

The

IBM

Java

Secure

Socket

Extension

(JSSE)

is

currently

not

supported

within

applets.

Customizing

Java

Secure

Socket

Extension

Note:

Make

sure

you

understand

the

implication

to

your

application

before

you

begin

customizing.

You

can

customize

a

number

of

aspects

of

JSSE

by

plugging

in

different

implementations

of

Cryptography

Package

Provider,

X509Certificate

and

HTTPS

protocols,

or

specifying

different

default

keystore

files,

key

manager

factories

and

trust

manager

factories.

A

provided

table

summarizes

which

aspects

can

be

customized,

what

the

defaults

are,

and

which

mechanisms

are

used

to

provide

customization.

Some

of

the

key

customizable

aspects

follow:

Customizable

item

Default

How

to

customize

X509Certificate

X509Certificate

implementation

from

IBM

cert.provider.x509v1

security

property

HTTPS

protocol

Implementation

from

IBM

java.protocol.handler.pkgs

system

property

Cryptography

Package

Provider

IBMJSSE

A

security.provider.n=

line

in

security

properties

file.

See

description.

Default

keystore

None

*

javax.net.ssl.keyStore

system

property

Default

truststore

jssecacerts,

if

it

exists.

Otherwise,

cacerts

*

javax.net.ssl.trustStore

system

property

Default

key

manager

factory

IbmX509

ssl.KeyManagerFactory.algorithm

security

property

Default

trust

manager

factory

IbmX509

ssl.TrustManagerFactory.algorithm

security

property

For

aspects

that

you

can

customize

by

setting

a

system

property,

statically

set

the

system

property

by

using

the

-D

option

of

the

Java

command

(you

can

set

the

system

property

using

the

administrative

console),

or

set

the

system

property

dynamically

by

calling

the

java.lang.System.setProperty

method

in

your

code:

System.setProperty(propertyName,″propertyValue″).

For

aspects

that

you

can

customize

by

setting

a

Java

security

property,

statically

specify

a

security

property

value

in

the

java.security

properties

file

located

in

the

install_root/java/jre/lib/security

directory.

The

security

property

is

propertyName=propertyValue.

Dynamically

set

the

Java

security

property

by

calling

the

java.security.Security.setProperty

method

in

your

code.

Chapter

2.

Securing

applications

and

their

environments

437

Application

Programming

Interface

The

JSSE

provides

a

standard

application

programming

interface

(API)

available

in

packages

of

the

javax.net

file,

javax.net.ssl

file,

and

the

javax.security.cert

file.

The

APIs

cover:

v

Sockets

and

SSL

sockets

v

Factories

to

create

the

sockets

and

SSL

sockets

v

Secure

socket

context

that

acts

as

a

factory

for

secure

socket

factories

v

Key

and

trust

manager

interfaces

v

Secure

HTTP

UTL

connection

classes

v

Public

key

certificate

API

There

is

more

information

documented

for

the

JSSE

APIs

in

the

http://www.ibm.com/developerworks/java/jdk/security/jsseDocs.zip

file.

Samples

using

Java

Secure

Socket

Extension

The

Java

Secure

Socket

Extension

(JSSE)

also

provides

samples

to

demonstrate

its

functionality.

Download

and

unzip

the

samples

included

in

the

http://www.ibm.com/developerworks/java/jdk/security/jsseDocs.zip

file.

Look

in

jsseDocs/samples/

directory

for

the

following

files:

Files

Description

ClientJsse.java

Demonstrates

a

simple

client

and

server

interaction

using

JSSE.

All

enabled

cipher

suites

are

used.

ClientJsseProvider.java

Demonstrates

a

simple

client

and

server

interaction

using

JSSE.

All

enabled

cipher

suites

are

used.

ServerJsse.java

ServerJsseProvider.java

OldClientJsse.java

Demonstrates

a

simple

client

and

server

interaction

using

JSSE.

All

enabled

cipher

suites

are

used.

OldServerJsse.java

Back-level

samples

ServerPKCS12Jsse.java

Demonstrates

a

simple

client

and

server

interaction

using

JSSE

with

the

PKCS12

keystore

file.

All

enabled

cipher

suites

are

used.

ClientPKCS12Jsse.java

Demonstrates

a

simple

client

and

server

interaction

using

JSSE

with

the

PKCS12

keystore

file.

All

enabled

cipher

suites

are

used.

OldClientPKCS12Jsse.java

Back-level

samples

OldServerPKCS12Jsse.java

Back-level

samples

UseHttps.java

Demonstrates

accessing

an

SSL

or

non-SSL

Web

server

using

the

Java

protocol

handler

of

thecom.ibm.net.ssl.www.protocol

class.

The

URL

is

specified

with

the

http

or

https

prefix.

The

HTML

returned

from

this

site

displays.

438

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Files

Description

HTTPTest.java

Demonstrates

accessing

an

SSL

or

non-SSL

Web

server

using

the

Java

protocol

handler

of

the

com.ibm.net.ssl.www.protocol

class.

The

URL

is

specified

with

the

http

or

https

prefix.

The

HTML

returned

from

this

site

is

displayed.

HTTPSPanel.java

OldHTTPTest.java

Back-level

sample

See

more

instructions

in

the

source

code.

Follow

these

instructions

before

you

run

the

samples.

Permissions

for

Java

2

security

You

might

need

the

following

permissions

to

run

an

application

with

JSSE:

(This

is

a

reference

list

only.)

v

java.util.PropertyPermission

″java.protocol.handler.pkgs″,

″write″

v

java.lang.RuntimePermission

″writeFileDescriptor″

v

java.lang.RuntimePermission

″readFileDescriptor″

v

java.lang.RuntimePermission

″accessClassInPackage.sun.security.x509″

v

java.io.FilePermission

″${user.install.root}${/}etc${/}.keystore″,

″read″

v

java.io.FilePermission

″${user.install.root}${/}etc${/}.truststore″,

″read″

For

the

IBMJSSE

provider:

v

java.security.SecurityPermission

″putProviderProperty.IBMJSSE″

v

java.security.SecurityPermission

″insertProvider.IBMJSSE″

For

the

SUNJSSE

provider:

v

java.security.SecurityPermission

″putProviderProperty.SunJSSE″

v

java.security.SecurityPermission

″insertProvider.SunJSSE″

Debugging

By

configuring

through

the

javax.net.debug

system

property,

JSSE

provides

the

following

dynamic

debug

tracing:

-Djavax.net.debug=true.

A

value

of

true

turns

on

the

trace

facility,

provided

that

the

debug

version

of

JSSE

is

installed.

Use

the

administrative

console

to

set

the

system

property

for

debugging

the

application

server.

Documentation

See

the

“Security:

Resources

for

learning”

on

page

495

article

for

documentation

references

to

JSSE.

JCE

Java

Cryptography

Extension

(JCE)

provides

cryptographic,

key

and

hash

algorithms

for

WebSphere

Application

Server.

It

provides

a

framework

and

implementations

for

encryption,

key

generation,

key

agreement,

and

Message

Authentication

Code

(MAC)

algorithms.

Support

for

encryption

includes

symmetric,

asymmetric,

block

and

stream

ciphers.

Chapter

2.

Securing

applications

and

their

environments

439

IBMJCE

The

IBM

Java

Cryptography

Extension

(IBMJCE)

is

an

implementation

of

the

JCE

cryptographic

service

provider

used

in

WebSphere

Application

Server.

The

IBMJCE

is

similar

to

SunJCE,

except

that

the

IBMJCE

offers

more

algorithms:

v

Cipher

algorithm

(AES,

DES,

TripleDES,

PBEs,

Blowfish,

and

so

on)

v

Signature

algorithm

(SHA1withRSA,

MD5withRSA,

SHA1withDSA)

v

Message

digest

algorithm

(MD5,

MD2,

SHA1,

SHA-256,

SHA-384,

SHA-512)

v

Message

authentication

code

(HmacSHA1,

HmacMD5)

v

Key

agreement

algorithm

(DiffieHellman)

v

Random

number

generation

algorithm

(IBMSecureRandom,

SHA1PRNG)

v

Key

store

(JKS,

JCEKS,

PKCS12)

The

IBMJCE

belongs

to

the

com.ibm.crypto.provider.*

packages.

For

further

information,

see

the

http://www-
106.ibm.com/developerworks/java/jdk/security/jceDocs.zip

file.

Application

Programming

Interface

Java

Cryptography

Extension

(JCE)

has

a

provider-based

architecture.

Providers

can

be

plugged

into

the

JCE

framework

by

implementing

the

APIs

defined

by

the

JCE.

The

JCE

APIs

covers:

v

Symmetric

bulk

encryption,

such

as

DES,

RC2,

and

IDEA

v

Symmetric

stream

encryption,

such

as

RC4

v

Asymmetric

encryption,

such

as

RSA

v

Password-based

encryption

(PBE)

v

Key

Agreement

v

Message

Authentication

Codes

For

more

information

about

Java

Cryptography

Extension

technology

including

the

JavaDoc

for

JCE

APIs,

see

the

http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip

file.

Samples

using

Java

Cryptography

Extension

There

are

samples

located

in

http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip

file.

Unzip

the

file

and

locate

the

following

samples

in

thejceDocs/samples

directory:

File

Description

SampleDSASignature.java

Demonstrates

how

to

generate

a

pair

of

DSA

keys

(a

public

key

and

a

private

key)

and

use

the

key

to

digitally

sign

a

message

using

the

SHA1with

DSA

algorithm

SampleMarsCrypto.java

Demonstrates

how

to

generate

a

Mars

secret

key,

and

how

to

do

Mars

encryption

and

decryption

SampleMessageDigests.java

Demonstrates

how

to

use

the

message

digest

for

MD2

and

MD5

algorithms

SampleRSACrypto.java

Demonstrates

how

to

generate

an

RSA

key

pair,

and

how

to

do

RSA

encryption

and

decryption

440

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

File

Description

SampleRSASignatures.java

Demonstrates

how

to

generate

a

pair

of

RSA

keys

(a

public

key

and

a

private

key)

and

use

the

key

to

digitally

sign

a

message

using

the

SHA1withRSA

algorithm

SampleX509Verification.java

Demonstrates

how

to

verify

X509

Certificates

Documentation

Refer

to

the

“Security:

Resources

for

learning”

on

page

495

for

documentation

on

JCE.

Java

2

security

Java

2

security

provides

a

policy-based,

fine-grain

access

control

mechanism

that

increases

overall

system

integrity

by

checking

for

permissions

before

allowing

access

to

certain

protected

system

resources.

Java

2

security

guards

access

to

system

resources

such

as

file

I/O,

sockets,

and

properties.

J2EE

security

guards

access

to

Web

resources

such

as

servlets,

JavaServer

pages

(JSPs)

and

EJB

methods.

WebSphere

global

security

includes

J2EE

role-based

authorization,

the

Common

Secure

Interoperability

Version

2

(CSIv2)

authentication

protocol,

and

Secure

Sockets

Layer

(SSL)

configuration.

Java

2

security

is

enabled

by

default.

When

the

security

manager

detects

unauthorized

attempts

to

access

system

resources,

java.security.AccessControlException

Java

2

security

exceptions

are

thrown

and

logged

in

the

SystemOut.log

file.

Since

Java

2

security

is

relatively

new,

many

existing

or

even

new

applications

might

not

be

prepared

for

the

very

fine-grain

access

control

programming

model

that

Java

2

security

is

capable

of

enforcing.

Administrators

should

understand

the

possible

consequences

of

enabling

Java

2

security

if

applications

are

not

prepared

for

Java

2

security.

Java

2

security

places

some

new

requirements

on

application

developers

and

administrators.

Java

2

security

for

deployers

and

administrators

Although

Java

2

security

is

supported

in

WebSphere

Application

Server

Version

5,

it

is

disabled

by

default.

However,

it

is

enabled

automatically

if

you

also

enable

global

security

when

configuring

security.

Although

it

becomes

enabled

automatically

when

you

enable

WebSphere

global

security,

you

can

choose

to

disable

it.

You

can

configure

Java

2

security

and

global

security

independently

of

one

another.

Disabling

global

security

does

not

disable

Java

2

security

automatically.

You

need

to

explicitly

disable

it.

If

your

applications,

or

third-party

libraries

are

not

ready,

having

Java

2

security

enabled

causes

problems.

You

can

identify

these

problems

as

Java

2

security

AccessControlExceptions

in

the

SystemOut.log

file,

SystemError.log

file,

or

the

trace

log

files.

If

you

are

unsure

about

the

Java

2

security

readiness

of

your

applications,

disable

Java

2

security

initially

to

get

your

application

installed

and

verify

that

it

is

working

properly.

There

are

implications

if

Java

2

Security

is

enabled;

deployers

or

administrators

are

required

to

make

sure

that

all

the

applications

are

granted

the

required

permissions,

otherwise,

applications

might

fail

to

run.

By

default,

applications

are

Chapter

2.

Securing

applications

and

their

environments

441

granted

the

permissions

recommended

in

the

J2EE

1.3

Specification.

For

details

of

default

permissions

granted

to

applications

in

the

product,

refer

to

the

following

policy

files:

v

install_root/java/jre/lib/security/java.policy

v

install_root/properties/server.policy

v

install_root/config/cells/<cell

name>/nodes/<node_name>/app.policy

Note:

This

policy

embodied

by

these

policy

files

cannot

be

made

more

restrictive

because

the

product

might

not

have

the

necessary

Java

2

security

doPrivileged

APIs

in

place.

The

restrictive

policy

is

the

default

policy.

You

can

grant

additional

permissions,

but

you

cannot

make

the

default

more

restrictive

because

AccessControlExceptions

is

generated

from

within

WebSphere

Application

Server.

The

product

does

not

support

a

more

restrictive

policy

than

the

default

defined

in

the

policy

files

previously

mentioned.

There

are

several

policy

files

used

to

define

the

security

policy

for

the

Java

process.

These

policy

files

are

static

(code

base

is

defined

in

the

policy

file)

and

they

are

in

the

default

policy

format

provided

by

the

IBM

Developer

Kit,

Java

Technology

Edition.

For

enterprise

application

resources

and

utility

libraries,

WebSphere

Application

Server

provides

dynamic

policy

support.

The

code

base

is

dynamically

calculated

based

on

deployment

information

and

permissions

are

granted

based

on

template

policy

files

during

run

time.

Refer

to

the

section

of

Java

2

security

policy

management.

Note:

Syntax

errors

in

the

policy

files

cause

the

application

server

process

to

fail.

Edit

these

policy

files

carefully

using

the

Policy

Tool

provided

by

the

IBM

Developer

Kit,

Java

Technology

Edition

for

editing

the

policy

files

(install_root/java/jre/bin/policytool).

If

an

application

is

not

prepared

for

Java

2

security,

if

the

application

provider

does

not

provide

a

was.policy

file

as

part

of

the

application,

or

if

the

application

provider

does

not

communicate

the

expected

permissions

the

application

is

likely

to

cause

Java

2

security

access

control

exceptions

at

run

time.

It

might

not

be

obvious

that

an

application

is

not

prepared

for

Java

2

security.

Several

run-time

debugging

aids

help

troubleshoot

applications

that

might

have

access

control

exceptions.

See

the

Java

2

security

debugging

aids

for

more

details.

See

Handling

applications

that

are

not

Java

2

security

ready

for

information

and

strategies

for

dealing

with

such

applications.

It

is

important

to

note

that

when

Java

2

Security

is

enabled

in

the

Global

Security

settings,

the

installed

SecurityManager

does

not

currently

check

modifyThread

and

modifyThreadGroup

permissions

for

non-system

threads.Allowing

Web

and

EJB

application

code

to

create

or

modify

a

thread

can

have

a

negative

impact

on

other

components

of

the

container

and

can

affect

the

capability

of

the

container

to

manage

enterprise

bean

life

cycles

and

transactions.

Java

2

security

for

application

developers

Application

developers

must

understand

the

permissions

granted

in

the

default

WebSphere

policy

and

the

permission

requirements

of

the

SDK

APIs

that

their

application

calls

to

know

whether

additional

permissions

are

required.

The

″Permissions

in

the

Java

2

SDK″

reference

in

the

resources

section

describes

which

APIs

require

which

permission.

442

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Application

providers

can

assume

that

applications

have

the

permissions

granted

in

the

default

policy

previously

mentioned.

Applications

that

access

resources

not

covered

by

the

default

WebSphere

policy

are

required

to

grant

the

additional

Java

2

security

permissions

to

the

application.

While

it

is

possible

to

grant

the

application

additional

permissions

in

one

of

the

other

dynamic

WebSphere

policy

files

or

in

one

of

the

more

traditional

static

policy

files,

such

as

java.policy,

the

was.policy

(which

is

embedded

in

the

EAR

file)

ensures

the

additional

permissions

are

scoped

to

the

exact

application

that

requires

them.

Scoping

the

permission

beyond

the

application

code

that

requires

it

can

permit

code

that

normally

does

not

have

permission

to

access

particular

resources.

If

an

application

component

is

being

developed,

like

a

library

that

might

actually

be

included

in

more

than

one

.ear

file,

then

the

library

developer

should

document

the

required

Java

2

permissions

needed

by

the

application

assembler.

There

is

no

was.policy

file

for

library

type

components.

The

developer

must

communicate

the

required

permissions

through

Javadoc

or

some

other

external

documentation.

If

the

component

library

is

shared

by

multiple

enterprise

applications,

the

permissions

can

be

granted

to

all

enterprise

applications

on

the

node

in

the

app.policy

file.

If

the

permission

is

only

used

internally

by

the

component

library

and

the

application

should

never

be

granted

access

to

resources

protected

by

the

permission,

then

it

might

be

necessary

to

mark

the

code

as

privileged

(inserting

doPrivileged).

Refer

to

the

article,

AccessControlException,

for

more

details.

However,

improperly

inserting

a

doPrivileged

might

open

up

security

holes.

Understand

the

implication

of

doPrivileged

to

make

a

correct

judgement

whether

a

doPrivileged

should

be

inserted

or

not.

The

section

on

Dynamic

Policy

describes

how

the

permissions

in

the

was.policy

files

are

granted

at

run

time.

Developing

an

application

with

Java

2

security

in

mind

might

be

a

new

skill

and

impose

a

security

awareness

not

previously

required

of

application

developers.

Describing

the

Java

2

security

model

and

the

implications

on

application

development

is

beyond

the

scope

of

this

section.

The

following

URL

can

help

you

get

started:

http://java.sun.com/j2se/1.3/docs/guide/security/index.html.

Debugging

Aids

There

are

two

primary

aids,

the

WebSphere

SystemOut.log

file

and

the

com.ibm.websphere.java2secman.norethrow

property.

The

WebSphere

SystemOut.log

File

The

AccessControl

exception

logged

in

the

SystemOut.log

file

contains

the

permission

violation

that

causes

the

exception,

the

exception

call

stack,

and

the

permissions

granted

to

each

stack

frame.

This

information

is

usually

enough

to

determine

the

missing

permission

and

the

code

requiring

the

permission.

The

com.ibm.websphere.java2secman.norethrow

Property

When

Java

2

security

is

enabled

in

WebSphere

Application

Server,

the

security

manager

component

throws

a

java.security.AccessControl

exception

when

a

Chapter

2.

Securing

applications

and

their

environments

443

http://java.sun.com/j2se/1.3/docs/guide/security/index.html

permission

violation

occurs.

This

exception,

if

not

handled,

often

causes

a

run-time

failure.

This

exception

is

also

logged

in

the

SystemOut.log

file.

However,

when

the

JVM

com.ibm.websphere.java2secman.norethrow

property

is

set

and

has

a

value

of

true,

the

security

manager

does

not

throw

the

AccessControl

exception.

This

information

is

logged.

To

set

the

com.ibm.websphere.java2secman.norethrow

property

for

the

server,

go

to

the

WebSphere

Application

Server

administrative

console

and

click

Servers

>

Application

Servers.

Under

Additional

Properties,

click

Process

Definition

>

Java

Virtual

Machine

>

Custom

Properties

>

New.

In

the

Name

field,

type

com.ibm.websphere.java2secman.norethrow.

In

the

Value

field,

type

true.

To

set

the

com.ibm.websphere.java2secman.norethrow

property

for

the

node

agent,

go

to

the

WebSphere

Application

Server

administrative

console

and

click

System

Administration

>

Node

Agents.

Under

Additional

Properties,

click

Process

Definition

>

Java

Virtual

Machine

>

Custom

Properties

>

New.

In

the

Name

field,

type

com.ibm.websphere.java2secman.norethrow.

In

the

Value

field,

type

true.

Note:

This

property

is

intended

for

a

sandbox

or

debug

environment

because

it

instructs

the

security

manager

not

to

throw

the

AccessControl

exception.

Java

2

security

is

not

enforced.

This

property

should

not

be

used

in

a

production

environment

where

a

relaxed

Java

2

security

environment

weakens

the

integrity

that

Java

2

security

is

intended

to

produce.

This

property

is

valuable

in

a

sandbox

or

test

environment

where

the

application

can

be

thoroughly

tested

and

the

where

the

SystemOut.log

file

can

be

inspected

for

AccessControl

exceptions.

Since

this

property

does

not

throw

the

AccessControl

exception

,

it

does

not

propagate

the

call

stack

and

does

not

cause

a

failure.

Without

this

property,

you

have

to

find

and

fix

AccessControl

exceptions

one

at

a

time.

Handling

applications

that

are

not

Java

2

security

ready

If

the

increased

system

integrity

that

Java

2

security

provides

is

important,

then

contact

the

application

provider

to

have

the

application

support

Java

2

security

or

at

least

communicate

the

required

additional

permissions

beyond

the

default

WebSphere

policy

that

must

be

granted.

The

easiest

way

to

deal

with

such

applications

is

to

disable

Java

2

security

in

WebSphere

Application

Server.

The

downside

is

that

this

solution

applies

to

the

entire

system

and

the

integrity

of

the

system

is

not

as

strong

as

it

might

be.

Disabling

Java

2

security

might

not

be

acceptable

depending

on

the

organization

security

policies

or

risk

tolerances.

Another

approach

is

to

leave

Java

2

security

enabled,

but

to

grant

either

just

enough

additional

permissions

or

grant

all

permissions

to

just

the

problematic

application.

Granting

permissions

however,

might

not

be

a

trivial

thing

to

do.

If

the

application

provider

has

not

communicated

the

required

permissions

in

some

way,

there

is

no

easy

way

to

determine

what

the

required

permissions

are

and

granting

all

permissions

might

be

the

only

choice.

