LI L E1(:N Business Integration Server Foundation, Version 5.1

s W
o0

Ml
or Y

Performance Monitoring and Tuning

Note
FBefore using this information, be sure to read the general information under|“Notices” on page 107

Compilation date: April 19, 2004

© Copyright International Business Machines Corporation 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents
How to send your comments
Chapter 1. Welcome to Monitoring

Chapter 2. Monitoring performance .
Performance Monitoring Infrastructure
Performance data organization
Enterprise Java Bean counters
JDBC connection pool counters .
J2C connection pool counters
Java Virtual Machine counters .
Object Request Broker counters.
Servlet session counters
Transaction counters
Thread pool counters .
Web application counters .
Workload Management counters
System counters . .
Dynamic cache counters .
Web services gateway counters .
Web services counters .
Alarm Manager counters .
Object Pool counters
Scheduler counters .
Performance data classrflcatlon

Enabling performance monitoring services in the

application server through the administrative

console
Performance monltorlng service settlngs

Enabling performance monitoring services in the

Node Agent through the administrative console .
Enabling performance monitoring services using the

command line

Enabling Java Virtual Machlne Profller Interface

data reporting
Java Virtual Machlne Profller Interface
Monitoring and analyzing performance data

Monitoring performance with Tivoli Performance

Viewer (formerly Resource Analyzer).

Developing your own monitoring applications
Tivoli performance monitoring and management

solutions .
Third-party performance mon1tor1ng and
management solutions.

© Copyright IBM Corp. 2004

.29
.29

. 30
. 30
. 33
. 34
. 34

. 34
. 46

. 80

.81

Measuring data requests (Performance Monitoring

Infrastructure Request Metrics) 82
Performance Monitoring Infrastructure Request
Metrics83
Application Response Measurement83
Performance Monitoring Infrastructure Request
Metrics trace filters 84
Performance Monitoring Infrastructure Request
Metrics data output.84
Configuring Request Metrics86

Example: Generating trace records from

Performance Monitoring Infrastructure Request

Metrics . . . B <
Performance: Resources for learnrng9

Chapter 3. Using the Runtime
Performance Advisor93
Runtime Performance Advisor configuration settings 94

Enable Runtime Performance Advisor95
Enable Runtime Performance Advisor95
Calculation Interval.9
Maximum warning sequence9
Number of processors.96
Restart button . . .)
Adpvice configuration settrngs T ° 1)
Advice name . . . P 1&)
Advice applied to component B)
Advicestatus.9
Advice status.97

Chapter 4. Using the Performance
Advisor in Tivoli Performance Viewer . 99
Performance Advisor Report in Tivoli Performance

Viewer100
Message100
Performance data in lower panel100

Chapter 5. Tuning performance
parameter index 103
Tuning hardware capacity and settlngs 106

Notices.107

iii

iV IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

How to send your comments

Your feedback is important in helping to provide the most accurate and highest
quality information.

To send comments on articles in the WebSphere Application Server Information
Center

1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate
window containing an e-mail form appears.
3. Fill out the e-mail form as instructed, and click on Submit feedback .

To send comments on PDF books, you can e-mail your comments to:
wasdoc@us.ibm.com or fax them to 919-254-0206.

Be sure to include the document name and number, the WebSphere Application
Server version you are using, and, if applicable, the specific page, table, or figure
number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

© Copyright IBM Corp. 2004

Vi IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

Chapter 1. Welcome to Monitoring

Performance monitoring is an activity in which you collect and analyze data about
the performance of your applications and their environment.

A simple time line of activities for Planning, Installer and Administrator roles.

Planning the production environment
Installing the product, setting up multiple node environments

Migrating existing installations and configurations

Administering in preparation for application deployment

Obtaining assembled modules containing application code
Updating and

re-deploying Deploying modules onto test, production servers

applications .
Testing access to deployed modules

Administering deployed modules, servers, resources

Monitoring and tuning performance

Troubleshooting problems

To help administrators identify application performance problems, the product
collects performance data and supplies interfaces that allow external applications
to monitor the performance data; it also provides tools to display performance data
for analysis.

The product collects data on run-time and applications through the Performance
Monitoring Infrastructure (PMI), as described in [‘Performance Monitoring]
[Infrastructure” on page 3./ This infrastructure is compatible with and extends the
JSR-077 specification.

Performance data can be monitored and analyzed with:

¢ Tivoli Performance Viewer formerly known as Resource Analyzer, which is
included in WebSphere Application Server

¢ Other Tivoli Monitoring Tools

* User-developed monitoring tools

* Third-party monitoring tools

The Tivoli Performance Viewer uses the PMI Java client to provide graphical
displays and summary reports of collected data. For more information, see
“Monitoring performance with Tivoli Performance Viewer (formerly Resource|
Analyzer)” on page 34.|

IBM WebSphere Application Server also collects data by timing requests as they
travel through the product components. PMI Request Metrics logs time spent in
major components, such as Web Server, Web container, Enterprise bean container,
and database. These data points are recorded in logs and can be written to
Application Response Monitoring (ARM) agents used by Tivoli or third party
monitoring tools.

© Copyright IBM Corp. 2004 1

For more information about PMI Request Metrics, see ["Measuring data requests|
[(Performance Monitoring Infrastructure Request Metrics)” on page 82

2 IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

Chapter 2. Monitoring performance

WebSphere Application Server collects data on run time and applications through
the Performance Monitoring Infrastructure (PMI). Performance data can then be
monitored and analyzed with a variety of tools.

To set up performance monitoring:

1. |“Enabling performance monitoring services in the application server throughl
the administrative console” on page 29| and |[“Enabling performance monitoring|
services in the Node Agent through the administrative console” on page 30| if
running WebSphere Application Server Network Deployment. To monitor
performance data through the PMI interfaces, you must first enable the
performance monitoring service through the administrative console before
restarting the server. If running in Network Deployment, you need to enable
PMI services on both the server and on the node agent before restarting the
server and the node agent.

2. Collect the data.
The monitoring levels that determine which data counters are enabled can be

set dynamically, without restarting the server. You can set these values in one
of the following ways:

a. |“Starting the Tivoli Performance Viewer” on page 39

b. [“Enabling performance monitoring services using the command line” on|

page 30.|

WebSphere Application Server also collects data through PMI request metrics. This
feature times requests as they travel through WebSphere Application Server
components. For more information about PMI request metrics, see the topic
“Measuring data requests (Performance Monitoring Infrastructure Request|
Metrics)” on page 82

Related tasks

[‘Performance monitoring service settings” on page 29|

[‘Starting the Tivoli Performance Viewer” on page 39|

[Using the dynamic cache service to improve performance|

Performance Monitoring Infrastructure

The Performance Monitoring Infrastructure (PMI) uses a client-server architecture.
The server collects performance data from various WebSphere Application Server
components. A client retrieves performance data from one or more servers and
processes the data. Refer to [Performance Monitoring Infrastructure client| and
[Performance Monitoring Infrastructure interface|

As shown in the figure, the server collects PMI data in memory. This data consists
of counters such as servlet response time and data connection pool usage. The data
points are then retrieved using a Web client, a Java client, or a Java Management
Extensions (JMX) client. WebSphere Application Server contains Tivoli Performance
Viewer, a Java client which displays and monitors performance data. See the
Monitoring performance with Tivoli Performance Viewer (formerly Resource|
Analyzer)| [Tivoli performance monitoring and management solutiong|T hird—partyl
performance monitoring and management solutions| and Developing your own

© Copyright IBM Corp. 2004 3

[monitoring applications| topics for more information on monitoring tools.

HTTP
PerfMBean
App Server
JMX Client
Java Client

Performance

data
and
Cell Manager application
JMX server
Connector
RMIIOP
or
SOAP
J2EE client
Tivoli .PerfMBean
Performance App Server
Viewer

The figure shows the overall PMI architecture. On the right side, the server
updates and keeps PMI data in memory. The left side displays a Web client, a Java
client, and a JMX client retrieving the performance data.

Performance data organization

4

Performance Monitoring Infrastructure (PMI) provides server-side monitoring and
a client-side API to retrieve performance data. PMI maintains statistical data within
the entire WebSphere Application Server domain, including multiple nodes and
servers. Each node can contain one or more WebSphere Application Servers. Each
server organizes PMI data into modules and submodules.

IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

Hierarchy of data collections used for performance reporting to Resource Analyzer

| Node* |<—> PMI Client |«——| Resource
t Analyzer
[Serve 2] [Server®]

M 1

Enterprise beans

et N

[entity] [stateful] [stateless]

Bean1 Bean2 ——
\ 1
| Methods |
Avg Method RT
Gets Found
© @ Avg Method RT

The Tivoli Performance Viewer, formerly the Resource Analyzer, organizes

performance data in a centralized hierarchy of the following objects:

* Node. A node represents a physical machine in the WebSphere Application
Server administrative domain.

* Server. A server is a functional unit that provides services to clients over a
network. No performance data is collected for the server itself.

* Module. A module represents one of the resource categories for which collected
data is reported to the performance viewer. Each module has a configuration file
in XML format. This file determines organization and lists a unique identifier for
each performance data in the module. Modules include enterprise beans, JDBC
connection pools, J2C connection pool, Java Virtual Machine (JVM) run time
(including Java Virtual Machine Profiler Interface (JVMPI)), servlet session
manager, thread pools, transaction manager, Web applications, Object Request
Broker (ORB), Workload Management (WLM), Web Services Gateway (WSGW),
and dynamic cache.

* Submodule. A submodule represents a fine granularity of a resource category
under the module. For example, ORB thread pool is a submodule of the thread
pool category. Submodules can contain other submodules.

* Counter. A counter is a data type used to hold performance information for
analysis. Each resource category (module) has an associated set of counters. The
data points within a module are queried and distinguished by the MBean
ObjectNames or PerfDescriptors. Examples of counters include the number of
active enterprise beans, the time spent responding to a servlet request and the
number of kilobytes of available memory.

0

The Tivoli Performance Viewer allows users to view and manipulate the data for
counters. A particular counter type can appear in several modules. For example,
both the servlet and enterprise bean modules have a response time counter. In

Chapter 2. Monitoring performance 5

addition, a counter type can have multiple instances within a module. For
example, in the figure above, both the Enterprise beans module and Beanl have an
Avg Method RT counter.

Counters are enabled at the module level and can be enabled or disabled for
elements within the module. For example, in the figure, if the enterprise beans
module is enabled, its Avg Method RT counter is enabled by default. However,
you can then disable the Avg Method RT counter even when the rest of the
module counters are enabled. You can also, if desired, disable the Avg Method RT
counter for Beanl, but the aggregate response time reported for the whole module
no longer includes Beanl data.

Each counter has a specified monitoring level: none, low, medium, high or
maximum. If the module is set to lower monitoring level than required by a
particular counter, that counter is not enabled. Thus, if Beanl has a medium
monitoring level, Gets Found and Num Destroys are enabled because they require
a low monitoring level. However, Avg Method RT is not enabled because it
requires a high monitoring level.

Data collection can affect performance of the application server. The impact
depends on the number of counters enabled, the type of counters enabled and the
monitoring level set for the counters.

ModuleTreeRoot

EJEModule ConnPoolModule TranModule WebAppModule
ﬁ dataSource 2 webapp 1 webapp 2

serviets

methods

serviet 1 serviet 2

method 2

The following PMI modules are available to provide statistical data:

Enterprise bean module, enterprise bean, methods in a bean
Data counters for this category report load values, response times, and life
cycle activities for enterprise beans. Examples include the average number
of active beans and the number of times bean data is loaded or written to
the database. Information is provided for enterprise bean methods and the
remote interfaces used by an enterprise bean. Examples include the

6 IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

number of times a method is called and the average response time for the
method. In addition, the Tivoli Performance Viewer reports information on
the size and use of a bean objects cache or enterprise bean object pool.
Examples include the number of calls attempting to retrieve an object from
a pool and the number of times an object is found available in the pool.

JDBC connection pools
Data counters for this category contain usage information about connection
pools for a database. Examples include the average size of the connection
pool or number of connections, the average number of threads waiting for
a connection, the average wait time in milliseconds for a connection, and
the average time the connection is in use.

Java 2 Connector (J2C) connection pool
Data counters for this category contain usage information about the Java 2
Platform Enterprise Edition (J2EE) Connector architecture that enables
enterprise beans to connect and interact with procedural back-end systems,
such as Customer Information Control System (CICS), and Information
Management System (IMS). Examples include the number of managed
connections or physical connections and the total number of connections or
connection handles.

Java Virtual Machine API (JVM)
Data counters for this category contain memory used by a process as
reported by Java Virtual Machine (JVM) run time. Examples are the total
memory available and the amount of free memory for the JVM. JVM run
time also includes data from the Java Machine Profiler Interface (JVMPI).
This data provides detailed information about the JVM running the
application server.

Servlet session manager
Data counters for this category contain usage information for HTTP
sessions. Examples include the total number of accessed sessions, the
average amount of time it takes for a session to perform a request, and the
average number of concurrently active HTTP sessions.

Thread pool
Data counters for this category contain information about the thread pools
for Object Request Broker (ORB) threads and the Web container pools used
to process HTTP requests. Examples include the number of threads created
and destroyed, the maximum number of pooled threads allowed, and the
average number of active threads in the pool.

Java Transaction API (JTA)
Data counters for this category contain performance information for the
transaction manager. Examples include the average number of active
transactions, the average duration of transactions, and the average number
of methods per transaction.

Web applications, servlet
Data counters for this category contain information for the selected server.
Examples include the number of loaded servlets, the average response time
for completed requests, and the number of requests for the servlet.

Object Request Broker (ORB)
Data counters for this category contain information for the ORB. Examples
include the object reference lookup time, the total number of requests, and
the processing time for each interceptor.

Chapter 2. Monitoring performance 7

8

Web Services Gateway (WSGW)
Data counters for this category contain information for WSGW. Examples
include the number of synchronous and asynchronous requests and
responses.

System data
Data counters for this category contain information for a machine (node).
Examples include the CPU utilization and memory usage. Note that this
category is available at node level, which means it is only available at
NodeAgent in the multiple servers version.

Workload Management (WLM)
Data counters for this category contain information for workload
management. Examples include the number of requests, the number of
updates and average response time.

Dynamic cache
Data counters for this category contain information for the dynamic cache
service. Examples include in-memory cache size, the number of
invalidations, and the number of hits and misses.

Web services
Data counters for this category contain information for the Web services.
Examples include the number of loaded Web services, the number of
requests delivered and processed, the request response time, and the
average size of requests.

Alarm manager
Data counters for this category contain information for the Alarm Manager.

Object pool
Data counters for this category contain information for Object Pools.

Scheduler
Data counters for this category contain information for the Scheduler
service.

You can access PMI data through the getStatsObject and the getStatsArray method
in the PerfMBean. You need to pass the MBean ObjectName(s) to the PerfMBean.

Use the following MBean types to get PMI data in the related categories:

* DynaCache: dynamic cache PMI data

* EJBModule*: Enterprise Java Bean (E]B) module PMI data (BeanModule)

* EntityBean*: specific EJB PMI data (BeanModule)

* JDBCProvider*: Java Database Connectivity (JDBC) connection pool PMI data
* J2CResourceAdapter*: Java 2 Connectivity (J2C) connection pool PMI data

* JVM: Java virtual machine PMI data

* MessageDrivenBean*: specific EJB PMI data (BeanModule)

* ORB: Object Request Broker PMI data

* Server: PMI data in the whole server, you must pass recursive=true to
PerfMBean

* SessionManager*: HTTP Sessions PMI data

e StatefulSessionBean*: specific EJB PMI data (BeanModule)
* StatelessSessionBean*: specific EJB PMI data (BeanModule)
* SystemMetrics: system level PMI data

e ThreadPool*: thread pool PMI data

IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

* TransactionService: JTA Transaction PMI data

* WebModule*: Web application PMI data

* Servlet*: servlet PMI data

* WLMAppServer: Workload Management PMI data
* WebServicesService: Web services PMI data

* WSGW?*: Web services gateway PMI data

To use the AdminClient API to query the MBean ObjectName for each MBean
type. You can either query all the MBeans and then match the MBean type or use
the query String for the type only: String query =
"WebSphere:type=mytype,node=mynode,server=myserver,*";

Set the mytype, mynode, and myserver values accordingly. You get a Set value
when you call the AdminClient class to query MBean ObjectNames. This response
means that you can get multiple ObjectNames.

In the previous example, the MBean types with a star (*) mean that there can be
multiple ObjectNames in a server for the same MBean type. In this case, the
ObjectNames can be identified by both type and name (but mbeanldentifier is the
real UID for MBeans). However, the MBean names are not predefined. They are
decided at run time based on the applications and resources. When you get
multiple ObjectNames, you can construct an array of ObjectNames that you are
interested in. Then you can pass the ObjectNames to PerfMBean to get PMI data.
You have the recursive and non-recursive options. The recursive option returns
Stats and sub-stats objects in a tree structure while the non-recursive option returns
a Stats object for that MBean only. More programming information can be found in
['Develop your own monitoring applications’]

Enterprise Java Bean counters

Data counters for this category report load values, response times, and life cycle
activities for enterprise beans.

Counter definitions

Name Key Description Version | Granularity Type Level

Num creates beanModule.creates Number of times | 3.5.5 and | Per home CountStatistic Low
that beans were later
created

Num removes beanModule.removes Number of times | 3.5.5 and | Per home CountStatistic Low
that beans were later
removed

Num passivates beanModule.passivates Number of times |3.5.5 and | Per home CountStatistic Low
that beans were later

passivated (entity
and stateful)

Num activates beanModule.activates Number of times | 3.5.5 and | Per home CountStatistic Low
that beans were later
activated (entity
and stateful)

Num loads beanModule.loads Number of times |3.5.5 and | Per home CountStatistic Low
that bean data later
was loaded from
persistent storage

(entity)
Num stores beanModule.stores Number of times | 3.5.5 and | Per home CountStatistic Low
that bean data later

was stored in
persistent storage
(entity)

Chapter 2. Monitoring performance 9

Num instantiates

beanModule.instantiates

Number of times
that bean objects
were instantiated

3.5.5 and
later

Per home

CountStatistic

Low

Num destroys

beanModule.destroys

Number of times
that bean objects
were freed

3.5.5 and
later

Per home

CountStatistic

Low

Ready beans

beanModule.readyCount

Number of
concurrently
ready beans
(entity and
session). This
counter was
called concurrent
active in Versions
3.5.5+ and 4.0.

3.5.5 and
later

Per home

RangeStatistic

High

Concurrent lives

beanModule.concurrentLives

Number of
concurrently live
beans

3.5.5 and
later

Per home

RangeStatistic

High

Avg method RT (ms)

beanModule.avgMethodRt

Average response
time in
milliseconds on
the bean methods
(home, remote,
local)

3.5.5 and
later

Per home

TimeStatistic

High

Avg create time (ms)

beanModule.avgCreateTime

Average time in
milliseconds that
a bean create call
takes including
the time for the
load if any

5.0

Per home

TimeStatistic

Max

Avg load time (ms)

beanModule.loadTime

Average time in
milliseconds for
loading the bean
data from
persistent storage
(entity)

5.0

Per home

TimeStatistic

Medium

Avg store time (ms)

beanModule.storeTime

Average time in
milliseconds for
storing the bean
data to persistent
storage (entity)

5.0

Per home

TimeStatistic

Medium

Avg remove time (ms)

beanModule.avgRemoveTime

Average time in
milliseconds that
a bean entries call
takes including
the time at the
database, if any

5.0

Per home

TimeStatistic

Max

Total method calls

beanModule.totalMethodCalls

Total number of
method calls

3.5.5 and
later

Per home

CountStatistic

High

Activation time (ms)

beanModule.activationTime

Average time in
milliseconds that
a beanActivate
call takes
including the time
at the database, if
any

5.0

Per home

TimeStatistic

Medium

Passivation time (ms)

beanModule.passivationTime

Average time in
milliseconds that
a beanPassivate
call takes
including the time
at the database, if
any

5.0

Per home

TimeStatistic

Medium

Active methods

beanModule.activeMethods

Number of
concurrently
active methods -
the number of
methods called at
the same time.

3.5.5 and
later

Per home

TimeStatistic

High

10 1BM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

Gets from pool

beanModule.getsFromPool

Number of calls
retrieving an
object from the
pool (entity and
stateless)

3.5.5 and
later

Per home and per
object pool

CountStatistic

Low

Gets found

beanModule.getsFound

Number of times
that a retrieve
found an object
available in the
pool (entity and
stateless)

3.5.5 and
later

Per home and per
object pool

CountStatistic

Low

Returns to pool

beanModule.returnsToPool

Number of calls
returning an
object to the pool
(entity and
stateless)

3.5.5 and
later

Per home and per
object pool

CountStatistic

Low

Returns discarded

beanModule.returnsDiscarded

Number of times
that the returning
object was
discarded because
the pool was full
(entity and
stateless)

3.5.5 and
later

Per home and per
object pool

CountStatistic

Low

Drains from pool

beanModule.drainsFromPool

Number of times
that the daemon
found the pool
was idle and
attempted to
clean it (entity
and stateless)

3.5.5 and
later

Per home and per
object pool

CountStatistic

Low

Avg drain size

beanModule.avgDrainSize

Average number
of objects
discarded in each
drain (entity and
stateless)

3.5.5 and
later

Per home and per
object pool

TimeStatistic

Medium

Pool size

beanModule.poolSize

Number of objects
in the pool (entity
and stateless)

3.5.5 and
later

Per home and per
object pool

RangeStatistic

High

Message count

beanModule.messageCount

Number of
messages
delivered to the
bean onMessage
method (message
driven beans)

5.0

Per type

CountStatistic

Low

Message backout count

beanModule.messageBackoutCount

Number of
messages that
failed to be
delivered to the
bean onMessage
method (message
driven beans)

5.0

Per type

CountStatistic

Low

Server session wait time
(ms)

beanModule.avgSrvSessionWaitTime

Average time to
obtain a
ServerSession
from the pool
(message drive
bean)

5.0

Per type

TimeStatistic

Medium

Server session usage

beanModule.serverSessionUsage

Percentage of the
server session
pool in use
(message driven)

5.0

Per type

RangeStatistic

High

Enterprise Java Bean method counters

Counter definitions:

Name

| Key

| Description

| Version | Granularity

Type

| Level |

Chapter 2. Monitoring performance

11

Method Calls

beanModule.methods.methodCalls

Number of calls
to the bean
methods (home,
remote, local)

later

3.5.5 and

home

Per method or per

CountStatistic

Max

Method Response Time

(ms)

beanModule.methods.methodRt

Average response
time in
milliseconds on
the bean methods
(home, remote,
local)

later

3.5.5 and

home

Per method or per

TimeStatistic

Max

Concurrent Invocations

beanModule.method.methodLoad

Number of
concurrent
invocations to call
a method

home

Per method or per

RangeStatistic

Max

JDBC connection pool counters

PMI collects performance data for 4.0 and 5.0 Java Database Connectivity (JDBC)
data sources. For a 4.0 data source, the data source name is used. For a 5.0 data
source, the Java Naming and Directory Interface (JNDI) name is used.

