
WebSphere® Business

Integration

Server

Foundation,

Version

5.1

Resources

���

Note

Before

using

this

information,

be

sure

to

read

the

general

information

under

“Notices”

on

page

37.

Compilation

date:

April

20,

2004

©

Copyright

International

Business

Machines

Corporation

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

How

to

send

your

comments

.

.

.

.

. v

Chapter

1.

Welcome

to

Resources

.

.

. 1

Chapter

2.

Using

enterprise

beans

in

applications

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Enterprise

beans

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Developing

enterprise

beans

.

.

.

.

.

.

.

.

. 4

Migrating

enterprise

bean

code

to

the

supported

specification

.

.

.

.

.

.

.

.

.

.

.

.

. 5

WebSphere

extensions

to

the

Enterprise

JavaBeans

specification

.

.

.

.

.

.

.

.

.

.

.

.

. 8

Best

practices

for

developing

enterprise

beans

.

. 9

Unknown

primary-key

class

.

.

.

.

.

.

.

. 13

Using

access

intent

policies

.

.

.

.

.

.

.

.

. 13

Access

intent

policies

.

.

.

.

.

.

.

.

.

. 14

Applying

access

intent

policies

to

methods

.

.

. 16

Access

intent

exceptions

.

.

.

.

.

.

.

.

. 17

Access

intent

assembly

settings

.

.

.

.

.

.

. 18

Access

intent

best

practices

.

.

.

.

.

.

.

. 20

Frequently

asked

questions:

Access

intent

.

.

. 20

EJB

modules

.

.

.

.

.

.

.

.

.

.

.

.

.

. 21

Assembling

EJB

modules

.

.

.

.

.

.

.

.

.

. 22

Container

transactions

.

.

.

.

.

.

.

.

.

. 22

Method

extensions

.

.

.

.

.

.

.

.

.

.

. 23

Method

permissions

.

.

.

.

.

.

.

.

.

. 23

References

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

EJB

containers

.

.

.

.

.

.

.

.

.

.

.

.

. 23

Managing

EJB

containers

.

.

.

.

.

.

.

.

.

. 24

EJB

container

settings

.

.

.

.

.

.

.

.

.

. 24

EJB

container

system

properties

.

.

.

.

.

. 25

EJB

cache

settings

.

.

.

.

.

.

.

.

.

.

. 26

Container

interoperability

.

.

.

.

.

.

.

. 27

Deploying

EJB

modules

.

.

.

.

.

.

.

.

.

. 32

EJB

module

collection

.

.

.

.

.

.

.

.

.

. 32

EJB

module

settings

.

.

.

.

.

.

.

.

.

. 32

Enterprise

beans:

Resources

for

learning

.

.

.

.

. 33

EJB

method

Invocation

Queuing

.

.

.

.

.

.

. 34

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

Trademarks

and

service

marks

.

.

.

. 39

©

Copyright

IBM

Corp.

2004

iii

iv

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

How

to

send

your

comments

Your

feedback

is

important

in

helping

to

provide

the

most

accurate

and

highest

quality

information.

v

To

send

comments

on

articles

in

the

WebSphere

Application

Server

Information

Center

1.

Display

the

article

in

your

Web

browser

and

scroll

to

the

end

of

the

article.

2.

Click

on

the

Feedback

link

at

the

bottom

of

the

article,

and

a

separate

window

containing

an

e-mail

form

appears.

3.

Fill

out

the

e-mail

form

as

instructed,

and

click

on

Submit

feedback

.
v

To

send

comments

on

PDF

books,

you

can

e-mail

your

comments

to:

wasdoc@us.ibm.com

or

fax

them

to

919-254-0206.

Be

sure

to

include

the

document

name

and

number,

the

WebSphere

Application

Server

version

you

are

using,

and,

if

applicable,

the

specific

page,

table,

or

figure

number

on

which

you

are

commenting.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

2004

v

vi

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

Chapter

1.

Welcome

to

Resources

Note:

If

you

would

prefer

to

browse

PDF

versions

of

this

documentation

using

your

Adobe

Reader,

see

the

Resources

PDF

files

available

from

www.ibm.com/software/webservers/appserv/infocenter.html.

The

product

supports

all

of

the

resources

defined

by

the

Java

2

Platform,

Enterprise

Edition

(J2EE).

Data

access

(JDBC

and

J2C)

The

J2EE

Connector

architecture

defines

a

standard

architecture

that

enables

the

integration

of

various

enterprise

information

systems

(EIS)

with

application

servers

and

enterprise

applications.

It

defines

a

standard

resource

adapter

used

by

a

Java

application

to

connect

to

an

EIS.

This

resource

adapter

can

plug

into

the

application

server

and,

through

the

Common

Client

Interface

(CCI),

provide

connectivity

between

the

EIS,

the

application

server,

and

the

enterprise

application.

For

more

information,

refer

to

Welcome

to

Data

Access.

Messaging

The

product

supports

asynchronous

messaging

as

a

method

of

communication

based

on

the

Java

Message

Service

(JMS)

programming

interface.

The

base

JMS

support

enables

IBM

WebSphere

Application

Server

applications

to

exchange

messages

asynchronously

with

other

JMS

clients

by

using

JMS

destinations

(queues

or

topics).

For

more

information,

refer

to

Welcome

to

Messaging.

Mail

Using

JavaMail

API,

a

code

segment

can

be

embedded

in

any

Java

2

Enterprise

Edition

(J2EE)

application

component,

such

as

an

EJB

or

a

servlet,

allowing

the

application

to

send

a

message

and

save

a

copy

of

the

mail

to

the

Sent

folder.

For

more

information,

refer

to

Welcome

to

Mail.

URLs

Java

2

Platform,

Enterprise

Edition

(J2EE)

applications

can

use

URLs

as

resources

in

the

same

way

other

J2EE

resources,

such

as

JDBC

and

JavaMail,

are

used.

For

more

information,,

refer

to

Welcome

to

URLs.

Resource

environment

entries

A

resource

environment

reference

maps

a

logical

name

used

by

the

client

application

to

the

physical

name

of

an

object.

For

more

information,

see

Resource

environment

entries.

©

Copyright

IBM

Corp.

2004

1

http://www.adobe.com/products/acrobat/readermain.html
http://www.ibm.com/software/webservers/appserv/infocenter.html

2

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

Chapter

2.

Using

enterprise

beans

in

applications

1.

Design

a

J2EE

application

and

the

enterprise

beans

that

it

needs.

See

″Resources

for

learning″

for

links

to

design

information

that

is

specific

to

enterprise

beans.

2.

Develop

any

enterprise

beans

that

your

application

will

use.

3.

Prepare

for

assembly.

For

your

EJB

2.x-compliant

entity

beans,

decide

on

an

appropriate

access

intent

policy.

4.

Assemble

the

beans

using

theAssembly

Toolkit

into

one

or

more

EJB

modules.

This

includes

setting

security.

5.

Assemble

the

modules

into

a

J2EE

application

using

the

Assembly

Toolkit

.

6.

5.1 +

For

a

given

application

server,

update

the

EJB

container

configuration

if

needed

for

the

application

to

be

deployed,

and

determine

if

you

want

to

batch

commands

batch

commands

or

defer

commands

for

container

managed

persistence.

7.

Deploy

the

application

in

an

application

server.

8.

Test

the

modules.

v

As

needed,

debug

problems

with

the

container.

v

Debug

access

and

deployment

problems.

9.

Assemble

the

production

application

using

theAssembly

Toolkit.

10.

Deploy

the

application

to

a

production

environment.

11.

Manage

the

application:

a.

Manage

installed

EJB

modules.

After

an

application

has

been

installed,

you

can

manage

its

EJB

modules

individually

through

administrative

console

settings.

b.

Manage

other

aspects

of

the

J2EE

application.
12.

Update

the

module

and

redeploy

it

using

theAssembly

Toolkit.

13.

Tune

the

performance

of

the

application.

See

Best

practices

for

developing

enterprise

beans.

Enterprise

beans

An

enterprise

bean

is

a

Java

component

that

can

be

combined

with

other

resources

to

create

J2EE

applications.

There

are

three

types

of

enterprise

beans,

entity

beans,

session

beans,

and

message-driven

beans.

All

beans

reside

in

EJB

containers,

which

provide

an

interface

between

the

beans

and

the

application

server

on

which

they

reside.

Entity

beans

store

permanent

data.

Entity

beans

with

container-managed

persistence

(CMP)

require

connections

to

a

form

of

persistent

storage.

This

storage

might

be

a

database,

an

existing

legacy

application,

a

file,

or

another

type

of

persistent

storage.

Entity

beans

with

bean-managed

persistence

manage

permanent

data

in

whichever

manner

is

defined

in

the

bean

code.

For

example,

they

can

write

data

to

databases

or

XML

files

Session

beans

do

not

require

database

access,

although

they

can

obtain

it

indirectly

as

needed

through

entity

beans.

Session

beans

can

also

obtain

direct

access

to

databases

(and

other

resources)

through

the

use

of

resource

references.

Session

beans

can

be

either

stateful

or

stateless.

©

Copyright

IBM

Corp.

2004

3

Message-driven

beans

are

new

in

version

2.0

of

the

Enterprise

JavaBeans

(EJB)

specification.

They

enable

asynchronous

message

servicing.

The

EJB

container

and

a

Java

Message

Service

(JMS)

provider

work

together

to

process

messages.

When

a

message

arrives

from

another

application

component

through

JMS,

the

EJB

container

forwards

it

through

an

onMessage()

call

to

a

message-driven

bean

instance,

which

then

processes

the

message.

In

other

respects,

message-driven

beans

are

similar

to

stateless

session

beans.

Beans

that

require

data

access

use

data

sources,

which

are

administrative

resources

that

define

pools

of

connections

to

persistent

storage

mechanisms.

For

more

information

about

enterprise

beans,

see

″Resources

for

learning.″

Developing

enterprise

beans

Design

a

J2EE

application

and

the

enterprise

beans

that

it

needs.

v

For

general

design

information,

see

″Resources

for

learning.″

v

Before

developing

entity

beans

with

container-managed

persistence

(CMP),

read

″Concurrency

control.″

There

are

two

basic

approaches

to

selecting

tools

for

developing

enterprise

beans:

v

You

can

use

one

of

the

available

integrated

development

environments

(IDEs).

IDE

tools

automatically

generate

significant

parts

of

the

enterprise

bean

code

and

contain

integrated

tools

for

packaging

and

testing

enterprise

beans.

The

IBM

WebSphere

Application

Developer

product

is

the

recommended

IDE.

For

more

information,

see

the

documentation

for

that

product.

v

If

you

have

decided

to

develop

enterprise

beans

without

an

IDE,

you

need

at

least

an

ASCII

text

editor.

You

can

also

use

a

Java

development

tool

that

does

not

support

enterprise

bean

development.

You

can

then

use

tools

available

in

the

Java

Software

Development

Kit

(SDK)

and

in

this

product

to

assemble,

test,

and

deploy

the

beans.

The

following

steps

primarily

support

the

second

approach,

development

without

an

IDE.

1.

If

necessary,

migrate

any

pre-existing

code

to

the

required

version

of

the

Enterprise

JavaBeans

(EJB)

specification.

2.

Write

and

compile

the

components

of

the

enterprise

bean.

v

At

a

minimum,

an

EJB

1.1

session

bean

requires

a

bean

class,

a

home

interface,

and

a

remote

interface.

An

EJB

1.1

entity

bean

requires

a

bean

class,

a

primary-key

class,

a

home

interface,

and

a

remote

interface.

v

At

a

minimum,

an

EJB

2.0

session

bean

requires

a

bean

class,

a

home

or

local

home

interface,

and

a

remote

or

local

interface.

An

EJB

2.0

entity

bean

requires

a

bean

class,

a

primary-key

class,

a

remote

home

or

local

home

interface,

and

a

remote

or

local

interface.

The

types

of

interfaces

go

together:

If

you

implement

a

local

interface,

you

must

define

a

local

home

interface

as

well.

Note:

Optionally,

the

primary-key

class

can

be

unknown.

See

unknown

primary-key

class

for

more

information.

v

Available

only

through

EJB

2.0,

a

message-driven

bean

requires

only

a

bean

class.
3.

For

each

entity

bean,

complete

work

to

handle

persistence

operations.

v

Create

a

database

schema

for

the

entity

bean’s

persistent

data.

–

For

entity

beans

with

container-managed

persistence

(CMP),

you

must

store

the

bean’s

persistent

data

in

one

of

the

supported

databases.

4

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

WebSphere

Application

Server

application

assembly

tools

automatically

generate

SQL

code

for

creating

database

tables

for

CMP

entity

beans.

If

your

CMP

beans

require

complex

database

mappings,

it

is

recommended

that

you

use

the

IBM

WebSphere

Studio

Application

Developer

product

to

generate

code

for

the

database

tables.

–

For

entity

beans

with

bean-managed

persistence

(BMP),

you

can

create

the

database

and

database

table

by

using

the

database

tools

or

use

an

existing

database

and

database

table.

For

more

information

on

creating

databases

and

database

tables,

consult

your

database

documentation.

v

(CMP

entity

beans

for

EJB

2.0

only)

Define

finder

queries

with

EJB

Query

Language

(EJB

QL).

With

EJB

QL,

you

define

finders

in

terms

of

CMP

fields

and

container-managed

relationships,

as

follows:

–

Public

finders

are

visible

in

the

bean’s

home

interface.

Implemented

in

the

bean

class,

they

return

only

remote

interfaces

and

collection

types.

–

Private

finders,

expressed

as

SELECT

statements,

are

used

only

within

the

bean

class.

They

can

return

both

local

and

remote

interfaces,

dependent

values,

other

CMP

field

types,

and

collection

types.
v

(CMP

entity

beans

for

EJB

1.1

only:

an

IBM

extension)

Create

a

finder

helper

interface

for

each

CMP

entity

bean

that

contains

specialized

finder

methods

(other

than

the

findByPrimaryKey

method).

The

following

logic

is

required

for

each

finder

method

(other

than

the

findByPrimaryKey

method)

contained

in

the

home

interface

of

an

entity

bean

with

CMP:

–

The

logic

must

be

defined

in

a

public

interface

named

NameBeanFinderHelper,

where

Name

is

the

name

of

the

enterprise

bean

(for

example,

AccountBeanFinderHelper).

