IBM WebSphere Application Server Network Deployment,

Version 5.1

Applications

<|ll

Note
FBefore using this information, be sure to read the general information under [‘Notices” on page 915,

Compilation date: December 15, 2003

© Copyright International Business Machines Corporation 2003. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents
How to send your comments
Chapter 1. Welcome to Applications .

Chapter 2. Using Web appllcatlons
Web applications . .o

web.xml file . .

Migrating Web appllcatlon components .

Default Application .

Servlets .

Developing servlets W|th WebSphere Appllcatlon Server extenS|ons

Application lifecycle listeners and events .

Listener classes for servlet context and session changes

Example: com.ibm.websphere. DBConnectlonL|stenerJava

Servlet filtering

Filter, FilterChain, F|IterConf|g classes for servlet fllterlng

Example: com.ibm.websphere.LoggingFilter.java .

Configuring page list servlet client configurations .

autoRequestEncoding and autoResponseEncoding .

Examples: autoRequestEncoding and autoResponseEncodlng encodlng examples
JavaServer Pages files e
Developing JavaServer Pages f|Ies Wlth WebSphere extensmns

Tag libraries .

tsx:dbconnect tag JavaServer Pages syntax

dbquery tag JavaServer Pages syntax.

dbmodify tag JavaServer Pages syntax

tsx:getProperty tag JavaServer Pages syntax and examples

tsx:userid and tsx:passwd tag JavaServer Pages syntax .

tsx:repeat tag JavaServer Pages syntax .

Example: Combining tsx:repeat and tsx: getProperty JavaServer Pages tags

Example: tsx:dbmodify tag syntax

Example: Using tsx:repeat JavaServer Pages tag to |terate over a results set

JspBatchCompiler tool.

Bean Scripting Framework .
Developing Web applications .

Disabling JavaServer Pages run- t|me comprlatron
Example: Converting JavaScript source to the Bean Scripting Framework
Scenario: Creating a Bean Scripting Framework application .

Example: Bean Scripting Framework code example .
Web modules . .
Assembling Web appllcatlons .

Context parameters.

Security constraints.

Servlet mappings

Invoker attributes

Error pages

File serving. .

Initialization parameters .

Servlet caching

Web components

Web property extensions.

Web resource collections

Welcome files .

© Copyright IBM Corp. 2003

. XV

—

Troubleshooting tips for Web application deployment
Modifying the default Web container configuration
Web container
Web container settings
Web module settings .
Web Module Deployment settrngs
Web container custom properties.
Web applications: Resources for learning.

Chapter 3. Managing HTTP sessions
Sessions Coe e
Migrating HTTP sessions .
Developing session management in servlets
Example: SessionSample.java. .
Assembling so that session data can be shared .
Session security support .
Session management support .
Configuring session management by IeveI
Session tracking options . .
Session tracking with cookies .
Session tracking with URL rewriting .
Session tracking with SSL information .
Configuring session tracking
Serializing access to session data
Configuring session tracking for Wireless Appllcatlon Protocol (WAP) dewces
Session management custom properties .
Distributed sessions
Session recovery support
Distributed Environment settings . .
Configuring for database session persistence .
Switching to a multirow schema . .
Configuring tablespace and page sizes for DBZ session databases .
Multirow schema considerations .
Memory-to-memory replication.
Memory-to-memory topology: Peer-to- peer funct|on W|th a Iocal repllcator .
Memory-to-memory topology: Peer-to-peer function with remote/isolated replicators .
Memory-to-memory topology: Client/server function with remote replicators .
Memory-to-memory topology: Client/server function with isolated replicators .
Memory-to-memory session partitions .
Clustered session support .
Configuring memory-to-memory repllcatlon for the peer to peer functlon wrth a IocaI repllcator (default
memory-to-memory replication)
Memory-to-memory sessions settings .
Configuring memory-to-memory replication for peer to peer functlons Wlth remote/lsolated repllcators
Configuring memory-to-memory replication for the client/server function using isolated replicators .
Configuring memory-to-memory replication for the client/server function using remote replicators .
Tuning session management . .
Configuring scheduled invalidation .
Configuring write contents
Configuring write frequency . .
Base in-memory session pool size .
Controlling write operations . .
Best practices for using HTTP Sessmns .
Managing HTTP sessions: Resources for Iearnlng

Chapter 4. Using enterprise beans in applications .

iv 1BM WebSphere Application Server Network Deployment, Version 5.1: Applications

. 42
. 43
. 44
. 44
. 45
. 45
. 46
. 47

. 49
. 49
. 49
. 50
. 51
. 52
. 52
. 53
. 54
. 55
. 55
. 55
. 56
. 57
. 57
. 58
. 58
. 59
. 59
. 59
. 60
. 60
. 61
. 61
. 62
. 63
. 64
. 65
. 66
. 67
. 67

. 68
. 68

69

. 70
.7
.72
. 73
. 73
. 74
. 75
. 75
. 76
. 78

. 81

Enterprise beans.

Developing enterprise beans .
Migrating enterprise bean code to the supported specmcatlon .
WebSphere extensions to the Enterprise JavaBeans specification
Best practices for developing enterprise beans.

Unknown primary-key class.

Using access intent policies.

Access intent policies . . .
Applying access intent policies to methods .
Access intent exceptions.

Access intent best practices .
Frequently asked questions: Access |ntent .

EJB modules .

Assembling EJB modules
Container transactions.

Method extensions .
Method permissions
References.

EJB containers

Managing EJB contamers
EJB container system propertles
Container interoperability.

Deploying EJB modules .

Enterprise beans: Resources for Iearmng .

EJB method invocation queuing.

Chapter 5. Using message-driven beans in applications
Message-driven beans - an overview.

Message-driven beans - components.

Message-driven beans - transaction support . . .
Designing an enterprise application to use message-driven beans .
Developing an enterprise application to use message-driven beans.

Migrating a JMS listener application to use message-driven beans .

Deploying an enterprise application to use message-driven beans .
Configuring deployment attributes using the Assembly Toolkit .
Configuring message listener resources for message-driven beans.

Configuring the message listener service

Adding a new listener port.

Configuring a listener port .

Deleting a listener port . .

Configuring security for message drlven beans .

Administering listener ports
Important files for message-driven beans and extended messaglng
Troubleshooting message-driven beans .
Message-driven beans samples.

Chapter 6. Using application clients
Application clients . ..

Application client functlons

ActiveX application clients .

Applet clients

J2EE application cllents

Pluggable application clients .

Thin application clients .
Migration tips for application clients
Installing application clients

. 81
. 82
. 83
. 85
. 86
. 90
. 90
. 90
. 92
. 93
. 94
. 94
. 95
. 95
. 96
. 96
. 96
. 96
. 96
. 97
. 97
. .98
. 102
. 103
. 104

. 107
. 107
. 108
. 110
. 110
111
. 113
. 114
. 115
. 117
. 117
. 123
. 123
. 124
. 124
. 125
. 126
. 126
. 127

. 129
. 129
. 130
. 131
. 132
. 133
. 134
. 135
. 137
. 137

Contents

\'}

Best practices for installing application clients
Installing application clients silently
Developing ActiveX application client code.
Starting an ActiveX application .
JClassProxy and JObjectProxy classes
Java virtual machine initialization tips. . .
Example: Developing ActiveX to enterprise bean brldge usmg Java proxy objects .
Example: Calling Java methods in the ActiveX to enterprise bean bridge.
Java field programming tips .
ActiveX to Java primitive data type conversion vaIues
Array tips for ActiveX application clients.
Error handling codes for ActiveX appllcatlon cllents
Threading tips .
Example: Viewing System out message .
Example: Enabling logging and tracing for apphcatlon cllents .
ActiveX client programming best practices .
Developing applet client code .
Accessing secure resources using SSL and applet cllents .
Applet client tag requirements
Applet client code requirements.
Developing J2EE application client code
J2EE application client class loading .
Developing pluggable application client code .
Developing thin application client code .
Developing thin application client code on a cllent machlne
Developing thin application client code on a server machine .
Assembling application clients
Deploying application clients on workstatlon pIatforms
Resource Adapters for the client
Configuring Resource Adapters . .
Starting the Application Client Resource Conflguratron Tool and openmg an EAR flle .
Data sources for application clients .
Configuring new data source providers (JDBC provrders) for appllcatlon cllents .
Configuring new data sources for application clients .
Configuring mail providers and sessions for application cllents
Configuring new mail sessions for application clients .
URLs for application clients
URL providers for the Application CI|ent Resource Conflguratlon TooI
Configuring new URL providers for application clients.
Configuring new URLs with the Application Client Resource Conflguratron Tool
WebSphere asynchronous messaging using the Java Message Service API for the Appllcatlon
Client Resource Configuration Tool. . .
Java Messaging Service providers for the client .
Configuring Java messaging client resources .
Configuring new connection factories for application cllents
Configuring new Java Message Service destinations for application clrents
Example: Configuring MQ Queue and Topic connection factories and destination factorles for
application clients .
Example: Configuring WAS Queue and Toplc connectlon factones and destlnatlon factones for
application clients . .
Configuring new resource envrronment prowders for apphcatlon chents .
Configuring new resource environment entries for application clients .
Managing application clients .

Updating data source and data source provrder conflguratlons W|th the Appllcatlon Cllent Resource

Configuration Tool .
Updating URLs and URL prowder conflguratlons for appl|cat|on cllents

Vi 1BM WebSphere Application Server Network Deployment, Version 5.1: Applications

. 139
. 140
.14
. 142
. 144
. 147
. 147
. 148
. 149
. 150
. 151
. 152
. 152
. 153
. 154
. 154
. 157
. 158
. 158
. 159
. 159
. 161
. 163
. 164
. 164
. 165
. 166
. 166
. 167
. 167
. 167
. 167
. 168
171
171
. 174
. 174
. 175
. 175
177

. 178
. 178
. 178
. 213
. 214

. 214

. 215
. 217
. 217
. 218

. 219
. 219

Updating mail session configurations for application clients.
Updating Jave Message Service provider, connection factories, and destlnatlon conflguratlons for
application clients . .
Updating MQ Java Message Serwce prowder MQ connechon factones and MQ destlnat|on
configurations for application clients
Updating Resource Environment Entry and Resource Enwronment Prowder conflguratlons for
application clients .
Removing application client resources
Running application clients
launchClient tool .
Example: Using a Java 2 secunty manager wrth a J2EE appllcatlon cllent .
Example: Enabling Java 2 security prior to J2EE application client runtime |n|t|al|zat|on
Application client troubleshooting tips.

Chapter 7. Using Web services based on Web Services for J2EE .
Web services .o
SOAP .
Planning to use Web services based on Web Servrces for J2EE
Service-oriented architecture . .
Web services approach to a service- orlented archltecture .
Web services business models supported . .
Migrating Apache SOAP Web services to Web Serwces for J2EE .
Developing Web services based on Web Services for J2EE
Example: Developing Web services based on Web Services for J2EE
Web Services for J2EE. . .
Java API for XML-based remote procedure caII (JAX RPC) .
Artifacts used to develop Web services based on Web Services for J2EE .
Mapping between Java Ianguage WSDL and XML.
Java2WSDL command . e
WSDL2Java command .
Setting up a development and unmanaged cI|ent executlon envrronment for Web services based
on Web Services for J2EE .
Developing a Web service from a Java bean .
Developing a Web service using a stateless session enterpnse bean .
Configuring the webservices.xml deployment descriptor .
Configuring the ibm-webservices-bnd.xmi deployment descriptor.
Configuring the webservices.xml deployment descriptor for Handler classes
Developing a new Web service with an existing WSDL file using a Java bean. .
Developing a new Web service from an existing WSDL file using a stateless session enterpnse
bean . .
Web services |mplementat|on scope .
Default Port Mapping Definitions collection.
Default Port Type Mapping Properties settings
Developing Web services clients based on Web Services for J2EE
Example: Developing Web services clients based on Web Services for J2EE
Developing client bindings from a WSDL file .
Assembling a Web services-enabled client JAR file |nto an EAR f|Ie
Assembling a Web services-enabled client WAR file into an EAR file .
Configuring the ibm-webservicesclient-bnd.xmi deployment descriptor.
Configuring the webservicesclient.xml deployment descriptor .
Configuring the webservicesclient.xml deployment descriptor for Handler classes
Testing Web services-enabled clients.
Web services client bindings .
Assembling Web services applications based on Web Serwces for J2EE
Assembling a Web services-enabled EJB JAR file .
Assembling a Web services-enabled WAR file

Contents

. 219

. 220

. 220

. 221
. 221
. 222
. 223
. 226
. 226
. 227

. 233
. 234
. 235
. 235
. 236
. 237
. 239
. 240
. 242
. 243
. 244
. 245
. 245
. 246
. 267
. 269

. 272
. 272
. 282
. 285
. 286
. 288
. 288

. 290
. 291
. 291
. 292
. 292
. 293
. 294
. 295
. 296
. 297
. 300
. 300
. 304
. 305
. 306
. 306
. 308

Vii

Assembling a Web services-enabled EJB JAR into an EAR file .
Assembling a Web services-enabled WAR into an EAR file.
Enabling a Web services-enabled EAR file.
Deploying Web services based on Web Services for J2EE
wsdeploy command . .
Using the Java Messaging Serwce to transport Web services requests .
Java Messaging Service endpoint URL syntax
Securing Web services based on WS-Security .
Web services security specification- a chronology .
Web services security support
Web services security and Java 2 PIatform Enterpnse Ed|t|on secunty reIatlonsh|p
Web services security model in WebSphere Applrcatlon Server .
Web services security property collection
Web services security property configuration settmgs
Usage scenario for propagatlng secunty tokens .
Configurations .
Authentication method overview.
XML digital signature.
Securing Web services using XML dlgltal S|gnature
XML encryption.
Securing Web services usmg XML encryptlon
Securing Web services using basicauth authentication
Identity assertion .
Securing Web services usmg |dent|ty assertlon authentlcatlon
Securing Web services using signature authentication
Token type overview .
Security token .
Securing Web services usmg a pluggable token
Tuning Web services based on Web Services for J2EE .
Troubleshooting Web services based on Web Services for J2EE
Troubleshooting command-line tools for Web services based on Web Serwces for J2EE
Troubleshooting compiled bindings for Web services based on Web Services for J2EE
Troubleshooting the run time of Web services based on Web Services for J2EE .
Troubleshooting the run time for a Web services client based on Web Services for J2EE
Troubleshooting serialization and deserializaton in Web services based on Web Services for J2EE
Frequently asked questions about Web services based on Web Services for J2EE .
Web services: Resources for learning

Chapter 8. Web Services Invocation Framework (WSIF): Enabling Web services .
Goals of WSIF .
WSIF - Web services are more than Just SOAP services .
WSIF - Tying client code to a particular protocol implementation is restnctlng
WSIF - Incorporating new bindings into client code is hard .
WSIF - Multiple bindings can be used in flexible ways . .
WSIF - Enabling a freer Web services environment promotes |ntermed|ar|es .
An overview of WSIF.
WSIF architecture . .
Using WSIF with Web services that offer muIt|pIe bmdmgs .
WSIF and WSDL . e e
WSIF usage scenarios .
Dynamic invocation .
Using WSIF to invoke Web services .
Using the WSIF providers .
Developing a WSIF service
Using complex types. .
Using the Java Naming and D|rectory Interface (JNDI)

viii 1BMm WebSphere Application Server Network Deployment, Version 5.1: Applications

. 310
.31
.31
. 316
. 317
. 319
. 320
. 321
. 322
. 323
. 325
. 328
. 330
. 330
. 331
. 332
. 347
. 350
. 353
. 413
. 416
. 435
. 441
. 442
. 448
. 453
. 461
. 462
. 472
. 472
. 472
. 473
. 473
. 475

475

. 477
. 479

. 483
. 483
. 483
. 484
. 484
. 484
. 484
. 485
. 485
. 486
. 486
. 486
. 487
. 487
. 488
. 498
. 507
. 508

Passing SOAP messages with attachments using WSIF. .
Interacting with the J2EE container in WebSphere Appllcatlon Server .
Running WSIF as a client . .. e e

WSIF system management and adm|n|strat|on
Maintaining the WSIF properties file .

Enabling security for WSIF .
Troubleshooting the Web Services Invocatlon Framework .

WSIF API . .
WSIF API reference: Creatrng a message for sendlng to a port .
WSIF API reference: Finding a port factory or service.

WSIF API reference: Using ports

Chapter 9. IBM WebSphere UDDI Registry .

UDDI Registry terminology L
UDDI Registry definitions .

An overview of IBM UDDI Reg|str|es

Migrating from a previous version of IBM WebSphere UDDI Reglstry

Installing and setting up a UDDI Registry . . .
Installing the UDDI Registry into a deployment manager ceII .
Installing the UDDI Registry into a single appserver

Reinstalling the UDDI Registry application .

Applying Service updates to the UDDI Reglstry in a Network Deployment and smgle appllcatlon

server environment .
Using a remote DB2 database for UDDI
Removing the UDDI Registry application from a deployment manager ceII
Removing the UDDI Registry application from a single application server
Configuring the UDDI Registry .
Configuring global UDDI properties
Modifying the database userid and password
Configuring security roles . .
Configuring the UDDI User Console (GUI) for multrple Ianguage encodtng support
Customizing the UDDI User Console (GUI) . .
Configuring SOAP interface properties .
Configuring SOAP properties with the WebSphere Assembly Toolklt
Configuring SOAP properties in an application that is already deployed
Administering the UDDI Registry Ce e .
Running the UDDI Registry
Backing up and restoring the UDDI Regrstry database
UDDI4J programming interface . . e
UDDI user console .
Displaying the user console . .
Custom Taxonomy Support in the UDDI Reglstry
UDDI Utility Tools . . . A
uDDI TestEnhtyExporter java
UDDI TestEntitylmporter.java .
UDDI TestEntityPromoter.java
UDDI TestEntityFinder.java
UDDI TestEntityDeleter.java .
UDDI TestUddiSerializer.java .
UDDI TestUddiDeserializer.java .
UDDI TestStubManager.java .
UDDI TestCreateMinimalEntity.java
SOAP application programming interface for the UDDI Reglstry
Programming the SOAP API
SOAP API error handling tips in the UDDI Reglstry
UDDI Registry Application Programming Interface .

Contents

. 510
. 512
. 512
. 513
. 513
. 513
. 514
. 518
. 519
. 519
. 521

. 525
. 525
. 526
. 526
. 527
. 530
. 532
. 539
. 545

. 545
. 545
. 547
. 547
. 548
. 548
. 550
. 550
. 551
. 551
. 551
. 552
. 552
. 552
. 552
. 553
. 553
. 554
. 557
. 558
. 566
. 577
. 580
. 584
. 586
. 590
. 593
. 595
. 597
. 598
. 600
. 600
. 601
. 601

ix

Inquiry API for the UDDI Registry .

Publish API for the UDDI Registry .

UDDI EJB Interface for the UDDI Registry .
Datatypes package in the UDDI Registry .
EJB interface methods in the UDDI Registry .

UDDI troubleshooting tips . R
Turning on UDDI trace .

Messages. . .
UDAI (Web Serwces UDDI) messages .
UDCF (Web Services UDDI) messages .
UDDA (Web Services UDDI) messages .
UDDM (Web Services UDDI) messages.
UDEJ (Web Services UDDI) messages .
UDEX (Web Services UDDI) messages .
UDIN (Web Services UDDI) messages .
UDLC (Web Services UDDI) messages .
UDPR (Web Services UDDI) messages .
UDRS (Web Services UDDI) messages .
UDSC (Web Services UDDI) messages .
UDSP (Web Services UDDI) messages .
UDUC (Web Services UDDI) messages.
UDUT UDDI Utility Tools messages .

UDUU (Web Services UDDI) messages.
Running the UDDI samples .o
Installation Verification Program (IVP)

Reporting problems with the IBM WebSphere UDDI Reg|stry

Feedbacko

Chapter 10. Web services gateway: Enabling Web services .
Web services gateway - frequently asked questions
Web services gateway - What is new in this release .
Web services gateway - Completing the installation
Web services gateway - prerequisites and constraints

Installing the gateway into an application server that is part of a deployment manager cell .

Installing the gateway into a stand-alone application server
Testing the Web services gateway installation
Backing up and restoring a gateway configuration .
Backing up and restoring UDDI publication links.
Creating and updating a distributed gateway deployment
Administering the Web services gateway
Setting the namespace URI and WSDL URI for the Web services gateway
Working with channels . e e e e .
Working with filters . . .
Working with JAX-RPC handlers
Working with UDDI references .
Working with Web services .
Running the Web services gateway Samples

Passing SOAP messages with attachments through the Web services gateway .

SOAP messages with attachments - a definition. .
Writing the WSDL extensions for SOAP messages with attachments .
Securing the Web services gateway .
Enabling Web Services Security (WS- Secunty) for the gateway
Enabling basic authentication and authorization for the gateway .
Invoking Web services over HTTPS .
Enabling proxy authentication for the gateway
Tuning the Web services gateway .