The JDBC connection pool counters are used to monitor the JDBC data sources
performance. You can find the data by using the Tivoli Performance Viewer and
looking under each application server. Click application_server > JDBC connection

pool.

Counter definitions

Name Key Description Version | Granularity Type Level
Num creates connectionPoolModule.numCreates Total number of | 3.5.5 Per connection | CountStatistic Low
connections and pool
created later
Pool size connectionPoolModule.poolSize The size of the |3.5.5 Per connection | BoundedRangeStatistic | High
connection pool | and pool
later
Free pool size connectionPoolModule.freePoolSize The number of | 5.0 Per connection | BoundedRangeStatistic | High
free connections pool
in the pool
Num allocates | connectionPoolModule.numAllocates Total number of | 3.5.5 Per connection | CountStatistic Low
connections and pool
allocated later
Num returns connectionPoolModule.numReturns Total number of | 4.0 and | Per connection | CountStatistic Low
connections later pool
returned
Concurrent connectionPoolModule.concurrentWaiters Number of 355 Per connection | RangeStatistic High
waiters threads that are | and pool
currently later
waiting for a
connection
Faults connectionPoolModule.faults Total number of | 3.5.5 Per connection | CountStatistic Low
faults, such as and pool
timeouts, in the | later
connection pool
Num closes connectionPoolModule.numDestroys Number of 355 Per connection | CountStatistic Low
times bean and pool
objects were later
freed
Avg wait time connectionPoolModule.avgWaitTime Average waiting | 5.0 Per connection | TimeStatistic Medium
(ms) time in pool
milliseconds
until a
connection is
granted

12 1BM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

Avg use time
(ms)

connectionPoolModule.avgUseTime

Average time a |5.0
connection is
used (Difference
between the
time at which
the connection
is allocated and
returned. This
includes the
JDBC operation
time.)

Per connection
pool

TimeStatistic

Medium

Percent used

connectionPoolModule.percentUsed

355
and
later

Average percent
of the pool that
is in use

Per connection
pool

RangeStatistic

High

Percent maxed

connectionPoolModule.percentMaxed

355
and
later

Average percent
of the time that
all connections
are in use

Per connection
pool

RangeStatistic

High

Prepared stmt
cache discards

connectionPoolModule.prepStmtCacheDiscards

4.0 and
later

Total number of
statements
discarded by
the LRU
algorithm of the
statement cache

Per connection
pool

CountStatistic

Low

Num managed
connections

connectionPoolModule.numManagedConnections | Number of 5.0

ManagedConnection
objects in use
for a particular
connection pool
(apply to 5.0
DataSource
only)

Per connection
factory

CountStatistic

Low

Num
connection
handles

connectionPoolModule.numConnectionHandles

Number of 5.0
Connection
objects in use
for a particular
connection pool
(apply to 5.0
DataSource
only)

Per connection
factory

CountStatistic

Low

JDBC time

connectionPoolModule.jdbcOperationTimer

Amount of time | 5.0
in milliseconds
spent executing
in the JDBC
driver (includes
time spent in
JDBC driver,
network and
database)

Per data source

TimeStatistic

Medium

J2C connection pool counters

The Java 2 Connector (J2C) connection pool counters are used to monitor the J2C
connection pool performance. You can find the data using the Tivoli Performance
Viewer and by looking under each application server. Click application_server >

J2C connection pool.

Counter definitions

Name

Key

Description

Version

Granularity

Type

Level

Num managed
connections

j2cModule.numManagedConnections

Number of 5.0
ManagedConnection
objects in use

Per connection
factory

CountStatistic

Low

Num
connection
handles

j2cModule.numConnectionHandles

Number of 5.0
connections that are
associated with
ManagedConnections
(physical connections)
in this pool

Per connection
factory

CountStatistic

Low

Chapter 2. Monitoring performance 13

milliseconds that
connections are in use

factory

Num j2cModule numManagedConnectionsCreated | Total number of 5.0 Per connection | CountStatistic Low
Connections managed connections factory
Created created
Num j2cModule.numManagedConnectionsDestroyed| Total number of 5.0 Per connection | CountStatistic Low
Connections managed connections factory
Destroyed destroyed
Num j2cModule.numManagedConnectionsAllocated | Total number of times | 5.0 Per connection | CountStatistic Low
Connections a managed connection factory
Allocated is allocated to a client
(the total is
maintained across the
pool, not per
connection).
Num j2cModule.numManagedConnectionsReleased | Total number of times | 5.0 Per connection | CountStatistic Low
Connections a managed connection factory
Freed is released back to the
pool (the total is
maintained across the
pool, not per
connection).
Num Faults j2cModule.faults Number of faults, such | 5.0 Per connection | CountStatistic Low
as timeouts, in factory
connection pool
Free Pool Size |j2cModule.freePoolSize Number of free 5.0 Per connection | BoundedRangeStatistic | High
connections in the factory
pool
Pool Size j2cModule.poolSize Average number of 5.0 Per connection | BoundedRangeStatistic | High
managed connections factory
in the pool.
Concurrent j2cModule.concurrentWaiters Average number of 5.0 Per connection | RangeStatistic High
Waiters threads concurrently factory
waiting for a
connection
Percent Used |j2cModule.percentUsed Average percent of the | 5.0 Per connection | RangeStatistic High
pool that is in use factory
Percent Maxed |j2cModule.percentMaxed Average percent of the | 5.0 Per connection | RangeStatistic High
time that all factory
connections are in use
Avg Wait Time |j2cModule.avgWait Average waiting time | 5.0 Per connection | TimeStatistic Medium
in milliseconds until a factory
connection is granted
Avg Use Time |j2cModule.useTime Average time in 5.0 Per connection | TimeStatistic Medium

Java Virtual Machine counters

The Java Virtual Machine (JVM) counters are used to monitor the JVM
performance. With an exception to the counters used for total, used and free heap
size, you can find the counters by using the Java Virtual Machine Profiler Interface
(JVMPI). In order to use JVMPI, you must turn on the monitoring by setting the
-XrunpmiJvmpiProfiler command line. See [Enabling Java Virtual Machine Profiler|

[nterface data reporting]

Counter definitions

Name Key Description Version | Granularity Type Level
Free memory | jvmRuntimeModule.freeMemory Free memory in JVM | 3.5.5 Per Java CountStatistic Low
(KB) run time and Virtual

above | Machine (JVM)
Used memory | jvmRuntimeModule.usedMemory Used memory in JVM | 3.5.5 Per JVM CountStatistic Low
(KB) run time and

above

14

IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

Total memory
(KB)

jvmRuntimeModule.totalMemory

Total memory in JVM
run time

3.5.5
and
above

Per JVM

BoundedRangeStatistic.
The upperBound and
lowerBound are not
implemented for the
Total memory counter.

High

JVM up time
(seconds)

jvmRuntimeModule.upTime

The amount of time
the JVM is running

5.0

Per JVM

CountStatistic

Low

Num GC calls

jvmRuntimeModule.numGcCalls

Number of garbage
collection calls. This
counter is not

available unless
-XrunpmiJvmpiProfiler
is set when starting
the JVM.

4.0 and
above

Per [VM

CountStatistic

Avg time
between GC
calls (ms)

jvmRuntimeModule.avgTimeBetweenGcCalls

Average garbage
collection in seconds
between two garbage
collection. This counter
is not available unless
-XrunpmiJvmpiProfiler
is set when starting
the JVM.

4.0 and
above

Per JVM

TimeStatistic

Avg GC
duration (ms)

jvmRuntimeModule.avgGcDuration

Average duration of a
garbage collection.
This counter is not
available unless
-XrunpmiJvmpiProfiler
is set when starting
the JVM.

4.0 and
above

Per JVM

TimeStatistic

Num waits for
lock

jvmRuntimeModule.numWaitsForLock

Number of times that
a thread waits for a
lock. This counter is
not available unless
-XrunpmiJvmpiProfiler
is set when starting
the JVM.

4.0 and
above

Per JVM

CountStatistic

Avg time wait
for lock

jvmRuntimeModule.avgTimeWaitForLock

Average time that a
thread waits for a lock.
This counter is not
available unless
-XrunpmiJdvmpiProfiler
is set when starting
the JVM.

4.0 and
above

Per [VM

TimeStatistic

Max

Num objects
allocated

jvmRuntimeModule.numObjectsAllocated

Number of objects
allocated in heap. This
counter is not

available unless
-XrunpmiJvmpiProfiler
is set when starting
the JVM.

4.0 and
above

Per JVM

CountStatistic

Num objects
moved

jvmRuntimeModule.numObjectsMoved

Number of objects in
heap. This counter is
not available unless
-XrunpmiJvmpiProfiler
is set when starting
the JVM.

4.0 and
above

Per [VM

CountStatistic

Num objects
freed

jvmRuntimeModule.numObjectsFreed

Number of objects
freed in heap. This
counter is not

available unless
-XrunpmiJvmpiProfiler
is set when starting
the JVM.

4.0 and
above

Per JVM

CountStatistic

Num started
threads

jvmRuntimeModule. numThreadsStarted

Number of threads
started. This counter is
not available unless
-XrunpmiJvmpiProfiler
is set when starting
the JVM.

4.0 and
above

Per JVM

CountStatistic

Chapter 2. Monitoring performance

15

Num dead
threads

jvmRuntimeModule.numThreadsDead Number of threads 4.0 and | Per JVM CountStatistic Max
dies. This counter is above
not available unless
-XrunpmiJvmpiProfiler
is set when starting
the JVM.

Object Request Broker counters

Counter definitions

Name

Key Description Version | Granularity Type Level

Lookup time

orbPerfModule.referenceLookupTime The time (in 5.0 Object Request | TimeStatistic Medium|
milliseconds) to look Broker (ORB)
up an object reference
before method
dispatch can be carried
out. Excessively long
time may indicate an
EJB container lookup

problem.
Total requests | orbPerfModule.totalRequests The total number of 5.0 ORB CountStatistic Low
requests sent to the
ORB
Concurrent orbPerfModule.concurrentRequests The number of 5.0 ORB RangeStatistic High
requests requests that are
concurrently processed
by the ORB
Processing orbPerfModule.interceptors.processingTime The time (in 5.0 Per interceptor | TimeStatistic Medium)
time milliseconds) it takes a
registered portable
interceptor to run
Serviet session counters
Data counters for this category contain usage information for HTTP sessions.
Counter definitions
Name Key Description Version | Granularity Type Level
Created servletSessionsModule.createdSessions Number of sessions 355 Per web CountStatistic | Low
sessions that were created and application
later
Invalidated servletSessionsModule.invalidatedSessions Number of sessions 3.5.5 Per web CountStatistic | Low
sessions that were invalidated | and application
later
Session life servletSessionsModule.sessionLifeTime The average session 355 Per web TimeStatistic Medium|
time (ms) life time in and application
milliseconds (time later
invalidated - time
created)
Active sessions | servletSessionsModule.activeSessions The number of 355 Per web RangeStatistic | High
concurrently active and application

sessions. A session is later
active if the
WebSphere
Application Server is
currently processing a
request which uses
that session.

Live sessions

servletSessionsModule.liveSessions The number of 5.0 and | Per web RangeStatistic | High
sessions that are later application
currently cached in
memory

16 1BM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

No room for
new sessions

servletSessionsModule.noRoomForNewSession

Applies only to
session in memory
with
AllowOverflow=false.
The number of times
that a request for a
new session cannot be
handled because it
would exceed the
maximum session
count.

5.0

Per Web
application

CountStatistic

Low

Cache discards

servletSessionsModule.cacheDiscards

Number of session
objects that have been
forced out of the
cache. (An LRU
algorithm removes old
entries to make room
for new sessions and
cache misses).
Applicable only for
persistent sessions.

5.0

Per Web
application

CountStatistic

Low

External read
time

servletSessionsModule.externalRead Time

Time (milliseconds)
taken in reading the
session data from the
persistent store. For
multirow sessions, the
metrics are for the
attribute; for single
row sessions, the
metrics are for the
entire session.
Applicable only for
persistent sessions.
When using a JMS
persistent store, you
choose to serialize the
replicated data. If you
choose not to serialize
the data, the counter is
not available.

5.0

Per Web
application

TimeStatistic

Medium|

External read
size

servletSessionsModule.externalReadSize

Size of the session
data read from
persistent store.
Applicable only for
(serialized) persistent
sessions; similar to
external Read Time.

5.0

Per Web
application

TimeStatistic

Medium|

External write
time

servletSessionsModule.externalWriteTime

Time (milliseconds)
taken to write the
session data from the
persistent store.
Applicable only for
(serialized) persistent
sessions. Similar to
external Read Time.

5.0

Per Web
application

TimeStatistic

Medium|

External write
size

servletSessionsModule.external WriteSize

Size of the session
data written to
persistent store.
Applicable only for
(serialized) persistent
sessions. Similar to
external Read Time.

5.0

Per Web
application

TimeStatistic

Medium|

Affinity breaks

servletSessionsModule.affinityBreaks

The number of
requests received for
sessions that were last
accessed from another
Web application. This
value can indicate
failover processing or
a corrupt plugin
configuration.

5.0

Per Web
application

CountStatistic

Low

Chapter 2. Monitoring performance

17

transactions

server

Session object | servletSessionsModule.serializableSessObjSize The size in bytes of 5.0 Per Web TimeStatistic Max
size (the serializable application
attributes of)
in-memory sessions.
Only session objects
that contain at least
one serializable
attribute object is
counted. A session
may contain some
attributes that are
serializable and some
that are not. The size
in bytes is at a session
level.
Time since last | servletSessionsModule.timeSinceLastActivated The time difference in | 5.0 Per Web TimeStatistic Medium
activated milliseconds between application
previous and current
access time stamps.
Does not include
session time out.
Invalidated via | servletSessionsModule.invalidatedViaTimeout The number of 5.0 Per Web CountStatistic | Low
timeout sessions that are application
invalidated via
timeout.
Activate servletSessionsModule.activateNonExistSessions Number of requests 5.0 Per Web CountStatistic | Low
non-exist for a session that no application
sessions longer exists,
presumably because
the session timed out.
Use this counter to
help determine if the
timeout is too short.
Transaction counters
Counter definitions
Name Key Description Version | Granularity Type Level
Global trans transactionModule.globalTransBegun Total number of global | 4.0 and | Per transaction | CountStatistic | Low
begun transactions started on | later manager or
the server server
Global trans transactionModule.globalTransInvolved Total number of global | 4.0 and | Per transaction | CountStatistic | Low
involved transactions involved | later manager or
on the server (for server
example, begun and
imported)
Local trans transactionModule.localTransBegun Total number of local | 4.0 and | Per transaction | CountStatistic | Low
begun transactions started on | later manager or
the server server
Active global | transactionModule.activeGlobalTrans Number of 3.55 Per transaction | CountStatistic | Low
trans concurrently active and manager or
global transactions later server
Active local transactionModule.activeLocalTrans Number of 4.0 and | Per transaction | CountStatistic | Low
trans concurrently active later manager or
local transactions server
Global tran transactionModule.globalTranDuration Average duration of 355 Per transaction | TimeStatistic Medium)
duration global transactions and manager or
later server
Local tran transactionModule.localTranDuration Average duration of 4.0 and | Per transaction | TimeStatistic Medium
duration local transactions later manager or
server
Global before | transactionModule.globalBeforeCompletionDuration | Average duration of 4.0 and | per transaction | TimeStatistic Medium
completion before_completion for | later manager or
duration global transactions server
Global commit | transactionModule.globalCommitDuration Average duration of 4.0 and | Per transaction | TimeStatistic Medium
duration commit for global later manager or

18

IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

Global prepare | transactionModule.globalPrepareDuration Average duration of 4.0 and | Per transaction | TimeStatistic Medium|
duration prepare for global later manager or
transactions server
Local before transactionModule.localBeforeCompletionDuration Average duration of 4.0 and | Per transaction | TimeStatistic Medium|
completion before_completion for | later manager or
duration local transactions server
Local commit | transactionModule.localCommitDuration Average duration of 4.0 and | Per transaction | TimeStatistic Medium|
duration commit for local later manager or
transactions server
Global trans transactionModule.globalTransCommitted Total number of global | 3.5.5 Per transaction | CountStatistic | Low
committed transactions and manager or
committed later server
Global trans transactionModule.globalTransRolledBack Total number of global | 3.5.5 Per transaction | CountStatistic | Low
rolled back transactions rolled and manager or
back later server
Num transactionModule.numOptimization Number of global 4.0 and | Per transaction | CountStatistic | Low
optimizations transactions converted | later manager or
to single phase for server
optimization
Local trans transactionModule.local TransCommitted Number of local 4.0 and | Per transaction | CountStatistic | Low
committed transactions later manager or
committed server
Local trans transactionModule.localTransRolledBack Number of local 4.0 and | Per transaction | CountStatistic | Low
rolled back transactions rolled later manager or
back server
Global trans transactionModule.globalTransTimeout Number of global 4.0 and | Per transaction | CountStatistic | Low
timeout transactions timed out | later manager or
server
Local trans transactionModule.localTransTimeout Number of local 4.0 and | Per transaction | CountStatistic | Low
timeout transactions timed out | later manager or
server
Thread pool counters
Counter definitions
Name Key Description Version | Granularity Type Level
Thread creates | threadPoolModule.threadCreates Total number of 3.55 Per thread CountStatistic Low
threads created and pool
later
Thread threadPoolModule.threadDestroys Total number of 355 Per thread CountStatistic Low
destroys threads destroyed and pool
later
Active threads | threadPoolModule.activeThreads The number of 355 Per thread RangeStatistic High
concurrently active and pool
threads later
Pool size threadPoolModule.poolSize Average number of 355 Per thread BoundedRangeStatistic | High
threads in pool and pool
later
Percent maxed | threadPoolModule.percentMaxed Average percent of the |3.5.5 Per thread RangeStatistic High
time that all threads and pool
are in use later
Web application counters
Data counters for this category contain information for the selected server.
Counter definitions
Name Key Description Version | Granularity Type Level
Num loaded webAppModule.numLoadedServlets Number of loaded 355 Per Web CountStatistic | Low
servlets servlets and application
later

Chapter 2. Monitoring performance

19

Num reloads | webAppModule.numReloads Number of reloaded 3.5.5 Per Web CountStatistic | Low
servlets and application
later
Total requests | webAppModule.servlets.totalRequests Total number of 3.5.5 Per servlet CountStatistic | Low
requests that a servlet |and
processed later
Concurrent webAppModule.servlets.concurrentRequests Number of requests 3.5.5 Per servlet RangeStatistic | High
requests that are concurrently | and
processed later
Average webAppModule.servlets.responseTime The response time, in | 3.5.5 Per servlet TimeStatistic Medium|
response time milliseconds, of a and
(ms) servlet request later
Num errors webAppModule.servlets.numErrors Total number of errors | 3.5.5 Per servlet CountStatistic | Low
in a servlet or and
JavaServer Page (JSP) | later

Workload Management counters

Data counters for this category contain information for workload management.

Counter definitions

Name

Key

Description

Version

Granularity

Type

Level

Num IIOP
requests

wlmModule.servernumIncomingRequests

Total number
of incoming
TIOP requests
to an
application
server

5.0

Per server

CountStatistic

Low

Num strong
affinity IIOP
requests

wimModule.server.numIncomingStrongAffinityRequests

Number of
incoming IIOP
requests to an
application
server that are
based on a
strong affinity.
A strong
affinity request
is defined as a
request that
must be
serviced by
this application
server because
of a
dependency
that resides on
the server. This
request could
not
successfully be
serviced on
another
member in the
server cluster.
In Version 5.0
ND edition,
transactional
affinity is the
only example
of a strong
affinity

5.0

Per server

CountStatistic

Low

20 1BM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

Num no
affinity IIOP
requests

wlmModule.servernumIncomingNonAffinityRequests

Number of
incoming IIOP
requests to an
application
server based
on no affinity.
This request
was sent to
this server
based on
workload
management
selection
policies that
were decided
in the
Workload
Management
(WLM) run
time of the
client.

5.0

Per server

CountStatistic

Low

Num
non-WLM
enabled IIOP
requests

wlmModule.server.numIncomingNonWLMODbjectRequests

Number of
incoming IIOP
requests to an
application
server that
came from a
client that does
not have the
WLM run time
present or
where the
object reference
on the client
was flagged
not to
participate in
workload
management.

5.0

Per server

CountStatistic

Low

Num server
cluster updates

wlmModule.servernumsServerClusterUpdates

Number of
times initial or
updated server
cluster data is
sent to a server
member from
the
deployment
manager. This
metric
determines
how often
cluster
information is
being
propagated.

5.0

Per server

CountStatistic

Low

Num of WLM
clients serviced

wlmModule.servernumOfWLMClientsServiced

Number of
WLM enabled
clients that
have been
serviced by
this application
server.

5.0

Per server

CountStatistic

Low

Num
concurrent
requests

wlmModule.servernumOfConcurrentRequests

Number of
remote IIOP
requests
currently being
processed by
this server

5.0

Per server

RangeStatistic

High

Chapter 2. Monitoring performance

21

Server
response time

wimModule.server.serverResponseTime

The response
time (in
milliseconds)
of IIOP
requests being
serviced by an
application
server. The
response time
is calculated
based on the
time the
request is
received to the
time when the
reply is sent
back out.

5.0

Per server

TimeStatistic

Medium|

Num outgoing
IIOP requests

wlmModule.client.numOfOutgoingRequests

The total
number of
outgoing IIOP
requests being
sent from a
client to an
application
server

5.0

Per WLM

CountStatistic

Low

Num server
cluster updates

wimModule.client.numClientClusterUpdates

The number of
times initial or
updated server
cluster data is
sent to a WLM
enabled client
from server
cluster
member. Use
this metric to
determine how
often cluster
information is
being
propagated.

5.0

Per WLM

CountStatistic

Low

Client response
time

wlmModule.client.clientResponseTime

The response
time (in
milliseconds)
of IIOP
requests being
sent from a
client. The
response time
is calculated
based on the
time the
request is sent
from the client
to the time the
reply is
received from
the server.