–

The

logic

must

be

contained

in

a

String

constant

named

findMethodName

WhereClause,

where

findMethodName

is

the

name

of

the

finder

method.

The

String

constant

can

contain

zero

or

more

question

marks

(?)

that

are

replaced

from

left

to

right

with

the

value

of

the

finder

method’s

arguments

when

that

method

is

called.

5.1 +

Assemble

the

beans

in

one

or

more

EJB

modules.

Migrating

enterprise

bean

code

to

the

supported

specification

Support

for

Version

2.0

of

the

Enterprise

JavaBeans

(EJB)

specification

is

new

for

Version

5

of

this

product.

Migration

of

enterprise

beans

deployed

in

Version

4.0.x

of

this

product

is

not

generally

necessary;

Version

1.1

of

the

EJB

specification

is

still

supported.

Follow

these

steps

as

appropriate

for

your

application

deployment.

1.

Modify

enterprise

bean

code

for

changes

in

the

specification.

v

For

Version

1.0

beans,

migrate

at

least

to

Version

1.1.

v

As

stated

previously,

migration

from

Version

1.1

to

Version

2.0

of

the

EJB

specification

is

not

required

for

redeployment

on

this

version

of

the

product.

However,

if

your

application

requires

the

capabilities

of

Version

2.0,

migrate

your

Version

1.1-compliant

code.

Note:

The

EJB

Version

2.0

specification

mandates

that

prior

to

the

EJB

container’s

executing

a

findByMethod

query,

the

state

of

all

enterprise

beans

enlisted

in

the

current

transaction

be

synchronized

with

the

persistent

store.

(This

is

so

the

query

is

performed

against

current

data.)

If

Version

1.1

beans

are

reassembled

into

an

EJB

2.0-compliant

Chapter

2.

Using

enterprise

beans

in

applications

5

module,

the

EJB

container

synchronizes

the

state

of

Version

1.1

beans

as

well

as

that

of

Version

2.0

beans.

As

a

result,

you

might

notice

some

change

in

application

behavior

even

though

the

application

code

for

the

Version

1.1

beans

has

not

been

changed.
2.

Modify

enterprise

bean

code

for

changes

in

deployment

requirements.

If

the

enterprise

beans

were

previously

deployed

in

Version

3.0.x

of

this

product,

modify

import

statements

to

match

standard

package

names.

In

Version

3.0.2.x,

the

following

standard

packages

were

present

under

nonstandard

names:

javax.sql.*

javax.transaction.*

Any

code

using

WebSphere

data

sources,

including

BMP

entity

beans

and

session

beans

that

access

databases,

must

be

modified.

3.

You

might

have

to

modify

code

for

some

EJB

1.1-compliant

modules

that

were

not

migrated

to

Version

2.0.

Use

the

following

information

to

help

you

decide.

v

Some

stub

classes

for

deployed

enterprise

beans

have

changed

in

the

Java

2

Software

Development

Kit,

Version

1.4.1.

v

The

task

of

generating

deployment

code

for

enterprise

beans

changed

significantly

for

EJB

1.1-compliant

modules

relative

to

EJB

1.0-compliant

modules.

v

If

the

CMP

beans

write

to

databases

with

mixed-case

table

or

column

names

and

you

used

IBM

VisualAge

for

Java,

Version

3.5.x,

to

generate

the

original

deployment

code,

you

cannot

simply

reassemble

the

beans

in

this

product.

You

must

export

the

original

EJB

project

from

the

VisualAge

for

Java

product

as

an

EJB

1.1

JAR.

This

preserves

the

metadata

needed

to

generate

the

correct

deployment

code

for

mixed-case

database

tables

and

columns.

For

more

information,

see

the

documentation

for

the

Deployment

Tool

for

Enterprise

JavaBeans.

For

detailed

information

about

source

and

binary

compatibility

between

deployed

versions,

see

″Resources

for

learning.″

4.

Reassemble

and

redeploy

all

modules

to

incorporate

migrated

code.

Migrating

enterprise

bean

code

from

Version

1.0

to

Version

1.1

The

following

information

generally

applies

to

any

enterprise

bean

that

currently

complies

with

Version

1.0

of

the

Enterprise

JavaBeans

(EJB)

specification.

For

more

information

about

migrating

code

for

beans

produced

with

the

IBM

WebSphere

Studio

Application

Developer

tool,

see

the

documentation

for

that

product.

For

more

information

about

migrating

code

in

general,

see

″Resources

for

learning.″

1.

In

session

beans,

replace

all

uses

of

javax.jts.UserTransaction

with

javax.transaction.UserTransaction.

Entity

beans

may

no

longer

use

the

UserTransaction

interface

at

all.

2.

In

finder

methods

for

entity

beans,

include

FinderException

in

the

throws

clause.

3.

Remove

throws

of

java.rmi.RemoteException;

throw

javax.ejb.EJBException

instead.

However,

continue

to

include

RemoteException

in

the

throws

clause

of

home

and

remote

interfaces

as

required

by

the

use

of

Remote

Method

Invocation

(RMI).

4.

Remove

uses

of

the

finalize()

method.

5.

Replace

calls

to

getCallerIdentity()

with

calls

to

getCallerPrincipal().

The

use

of

getCallerIdentity()

is

deprecated.

6.

Replace

calls

to

isCallerInRole(Identity)

with

calls

to

isCallerinRole

(String).

The

use

of

isCallerInRole(Identity)

and

java.security.Identity

is

deprecated.

6

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

7.

Replace

calls

to

getEnvironment()

in

favor

of

JNDI

lookup.

As

an

example,

change

the

following

code:

String

homeName

=

aLink.getEntityContext().getEnvironment().getProperty("TARGET_HOME_NAME");

if

(homeName

==

null)

homeName

=

"TARGET_HOME_NAME";

The

updated

code

would

look

something

like

the

following:

Context

env

=

(Context)(new

InitialContext()).lookup("java:comp/env");

String

homeName

=

(String)env.lookup("ejb10-properties/TARGET_HOME_NAME");

8.

In

ejbCreate

methods

for

an

entity

bean

with

container-managed

persistence

(CMP),

return

the

bean’s

primary

key

class

instead

of

void.

9.

Add

the

getHomeHandle()

method

to

home

interfaces.

public

javax.ejb.HomeHandle

getHomeHandle()

{return

null;}

Consider

enhancements

to

match

the

following

changes

in

the

specification:

v

Primary

keys

for

entity

beans

can

be

of

type

java.lang.String.

v

Finder

methods

for

entity

beans

return

java.util.Collection.

v

Check

the

format

of

any

JNDI

names

being

used.

Local

name

spaces

are

also

supported.

v

Security

is

defined

by

role,

and

isolation

levels

are

defined

at

the

method

level

rather

than

at

the

bean

level.

Migrating

enterprise

bean

code

from

Version

1.1

to

Version

2.0

Enterprise

JavaBeans

(EJB)

Version

2.0-compliant

beans

may

be

assembled

only

in

an

EJB

2.0-compliant

module,

although

an

EJB

2.0-compliant

module

can

contain

a

mixture

of

Version

1.x

and

Version

2.0

beans.

The

EJB

Version

2.0

specification

mandates

that

prior

to

the

EJB

container’s

executing

a

findByMethod

query,

the

state

of

all

enterprise

beans

enlisted

in

the

current

transaction

be

synchronized

with

the

persistent

store.

(This

is

so

the

query

is

performed

against

current

data.)

If

Version

1.1

beans

are

reassembled

into

an

EJB

2.0-compliant

module,

the

EJB

container

synchronizes

the

state

of

Version

1.1

beans

as

well

as

that

of

Version

2.0

beans.

As

a

result,

you

might

notice

some

change

in

application

behavior

even

though

the

application

code

for

the

Version

1.1

beans

has

not

been

changed.

The

following

information

generally

applies

to

any

enterprise

bean

that

currently

complies

with

Version

1.1

of

the

EJB

specification.

For

more

information

about

migrating

code

for

beans

produced

with

the

IBM

WebSphere

Studio

Application

Developer

tool,

see

the

documentation

for

that

product.

For

more

information

about

migrating

code

in

general,

see

″Resources

for

learning.″

1.

In

beans

with

container-managed

persistence

(CMP)

version

1.x,

replace

each

CMP

field

with

abstract

get

and

set

methods.

In

doing

so,

you

must

make

each

bean

class

abstract.

2.

In

beans

with

CMP

version

1.x,

change

all

occurrences

of

this.field

=

value

to

setField(value).

3.

In

each

CMP

bean,

create

abstract

get

and

set

methods

for

the

primary

key.

4.

In

beans

with

CMP

version

1.x,

create

an

EJB

Query

Language

statement

for

each

finder

method.

5.

In

finder

methods

for

beans

with

CMP

version

1.x,

return

java.util.Collection

instead

of

java.util.Enumeration.

6.

Update

handling

of

non-application

exceptions.

v

To

report

non-application

exceptions,

throw

javax.ejb.EJBException

instead

of

java.rmi.RemoteException.

Chapter

2.

Using

enterprise

beans

in

applications

7

v

Modify

rollback

behavior

as

needed:

In

EJB

versions

1.1

and

2.0,

all

non-application

exceptions

thrown

by

the

bean

instance

result

in

the

rollback

of

the

transaction

in

which

the

instance

is

running;

the

instance

is

discarded.

In

EJB

1.0,

the

container

does

not

roll

back

the

transaction

or

discard

the

instance

if

it

throws

java.rmi.RemoteException.
7.

Update

rollback

behavior

as

the

result

of

application

exceptions.

v

In

EJB

versions

1.1

and

2.0,

an

application

exception

does

not

cause

the

EJB

container

to

automatically

roll

back

a

transaction.

v

In

EJB

Version

1.1,

the

container

performs

the

rollback

only

if

the

instance

has

called

setRollbackOnly()

on

its

EJBContext

object.

v

In

EJB

Version

1.0,

the

container

is

required

to

roll

back

a

transaction

when

an

application

exception

is

passed

through

a

transaction

boundary

started

by

the

container.

WebSphere

extensions

to

the

Enterprise

JavaBeans

specification

This

article

outlines

extensions

to

the

Enterprise

JavaBeans

(EJB)

specification

that

IBM

provides

with

this

product:

Inheritance

in

enterprise

beans

In

the

Java

language,

inheritance

is

the

creation

of

a

new

class

from

an

existing

class

or

a

new

interface

from

an

existing

interface.

This

product

supports

two

forms

of

inheritance:

standard

class

inheritance

and

EJB

inheritance.

In

standard

class

inheritance,

the

home

interface,

remote

interface,

or

enterprise

bean

class

inherits

properties

and

methods

from

base

classes

that

are

not

themselves

enterprise

bean

classes

or

interfaces.

By

contrast

in

enterprise

bean

inheritance,

an

enterprise

bean

inherits

properties

(such

as

container-managed

persistence

(CMP)

fields

and

container-managed

relationship

(CMR)

fields),

methods,

and

method-level

control

descriptor

attributes

from

another

enterprise

bean.

For

more

information,

see

the

documentation

for

the

IBM

WebSphere

Studio

Application

Developer

product.

Optimistic

concurrency

control

for

container-managed

persistence

This

product

supports

optimistic

concurrency

control

of

data

access.

Access

intents

for

EJB

persistence

This

product

supports

the

application

of

named

data-access

policies.

Performance

enhancements

Through

the

lifetime-in-cache

settings,

this

product

provides

a

way

for

you

to

improve

performance

for

beans

that

are

only

occasionally

updated.

For

more

information,

see

″Entity

bean

assembly

settings.″

Some

enterprise

beans

created

with

the

IBM

WebSphere

Studio

Application

Developer

product

can

utilize

read-ahead

for

loading

a

bean

and

its

related

beans

in

a

single

database

operation.

An

entire

object

graph

or

any

part

of

the

graph

can

be

preloaded

by

configuring

a

finder

method

to

use

read-ahead.

8

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

Assembly

and

deployment

extensions

5.1 +

This

product

supports

IBM

extensions

of

assembly

and

deployment

options.

Best

practices

for

developing

enterprise

beans

Use

the

following

guidelines

when

designing

and

developing

enterprise

beans:

v

Use

a

stateless

session

bean

to

act

as

the

entry

point

for

business

logic.

For

more

information

about

using

session

facades,

see

″Resources

for

learning.″

v

Entity

beans

should

use

container-managed

persistence.

v

In

an

Enterprise

JavaBeans

(EJB)

Version

2.0

environment,

use

local

interfaces

to

improve

communication

between

enterprise

beans

in

the

same

Java

virtual

machine.

Local

calls

avoid

the

overhead

of

RMI/IIOP

and

use

pass-by-reference

semantics

instead

of

pass-by-value.

For

each

call,

the

caller

and

callee

beans

share

the

state

of

arguments.

EJB

2.0

beans

can

have

both

a

local

and

remote

interface

but

more

typically

have

one

or

the

other.

v

For

communicating

with

remote

clients,

provide

remote

and

remote

home

interfaces.

For

communicating

with

local

clients

like

servlets,

entity

beans,

and

message-driven

beans,

provide

local

and

local

home

interfaces.

Batch

commands

for

container

managed

persistence

From

JDBC

2.0

on,

PreparedStatement

objects

can

maintain

a

list

of

commands

that

can

be

submitted

together

as

a

batch.

Instead

of

multiple

database

round

trips,

there

can

be

only

one

database

round

trip

for

all

the

batched

persistence

requests.

The

WebSphere

Application

Server

version

5.0.2

enables

you

to

take

advantage

of

this.

You

can

turn

this

option

on

from

the

EJB

CMP

side.

When

you

choose

this

option,

the

run

time

defers

ejbStore/ejbCreate/ejbRemove

or

the

equivalent

database

persistence

requests

(insert/update/delete)

until

they

are

needed.

This

can

be

at

the

end

of

the

transaction,

or

when

a

flush

is

needed

for

finders

related

to

this

EJB

type.

When

the

persistence

operation

finally

happens,

run

time

accumulates

the

database

requests

and

uses

JDBC

PreparedStatement

batch

operation

to

make

a

single

JDBC

call

for

multiple

rows

of

the

same

operation.

