
IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1

Performance

Tuning

and

Monitoring

���

Note

Before

using

this

information,

be

sure

to

read

the

general

information

under

“Notices”

on

page

111.

Compilation

date:

December

15,

2003

©

Copyright

International

Business

Machines

Corporation

2002,

2003.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

How

to

send

your

comments

.

.

.

.

. v

Chapter

1.

Monitoring

performance

.

.

. 1

Performance

Monitoring

Infrastructure

.

.

.

.

. 1

Performance

data

organization

.

.

.

.

.

.

.

. 2

BeanModule

data

counters

.

.

.

.

.

.

.

.

. 7

JDBC

connection

pool

data

counters

.

.

.

.

. 9

J2C

connection

pool

data

counters

.

.

.

.

.

. 11

Java

Virtual

Machine

data

counters

.

.

.

.

. 11

Object

Request

Broker

data

counters

.

.

.

.

. 13

Session

data

counters

.

.

.

.

.

.

.

.

.

. 13

Transaction

data

counters

.

.

.

.

.

.

.

.

. 16

ThreadPool

data

counters

.

.

.

.

.

.

.

.

. 17

Web

application

data

counters

.

.

.

.

.

.

. 17

Workload

Management

data

counters

.

.

.

.

. 18

System

data

counters

.

.

.

.

.

.

.

.

.

. 20

Dynamic

cache

data

counters

.

.

.

.

.

.

. 21

Web

services

gateway

data

counters

.

.

.

.

. 22

Web

services

data

counters

.

.

.

.

.

.

.

. 23

Performance

data

classification

.

.

.

.

.

.

.

. 23

Enabling

performance

monitoring

services

in

the

application

server

through

the

administrative

console

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

Performance

monitoring

service

settings

.

.

.

. 25

Enabling

performance

monitoring

services

in

the

NodeAgent

through

the

administrative

console

.

. 26

Enabling

performance

monitoring

services

using

the

command

line

.

.

.

.

.

.

.

.

.

.

.

.

. 27

Enabling

Java

Virtual

Machine

Profiler

Interface

data

reporting

.

.

.

.

.

.

.

.

.

.

.

.

. 30

Java

Virtual

Machine

Profiler

Interface

.

.

.

. 30

Monitoring

and

analyzing

performance

data

.

.

. 31

Monitoring

performance

with

Tivoli

Performance

Viewer

(formerly

Resource

Analyzer)

.

.

.

.

. 31

Developing

your

own

monitoring

applications

. 42

Tivoli

performance

monitoring

and

management

solutions

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

Third-party

performance

monitoring

and

management

solutions

.

.

.

.

.

.

.

.

.

. 77

Measuring

data

requests

(Performance

Monitoring

Infrastructure

Request

Metrics)

.

.

.

.

.

.

.

. 77

Performance

Monitoring

Infrastructure

Request

Metrics

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 78

Application

Response

Measurement

.

.

.

.

. 79

Performance

Monitoring

Infrastructure

Request

Metrics

trace

filters

.

.

.

.

.

.

.

.

.

.

. 79

Performance

Monitoring

Infrastructure

Request

Metrics

data

output

.

.

.

.

.

.

.

.

.

.

. 80

Configuring

Request

Metrics

.

.

.

.

.

.

. 81

Example:

Generating

trace

records

from

Performance

Monitoring

Infrastructure

Request

Metrics

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

Performance:

Resources

for

learning

.

.

.

.

.

. 87

Chapter

2.

Using

the

Runtime

Performance

Advisor

.

.

.

.

.

.

.

. 89

Runtime

Performance

Advisor

configuration

settings

90

Enable

Runtime

Performance

Advisor

.

.

.

. 91

Enable

Runtime

Performance

Advisor

.

.

.

. 91

Calculation

Interval

.

.

.

.

.

.

.

.

.

.

. 92

Maximum

warning

sequence

.

.

.

.

.

.

. 92

Number

of

processors

.

.

.

.

.

.

.

.

.

. 92

Restart

button

.

.

.

.

.

.

.

.

.

.

.

. 92

Advice

configuration

settings

.

.

.

.

.

.

.

. 92

Advice

name

.

.

.

.

.

.

.

.

.

.

.

.

. 92

Advice

applied

to

component

.

.

.

.

.

.

. 92

Advice

status

.

.

.

.

.

.

.

.

.

.

.

.

. 92

Advice

status

.

.

.

.

.

.

.

.

.

.

.

.

. 93

Chapter

3.

Using

the

Performance

Advisor

in

Tivoli

Performance

Viewer

. 95

Performance

Advisor

Report

in

Tivoli

Performance

Viewer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

Message

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

Performance

data

in

lower

panel

.

.

.

.

.

. 96

Chapter

4.

Tuning

performance

parameter

index

.

.

.

.

.

.

.

.

.

.

. 99

Tuning

parameter

hot

list

.

.

.

.

.

.

.

.

. 100

Performance

troubleshooting

tips

.

.

.

.

.

.

. 100

Tuning

hardware

capacity

and

settings

.

.

.

.

. 102

Tuning

operating

systems

.

.

.

.

.

.

.

.

. 103

Tuning

applications

.

.

.

.

.

.

.

.

.

.

. 108

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

Trademarks

and

service

marks

.

.

.

. 113

©

Copyright

IBM

Corp.

2002,

2003

iii

iv

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

How

to

send

your

comments

Your

feedback

is

important

in

helping

to

provide

the

most

accurate

and

highest

quality

information.

v

To

send

comments

on

articles

in

the

WebSphere

Application

Server

Information

Center

1.

Display

the

article

in

your

Web

browser

and

scroll

to

the

end

of

the

article.

2.

Click

on

the

Feedback

link

at

the

bottom

of

the

article,

and

a

separate

window

containing

an

e-mail

form

appears.

3.

Fill

out

the

e-mail

form

as

instructed,

and

click

on

Submit

feedback

.
v

To

send

comments

on

PDF

books,

you

can

e-mail

your

comments

to:

wasdoc@us.ibm.com

or

fax

them

to

919-254-0206.

Be

sure

to

include

the

document

name

and

number,

the

WebSphere

Application

Server

version

you

are

using,

and,

if

applicable,

the

specific

page,

table,

or

figure

number

on

which

you

are

commenting.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

2002,

2003

v

vi

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

Chapter

1.

Monitoring

performance

WebSphere

Application

Server

collects

data

on

run-time

and

applications

through

the

Performance

Monitoring

Infrastructure

(PMI).

Performance

data

can

then

be

monitored

and

analyzed

with

a

variety

of

tools.

1.

Enable

performance

monitoring

services

in

the

application

server

through

the

administrative

console

and

Enable

performance

monitoring

services

in

the

NodeAgent

through

the

administrative

console

if

running

WebSphere

Application

Server

Network

Deployment.

In

order

to

monitor

performance

data

through

the

PMI

interfaces,

you

must

first

enable

the

performance

monitoring

service

through

the

administrative

console

and

restart

the

server.

If

running

in

Network

Deployment,

you

need

to

enable

PMI

services

on

both

the

server

and

on

the

node

agent

and

restart

the

server

and

the

node

agent.

2.

Collect

the

data.

The

monitoring

levels

that

determine

which

data

counters

are

enabled

can

be

set

dynamically,

without

restarting

the

server.

This

can

be

done

in

one

of

the

following

ways:

a.

Enable

performance

monitoring

services

through

Tivoli

Performance

Viewer

(formerly

Resource

Analyzer).

b.

Enable

performance

monitoring

services

using

the

command

line.

WebSphere

Application

Server

also

collects

data

through

PMI

Request

Metrics.

This

feature

times

requests

as

they

travel

through

WebSphere

Application

Server

components.

For

more

information

about

PMI

Request

Metrics

see

the

topic

″Measuring

data

requests

(Performance

Monitoring

Infrastructure

Request

Metrics)″.

Performance

Monitoring

Infrastructure

The

Performance

Monitoring

Infrastructure

(PMI)

uses

a

client-server

architecture.

The

server

collects

performance

data

from

various

WebSphere

Application

Server

components.

A

client

retrieves

performance

data

from

one

or

more

servers

and

processes

the

data.

As

shown

in

the

figure,

the

server

collects

PMI

data

in

memory.

This

data

consists

of

counters

such

as

servlet

response

time

and

data

connection

pool

usage.

The

data

points

are

then

retrieved

using

a

Web

client,

Java

client

or

JMX

client.

WebSphere

Application

Server

contains

Tivoli

Performance

Viewer,

a

Java

client

which

displays

and

monitors

performance

data.

See

the

topics

Tivoli

performance

monitoring

and

management

solutions,

Third-party

performance

monitoring

and

management

solutions,

and

Developing

your

own

monitoring

applications

for

©

Copyright

IBM

Corp.

2002,

2003

1

more

information

on

monitoring

tools″.

The

figure

shows

the

overall

PMI

architecture.

On

the

right

side,

the

server

updates

and

keeps

PMI

data

in

memory.

The

left

side

displays

a

Web

client,

Java

client

and

JMX

client

retrieving

the

performance

data.

Performance

data

organization

Performance

Monitoring

Infrastructure

(PMI)

provides

server-side

monitoring

and

a

client-side

API

to

retrieve

performance

data.

PMI

maintains

statistical

data

within

the

entire

WebSphere

Application

Server

domain,

including

multiple

nodes

and

servers.

Each

node

can

contain

one

or

more

WebSphere

Application

Servers.

Each

server

organizes

PMI

data

into

modules

and

submodules.

2

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

Instance

Counter

Enterprise beans

Bean1 Bean2

Server*

Node* PMI Client

Module

Resource
Analyzer

Methods

Avg Method RT

Avg Method RTNum DestroysGets Found Num Creates

Bean3

Hiearchy of data collections
used for performance reporting
to Resource Analyzer

Serve 2

Avg Method RT

EJB Module 1

entity stateful stateless

The

Tivoli

Performance

Viewer,

formerly

the

Resource

Analyzer,

organizes

performance

data

in

a

centralized

hierarchy

of

the

following

objects:

v

Node.