5.0

Per WLM

TimeStatistic

Medium|

System counters

Data counters for this category contain information for a machine (node).

Counter definitions

Name Key | Description | Version | Granularity | Type | Level |

22 IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

CPU utilization

systemModule.cpuUtilization

The average system CPU
utilization taken over the
time interval since the
last reading. Because the
first call is required to
perform initialization, a
value such as 0, which is
not valid, will be
returned. All subsequent
calls return the expected
value. On SMP machines,
the value returned is the
utilization averaged over
all CPUs.

5.0

Per node

CountStatistic

Low

Free memory

systemModule.freeMemory

The amount of real free
memory available on the
system. Real memory that
is not allocated is only a
lower bound on available
real memory, since many
operating systems take
some of the otherwise
unallocated memory and
use it for additional I/O
buffering. The exact
amount of buffer memory
which can be freed up is
dependent on both the
platform and the
application(s) running on
it.

5.0

Per node

CountStatistic

Low

Average CPU
utilization

systemModule.avgCpuUtilization

The average percent CPU
Usage that is busy after
the server is started

5.0

Per node

TimeStatistic

Medium

Dynamic cache counters

You can use the PMI data for Dynamic Cache to monitor the behavior and
performance of the dynamic cache service. For information on the functions and

Use the DynaCache MBean to access the related data and display it under
Dynamic Cache in TPV.

Counter definitions

usages of dynamic cache, refer to [Using the dynamic cache service to improve|
performance]

Name

Key

Description

Version | Granularity

Type

Level

Max in
memory cache
size

cacheModule.maxInMemoryCacheSize

entries

Maximum number of
in-memory cache

5.0 Per server

CountStatistic

Low

In memory
cache size

cacheModule.inMemoryCacheSize

entries

Current number of
in-memory cache

5.0 Per server

CountStatistic

Low

Timeouts

cacheModule.totalTimeoutInvalidations

Aggregate of

template timeouts
and disk timeouts

5.0 Per server

CountStatistic

Low

Hits in
memory

cacheModule.template.hitsinMemory

Requests for this
cacheable object
served from memory

5.0 Per template | CountStatistic

Low

Hits on disk

cacheModule.template.hitsOnDisk

Requests for this
cacheable object
served from disk

5.0 Per template | CountStatistic

Low

Explicit
invalidations

cacheModule.template.explicitInvalidations

Total explicit

invalidation issued
for this template

5.0 Per template | CountStatistic

Low

Chapter 2. Monitoring performance 23

LRU
invalidations

cacheModule.template.lrulnvalidations

Cache entries evicted
from memory by a
Least Recently Used
algorithm. These
entries are passivated
to disk if disk
overflow is enabled.

Per template

CountStatistic

Low

Timeouts

cacheModule.template.timeoutInvalidations

Cache entries evicted
from memory or
disk, or both, because
their timeout has
expired

Per template

CountStatistic

Low

Entries

cacheModule.template.entries

Current number of
cache entries created
from this template.
Refers to the
per-template
equivalent of
totalCacheSize.

5.0

Per template

CountStatistic

Low

Misses

cacheModule.template.misses

Requests for this
cacheable object that
were not found in the
cache

Per template

CountStatistic

Client
requests

cacheModule.template.requestsFromClient

Requests for this
cacheable object
generated by
applications running
on the application
server

Per template

CountStatistic

Low

Distributed
requests

cacheModule.template.requestsFromJVM

Requests for this
cacheable object
generated by
cooperating caches in
this cluster

5.0

Per template

CountStatistic

Low

Explicit
invalidations
(memory)

cacheModule.template.explicitInvalidationsFromMemory

Explicit invalidations
resulting in an entry
being removed from
memory

5.0

Per template

CountStatistic

Low

Explicit
invalidations

(disk)

cacheModule.template.explicitinvalidationsFromDisk

Explicit invalidations
resulting in an entry
being removed from
disk

5.0

Per template

CountStatistic

Low

Explicit
invalidations
(no op)

cacheModule.template.explicitinvalidationsNoOp

Explicit invalidations
received for this
template where no
corresponding entry
exists

5.0

Per template

CountStatistic

Low

Local explicit
invalidations

cacheModule.template.explicitinvalidationsLocal

Explicit invalidations
generated locally,
either
programmatically or
by a cache policy

5.0

Per template

CountStatistic

Low

Remote
explicit
invalidations

cacheModule.template.explicitinvalidationsRemote

Explicit invalidations
received from a
cooperating JVM in
this cluster

5.0

Per template

CountStatistic

Remote
creations

cacheModule.template.remoteCreations

Entries received from
cooperating dynamic
caches

5.0

Per template

CountStatistic

Low

Web services gateway counters

Data counters for this category contain information for WSGW. Examples include
the number of synchronous and asynchronous requests and responses.

Counter definitions

| Name

Key | Description

| Version | Granularity

| Type

| Level

24 IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

Synchronous wsgwModule.synchronousRequests Number of synchronous | 5.0 Per Web service | CountStatistic Low
requests requests made
Synchronous wsgwModule.synchronousResponses Number of synchronous | 5.0 Per Web service | CountStatistic Low
responses responses made
Asynchronous | wsgwModule.asynchronousRequests Number of 5.0 Per Web service | CountStatistic Low
requests asynchronous requests
made
Asynchronous | wsgwModule.asynchronousResponses Number of 5.0 Per Web service | CountStatistic Low
responses asynchronous responses
made
Web services counters
Data counters for this category contain information for the Web services.
Counter definitions
Name Key Description Version | Granularity Type Level
Number of webServicesModule.numLoadedServices Number of loaded 5.02 Per service CountStatistic | Low
Web services Web services and
above
Number of webServicesModule.services.numberReceived Number of requests 5.02 Per Web CountStatistic | Low
requests service received and service
received above
Number of webServicesModule.services.numberDispatched Number of requests 5.02 Per Web CountStatistic | Low
requests service dispatched or | and service
dispatched delivered above
Number of webServicesModule.services.numberSuccessfull Number of requests 5.02 Per Web TimeStatistic Low
requests service successfully and service
processed processed above
successfully
Average webServicesModule.services.responseTime The average response | 5.02 Per Web TimeStatistic High
response time time, in milliseconds, | and service
for a successful above
request
Average webServicesModule.services.requestResponseTime The average response | 5.02 Per Web TimeStatistic Medium
request time, in milliseconds, and service
response time to prepare a request above
for dispatch
Average webServicesModule.services.dispatchResponseTime The average response | 5.02 Per Web TimeStatistic Medium|
dispatch time, in milliseconds, | and service
response time to dispatch a request | above
Average reply | webServicesModule.services.replyResponseTime The average response | 5.02 Per Web TimeStatistic Medium|
response time time, in milliseconds, | and service
to prepare a reply above
after dispatch
Average webServicesModule.services.size The average payload 5.02 Per Web TimeStatistic Medium|
payload size size in bytes of a and service
received request or above
reply
Average webServicesModule.services.requestSize The average payload 5.02 Per Web TimeStatistic Medium|
request size in bytes of a and service
payload size request above
Average reply | webServicesModule.services.replySize The average payload | 5.02 Per Web TimeStatistic Medium|
payload size size in bytes of a reply | and service
above
Alarm Manager counters
Data counters for this category contain information for the Alarm Manager.
Counter definitions
Name Key | Description | Version | Granularity | Type | Level |

Chapter 2. Monitoring performance

25

Alarms created | Alarms created Total number of 5.0 and | Per CountStatistic | High
alarms created by all | later WorkManager
asynchronous scopes
for this WorkManager
Alarms Alarms Cancelled Number of alarms 5.0 and | Per CountStatistic | High
cancelled cancelled by the later WorkManager
application
Alarms fired Alarms fired Number of alarms 5.0 and | Per CountStatistic | High
fired later WorkManager
Alarm latency | Alarm latency (ms) Latency of alarms 5.0 and | Per RangeStatistic | High
fired in milliseconds later WorkManager
Alarms Alarms pending Number of alarms 5.0 and | Per RangeStatistic | High
pending waiting to fire later WorkManager
Alarms per sec | Alarms per sec The number of alarms | 5.0 and | Per RangeStatistic | High
firing per second later WorkManager
Object Pool counters
Data counters for this category contain information for Object Pools.
Counter definitions
Name Key Description Version | Granularity Type Level
Objects created | Objects created Total number of 5.0 and | Per ObjectPool | CountStatistic | High
objects created later
Objects Objects allocated Number of objects 5.0 and | Per ObjectPool | CountStatistic | High
allocated requested from the later
pool
Objects Objects returned to pool Number of objects 5.0 and | Per ObjectPool | CountStatistic | High
returned returned to the pool later
Object idle Idles object in pool Average number of 5.0 and | Per ObjectPool | RangeStatistic | High
idle object instances in | later
the pool
Scheduler counters
Data counters for this category contain information for the Scheduler service.
Counter definitions
Name Key Description Version | Granularity Type Level
Failed tasks Failed Tasks Number of tasks that | 5.0 and | Per Scheduler | CountStatistic | High
failed to execute later
Executed tasks | Executed Tasks Number of tasks 5.0 and | Per Scheduler | CountStatistic | High
executed successfully | later
Number of Number of Polls Number of poll cycles | 5.0 and | Per Scheduler | CountStatistic | High
polls completed for all later
daemon threads
Tasks per Tasks per sec Number of tasks 5.0 and | Per Scheduler | RangeStatistic | High
second executed per second later
Collisions per | Collisions per sec Number of collisions | 5.0 and | Per Scheduler | RangeStatistic | High
sec encountered per later
second between
competing poll
daemons
Time for poll | Time for poll query (ms) Execution time in 5.0 and | Per Scheduler | RangeStatistic | High
milliseconds for each | later
poll daemon thread’s
database poll query
Task execution | Task execution Time (ms) Time in milliseconds 5.0 and | Per Scheduler | RangeStatistic | High
Time taken to execute a later
task.
Tasks expiring | Tasks expiring per poll Number of tasks ina | 5.0 and | Per Scheduler | RangeStatistic | High
per poll poll query later
26 IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

Task latency

Task latency (secs) Period of time in 5.0 and | Per Scheduler | RangeStatistic | High

seconds that the task later

is delayed

Poll time Poll time (secs) Number of seconds 5.0 and | Per Scheduler | RangeStatistic | High
between poll cycles later

Tasks executed | Tasks executed per poll Number of tasks 5.0 and | Per Scheduler | RangeStatistic | High

per poll

executed by each poll | later
daemon thread.
(Multiply this by the
number of poll
daemon threads to get
the tasks executed per
effective poll cycle.)

Performance data classification

Performance Monitoring Infrastructure provides server-side data collection and
client-side API to retrieve performance data. Performance data has two
components: static and dynamic.

The static component consists of a name, ID and other descriptive attributes to
identify the data. The dynamic component contains information that changes over
time, such as the current value of a counter and the time stamp associated with
that value.

The PMI data can be one of the following statistical types defined in the JSR-077
specification:

* CountStatistic

* BoundaryStatistic

* RangeStatistic

¢ TimeStatistic

* BoundedRangeStatistic

RangeStatistic data contains current value, as well as lowWaterMark and
highWaterMark.

In general, CountStatistic data require a low monitoring level and TimeStatistic data
require a medium monitoring level. RangeStatistic and BoundedRangeStatistic
require a high monitoring level.

There are a few counters that are exceptions to this rule. The average method
response time, the total method calls, and active methods counters require a high
monitoring level. The Java Virtual Machine Profiler Interface (JVMPI) counters,
SerializableSessObjSize, and data tracked for each individual method (method level

Chapter 2. Monitoring performance 27

28

data) require a maximum monitoring level.

Statistic

name: String

unit: String
descriptions: String
startTime: long

CountStatistic

BoundaryStatistic

RangeStatistic

TimeStatistic

count: long

upperBound: long
lowerBound: long

highWaterMark: long
lowWaterMark: long

count: long
maxTime: long

current: long listed minTime: long
totalTime: long

A A
I I
I I
| |

BoundedRangeStatistic

In previous versions, PMI data was classified with the following types:

* Numeric: Maps to CountStatistic in the JSR-077 specification. Holds a single
numeric value that can either be a long or a double. This data type is used to
keep track of simple numeric data, such as counts.

* Stat: Holds statistical data on a sample space, including the number of elements
in the sample set, their sum, and sum of squares. You can obtain the mean,
variance, and standard deviation of the mean from this data.

* Load: Maps to the RangeStatistic or BoundedRangeStatistic, based on JSR-077
specification. This data type keeps track of a level as a function of time,
including the current level, the time that level was reached, and the integral of
that level over time. From this data, you can obtain the time-weighted average
of that level. For example, this data type is used in the number of active threads
and the number of waiters in a queue.

These PMI data types continue to be supported through the PMI API. Statistical
data types are supported through both the PMI API and Java Management
Extension (JMX) API.

The TimeStatistic type keeps tracking many counter samples and then returns the
total, count and average of the samples. An example of this is an average method
response time. Given the nature of this statistic type, it is also used to track
non-time related counters, like average read and write size. You can always call
getUnit method on the data configuration information to learn the unit for the
counter.

In order to reduce the monitoring overhead, numeric and stat data are not
synchronized. Since these data track the total and average, the extra accuracy is
generally not worth the performance cost. Load data is very sensitive, therefore,
load counters are always synchronized. In addition, when the monitoring level of a
module is set to max, all numeric data are also synchronized to guarantee accurate
values.

IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

Enabling performance monitoring services in the application server
through the administrative console

To monitor performance data through the performance monitoring infrastructure
(PMI) interfaces, you must first enable PMI services through the administrative
console.

1. Open the administrative console.

2. Click Servers > Application Servers in the console navigation tree.
3. Click server.
4

. Click the Configuration tab. When in the Configuration tab, settings will
apply once the server is restarted. When in the Runtime Tab, settings will
apply immediately. Note that enablement of Performance Monitoring Service
can only be done in the Configuration tab.

5. Click Performance Monitoring Service.
6. Select the checkbox Startup.

7. (Optional) Select the PMI modules and levels to set the initial specification
level field.

8. Click Apply or OK.
9. Click Save.

10. Restart the application server. The changes you make will not take affect until
you restart the application server.

When running in WebSphere Application Server Network Deployment, be sure to
Enable performance monitoring services in the NodeAgent through thel
administrative consold

Note: If you are running your monitoring applications with security enabled, refer
to[Running your monitoring applications with security enabled|

Performance monitoring service settings

Use this page to specify settings for performance monitoring, including enabling
performance monitoring, selecting the PMI module and setting monitoring levels.

To view this administrative console page, click Servers > Application Servers >
server > Performance Monitoring.

Startup

Specifies whether the application server attempts to start the specified service. If an
application server is started when the performance monitoring service is disabled,
you will have to restart the server in order to enable it.

Initial specification level
Specifies a Performance Monitoring Infrastructure (PMI) string that stores PMI
specification levels, for example module levels, for all components in the server.

Set the PMI specification levels by selecting the none, standard or custom checkbox.
If you choose none, all PMI modules are set to the none level. Choosing standard,
sets all PMI modules to high and enables all PMI data excluding the method level
data and JVMPI data. Choosing custom, gives you the option to change the level
for each individual PMI module. You can set the level to N, L, M, H or X (none,
low, medium, high and maximum). Note that you should not change the module
names.

Chapter 2. Monitoring performance 29

Enabling performance monitoring services in the Node Agent through
the administrative console

To monitor performance data through the performance monitoring infrastructure
(PMI) interfaces, you must first enable PMI services through the administrative
console.

Open the administrative console.

Click System Administration > Node Agents in the console navigation tree.
Click nodeagent.

Click Performance Monitoring Service.

Select the Startup check box .

(Optional) Select the PMI modules and levels to set the initial specification
level field.

IR

7. Click Apply or OK.

8. Click Save.

9. Restart the Node Agent. The changes take affect after you restart the Node
Agent.

When in the Configuration tab, settings will apply once the server is restarted.
When in the Runtime Tab, settings will apply immediately. Note that enablement
of Performance Monitoring Service can only be done in the Configuration tab.

Note: If you are running your monitoring applications with security enabled, refer
to[Running your monitoring applications with security enabled|

Enabling performance monitoring services using the command line

30

You can use the command line to enable performance monitoring services.

1. |Enable PMI services through the administrative consolef Make sure to restart
the application server.

2. |Run the wsadmin command} Using wsadmin, you can invoke operations on
Perf Mbean to obtain the PMI data, set or obtain PMI monitoring levels and
enable data counters.

Note: If PMI data are not enabled yet, you need to first enable PMI data by
invoking setInstrumentationLevel operation on PerfMBean.

The following operations in Perf MBean can be used in wsadmin:

/** Set instrumentation Tevel using String format

* This should be used by scripting for an easy String processing

*/ The level STR is a list of moduleName=Level connected by ":".

*/

public void setInstrumentationLevel(String levelStr, Boolean recursive);

/*x Get instrumentation Tevel in String for all the top level modules
* This should be used by scripting for an easy String processing
;ﬁbﬁc String getInstrumentationLevelString();

/** Return the PMI data in String

y

public String getStatsString(ObjectName on, Boolean recursive);

/*% Return the PMI data in String

IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

* Used for PMI modules/submodules without direct MBean mappings.
*/

public String getStatsString(ObjectName on, String submoduleName, Boolean recursive);

[**

* Return the submodule names if any for the MBean
*/

public String TistStatMemberNames(ObjectName on);
If an MBean is a StatisticProvider and if you pass its ObjectName to
getStatsString, you will get the Statistic data for that MBean. MBeans with the
following MBean types are statistic providers:

¢ DynaCache

* EJBModule

* EntityBean

» JDBCProvider

* J2CResourceAdapter

s JVM

* MessageDrivenBean

* ORB

e Server

* SessionManager

e StatefulSessionBean

e StatelessSessionBean

* SystemMetrics

* ThreadPool

* TransactionService

* WebModule

e Servlet

* WLMAppServer

* WebServicesService

* WSGW

The following are sample commands in wsadmin you can use to obtain PMI data:

Obtain the Perf MBean ObjectName

wsadmin>set perfName [$AdminControl completeObjectName type=Perf,x]
wsadmin>set perfOName [$AdminControl makeObjectName $perfName]

Invoke getInstrumentationLevelString operation
* use invoke since it has no parameter

wsadmin>$AdminControl invoke $perfName getInstrumentationLevelString

This command returns the following:

beanModule=H:cacheModule=H:connectionPoolModule=H:j2cModule=H:jvmRuntimeModule=H
:orbPerfModule=H:servletSessionsModule=H:systemModule=H:threadPoolModule=H
:trans actionModule=H:webAppModule=H

Note that you can change the level (n, 1, m, h, x) in the above string and then pass
it to setInstrumentationLevel method.

Invoke setInstrumentationLevel operation - enable/disable PMI counters
* set parameters ("pmi=l" is the simple way to set all modules to the low level)
wsadmin>set params [java::new {java.lang.Object[]} 2]

wsadmin>$params set 0 [java::new java.lang.String pmi=1]
wsadmin>$params set 1 [java::new java.lang.Boolean true]

* set signatures

Chapter 2. Monitoring performance 31

wsadmin>set sigs [java::new {java.lang.String[]} 2]
wsadmin>$§sigs set 0 java.lang.String
wsadmin>$sigs set 1 java.lang.Boolean

e invoke the method: use invoke_jmx since it has parameter

wsadmin>$AdminControl invoke jmx $perfOName setInstrumentationLevel $params $sigs
This command does not return anything.

Note that the PMI level string can be as simple as pmi=level (where level is n, 1, m,
h, or x) or something like modulel=levell:module2=level2:module3=level3 with the
same format shown in the string returned from getInstrumentationLevelString.

Invoke getStatsString(ObjectName, Boolean) operation If you know the MBean
ObjectName, you can invoke the method by passing the right parameters. As an
example, JVM MBean is used here.

e get MBean query string - e.g., JVM MBean

wsadmin>set jvmName [$AdminControl completeObjectName type=JVM,x*]
* set parameters

wsadmin>set params [java::new {java.lang.Object[]} 2]
wsadmin>$params set 0 [$AdminControl makeObjectName $jvmName]
wsadmin>$params set 1 [java::new java.lang.Boolean true]

* set signatures

wsadmin>set sigs [java::new {java.lang.String[]} 2]
wsadmin>$sigs set 0 javax.management.ObjectName wsadmin>$sigs set 1 java.lang.Boolean
* invoke method

wsadmin>$AdminControl invoke jmx $perfOName getStatsString $params $sigs

This command returns the following:

{Description jvmRuntimeModule.desc} {Descriptor {{Node wenjianpc} {Server server
1} {Module jvmRuntimeModule} {Name jvmRuntimeModule} {Type MODULE}}} {Level 7} {
Data {{{Id 4} {Descriptor {{Node wenjianpc} {Server serverl} {Module jvmRuntimeM
odule} {Name jvmRuntimeModule} {Type DATA}}} {PmiDataInfo {{Name jvmRuntimeModul
e.upTime} {Id 4} {Description jvmRuntimeModule.upTime.desc} {Level 1} {Comment {
The amount of time in seconds the JVM has been running}} {SubmoduleName null} {T
ype 2} {Unit unit.second} {Resettable false}}} {Time 1033670422282} {Value {Coun
t 638} }} {{Id 3} {Descriptor {{Node wenjianpc} {Server serverl} {Module jvmRunt
imeModule} {Name jvmRuntimeModule} {Type DATA}}} {PmiDataInfo {{Name jvmRuntimeM
odule.usedMemory} {Id 3} {Description jvmRuntimeModule.usedMemory.desc} {Level 1
} {Comment {Used memory in JVM runtime}} {SubmoduleName null} {Type 2} {Unit uni
t.kbyte} {Resettable false}}} {Time 1033670422282} {Value {Count 66239} }} {{Id

2} {Descriptor {{Node wenjianpc} {Server serverl} {Module jvmRuntimeModule} {Nam
e jvmRuntimeModule} {Type DATA}}} {PmiDataInfo {{Name jvmRuntimeModule.freeMemor
y} {Id 2} {Description jvmRuntimeModule.freeMemory.desc} {Level 1} {Comment {Fre
e memory in JVM runtime}} {SubmoduleName null} {Type 2} {Unit unit.kbyte} {Reset
table false}}} {Time 1033670422282} {Value {Count 34356} }} {{Id 1} {Descriptor

{{Node wenjianpc} {Server serverl} {Module jvmRuntimeModule} {Name jvmRuntimeMod
ule} {Type DATA}}} {PmiDataInfo {{Name jvmRuntimeModule.totalMemory} {Id 1} {Des
cription jvmRuntimeModule.totalMemory.desc} {Level 7} {Comment {Total memory in

JVM runtime}} {SubmoduleName null} {Type 5} {Unit unit.kbyte} {Resettable false}
1} {Time 1033670422282} {Value {Current 100596} {LowWaterMark 38140} {HighWaterM
ark 100596} {MBean 38140.0} }}}}

Invoke getStatsString (ObjectName, String, Boolean) operation This operation
takes an additional String parameter and it is used for PMI modules that do not
have matching MBeans. In this case, the parent MBean is used with a String name
representing the PMI module. The String names available in a MBean can be found
by invoking listStatMemberNames. For example, beanModule is a logic module
aggregating PMI data over all EJBs but there is no MBean for beanModule.
Therefore, you can pass server MBean ObjectName and a String "beanModule” to
get PMI data in beanModule.