Setting

the

run

time

for

batched

commands:

1.

Open

the

administrative

console.

2.

Select

Servers.

3.

Select

Application

Servers.

4.

Select

the

server

you

want

to

configure.

5.

In

the

Additional

Properties

area,

select

Process

Definition.

6.

In

the

Additional

Properties

area,

select

Java

Virtual

Machine.

7.

Update

the

Generic

JVM

arguments

with

Dcom.ibm.ws.pm.batch=true.

Deferred

Create

for

container

managed

persistence

The

specification

for

Enterprise

Java

Beans

(EJB)

2.x

states

that

for

Container

Managed

Persistence

(CMP)

during

the

ejbCreate,

the

container

can

create

the

representation

of

the

entity

in

the

database

immediately,

or

defer

it

to

a

later

time.

The

WebSphere

Application

Server

version

5.0.2

enables

you

to

take

advantage

of

this

specification.

You

can

turn

this

option

on

from

the

EJB

CMP

side.

When

you

choose

this

option,

the

runtime

defers

ejbCreate

(or

the

equivalent

database

persistence

request)

until

it

is

needed.

This

can

be

at

the

end

of

the

transaction,

or

Chapter

2.

Using

enterprise

beans

in

applications

9

when

a

flush

is

needed

for

finders

related

to

this

EJB

type.

By

doing

this

you

can

reduce

two

round

trips

for

the

newly

created

entity

(insert

and

update)

to

one

(insert).

Setting

the

run

time

for

deferred

create:

1.

Open

the

administrative

console.

2.

Select

Servers.

3.

Select

Application

Servers.

4.

Select

the

server

you

want

to

configure.

5.

In

the

Additional

Properties

area,

select

Process

Definition.

6.

In

the

Additional

Properties

area,

select

Java

Virtual

Machine.

7.

Update

the

Generic

JVM

arguments

with

Dcom.ibm.ws.pm.deferredcreate=true.

Explicit

invalidation

in

the

Persistence

Manager

cache

Container

managed

persistence

(CMP)

entity

beans

can

be

configured

as

long-lifetime

beans.

A

long-lifetime

bean

is

one

that

is

configured

with

Lifetime

In

Cache

Usage

equal

to

a

value

other

than

the

default

OFF

.

A

value

other

than

OFF

means

that

data

for

this

bean

is

cached

beyond

the

end

of

the

transaction

in

which

the

bean

was

obtained

by

a

finder

or

other

method.

The

Lifetime

In

Cache

Usage

and

Lifetime

In

Cache

values

control

the

basic

length

of

time

the

cached

data

remains

valid.

When

the

specified

time

runs

out,

the

cached

data

is

no

longer

valid.

See

the

LifetimeInCache

help

sections

of

the

Assembly

Toolkit

(ATK)

for

more

details.

However,

there

is

also

an

API

that

lets

the

client

application

code

explicitly

invalidate

the

cached

data

of

a

bean

on

demand,

superceding

the

basic

lifetime

of

the

cache

data

as

controlled

by

the

Lifetime

In

Cache

Usage

and

Lifetime

In

Cache

settings.

This

is

useful

where

an

application

that

does

not

use

CMP

beans

modifies

the

data

that

underlies

a

CMP

bean

(for

example,

it

updates

a

database

table

to

which

a

CMP

bean

is

mapped).

Such

an

application

can

inform

WebSphere

Application

Server

that

any

cached

version

of

this

bean

data

is

stale

and

no

longer

matches

what

is

in

the

database.

The

data

should

be

invalidated

(in

essence,

discarded).

For

CMP

beans

that

cannot

tolerate

stale

data,

this

is

an

important

feature.

Because

the

PM

Cache

Invalidation

mechanism

does

consume

resources

in

exchange

for

its

benefits,

it

is

not

enabled

by

default.

To

enable

it

refer

to

Setting

Persistence

Manager

Cache

Invalidation

.

Example:

Explicit

Invalidation

in

the

Persistence

Manager

Cache:

Usage

Scenario

The

scenario

of

use

for

this

feature

begins

with

configuring

one

or

more

bean

types

to

be

long-lifetime

beans

(see

Explicit

Invalidation

in

the

Persistence

Manager

Cache,

and

configuring

the

necessary

Java

Message

Service

(JMS)

resources

(described

below).

Once

this

is

done,

the

server

is

started.

The

scenario

continues

as

follows:

1.

Assume

that

a

CMP

entity

bean

of

type

Department

has

been

configured

to

be

a

long-lifetime

bean.

2.

Transaction

1

begins.

Application

code

looks

up

Department’s

home

and

calls

a

finder

method

(such

as

findByPrimaryKey(″dept01″)

).

As

this

is

the

first

finder

to

return

Department

dept01,

a

trip

is

made

to

the

database

to

obtain

the

data.

Transaction

1

ends.

10

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

3.

Transaction

2

begins.

Application

code

calls

findByPrimaryKey(″dept01″)

again.

Because

this

is

not

the

first

finder

to

return

Department

dept01,

we

get

a

cache

hit

and

no

database

trip

is

made.

So

far

this

is

current

WebSphere

Application

Server

behavior

for

long-lifetime

beans.

Transaction

2

ends.

4.

Another

application,

which

does

not

use

the

Department

CMP

bean,

is

executed.

This

application

might

or

might

not

be

run

on

the

WebSphere

Application

Server;

it

could

be

a

legacy

application.

The

application

updates

the

database

table

that

is

mapped

to

the

Department

bean,

altering

the

row

for

dept01.

For

example,

the

budget

column

in

the

table

(mapped

to

a

Java

double

CMP

attribute

in

the

Deparment

bean)

is

changed

from

$10,000.00

to

$50,000.00.

This

application

was

designed

to

cooperate

with

WebSphere

Application

Server.

After

performing

the

update,

the

application

sends

an

invalidate

request

message

to

invalidate

the

Department

bean

dept01.

5.

Transaction

3

begins.

Application

code

looks

up

Department’s

home

and

calls

a

finder

method

(such

as

findByPrimaryKey(″dept01″)

).

Because

this

is

the

first

finder

after

Department

dept01

is

invalidated,

a

new

database

trip

is

made

to

obtain

the

data.

Transaction

3

ends.

Persistence

Manager

cache

invalidation

API

The

PM

cache

invalidation

API

is

in

the

form

of

a

JMS

message

that

the

client

sends

to

a

specially-named

JMS

topic

using

a

connection

from

a

specifically

named

JMS

TopicConnectionFactory.

The

JMS

message

must

be

an

ObjectMessage

created

by

the

client.

The

client

code

creates

a

PMCacheInvalidationRequest

object

that

describes

the

bean

data

to

invalidate.

Client

code

places

the

PMCacheInvalidationRequest

object

in

the

ObjectMessage

and

publishes

the

ObjectMessage

(for

further

details

on

the

JMS

objects

and

terms

used

here,

please

see

the

Java

Message

Service

documentation).

The

public

class

PMCacheInvalidationRequest

is

central

to

the

API,

so

we

include

a

portion

of

its

code

here

for

illustration

purposes

(if

you

see

any

differences

between

this

illustration

and

the

actual

class,

the

class

is

to

be

considered

correct):

packagecom.ibm.websphere.ejbpersistence;

/**

*An

instance

of

this

class

represents

a

request

to

invalidate

one

or

more

*CMP

beans

in

the

PMcache.When

an

invalidate

occurs,cached

datafor

this

*bean

is

removed

from

the

cache;the

next

time

an

application

tries

to

find

*this

bean,a

fresh

copy

of

the

bean

data

is

obtained

from

the

data

store.

*

*The

ability

to

invalidate

a

bean

means

that

a

CMP

bean

may

be

configured

*as

a

long-lifetime

bean

and

thus

be

cached

across

transactions

for

much

*greater

performance

on

future

attempts

to

find

this

bean.Yet

when

some

*outside

mechanism

updates

the

bean

data,sending

an

invalidation

request

*will

remove

stale

data

from

the

PMcache

so

applications

do

not

behave

falsely

*based

on

stale

data.

*/

public

class

PMCacheInvalidationRequestimplementsSerializable{

.

.

.

/**

*

Constructor

used

to

invalidate

a

single

bean

*

@param

beanHomeJNDIName

the

JNDI

name

of

the

bean

home.

This

is

the

same

value

*

used

to

look

up

the

bean

home

prior

to

calling

findByPrimaryKey,

for

example.

*

@param

beanKey

the

primary

key

of

the

bean

to

be

invalidated.

The

actual

*

object

type

must

be

the

primary

key

type

for

this

bean

type.

*/

public

PMCacheInvalidationRequest(String

beanHomeJNDIName,

Object

beanKey)

throws

IOException

{

Chapter

2.

Using

enterprise

beans

in

applications

11

.

.

.

}

/**

*

Constructor

used

to

invalidate

a

Collection

of

beans

*

@param

beanHomeJNDIName

java.lang.String

the

JNDI

name

of

the

bean

home.

*

This

is

the

same

value

used

to

look

up

the

bean

home

prior

to

calling

*

findByPrimaryKey,

for

example.

*

@param

beanKeys

a

Collection

of

the

primary

keys

of

the

beans

to

be

*

invalidated.

The

actual

type

of

each

object

in

the

Collection

must

be

the

*

primary

key

type

for

this

bean

type.

*/

public

PMCacheInvalidationRequest(String

beanHomeJNDIName,

Collection

beanKeys)

throws

IOException

{

.

.

.

}

/**

*

Constructor

used

to

invalidate

all

beans

of

a

given

type

*

@param

beanHomeJNDIName

java.lang.String

the

JNDI

name

of

the

bean

home.

*

This

is

the

same

value

used

to

look

up

the

bean

home

prior

to

calling

*

findByPrimaryKey,

for

example.

*/

public

PMCacheInvalidationRequest(String

beanHomeJNDIName)

{

.

.

.

}

}

If

the

client

wants

to

perform

the

invalidation

in

a

synchronous

way,

it

can

opt

to

receive

an

acknowledgement

JMS

message

when

the

invalidation

is

complete.

To

ask

for

an

acknowledgement

(ACK)

message,

the

client

sets

a

Topic

of

its

own

choosing

in

the

JMSReplyTo

field

of

the

ObjectMessage

for

the

invalidation

request

(see

JMS

documentation

for

further

details).

The

client

then

waits

(using

the

receive()

method

of

JMS)

on

receipt

of

the

acknowledgement

message

before

continuing

execution.

An

ACK

message

enables

the

caller

to

insure

there

is

not

even

a

brief

(seconds

or

less)

window

during

which

PM

cache

data

is

stale.

The

sending

of

an

acknowledgement

for

each

request

does,

of

course,

take

a

bit

more

time

and

so

is

recommended

to

be

used

only

when

needed.

The

JMS

resources

used

to

make

an

invalidation

request

(TopicConnectionFactory,

TopicDestination,

and

so

forth)

must

be

configured

by

the

user

(using

the

Administration

console

or

other

method)

if

they

want

to

use

PM

Cache

Invalidation.

In

this

way

the

user

can

chose

whichever

JMS

provider

they

prefer

(as

long

as

it

supports

pub-sub).

The

names

that

must

be

used

for

these

resources

are

defined

as

part

of

the

API,

and

use

names

unique

to

the

WebSphere

Application

Server

namespace

to

avoid

name

conflict

with

customer

JMS

resources.

The

following

are

the

names

that

must

be

used

when

the

user

configures

the

JMS

resources

(shown

as

Java

constants

for

clarity):

//

The

JNDI

name

of

the

TopicConnectionFactory

private

static

final

String

topicConnectionFactoryJNDIName

=

"com.ibm.websphere.ejbpersistence.InvalidateTCF";

//

The

JNDI

name

of

the

TopicDestination

private

static

final

String

topicDestinationJNDIName

=

"com.ibm.websphere.ejbpersistence.invalidate";

//

The

Topic

name

(part

of

the

TopicDestination)

private

static

final

String

topicString

=

"com.ibm.websphere.ejbpersistence.invalidate";

Here

are

examples

of

how

these

constants

can

be

used

in

client

code:

12

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

//

Look

up

the

TopicConnectionFactory...

InitialContext

ic

=

new

InitialContext();

TopicConnectionFactory

topicConnectionFactory

=

(TopicConnectionFactory)

ic.lookup(topicConnectionFactoryJNDIName);

...

//

Look

up

the

Topic

Topic

topic

=

(Topic)

ic.lookup(topicDestinationJNDIName);

Note

that

JMS

messages

can

be

sent

not

only

from

J2EE

application

code

(for

example,

a

SessionBean

or

BMP

entity

bean

method)

but

also

from

non-J2EE

applications

if

your

chosen

JMS

provider

allows

for

this.

For

example,

the

IBM

MQ

provider,

available

in

WebSphere

Application

Server

as

the

Embedded

Messaging

feature

(selectable

during

installation),

supports

the

use

of

MQ

classes

(or

structures

in

other

languages)

to

create

a

topic

connection

and

topic

that

are

compatible

with

the

TopicConnectionFactory

and

TopicDestination

you

configure

using

WebSphere

Application

Server

Application

Console.

Setting

Persistence

Manager

Cache

Invalidation:

1.

Open

the

administrative

console.

2.

Select

Servers.

3.

Select

Application

Servers.

4.

Select

the

server

you

want

to

configure.

5.

In

the

Additional

Properties

area,

select

Process

Definition.

6.

In

the

Additional

Properties

area,

select

Java

Virtual

Machine.

7.

Update

the

Generic

JVM

arguments

with

-Dcom.ibm.ws.ejbpersistence.cacheinvalidation=true.

Unknown

primary-key

class

When

writing

an

entity

bean

for

Enterprise

Java

Bean

Version

2.0,

the

minimum

requirements

usually

include

a

primary-key

class.

However,

in

some

cases

you

might

choose

not

to

specify

the

primary-key

class

for

an

entity

bean

with

container

managed

persistence

(CMP).

Perhaps

there

is

no

obvious

primary

key,

or

you

want

to

allow

the

deployer

to

select

the

primary

key

fields

at

deployment

time.

The

primary

key

type

is

usually

derived

from

the

type

used

by

the

database

system

that

stores

the

entity

objects,

and

you

might

not

know

what

this

key

is.