X IBM WebSphere Application Server Network Deployment, Version 5.1: Applications

. 601
. 603
. 604
. 609
. 612
. 613
. 616
. 616
. 617
. 617
. 618
. 618
. 618
. 618
. 618
. 637
. 637
. 637
. 637
. 637
. 638
. 640
. 651
. 651
. 651
. 653
. 653

. 655
. 655
. 657
. 658
. 659
. 660
. 661
. 663
. 664
. 665
. 666
. 667
. 669
. 671
. 678
. 680
. 683
. 687
. 698
. 698
. 699
. 699
. 700
. 700
. 708
. 712
. 712
. 715

Selective SOAP parsing
Troubleshooting the Web services gateway
Web services gateway messages .

Chapter 11. Class loading
Class loaders .o
Class loader collection .

Classloader ID .

Classloader Mode .

Class loader settings.
Migrating the class-loader Module V|S|b|||ty Mode settmg
Class loading: Resources for learning .o

Chapter 12. Using EJB query .
EJB query language .
Example: EJB queries .
FROM clause
Inheritance in EJB query
Path expressions .
WHERE clause.
Scalar functions
Aggregation functions
SELECT clause.
ORDER BY clause
Subqueries
EJB query restrlct|ons .
EJB Query: Reserved words .
EJB query: BNF syntax.
Comparison of EJB 2.0 speC|f|cat|on and WebSphere query Ianguage

Chapter 13. Internationalizing applications.

Internationalization

Identifying localizable text .

Creating message catalogs

Composing language-specific stnngs
Localization API support
LocalizableTextFormatter class .
Creating a formatter instance.
Setting optional localization values.
Generating localized text .

Preparing the localizable-text package for deployment
LocalizableTextEJBDeploy command .

Internationalization: Resources for learning

Chapter 14. Using the transaction service . .
Transaction support in WebSphere Application Server
Resource manager local transaction (RMLT) .
Global transactions R
Local transaction contalnment (LTC) .
Local and global transaction considerations
Developing components to use transactions .

Configuring transactional deployment attributes usmg the Assembly TooIklt .

Using bean-managed transactions.

Configuring transaction properties for an apphcatlon server.
Transaction service settings .

Using local transactions.

. 717
. 717
. 720

. 739
. 739
. 743
. 743
. 743
. 743
. 743
. 744

. 745
. 745
. 745
. 748
. 749
. 749
. 750
. 757
. 760
. 761
. 761
. 762
. 762
. 763
. 763
. 765

. 767
. 767
. 768
. 768
. 769
. 769
. 770
. 772
. 773
. 775
. 775
. 776
. 777

. 779
. 779
. 780
. 780
. 781
. 781
. 782
. 782
. 784
. 785
. 786
. 788

Contents

Xi

Managing active transactions.

Managing transaction logging for optlmum server avarlablllty
Configuring transaction aspects of servers for optimum availability .
Moving a transaction log from one server to another .

Restarting an application server on a different host

Interoperating transactionally between application servers .

Troubleshooting transactions . .

Transaction service exceptions .

UserTransaction interface - methods avarlable

Chapter 15. Using naming .
Naming.
Version 5 features for name space support
Name space logical view .
Initial context support .
Lookup names support in deployment descrlptors and th|n cIrents .
JNDI support in WebSphere Application Server .
Developing applications that use JNDI
Example: Getting the default initial context.
Example: Getting an initial context by setting the prowder URL property
Example: Setting the provider URL property to select a different root context as the |n|t|aI context
Example: Looking up an EJB home with JNDI
Example: Looking up a JavaMail session with JNDI
JNDI interoperability considerations
JNDI caching
JNDI cache settings .
Example: Controlling JNDI cache behawor from a program
JNDI name syntax.
INS name syntax . .
JNDI to CORBA name mapplng conS|derat|ons . .
Example: Setting the syntax used to parse name strings
Developing applications that use CosNaming (CORBA Naming mterface)
Example: Getting an initial context with CosNaming .
Example: Looking up an EJB home with CosNaming .
Configured name bindings.
Name space federation .
Name space bindings
Configuring and viewing name space b|nd|ngs
Configuring name servers .
Name server settings . .
Troubleshooting name space problems .
dumpNameSpace tool
Example: Invoking the name space dump utlllty . .
Name space dump utility for java:, Tocal: and server name spaces .
Example: Invoking the name space dump utility for java: and Tocal: name spaces
Name space dump sample output . .
Naming and directories: Resources for learning .

Chapter 16. Using the dynamic cache service to improve performance
Dynamic cache .
Configuring cache replrcat|on
Cache replication . .
Internal messaging conflguratlon settlngs .
Enabling the dynamic cache service .
Dynamic cache service settings.
Configuring servlet caching

xii 1BM WebSphere Application Server Network Deployment, Version 5.1: Applications

. 790
. 791
. 791
. 793
. 793
. 794
. 794
. 795
. 796

. 797
. 797
. 798
. 799
. 801
. 802
. 804
. 804
. 806
. 809

811

. 812
. 814
. 814
. 816
. 816
. 818
. 818
. 819
. 819
. 819
. 820
. 820
. 823
. 824
. 826
. 827
. 827
. 828
. 828
. 828
. 828
. 831
. 831
. 833
. 834
. 836

. 837
. 837
. 837
. 838
. 838
. 839
. 839
. 840

Configuring the dynamic cache disk offload
Configuring Edge Side Include caching .
Configuring external cache groups.

Displaying cache information .

Configuring cacheable objects with the cachespec me f|Ie
Verifying the cacheable page.
Cachespec.xml file)

Configuring command caching .
Command class
CacheableCommandimpl class
Example: Caching a command object

Example: Caching Web services .

Example: Configuring the dynamic cache .

Cache monitor . .
Edge cache statistics

Troubleshooting the dynamic cache service
Troubleshooting tips for the dynamic cache service

Chapter 17. Managing user proflles
User profile . .o
UserProfileManager class
User profile development options . .
Extending the data represented in user proflles .
Adding columns to the base user profile implementation.
Extending the User Profile enterprise bean and importing legacy databases
Example: UPServletExample.java . Ce e
Example: UserProfileExtendedSample.java
Example: UPServietExampleExtended.java
Example: UserProfileExtended.java
Example: UPServletExtended.java.
userprofile.xml .

Chapter 18. Assembling applications with the Assembly Toolkit .
Application assembly and J2EE applications . . Co
Archive support in Version 5.0
Starting the Assembly Toolkit .
astk command .
Migrating code artifacts to the Assembly TooIk|t
Importing enterprise applications
Importing WAR files .
Importing client applications .
Importing EJB files
Importing RAR files or connectors
Creating enterprise applications.
Creating Web applications.
Creating application clients
Creating EJB modules .
Creating connector modules .
Editing deployment descriptors .
Mapping enterprise beans to database tables
Verifying archive files.
Generating code for EJB deployment
Generating code for Web service deployment
Assembly Toolkit: Resources for learning

Chapter 19. Deploying and managing applications

Contents

. 840
. 841
. 843
. 847
. 848
. 849
. 849
. 855
. 856
. 856
. 856
. 857
. 859
. 861
. 862
. 863
. 864

. 867
. 867
. 867
. 868
. 868
. 868
. 869
. 869
. 871
. 871
. 873
. 874
. 876

. 879
. 881
. 881
. 881
. 882
. 882
. 883
. 883
. 884
. 884
. 885
. 885
. 886
. 887
. 888
. 889
. 890
. 891
. 891
. 892
. 893
. 893

. 895

xiii

Enterprise applications .
Installing a new application .
Preparing for application mstallatlon settmgs .

Example: Installing an EAR file using the default bmdmgs .

Starting and stopping applications .
Exporting applications .
Exporting DDL files
Updating applications

Hot deployment and dynam|c reloadmg
Uninstalling applications

Deploying and managing appllcat|ons Resources for Iearmng

Notices

Trademarks and service marks .

Xiv 1BM WebSphere Application Server Network Deployment, Version 5.1: Applications

. 895
. 895
. 899
. 902
. 903
. 903
. 904
. 904
. 905
. 912
. 912

. 915

. 917

How to send your comments

Your feedback is important in helping to provide the most accurate and highest quality information.
» To send comments on articles in the WebSphere Application Server Information Center
1. Display the article in your Web browser and scroll to the end of the article.

2. Click on the Feedback link at the bottom of the article, and a separate window containing an e-mail
form appears.

3. Fill out the e-mail form as instructed, and click on Submit feedback .

* To send comments on PDF books, you can e-mail your comments to: wasdoc@us.ibm.com or fax
them to 919-254-0206.

Be sure to include the document name and number, the WebSphere Application Server version you are
using, and, if applicable, the specific page, table, or figure number on which you are commenting.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information
in any way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003 XV

XVi I1BM WebSphere Application Server Network Deployment, Version 5.1: Applications

Chapter 1. Welcome to Applications

The following items comprise the application programming model, including numerous services available to
support deployed applications.

Web modules

Use Web components such as servlets and JavaServer Pages files to develop dynamic Web sites.
Product extensions to the open source servlet and JSP APIs enhance standard features, and provide
additional functionality.

Web modules consist of the following application components, each performing a different function:
* HTML and JSP pages provide the user interface and program logic
» Servlets coordinate work between other components of the application

HTTP sessions are a key area of product support for Web modules. By |managing HTTP sessions| for
your Web applications, you can personalize a Web site for individual customers. A session is a series of
requests to a servlet, originating from the same user at the same browser. Managing HTTP sessions
allows servlets running in a Web container to keep track of individual users. For example, a servlet might
use sessions to provide "shopping carts” to on-line shoppers. Suppose the servlet is designed to record
the items each shopper indicates he or she will purchase from the Web site. It is important that the servlet
be able to associate incoming requests with particular shoppers. Otherwise, the servlet might mistakenly
add choices of Shopper 1 to the cart of Shopper 2.

EJB modules

IBM WebSphere Application Server provides broad support for enterprise beans, including the Enterprise
JavaBeans (EJB) 2.0 specification. The EJB 2.0 specification introduces a container-managed persistence
(CMP) 2.0 component model, which provides a number of improvements to aid developer productivity and
application performance. In addition, this product continues to fully support enterprise beans written to the
CMP 1.1 programming model and deployed in previous versions of this product; applications can use CMP
1.1 beans, CMP 2.0 beans, or a mixture of both. CMP 1.1 beans can be directly carried forward in an EJB
1.1 ejb-jar module or may be repackaged and combined with CMP 2.0 beans in an EJB 2.0 module.

For EJB 2.0 modules, a feature introduced in Version 5 of this product, called access intent policies,
eases the management of interactions between CMP beans and their underlying data stores. Each policy
sets such data access characteristics such as access type (read or update) and transaction isolation that
affect the locking of resources, letting you choose the level of data integrity and performance for your
application.

Several excellent trade books that cover EJB 2.0 and the CMP 2.0 persistence model are already
available. A good way to locate some of these is to visit your favorite online bookstore and search on the
term Enterprise JavaBeans. For a more basic orientation, see [‘Enterprise beans: Resources for learning’

on page 103,

Your application development might include asynchronous messaging, which the product supports as a
method of communication based on the Java Message Service (JMS) programming interface.

The base JMS support enables IBM WebSphere Application Server applications to exchange messages
asynchronously with other JMS clients by using JMS destinations (queues or topics). An application can
explicitly poll for messages on a destination.

The product also provides a message listener service that applications can use to automatically retrieve
messages from JMS destinations for processing by message-driven beans, without the application having
to explicitly poll JMS destinations.

© Copyright IBM Corp. 2003 1

Client modules

For an overview, refer to |[Welcome to Client modules}

Web services

The Web services development and implementation components included in this product version are
based on Apache SOAP 2.3. This information is deprecated in newer product versions.

The Web services development and implementation components included with this product version are
based on the Web Services for Java 2 platform, Enterprise Edition (J2EE), Java for XML-based remote
procedure call (JAX-RPC) and WS-I Basic Profile 1.0 specifications.

An open source implementation for a Web Services Invocation Framework (WSIF) is also supported.

Additional features, such as UDDI Registry and Web Services Gateway are described in

WebSphere Application Server supports Web services security functionality that is based on standards
included in the Web services security (WS-Security) specification.

Application services

IBM WebSphere Application Server provides essential services to ease the building of dynamic and
flexible e-business applications. These services support and extend the open standards of J2EE and Web
services, with a focus on application reuse and integration.

2

Class loading

The WebSphere Application Server product provides several class-loading modes, policies, and features
to enable you to deploy and run your applications successfully. An application server provides an
[Application class-loader policy| that enables you to control the isolation of applications in a server. If you
want applications to share classes, choose the SINGLE policy; otherwise choose the MULTIPLE policy,
which isolates the class loaders for each application.

Similarly, at the application level, you can choose a|WAR class-loader policy] that configures the
isolation of Web modules within an application. If you choose the policy APPLICATION, then each Web
module in your application can see the classes of other Web modules. A policy of MODULE creates a
separate class loader for each Web module, resulting in isolation for each of the classes of each Web
module.

The class-loader mode setting, which you can configure at the server, application, or Web module level
depending on your class-loader policy, enables you to control whether application class loaders override
classes contained in base run-time class loaders. By default, the WebSphere Application Server class
loaders have a class-loader mode of PARENT_FIRST, which is the standard JDK mode and does not
allow the application class loader to override classes. You must take care when using the
PARENT_LAST class-loader mode to make all dependent classes available within the application or you
might get LinkageErrors or other class-loader exceptions. For example, if you provide a newer version
of the Xerces. jar file and your application is using XSLT, you must also provide a xalan. jar file within
your application.

Shared library

Version 5.0 of WebSphere Application Server introduces the concept of a A shared library
is a CLASSPATH and a symbolic name for that class path. You define shared libraries at the cell, node,
or server level and then associate the shared libraries either with an application server (making the
classes available to all applications in the server) or with individual applications (making the classes
available only to the referencing application). This mechanism provides a convenient way to make
libraries of classes available to your applications outside of a standard J2EE enterprise application
(EAR) file for easier version management and space efficiency.

Internationalization support

IBM WebSphere Application Server Network Deployment, Version 5.1: Applications

If your application component must support multiple locales, the localizable-text API can help both
developers and administrators through central management of displayed strings. The developer
separates strings into a message catalog, which is then translated into the other languages required. All
message catalogs are then deployed with the application component. From then on, the administrator
can add or update message catalogs centrally as required. See [Chapter 13, “Internationalizing
[applications,” on page 767 |
Transactions

IBM WebSphere Application Server applications can use transactions to coordinate multiple updates to

resources as atomic units (as indivisible units of work) such that all or none of the updates are made

permanent. The way that applications use transactions depends on the type of application component,
as follows:

— A session bean can either use container-managed transactions (where the bean delegates
management of transactions to the container) or bean-managed transactions (where the bean
manages transactions itself)

— Entity beans use container-managed transactions

— Web components (servlets) use bean-managed transactions

The product is a transaction manager that supports the coordination of resource managers through their
XAResource interface and participates in distributed global transactions with other OTS 1.2 compliant
transaction managers (for example, J2EE 1.3 application servers). Applications can also be configured
to interact with databases, JMS queues, and JCA connectors through their local transaction support
when distributed transaction coordination is not required.

Resource managers that offer transaction support can be categorized into those that support two-phase
coordination (by offering an XAResource interface) and those that support only one-phase coordination
(for example through a LocalTransaction interface). The IBM WebSphere Application Server transaction
support provides coordination, within a transaction, for any number of two-phase capable resource
managers. It also enables a single one-phase capable resource manager to be used within a
transaction in the absence of any other resource managers, although a WebSphere transaction is not
necessary in this case. With the Last Participant Support of Enterprise Extensions, you can coordinate
the use of a single one-phase commit (1PC) capable resource with any number of two-phase commit
(2PC) capable resources in the same global transaction. At transaction commit, the two-phase commit
resources are prepared first using the two-phase commit protocol, and if this is successful the
one-phase commit-resource is then called to commit (one_phase). The two-phase commit resources are
then committed or rolled back depending on the response of the one-phase commit resource.

The ActivitySession service of Enterprise Extensions provides an alternative unit-of-work (UOW) scope
to that provided by global transaction contexts. It is a distributed context that can be used to coordinate
multiple one-phase resource managers. The product EJB container and deployment tooling support
ActivitySessions as an extension to the J2EE programming model. Enterprise beans can be deployed
with lifecycles that are influenced by ActivitySession context, as an alternative to transaction context. An
application can then interact with a resource manager through its LocalTransaction interface for the
period of a client-scoped ActivitySession rather than just the duration of an EJB method.

Naming

Naming clients use |Naming Services| primarily to access objects, such as EJB homes, associated with
applications installed on IBM WebSphere Application Server. Objects are made available to clients by
being bound into a name space. A name space is under the control of a name server. In this product,
there are potentially many name servers, and the name spaces controlled by the various name servers
are federated together to form the view of a single name space. Each name server presents the same
logical view of the federated name spaces.

Name servers provided by this product are a CORBA CosNaming implementation. IBM WebSphere
Application Server provides a CosNaming JNDI plug-in which enables clients to access the name
servers through the JNDI interface. Clients to EJB applications typically use JNDI to perform Naming
operations. Clients may access the name servers directly through the CORBA programming model. The

Chapter 1. Welcome to Applications 3

CosNaming interface is part of the CORBA programming model. CORBA clients which need to access
EJB homes or some other objects bound to the name space would typically use the CORBA
CosNaming interface to perform Naming operations.

Dynamic cache

Dynamic cache improves application performance by caching outputs and contents of outputs of
servlets, JavaServer Pages (JSP) files, Web services, and commands. On subsequent client requests to
the same applications, dynamic cache intercepts these calls and responds by serving the output or the
contents of output from the cache.

Dynamic cache in this product version includes:

Servlet/JSP files caching
This caches output of dynamic servlets and JSP files by working with Java virtual machine of
the application server by intercepting calls to service methods and serving Web pages from the
cache. This improves server response time, throughput and scalability.

Command caching
Commands that are written to the Command Architecture encapsulate business logic tasks and
provide a standard way to invoke the business logic request. Command objects need to
implement CacheableCommand interface instead of TargetableCommand interface to cache.
Like in servlets and JSP caching, requests to execute business logic in the command is
intercepted by the cache. If a command with the same request attributes are available in cache,
output properties are copied from the cached instance to the requested instance and returned
without executing the business logic again.

Web Services caching
Web service responses can be cached just like servlet and JSP results. These requests are
intercepted and cache ID computed based on how the cache ID rules are specified in the cache
policy. Hash of the whole SOAPEnNvelope can be used as a cache ID or it can be parsed and
service name, operation name and parameter names to these operations used as cache ID. If a
cache entry is not found for the computed cache ID, the request is forwarded to the SOAP
engine and the result is cached.

Edge Side Include caching
This provides the ability to cache, assemble and deliver dynamic web pages at the edge of the
enterprise network. Edge Side Includes (ESI) is a simple markup language which enables
dynamic web pages (which by themselves are not so cache efficient) to be broken down into
cacheable fragments. These fragments are then cached on the edge of the network and
assembled into a single page upon user requests.

Distributed caching
Cache contents can be shared and replicated among servers by dynamic caching using an
underlying JMS based message broker system, DRS (Data Replication Service). Sharing
characteristics of individual cache entry is configured using the cache policy specification.

User profiles

Managing allows a company to maintain database tables containing fields for
demographic data of individual customers or other users on the company system. For example, when a

user repeatedly logs onto a Web site that supports user profiles, the Web site can display headlines and
advertising tailored to the shopping preferences of that user. The site can address the user by his or her
logon name. User profile API is deprecated in the current release.

Assembly tools
Assembling is an activity in which you package code components into "modules” that comply with the

J2EE specification. You define configurations for the modules, in the form of XML documents known as
deployment descriptors.

51% gee ’1Chapter 18, “Assembling applications with the Assembly Toolkit,” on page 879.|”

Enterprise archive (EAR) files are comprised of the following archives:
+ Enterprise bean (JAR) files (known as [‘EJB modules” on page 95)

4 BM WebSphere Application Server Network Deployment, Version 5.1: Applications

Web archive (WAR) files (known as ['Web modules” on page 40)

« Application client (JAR) files (known as[‘Application clients” on page 129)

* Resource adapter archive (RAR) files (known as resource adapter modules)

Additional JAR files containing dependent classes or other components required by the application

The standard file extension of an enterprise application file is .ear.

For a discussion of archives and Web components supported by the Assembly Toolkit, see ’
lsupport in Version 5.0” on page 881.

Deployment

Deployment involves placing applications onto application servers and running the applications. The main
tasks include:

1. Installing application files onto an application server.

2. Configuring the application for the particular operational environment.

3. Starting the newly deployed application.

Information on these tasks is available from '[Chapter 19, “Deploying and managing applications,” on page|
’ The information describes how to deploy applications using the WebSphere Application Server
administrative console. You can also deploy applications using the which provides
deployment capabilities identical to those available using the administrative console.

Packaging and class loading

You can package your business logic as a Java 2 Platform, Enterprise Edition (J2EE) application

enterprise archive (EAR) file or as an enterprise bean (EJB) or Web module for deployment to WebSphere
Application Server. You must also consider the relationships among modules.