32 IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

* get MBean query string - e.g., server MBean
wsadmin>set mySrvName [$AdminControl completeObjectName type=Server,name=serverl,
node=wenjianpc,*]
* set parameters
wsadmin>set params [java::new {java.lang.Object[]} 3]
wsadmin>$§params set 0 [$AdminControl makeObjectName $mySrvName]

wsadmin>$params set 1 [java::new java.lang.String beanModule]
wsadmin>$params set 2 [java::new java.lang.Boolean true]

* set signatures
wsadmin>set sigs [java::new {java.lang.String[]} 3]
wsadmin>$sigs set 0 javax.management.ObjectName

wsadmin>$sigs set 1 java.lang.String
wsadmin>$sigs set 2 java.lang.Boolean

e invoke method
wsadmin>$AdminControl invoke_jmx $perfOName getStatsString $params $sigs

This command returns PMI data in all the E]Bs within the BeanModule hierarchy
since the recursive flag is set to true.

Note that this method is used to get stats data for the PMI modules that do not
have direct MBean mappings.

Invoke listStatMemberNames operation
* get MBean queryString - for example, Server
wsadmin>set mySrvName [$AdminControl completeObjectName type=Server,name=serverl,
node=wenjianpc,*]
* set parameter
wsadmin>set params [java::new {java.lang.Object[]} 1]
wsadmin>$params set 0 [$AdminControl makeObjectName $mySrvName]
* set signatures
wsadmin>set sigs [java::new {java.lang.String[]} 1]

wsadmin>$sigs set 0 javax.management.ObjectName
wsadmin>$AdminControlinvoke_jmx $perfOName TistStatMemberNames $params $sigs

This command returns the PMI module and submodule names, which have no
direct MBean mapping. The names are seperated by a space " ". You can then use
the name as the String parameter in getStatsString method, for example:

beanModule connectionPoolModule j2cModule servietSessionsModule threadPoolModule
webAppModule

Enabling Java Virtual Machine Profiler Interface data reporting

To enable Java Virtual Machine Profiler Interface (JVMPI) data reporting for each
individual application server:

1. Open the administrative console.

Click Servers > Application Servers in the console navigation tree.
Click the application server for which JVMPI needs to be enabled.
Click Process Definition

Click the Java Virtual Machine.

Type -XrunpmiJumpiProfiler in the Generic JVM arguments field.
Click Apply or OK.

Click Save.

Click Servers > Application Servers in the console navigation tree.

© N Ok DN

Chapter 2. Monitoring performance 33

10. Click the application server for which JVMPI needs to be enabled.

11. Click the Configuration tab. When in the Configuration tab, settings will
apply once the server is restarted. When in the Runtime Tab, settings will
apply immediately. Note that Performance Monitoring Service can only be
enabled in the Configuration tab.

12. Click Performance Monitoring Service.

13. Select the checkbox Startup.

14. Set initial specification level to Custom and jomRuntimeModule=X.

15. Click Apply or OK.

16. Click Save.

17. Start the application server, or restart the application server if it is currently
running.

18. Refresh the Tivoli Performance Viewer if you are using it. The changes you
make will not take affect until you restart the application server.

Java Virtual Machine Profiler Interface

The Java Virtual Machine Profiler Interface (JVMPI) enables the collection of
information, such as data about garbage collection, and the Java virtual machine
(JVM) API that runs the application server. The Tivoli Performance Viewer
leverages a Java Virtual Machine Profiler Interface (JVMPI) to enable more
comprehensive performance analysis.

JVMPI is a two-way function call interface between the JVM API and an in-process
profiler agent. The JVM API notifies the profiler agent of various events, such as
heap allocations and thread starts. The profiler agent can activate or deactivate
specific event notifications, based on the needs of the profiler.

JVMPI supports partial profiling by enabling the user to choose which types of
profiling information to collect and to select certain subsets of the time during
which the JVM API is active. JVMPI moderately increases the performance impact.

Monitoring and analyzing performance data

WebSphere Application Server performance data, once collected, can be monitored
and analyzed with a variety of tools.

1. [Monitor performance data with Tivoli Performance Viewer This tool is
included with WebSphere Application Server.

2. [Monitor performance data with other Tivoli monitoring tools.

3. [Monitor performance data with user-developed monitoring tools, Write your
own applications to monitor performance data.

4. [Monitor performance with third-party monitoring tools|

Monitoring performance with Tivoli Performance Viewer
(formerly Resource Analyzer)

The Resource Analyzer has been renamed Tivoli Performance Viewer.

Tivoli Performance Viewer (which is shipped with WebSphere) is a Graphical User
Interface (GUI) performance monitor for WebSphere Application Server. Tivoli

34 1BM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

Performance Viewer can connect to a local or to a remote host. Connecting to a
remote host will minimize performance impact to the application server
environment.

Monitor and analyze the data with Tivoli Performance Viewer with these tasks:

Start the Tivoli Performance Viewer]

Set monitoring levels|

IView summary reportsl

(Optional) [Store data to a log file|

(Optional) [Replay a performance data log file}

(Optional) [View and modify performance chart datal

(Optional) [Scale the performance data chart display}

(Optional) |Refresh datal

(Optional) |[Clear values from tables and chartsl.

COX®NOO RN

—_

(Optional) |Reset counters to zero|

The Performance Advisor in Tivoli Performance Viewer provides advice to help
tune systems for optimal performance and gives recommendations on inefficient
settings by using collected PMI data. For more information, see
[Performance Advisor in Tivoli Performance Viewer]|

Tivoli Performance Viewer features

Tivoli Performance Viewer is a Java client which retrieves the Performance
Monitoring Infrastructure (PMI) data from an application server and displays it in
a variety of formats.

You can do the following tasks with the Tivoli Performance Viewer:

* View data in real time

* Record current data in a log, and replay the log later

* View data in chart form, allowing visual comparison of multiple counters. Each
counter can be scaled independently to enable meaningful graphs.

* View data in tabular form

* Compare data for single resources to aggregate data across a node

To minimize the performance impact, Tivoli Performance Viewer polls the server
with the PMI data at an interval set by the user. All data manipulations are done
in the Tivoli Performance Viewer client, which can be run on a separate machine,
further reducing the impact.

The Tivoli Performance Viewer graphical user interface includes the following:
* Resource selection panel

* Data monitoring panel

* Menu bar

* Toolbar icons

* Node icons

* Status bar

Chapter 2. Monitoring performance 35

1 - Resource Selection Panel
2 - Counter Selection panel
3 - Viewing Counter (chart and table views)

Layout of the console

The performance viewer main window consists of two panels: the Resource
Selection panel and the Data Monitoring panel. The Resource Selection panel,
located on the left, provides a view of resources for which performance data can be
displayed. The Data Monitoring panel, located on the right, displays numeric and
statistical data for the resources that are highlighted (selected) in the Resource
Selection panel.

You can adjust the width of the Resource Selection and Data Monitoring panels by
dragging the split bar left or right. You can rearrange the order of the table
columns in the Data Monitoring panel by dragging the column heading left or
right. You can also adjust the width of the columns by dragging the edge of the
column left or right.

Resource selection panel

The Resource Selection panel provides a hierarchical (tree) view of resources and
the types of performance data available for those resources. Use this panel to select
which resources to monitor and to start and stop data retrieval for those resources.

The Resource Selection panel displays resources and associated resource categories
in an indented tree outline. Clicking the plus (+) and minus (-) symbols expands
and collapses the tree to reveal the categories for the various resource instances.
The resource tree can also be navigated by using the up and down arrow keys to
cycle through the branches and by using the left and right arrow keys to expand
and collapse the tree of resources. Resource instances can be expanded to reveal
the instances they contain, if applicable. For example, when a EJB JAR instance is
expanded, the enterprise bean instances in the EJB JAR are revealed. The Data
Monitoring panel automatically displays the appropriate selection of counters for
any objects highlighted in the Resource Selection panel.

36 IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

The first level of the hierarchy includes all nodes (machines) in the administrative
domain, followed by all application servers on the node. Below each application
server, all resource categories are listed. If the enterprise beans category is
expanded, all EJB JAR instances in the server are displayed. Next, all enterprise
bean instances appear below the EJB JAR in the hierarchy. Then, a methods
resource is associated with each bean. Clicking an individual bean or EJB JAR
instance causes its corresponding counters to be displayed in the Data Monitoring
panel. For enterprise beans, the counters displayed depend on whether the bean is
an entity bean or a session bean. For EJB JARs, the counters are aggregate counters
for all enterprise beans in the EJB JARs. See the information center article
Performance data organization for more information.

Data monitoring panel

The Data Monitoring panel enables the selection of multiple counters and displays
the resulting performance data for the currently selected resource. It contains two
panels: the Viewing Counter panel above and the Counter Selection panel below.

Counter selection panel

The Counter Selection panel shows the counters available for the resource
performance category selection.

Two factors determine the list of available counters in the Counter Selection panel:

* Only counters associated with the resource that is selected in the Resource
Selection panel are displayed.

* Only counters having impact cost ratings within or below the instrumentation or
monitoring level that is set for that resource in the administrative domain are
displayed.

The first three counters shown for each resource performance category are selected
by default. All counters can be selected or deselected, and the resulting output,
shown in the top panel, automatically reflects the selection.

The columns in the Counter Selection panel provide the following information for

each counter:

¢ Name. The names of the counters that are available for selection with this
resource.

* Description. A brief description of the function of each counter.

* Value. The value for the counter, displayed according to the display mode in
effect. Values are actual values (not scaled values used for the chart, if
applicable).

* Select. A check box that indicates whether a counter is to be reflected in the
chart. To hide data, clear the check box. The column representing that counter is
then removed from the View Data window, and the graphic display for that
counter is removed from the View Chart window.

* Scale. A value indicating whether data has been scaled (amplified or
diminished) from its actual value to fit on the chart. This value is reflected only
in the View Chart window.

The value for the Scale column can be set manually by editing the value of the
Scale field. See Scaling the chart display manually for information on manually
setting the scale.

Viewing Counter panel

Chapter 2. Monitoring performance 37

When a counter on the list in the Counter Selection panel is selected, the statistics
gathered from that counter are displayed in the Viewing Counter panel at the top
of the Data Monitoring panel.

The View Data window shows the counter’s output in table format; the View Chart
window displays a graph with time represented on the x-axis and the performance
value represented on the y-axis. One or more performance counters can be
simultaneously graphed on a single chart. The chart plots data from n data points,
where 7 is the current table size (number of rows).

Display of multiple resources and aggregate data

When a single resource is selected in the Resource Selection panel, the Data
Monitoring panel displays a choice of a table view or a chart view. If multiple
resources are selected, the Data Monitoring panel displays a single data sheet for
viewing summary information for the selected resources. The data sheet displays
the tables for all objects of similar type for the selected resources. For example, if
three servlet instances are selected, the data sheet displays a table of counter values
for all the servlets. By default, the display buffer size is set to 40 rows,
corresponding to the values of the last 40 data points retrieved.

The performance viewer provides aggregate data at the module level. If aggregate
data is available for a group, it is displayed in the Data Monitoring panel. For
example, for each enterprise bean home interface, counters track the number of
active enterprise beans of that home. Each E]JB JAR has an aggregate value that is
the sum of all the enterprise beans in that EJB JAR. The enterprise beans resource
category (module) within the application server has an aggregate value that is the
sum of all enterprise beans in all EJB JARs.

Menu bar

The menu bar contains the following options:

* File menu. Used to change to current mode (from logging mode), to open an
existing log file, and to exit from the performance viewer. The File menu
contains the following items:

— Refresh. Queries the administrative server for any newly started resources
since data retrieval began or for additional counters to report. This operation
is also recursive over all components subordinate to the selected resources.
Tivoli Performance Viewer refreshes data every 10 seconds. When changing
the refresh rate, you must use an integer greater than or equal to 1.

— Current Activity. Resumes the display of real-time data in tables and charts.
This menu option is used to stop viewing data from a log file and return to
viewing real-time data.

— Log. Displays a dialog box for specifying the name and location of an existing
log file to be replayed.

— Exit. Closes the performance viewer. If you made changes to the
instrumentation levels of any resources during the session, a dialog box opens
to ask whether you want to save the changed settings before closing the tool.

* Logging menu. Provides On and Off options that are used to start and stop
recording data in a log file. If you start a new log file and specify the same file
name, the file is overwritten.

* Setting menu. Used to start and stop the reporting of data, and to clear and
refresh data. The Setting menu contains the following items:

— Clear Buffer. Deletes the values currently displayed in tables and charts. For
example, after stopping a counter, you can use this operation to remove the
remaining data from a table.

38 IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

— Reset to Zero. Resets cumulative counters of the selected performance group
back to zero.

— View Data As. Specifies how counter values are displayed. You can choose
whether to display absolute values, changes in values, or rates of change.
How data is displayed differs slightly depending on where you are viewing
data. The choices follow:

- Raw Value. Displays the absolute value. If the counter represents load data,
such as the average number of connections in a database pool, then the
Tivoli Performance Viewer displays the current value followed by the
average. For example, 18 (avg:5).

- Change in Value. Displays the change in the current value from the
previous value.

- Rate of Change. Displays the ratio change/(T1 - T2), where change is the
change in the current value from the previous value, T1 is the time when
the current value was retrieved and T2 is the time when the previous value
was retrieved.

— Log Replay. Includes Rewind Stop Play Fast Forward.

Note that right-clicking a resource in the Resource Selection panel displays a
menu that provides the following options: Refresh, Clear Buffer, and Reset to
Zero.

* Help menu. Provides information for users.

Toolbar icons

Toolbar icons provide shortcuts to frequently used commands. The toolbar includes

the following icons:

* Refresh. Updates data and structures for the selected resources. That is, it polls
the administrative server to retrieve new information about additional counters
to display or new servers recently added to the domain.

* Clear Buffer. Deletes the values currently displayed in all tables and charts.

* Reset to Zero. Resets the counters.

Node icons

In the Resource Selection panel, the color of the node icon indicates the current
state and availability of the application server in the domain.

* Green--The resource is running and available.

* Red--The resource is stopped.

Status bar

The status bar across the bottom of the performance viewer window dynamically
displays the current state of the reporting values. The following state information
is reported in the status bar:

* The current setting for the refresh rate

* The buffer size in use in the current Viewing Counter panel

* The display mode in use in the current Viewing Counter panel

* The current state of the logging setting

Starting the Tivoli Performance Viewer

You can also start the Tivoli Performance Viewer with security enabled. To do this
see [Running your monitoring applications with security enabled|

1. Start the Tivoli Performance Viewer. This can be done in two ways:

Chapter 2. Monitoring performance 39

a. Start performance monitoring from the command line. Go to the
product_installation_directory/bin directory and run the tperfviewer
script.

You can specify the host and port in Windows NT, 2000, and XP
environments as:

tperfviewer.bat host_name port_number connector_type

or

On the AIX and other UNIX platforms, use

tperfviewer.sh host_name port_number connector_type

for example:

tperfviewer.bat localhost 8879 SOAP

Connector_type can be either SOAP or RMI. The port numbers for
SOAP/RMI connector can be configured in the Administrative Console
under Servers > Application Servers > server_name > End Points.

If you are connecting to WebSphere Application Server, use the application
server host and connector port. If additional servers have been created, then
use the appropriate server port for which data is required. Tivoli
Performance Viewer will only display data from one server at a time when
connecting to WebSphere Application Server.

If you are connecting to WebSphere Application Server Network
Deployment, use the deployment manager host and connector port. Tivoli
Performance Viewer will display data from all the servers in the cell. Tivoli
Performance Viewer cannot connect to an individual server in WebSphere
Application Server Network Deployment.

8879 is the default SOAP connector port for WebSphere Application Server
Network Deployment.

8880 is the default SOAP connector port for WebSphere Application Server.

9809 is the default RMI connector port for WebSphere Application Server
Network Deployment.

2809 is the default RMI connector port for WebSphere Application Server.

On iSeries, you can connect the Tivoli Performance Viewer to an iSeries
instance from either a Windows, an AIX, or a UNIX client as described

above. To discover the RMI or SOAP port for the iSeries instance, start

Qshell and enter the following command:

product_installation_directory/bin/dspwasinst -instance myInstance
where

* product_installation_directory is your iSeries install directory
 mylnstance is the instance used when you created iSeries instance.

b. Click Start > Programs > IBM WebSphere > Application Server v.50 >
Tivoli Performance Viewer.

Tivoli Performance Viewer detects which package of WebSphere Application
Server you are using and connects using the default SOAP connector port.
If the connection fails, a dialog is displayed to provide new connection
parameters.

You can connect to a remote host or a different port number, by using the
command line to start the performance viewer.
2. Adjust the data collection settings. Refer to the instructions in the topidSetting
[performance monitoring leveld,

40 1BM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

Setting performance monitoring levels

The monitoring settings determine which counters are enabled. Changes made to
the settings from Tivoli Performance Viewer affect all applications that use the
Performance Monitoring Infrastructure (PMI) data.

To view monitoring settings:

1. Choose the Data Collection icon on the Resource Selection panel. This selection
provides two options on the Counter Selection panel. Choose the Current
Activity option to view and change monitoring settings. Alternatively, use File>
Current Activity to view the monitoring settings.

2. Set monitoring levels by choosing one of the following options:
* None: Provides no data collection
* Standard: Enables data collection for all modules with monitoring level set to
high
* Custom: Allows customized settings for each module

These options apply to an entire application server.
3. (Optional) Fine tune the monitoring level settings.
a. Click Specify. This sets the monitoring level to custom.

b. Select a monitoring level. For each resource, choose a monitoring level of
None, Low, Medium, High or Maximum. The dial icon will change to
represent this level. Note: The instrumentation level is set recursively to all
elements below the selected resource. You can override this by setting the
levels for children AFTER setting their parents.

4. Click OK.
5. Click Apply.

If the instrumentation level excludes a counter, that counter does not appear in the
tables and charts of the performance viewer. For example, when the
instrumentation level is set to low, the thread pool size is not displayed because
that counter requires a level of high.

Note that monitoring levels can also be set through the administrative console. See
Enabling performance monitoring services in the application server through the|
administrative console for more information.

Setting monitoring levels for individual enterprise bean methods:

Due to performance overhead, the Standard monitoring level does not include
monitoring individual enterprise bean methods.

To monitor individual methods:
1. Choose the Custom option for setting monitoring levels.

2. Set the monitoring level for the methods category to Maximum by following
the procedure described in setting the monitoring level task.

3. Click Apply.
4. Click OK.

Individual methods display, and you can set the level for individual methods.
Only methods called by an application display. If a remote method has not been

called since the application server started, it does not appear in the performance
panel.

Chapter 2. Monitoring performance 41

Viewing summary reports

Summary reports are available for each application server. Before viewing reports,
make sure data counters are enabled and monitoring levels are set properly. See
[Setting performance monitoring levels}

The standard monitoring level will enable all reports except the report on EJB
methods. To enable EJB methods report, use the custom monitoring setting and set
the monitoring level to Max for the Enterprise Beans module.

To view the summary reports:
1. Click the application server icon in the navigation tree.
2. Click the appropriate column header to sort the columns in the report.

Changing the refresh rate of data retrieval

By default, the Tivoli Performance Viewer retrieves data every 10 seconds.

To change the rate at which data is retrieved:
1. Click Setting > Set Refresh Rate.

2. Type a positive integer representing the number of seconds in the Set Refresh
Rate dialog box.

3. Click OK.
Changing the display buffer size

To change the size of the buffer and the number of rows displayed:

1. Click Setting > Set Buffer Size.

2. Type the number of rows to display in the Set Buffer Size dialog box.
3. Click OK.

Viewing and modifying performance chart data

The View Chart tab displays a graph with time as the x-axis and the performance
value as the y-axis.

1. Click a resource in the Resource Selection panel. The Resource Selection panel,
located on the left side, provides a hierarchical (tree) view of resources and the
types of performance data available for those resources. Use this panel to select
which resources to monitor and to start and stop data retrieval for those
resources. See [Tivoli Performance Viewer features| for information on the
Resource Selection panel.

2. Click the View Chart tab in the Data Monitoring panel. The Data Monitoring
panel, located on the right side, enables the selection of multiple counters and
displays the resulting performance data for the currently selected resource. It
contains two panels: the Viewing Counter panel above and the Counter
Selection panel below. If necessary, you can set the scaling factors by typing
directly in the scale field. See[Scaling the performance data chart display] for
more information.

Scaling the performance data chart display
You can manually adjust the scale for each counter so that the graph allows

meaningful comparisons of different counters. Follow these steps to manually
adjust the scale:

42 IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

1. Double-click the Scale column for the counter that you want to modify.
2. Type the desired value in the field for the Scale value.
The View Chart display immediately reflects the change in the scaling factor.

The possible values for the Scale field range from 0 to 100 and show the following

relationships:

* Avalue equal to 1 indicates that the value is the actual value.

* A value greater than 1 indicates that the variable value is amplified by the factor
shown. For example, a scale setting of 1.5 means that the variable is graphed as
one and one-half times its actual value.

e A value less than 1 indicates that the variable value is decreased by the factor
shown. For example, a scale setting of .5 means that the variable is graphed as
one-half its actual value.

Scaling only applies to the graphed values.
Refreshing data

The refresh operation is a local, not global, operation that applies only to selected
resources. The refresh operation is recursive; all subordinate or children resources
refresh when a selected resource refreshes. To refresh data:

1. Click one or more resources in the Resource Selection panel.

2. Click File > Refresh. Alternatively, click the Refresh icon or right-click the
resource and select Refresh. Clicking refresh with server selected under the
viewer icon causes TPV to query the server for new PMI and product
configuration information. Clicking refresh with server selected under the
advisor icon causes TPV to refresh the advice provided, but will not refresh
PMI or product configuration information.