You

minimize

this

risk

by

locating

this

application

on

a

different

node,

which

might

help

isolate

it

from

certain

resources.

Grant

the

java.security.AllPermission

permission

in

the

was.policy

file

embedded

in

the

application’s

.ear

file,

for

example:

444

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

grant

codeBase

″file:${application}″

{

permission

java.security.AllPermission;

};

install_root/properties/server.policy

This

policy

defines

the

policy

for

the

WebSphere

classes.

At

present,

all

the

server

processes

on

the

same

installation

share

the

same

server.policy

file.

However,

you

can

configure

this

file

so

that

each

server

process

can

have

a

separate

server.policy

file.

Define

the

desired

policy

file

as

the

value

of

the

Java

system

properties

java.security.policy.

For

details

of

how

to

define

Java

system

properties,

Refer

to

the

Process

definition

section

of

the

Manage

application

servers

file.

The

server.policy

file

is

not

a

configuration

file

managed

by

the

repository

and

the

file

replication

service.

Changes

to

this

file

are

local

and

do

not

get

replicated

to

other

machines.

Use

the

server.policy

file

to

define

Java

2

security

policy

for

server

resources.

Use

the

app.policy

file

(per

node)

or

was.policy

file

(per

enterprise

application)

to

define

Java

2

security

policy

for

enterprise

application

resources.

WAS_HOME/java/jre/lib/security/java.policy

The

file

represents

the

default

permissions

granted

to

all

classes.

The

policy

of

this

file

applies

to

all

the

processes

launched

by

the

WebSphere

Application

Server

JVM.

Troubleshooting

Symptom:

Error

message

SECJ0314E:

Current

Java

2

security

policy

reported

a

potential

violation

of

Java

2

security

permission.

Refer

to

Problem

Determination

Guide

for

further

information.{0}Permission\:{1}Code\:{2}{3}Stack

Trace\:{4}Code

Base

Location\:{5}

Current

Java

2

security

policy

reported

a

potential

violation

of

Java

2

Security

Permission.

Refer

to

Problem

Determination

Guide

for

further

information.{0}Permission\:{1}Code\:{2}{3}Stack

Trace\:{4}Code

Base

Location\:{5}

Problem:

The

Java

security

manager

checkPermission()

reported

a

SecurityException

on

the

subject

permission

with

debugging

information.

The

reported

information

can

be

different

with

respect

to

the

system

configuration.

This

report

is

enabled

by

either

configuring

RAS

trace

into

debug

mode

or

specifying

a

Java

property.

See

Enabling

trace

for

information

on

how

to

configure

RAS

trace

in

debug

mode.

Specify

the

following

property

in

the

JVM

Settings

panel

from

the

administrative

console:

java.security.debug.

Valid

values

include:

access

Print

all

debug

information

including:

required

permission,

code,

stack,

and

code

base

location.

stack

Print

debug

information

including:

required

permission,

code,

and

stack.

failure

Print

debug

information

including:

required

permission

and

code.

Recommended

response:

Chapter

2.

Securing

applications

and

their

environments

445

The

reported

exception

might

be

critical

to

the

secure

system.

Turn

on

security

trace

to

determine

the

potential

code

that

might

have

violated

the

security

policy.

Once

the

violating

code

is

determined,

verify

if

the

attempted

operation

is

permitted

with

respect

to

Java

2

security,

by

examining

all

applicable

Java

2

security

policy

files

and

the

application

code.

Note:

If

the

application

is

running

with

Java

Mail,

this

message

might

be

benign.

User

can

update

the

was.policy

file

to

grant

the

following

permissions

to

the

application.

permission

java.io.FilePermission

″${user.home}${/}.mailcap″,

″read″;

permission

java.io.FilePermission

″${user.home}${/}.mime.types″,

″read″;

permission

java.io.FilePermission

″${java.home}${/}lib${/}mailcap″,

″read″;

permission

java.io.FilePermission

″${java.home}${/}lib${/}mime.types″,

″read″;

Messages

Message:

SECJ0313E:

Java

2

security

manager

debug

message

flags

are

initialized\:

TrDebug:

{0},

Access:

{1},

Stack:

{2},

Failure:

{3}

Problem:

Configured

values

of

the

valid

debug

message

flags

for

security

manager.

Recommended

response:

None.

Message:

SECJ0307E:

Unexpected

exception

is

caught

when

trying

to

determine

the

code

base

location.

Exception:

{0}

Problem:

An

unexpected

exception

is

caught

when

the

code

base

location

is

determined.

Recommended

response:

Contact

an

IBM

representative.

AccessControlException

The

Java

2

security

behavior

is

specified

by

its

security

policy.

The

security

policy

is

an

access-control

matrix

that

specifies

which

system

resources

certain

code

bases

can

access

and

who

must

sign

them.

The

Java

2

Security

policy

is

declarative

and

it

is

enforced

by

the

java.security.AccessController.checkPermission()

method.

The

following

example

depicts

the

algorithm

for

the

java.security.AccessController.checkPermission()

method.

For

the

complete

algorithm,

refer

to

the

Java

2

security

check

permission

algorithm

in

Resources

for

learning.

i

=

m;

while

(i

>

0)

{

if

(caller

i’s

domain

does

not

have

the

permission)

throw

AccessControlException;

else

if

(caller

i

is

marked

as

privileged)

return;

i

=

i

-

1;

};

The

algorithm

requires

that

all

the

classes

or

callers

on

the

call

stack

have

the

permissions

when

a

java.security.AccessController.checkPermission()

is

performed

or

the

request

is

denied

(a

java.security.AccessControlException

is

thrown).

However,

if

the

caller

is

marked

as

privileged

and

the

class

(caller)

is

granted

the

446

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

said

permissions,

the

algorithm

returns

and

does

not

walk

the

entire

call

stack.

Subsequent

classes

(callers)

do

not

need

the

required

permission

granted.

A

java.security.AccessControlException

exception

is

thrown

as

a

result

of

certain

classes

on

the

call

stack

missing

the

required

permissions

during

a

java.security.AccessController.checkPermission()

method.

Two

possible

resolutions

to

the

java.security.AccessControlException

exception:

v

If

the

application

is

calling

a

Java

2

security-protected

API,

then

grant

the

required

permission

to

the

application

Java

2

Security

policy.

If

the

application

is

not

calling

a

Java

2

security-protected

API

directly

and

the

required

permission

is

because

of

the

side-effect

of

the

third-party

APIs

accessing

Java

2

security-protected

resources.

v

If

the

application

is

granted

the

required

permission,

it

gains

more

access

than

it

should.

In

this

case,

it

is

likely

that

the

third

party

code

that

accesses

the

Java

2

Security

protected

resource

is

not

properly

mark

as

privileged.

Example

call

stack

This

example

of

a

call

stack

indicates

where

application

code

is

using

a

third-party

API

utility

library

to

update

the

password.

The

following

is

only

an

example

to

illustrate

the

point.

The

decision

as

to

where

to

mark

the

code

as

privileged

is

application-specific

and

is

unique

in

every

situation.

This

decision

requires

great

depth

of

domain

knowledge

and

security

expertise

to

make

the

correct

judgement.

There

are

a

number

of

well

written

publications

and

books

on

this

topic.

Referencing

these

materials

for

more

detailed

information

is

recommended.

You

can

use

the

PasswordUtil

utility

to

change

the

password

of

a

user.

The

types

in

the

old

password

and

the

new

password

twice

to

ensure

that

the

correct

password

is

entered.

If

the

old

password

matches

the

one

stored

in

the

password

file,

the

new

password

is

stored

and

the

password

file

updates.

Assume

that

none

of

the

stack

frame

is

marked

as

privileged.

According

to

the

java.security.AccessController.checkPermission()

algorithm,

the

application

fails

unless

all

the

classes

on

the

call

stack

are

granted

write

permission

to

the

password

file.

The

client

application

should

not

have

permission

to

write

to

the

password

file

directly

and

update

the

password

file

at

will.

However,

if

the

PasswordUtil.updatePasswordFile()

method

marks

the

code

that

accesses

the

password

file

as

privileged,

then

the

check

permission

algorithm

does

not

check

for

the

required

permission

from

classes

that

call

the

AccessController.checkPermission()

SecurityManager..checkPermission()

SecurityManager..checkWrite()

java.io.FileOutputStream()

PasswordUtil.updatePasswordFile()

Client Code ...

PasswordUtil.getPassword()

System domain

Application domain

Utility library domain

Chapter

2.

Securing

applications

and

their

environments

447

PasswordUtil.updatePasswordFile()

method

for

the

required

permission

as

long

as

the

PasswordUtil

class

is

granted

the

permission.

Then

the

client

application

can

successfully

update

a

password

without

granting

the

permission

to

write

to

the

password

file.

The

ability

to

mark

code

privileged

is

very

flexible

and

powerful.

If

this

ability

is

used

incorrectly,

the

overall

security

of

the

system

can

be

compromised

and

security

holes

can

be

exposed.

Use

the

ability

to

mark

code

privileged

carefully.

Resolution

to

java.security.AccessControlException

As

described

previously,

there

are

two

possibilities

to

resolve

a

java.security.AccessControlException

exception.

Judge

these

exceptions

individually

to

decide

which

of

the

following

resolutions

is

best:

1.

Grant

the

missing

permission

to

the

application.

2.

Mark

some

code

as

privileged

(considering

the

concerns

and

risks).

Configuring

Java

2

security

Java

2

security

is

a

new

feature

in

WebSphere

Application

Server

Version

5.

It

is

a

new

programming

model

that

is

very

pervasive

and

has

a

huge

impact

on

application

development.

It

is

disabled

by

default,

but

is

enabled

automatically

when

global

security

is

enabled.

However,

Java

2

security

is

orthogonal

to

J2EE

role-based

security;

you

can

disable

or

enable

it

independently

of

Global

Security.

However,

it

does

provide

an

extra

level

of

access

control

protection

on

top

of

the

J2EE

role-based

authorization.

It

particularly

addresses

the

protection

of

system

resources

and

APIs.

Administrators

should

need

to

consider

the

benefits

against

the

risks

of

disabling

Java

2

Security.

The

following

recommendations

are

provided

to

help

enable

Java

2

security

in

a

test

or

production

environment:

1.

Make

sure

the

application

is

developed

with

the

Java

2

security

programming

model

in

mind.

Developers

have

to

know

whether

or

not

the

APIs

used

in

the

applications

are

protected

by

Java

2

security.

It

is

very

important

that

the

required

permissions

for

the

APIs

used

are

declared

in

the

policy

file

(was.policy),

or

the

application

fails

to

run

when

Java

2

security

is

enabled.

Developers

can

reference

the

Web

site

for

Development

Kit

APIs

that

are

protected

by

Java

2

security.

See

the

Programming

model

and

decisions

section

of

the

“Security:

Resources

for

learning”

on

page

495

article

to

visit

this

Web

site.

2.

Make

sure

that

migrated

applications

from

previous

releases

are

given

the

required

permissions.

Since

Java

2

security

is

not

supported

or

partially

supported

in

previous

WebSphere

Application

Server

releases,

applications

developed

prior

to

Version

5

most

likely

are

not

using

the

Java

2

security

programming

model.

There

is

no

easy

way

to

find

out

all

the

required

permissions

for

the

application.

Following

are

activities

you

can

perform

to

determine

the

extra

permissions

required

by

an

application:

v

Code

review

and

code

inspection

v

Application

documentation

review

v

Sandbox

testing

of

migrated

enterprise

applications

with

Java

2

security

enabled

in

a

pre-production

environment.

Enable

tracing

in

WebSphere

Java

2

security

manager

to

help

determine

the

missing

permissions

in

the

application

policy

file.

The

trace

specification

is

com.ibm.ws.security.core.SecurityManager=all=enabled.

448

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

v

Use

the

com.ibm.websphere.java2secman.norethrow

system

property

to

aid

debuggging.

This

property

should

not

be

used

in

a

production

environment.

Refer

to

“Java

2

security”

on

page

441.

Note:

The

default

permission

set

for

applications

is

the

recommended

permission

set

defined

in

the

J2EE

1.3

Specification.

The

default

is

declared

in

the

config/cells/<cell_name>/nodes/<node_name>/app.policy

policy

file

with

permissions

defined

in

the

Development

Kit

(${JAVA_HOME}/lib/security/java.policy)

policy

file

that

grant

permissions

to

everyone.

However,

applications

are

denied

permissions

declared

in

the

config/cells/cell_name/filter.policy

filter

policy

file.

Permissions

declared

in

the

filter.policy

file

are

filtered

for

applications

during

the

permission

check.

Note:

Define

the

required

permissions

for

an

application

in

a

was.policy

file

and

embed

the

was.policy

file

in

the

application

enterprise

archive

(EAR)

file

as

YOURAPP.ear/META-INF/was.policy

(see

“Configuring

Java

2

security

policy

files”

on

page

457

for

details).

1.

Click

Security

in

the

navigation

tree,

then

click

Global

Security.

The

Global

Security

page

appears.

2.

Enable

Java

2

security

by

selecting

the

check

box

labeled

Enforce

Java

2

Security

(clear

the

check

box

for

disabling

Java

2

Security).

3.

Click

OK

or

Apply

on

the

Global

Security

page.

4.

Click

Save

to

save

the

changes.

5.

Restart

the

server

for

the

changes

to

take

effect.

Java

2

security

is

enabled

and

enforced

for

the

servers.

Java

2

security

permission

is

selected

when

a

Java

2

security

protected

API

is

called.

When

to

use

Java

2

security.

1.

To

enable

protection

on

system

resources.

For

example,

when

opening

or

listening

to

a

socket

connection,

reading

or

writing

to

operating

system

file

systems,

reading

or

writing

Java

Virtual

Machine

system

properties,

and

so

on.

2.

To

prevent

application

code

calling

destructive

APIs.

For

example,

calling

the

System.exit()

method

brings

down

the

application

server.

3.

To

prevent

application

code

from

obtaining

privileged

information

(passwords)

or

gaining

extra

privileges

(obtaining

server

credentials).

The

WebSphere

Java

2

security

manager

is

enhanced

to

dump

the

Java

2

security

permissions

granted

to

all

classes

on

the

call

stack

when

an

application

is

denied

access

to

a

resource

(the

java.security.AccessControlException

exception

is

thrown).

However,

this

tracing

capability

is

disabled

by

default.

You

can

enable

it

by

specifying

the

server

trace

service

with

the

com.ibm.ws.security.core.SecurityManager=all=enabled

trace

specification.

When

the

exception

is

thrown,

the

trace

dump

provides

hints

to

determine

whether

the

application

is

missing

permissions

or

the

product

run

time

code

or

third

party

libraries

used

are

not

properly

marked

as

privileged

when

accessing

Java

2

protected

resources.

See

the

Security

Problem

Determination

Guide

for

details.

Enable

or

disable

Java

2

Security

for

the

cell

1.

Click

Security

>

Global

Security

in

the

navigation

tree.

The

Global

Security

page

appears.

Chapter

2.

Securing

applications

and

their

environments

449

2.

Enable

Java

2

Security

by

selecting

the

check

box

labeled

Enforce

Java

2

Security

(clear

the

check

box

to

disable

Java

2

Security).

This

enables

Java

2

Security

for

the

cell.

3.

Click

OK

or

Apply

on

the

Global

Security

page.

4.

Save

the

changes

and

make

sure

a

file

sync

is

performed

before

restarting

the

servers.

5.

For

the

changes

to

take

effect,

restart

all

the

servers,

which

include

the

Network

Deployment

Manager,

all

Node

Agents,

and

all

application

servers.

Enable

or

disable

Java

2

Security

for

an

application

server

1.

Click

Server

>

Application

Servers

in

the

navigation

tree.

The

Application

Servers

page

appears.

2.

Click

the

application

server

name

in

the

Name

column

of

the

Application

Server

collection

table.

The

configuration

panel

of

the

application

server

selected

appears.

3.

Click

Server

Security

in

the

Additional

Properties

section.

The

Server

Security

panel

of

the

application

server

appears.

4.

Click

Server

Level

Security

in

the

Additional

Properties

section.

The

Server

Level

Security

panel

of

the

application

server

appears.

5.

Enable

Java

2

Security

by

selecting

the

option

labeled

Enforce

Java

2

Security

(clear

the

check

box

to

disable

Java

2

Security).

This

enables

Java

2

Security

for

the

selected

application

server.

6.

Click

OK

or

Apply

on

the

Server

Level

Security

page.

7.

Save

the

changes

and

make

sure

a

file

sync

is

performed

before

restarting

the

application

server.

8.

Restart

the

application

server

for

the

changes

to

take

effect.

Java

2

Security

is

enabled

and

enforced

for

the

servers.

Java

2

Security

permission

is

checked

when

a

Java

2

Security

protected

API

is

called.

When

to

use

Java

2

Security

1.

To

enable

protection

on

system

resources.

For

example,

when

opening

or

listening

to

a

socket

connection,

reading

or

writing

to

operating

system

file

systems,

reading

or

writing

Java

Virtual

Machine

system

properties,

and

so

on.

2.

To

prevent

application

code

calling

destructive

APIs.

For

example,

calling

System.exit()

brings

down

the

application

server.

3.

To

prevent

application

code

obtaining

privileged

information

(passwords)

or

gaining

extra

privileges

(obtaining

Server

Credentials).

The

WebSphere

Java

2

Security

Manager

is

enhanced

to

dump

the

Java

2

Security

permissions

granted

to

all

classes

on

the

call

stack

when

an

application

is

denied

access

to

a

resource

(the

java.security.AccessControlException

exception

is

thrown).

The

trace

information

is

dumped

to

the

configured

server

log

files.

Check

the

server

log

files

to

access

debugging

information

when

an

AccessControlException

is

thrown.

In

addition,

the

product

Java

2

Security

Manager

trace

can

be

enabled

with

the

trace

string,

com.ibm.ws.security.core.SecurityManager=all=enabled.

When

the

exception

is

thrown,

the

trace

dump

provides

hints

to

determine

whether

the

application

is

missing

permissions

or

the

product

run

time

code

or

third

party

libraries

used

are

not

properly

marked

as

privileged

when

accessing

Java

2

protected

resources.

See

the

Security

Problem

Determination

Guide

for

details.

450

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Using

PolicyTool

to

edit

policy

files

Java

2

security

uses

several

policy

files

to

determine

the

granted

permission

for

each

Java

program.

See

Dynamic

policy

for

the

list

of

available

policy

files.

The

Java

Development

Kit

provides

policytool

to

edit

these

policy

files.

This

tool

is

recommended

for

editing

any

policy

file

to

verify

the

syntax

of

its

contents.

Syntax

errors

in

the

policy

file

cause

an

AccessControlException

during

application

execution,

including

the

server

start.

Identifying

the

cause

of

this

exception

is

not

easy

because

the

user

might

not

be

familiar

with

the

resource

that

has

an

access

violation.

Be

careful

when

you

edit

these

policy

files.

1.

Start

policytool.

Enter

%{was.install.root}/java/jre/bin/policytool

from

a

command

prompt.

The

policytool

window

opens.

The

policytool

looks

for

the

.java.policy

file

in

your

home

directory.

If

it

does

not

exist,

an

Error

message

displays.

Click

OK.

2.

Click

File

>

Open.

3.

Navigate

the

directory

tree

in

the

Open

window

to

pick

up

the

policy

file

that

you

need

to

update.

After

selecting

the

policy

file,

click

Open.

The

code

base

entries

are

listed

in

the

window.

4.

Create

or

modify

the

code

base

entry.

a.

Modify

the

existing

code

base

entry

by

double-clicking

the

code

base,

or

click

the

code

base

and

click

Edit

Policy

Entry.

The

Policy

Entry

window

opens

with

the

permission

list

defined

for

the

selected

code

base.

b.

Create

a

new

code

base

entry

by

clicking

Add

Policy

Entry.

The

Policy

Entry

window

opens.

At

the

code

base

column,

enter

the

code

base

information

as

a

URL

format,

for

example,

/WebSphere/AppServer/InstalledApps/testcase.ear.
5.

Modify

or

add

the

permission

specification

a.

Modify

the

permission

specification

by

double-clicking

the

entry

you

want

to

modify,

or

by

selecting

the

permission

and

clicking

Edit

Permission.

The

Permissions

window

opens

with

the

selected

permission

information.

b.

Add

a

new

permission

by

clicking

Add

Permission.

The

Permissions

window

opens.

In

the

Permissions,

window

there

are

four

rows

for

Permission,

Target

Name,

Actions,

and

Signed

By.
6.

Select

the

permission

from

the

Permission

list.

The

selected

permission

displays.

After

a

permission

is

selected,

the

Target

Name,

Actions,

and

Signed

By

fields

automatically

show

the

valid

choices

or

they

enable

text

input

in

the

right

text

input

area.

a.

Select

Target

Name

from

the

list,

or

enter

the

target

name

in

the

right

text

input

area.

b.

Select

Actions

from

the

list.

c.

Input

Signed

By

if

it

is

needed.

Important:

The

Signed

By

keyword

is

not

supported

in

the

following

policy

files:

app.policy,

spi.policy,

library.policy,

was.policy,

and

filter.policy

files.

However,

the

Signed

By

keyword

is

supported

in

the

following

policy

files:java.policy,

server.policy,

and

client.policy

files.

The

Java

Authentication

and

Authorization

Service

(JAAS)

is

not

supported

in

the

app.policy,

spi.policy,

library.policy,

was.policy,

and

filter.policy

files.

However,

the

JAAS

principal

keyword

is

Chapter

2.

Securing

applications

and

their

environments

451

supported

in

a

JAAS

policy

file

when

it

is

specified

by

the

Java

Virtual

Machine

(JVM)

system

property,

java.security.auth.policy.
7.

Click

OK

to

close

the

Permissions

window.

Modified

permission

entries

of

the

specified

code

base

display.

8.

Click

Done

to

close

the

window.

Modified

code

base

entries

are

listed.

Repeat

steps

4

through

8

until

you

complete

editing.

9.

Click

File

>

Save

after

you

finish

editing

the

file.

A

policy

file

is

updated.

If

any

policy

files

need

editing,

use

the

policytool.

Do

not

edit

the

policy

file

manually.

Syntax

errors

in

the

policy

files

can

potentially

cause

application

servers

or

enterprise

applications

to

not

start

or

function

incorrectly.

For

the

changes

in

the

updated

policy

file

to

take

effect,

restart

the

Java

processes.