Uninstalling and redeploying applications

At some point, you will need to |uninsta||| your deployed applications. Or you might need to |update youF|
lapplications and deploy them|again. You might be able to use [hot deployment and dynamic reloading,
where you do not need to restart the application server (or the application in some cases) after deploying
an updated application.

Chapter 1. Welcome to Applications 5

6 1BMm WebSphere Application Server Network Deployment, Version 5.1: Applications

Chapter 2. Using Web applications

A developer creates the files comprising a Web application, and then assembles the Web application
components into a Web module. Next, the deployer (typically the developer in a unit-testing environment
or the administrator in a production environment) installs the Web application on the server.

1. (Optional) Migrate existing Web applications|to run in the new version of WebSphere.

2. Design the Web application and develop its code artifacts: [Servlets [JavaServer Pages (JSP) files} and
static files, as for example, images and Hyper Text Markup Language (HTML) files. See the
"Resources for learning” article for links to design documentation.

3. (Optional) Implement JavaScript within JSP tags using the [Bean Scripting Framework (BSF).

54+ Support in the JSP Engine for the Bean Scripting Framework is deprecated with WebSphere
Application Server 5.1.

4. [Develop the Web application| using WebSphere Application Server extensions to enhance its
functionality.

5. Assemble the Web application into a Web module using thdAssemny Toolkitl Web module assembly
properties might include the ability to:
» Configure servlet page lists.
» Configure servlet filters.
» Serve servlets by class name.
» Enable file serving.

6. |Dep|oy the Web module or application module| that contains the Web application.

Following deployment, you might find it handy to use the |too| that enables batch compiling| of the JSP
files for quicker initial response times.

7. (Optional) [Troubleshoot your Web application|

8. (Optional) [Modify the default Web container configuration|in the application server in which you
deployed the Web module or application module containing the Web application.

9. (Optional) [Manage the deployed Web application.|

Web applications

A Web application is comprised of one or more related servlets, JavaServer Pages technology (JSP files),
and Hyper Text Markup Language (HTML) files that you can manage as a unit.

The files in a Web application are related in that they work together to perform a business logic function.

For example, one of the WebSphere Application Server samples is a |Simple Greetingl Web application.
This application, comprised of a servlet and Web pages, greets new users when the application is
accessed.

The Web application is a concept supported by the Java Servlet Specification. Web applications are
typically packaged as .war files.

web.xml file

The web.xml file provides configuration and deployment information for the Web components that comprise
a Web application. Examples of Web components are servlet parameters, servlet and JavaServer Pages
(JSP) definitions, and Uniform Resource Locators (URL) mappings.

The servlet 2.3 specification dictates the format of the web.xm1 file, which makes this file portable among
Java Two Enterprise Edition (J2EE) compliant products.

© Copyright IBM Corp. 2003 7

Location

The web.xml file must reside in the WEB-INF directory under the context of the hierarchy of directories that
exist for a Web application. For example, if the application is client.war, then the web.xml file is placed in

the install_root/client war/WEB-INF directory.

Usage notes

Is this file read-only?

No

Is this file updated by a product component?
This file is updated by the Assembly Toolkit.
If so, what triggers its update?

The Assembly Toolkit updates the web.xm1 file when you assemble Web components into a Web
module, or when you modify the properties of the Web components or the Web module.

How and when are the contents of this file used?
WebSphere Application Server functions use information in this file during the configuration and
deployment phases of Web application development.

Sample file entry

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.

8

//DTD Web Application 2.3//EN"
"http://java.sun.com/j2ee/dtds/web-app 2 3.dtd">

<web-app id="WebApp_1">

<display-name>Persistence Manager Web Client</display-name>
<description>Peristence Manager Web Client</description>
<servlet id="Servlet_1">
<servlet-name>CustomerLocalServlet</servlet-name>
<description>Local Customer Servlet</description>
<servlet-class>CustomerLocalServiet</servliet-class>
</servlet>
<servlet id="Servlet_2">
<servlet-name>CustomerServlet</servlet-name>
<description>Remote Customer Servlet</description>
<servlet-class>CustomerServiet</serviet-class>
</servlet>
<servlet id="Servlet_3">
<servlet-name>CreditCardServiet</serviet-name>
<description>Credit Card Servlet - PM Verification</description>
<servlet-class>CreditCardServiet</servlet-class>
</serviet>
<servlet-mapping id="ServletMapping_1">
<servlet-name>CustomerLocalServlet</servlet-name>
<url-pattern>/CustomerLocal</url-pattern>
</servlet-mapping>
<servlet-mapping id="ServletMapping_2">
<servlet-name>CustomerServiet</servlet-name>
<url-pattern>/Customer</url-pattern>
</servlet-mapping>
<servlet-mapping id="ServletMapping 3">
<servlet-name>CreditCardServiet</servliet-name>
<url-pattern>/CreditCard</url-pattern>
</servlet-mapping>
<welcome-file-1ist id="WelcomeFilelList_ 1">
<welcome-file>index.html</welcome-file>
</welcome-file-Tist>
<security-role id="SecurityRole 1">
<description>Everyone role</description>
<role-name>Everyone Role</role-name>
</security-role>
<security-role id="SecurityRole_2">

IBM WebSphere Application Server Network Deployment, Version 5.1: Applications

<description>AlTAuthenticated role</description>
<role-name>A11 Role</role-name>

</security-role>

<security-role id="SecurityRole_3">
<description>Deny all access role</description>
<role-name>DenyAl11Role</role-name>

</security-role>

</web-app>

Migrating Web application components

Suiiorted open specification levels in WebSphere Application Server Version 5 are documented in article,

Migration of Web applications deployed in WebSphere Application Server Version 4.x is not necessary;
version 2.2 of the servlet specification and version 1.1 of the JavaServerPages (JSP) specification are still
supported. However, where there are behavioral differences between the Java Two Enterprise Edition
(J2EE) 1.2 and J2EE 1.3 specifications, bear in mind that J2EE 1.3 specifications are implemented in
WebSphere Application Server Version 5 and will override any J2EE 1.2 behaviors.

Servlet migration might be a concern if your application:

« implements a WebSphere internal servlet to bypass a WebSphere Application Server Version 4.x single
application path restriction.

» extends a PagelListServlet that relies on configuration information in the servlet configuration XML file.

* uses a servlet to generate Hyper Text Markup Language (HTML) output.

+ calls the response.sendRedirect () method for a servlet using the encodeRedirectURL function or
executing within a non-context root.

JSP migration might be a concern if your application references JSP page implementation classes in
unnamed packages, or if you install WebSphere Application Server Version 4.x EAR files (deployed in
Version 4.x with the JSP Precompile option), in Version 5.

Follow these steps if migration issues apply to your Web application:

1. Use WebSphere Application Server Version 5 package names for any WebSphere Application Server
Version 4.x internal servlets, which are implemented in your application.

In WebSphere Application Server Version 4.x, Web modules with a context root setting of / are not
supported. Accessing Web modules with this root context results in HTTP 404 - File not Found
errrors.

To bypass the errors, and to enable the serving of static files from the root context, WebSphere
Application Server Version 4.x users are advised to add the servlet class,
com.ibm.servlet.engine.webapp.SimpleFileServlet, to their Web module.

The Version 4.x single path limitation does not exist in Version 5. However, users who choose to use

the com.ibm.servlet.engine.webapp.SimpleFileServlet in Version 5 must do one of the following:

* Rename com.ibm.servlet.engine.webapp.SimpleFileServiet to
com.ibm.ws.webcontainer.servlet.SimpleFileServiet.

* Opena Web deployment descriptor editor in the|Assemny Toolkitl and select File serving enabled
on the Extensions tab.

The following list identifies the other internal servlets affected by the Version 5 package name change:
» DefaultErrorReporter
* Autolnvoker

Use the Version 5 package name, com.ibm.ws.webcontainer.servlet.servlet class name for these
servlets.

Chapter 2. Using Web applications 9

2. Use the WASPostUpgrade] tool to migrate servlets that extend PageListServlet and rely on
configuration information in the associated XML servlet configuration file. In Version 4.x, the XML
servlet configuration file provides configuration data for page lists and augments servlet configuration
information. This file is named as either serviet_class_name.serviet or serviet_name.servlet, and is
stored in the same directory as the servlet class file.

The XML servlet configuration file is not supported in WebSphere Application Server Version 5.
3. Set a content type if your servlet generates Hyper Text Markup Language (HTML) output.

The default behavior of the Web container changed in WebSphere Application Server Version 5. If the
servlet developer does not specify a content type in the servlet then the container is forbidden to set
one automatically. Without an explicit content type setting, the content type is set to null. The Netscape
browser displays HTML source as plain text with a null content type setting.

To resolve this problem, do one of the following:

» Explicitly set a content type in your servlet.

* Opena Web deployment descriptor editor in the|Assemny Toolkitl and select Automatic Response
Encoding enabled on the Extensions tab.

4. Set the Java environment variable, com. ibm.websphere.sendredirect.compatibility, to true if you
want your URLs interpreted relative to the application root.

The default value of the Java environment variable com.ibm.websphere.sendredirect.compatibility
changed in WebSphere Application Server Version 5. In Version 4, the default setting of this variable is
true. In Version 5, the setting is false.

When this variable is set to false, if a URL has a leading slash, the URL is interpreted relative to the
Web module/application root. However, if the URL does not have a leading slash, it is interpreted
relative to the Web container root (also known as the Web server document root). Therefore, if an
application has a WAR file that has a context root of myPTledge_app and a servlet that has a servlet
mapping of /Intranet/, a JSP file in the WAR file cannot access the servlet when its
encodeRedirectURL is set to /Intranet/myPledge. The JSP file can access the servlet if the
encodeRedirectURL is set to myPledge app/Intranet/myPlege, or if the
com.ibm.websphere.sendredirect.compatibility variable is set to true.

See the [Setting the sendredirect variable article for more information.
5. Use the WASPostUpgrade] tool to migrate WebSphere Version 4.x enterprise applications to Version 5.

Note: The WebSphere Application Server Version 4.x JSP page implementation class files are not
compatible with the WebSphere Application Server Version 5 JSP container.

The WASPostUpgrade tool automatically precompiles JSP files, which ensures the JSP page
implementation class files are compatible with Version 5.

If you install Version 4.x EAR files, deployed with the JSP Precompile option, in Version 5, and you
choose not to follow the migration path, do one of the following:
« Select the Pre-compile JSP option in the administrative console Install New Application window.

See article [Installing a new application| for more information.
« Specify the -preCompileJSPs option when using the [Wsadmin] tool.
6. Import your classes if your application uses unnamed packages.

Section 8.2 of the JSP 1.2 specification states:

The JSP container creates a JSP page implementation class for each JSP page.
The name of the JSP page implementation class is implementation dependent.
The JSP page implementation object belongs to an implementation-dependent
named package. The package used may vary between one JSP and another, so
minimal assumptions should be made. The unnamed package should not be used
without an explicit import of the class.

For example, if myBeanClass is in the unnamed package, and you reference it in a jsp:useBean tag,
then you must explicitly import myBeanClass with the page directive import attribute, as shown in the
following example:

10 1BM™ WebSphere Application Server Network Deployment, Version 5.1: Applications

<%@page import="myBeanClass" %>

<jsp:useBean id="myBean" class="myBeanClass" scope="session"/>

In WebSphere Application Server Version 5, the JSP engine creates JSP page implementation classes
in the org.apache. jsp package. If a class in the unnamed package is not explicitly imported, then the
javac compiler assumes the class is in package org.apache. jsp, and the compilation fails.

Note: Avoid using the unnamed package altogether because of a change made in JDK 1.4 that will
affect the JSP 2.0 specification. WebSphere Application Server Version 5 ships with JDK 1.3.1, so this
is not an issue with the Version 5 JSP engine, but it will become an issue in future releases.

The Incompatibilities section of the version 1.4.Java 2 Platform, Standard Edition (J2SE)
documentation states:

The compiler now rejects import statements that import a type from the
unnamed namespace. Previous versions of the compiler would accept such
import declarations, even though they were arguably not allowed by the
language (because the type name appearing in the import clause is not in
scope). The specification is being clarified to state clearly that you
cannot have a simple name in an import statement, nor can you import from
the unnamed namespace.

To summarize, the syntax:

import SimpleName;
is no longer legal. Nor is the syntax
import ClassInUnnamedNamespace.Nested;
which would import a nested class from the unnamed namespace.

To fix such problems in your code, move all of the classes from the
unnamed namespace into a named namespace.

See "Resources for learning” for links to the J2SE, JSP, and Servlet specification documentation.

Default Application

The IBM WebSphere Application Server provides a default configuration that allows administrators to
easily verify that the Application Server is running. When the product is installed, it includes an application
server called server1 and an enterprise application called Default Application.

Default Application contains a Web Module called DefaultWebApplication and an enterprise bean JAR file
called Increment. The Default Application provides a number of servlets, described below. These servlets
are available in the product.

For additional code examples, visit the Samples Gallery. Learn how to locate and install the Samples
Gallery by viewing the [Samples Gallery| reference page.

The URL for accessing Samples is: http://localhost:9080/WSamples/
Snoop

Use the Snoop servlet to retrieve information about a servlet request. This servlet returns the following
information:

» Servlet initialization parameters

» Servlet context initialization parameters

* URL invocation request parameters

» Perferred client locale

» Context path

Chapter 2. Using Web applications 11

* User principal

* Request headers and their values

* Request parameter names and their values
* HTTPS protocol information

» Servlet request attributes and their values

* HTTP session information

» Session attributes and their values

The Snoop servlet includes security configuration so that when WebSphere Security is enabled, clients
must supply a user ID and password to execute the servlet.

The URL for the Snoop servlet is: http://Tocalhost:9080/snoop/.
HelloHTML

Use the HelloHTML pervasive servlet to exercise the PagelList support provided by the WebSphere Web
container. This servlet extends the PageListServlet, which provides APIs that allow servlets to call other
Web resources by name or, when using the Client Type detection support, by type.

You can invoke the Hello servlet from an HTML browser, speech client, or most Wireless Application
Protocol (WAP) enabled browsers using the URL: http://1ocalhost:9080/Hel1oHTML. jsp.

HitCount

Use the HitCount Demonstration application to demonstrate incrementing a counter using a variety of
methods, including:

* A servlet instance variable

* An HTTP session

* An enterprise bean

You can instruct the servlet to execute any of these methods within a transaction that you can ommit or
roll back. If the transaction is committed, the counter is incremented. If the transaction is rolled back, the
counter is not incremented.

The enterprise bean method uses a Container- Managed Persistence enterprise bean that persists the
counter value to a Cloudscape database. This enterprise bean is configured to use the Default
Datasource, which is set to the DefaultDB database.

When using the enterprise bean method, you can instruct the servlet to look up the enterprise bean, either
in the WebSphere global namespace, or in the namespace local to the application.

The URL for the HitCount application is: http://Tocalhost:9080/HitCount. jsp.

Servlets

Servlets are Java programs that use the Java Servlet Application Programming Interface (API). You must
package servlets in a Web ARchive (WAR) file or Web module for deployment to the application server.
Servlets run on a Java-enabled Web server and extend the capabilities of a Web server, similar to the way
applets run on a browser and extend the capabilities of a browser.

Servlets can support dynamic Web page content, provide database access, serve multiple clients at one
time, and filter data.

For the purposes of IBM WebSphere Application Server, discussions of servlets focus on Hyper Text
Transfer Protocol (HTTP) servlets, which serve Web-based clients.

12 BM WebSphere Application Server Network Deployment, Version 5.1: Applications

Developing servlets with WebSphere Application Server extensions

Several WebSphere Application Server extensions are provided for enhancing your servlets. This task
provides a summary of the extensions that you can utilize.

1. Review the supported specifications.
Create Java components, referring to the Servlet specifications from Sun Microsystems.
See [Resources for learning| for links to coding specifications and examples.

The application server includes its own packages that extend and add to the Java Servlet Application
Programming Interface (API). These extensions and additions make it easier to manage session
states, create personalized Web pages, generate better servlet error reports, and access databases.
Locate the Javadoc for the application server APIs in the product install_root\web\apidocs directory.
All the public WebSphere Application Server APIs are located in the com.ibm.websphere... packages.

2. Use your favorite integrated development environment (IDE), or a text editor, to develop or migrate
code artifacts that meet the specifications.

3. Test the code artifacts.

Assemble your code artifacts into a Web module using thgAssembly Toolkif| as a prerequisite to deploying
the code to the application server.

Application lifecycle listeners and events

Application lifecycle listeners and events, now part of the Servlet API, enable you to notify interested
listeners when servlet contexts and sessions change. For example, you can notify users when attributes
change and if sessions or servlet contexts are created or destroyed.

The lifecycle listeners give the application developer greater control over interactions with ServietContext
and HttpSession objects. Servlet context listeners manage resources at an application level. Session
listeners manage resources associated with a series of requests from a single client. Listeners are
available for lifecycle events and for attribute modification events. The listener developer creates a class
that implements the javax listener interface, corresponding to the desired listener functionality.

At application startup time, the container uses introspection to create an instance of your listener class and
registers it with the appropriate event generator.

When a servlet context is created, the contextInitialized method of your listener class is invoked, which
creates the database connection for the servlets in your application to use, if this context is for your
application.

When the servlet context is destroyed, your contextDestroyed method is invoked, which releases the
database connection, if this context is for your application.

Listener classes for servlet context and session changes

The following methods are defined as part of the javax.servlet.ServietContextListener interface:
+ void contextInitialized(ServietContextEvent) - Notification that the Web application is ready to
process requests.

Place code in this method to see if the created context is for your Web application and if it is, allocate a
database connection and store the connection in the servlet context.

» void contextDestroyed(ServletContextEvent) -Notification that the servlet context is about to shut
down.

Place code in this method to see if the created context is for your Web application and if it is, close the
database connection stored in the servlet context.

Two new listener interfaces are defined as part of the javax.servlet package:
» ServletContextListener

Chapter 2. Using Web applications 13

* ServletContextAttributeListener

One new filter interface is defined as part of the javax.servlet package:
 FilterChain interface - methods: doFilter()

Two new event classes are defined as part of the javax.servlet package:
» ServletContextEvent
» ServletContextAttributeEvent

Three new listener interfaces are defined as part of the javax.servlet.http package:
» HttpSessionListener

» HttpSessionAttributeListener

» HitpSessionActivationListener

One new event class is defined as part of the javax.servlet.http package:
* HitpSessionEvent

Example: com.ibm.websphere.DBConnectionListener.java
The following example shows how to create a servlet context listener:
package com.ibm.websphere;

import java.io.*;
import javax.servilet.=;

public class DBConnectionListener implements ServletContextListener
{

// implement the required context init method

void contextInitialized(ServletContextEvent sce)

{

}

// implement the required context destroy method
void contextDestroyed(ServletContextEvent sce)
{
}
}

Servlet filtering

Servlet filtering is an integral part of the Servlet 2.3 API. Servlet filtering provides a new type of object
called a filter that can transform a request or modify a response.

You can chain filters together so that a group of filters can act on the input and output of a specified
resource or group of resources.

Filters typically include logging filters, image conversion filters, encryption filters, and Multipurpose Internet
Mail Extensions (MIME) type filters (functionally equivalent to the servlet chaining). Although filters are not
servlets, their lifecycle is very similar.

Filters are handled in the following manner:
* The Web container determines whether it needs to construct a FilterChain containing the
LoggingFilter for the requested resource.

The FilterChain begins with the invocation of the LoggingFilter and ends with the invocation of the
requested resource.

» If other filters need to go in the chain, the Web container places them after the LoggingFilter and
before the requested resource.

* The Web container then instantiates and initializes the LoggingFilter (if it was not done previously)
and invokes its doFilter(FilterConfig) method to start the chain.

14 BMm WebSphere Application Server Network Deployment, Version 5.1: Applications

* The LoggingFilter preprocesses the request and response objects and then invokes the filter chain
doFilter(ServletRequest, ServietResponse) method.

This method passes the processing to the next resource in the chain (in this case, the requested
resource).

* Upon return from the filter chain doFilter(ServletRequest, ServietResponse) method, the
LoggingFilter performs post-processing on the request and response object before sending the
response back to the client.

Filter, FilterChain, FilterConfig classes for servlet filtering

The following interfaces are defined as part of the javax.servlet package:

* Filter interface - methods: doFilter(), getFilterConfig(), setFilterConfig()

» FilterChain interface - methods: doFilter()

 FilterConfig interface - methods: getFilterName(), getinitParameter(), getinitParameterNames(),
getServletContext()

The following classes are defined as part of the javax.servlet.http package:
+ HttpServletRequestWrapper - methods: See the [Servlet 2.3 Specification|
+ HttpServletResponseWrapper - methods: See the[Servlet 2.3 Specification|

Example: com.ibm.websphere.LoggingFilter.java
The following example shows how to implement a filter:
package com.ibm.websphere;

import java.io.x;
import javax.servlet.x;

public class LoggingFilter implements Filter

{
File _loggingFile = null;

// implement the required init method
public void init(FilterConfig fc)
{

// create the logging file

XXX 3

}

// implement the required doFilter method...this is where most of
the work is done
public void doFilter(ServlietRequest request,
ServletResponse response, FilterChain chain)
{
try
{
// add request info to the log file
synchronized(_loggingFile)
{

}

// pass the request on to the next resource in the chain
chain.doFilter(request, response);

XXX}

}
catch (Throwable t)

// handle problem...
}

// implement the required destroy method
public void destroy()

Chapter 2. Using Web applications

15

http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html

// make sure logging file is closed
_ToggingFile.close();
}
}

Configuring page list servlet client configurations

You can define PageListServlet configuration information in the IBM Web Extensions file. The IBM Web
Extensions file is created and stored in the Web Applications archive (WAR) file by theIAssemny ToolkilI.