Performance data refresh behavior: New performance data can become available

in either of the following situations:

* An administrator uses the console to change the instrumentation level for a
resource (for example, from medium to high).

* An administrator uses the console to add a new resource (for example, an
enterprise bean or a servlet) to the run time.

In both cases, if the resource in question is already polled by the Tivoli
Performance Viewer or the parent of the resource is being polled, the system is
automatically refreshed. If more counters are added for a group that the
performance viewer is already polling, the performance viewer automatically adds
the counters to the table or chart views. If the parent of the newly added resource
is polled, the new resource is detected automatically and added to the Resource
Selection tree. You can refresh the Resource Selection tree, or parts of it, by
selecting the appropriate node and clicking the Refresh icon, or by right-clicking a
resource and choosing Refresh.

When an application server runs, the performance viewer tree automatically
updates the server local structure, including its containers and enterprise beans, to
reflect changes on the server. However, if a stopped server starts after the
performance viewer starts, a manual refresh operation is required so that the
server structure accurately reflects in the Resource Selection tree.

Clicking refresh with server selected under the viewer icon causes TPV to query
the server for new PMI and product configuration information. Clicking refresh

Chapter 2. Monitoring performance 43

44

with server selected under the advisor icon causes TPV to refresh the advice
provided, but will not refresh PMI or product configuration information.

Clearing values from tables and charts

Selecting Clear Values removes remaining data from a table or chart. You can then
begin populating the table or chart with new data.

To clear the values currently displayed:
1. Click one or more resources in the Resource Selection panel.

2. Click Setting > Clear Buffer. Alternatively, right-click the resource and select
Clear Buffer

Storing data to a log file

You can save all data reported by the Tivoli Performance Viewer in a log file and
write the data in binary format (serialized Java objects) or XML format.

To start recording data:
1. Click Logging > On or click the Logging icon.

2. Specify the name, location, and format type of the log file in the Save dialog
box. The Files of type field allows an extension of *.perf for binary files or
*.xml for XML format.

Note: The *.perf files may not be compatible between fix levels.
3. Click OK.

To stop logging, click Logging > Off or click the Logging icon.

Performance data log file: An example of the performance data log file format is
below.

Location

By default, this file is written to:
product_installation_root/1ogs/ra_mmdd_hhmm.xm1

where mmdd=month and date, and hhmm=hour and minute
Usage Notes

This read-write data file is created by Tivoli Performance Viewer and provides data
collected by the performance viewer. The log file is not updated, but remains
available for you to replay the collected data. The performance data log file does
not have an effect on the WebSphere environment.

Example

<?xml version="1.0"?>
<RALog version="5.0">
<RAGroupSnapshot time="1019743202343" numberGroups="1">
<CpdCollection name="root/peace/Default Server/jvmRuntimeModule" level="7">
<CpdData name="root/peace/Default
Server/jvmRuntimeModule/jvmRuntimeModule.total/Memory" id="1">
<CpdLong value="39385600" time="1.019743203334E12"/>
</CpdData>
<CpdData name="root/peace/Default

IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

Server/jvmRuntimeModule/jvmRuntimeModule. freeMemory" id="2">
<CpdLong value="4815656" time="1.019743203334E12"/>
</CpdData>
<CpdData name="root/peace/Default
Server/jvmRuntimeModule/jvmRuntimeModule.usedMemory" id="3">
<CpdLong value="34569944" time="1.019743203334E12"/>
</CpdData>
</CpdCollection>
</RAGroupSnapshot>
</RALog>

Replaying a performance data log file
You can replay both binary and XML logs by using the Tivoli Performance Viewer.

To replay a log file, do the following:

1. Click Data Collection in the navigation tree.

2. Click the Log radio button in the Performance data from field.

3. Click Browse to locate the file that you want to replay or type the file path
name in the Log field.

4. Click Apply.

5. Play the log by using the Play icon or click Setting > Log Replay > Play.

By default, the data replays at the same rate it was collected or written to the log.
You can choose Fast Forward mode in which the log replays without simulating
the refresh interval. To Fast Forward, use the button in the tool bar or click Setting
> Log Replay > FF.

To rewind a log file, click Setting > Log Replay > Rewind or use the Rewind icon
in the toolbar.

While replaying the log, you can choose different groups to view by selecting them
in the Resource Selection pane. You can also view the data in either of the views
available in the tabbed Data Monitoring panel.

You can stop and resume the log at any point. However, you cannot replay data in
reverse.

Resetting counters to zero

Some counters report relative values based on how much the value has changed
since the counter was enabled. The Reset to Zero operation resets those counters
so that they will report changes in values since the reset operation. This operation
will also clear the buffer for the selected resources. See "Clearing values from
tables and charts” in Related Links for more information about clearing the buffer
for selected resources. Counters based on absolute values can not be reset and will
not be affected by the Reset to Zero operation.

To reset the start time for calculating relative counters:
1. Click one or more resources in the Resource Selection panel.

2. Click Setting > Reset to Zero. Alternatively, right-click the resource and click
Reset to Zero.

Chapter 2. Monitoring performance 45

46

Developing your own monitoring applications

You can use the Performance Monitoring Infrastructure (PMI) interfaces to develop
your own applications to collect and display performance information.

There are three such interfaces - a Java Machine Extension (JMX)-based interface, a
PMI client interface, and a servlet interface. All three interfaces return the same
underlying data. The JMX interface is accessible through the|{AdminClient tool} The
PMI client interface is a Java interface that works with Version 3.5.5 and above.
The servlet interface is perhaps the simplest, requiring minimal programming, as
the output is XML.

1. |Developing your own monitoring application using Performance Monitoring|
Infrastructure client|.

Developing your own monitoring applications with PMI servlet]

[Compiling your monitoring applicationg

Running your new monitoring applications|

ok wn

Accessing Performance Monitoring Infrastructure data through the Java
Management Extension interface]

6. [Developing Performance Monitoring Infrastructure interfaces (Version 4.0).

Performance Monitoring Infrastructure client interface

The data provided by the Performance Monitoring Infrastructure (PMI) client
interface is documented here. Access to the data is provided in a hierarchical
structure. Descending from the object are node information objects, module
information objects, CpdCollection objects and CpdData objects. Using Version 5.0,

IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

you will get Stats and Statistic objects. The node and server information objects

Tivoli
Performance
Viewer

contain no performance data, only static information

Each time a client retrieves performance data from a server, the data is returned in
a subset of this structure; the form of the subset depends on the data retrieved.
You can update the entire structure with new data, or update only part of the tree,
as needed.

The JMX statistic data model is supported, as well as the existing CPD data model
from Version 4.0. When you retrieve performance data using the Version 5.0 PMI
client API, you get the Stats object, which includes Statistic objects and optional
sub-Stats objects. When you use the Version 4.0 PMI client API to collect
performance data, you get the CpdCollection object, which includes the CpdData
objects and optional sub-CpdCollection objects.

Chapter 2. Monitoring performance 47

48

The following are additional Performance Monitoring Infrastructure (PMI)
interfaces:

* BoundaryStatistic

* BoundedRangeStatistic
 CountStatistic

* MBeanStatDescriptor

* MBeanLevelSpec

* New Methods in PmiClient
* RangeStatistic

 Stats

* Statistic

* TimeStatistic

The following PMI interfaces introduced in Version 4.0 are also supported:
* CpdCollection
* CpdData
* CpdEventListener and CpdEvent
* CpdFamily class
e CpdValue
- CpdLong
- CpdStat
— CpdLoad
* PerfDescriptor
* PmiClient class

The CpdLong maps to CountStatistic; CpdStat maps to Time Statistic;
CpdCollection maps to Stats; and CpdLoad maps to RangeStatistic and
BoundedRangeStatistic.

Note: Version 4.0 PmiClient APIs are supported in this version, however, there are
some changes. The data hierarchy is changed in some PMI modules, notably the
enterprise bean module and HTTP sessions module. If you have an existing
PmiClient application, and you want to run it against Version 5.0, you might have
to update the PerfDescriptor(s) based on the new PMI data hierarchy. Also, the
getDataName and getDatald methods in PmiClient are changed to be non-static
methods in order to support multiple WebSphere Application Server versions. You
might have to update your existing application which uses these two methods.

Developing your own monitoring application using Performance
Monitoring Infrastructure client

The following is the programming model for Performance Monitoring
Infrastructure (PMI) client:

1. Create an instance of PmiClient. This is used for all subsequent method calls.

2. Optional: You can create your own MBeans. Refer to [Extending the WebSphere|
[Application Server administrative system with custom MBeans

3. Call the listNodes() and listServers(nodeName) methods to find all the nodes
and servers in the WebSphere Application Server domain. The PMI client
provides two sets of methods: one set in Version 5.0 and the other set inherited
from Version 4.0. You can only use one set of methods. Do not mix them
together.

4. Call listMBeans and listStatMembers to get all the available MBeans and
MBeanStatDescriptors.

5. Call the getStats method to get the Stats object for the PMI data.

IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

6. Optional: The client can also call setStatLevel or getStatLevel to set and get the
monitoring level. Use the MBeanLevelSpec objects to set monitoring levels.

If you prefer to use the Version 4.0 interface, the model is essentially the same,

but the object types are different:

1. Create an instance of PmiClient.

2. Call the listNodes() and listServers(nodeName) methods to find all the nodes
and servers in the WebSphere Application Server domain.

3. Call listMembers to get all the perfDescriptor objects.

4. Use the PMI client’s get or gets method to get CpdCollection objects. These
contain snapshots of performance data from the server. The same structure is
maintained and its update method is used to refresh the data.

5. (Optional) The client can also call setInstrumentationLevel or
getInstrumentationLevel to set and get the monitoring level.

Performance Monitoring Infrastructure client (Version 4.0):

A Performance Monitoring Infrastructure (PMI) client is an application that
receives PMI data from servers and processes this data.

In Version 4.0, PmiClient API takes PerfDescriptor(s) and returns PMI data as a
CpdCollection object. Each CpdCollection could contain a list of CpdData, which
has a CpdValue of the following types:

* CpdLong

* CpdStat

¢ CpdLoad

Version 4.0 PmiClient APIs are supported in this version, however, there are some
changes. The data hierarchy is changed in some PMI modules, notably the
enterprise bean module and HTTP sessions module. If you have an existing
PmiClient application, and you want to run it against Version 5.0, you might have
to update the PerfDescriptor(s) based on the new PMI data hierarchy. Also, the
getDataName and getDatald methods in PmiClient are changed to be non-static
methods in order to support multiple WebSphere Application Server versions. You
might have to update your existing application which uses these two methods.

Using Version 5.0 PMI API in Version 3.5.5+ and Version 4.0.x:

For Version 3.5.5+, follow these instructions:

1. Make configuration changes.
For PMI to interact correctly with Version 3.5.x application servers, you must
upgrade both the Version 3.5.x run time environment and the PMI JAR files to
the levels specified below. In addition, you must prepend the repository.jar,
ejs.jar, and ujc.jar files from the upgraded Version 3.5.x run time
environment to the PMI client’s run time classpath.
a. Change the Version 3.5.x run time environment.

Ensure the Version 3.5 environment is Version 3.5.5 or later.

b. Change the PMI client’s run time or development environment. Both the

Version 5.0 PMI client and the Version 4.02 client can work with the Version
3.5.5+ WebSphere Application Server.

Copy the repository.jar, ujc.jar and ejs.jar files from the
WebSphere 35 installation_root/1ib directory to each machine from
which a PMI client is run.

Chapter 2. Monitoring performance 49

Prepend the Version 3.5.5+ repository.jar, ujc.jar and ejs.jar files to the
PMI client’s run time classpath.

2. Copy the XML configuration files from Version 4.0.2+.
a. Get the perf.jar file from Version 4.0.

b. Append the perf.jar file to the classpath of the Version 5.0 PMI client.
Note: Ensure the Version 5.0 pmi.jar file and pmiclient.jar files come
before the Version 4.0 perf.jar file.

3. Make programmatic changes.

A new constructor for PmiClient allows a client to monitor Version 3.5.5 or later
application servers. The new constructor takes three string parameters:
hostName, serverName, and version.

public PmiClient(String host, String port, String version)

Using this constructor with "EPM" as the third parameter creates a PmiClient
that can retrieve data from Version 3.5.5+ application servers.

PmiClient pmiClnt = new PmiClient (hostName, portNumber, "EPM")

Use Version 4.0 PmiClient API to write your own client application with
WebSphere Application Server Version 4.0 and 3.5.5+. See the example code for
using Version 4.0 API in the topic "Example: Performance Monitoring
Infrastructure client (Version 4.0)".

To run a Version 5.0 PMI client with a Version 4.0 server, the instructions are
similar, except in substep 2 of step 1, you need to copy the repository.jar and
ujc.jar files from a WebSphere Application Server, Version 4.0, installation.

Example: Performance Monitoring Infrastructure client (Version 4.0):

The following is a list of example Performance Monitoring Infrastructure (PMI)
client code from (Version 4.0):

[**

* This is a sample code to show how to use PmiClient to collect PMI data.

% You will need to use adminconsole to set instrumentation level (a level other
% than NONE) first.

*

* <p>

* End-to-end code path in 4.0:

* PmiTester -> PmiClient -> AdminServer -> appServer

package com.ibm.websphere.pmi;

import com.ibm.websphere.pmi.x*;

import com.ibm.websphere.pmi.server.*;
import com.ibm.websphere.pmi.client.*;
import com.ibm.ws.pmi.server.*;

import com.ibm.ws.pmi.perfServer.*;
import com.ibm.ws.pmi.server.modules.x*;
import com.ibm.ws.pmi.wire.*;

import java.util.ArraylList;

[**
* Sample code to use PmiClient API (old API in 4.0) and get CpdData/CpdCollection objects.

*/

public class PmiTester implements PmiConstants {

/** a test driver:

50 1BM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

* @param args[0] - node name
* @param args[1] - port number, optional, default is 2809
* @param args[2] - connector type, default is RMI
* @param args[3] - verion (AE, AEs, WAS50), default is WAS50
*
*/
public static void main(String[] args) {
String hostName = null;
String portNumber = "2809";
String connectorType = "RMI";
String version = "WAS50";

if (args.length < 1) {
System.out.printin("Usage: <host> [<port>] [<connectorType>]
[<version>]");
return;
1

if(args.length >= 1)
hostName = args[0];
if(args.length >= 2)
portNumber = args[1];
if (args.length >=3)
connectorType = args[2];
if (args.length >=4)
version = args[3];

try {
PmiClient pmiClnt = new PmiClient(hostName, portNumber,

version, false, connectorType);

// uncomment it if you want debug info
//pmiCint.setDebug(true);

// get all the node PerfDescriptor in the domain
PerfDescriptor[] nodePds = pmiClint.listNodes();

if(nodePds == null) {
System.out.printin("no nodes");
return;

}

// get the first node
String nodeName = nodePds[0].getName();
System.out.printin("after listNodes: " + nodeName);

//1ist all the servers on the node
PerfDescriptor[] serverPds = pmiClnt.listServers(nodePds[0].getName());

if(serverPds == null || serverPds.length == 0) {
System.out.printIn("NO app server in node");
return;

}

// print out all the servers on that node
for(int j=0; j<serverPds.length; j++) {

System.out.printin("server " + j + ": " + serverPds[j].getName());
}

for(int j=0; j<serverPds.length; j++) {
System.out.printin("server " + j + ": " + serverPds[j].getName());

// Option: you can call createPerflLevelSpec and then
setInstrumentationLevel to set the level

// for each server if you want. For example, to set all
the modules to be LEVEL_HIGH for the server j,

// uncomment the following.

// PerflLevelSpec[] plds = new PerflLevelSpec[1];

Chapter 2. Monitoring performance 51

// plds[0] = pmiClnt.createPerflLevelSpec(null, LEVEL HIGH);
// pmiClint.setInstrumentationLevel (serverPds[j].getNodeName(),
serverPds[j].getServerName(), plds, true);

// First, 1ist the PerfDescriptor in the server
PerfDescriptor[] myPds = pmiClnt.listMembers(serverPds[j]);

// check returned PerfDescriptor

if(myPds == null) {
System.out.printIn("null from 1listMembers");
continue;

}

// you can add the pds in which you are interested to PerfDescriptorList
PerfDescriptorList pdList = new PerfDescriptorList();
for(int i=0; i<myPds.length; i++) {
// Option 1: you can recursively call TistMembers for each myPds
// and find the one you are interested. You can call
listMembers
// until individual data level and after that level
you will null from listMembers.
// e.g., PerfDescriptor[] nextPds = pmiClnt.TistMembers(myPds[i]);

// Option 2: you can filter these pds before adding to pdList
System.out.printin("add to pdList: " + myPds[i].getModuleName());
pdList.addDescriptor(myPds[i]);
if(i%2==0)
pmiCint.add (myPds[i]);
}

// call gets method to get the CpdCollection[] corresponding to pdList
CpdCollection[] cpdCols = pmiClnt.gets(pdList, true);

if(cpdCols == null) {
// check error
if(pmiCint.getErrorCode() >0)
System.out.printIn(pmiClnt.getErrorMessage());
continue;

}

for(int i=0; i<cpdCols.length; i++) {
// simple print them
//System.out.printin(cpdCols[i].toString());

// Or call processCpdCollection to get each data
processCpdCollection(cpdCols[i], "");
}

// Or call gets() method to add the CpdCollection[] for whatever
there by calling pmiClnt.add().

System.out.printIn("\n\n\n ---- get data using gets(true) ----- ")s

cpdCols = pmiCint.gets(true);

if(cpdCols == null) {
// check error
if(pmiClint.getErrorCode() >0)
System.out.printIn(pmiCint.getErrorMessage());
continue;

}

for(int i=0; i<cpdCols.length; i++) {
// simple print out the whole collection
System.out.printin(cpdCols[i].toString());

// Option: refer processCpdCollection to get each data

52 1BM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

1

catch(Exception ex) {
System.out.printin("Exception calling CollectorAE");
ex.printStackTrace();

}

[**

* show the methods to retrieve individual data

*/

private static void processCpdCollection(CpdCollection cpdCol, String indent) {
CpdData[] dataList = cpdCol.dataMembers();
String myindent = indent;

System.out.printIn("\n" + myindent + "--- CpdCollection "
+ cpdCol.getDescriptor().getName() + " ---");
myindent += " "

for(int i=0; i<datalist.length; i++) {
if (dataList[i] == null)
continue;

// if you want to get static info like name, description, etc
PmiDataInfo datalnfo = datalList[i].getPmiDataInfo();
// call getName(), getDescription() on datalnfo;

Cpdvalue cpdval = datalList[i].getValue();
if(cpdval.getType() == TYPE_STAT) {
CpdStat cpdStat = (CpdStat)cpdval;
double mean = cpdStat.mean();
double sumSquares = cpdStat.sumSquares();
int count = cpdStat.count();
double total = cpdStat.total();
System.out.printin(myindent + "CpdData id=" + datalList[i].getId()
+ " type=stat mean=" + mean);
// you can print more values like sumSquares, count,etc here

}
else if(cpdval.getType() == TYPE_LOAD) {
CpdLoad cpdLoad = (CpdLoad)cpdVal;
long time = cpdLoad.getTime();
double mean = cpdlLoad.mean();
double currentLevel = cpdLoad.getCurrentLevel();
double integral = cpdlLoad.getIntegral();
double timeWeight = cpdLoad.getWeight();
System.out.printin(myindent + "CpdData id=" + datalList[i].getId()
+ " type=Toad mean=" + mean + " currentlLevel="
+ currentlLevel);
// you can print more values like sumSquares, count,etc here

}
else if(cpdval.getType() == TYPE_LONG) {
Cpdvalue cpdLong = (CpdValue)cpdval;
long value = (long)cpdlLong.getValue();
System.out.printin(myindent + "CpdData id=" + datalList[i].getId()
+ " type=long value=" + value);

}
else if(cpdval.getType() == TYPE_DOUBLE) {
CpdValue cpdDouble = (CpdValue)cpdVal;
double value = cpdDouble.getValue();
System.out.printin(myindent + "CpdData id=" + datalList[i].getId()
+ " type=double value=" + value);

}
else if(cpdVal.getType() == TYPE_INT) {
Cpdvalue cpdInt = (CpdValue)cpdval;
int value = (int)cpdInt.getValue();
System.out.printin(myindent + "CpdData id=" + dataList[i].getId()
+ " type=int value=" + value);

Chapter 2. Monitoring performance 53

}

// recursively go through the subcollection

CpdCollection[] subCols = cpdCol.subcollections();

for(int i=0; i<subCols.length; i++) {
processCpdCollection(subCols[i], myindent);

!

}

[x%
* show the methods to navigate CpdCollection
*
/
private static void report(CpdCollection col) {
System.out.printIn("\n\n");
if(col==null) {
System.out.printin("report: null CpdCollection");
return;
1
System.out.printIn("report - CpdCollection ");
printPD(col.getDescriptor());
CpdData[] dataMembers = col.dataMembers();
if(dataMembers != null) {
System.out.printin("report CpdCollection: dataMembers is "
+ dataMembers.length);
for(int i=0; i<dataMembers.length; i++) {
CpdData data = dataMembers[i];
printPD(data.getDescriptor());
}
}
CpdCollection[] subCollections = col.subcollections();
if(subCollections != null) {
for(int i=0; i<subCollections.length; i++) {
report (subCollections[i]);
}

}

private static void printPD(PerfDescriptor pd) {
System.out.printin(pd.getFulTName());
1

}

Example: Performance Monitoring Infrastructure client with new data structure:

The following is example code using Performance Monitoring Infrastructure (PMI)
client with the new data structure:

import com.ibm.websphere.pmi.x*;

import com.ibm.websphere.pmi.stat.*;

import com.ibm.websphere.pmi.client.*;

import com.ibm.websphere.management.*;

import com.ibm.websphere.management.exception.x*;
import java.util.=*;

import javax.management.x;

import java.io.*;

[x%

% Sample code to use PmiClient API (new JMX-based API in 5.0) and
get Statistic/Stats objects.