A

node

represents

a

physical

machine

in

the

WebSphere

Application

Server

administrative

domain.

v

Server.

A

server

is

a

functional

unit

that

provides

services

to

clients

over

a

network.

No

performance

data

is

collected

for

the

server

itself.

v

Module.

A

module

represents

one

of

the

resource

categories

for

which

collected

data

is

reported

to

the

performance

viewer.

Each

module

has

a

configuration

file

in

XML

format.

This

file

determines

organization

and

lists

a

unique

identifier

for

each

performance

data

in

the

module.

Modules

include

enterprise

beans,

JDBC

connection

pools,

J2C

connection

pool,

Java

Virtual

Machine

(JVM)

run

time

(including

Java

Virtual

Machine

Profiler

Interface

(JVMPI)),

servlet

session

manager,

thread

pools,transaction

manager,

Web

applications,

Object

Request

Broker

(ORB),

Workload

Management

(WLM),

Web

Services

Gateway

(WSGW),and

dynamic

cache.

v

Submodule.

A

submodule

represents

a

fine

granularity

of

a

resource

category

under

the

module.

For

example,

ORB

thread

pool

is

a

submodule

of

the

thread

pool

category.

Submodules

can

contain

other

submodules.

v

Counter.

A

counter

is

a

data

type

used

to

hold

performance

information

for

analysis.

Each

resource

category

(module)

has

an

associated

set

of

counters.

The

data

points

within

a

module

are

queried

and

distinguished

by

the

MBean

ObjectNames

or

PerfDescriptors.

Examples

of

counters

include

the

number

of

active

enterprise

beans,

the

time

spent

responding

to

a

servlet

request

and

the

number

of

kilobytes

of

available

memory.

The

Tivoli

Performance

Viewer

allows

users

to

view

and

manipulate

the

data

for

counters.

A

particular

counter

type

can

appear

in

several

modules.

For

example,

both

the

servlet

and

enterprise

bean

modules

have

a

response

time

counter.

In

addition,

a

counter

type

can

have

multiple

instances

within

a

module.

For

example,

in

the

figure

above,

both

the

Enterprise

beans

module

and

Bean1

have

an

Avg

Method

RT

counter.

Counters

are

enabled

at

the

module

level

and

can

be

enabled

or

disabled

for

elements

within

the

module.

For

example,

in

the

figure,

if

the

Enterprise

beans

module

is

enabled,

its

Avg

Method

RT

counter

is

enabled

by

default.

However,

Chapter

1.

Monitoring

performance

3

you

can

then

disable

the

Avg

Method

RT

counter

even

when

the

rest

of

the

module

counters

are

enabled.

You

can

also,

if

desired,

disable

the

Avg

Method

RT

counter

for

Bean1,

but

the

aggregate

response

time

reported

for

the

whole

module

will

no

longer

include

Bean1

data.

Each

counter

has

a

specified

monitoring

level:

none,

low,

medium,

high

or

maximum.

If

the

module

is

set

to

lower

monitoring

level

than

required

by

a

particular

counter,

that

counter

will

not

be

enabled.

Thus,

if

Bean1

has

a

medium

monitoring

level,

Gets

Found

and

Num

Destroys

are

enabled

because

they

require

a

low

monitoring

level.

However,

Avg

Method

RT

is

not

enabled

because

it

requires

a

high

monitoring

level.

Data

collection

can

affect

performance

of

the

application

server.

The

impact

depends

on

the

number

of

counters

enabled,

the

type

of

counters

enabled

and

the

monitoring

level

set

for

the

counters.

The

following

PMI

modules

are

available

to

provide

statistical

data:

v

Enterprise

bean

module,

enterprise

bean,

methods

in

a

bean

Data

counters

for

this

category

report

load

values,

response

times,

and

life

cycle

activities

for

enterprise

beans.

Examples

include

the

average

number

of

active

beans

and

the

number

of

times

bean

data

is

loaded

or

written

to

the

database.

Information

is

provided

for

enterprise

bean

methods

and

the

remote

interfaces

used

by

an

enterprise

bean.

Examples

include

the

number

of

times

a

method

is

called

and

the

average

response

time

for

the

method.

In

addition,

the

Tivoli

Performance

Viewer

reports

information

on

the

size

and

use

of

a

bean

objects

cache

or

enterprise

bean

object

pool.

Examples

include

the

number

of

calls

attempting

to

retrieve

an

object

from

a

pool

and

the

number

of

times

an

object

is

found

available

in

the

pool.

v

JDBC

connection

pools

4

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

Data

counters

for

this

category

contain

usage

information

about

connection

pools

for

a

database.

Examples

include

the

average

size

of

the

connection

pool

or

number

of

connections,

the

average

number

of

threads

waiting

for

a

connection,

the

average

wait

time

in

milliseconds

for

a

connection,

and

the

average

time

the

connection

is

in

use.

v

J2C

connection

pool

Data

counters

for

this

category

contain

usage

information

about

the

Java

2

Enterprise

Edition

(J2EE)

Connector

Architecture

that

enables

enterprise

beans

to

connect

and

interact

with

procedural

back-end

systems,

such

as

Customer

Information

Control

System

(CICS),

and

Information

Management

System

(IMS).

Examples

include

the

number

of

managed

connections

or

physical

connections

and

the

total

number

of

connections

or

connection

handles.

v

Java

Virtual

Machine

API

(JVM)

Data

counters

for

this

category

contain

memory

used

by

a

process

as

reported

by

Java

Virtual

Machine

(JVM)

run

time.

Examples

are

the

total

memory

available

and

the

amount

of

free

memory

for

the

JVM.

JVM

run

time

also

includes

data

from

the

Java

Machine

Profiler

Interface

(JVMPI).

This

data

provides

detailed

information

about

the

JVM

running

the

application

server.

v

Servlet

session

manager

Data

counters

for

this

category

contain

usage

information

for

HTTP

sessions.

Examples

include

the

total

number

of

accessed

sessions,

the

average

amount

of

time

it

takes

for

a

session

to

perform

a

request,

and

the

average

number

of

concurrently

active

HTTP

sessions.

v

Thread

pool

Data

counters

for

this

category

contain

information

about

the

thread

pools

for

Object

Request

Broker

(ORB)

threads

and

the

Web

container

pools

used

to

process

HTTP

requests.

Examples

include

the

number

of

threads

created

and

destroyed,

the

maximum

number

of

pooled

threads

allowed,

and

the

average

number

of

active

threads

in

the

pool.

v

Java

Transaction

API

(JTA)

Data

counters

for

this

category

contain

performance

information

for

the

transaction

manager.

Examples

include

the

average

number

of

active

transactions,

the

average

duration

of

transactions,

and

the

average

number

of

methods

per

transaction.

v

Web

applications,

servlet

Data

counters

for

this

category

contain

information

for

the

selected

server.

Examples

include

the

number

of

loaded

servlets,

the

average

response

time

for

completed

requests,

and

the

number

of

requests

for

the

servlet.

v

Object

Request

Broker

(ORB)

Data

counters

for

this

category

contain

information

for

the

ORB.

Examples

include

the

object

reference

lookup

time,

the

total

number

of

requests,

and

the

processing

time

for

each

interceptor.

v

Web

Services

Gateway

(WSGW)

Data

counters

for

this

category

contain

information

for

WSGW.

Examples

include

the

number

of

synchronous

and

asynchronous

requests

and

responses.

v

System

data

Data

counters

for

this

category

contain

information

for

a

machine

(node).

Examples

include

the

CPU

utilization

and

memory

usage.

Note

that

this

category

is

available

at

node

level,

which

means

it

is

only

available

at

NodeAgent

in

the

multiple

servers

version.

v

Workload

Management

(WLM)

Chapter

1.

Monitoring

performance

5

Data

counters

for

this

category

contain

information

for

workload

management.

Examples

include

the

number

of

requests,

the

number

of

updates

and

average

response

time.

v

Dynamic

cache

Data

counters

for

this

category

contain

information

for

the

dynamic

cache

service.

Examples

include

in

memory

cache

size,

number

of

invalidations

and

number

of

hits

and

misses.

v

Web

Services

Data

counters

for

this

category

contain

information

for

the

web

services.

Examples

include

number

of

loaded

web

services,

number

of

requests

delivered

and

processed,

request

response

time,

and

average

size

of

requests.

You

can

access

PMI

data

via

the

getStatsObject

and

getStatsArray

method

in

PerfMBean.

You

will

need

to

pass

the

MBean

ObjectName(s)

to

PerfMBean.

The

following

MBean

types

allow

you

to

get

PMI

data

in

the

related

categories.

v

DynaCache:

for

dynamic

cache

PMI

data

v

EJBModule*:

for

EJB

module

PMI

data

(BeanModule)

v

EntityBean*:

for

a

specific

EJB

PMI

data

(BeanModule)

v

JDBCProvider*:

for

JDBC

connection

pool

PMI

data

v

J2CResourceAdapter*:

for

J2C

connection

pool

PMI

data

v

JVM:

for

Java

Virtual

machine

PMI

data

v

MessageDrivenBean*:

for

a

specific

EJB

PMI

data

(BeanModule)

v

ORB:

for

Object

Request

Broker

PMI

data

v

Server:

for

PMI

data

in

the

whole

server,

you

must

pass

recurisive=true

to

PerfMBean

v

SessionManager*:

for

HTTP

Sessions

PMI

data

v

StatefulSessionBean*:

for

a

specific

EJB

PMI

data

(BeanModule)

v

StatelessSessionBean*:

for

a

specific

EJB

PMI

data

(BeanModule)

v

SystemMetrics:

for

system

level

PMI

data

v

ThreadPool*:

for

thread

pool

PMI

data

v

TransactionService:

for

JTA

Transaction

PMI

data

v

WebModule*:

for

web

application

PMI

data

v

Servlet*:

for

a

servlet

PMI

data

v

WLMAppServer:

for

Workload

Management

PMI

data

v

WebServicesService:

for

web

services

PMI

data

v

WSGW*:

for

web

services

gateway

PMI

data

First,

you

will

need

to

use

the

AdminClient

API

to

query

the

ObjectName

for

each

of

the

above

MBean

types.