To configure and implement page lists:

1. To configure page list information, use the Add Markup Language entry dialog of the Assembly Toolkit.
On the Servlets tab of a Web deployment descriptor editor, select a servlet and click Add under
WebSphere Extensions.

2. Add the callPage() method to your servlet to invoke a JavaServer Page (JSP) file in response to a
client request.

The PagelListServlet has a callPage() method that invokes a JSP file in response to the HTTP request
for a page in a page list. The callPage() method can be invoked in one of the following ways:
* callPage(String pageName, HttpServletRequest request, HttpServletResponse response)

where the method arguments are:
pageName
A page name defined in the PageListServlet configuration
request
The HttpServietRequest object
response
The HttpServietResponse object
* callPage(String miName, String pageName, HttpServletRequest request, HttpServletResponse
response)

where the method arguments are:
m1Name A markup language type
pageName
A page name defined in the PageListServlet configuration
request
The HttpServletRequest object
response
The HttpServietResponse object

3. Use the Pagelist Servlet client type detection support to determine the markup language type a calling
client requires for the response.

Client type detection support

In addition to providing the page list mapping capability, the PageL.istServlet also provides Client Type
Detection support. A servlet determines the markup language type that a calling client needs in the
response, using the configuration information in the client_types.xml file.

Client type detection support allows a servlet, extending the PageListServlet, to call an appropriate
JavaServer Pages (JSP) file. The servlet invokes the callPage() method, which calls a JSP file based on
the markup-language type of the request.

client_types.xml
The client_types.xml file provides client type detection support for servlets extending PageListServlet.

Using the configuration data in the client_types.xml file, servlets can determine the language type that
calling clients require for the response.

The client type detection support allows servlets to call appropriate JavaServer Pages (JSP) files with the
callPage() method. Servlets select JSP files based on the markup-language type of the request.

16 1BMm WebSphere Application Server Network Deployment, Version 5.1: Applications

Servlets must use the following version of the callPage() method to determine the markup language type

required by the client:

callPage(String mIName, String pageName, HttpServletRequest request,
HttpServletResponse response)

where the arguments are:

* mIName - a markup language type

+ pageName - a page name defined in the PageListServlet configuration
* request - the HttpServietRequest object

* response - the HitpServietResponse object

Review the|Extending PageListServIet| code example to see how the callPage() method is invoked by a
servlet.

In the example, the client type detection method, getMLTypeFromRequest (HttpServletRequestrequest),
provided by the PageListServlet, inspects the HttpServietRequest object request headers, and searches
for a match in the client_types.xml file.

The client type detection method does the following:

» Uses the input HitpServletRequest and the client_types.xml file, to check for a matching HTTP
request name and value.

* Returns the markup-language value configured for the <client-type> element, if a match is found.

If multiple matches are found, this method returns the markup-language for the first <client-type>
element for which a match is found.

» If no match is found, returns the value of the markup-language for the default page defined in the
PagelListServlet configuration.

Location
The client_types.xml file is located in the install_root/properties directory.

Usage notes
* Is this file read-only?

No
* |s this file updated by a product component?

No
 If so, what triggers its update?

This file is created and updated manually by users.
* How and when are the contents of this file used?

Servlets, extending PageListServlet, use this file to determine the language type that calling clients
require for the response.

Sample file entry

<?xml version="1.0" >

<IDOCTYPE clients [

<!ELEMENT client-type (description, markup-language,request-header+)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT markup-language (#PCDATA)>

<!ELEMENT request-header (name, value)>

<!ELEMENT clients (client-type+)>

<!ELEMENT name (#PCDATA)>

<IELEMENT value (#PCDATA)>]>

<clients>
<client-type>
<description>IBM Speech Client</description>
<markup-Tlanguage>VXML</markup-Tanguage>
<request-header>

Chapter 2. Using Web applications

17

<name>user-agent</name>
<value>IBM VoiceXML pre-release version 000303</value>
</request-header>
<request-header>
<name>accept</name>
<value>text/vxml</value>
</request-header>
</client-type>
<client-type>
<description>WML Browser</description>
<markup-Tlanguage>WML</markup-Tanguage>
<request-header>
<name>accept</name>
<value>text/x-wap.wml</value>
</request-header>
<request-header>
<name>accept</name>
<value>text/vnd.wap.xml</value>
</request-header>
</client-type>
</clients>

Example: Extending PageListServiet

The following example shows how a servlet extends the PageListServlet class and determines the
markup-language type required by the client. The servlet then uses the cal1Page() method to call an
appropriate JavaServer Pages (JSP) file. In this example, the JSP file that provides the the correct
markup-language for the response is Hello.page.

public class HelloPervasiveServlet extends PagelListServlet implements Serializable
{
/*
* doGet -- Process incoming HTTP GET requests
*/
public void doGet(HttpServletRequest request, HttpServietResponse response)
throws I0Exception, ServletException
{
// This is the name of the page to be called:
String pageName = "Hello.page";

// First check if the servlet was invoked with a queryString that contains
// a markup-language value.

// For example, if this is how the serviet is invoked:

// http://localhost/serviets/HeloPervasive?mlname=VXML

// then use the following method:

String miname= getMLNameFromRequest (request);

// 1f no markup Tanguage type is provided in the queryString,
// then try to determine the client
// Type from the request, and use the markup-language name configured in
// the client_types.xml file.
if (mIName == null)
{
mIName = getMLTypeFromRequest(request);

}
try

// Serve the request page.
callPage(mlName, pageName, request, response);

}

catch (Exception e)

handleError(miName, request, response, e);

}

18 1BM WebSphere Application Server Network Deployment, Version 5.1: Applications

autoRequestEncoding and autoResponseEncoding

Two new WebSphere Application Server extensions are available in Version 5, autoRequestEncoding and
autoResponseEncoding.

In WebSphere Application Server Version 5, the Web container no longer automatically sets request and
response encodings, and response content types. Programmers are expected to set these values using
available methods in the Servlet 2.3 Specification. If programmers choose not to use the character
encoding methods, they can specify the autoRequestEncoding and autoResponseEncoding extensions,
which enable the application server to set the encoding values and content type.

The values of the autoRequestEncoding and autoResponseEncoding extensions are either true or false.
The default value for both extensions is false. If the value is false for both autoRequestEncoding and
autoResponseEncoding, then the request and response character encoding is set to the Servlet 2.3
Specification default, which is 1ISO-8859-1. Also, If the value is set to false for a response, the Web
container cannot set a response content type.

Use the |Assembly Toolkit| to change the default values for the autoRequestEncoding and
autoResponseEncoding extensions.

Review the autoRequestEncoding and autoResponseEncoding encoding examples for a description of Web
container behavior when these values are set to true.

Examples: autoRequestEncoding and autoResponseEncoding
encoding examples

The default value of the autoRequestEncoding and autoResponseEncoding extensions is false, which
means that both the request and response character encoding is set to the Servlet 2.3 Specification
default of ISO-8859-1. Different character encodings are possible if the client defines character encoding in
the request header, or if the code includes the setCharacterEncoding(String encoding) method. Also, If
the value is set to false for a response, the Web container cannot set a response content type.

If the autoRequestEncoding value is set to true, and the client did not specify character encoding in the
request header, and the code does not include the setCharacterEncoding(String encoding) method, the
Web container tries to determine the correct character encoding for the request parameters and data.

The Web container performs each step in the following list until a match is found:
» Looks at the character set (charset) in the Content-Type header.

» Attempts to map the servers locale to a character set using defined properties.
» Attempts to use the DEFAULT _CLIENT_ENCODING system property, if one is set.

» Uses the ISO-8859-1 character encoding as the default.

If the autoResponsetEncoding value is set to true, and the client did not specify character encoding in the

request header, and the code does not include the setCharacterEncoding(String encoding) method, the

Web container does the following:

» Attempts to determine the response content type and character encoding from information in the
request header.

» Uses the ISO-8859-1 character encoding as the default.

JavaServer Pages files

JavaServer Pages (JSP) files are application components coded to the Sun Microsystems JavaServer
Pages (JSP) Specification. JSP files enable the separation of the Hypertext Markup Language (HTML)
code from the business logic in Web pages so that HTML programmers and Java programmers can more
easily collaborate in creating and maintaining pages.

Chapter 2. Using Web applications 19

The IBM extensions to the JSP Specification include JSP tags that resemble HTML tags. These JSP tags
make it easy for HTML authors to add the power of Java technology to Web pages, without being experts
in Java programming.

JSP files support a division of roles:

HTML authors
Develop JSP files that access databases and reusable Java components, such as servlets and
beans.

Java programmers
Create the reusable Java components and provide the HTML authors with the component names
and attributes.

Database administrators
Provide the HTML authors with the name of the database access and table information.

Developing JavaServer Pages files with WebSphere extensions

Several IBM WebSphere extensions are provided for enhancing your JavaServer Pages (JSP) files. This
task provides a summary of the extensions that you can utilize.

1. Review the supported specifications.
Create Java components, referring to the JSP specifications from Sun Microsystems.
See [Resources for learning|for links to coding specifications and examples.

WebSphere Application Server Version 3.5 added IBM extensions to the base Application Programming
Interfaces (APIs). Since the JavaServer Pages (JSP) 1.1 and JSP 1.2 Specifications are backward
compatible to the JSP 1.0 Specifications, you can invoke the APIs with the IBM extensions without
modification.

The extensions belong to these categories:

Syntax for variable data
Put variable fields in JSP files and have servlets and beans dynamically replace the variables
with values from a database when the JSP output is returned to the browser.

Syntax for database access
Add a database connection to a Web page and then use that connection to query or update
the database. You can provide the user ID and password for the database connection at
request time, or you can hard code the user ID and password within the JSP file.

2. Use your favorite integrated development environment (IDE), or a text editor, to develop or migrate
code artifacts that meet the specifications.

3. Test the code artifacts.
4. (Optional) [Batch compile your JSP filed if necessary.

Tag libraries

Java ServerPages (JSP) tag libraries contain classes for common tasks such as processing forms and
accessing databases from JSP files.

Tag libraries encapsulate, as simple tags, core functionality common to many Web applications. The Java
Standard Tag Library (JSTL) supports common programming tasks such as iteration and conditional
processing, and provides tags for:

* manipulating XML documents

* supporting internationalization

 using Structured Query Language (SQL)

Tag libraries also introduce the concept of an expression language to simplify page development, and
include a version of the JSP expression language.

A tag library has two parts - a Tag Library Descriptor (TLD) file and a JAR file.

20 1BM WebSphere Application Server Network Deployment, Version 5.1: Applications

tsx:dbconnect tag JavaServer Pages syntax

Use the <tsx:dbconnect> tag to specify information needed to make a connection to a Java Database
Connectivity (JDBC) or an Open Database Connectivity (ODBC) database.

The <tsx:dbconnect> syntax does not establish the connection. Use the <tsx:dbquery> and <tsx:dbmodify>
syntax instead to reference a <tsx:dbconnect> tag in the same JavaServer Pages (JSP) file to establish
the connection.

When the JSP file compiles into a servlet, the Java processor adds the Java coding for the
<tsx:dbconnect> syntax to the servlet service() method, which means a new database connection is
created for each request for the JSP file.

This section describes the syntax of the <tsx:dbconnect> tag.

<tsx:dbconnect id="connection_id"
userid="db_user" passwd="user_password"
url="jdbc:subprotocol :database"
driver="database_driver_name"
jndiname="JNDI_context/logical_name">
</tsx:dbconnect>

where:

+ id
Represents a required identifier. The scope is the JSP file. This identifier is referenced by the
connection attribute of a <tsx:dbquery> tag.

* userid

Represents an optional attribute that specifies a valid user ID for the database that you want to access.
Specify this attribute to add the attribute and its value to the request object.

Although the userid attribute is optional, you must provide the user ID. See |<tsx:userid> and
for an alternative to hard coding this information in the JSP file.
* passwd
Represents an optional attribute that specifies the user password for the userid attribute. (This attribute

is not optional if the userid attribute is specified.) If you specify this attribute, the attribute and its value
are added to the request object.

Although the passwd attribute is optional, you must provide the password. See <tsx:userid> and|
[<tsx:passwd>]| for an alternative to hard coding this attribute in the JSP file.
* url and driver

Respresents a required attribute if you want to establish a database connection. You must provide the
URL and driver.

The application server supports connection to JDBC databases and ODBC databases.

— For a JDBC database, the URL consists of the following colon-separated elements: jdbc, the
subprotocol name, and the name of the database to access. An example for a connection to the
Sample database included with IBM DB2 is:
url="jdbc:db2:sampTle"
driver="COM.ibm.db2.jdbc.app.DB2Driver"

— For an ODBC database, use the Sun JDBC-to-ODBC bridge driver included in their Java2 Software
Developers Kit (SDK) or another vendor's ODBC driver.

The url attribute specifies the location of the database. The driver attribute specifies the name of the
driver to use in establishing the database connection.

If the database is an ODBC database, you can use an ODBC driver or the Sun JDBC-to-ODBC
bridge. If you want to use an ODBC driver, refer to the driver documentation for instructions on
specifying the database location with the url attribute and the driver name.

If you use the bridge, the url syntax is jdbc:odbc:database. An example follows:

url="jdbc:odbc:autos"
driver="sun.jdbc.odbc.JdbcOdbcDriver"

Chapter 2. Using Web applications 21

Note: To enable the application server to access the ODBC database, use the ODBC Data Source
Administrator to add the ODBC data source to the System DSN configuration. To access the ODBC
Administrator, click the ODBC icon on the Windows NT Control Panel.
* jndiname
Represents an optional attribute that identifies a valid context in the application server Java Naming and
Directory Interface (JNDI) naming context and the logical name of the data source in that context. The
Web administrator configures the context using an administrative client such as the WebSphere
Administrative Console.

If you specify the jndiname attribute, the JSP processor ignores the driver and url attributes on the
<tsx:dbconnect> tag.

An empty element (such as <url></url>) is valid.

dbquery tag JavaServer Pages syntax

Use the <tsx:dbquery> tag to establish a connection to a database, submit database queries, and return
the results set.

The <tsx:dbquery> tag does the following:

1. References a <tsx:dbconnect> tag in the same JavaServer Pages (JSP) file and uses the information
the tag provides to determine the database URL and driver. You can also obtain the user ID and
password from the <tsx:dbconnect> tag if those values are provided in the <tsx:dbconnect> tag.

2. Establishes a new connection

3. Retrieves and caches data in the results object.

4. Closes the connection and releases the connection resource.

This section describes the syntax of the <tsx:dbquery> tag.

<%--SELECT commands and (optional) JSP syntax can be placed within the tsx:dbquery.--%>
<%--Any other syntax, including HTML comments, are not valid. --%>

<tsx:dbquery id="query_id" connection="connection_id" limit="value" >

</tsx:dbquery>

where:

* id
Represents the identifier of this query. The scope is the JSP file. Use id to reference the query. For
example, from the <tsx:getProperty> tag, use id to display the query results.

The id is a tsx reference to the bean and can be used to retrieve the bean from the page contect. For
example, if id is named mySingleDBBean, instead of using:
— if (mySingleDBBean.getValue("UISEAM",0).startsWith("N"))

use:

— com.ibm.ws.webcontainer.jsp.tsx.db.QueryResults bean =
(com.ibm.ws.webcontainer.jsp.tsx.db.QueryResults)pageContext. findAttribute("mySingleDBBean”); if
(bean.getValue("UISEAM”,0).startsWith("N")). . .

The bean properties are dynamic and the property names are the names of the columns in the results
set. If you want different column names, use the SQL keyword for specifying an alias on the SELECT
command. In the following example, the database table contains columns named FNAME and LNAME,
but the SELECT statement uses the AS keyword to map those column names to FirstName and
LastName in the results set:
Select FNAME, LNAME AS FirstName, LastName from Employee where FNAME='Jim'

* connection

Represents the identifier of a <tsx:dbconnect> tag in this JSP file. The <tsx:dbconnect> tag provides the
database URL, driver name, and optionally, the user ID and password for the connection.
o limit

22 BM WebSphere Application Server Network Deployment, Version 5.1: Applications

Represents an optional attribute that constrains the maximum number of records returned by a query. If
this attribute is not specified, no limit is used. In such a case, the effective limit is determined by the
number of records and the system caching capability.

* SELECT command and JSP syntax

Represents the only valid SQL command, SELECT. The <tsx:dbquery> tag must return a results set.
Refer to your database documentation for information about the SELECT command. See other articles
in this section for a description of JSP syntax for variable data and inline Java code.

dbmodify tag JavaServer Pages syntax

The <tsx:dbmodify> tag establishes a connection to a database and then adds records to a database
table.

The <tsx:dbmodify> tag does the following:
1. References a <tsx:dbconnect> tag in the same JavaServer Pages (JSP) file and uses the information
provided by that tag to determine the database URL and driver.

Note: You can also obtain the user ID and password from the <tsx:dbconnect> tag if those values are
provided in the <tsx:dbconnect> tag.

2. Establishes a new connection.

3. Updates a table in the database.

4. Closes the connection and releases the connection resource.

This section describes the syntax of the <tsx:dbmodify> tag.

<%-- Any valid database update commands can be placed within the DBMODIFY tag. -->
<%-- Any other syntax, including HTML comments, are not valid. -->

<tsx:dbmodify connection="connection_id">

</tsx:dbmodify>

where:
e connection

Represents the identifier of a <tsx:dbconnect> tag in this JSP file. The <tsx:dbconnect> tag provides the
database URL, driver name, and (optionally) the user ID and password for the connection.
* Database commands

Represents valid database commands. Refer to your database documentation for details

tsx:getProperty tag JavaServer Pages syntax and examples
The <tsx:getProperty> tag gets the value of a bean to display in a JavaServer Pages (JSP) file.

This IBM extension of the Sun JSP <jsp:getProperty> tag implements all of the <jsp:getProperty> function
and adds the ability to introspect a database bean created using the IBM extension <tsx:dbquery> or
<tsx:dbmodify>.

Note: You cannot assign the value from this tag to a variable. The value, generated as output from this
tag, displays in the browser window.

This section describes the syntax of the <tsx:getProperty> tag:

<tsx:getProperty name="bean_name"
property="property name" />

where:

* name
Represents the name of the bean declared by the id attribute of a <tsx:dbquery> syntax within the JSP
file. See |[<tsx:dbquery>|for an explanation. The value of this attribute is case-sensitive.

* property

Chapter 2. Using Web applications 23

Represents the property of the bean to access for substitution. The value of the attribute is
case-sensitive and is the locale-independent name of the property.

Tag example:

<tsx:getProperty name="userProfile" property="username" />
<tsx:getProperty name="request" property=request.getParameter("corporation") />

In most cases, the value of the property attribute is just the property name. However, to access the
request bean or to access a property of a property (sub property), specify the full form of the property
attribute. The full form also gives you the option to specify an index for indexed properties. You can specify
the optional index as a constant (such as 2), or an index like the one described in the tag.
Some examples using the full form of the property attribute follow:

<tsx:getProperty name="staffQuery" property=address(currentAddressIndex) />

<tsx:getProperty name="shoppingCart" property=items(4).price />

<tsx:getProperty name="fooBean" property=foo(2).bat(3).boo.far />

tsx:userid and tsx:passwd tag JavaServer Pages syntax

With the <tsx:userid> and <tsx:passwd> tags, you do not have to hard code a user ID and password in the
<tsx:dbconnect> tag.

Use the <tsx:userid> and <tsx:passwd> tags to accept user input for the values and then add that data to
the request object. You can access the request object with a JavaServer Pages (JSP) file, such as the
JSPEmployee.jsp example that requests the database connection.

You must use <tsx:userid> and <tsx:passwd> tags within a <tsx:dbconnect> tag.

This section describes the syntax of the <tsx:userid> and <tsx:passwd> tags.

<tsx:dbconnect id="connection_id"
<userid>
<tsx:getProperty name="request" property=request.getParameter("userid") />
</userid>
<passwd>
<tsx:getProperty name="request" property=request.getParameter("passwd") />
</passwd>
url="protocol :database_name:database table"
driver="JDBC_driver_name">
</tsx:dbconnect>

where:
* <tsx:getProperty>

Represents the syntax as a mechanism for embedding variable data.
* userid

Represents a reference to the request parameter that contains the user ID. You must add the parameter
to the request object that passes to this JSP file. You can set the attribute and its value in the request
object, using an HTML form or a URL query string to pass the user-specified request parameters.