So,

the

unknown

key

type

is

actually

a

type

chosen

at

deployment

time,

making

it

changeable

each

time

the

bean

is

deployed.

Your

client

code

must

deal

with

this

key

as

type

Object.

Currently,

WebSphere

Application

Server

supports

top-down

mapping

and

enables

the

deployer

to

choose

String

keys

generated

at

the

application

server.

For

an

example

of

how

to

use

this

function,

see

the

Samples

library.

Using

access

intent

policies

You

can

use

access

intent

policies

to

help

the

product

run-time

environment

manage

various

aspects

of

Enterprise

JavaBeans

(EJB)

persistence.

You

apply

access

intent

policies

to

EJB

Version

2.0

entity

beans

and

their

methods

by

using

an

application

assembly

tool.

A

set

of

default

access

intent

policies

comes

with

the

Assembly

Toolkit.

1.

Apply

default

access

intent

to

CMP

entity

beans.

For

more

information,

see

the

online

help

available

with

the

Assembly

Toolkit.

2.

Apply

access

intent

policies

to

methods

of

CMP

entity

beans.

Chapter

2.

Using

enterprise

beans

in

applications

13

Access

intent

policies

An

access

intent

policy

is

a

named

set

of

properties

(access

intents)

that

governs

data

access

for

Enterprise

JavaBeans

(EJB)

persistence.

You

can

assign

policies

to

an

entity

bean

and

to

individual

methods

on

an

entity

bean’s

home,

remote,

or

local

interfaces

during

assembly.

You

can

set

access

intents

only

within

EJB

Version

2.x-compliant

modules

for

entity

beans

with

CMP

Version

2.x.

This

product

supplies

a

number

of

access

intent

policies

that

specify

permutations

of

read

intent

and

concurrency

control;

the

pessimistic/update

policy

can

be

qualified

further.

The

selected

policy

determines

the

appropriate

isolation

level

and

locking

strategy

used

by

the

run

time

environment.

Access

intent

policies

are

specifically

designed

to

supplant

the

use

of

isolation

level

and

access

intent

method-level

modifiers

found

in

the

extended

deployment

descriptor

for

EJB

version

1.1

enterprise

beans.

You

cannot

specify

isolation

level

and

read-only

modifiers

for

EJB

version

2.0

enterprise

beans.

Access

intent

policies

configured

on

an

entity

basis

define

the

default

access

intent

for

that

entity.

The

default

access

intent

controls

the

entity

unless

you

specify

a

different

access

intent

policy

based

on

either

method-level

configuration

or

application

profiling

You

can

use

application

profiling

or

method

level

access

intent

policies

to

control

access

intent

more

precisely.

Application

profiling

is

only

available

in

the

Integration

Server

product.

Method-level

access

intent

policies

are

named

and

defined

at

the

module

level.

A

module

can

have

one

or

many

such

policies.

Policies

are

assigned,

and

apply,

to

individual

methods

of

the

declared

interfaces

of

entity

beans

and

their

associated

home

interfaces.

A

method-based

policy

is

acted

upon

by

the

combination

of

the

EJB

container

and

persistence

manager

when

the

method

causes

the

entity

to

load.

For

entity

beans

that

are

backed

by

tables

with

nullable

columns,

use

an

optimistic

policy

with

caution.

Nullable

columns

are

automatically

excluded

from

overqualified

updates

at

deployment

time;

concurrent

changes

to

a

nullable

field

might

result

in

lost

updates.

When

used

with

the

IBM

WebSphere

Studio

Application

Developer

product,

this

product

provides

support

for

selecting

a

subset

of

the

non-nullable

columns

that

are

to

be

reflected

in

the

overqualified

update

statement

that

is

generated

in

the

deployment

code

to

support

optimistic

policies.

An

entity

that

is

configured

with

a

read-only

policy

that

causes

a

bean

to

be

activated

can

cause

problems

if

updates

are

attempted

within

the

same

transaction.

Those

changes

are

not

committed,

and

the

process

throws

an

exception

because

data

integrity

might

be

compromised.

Concurrency

control

Concurrency

control

is

the

management

of

contention

for

data

resources.

A

concurrency

control

scheme

is

considered

pessimistic

when

it

locks

a

given

resource

early

in

the

data-access

transaction

and

does

not

release

it

until

the

transaction

is

closed.

A

concurrency

control

scheme

is

considered

optimistic

when

locks

are

acquired

and

released

over

a

very

short

period

of

time

at

the

end

of

a

transaction.

The

objective

of

optimistic

concurrency

is

to

minimize

the

time

over

which

a

given

resource

would

be

unavailable

for

use

by

other

transactions.

This

is

especially

important

with

long-running

transactions,

which

under

a

pessimistic

scheme

would

lock

up

a

resource

for

unacceptably

long

periods

of

time.

14

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

Under

an

optimistic

scheme,

locks

are

obtained

immediately

before

a

read

operation

and

released

immediately

afterwards.

Update

locks

are

obtained

immediately

before

an

update

operation

and

held

until

the

end

of

the

transaction.

To

enable

optimistic

concurrency,

this

product

uses

an

overqualified

update

scheme

to

test

whether

the

underlying

data

source

has

been

updated

by

another

transaction

since

the

beginning

of

the

current

transaction.

With

this

scheme,

the

columns

marked

for

update

and

their

original

values

are

added

explicitly

through

a

WHERE

clause

in

the

UPDATE

statement

so

that

the

statement

fails

if

the

underlying

column

values

have

been

changed.

As

a

result,

this

scheme

can

provide

column-level

concurrency

control;

pessimistic

schemes

can

control

concurrency

at

the

row

level

only.

Optimistic

schemes

typically

perform

this

type

of

test

only

at

the

end

of

a

transaction.

If

the

underlying

columns

have

not

been

updated

since

the

beginning

of

the

transaction,

pending

updates

to

container-managed

persistence

fields

are

committed

and

the

locks

are

released.

If

locks

cannot

be

acquired

or

if

some

other

transaction

has

updated

the

columns

since

the

beginning

of

the

current

transaction,

the

transaction

is

rolled

back:

All

work

performed

within

the

transaction

is

lost.

Pessimistic

and

optimistic

concurrency

schemes

require

different

transaction

isolation

levels.

Enterprise

beans

that

participate

in

the

same

transaction

and

require

different

concurrency

control

schemes

cannot

operate

on

the

same

underlying

data

connection.

Whether

or

not

to

use

optimistic

concurrency

depends

on

the

type

of

transaction.

Transactions

with

a

high

penalty

for

failure

might

be

better

managed

with

a

pessimistic

scheme.

(A

high-penalty

transaction

is

one

for

which

recovery

would

be

risky

or

resource-intensive.)

For

low-penalty

transactions,

it

is

often

worth

the

risk

of

failure

to

gain

efficiency

through

the

use

of

an

optimistic

scheme.

In

general,

optimistic

concurrency

is

more

efficient

when

update

collisions

are

expected

to

be

infrequent;

pessimistic

concurrency

is

more

efficient

when

update

collisions

are

expected

to

occur

often.

Read-ahead

hints

Read-ahead

schemes

enable

applications

to

minimize

the

number

of

database

roundtrips

by

retrieving

a

working

set

of

container-managed

persistence

(CMP)

beans

for

the

transaction

within

one

query.

Read-ahead

involves

activating

the

requested

CMP

beans

and

caching

the

data

for

their

related

beans,

which

ensures

that

data

is

present

for

the

beans

that

are

most

likely

to

be

needed

next

by

an

application.

A

read-ahead

hint

is

a

canonical

representation

of

the

related

beans

that

are

to

be

read.

It

is

associated

with

the

findByPrimaryKey

method

for

the

requested

bean

type,

which

must

be

an

EJB

2.x-compliant

CMP

entity

bean.

Read-ahead

hints

can

be

set

only

using

the

WebSphere

Business

Integration

Server

Foundation

assembly

tool

or

through

the

Add

Access

Intent

wizard

of

the

IBM

WebSphere

Studio

Application

Developer

product.

Read-ahead

is

only

supported

for

access

intent

policies

that

can

be

applied

by

the

backend

against

which

the

application

is

deployed.

Otherwise,

the

read-ahead

hint

is

disregarded.

Currently,

only

findByPrimaryKey

methods

can

have

read-ahead

hints.

Only

beans

related

to

the

requested

beans

by

a

container-managed

relationship

(CMR),

either

directly

or

indirectly

through

other

beans,

can

be

read

ahead.

Beans

that

use

EJB

inheritance

should

not

be

used

in

a

read-ahead

hint.

Chapter

2.

Using

enterprise

beans

in

applications

15

A

read-ahead

hint

takes

the

form

of

a

character

string.

You

do

not

have

to

provide

the

string;

the

wizard

generates

it

for

you

based

on

CMRs

defined

for

the

bean.

The

following

example

is

provided

as

supplemental

information

only.

Suppose

a

CMP

bean

type

A

has

a

finder

method

that

returns

instances

of

bean

A.

A

read-ahead

hint

for

this

method

is

specified

using

the

following

notation:

RelB.RelC;

RelD

Interpret

the

preceding

notation

as

follows:

v

Bean

type

A

has

a

CMR

with

bean

types

B

and

D.

v

Bean

type

B

has

a

CMR

with

bean

type

C.

For

each

bean

of

type

A

that

is

retrieved

from

the

database,

its

directly-related

B

and

D

beans

and

its

indirectly-related

C

beans

are

also

retrieved.

The

order

of

the

retrieved

bean

data

columns

in

each

row

of

the

result

set

is

the

same

as

their

order

in

the

read-ahead

hint:

an

A

bean,

a

B

bean

(or

null),

a

C

bean

(or

null),

a

D

bean

(or

null).

For

hints

in

which

the

same

relationship

is

mentioned

more

than

once

(for

example,

RelB.RelC;RelB.RelE),

a

bean’s

data

columns

appear

only

once,

at

the

position

it

first

appears

in

the

hint.

The

tokens

shown

in

the

notation

(RelB

and

so

on)

must

be

CMR

field

names

for

the

relationships

as

defined

in

the

deployment

descriptor

for

the

bean.

In

indirect

relationships

such

as

RelB.RelC,

RelC

is

a

CMR

field

name

defined

in

the

deployment

descriptor

for

bean

type

B.

A

single

read-ahead

hint

cannot

refer

to

the

same

bean

type

in

more

than

one

relationship.

For

example,

if

a

Department

bean

has

a

relationship

employees

with

the

Employee

bean

and

also

has

a

relationship

manager

with

the

Employee

bean,

the

read-ahead

hint

cannot

specify

both

employees

and

manager.

For

more

information

about

how

to

set

read-ahead

hints,

see

the

documentation

for

the

Websphere

Studio

Application

Developer

product.

Applying

access

intent

policies

to

methods

You

apply

an

access

intent

policy

to

a

method,

or

set

of

methods,

in

an

application’s

entity

beans

through

the

Assembly

Toolkit.

1.

Start

the

Assembly

Toolkit.

2.

Optional:

Open

the

J2EE

perspective

to

work

with

J2EE

projects.

Click

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Optional:

Open

the

J2EE

Hierarchy

view.

Click

Window

>

Show

View

>

J2EE

Hierarchy.

Other

helpful

views

include

the

Project

Navigator

view

(Window

>

Show

View

>

Other

>

J2EE

>

Project

Navigator)

and

the

Navigator

view

(Window

>

Show

View

>

Navigator).

4.

Select

the

Access

tab.

5.

On

the

right

side

of

the

Access

Intent

for

Entities

2.x

(Method

Level)

panel,

select

Add.

The

Add

Access

Intent

panel

displays.

6.

Specify

the

Name

for

your

new

intent

policy.

7.

Select

the

Access

intent

name

from

the

drop-down

list.

8.

Enter

a

Description

to

help

you

remember

what

this

policy

does.

9.

Optional:

Select

Read

Ahead

Hint.

10.

Click

Next.

The

next

Add

Access

Intent

panel

displays,

with

optional

attributes.

16

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

11.

Optional:

Decide

whether

or

not

to

overwrite

these

optional

access

intent

attributes.

Click

on

those

you

want

to

change.

12.

Click

Next.

The

next

Add

Access

Intent

panel,

with

a

list

of

Enterprise

Beans,

displays.

13.

Select

one

or

more

Enterprise

Beans

from

the

list.

Note:

If

you

selected

Read

Ahead

Hint

in

an

earlier

step,

you

can

only

select

ONE

bean

at

this

step.

14.

Click

Next.

The

next

Add

Access

Intent

panel,

with

a

list

of

methods,

displays.

15.

Select

the

methods

you

want

to

use.

16.

If

you

DID

NOT

select

Read

Ahead

Hint

in

an

earlier

step,

click

Finish.

If

you

DID

select

the

Read

Ahead

Hint

option,

you

can

click

Next

to

specify

your

Read

Ahead

Hint

for

the

specified

bean.

The

next

Add

Access

Intent

panel,

with

a

list

of

EJB

preload

paths,

displays.

17.

Edit

the

EJB

preload

path

by

selecting

relationship

roles

from

the

Relationship

roles:

window.

18.

Click

Finish.

A

new

entry

is

created

in

the

Access

Intent

for

Entities

2.x

(Method

Level)

panel

Access

intent

exceptions

The

following

exceptions

are

thrown

in

response

to

the

application

of

access

intent

policies:

com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException

If

the

method

that

drives

the

ejbLoad()

method

is

configured

to

be

read-only

but

updates

are

then

made

within

the

transaction

that

loaded

the

bean’s

state,

an

exception

is

thrown

during

invocation

of

the

ejbStore()

method,

and

the

transaction

is

rolled

back.

Likewise,

the

ejbRemove()

method

cannot

succeed

in

a

transaction

that

is

set

as

read-only.

If

an

update

hint

is

applied

to

methods

of

entity

beans

with

bean-managed

persistence,

the

same

behavior

and

exception

results.

The

forwarded

exception

object

contains

the

message

string

PMGR1103E:

update

instance

level

read

only

bean

beanName

This

exception

is

also

thrown

if

the

applied

access

intent

policy

cannot

be

honored

because

a

finder,

ejbSelect,

or

container-managed

relationship

(CMR)

accessor

method

returns

an

inherently

read-only

result.