*/

public class PmiClientTest implements PmiConstants {
static PmiClient pmiCint = null;

static String nodeName = null;
static String serverName = null;

54 1BM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

static String portNumber = null;
static String connectorType = null;
static boolean success = true;

[**
* @param args[0] host
* @param args[1] portNumber, optional, default is 2809
* @param args[2] connectorType, optional, default is RMI connector
* @param args[3]serverName, optional, default is the first server found
*
/
public static void main(String[] args) {

try {

if(args.length > 1) {
System.out.printin("Parameters: host [portNumber]
[connectorType] [serverName]");
return;
}

// parse arguments and create an instance of PmiClient
nodeName = args[0];

if (args.length > 1)
portNumber = args[1];

if (args.length > 2)
connectorType = args[2];

// create an PmiClient object
pmiClnt = new PmiClient(nodeName, portNumber, "WAS50", false, connectorType);

// Uncomment it if you want to debug any problem
//pmiClnt.setDebug(true);

// update nodeName to be the real host name

// get all the node PerfDescriptor in the domain
PerfDescriptor[] nodePds = pmiCInt.TistNodes();
if(nodePds == null) {
System.out.printin("no nodes");

return;
}
// get the first node
nodeName = nodePds[0].getName();
System.out.printin("use node " + nodeName);

if (args.length == 4)
serverName = args[3];
else { // find the server you want to get PMI data
// get all servers on this node
PerfDescriptor[] allservers = pmiClnt.listServers(nodeName);
if (allservers == null || allservers.length == 0) {
System.out.printin("No server is found on node " + nodeName);
System.exit(1);
}

// get the first server on the list. You may want to get a different server
serverName = allservers[0].getName();
System.out.printIn("Choose server " + serverName);

}

// get all MBeans
ObjectName[] onames = pmiClnt.1istMBeans(nodeName, serverName);

// Cache the MBeans we are interested
ObjectName perfOName = null;

Chapter 2. Monitoring performance 55

ObjectName serverOName = null;

ObjectName wimOName = null;

ObjectName ejbOName = null;

ObjectName jvmOName = null;

ArrayList myObjectNames = new ArraylList(10);

// get the MBeans we are interested in
if(onames != null) {
System.out.printin("Number of MBeans retrieved= " + onames.length);
AttributelList al;
ObjectName on;
for(int i=0; i<onames.length; i++) {
on = onames[i];
String type = on.getKeyProperty("type");

// make sure PerfMBean is there.
// Then randomly pick up some MBeans for the test purpose
if(type != null && type.equals("Server"))
serverOName = on;
else if(type != null && type.equals("Perf"))
perfOName = on;
else if(type != null && type.equals("WLM")) {
wimOName = on;
}

else if(type !'= null &% type.equals("EntityBean")) {
ejbOName = on;

// add all the EntityBeans to myObjectNames
myObjectNames.add(ejbOName); // add to the list

}

else if(type != null && type.equals("JVM")) {
jvmOName = on;

}

}

// set monitoring level for SERVER MBean
testSetLevel (serverOName) ;

// get Stats objects
testGetStats (myObjectNames) ;

// if you know the ObjectName(s)
testGetStats2(new ObjectName[]{jvmOName, ejbOName});

// assume you are only interested in a server data in WLM MBean,
// then you will need to use StatDescriptor and MBeanStatDescriptor
// Note that wimModule is only available in ND version
StatDescriptor sd = new StatDescriptor(new String[] {"wimModule.server"});
MBeanStatDescriptor msd = new MBeanStatDescriptor(wimOName, sd);
Stats wimStat = pmiCInt.getStats(nodeName, serverName, msd, false);
if (wimStat != null)
System.out.printIn("\n\n WLM server data\n\n + " + wimStat.toString());
else
System.out.printIn("\n\n No WLM server data is availalbe.");

// how to find all the MBeanStatDescriptors
testListStatMembers (serverOName) ;

// how to use update method
testUpdate(jvmOName, false, true);
}

else {
System.out.printin("No ObjectNames returned from Query");
}

}

catch(Exception e) {

56 1BM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

new AdminException(e).printStackTrace();
System.out.printin("Exception = " +e);
e.printStackTrace();

success = false;

if(success)
System.out.printIn("\n\n A1l tests are passed");
else
System.out.printIn("\n\n Some tests are failed. Check for the exceptions");

1
[**
* construct an array from the ArraylList
*/
private static MBeanStatDescriptor[] getMBeanStatDescriptor(ArrayList msds) f{
if(msds == null || msds.size() == 0)
return null;
MBeanStatDescriptor[] ret = new MBeanStatDescriptor[msds.size()];
for(int i=0; i<ret.length; i++)
if(msds.get (i) instanceof ObjectName)
ret[i] = new MBeanStatDescriptor((ObjectName)msds.get(i));
else
ret[i] = (MBeanStatDescriptor)msds.get(i);
return ret;
1
[**

+* Sample code to navigate and display the data value from the Stats object.
*/
private static void processStats(Stats stat) {
processStats(stat, "");
1

[**
* Sample code to navigate and display the data value from the Stats object.
*/
private static void processStats(Stats stat, String indent) {
if(stat == null) return;

System.out.printin("\n\n");

// get name of the Stats
String name = stat.getName();
System.out.printin(indent + "stats name=" + name);

// Uncomment the following lines to Tist all the data names
/*
String[] dataNames = stat.getStatisticNames();
for (int i=0; i<dataNames.length; i++)
System.out.printin(indent + " " + "data name=" + dataNames[i]);
System.out.printIn("\n");
*/

// list all datas
com. ibm.websphere.management.statistics.Statistic[] allData = stat.getStatistics();

// cast it to be PMI's Statistic type so that we can have get more
Statistic[] dataMembers = (Statistic[])allData;
if(dataMembers != null) {
for(int i=0; i<dataMembers.length; i++) {
System.out.print(indent + " " + "data name="

+ PmiClient.getNLSValue(dataMembers[i].getName())

+ ", description="

Chapter 2. Monitoring performance 57

+ PmiClient.getNLSValue(dataMembers[i].getDescription())
+ ", unit=" + PmiClient.getNLSValue(dataMembers[i].getUnit())
+ ", startTime=" + dataMembers[i].getStartTime()
+ ", TastSampleTime=" + dataMembers[i].getLastSampleTime());
if(dataMembers[i].getDataInfo().getType() == TYPE_LONG) {
System.out.printIn(", count="
+ ((CountStatisticImpl)dataMembers[i]).getCount());
}

else if(dataMembers[i].getDataInfo().getType() == TYPE_STAT) {
TimeStatisticImpl data = (TimeStatisticImpl)dataMembers[i];
System.out.printIn(", count=" + data.getCount()
+ ", total=" + data.getTotal()
+ ", mean=" + data.getMean()
+ ", min=" + data.getMin()
+ ", max=" + data.getMax());
}
else if(dataMembers[i].getDataInfo().getType() == TYPE_LOAD) {
RangeStatisticImpl data = (RangeStatisticImpl)dataMembers[i];
System.out.printin(", current=" + data.getCurrent()
+ ", TowWaterMark=" + data.getLowWaterMark()
+ ", highWaterMark=" + data.getHighWaterMark()
+ ", integral=" + data.getIntegral()
+ ", avg=" + data.getMean());

}

// recursively for sub-stats

Stats[] substats = (Stats[])stat.getSubStats();

if(substats == null || substats.length == 0)
return;

for(int i=0; i<substats.length; i++) {
processStats(substats[i], indent + " ")

1

}

[**
* test set Tevel and verify using get Tevel
*/
private static void testSetLevel(ObjectName mbean) {
System.out.printIn("\n\n testSetLevel\n\n");
try {
// set instrumentation level to be high for the mbean
MBeanLevelSpec spec = new MBeanLevelSpec(mbean, null, PmiConstants.LEVEL_HIGH);
pmiClnt.setStatLevel (nodeName, serverName, spec, true);
System.out.printin("after setInstrumentaionLevel high on server MBean\n\n");

// get all instrumentation levels
MBeanlLevelSpec[] mlss = pmiClnt.getStatLevel (nodeName, serverName, mbean, true);

if(mlss == null)
System.out.printin("error: null from getInstrumentationLevel");
else {
for(int i=0; i<mlss.length; i++)
if(mlss[i] !'= null) {
// get the ObjectName, StatDescriptor,
and Tevel out of MBeanStatDescriptor
int mylevel = mlss[i].getLevel();
ObjectName myMBean = mlss[i].getObjectName();
StatDescriptor mysd = mlss[i].getStatDescriptor(); // may be null
// Uncomment it to print all the mlss
//System.out.printIn("miss " + i + ":, " + mlss[i].toString());

}
1
catch(Exception ex) {
new AdminException(ex).printStackTrace();

58 1BM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

ex.printStackTrace();
System.out.printin("Exception in testLevel");
success = false;

}

[**

* Use listStatMembers method

*/

private static void testListStatMembers(ObjectName mbean) {

System.out.printIn("\n\ntestListStatMembers \n");

// listStatMembers and getStats

// From server MBean until the bottom Tayer.

try {
MBeanStatDescriptor[] msds = pmiClnt.listStatMembers(nodeName, serverName, mbean);
if(msds == null) return;
System.out.printIn(" listStatMembers for server MBean, num members

(i.e. top level modules) is " + msds.length);

for(int i=0; i<msds.length; i++) {
if(msds[i] == null) continue;

// get the fields out of MBeanStatDescriptor if you need them
ObjectName myMBean = msds[i].getObjectName();
StatDescriptor mysd = msds[i].getStatDescriptor(); // may be null

// uncomment if you want to print them out
//System.out.printin(msds[i].toString());
}

for(int i=0; i<msds.length; i++) {
if(msds[i] == null) continue;
System.out.printIn("\n\nlistStatMembers for msd=" + msds[i].toString());
MBeanStatDescriptor[] msds2 =
pmiClnt.1istStatMembers(nodeName, serverName, msds[i]);

// you get msds2 at the second layer now and the
listStatMembers can be called recursively
// until it returns now.
}

1

catch(Exception ex) {
new AdminException(ex).printStackTrace();
ex.printStackTrace();
System.out.printin("Exception in testListStatMembers");
success = false;

}

[**
* Test getStats method
*/
private static void testGetStats(ArraylList mbeans) {
System.out.printIn("\n\n testgetStats\n\n");
try {
Stats[] mystats = pmiClnt.getStats(nodeName,
serverName, getMBeanStatDescriptor(mbeans), true);

// navigate each of the Stats object and get/display the value

for(int k=0; k<mystats.length; k++) {
processStats(mystats[k]);
}

Chapter 2. Monitoring performance 59

1

catch(Exception ex) {
new AdminException(ex).printStackTrace();
ex.printStackTrace();
System.out.printin("exception from testGetStats");
success = false;

}

[x%

* Test getStats method

*/

private static void testGetStats2(ObjectName[] mbeans) {
System.out.printIn("\n\n testGetStats2\n\n");

try {
Stats[] statsArray = pmiClnt.getStats(nodeName, serverName, mbeans, true);

// You can call toString to simply display all the data
if(statsArray != null) {
for(int k=0; k<statsArray.length; k++)
System.out.printin(statsArray[k].toString());
}
else
System.out.printIn("null stat");
1
catch(Exception ex) {
new AdminException(ex).printStackTrace();
ex.printStackTrace();
System.out.printin("exception from testGetStats2");
success = false;

}

[**
* test update method
*/
private static void testUpdate(ObjectName oName, boolean keepOld,
boolean recursiveUpdate)
System.out.printIn("\n\n testUpdate\n\n");
try {
// set level to be NONE
MBeanLevelSpec spec = new MBeanLevelSpec(oName, null, PmiConstants.LEVEL_NONE);
pmiCint.setStatLevel (nodeName, serverName, spec, true);

// get data now - one is non-recursive and the other is recursive
Stats statsl = pmiClnt.getStats(nodeName, serverName, oName, false);
Stats stats2 = pmiClnt.getStats(nodeName, serverName, oName, true);

// set level to be HIGH
spec = new MBeanLevelSpec(oName, null, PmiConstants.LEVEL _HIGH);
pmiClnt.setStatLevel (nodeName, serverName, spec, true);

Stats stats3 = pmiClnt.getStats(nodeName, serverName, oName, true);
System.out.printIn("\n\n stats3 is");
processStats(stats3);

statsl.update(stats3, keepOld, recursiveUpdate);
System.out.printIn("\n\n update statsl");
processStats(statsl);

stats2.update(stats3, keep0ld, recursiveUpdate);

System.out.printIn("\n\n update stats2");
processStats(stats2);

}

catch(Exception ex) {

60 1BM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

System.out.printIn("\n\n Exception in testUpdate");
ex.printStackTrace();
success = false;

}

Developing your own monitoring applications with Performance
Monitoring Infrastructure servlet

The performance servlet uses the Performance Monitor Interface (PMI)
infrastructure to retrieve the performance information from WebSphere Application
Server. This is the same infrastructure used by the Tivoli Performance Viewer and
is subject to the same restrictions on the availability of data as the performance
viewer.

The performance servlet .ear file perfServietApp.ear is located in the
install_root directory.

The performance servlet is deployed exactly as any other servlet. To use it, follow
these steps:

1. Deploy the servlet on a single application server instance within the domain.

2. After the servlet deploys, you can invoke it to retrieve performance data for the
entire domain. Invoke the performance servlet by accessing the following
default URL:

http://hostname/wasPerfTool/serviet/perfserviet

The performance servlet provides performance data output as an XML document,
as described by the provided document type definition (DTD). The output
structure provided is called 1eaves. The paths that lead to the leaves provide the
context of the data. See the topic "Performance Monitoring Infrastructure (PMI)
servlet” for more information about the PMI servlet output.

Performance Monitoring Infrastructure servlet:

The Performance Monitoring Infrastructure (PMI) servlet is used for simple
end-to-end retrieval of performance data that any tool, provided by either IBM or a
third-party vendor, can handle.

The PMI servlet provides a way to use an HTTP request to query the performance
metrics for an entire WebSphere Application Server administrative domain.
Because the servlet provides the performance data through HTTP, issues such as
firewalls are trivial to resolve.

The performance servlet provides the performance data output as an XML
document, as described in the provided document type description (DTD). In the
XML structure, the Teaves of the structure provide the actual observations of
performance data and the paths to the leaves that provide the context. There are
three types of leaves or output formats within the XML structure:

* PerfNumericInfo

¢ PerfStatInfo

* PerfLoadInfo

Chapter 2. Monitoring performance 61

PerfNumericInfo.When each invocation of the performance servlet retrieves the
performance values from Performance Monitoring Infrastructure (PMI), some of
the values are raw counters that record the number of times a specific event occurs
during the lifetime of the server. If a performance observation is of the type
PerfNumericInfo, the value represents the raw count of the number of times this
event has occurred since the server started. This information is important to note
because the analysis of a single document of data provided by the performance
servlet might not be useful for determining the current load on the system. To
determine the load during a specific interval of time, it might be necessary to
apply simple statistical formulas to the data in two or more documents provided
during this interval. The PerfNumericInfo type has the following attributes:
* time--Specifies the time when the observation was collected (Java
System.currentTimeMillis)
* uid--Specifies the PMI identifier for the observation
* val--Specifies the raw counter value

The following document fragment represents the number of loaded servlets. The
path providing the context of the observation is not shown.

<numLoadedServlets>
<PerfNumericData time="988162913175" uid="pmil"
val="132"/>

</numLoadedServiets>

PerfStatInfo.When each invocation of the performance servlet retrieves the
performance values from PMI, some of the values are stored as statistical data.
Statistical data records the number of occurrences of a specific event, as the
PerfNumericInfo type does. In addition, this type has sum of squares, mean, and
total for each observation. This value is relative to when the server started.

The PerfStatInfo type has the following attributes:

* time--Specifies the time the observation was collected (Java
System.currentTimeMillis)

* uid--Specifies the PMI identifier for this observation

* num--Specifies the number of observations

* sum_of_squares--Specifies the sum of the squares of the observations

* total--Specifies the sum of the observations

* mean--Specifies the mean (total number) for this counter

The following fragment represents the response time of an object. The path
providing the context of the observation is not shown:
<responseTime>
<PerfStatInfo mean="1211.5" num="5"
sum_of_squares="3256265.0"
time="9917644193057" total="2423.0"
uid="pmi13"/>
</responseTime>

PerfLoadInfo.When each invocation of the performance servlet retrieves the
performance values from PMI, some of the values are stored as a load. Loads
record values as a function of time; they are averages. This value is relative to
when the server started.

The PerfLoadInfo type has the following attributes:

* time--Specifies the time when the observation was collected (Java
System.currentTimeMillis)

* uid--Specifies the PMI identifier for this observation

* currentValue--Specifies the current value for this counter

62 1BM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

* integral--Specifies the time-weighted sum

¢ timeSinceCreate--Specifies the elapsed time in milliseconds since this data was
created in the server

* mean--Specifies time-weighted mean (integral/timeSinceCreate) for this counter

The following fragment represents the number of concurrent requests. The path
providing the context of the observation is not shown:
<poolSize>
<PerflLoadInfo currentValue="1.0" integral="534899.0
" mean="0.9985028962051592"

time="991764193057" timeSinceCreate="535701.0
"uid="pmi5"</poolSize>

When the performance servlet is first initialized, it retrieves the list of nodes and
servers located within the domain in which it is deployed. Because the collection of
this data is expensive, the performance servlet holds this information as a cached
list. If a new node is added to the domain or a new server is started, the
performance servlet does not automatically retrieve the information about the
newly created element. To force the servlet to refresh its configuration, you must
add the refreshConfig parameter to the invocation as follows:

http://hostname/wasPerfTool/serviet/perfserviet?refreshConfig=true

By default, the performance servlet collects all of the performance data across a
WebSphere domain. However, it is possible to limit the data returned by the servlet
to either a specific node, server, or PMI module.

* Node.The servlet can limit the information it provides to a specific host by using
the node parameter. For example, to limit the data collection to the node rjones,
invoke the following URL:
http://hostname/wasPerfTool/serviet/perfserviet?Node=rjones

* Server.The servlet can limit the information it provides to a specific server by
using the server parameter. For example, in order to limit the data collection to
the TradeApp server on all nodes, invoke the following URL:

http://hostname/wasPerfTool/servlet/perfservliet?Server=TradeApp

To limit the data collection to the TradeApp server located on the host rjones,
invoke the following URL:
http://hostname/wasPerfTool/serviet/perfserviet?Node=rjones&Server=TradeApp

* Module.The servlet can limit the information it provides to a specific PMI
module by using the module parameter. You can request multiple modules from
the following Web site:

http://hostname/wasPerfTool/serviet/perfserviet?Module=beanModule+jvmRuntimeModule

For example, to limit the data collection to the beanModule on all servers and
nodes, invoke the following URL:

http://hostname/wasPerfTool/serviet/perfserviet?Module=beanModule

To limit the data collection to the beanModule on the server TradeApp on the
node rjones, invoke the following URL:

http://hostname/wasPerfTool/servlet/perfserviet?Node=rjones&Server=TradeApp
&Module=beanModule>

Developing your own monitoring application with the Java
Management Extension interface

WebSphere Application Server allows you to invoke methods on MBeans through

the AdminClient Java Management Extension (JMX) interface. You can use
AdminClient API to get Performance Monitoring Infrastructure (PMI) data by

Chapter 2. Monitoring performance 63

using either PerfMBean or individual MBeans. See information about using
individual MBeans at bottom of this article.

Individual MBeans provide the Stats attribute from which you can get PMI data.
The PerfMBean provides extended methods for PMI administration and more
efficient ways to access PMI data. To set the PMI module instrumentation level,
you must invoke methods on PerfMBean. To query PMI data from multiple
MBeans, it is faster to invoke the getStatsArray method in PerfMBean than to get
the Stats attribute from multiple individual MBeans. PMI can be delivered in a
single JMX cell through PerfMBean, but multiple JMX calls have to be made
through individual MBeans.

See the topic "Developing an administrative client program” for more information
on AdminClient JMX.

After the performance monitoring service is enabled and the application server is
started or restarted, a PerfMBean is located in each application server giving access
to PMI data. To use PerfMBean:

1. Create an instance of AdminClient. When using AdminClient API, you need to
first create an instance of AdminClient by passing the host name, port number
and connector type.

The example code is:

AdminClient ac = null;

java.util.Properties props = new java.util.Properties();
props.put(AdminClient.CONNECTOR_TYPE, connector);
props.put(AdminClient.CONNECTOR_HOST, host);

props.put (AdminClient.CONNECTOR_PORT, port);

try {
ac = AdminClientFactory.createAdminClient(props);
}

catch(Exception ex) {
failed = true;
new AdminException(ex).printStackTrace();
System.out.printin("getAdminClient: exception");
}

2. Use AdminClient to query the MBean ObjectNames Once you get the
AdminClient instance, you can call queryNames to get a list of MBean
ObjectNames depending on your query string. To get all the ObjectNames, you
can use the following example code. If you have a specified query string, you
will get a subset of ObjectNames.

javax.management.ObjectName on = new javax.management.ObjectName ("WebSphere:*");
Set objectNameSet= ac.queryNames(on, null);
// you can check properties Tike type, name, and process to find a specified ObjectName

After you get all the ObjectNames, you can use the following example code to
get all the node names:
HashSet nodeSet = new HashSet();
for(Iterator i = objectNameSet.iterator(); i.hasNext(); on =
(ObjectName)i.next()) {
String type = on.getKeyProperty("type");
if(type != null && type.equals("Server")) {
nodeSet.add(servers[i].getKeyProperty("node"));

}
}
Note, this will only return nodes that are started. To list running servers on the

node, you can either check the node name and type for all the ObjectNames or
use the following example code:

64 1BM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

StringBuffer oNameQuery= new StringBuffer(41);
oNameQuery.append ("WebSphere:x");
oNameQuery.append(",type=").append("Server");
oNameQuery.append(",node=") .append(mynode) ;

oSet= ac.queryNames (new ObjectName(oNameQuery.toString()), null);
Iterator i = objectNameSet.iterator ();
while (i.hasNext ()) {
on=(objectName) i.next();
String process= on[i].getKeyProperty("process");
serversArraylList.add(process);

}

Get the PerfMBean ObjectName for the application server from which you
want to get PMI data. Use this example code:

for(Iterator i = objectNameSet.iterator(); i.hasNext(); on = (ObjectName)i.next()) {
// First make sure the node name and server name is what you want
// Second, check if the type is Perf
String type = on.getKeyProperty("type");
String node = on.getKeyProperty("node");
String process= on.getKeyProperty("process");
if (type.equals("Perf") && node.equals(mynode) &
& server.equals(myserver)) {
perfOName = on;

}

Invoke operations on PerfMBean through the AdminClient. Once you get the
PerfMBean(s) in the application server from which you want to get PMI data,
you can invoke the following operations on the PerfMBean through
AdminClient API:

- setInstrumentationLevel: set the instrmentation Tevel
params[0] = new MBeanLevelSpec(objectName, optionalSD, level);
params[1] = new Boolean(true);
signature= new String[]{ "com.ibm.websphere.pmi.stat.MBeanLevelSpec",
"java.lang.Boolean"};
ac.invoke(perfOName, "setInstrumentationLevel", params, signature);

- getInstrumentationLevel: get the instrumentation Tevel
Object[] params = new Object[2];
params[0] = new MBeanStatDescriptor(objectName, optionalSD);
params[1] = new Boolean(recursive);
String[] signature= new String[]{
"com.ibm.websphere.pmi.stat.MBeanStatDescriptor", "java.lang.Boolean"};
MBeanlLevelSpec[] mlss = (MBeanLevelSpec[])ac.invoke(perfOName,
"getInstrumentationLevel", params, signature);

- getConfigs: get PMI static config info for all the MBeans
configs = (PmiModuleConfig[])ac.invoke(perfOName, "getConfigs", null, null);

- getConfig: get PMI static config info for a specific MBean
ObjectName[] params = {objectName};
String[] signature= { "javax.management.ObjectName" };
config = (PmiModuleConfig)ac.invoke(perfOName, "getConfig", params,
signature);

- getStatsObject: you can use either ObjectName or MBeanStatDescriptor

Object[] params = new Object[2];

params[0] = objectName; // either ObjectName or or MBeanStatDescriptor

params[1] = new Boolean(recursive);

String[] signature = new String[] { "javax.management.ObjectName",
"java.lang.Boolean"};

Stats stats = (Stats)ac.invoke(perfOName, "getStatsObject", params,
signature);

Note: The returned data only have dynamic information (value and time stamp).
See PmiJdmxTest.java for additional code to Tink the configuration information with the

Chapter 2. Monitoring performance 65

returned data.