Java

2

security

policy

files:

The

J2EE

1.3

specification

has

a

well-defined

programming

model

of

responsibilities

between

the

container

providers

and

the

application

code.

Using

Java

2

security

manager

to

help

enforce

this

programming

model

is

recommended.

There

are

certain

operations

that

are

not

allowed

in

the

application

code

because

such

operations

interfere

with

the

behavior

and

operation

of

the

containers.

The

Java

2

security

manager

is

used

in

the

product

to

enforce

responsibilities

of

the

container

and

the

application

code.

This

product

provides

support

for

policy

file

management.

There

are

a

number

of

policy

files

in

the

product,

which

are

either

static

or

dynamic.

Dynamic

policy

is

a

template

of

permissions

for

a

particular

type

of

resource.

There

is

no

relative

codebase

defined

in

the

dynamic

policy

template.

The

codebase

is

dynamically

calculated

from

the

deployment

and

run-time

data.

Static

policy

files

Policy

file

Location

java.policy

install_root/java/jre/lib/security/java.policy.

Default

permissions

granted

to

all

classes.

The

policy

of

this

file

applies

to

all

the

processes

launched

by

the

WebSphere

Application

Server.

server.policy

install_root/properties/server.policy.

Default

permissions

granted

to

all

the

product

servers.

client.policy

install_root/properties/client.policy.

Default

permissions

for

all

of

the

product

client

containers

and

applets

on

a

node.

The

static

policy

files

are

not

managed

by

configuration

and

file

replication

services.

Changes

made

in

these

files

are

local

and

are

not

replicated

to

other

nodes

in

the

Network

Deployment

cell.

452

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Dynamic

policy

files

Policy

file

Location

spi.policy

install_root/config/cells/cell_name

/nodes/node_name/spi.policy

This

template

is

for

the

Service

Provider

Interface

(SPI)

or

third-party

resources

embedded

in

the

product.

Examples

of

SPI

are

Java

Messaging

Service

(JMS)

(MQSeries)

and

JDBC

drivers.

The

codebase

for

the

embedded

resources

are

dynamically

worked

out

from

the

configuration

(resources.xml

file)

and

run-time

data,

and

permissions

defined

in

the

spi.policy

files

are

automatically

applied

to

these

resources.

The

default

permission

of

spi.policy

file

is

java.security.AllPermissions.

library.policy

install_root/config/cells/cell_name/nodes/node_name/library.policy

This

template

is

for

the

library

(Java

library

classes).

You

can

define

a

shared

library

to

use

in

multiple

product

applications.

The

default

permission

of

the

library.policy

is

empty.

app.policy

install_root/config/cells/cell_name

/nodes/node_name/app.policy

The

app.policy

file

defines

the

default

permissions

granted

to

all

enterprise

applications

running

on

node_name

in

cell_name.

was.policy

install_root/config/cells/cell_name

/applications/ear_file_name/deployments/

application_name/META-INF/was.policy

Type

the

previous

location

on

one

continuous

line.

This

template

is

for

application-specific

permissions.

The

was.policy

is

embedded

in

the

Enterprise

Archive

(EAR)

file.

ra.xml

rar_file_name/META-INF/was.policy.RAR.

This

file

can

have

a

permission

specification

defined

in

the

ra.xml

file.

The

ra.xml

file

is

embedded

in

the

RAR

file.

Note:

Grant

entry

specified

in

the

app.policy

and

was.policy

files

must

have

a

code

base

defined.

If

there

are

grant

entries

specified

without

a

code

base,

the

policy

files

are

not

loaded

properly

and

the

application

can

fail.

If

the

intent

is

to

grant

the

permissions

to

all

applications,

then

use

file:${application}

as

a

code

base

in

the

grant

entry.

Syntax

of

the

policy

file

A

policy

file

contains

several

policy

entries.

The

following

example

depicts

each

policy

entry

format:

grant

[codebase

<Codebase>]

{

permission

<Permission>;

permission

<Permission>;

permission

<Permission>;

};

<CodeBase>:

A

URL.

For

example,

″file:${java.home}/lib/tools.jar″

When

[codebase

<Codebase>]

is

not

specified,

listed

Chapter

2.

Securing

applications

and

their

environments

453

permissions

are

applied

to

everything.

If

URL

ends

with

a

JAR

file

name,

only

the

classes

in

the

JAR

file

belong

to

the

codebase.

If

URL

ends

with

″/″,

only

the

class

files

in

the

specified

directory

belong

to

the

codebase.

If

URL

ends

with

″*″,

all

JAR

and

class

files

in

the

specified

directory

belong

to

the

codebase.

If

URL

ends

with

″-″,

all

JAR

and

class

files

in

the

specified

directory

and

its

subdirectories

belong

to

the

codebase.

<Permissions>:

Consists

from

Permission

Type

:

class

name

of

the

permission

Target

Name

:

name

specifying

the

target

Actions

:

actions

allowed

on

target

For

example,

java.io.FilePermission

″/tmp/xxx″,

″read,write″

Please

refer

to

developer

kit

specifications

for

the

details

of

each

permission.

Syntax

of

dynamic

policy

You

can

define

permissions

for

specific

types

of

resources

in

dynamic

policy

files

for

an

enterprise

application.

This

action

is

achieved

by

using

product-reserved

symbols.

The

reserved

symbol

scope

depends

on

where

it

is

defined.

If

you

define

the

permissions

in

the

app.policy

file,

the

symbol

applies

to

all

the

resources

on

all

of

the

enterprise

applications

running

on

node_name.

If

you

define

the

permissions

in

the

META-INF/was.policy

file,

it

only

applies

to

the

specific

enterprise

application.

Valid

symbols

for

codebase

are

listed

in

the

following

table:

Symbol

Meaning

file:${application}

Permissions

apply

to

all

resources

within

the

application

file:${jars}

Permissions

apply

to

all

utility

Java

archive

(JAR)

files

within

the

application

file:${ejbComponent}

Permissions

apply

to

EJB

resources

within

the

application

file:${webComponent}

Permissions

apply

to

Web

resources

within

the

application

file:${connectorComponent}

Permissions

apply

to

connector

resources

within

the

application

Other

than

these

entries

specified

by

the

codebase

symbols,

you

can

specify

the

module

name

for

a

granular

setting.

For

example:

grant

codeBase

″file:DefaultWebApplication.war″

{

permission

java.security.SecurityPermission

″printIdentity″;

};

grant

codeBase

″file:IncCMP11.jar″

{

permission

java.io.FilePermission

″${user.install.root}${/}bin${/}DefaultDB${/}-″,

″read,write,delete″;

};

454

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

The

6th

and

7th

lines

in

the

previous

code

sample

are

one

continuous

line.

You

can

use

a

relative

codebase

only

in

the

META-INF/was.policy

file.

Several

product-reserved

symbols

are

defined

to

associate

the

permission

lists

to

a

specific

type

of

resources.

Symbol

Meaning

file:${application}

Permissions

apply

to

all

resources

within

the

application

file:${jars}

Permissions

apply

to

all

utility

JAR

files

within

the

application

file:${ejbComponent}

Permissions

apply

to

enterprise

beans

resources

within

the

application

file:${webComponent}

Permissions

apply

to

Web

resources

within

the

application

file:${connectorComponent}

Permissions

apply

to

connector

resources

both

within

the

application

and

stand-alone

connector

resources.

There

are

five

embedded

symbols

provided

to

specify

the

path

and

name

for

java.io.FilePermission.

These

symbols

enable

flexible

permission

specification.

The

absolute

file

path

is

fixed

after

the

installation

of

the

application.

Symbol

Meaning

${app.installed.path}

Path

where

the

application

is

installed

${was.module.path}

Path

where

the

module

is

installed

${current.cell.name}

Current

cell

name

${current.node.name}

Current

node

name

${current.server.name}

Current

server

name

Note:

You

must

not

use

the

${was.module.path}

in

the

${application}

entry.

Carefully

determine

where

to

add

a

new

permission.

An

incorrectly

specified

permission

causes

an

AccessControlException

exception.

Since

dynamic

policy

resolves

the

codebase

at

run

time,

determining

which

policy

file

has

a

problem

is

difficult.

Add

a

permission

only

to

the

necessary

resources.

For

example,

use

${ejbcomponent},

and

etc

instead

of

${application},

and

update

the

was.policy

file

instead

of

the

app.policy

file,

if

possible.

Static

policy

filtering

Limited

static

policy

filtering

support

exists.

If

the

app.policy

file

and

the

was.policy

file

have

permissions

defined

in

the

filter.policy

file

with

the

keyword,

filterMask,

the

run

time

removes

the

permissions

from

the

applications

and

an

audit

message

is

logged.

However,

if

the

permissions

defined

in

the

app.policy

and

was.policy

are

compound

permissions,

for

example,

java.security.AllPermission,

the

permission

is

not

removed,

rather

an

warning

message

is

written

to

the

log

file.

The

policy

filtering

only

supports

Developer

Kit

permissions,

(the

permissions

package

name

begins

with

java

or

javax).

Chapter

2.

Securing

applications

and

their

environments

455

Run

time

policy

filtering

support

is

provided

to

force

stricter

filtering.

If

the

app.policy

file

and

was.policy

file

have

permissions

defined

in

the

filter.policy

file

with

the

keyword,

runtimeFilterMask,

the

run

time

removes

the

permissions

from

the

applications

no

matter

what

permissions

are

granted

to

the

application.

For

example,

even

if

a

was.policy

file

has

java.security.AllPermission

granted

to

on

of

its

modules,

specified

permissions

such

as

runtimeFilterMask

are

removed

from

the

granted

permission

during

run

time.

If

the

Issue

Permission

Warning

flag

in

the

Global

Security

panel

is

enabled

and

if

the

app.policy

file

and

the

was.policy

file

contain

custom

permissions

(non-Developer

Kit

permissions,

where

the

permissions

package

name

begins

with

java

or

javax),

a

warning

message

logs.

The

permission

is

not

removed.

If

the

permission,

AllPermission,

is

listed

in

the

app.policy

file

and

the

was.policy

file,

a

warning

message

logs.

Policy

file

editing

Using

the

policy

tool

provided

by

the

Developer

Kit

(install_root/java/jre/bin/policytool),

to

edit

the

previous

policy

files

is

recommended.

For

Network

Deployment,

extract

the

policy

files

from

the

repository

before

editing.

After

the

policy

file

is

extracted,

use

the

policy

tool

to

edit

the

file.

Check

the

modified

policy

files

into

the

repository

and

synchronized

them

with

other

nodes.

If

there

are

syntax

errors

in

the

policy

files,

the

enterprise

application

or

server

process

might

fail

to

start.

Be

cautious

when

editing

these

policy

files.

For

example,

if

a

policy

has

a

trailing

space

in

the

policy

permission

target

name,

the

policy

fails

to

parse

the

permission

properly

in

WebSphere

Application

Server,

Version

5.1

IBM

Developer

Kit,

Java

Technology

Edition

Version

1.4.x.

In

the

following

example,

note

the

space

before

the

last

quote:

*

\″*\″

″

grant

{

permission

javax.security.auth.PrivateCredentialPermission

″javax.resource.spi.security.PasswordCredential

*

\″*\″

″,″read″;

};

If

the

permission

is

in

a

policy

file

loaded

by

the

IBM

Developer

Kit,

Java

Technology

Edition

Version

1.4.x

policy

tool,

the

following

message

might

display:

Errors

have

occurred

while

opening

the

policy

configuration.

View

the

warning

log

for

more

information.

or

the

following

message

might

display

in

warning

log:

Warning:

Invalid

argument(s)

for

constructor:

javax.security.auth.PrivateCredentialPermission.

To

fix

this

problem,

edit

the

permission

and

remove

the

trailing

space.

When

the

trailing

space

is

removed,

the

permission

loads

properly.

The

following

code

sample

shows

the

corrected

permission:

grant

{

permission

javax.security.auth.PrivateCredentialPermission

″javax.resource.spi.security.PasswordCredential

*

\″*\″″,″read″;

}

456

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Troubleshooting

To

debug

the

dynamic

policy,

there

are

three

ways

to

generate

the

detail

report

of

the

exception,

AccessControlException.

v

Trace

(Configured

by

RAS

trace).

Enables

traces

with

the

trace

specification:

Attention:

The

following

command

is

one

continuous

line

com.ibm.ws.security.policy.*=all=enabled:

com.ibm.ws.security.core.SecurityManager=all=enabled

v

Trace

(Configured

by

property).

Specifies

a

java

property

java.security.debug.

Valid

values

for

the

java.security.debug

property

are:

–

Access.

Print

all

debug

information

including,

required

permission,

code,

stack

and

code

base

location.

–

Stack.

Print

debug

information

including,

required

permission,

code,

and

stack.

–

Failure.

Print

debug

information

including,

required

permission

and

code.
v

ffdc.

Enable

ffdc,

modify

the

ffdcRun.properties

file

by

changing

Level=4

and

LAE=true.

Look

for

a

keyword

Access

Violation

in

the

log

file.

Configuring

Java

2

security

policy

files:

Java

2

security

uses

several

policy

files

to

determine

the

granted

permissions

for

each

Java

programs.

See

the

Dynamic

policy

article

for

the

list

of

available

policy

files

supported

by

WebSphere

Application

Server

Version.

There

are

two

types

of

policy

files

supported

by

WebSphere

Application

Server:

dynamic

policy

files

and

static

policy

files.

Static

policy

files

provide

the

default

permissions.

Dynamic

policy

files

provide

application

permissions.

There

are

six

dynamic

policy

files:

Policy

file

name

Description

app.policy

Contains

default

permissions

for

all

of

the

enterprise

applications

in

the

cell.

was.policy

Contains

application-specific

permissions

for

an

WebSphere

Application

Server

enterprise

application.

This

file

is

packaged

in

an

enterprise

archive

(EAR)

file.

ra.xml

Contains

connector

application

specific

permissions

for

a

WebSphere

Application

Server

enterprise

application.

This

file

is

packaged

in

a

resource

adapter

archive

(RAR)

file.

spi.policy

Contains

permissions

for

Service

Provider

Interface

(SPI)

or

third-party

resources

embedded

in

WebSphere

Application

Server.

The

default

contents

grant

everything.

Update

this

file

carefully

when

the

cell

requires

more

protection

against

SPI

in

the

cell.

This

file

is

applied

to

all

of

the

SPIs

defined

in

the

resources.xml

file.

library.policy

Contains

permissions

for

the

shared

library

of

enterprise

applications.

filter.policy

Contains

the

list

of

permissions

that

require

filtering

from

the

was.policy

file

and

the

app.policy

file

in

the

cell.

This

filtering

mechanism

only

applies

to

the

was.policy

and

app.policy

files.

Chapter

2.

Securing

applications

and

their

environments

457

Important:

The

Signed

By

keyword

is

not

supported

in

the

following

policy

files:

app.policy,

spi.policy,

library.policy,

was.policy,

and

filter.policy

files.

However,

the

Signed

By

keyword

is

supported

in

the

following

policy

files:java.policy,

server.policy,

and

client.policy

files.

The

Java

Authentication

and

Authorization

Service

(JAAS)

is

not

supported

in

the

app.policy,

spi.policy,

library.policy,

was.policy,

and

filter.policy

files.

However,

the

JAAS

principal

keyword

is

supported

in

a

JAAS

policy

file

when

it

is

specified

by

the

Java

Virtual

Machine

(JVM)

system

property,

java.security.auth.policy.

You

can

statically

set

the

authorization

policy

files

in

java.security.auth.policy

with

auth.policy.url.n=URL

where

URL

is

the

location

of

the

authorization

policy.

1.

Identify

the

policy

file

to

update.

If

the

permission

is

required

by

an

application,

update

the

static

policy

file.

Refer

to

Configuring

static

policy

files.

If

the

permission

is

required

by

all

of

the

WebSphere

Application

Server

enterprise

applications

in

the

node,

refer

to

Configuring

spi.policy

files.

If

the

permission

is

required

only

by

specific

WebSphere

Application

Server

enterprise

applications

and

the

permission

is

required

only

by

a

connector,

update

the

ra.xml

file.

Refer

to

Assembling

resource

adapter

(connector)

modules.

Otherwise,

update

the

was.policy

file.

Refer

to

Configuring

was.policy

files

and

Adding

the

was.policy

file

to

applications.

If

the

permission

is

required

by

shared

libraries,

refer

to

Configuring

library.policy

files.

If

the

permission

is

required

by

SPI

libraries,

refer

to

Configuring

spi.policy

files.

Note:

It

is

recommended

to

pick

up

the

policy

file

with

the

smallest

scope.

You

can

avoid

giving

an

extra

permission

to

the

Java

programs

and

protect

the

resources.

You

can

update

the

ra.xml

file

or

the

was.policy

file

rather

than

the

app.policy

file.

Use

specific

component

symbols

($(ejbcomponent),

${webComponent},${connectorComponent}

and

${jars})

than

${application}

symbols.

Update

dynamic

policy

files

than

static

policy

files.

Add

any

permission

that

should

never

be

granted

to

the

WebSphere

Application

Server

enterprise

application

in

the

cell

to

the

filter.policy

file.

Refer

to

Configuring

filter.policy

files.

2.

Restart

the

WebSphere

Application

Server

enterprise

application.

The

required

permission

is

granted

for

the

specified

WebSphere

Application

Server

enterprise

application.

If

an

WebSphere

Application

Server

enterprise

application

in

a

cell

requires

permissions,

some

of

the

dynamic

policy

files

need

updating.

The

symptom

of

the

missing

permission

is

the

exception,

java.security.AccessControlException.

The

missing

permission

is

listed

in

the

exception

data,

for

example,

java.security.AccessControlException:

access

denied

(java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar

read)

The

previous

two

lines

were

split

onto

two

lines

because

of

the

width

of

the

page.

However,

the

permission

should

be

on

one

line.

458

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

When

a

Java

program

receives

this

exception

and

adding

this

permission

is

justified,

add

a

permission

to

an

adequate

dynamic

policy

file,

for

example,

grant

codeBase

″file:<user

client

installed

location>″

{

permission

java.io.FilePermission

″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″,

″read″;

};

The

previous

two

lines

were

split

onto

two

lines

because

of

the

width

of

the

page.

However,

the

permission

should

be

on

one

line.

To

decide

whether

to

add

a

permission,

refer

to

the

article

AccessControlException.

Configuring

app.policy

files:

Java

2

security

uses

several

policy

files

to

determine

the

granted

permissions

for

each

Java

program.

See

the

Dynamic

policy

article

for

the

list

of

available

policy

files

supported

by

WebSphere

Application

Server.

The

app.policy

file

is

a

default

policy

file

shared

by

all

of

the

WebSphere

Application

Server

enterprise

applications.

The

union

of

the

permissions

contained

in

the

app.policy

file,

the

server.policy

file,

the

app.policy

file,

the

application

was.policy

file

and

the

permission

specification

of

the

ra.xml

file

are

applied

to

the

WebSphere

Application

Server

enterprise

application.

The

app.policy

files

are

managed

by

configuration

and

file

replication

services.

Important:

The

Signed

By

and

the

Java

Authentication

and

Authorization

Service

(JAAS)

principal

keywords

are

not

supported

in

the

app.policy

file.

However,

the

Signed

By

keyword

is

supported

in

the

following

files:

java.policy,

server.policy,

and

the

client.policy

files.

The

JAAS

principal

keyword

is

supported

in

a

JAAS

policy

file

when

it

is

specified

by

the

Java

Virtual

Machine

(JVM)

system

property,

java.security.auth.policy.

You

can

statically

set

the

authorization

policy

files

in

java.security.auth.policy

with

auth.policy.url.n=URL

where

URL

is

the

location

of

the

authorization

policy.

If

the

default

permissions

for

enterprise

applications

(the

union

of

the

permissions

defined

in

the

app.policy

file,

the

server.policy

file

and

the

app.policy

file)

are

enough,

no

action

is

required.

The

default

app.policy

file

is

used

automatically.

If

a

specific

change

is

required

to

all

of

the

enterprise

applications

in

the

cell,

update

the

app.policy

file.

Syntax

errors

in

the

policy

files

cause

start

failures

in

the

application

servers.

Edit

these

policy

files

carefully.

Modify

the

app.policy

file

with

the

Policy

Tool.

Changes

to

the

app.policy

file

are

local

for

the

node.

The

default

Java

2

security

policies

have

been

changed

for

the

enterprise

application.

Several

product-reserved

symbols

are

defined

to

associate

the

permission

lists

to

a

specific

type

of

resource.

Symbol

Meaning

file:${application}

Permissions

apply

to

all

resources

within

the

application

file:${jars}

Permissions

apply

to

all

utility

Java

archive

(JAR)

files

within

the

application

Chapter

2.

Securing

applications

and

their

environments

459

Symbol

Meaning

file:${ejbComponent}

Permissions

apply

to

enterprise

bean

resources

within

the

application

file:${webComponent}

Permissions

apply

to

Web

resources

within

the

application

file:${connectorComponent}

Permissions

apply

to

connector

resources

both

within

the

application

and

within

stand-alone

connector

resources.

There

are

five

embedded

symbols

provided

to

specify

the

path

and

name

for

java.io.FilePermission.

These

symbols

enable

flexible

permission

specifications.

The

absolute

file

path

is

fixed

after

the

installation

of

the

application.

Symbol

Meaning

${app.installed.path}

Path

where

the

application

is

installed

${was.module.path}

Path

where

the

module

is

installed

${current.cell.name}

Current

cell

name

${current.node.name}

Current

node

name

${current.server.name}

Current

server

name

Note:

You

cannot

use

the

${was.module.path}

in

the

${application}

entry.