You

can

either

query

all

the

MBeans

and

then

match

the

MBean

type

or

use

the

query

String

for

the

type

only:

String

query

=

″WebSphere:type=mytype,node=mynode,server=myserver,*″;

You

will

need

to

set

mytype,

mynode,

and

myserver

accordingly.

Note

that

you

get

a

Set

when

you

call

AdminClient

to

query

MBean

ObjectNames.

It

means

that

you

may

get

multiple

ObjectNames.

In

the

above,

the

MBean

types

with

a

star

(*)

mean

that

there

may

be

multiple

ObjectNames

in

a

server

for

the

same

MBean

type.

In

this

case,

the

ObjectNames

can

be

identified

by

both

type

and

name

(but

mbeanIdentifier

will

be

the

real

UID

for

MBeans).

However,

the

MBean

names

are

not

predefined

--

they

are

decided

at

runtime

based

on

the

applications/resources.

6

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

Once

you

get

multiple

ObjectNames,

you

can

construct

an

array

of

ObjectNames

that

you

are

interested

in.

Then

you

can

pass

the

ObjectNames

to

PerfMBean

to

get

PMI

data.

You

have

the

recursive

and

non-recursive

options.

Recursive

option

will

return

you

Stats

and

sub-stats

objects

in

a

tree

structure

while

non-recursive

option

will

return

you

a

Stats

object

for

that

MBean

only.

More

programming

information

can

be

found

in

″Develop

your

own

monitoring

applications″.

BeanModule

data

counters

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

creates

Number

of

times

beans

were

created

3.5.5

and

above

per

home

CountStatistic

Low

removes

Number

of

times

beans

were

removed

3.5.5

and

above

per

home

CountStatistic

Low

passivates

Number

of

times

beans

were

passivated

(entity

and

stateful)

3.5.5

and

above

per

home

CountStatistic

Low

activates

Number

of

times

beans

were

activated

(entity

and

stateful)

3.5.5

and

above

per

home

CountStatistic

Low

persistence

loads

Number

of

times

bean

data

was

loaded

from

persistent

storage

(entity)

3.5.5

and

above

per

home

CountStatistic

Low

persistence

stores

Number

of

times

bean

data

was

stored

in

persistent

storage

(entity)

3.5.5

and

above

per

home

CountStatistic

Low

instantiations

Number

of

times

bean

objects

were

instantiated

3.5.5

and

above

per

home

CountStatistic

Low

destroys

Number

of

times

bean

objects

were

freed

3.5.5

and

above

per

home

CountStatistic

Low

Num

Ready

Beans

Number

of

concurrently

ready

beans

(entity

and

session).

This

counter

was

called

concurrent

active

in

Versions

3.5.5+

and

4.0.

3.5.5

and

above

per

home

RangeStatistic

High

concurrent

live

Number

of

concurrently

live

beans

3.5.5

and

above

per

home

RangeStatistic

High

avg

method

rsp

time

Average

response

time

in

milliseconds

on

the

bean

methods

(home,

remote,

local)

3.5.5

and

above

per

home

TimeStatistic

High

Chapter

1.

Monitoring

performance

7

avg

method

rsp

time

for

create

Average

time

in

milliseconds

a

bean

create

call

takes

including

the

time

for

the

load

if

any

5.0

per

home

TimeStatistic

Medium

avg

method

rsp

time

for

load

Average

time

in

milliseconds

for

loading

the

bean

data

from

persistent

storage

(entity)

5.0

per

home

TimeStatistic

Medium

avg

method

rsp

time

for

store

Average

time

in

milliseconds

for

storing

the

bean

data

to

persistent

storage

(entity)

5.0

per

home

TimeStatistic

Medium

avg

method

rsp

time

for

remove

Average

time

in

milliseconds

a

bean

entries

call

takes

including

the

time

at

the

database,

if

any

5.0

per

home

TimeStatistic

Medium

total

method

calls

total

number

of

method

calls

3.5.5

and

above

per

home

CountStatistic

High

avg

method

rsp

time

for

activation

Average

time

in

milliseconds

a

beanActivate

call

takes

including

the

time

at

the

database,

if

any

5.0

per

home

TimeStatistic

Medium

avg

method

rsp

time

for

passivation

Average

time

in

milliseconds

a

beanPassivate

call

takes

including

the

time

at

the

database,

if

any

5.0

per

home

TimeStatistic

Medium

active

methods

Number

of

concurrently

active

methods

-

num

methods

called

at

the

same

time.

3.5.5

and

above

per

home

TimeStatistic

High

Per

method

invocations

Number

of

calls

to

the

bean

methods

(home,

remote,

local)

3.5.5

and

above

per

method/per

home

CountStatistic

Max

Per

method

rsp

time

Average

response

time

in

milliseconds

on

the

bean

methods

(home,

remote,

local)

3.5.5

and

above

per

home

TimeStatistic

Max

Per

method

concurrent

invocations

Number

of

concurrent

invocations

to

call

a

method

5.0

per

method/per

home

RangeStatistic

Max

getsFromPool

Number

of

calls

retrieving

an

object

from

the

pool

(entity

and

stateless)

3.5.5

and

above

per

home/object

pool

CountStatistic

Low

getsFound

Number

of

times

a

retrieve

found

an

object

available

in

the

pool

(entity

and

stateless)

3.5.5

and

above

per

home/object

pool

CountStatistic

Low

8

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

returnsToPool

Number

of

calls

returning

an

object

to

the

pool

(entity

and

stateless)

3.5.5

and

above

per

home/object

pool

CountStatistic

Low

returnsDiscarded

Number

of

times

the

returning

object

was

discarded

because

the

pool

was

full

(entity

and

stateless)

3.5.5

and

above

per

home/object

pool

CountStatistic

Low

drainsFromPool

Number

of

times

the

daemon

found

the

pool

was

idle

and

attempted

to

clean

it

(entity

and

stateless)

3.5.5

and

above

per

home/object

pool

CountStatistic

Low

avgDrainSize

Average

number

of

objects

discarded

in

each

drain

(entity

and

stateless)

3.5.5

and

above

per

home/object

pool

TimeStatistic

Medium

avgPoolSize

Number

of

objects

in

the

pool

(entity

and

stateless)

3.5.5

and

above

per

home/object

pool

RangeStatistic

High

messageCount

Number

of

messages

delivered

to

the

bean

onMessage

method

(message

driven

beans)

5.0

per

type

CountStatistic

Low

messageBackoutCount

Number

of

messages

failed

to

be

delivered

to

the

bean

onMessage

method

(message

driven

beans)

5.0

per

type

CountStatistic

Low

serverSessionWait

Average

time

to

obtain

a

ServerSession

from

the

pool

(message

drive

bean)

5.0

per

type

TimeStatistic

Medium

serverSessionUsage

Percentage

of

server

session

pool

in

use

(message

driven)

5.0

per

type

RangeStatistic

High

JDBC

connection

pool

data

counters

PMI

collects

performance

data

for

4.0

and

5.0

JDBC

data

sources.

For

a

4.0

data

source,

the

data

source

name

is

used.

For

a

5.0

data

source,

the

JNDI

name

is

used.

The

JDBC

connection

pool

counters

are

used

to

monitor

the

JDBC

data

sources

performance.

The

data

can

be

found

by

using

the

Tivoli

Performance

Viewer

and

looking

under

each

application

server.

Click

application_server

>

JDBC

connection

pool.

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

creates

Total

number

of

connections

created

3.5.5

and

above

per

connection

pool

CountStatistic

Low

avg

pool

size

Average

pool

size

3.5.5

and

above

per

connection

pool

BoundedRangeStatistic

High

Chapter

1.

Monitoring

performance

9

free

pool

size

Average

free

pool

size

5.0

per

connection

pool

BoundedRangeStatistic

High

allocates

Total

number

of

connections

allocated

3.5.5

and

above

per

connection

pool

CountStatistic

Low

returns

Total

number

of

connections

returned

4.0

and

above

per

connection

pool

CountStatistic

Low

avg

waiting

threads

Number

of

threads

that

are

currently

waiting

for

a

connection

3.5.5

and

above

per

connection

pool

RangeStatistic

High

connection

pool

faults

Total

number

of

faults,

such

as,

timeouts,

in

connection

pool

3.5.5

and

above

per

connection

pool

CountStatistic

Low

destroys

Number

of

times

bean

objects

were

freed

3.5.5

and

above

per

connection

pool

CountStatistic

Low

avg

wait

time

Average

waiting

time

in

milliseconds

until

a

connection

is

granted

5.0

per

connection

pool

TimeStatistic

Medium

avg

time

in

use

Average

time

a

connection

is

used

(Difference

between

the

time

at

which

the

connection

is

allocated

and

returned.

This

includes

the

JDBC

operation

time.)

5.0

per

connection

pool

TimeStatistic

Medium

percent

used

Average

percent

of

the

pool

that

is

in

use

3.5.5

and

above

per

connection

pool

RangeStatistic

High

percent

maxed

Average

percent

of

the

time

that

all

connections

are

in

use

3.5.5

and

above

per

connection

pool

RangeStatistic

High

Statement

cache

discard

count

Total

number

of

statements

discarded

by

the

LRU

algorithm

of

the

statement

cache

4.0

and

above

per

connection

pool

CountStatistic

Low

Number

managed

connections

Number

of

ManagedConnection

objects

in

use

5.0

per

connection

factory

CountStatistic

Low

Number

connections

Current

number

of

connection

objects

in

use

5.0

per

connection

factory

CountStatistic

Low

jdbcOperationTimer

Amount

of

time

in

milliseconds

spent

executing

in

the

JDBC

driver

(includes

time

spent

in

JDBC

driver,

network

and

database)

5.0

per

data

source

TimeStatistic

Medium

10

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

J2C

connection

pool

data

counters

The

J2C

connection

pool

data

counters

are

used

to

monitor

the

J2C

connection

pool

performance.