The

forwarded

exception

object

contains

the

message

string

PMGR1001:

No

such

DataAccessSpec

-

methodName

The

most

common

occurrence

of

this

error

is

when

a

custom

finder

that

contains

a

read-only

EJB

Query

Language

(EJB

QL)

statement

is

called

with

an

applied

access

intent

of

wsPessimisticUpdate

or

wsPessimisticUpdate-
Exclusive.

These

policies

require

the

use

of

a

FOR

UPDATE

clause

on

the

SQL

SELECT

statement

to

be

executed,

but

a

read-only

query

cannot

support

FOR

UPDATE.

Other

examples

of

read-only

queries

include

joins;

the

use

of

ORDER

BY,

GROUP

BY,

and

DISTINCT

keywords.

To

eliminate

the

exception,

edit

the

EJB

query

so

that

it

does

not

return

an

inherently

read-only

result

or

change

the

access

intent

policy

being

applied.

v

If

an

update

access

is

required,

change

the

applied

access

intent

setting

to

wsPessimisticUpdate-WeakestLockAtLoad

or

wsOptimisticUpdate.

v

If

update

access

is

not

truly

required,

use

wsPessimisticRead

or

wsOptimisticRead.

Chapter

2.

Using

enterprise

beans

in

applications

17

v

If

connection

sharing

between

entity

beans

is

required,

use

wsPessimisticUpdate-WeakestLockAtLoad

or

wsPessimisticRead.
com.ibm.websphere.ejb.container.CollectionCannotBeFurtherAccessed

If

a

lazy

collection

is

driven

after

it

is

no

longer

in

scope,

and

beyond

what

has

already

been

locally

buffered,

a

CollectionCannotBeFurtherAccessed

exception

is

thrown.

com.ibm.ws.exception.RuntimeWarning

If

an

application

is

configured

incorrectly,

a

run-time

warning

exception

is

thrown

as

the

application

starts;

startup

is

ended.

You

can

validate

an

application’s

configuration

by

choosing

the

verify

function.

Some

examples

of

misconfiguration

include:

v

A

method

configured

with

two

different

access

intent

policies

v

A

method

configured

with

an

undefined

access

intent

policy
javax.ejb.NoSuchEntityException

If

an

update

fails

under

optimistic

concurrency

because

fields

changed

within

another

transaction

between

load

and

store

requests,

a

NoSuchEntityException

is

raised

and

the

commit

fails.

Access

intent

assembly

settings

Access

intent

policies

contain

data-access

settings

for

use

by

the

persistence

manager.

Default

access

intent

policies

are

configured

on

the

entity

bean.

Optionally,

you

can

associate

access

intent

policies

with

one

or

more

methods.

These

settings

are

applicable

only

for

EJB

2.x-compliant

entity

beans

that

are

packaged

in

EJB

2.x-compliant

modules.

Connection

sharing

between

beans

with

bean-managed

persistence

and

those

with

container-managed

persistence

is

possible

if

they

all

use

the

same

access

intent

policy.

Name

Specifies

a

name

for

a

mapping

between

an

access

intent

policy

and

one

or

more

methods.

Description

Contains

text

that

describes

the

mapping.

Methods

-

Name

Specifies

the

name

of

an

enterprise

bean

method,

or

the

asterisk

character

(*).

The

asterisk

is

used

to

denote

all

of

the

methods

of

an

enterprise

bean’s

remote

and

home

interfaces.

Methods

-

Enterprise

bean

Specifies

which

enterprise

bean

contains

the

methods

indicated

in

the

Name

setting.

Methods

-

Type

Used

to

distinguish

between

a

method

with

the

same

signature

that

is

defined

in

both

the

home

and

remote

interface.

Use

Unspecified

if

an

access

intent

policy

applies

to

all

methods

of

the

bean.

Data

type

String

Range

Valid

values

are

Home,

Remote,Local,

LocalHome

or

Unspecified

18

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

Methods

-

Parameters

Contains

a

list

of

fully

qualified

Java

type

names

of

the

method

parameters.

This

setting

is

used

to

identify

a

single

method

among

multiple

methods

with

an

overloaded

method

name.

Applied

access

intent

Specifies

how

the

container

must

manage

data

access

for

persistence.

Configurable

both

as

a

default

access

intent

for

an

entity

and

as

part

of

a

method-level

access

intent

policy.

Data

type

String

Default

wsPessimisticUpdate-WeakestLockAtLoad.

With

Oracle,

this

is

the

same

as

wsPessimisticUpdate.

Range

Valid

settings

are

wsPessimisticUpdate,

wsPessimisticUpdate-NoCollision,

wsPessimisticUpdate-Exclusive,

wsPessimisticUpdate-WeakestLockAtLoad,

wsPessimisticRead,

wsOptimisticUpdate,

or

wsOptimisticRead.

Only

wsPessimisticRead

and

wsOptimisticRead

are

valid

when

class-level

caching

is

enabled

in

the

EJB

container.

This

product

supports

lazy

collections.

For

each

segment

of

a

collection,

iterating

through

the

collection

(next())

does

not

trigger

a

remote

method

call

to

retrieve

the

next

remote

reference.

Two

policies

(wsPessimisticUpdate

and

wsPessimisticUpdate-Exclusive)

are

extremely

lazy;

the

collection

increment

size

is

set

to

1

to

avoid

overlocking

the

application.

The

other

policies

have

a

collection

increment

size

of

25.

If

an

entity

is

not

configured

with

an

access

intent

policy,

the

run-time

environment

typically

uses

wsPessimisticUpdate-WeakestLockAtLoad

by

default.

If,

however,

the

Lifetime

in

cache

property

is

set

on

the

bean,

the

default

value

of

Applied

access

intent

is

wsOptimisticRead;

updates

are

not

permitted.

Additional

information

about

valid

settings

follows:

Profile

name

Concurrency

control

Access

type

Transaction

isolation

wsPessimisticRead

(Note

1)

pessimistic

read

For

Oracle,

read

committed.

Otherwise,

repeatable

read

wsPessimisticUpdate

(Note

2)

pessimistic

update

For

Oracle,

read

committed.

Otherwise,

repeatable

read

wsPessimisticUpdate-

Exclusive

(Note

3)

pessimistic

update

serializable

wsPessimisticUpdate-

NoCollision

(Note

4)

pessimistic

update

read

committed

wsPessimisticUpdate-

WeakestLockAtLoad

(Note

5)

pessimistic

update

Repeatable

read

wsOptimisticRead

optimistic

read

read

committed

Chapter

2.

Using

enterprise

beans

in

applications

19

Profile

name

Concurrency

control

Access

type

Transaction

isolation

wsOptimisticUpdate

(Note

6)

optimistic

update

read

committed

Notes:

1.

Read

locks

are

held

for

the

duration

of

the

transaction.

2.

The

generated

SELECT

FOR

UPDATE

query

grabs

locks

at

the

beginning

of

the

transaction.

3.

SELECT

FOR

UPDATE

is

generated;

locks

are

held

for

the

duration

of

the

transaction.

4.

A

plain

SELECT

query

is

generated.

No

locks

are

held,

but

updates

are

permitted.

Use

cautiously.

This

intent

enables

execution

without

concurrency

control.

5.

Where

supported

by

the

backend,

the

generated

SELECT

query

does

not

include

FOR

UPDATE;

locks

are

escalated

by

the

persistent

store

at

storage

time

if

updates

were

made.

Otherwise,

the

same

as

wsPessimisticUpdate.

6.

Generated

overqualified-update

query

forces

failure

if

CMP

column

values

have

changed

since

the

beginning

of

the

transaction.

Be

sure

to

review

the

rules

for

forming

overqualified-update

query

predicates.

Certain

column

types

(for

example,

BLOB)

are

ineligible

for

inclusion

in

the

overqualified-update

query

predicate

and

might

affect

your

design.

Access

intent

best

practices

This

topic

outlines

issues

to

consider

when

applying

access

intent

policies

to

Enterprise

JavaBeans

(EJB)

methods.

v

Start

by

configuring

the

default

access

intent

policy

for

an

entity.

After

your

application

is

built

and

running,

you

can

more

finely

tune

certain

access

paths

in

your

application

using

application

profiling

or

method-level

access

intent.

v

Don’t

mix

access

types.

Avoid

using

both

pessimistic

and

optimistic

policies

in

the

same

transaction.

For

most

databases,

pessimistic

and

optimistic

policies

use

different

isolation

levels.

This

can

result

in

multiple

database

connections,

which

prevents

you

from

taking

advantage

of

the

performance

benefits

possible

through

connection

sharing.

v

Take

care

when

applying

wsPessimisticUpdate-NoCollision.

This

policy

does

not

ensure

data

integrity.

No

database

locks

are

held,

so

concurrent

transactions

can

overwrite

each

other’s

updates.

Use

this

policy

only

if

you

can

be

sure

that

only

one

transaction

will

attempt

to

update

persistent

store

at

any

given

time.

Frequently

asked

questions:

Access

intent

I

have

not

applied

any

access

intent

policies

at

all.

My

application

runs

just

fine

with

a

DB2

database,

but

it

fails

with

an

Oracle

database

with

the

following

message:

com.ibm.ws.ejbpersistence.utilpm.PersistenceManagerException:

PMGR1001E:

No

such

DataAccessSpec

:FindAllCustomers.

The

backend

datastore

does

not

support

the

SQLStatement

needed

by

this

AccessIntent:

(pessimistic

update-weakestLockAtLoad)(collections:

transaction/25)

(resource

manager

prefetch:

0)

(AccessIntentImpl@d23690a).

Why?

If

you

have

not

configured

access

intent,

all

of

your

data

is

accessed

under

the

default

access

intent

policy

(wsPessimisticUpdate-WeakestLockAtLoad).

On

DB2

databases,

the

weakest

lock

is

a

shared

one,

and

the

query

runs

without

a

FOR

UPDATE

clause.

On

Oracle

databases,

however,

the

weakest

lock

is

an

update

lock;

this

means

that

the

SQL

query

must

contain

a

FOR

UPDATE

clause.

However,

not

every

SQL

statement

necessarily

supports

FOR

UPDATE;

for

example,

if

the

query

is

being

run

against

multiple

tables

in

a

join,

FOR

UPDATE

is

not

supported.

To

avoid

this

problem,

try

either

of

the

following:

v

Modify

your

SQL

query

or

reconfigure

your

application

so

that

an

update

lock

is

supported

20

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

v

Apply

an

access

intent

policy

that

supports

optimistic

concurrency
I

am

calling

a

finder

method

and

I

get

an

InconsistentAccessIntentException

at

run

time.

Why?

This

can

occur

when

you

use

method-level

access

intent

policies

to

apply

more

control

over

how

a

bean

instance

is

loaded.

This

execption

indicates

that

the

entity

bean

was

previously

loaded

in

the

same

transaction.

This

could

happen

if

you

called

a

multifinder

method

that

returned

the

bean

instance

with

access

intent

policy

X

applied;

you

are

now

trying

to

load

the

second

bean

again

by

calling

its

findByPrimaryKey

method

with

access

intent

Y

applied.

Both

methods

must

have

the

same

access

intent

policy

applied.

Likewise,

if

the

entity

was

loaded

once

in

the

transaction

using

an

access

intent

policy

configured

on

a

finder,

you

might

have

called

a

container-managed

relationship

(CMR)

accessor

method

that

returned

the

entity

bean

configured

to

load

using

that

entity’s

default

access

intent.

To

avoid

this

problem,

ensure

that

your

code

does

not

load

the

same

bean

instance

twice

within

the

same

transaction

with

different

access

intent

policies

applied.

Avoid

the

use

of

method-level

access

intent

unless

absolutely

necessary.

I

have

two

beans

in

a

container-managed

relationship.

I

call

findByPrimaryKey()

on

the

first

bean

and

then

call

getBean2(

),

a

CMR

accessor

method,

on

the

returned

instance.

At

that

point,

I

get

an

InconsistentAccessIntentException.

Why?

You

are

probably

using

read-ahead.

When

you

loaded

the

first

bean,

you

caused

the

second

bean

to

be

loaded

under

the

access

intent

policy

applied

to

the

finder

method

for

the

first

bean.

However,

you

have

configured

your

CMR

accessor

method

from

the

first

bean

to

the

second

with

a

different

access

intent

policy.

CMR

accessor

methods

are

really

finder

methods

in

disguise;

the

run-time

environment

behaves

as

if

you

were

trying

to

change

the

access

intent

for

an

instance

you

have

already

read

from

persistent

store.

To

avoid

this

problem,

beans

configured

in

a

read-ahead

hint

are

all

driven

to

load

with

the

same

access

intent

policy

as

the

bean

to

which

the

read-ahead

hint

is

applied.

I

have

a

bean

with

a

one-to-many

relationship

to

a

second

bean.

The

first

bean

has

a

pessimistic-update

intent

policy

applied.

When

I

try

to

add

an

instance

of

the

second

bean

to

the

first

bean’s

collection,

I

get

an

UpdateCannotProceedWithIntegrityException.

Why?

The

second

bean

probably

has

a

read

intent

policy

applied.

When

you

add

the

second

bean

to

the

first

bean’s

collection,

you

are

not

updating

the

first

bean’s

state,

you

are

implicitly

modifying

the

second

bean’s

state.

(The

second

bean

contains

a

foreign

key

to

the

first

bean,

which

is

modified.)

To

avoid

this

problem,

ensure

that

both

ends

of

the

relationship

have

an

update

intent

policy

applied

if

you

expect

to

change

the

relationship

at

run

time.

EJB

modules

An

EJB

module

is

used

to

assemble

one

or

more

enterprise

beans

into

a

single

deployable

unit.

An

EJB

module

is

stored

in

a

standard

Java

archive

(JAR)

file.

An

EJB

module

contains

the

following:

v

One

or

more

deployable

enterprise

beans.

Chapter

2.

Using

enterprise

beans

in

applications

21

v

A

deployment

descriptor,

stored

in

an

Extensible

Markup

Language

(XML)

file.

This

file

declares

the

contents

of

the

module,

defines

the

structure

and

external

dependencies

of

the

beans

in

the

module,

and

describes

how

the

beans

are

to

be

used

at

run

time.