The

app.policy

file

supplied

by

WebSphere

Application

Server

resides

at

install_root/config/cells/cell_name/nodes/node_name/app.policy,

which

contains

the

following

default

permissions:

Attention:

In

the

following

code

sample,

the

first

two

lines

related

to

permission

java.io.FilePermission

were

split

into

two

lines

each

due

to

the

width

of

the

printed

page.

grant

codeBase

″file:${application}″

{

//

The

following

are

required

by

Java

mail

permission

java.io.FilePermission

″${was.install.root}${/}java${/}

jre${/}lib${/}ext${/}mail.jar″,

″read″;

permission

java.io.FilePermission

″${was.install.root}${/}java${/}

jre${/}lib${/}ext${/}activation.jar″,

″read″;

};

grant

codeBase

″file:${jars}″

{

permission

java.net.SocketPermission

″*″,

″connect″;

permission

java.util.PropertyPermission

″*″,

″read″;

};

grant

codeBase

″file:${connectorComponent}″

{

permission

java.net.SocketPermission

″*″,

″connect″;

permission

java.util.PropertyPermission

″*″,

″read″;

};

grant

codeBase

″file:${webComponent}″

{

permission

java.io.FilePermission

″${was.module.path}${/}-″,

″read,

write″;

permission

java.lang.RuntimePermission

″loadLibrary.*″;

permission

java.lang.RuntimePermission

″queuePrintJob″;

permission

java.net.SocketPermission

″*″,

″connect″;

460

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

permission

java.util.PropertyPermission

″*″,

″read″;

};

grant

codeBase

″file:${ejbComponent}″

{

permission

java.lang.RuntimePermission

″queuePrintJob″;

permission

java.net.SocketPermission

″*″,

″connect″;

permission

java.util.PropertyPermission

″*″,

″read″;

};

If

all

of

the

WebSphere

Application

Server

enterprise

applications

in

a

cell

require

permissions

that

are

not

defined

as

defaults

in

the

app.policy

file,

the

server.policy

file

and

the

app.policyfile,

then

update

the

app.policy

file.

The

symptom

of

a

missing

permission

is

the

exception,

java.security.AccessControlException.

The

missing

permission

is

listed

in

the

exception

data,

for

example,

java.security.AccessControlException:

access

denied

(java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar

read).

When

a

Java

program

receives

this

exception

and

adding

this

permission

is

justified,

add

a

permission

to

the

server.policy

file,

for

example:

grant

codeBase

″file:<user

client

installed

location>″

{

permission

java.io.FilePermission

″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″,

″read″;

};

To

decide

whether

to

add

a

permission,

refer

to

the

article

AccessControlException.

Restart

all

WebSphere

Application

Server

enterprise

applications

to

ensure

that

the

updated

app.policy

file

takes

effect.

Configuring

filter.policy

files:

Java

2

security

uses

several

policy

files

to

determine

the

granted

permission

for

each

Java

program.

Java

2

security

policy

filtering

is

only

in

effect

when

Java

2

security

is

enabled.

Refer

to

Configuring

Java

2

security.

The

filtering

policy

defined

in

the

filter.policy

file

is

cell

wide.

Refer

to

the

article,

Dynamic

policy,

for

the

list

of

available

policy

files

supported

by

WebSphere

Application

Server.

The

filter.policy

file

is

the

only

policy

file

used

when

restricting

the

permission

instead

of

granting

permission.

The

permissions

listed

in

the

filter

policy

file

are

filtered

out

from

the

app.policy

file

and

the

was.policy

file.

Permissions

defined

in

the

other

policy

files

are

not

affected

by

the

filter.policy

file.

When

a

permission

is

filtered

out,

an

audit

message

is

logged.

However,

if

the

permissions

defined

in

the

app.policy

file

and

the

was.policy

file

are

compound

permissions

like

java.security.AllPermission,

for

example,

the

permission

is

not

removed.

A

warning

message

is

logged.

If

the

Issue

Permission

Warning

flag

is

enabled

(default)

and

if

the

app.policy

file

and

the

was.policy

file

contain

custom

permissions

(non-Java

API

permission,

the

permission

package

name

begins

with

characters

other

than

java

or

javax),

then

a

warning

message

is

logged

and

the

permission

is

not

removed.

You

can

change

the

value

of

the

Issue

Permission

Warning

flag

from

the

administrative

console

in

the

Global

Security

panel.

It

is

not

recommended

that

you

use

AllPermission

for

the

enterprise

application.

There

are

some

default

permissions

defined

in

the

filter.policy

file.

These

permissions

are

the

minimal

ones

recommended

by

the

product.

If

more

Chapter

2.

Securing

applications

and

their

environments

461

permissions

are

added

to

the

filter.policy

file,

certain

operations

can

fail

for

enterprise

applications.

Add

permissions

to

the

filter.policy

file

carefully.

Note:

You

cannot

use

the

Policy

Tool

to

edit

the

filter.policy

file.

Editing

must

be

completed

in

a

text

editor.

Be

careful

and

verify

that

there

are

no

syntax

errors

in

the

filter.policy

file.

If

there

are

any

syntax

errors

in

filter.policy

file,

it

will

not

be

loaded

by

the

product

security

run

time,

which

implies

that

filtering

is

disabled.

An

updated

filter.policy

file

is

applied

to

all

of

the

WebSphere

Application

Server

enterprise

application

after

the

servers

are

restarted.

The

filter.policy

file

is

managed

by

configuration

and

file

replication

services.

Changes

made

in

the

file

are

replicated

to

other

nodes

in

the

Network

Deployment

cell.

The

filter.policy

file

supplied

by

WebSphere

Application

Server

resides

at:

install_root/config/cells/cell_name/filter.policy.

It

contains

these

permissions

as

defaults:

filterMask

{

permission

java.lang.RuntimePermission

″exitVM″;

permission

java.lang.RuntimePermission

″setSecurityManager″;

permission

java.security.SecurityPermission

″setPolicy″;

permission

javax.security.auth.AuthPermission

″setLoginConfiguration″;

};

runtimeFilterMask

{

permission

java.lang.RuntimePermission

″exitVM″;

permission

java.lang.RuntimePermission

″setSecurityManager″;

permission

java.security.SecurityPermission

″setPolicy″;

permission

javax.security.auth.AuthPermission

″setLoginConfiguration″;

};

The

permissions

defined

in

filterMask

are

for

static

policy

filtering.

The

security

run

time

tries

to

remove

the

permissions

from

applications

during

application

startup.

Compound

permissions

are

not

removed

but

are

issued

with

a

warning,

and

application

deployment

is

stopped

if

applications

contain

permissions

defined

in

filterMask,

and

if

scripting

was

used

(wsadmin

tool).

The

runtimeFilterMask

defines

permissions

used

by

the

security

run

time

to

deny

access

to

those

permissions

to

application

thread.

Do

not

add

more

permissions

to

the

runtimeFilterMask.

Application

start

failure

or

incorrect

functioning

might

result.

Be

careful

when

adding

more

permissions

to

the

runtimeFilterMask.

Usually,

you

only

need

to

add

permissions

to

the

filterMask

stanza.

WebSphere

Application

Server

relies

on

the

filter

policy

file

to

restrict

or

disallow

certain

permissions

that

could

compromise

the

integrity

of

the

system.

For

instance,

WebSphere

Application

Server

considers

the

exitVM

and

setSecurityManager

permissions

as

those

permissions

that

most

applications

should

never

have.

If

these

permissions

are

granted,

then

the

following

scenarios

are

possible:

v

exitVM

--

A

servlet,

JSP

file,

enterprise

bean,

or

other

library

used

by

the

aforementioned

could

call

the

System.exit()

API

and

cause

the

entire

WebSphere

Application

Server

process

to

terminate.

v

setSecurityManager

--

An

application

could

install

its

own

SecurityManager

that

could

either

grant

more

permissions

or

bypass

the

default

policy

the

WebSphere

Application

Server

SecurityManager

enforces.

462

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

For

the

updated

filter.policy

file

to

take

effect,

restart

related

Java

processes.

Configuring

the

was.policy

file:

Java

2

security

uses

several

policy

files

to

determine

the

granted

permission

for

each

Java

program.

See

“Java

2

security

policy

files”

on

page

452

for

the

list

of

available

policy

files

supported

by

WebSphere

Application

Server

Version

5.

The

was.policy

file

is

an

application-specific

policy

file

for

WebSphere

Application

Server

enterprise

applications.

It

is

embedded

in

the

enterprise

archive

(EAR)

file

(META-INF/was.policy).

The

was.policy

file

is

located

in:

install_root/config/cells/cell_name/applications/

ear_file_name/deployments/application_name/META-INF/was.policy

The

union

of

the

permission

contained

in

the

java.policy

file,

the

server.policy

file,

the

app.policy

file,

application

was.policy

file

and

the

permission

specification

of

the

ra.xml

file

are

applied

to

the

WebSphere

Application

Server

enterprise

application.

Configuration

and

file

replication

services

manage

was.policy

files.

Changes

made

in

these

files

are

replicated

to

other

nodes

in

the

Network

Deployment

cell.

Several

product-reserved

symbols

are

defined

to

associate

the

permission

lists

to

a

specific

type

of

resources.

Symbol

Definition

file:${application}

file:${application}

file:${jars}

Permissions

apply

to

all

utility

Java

archive

(JAR)

files

within

the

application

file:${ejbComponent}

Permissions

apply

to

enterprise

bean

resources

within

the

application

file:${webComponent}

Permissions

apply

to

Web

resources

within

the

application

file:${connectorComponent}

Permissions

apply

to

connector

resources

within

the

application

Important:

The

Signed

By

and

the

Java

Authentication

and

Authorization

Service

(JAAS)

principal

keywords

are

not

supported

in

the

was.policy

file.

The

Signed

By

keyword

is

supported

in

the

following

policy

files:

java.policy,

server.policy,

and

client.policy.

The

JAAS

principal

keyword

is

supported

in

a

JAAS

policy

file

when

it

is

specified

by

the

Java

Virtual

Machine

(JVM)

system

property,

java.security.auth.policy.

You

can

statically

set

the

authorization

policy

files

in

java.security.auth.policy

with

auth.policy.url.n=URL

where

URL

is

the

location

of

the

authorization

policy.

Other

than

these

blocks,

you

can

specify

the

module

name

for

granular

settings.

For

example,

″file:DefaultWebApplication.war″

{

permission

java.security.SecurityPermission

″printIdentity″;

};

grant

codeBase

″file:IncCMP11.jar″

{

permission

java.io.FilePermission

Chapter

2.

Securing

applications

and

their

environments

463

″${user.install.root}${/}bin${/}DefaultDB${/}-″,

″read,write,delete″;

};

There

are

five

embedded

symbols

provided

to

specify

the

path

and

name

for

the

java.io.FilePermission.

These

symbols

enable

flexible

permission

specification.

The

absolute

file

path

is

fixed

after

the

application

is

installed.

Symbol

Definition

${app.installed.path}

Path

where

the

application

is

installed

${was.module.path}

Path

where

the

module

is

installed

${current.cell.name}

Current

cell

name

${current.node.name}

Current

node

name

${current.server.name}

Current

server

name

If

the

default

permissions

for

the

enterprise

application

(union

of

the

permissions

defined

in

the

java.policy

file,

the

server.policy

file

and

the

app.policy

file)

are

enough,

no

action

is

required.

If

an

application

has

specific

resources

to

access,

update

the

was.policy

file.

The

first

two

steps

assume

that

you

are

creating

a

new

policy

file.

Note:

Syntax

errors

in

the

policy

files

cause

the

application

server

to

fail.

Use

care

when

editing

these

policy

files.

1.

Create

or

edit

a

new

was.policy

file

using

the

Policy

Tool.

For

more

information,

see

“Using

PolicyTool

to

edit

policy

files”

on

page

451

2.

Package

the

was.policy

file

into

the

enterprise

archive

(EAR)

file.

For

more

information,

see

“Adding

the

was.policy

file

to

applications”

on

page

467.The

following

instructions

describe

how

to

import

a

was.policy

file.

However,

you

also

can

use

the

Assembly

Toolkit

to

create

a

new

file

by

clicking

File

>

New

>

File.

a.

Start

the

Assembly

Toolkit

and

open

the

J2EE

Perspective

by

selecting

Window

>

Open

Perspective

>

J2EE.

b.

Import

the

client

EAR

file

by

selecting

File

>

Import

>

EAR

file.

c.

Click

Next.

d.

Enter

the

path

name

to

the

EAR

file

in

the

EAR

File

field

or

click

Browse

to

locate

the

file.

e.

Enter

the

project

name

in

the

Project

name

field.

f.

Click

Finish.

g.

Open

the

Project

Navigator

view.

h.

Expand

the

EAR

file

and

click

META-INF.

You

might

find

a

was.policy

file

in

the

META-INF

directory.

If

you

want

to

delete

the

file,

right-click

the

file

name

and

select

Delete.

i.

At

the

bottom

of

the

Project

Navigator

view,

click

J2EE

Hierarchy.

j.

Import

the

was.policy

file

by

right-clicking

the

Modules

directory

and

clicking

Import

>

File

system.

k.

Click

Next.

l.

Enter

the

path

name

to

the

was.policy

file

in

the

From

directory

field

or

click

Browse

to

locate

the

file.

m.

Verify

that

the

path

directory

listed

in

the

Into

directory

field

lists

the

correct

META-INF

directory.

464

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

n.

Click

Finish.

o.

To

validate

the

EAR

file,

right-click

the

EAR

file,

which

contains

the

Modules

directory,

and

click

Run

Validation.

p.

To

save

the

new

EAR

file,

right-click

the

EAR

file,

and

click

Export

>

Export

EAR

file.

If

you

do

not

save

the

revised

EAR

file,

the

EAR

file

will

contain

the

new

was.policy

file.

However,

if

the

workspace

becomes

corrupted,

you

might

lose

the

revised

EAR

file.

q.

To

generate

deployment

code,

right-click

the

EAR

file

and

click

Generate

Deployment

Code.
3.

Update

an

existing

installed

application,

if

one

already

exists.

a.

Modify

the

installed

was.policy

file

with

Policy

Tool.

For

more

information,

see

“Using

PolicyTool

to

edit

policy

files”

on

page

451.

The

updated

was.policy

file

is

applied

to

the

application

after

the

application

restarts.

If

an

application

must

access

a

specific

resource

that

is

not

defined

as

a

default

in

the

java.policy

file,

the

server.policy

file

and

the

app.policy,

then

delete

the

was.policy

file

for

that

application.

The

symptom

of

the

missing

permission

is

that

the

exception,

java.security.AccessControlException.

The

missing

permission

is

listed

in

the

exception

data,

java.security.AccessControlException:

access

denied

(java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar

read).

When

a

Java

program

receives

this

exception

and

adding

this

permission

is

justified,

add

a

permission

to

the

was.policy

file:

grant

codeBase

″file:<user

client

installed

location>″

{

permission

java.io.FilePermission

″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″,

″read″;

};.

To

determine

whether

to

add

a

permission,

refer

to

the

article,

“AccessControlException”

on

page

446.

Restart

all

applications

for

the

updated

app.policy

file

to

take

effect.

Configuring

spi.policy

files:

Java

2

security

uses

several

policy

files

to

determine

the

granted

permission

for

each

Java

program.

See

Dynamic

policy

for

the

list

of

available

policy

files

supported

by

WebSphere

Application

Server

Version

5.

Since

the

default

permissions

for

Service

Provider

Interface

(SPI)

is

AllPermission,

the

only

reason

to

update

the

spi.policy

file

is

a

restricted

SPI

permission.

When

a

change

in

the

spi.policy

is

required,

complete

the

following

steps.

Syntax

errors

in

the

policy

files

cause

the

application

server

to

fail.

Edit

these

policy

files

carefully.

Important:

Do

not

place

the

codebase

keyword

or

any

other

keyword

after

the

filterMask

and

runtimeFilterMask

keywords.

The

Signed

By

and

the

Java

Authentication

and

Authorization

Service

(JAAS)

Principal

keywords

are

not

supported

in

the

spi.policy

file.

The

Signed

By

keyword

is

supported

in

the

following

policy

files:

java.policy,

server.policy,

and

client.policy.

The

JAAS

Principal

keyword

is

supported

in

a

JAAS

policy

file

that

is

specified

by

the

Java

Virtual

Machine

(JVM)

system

property,

java.security.auth.policy.

You

can

Chapter

2.

Securing

applications

and

their

environments

465

statically

set

the

authorization

policy

files

in

java.security.auth.policy

with

auth.policy.url.n=URL

where

URL

is

the

location

of

the

authorization

policy.

Modify

the

spi.policy

file

with

the

Policy

Tool.

The

updated

spi.policy

is

applied

to

the

SPI

libraries

after

the

Java

process

is

restarted.

The

spi.policy

file

is

the

template

for

SPIs

(Service

Provider

Interface)

or

third-party

resources

embedded

in

the

product.

Example

of

SPIs

are

Java

Message

Services

(JMS)

(MQSeries)

and

Java

database

connectivity

(JDBC)

drivers.

They

are

specified

in

the

resources.xml

file.

The

dynamic

policy

grants

the

permissions

defined

in

the

spi.policy

file

to

the

class

paths

defined

in

the

resources.xml

file.

The

union

of

the

permission

contained

in

the

java.policy

file

and

the

spi.policy

file

are

applied

to

the

SPI

libraries.

The

spi.policy

files

are

managed

by

configuration

and

file

replication

services.

Changes

made

in

these

files

are

replicated

to

other

nodes

in

the

Network

Deployment

cell.

The

spi.policy

file

supplied

by

WebSphere

Application

Server

resides

at

install_root/config/cells/cell_name/nodes/node_name/spi.policy.

It

contains

the

following

default

permission:

grant

{

permission

java.security.AllPermission;

};

Restart

the

related

Java

processes

for

the

changes

in

the

spi.policy

file

to

become

effective.

Configuring

library.policy

files:

Java

2

security

uses

several

policy

files

to

determine

the

granted

permission

for

each

Java

programs.

See

“Java

2

security

policy

files”

on

page

452

for

the

list

of

available

policy

files

supported

by

WebSphere

Application

Server

Version

5.

The

library.policy

file

is

the

template

for

shared

libraries

(Java

library

classes).

Multiple

enterprise

applications

can

define

and

use

shared

libraries.

Refer

to

Managing

shared

libraries

for

information

on

how

to

define

and

manage

the

shared

libraries.

If

the

default

permissions

for

a

shared

library

(union

of

the

permissions

defined

in

the

java.policy

file,

the

app.policy

file

and

the

library.policy

file)

are

enough,

no

action

is

required.

The

default

library

policy

is

picked

up

automatically.

If

a

specific

change

is

required

to

share

a

library

in

the

cell,

update

the

library.policy

file.

Syntax

errors

in

the

policy

files

cause

the

application

server

to

fail.

Edit

these

policy

files

carefully.

Important:

Do

not

place

the

codebase

keyword

or

any

other

keyword

after

the

grant

keyword.

The

Signed

By

keyword

and

the

Java

Authentication

and

Authorization

Service

(JAAS)

Principal

keyword

are

not

supported

in

the

library.policy

file.

The

Signed

By

keyword

is

supported

in

the

following

policy

files:

java.policy,

server.policy,

and

client.policy.

The

JAAS

Principal

keyword

is

supported

in

a

JAAS

policy

file

when

it

is

specified

by

the

Java

Virtual

Machine

(JVM)

system

property,

java.security.auth.policy.

You

can

statically

set

the

authorization

466

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

policy

files

in

java.security.auth.policy

with

auth.policy.url.n=URL

where

URL

is

the

location

of

the

authorization

policy.

Modify

the

library.policy

file

with

the

Policy

Tool.

For

more

information,

see

“Using

PolicyTool

to

edit

policy

files”

on

page

451.

An

updated

library.policy

is

applied

to

shared

libraries

after

the

servers

restart.

The

union

of

the

permission

contained

in

the

java.policy

file,

the

app.policy

file,

and

the

library.policy

file

are

applied

to

the

shared

libraries.

The

library.policy

file

is

managed

by

configuration

and

file

replication

services.

Changes

made

in

the

file

are

replicated

to

other

nodes

in

the

Network

Deployment

cell.

The

library.policy

file

supplied

by

WebSphere

Application

Server

resides

at:

install_root/config/cells/cell_name/nodes/node_name/library.policy,

contains

an

empty

permission

entry

as

a

default.

For

example,

grant

{

};

If

the

shared

library

in

a

cell

requires

permissions

that

are

not

defined

as

defaults

in

the

java.policy

file,

app.policy

file

and

the

library.policy

file,

update

the

library.policy

file.

The

missing

permission

causes

the

exception,

java.security.AccessControlException.

The

missing

permission

is

listed

in

the

exception

data,

for

example:

java.security.AccessControlException:

access

denied

(java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar

read)

The

previous

lines

are

one

continuous

line.

When

a

Java

program

receives

this

exception

and

adding

this

permission

is

justified,

add

a

permission

to

the

library.policy

file,

for

example:

grant

codeBase

″file:<user

client

installed

location>″

{

permission

java.io.FilePermission

″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″,

″read″;

};

to

decide

whether

to

add

a

permission,

refer

to

“AccessControlException”

on

page

446.

Restart

the

related

Java

processes

for

the

changes

in

the

library.policy

file

to

become

effective.

Adding

the

was.policy

file

to

applications:

When

Java

2

security

is

enabled

for

a

WebSphere

Application

Server,

all

the

applications

that

run

on

that

WebSphere

Application

Server

undergo

a

security

check

before

accessing

system

resources.

An

application

might

need

a

was.policy

file

if

it

accesses

resources

that

require

more

permissions

than

those

granted

in

the

default

app.policy

file.

By

default,

the

product

security

reads

an

app.policy

file

that

is

located

in

each

node

and

grants

the

permissions

in

the

app.policy

file

to

all

the

applications.

Include

any

additional

required

permissions

in

the

was.policy

file.

The

was.policy

file

is

only

required

if

an

application

requires

additional

permissions.

Chapter

2.

Securing

applications

and

their

environments

467

The

default

policy

file

for

all

applications

is

specified

in

the

app.policy

file.

This

file

is

provided

by

the

product

security,

is

common

to

all

applications,

and

should

not

be

changed.

Add

any

new

permissions

required

for

an

application

in

the

was.policy

file.

The

app.policy

file

is

located

in

the

install_root/config/cells/cell_name/nodes/node_name

directory.

The

contents

of

the

app.policy

file

follow:

Attention:

In

the

following

code

sample,

the

two

permissions

that

are

required

by

JavaMail

were

split

into

two

lines

each

due

to

the

width

of

the

printed

page.