The

data

can

be

found

by

using

the

Tivoli

Performance

Viewer

and

looking

under

each

application

server.

Click

application_server

>

J2C

connection

pool.

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

Number

managed

connections

Number

of

ManagedConnection

objects

in

use

5.0

per

connection

factory

CountStatistic

Low

Number

connections

Current

number

of

connection

objects

in

use

5.0

per

connection

factory

CountStatistic

Low

Number

managed

connections

created

Total

number

of

connections

created

5.0

per

connection

factory

CountStatistic

Low

Number

managed

connections

destroyed

Total

number

of

connections

destroyed

5.0

per

connection

factory

CountStatistic

Low

Number

managed

connections

allocated

Total

number

of

connections

allocated

5.0

per

connection

factory

CountStatistic

Low

Number

managed

connections

freed

Total

number

of

connections

freed

5.0

per

connection

factory

CountStatistic

Low

faults

Number

of

faults,

such

as

timeouts,

in

connection

pool

5.0

per

connection

factory

CountStatistic

Low

free

pool

size

Number

of

free

connections

in

the

pool

5.0

per

connection

factory

BoundedRangeStatistic

High

pool

size

Pool

size

5.0

per

connection

factory

BoundedRangeStatistic

High

concurrent

waiters

Average

number

of

threads

concurrently

waiting

for

a

connection

5.0

per

connection

factory

RangeStatistic

High

Percent

used

Average

percent

of

the

pool

that

is

in

use

5.0

per

connection

factory

RangeStatistic

High

Percent

maxed

Average

percent

of

the

time

that

all

connections

are

in

use

5.0

per

connection

factory

RangeStatistic

High

Average

wait

time

Average

waiting

time

in

milliseconds

until

a

connection

is

granted

5.0

per

connection

factory

TimeStatistic

Medium

Average

use

time

Average

time

in

milliseconds

that

connections

are

in

use

5.0

per

connection

factory

TimeStatistic

Medium

Java

Virtual

Machine

data

counters

The

Java

Virtual

Machine

(JVM)

data

counters

are

used

to

monitor

the

JVM

performance.

With

an

exception

to

the

data

counters

used

for

total,

used

and

free

heap

size,

the

data

counters

can

be

found

using

the

Java

Virtual

Machine

Profiler

Chapter

1.

Monitoring

performance

11

Interface

(JVMPI).

In

order

to

use

JVMPI,

you

must

turn

on

the

monitoring

by

settting

the

-XrunpmiJvmpiProfiler

command

line.

See

Enabling

Java

Virtual

Machine

Profiler

Interface

data

reporting

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

Free

memory

Free

memory

in

JVM

run

time

3.5.5

and

above

per

Java

Virtual

Machine

(JVM)

CountStatistic

Low

Used

memory

Used

memory

in

JVM

run

time

3.5.5

and

above

per

JVM

CountStatistic

Low

Total

memory

Total

memory

in

JVM

run

time

3.5.5

and

above

per

JVM

BoundedRangeStatistic.

The

upperBound

and

lowerBound

are

not

implemented

for

the

Total

memory

counter.

High

Up

time

The

amount

of

time

the

JVM

is

running

5.0

per

JVM

CountStatistic

Low

Number

garbage

collection

calls

Number

of

garbage

collection

calls.

This

counter

is

not

available

unless

-XrunpmiJvmpiProfiler

is

set

when

starting

the

JVM.

4.0

and

above

per

JVM

CountStatistic

Max

Average

time

between

garbage

collection

Average

garbage

collection

in

seconds

between

two

garbage

collection.

This

counter

is

not

available

unless

-XrunpmiJvmpiProfiler

is

set

when

starting

the

JVM.

4.0

and

above

per

JVM

TimeStatistic

Max

Average

garbage

collection

duration

Average

duration

of

a

garbage

collection.

This

counter

is

not

available

unless

-XrunpmiJvmpiProfiler

is

set

when

starting

the

JVM.

4.0

and

above

per

JVM

TimeStatistic

Max

num

waits

for

a

lock

Number

of

times

that

a

thread

waits

for

a

lock.This

counter

is

not

available

unless

-XrunpmiJvmpiProfiler

is

set

when

starting

the

JVM.

4.0

and

above

per

JVM

CountStatistic

Max

avg

time

waiting

for

lock

Average

time

that

a

thread

waits

for

a

lock.

This

counter

is

not

available

unless

-XrunpmiJvmpiProfiler

is

set

when

starting

the

JVM.

4.0

and

above

per

JVM

TimeStatistic

Max

12

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

Number

of

objects

allocated

Number

of

objects

allocated

in

heap.

This

counter

is

not

available

unless

-XrunpmiJvmpiProfiler

is

set

when

starting

the

JVM.

4.0

and

above

per

JVM

CountStatistic

Max

Number

of

objects

found

Number

of

objects

in

heap.

This

counter

is

not

available

unless

-XrunpmiJvmpiProfiler

is

set

when

starting

the

JVM.

4.0

and

above

per

JVM

CountStatistic

Max

Number

of

objects

freed

Number

of

objects

freed

in

heap.

This

counter

is

not

available

unless

-XrunpmiJvmpiProfiler

is

set

when

starting

the

JVM.

4.0

and

above

per

JVM

CountStatistic

Max

Object

Request

Broker

data

counters

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

referenceLookupTime

The

time

(in

milliseconds)

to

look

up

an

object

reference

before

method

dispatch

can

be

carried

out

5.0

Object

Request

Broker

(ORB)

TimeStatistic

Medium

numRequest

The

total

number

of

requests

sent

to

the

ORB

5.0

ORB

CountStatistic

Low

concurrentRequests

The

number

of

requests

that

are

concurrently

processed

by

the

ORB

5.0

ORB

RangeStatistic

High

processingTime

The

time

(in

milliseconds)

it

takes

a

registered

portable

interceptor

to

run

5.0

per

interceptor

TimeStatistic

Medium

Session

data

counters

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

createdSessions

Number

of

sessions

created

3.5.5

and

above

per

web

application

CountStatistic

Low

invalidatedSessions

Number

of

sessions

invalidated

3.5.5

and

above

per

web

application

CountStatistic

Low

sessionLifeTime

The

average

session

lifetime

3.5.5

and

above

per

web

application

TimeStatistic

Medium

Chapter

1.

Monitoring

performance

13

activeSessions

The

number

of

concurrently

active

sessions.

A

session

is

active

if

WebSphere

is

currently

processing

a

request

which

uses

that

session.

3.5.5

and

above

per

web

application

RangeStatistic

High

liveSession

The

number

of

sessions

that

are

currently

cached

in

memory

5.0

and

above

per

web

application

RangeStatistic

High

NoRoomForNewSession

Applies

only

to

session

in

memory

with

AllowOverflow=false.

The

number

of

times

that

a

request

for

a

new

session

can

not

be

handled

because

it

would

exceed

the

maximum

session

count.

5.0

per

Web

application

CountStatistic

Low

cacheDiscards

Number

of

session

objects

that

have

been

forced

out

of

the

cache.

(An

LRU

algorithm

removes

old

entries

to

make

room

for

new

sessions

and

cache

misses).

Applicable

only

for

persistent

sessions.

5.0

per

Web

application

CountStatistic

Low

externalReadTime

Time

(milliseconds)

taken

in

reading

the

session

data

from

persistent

store.

For

multirow

sessions,

the

metrics

are

for

the

attribute;

for

single

row

sessions,

the

metrics

are

for

the

whole

session.

Applicable

only

for

persistent

sessions.

When

using

a

JMS

persistent

store,

the

user

has

the

choice

of

whether

to

serialize

the

data

being

replicated.

If

they

choose

not

to

serialize

the

data,

the

counter

will

not

be

available.

5.0

per

Web

application

TimeStatistic

Medium

externalReadSize

Size

of

session

data

read

from

persistent

store.

Applicable

only

for

(serialized)

persistent

sessions;

similar

to

externalReadTime

above.

5.0

per

Web

application

TimeStatistic

Medium

14

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

externalWriteTime

Time

(milliseconds)

taken

to

write

the

session

data

from

the

persistent

store.

Applicable

only

for

(serialized)

persistent

sessions.

Similar

to

externalReadTime

above.

5.0

per

Web

application

TimeStatistic

Medium

externalWriteSize

Size

of

session

data

written

to

persistent

store.

Applicable

only

for

(serialized)

persistent

sessions.

Similar

to

externalReadTime

above.

5.0

per

Web

application

TimeStatistic

Medium

affinityBreaks

The

number

of

requests

received

for

sessions

that

were

last

accessed

from

another

Web

application.

This

can

indicate

failover

processing

or

a

corrupt

plug-in

configuration.

5.0

per

Web

application

CountStatistic

Low

serializableSessObjSize

The

size

in

bytes

of

(the

serializable

attributes

of

)

in-memory

sessions.

Only

count

session

objects

that

contain

at

least

one

serializable

attribute

object.

Note

that

a

session

may

contain

some

attributes

that

are

serializable

and

some

that

are

not.

The

size

in

bytes

is

at

a

session

level.

5.0

per

Web

application

TimeStatistic

Max

timeSinceLastActivated

The

time

difference

in

milliseconds

between

previous

and

current

access

time

stamps.

Does

not

include

session

time

out.

5.0

per

Web

application

TimeStatistic

Medium

invalidatedViaTimeout

The

number

of

requests

for

a

session

that

no

CountStatistic

exists,

presumeably

because

the

session

timed

out.

5.0

per

Web

application

CountStatistic

Low

Chapter

1.