You

can

deploy

an

EJB

module

as

a

stand

alone

application,

or

combine

it

with

other

EJB

modules

or

with

Web

modules

to

create

a

J2EE

application.

An

EJB

module

is

installed

and

run

in

an

enterprise

bean

container.

For

more

information

about

EJB

modules,

see

″Resources

for

learning.″

Assembling

EJB

modules

Assemble

an

Enterprise

JavaBeans

(EJB)

module

to

contain

enterprise

beans

and

related

code

artifacts.

Group

Web

components,

client

code,

and

resource

adapter

code

in

separate

modules.

After

assembling

an

EJB

module,

you

can

install

it

as

a

stand-alone

application

or

combine

it

with

other

modules

into

an

enterprise

application.

To

increase

performance,

break

container-managed

persistence

(CMP)

enterprise

beans

into

several

enterprise

bean

modules

during

assembly.

The

load

time

for

hundreds

of

beans

is

improved

by

distributing

the

beans

across

several

JAR

files

and

packaging

them

to

an

EAR

file.

Load

time

is

faster

when

the

administrative

server

attempts

to

start

the

beans,

for

example,

8-10

minutes

versus

more

than

one

hour

when

one

JAR

file

is

used.

Use

the

Assembly

Toolkit

to

assemble

an

EJB

module

in

any

of

the

following

ways:

v

Import

an

existing

EJB

module

(EJB

JAR

file).

v

Create

a

new

EJB

module.

v

Copy

code

artifacts

(such

as

entity

beans)

from

one

EJB

module

into

a

new

EJB

module.
1.

Start

the

Assembly

Toolkit.

2.

Optional:

Open

the

J2EE

perspective

to

work

with

J2EE

projects.

Click

Window

>

Open

Perspective

>

Other

>

J2EE.

3.

Optional:

Open

the

J2EE

Hierarchy

view.

Click

Window

>

Show

View

>

J2EE

Hierarchy.

Other

helpful

views

include

the

Project

Navigator

view

(Window

>

Show

View

>

Other

>

J2EE

>

Project

Navigator)

and

the

Navigator

view

(Window

>

Show

View

>

Navigator).

4.

Migrate

enterprise

bean

(JAR)

files

created

with

the

Application

Assembly

Tool

(AAT)

or

a

different

tool

to

the

Assembly

Toolkit.

To

migrate

files,

import

your

enterprise

bean

files

to

the

Assembly

Toolkit.

5.

Create

a

new

EJB

module.

6.

Copy

code

artifacts

(such

as

entity

beans)

from

one

EJB

module

into

a

new

EJB

module.

7.

Verify

the

contents

of

the

new

EJB

module

in

either

of

the

following

ways:

v

In

the

J2EE

Hierarchy

view,

expand

EJB

Modules

and

view

the

new

module.

v

Click

Window

>

Show

View

>

Navigator

to

see

the

associated

files

for

the

EJB

module

in

a

Navigator

view.

Container

transactions

Container

transaction

properties

specify

how

an

EJB

container

is

to

manage

transaction

scopes

for

the

enterprise

bean’s

method

invocations.

A

transaction

attribute

is

mapped

to

one

or

more

methods.

22

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

Method

extensions

Method

extensions

are

IBM

extensions

to

the

standard

deployment

descriptors

for

enterprise

beans.

Method

extension

properties

are

used

to

define

transaction

isolation

levels

for

methods,

to

control

the

delegation

of

a

principal’s

credentials,

and

to

define

custom

finder

methods.

Method

permissions

A

method

permission

is

a

mapping

between

one

or

more

security

roles

and

one

or

more

methods

that

a

member

of

the

role

can

call.

References

References

are

logical

names

used

to

locate

external

resources

for

enterprise

applications.

References

are

defined

in

the

application’s

deployment

descriptor

file.

At

deployment,

the

references

are

bound

to

the

physical

location

(global

JNDI

name)

of

the

resource

in

the

target

operational

environment.

This

product

supports

the

following

types

of

references:

v

An

EJB

reference

is

a

logical

name

used

to

locate

the

home

interface

of

an

enterprise

bean.

v

A

resource

reference

is

a

logical

name

used

to

locate

a

connection

factory

object.

These

objects

define

connections

to

external

resources

such

as

databases

and

messaging

systems.

The

container

makes

references

available

in

a

JNDI

naming

subcontext.

By

convention,

references

are

organized

as

follows:

v

EJB

references

are

made

available

in

the

java:comp/env/ejb

subcontext.

v

Resource

references

are

made

available

as

follows:

–

JDBC

DataSource

references

are

declared

in

the

java:comp/env/jdbc

subcontext.

–

JMS

connection

factories

are

declared

in

the

java:comp/env/jms

subcontext.

–

JavaMail

connection

factories

are

declared

in

the

java:comp/env/mail

subcontext.

–

URL

connection

factories

are

declared

in

the

java:comp/env/url

subcontext.

EJB

containers

An

Enterprise

JavaBeans

(EJB)

container

provides

a

run-time

environment

for

enterprise

beans

within

the

application

server.

The

container

handles

all

aspects

of

an

enterprise

bean’s

operation

within

the

application

server

and

acts

as

an

intermediary

between

the

user-written

business

logic

within

the

bean

and

the

rest

of

the

application

server

environment.

One

or

more

EJB

modules,

each

containing

one

or

more

enterprise

beans,

can

be

installed

in

a

single

container.

The

EJB

container

provides

many

services

to

the

enterprise

bean,

including

the

following:

v

Beginning,

committing,

and

rolling

back

transactions

as

necessary.

v

Maintaining

pools

of

enterprise

bean

instances

ready

for

incoming

requests

and

moving

these

instances

between

the

inactive

pools

and

an

active

state,

ensuring

that

threading

conditions

within

the

bean

are

satisfied.

v

Most

importantly,

automatically

synchronizing

data

in

an

entity

bean’s

instance

variables

with

corresponding

data

items

stored

in

persistent

storage.

Chapter

2.

Using

enterprise

beans

in

applications

23

By

dynamically

maintaining

a

set

of

active

bean

instances

and

synchronizing

bean

state

with

persistent

storage

when

beans

are

moved

into

and

out

of

active

state,

the

container

makes

it

possible

for

an

application

to

manage

many

more

bean

instances

than

could

otherwise

simultaneously

be

held

in

the

application

server’s

memory.

In

this

respect,

an

EJB

container

provides

services

similar

to

virtual

memory

within

an

operating

system.

Between

transactions,

the

state

of

an

entity

bean

can

be

cached.

The

EJB

container

supports

option

A,

B,

and

C

caching.

For

more

information

about

EJB

containers,

see

″Resources

for

learning.″

Managing

EJB

containers

Each

application

server

can

have

a

single

EJB

container;

one

is

created

automatically

for

you

when

the

application

server

is

created.

The

following

steps

are

to

be

performed

only

as

needed

to

improve

performance

after

the

EJB

application

has

been

deployed.

1.

Adjust

EJB

container

settings.

2.

Adjust

EJB

cache

settings.

If

adjustments

do

not

improve

performance,

consider

adjusting

access

intent

policies

for

entity

beans,

reassembling

the

module,

and

redeploying

the

module

in

the

application.

EJB

container

settings

Use

this

page

to

configure

and

manage

a

specific

EJB

container.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

serverName

>

EJB

Container.

Passivation

directory

Specifies

the

directory

into

which

the

container

saves

the

persistent

state

of

passivated

stateful

session

beans.

Beans

are

passivated

when

the

number

of

active

bean

instances

becomes

greater

than

the

cache

size

specified

in

the

container

configuration.

When

a

stateful

bean

is

passivated,

the

container

serializes

the

bean

instance

to

a

file

in

the

passivation

directory

and

discards

the

instance

from

the

bean

cache.

If,

at

a

later

time,

a

request

arrives

for

the

passivated

bean

instance,

the

container

retrieves

it

from

the

passivation

directory,

deserializes

it,

returns

it

to

the

cache,

and

dispatches

the

request

to

it.

If

any

step

fails

(for

example,

if

the

bean

instance

is

no

longer

in

the

passivation

directory),

the

method

invocation

fails.

For

a

cluster

of

servers

that

span

multiple

systems

in

a

sysplex

and

have

stateful

session

beans

with

an

activation

policy

of

Transaction

deployed

in

them,

the

passivation

directory

must

reside

on

a

hierarchical

file

system

(HFS)

that

is

shared

across

the

multiple

systems.

Inactive

pool

cleanup

interval

Specifies

the

interval

at

which

the

container

examines

the

pools

of

available

bean

instances

to

determine

if

some

instances

can

be

deleted

to

reduce

memory

usage.

Data

type

Integer

24

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

Units

Milliseconds

Range

0

to

2

147

483

674

Default

datasource

JNDI

name

Specifies

the

JNDI

name

of

a

data

source

to

use

if

no

data

source

is

specified

during

application

deployment.

This

setting

is

not

applicable

for

EJB

2.x-compliant

CMP

beans.

Servlets

and

enterprise

beans

use

data

sources

to

obtain

these

connections.

When

configuring

a

container,

you

can

specify

a

default

data

source

for

the

container.

This

data

source

becomes

the

default

data

source

used

by

any

entity

beans

installed

in

the

container

that

use

container-managed

persistence

(CMP).

The

default

data

source

for

a

container

is

secure.

When

specifying

it,

you

must

provide

a

user

ID

and

password

for

accessing

the

data

source.

Specifying

a

default

data

source

is

optional

if

each

CMP

entity

bean

in

the

container

has

a

data

source

specified

in

its

configuration.

If

a

default

data

source

is

not

specified

and

a

CMP

entity

bean

is

installed

in

the

container

without

specifying

a

data

source

for

that

bean,

applications

cannot

use

that

CMP

entity

bean.

Initial

state

Specifies

the

execution

state

requested

when

the

server

first

starts.

Data

type

String

Default

Started

Range

Valid

values

are

Started

and

Stopped

EJB

container

system

properties

In

addition

to

the

settings

accessible

from

the

administrative

console,

you

can

set

the

following

system

property

by

command-line

scripting:

com.ibm.websphere.ejbcontainer.poolSize

Specifies

the

size

of

the

pool

for

the

specified

bean

type.

This

property

applies

to

stateless,

message-driven

and

entity

beans.

If

you

do

not

specify

a

default

value,

the

container

defaults

of

50

and

500

are

used.

Set

the

pool

size

for

a

given

entity

bean

as

follows:

beantype=min,max[:beantype=min,max...]

beantype

is

the

J2EE

name

of

the

bean,

formed

by

concatenating

the

application

name,

the

#

character,

the

module

name,

the

#

character,

and

the

name

of

the

bean

(that

is,

the

string

assigned

to

the

<ejb-name>

field

in

the

bean’s

deployment

descriptor).

min

and

max

are

the

minimum

and

maximum

pool

sizes,

respectively,

for

that

bean

type.

Do

not

specify

the

square

brackets

shown

in

the

previous

prototype;

they

denote

optional

additional

bean

types

that

you

can

specify

after

the

first.

Each

bean-type

specification

is

delimited

by

a

colon

(:).

Use

an

asterisk

(*)

as

the

value

of

beantype

to

indicate

that

all

bean

types

are

to

use

those

values

unless

overridden

by

an

exact

bean-type

specification

somewhere

else

in

the

string,

as

follows:

*=30,100

Chapter

2.

Using

enterprise

beans

in

applications

25

To

specify

that

a

default

value

be

used,

omit

either

min

or

max

but

retain

the

comma

(,)

between

the

two

values,

as

follows

(split

for

publication):

SMApp#PerfModule#TunerBean=54,

:SMApp#SMModule#TypeBean=100,200

You

can

specify

the

bean

types

in

any

order

within

the

string.

EJB

cache

settings

Use

this

page

to

configure

and

manage

the

cache

for

a

specific

EJB

container.

To

determine

the

cache

absolute

limit,

multiply

the

number

of

enterprise

beans

active

in

any

given

transaction

by

the

total

number

of

concurrent

transactions

expected.

Then,

add

the

number

of

active

session

bean

instances.

You

can

use

the

Tivoli

Performance

Viewer

to

view

bean

performance

information.

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

serverName

>

EJB

Container

>

EJB

Cache

Settings.

Cleanup

interval

Specifies

the

interval

at

which

the

container

attempts

to

remove

unused

items

from

the

cache

in

order

to

reduce

the

total

number

of

items

to

the

value

of

the

cache

size.

The

cache

manager

tries

to

maintain

some

unallocated

entries

that

can

be

allocated

quickly

as

needed.

A

background

thread

attempts

to

free

some

entries

while

maintaining

some

unallocated

entries.

If

the

thread

runs

while

the

application

server

is

idle,

when

the

application

server

needs

to

allocate

new

cache

entries,

it

does

not

pay

the

performance

cost

of

removing

entries

from

the

cache.

In

general,

increase

this

parameter

as

the

cache

size

increases.

Data

type

Integer

Units

Milliseconds

Range

0

to

2

147

483

674

Default

3000

Cache

size

Specifies

the

number

of

buckets

in

the

active

instance

list

within

the

EJB

container.

A

bucket

can

contain

more

than

one

active

enterprise

bean

instance,

but

performance

is

maximized

if

each

bucket

in

the

table

has

a

minimum

number

of

instances

assigned

to

it.

When

the

number

of

active

instances

within

the

container

exceeds

the

number

of

buckets,

that

is,

the

cache

size,

the

container

periodically

attempts

to

reduce

the

number

of

active

instances

in

the

table

by

passivating

some

of

the

active

instances.

For

the

best

balance

of

performance

and

memory,

set

this

value

to

the

maximum

number

of

active

instances

expected

during

a

typical

workload.

Data

type

Integer

Units

Buckets

in

the

hash

table

Range

Greater

than

0.

The

container

selects

the

next

largest

prime

number

equal

to

or

greater

than

the

specified

value.

Default

2053

26

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

Container

interoperability

Container

interoperability

describes

the

ability

of

WebSphere

Application

Server

clients

and

servers

at

different

versions

to

successfully

negotiate

differences

in

native

Enterprise

JavaBeans

(EJB)

Version

1.1

finder

methods

support

and

Java

2

Platform,

Enterprise

Edition

(J2EE)

Version

1.3

compliance.