* passwd

Represents a reference to the request parameter that contains the password. Add the parameter to the
request object that passes to this JSP file. You can set the attribute and its value in the request object,
using an HTML form or a URL query string, to pass user-specified values.

tsx:repeat tag JavaServer Pages syntax
The <tsx:getProperty> tag repeats a block of HTML tagging.

Use the <tsx:repeat> syntax to iterate over a database query results set. The <tsx:repeat> syntax iterates
from the start value to the end value until one of the following conditions is met:
* The end value is reached.

24 BM WebSphere Application Server Network Deployment, Version 5.1: Applications

* An exception is thrown.

The output of a <tsx:repeat> block is buffered until the block completes. If an exception is thrown before a
block completes, no output is written for that block.

This section describes the syntax of the <tsx:repeat> tag:

<tsx:repeat index=name start="starting_index" end="ending_index">
</tsx:repeat>

where:
¢ index

Represents an optional name used to identify the index of this repeat block. The value is case-sensitive
and its scope is the JSP file.
» start

Represents an optional starting index value for this repeat block. The default is 0.
* end

Represents an optional ending index value for this repeat block. The maximum value is 2,147,483, 647.
If the value of the end attribute is less than the value of the start attribute, the end attribute is ignored.

Example: Combining tsx:repeat and tsx:getProperty JavaServer Pages
tags
The following code snippet shows you how to code these tags:

<tsx:repeat>

<tr>
<td><tsx:getProperty name="empgs" property="EMPNO" />
<tsx:getProperty name="empgs" property="FIRSTNME" />
<tsx:getProperty name="empgs" property="WORKDEPT" />
<tsx:getProperty name="empgs" property="EDLEVEL" />
</td>

</tr>

</tsx:repeat>

Example: tsx:dbmodify tag syntax

In the following example, a new employee record is added to a database. The values of the fields are
based on user input from this JavaServer Pages (JSP) file and referenced in the database commands
using the <tsx:getProperty> tag.
<tsx:dbmodify connection="conn" >
insert into EMPLOYEE
(EMPNO, FIRSTNME ,MIDINIT,LASTNAME ,WORKDEPT,EDLEVEL)
values
('<tsx:getProperty name="request" property=request.getParameter("EMPNO") />',
'<tsx:getProperty name="request" property=request.getParameter("FIRSTNME") />',
'<tsx:getProperty name="request" property=request.getParameter("MIDINIT") />',
'<tsx:getProperty name="request" property=request.getParameter("LASTNAME") />',
'<tsx:getProperty name="request" property=request.getParameter("WORKDEPT") />',
<tsx:getProperty name="request" property=request.getParameter("EDLEVEL") />)
</tsx:dbmodify>

Example: Using tsx:repeat JavaServer Pages tag to iterate over a
results set

The <tsx:repeat> tag iterates over a results set. The results set is contained within a bean. The bean can
be a static bean, for example, a bean created by using the IBM WebSphere Studio database wizard, or a
dynamically generated bean, for example, a bean generated by the <tsx:dbquery> syntax. The following
table is a graphic representation of the contents of a bean called, myBean:

Chapter 2. Using Web applications 25

coll col2 col3
row0 friends Romans countrymen
row1 bacon lettuce tomato
row2 May June July

Some observations about the bean:

* The column names in the database table become the property names of the bean. The <tsx:dbquery>
section describes a technique for mapping the column names to different property names.

* The bean properties are indexed. For example, myBean.get (Col11(row2)) returns May.

* The query results are in the rows. The <tsx:repeat> tag iterates over the rows, beginning at the start

row.

The following table compares using the <tsx:repeat> tag to iterate over a static bean, versus a dynamically

generated bean:

Static Bean Example

<tsx:repeat> Bean Example

myBean.class
// Code to get a connection

// Code to get the data
Select * from myTable;

// Code to close the connection

JSP file

<tsx:repeat index=abc>
<tsx:getProperty name="myBean"
property="coll(abc)" />
</tsx:repeat>

Notes:

* The bean (myBean.class) is a static bean.

* The method to access the bean properties is
myBean.get(property(index)).

* You can omit the property index, in which case the
index of the enclosing <tsx:repeat> tag is used. You
can also omit the index on the <tsx:repeat> tag.

* The <tsx:repeat> tag iterates over the bean properties
row by row, beginning with the start row.

JSP file

<tsx:dbconnect id="conn"
userid="alice"passwd="test"
url="jdbc:db2:sample"
driver="COM.ibm.db2.jdbc.app.DB2Driver">
</tsx:dbconnect >

<tsx:dbquery id="dynamic"
connection="conn" >
Select * from myTable;

</tsx:dbquery>

<tsx:repeat index=abc>
<tsx:getProperty name="dynamic"
property="coll(abc)" />
</tsx:repeat>

Notes:

* The bean (dynamic) is generated by the <tsx:dbquery>
tag and does not exist until the syntax executes.

* The method to access the bean properties is
dynamic.getValue("property’, index).

* You can omit the property index, in which case the
index of the enclosing <tsx:repeat> tag is used. You
can also omit the index on the <tsx:repeat> tag.

» The <tsx:repeat> tag syntax iterates over the bean
properties row by row, beginning with the start row.

Implicit and explicit indexing

Examples 1, 2, and 3 show how to use the <tsx:repeat> tag. The examples produce the same output if all
indexed properties have 300 or fewer elements. If there are more than 300 elements, Examples 1 and 2
display all elements, while Example 3 shows only the first 300 elements.

Example 1 shows implicit indexing with the default start and default end index. The bean with the smallest
number of indexed properties restricts the number of times the loop repeats.

<table>

<tsx:repeat>
<tr><td><tsx:getProperty name="servicelocationsQuery" property="city" />
</tr></td>
<tr><td><tsx:getProperty name="servicelocationsQuery" property="address" />

26 1BM WebSphere Application Server Network Deployment, Version 5.1: Applications

</tr></td>
<tr><td><tsx:getProperty name="servicelLocationsQuery" property="telephone" />
</tr></td>

</tsx:repeat>

</table>

Example 2 shows indexing, starting index, and ending index:

<table>
<tsx:repeat index=myIndex start=0 end=2147483647>
<tr><td><tsx:getProperty name="servicelLocationsQuery" property=city(myIndex) />
</tr></td>
<tr><td><tsx:getProperty name="servicelLocationsQuery" property=address(myIndex) />
</tr></td>
<tr><td><tsx:getProperty name="servicelLocationsQuery" property=telephone(myIndex) />
</tr></td>
</tsx:repeat>
</table>

Example 3 shows explicit indexing and ending index with implicit starting index. Although the index
attribute is specified, you can still implicitly index the indexed property city because the (myIndex) tag is
not required.
<table>
<tsx:repeat index=myIndex end=299>
<tr><td><tsx:getProperty name="servicelLocationsQuery" property="city" /t>
</tr></td>
<tr><td><tsx:getProperty name="servicelLocationsQuery" property="address(myIndex)" />
</tr></td>
<tr><td><tsx:getProperty name="servicelLocationsQuery" property="telephone(myIndex)" />
</tr></td>
</tsx:repeat>
</table>

Nesting <tsx:repeat> blocks

You can nest <tsx:repeat> blocks. Each block is separately indexed. This capability is useful for
interleaving properties on two beans, or properties that have subproperties. In the example, two
<tsx:repeat> blocks are nested to display the list of songs on each compact disc in the user’s shopping
cart.
<tsx:repeat index=cdindex>
<hl><tsx:getProperty name="shoppingCart" property=cds.title /></hl>
<table>
<tsx:repeat>
<tr><td><tsx:getProperty name="shoppingCart" property=cds(cdindex).playlist />
</td></tr>
</tsx:repeat>
</table>
</tsx:repeat>

JspBatchCompiler tool

As an IBM enhancement to JavaServer Pages support, IBM WebSphere Application Server provides a
batch JSP compiler. Use this function to batch compile your JSP files and thereby enable faster responses
to the initial client requests for the JSP files on your production Web server.

Batch compiling makes the first request for a JSP file much faster because the JSP file is translated and
compiled into a servlet. Batch compiling is also useful as a fast way to resynchronize all of the JSP files
for an application.

To use the JSP batch compiler for JSP files, enter the following command on a single line at an operating

system command prompt:

Chapter 2. Using Web applications 27

JspBatchCompiler -enterpriseapp.name <name>
[-webmodule.name <name>]
[-cell.name <name>]
[-node.name <name>]
[-server.name <name>]
[-filename <jsp name>]
[-keepgenerated <true|false>]
[-verbose <true|false>]
[-deprecation <true|false>]

If the names specified for these arguments are comprised of two or more words separated by spaces, you
must add quotation marks around the names.

where:
* enterpriseapp.name

Represents the name of the enterprise application you want to compile.
* webmodule.name

Represents the name of the specific Web module that you want to compile. If this argument is not set,
all Web modules in the enterprise application are compiled.
» cell.name

Represents the name of the cell in which the application is deployed. The default is
BaseApplicationServerCell.
* node.name

Represents the name of the node in which the application is deployed. The default is DefaultNode.
* server.name

Represents the name of the server in which the application is deployed. The default is serverl.
» filename

Represents the name of a single JSP file that you want to compile. If this argument is not set, all files in
the Web module are compiled. Alternatively, if filename is set to the name of a directory, only the JSP
files in that directory are compiled.

» keepgenerated

Represents the option to save or erase the generated files.

If set to yes, WebSphere Application Server saves the generated . java files used for compilation on
your server. By default, this argument is set to no and the .java files are erased after the class files
have compiled.

* verbose

Indicates the compiler should generate verbose output while compiling the generated sources.
* deprecation

Indicates the compiler should generate deprecation warnings while compiling the generated sources.

Bean Scripting Framework

The Bean Scripting Framework (BSF) enables you to use scripting language functions in your Java
server-side applications. This framework also extends scripting languages so that you can use existing
Java classes and Java beans in the JavaScript language. Support in the JSP Engine for the Bean
Scripting Framework is deprecated with WebSphere Application Server 5.1.

With BSF, you can write scripts that create, manipulate and access values from Java objects, or you can
write Java programs that evaluate and access results from scripts.

WebSphere Application Server provides the Bean Scripting Framework, which consists of a BSF manager,
a BSF engine, and a scripting engine.

28 1BM WebSphere Application Server Network Deployment, Version 5.1: Applications

BSF provides an access mechanism to Java objects for the scripting languages it supports, so that both
the scripting language and thedava code can access code exclusive functions. The access mechanism is
implemented through a registry of objects maintained by BSF.

BSF in WebSphere Application Server supports the Rhino ECMAScript.

The "Resources for Learning” article provides external BSF links that document future supported
languages.

Developing Web applications

Design a Web application and the components that it needs.
For general Web application design information, see "Resources for learning.”

There are two basic approaches to selecting tools for developing Web applications:

* You can use one of the available integrated development environments (IDEs). IDE tools automatically
generate significant parts of the servlet and JavaServer Pages (JSP) code, and Hypertext Markup
Language (HTML) files. They also contain integrated tools for packaging and testing the Web
application components. The IBM WebSphere Application Developer product is the recommended IDE.
For more information, see the documentation for that product.

 |If you decide to develop Web components without an IDE, you need at least an ASCII text editor. You
can also use tools available in the Java Software Development Kit (SDK) and in this product to
assemble, test, and deploy the Web application components.

The following steps support the second approach, development without an IDE.
1. If necessary, |migrate any pre-existing code|to the required version of the servlet and JSP specification.

2. Write and compile the components of the Web application. To access classes that were extended,
compile your code using the -classpath option on the javac compiler. This option allows you to
reference the j2ee.jar file in the product <install root>\1ib directory.

For example, to compile a servlet running on the Windows NT version of WebSphere Application
Server, specify:
javac -classpath D:\Program Files\WebSphere\AppServer\lib\j2ee.jar MyServlet.java

To compile that same servlet on the Windows NT version of WebSphere Network Deployment, specify:
javac -classpath D:\Program Files\WebSphere\DeploymentManager\1ib\j2ee.jar MyServlet.java
3. (Optional) Disable JavaServer Pages (JSP) runtime compilation, if necessary.

[Assemble the application components in one or more Web modules)

Disabling JavaServer Pages run-time compilation

By default, the JavaServer Pages (JSP) engine translates a requested JSP file, compiles the . java file,
and loads the compiled servlet into the run-time environment. In previous releases of WebSphere
Application Server, if a .class file did not exist, the JSP engine always translated and compiled the JSP
file. You had to turn off the Web applications reload capability to prevent additional translations and
recompiles of the file.

With Version 5.0.1 of WebSphere Application Server, you can now change the JSP engine default
behavior by indicating a JSP file should never be translated or compiled at run time, even when a .class
file does not exist.

If run-time compilation is disabled, you must precompile the JSP files, which provides the following
advantages:

Chapter 2. Using Web applications 29

* Reduces compilation related disk operations.

* Minimizes disk storage requirements necessary for handling temporary .java and .class files generated
during a run-time compilation.

» Forces you to verify that a JSP file compiled successfully before deploying and installing the application
in WebSphere Application Server.

You can disable run-time JSP file compilation on a global or an individual Web application basis:
» To disable the translation and compilation of JSP files for all Web applications, set the Web container
Custom property disabledspRuntimeCompilation to true.

Set this property through the Web container Custom properties panel in the administrative console. To
view this administrative console page, click:

Servers > Application Servers > server_name > Web Container >
Custom Properties > property name

Valid values for this setting are true or false. If this property is set to true, then translation and
compilation of the JSP files is disabled at run time for all Web applications.

+ To disable the translation and compilation of JSP files for a specific Web application, set the JSP engine
initialization parameter disabledspRuntimeCompilation to true. This setting, if enabled, determines the
run-time behavior of the JSP engine and overrides the Web container custom property setting.

Set this parameter through the JavaServer Pages attribute assembly settings panel in the
[Chapter 18, “Assembling applications with the Assembly Toolkit,” on page 879

Web Modules > component_instance > Assembly Property Extensions

Valid values for this setting are true or false. If this parameter is set to true, then, for that specific Web
application, translation and compilation of the JSP files is disabled at run time, and the JSP engine only
loads precompiled files.

 If neither the Web container custom property nor the JSP attribute assembly parameter is set, the first
request for a JSP file results in the translation and compilation of the JSP file when the .class file does
not exist. Subsequent requests for the file also result in compilations and translations, but only if the
following conditions are met:
— Compilations and translations are required.
— Reloading is enabled for the Web module.
— Reload interval is exceeded.

If you disable run-time compilation and a request arrives for a JSP file that does not have a matching
.class file, the JSP engine returns HTTP error 501 (Not implemented) to the browser. If the JSP file does
not exist, the JSP engine returns HTTP error 404 (File not found) to the browser. In both cases, an
exception is written to the System Out (SYSOUT) and First Failure Data Capture (FFDC) logs. If a JSP file
has a matching .class file but that file is out of date, the JSP engine still loads the .class file into
memory.

Perform the following steps to determine whether the disableJspRuntimeCompilation option is enabled in

WebSphere Application Server:

1. Enable the Diagnostic Trace Service and set the trace specification to
com.ibm.ws.webcontainer.jsp.serviet.*=all=enabled.

2. Request a JSP file.

3. Locate the string, disableJspRuntimeCompilation:true, in the trace.log file.

4. Ensure the jspUri: entry matches the requested JSP file.

If both the disabledspRuntimeCompilation:true string and the matching jspUri: entry appear in the trace,
the disabTedspRuntimeCompilation setting is enabled for the Web application.

30 BM™ WebSphere Application Server Network Deployment, Version 5.1: Applications

Example: Converting JavaScript source to the Bean Scripting
Framework

JavaScript code is one of the most popular languages of Web developers. This language supports the
following base objects, plus additional objects from the Document Object Model:

+ array

» date

* math

* number

* string

Server-side JavaScript code supports the same base objects, and additional objects that support user
access to databases, file systems and e-mail systems.

Like client-side JavaScript code, server-side JavaScript code is also platform, browser, and language
independent.

You can convert server-side JavaScript applications to the Bean Scripting Framework. This article
describes how to perform this conversion.

Server-side JavaScript source code

Suppose you have the following server-side JavaScript application:

<html>

<head>

<title>Hello World server-side JavaScript example</title>
</head>

<body>

</body>

</html>

<server>
function writePage()

write("<center>Hello World</center>");
</server>

Converting server-side JavaScript source code to the Bean Scripting Framework (BSF)

Make the following changes to the JavaScript source code to enable BSF:

<%@ page language="javascript" %>

<htm1>

<head>

<title>Hello World server-side BSF/JavaScript example</title>
</head>

<body>

<hbr>

</body>

</html>

<

o

out.printin("<center>Hello World</center>");
>

N

Review the other BSF reference articles for deployment information and additional programming examples.

Chapter 2. Using Web applications 31

Scenario: Creating a Bean Scripting Framework application

Scenario description

Programming skills in JavaScript code are more prevalent than programming skills using JavaServer
Pages (JSP) tags. Using the Bean Scripting Framework, JavaScript programmers can gradually introduce
JSP tags in their JavaScript applications without completely rewriting the source code. The BSF method
not only reduces the potential of programming errors, but also provides a painless way to learn a new
technology.

The following scenario illustrates how to implement a BSF application using JavaScript within JSP tags.
Developing the BSF application

At ABC elementary school, John Doe teaches third grade mathematics. He wants to help his students
memorize their multiplication tables, and thinks a small Web-based quiz could help meet his objective.
However, John Doe only knows JavaScript.

Using the Bean Scripting Framework to help leverage his JavaScript skills, John Doe creates two JSP
files, multiplication_test.jsp and multiplication_scoring.jsp.

In the multiplication_test.jsp file, John Doe uses both client-side and server-side JavaScript code to
generate a test of 100 random multiplication questions, displayed using a three minute timer. He then
writes the muTtiplication_scoring.jsp file to read the data submitted by the multiplication_test.jsp file
and to generate the scoring results.

John Doe creates the following two files:

multiplication_test.jsp:

<htm1>

<head>

<title>Multiplication Practice Test</title>
<script language="javascript">

var countMin=3;

var countSec=0;

function updateDisplay (min, sec) {

var disp;
if (min <= 9) disp = " 0"
else disp = " "

disp += (min + ":");
if (sec <= 9) disp += ("0" + sec);
else disp += sec;
return(disp);
1

function countDown() {

countSec--;

if (countSec == -1) {
countSec = 59;
countMin--;

1
document.multtest.counter.value = updateDisplay(countMin, countSec);
if((countMin == 0) &&(countSec == 0)) document.multtest.submit();
else var down = setTimeout("countDown();", 1000);

1

</script>

</head>

<body bgcolor="#ffffff" onLoad="countDown();">

<%@ page Tanguage="javascript" %>

<h1>Three Minute Multiplication Drill</hl>

<hpr>

<h2>Remember: this is an opportunity to excel!</h2>

<p>

32 BM WebSphere Application Server Network Deployment, Version 5.1: Applications

<form method="POST" name="multtest" action="multiplication_scoring.jsp">

<div align="center">

<table>

<tr>

<td>

<h3>Time left:

<input type="text" name="counter" size="9" value="03:00" readonly>

</h3>

</td>

<td>

<input type="submit" value="Submit for scoring!">

</td>

</tr>

</table>

<table border="1">

<%

var newrow = 0;

var g_num = 0;

function addQuestion(numl, num2) {
if (newrow == 0) out.printin("<tr>");
out.printin("<td>");

out.printin(numl + " x " + num2 + " = ");
out.printin("</td><td>");
out.print("<input name=\"" + gq_num + "|" + numl + ":" + num2 + "\" ");

out.printTn("type=\"text\" size=\"10\">");
out.printin("</td>");
if (newrow == 3) {
out.printin("</tr>");
newrow = 0;
}
else newrowt+;
q_num++;

for (var i = 0; i < 100; i++) {
var randl = Math.ceil(Math.random() * 12);
var rand2 = Math.ceil(Math.random() * 12);
addQuestion(randl, rand2);

}

%>
</table>
</div>
</form>
</body>
</html>

multiplication_scoring.jsp:

<html>

<head>

<title>Multiplication Practice Test Results</title>

</head>

<body bgcolor="#ffffff">

<%@ page Tanguage="javascript" %>

<hl>Multiplication Drill Score</hl>

<hr>

<div align="center">

<table border="1">

<tr><th>Problem</th><th>Correct Answer</th><th>Your Answer</th></tr>

<%

var total_score = 0;

function score (current, posl, pos2) {
var multiplier = current.substring(posl + 1, pos2);
var multiplicand = current.substring(pos2 + 1, current.length());
var your_product = request.getParameterValues(current)[0];
var true product = multiplier * multiplicand;
out.printTn("<tr>");
out.printin("<td>" + multiplier + " x " + multiplicand + " = </td>");
out.printin("<td>" + true_product + "</td>");
if (your_product == true_product) {

Chapter 2. Using Web applications

33

total_score++;
out.print("<td bgcolor=\"\#00ffo0\">");

else {
out.print("<td bgcolor=\"\#ffo000\">");

out.printin(your_product + "</td>");
out.printin("</tr>");
1
var equations = request.getParameterNames();
while(equations.hasMoreElements()) {
var currElt = equations.nextElement();
var splitPosl = currElt.index0f("|");
var splitPos2 = currElt.index0f(":");
if (splitPosl >=0 && splitPos2 >= 0) score(currkElt, splitPosl, splitPos2);
L
</table>
<h2>Total Score: <%= total_score %></h2>
<h3>Try again?</h3>
</div>
</body>
</html>

Follow these steps to see how John Doe uses BSF to implement JavaScript in a JSP application:
1. Give your files a .jsp extension.
2. Use server-side JavaScript code in your application.