Monitoring

performance

15

attemptToActivateNotExistentSession

Number

of

requests

for

a

session

that

no

longer

exists,

presumeably

because

the

session

timed

out.

Use

this

counter

to

help

determine

if

the

timeout

is

too

short.

5.0

per

Web

application

CountStatistic

Low

Transaction

data

counters

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

Number

global

transactions

begun

Total

number

of

global

transactions

begun

on

server

4.0

and

above

per

transaction

manager/server

CountStatistic

Low

Number

global

transactions

involved

Total

number

of

global

trans

involved

on

server

(for

example,

begun

and

imported)

4.0

and

above

per

transaction

manager/server

CountStatistic

Low

Number

local

transactions

begun

Total

number

of

local

transactions

begun

on

server

4.0

and

above

per

transaction

manager/server

CountStatistic

Low

Active

global

transactions

Number

of

concurrently

active

global

transactions

3.5.5

and

above

per

transaction

manager/server

CountStatistic

Low

Active

local

transactions

Number

of

concurrently

active

local

transactions

4.0

and

above

per

transaction

manager/server

CountStatistic

Low

Global

transactions

duration

Average

duration

of

global

transactions

3.5.5

and

above

per

transaction

manager/server

TimeStatistic

Medium

Local

transaction

duration

Average

duration

of

local

transactions

4.0

and

above

per

transaction

manager/server

TimeStatistic

Medium

Local

transactions

before_completion

time

Average

duration

of

before_completion

for

local

transactions

4.0

and

above

per

transaction

manager

or

server

TimeStatistic

Medium

Global

transaction

commit

time

Average

duration

of

commit

for

global

transactions

4.0

and

above

per

transaction

manager/server

TimeStatistic

Medium

Global

transaction

prepare

time

Average

duration

of

prepare

for

global

transactions

4.0

and

above

per

transaction

manager/server

TimeStatistic

Medium

Local

transaction

before_completion

time

Average

duration

of

before_completion

for

local

transactions

4.0

and

above

per

transaction

manager/server

TimeStatistic

Medium

Local

transaction

commit

time

Average

duration

of

commit

for

local

transactions

4.0

and

above

per

transaction

manager/server

TimeStatistic

Medium

Number

global

transactions

committed

Total

number

of

global

transactions

committed

3.5.5

and

above

per

transaction

manager/server

CountStatistic

Low

Number

of

global

transactions

rolled

back

Total

number

of

global

transactions

rolled

back

3.5.5

and

above

per

transaction

manager/server

CountStatistic

Low

16

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

Number

global

transactions

optimized

Number

of

global

transactions

converted

to

single

phase

for

optimization

4.0

and

above

per

transaction

manager/server

CountStatistic

Low

Number

of

local

transactions

committed

Number

of

local

transactions

committed

4.0

and

above

per

transaction

manager/server

CountStatistic

Low

Number

of

local

transactions

rolled

back

Number

of

local

transactions

rolled

back

4.0

and

above

per

transaction

manager/server

CountStatistic

Low

Number

of

global

transactions

timed

out

Number

of

global

transactions

timed

out

4.0

and

above

per

transaction

manager/server

CountStatistic

Low

Number

of

local

transactions

timed

out

Number

of

local

transactions

timed

out

4.0

and

above

per

transaction

manager/server

CountStatistic

Low

ThreadPool

data

counters

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

Thread

creates

Total

number

of

threads

created

3.5.5

and

above

per

thread

pool

CountStatistic

Low

Thread

destroys

Total

number

of

threads

destroyed

3.5.5

and

above

per

thread

pool

CountStatistic

Low

Active

threads

The

number

of

concurrently

active

threads

3.5.5

and

above

per

thread

pool

RangeStatistic

High

Pool

size

Average

number

of

threads

in

pool

3.5.5

and

above

per

thread

pool

BoundedRangeStatistic

High

Percent

maxed

Average

percent

of

the

time

that

all

threads

are

in

use

3.5.5

and

above

per

thread

pool

RangeStatistic

High

Web

application

data

counters

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

numLoadedServlets

Number

of

servlets

that

were

loaded

3.5.5

and

above

per

Web

application

CountStatistic

Low

numReloads

Number

of

servlets

that

were

reloaded

3.5.5

and

above

per

Web

application

CountStatistic

Low

totalRequests

Total

number

of

requests

a

servlet

processed

3.5.5

and

above

per

servlet

CountStatistic

Low

concurrentRequests

Number

of

requests

that

are

concurrently

processed

3.5.5

and

above

per

servlet

RangeStatistic

High

responseTime

The

response

time,

in

milliseconds,

of

a

servlet

request

3.5.5

and

above

per

servlet

TimeStatistic

Medium

Chapter

1.

Monitoring

performance

17

numErrors

Total

number

of

errors

in

a

servlet

or

Java

Server

Page

(JSP)

3.5.5

and

above

per

servlet

CountStatistic

Low

Workload

Management

data

counters

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

numIncomingRequests

Total

number

of

incoming

IIOP

requests

to

an

application

server

5.0

per

server

CountStatistic

Low

numIncomingStrongAffinityRequests

Number

of

incoming

IIOP

requests

to

an

application

server

that

are

based

on

a

strong

affinity.

A

strong

affinity

request

is

defined

as

a

request

that

must

be

serviced

by

this

application

server

because

of

a

dependency

that

resides

on

the

server.

This

request

could

not

successfully

be

serviced

on

another

member

in

the

server

cluster.

In

Version

5.0

ND

edition,

transactional

affinity

is

the

only

example

of

a

strong

affinity

5.0

per

server

CountStatistic

Low

numIncomingNonAffinityRequests

Number

of

incoming

IIOP

requests

to

an

application

server

based

on

no

affinity.

This

request

was

sent

to

this

server

based

on

workload

management

selection

policies

that

were

decided

in

the

Workload

Management

(WLM)

run

time

of

the

client.

5.0

per

server

CountStatistic

Low

18

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

numIncomingNonWLMObjectRequests

Number

of

incoming

IIOP

requests

to

an

application

server

that

came

from

a

client

that

does

not

have

the

WLM

run

time

present

or

where

the

object

reference

on

the

client

was

flagged

not

to

participate

in

workload

management.

5.0

per

server

CountStatistic

Low

numServerClusterUpdates

Number

of

times

initial

or

updated

server

cluster

data

is

sent

to

a

server

member

from

the

deployment

manager.

This

metric

determines

how

often

cluster

information

is

being

propagated.

5.0

per

server

CountStatistic

Low

numOfWLMClientServiced

Number

of

WLM

enabled

clients

that

have

been

serviced

by

this

application

server.

5.0

per

server

CountStatistic

Low

numOfConcurrentRequests

Number

of

remote

IIOP

requests

currently

being

processed

by

this

server

5.0

per

server

RangeStatistic

High

serverResponseTime

The

response

time

(in

milliseconds)

of

IIOP

requests

being

serviced

by

an

application

server.

The

response

time

is

calculated

based

on

the

time

the

request

is

received

to

the

time

when

the

reply

is

sent

back

out.

5.0

per

server

TimeStatistic

Medium

numOfOutgoingRequests

The

total

number

of

outgoing

IIOP

requests

being

sent

from

a

client

to

an

application

server

5.0

per

WLM

CountStatistic

Low

numClientClusterUpdates

The

number

of

times

initial

or

updated

server

cluster

data

is

sent

to

a

WLM

enabled

client

from

server

cluster

member.

Use

this

metric

to

determine

how

often

cluster

information

is

being

propagated.

5.0

per

WLM

CountStatistic

Low

Chapter

1.

Monitoring

performance

19

clientResponseTime

The

response

time

(in

milliseconds)

of

IIOP

requests

being

sent

from

a

client.

The

response

time

is

calculated

based

on

the

time

the

request

is

sent

from

the

client

to

the

time

the

reply

is

received

from

the

server.

5.0

per

WLM

TimeStatistic

Medium

System

data

counters

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

percentCpuUsage

The

average

system

CPU

utilization

taken

over

the

time

interval

since

the

last

reading.

Because

the

first

call

is

required

to

perform

initialization,

an

invalid

value

such

as

0

will

be

returned.

All

subsequent

calls

will

return

the

expected

value.

On

SMP

machines,

the

value

returned

will

be

the

utilization

averaged

over

all

CPUs.

5.0

per

node

CountStatistic

Low

freeMemory

The

amount

of

real

free

memory

available

on

the

system.

Real

memory

that

is

not

allocated

is

only

a

lower

bound

on

available

real

memory,

since

many

operating

systems

take

some

of

the

otherwise

unallocated

memory

and

use

it

for

additional

I/O

buffering.

The

exact

amount

of

buffer

memory

which

can

be

freed

up

is

dependent

on

both

the

platform

and

the

application(s)

running

on

it.

5.0

per

node

CountStatistic

Low

20

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

avgCpuUsage

The

average

percentCpuUsage

that

is

busy

after

the

server

is

started

5.0

per

node

TimeStatistic

Medium

Dynamic

cache

data

counters

The

PMI

data

for

Dynamic

Cache

are

used

to

monitor

the

behavior

and

performance

of

the

dynamic

cache

service.

The

functions

and

usages

of

dynamic

cache

can

be

found

in

Using

the

dynamic

cache

service

to

improve

performance.

The

related

data

can

be

accessed

via

the

DynaCache

MBean

and

displayed

under

Dynamic

Cache

in

TPV.

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

maxInMemoryCacheSize

Maximum

number

of

in-memory

cache

entries

5.0

per

server

CountStatistic

Low

inMemoryCacheSize

Current

number

of

in-memory

cache

entries

5.0

per

server

CountStatistic

Low

totalTimeoutInvalidation

Aggregate

of

template

timeouts

and

disk

timeouts

5.0

per

server

CountStatistic

Low

hitsInMemory

Requests

for

this

cacheable

object

served

from

memory

5.0

per

template

CountStatistic

Low

hitsOnDisk

Requests

for

this

cacheable

object

served

from

disk

5.0

per

template

CountStatistic

Low

explicitInvalidations

Total

explicit

invalidation

issued

for

this

template

5.0

per

template

CountStatistic

Low

lruInvalidations

Cache

entries

evicted

from

memory

by

a

Least

Recently

Used

algorithm.