//

The

following

permissions

apply

to

all

the

components

under

the

application.

grant

codeBase

″file:${application}″

{

//

The

following

are

required

by

JavaMail

permission

java.io.FilePermission

″

${was.install.root}${/}java${/}jre${/}lib${/}ext${/}mail.jar″,

″read″;

permission

java.io.FilePermission

″

${was.install.root}${/}java${/}jre${/}lib${/}ext${/}activation.jar″,

″read″;

};

//

The

following

permissions

apply

to

all

utility

.jar

files

(other

//

than

enterprise

beans

JAR

files)

in

the

application.

grant

codeBase

″file:${jars}″

{

permission

java.net.SocketPermission

″*″,

″connect″;

permission

java.util.PropertyPermission

″*″,

″read″;

};

//

The

following

permissions

apply

to

connector

resources

within

the

application

grant

codeBase

″file:${connectorComponent}″

{

permission

java.net.SocketPermission

″*″,

″connect″;

permission

java.util.PropertyPermission

″*″,

″read″;

};

//

The

following

permissions

apply

to

all

the

Web

modules

(.war

files)

//

within

the

application.

grant

codeBase

″file:${webComponent}″

{

permission

java.io.FilePermission

″${was.module.path}${/}-″,

″read,

write″;

//

where

″was.module.path″

is

the

path

where

the

Web

module

is

//

installed.

Refer

to

Dynamic

policy

concepts

for

other

symbols.

permission

java.lang.RuntimePermission

″loadLibrary.*″;

permission

java.lang.RuntimePermission

″queuePrintJob″;

permission

java.net.SocketPermission

″*″,

″connect″;

permission

java.util.PropertyPermission

″*″,

″read″;

};

//

The

following

permissions

apply

to

all

the

EJB

modules

within

the

application.

grant

codeBase

″file:${ejbComponent}″

{

permission

java.lang.RuntimePermission

″queuePrintJob″;

permission

java.net.SocketPermission

″*″,

″connect″;

permission

java.util.PropertyPermission

″*″,

″read″;

};

468

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

If

additional

permissions

are

required

for

an

application

or

for

one

or

more

modules

of

an

application,

use

the

was.policy

file

for

that

application.

For

example,

use

codeBase

of

${application}

and

add

required

permissions

to

grant

additional

permissions

to

the

entire

application.

Similarly,

use

codeBase

of

${webComponent}

and

${ejbComponent}

to

grant

additional

permissions

to

all

the

Web

modules

and

all

the

enterprise

bean

(EJB)

modules

in

the

application.

You

can

assign

additional

permissions

to

each

module

(.war

file

or

.jar

file)

as

shown

in

the

following

example.

An

example

of

adding

extra

permissions

for

an

application

in

the

was.policy

file:

Attention:

In

the

following

code

sample,

the

permission

for

the

EJB

module

was

split

into

two

lines

due

to

the

width

of

the

printed

page.

//

grant

additional

permissions

to

a

Web

module

grant

codeBase

″

file:aWebModule.war″

{

permission

java.security.SecurityPermission

″printIdentity″;

};

//

grant

additional

permission

to

an

EJB

module

grant

codeBase

″file:aEJBModule.jar″

{

permission

java.io.FilePermission

″

${user.install.root}${/}bin${/}DefaultDB${/}-″

.″read.write,delete″;

//

where,

${user.install.root}

is

the

system

property

whose

value

is

//

located

in

the

<install_root>

directory.

};

1.

Create

a

was.policy

file

using

the

policy

tool.

For

more

information

on

using

the

policy

tool,

see

Using

PolicyTool

to

edit

policy

files

2.

Add

the

required

permissions

in

the

was.policy

file

using

the

policy

tool.

3.

Place

the

was.policy

file

in

the

application

enterprise

archive

(EAR)

file

under

the

META-INF

directory.

Update

the

application

EAR

file

with

the

newly

created

was.policy

file

by

using

the

jar

command.

4.

Verify

that

the

was.policy

file

is

inserted,

and

start

the

Assembly

Toolkit

.

5.

Verify

that

the

was.policy

file

in

the

application

is

syntactically

correct.

In

the

Assembly

Toolkit,

right-click

the

enterprise

application

module

and

click

Run

Validation.

An

application

EAR

file

is

now

ready

to

run

when

Java

2

security

is

enabled.

This

step

is

required

for

applications

to

run

properly

when

Java

2

security

is

enabled.

If

the

was.policy

file

is

not

created

and

it

does

not

contain

required

permissions,

the

application

might

not

access

system

resources.

The

symptom

of

the

missing

permissions

is

the

exception,

java.security.AccessControlException.

The

missing

permission

is

listed

in

the

exception

data,

for

example:

java.security.AccessControlException:

access

denied

(java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar

read)

The

previous

two

lines

are

one

continuous

line.

When

an

application

program

receives

this

exception

and

adding

this

permission

is

justified,

include

the

permission

in

the

was.policy

file,

for

example,

Chapter

2.

Securing

applications

and

their

environments

469

grant

codeBase

″file:${application}″

{

permission

java.io.FilePermission

″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″,

″read″;

};

The

previous

two

lines

are

one

continuous

line.

Install

the

application.

Configuring

static

policy

files:

Java

2

security

uses

several

policy

files

to

determine

the

granted

permission

for

each

Java

program.

See

the

“Java

2

security

policy

files”

on

page

452

article

for

the

list

of

available

policy

files

supported

by

WebSphere

Application

Server

Version

5.

There

are

two

types

of

policy

files

supported

by

WebSphere

Application

Server

Version

5,

dynamic

policy

files

and

static

policy

files.

Static

policy

files

provide

the

default

permissions.

Dynamic

policy

files

provide

application’s

permissions.

Policy

file

name

Description

java.policy

Contains

default

permissions

for

all

of

the

Java

programs

on

the

node.

This

file

seldom

changes.

server.policy

Contains

default

permissions

for

all

of

the

WebSphere

Application

Server

programs

on

the

node.

This

files

is

rarely

updated.

client.policy

Contains

default

permissions

for

all

of

the

applets

and

client

containers

on

the

node.

The

static

policy

file

is

not

a

configuration

file

managed

by

the

repository

and

the

file

replication

service.

Changes

to

this

file

are

local

and

do

not

get

replicated

to

the

other

machine.

1.

Identify

the

policy

file

to

update.

v

If

the

permission

is

required

only

by

an

application,

update

the

dynamic

policy

file.

Refer

to

“Configuring

Java

2

security

policy

files”

on

page

457.

v

If

the

permission

is

required

only

by

applets

and

client

containers,

update

the

client.policy

file.

Refer

to

“Configuring

client.policy

files”

on

page

474.

v

If

the

permission

is

required

only

by

WebSphere

Application

Server

(servers,

agents,

managers

and

application

servers),

update

the

server.policy

file.

Refer

to

“Configuring

server.policy

files”

on

page

472.

v

If

the

permission

is

required

by

all

of

the

Java

programs

running

on

the

Java

virtual

machine

(JVM),

update

the

java.policy

file.

Refer

to

“Configuring

java.policy

files”

on

page

471.
2.

Stop

and

restart

the

WebSphere

Application

Server.

The

required

permission

is

granted

for

all

of

the

Java

programs

running

with

the

restarted

JVM.

If

Java

programs

on

a

node

require

permissions,

the

policy

file

needs

updating.

If

the

Java

program

that

required

the

permission

is

not

part

of

an

enterprise

application,

update

the

static

policy

file.

The

missing

permission

causes

the

exception,

java.security.AccessControlException.

The

missing

permission

is

listed

in

the

exception

data,

for

example:

470

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

java.security.AccessControlException:

access

denied

(java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar

read)

When

a

Java

program

receives

this

exception

and

adding

this

permission

is

justified,

add

a

permission

to

an

adequate

policy

file,

for

example:

grant

codeBase

″file:<user

client

installed

location>″

{

permission

java.io.FilePermission

″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″,

″read″;

};

To

decide

whether

to

add

a

permission,

refer

to

“AccessControlException”

on

page

446.

Configuring

java.policy

files:

Java

2

security

uses

several

policy

files

to

determine

the

granted

permission

for

each

Java

program.

See

“Java

2

security

policy

files”

on

page

452

for

the

list

of

available

policy

files

supported

by

WebSphere

Application

Server

Version

5.

The

java.policy

file

is

a

global

default

policy

file

shared

by

all

of

the

Java

programs

running

in

the

Java

Virtual

Machine

(JVM)

on

the

node.

Modifying

this

file

is

not

recommended.

If

a

specific

change

is

required

to

some

of

the

Java

programs

on

a

node

and

the

java.policy

file

requires

updating,

modify

the

java.policy

file

with

policy

tool.

For

more

information,

see

“Using

PolicyTool

to

edit

policy

files”

on

page

451.

A

change

to

the

java.policy

file

is

local

for

the

node.

The

default

Java

policy

is

picked

up

automatically.

Syntax

errors

in

the

policy

files

cause

the

application

server

to

fail.

Edit

these

policy

files

carefully.

An

updated

java.policy

file

is

applied

to

all

the

Java

programs

running

in

all

the

JVMs

on

the

local

node.

Restart

the

programs

for

the

updates

to

take

effect

The

java.policy

file

is

not

a

configuration

file

managed

by

the

repository

and

the

file

replication

service.

Changes

to

this

file

are

local

and

do

not

get

replicated

to

the

other

machine.

The

java.policy

file

supplied

by

WebSphere

Application

Server

is

located

at

install_root/java/jre/lib/security/java.policy.

It

contains

these

default

permissions.

//

Standard

extensions

get

all

permissions

by

default

grant

codeBase

″file:${java.home}/lib/ext/*″

{

permission

java.security.AllPermission;

};

//

default

permissions

granted

to

all

domains

grant

{

//

Allows

any

thread

to

stop

itself

using

the

java.lang.Thread.stop()

//

method

that

takes

no

argument.

//

Note

that

this

permission

is

granted

by

default

only

to

remain

//

backwards

compatible.

//

It

is

strongly

recommended

that

you

either

remove

this

permission

//

from

this

policy

file

or

further

restrict

it

to

code

sources

//

that

you

specify,

because

Thread.stop()

is

potentially

unsafe.

//

See

″http://java.sun.com/notes″

for

more

information.

//

permission

java.lang.RuntimePermission

″stopThread″;

//

allows

anyone

to

listen

on

un-privileged

ports

Chapter

2.

Securing

applications

and

their

environments

471

permission

java.net.SocketPermission

″localhost:1024-″,

″listen″;

//

″standard″

properties

that

can

be

read

by

anyone

permission

java.util.PropertyPermission

″java.version″,

″read″;

permission

java.util.PropertyPermission

″java.vendor″,

″read″;

permission

java.util.PropertyPermission

″java.vendor.url″,

″read″;

permission

java.util.PropertyPermission

″java.class.version″,

″read″;

permission

java.util.PropertyPermission

″os.name″,

″read″;

permission

java.util.PropertyPermission

″os.version″,

″read″;

permission

java.util.PropertyPermission

″os.arch″,

″read″;

permission

java.util.PropertyPermission

″file.separator″,

″read″;

permission

java.util.PropertyPermission

″path.separator″,

″read″;

permission

java.util.PropertyPermission

″line.separator″,

″read″;

permission

java.util.PropertyPermission

″java.specification.version″,

″read″;

permission

java.util.PropertyPermission

″java.specification.vendor″,

″read″;

permission

java.util.PropertyPermission

″java.specification.name″,

″read″;

permission

java.util.PropertyPermission

″java.vm.specification.version″,″read″;

permission

java.util.PropertyPermission

″java.vm.specification.vendor″,″read″;

permission

java.util.PropertyPermission

″java.vm.specification.name″,

″read″;

permission

java.util.PropertyPermission

″java.vm.version″,

″read″;

permission

java.util.PropertyPermission

″java.vm.vendor″,

″read″;

permission

java.util.PropertyPermission

″java.vm.name″,

″read″;

};

If

some

Java

programs

on

a

node

require

permissions

that

are

not

defined

as

defaults

in

the

java.policy

file,

then

consider

updating

the

java.policy

file.

Most

of

the

time,

other

policy

files

are

updated

instead

of

the

java.policy

file.

The

missing

permission

causes

the

exception,

java.security.AccessControlException.

The

missing

permission

is

listed

in

the

exception

data,

for

example:

java.security.AccessControlException:

access

denied

(java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar

read)

The

previous

two

lines

are

one

continuous

line.

When

a

Java

program

receives

this

exception

and

adding

this

permission

is

justified,

add

a

permission

to

the

java.policyfile,

for

example:

grant

codeBase

″file:<user

client

installed

location>″

{

permission

java.io.FilePermission

″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″,

″read″;

};

To

decide

whether

to

add

a

permission,

refer

to

“AccessControlException”

on

page

446.

Restart

all

of

the

Java

processes

for

the

updated

java.policy

file

to

take

effect.

Configuring

server.policy

files:

Java

2

security

uses

several

policy

files

to

determine

the

granted

permission

for

each

Java

program.

See

“Java

2

security

policy

files”

on

page

452

for

the

list

of

available

policy

files

supported

by

WebSphere

Application

Server

Version

5.

The

server.policy

file

is

a

default

policy

file

shared

by

all

of

the

WebSphere

servers

on

472

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

a

node.

The

server.policy

file

is

not

a

configuration

file

managed

by

the

repository

and

the

file

replication

service.

Changes

to

this

file

are

local

and

do

not

replicate

to

the

other

machine.

If

the

default

permissions

for

a

server

(the

union

of

the

permissions

defined

in

the

server.policy

file

and

the

server.policy

file)

are

enough,

no

action

is

required.

The

default

server

policy

is

picked

up

automatically.

If

a

specific

change

is

required

to

some

of

the

server

programs

on

a

node,

update

the

server.policy

file

with

the

Policy

Tool.

Refer

to

the

“Using

PolicyTool

to

edit

policy

files”

on

page

451

article

to

edit

policy

files.

Changes

to

the

server.policy

file

are

local

for

the

node.

Syntax

errors

in

the

policy

files

cause

the

application

server

to

fail.

Edit

these

policy

files

carefully.

An

updated

server.policy

file

is

applied

to

all

the

server

programs

on

the

local

node.

Restart

the

servers

for

the

updates

to

take

effect.

If

you

want

to

add

permissions

to

an

application,

use

the

app.policy

file

and

the

was.policy

file.

When

you

do

need

to

modify

the

server.policy

file,

locate

this

file

at:

install_root/properties/server.policy.

This

file

contains

these

default

permissions:

//

Allow

to

use

sun

tools

grant

codeBase

″file:${java.home}/../lib/tools.jar″

{

permission

java.security.AllPermission;

};

//

WebSphere

system

classes

grant

codeBase

″file:${was.install.root}/lib/-″

{

permission

java.security.AllPermission;

};

grant

codeBase

″file:${was.install.root}/classes/-″

{

permission

java.security.AllPermission;

};

//

Allow

the

WebSphere

deploy

tool

all

permissions

grant

codeBase

″file:${was.install.root}/deploytool/-″

{

permission

java.security.AllPermission;

};

If

some

server

programs

on

a

node

require

permissions

that

are

not

defined

as

defaults

in

the

server.policy

file

and

the

server.policy

file,

update

the

server.policy

file.

The

missing

permission

causes

the

exception,

java.security.AccessControlException.

The

missing

permission

is

listed

in

the

exception

data,

for

example:

java.security.AccessControlException:

access

denied

(java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar

read)

The

previous

two

lines

are

one

continuous

line.

When

a

Java

program

receives

this

exception

and

adding

this

permission

is

justified,

add

a

permission

to

the

server.policy

file,

for

example:

Chapter

2.

Securing

applications

and

their

environments

473

grant

codeBase

″file:<user

client

installed

location>″

{

permission

java.io.FilePermission

″C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar″,

″read″;

};

To

decide

whether

to

add

a

permission,

refer

to

“AccessControlException”

on

page

446.

Restart

all

of

the

Java

processes

for

the

updated

server.policy

file

to

take

effect.

Configuring

client.policy

files:

Java

2

security

uses

several

policy

files

to

determine

the

granted

permission

for

each

Java

program.

See

“Java

2

security

policy

files”

on

page

452

for

the

list

of

available

policy

files

supported

by

WebSphere

Application

Server

Version

5.

The

client.policy

file

is

a

default

policy

file

shared

by

all

of

the

WebSphere

Application

Server

client

containers

and

applets

on

a

node.

The

union

of

the

permissions

contained

in

the

client.policy

file

and

the

client.policy

file

are

given

to

all

of

the

WebSphere

client

containers

and

applets

running

on

the

node.

The

client.policy

file

is

not

a

configuration

file

managed

by

the

repository

and

the

file

replication

service.

Changes

to

this

file

are

local

and

do

not

replicate

to

the

other

machine.

The

client.policy

file

supplied

by

WebSphere

Application

Server

is

located

at

install_root/properties/client.policy.

It

contains

these

default

permissions:

grant

codeBase

″file:${java.home}/lib/ext/*″

{

permission

java.security.AllPermission;

};

//

IBM

Developer

Kit,

Java

Technology

Edition

classes

grant

codeBase

″file:${java.home}/lib/ext/-″

{

permission

java.security.AllPermission;

};

grant

codeBase

″file:${java.home}/../lib/tools.jar″

{

permission

java.security.AllPermission;

};

//

WebSphere

system

classes

grant

codeBase

″file:${was.install.root}/lib/-″

{

permission

java.security.AllPermission;

};

grant

codeBase

″file:${was.install.root}/classes/-″

{

permission

java.security.AllPermission;

};

grant

codeBase

″file:${was.install.root}/installedConnectors/-″

{

permission

java.security.AllPermission;

};

//

J2EE

1.3

permissions

for

client

container

WAS

applications

//

in

$WAS_HOME/installedApps

grant

codeBase

″file:${was.install.root}/installedApps/-″

{

//Application

client

permissions

permission

java.awt.AWTPermission

″accessClipboard″;

permission

java.awt.AWTPermission

″accessEventQueue″;

permission

java.awt.AWTPermission

″showWindowWithoutWarningBanner″;

permission

java.lang.RuntimePermission

″exitVM″;

permission

java.lang.RuntimePermission

″loadLibrary″;

permission

java.lang.RuntimePermission

″queuePrintJob″;

permission

java.net.SocketPermission

″*″,

″connect″;

permission

java.net.SocketPermission

″localhost:1024-″,

″accept,listen″;

474

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

permission

java.io.FilePermission

″*″,

″read,write″;

permission

java.util.PropertyPermission

″*″,

″read″;

};

//

J2EE

1.3

permissions

for

client

container

-

expanded

ear

file

code

base

grant

codeBase

″file:${com.ibm.websphere.client.applicationclient.archivedir}/-″

{

permission

java.awt.AWTPermission

″accessClipboard″;

permission

java.awt.AWTPermission

″accessEventQueue″;

permission

java.awt.AWTPermission

″showWindowWithoutWarningBanner″;

permission

java.lang.RuntimePermission

″exitVM″;

permission

java.lang.RuntimePermission

″loadLibrary″;

permission

java.lang.RuntimePermission

″queuePrintJob″;

permission

java.net.SocketPermission

″*″,

″connect″;

permission

java.net.SocketPermission

″localhost:1024-″,

″accept,listen″;

permission

java.io.FilePermission

″*″,

″read,write″;

permission

java.util.PropertyPermission

″*″,

″read″;

};

//

For

MQ

Series

grant

codeBase

″file:${mq.install.root}/java/*″

{

permission

java.security.AllPermission;

};

1.

If

the

default

permissions

for

a

client

(union

of

the

permissions

defined

in

the

client.policy

file

and

the

client.policy

file)

are

enough,

no

action

is

required.

The

default

client

policy

is

picked

up

automatically.

2.

If

a

specific

change

is

required

to

some

of

the

client

containers

and

applets

on

a

node,

modify

the

client.policy

file

with

the

policy

tool.

Refer

to

“Using

PolicyTool

to

edit

policy

files”

on

page

451,

to

edit

policy

files.

Changes

to

the

client.policy

file

are

local

for

the

node.

All

of

the

client

containers

and

applets

on

the

local

node

are

granted

the

updated

permissions

at

the

time

of

execution.

If

some

client

containers

or

applets

on

a

node

require

permissions

that

are

not

defined

as

defaults

in

the

client.policy

file

and

the

default

client.policy

file,

update

the

client.policy

file.

The

missing

permission

causes

the

exception,

java.security.AccessControlException.

The

missing

permission

is

listed

in

the

exception

data,

for

example,

java.security.AccessControlException:

access

denied

(java.io.FilePermission

C:\WebSphere\AppServer\java\jre\lib\ext\mail.jar

read)

The

previous

two

lines

of

sample

code

are

one

continuous

line,

but

extended

beyond

the

width

of

the

page.

When

a

client

program

receives

this

exception

and

adding

this

permission

is

justified,

add

a

permission

to

the

client.policy

file,

for

example,

grant

codebase

″file:user_client_installed_location″

{

permission

java.io.FilePermission

″C:\WebSphere\AppServer\java\jre\lib\ext\mail.ja″,

″read″;

};.

To

decide

whether

to

add

a

permission,

refer

to

“AccessControlException”

on

page

446.

Close

and

restart

the

browser.

You

also

must

restart

the

client

application

if

you

have

one.

Chapter

2.

Securing

applications

and

their

environments

475

Migrating

Java

2

security

policy

Previous

WebSphere

Application

Server

releases

Starting

from

Version

3.x,

WebSphere

Application

Server

installed

a

Java

2

security

manager

in

the

server

run

time

to

prevent

enterprise

applications

from

calling

the

System.exit()

and

the

System.setSecurityManager()

methods.

These

two

Java

APIs

have

undesirable

consequences

if

called

by

enterprise

applications.

The

System.exit()

API,

for

example,

causes

the

Java

virtual

machine

(application

server

process)

to

exit

prematurely,

which

is

an

undesirable

operation

for

an

application

server.

However,

Java

2

security

was

not

a

fully

supported

feature

prior

to

Version

5.

To

support

Java

2

security

properly,

all

the

server

run

time

must

be

marked

as

privileged

(with

doPrivileged()

API

calls

inserted

in

the

correct

places),

and

identify

the

default

permission

sets

or

policy.

Application

code

is

not

privileged

and

subject

to

the

permissions

defined

in

the

policy

files.

The

doPrivileged

instrumentation

is

important

and

necessary

to

support

Java

2

security.

Without

it,

the

application

code

must

be

granted

the

permissions

required

by

the

server

run

time.

This

is

due

to

the

design

and

algorithm

used

by

Java

2

security

to

enforce

permission

checks.

Please

refer

to

the

Java

2

security

check

permission

algorithm.

The

following

two

permissions

are

enforced

by

the

WebSphere

Java

2

security

manager

(hard

coded):

v

java.lang.RuntimePermission(exitVM)

v

java.lang.RuntimePermission(setSecurityManager)

Application

code

is

denied

access

to

these

permissions

regardless

of

what

is

in

the

Java

2

security

policy.