The multiplication_test.jsp file incorporates both client-side and server-side JavaScript. Server-side
JavaScript is similar to client-side JavaScript; the primary difference consists of using a different set of
objects. Whereas client-side Javascript programmers invoke document and window objects,
server-side JavaScript programmers, using the Bean Scripting Framework, invoke a set of objects
provided by the JSP technology. Also, client-side scripts are enclosed in <script> tags, but server-side
scripts use JSP scriptlet and expression tags.

3. Examine the following blocks of code:

<script Tanguage="javascript">

var countMin=3;

var countSec=0;

function updateDisplay (min, sec) {

var disp;
if (min <= 9) disp = " 0"
else disp = " "3

disp += (min + ":");
if (sec <= 9) disp += ("0" + sec);
else disp += sec;
return(disp);
}

function countDown() {

countSec--;
if (countSec == -1) {
countSec = 59;
countMin--;
}
document.multtest.counter.value = updateDisplay(countMin, countSec);
if((countMin == 0) && (countSec == 0)) document.multtest.submit();

else var down = setTimeout("countDown();", 1000);
}

</script>

;Béay bgcolor="#ffffff" onLoad="countDown();">

34 BM WebSphere Application Server Network Deployment, Version 5.1: Applications

<form method="POST" name="multtest" action="multiplication_scoring.jsp">

<input type="text" name="counter" size="9" value="03:00" readonly>

The JavaScript code contained in the <script> block implements a timer set within the <input> field
named counter. The onLoad event handler in the <body> tag causes the browser to load and execute
the code when the the page is loaded.

The document.multtest.submit() statement causes the form named multtest to be submitted when
the timer expires.

Identify the code to the BSF function.

The following code example, from the multiplication_test.jsp file, displays the use of a JSP
directive. This directive tells the WebSphere Application Server BSF function that this file is using the
JavaScript language, and that the JavaScript code is enclosed by the <% ... %> scriptlet tags. The out
implicit JSP object in this code example, creates the body section of a table from 100 randomly
generated questions.

<%@ page language="javascript" %>
<%

var newrow = 0;

var gq_num = 0;

function addQuestion(numl, num2) {
if (newrow == 0) out.printin("<tr>");

out.printin("<td>");

out.printin(numl + " x " + num2 + " = ");
out.printin("</td><td>");
out.print("<input name=\"" + g_num + "|" + numl + ":" + num2 + "\" ");

out.printin("type=\"text\" size=\"10\">");
out.printin("</td>");

if (newrow == 3) {
out.printin("</tr>");
newrow = 0;

1
else newrow++;
g_numt+;
for (var i = 0; i < 100; i++) {
var randl = Math.ceil(Math.random() * 12);
var rand2 = Math.ceil(Math.random() * 12);

addQuestion(randl, rand2);

N
v

Read the results.

To score the results of the practice drill, John Doe uses the request implicit JSP object in the
multiplication_scoring.jsp file to obtain the POST data created within the <form> tags in the
multiplication_test.jsp file.

The multiplication_scoring.jsp file uses the POST data to build an output file containing the original
question, the student’s answer, and the correct answer, and then prints the text in a table format using
the out implicit object.

The following code example from the multiplication_scoring.jsp file illustrates the use of the
request and out JSP objects:

Chapter 2. Using Web applications 35

<%@ page language="javascript" %>

<%
var total_score = 0;
function score (current, posl, pos2) {
var multiplier = current.substring(posl + 1, pos2);
var multiplicand = current.substring(pos2 + 1, current.length());
var your_product = request.getParameterValues(current)[0];
var true_product = multiplier * multiplicand;
out.printin("<tr>");
out.printin("<td>" + multiplier + " x " + multiplicand + " = </td>");
out.printin("<td>" + true_product + "</td>");
if (your_product == true_product) {
total_score++;
out.print("<td bgcolor=\"\#00ffOO\">");

else {
out.print("<td bgcolor=\"\#ff0000\">");

out.printin(your_product + "</td>");

out.printin("</tr>");
}
var equations = request.getParameterNames();
while(equations.hasMoreElements()) {

var currElt = equations.nextElement();

var splitPosl = currElt.index0f("|");

var splitPos2 = currElt.index0f(":");

if (splitPosl >=0 && splitPos2 >= 0) score(currElt, splitPosl, splitPos2);

}

%>

<h2>Total Score: <%= total_score %></h2>

Note:Although using separate scriptlet blocks of code for different portions of a conditional expression
is common in JSP files implemented in Java, it is invalid for JSP files implemented using JavaScript
through the Bean Scripting Framework. The JavaScript code must be entirely contained within the
scriptlet tags.

The following code example illustrates invalid usage:

<% if (pass == 0) %>
<i>pass is true</i>

<% else %>
<i>pass is not true</i>

Deploying the BSF application

You assemble and deploy BSF applications in the same manner as JSP applications. Review the

IAssembling applicationg article for more information.

Deploy the|BSF code examples|in WebSphere Application Server to view this applications processing and
output. Use the following quick steps to deploy the application.

The intent of these "quick steps” is to provide you with instant application output. However, the supported
method for deployment is the same as for standard JSP files.

1.

36

Use the [DefaultApplication| to add your BSF files.
Copy your . jsp files to the DefaultApplication directory:

<app server install directory>/installedApps/<node
name>/DefaultApplication.ear/DefaultApplication.war

IBM WebSphere Application Server Network Deployment, Version 5.1: Applications

2. Start the application server.

3. Open a browser and request your BSF application.
Use the following URL to request your application:
http://hostName:9080/<jspFileName>.jsp

Example: Bean Scripting Framework code example

The following code examples show how to implement JavaScript using the Bean Scripting Framework

(BSF).

For a quick demonstration of the BSF function, copy these code examples into 2 separate files, and
deploy them in WebSphere Application Server using the instructions in the BSF scenario article.

Multiplication practice test

<html>

<head>

<title>Multiplication Practice Test</title>

<l--

This file and its companion, multiplication_score.jsp, illustrate the
use of ECMAScript within the BSF framework. The task is a simple
timed math quiz, which is 3 minutes in duration. When the quiz ends,
the score is computed and displayed.

Users are then asked if they wish to try

the quiz again.

-—>

<l--

This code fragment displays and updates the quiz
countdown in client side JavaScript code.

-—>

<script language="javascript">

var countMin=3;

var countSec=0;

// This code computes the current countdown time.
function updateDisplay (min, sec) {
var disp;

if (min <= 9) disp = " 0";
else disp = " "3

disp += (min + ":");

if (sec <= 9) disp += ("0" + sec);
else disp += sec;

return(disp);
1
//This code fragment displays the current countdown time in the user's
//browser window,and submits the results for scoring when the countdown
//ends.

function countDown() {

countSec--;

if (countSec == -1) {
countSec = 59;
countMin--;

1

document.multtest.counter.value = updateDisplay(countMin, countSec);
if((countMin == 0) && (countSec == 0)) document.multtest.submit();
else var down = setTimeout("countDown();", 1000);

Chapter 2. Using Web applications

37

</script>
</head>
<body bgcolor="#ffffff" onLoad="countDown();">

<l--

The body of the quiz runs as JavaServer Pages (JSP) code using BSF.
The code outputs the problems in table format using the POST method
and invokes the scoring module when the user chooses to end the quiz
or when the countdown ends.

-

<%@ page Tanguage="javascript" %>

<h1>Three Minute Multiplication Drill</hl>
<hr>

<h2>Remember: this is an opportunity to excel!</h2>
<p>

<form method="POST" name="multtest" action="multiplication_scoring.jsp">
<div align="center">

<table>

<tr>

<td>

<h3>Time Teft:

<input type="text" name="counter" size="9" value="03:00" readonly>
</h3>

</td>

<td>

<input type="submit" value="Submit for scoring!">

</td>

</tr>

</table>

<table border="1">

<%

var newrow = 0;

var g_num = 0;

// This code generates a new random multiplication problem up to the number
//twelve, and enters it into the table of problems.

function addQuestion(numl, num2) {
if (newrow == 0) out.printin("<tr>");

out.printin("<td>");

out.printin(numl + " x " + num2 + " = ");
out.printin("</td><td>");
out.print ("<input name=\"" + q_num + "|" + numl + ":" + num2 + "\" ");

out.printin("type=\"text\" size=\"10\">");
out.printin("</td>");

if (newrow == 3) {
out.printin("</tr>");
newrow = 0;

}

else newrowt+;

q_num++;

//This code obtains two random operands and formats 100 quiz problems.
for (var i = 0; i < 100; i++) {

var randl = Math.ceil(Math.random() * 12);
var rand2 = Math.ceil(Math.random() * 12);

38 BM™ WebSphere Application Server Network Deployment, Version 5.1: Applications

addQuestion(randl, rand2);
1

%>
</table>
</div>
</form>

</body>
</html>

Multiplication practice test results

<htm1>

<head>

<title>Multiplication Practice Test Results</title>
</head>

<body bgcolor="#ffffff">

<l--

This JSP code is invoked when the user submits a math quiz for scoring,

or when the quiz countdown expires. The JSP code tabulates the problem list,
the correct answer, the user's answer, and scores the test. It then offers
the user an opportunity to try the quiz again.

-

<%@ page Tanguage="javascript" %>

<h1>Multiplication Drill Score</hl>
<hr>

<div align="center">

<table border="1">

<tr><th>Problem</th><th>Correct Answer</th><th>Your Answer</th></tr>
<5

var total score = 0;

// This code parses the submitted form, extracts the a problem generated by the
// multiplication_test.jsp file, outputs it, computes the correct answer,

// and displays this information and the user answer. The code scores

// the quiz using a running sum of correct answers.

function score (current, posl, pos2) {
var multiplier = current.substring(posl + 1, pos2);
var multiplicand = current.substring(pos2 + 1, current.length());
var your product = request.getParameterValues(current)[0];
var true_product = multiplier * multiplicand;

out.printin("<tr>");
out.printin("<td>" + multiplier + " x " + multiplicand + " = </td>");
out.printin("<td>" + true_product + "</td>");

if (your_product == true product) {
total_score++;
out.print("<td bgcolor=\"\#00ff00\">");

else {
out.print("<td bgcolor=\"\#ff0000\">");

out.printin(your_product + "</td>");
out.printin("</tr>");

// This is the main body of the scoring application. It parses the posted quiz,
// and calls the score() function to score remaining problems.

var equations = request.getParameterNames();

Chapter 2. Using Web applications

39

while(equations.hasMoreETements()) {
var currElt = equations.nextElement();
var splitPosl = currElt.index0f("|");
var splitPos2 = currElt.index0f(":");

N =

if (splitPosl >=0 && splitPos2 >= 0) score(currElt, splitPosl, splitPos2);

9
2>

</table>

<h2>Total Score: <%= total_score %></h2>
<h3>Try again?</h3>
</div>

</body>
</html>

Web modules

A Web module represents a Web application. A Web module is created by assembling servlets,
JavaServer Pages (JSP) files, and static content such as HyperText Markup Language (HTML) pages into
a single deployable unit. Web modules are stored in Web archive (WAR) files, which are standard Java
archive files.

A Web module contains:
* One or more servlets, JSP files, and HTML files.
» A deployment descriptor, stored in an Extensible Markup Language (XML) file.

The file, named web.xm1, declares the contents of the module. It contains information about the structure
and external dependencies of Web components in the module and describes how the components are
used at run time.

You can create Web modules as stand-alone applications, or you can combine Web modules with other
modules to create J2EE applications. You install and run a Web module in the Web container of an
application server.

Assembling Web applications

Assemble a Web module to contain servlets, JavaServer page (JSP) files, and related code artifacts.
(Group enterprise beans, client code, and resource adapter code in separate modules). After assembling a
Web module, you can install it as a stand-alone application or combine it with other modules into an
enterprise application.

Use the |Assembly Toolkif to assemble a Web module in any of the following ways:

* Import an existing Web module (WAR file).

* Create a new Web module.

» Copy code artifacts (such as servlets) from one Web module into a new Web module.

Although you can input various properties for Web archives, available properties are specific to the Servlet,
JSP, and J2EE specification level.

1. [Start the Assembly Toolkitl

2. Optional: Open the J2EE perspective to work with J2EE projects. Click Window > Open Perspective
> Other > J2EE.

3. Optional: Open the J2EE Hierarchy view. Click Window > Show View > J2EE Hierarchy. Other
helpful views include the Project Navigator view (Window > Show View > Other > J2EE > Project
Navigator) and the Navigator view (Window > Show View > Navigator).

40 1BM WebSphere Application Server Network Deployment, Version 5.1: Applications

4. [Migrate WAR files| created with the Application Assembly Tool (AAT) or a different tool to the Assembly
Toolkit. To migrate files, [import your WAR files|to the Assembly Toolkit.

5. |Create a new Web module}

6. Copy code artifacts (such as servlets) from one Web module into a new Web module.

7. Verify the contents of the new Web module in either of the following ways:

* In the J2EE Hierarchy view, expand Web Modules and view the new module.

+ Click Window > Show View > Navigator to see the associated files for the Web module in a
Navigator view.

Context parameters

A servlet context defines a server’s view of the Web application within which the servlet is running. The
context also allows a servlet to access resources available to it.

Using the context, a servlet can log events, obtain URL references to resources, and set and store
attributes that other servlets in the context can use. These properties declare a Web application’s
parameters for its context. They convey setup information, such as a webmaster’s e-mail address or the
name of a system that holds critical data.

Security constraints

Security constraints determine how Web content is to be protected.

These properties associate security constraints with one or more Web resource collections. A constraint

consists of a Web resource collection, an authorization constraint and a user data constraint.

* A Web resource collection is a set of resources (URL patterns) and HTTP methods on those resources.
All requests that contain a request path that matches the URL pattern described in the Web resource
collection is subject to the constraint. If no HTTP methods are specified, then the security constraint
applies to all HTTP methods.

» An authorization constraint is a set of roles that users must be granted in order to access the resources
described by the Web resource collection. If a user who requests access to a specified URI is not
granted at least one of the roles specified in the authorization constraint, the user is denied access to
that resource.

» A user data constraint indicates that the transport layer of the client or server communications process
must satisfy the requirement of either guaranteeing content integrity (preventing tampering in transit) or
guaranteeing confidentiality (preventing reading while in transit).

Serviet mappings
A servlet mapping is a correspondence between a client request and a servlet.

Servlet containers use URL paths to map client requests to servlets, and follow the URL path-mapping
rules as specified in the Java Servlet specification. The container uses the URI from the request, minus
the context path, as the path to map to a servlet. The container chooses the longest matching available
context path from the list of Web applications that it hosts.

Invoker attributes
Invoker attributes are used by the servlet that implements the invocation behavior.

Error pages

Error page locations allow a servlet to find and serve a URI to a client based on a specified error status
code or exception type.

These properties are used if the error handler is another servlet or JSP file. The properties specify a
mapping between an error code or exception type and the path of a resource in the Web application. The
container examines the list in the order that it is defined, and attempts to match the error condition by
status code or by exception class. On the first successful match of the error condition, the container
serves back the resource defined in the Location property.

Chapter 2. Using Web applications 41

File serving

File serving allows a Web application to serve static file types, such as HTML. File-serving attributes are
used by the servlet that implements file-serving behavior.

Initialization parameters
Initialization parameters are sent to a servlet in its HttpConfig object when the servlet is first started.

Servlet caching

Dynamic caching can be used to improve the performance of servlet and JavaServer Pages (JSP) files by
serving requests from an in-memory cache. Cache entries contain the servlet's output, results of the
servlet’'s execution, and metadata.

Web components

A web component is a servlet, Java Server Page (JSP), or HTML file. One or more web components make
up a web module.

Web property extensions

Web property extensions are IBM extensions to the standard deployment descriptors for Web applications.
These extensions include mime filtering and servlet caching.

Web resource collections

A Web resource collection defines a set of URL patterns (resources) and HTTP methods belonging to the
resource.

HTTP methods handle HTTP-based requests, such as GET, POST, PUT, and DELETE. A URL pattern is a
partial Uniform Resource Locator that acts as a template for matching the pattern with existing full URLs in
an attempt to find a valid file.

Welcome files
A Welcome file is an entry point file (for example, index.html) for a group of related HTML files.

Welcome files are located by using a group of partial URIs. The Web container uses the partial URIs to
find a valid file when the initial URI is not found.

Troubleshooting tips for Web application deployment

Deployment of a Web application is successful if you can access the application by typing a Uniform
Resource Locator (URL) in a browser, or if you can access the application by following a link.

If you cannot access your application, follow these steps to eliminate some common errors that can occur
during migration or deployment.

Web module does not run in WebSphere Application Server Version 5.

Symptom Your Web module does not run when you migrate it to Version 5

Problem In Version 4.x, the classpath setting that affected visibility was Module Visibility Mode.
In Version 5, you must use class loader policies to set visibility.

Recommended response Reassemble an existing module, or change the visibility settings in the class loader
policies. in the class loader policies.

See article Migration of module visibility modes from Version 4.X for more information
and examples.

42 BM WebSphere Application Server Network Deployment, Version 5.1: Applications

Welcome page is not visible.

Symptom You cannot access an application with a Web path of:
/webapp/myapp
Problem The default welcome page for a Web application is assumed to be index.html. You

cannot access the default page of the myapp application unless it is named index.html.
Recommended response To identify a different welcome page, modify the properties of the Web module during
assembly.

HTML files are not found.

Symptom Your Web application ran successfully on prior versions, but now you encounter errors
that the welcome page (typically index.html), or referenced HTML files are not found:

Error 404: File not found: Banner.html
Error 404: File not found: HomeContent.html

Problem For security and consistency reasons, Web application URLs are now case-sensitive on
all operating systems.

Suppose the content of the index page is as follows:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 5.0 Frameset//EN">

<HTML>

<TITLE>

Insurance Home Page

</TITLE>
<frameset rows="18,80">
<frame src="Banner.html" name="BannerFrame" SCROLLING=NO>
<frame src="HomeContent.html" name="HomeContentFrame">
</frameset>

</HTML>

However the actual file names in the \WebSphere\AppServer\installedApps\...
directory where the application is deployed are:
banner.html
homecontent.html

Recommended response To correct this problem, modify the index.html file to change the names Banner.html!
and HomeContent.html to banner.html and homecontent.html to match the names of
the files in the deployed application.

For current information available from IBM Support on known problems and their resolution, see the

page.

IBM Support has documents that can save you time gathering information needed to resolve this problem.
Before opening a PMR, see the [IBM Supporf page.

Modifying the default Web container configuration

The Web container is created initially with default properties values suitable for simple Web applications.
However, these values might not be appropriate for more complex Web applications.

Your application is considered complex if it requires any of the following features:
* virtual host

» servlet caching

» gspecial client request loads

» persistent HTTP session support

» special HTTP transport settings

» transaction class mappings

Chapter 2. Using Web applications 43

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCR4XA
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMPEP

Modify the following properties if you have a complex application:

1. If your Web application requires a virtual host, other than the default_host, or requires servlet caching,
modify the Web container General Properties.

2. If your application handles special client request loads, modify the Web Container Additional
Properties > Thread Pool setting.

3. If your application requires persistent HTTP session support, modify the Web Container Additional
Properties > Session Management setting.

4. If your application requires one of the following HTTP transport settings:
* Unique hostname and port for client access
e SSL enablement

modify the Web Container Additional Properties > HTTP transports setting.

5. If your application requires global settings for internal servlets for WAR files packaged by third-party
tools, modify the Web Container Additional Properties > Custom Properties setting.

6. If your application uses transaction class mappings to classify workload, modify the Web Container
Additional Properties > Advanced Settings.

Web container

A Web container handles requests for servlets, JavaServer Pages (JSP) files, and other types of files that
include server-side code. The Web container creates servlet instances, loads and unloads servlets,
creates and manages request and response objects, and performs other servlet management tasks.

The Web server plug-ins, provided by the WebSphere Application Server, help supported Web servers
pass servlet requests to Web containers.

Web container settings
Use this page to configure the web container settings.

To view this administrative console page, click Servers > Application Servers > server_instance > Web
container.

Configuration - General Properties

Default virtual host

Specifies a virtual host that enables a single host machine to resemble multiple host machines. Resources

associated with one virtual host cannot share data with resources associated with another virtual host,

even if the virtual hosts share the same physical machine.