These

entries

are

passivated

to

disk

if

disk

overflow

is

enabled.

5.0

per

template

CountStatistic

Low

timeoutInvalidations

Cache

entries

evicted

from

memory

and/or

disk

because

their

timeout

has

expired

5.0

per

template

CountStatistic

Low

Entries

Current

number

of

cache

entries

created

from

this

template.

Refers

to

the

per-template

equivalent

of

totalCacheSize.

5.0

per

template

CountStatistic

Low

Misses

Requests

for

this

cacheable

object

that

were

not

found

in

the

cache

5.0

per

template

CountStatistic

Low

Chapter

1.

Monitoring

performance

21

RequestFromClient

Requests

for

this

cacheable

object

generated

by

applications

running

on

the

application

server

5.0

per

template

CountStatistic

Low

requestsFromJVM

Requests

for

this

cacheable

object

generated

by

cooperating

caches

in

this

cluster

5.0

per

template

CountStatistic

Low

explicitInvalidationsFromMemory

Explicit

invalidations

resulting

in

an

entry

being

removed

from

memory

5.0

per

template

CountStatistic

Low

explicitInvalidationsFromDisk

Explicit

invalidations

resulting

in

an

entry

being

removed

from

disk

5.0

per

template

CountStatistic

Low

explicitInvalidationsNoOp

Explicit

invalidations

received

for

this

template

where

no

corresponding

entry

exists

5.0

per

template

CountStatistic

Low

explicitInvalidationsLocal

Explicit

invalidations

generated

locally,

either

programmatically

or

by

a

cache

policy

5.0

per

template

CountStatistic

Low

explicitInvalidationsRemote

Explicit

invalidations

received

from

a

cooperating

JVM

in

this

cluster

5.0

per

template

CountStatistic

Low

remoteCreations

Entries

received

from

cooperating

dynamic

caches

5.0

per

template

CountStatistic

Low

Web

services

gateway

data

counters

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

synchronousRequests

Number

of

synchronous

requests

that

were

made

5.0

per

Web

service

CountStatistic

Low

synchronousResponses

Number

of

synchronous

responses

that

were

made

5.0

per

Web

service

CountStatistic

Low

asynchronousRequests

Number

of

asynchronous

requests

that

were

made

5.0

per

Web

service

CountStatistic

Low

22

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

asynchronousResponses

Number

of

asynchronous

responses

that

were

made

5.0

per

Web

service

CountStatistic

Low

Web

services

data

counters

Data

counter

definitions

Name

Description

Version

Granularity

Type

Level

numLoadedServices

Number

of

loaded

Web

services

5.02

and

above

per

service

CountStatistic

Low

numberReceived

Number

of

requests

service

received

5.02

and

above

per

Web

service

CountStatistic

Low

numberDispatched

Number

of

requests

service

dispatched/delivered

5.02

and

above

per

web

service

CountStatistic

Low

numberSuccessful

Number

of

requests

service

successfully

processed

5.02

and

above

per

web

service

TimeStatistic

Low

responseTime

The

average

response

time,

in

milliseconds,

for

a

successful

request

5.02

and

above

per

web

service

TimeStatistic

Medium

requestResponseTime

The

average

response

time,

in

milliseconds,

to

prepare

a

request

for

dispatch

5.02

and

above

per

web

service

TimeStatistic

Medium

dispatchResponseTime

The

average

response

time,

in

milliseconds,

to

dispatch

a

request

5.02

and

above

per

web

service

TimeStatistic

Medium

replyResponseTime

The

average

response

time,

in

milliseconds,

to

prepare

a

reply

after

dispatch

5.02

and

above

per

web

service

TimeStatistic

Medium

size

The

average

payload

size

in

bytes

of

a

received

request/reply

5.02

and

above

per

web

service

TimeStatistic

Medium

requestSize

The

average

payload

size

in

bytes

of

a

request

5.02

and

above

per

web

service

TimeStatistic

Medium

replySize

The

average

payload

size

in

bytes

of

a

reply

5.02

and

above

per

web

service

TimeStatistic

Medium

Performance

data

classification

Performance

Monitoring

Infrastructure

provides

server-side

data

collection

and

client-side

API

to

retrieve

performance

data.

Performance

data

has

two

components:

static

and

dynamic.

Chapter

1.

Monitoring

performance

23

The

static

component

consists

of

a

name,

ID

and

other

descriptive

attributes

to

identify

the

data.

The

dynamic

component

contains

information

that

changes

over

time,

such

as

the

current

value

of

a

counter

and

the

time

stamp

associated

with

that

value.

The

PMI

data

can

be

one

of

the

following

statistical

types

defined

in

the

JSR-077

specification:

v

CountStatistic

v

BoundaryStatistic

v

RangeStatistic

v

TimeStatistic

v

BoundedRangeStatistic

RangeStatistic

data

contains

current

value,

as

well

as

lowWaterMark

and

highWaterMark.

In

general,

CountStatistic

data

require

a

low

monitoring

level

and

TimeStatistic

data

require

a

medium

monitoring

level.

RangeStatistic

and

BoundedRangeStatistic

require

a

high

monitoring

level.

There

are

a

few

counters

that

are

exceptions

to

this

rule.

The

average

method

response

time,

the

total

method

calls,

and

active

methods

counters

require

a

high

monitoring

level.

The

Java

Virtual

Machine

Profiler

Interface

(JVMPI)

counters,

SerializableSessObjSize,

and

data

tracked

for

each

individual

method

(method

level

data)

require

a

maximum

monitoring

level.

BoundedRangeStatistic

count: long

CountStatistic

upperBound: long

lowerBound: long

highWaterMark: long

lowWaterMark: long

current: long listed

count: long

maxTime: long

minTime: long

totalTime: long

BoundaryStatistic RangeStatistic TimeStatistic

name: String

unit: String

descriptions: String

startTime: long

Statistic

In

previous

versions,

PMI

data

was

classified

with

the

following

types:

v

Numeric:

Maps

to

CountStatistic

in

the

JSR-077

specification.

Holds

a

single

numeric

value

that

can

either

be

a

long

or

a

double.

This

data

type

is

used

to

keep

track

of

simple

numeric

data,

such

as

counts.

v

Stat:

Holds

statistical

data

on

a

sample

space,

including

the

number

of

elements

in

the

sample

set,

their

sum,

and

sum

of

squares.

You

can

obtain

the

mean,

variance,

and

standard

deviation

of

the

mean

from

this

data.

v

Load:

Maps

to

the

RangeStatistic

or

BoundedRangeStatistic,

based

on

JSR-077

specification.

This

data

type

keeps

track

of

a

level

as

a

function

of

time,

including

the

current

level,

the

time

that

level

was

reached,

and

the

integral

of

24

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

that

level

over

time.

From

this

data,

you

can

obtain

the

time-weighted

average

of

that

level.

For

example,

this

data

type

is

used

in

the

number

of

active

threads

and

the

number

of

waiters

in

a

queue.

These

PMI

data

types

continue

to

be

supported

through

the

PMI

API.

Statistical

data

types

are

supported

through

both

the

PMI

API

and

Java

Management

Extension

(JMX)

API.

The

TimeStatistic

type

keeps

tracking

many

counter

samples

and

then

returns

the

total,

count

and

average

of

the

samples.

An

example

of

this

is

an

average

method

response

time.

Given

the

nature

of

this

statistic

type,

it

is

also

used

to

track

non-time

related

counters,

like

average

read

and

write

size.

You

can

always

call

getUnit

method

on

the

data

configuration

information

to

learn

the

unit

for

the

counter.

In

order

to

reduce

the

monitoring

overhead,

numeric

and

stat

data

are

not

synchronized.

Since

these

data

track

the

total

and

average,

the

extra

accuracy

is

generally

not

worth

the

performance

cost.

Load

data

is

very

sensitive,

therefore,

load

counters

are

always

synchronized.

In

addition,

when

the

monitoring

level

of

a

module

is

set

to

max,

all

numeric

data

are

also

synchronized

to

guarantee

accurate

values.

Enabling

performance

monitoring

services

in

the

application

server

through

the

administrative

console

To

monitor

performance

data

through

the

performance

monitoring

infrastructure

(PMI)

interfaces,

you

must

first

enable

PMI

services

through

the

administrative

console.

1.

Open

the

administrative

console.

2.

Click

Servers

>

Application

Servers

in

the

console

navigation

tree.

3.

Click

server.

4.

Click

the

Configuration

tab.

When

in

the

Configuration

tab,

settings

will

apply

once

the

server

is

restarted.

When

in

the

Runtime

Tab,

settings

will

apply

immediately.

Note

that

enablement

of

Performance

Monitoring

Service

can

only

be

done

in

the

Configuration

tab.

5.

Click

Performance

Monitoring

Service.

6.

Select

the

checkbox

Startup.

7.

(Optional)

Select

the

PMI

modules

and

levels

to

set

the

initial

specification

level

field.

8.

Click

Apply

or

OK.

9.

Click

Save.

10.

Restart

the

application

server.

The

changes

you

make

will

not

take

affect

until

you

restart

the

application

server.

When

running

in

WebSphere

Application

Server

Network

Deployment,

be

sure

to

Enable

performance

monitoring

services

in

the

NodeAgent

through

the

administrative

console.

Performance

monitoring

service

settings

Use

this

page

to

specify

settings

for

performance

monitoring,

including

enabling

performance

monitoring,

selecting

the

PMI

module

and

setting

monitoring

levels.

Chapter

1.

Monitoring

performance

25

To

view

this

administrative

console

page,

click

Servers

>

Application

Servers

>

server

>

Performance

Monitoring.