At

one

time,

there

were

significant

interoperability

problems

among

WebSphere

Application

Server,

versions

4.0.x

and

3.5.x

distributed,

and

Version

4.0.x

for

zSeries.

The

introduction

of

interoperable

versions

of

some

class

types

solved

these

problems

for

distributed

versions

3.5.6,

4.0.3,

and

5

as

well

as

for

zSeries

Version

4.0.x.

Older

4.0.x

and

3.5.x

client

and

application

server

versions

do

not

support

the

interoperability

classes,

which

makes

them

uninteroperable

with

versions

that

use

the

classes.

The

system

property

com.ibm.websphere.container.portable

remedies

this

situation

by

enabling

newer

versions

of

the

application

server

to

turn

off

the

interoperability

classes.

This

lets

a

more

recent

application

server

return

class

types

that

are

interoperable

with

an

older

client.

Depending

on

the

value

of

com.ibm.websphere.container.portable,

application

servers

at

versions

5

and

later,

4.0.3

and

later,

and

3.5.6

and

later,

return

different

classes

for

the

following:

v

Enumerations

and

collections

returned

by

EJB

1.1

finder

methods

v

EJBMetaData

v

Handles

to:

–

Entity

beans

–

Session

beans

–

Home

interfaces

If

the

property

is

set

to

false,

application

servers

return

the

old

class

types,

to

enable

interoperability

with

versions

3.5.5

and

earlier,

and

4.0.2

and

earlier.

If

the

property

is

set

to

true,

application

servers

return

the

new

classes.

Instructions

for

setting

the

com.ibm.websphere.container.portable

property

are

in

the

release

notes

for

versions

3.5.6

and

later,

and

4.0.3

and

later.

The

following

tables

show

interoperability

characteristics

for

various

version

combinations

of

application

servers

and

clients

as

well

as

default

property

values

for

each

combination.

Interoperability

of

Version

3.5.x

client

with

Version

5

(and

later)

application

server

Clients

at

Version

3.5.5

and

earlier

are

not

interoperable

with

Version

5

and

later

servers

when

using:

v

EJBMetaData

v

Enumerations

returned

by

EJB

1.x

finder

methods

v

Handles

to

entity

beans

If

you

would

like

to

use

updated

Handle

classes

in

EJB

2.x-compliant

beans

but

have

one

of

the

older

clients

(versions

3.5.5

and

earlier)

installed,

set

the

system

property

com.ibm.websphere.container.portable.finder

to

false.

With

this

setting

in

place,

the

Version

5

application

server

uses

the

updated

handles

but

returns

the

enumerations

and

collections

that

were

used

in

the

earlier

clients.

To

interoperate

with

Version

5

application

servers,

you

must

upgrade

all

Version

3.5.x

clients

to

Version

3.5.6

or

later.

Chapter

2.

Using

enterprise

beans

in

applications

27

Interoperability

of

Version

5

(and

later)

client

with

Version

3.5.x

application

server

Client

at

Version

5

and

later,

using

this

function

Application

server

at

Version

3.5.6,

property

true

Application

server

at

Version

3.5.6,

property

false

(default)

Application

server

at

Version

3.5.5

and

earlier

EJBMetaData

Does

not

work

across

domains

Works

Does

not

work

Handle

to

session

bean

Works

Works

Does

not

work

Handle

to

entity

bean

Does

not

work

across

domains

Does

not

work

across

domains

Does

not

work

across

domains

Enumeration

returned

by

EJB

1.x

finder

method

Works

Works

Works

Interoperability

of

Version

4.0.x

client

with

Version

5

(and

later)

application

server

Ideally,

all

4.0.x

clients

that

use

Version

5

application

servers

should

be

at

Version

4.0.3

or

later.

Version

5

and

later

application

servers

return

the

interoperability

class

types

by

default

(true).

This

can

cause

interoperability

problems

for

distributed

clients

at

versions

4.0.1

or

4.0.2.

In

particular,

problems

can

occur

with

collections

and

enumerations

returned

by

EJB

1.1

finder

methods.

Although

it

is

strongly

discouraged,

you

can

set

com.ibm.websphere.container.portable

to

false

on

a

Version

5

and

later

application

server.

This

causes

the

application

server

to

return

the

old

class

types,

providing

interoperability

with

clients

at

Version

4.0.2

and

earlier.

This

is

discouraged

because:

v

The

Version

5

application

server

instance

would

become

non-J2EE

1.3

compliant

with

regard

to

handles,

home

interface

handles,

and

EJBMetaData.

v

EJB

1.x

finder

methods

return

collection

and

enumeration

objects

that

do

not

originate

from

ejbportable.jar.

v

Interoperability

restrictions

still

exist

with

the

property

set

to

false.

v

Version

5

and

later

client

handles

to

entity

beans

and

home

interfaces

do

not

work

across

domains

for

the

server

you

set

to

false.

If

you

would

like

to

use

updated

Handle

classes

in

EJB

2.x-compliant

beans

but

have

one

of

the

older

clients

(versions

4.0.2

and

earlier)

installed,

set

the

system

property

com.ibm.websphere.container.portable.finder

to

false.

With

this

setting

in

place,

the

Version

5

and

later

application

server

uses

the

updated

handles

but

returns

the

enumerations

and

collections

that

were

used

in

the

earlier

clients.

Interoperability

of

client

at

Version

4.0.2

and

earlier

with

Version

5

(and

later)

application

server

Client

at

Version

4.0.2

and

earlier,

using

this

function

Application

server

at

Version

5

and

later,

property

true

(default)

Application

server

at

Version

5

and

later,

property

false

EJBMetaData

Does

not

work

Works

for

4.0.2

client

Handle

to

session

bean

Does

not

work

Works

28

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

Client

at

Version

4.0.2

and

earlier,

using

this

function

Application

server

at

Version

5

and

later,

property

true

(default)

Application

server

at

Version

5

and

later,

property

false

Handle

to

entity

bean

Does

not

work

Does

not

work

across

cells

Enumeration

returned

by

EJB

1.x

finder

method

Does

not

work

Works

Collection

returned

by

EJB

1.x

finder

method

Does

not

work

Works

Handle

to

home

interface

Does

not

work

Does

not

work

across

cells

If

you

would

like

to

use

updated

Handle

classes

in

EJB

2.x-compliant

beans

but

have

one

of

the

older

clients

(versions

3.5.5

and

earlier,

and

4.0.2

and

earlier)

installed,

set

the

system

property

com.ibm.websphere.container.portable.finder

to

false.

With

this

setting

in

place,

the

Version

5

and

later

server

uses

the

new

Handle

classes

but

returns

the

older

enumeration

and

collection

classes.

Interoperability

of

client

at

Version

4.0.3

and

later

with

Version

5

and

later

application

server

Clients

at

Version

4.0.3

and

later

work

well

with

Version

5

and

later

application

servers.

However,

if

you

set

the

com.ibm.websphere.container.portable

to

false,

client

handles

to

entity

beans

and

home

interfaces

do

not

work

across

domains

for

the

server

you

set

to

false.

Client

at

Version

4.0.3

and

later,

using

this

function

Application

server

at

Version

5

and

later,

property

true

(default)

Application

server

at

Version

5

and

later,

property

false

EJBMetaData

Works

Works

Handle

to

session

bean

Works

Works

Handle

to

entity

bean

Works

Does

not

work

across

cells

Enumeration

returned

by

EJB

1.x

finder

method

Works

Works

Collection

returned

by

EJB

1.x

finder

method

Works

Works

Handle

to

home

interface

Works

Does

not

work

across

cells

Interoperability

of

Version

5

and

later

client

with

Version

4.0.x

application

server

Clients

at

Version

5

and

later

work

well

with

Version

4.0.3

application

servers

if

you

set

com.ibm.websphere.container.portable

to

true.

Client

handles

to

entity

beans

and

home

interfaces

do

not

work

across

domains

for

any

Version

4.0.3

server

with

com.ibm.websphere.container.portable

at

the

default

value,

false.

Version

5

client

handles

to

application

servers

at

Version

4.0.2

and

earlier

also

have

restrictions.

Client

at

Version

5

and

later,

using

this

function

Application

server

at

Version

4.0.3,

property

true

Application

server

at

Version

4.0.3,

property

false

(default)

Application

server

at

Version

4.0.2

or

earlier

EJBMetaData

Works

Works

Works

for

4.0.2

server

only

Chapter

2.

Using

enterprise

beans

in

applications

29

Client

at

Version

5

and

later,

using

this

function

Application

server

at

Version

4.0.3,

property

true

Application

server

at

Version

4.0.3,

property

false

(default)

Application

server

at

Version

4.0.2

or

earlier

Handle

to

session

bean

Works

Works

Works

Handle

to

entity

bean

Works

Does

not

work

across

domains

Does

not

work

across

domains

Enumeration

returned

by

EJB

1.x

finder

method

Works

Works

Works

Collection

returned

by

EJB

1.x

finder

method

Works

Works

Works

Handle

to

home

interface

Works

Does

not

work

across

domains

Does

not

work

across

domains

Interoperability

of

zSeries

Version

4.0.x

client

with

Version

5

and

later

application

server

The

only

valid

configuration

for

container

interoperability

with

zSeries

Version

4.0.x

clients

is

the

default

configuration

for

the

Version

5

application

server.

Interoperability

of

Version

5

and

later

client

with

zSeries

Version

4.0.x

application

server

Version

5

clients

should

work

with

a

zSeries

Version

4.0.x

application

server

with

the

correct

interoperability

fixes

described

in

the

zSeries

documentation.

The

interoperability

characteristics

should

be

the

same

as

for

a

Version

4.0.3

distributed

application

server

with

the

property

set

to

true.

Client

at

Version

5

and

later,

using

this

function

zSeries

application

server

at

Version

4.0.x

EJBMetaData

Works

Handle

to

session

bean

Works

Handle

to

entity

bean

Works

Enumeration

returned

by

EJB

1.x

finder

method

Works

Collection

returned

by

EJB

1.x

finder

method

Works

Handle

to

home

interface

Works

Interoperability

of

the

handle

formats

in

WebSphere

Application

Server,

Version

5

and

Version

5.0.1

Applications

that

attempt

to

persist

handles

to

enterprise

beans

and

EJBHome

needed

to

subclass

ObjectInputStream

in

WebSphere

Application

Server,

Version

5.

This

action

was

required

so

that

the

subclass

ObjectInputStream

could

utilize

the

context

class

loader

to

resolve

the

classes

for

enterprise

beans

and

EJBHome

stubs.

In

addition,

handles

created

and

persisted

in

WebSphere

Application

Server,

Version

5

only

work

with

objects

that

have

an

unchanged

remote

interface.

If

the

30

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

remote

interface

is

changed,

the

handle

is

no

longer

valid

because

the

stub

is

serialized

inside

the

handle

and

its

serial

Version

UID

changes

if

the

remote

interface

changes.

This

release

introduces

a

new

handle

persistence

mechanism

that

avoids

the

implementation

drawbacks

of

the

previous

version.

However,

if

handles

are

used

for

this

WebSphere

Application

Server

deployment,

you

should

consider

the

following

issues

when

applying

this

update,

future

WebSphere

Application

Server

Fix

Packs

and

EJB

Container

cumulative

fixes

for

WebSphere

Application

Server,

Version

5.

If

a

WebSphere

Application

Server,

Version

5

persisted

handle

or

home

handle

is

encountered

by

a

WebSphere

Application

Server,

Version

5.0.1

system,

it

can

be

read

and

utilized.

In

addition,

it

will

be

converted

to

WebSphere

Application

Server,

Version

5.0.1

format

if

it

is

re-persisted.

The

WebSphere

Application

Server,

Version

5.0.1

format

cannot

be

read

by

a

WebSphere

Application

Server,

Version

5

system

unless

PQ72184

is

applied.

Problems

arise

when

handles

are

persisted

and

shared

across

systems

that

are

not

at

the

WebSphere

Application

Server,

Version

5.0.1

level

or

later.

However,

a

Version

5

system

can

receive

a

handle

from

Version

5.0.1

remotely

through

a

call

to

get

a

handle

on

an

enterprise

bean

or

a

getHomeHandle

on

an

EJBHome.

The

remote

call

will

succeed,

however,

any

attempt

to

persist

it

on

the

Version

5

system

will

have

the

same

limitations

regarding

the

use

of

ObjectInputStream

and

changes

in

remote

interface

invalidating

the

persisted

handle.

When

your

application

stores

handles

persistently

and

shares

this

persistence

with

multiple

clients

or

application

servers,

apply

WebSphere

Application

Server,

Version

5.0.1

or

PQ72184

to

both

the

client

and

server

systems

at

the

same

time.

Failure

to

do

so

can

result

in

the

inability

of

these

systems

to

read

the

handle

data

stored

by

upgraded

systems.

Also,

handles

stored

by

the

WebSphere

Application

Server,

Version

5

can

force

the

applications

of

the

updated

system

to

still

subclass

ObjectInputStream.

Applications

using

the

WebSphere

Application

Server

Enterprise,

Version

5

scheduler

and

process

choreographer,

are

affected

by

these

changes.

These

users

should

update

their

Version

5

systems

at

the

same

time

with

either

Version

5.0.1

or

PQ72184.

If

the

applications

store

handles

in

the

session

context,

or

locally

in

a

file

on

the

same

system,

that

is

not

shared

by

other

applications,

on

different

systems,

they

might

be

able

to

update

their

systems

individually,

rather

than

all

at

once.

If

Client

Container

and

thin

client

applications

do

not

share

persisted

handle

data,

they

can

be

updated

as

needed

as

well.

However,

handles

created

and

persisted

in

WebSphere

Application

Server,

Version

5,

Version

4.0.3

and

later

(with

the

property

flag

set),

or

Version

3.5.7

and

later

(with

the

property

flag

set)

are

not

usable

if

either

the

home

or

the

remote

interface

changes.

If

any

WebSphere

Application

Server,

Version

3.5.7

or

Version

4.0.3

and

later

enables

the

system

property

com.ibm.websphere.container.portable

to

true,

any

handles

to

objects

on

that

server

have

the

same

interoperability

limitations.