However,

the

server

run

time

is

granted

these

permissions.

All

the

other

permission

checks

are

not

enforced.

Partial

support

was

introduced

since

the

version

4.02

product

release.

Prior

to

version

4.0.2,

Java

2

security

was

not

supported.

From

version

4.02

and

later,

only

two

permissions

are

supported:

v

java.net.SocketPermission

v

java.net.NetPermission

However,

not

all

the

product

server

run

time

is

properly

marked

as

privileged.

You

must

grant

the

application

code

all

the

other

permissions

besides

the

two

listed

previously

or

the

enterprise

application

can

potentially

fail

to

run.

This

Java

2

security

policy

for

enterprise

applications

is

liberal.

What

changed

Java

2

Security

is

fully

supported

in

version

5,

which

means

all

permissions

are

enforced.

The

default

Java

2

security

policy

for

enterprise

application

is

the

recommended

permission

set

defined

by

the

J2EE

1.3

specification.

Refer

to

the

${install_root}/config/cells/cell_name/nodes/node_name/app.policy

file

for

the

default

Java

2

security

policy

granted

to

enterprise

applications.

This

is

a

much

more

stringent

policy

compared

to

previous

releases.

All

policy

is

declarative.

The

product

security

manager

honors

all

policy

declared

in

the

policy

files.

There

is

an

exception

to

this

rule:

enterprise

applications

are

denied

access

to

permissions

declared

in

the

${install_root}/config/cells/cell_name/filter.policy

file.

476

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Note:

Enterprise

applications

that

run

on

Version

4.0.x

with

Java

2

security

enabled

are

not

guaranteed

to

run

successfully

when

migrating

to

Version

5

(when

Java

2

security

is

enabled),

even

if

the

Java

2

security

policy

is

migrated

properly.

The

default

Java

2

security

policy

for

enterprise

applications

is

much

more

stringent

and

all

permissions

are

enforced

in

Version

5.

It

might

fail

because

the

application

code

does

not

have

the

necessary

permissions

granted

where

system

resources

(such

as

file

I/O

for

example)

can

be

programmatically

accessed

and

are

now

subject

to

the

permission

checking.

Migrating

system

properties

The

following

system

properties

are

used

in

previous

releases

in

relation

to

Java

2

security:

v

java.security.policy.

The

absolute

path

of

the

policy

file

(action

required).

It

contains

both

system

permissions

(permissions

granted

to

the

Java

Virtual

Machine

(JVM)

and

the

product

server

run

time)

and

enterprise

application

permissions.

Migrate

the

Java

2

security

policy

of

the

enterprise

application

to

Version

5.

For

Java

2

security

policy

migration,

see

the

steps

for

migrating

Java

2

security

policy.

v

enableJava2Security.

Used

to

enable

Java

2

security

enforcement

(no

action

required).

This

is

deprecated;

a

flag

in

the

WebSphere

configuration

application

programming

interface

(API)

is

used

to

control

whether

to

enabled

Java

2

security.

Enable

this

option

through

the

administrative

console.

v

was.home.

Expanded

to

the

installation

directory

of

the

WebSphere

Application

Server

(action

might

be

required).

This

is

deprecated;

superseded

by

${user.install.root}

and

${was.install.root}

properties.

If

the

directory

contains

instance

specific

data

then

${user.install.root}

is

used;

otherwise

${was.install.root}

is

used.

Use

these

properties

interchangeably

for

the

WebSphere

Application

Server

or

the

Network

Deployment

environments.

See

the

steps

for

migrating

Java

2

security

policy.

Migrating

the

Java

2

Security

Policy

There

is

no

easy

way

of

migrating

the

Java

policy

file

from

Version

4.0.x

automatically

because

there

is

a

mixture

of

system

permissions

and

application

permissions

in

the

same

policy

file.

Manually

copy

the

Java

2

security

policy

for

enterprise

applications

to

a

was.policy

or

app.policy

file.

However,

migrating

the

Java

2

security

policy

to

a

was.policy

file

is

preferable

because

symbols

or

relative

codebase

is

used

instead

of

absolute

codebase.

There

are

many

advantages

to

this

process.

The

permissions

defined

in

the

was.policy

file

should

only

be

granted

to

the

specific

enterprise

application,

while

permissions

in

the

app.policy

file

apply

to

all

the

enterprise

applications

running

on

the

node

where

the

app.policy

file

belongs.

Refer

to

the

“Java

2

security

policy

files”

on

page

452

article

for

more

details

on

policy

management.

The

following

example

illustrates

the

migration

of

a

Java

2

security

policy

from

a

previous

release.

The

contents

include

the

Java

2

security

policy

file

(the

default

is

install_root/properties/java.policy)

for

the

app1.ear

enterprise

application

and

the

system

permissions

(permissions

granted

to

the

JVM

and

product

server

run

time).

Default

permissions

are

omitted

for

clarity:

//

For

product

Samples

grant

codeBase

″file:${install_root}/installedApps/app1.ear/-″

{

permission

java.security.SecurityPermission

″printIdentity″;

Chapter

2.

Securing

applications

and

their

environments

477

permission

java.io.FilePermission

″${install_root}${/}temp${/}somefile.txt″,

″read″;

};

For

clarity

of

illustration,

all

the

permissions

are

migrated

as

the

application

level

permissions

in

this

example.

However,

you

can

grant

permissions

at

a

more

granular

level

at

the

component

level

(Web,

enterprise

beans,

connector

or

utility

Java

archive

(JAR)

component

level)

or

you

can

grant

permissions

to

a

particular

component.

1.

Ensure

that

Java

2

security

is

disabled

on

the

application

server.

2.

Create

a

new

was.policy

file

(if

one

is

not

present)

or

update

the

was.policy

for

migrated

applications

in

the

configuration

repository

in

(config/cells/<cell_name>/applications/app.ear/deployments/app/META-
INF/was.policy)

with

the

following

contents:

grant

codeBase

″file:${application}″

{

permission

java.security.SecurityPermission

″printIdentity″;

permission

java.io.FilePermission

″

${user.install.root}${/}temp${/}somefile.txt″,

″read″;

};

The

third

and

fourth

lines

in

the

previous

code

sample

are

one

continuous

line,

but

extended

beyond

the

width

of

the

page.

3.

Use

the

Assembly

Toolkit

to

attach

the

was.policy

file

to

the

enterprise

archive

(EAR)

file.

You

also

can

use

the

Assembly

Toolkit

to

validate

the

contents

of

the

was.policy

file.

For

more

information,

see

“Configuring

the

was.policy

file”

on

page

463.

4.

Validate

that

the

enterprise

application

does

not

require

additional

permissions

to

the

migrated

Java

2

Security

permissions

and

the

default

permissions

set

declared

in

the

${was.install.root}/config/cells/cell_name/nodes/node_name/app.policy

file.

This

requires

code

review,

code

inspection,

application

documentation

review,

and

sandbox

testing

of

migrated

enterprise

applications

with

Java

2

security

enabled

in

a

pre-production

environment.

Refer

to

developer

kit

APIs

protected

by

Java

2

security

for

information

about

which

APIs

are

protected

by

Java

2

security.

If

you

use

third

party

libraries,

consult

the

vendor

documentation

for

APIs

that

are

protected

by

Java

2

security.

Verify

that

the

application

is

granted

all

the

required

permissions,

or

it

might

fail

to

run

when

Java

2

security

is

enabled.

5.

Perform

pre-production

testing

of

the

migrated

enterprise

application

with

Java

2

security

enabled.

Hint:

Enable

trace

for

the

WebSphere

Application

Server

Java

2

security

manager

in

the

pre-production

testing

environment

(with

trace

string:

com.ibm.ws.security.core.SecurityManager=all=enabled).

This

can

be

helpful

in

debugging

the

AccessControlException

exception

thrown

when

an

application

is

not

granted

the

required

permission

or

some

system

code

is

not

properly

marked

as

privileged.

The

trace

dumps

the

stack

trace

and

permissions

granted

to

the

classes

on

the

call

stack

when

the

exception

is

thrown.

For

more

information,

see

“AccessControlException”

on

page

446.

Note:

Because

the

Java

2

security

policy

is

much

more

stringent

compared

with

previous

releases,

it

is

strongly

advised

that

the

administrator

or

deployer

review

their

enterprise

applications

to

see

if

extra

permissions

are

required

before

enabling

Java

2

security.

If

the

enterprise

applications

are

not

granted

the

required

permissions,

they

fail

to

run.

478

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Troubleshooting

security

configurations

Refer

to

Security

components

troubleshooting

tips

for

instructions

on

how

to

troubleshoot

errors

related

to

security.

The

following

topics

explain

how

to

troubleshoot

specific

problems

related

to

configuring

and

enabling

security

configurations:

v

Errors

when

configuring

or

enabling

security

v

Errors

or

access

problems

after

enabling

security

v

Errors

after

enabling

Secure

Sockets

Layer

(SSL)

or

SSL-related

error

messages

For

more

information

on

these

topics,

see

the

InfoCenter.

Tuning

security

configurations

Performance

issues

typically

involve

trade-offs

between

function

and

speed.

Usually,

the

more

function

and

the

more

processing

involved,

the

slower

the

performance.

Consider

what

type

of

security

is

necessary

and

what

you

can

disable

in

your

environment.

For

example,

if

your

application

servers

are

running

in

a

Virtual

Private

Network

(VPN),

consider

whether

you

must

disable

Single

Sockets

Layer

(SSL).

If

you

have

a

lot

of

users,

can

they

be

mapped

to

groups

and

then

associated

to

your

J2EE

roles?

These

questions

are

things

to

consider

when

designing

your

security

infrastructure.

Complete

the

following

steps

for

general

security

tuning:

1.

Consider

disabling

Java

2

Security

Manager

if

you

know

exactly

what

code

is

put

onto

your

server

and

you

do

not

need

to

protect

process

resources.

Remember

that

in

doing

so,

you

put

your

local

resources

at

some

risk.

2.

Disable

security

for

the

specific

application

server

that

does

not

require

resource

protection

because

some

application

servers

do

not

have

protected

resources.

If

the

application

server

needs

to

go

downstream

with

credentials,

however,

this

action

might

not

be

feasible.

3.

Consider

propagating

new

security

settings

to

all

nodes

before

restarting

the

deployment

manager

and

node

agents

to

change

the

new

security

policy.

If

your

security

configurations

are

not

consistent

across

all

servers,

you

get

access

denied

errors.

Therefore,

you

must

propagate

new

security

settings

when

enabling

or

disabling

global

security

in

a

Network

Deployment

environment.

Configuration

changes

are

generally

propagated

using

configuration

synchronization.

If

auto-synchronization

is

enabled,

you

can

wait

for

the

automatic

synchronization

interval

to

pass,

or

you

can

force

synchronization

before

the

synchronization

interval

expires.

If

you

are

using

manual

synchronization,

you

must

synchronize

all

nodes.

If

the

cell

is

in

a

configuration

state

(the

security

policy

is

mixed

with

nodes

that

have

security

enabled

and

disabled)

you

can

use

the

syncNode

utility

to

synchronize

the

nodes

where

the

new

settings

are

not

propagated.

Refer

to

the

article,

Enabling

and

disabling

global

security

in

the

WebSphere

Application

Server

Network

Deployment

package

for

more

detailed

information

about

enabling

security

in

a

distributed

environment.

4.

Consider

increasing

the

cache

and

token

time-out

if

you

feel

your

environment

is

secure

enough.

By

doing

so,

you

have

to

re-authenticate

less

often.

This

action

supports

subsequent

requests

to

reuse

the

credentials

that

already

are

created.

The

downside

of

increasing

the

token

time-out

is

the

exposure

of

having

a

token

hacked

and

providing

the

hacker

more

time

to

hack

into

the

Chapter

2.

Securing

applications

and

their

environments

479

system

before

the

token

expires.

You

can

use

security

cache

properties

to

determine

the

initial

size

of

the

primary

and

secondary

hashtable

caches,

which

affect

the

frequency

of

rehashing

and

the

distribution

of

the

hash

algorithms.

See

the

article

Security

cache

types

and

sizes

for

a

list

of

these

properties.

5.

Consider

changing

your

administrative

connector

from

Simple

Object

Access

Protocol

(SOAP)

to

Remote

Method

Invocation

(RMI)

because

RMI

uses

stateful

connections

while

SOAP

is

completely

stateless.

Run

a

benchmark

to

determine

if

the

performance

is

improved

in

your

environment.

6.

Use

the

wsadmin

script

to

complete

the

access

IDs

for

all

the

users

and

or

groups

to

speed

up

the

application

startup.

Complete

this

action

if

applications

contain

many

users,

or

groups,

or

if

applications

are

stopped

and

started

frequently.

7.

Consider

tuning

the

Object

Request

Broker

(ORB)

because

it

is

a

factor

in

enterprise

bean

performance

with

or

without

security

enabled.

Refer

to

the

article,

ORB

tuning

guidelines.

Tuning

CSIv2

1.

Consider

using

SSL

client

certificates

instead

of

a

user

ID

and

password

to

authenticate

Java

clients.

Since

you

are

already

making

the

SSL

connection,

using

mutual

authentication

adds

little

overhead

while

removing

the

service

context

containing

the

user

ID

and

password

completely.

2.

If

you

send

a

large

amount

of

data

that

is

not

very

security

sensitive,

reduce

the

strength

of

your

ciphers.

The

more

data

you

have

to

bulk

encrypt

and

the

stronger

the

cipher,

the

longer

this

action

takes.

If

the

data

is

not

sensitive,

do

not

waste

your

processing

with

128-bit

ciphers.

3.

Consider

putting

just

an

asterisk

(*)

in

the

trusted

server

ID

list

(meaning

trust

all

servers)

when

you

use

Identity

Assertion

for

downstream

delegation.

Use

SSL

mutual

authentication

between

servers

to

provide

this

trust.

Adding

this

extra

step

in

the

SSL

handshake

performs

better

than

having

to

fully

authenticate

the

upstream

server

and

check

the

trusted

list.

When

an

asterisk

is

used,

we

simply

trust

the

identity

token.

The

SSL

connection

trusts

the

server

by

way

of

client

certificate

authentication.

4.

Ensure

that

stateful

sessions

are

enabled

for

Common

Secure

Interoperability

Version

2

(CSIv2).

This

is

the

default,

but

only

requires

authentication

on

the

first

request

and

any

subsequent

token

expirations.

5.

If

you

are

only

communicating

with

WebSphere

Application

Server

Version

5

servers,

make

the

Active

Authentication

Protocol

CSI,

instead

of

CSI

and

z/SAS

or

CSI

and

SAS.

This

action

removes

an

interceptor

invocation

for

every

request

on

both

the

client

and

server

sides.

6.

For

a

pure

Java

client,

you

can

disable

the

creation

of

server

sockets

used

for

Object

Request

Broker

(ORB)

callbacks.

Do

this

only

if

you

are

communicating

with

servers

running

WebSphere

Application

Server,

Version

5

or

later.

a.

In

the

sas.client.props

file,

add

com.ibm.CSI.claimTransportAssocSSLTLSRequired=false

and

com.ibm.CSI.claimTransportAssocSSLTLSSupported=false.

b.

Set

the

active

protocol

to

csiv2

instead

of

both

in

the

sas.client.props

file.

The

protocol

property

changes

to

com.ibm.CSI.protocol=csiv2.

Tuning

LDAP

authentication

1.

Select

the

Ignore

Case

check

box

in

the

WebSphere

Application

Server

LDAP

User

Registry

configuration,

when

case-sensitivity

is

not

important.

480

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

2.

Select

Reuse

Connections

in

the

WebSphere

Application

Server

LDAP

User

Registry

configuration.

3.

Check

to

see

which

caches

your

LDAP

server

has

and

take

advantage

of

them.

This

action

is

best

with

LDAP

servers

that

do

not

change

frequently.

4.

Choose

the

directory

type

of

either

IBM_Directory_Server

or

SecureWay,

if

you

are

using

an

IBM

Directory

Server.

The

IBM

Directory

Server

yields

improved

performance

because

it

is

programmed

to

use

the

new

group

membership

attributes

to

improve

group

membership

searches.

However,

it

is

required

that

authorization

is

case

insensitive

to

use

IBM

Directory

Server.

5.

Choose

either

iPlanet

Directory

Server

(also

known

as

Sun

ONE)

or

Netscape

as

the

directory

if

you

are

an

iPlanet

Directory

user.

Using

the

iPlanet

Directory

Server

directory

increases

performance

in

group

membership

lookup.

However,

only

use

Role

for

group

mechanisms.

Tuning

Web

authentication

1.

Consider

increasing

the

cache

and

token

time-out

if

you

feel

your

environment

is

secure

enough.

The

Web

authentication

information

is

stored

in

these

caches

and

as

long

as

the

authentication

information

is

in

the

cache,

the

login

module

is

not

invoked

to

authenticate

the

user.

This

supports

subsequent

requests

to

reuse

the

credentials

already

created.

The

downside

of

increasing

the

token

time-out

is

the

exposure

of

having

a

token

stolen

and

providing

the

thief

more

time

to

hack

into

the

system

before

the

token

expires.

See

the

article

Security

cache

types

and

sizes

for

a

list

of

these

properties.

2.

Consider

enabling

single

singon

(SSO).

SSO

is

only

available

when

you

select

LTPA

as

the

authentication

mechanism

in

the

Global

Security

panel.

When

you

select

SSO,

a

single

authentication

to

one

application

server

is

enough

to

make

requests

to

multiple

application

servers

in

the

same

SSO

domain.

There

are

some

situations

where

SSO

is

not

desirable

and

should

not

be

used

in

those

situations.

3.

Consider

disabling

or

enabling

the

Web

Inbound

Security

Attribute

Propagation

option

on

the

SSO

panel

if

the

function

is

not

required.

In

some

cases,

having

the

function

enabled

improves

performance.

This

improvement

is

most

likely

for

higher

volume

cases

where

a

considerable

number

of

user

registry

calls

reduces

performance.

In

other

cases,

having

the

feature

disabled

improves

performance.

This

improvement

is

most

likely

when

the

user

registry

calls

do

not

take

considerable

resources.

Tuning

authorization

1.

Consider

mapping

your

users

to

groups

in

the

user

registry.

Then

associate

the

groups

with

your

J2EE

roles.

This

association

greatly

improves

performance

as

the

number

of

users

increases.

2.

Judiciously

assign

method-permissions

for

enterprise

beans.

For

example,

you

can

use

an

asterisk

(*)

to

indicate

all

methods

in

the

method-name

element.

When

all

the

methods

in

enterprise

beans

require

the

same

permission,

use

an

asterisk

(*)

for

the

method-name

to

indicate

all

methods.

This

indication

reduces

the

size

of

deployment

descriptors

and

reduces

the

memory

required

to

load

the

deployment

descriptor.

It

also

reduces

the

search

time

during

method-permission

match

for

the

enterprise

beans

method.

3.

Judiciously

assign

security-constraints

for

servlets.

For

example,

you

can

use

the

URL

pattern

*.jsp

to

apply

the

same

authentication

data

constraints

to

indicate

all

JSP

files.

For

a

given

URL,

the

exact

match

in

the

deployment

descriptor

takes

precedence

over

the

longest

path

match.

Use

the

extension

Chapter

2.

Securing

applications

and

their

environments

481

match

(*.jsp,

*.do,

*.html)

if

there

is

no

exact

match

and

longest

path

match

for

a

given

URL

in

the

security

constraints.

There

is

always

a

trade

off

between

performance,

feature

and

security.

Security

typically

adds

more

processing

time

to

your

requests,

but

for

a

good

reason.

Not

all

security

features

are

required

in

your

environment.

When

you

decide

to

tune

security,

you

should

create

a

benchmark

before

making

any

change

to

ensure

the

change

is

improving

performance.

In

a

large

scale

deployment,

performance

is

very

important.

Running

benchmark

measurements

with

different

combinations

of

features

can

help

you

to

determine

the

best

performance

versus

the

benefit

configuration

for

your

environment.

Continue

to

run

benchmarks

if

anything

changes

in

your

environment,

to

help

determine

the

impact

of

these

changes.

Security

cache

properties

The

following

system

properties

determine

the

initial

size

of

the

primary

and

secondary

hash

table

caches,

which

affect

the

frequency

of

rehashing

and

the

distribution

of

the

hash

algorithms.

The

larger

the

number

of

available

hash

values,

the

less

likely

a

hash

collision

occurs,

retrieval

time

might

be

slower.

If

several

entries

compose

a

hash

table

cache,

creating

the

table

in

a

larger

capacity

supports

more

efficient

hash

entries

than

letting

automatic

rehashing

determine

the

growth

of

the

table.

Rehashing

causes

every

entry

to

move

each

time.

com.ibm.websphere.security.util.authCacheEnabled

This

property

determines

whether

the

Subject

cache

is

enabled

for

the

process.

When

the

Subject

cache

is

disabled,

a

new

Java

Authentication

and

Authorization

Service

(JAAS)

login

occurs

for

every

request,

which

results

in

a

performance

degradation.

Disable

the

Subject

cache

with

caution.

com.ibm.websphere.security.util.tokenCacheSize

This

cache

stores

LTPA

credentials

in

the

cache

using

the

LTPA

token

as

a

lookup

value.

When

using

an

LTPA

token

to

log

in,

the

LTPA

credential

is

created

at

the

security

server

for

the

first

time.

This

cache

prevents

the

need

to

go

to

the

security

server

on

subsequent

logins

using

an

LTPA

token.

com.ibm.websphere.security.util.LTPAValidationCacheSize

Given

the

credential

token

for

login,

this

cache

returns

the

concrete

LTPA

credential

object,

without

the

need

to

revalidate

at

the

security

server.

If

the

token

has

expired,

revalidation

is

required.

Secure

Sockets

Layer

performance

tips

The

following

are

two

types

of

Secure

Sockets

Layer

(SSL)

performance:

v

Handshake

v

Bulk

encryption

and

decryption

When

an

SSL

connection

is

established,

an

SSL

handshake

occurs.

After

a

connection

is

made,

SSL

performs

bulk

encryption

and

decryption

for

each

read-write.

The

performance

cost

of

an

SSL

handshake

is

much

larger

than

that

of

bulk

encryption

and

decryption.

To

enhance

SSL

performance,

decrease

the

number

of

individual

SSL

connections

and

handshakes.