Startup

Specifies

whether

the

application

server

attempts

to

start

the

specified

service.

If

an

application

server

is

started

when

the

performance

monitoring

service

is

disabled,

you

will

have

to

restart

the

server

in

order

to

enable

it.

Initial

specification

level

Specifies

a

Performance

Monitoring

Infrastructure

(PMI)

string

that

stores

PMI

specification

levels,

for

example

module

levels,

for

all

components

in

the

server.

Set

the

PMI

specification

levels

by

selecting

the

none,

standard

or

custom

checkbox.

If

you

choose

none,

all

PMI

modules

are

set

to

the

none

level.

Choosing

standard,

sets

all

PMI

modules

to

high

and

enables

all

PMI

data

excluding

the

method

level

data

and

JVMPI

data.

Choosing

custom,

gives

you

the

option

to

change

the

level

for

each

individual

PMI

module.

You

can

set

the

level

to

N,

L,

M,

H

or

X

(none,

low,

medium,

high

and

maximum).

Note

that

you

should

not

change

the

module

names.

Specifications

Specifies

the

PMI

module

and

monitoring

level

that

you

have

set.

Set

the

PMI

specification

levels

by

selecting

the

none,

standard

or

custom

checkbox.

If

you

choose

none,

all

PMI

modules

are

set

to

the

none

level.

Choosing

standard,

sets

all

PMI

modules

to

high

and

enables

all

PMI

data

excluding

the

method

level

data

and

JVMPI

data.

Choosing

custom,

gives

you

the

option

to

change

the

level

for

each

individual

PMI

module.

You

can

set

the

level

to

N,

L,

M,

H

or

X

(none,

low,

medium,

high

and

maximum).

Note

that

you

should

not

change

the

module

names.

Enabling

performance

monitoring

services

in

the

NodeAgent

through

the

administrative

console

To

monitor

performance

data

through

the

performance

monitoring

infrastructure

(PMI)

interfaces,

you

must

first

enable

PMI

services

through

the

administrative

console.

1.

Open

the

administrative

console.

2.

Click

System

Administration

>

NodeAgents

in

the

console

navigation

tree.

3.

Click

node_agent.

4.

Click

Performance

Monitoring

Service.

5.

Select

the

checkbox

Startup.

6.

(Optional)

Select

the

PMI

modules

and

levels

to

set

the

initial

specification

level

field.

7.

Click

Apply

or

OK.

8.

Click

Save.

9.

Restart

the

NodeAgent.

The

changes

you

make

will

not

take

affect

until

you

restart

the

NodeAgent.

When

in

the

Configuration

tab,

settings

will

apply

once

the

server

is

restarted.

When

in

the

Runtime

Tab,

settings

will

apply

immediately.

Note

that

enablement

of

Performance

Monitoring

Service

can

only

be

done

in

the

Configuration

tab.

26

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

Enabling

performance

monitoring

services

using

the

command

line

You

can

use

the

command

line

to

enable

performance

monitoring

services.

1.

Enable

PMI

services

through

the

administrative

console.

Make

sure

to

restart

the

application

server.

2.

Run

the

wsadmin

command.

Using

wsadmin,

you

can

invoke

operations

on

Perf

Mbean

to

obtain

the

PMI

data,

set

or

obtain

PMI

monitoring

levels

and

enable

data

counters.

Note:

If

PMI

data

are

not

enabled

yet,

you

need

to

first

enable

PMI

data

by

invoking

setInstrumentationLevel

operation

on

PerfMBean.

The

following

operations

in

Perf

MBean

can

be

used

in

wsadmin:

/**

Set

instrumentation

level

using

String

format

*

This

should

be

used

by

scripting

for

an

easy

String

processing

*/

The

level

STR

is

a

list

of

moduleName=Level

connected

by

":".

*/

public

void

setInstrumentationLevel(String

levelStr,

Boolean

recursive);

/**

Get

instrumentation

level

in

String

for

all

the

top

level

modules

*

This

should

be

used

by

scripting

for

an

easy

String

processing

*/

public

String

getInstrumentationLevelString();

/**

Return

the

PMI

data

in

String

*

*/

public

String

getStatsString(ObjectName

on,

Boolean

recursive);

/**

Return

the

PMI

data

in

String

*

Used

for

PMI

modules/submodules

without

direct

MBean

mappings.

*/

public

String

getStatsString(ObjectName

on,

String

submoduleName,

Boolean

recursive);

/**

*

Return

the

submodule

names

if

any

for

the

MBean

*/

public

String

listStatMemberNames(ObjectName

on);

If

an

MBean

is

a

StatisticProvider

and

if

you

pass

its

ObjectName

to

getStatsString,

you

will

get

the

Statistic

data

for

that

MBean.

MBeans

with

the

following

MBean

types

are

statistic

providers:

v

DynaCache

v

EJBModule

v

EntityBean

v

JDBCProvider

v

J2CResourceAdapter

v

JVM

v

MessageDrivenBean

v

ORB

v

Server

v

SessionManager

v

StatefulSessionBean

v

StatelessSessionBean

v

SystemMetrics

v

ThreadPool

v

TransactionService

v

WebModule

v

Servlet

Chapter

1.

Monitoring

performance

27

v

WLMAppServer

v

WebServicesService

v

WSGW

The

following

are

sample

commands

in

wsadmin

you

can

use

to

obtain

PMI

data:

Obtain

the

Perf

MBean

ObjectName

wsadmin>set

perfName

[$AdminControl

completeObjectName

type=Perf,*]

wsadmin>set

perfOName

[$AdminControl

makeObjectName

$perfName]

Invoke

getInstrumentationLevelString

operation

v

use

invoke

since

it

has

no

parameter

wsadmin>$AdminControl

invoke

$perfName

getInstrumentationLevelString

This

command

returns

the

following:

beanModule=H:cacheModule=H:connectionPoolModule=H:j2cModule=H:jvmRuntimeModule=H

:orbPerfModule=H:servletSessionsModule=H:systemModule=H:threadPoolModule=H

:trans

actionModule=H:webAppModule=H

Note

that

you

can

change

the

level

(n,

l,

m,

h,

x)

in

the

above

string

and

then

pass

it

to

setInstrumentationLevel

method.

Invoke

setInstrumentationLevel

operation

-

enable/disable

PMI

counters

v

set

parameters

(″pmi=l″

is

the

simple

way

to

set

all

modules

to

the

low

level)

wsadmin>set

params

[java::new

{java.lang.Object[]}

2]

wsadmin>$params

set

0

[java::new

java.lang.String

pmi=l]

wsadmin>$params

set

1

[java::new

java.lang.Boolean

true]

v

set

signatures

wsadmin>set

sigs

[java::new

{java.lang.String[]}

2]

wsadmin>$sigs

set

0

java.lang.String

wsadmin>$sigs

set

1

java.lang.Boolean

v

invoke

the

method:

use

invoke_jmx

since

it

has

parameter

wsadmin>$AdminControl

invoke_jmx

$perfOName

setInstrumentationLevel

$params

$sigs

This

command

does

not

return

anything.

Note

that

the

PMI

level

string

can

be

as

simple

as

pmi=level

(where

level

is

n,

l,

m,

h,

or

x)

or

something

like

module1=level1:module2=level2:module3=level3

with

the

same

format

shown

in

the

string

returned

from

getInstrumentationLevelString.

Invoke

getStatsString(ObjectName,

Boolean)

operation

If

you

know

the

MBean

ObjectName,

you

can

invoke

the

method

by

passing

the

right

parameters.

As

an

example,

JVM

MBean

is

used

here.

v

get

MBean

query

string

-

e.g.,

JVM

MBean

wsadmin>set

jvmName

[$AdminControl

completeObjectName

type=JVM,*]

v

set

parameters

wsadmin>set

params

[java::new

{java.lang.Object[]}

2]

wsadmin>$params

set

0

[$AdminControl

makeObjectName

$jvmName]

wsadmin>$params

set

1

[java::new

java.lang.Boolean

true]

v

set

signatures

wsadmin>set

sigs

[java::new

{java.lang.String[]}

2]

wsadmin>$sigs

set

0

javax.management.ObjectName

wsadmin>$sigs

set

1

java.lang.Boolean

v

invoke

method

wsadmin>$AdminControl

invoke_jmx

$perfOName

getStatsString

$params

$sigs

This

command

returns

the

following:

28

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

{Description

jvmRuntimeModule.desc}

{Descriptor

{{Node

wenjianpc}

{Server

server

1}

{Module

jvmRuntimeModule}

{Name

jvmRuntimeModule}

{Type

MODULE}}}

{Level

7}

{

Data

{{{Id

4}

{Descriptor

{{Node

wenjianpc}

{Server

server1}

{Module

jvmRuntimeM

odule}

{Name

jvmRuntimeModule}

{Type

DATA}}}

{PmiDataInfo

{{Name

jvmRuntimeModul

e.upTime}

{Id

4}

{Description

jvmRuntimeModule.upTime.desc}

{Level

1}

{Comment

{

The

amount

of

time

in

seconds

the

JVM

has

been

running}}

{SubmoduleName

null}

{T

ype

2}

{Unit

unit.second}

{Resettable

false}}}

{Time

1033670422282}

{Value

{Coun

t

638}

}}

{{Id

3}

{Descriptor

{{Node

wenjianpc}

{Server

server1}

{Module

jvmRunt

imeModule}

{Name

jvmRuntimeModule}

{Type

DATA}}}

{PmiDataInfo

{{Name

jvmRuntimeM

odule.usedMemory}

{Id

3}

{Description

jvmRuntimeModule.usedMemory.desc}

{Level

1

}

{Comment

{Used

memory

in

JVM

runtime}}

{SubmoduleName

null}

{Type

2}

{Unit

uni

t.kbyte}

{Resettable

false}}}

{Time

1033670422282}

{Value

{Count

66239}

}}

{{Id

2}

{Descriptor

{{Node

wenjianpc}

{Server

server1}

{Module

jvmRuntimeModule}

{Nam

e

jvmRuntimeModule}

{Type

DATA}}}

{PmiDataInfo

{{Name

jvmRuntimeModule.freeMemor

y}

{Id

2}

{Description

jvmRuntimeModule.freeMemory.desc}

{Level

1}

{Comment

{Fre

e

memory

in

JVM

runtime}}

{SubmoduleName

null}

{Type

2}

{Unit

unit.kbyte}

{Reset

table

false}}}

{Time

1033670422282}

{Value

{Count

34356}

}}

{{Id

1}

{Descriptor

{{Node

wenjianpc}

{Server

server1}

{Module

jvmRuntimeModule}

{Name

jvmRuntimeMod

ule}

{Type

DATA}}}

{PmiDataInfo

{{Name

jvmRuntimeModule.totalMemory}

{Id

1}

{Des

cription

jvmRuntimeModule.totalMemory.desc}

{Level

7}

{Comment

{Total

memory

in

JVM

runtime}}

{SubmoduleName

null}

{Type

5}

{Unit

unit.kbyte}

{Resettable

false}

}}

{Time

1033670422282}

{Value

{Current

100596}

{LowWaterMark

38140}

{HighWaterM

ark

100596}

{MBean

38140.0}

}}}}

Invoke

getStatsString

(ObjectName,

String,

Boolean)