- getStatsArray: you can use either ObjectName or MBeanStatDescriptor
ObjectName[] onames = new ObjectName[]{objectNamel, objectName2};
Object[] params = new Object[]{onames, new Boolean(true)};
String[] signature = new String[]{"[Ljavax.management.ObjectName;",
"java.lang.Boolean"};
Stats[] statsArray = (Stats[])ac.invoke(perfOName, "getStatsArray",
params, signature);

Note: The returned data only have dynamic information (value and time stamp).
See PmiJmxTest.java for additional code to Tink the configuration information with the
returned data.

- listStatMembers: navigate the PMI module trees

Object[] params = new Object[]{mName};

String[] signature= new String[]{"javax.management.ObjectName"};

MBeanStatDescriptor[] msds = (MBeanStatDescriptor[])ac.invoke(perfOName,
"TistStatMembers", params, signature);

or,

Object[] params = new Object[]{mbeanSD};

String[] signature= new String[]
{"com.ibm.websphere.pmi.stat.MBeanStatDescriptor"};

MBeanStatDescriptor[] msds = (MBeanStatDescriptor[])ac.invoke
(perfOName, "listStatMembers", params, signature);

* To use an individual MBean: You need to get the AdminClient instance and

the ObjectName for the individual MBean. Then you can simply get the Stats
attribute on the MBean.

Example: Administering Java Management Extension-based interface:

The following is example code directly using Java Management Extension (JMX)
API For information on compiling your source code, see "Compiling your
monitoring applications.”

package com.ibm.websphere.pmi;

import com.ibm.websphere.management.AdminClient;

import com.ibm.websphere.management.AdminClientFactory;

import com.ibm.websphere.management.exception.ConnectorException;

import com.ibm.websphere.management.exception.InvalidAdminClientTypeException;
import com.ibm.websphere.management.exception.x*;

import java.util.x;

import javax.management.*;

import com.ibm.websphere.pmi.*;

import com.ibm.websphere.pmi.client.*;
import com.ibm.websphere.pmi.stat.*;

[**
* Sample code to use AdminClient API directly to get PMI data from PerfMBean
* and individual MBeans which support getStats method.

*/

public class PmidmxTest implements PmiConstants

{

private AdminClient ac = null;

private ObjectName perfOName = null;
private ObjectName serverOName = null;
private ObjectName wIimOName = null;
private ObjectName jvmOName = null;
private ObjectName orbtpOName = null;

private boolean failed = false;

66 1BM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

private PmiModuleConfig[] configs = null;

[x%

* Creates a new test object

* (Need a default constructor for the testing framework)
*/

public PmiJmxTest()

{

}

[**
* @param args[0] host
* @param args[1] port, optional, default is 8880

% @param args[2] connectorType, optional, default is SOAP connector
*

*/
public static void main(String[] args)
{

PmidmxTest instance = new PmidmxTest();

// parse arguments and create AdminClient object
instance.init(args);

// navigate all the MBean ObjectNames and cache those we are interested
instance.getObjectNames () ;

// set level, get data, display data
instance.doTest();

// test for EJB data
instance.testEJB();

// how to use JSR77 getStats method for individual MBean other than PerfMBean
instance.testJSR77Stats();

}

[**
* parse args and getAdminClient
*/
public void init(String[] args)
{
try
{
String host = null;
String port = "8880";
String connector = "SOAP";
if(args.length < 1)
{

System.err.printIn("ERROR: Usage: PmiJmxTest <host> [<port>] [<connector>]");
System.exit(2);
}

else

{
host = args[0];

if(args.length > 1)
port = args[1];

if(args.length > 2)
connector = args[2];

}

if(host == null)
{

}

host = "localhost";

Chapter 2. Monitoring performance 67

if(port == null)

{ port = "8880";

zf(connector == null)

{ connector = AdminClient.CONNECTOR_TYPE_SOAP;

éystem.out.print]n("host=“ + host + " , port=" + port + ", connector=" + connector);
.
e e o e e memecemeemememecemen-

System.out.printIn("main: create the adminclient");
ac = getAdminClient(host, port, connector);

}
catch(Exception ex)
{
failed = true;
new AdminException(ex).printStackTrace();
ex.printStackTrace();
1
}
[x*
* get AdminClient using the given host, port, and connector
*/
public AdminClient getAdminClient(String hostStr, String portStr, String connector)
{
System.out.printin("getAdminClient: host=" + hostStr + " , portStr=" + portStr);
AdminClient ac = null;
java.util.Properties props = new java.util.Properties();
props.put(AdminClient.CONNECTOR_TYPE, connector);
props.put (AdminClient.CONNECTOR_HOST, hostStr);
props.put(AdminClient.CONNECTOR_PORT, portStr);
try
{
ac = AdminClientFactory.createAdminClient (props);
1
catch(Exception ex)
{
failed = true;
new AdminException(ex).printStackTrace();
System.out.printin("getAdminClient: exception");
1
return ac;
1
[**
* get all the ObjectNames.
*/
public void getObjectNames()
{
try
{
[= mmm m m m
// Get a list of object names
J R e
javax.management.ObjectName on = new javax.management.ObjectName ("WebSphere:=");
[= mmm m
// get all objectnames for this server
[= mmm m m

Set objectNameSet= ac.queryNames(on, null);

68 1BM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

if(objectNameSet != null)

Iterator i = objectNameSet.iterator();
while(i.hasNext())
{

on = (ObjectName)i.next();

String type = on.getKeyProperty("type");

// uncomment it if you want to print the ObjectName for each MBean
// System.out.printin("\n\n" + on.toString());

// find the MBeans we are interested
if(type != null && type.equals("Perf"))
{

System.out.printIn("\nMBean: perf =" + on.toString());
perfOName = on;

}

if(type != null && type.equals("Server"))

{

System.out.printIn("\nMBean: Server =" + on.toString());
serverOName = on;

}
if(type != null && type.equals("JVM"))
{

System.out.printIn("\nMBean: jvm =" + on.toString());
jvmOName = on;

}

if(type != null && type.equals("WLMAppServer"))

System.out.printIn("\nmain: WLM =" + on.toString());
wimOName = on;

}

if(type != null && type.equals("ThreadPool"))

{

String name = on.getKeyProperty("name");
if(name.equals("ORB.thread.pool"))

System.out.printin("\nMBean: ORB ThreadPool =" + on.toString());
orbtpOName = on;

}

else

{
System.err.printin("main: ERROR: no object names found");
System.exit(2);

}

// You must have Perf MBean in order to get PMI data.
if(perfOName == null)
{
System.err.printin("main: cannot get PerfMBean. Make sure PMI is enabled");
System.exit(3);
}
1
catch(Exception ex)
{
failed = true;
new AdminException(ex).printStackTrace();
ex.printStackTrace();

Chapter 2. Monitoring performance 69

[**
* Some sample code to set level, get data, and display data.
*/
public void doTest()
{
try
{
// first get all the configs - used to set static info for Stats
// Note: server only returns the value and time info.
// No description, unit, etc is returned with PMI data to reduce communication cos
// You have to call setConfig to bind the static info and Stats data later.
configs = (PmiModuleConfig[])ac.invoke(perfOName, "getConfigs", null, null);

// print out all the PMI modules and matching mbean types
for(int i=0; i<configs.length;i++>
System.out.printin("config: moduleName=" + configs[i].getShortName() + ", mbeanType=

// set the instrumentation level for the server
setInstrumentationLevel (serverOName, null, PmiConstants.LEVEL_HIGH);

// example to use StatDescriptor.

// Note WLM module is only available in ND.

StatDescriptor sd = new StatDescriptor(new String[]{"wIlmModule.server"});
setInstrumentationLevel (wImOName, sd, PmiConstants.LEVEL HIGH);

// example to getInstrumentationLevel
MBeanLevelSpec[] mlss = getInstrumentationLevel(wImOName, sd, true);
// you can call getLevel(), getObjectName(), getStatDescriptor() on mlss[i]

// get data for the server
Stats stats = getStatsObject(serverOName, true);
System.out.printin(stats.toString());

// get data for WLM server submodule
stats = getStatsObject(wImOName, sd, true)
if(stats == null)
System.out.printin("Cannot get Stats for WLM data");
else
System.out.printIn(stats.toString());

// get data for JVM MBean
stats = getStatsObject(jvmOName, true);
processStats(stats);

// get data for multiple MBeans

ObjectName[] onames = new ObjectName[] {orbtpOName, jvmOName};

Object[] params = new Object[]{onames, new Boolean(true)};

String[] signature = new String[]{"[Ljavax.management.ObjectName;",

"java.lang.Boolean"};

Stats[] statsArray = (Stats[])ac.invoke(perfOName, "getStatsArray",
params, signature);

// you can call toString or processStats on statsArray[i]

if(!failed)
System.out.printIn("A11 tests passed");
else
System.out.printin("Some tests failed");
1

catch(Exception ex)

{
new AdminException(ex).printStackTrace();
ex.printStackTrace();

[**

70 1BM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

* Sample code to get Tevel
*/
protected MBeanLevelSpec[] getInstrumentationLevel(ObjectName on, StatDescriptor sd,
boolean recursive)
{

if(sd == null)
return getInstrumentationLevel(on, recursive);
System.out.printin("\ntest getInstrumentationLevel\n");
try
{
Object[] params = new Object[2];
params[0] = new MBeanStatDescriptor(on, sd);
params[1] = new Boolean(recursive);
String[] signature= new String[]{ "com.ibm.websphere.pmi.stat.MBeanStatDescriptor",
"java.lang.Boolean"};
MBeanlLevelSpec[] mlss = (MBeanLevelSpec[])ac.invoke(perfOName, "getInstrumentationleve
return mlss;

catch(Exception e)

{
new AdminException(e).printStackTrace();
System.out.printin("getInstrumentationLevel: Exception Thrown");
return null;

1
[**

* Sample code to get Tevel
*
/
protected MBeanLevelSpec[] getInstrumentationLevel(ObjectName on, boolean recursive)
{
if(on == null)
return null;
System.out.printin("\ntest getInstrumentationLevel\n");
try
{
Object[] params = new Object[]{on, new Boolean(recursive)};
String[] signature= new String[]{ "javax.management.ObjectName",
"java.lang.Boolean"};
MBeanLevelSpec[] mlss = (MBeanLevelSpec[])ac.invoke(perfOName, "getInstrumentationleve
return mlss;

catch(Exception e)
{
new AdminException(e).printStackTrace();
failed = true;
System.out.printin("getInstrumentationLevel: Exception Thrown");
return null;

}

[**
* Sample code to set Tevel
*
/
protected void setInstrumentationLevel (ObjectName on, StatDescriptor sd, int level)
{
System.out.printIn("\ntest setInstrumentationLevel\n");
try
{
Object[] params = new Object[2];
String[] signature = null;
MBeanLevelSpec[] mlss = null;
params[0] = new MBeanlLevelSpec(on, sd, level);
params[1] = new Boolean(true);

signature= new String[]{ "com.ibm.websphere.pmi.stat.MBeanLevelSpec",
"java.lang.Boolean"};

Chapter 2. Monitoring performance 71

ac.invoke(perfOName, "setInstrumentationLevel", params, signature);

}

catch(Exception e)

{
failed = true;
new AdminException(e).printStackTrace();
System.out.printin("setInstrumentationLevel: FAILED: Exception Thrown");

1
1
[**
* Sample code to get a Stats object
*/
public Stats getStatsObject(ObjectName on, StatDescriptor sd, boolean recursive)
{
if(sd == null)
return getStatsObject(on, recursive);
System.out.printIn("\ntest getStatsObject\n");
try
{
Object[] params = new Object[2];
params[0] = new MBeanStatDescriptor(on, sd); // construct MBeanStatDescriptor
params[1] = new Boolean(recursive);
String[] signature = new String[] {
"com.ibm.websphere.pmi.stat.MBeanStatDescriptor"”, "java.lang.Boolean"};
Stats stats = (Stats)ac.invoke(perfOName, "getStatsObject", params, signature);
if(stats == null) return null;
// find the PmiModuleConfig and bind it with the data
String type = on.getKeyProperty("type");
if(type.equals(MBeanTypeList.SERVER_MBEAN))
setServerConfig(stats);
else
stats.setConfig(PmiClient.findConfig(configs, on));
return stats;
1
catch(Exception e)
{
failed = true;
new AdminException(e).printStackTrace();
System.out.printIn("getStatsObject: Exception Thrown");
return null;
1
1
[**
* Sample code to get a Stats object
*/
public Stats getStatsObject(ObjectName on, boolean recursive)
{

if(on == null)
return null;
System.out.printin("\ntest getStatsObject\n");

try
{
Object[] params = new Object[]{on, new Boolean(recursive)};
String[] signature = new String[] { "javax.management.ObjectName",
"java.lang.Boolean"};
Stats stats = (Stats)ac.invoke(perfOName, "getStatsObject", params,
signature);

72 IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

// find the PmiModuleConfig and bind it with the data
String type = on.getKeyProperty("type");
if(type.equals(MBeanTypeList.SERVER _MBEAN))
setServerConfig(stats);
else
stats.setConfig(PmiClient.findConfig(configs, on));

return stats;

}

catch(Exception e)

{
failed = true;
new AdminException(e).printStackTrace();
System.out.printin("getStatsObject: Exception Thrown");
return null;

1
[**

* Sample code to navigate and get the data value from the Stats object.
*/
private void processStats(Stats stat)

{
}

processStats(stat, "");

[**

* Sample code to navigate and get the data value from the Stats and Statistic object.
*/

private void processStats(Stats stat, String indent)

{

if(stat == null) return;
System.out.printIn("\n\n");

// get name of the Stats
String name = stat.getName();
System.out.printin(indent + "stats name=" + name);

// list data names
String[] dataNames = stat.getStatisticNames();
for(int i=0; i<dataNames.length;i++)
System.out.printin(indent + " " + "data name=" + dataNames[i]);
System.out.printin("");

// list all datas
com. ibm.websphere.management.statistics.Statistic[] allData = stat.getStatistics();

// cast it to be PMI's Statistic type so that we can have get more
// Also show how to do translation.
Statistic[] dataMembers = (Statistic[])allData;
if(dataMembers != null)
{
for(int i=0; i<dataMembers.length;i++)
{
System.out.print(indent + " " + "data name=" +
PmiClient.getNLSValue(dataMembers[i].getName())
+ ", description=" +
PmiClient.getNLSValue(dataMembers[i].getDescription())
+ ", startTime=" + dataMembers[i].getStartTime()
+ ", lastSampleTime=" + dataMembers[i].getLastSampleTime());
if(dataMembers[i].getDatalnfo().getType() == TYPE_LONG)
{

System.out.printIin(", count=" +
((CountStatisticImpl)dataMembers[i]).getCount());

Chapter 2. Monitoring performance 73

else if(dataMembers[i].getDataInfo().getType() == TYPE_STAT)
{
TimeStatisticImpl data = (TimeStatisticImpl)dataMembers[i];
System.out.printIn(", count=" + data.getCount()
+ ", total=" + data.getTotal()
+ ", mean=" + data.getMean()
+ ", min=" + data.getMin()
+ ", max=" + data.getMax());
}
else if(dataMembers[i].getDataInfo().getType() == TYPE_LOAD)
{
RangeStatisticImpl data = (RangeStatisticImpl)dataMembers[i];
System.out.printin(", current=" + data.getCurrent()
+ ", integral=" + data.getIntegral()
+ ", avg=" + data.getMean()
+ ", TowWaterMark=" + data.getLowWaterMark()
+ ", highWaterMark=" + data.getHighWaterMark());

}

// recursively for sub-stats

Stats[] substats = (Stats[])stat.getSubStats();

if(substats == null || substats.length == 0)
return;

for(int i=0; i<substats.length; i++)

{

}
}

processStats(substats[i], indent + " ")

[**
* The Stats object returned from server does not have static config info. You have to set it on
*/
public void setServerConfig(Stats stats)
{
if(stats == null) return;
if(stats.getType() != TYPE_SERVER) return;

PmiModuleConfig config = null;

Stats[] statList = stats.getSubStats();
if(statlist == null || statlist.length == 0)
return;
Stats oneStat = null;
for(int i=0; i<statList.length; i++)
{
oneStat = statList[i];
if(oneStat == null) continue;
config = PmiClient.findConfig(configs, oneStat.getName());
if(config != null)
oneStat.setConfig(config);
else
System.out.printIn("Error: get null config for " + oneStat.getName());

}

[x*

* sample code to show how to get a specific MBeanStatDescriptor

*/

public MBeanStatDescriptor getStatDescriptor(ObjectName oName, String name)

{
try

{
Object[] params = new Object[]{serverOName};
String[] signature= new String[]{"javax.management.ObjectName"};

74 IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

MBeanStatDescriptor[] msds = (MBeanStatDescriptor[])ac.invoke(perfOName,
"TistStatMembers", paran
if(msds == null)
return null;
for(int i=0; i<msds.length; i++)

if(msds[i].getName().equals(name))
return msds[i];
}

return null;

catch(Exception e)

{
new AdminException(e).printStackTrace();
System.out.printIn("1istStatMembers: Exception Thrown");
return null;

}

[**
* sample code to show you how to navigate MBeanStatDescriptor via listStatMembers
*/
public MBeanStatDescriptor[] listStatMembers(ObjectName mName)
{
if(mName == null)
return null;

try
{
Object[] params = new Object[]{mName};
String[] signature= new String[]{"javax.management.ObjectName"};
MBeanStatDescriptor[] msds = (MBeanStatDescriptor[])ac.invoke(perfOName,
"TistStatMembers", paran
if(msds == null)
return null;
for(int i=0; i<msds.length; i++)

if(msds[i].getName().equals(name))
return msds[i];

}

return null;

}

catch(Exception e)

{
new AdminException(e).printStackTrace();
System.out.printIn("1istStatMembers: Exception Thrown");
return null;

1
[**

* sample code to show you how to navigate MBeanStatDescriptor via listStatMembers
*/
public MBeanStatDescriptor[] listStatMembers(ObjectName mName)
{
if(mName == null)
return null;

try

{
Object[] params = new Object[]{mName};
String[] signature= new String[]{"javax.management.ObjectName"};
MBeanStatDescriptor[] msds = (MBeanStatDescriptor[])ac.invoke(perfOName,

"TistStatMembers", paran
if(msds == null)

Chapter 2. Monitoring performance 75

return null;
for(int i=0; i<msds.length; i++)

{
}

return null;

MBeanStatDescriptor[] msds2 = listStatMembers(msds[i]);

!

catch(Exception e)

{
new AdminException(e).printStackTrace();
System.out.printIn("TistStatMembers: Exception Thrown");
return null;

1
1
[**
* Sample code to get MBeanStatDescriptors
*/
public MBeanStatDescriptor[] listStatMembers(MBeanStatDescriptor mName)
{
if(mName == null)
return null;
try
{
Object[] params = new Object[]{mName};
String[] signature= new String[]{"com.ibm.websphere.pmi.stat.MBeanStatDescriptor"};
MBeanStatDescriptor[] msds = (MBeanStatDescriptor[])ac.invoke(perfOName,
"TistStatMembers", params,
if(msds == null)
return null;
for(int i=0; i<msds.length; i++)
{
MBeanStatDescriptor[] msds2 = TistStatMembers(msds[i]);
// you may recursively call listStatMembers until find the one you want
}
return msds;
1
catch(Exception e)
{
new AdminException(e).printStackTrace();
System.out.printIn("TistStatMembers: Exception Thrown");
return null;
1
1
[**
* sample code to get PMI data from beanModule
*/
public void testEJB()
{

// This is the MBeanStatDescriptor for Enterprise EJB
MBeanStatDescriptor beanMsd = getStatDescriptor(serverOName, PmiConstants.BEAN_MODULE);
if(beanMsd == null)

System.out.printIn("Error: cannot find beanModule");

// get the Stats for module level only since recursive is false
Stats stats = getStatsObject(beanMsd.getObjectName(), beanMsd.getStatDescriptor(),
false); // pass true if you wannt data from individual beans

// find the avg method RT

TimeStatisticImpl rt = (TimeStatisticImpl)stats.getStatistic(EJBStatsImpl.METHOD RT);
System.out.printIn("rt is " + rt.getMean());

76 IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

}

try

{
java.lang.Thread.sleep(5000);

catch(Exception ex)

{
}

// get the Stats again
Stats stats2 = getStatsObject(beanMsd.getObjectName(), beanMsd.getStatDescriptor(),
false); // pass true if you wannt data from individual beans

ex.printStackTrace();

// find the avg method RT
TimeStatisticImpl rt2 = (TimeStatisticImpl)stats2.getStatistic(EJBStatsImpl.METHOD RT);
System.out.printIn("rt2 is " + rt2.getMean());

// calculate the difference between this time and Tast time.
TimeStatisticImpl deltaRt = (TimeStatisticImpl)rt2.delta(rt);
System.out.printin("deltaRt is " + rt.getMean());

[**

* Sample code to show how to call getStats on StatisticProvider MBean directly.

*/

public void testJSR77Stats()

{

// first, find the MBean ObjectName you are interested.
// Refer method getObjectNames for sample code.