Select a virtual host option:

Default Host
The product provides a default virtual host with some common aliases, such as the machine IP
address, short host name, and fully qualified host name. The alias comprises the first part of the
path for accessing a resource such as a servlet. For example, it is Tocalhost:9080 in the request
http://lTocalhost:9080/myServiet.

Admin Host
This is another name for the application server; also known as server? in the base installation.
This process supports the use of the administrative console.

Servlet caching
Specifies that if a servlet is invoked once and it generates output to be cached, a cache entry is created
containing not only the output, but also side effects of the invocation. These side effects can include calls
to other servlets or Java Server Pages (JSP) files, as well as metadata about the entry, including timeout
and entry priority information.
Enable serviet caching

Check this box to enable servlet caching.

44 B™ WebSphere Application Server Network Deployment, Version 5.1: Applications

Web module settings

Use this page to configure Web module settings.

To view this page in the Application Assembly Tool, click

Applications > Enterprise Application > application_instance > Web Module

URI

Specifies a URI that, when resolved relative to the application URL, specifies the location of the module
archive contents on a file system. The URI must match the ModuleRef URI in the deployment descriptor of
an application if the module was packaged as part of a deployed application or enterprise archive (EAR)
file.

Name
Specifies the unique display name for the module.

Alternate DD

Specifies the file name for an alternative deployment descriptor file to use instead of the original
deployment descriptor file in the module JAR file.

This file is the post-assembly version of the deployment descriptor file. You can edit the original
deployment descriptor file to resolve dependencies and security information. Specifying the use of the
alternative deployment descriptor keeps the original deployment descriptor file intact.

The value of the Alternate DD property must be the full path name of the deployment descriptor file,
relative to the module root directory. By convention, the file is in the ALT-INF directory. If this property is
not specified, the deployment descriptor file is read from the module JAR file.

Starting weight
Specifies the order in which modules are started. Lower weighted modules are started before higher
weighted modules.

Prefer WEB-INF Classes

Specifies classes to load in WEB-INF before any other classes. Implementing the application class loader
is recommended so that classes and resources packaged within the WAR file load before classes and
resources residing in container-wide library JAR files.

Initial State
Specifies the default state of this application at server startup.

Web Module Deployment settings
Use this page to configure an instance of Web module deployment.

To view this administrative console page, click Applications > Enterprise Application >
application_instance > Web Modules > Web Module_instance.

URI

Specifies a URI that, when resolved relative to the application URL, specifies the location of the module
archive contents on a file system. The URI must match the ModuleRef URI in the deployment descriptor of
an application if the module was packaged as part of a deployed application or enterprise archive (EAR)
file.

Alternate DD

Specifies the file name for an alternative deployment descriptor file to use instead of the original
deployment descriptor file in the module JAR file.

This file is the post-assembly version of the deployment descriptor file. You can edit the original
deployment descriptor file to resolve dependencies and security information. Specifying the use of the
alternative deployment descriptor keeps the original deployment descriptor file intact.

Chapter 2. Using Web applications 45

The value of the Alternate DD property must be the full path name of the deployment descriptor file,
relative to the module root directory. By convention, the file is in the ALT-INF directory. If this property is
not specified, the deployment descriptor file is read from the module JAR file.

Starting weight
Specifies the order in which modules are started. Lower weighted modules are started before higher
weighted modules.

Classloader Mode

Specifies whether the class loader should search in the parent class loader or in the application class
loader first to load a class. The standard for JDK class loaders and WebSphere class loaders is
PARENT_FIRST. By specifying PARENT_LAST, your application can override classes contained in the
parent class loader, but this action can potentially result in ClassCastException or LinkageErrors if you
have mixed use of overriden classes and non-overriden classes.

The options are PARENT_FIRST and PARENT_LAST. The default is to search in the parent class loader
before searching in the application class loader to load a class.

Data type String
Default PARENT_FIRST

Web container custom properties

Use this page to configure arbitrary name-value pairs of data, where the name is a property key and the
value is a string value that can be used to set internal system configuration properties. Defining a new
property enables you to configure a setting beyond that which is available in the administrative console.

To view this administrative console page, click Servers > Application Servers >server_name> Web
Container > Custom Properties.

Name
Specifies the name (or key) for the property.

Data type String

Value
Specifies the value paired with the specified name.

Data type String

Description
Provides information about the name-value pair.

Data type String

Global settings for internal servlets

Web Archive (WAR) files packaged using third-party tools cannot specify behavior for the services exposed
by the Web container internal servlets. You can globally enable/disable internal servlets for all Web
applications at the Web container level by creating name-value pairs such as:

Name Value
fileServingEnabled true
directoryBrowsingEnabled true
serveServletsByClassnameEnabled true

46 1BM WebSphere Application Server Network Deployment, Version 5.1: Applications

Settings defined in an assembly tool level take precedence over the global settings set through the custom
properties at the Web container level.

Web application deployment extensions continue to hold configuration information for the services provided
by the internal servlets, and take precedence over the global settings set through the custom properties at
the Web container level.

UTF-8 encoded URLs

WebSphere Application Server Version 5.1, introduces support for UTF-8 encoded Uniform Resource
Locators (URLs) to support the double byte characters in URLs. The UTF-8 encoded URL feature is
enabled by default. You can prevent the web container from explicitly decoding URLs in UTF-8 and have
them use the 1ISO-8859 standard as per the current HTTP specification by using the following name-value
pair:

Name Value
DecodeUrlAsUTF8 false

Web applications: Resources for learning

Use the following links to find relevant supplemental information about Web applications. The information
resides on IBM and non-IBM Internet sites, whose sponsors control the technical accuracy of the
information.

These links are provided for convenience. Often, the information is not specific to the IBM WebSphere
Application Server product, but is useful all or in part for understanding the product. When possible, links
are provided to technical papers and Redbooks that supplement the broad coverage of the release
documentation with in-depth examinations of particular product areas.

View links to additional information about:

* |“Web applications: Resources for learning’
* |“Web applications: Resources for learning’
* |“Web applications: Resources for learning’

Programming model and decisions
« [J2EE BluePrints for Web applications|
« [Redbook on the design and implementation of Servlets, JSP files, and enterprise beans|

Programming instructions and examples

« [Redbook on Servlet and JSP file Programming|
« [Sun’s Java' Tutorial on Servlets

« [Introduction to JavaServer Pages - Tutorial

« |Bean Scripting Framework description|

» |Web delivered samples in the Samples Gallery|

Programming specifications

« |Java 2 Software Development Kit (SDK))|
 [Servlet 2.3 Specification|

« [JavaServer Pages 1.2 Specification|

» |Differences between JavaScript and ECMAScriptI
« [ISO 8859 Specifications|

Chapter 2. Using Web applications 47

http://java.sun.com/blueprints/guidelines/designing_enterprise_applications/web_tier/index.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245754.html?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg245755.html?OpenDocument
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets.html
http://www-4.ibm.com/software/webservers/appserv/education.html#online
http://www.mozilla.org/rhino/bsf.html
http://www7b.software.ibm.com/wsdd/library/samples/AppServer.html
http://java.sun.com/j2se/1.3/
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://www.webstandards.org/learn/resources/javascript/index.html
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList

48 1BM WebSphere Application Server Network Deployment, Version 5.1: Applications

Chapter 3. Managing HTTP sessions

IBM WebSphere Application Server provides a service for managing HTTP sessions: Session Manager.
The key activities for session management are summarized below.

Before you begin these steps, make sure you are familiar with the programming model for accessing

HTTP session support in the applications following the Servlet 2.3 API.

1. Plan your approach to session management, which could include [session tracking, [session recovery|
and [session clustering|

2. Create or modify your own applications to use session support to maintain sessions on behalf of Web
applications.

3. [Assemble your application.|

4. |Deploy your application.|

5. Ensure the administrator appropriately |configures session managementl in the administrative domain.

6. Adjust configuration settings| and perform other|tuning activitie§| for optimal use of sessions in your
environment.

Sessions

A session is a series of requests to a servlet, originating from the same user at the same browser.
Sessions allow applications running in a Web container to keep track of individual users.

For example, a servlet might use sessions to provide "shopping carts” to online shoppers. Suppose the
servlet is designed to record the items each shopper indicates he or she wants to purchase from the Web
site. It is important that the servlet be able to associate incoming requests with particular shoppers.
Otherwise, the servlet might mistakenly add Shopper_1’s choices to the cart of Shopper_2.

A servlet distinguishes users by their unique session IDs. The session ID arrives with each request. If the
user’s browser is cookie-enabled, the session ID is stored as a cookie. As an alternative, the session ID
can be conveyed to the servlet by URL rewriting, in which the session ID is appended to the URL of the
servlet or JavaServer Pages (JSP) file from which the user is making requests. For requests over HTTPS
or Secure Sockets Layer (SSL), Another alternative is to use SSL information to identify the session.

Migrating HTTP sessions

Note: In Version 5 default write frequency mode is TIME_BASED_WRITES, which is different from
Version 4.0 and 3.5 default mode of END_OF_SERVICE.

Migrating from Version 4.0
No programmatic changes are required to migrate from version 4.0 to version 5.
Migrating from Version 3.5

If you have Version 3.5 applications running in Servlet 2.1 mode, some of the following Version 5
differences might influence how you choose to track and manage sessions.

1. During application development, modify session-related APls as needed.

Some API changes are required in order to redeploy existing applications on Version 5. These include
changes to the HttpSession API itself as well as issues associated with moving to support for the
Servlet 2.3 specification. Certain Servlet 2.1 APl methods have been deprecated in Servlet 2.3 API .
These deprecated APIs still work in Version 5.0, but they may be removed in a future version of the
API. Changes are summarized in the following list:

© Copyright IBM Corp. 2003 49

* Replace instances of getValue() with getAttribute()

* Replace instances of getValueNames() with getAttributeNames()
* Replace instances of removeValue() with removeAttribute()

* Replace instances of putValue() with setAttribute()

During application development, modify Web application behavior as needed.

In accordance with the Servlet 2.3 specification, HttpSession objects must be scoped within a single
Web application context; they may not be shared between contexts. This means that a session can no
longer span Web applications. Objects added to a session by a servlet or JSP in one Web application
cannot be accessed from another Web application. The same session ID may be shared (because the
same cookie is in use), but each Web application will have a unique session associated with the
session ID. Version 5 provides a feature that can be used to extend scope of a session to enterprise
application.

Use administrative tools to configure Session Manager security settings as needed. Relative to session
security, the default Session Manager setting for Integrate Security is now false. This is different from
the default setting in some earlier releases.

Use administrative tools to configure the JSP enabler and application server as needed.

In Version 3.5 of the product, JSP files that contained the usebean tag with scope set to session did
not always work properly when session persistence was enabled. Specifically, the JSP writer needed
to write a scriplet to explicitly set the attribute (that is, to call setAttribute()) if it was changed as part of
JSP processing.

Two new features in Version 5.0 help address this problem:
* You can set dosetattribute to true on the JSP InitParameter.
* You can set the Write Contents option to Write all.

The differences between the two solutions are summarized in the following table:

Applies to Configured at Action

dosetattribute set to true JSP JSP enabler Assures that JSP

session-scoped beans
always call setAttribute()

Write Contents option set to | servlet or JSP application server All session data (changed
Write all or unchanged) is written to

the external location

If session persistence is enabled and a class reload for the Web application occurs, the sessions
associated with the Web application are maintained in the persistent store and will be available after
the reload.

Developing session management in servlets

This information, combined with the coding example SessionSample.java, provides a programming model
for implementing sessions in your own servlets.

1.

50

Get the HttpSession object.

To obtain a session, use the getSession() method of the javax.servlet.http.HttpServietRequest object in
the Java Servlet 2.3 API.

When you first obtain the HitpSession object, the Session Management facility uses one of three ways
to establish tracking of the session: cookies, URL rewriting, or Secure Sockets Layer (SSL)
information.

Assume the Session Management facility uses cookies. In such a case, the Session Management
facility creates a unique session ID and typically sends it back to the browser as a cookie. Each
subsequent request from this user (at the same browser) passes the cookie containing the session ID,
and the Session Management facility uses this ID to find the user’s existing HttpSession object.

IBM WebSphere Application Server Network Deployment, Version 5.1: Applications

In Step 1 of the code sample, the Boolean(create) is set to true so that the HttpSession object is

created if it does not already exist. (With the Servlet 2.3 API, the

javax.servlet.http.HttpServletRequest.getSession() method with no boolean defaults to true and

creates a session if one does not already exist for this user.)
2. Store and retrieve user-defined data in the session.

After a session is established, you can add and retrieve user-defined data to the session. The
HttpSession object has methods similar to those in java.util.Dictionary for adding, retrieving, and

removing arbitrary Java objects.

In Step 2 of the code sample, the servlet reads an integer object from the HttpSession, increments i,

and writes it back. You can use any name to identify values in the HttpSession object. The code

sample uses the name sessiontest.counter.

Because the HttpSession object is shared among servlets that the user might access, consider

adopting a site-wide naming convention to avoid conflicts.

3. (Optional) Output an HTML response page containing data from the HttpSession object.

4. Provide feedback to the user that an action has taken place during the session. You may want to pass
HTML code to the client browser indicating that an action has occurred. For example, in step 3 of the
code sample, the servlet generates a Web page that is returned to the user and displays the value of

the sessiontest.counter each time the user visits that Web page during the session.

5. (Optional) Notify Listeners. Objects stored in a session that implement the
javax.servlet.http.HttpSessionBindingListener interface are notified when the session is preparing to
end and become invalidated. This notice enables you to perform post-session processing, including
permanently saving the data changes made during the session to a database.

6. End the session. You can end a session:

« Automatically with the Session Management facility if a session is inactive for a specified time. The

administrators provide a way to specify the amount of time after which to invalidate a session.
« By coding the servlet to call the invalidate() method on the session object.

Example: SessionSample.java

import java.io.*;

import java.util.*;

import javax.servilet.=;
import javax.servlet.http.x;

public class SessionSample extends HttpServiet {

public void doGet (HttpServletRequest request, HttpServletResponse response)

throws ServietException, I0Exception {

// Step 1: Get the Session object

boolean create = true;
HttpSession session = request.getSession(create);

// Step 2: Get the session data value

Integer ival = (Integer)

session.getAttribute ("sessiontest.counter");

if (ival == null) ival = new Integer (1);

else ival = new Integer (ival.intValue () + 1);
session.setAttribute ("sessiontest.counter", ival);

// Step 3: Output the page
response.setContentType("text/htm1");

PrintWriter out = response.getWriter();
out.printin("<html>");

Chapter 3. Managing HTTP sessions

51

out.printin("<head><title>Session Tracking Test</title></head>");
out.printin("<body>");

out.printin("<h1>Session Tracking Test</h1>");

out.println ("You have hit this page " + ival + " times" + "
");
out.printin ("Your " + request.getHeader("Cookie"));
out.printin("</body></htmi>");

Assembling so that session data can be shared

In accordance with the Servlet 2.3 API specification, by default the Session Management facility supports
session scoping by Web module. Only servlets in the same Web module can access the data associated
with a particular session. WebSphere Application Server provides an option that you can use to extend the
scope of the session attributes to an enterprise application. Therefore, you can share session attributes
across all the Web modules in an enterprise application. This option is provided as an IBM extension.

Restriction: To use this option, you must install all the Web modules in the enterprise application on a
given server. You cannot split up Web modules in the enterprise application by servers. For example, with
an enterprise application containing two Web modules, you cannot use this option when one Web module
is installed on one server and second Web module is installed on a different server. In such split
installations, applications might share session attributes across Web modules using distributed sessions,
but session data integrity is lost when concurrent access to a session is made in different Web modules. It
also severely restricts use of some Session Management features, like TIME_BASED_WRITES. For
enterprise applications on which this option is enabled, the Session Management configuration on the Web
module inside the enterprise application is ignored. Then Session Management configuration defined on
enterprise application is used if Session Management is overwritten at the enterprise application level.
Otherwise, the Session Management configuration on the Web container is used.

Servlet API Behavior

Note: If shared HttpSession context is turned on in an enterprise application, HitpSession listeners
defined in all the Web modules inside the enterprise application are invoked for session events. The
order of listener invocation is not guaranteed.

Do the following to share session data across Web modules in an enterprise application:

1. Start theAssembly Toolkit

2. In the Assembly Toolkit, right-click the application (EAR file) you want to share and click Open With >
Deployment Descriptor Editor.

3. In the application deployment descriptor editor of the Assembly Toolkit, select Shared session context
under WebSphere Extensions. Make sure the class definition of attributes put into session are
available to all Web modules in the enterprise application.

4. Save the application (EAR) file. In the Assembly Toolkit, after you close the application deployment
descriptor editor, confirm that you want to save changes made to the application.

Session security support

You can integrate HTTP sessions and security in IBM WebSphere Application Server. When security
integration is enabled in the Session Management facility and a session is accessed in a protected
resource, you can access that session only in protected resources from then on. You cannot mix secured
and unsecured resources accessing sessions when security integration is turned on. Security integration in
the Session Management facility is not supported in form-based login with SWAM.

52 B™ WebSphere Application Server Network Deployment, Version 5.1: Applications

Security integration rules for HTTP sessions

Only authenticated users can access sessions created in secured pages and are created under the
identity of the authenticated user. Only this authenticated user can access these sessions in other secured
pages. To protect these sessions from unauthorized users, you cannot access them from an unsecure

page.
Programmatic details and scenarios
IBM WebSphere Application Server maintains the security of individual sessions.

An identity or user name, readable by the com.ibm.websphere.servlet.session.IBMSession interface, is
associated with a session. An unauthenticated identity is denoted by the user name anonymous. IBM
WebSphere Application Server includes the
com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException class, which is used when a
session is requested without the necessary credentials.

The Session Management facility uses the WebSphere Application Server security infrastructure to
determine the authenticated identity associated with a client HTTP request that either retrieves or creates
a session. WebSphere Application Server security determines identity using certificates, LPTA, and other
methods.

After obtaining the identity of the current request, the Session Management facility determines whether to
return the session requested using a getSession() call or not.

The following table lists possible scenarios in which security integration is enabled with outcomes
dependent on whether the HTTP request is authenticated and whether a valid session ID and user name
was passed to the Session Management facility.

Unauthenticated HTTP request is HTTP request is authenticated, with
used to retrieve a session an identity of "FRED" used to
retrieve a session

No session ID was passed in for this | A new session is created. The user A new session is created. The user
request, or the ID is for a session that | name is anonymous name is FRED
is no longer valid

A session ID for a valid session is The session is returned. The session is returned. Session
passed in. The current session user Management changes the user name
name is "anonymous” to FRED

A session ID for a valid session is The session is not returned. An The session is returned.

passed in. The current session user | UnauthorizedSessionRequest

name is FRED Exception error is thrown*

A session ID for a valid session is The session is not returned. An The session is not returned. An
passed in. The current session user | UnauthorizedSessionRequest UnauthorizedSessionRequest

name is BOB Exception error is thrown* Exception error is thrown*

* A com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException error is thrown to the
servlet.

Session management support

WebSphere Application Server provides facilities, grouped under the heading Session Management, that
support the javax.servlet.http.HttpSession interface described in the Serviet API specification.

In accordance with the Servlet 2.3 API specification, the Session Management facility supports session
scoping by Web module. Only servlets in the same Web module can access the data associated with a

Chapter 3. Managing HTTP sessions 53

particular session. Multiple requests from the same browser, each specifying a unique Web application,
result in multiple sessions with a shared session ID. You can invalidate any of the sessions that share a
session ID without affecting the other sessions.

You can configure a session timeout for each Web application. A Web application timeout value of 0 (the
default value) means that the invalidation timeout value from the Session Management facility is used.

When an HTTP client interacts with a servlet, the state information associated with a series of client

requests is represented as an HTTP session and identified by a session ID. Session Management is

responsible for managing HTTP sessions, providing storage for session data, allocating session IDs, and

tracking the session ID associated with each client request through the use of cookies or URL rewriting

techniques. Session Management can store session-related information in several ways:

* In application server memory (the default). This information cannot be shared with other application
servers.

* In a database. This storage option is known as database persistent sessions.

* In another WebSphere Application Server instance. This storage option is known as
memory-to-memory sessions.

The last two options are referred to as distributed sessions. Distributed sessions are essential for using
HTTP sessions for failover facility. When an application server receives a request associated with a
session ID that it currently does not have in memory, it can obtain the required session state by accessing
the external store (database or memory-to-memory). If distributed session support is not enabled, an
application server cannot access session information for HTTP requests that are sent to servers other than
the one where the session was originally created. Session Management implements caching optimizations
to minimize the overhead of accessing the external store, especially when consecutive requests are routed
to the same application server.

Storing session states in an external store also provides a degree of fault tolerance. If an application
server goes offline, the state of its current sessions is still available in the external store. This availability
enables other application servers to continue processing subsequent client requests associated with that
session.

Saving session states to an external location does not completely guarantee their preservation in case of a
server failure. For example, if a server fails while it is modifying the state of a session, some information is
lost and subsequent processing using that session can be affected. However, this situation represents a
very small period of time when there is a risk of losing session information.