In

addition,

if

any

WebSphere

Application

Server,

Version

3.5.7

and

later

or

Version

4.0.3

applications

store

a

handle

obtained

from

a

WebSphere

Application

Server,

Version

5

or

Version

5.0.1,

the

same

restrictions

apply,

regarding

the

need

to

subclass

ObjectInputStream

and

the

usability

of

handles

after

a

change

to

the

remote

interface

is

made.

Replication

of

the

Http

Session

and

Handles

Chapter

2.

Using

enterprise

beans

in

applications

31

This

note

applies

to

you

if

you

place

Handles

to

Homes

or

EJBs,

or

EJB

or

EJBHome

references

in

the

Http

Session

in

your

application

and

you

use

Http

Session

Replication.

If

you

intend

to

replicate

a

mixed

environment

of

Version

5.0.0

and

Version

5.0.1

or

5.0.2

machines

you

should

first

apply

the

latest

Version

5.0.0

container

cumulative

e-fix

to

the

Version

5.0.0

machines

before

allowing

the

Version

5.0.1

or

5.0.2

server

into

the

typology.

The

reason

for

this

is

that

Version

5.0.0

servers

are

not

able

to

understand

the

persisted

Handle

format

used

on

the

Version

5.0.1

and

5.0.2

server.

This

is

similar

to

the

case

of

Version

5.0.0

and

Version

5.0.1

or

5.0.2

systems

trying

to

use

a

shared

database,

mentioned

above.

But

in

this

case,

it

is

the

Http

Session

object

and

not

the

database

providing

the

persistence.

Top

Down

Deployment

Mapping

The

size

of

the

Handle

objects

has

grown

due

to

the

fix

put

in

to

allow

serialization

and

deserialization

to

occur

without

the

previous

requirements

of

subclassing

the

ObjectInputStream

and

so

on.

Top

down

deployment

of

an

object

that

contains

EJB

and

EJBHome

references

create

a

database

table

ddl

that

has

a

field

of

1000

bytes

of

VARCHAR

for

BITDATA

which

will

contain

the

Handle.

It

might

be

that

your

object’s

Handle

does

not

fit

in

the

1000

byte

default

field,

and

you

might

need

to

adjust

this

to

a

higher

value.

You

might

try

increments

of

250

bytes,

that

is,

1250,

1500,

and

so

on.

Deploying

EJB

modules

Assemble

one

or

more

EJB

modules,

assemble

one

or

more

Web

modules,

and

assemble

them

into

a

J2EE

application.

1.

Prepare

the

deployment

environment.

2.

Deploy

the

application.

3.

5.1 +

Update

the

configuration

for

each

EJB

module

as

needed

for

the

deployment

environment.

4.

For

information

about

the

EJB

deployment

tool,

see

the

EJB

deployment

tool.

The

next

step

is

to

test

and

debug

the

module.

EJB

module

collection

Use

this

page

to

manage

the

EJB

modules

deployed

in

a

specific

application.

To

view

this

administrative

console

page,

click

Applications

>

Enterprise

Applications

>

applicationName

>

EJB

modules.

Click

the

check

boxes

to

select

one

or

more

of

the

EJB

modules

in

your

collection.

URI

When

resolved

relative

to

the

application

URL,

this

specifies

the

location

of

the

module’s

archive

contents

on

a

file

system.

The

URI

matches

the

<ejb>

or

<web>

tag

in

the

<module>

tag

of

the

application

deployment

descriptor.

EJB

module

settings

Use

this

page

to

configure

and

manage

a

specific

deployed

EJB

module.

Note:

You

cannot

start

or

stop

an

individual

EJB

module

for

modification.

You

must

start

or

stop

the

appropriate

application

entirely.

32

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

To

view

this

administrative

console

page,

click

Applications

>

Enterprise

Applications

>

applicationName

>

EJB

modules

>

moduleName.

URI

When

resolved

relative

to

the

application

URL,

this

specifies

the

location

of

the

module

archive

contents

on

a

file

system.

The

URI

must

match

the

URI

of

a

ModuleRef

URI

in

the

deployment

descriptor

of

the

deployed

application

(EAR).

Alternate

DD

Specifies

a

deployment

descriptor

to

be

used

at

run

time

instead

of

the

one

installed

in

the

module.

Starting

weight

Specifies

the

order

in

which

modules

are

started

when

the

server

starts.

The

module

with

the

lowest

starting

weight

is

started

first.

Data

type

Integer

Default

5000

Range

Greater

than

0

Enterprise

beans:

Resources

for

learning

Use

the

following

links

to

find

relevant

supplemental

information

about

enterprise

beans.

The

information

resides

on

IBM

and

non-IBM

Internet

sites,

whose

sponsors

control

the

technical

accuracy

of

the

information.

These

links

are

provided

for

convenience.

Often,

the

information

is

not

specific

to

this

product

but

is

useful

all

or

in

part

for

understanding

the

product.

When

possible,

links

are

provided

to

technical

papers

and

Redbooks

that

supplement

the

broad

coverage

of

the

release

documentation

with

in-depth

examinations

of

particular

product

areas.

View

links

to

additional

information

about:

v

Planning,

business

scenarios,

and

IT

architecture

v

Programming

model

and

decisions

v

Programming

instructions

and

examples

v

Programming

specifications

Planning,

business

scenarios,

and

IT

architecture

v

Mastering

Enterprise

JavaBeans

A

comprehensive

treatment

of

Enterprise

JavaBeans

(EJB)

programming

in

nonprintable

form

(PDF).

One

must

be

registered

to

download

the

PDF,

but

registration

is

free.

Information

about

purchasing

a

hardcopy

is

available

on

the

Web

site.

v

Enterprise

JavaBeans

by

Richard

Monson-Haefel

(O’Reilly

and

Associates,

Inc.:

Third

Edition,

2001)

Programming

model

and

decisions

v

Read

all

about

EJB

2.0

A

comprehensive

overview

of

the

specification.

v

The

J2EE

Tutorial

This

set

of

articles

by

Sun

Microsystems

covers

several

EJB-related

topics,

including

the

basic

programming

models,

persistence,

and

EJB

Query

Language.

Chapter

2.

Using

enterprise

beans

in

applications

33

http://www.theserverside.com/books/masteringEJB/index.jsp
http://www-106.ibm.com/developerworks/java/library/j-jw-ejb20/
http://java.sun.com/j2ee/tutorial/1_3-fcs/index.html

Programming

instructions

and

examples

v

Rules

and

Patterns

for

Session

Facades

EJB

programming

practice:

Fronting

entity

beans

with

a

session-bean

facade.

v

WebSphere

Application

Server

Development

Best

Practices

for

Performance

and

Scalability

Programming

practice

for

enterprise

beans

and

other

types

of

J2EE

components.

v

Optimistic

Locking

in

IBM

WebSphere

Application

Server

4.0.2

Examples

of

the

effect

of

optimistic

concurrency

on

application

behavior.

Although

the

paper

is

based

on

a

previous

version

of

this

product,

the

data

access

issues

discussed

in

it

are

current.

This

paper

does

not

seem

to

be

available

directly

by

URL.

To

view

this

paper,

visit

the

specified

URL

and

search

on

″optimistic

locking″

Programming

specifications

v

What’s

new

in

the

Enterprise

JavaBeans

2.0

Specification?

You

can

also

download

the

specification

itself

from

this

URL.

v

JavaTM

2

Platform:

Compatibility

with

Previous

Releases

This

Sun

Microsystems

article

includes

both

source

and

binary

compatibility

issues.

EJB

method

Invocation

Queuing

Method

invocations

to

enterprise

beans

are

only

queued

for

remote

clients,

making

the

method

call.

An

example

of

a

remote

client

is

an

enterprise

Java

bean

(EJB)

client

running

in

a

separate

Java

virtual

machine

(JVM)

(another

address

space)

from

the

enterprise

bean.

In

contrast,

no

queuing

occurs

if

the

EJB

client,

either

a

servlet

or

another

enterprise

bean,

is

installed

in

the

same

JVM

on

which

the

EJB

method

runs

and

on

the

same

thread

of

execution

as

the

EJB

client.

Remote

enterprise

beans

communicate

by

using

the

Remote

Method

Invocation

over

an

Internet

Inter-Orb

Protocol

(RMI-IIOP).

Method

invocations

initiated

over

RMI-IIOP

are

processed

by

a

server-side

object

request

broker

(ORB).

The

thread

pool

acts

as

a

queue

for

incoming

requests.

However,

if

a

remote

method

request

is

issued

and

there

are

no

more

available

threads

in

the

thread

pool,

a

new

thread

is

created.

After

the

method

request

completes

the

thread

is

destroyed.

Therefore,

when

the

ORB

is

used

to

process

remote

method

requests,

the

EJB

container

is

an

open

queue,

due

to

the

use

of

unbounded

threads.

The

following

illustration

34

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

http://www7b.boulder.ibm.com/wsdd/library/techarticles/0106_brown/sessionfacades.html
http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
http://www-4.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
http://www7b.boulder.ibm.com/wsdd/
http://java.sun.com/products/ejb/2.0.html
http://java.sun.com/j2se/1.4.1/compatibility.html

depicts

the

two

queuing

options

of

enterprise

beans.

EJB Queuing

Request queued
in the Servlet Engine

Threads

Request
queued
in the ORB
Thread Pool

EJB Client

Servlet

Servlet Engine

EJB Container

ORB Thread Pool

REMOTE

WebSphere

Application Server

WebSphere

Application Server

The

following

are

two

tips

for

queueing

enterprise

beans:

v

Analyze

the

calling

patterns

of

the

EJB

client.

When

configuring

the

thread

pool,

it

is

important

to

understand

the

calling

patterns

of

the

EJB

client.

If

a

servlet

is

making

a

small

number

of

calls

to

remote

enterprise

beans

and

each

method

call

is

relatively

quick,

consider

setting

the

number

of

threads

in

the

ORB

thread

pool

to

a

value

lower

than

the

Web

container

thread

pool

size

value.

Longer-lived EJB calls

Short-lived EJB calls

Servlet service() Servlet service()

BEGIN END

Execution timeline

Servlet service() Servlet service()

BEGIN END

Execution timeline

Remote Call Remote Call

Remote Call Remote Call

Chapter

2.

Using

enterprise

beans

in

applications

35

The

degree

to

which

the

ORB

thread

pool

value

needs

increasing

is

a

function

of

the

number

of

simultaneous

servlets,

that

is,

clients,

calling

enterprise

beans

and

the

duration

of

each

method

call.

If

the

method

calls

are

longer

or

the

applications

spend

a

lot

of

time

in

the

ORB,

consider

making

the

ORB

thread

pool

size

equal

to

the

Web

container

size.

If

the

servlet

makes

only

short-lived

or

quick

calls

to

the

ORB,

servlets

can

potentially

reuse

the

same

ORB

thread.

In

this

case,

the

ORB

thread

pool

can

be

small,

perhaps

even

one-half

of

the

thread

pool

size

setting

of

the

Web

container.

v

Monitor

the

percentage

of

configured

threads

in

use.

Tivoli

Performance

Viewer

shows

a

metric

called

percent

maxed,

which

is

used

to

determine

how

often

the

configured

threads

are

used.

A

value

that

is

consistently

in

the

double-digits,

indicates

a

possible

bottleneck

a

the

ORB.

Increase

the

number

of

threads.

See

also

Queuing

network.

36

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

Notices

References

in

this

publication

to

IBM

products,

programs,

or

services

do

not

imply

that

IBM

intends

to

make

these

available

in

all

countries

in

which

IBM

operates.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

IBM’s

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

of

IBM’s

intellectual

property

rights

may

be

used

instead

of

the

IBM

product,

program,

or

service.

Evaluation

and

verification

of

operation

in

conjunction

with

other

products,

except

those

expressly

designated

by

IBM,

is

the

user’s

responsibility.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

500

Columbus

Avenue

Thornwood,

New

York

10594

USA

©

Copyright

IBM

Corp.

2004

37

38

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

Trademarks

and

service

marks

The

following

terms

are

trademarks

of

IBM

Corporation

in

the

United

States,

other

countries,

or

both:

v

AIX

v

AS/400

v

CICS

v

Cloudscape

v

DB2

v

DFSMS

v

Domino

v

Everyplace

v

iSeries

v

IBM

v

IMS

v

Informix

v

iSeries

v

Language

Environment

v

Lotus

v

MQSeries

v

MVS

v

OS/390

v

RACF

v

Redbooks

v

RMF

v

SecureWay

v

SupportPac

v

Tivoli

v

ViaVoice

v

VisualAge

v

VTAM

v

WebSphere

v

z/OS

v

zSeries

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

©

Copyright

IBM

Corp.

2004

39

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

40

IBM

WebSphere

Business

Integration

Server

Foundation,

Version

5.1:

Resources

	Contents
	How to send your comments
	Chapter 1. Welcome to Resources
	Chapter 2. Using enterprise beans in applications
	Enterprise beans
	Developing enterprise beans
	Migrating enterprise bean code to the supported specification
	Migrating enterprise bean code from Version 1.0 to Version 1.1
	Migrating enterprise bean code from Version 1.1 to Version 2.0

	WebSphere extensions to the Enterprise JavaBeans specification
	Best practices for developing enterprise beans
	Batch commands for container managed persistence
	Deferred Create for container managed persistence
	Explicit invalidation in the Persistence Manager cache

	Unknown primary-key class

	Using access intent policies
	Access intent policies
	Concurrency control
	Read-ahead hints

	Applying access intent policies to methods
	Access intent exceptions
	Access intent assembly settings
	Name
	Description
	Methods - Name
	Methods - Enterprise bean
	Methods - Type
	Methods - Parameters
	Applied access intent

	Access intent best practices
	Frequently asked questions: Access intent

	EJB modules
	Assembling EJB modules
	Container transactions
	Method extensions
	Method permissions
	References

	EJB containers
	Managing EJB containers
	EJB container settings
	Passivation directory
	Inactive pool cleanup interval
	Default datasource JNDI name
	Initial state

	EJB container system properties
	EJB cache settings
	Cleanup interval
	Cache size

	Container interoperability

	Deploying EJB modules
	EJB module collection
	URI

	EJB module settings
	URI
	Alternate DD
	Starting weight

	Enterprise beans: Resources for learning
	EJB method Invocation Queuing

	Notices
	Trademarks and service marks