Decreasing

the

number

of

connections

increases

performance

for

secure

communication

through

SSL

connections,

as

well

as

non-secure

communication

482

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

through

simple

TCP/IP

connections.

One

way

to

decrease

individual

SSL

connections

is

to

use

a

browser

that

supports

HTTP

1.1.

Decreasing

individual

SSL

connections

can

be

impossible

if

you

cannot

upgrade

to

HTTP

1.1.

Another

common

approach

is

to

decrease

the

number

of

connections

(both

TCP/IP

and

SSL)

between

two

WebSphere

Application

Server

components.

The

following

guidelines

help

to

verify

the

HTTP

transport

of

the

application

server

is

configured

so

that

the

Web

server

plug-in

does

not

repeatedly

reopen

new

connections

to

the

application

server:

v

Verify

that

the

maximum

number

of

keep

alives

are,

at

minimum,

as

large

as

the

maximum

number

of

requests

per

thread

of

the

Web

server

(or

maximum

number

of

processes

for

IBM

HTTP

Server

on

UNIX).

Make

sure

that

the

Web

server

plug-in

is

capable

of

obtaining

a

keep

alive

connection

for

every

possible

concurrent

connection

to

the

application

server.

Otherwise,

the

application

server

closes

the

connection

after

a

single

request

is

processed.

Also,

the

maximum

number

of

threads

in

the

Web

container

thread

pool

should

be

larger

than

the

maximum

number

of

keep

alives,

to

prevent

the

keep

alive

connections

from

consuming

the

Web

container

threads.

v

Increase

the

maximum

number

of

requests

per

keep

alive

connection.

The

default

value

is

100,

which

means

the

application

server

closes

the

connection

from

the

plug-in

after

100

requests.

The

plug-in

then

has

to

open

a

new

connection.

The

purpose

of

this

parameter

is

to

prevent

denial

of

service

attacks

when

connecting

to

the

application

server

and

preventing

continuous

send

requests

to

tie

up

threads

in

the

application

server.

v

Use

a

hardware

accelerator

if

the

system

performs

several

SSL

handshakes.

Hardware

accelerators

currently

supported

by

WebSphere

Application

Server

only

increase

the

SSL

handshake

performance,

not

the

bulk

encryption

and

decryption.

An

accelerator

typically

only

benefits

the

Web

server

because

Web

server

connections

are

short-lived.

All

other

SSL

connections

in

WebSphere

Application

Server

are

long-lived.

v

Use

an

alternative

cipher

suite

with

better

performance.

The

performance

of

a

cipher

suite

is

different

with

software

and

hardware.

Just

because

a

cipher

suite

performs

better

in

software

does

not

mean

a

cipher

suite

will

perform

better

with

hardware.

Some

algorithms

are

typically

inefficient

in

hardware

(for

example,

DES

and

3DES),

however,

specialized

hardware

can

provide

efficient

implementations

of

these

same

algorithms.

The

performance

of

bulk

encryption

and

decryption

is

affected

by

the

cipher

suite

used

for

an

individual

SSL

connection.

The

following

chart

displays

the

performance

of

each

cipher

suite.

The

test

software

calculating

the

data

was

Java

Secure

Socket

Extension

(JSSE)

for

both

the

client

and

server

software,

which

used

no

crypto

hardware

support.

The

test

did

not

include

the

time

to

establish

a

connection,

but

only

the

time

to

transmit

data

through

an

established

connection.

Therefore,

the

data

reveals

the

relative

SSL

performance

of

various

cipher

suites

for

long

running

connections.

Before

establishing

a

connection,

the

client

enables

a

single

cipher

suite

for

each

test

case.

After

the

connection

is

established,

the

client

times

how

long

it

takes

to

write

an

integer

to

the

server

and

for

the

server

to

write

the

specified

number

of

bytes

back

to

the

client.

Varying

the

amount

of

data

had

negligible

effects

on

the

Chapter

2.

Securing

applications

and

their

environments

483

relative

performance

of

the

cipher

suites.

0

100

200

300

400

SSL_RSA_WITH_RC4_128_MD5

SSL_RSA_WITH_RC4_128_SHA

SSL_RSA_WITH_DES_CBC_SHA

SSL_RSA_WITH_3DES_EDE_CBC_SHA

SSL_DHE_RSA_WITH_DES_CBC_SHA

SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA

SSL_DHE_DSS_WITH_DES_CBC_SHA

SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA

SSL_RSA_EXPORT_WITH_RC4_40_MD5

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5

SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA

SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA

SSL_RSA_WITH_NULL_MD5

SSL_RSA_WITH_NULL_SHA

NONE(TCP/IP no SSL)

An

analysis

of

the

above

data

reveals

the

following:

v

Bulk

encryption

performance

is

only

affected

by

what

follows

the

WITH

in

the

cipher

suite

name.

This

is

expected

since

the

portion

before

the

WITH

identifies

the

algorithm

used

only

during

the

SSL

handshake.

v

MD5

and

SHA

are

the

two

hash

algorithms

used

to

provide

data

integrity.

MD5

is

25%

faster

than

SHA,

however,

SHA

is

more

secure

than

MD5.

v

DES

and

RC2

are

slower

than

RC4.Triple

DES

is

the

most

secure,

but

the

performance

cost

is

high

when

using

only

software.

v

The

cipher

suite

providing

the

best

performance

while

still

providing

privacy

is

SSL_RSA_WITH_RC4_128_MD5.

Even

though

SSL_RSA_EXPORT_WITH_RC4_40_MD5

is

cryptographically

weaker

than

RSA_WITH_RC4_128_MD5,

the

performance

for

bulk

encryption

is

the

same.

Therefore,

as

long

as

the

SSL

connection

is

a

long-running

connection,

the

difference

in

the

performance

of

high

and

medium

security

levels

is

negligible.

It

is

recommended

that

a

security

level

of

high

be

used,

instead

of

medium,

for

all

components

participating

in

communication

only

among

WebSphere

Application

Server

products.

Make

sure

that

the

connections

are

long

running

connections.

Tuning

security

Enabling

security

decreases

performance.

The

following

tuning

parameters

give

you

considerations

for

increasing

performance.

v

Disable

security

on

any

application

servers

that

does

not

need

security.

You

can

disable

security

by

clicking

Servers

>

Application

servers

>

server_name.

Under

Additional

properties,

click

Server

Security

>

Server

level

security.

Disable

the

Enabled

option.

v

Fine

tune

Cache

time-out

in

“Global

security

settings”

on

page

140.

v

Configure

“Security

cache

properties”

on

page

482.

v

Enable

SSL

session

tracking

mechanism

as

described

in

Session

Management

settings.

v

Improve

the

performance

of

Web

services

security

by

downloading

a

Java

Cryptography

Extension

(JCE)

jurisdiction

policy

file

that

does

not

have

restrictions

on

cryptography

strength

from

Tuning

Web

services

security.

484

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

v

You

can

also

read

about

“Secure

Sockets

Layer

performance

tips”

on

page

482

and

“Tuning

security

configurations”

on

page

479.

Chapter

2.

Securing

applications

and

their

environments

485

486

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Chapter

3.

Integrating

IBM

WebSphere

Application

Server

security

with

existing

security

systems

WebSphere

Application

Server

plays

an

integral

part

of

the

multiple-tier

enterprise

computing

framework.

WebSphere

Application

Server

adopts

the

open

architecture

paradigm

and

provides

many

plug-in

points

to

integrate

with

enterprise

software

components

to

provide

end-to-end

security.

WebSphere

Application

Server

plug-in

points

are

based

on

standard

J2EE

specifications

wherever

applicable.

WebSphere

Application

Server

is

actively

involved

in

various

standard

bodies

to

externalize

and

to

standardize

plug-in

interfaces.

In

the

following

example,

several

typical

multiple-tier

enterprise

network

configurations

are

discussed.

In

each

case,

various

WebSphere

Application

Server

plug-in

points

are

used

to

integrate

with

other

business

components.

The

discussion

starts

with

a

basic

multiple-tier

enterprise

network

configuration:

A

list

of

terms

used

in

this

discussion

follows:

Protocol

firewall

Prevents

unauthorized

access

from

the

Internet

to

the

demilitarized

zone.

The

role

of

this

node

is

to

provide

the

Internet

traffic

access

only

on

certain

ports

and

to

block

other

IP

ports.

WebSphere

Application

Server

plug-in

Redirects

all

the

requests

for

servlets

and

JSP

pages.

Also

referred

to

in

WebSphere

Application Server

Version 5

Access manager

(Authorization)

Security Role-based

authorization engine

Principal/

credential

mapping

J2EE

connector

Trust

association

interceptor

CSIv2 security protocol

Application

server

Enterprise

Information

System

Secure reverse

proxy server

JAAS

login module
User registry

Credential

mapping

Security server

(Authentication)

UserRegistry

interface

JAAS

login module

©

Copyright

IBM

Corp.

2004

487

WebSphere

Application

Server

literature

as

Web

server

redirector

was

introduced

to

separate

Web

server

from

application

server.

The

advantage

of

using

Web

server

redirector

is

that

you

can

move

an

application

server

and

all

the

application

business

logic

behind

the

domain

firewall.

Domain

firewall

Prevents

unauthorized

access

from

the

demilitarized

zone

to

an

internal

network.

The

role

of

this

firewall

is

to

allow

the

network

traffic

originating

from

the

demilitarized

zone

and

note

from

the

Internet.

Directory

Provides

information

about

the

users

and

their

rights

in

the

Web

application.

The

information

can

contain

user

IDs,

passwords,

certificates,

access

groups,

and

so

forth.

This

node

supplies

the

information

to

the

security

services

like

authentication

and

authorization

service.

Enterprise

information

system

Represents

existing

enterprise

applications

and

business

data

in

back-end

databases.

WebSphere

Application

Server

provides

the

infrastructure

to

run

application

business

logic

and

communicate

with

internal

back-end

systems

and

databases

Web

applications

and

enterprise

beans

can

access.

WebSphere

Application

Server

has

a

built

in

HTTPS

server

that

can

accept

client

requests.

A

typical

configuration,

however,

places

WebSphere

Application

Server

behind

the

domain

firewall

for

better

protection.

A

WebSphere

Application

Server

plug-in

to

Web

server

configuration

can

redirect

Web

requests

to

WebSphere

Application

Server.

WebSphere

Application

Server

provides

plug-ins

for

many

popular

Web

servers.

You

can

configure

WebSphere

Application

Server

and

the

Web

server

plug-in

to

communicate

through

secure

SSL

channels.

You

can

configure

a

WebSphere

Application

Server

HTTP

server

to

open

communication

channels

only

with

a

restricted

set

of

Web

server

plug-ins.

You

can

configure

the

HTTP

server

to

require

client

certificate

authentication

with

self-signed

certificates

and

to

trust

only

the

signer

certificate.

For

instructions

on

how

to

generate

self-signed

certificates

and

how

to

set

up

secure

communications

channels

between

an

HTTP

server

and

the

WebSphere

Application

Server

plug-in,

refer

to

Configuring

IHS

plug-in

and

the

Internal

Web

Server

for

SSL

and

Configuring

IHS

for

SSL

Mutual

Authentication.

488

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

The

WebSphere

Application

Server

plug-in

routes

HTTP

requests

according

to

the

virtual

host

and

port

configuration

and

the

URL

pattern

matching.

Client

authentication

and

finer

grained

access

control

are

handled

by

WebSphere

Application

Server

behind

the

firewall.

In

cases

where

the

Web

server

can

contain

sensitive

data

and

direct

access

is

not

desirable,

the

following

configuration

uses

Tivoli

WebSEAL

to

shield

a

Web

server

from

unauthorized

requests.

WebSEAL

is

a

Reverse

Proxy

Security

Server

(RPSS)

that

uses

Tivoli

Access

Manager

to

perform

coarse-grained

access

control

to

filter

out

unauthorized

requests

before

they

reach

the

domain

firewall.

WebSEAL

uses

Tivoli

Access

Manager

to

perform

access

control

as

illustrated

in

the

picture.

WebSphere

Application

Server

supports

various

user

registry

implementations

through

the

pluggable

user

registry

interface.

WebSphere

Application

Server

ships

a

Local

OS

user

registry

implementation

for

Windows,

AIX,

AS/400,

and

Lightweight

Directory

Access

Protocol

(LDAP).

WebSphere

Application

Server

also

supports

users

in

developing

their

own

custom

registry

and

plug-in

through

the

pluggable

user

registry

interface.

When

integrated

with

a

third

party

security

provider,

WebSphere

Application

Server

can

share

the

user

registry

with

the

third-party

security

provider.

In

the

particular

example

of

integrating

with

WebSEAL,

you

can

configure

WebSphere

Application

Server

to

use

the

LDAP

user

registry,

which

can

be

shared

with

WebSEAL

and

Tivoli

Access

Manager.

Moreover,

you

can

configure

WebSphere

Application

Server

to

use

the

Light

Weight

Third

Party

(LTPA)

authentication

mechanism,

which

supports

the

Trust

Association

Interceptor

plug-in

point.

Basically,

the

RPSS

performs

authentication

and

adds

proper

authentication

data

into

the

request

header

and

then

redirects

the

request

to

Web

server.

A

trust

relationship

is

formed

between

an

RPSS

and

WebSphere

Application

Server,

and

the

RPSS

can

assert

client

identity

to

WebSphere

Application

Server

to

achieve

single

signon

between

RPSS

and

WebSphere

Application

Server.

When

the

request

is

forward

to

WebSphere

Application

Server,

WebSphere

Application

Server

uses

the

TAI

plug-in

for

the

particular

RPSS

server

to

evaluate

the

trust

relationship

and

to

extract

the

authenticated

client

identity.

WebSphere

Application

Server

then

Browser

In
te

rn
e
t

Demilitarized Zone

(DMZ)

Database

(DB2 V7.1

and so on)

MQ

CICS

IBM Directory

(LDAP)

Internet Enterprise

Information

Systems

D
o
m

a
in

fi
re

w
a
ll

P
ro

to
c
o
l
fi
re

w
a
ll

WebSphere

Application

Server

Web

server

WebSphere

Application

Server plug-in

Chapter

3.

Integrating

IBM

WebSphere

Application

Server

security

with

existing

security

systems

489

maps

the

client

identity

to

a

WebSphere

Application

Server

security

credential.

For

instructions

on

setting

up

a

trust

association

interceptor,

refer

to

Trust

associations,

Configuring

trust

association

interceptors.

When

configured

to

use

the

LDAP

user

registry,

WebSphere

Application

Server

uses

LDAP

to

perform

authentication.

The

client

ID

and

password

are

passed

from

WebSphere

Application

Server

to

the

LDAP

server.

You

can

configure

WebSphere

Application

Server

to

set

up

an

SSL

connection

to

LDAP

so

that

passwords

are

not

passed

in

plain

text.

To

set

up

an

SSL

connection

from

WebSphere

Application

Server

to

the

LDAP

server,

refer

to

Configuring

SSL

for

the

LDAP

client.

WebSphere

Application

Server

Version

5

supports

the

J2EE

Connector

Architecture

(JCA).

The

connector

architecture

defines

a

standard

interface

for

WebSphere

Application

Server

to

connect

to

heterogeneous

enterprise

information

systems

(EIS).

Examples

of

EIS

includes

database

systems,

transaction

processing

such

as

CICS,

and

messaging

such

as

Message

Queue

(MQ).

The

EIS

implementation

can

perform

authentication

and

access

control

to

protect

business

data

and

resources.

Resource

Adapters

authenticate

EIS.

The

authentication

data

can

be

provided

either

by

application

code

or

by

WebSphere

Application

Server.

WebSphere

Application

Server

provides

a

principal

mapping

plug-in

point.

A

principal

mapping

module

plug-in

maps

the

authenticated

client

principal

to

a

password

credential,

(that

is,

user

ID

and

password,

for

the

EIS

security

domain).

WebSphere

Application

Server

ships

a

default

principal

mapping

module,

which

maps

any

authenticated

client

principal

to

a

configured

pair

of

user

IDs

and

passwords.

Each

connector

can

be

configured

to

use

a

different

set

of

IDs

and

passwords.

For

a

description

on

how

to

configure

JCA

principal

mapping

user

IDs

and

passwords,

refer

to

Managing

J2C

Authentication

Data

Entries.

A

principal

mapping

module

is

a

special

purpose

Java

Authentication

and

Authorization

Service

(JAAS)

login

module.

You

can

develop

your

own

principal

mapping

module

to

fit

your

particular

business

application

environment.

For

detailed

steps

on

developing

and

configuring

a

custom

principal

mapping

module,

refer

to

the

articles,

Developing

Browser

In
te

rn
e
t

Reverse

proxy security

server

(WebSeal,

and so on)

Demilitarized Zone

(DMZ)

Database

(DB2 V7.1

and so on)

MQ

CICS

IBM Directory

(LDAP)

Internet Enterprise

Information

Systems

D
o
m

a
in

fi
re

w
a
ll

P
ro

to
c
o
l
fi
re

w
a
ll

WebSphere

Application

Server

Web

server

WebSphere

Application

Server plug-in

Trust

Association

Interceptor

Third-party

security provider

(Tivoli Access Manager,

and so on)

490

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

your

own

Java

2

security

mapping

module

underneath

JAAS

Programmatic

Login

and

Managing

Java

Authentication

and

Authorization

Service

(JAAS)

Login

Configuration.

Security

and

WebSphere

MQseries

It

is

important

to

note

that

security

logging

information

on

UNIX

systems

is

not

protected

because

of

the

world-writeable

files

in

the

/var

file

system

of

MQseries.

MQseries

ships

the

following

files

with

its

product:

v

-rw-rw-rw-

/var/mqm/errors/AMQERR01.LOG

v

-rw-rw-rw-

/var/mqm/errors/AMQERR02.LOG

v

-rw-rw-rw-

/var/mqm/errors/AMQERR03.LOG

The

previously

mentioned

files

are

world-writeable

and

enable

any

users

on

the

system

to

fill

up

the

/var

file

system

where

all

the

security

logging

information

is

stored.

This

leaves

the

security

information

unprotected

because

anyone

can

access

the

logging

information

without

being

tracked.

To

work

around

this

problem,

create

a

file

system

for

the

embedded

messaging

component

working

data

on

UNIX.

Before

you

install

the

embedded

messaging

component

of

WebSphere

Application

Server

on

UNIX

platforms,

consider

creating

and

mounting

a

journalized

file

system

called

/var/mqm.

Use

a

partition

strategy

with

a

separate

volume

for

the

WebSphere

MQ

data.

This

means

that

other

system

activity

is

not

affected

if

a

large

amount

of

WebSphere

MQ

work

builds

up.

To

determine

the

size

of

the

/var/mqm

file

system

for

a

server

installation,

consider

the

following:

v

Maximum

number

of

messages

in

the

system

at

one

time

v

Contingency

for

message

buildups,

if

there

is

a

system

problem

v

Average

size

of

the

message

data,

plus

500

bytes

for

the

message

header

v

Number

of

queues

v

Size

of

log

files

and

error

messages

Allow

50MB

as

a

minimum

for

a

WebSphere

MQ

server.

You

need

less

space

in

the

/var/mqm

file

system

for

a

WebSphere

MQ

client

(typically

15MB).

Interoperability

issues

for

security

To

have

interoperability

of

Security

Authentication

Service

(SAS)

between

C++

and

WebSphere

Application

Server,

use

the

Common

Secure

Interoperability

Version

2

(CSIv2)

authentication

protocol

over

Remote

Method

Invocation

over

the

Internet

Inter-ORB

Protocol

(RMI-IIOP).

To

have

interoperability

of

SAS

between

WebSphere

Application

Server

and

WebSphere

Application

Server

for

z/OS

use

the

zSAS

authentication

protocol

over

RMI-IIOP.

Interoperability

with

C++

common

object

request

broker

architecture

client

support

and

limitations

In

addition

to

the

WebSphere

base

installation,

you

can

choose

from

two

types

of

C++

common

object

request

broker

architecture

(CORBA)

client

support,

IBM

WebSphere

Application

Server

Enterprise,

Version

5

or

WebSphere

Application

Server

Client

Version

5.

If

you

plan

to

develop

or

rebuild

your

own

C++

client

applications,

then

the

Enterprise

version

is

required.

It

installs

tools,

libraries,

and

include

files

for

the

build

environment

in

selecting

C++

CORBA

client

software

development

kit

(SDK).

Otherwise,

a

client

installation

suffices

to

run

your

C++

Chapter

3.

Integrating

IBM

WebSphere

Application

Server

security

with

existing

security

systems

491

client

applications

with

security.

In

Version

5,

WebSphere

Application

Server

supports

the

C++

CORBA

client

on

the

Windows

2000,

Windows

NT,

Linux,

and

AIX

operating

systems

and

the

Solaris

operating

environment.

Secure

Sockets

Layer

Version

2

(SSLV2)

cipher

suites

are

not

supported.

In

Version

5,

only

the

most

commonly

used

ciphers

among

Java

Secure

Socket

Extension

(JSSE)

and

Global

Security

Kit

(GSkit)

are

supported.

Since

the

WebSphere

Enterprise

CORBA

C++

Client

has

only

implemented

security

on

the

transport

layer,

other

authentication

mechanisms

such

as

user

ID

and

password

(Basic

Authentication)

are

not

supported.

Interoperating

with

a

C++

common

object

request

broker

architecture

client

You

can

achieve

interoperability

of

Security

Authentication

Service

between

the

C++

Common

Object

Request

Broker

Architecture

(CORBA)

client

and

WebSphere

Application

Server

using

Common

Secure

Interoperability

Version

2

(CSIv2)

authentication

protocol

over

Remote

Method

Invocation

over

the

Internet

Inter-ORB

Protocol

(RMI-IIOP).

The

CSIv2

security

service

protocol

has

authentication,

attribute

and

transport

layers.

Among

the

three

layers,

transport

authentication

is

conceptually

simple,

however,

cryptographically

based

transport

authentication

is

the

strongest.

WebSphere

Application

Server

Enterprise

has

implemented

the

transport

authentication

layer,

so

that

C++

secure

CORBA

clients

can

use

it

effectively

in

making

CORBA

clients

and

protected

enterprise

bean

resources

work

together.

Security

authentication

from

non-Java

based

C++

client

to

enterprise

beans.

WebSphere

Application

Server

supports

security

in

the

CORBA

C++

client

to

access

protected

enterprise

beans.