// assume we want to call getStats on JVM MBean to get statistics
try
{

com.ibm.websphere.management.statistics.JVMStats stats =
(com.ibm.websphere.management.statistics.JVMStats)ac.invoke(jvmOName,
"getStats", null, null);

System.out.printIn("\n get data from JVM MBean");

if(stats == null)
{

}

else

{

System.out.printIn("WARNING: getStats on JVM MBean returns null");

// first, link with the static info if you care
((Stats)stats).setConfig(PmiClient.findConfig(configs, jvmOName));

// print out all the data if you want
//System.out.printin(stats.toString());

// navigate and get the data in the stats object
processStats((Stats)stats);

// call JSR77 methods on JVMStats to get the related data
com.ibm.websphere.management.statistics.CountStatistic upTime =
stats.getUpTime();

com. ibm.websphere.management.statistics.BoundedRangeStatistic heapSize =
stats.getHeapSize();

if(upTime != null)

System.out.printIn("\nJVM up time is " + upTime.getCount());
if(heapSize != null)

Chapter 2. Monitoring performance 77

78

System.out.printin("\nheapSize is " + heapSize.getCurrent());

}
}
catch(Exception ex)

{
ex.printStackTrace();
new AdminException(ex).printStackTrace();

}

Developing Performance Monitoring Infrastructure interfaces
(Version 4.0)

The Version 4.0 APIs are supported in this release, however, some data hierarchy
changes have occurred in the PMI modules, including the enterprise bean and
HTTP sessions modules. If you have an existing PmiClient application and you
want to run it against Version 5.0, you might have to update the PerfDescriptor(s)
based on the new PMI data hierarchy.

The getDataName and getDatald methods in PmiClient have also changed. They
are now non-static methods in order to support multiple WebSphere Application
Server versions. You might have to update your existing application which uses
these two methods.

This section discusses the use of the Performance Monitoring Infrastructure (PMI)
client interfaces in applications. The basic steps in the programming model follow:

1. Retrieve an initial collection or snapshot of performance data from the server. A
client uses the CpdCollection interface to retrieve an initial collection or
snapshot from the server. This snapshot, which is called Snapshot in this
example, is provided in a hierarchical structure as described in data
organization and hierarchy, and contains the current values of all performance
data collected by the server. The snapshot maintains the same structure
throughout the lifetime of the CpdCollection instance.

2. Process and display the data as specified. The client processes and displays the
data as specified. Processing and display objects, for example, filters and GUIs,
can register as CpdEvent listeners to data of interest. The listener works only
within the same Java virtual machine (JVM). When the client receives updated
data, all listeners are notified.

3. Display the new CpdCollection instance through the hierarchy. When the client
receives new or changed data, the client can simply display the new
CpdCollection instance through its hierarchy. When it is necessary to update
the Snapshot collection, the client can use the update method to update
Snapshot with the new data.

Snapshot.update(S1);

// ...later...
Snapshot.update(S2);

Steps 2 and 3 are repeated through the lifetime of the client.
Compiling your monitoring applications

To compile your Performance Monitoring Infrastructure (PMI) code, you must have
the following JAR files in your classpath:

e admin jar

* wsexception.jar

* jmxc.jar

IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

* pmijar

e pmiclient.jar

* rasjar

* wasjmx.jar

° j2eejar

* soap.jar

* soap-sec.jar

* nlsjar

* ws-config-common.jar
* namingclient.jar

If your monitoring applications use APIs in other packages, also include those

packages on the classpath.

Running your new monitoring applications

1. Obtain the pmi.jar and pmiclient.jar files. The pmi.jar and pmiclient.jar

files are required for client applications using PMI client APIs. The pmi.jar and
pmiclient.jar files are distributed with WebSphere Application Server and are
also a part of WebSphere Java thin client package. You can get it from either a

WebSphere Application Server installation or WebSphere Java Thin Application

Client installation. You also need the other JAR files in WebSphere Java Thin
Application Client installation in order to run a PMI application.

2. Use PMI client API to write your own application.

w

Compile the newly written PMI application and place it on the classpath.

4. Run the application with the following script:
call "%dpOsetupCmdLine.bat"

set
set
set
set
set
set
set
set
set
set
set
set
set

WAS_CP=%WAS_HOME%\properties
WAS_CP=%WAS_CP%;%WAS_HOME%\1ib\pmi.jar
WAS_CP=%WAS_CP%;%WAS_HOME%\1ib\pmiclient.jar
WAS_CP=%WAS_CP%;%WAS_HOME%\1ib\ras.jar
WAS_CP=%WAS_CP%;%WAS_HOME%\1ib\admin. jar
WAS_CP=%WAS_CP%;%WAS_HOME%\1ib\wasjmx.jar
WAS_CP=%WAS_CP%;%WAS_HOME%\1ib\j2ee. jar
WAS_CP=%WAS_CP%;%WAS_HOME%\1ib\soap.jar
WAS_CP=%WAS_CP%;%WAS_HOME%\1ib\soap-sec.jar
WAS_CP=%WAS_CP%;%WAS_HOME%\1ib\nls.jar
WAS_CP=%WAS_CP%;%WAS_HOME%\1ib\wsexception.jar
WAS_CP=%WAS_CP%;%WAS_HOME%\1ib\ws-config-common.jar
WAS_CP=%WAS_CP%;%WAS_HOME%\1ib\namingclient.jar

%JAVA_HOME%\bin\java "%CLIENTSOAP%" "%CLIENTSAS%" "-Dws.ext.dirs=%WAS_EXT_DIRS%"
%DEBUGOPTS% -classpath "%WAS_CP%" com.ibm.websphere.pmi.PmiClientTest host name
[port] [connectorType]

Performance Monitoring Infrastructure client package:

Performance Monitoring Infrastructure (PMI) client package provides a wrapper

class PmiClient to deliver PMI data to a client.

As shown in the following figure, PmiClient uses the AdminClient API to

communicate the Perf MBean in an application server.

Performance Monitoring Infrastructure and Java Management Extensions

Chapter 2. Monitoring performance

79

The PmiClient API does not work if the Java Management Extensions (JMX)
infrastructure and Perf MBean are not running. If you prefer to use the
AdminClient API directly to retrieve PMI data, you still have a dependency on the
JMX infrastructure.

When using the PmiClient API, you have to pass the J]MX connector protocol and
port number to instantiate an object of the PmiClient. Once you get a PmiClient
object, you can call its methods to list nodes, servers and MBeans, set the
monitoring level, and retrieve PMI data.

The PmiClient API creates an instance of the AdminClient API and delegates your

requests to the AdminClient API. The AdminClient API uses the JMX connector to

communicate with the PerfMBean in the corresponding server and then returns the
data to the PmiClient, which returns the data to the client.

App Server

JMX Connector Perf
.

PmiClient —»| AdminClient
MBean

PMIClient Application

T’ I

Running your monitoring applications with security enabled:

In order to run a Performance Monitoring Infrastructure client application with
security enabled, you must have %CLIENTSOAP% and %CLIENTSAS% properties on your
Java virtual machine command line. The %CLIENTSOAP% and %CLIENTSAS% properties
are defined in the setupCmdLine.bat or setupCmdline.sh files.

1. Set com.ibm.SOAP.securityEnabled to True in the soap.client.props file for the
SOAP connector. The soap.client.props property file is located in the
WAS_ROOT/properties directory.

2. Set com.ibm.SOAP.loginUserid and com.ibm.SOAP.loginPassword as the user ID
and password for login.

3. Set the sas.client.props file or type the user ID and password in the pop-up
window if you do not put them in the property file for RMI connector A
common mistake is leaving extra spaces at the end of the lines in the property
file. Do not leave extra spaces at the end of the lines, especially for the user ID
and password lines.

Tivoli performance monitoring and management solutions

Tivoli offers the complete IBM solution for managing the extended WebSphere
environment. For precise viewing of performance metrics, users can start with the
Tivoli Performance Viewer, a complimentary tool shipped with WebSphere
Application Server.

Tivoli also provides on-going production monitoring tools described below. For
more information about Tivoli’s solutions for WebSphere Application Server, see

the information center article Performance: Resources for Learning.

80 1BM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

IBM Tivoli Monitoring for Web Infrastructure (ITMf WI). Provides best-practice
monitoring of the key elements of WebSphere Application Server. This is the
inside-out view, enabling administrators to quickly address problems before they
impact end-users. Using Tivoli’s advanced monitoring technology and predefined
WebSphere best-practices, this tool quickly identifies problems, notifies appropriate
personnel, and provides a solution. All monitoring data is displayed real-time with
a health console displaying non-stop data. This same information can be uploaded
to a common data warehouse for historical reporting.

IBM Tivoli Monitoring for Transaction Performance (ITMTP). Provides a unique
monitoring perspective from that of the end-user. This is the outside-in view that
verifies that end-to-end components provide a positive end-user experience. ITMTP
monitors performance of actual and synthetic transactions, as well as verifying that
the content delivered meets predefined guidelines.

Transaction performance includes total round trip response time, network latency,
back-end response time and page render time. Additional granularity of
transaction detail on the back-end is provided through Application Response
Measurement instrumentation.

The ITM and ITMTP function by providing Web site performance monitoring,
alerting customers to end user response time issues.

The ability to quickly find performance issues is key to maintaining a high
performance Web site. This WebSphere Application Server release and the new
ITMTP release combine to provide a new feature for analyzing performance
problems. Using Synthetic Transaction Investigator (STI) from ITMTP, you can save
key transactions and replay them later. ITMTP also collects the data provided by
PMI Request Metrics through the Application Response Measurement (ARM)
interface and correlates this information with the originating STI transaction. In the
ITMTP real-time browser, the STI information links to the servlet and the
enterprise bean response time data. The details regarding the overall transaction
response time and response time for individual WebSphere Application Server
components provide the ability to quickly identify performance problems.

Tivoli provides additional products for monitoring other key elements of the
extended environment. For more information about Tivoli’s solutions for
WebSphere Application Server, see the topic "Performance: Resources for
Learning”.

Third-party performance monitoring and management
solutions

Several other companies provide performance monitoring, problem determination
and management solutions that can be used with WebSphere Application Server.

These products use WebSphere Application Server interfaces, including
Performance Monitoring Infrastructure (PMI), Java Management Extensions (JMX),
and PMI Request Metrics Application Response Measurement (ARM).

See the topic [Performance: Resources for learning] for a link to IBM business
partners providing monitoring solutions for WebSphere Application Server.

Chapter 2. Monitoring performance 81

Measuring data requests (Performance Monitoring Infrastructure
Request Metrics)

Performance Monitoring Infrastructure (PMI) Request Metrics is a tool that allows
you to track individual transactions, recording the processing time in each of the
major WebSphere Application Server components. The information tracked may
either be saved to log files for later retrieval and analysis, be sent to ARM Agents,
or both.

As a transaction flows through the system, Request Metrics tacks on additional
information so that the log records from each component can be correlated,
building up a complete picture of that transaction. The result looks similar to the

following:
HTTP request /trade/scenario = ==m=-mmmmmmmmmo > 172 ms
Servlet/trade/scenario = —eeem e > 130 ms
EJB TradeEJB.getAccountData --> 38 ms

JDBC select -> 7 ms

This transaction flow with associated response times can help users target
performance problem areas and debug resource constraint problems. For example,
the flow can help determine if a transaction is spending most of its time in the
Web server plug-in, the Web container, the enterprise bean container or the
backend database. The response time collected for each level includes the time
spent at that level and the time spent in the lower levels. For example, the
response time for the servlet, which is 130 milliseconds, also includes 38
milliseconds from the EJB and JDBC. Therefore, 92ms can be attributed to the
servlet process.

Request metrics tracks the response time for a desired transaction. For example,
tools can inject synthetic transactions. Request Metrics can then track the response
time within the WebSphere environment for those transactions. A synthetic
transaction is one that is injected into the system by administrators in order to
proactively test the performance of the system. This information can help
administrators tune the performance of the website and take corrective actions
should they be needed. Thus, the information provided by Request Metrics might
be used as an alert mechanism to detect when the performance of particular
request type goes beyond acceptable thresholds. The filtering mechanism within
Request Metrics may be used to focus on the specific synthetic transactions and
can help optimize performance in this scenario.

Three types of filters are supported:
* Originator IP filter

* URI filter

* EJB method name filter

When filtering is enabled, only requests matching the filter generate Request
Metrics data, create log records, and/or call the ARM interfaces. This allows work
to be injected into a running system (specifically to generate trace information) to
evaluate the performance of specific types of requests in the context of normal
load, ignoring requests from other sources that might be hitting the system.

Learn more about Request Metrics by reviewing this section, including;:
* Detailed explanation about Request Metrics

* Request Metrics process and filters

* Types and format of output you will be reading

82 1BM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

« |Configuring Request Metrics|

Performance Monitoring Infrastructure Request Metrics

Typically, there are multiple processes across several nodes in a distributed system.
When a request comes to a process, the process may send the request to one or
more downstream processes.

Trace records may be generated for each process with associated elapsed times for
that process. These trace records may be correlated together to build a complete
picture of the request flow through the distributed system, similar to the diagram
in [Measuring data requests (Performance Monitoring Infrastructure Request|

|Metrics)l

The process response time monitored by Request Metrics can be viewed through
the Application Response Measurement (ARM) interface and system logs. For
requests that originate from either an HTTP request or the remote interface of an
enterprise bean, Request Metrics captures response times for the initiating request
and any related downstream invocations. If the request originated as an HTTP
request, response times are generated for web server plug-in (only available when
using web server port), the web container, the EJB container, and JDBC calls. If the
request originated as a remote EJB call, response times are generated for the EJB
container and JDBC calls. Note that the JDBC response time are only traced for the
WebSphere 5.0 data source. No response time will be traced for WebSphere 4.0
data source.Depending on the trace level configured for request metrics, the
intra-process servlet and EJB calls may or may not be traced.

When active, Request Metrics compares each incoming request to a set of known
filters. Three types of filters are supported:

* Originator IP filter
* URI filter
* EJB method name filter

When filtering is enabled, only requests matching the filter generate Request
Metrics data, create log records, and/or call the ARM interfaces. This allows work
to be injected into a running system (specifically to generate trace information) to
evaluate the performance of specific types of requests in the context of normal
load, ignoring requests from other sources that might be hitting the system. If the
request matches any filter with a trace level greater than TRACE_NONE, trace
records are generated for that request.

Trace records are generated and logged for the Web Server plug-in, servlets
(WebContainer), remote enterprise bean calls, and Java Database Connectivity
(JDBC drivers).

Application Response Measurement

Application Response Measurement (ARM) is an Open Group standard composed
of a set of interfaces implemented by an ARM agent that provides information on
elapsed time for process hops.

WebSphere Application Server does not provide an ARM agent. Contact your ARM
agent provider for information on whether their ARM agent is supported with
WebSphere Application Server. One product that uses ARM agents is described in
[Tivoli performance monitoring and management solutiond ARM 4.0 agent is
supported beginning with Version 5.1.1 and later.

Chapter 2. Monitoring performance 83

See the article |Performance: Resources for learning| for more information about the
ARM specifications.

Performance Monitoring Infrastructure Request Metrics trace
filters

When Performance Monitoring Infrastructure (PMI) Request Metrics is active, trace
filters control which requests get traced. The data is recorded to the system log file
or sent through ARM for real-time and historical analysis.

Incoming HTTP requests

HTTP requests arriving at the WebSphere Application Server may be filtered based

on the URI and/or the IP address of the originator of the request.

* Originator IP address filters Requests are filtered based on a known IP address.
You can specify a mask for an IP address using the asterisk (*). If used, the
asterisk must always be the last character of the mask, for example 127.0.0.%,
127.0.*, 127*. For performance reasons, the pattern matches character by
character, until either an asterisk is found in the filter, a mismatch occurs, or the
filters are found to be an exact match.

* URI filters. Requests are filtered, based on the URI of the incoming HTTP
request. The rules for pattern matching are the same as for matching Originator
IP address filters.

* Filter combinations.If both URI and Originator IP address filters are active,
then Request Metrics requires a match for both filter types. If neither is active,
all requests are considered a match.

Incoming enterprise bean requests

* Enterprise bean method name filters. Requests are filtered based on the full
name of the enterprise bean method. As with IP address and URI filters, the
asterisk (*) may be used in the mask. If used, the asterisk must always be the
last character of a filter pattern.

Because the ability to track the request response times comes with a cost, filtering
helps optimize performance when using Request Metrics.

Performance Monitoring Infrastructure Request Metrics data
output

The trace records for Performance Monitoring Infrastructure (PMI) Request Metrics
data are output to two log files: the web server plug-in log file and the application
server log file. The default directory for these log files is
<$WAS_ROOT/logs/serverl> (or the name given to your server

<$WAS-ROOT /logs/server_name>) and default names are SystemOut.log and
http_plugin.log. Users may, however, specify these log file names and their
locations.

In the WebSphere Application Server log file the trace record format is:
PMRMOOO3I: parent:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn

current:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn
type=TTT detail=some_detail_information elapsed=nnnn

In the Web server plug-in log file the trace record format is:

84 1BM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

PLUGIN:

parent:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn

- current:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn
type=TTT detail=some_detail_information elapsed=nnnn bytesIn=nnnn
bytesQut=nnnn

The trace record format is composed of two correlators: a parent correlator and
current correlator. The parent correlator represents the upstream request and the
current correlator represents the current operation. If the parent and current
correlators are the same, then the record represents an operation that occurred as it
entered WebSphere Application Server.

To correlate trace records for a particular request, collect records with a message ID
of PMRMO003I from the appropriate application server log files and the PLUGIN
trace record from the Web server plug-in log file. Records are correlated by
matching current correlators to parent correlators. The logical tree can be created
by connecting the current correlators of parent trace records to the parent
correlators of child records. This tree shows the progression of the request across
the server cluster. Refer to [Measuring data requests (Performance Monitoring]
[Infrastructure Request Metrics)| for an example of the transaction flow.

The parent correlator is denoted by the comma separating fields following the
keyword "parent:”. Likewise, the current correlator is denoted by the comma
separating fields following "current:".

The fields of both parent and current correlators are as follows:

 ver: The version of the correlator. For convenience, it is duplicated in both the
parent and current correlators.

* ip: The IP address of the node of the application server that generated the
correlator.

* pid: The process ID of the application server that generated the correlator.

* time: The start time of the application server process that generated the
correlator.

* reqid: An ID assigned to the request by Request Metrics, unique to the
application server process.

e event: An event ID assigned to differentiate the actual trace events.

Following the parent and current correlators, is the metrics data for timed

operation:

* type: A code representing the type of operation being timed. Supported types
include HTTP, URI, EJB and JDBC.

¢ detail: Identifies the name of the operation being timed (See the description of
Universal Resource Identifier (URI), HTTP, Enterprise bean and Java Database
Connectivity (JDBC) below.)

* elapsed: The measured elapsed time in <units> for this operation, which
includes all sub-operations called by this operation. The unit of elapsed time is
milliseconds.

* bytesIn: The number of bytes from the request received by the Web server
plug-in.

* bytesOut: The number of bytes from the reply sent from the Web server plug-in
to the client.

The type and detail fields are described as follows:

* HTTP: The Web server plug-in generates the trace record. The detail is the name
of the URI used to invoke the request.

* URI: The trace record was generated by a Web component. The URI is the name
of the URI used to invoke the request.

Chapter 2. Monitoring performance 85

86

* EJB: The fully qualified package and method name of the enterprise bean.
* JDBC: The values select, update, insert or delete for prepared statements. For
non-prepared statements, the full statement can appear.

Configuring Request Metrics

You can enable Request Metrics without enabling Application Response
Measurement (ARM).

To configure Request Metrics, you will need to access the Configuration tab in the
administrative console. To access the Configuration tab , click Troubleshooting >
PMI Request Metrics from the administrative console navigation tree.

Tasks included in configuring Request Metrics:
. [Enable Request Metrics|

1
2. [Enable Application Response Measurement (ARM)|
3. [Enable Request Metrics filters|

4. |Add and remove Request Metrics filters|

5

6

. |Set the trace level in Request Metrics|

. [Update the Web server plug-in configuration file}

Performance Monitoring Infrastructure Request Metrics

Use this page to enable Performance Monitoring Infrastructure (PMI) Request
Metrics, enable Request Metrics Application Response Measurement (ARM), and
set trace levels.

To view this administrative console page, click Troubleshooting > PMI Request
Metrics.

Request Metrics:

Enables PMI Request Metrics.

When disabled, the Request Metrics function is disabled.

Application Response Measurement (ARM):

Enables PMI Request Metrics to call an underlying ARM agent.

Before enabling ARM, install an appropriate ARM implementation on all
WebSphere Application Server nodes. Verify with your ARM agent provider that
Request Metrics is supported by the ARM agent implementation. ARM support is
dependent on Request Metrics support.

Trace Level:

Specifies how much trace data to accumulate for a given request.

Including one of the following: NONE - no trace; HOPS - only accumulates on
major process hops; PERF_DEBUG - reserved for enabling additional information
over hops, but is not as performance intensive as DEBUG; DEBUG - reserved for
full detailed trace. However, currently both PERF_DEBUG and DEBUG provide the

same level of performance tracing as the HOPS level.

PMIRM Filter collection:

IBM WebSphere Business Integration Server Foundation, Version 5.1: Performance Monitoring and Tuning

Use this page to view a list of Performance Monitoring Infrastructure (PMI)
Request Metrics filters.

To view this administrative console page, click Troubleshooting > PMI Request
Metrics > Filters.

Type:
Specifies the type of request metrics filter.

Enable:

Specifies whether this filter is enabled. Note: this has to be enabled in order to
enable the filter values under this filter type.

filterValues collection:
Use this page to specify the values for client IP, URI or EJB Request Metrics filters.

To view this administrative console page, click Troubleshooting > PMI Request
Metrics > filters > filter_type > filterValues.

Value:

Specifies a URI value or IP name based on the type of filter.

For example, for URI filters, the value might be "/servlet/snoop”.
Enable Filter:

Specifies whether a filter value is enabled.
Enabling Performance Monitoring Infrastructure Request Metrics

When enabled, Performance Monitoring Infrastructure (PMI) Request Metrics
captures response times for the initiating request and any related downstream
enterprise bean invocations and Java Database Connectivity (JDBC) calls. Then,
Request Metrics compares each incoming request to a set of known filters.

Open the administrative console.

Click Troubleshooting > PMI Request Metrics in the console navigation tree.
Select the check box in the enable field under the Configuration tab.

Click Apply or OK.

5. Click Save.

oo bd =~

[Regenerate the Web server plug-in configuration file} if logging time spent in the
Web server.

Enabling Application Response Measurement

Before enabling Applicat