The drawback to saving session states in an external store is that accessing the session state in an
external location can use valuable system resources. Session Management can improve system
performance by caching the session data at the server level. Multiple consecutive requests that are
directed to the same server can find the required state data in the cache, reducing the number of times
that the actual session state is accessed in external store and consequently reducing the overhead
associated with external location access.

Configuring session management by level

When you configure session management at the Web container level, all applications and the respective
Web modules in the Web container normally inherit that configuration, setting up a basic default
configuration for the applications and Web modules below it.

However, you can set up different configurations individually for specific applications and Web modules

that vary from the Web container default. These different configurations override the default for these
applications and Web modules only.

54 B™ WebSphere Application Server Network Deployment, Version 5.1: Applications

Note: When you overwrite the default session management settings on the application level, all the Web
modules below that application inherit this new setting unless they too are set to overwrite these
settings.

1. Open the Administrative console.

2. Select the level that this configuration applies to:
* For the web container level:
a. Click Servers > Application Servers.
b. Select a server from the list of application servers.
c. Under Additional Properties, click Web Container.
» For the enterprise application level:
a. Click Applications > Applications.
b. Select an applications from the list of applications.
* For the Web module level:
a. Click Applications > Enterprise Applications.
b. Select an applications from the list of applications.
c. Under Related ltems, click Web Modules.
d. Select a Web module from the list of Web modules defined for this application.

3. Under Additional Properties, click Session Management.
4. Make whatever changes you need to manage sessions

5. If you are working on the Web module or application level and want these settings to override the
inherited Session Management settings, under General Properties, select Overwrite.

6. Click Apply and Save.

Session tracking options

There are several options for session tracking, depending on what sort of tracking method you want to
use:

+ [Session tracking with cookies

+ [Session tracking with URL rewriting|

« [Session tracking with Secure Sockets Layer (SSL) information|

Session tracking with cookies

Tracking sessions with cookies is the default. No special programming is required to track sessions with
cookies.

Session tracking with URL rewriting

An application that uses URL rewriting to track sessions must adhere to certain programming guidelines.
The application developer needs to do the following:

* Program servlets to encode URLs

» Supply a servlet or Java Server Pages (JSP) file as an entry point to the application

Using URL rewriting also requires that you enable URL rewriting in the Session Management facility.

Note: In certain cases, clients cannot accept cookies. Therefore, you cannot use cookies as a session
tracking mechanism. Applications can use URL rewriting as a substitute.

Program session serviets to encode URLs
Depending on whether the servlet is returning URLs to the browser or redirecting them, include either

encodeURL() or encodeRedirectURL() in the servlet code. Examples demonstrating what to replace in
your current servlet code follow.

Chapter 3. Managing HTTP sessions 55

Rewrite URLSs to return to the browser

Suppose you currently have this statement:

out.printin("catalog<a>");

Change the servlet to call the encodeURL method before sending the URL to the output stream:

out.printin("<a href=\"");
out.printin(response.encodeURL ("/store/catalog"));
out.printin("\">catalog");

Rewrite URLSs to redirect

Suppose you currently have the following statement:
response.sendRedirect ("http://myhost/store/catalog");

Change the servlet to call the encodeRedirectURL method before sending the URL to the output stream:
response.sendRedirect (response.encodeRedirectURL ("http://myhost/store/catalog"));

The encodeURL() and encodeRedirectURL() methods are part of the HttpServietResponse object. These
calls check to see if URL rewriting is configured before encoding the URL. If it is not configured, the calls
return the original URL.

If both cookies and URL rewriting are enabled and response.encodeURL() or encodeRedirectURLY() is
called, the URL is encoded, even if the browser making the HTTP request processed the session cookie.

You can also configure session support to enable protocol switch rewriting. When this option is enabled,
the product encodes the URL with the session ID for switching between HTTP and HTTPS protocols.

Supply a servlet or JSP file as an entry point

The entry point to an application (such as the initial screen presented) may not require the use of
sessions. However, if the application in general requires session support (meaning some part of it, such as
a servlet, requires session support), then after a session is created, all URLs are encoded to perpetuate
the session ID for the servlet (or other application component) requiring the session support.

The following example shows how you can embed Java code within a JSP file:
<%

response.encodeURL ("/store/catalog");

°
%>

Session tracking with SSL information
No special programming is required to track sessions with Secure Sockets Layer (SSL) information.

To use SSL information, turn on Enable SSL ID tracking in the Session Management property page.
Because the SSL session ID is negotiated between the Web browser and HTTP server, this ID cannot
survive an HTTP server failure. However, the failure of an application server does not affect the SSL
session ID if an external HTTP Server is present between WebSphere Application Server and the browser.

SSL tracking is supported for the IBM HTTP Server and iPlanet Web servers only. You can control the
lifetime of an SSL session ID by configuring options in the Web server. For example, in the IBM HTTP
Server, set the configuration variable SSLV3TIMEOUT to provide an adequate lifetime for the SSL session
ID. An interval that is too short can cause a premature termination of a session. Also, some Web browsers
might have their own timers that affect the lifetime of the SSL session ID. These Web browsers may not
leave the SSL session ID active long enough to serve as a useful mechanism for session tracking. Internal
Http Server of WebSphere also supports SSL Tracking.

56 1BM WebSphere Application Server Network Deployment, Version 5.1: Applications

When using the SSL session ID as the session tracking mechanism in a cloned environment, use either
cookies or URL rewriting to maintain session affinity. The cookie or rewritten URL contains session affinity
information that enables the Web server to properly route a session back to the same server for each
request.

Configuring session tracking

To configure session tracking, complete the following:
1. Go to the appropriate level of |Session Management.|

2. Specify which session tracking mechanism you want to pass the session ID between the browser and
the servlet:
» To track sessions with cookies, click Enable Cookies.

To change the cookie settings, click Modify.
» To track sessions with URL rewriting, click Enable URL Rewriting.

If you want to enable protocol switch rewriting, click Enable protocol switch rewriting.
« To track sessions with SSL information, click Enable SSL ID tracking.

3. Click Apply.
4. Click Save.
5. Define the [session recovery| characteristics.

Serializing access to session data

The Servlet API supports concurrent access to a session in a given server instance. WebSphere
Application Server provides an option to prevent the concurrent access to a session in a given server
instance so that concurrent modification of a session does not occur in a given server instance. This
prevention is achieved by synchronizing the requests based on session. When this feature is turned on, a
session is obtained for the request before invoking the servlet and requests are synchronized by locking
the session for the servlet execution time. Note that synchronization is based on the memory copy of
session. So this feature cannot serialize requests across servers based on session when session affinity
fails.

Restriction: Use this feature only when concurrent modification of the same session data is possible and
is not desirable by the application. This feature has overhead of serializing the requests based on a
session.

Do the following to synchronize session access:
1. [Select the level of Session Management on which you want to serialize session access.
2. Under Serialize Session access, click Allow serial access.

3. In the Maximum wait time box, type the amount of time, in milliseconds, a servlet waits on a session
before continuing execution. The default is 120000 milliseconds or two minutes.

4. Select Allow access on timeout if you want the servlet to gain access to the session and continue
normal execution even if the session is still locked by another servlet. If you do not select this box, the
servlet execution will abort when the session request times out.

5. Click Apply.

6. Click Save.

Chapter 3. Managing HTTP sessions 57

Configuring session tracking for Wireless Application Protocol (WAP)
devices

Most Wireless Application Protocol (WAP) devices do not support cookies. The preferred way to track
sessions for WAP devices is to use URL rewriting. However on most WAP devices, the maximum allowed
URL length is 128 characters. With URL rewriting, a session indentifier is added to the URL itself,
effectively decreasing the space available for the actual URL and the number of parameters that can be
sent on a request.

To reduce the length of session identifier, you can configure key (jsessionid), session ID length and clone
ID. To make these configuration changes, complete the following:

1. Open the Administrative console.

Click Servers > Application Servers.

Select a server from the list of application servers.
Under Additional Properties, click Web Container
Under Additional Properties, click Custom Properties.

Add the appropriate properties from the following list:
» HttpSessionldLength

» SessionRewriteldentifier

* HttpSessionCloneld

* CloneSeparatorChange

* NoAdditionalSessioninfo

« SessionldentifierMaxLength

7. Click Apply and Save.

o ok wN

Session management custom properties

Custom properties for session management:
CloneSeparatorChange
Use this property to maintain session affinity. The clone ID of the server is appended to session
identifier separated by colon. On some Wireless Application Protocol (WAP) devices, a colon is not
allowed. Set this property to "true” to change clone separator to a plus sign (+).
HttpSessionCloneld
Use this property to change the clone ID of the cluster member. Within a cluster, this name must
be unique to maintain session affinity. When set, this name overwrites the default name generated
by WebSphere Application Server. Default clone ID length: 8 or 9.
HttpSessionldLength
Use this property to configure the session identifier length. Do not use an extremely low value;
using a low value results in reduced number of combinations possible, thereby increasing risk of
guessing the session identifier. In a cluster, all cluster members should be configured with same ID
length. Allowed range: 8 to 128. Default length: 23.
HttpSessionReaperPollinterval
Use this property to set a wake-up interval for the process that removes invalid sessions. Default
is based on maximum inactive interval set in Session Management. Allowed value: integer.
NoAdditionalSessioninfo
Set this value to "true” to force removal of information that is not needed in session identifiers. In
WebSphere Application Server base edition,a clone ID of -1 is never used; therefore, a clone ID is
not included in base edition when this is set. Also, cache ID is not used with nonpersistent
sessions; so the cache ID is not included with nonpersistent sessions when this value is set.
NoAffinitySwitchBack
Set this property to "true” to maintain affinity to the new member even after original one comes
back up. When a cluster member fails, its requests routed to a different cluster member, and
sessions are activated in that other member. Thus, session affinity is maintained to the new

58 BM™ WebSphere Application Server Network Deployment, Version 5.1: Applications

member, and when failed cluster member comes back up, the requests for sessions that were
created in the original cluster member are routed back to it. Allowed values, true or false. Default:
false.

It is recommended that you set this property to "true” when distributed sessions with time-based
write is configured. Note that this property has no affect on the behavior when distributed sessions
is not enabled.

SessionldentifierMaxLength
Use this value to set maximum length that a session identifier can grow. In a cluster, because of
fail-over when a request goes to new cluster member, Session Management appends a new clone
ID to the existing clone ID. In a large cluster, if for some reason servers are failing more often,
then it is possible that the session identifier length can be more than expected reducing room for
URL. So this property helps to find out the condition and take appropriate action to address
servers fail-over. When this is specified, message is logged when specified maximum length is
reached. Allowed value: integer.

SessionRewriteldentifier
Use this property to change the key used with URL rewriting. Default key: jsessionid.

Distributed sessions

WebSphere Application Server provides the following session mechanisms in a distributed environment:

» Database Session persistence, where sessions are stored in the database specified.

* Memory-to-memory Session replication, where sessions are stored in one or more specified
WebSphere Application Server instances.

When a session contains attributes that implement HttpSessionActivationListener, notification occurs
anytime the session is activated (that is, session is read to the memory cache) or passivated (that is,
session leaves the memory cache). Passivation can occur because of a server shutdown or when the
session memory cache is full and an older session is removed from the memory cache to make room for a
newer session. It is not guaranteed that a session is passivated in one application server prior to being
activated in another.

Session recovery support

For session recovery support, WebSphere Application Server provides distributed session support in the
form of database sessions and memory-to-memory replication. Use session recovery support under the
following conditions:

* When the user’s session data must be maintained across a server restart

* When the user’s session data is too valuable to lose through an unexpected server failure

All the attributes set in a session must implement java.io.Serializable if the session requires external
storage. In general, consider making all objects held by a session serialized, even if immediate plans do
not call for session recovery support. If the Web site grows, and session recovery support becomes
necessary, the transition occurs transparently to the application if the sessions only hold serialized objects.
If not, a switch to session recovery support requires coding changes to make the session contents
serialized.

Distributed Environment settings

Use this page to specify a type for saving a session in a distributed environment.

To view this administrative console page, click Servers > Application Servers > server_name > Web
Container > Session Management > Distributed Environment Settings.

Distributed Sessions
Specifies the type of distributed environment to be used for saving sessions.

Chapter 3. Managing HTTP sessions 59

None Specifies that the session management facility discards
the session data when the server shuts down.

Database Specifies that the session management facility stores
session information in the data source specified by the
data source connection settings. Click Database to
change these data source settings.

Memory to Memory Replication Specifies that the session management facility stores the
session information in a data source in memory. The
session information is copied to other session
management facilities for failure recovery. Click Memory
to Memory Replication to specify the replicator to use
and to change these memory to memory settings. (For
WebSphere Application Server Network Deployment only.)

Configuring for database session persistence

To configure the session management facility for database session persistence, complete the following:
1. Define a JDBC provider.

2. Create a data source pointing to an existing database, using the JDBC provider that you defined. The
data source should be non-JTA, for example, non-XA enabled. Note the JNDI name of the data
source. Under Data Sources > datasource_name > Custom Properties, make sure the correct
database is entered for the value of the databaseName property. If necessary, contact your database
administrator to verify the correct database name.

Go to the appropriate level of [Session Management|
Click Distributed Environment Settings
Select and click Database.
Specify the Data Source JNDI name from step 2.
Specify the database user ID and password for accessing the database.
Retype the password for confirmation.
9. Configure altable space and page sizes|for DB2 session databases.
10. Switch to a[multirow schemal
11. Click OK.

12. If you want to change the tuning parameters, click Custom Tuning Parameters and |select a setting
or|customize one|.

13. Click Apply.
14. Click Save.

© N oA

Switching to a multirow schema

By default, a single session maps to a single row in the database table used to hold sessions. With this
setup, there are hard limits to the amount of user-defined, application-specific data that WebSphere
Application Server can access.

1. Modify the Session Management facility properties to switch from single to multirow schema.
2. Manually drop the database table or delete all the rows in the database table that the product uses to
maintain HttpSession objects.

To drop the table:

a. Determine which data source configuration Session Management is using.
b. In the data source configuration, look up the database name.

c. Use the database facilities to connect to the database.

d. Drop the SESSIONS table.

60 1BM WebSphere Application Server Network Deployment, Version 5.1: Applications

Configuring tablespace and page sizes for DB2 session databases

If you are using DB2 for session persistence, you can increase the page size to optimize performance for
writing large amounts of data to the database. Page sizes of 8K, 16K, and 32K are supported.

To use a page size other than the default (4K), do the following:
1. If the SESSIONS table already exists, drop it from the DB2 database.

2. Create a new DB2 buffer pool and table space, specifying the same page size (8K, 16K or 32K) for
both, and assign the new buffer pool to this table space.
DB2 Connect to session
DB2 CREATE BUFFERPOOL sessionBP SIZE 1000 PAGESIZE 8K
DB2 Connect reset
DB2 Connect to session
DB2 CREATE TABLESPACE sessionTS PAGESIZE 8K MANAGED BY SYSTEM
USING ('D:\DB2\NODE0OOOO\SQLOOOO5\sessionTS.0"') BUFFERPOOL sessionBP
DB2 Connect reset

Refer to DB2 product documentation for details.

3. Configure the correct table space name and page size in the Session Management facility. Page size
is referred to as row size on the Session Management page.)

When the product is restarted, the Session Management facility creates the new SESSIONS table in the
specified tablespace based on the indicated page size.

Multirow schema considerations

IBM WebSphere Application Server supports the use of a multirow schema option in which each piece of
application specific data is stored in a separate row of the database. With this setup, the total amount of
data you can place in a session is now bound only by the database capacities. The only practical limit that
remains is the size of the session attribute object.

The multirow schema potentially has performance benefits in certain usage scenarios, such as when larger
amounts of data are stored in the session but only small amounts are specifically accessed during a given
servlet processing of an HTTP request. In such a scenario, avoiding unneeded Java object serialization is

beneficial to performance.

Understand that switching between multirow and single row is not a trivial proposition.

In addition to allowing larger session records, using multirow schema can yield performance benefits.
However, it requires a little work to switch from single-row to multirow schema, as shown in the
instructions below.

Coding considerations and test environment

Consider configuring direct single-row usage to one database and multirow usage to another database

while you verify which option suits your application needs. (Do this in code by switching the data source
used; then monitor performance.)

Programming issue Application scenario

Reasons to use single-row * You can read or write all values with just one record
read and write.

» This takes up less space in a database because you
are guaranteed that each session is only one record
long.

Reasons not to use single-row 2-megabyte limit of stored data per session.

Chapter 3. Managing HTTP sessions 61

Programming issue Application scenario

Reasons to use multirow » The application can store an unlimited amount of data;
that is, you are limited only by the size of the database
and a 2-megabyte-per-record limit.

* The application can read individual fields instead of the
whole record. When large amounts of data are stored
in the session but only small amounts are specifically
accessed during servlet processing of an HTTP
request, multirow sessions can improve performance
by avoiding unneeded Java object serialization.

Reasons not to use multirow If data is small in size, you probably do not want the extra
overhead of multiple row reads when you can store
everything in one row.

In the case of multirow usage, design your application data objects not to have references to each other,
to prevent circular references. For example, suppose you are storing two objects A and B in the session
using HttpSession.put(..) method, and A contains a reference to B. In the multirow case, because objects
are stored in different rows of the database, when objects A and B are retrieved later, the object graph
between A and B is different than stored. A and B behave as independent objects.

Memory-to-memory replication

WebSphere Application Server supports session replication to another WebSphere Application Server
instance. This support is referred to as memory-to-memory session replication. In this mode, sessions can
replicate to one or more WebSphere Application Server instances to address HTTP Session single point of
failure (SPOF). This is a new alternative in IBM WebSphere Application Server, Version 5 to the existing
saving of HTTP Session to a database.

The WebSphere Application Server instance in which the session is currently processed is referred to as
the owner of the session. In a clustered environment, session affinity in the WebSphere Application Server
plug-in routes the requests for a given session to the same server. If the current owner server instance of
the session fails, then the WebSphere Application Server plug-in routes the requests to another
appropriate server in the cluster. This server either retrieves the session from a server that has the backup
copy of the session or it retrieves the session from its own backup copy table. The server now becomes
the owner of the session and affinity is now maintained to this server.

When a session is created or updated in a WebSphere Application Server instance, the session is
transferred (or replicated) through one of the replicator entries under the replication domain that is
configured with the session management facility. This session potentially gets replicated to the WebSphere
Application Server instances that are also connected to the same replicator domain. The mode and
partitioning determine whether WebSphere Application Server instances in the same replication domain
gets the session.

There are three possible modes. You can set up a WebSphere Application Server instance to run in:

» Server mode: Only store backup copies of other WebSphere Application Server sessions and not to
send out copies of any session created in that particular server

» Client mode: Only broadcast or send out copies of the sessions it owns and not to receive backup
copies of sessions from other servers

» Both mode: Simultaneously broadcast or send out copies of the sessions it owns and act as a backup
table for sessions owned by other WebSphere Application Server instances

You can select the replication mode of server, client, or both when configuring the session management

facility for memory-to-memory replication. The default is both. This storage option is controlled by the
mode parameter.

62 1BM WebSphere Application Server Network Deployment, Version 5.1: Applications

With respect to mode, the following are the primary examples of memory-to-memory replication
configuration:

« [Peer-to-peer with a local replicator|

- [Peer-to-peer with remote replicators|
« [Client/server with remote replicators|
« [Client/server with isolated replicators|

In a cluster, by default, sessions are replicated in all the servers in the cluster that are connected to the
same replicator domain. This replication can be redundant if a large number of servers exist in a cluster.
The session management facility has an option to the servers into groups when storing sessions.

Memory-to-memory topology: Peer-to-peer function with a local
replicator

The basic peer-to-peer (both client and server function, or both mode) topology is the default configuration.
This configuration uses a local replicator (a replicator on the same server as the session manager) and no
partitioning.

M y to y topology: Basic peer to peer or “both mode”

WebSphere Application Server servers
including HttpSessions with local tables, backup tables,
and a replicators.

Local

/ Back-up
HTTP servers

with affinity —t
> Local

Replicate

domain

Back-up
HTTP servers —

with affinity \
Local

Back-up

In this basic peer-to-peer topology, each server Java Virtual Machine (JVM):

* Host the Web application leveraging HTTP session

» Send out changes to the HTTP session that it owns

* Receive backup copies of the HTTP session from all of the other servers in the cluster
* House a replicator to which the session manager connects

This configuration represents the most consolidated topology, where the various system parts are
collocated and requires the fewest server processes. When using this configuration, the most stable
implementation is achieved when each node has equal capabilities (CPU, memory, and so on), and each
handles the same amount of work.

This topology is the most redundant because everyone replicates to everyone. On any failure recovery
scenario, the server routed to already has a copy of the session. But as you add servers, more overhead
(both CPU and memory) is needed to deal with replication. Without [partitioning, scaling breaks down the
quickest with this configuration. When scaling breaks down because of the machine characteristics, the

Chapter 3. Managing HTTP sessions 63

client hit rate, the network speed, and the size on average of the HTTP session. The remaining topologies:
client/server with isolated replictors, client/server with remote replictors, and peer-to-peer with remote
replicators help mitigate and manage the scaling characte