If

configured,

C++

CORBA

clients

can

access

protected

enterprise

bean

methods

using

client

certificate

to

achieve

mutual

authentication

on

WebSphere

Application

Server

Enterprise

applications.

To

support

the

C++

CORBA

client

in

accessing

protected

enterprise

beans:

v

Create

an

environment

file

for

the

client,

such

as

current.env.

Set

the

variables

listed

below

(security_sslKeyring,

client_protocol_user,

client_protocol_password)

in

the

file.

v

Point

to

the

environment

file

using

the

fully

qualified

pathname

through

the

environment

variable

WAS_CONFIG_FILE.

For

example,

in

the

test

shell

script

test.sh,

export

WAS_CONFIG_FILE=/WebSphere/V5R0M0/AppServer/bin/current.env.

C++

security

setting

Description

client_protocol_password

Specifies

the

password

for

the

user

ID.

client_protocol_user

Specifies

the

user

ID

to

be

authenticated

at

the

target

server.

security_sslKeyring

Specifies

the

name

of

the

RACF

keyring

the

client

will

use.

The

keyring

must

be

defined

under

the

user

ID

that

is

issuing

the

command

to

run

the

client.

To

support

the

C++

CORBA

client

in

accessing

protected

enterprise

beans:

492

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

1.

Obtain

a

valid

certificate

to

represent

the

client

and

export

its

public

key

to

the

target

enterprise

bean

server.

A

valid

certificate

is

needed

to

represent

the

C++

client.

Request

a

certificate

from

the

certificate

authority

(CA)

or

create

a

self-signed

certificate

for

testing

purposes.

Use

the

Key

Management

Utility

from

the

Global

Security

Kit

(GSKit)

to

extract

the

public

key

from

the

personal

certificate

and

save

it

in

the

.arm

format.

For

details,

see

the

related

information

about

how

to

extract

the

personal

certificate

of

the

public

key.

2.

Prepare

a

truststore

file

for

WebSphere

Application

Server.

Add

the

extracted

client

public

key

in

the

.arm

file

from

the

client

to

the

server

key

truststore

file.

The

server

can

now

authenticate

the

client.

Note:

This

is

done

by

invoking

the

Key

Management

Utility

through

ikeyman.bat

or

ikeyman.sh

from

WebSphere

Application

Server

installation.

For

details,

see

the

article

on

Adding

truststore

files.

3.

Configure

WebSphere

Application

Server

to

support

SSL

as

the

authentication

mechanism.

a.

Start

the

administrative

console.

b.

Locate

the

application

server

that

has

the

target

enterprise

bean

deployed

and

configure

it

to

use

SSL

client

certificate

authentication.

If

it

is

a

base

installation,

go

to

Security

>

Authentication

Protocol

>

CSIv2

Inbound

Authentication

then

select

Supported

for

Basic

Authentication

and

Client

Certificate

Authentication

and

leave

the

rest

as

defaults.

Go

to

the

CSIv2

Inbound

Transport

and

make

sure

SSL-Supported

is

selected.

If

it

is

a

Network

Deployment

setting,

go

to

Server

>

Application

Server

>

server_name_where_EJB_resides

>

Server

Security

>

CSI

Authentication

Inbound.

Then

select

Supported

for

Basic

Authentication

and

Client

Certificate

Authentication.

Leave

the

rest

as

defaults.

Go

to

CSI

Transport

>

Inbound

to

make

sure

SSL-Supported

is

selected.

For

details,

see

the

security

articles

Configuring

CSIv2

inbound

authentication

and

Configuring

CSIv2

inbound

transport.

c.

Restart

the

application

server.

The

WebSphere

Application

Server

is

ready

to

take

a

C++

CORBA

security

client

and

a

mutually

authenticated

server

and

client

by

using

SSL

in

the

transport

layer.
4.

Configure

the

C++

CORBA

client

to

use

a

certificate

in

performing

the

mutual

authentication.

Client

users

are

accustomed

to

using

property

files

in

their

applications

because

they

are

helpful

in

specifying

configuration

settings.

The

following

list

presents

important

C++

security

settings:

C++

security

setting

Description

com.ibm.CORBA.bootstrapHostName=ricebella.austin.ibm.com

Specifies

the

target

host

name.

com.ibm.CORBA.securityEnabled=yes

Enables

security.

com.ibm.CSI.performTLClientAuthenticationSupported=yes

Ensures

client

is

supporting

mutual

authentication

by

certificate

com.ibm.CSI.performTransportAssocSSLTLSSupported=yes

Ensures

SSL

is

used,

not

TCP/IP

com.ibm.ssl.keyFile=C:/ricebella/etc/DummyKeyRingFile.KDB

Specifies

which

key

database

file

to

use.

Chapter

3.

Integrating

IBM

WebSphere

Application

Server

security

with

existing

security

systems

493

com.ibm.ssl.keyPassword=WebAS

Specifies

the

password

for

opening

the

key

database

file.

WebSphere

Application

Server

supports

a

utility

called

PasswordEncode4cpp

to

encode

the

plain

password.

com.ibm.CORBA.translationEnabled=1

Enables

the

valueType

conversion.

To

use

the

property

files

in

running

a

C++

client,

an

environment

variable

WASPROPS,

is

used

to

indicate

where

a

property

file

or

a

list

of

property

files

exist.

For

the

complete

set

of

C++

client

properties,

see

the

sample

property

file

scclient.props,

which

is

shipped

with

the

product

located

in

the

$install_root\etc

directory.

Interoperating

with

previous

product

versions

IBM

WebSphere

Application

Server,

Version

5

interoperates

with

the

previous

product

versions

(such

as

Version

4

and

Version

3.5).

Interoperability

is

achieved

only

when

the

Lightweight

Third

Party

Authentication

(LTPA)

authentication

mechanism

and

Lightweight

Directory

Access

Protocol

(LDAP)

user

registry

are

used.

Credentials

derived

from

Simple

WebSphere

Authentication

Mechanisms

(SWAM)

are

not

forwardable.

1.

Enable

security

with

the

LTPA

authentication

mechanism

and

the

LDAP

user

registry.

Make

sure

that

the

same

LDAP

user

registry

is

shared

by

all

the

product

versions.

2.

Extract

and

add

Version

5

server

certificates

into

the

server

key

ring

file

of

the

previous

version.

a.

Open

the

Version

5

server

key

ring

file

using

the

key

management

utility

(iKeyman)

and

extract

the

server

certificate

to

a

file.

b.

Open

the

server

key

ring

of

the

previous

product

version,

using

the

key

management

utility

and

add

the

certificate

extracted

from

product

Version

5.
3.

Extract

and

add

Version

5

trust

certificates

into

the

trust

key

ring

file

of

the

previous

product

version.

a.

Open

the

Version

5

trust

key

ring

file

using

the

key

management

utility

and

extract

the

trust

certificate

to

a

file.

b.

Open

the

trust

key

ring

file

of

the

previous

product

version

using

the

key

management

utility

and

add

the

certificate

extracted

from

Version

5.
4.

If

single

signon

(SSO)

is

enabled,

export

keys

from

the

Version

5

product

and

import

them

into

the

previous

product

version.

The

Version

4

product

requires

the

fix,

PQ61779,

and

the

Version

3.5

product

requires

the

fix,

PQ59667,

for

SSO

to

function.

5.

Verify

that

the

application

uses

the

correct

JNDI

name.

In

Version

5,

the

enterprise

beans

are

registered

with

long

JNDI

names

like,

(top)/nodes/node_name/servers/server_name/HelloHome.

Whereas

in

previous

releases,

enterprise

beans

are

registered

under

a

root

like,

(top)/HelloHome.

Therefore,

EJB

applications

from

previous

versions

perform

a

lookup

on

the

Version

5

enterprise

beans.

You

can

also

create

EJB

name

bindings

in

Version

5

that

are

compatible

with

the

previous

version.

To

create

an

EJB

name

binding

at

the

root

Version

5,

start

the

administrative

console

and

click

Environment

>

Naming

>

Naming

Space

494

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Bindings

>

New

>

EJB

>

Next.

Complete

all

the

fields

and

enter

a

short

name

(for

example,

-HelloHome)

as

the

JNDI

Name.

Click

Next

and

Finish.

6.

Stop

and

restart

all

the

servers.

7.

Make

sure

that

the

correct

naming

bootstrap

port

is

used

to

perform

naming

lookup.

In

previous

product

versions,

the

naming

bootstrap

port

is

900.

In

Version

5,

the

bootstrap

port

is

2809.

Security:

Resources

for

learning

Use

the

following

links

to

find

relevant

supplemental

information

about

Securing

applications

and

their

environment.

The

information

resides

on

IBM

and

non-IBM

Internet

sites,

whose

sponsors

control

the

technical

accuracy

of

the

information.

These

links

are

provided

for

convenience.

Often,

the

information

is

not

specific

to

the

IBM

WebSphere

Application

Server

product,

but

is

useful

all

or

in

part

for

understanding

the

product.

When

possible,

links

are

provided

to

technical

papers

and

Redbooks

that

supplement

the

broad

coverage

of

the

release

documentation

with

in-depth

examinations

of

particular

product

areas.

View

links

to

additional

information

about:

v

Planning,

business

scenarios

and

IT

architecture.

v

Programming

model

and

decisions

v

Programming

specifications

v

Administration

Planning,

business

scenarios

and

IT

architecture

v

WebSphere

Application

Server

Library

v

WebSphere

Application

Server

Support

v

WebSphere

Application

Server

Version

5

Security

Redbook

Programming

model

and

decisions

v

JSSE

Documentation

Refer

to

the

http://www.ibm.com/developerworks/java/jdk/security/jsseDocs.zip

file

for

the

Javadoc

of

the

application

programming

interfaces

(APIs),

JSSE

Reference

Guide,

and

JSSE

samples.

–

v

iKeyman

Documentation

Look

in

the

http://www.ibm.com/developerworks/java/jdk/security/iKeymanDocs.zip

file

for

the

Secure

Sockets

Layer

(SSL)

Introduction

and

iKeyman

documentation.

v

JCE

Documentation

–

For

the

JCA

spec

and

JCE

API

usage

refer

to

the

http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip

file.

–

For

JCE

sample

applications

refer

to

the

http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip

file.

–

For

Java

Cryptography

Architecture

Reference

refer

to

the

http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip

file.

–

For

how

to

implement

a

JCE

provider

refer

to

the

http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip

file.

–

For

the

Javadoc

of

JCE

APIs

refer

to

the

http://www.ibm.com/developerworks/java/jdk/security/jceDocs.zip

file.
v

IBM

SDK

for

z/OS,

Java

2

Technology

Edition,

Version

1.4

–

Refer

to

Java

2

Security

check

permission

algorithm.

Chapter

3.

Integrating

IBM

WebSphere

Application

Server

security

with

existing

security

systems

495

http://www-3.ibm.com/software/webservers/appserv/library.html
http://www-3.ibm.com/software/webservers/appserv/support.html
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246573.pdf
http://www.ibm.com/servers/eserver/zseries/software/java/j14pcont.html
http://java.sun.com/j2se/1.3/docs/api/java/security/AccessController.html

Programming

specifications

v

J2EE

Specifications

v

EJB

Specifications

v

Servlet

Specifications

v

Common

Secure

Interoperability

Version

2

(CSIv2)

Specification

v

JAAS

Specification.

For

programming

and

usage

in

JAAS,

refer

to

the

documentation

located

at

http://www.ibm.com/developerworks/java/jdk/security/

and

scroll

down

to

find

the

JAAS

documentation

for

your

platform.

This

document

contains

the

following

when

unpacked:

–

login.html

-

LoginModule

Developer’s

Guide

–

api.html

-

Developer’s

Guide

(JAAS

JavaDoc)

–

HelloWorld.tar

-

Sample

JAAS

Application
v

Java

2

Platform,

Standard

Edition,

v

1.4.2

API

Specification

Administration

v

WebSphere

Application

Server

Version

4.0

Security

Redbook:

WebSphere

Security

Model.

v

IBM

HTTP

Server

Support

and

Documentation

v

IBM

Directory

Server

Support

and

Documentation

v

IBM

Application

Developer

Kit

Readme

–

For

IBM

Application

Developer

Kit

refer

to

{was_install_root}/java/docs/readme.devkit.ibm.html

–

For

IBM

Application

Developer

Kit

Installation

and

Configuration

Readme

refer

to

{was_install_root}/java/docs/readme.install.ibm.html
v

IBM

cryptographic

hardware

devices

v

Supported

hardware,

software

and

APIs

prerequisite

Web

site

v

WebSphere

education

on

demand:

Enabling

security

best

practice

tutorials

496

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

http://java.sun.com/j2ee/download.html
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/servlet/download.html
http://www.omg.org/technology/documents/corba_spec_catalog.htm#CSIv2
http://java.sun.com/j2se/1.4/docs/api/index.html
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246520.pdf?#M10.8.newlink.WebSphereSecurityModel
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246520.pdf?#M10.8.newlink.WebSphereSecurityModel
http://www-3.ibm.com/software/webservers/httpservers/support.html
http://www-3.ibm.com/software/network/directory/support/
http://www.ibm.com/security/cryptocards/html/library.shtml
http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www.ibm.com/developerworks/websphere/library/tutorials/ondemand/

Notices

References

in

this

publication

to

IBM

products,

programs,

or

services

do

not

imply

that

IBM

intends

to

make

these

available

in

all

countries

in

which

IBM

operates.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

IBM’s

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

of

IBM’s

intellectual

property

rights

may

be

used

instead

of

the

IBM

product,

program,

or

service.

Evaluation

and

verification

of

operation

in

conjunction

with

other

products,

except

those

expressly

designated

by

IBM,

is

the

user’s

responsibility.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

500

Columbus

Avenue

Thornwood,

New

York

10594

USA

©

Copyright

IBM

Corp.

2004

497

498

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

Trademarks

and

service

marks

The

following

terms

are

trademarks

of

IBM

Corporation

in

the

United

States,

other

countries,

or

both:

v

AIX

v

AS/400

v

CICS

v

Cloudscape

v

DB2

v

DFSMS

v

Domino

v

Everyplace

v

iSeries

v

IBM

v

IMS

v

Informix

v

iSeries

v

Language

Environment

v

Lotus

v

MQSeries

v

MVS

v

OS/390

v

RACF

v

Redbooks

v

RMF

v

SecureWay

v

SupportPac

v

Tivoli

v

ViaVoice

v

VisualAge

v

VTAM

v

WebSphere

v

z/OS

v

zSeries

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Linux

is

a

trademark

of

Linus

Torvalds

in

the

United

States,

other

countries,

or

both.

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

©

Copyright

IBM

Corp.

2004

499

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

500

IBM

WebSphere

Application

Server,

Version

5.1.1:

Security

	Contents
	How to send your comments
	Chapter 1. Welcome to Security
	Chapter 2. Securing applications and their environments
	Planning to secure your environment
	Security considerations when adding a Base Application Server node to Network Deployment
	Creating login key files
	Preparing truststore files
	Configuring the application server for interoperability

	Implementing security considerations
	Securing your environment before installation
	Securing your environment after installation
	Protecting plain text passwords
	PropFilePasswordEncoder command reference

	Migrating security configurations from previous releases
	Migrating custom user registries
	Migrating trust association interceptors
	Migrating Common Object Request Broker Architecture programmatic login to Java Authentication and Authorization Service
	Migrating from the CustomLoginServlet class to servlet filters

	Developing secured applications
	Developing with programmatic security APIs for Web applications
	Example: Web applications code
	Developing servlet filters for form login processing

	Developing form login pages
	Example: Form login

	Developing with programmatic APIs for EJB applications
	Example: Enterprise bean application code

	Programmatic login
	Developing programmatic logins with the Java Authentication and Authorization Service
	Example: Programmatic logins

	Custom login module development for a system login configuration
	Example: Customizing a server-side Java Authentication and Authorization Service authentication and login configuration
	Example: Getting the Caller Subject from the Thread
	Example: Getting the RunAs Subject from the Thread
	Example: User revocation from a cache
	Developing your own J2C principal mapping module
	Developing custom user registries
	Example: Custom user registries
	UserRegistry interface methods

	Developing a custom interceptor for trust associations
	Trust association interceptor support for Subject creation

	Assembling secured applications
	Enterprise bean component security
	Securing enterprise bean applications using the Assembly Toolkit
	Web component security
	Securing Web applications using the Assembly Toolkit
	Role-based authorization
	Admin roles
	Naming roles

	Adding users and groups to roles using the Assembly Toolkit
	Mapping users to RunAs roles using the Assembly Toolkit

	Deploying secured applications
	Assigning users and groups to roles
	Security role to user and group mappings
	Security role to user and group selections
	Look up users and groups settings

	Delegations
	Assigning users to RunAs roles
	Unprotected EJB 2.0 methods protection settings
	EJB 1.0 method protection level settings
	RunAs roles to users mapping

	Updating and redeploying secured applications

	Testing security
	Managing security
	Global security
	Configuring global security
	Enabling and disabling global security

	Configuring server security
	Server-level security settings

	Administrative console and naming service authorization
	Assigning users to administrator roles
	Console users settings and CORBA naming service user settings
	Console groups and CORBA naming service groups

	Assigning users to naming roles
	Authentication mechanisms
	Configuring authentication mechanisms
	Simple WebSphere authentication mechanism
	Lightweight Third Party Authentication
	Configuring Lightweight Third Party Authentication
	Trust Associations
	Configuring WebSEAL or custom trust association interceptors
	Single Signon
	Configuring single signon
	Configuring WebSphere Application Server to use Tivoli Access Manager for authentication
	Best practices for mapping credentials using IBM Tivoli Access Manager

	User registries
	Configuring user registries
	Local operating system user registries
	Configuring local operating system user registries
	Lightweight Directory Access Protocol
	Configuring Lightweight Directory Access Protocol user registries
	Configuring Lightweight Directory Access Protocol search filters
	Using specific directory servers as the LDAP server
	Locating a user's group memberships in Lightweight Directory Access Protocol
	Dynamic groups and nested group support
	Dynamic and nested group support for the SunONE or iPlanet Directory Server
	Configuring dynamic and nested group support for the SunONE or iPlanet Directory Server
	Dynamic groups and nested group support for the IBM Directory Server
	Configuring dynamic and nested group support for the IBM Directory Server
	Custom user registries
	Configuring custom user registries

	Java Authentication and Authorization Service
	Java Authentication and Authorization Service authorization

	Configuring application logins for Java Authentication and Authorization Service
	Login configuration for Java Authentication and Authorization Service
	Configuration entry settings for Java Authentication and Authorization Service
	System login configuration entry settings for Java Authentication and Authorization Service
	Login module settings for Java Authentication and Authorization Service
	Login module order settings for Java Authentication and Authorization Service
	Application login configuration settings for Java Authentication and Authorization Service
	Java 2 Connector security
	Managing J2EE Connector Architecture authentication data entries

	Identity mapping
	Configuring inbound identity mapping
	Example: Custom login module for inbound mapping

	Configuring outbound mapping to a different target realm
	Example: Using WSLogin to create a basic authentication subject
	Example: Sample login configuration for RMI_OUTBOUND

	Security attribute propagation
	Enabling security attribute propagation
	Default PropagationToken
	Implementing a custom PropagationToken
	Example: com.ibm.wsspi.security.token.PropagationToken implementation
	Example: custom PropagationToken login module

	Default AuthorizationToken
	Implementing a custom AuthorizationToken
	Example: com.ibm.wsspi.security.token.AuthorizationToken implementation
	Example: custom AuthorizationToken login module

	Default SingleSignonToken
	Implementing a custom SingleSignonToken
	Example: com.ibm.wsspi.security.token.SingleSignonToken implementation
	Example: custom SingleSignonToken login module
	Example: HTTP cookie retrieval

	Default AuthenticationToken
	Implementing a custom AuthenticationToken
	Example: com.ibm.wsspi.security.token.AuthenticationToken implementation
	Example: custom AuthenticationToken login module

	Propagating a custom Java serializable object
	Authentication protocol for EJB security
	Common Secure Interoperability Version 2 features
	Identity assertion
	Message layer authentication
	Secure Sockets Layer client certificate authentication
	Supported IBM protocols: Secure Authentication Service and Common Secure Interoperability Version 2

	Configuring Common Secure Interoperability Version 2 and Security Authentication Service authentication protocols
	Common Secure Interoperability Version 2 and Security Authentication Service client configuration
	Configuring Common Secure Interoperability Version 2 inbound authentication
	Configuring Common Secure Interoperability Version 2 outbound authentication
	Configuring inbound transports
	Configuring outbound transports
	Example: Common Secure Interoperability Version 2 scenarios

	Secure Sockets Layer
	Authenticity
	Confidentiality
	Integrity

	Configuring Secure Sockets Layer
	Configuring Secure Sockets Layer for Web client authentication
	Configuring Secure Sockets Layer for the Lightweight Directory Access Protocol client
	Configuring IBM HTTP Server for secure sockets layer mutual authentication
	Configuring the IBM HTTP Server for distributed platforms and the Web server plug-in for Secure Sockets Layer
	Configuring Secure Sockets Layer for Java client authentication
	Secure Sockets Layer configuration repertoire settings
	Creating a Secure Sockets Layer repertoire configuration entry
	Configuring Federal Information Processing Standard Java Secure Socket Extension files
	Digital certificates
	Managing digital certificates
	Troubleshooting secure sockets layer interoperability
	Changes to IBM Developer Kit for Java Technology Edition Version 1.4.x

	Cryptographic token support
	Opening a cryptographic token using the key management utility (iKeyman)
	Configuring to use cryptographic tokens
	Cryptographic token settings

	Using Java Secure Socket Extension and Java Cryptography Extension with Servlets and enterprise bean files
	Java 2 security
	AccessControlException

	Configuring Java 2 security
	
	Enable or disable Java 2 Security for the cell
	Enable or disable Java 2 Security for an application server
	Using PolicyTool to edit policy files
	Migrating Java 2 security policy

	Troubleshooting security configurations
	Tuning security configurations
	Tuning CSIv2
	Tuning LDAP authentication
	Tuning Web authentication
	Tuning authorization
	Security cache properties
	Secure Sockets Layer performance tips

	Tuning security

	Chapter 3. Integrating IBM WebSphere Application Server security with existing security systems
	Interoperability issues for security
	Interoperability with C++ common object request broker architecture client support and limitations

	Interoperating with a C++ common object request broker architecture client
	Interoperating with previous product versions
	Security: Resources for learning

	Notices
	Trademarks and service marks