operation

This

operation

takes

an

additional

String

parameter

and

it

is

used

for

PMI

modules

that

do

not

have

matching

MBeans.

In

this

case,

the

parent

MBean

is

used

with

a

String

name

representing

the

PMI

module.

The

String

names

available

in

a

MBean

can

be

found

by

invoking

listStatMemberNames.

For

example,

beanModule

is

a

logic

module

aggregating

PMI

data

over

all

EJBs

but

there

is

no

MBean

for

beanModule.

Therefore,

you

can

pass

server

MBean

ObjectName

and

a

String

″beanModule″

to

get

PMI

data

in

beanModule.

v

get

MBean

query

string

-

e.g.,

server

MBean

wsadmin>set

mySrvName

[$AdminControl

completeObjectName

type=Server,name=server1,

node=wenjianpc,*]

v

set

parameters

wsadmin>set

params

[java::new

{java.lang.Object[]}

3]

wsadmin>$params

set

0

[$AdminControl

makeObjectName

$mySrvName]

wsadmin>$params

set

1

[java::new

java.lang.String

beanModule]

wsadmin>$params

set

2

[java::new

java.lang.Boolean

true]

v

set

signatures

wsadmin>set

sigs

[java::new

{java.lang.String[]}

3]

wsadmin>$sigs

set

0

javax.management.ObjectName

wsadmin>$sigs

set

1

java.lang.String

wsadmin>$sigs

set

2

java.lang.Boolean

v

invoke

method

wsadmin>$AdminControl

invoke_jmx

$perfOName

getStatsString

$params

$sigs

This

command

returns

PMI

data

in

all

the

EJBs

within

the

BeanModule

hierarchy

since

the

recursive

flag

is

set

to

true.

Note

that

this

method

is

used

to

get

stats

data

for

the

PMI

modules

that

do

not

have

direct

MBean

mappings.

Invoke

listStatMemberNames

operation

v

get

MBean

queryString

-

for

example,

Server

wsadmin>set

mySrvName

[$AdminControl

completeObjectName

type=Server,name=server1,

node=wenjianpc,*]

v

set

parameter

Chapter

1.

Monitoring

performance

29

wsadmin>set

params

[java::new

{java.lang.Object[]}

1]

wsadmin>$params

set

0

[$AdminControl

makeObjectName

$mySrvName]

v

set

signatures

wsadmin>set

sigs

[java::new

{java.lang.String[]}

1]

wsadmin>$sigs

set

0

javax.management.ObjectName

wsadmin>$AdminControlinvoke_jmx

$perfOName

listStatMemberNames

$params

$sigs

This

command

returns

the

PMI

module

and

submodule

names,

which

have

no

direct

MBean

mapping.

The

names

are

seperated

by

a

space

″

″.

You

can

then

use

the

name

as

the

String

parameter

in

getStatsString

method,

for

example:

beanModule

connectionPoolModule

j2cModule

servletSessionsModule

threadPoolModule

webAppModule

Enabling

Java

Virtual

Machine

Profiler

Interface

data

reporting

To

enable

Java

Virtual

Machine

Profiler

Interface

(JVMPI)

data

reporting

for

each

individual

application

server:

1.

Open

the

administrative

console.

2.

Click

Servers

>

Application

Servers

in

the

console

navigation

tree.

3.

Click

the

application

server

for

which

JVMPI

needs

to

be

enabled.

4.

Click

Process

Definition

5.

Click

the

Java

Virtual

Machine.

6.

Type

-XrunpmiJvmpiProfiler

in

the

Generic

JVM

arguments

field.

7.

Click

Apply

or

OK.

8.

Click

Save.

9.

Click

Servers

>

Application

Servers

in

the

console

navigation

tree.

10.

Click

the

application

server

for

which

JVMPI

needs

to

be

enabled.

11.

Click

the

Configuration

tab.

When

in

the

Configuration

tab,

settings

will

apply

once

the

server

is

restarted.

When

in

the

Runtime

Tab,

settings

will

apply

immediately.

Note

that

Performance

Monitoring

Service

can

only

be

enabled

in

the

Configuration

tab.

12.

Click

Performance

Monitoring

Service.

13.

Select

the

checkbox

Startup.

14.

Set

initial

specification

level

to

Custom

and

jvmRuntimeModule=X.

15.

Click

Apply

or

OK.

16.

Click

Save.

17.

Start

the

application

server,

or

restart

the

application

server

if

it

is

currently

running.

18.

Refresh

the

Tivoli

Performance

Viewer

if

you

are

using

it.

The

changes

you

make

will

not

take

affect

until

you

restart

the

application

server.

Java

Virtual

Machine

Profiler

Interface

The

Tivoli

Performance

Viewer

leverages

a

Java

Virtual

Machine

Profiler

Interface

(JVMPI)

to

enable

more

comprehensive

performance

analysis.

This

profiling

tool

enables

the

collection

of

information,

such

as

data

about

garbage

collection,

and

the

Java

virtual

machine

(JVM)

API

that

runs

the

application

server.

JVMPI

is

a

two-way

function

call

interface

between

the

JVM

API

and

an

in-process

profiler

agent.

The

JVM

API

notifies

the

profiler

agent

of

various

events,

such

as

heap

allocations

and

thread

starts.

The

profiler

agent

can

activate

or

deactivate

specific

event

notifications,

based

on

the

needs

of

the

profiler.

30

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

JVMPI

supports

partial

profiling

by

enabling

the

user

to

choose

which

types

of

profiling

information

to

collect

and

to

select

certain

subsets

of

the

time

during

which

the

JVM

API

is

active.

JVMPI

moderately

increases

the

performance

impact.

Monitoring

and

analyzing

performance

data

WebSphere

Application

Server

performance

data,

once

collected,

can

be

monitored

and

analyzed

with

a

variety

of

tools.

1.

Monitor

performance

data

with

Tivoli

Performance

Viewer.

This

tool

is

included

with

WebSphere

Application

Server.

2.

Monitor

performance

data

with

other

Tivoli

monitoring

tools.

3.

Monitor

performance

data

with

user-developed

monitoring

tools.

Write

your

own

applications

to

monitor

performance

data.

4.

Monitor

performance

with

third-party

monitoring

tools.

Monitoring

performance

with

Tivoli

Performance

Viewer

(formerly

Resource

Analyzer)

The

Resource

Analyzer

has

been

renamed

Tivoli

Performance

Viewer.

Tivoli

Performance

Viewer

(which

is

shipped

with

WebSphere)

is

a

Graphical

User

Interface

(GUI)

performance

monitor

for

WebSphere

Application

Server.

Tivoli

Performance

Viewer

can

connect

to

a

local

or

to

a

remote

host.

Connecting

to

a

remote

host

will

minimize

performance

impact

to

the

application

server

environment.

Monitor

and

analyze

the

data

with

Tivoli

Performance

Viewer

with

these

tasks:

1.

Start

the

Tivoli

Performance

Viewer.

2.

Set

monitoring

levels.

3.

View

summary

reports.

4.

(Optional)

Store

data

to

a

log

file.

5.

(Optional)

Replay

a

performance

data

log

file.

6.

(Optional)

View

and

modify

performance

chart

data.

7.

(Optional)

Scale

the

performance

data

chart

display.

8.

(Optional)

Refresh

data.

9.

(Optional)

Clear

values

from

tables

and

charts.

10.

(Optional)

Reset

counters

to

zero.

The

Performance

Advisor

in

Tivoli

Performance

Viewer

provides

advice

to

help

tune

systems

for

optimal

performance

and

gives

recommendations

on

inefficient

settings

by

using

collected

PMI

data.

For

more

information,

see

Using

the

Performance

Advisor

in

Tivoli

Performance

Viewer.

Tivoli

Performance

Viewer

features

Tivoli

Performance

Viewer

is

a

Java

client

which

retrieves

the

Performance

Monitoring

Infrastructure

(PMI)

data

from

an

application

server

and

displays

it

in

a

variety

of

formats.

You

can

do

the

following

tasks

with

the

Tivoli

Performance

Viewer:

v

View

data

in

real

time

v

Record

current

data

in

a

log,

and

replay

the

log

later

Chapter

1.

Monitoring

performance

31

v

View

data

in

chart

form,

allowing

visual

comparison

of

multiple

counters.

Each

counter

can

be

scaled

independently

to

enable

meaningful

graphs.

v

View

data

in

tabular

form

v

Compare

data

for

single

resources

to

aggregate

data

across

a

node

To

minimize

the

performance

impact,

Tivoli

Performance

Viewer

polls

the

server

with

the

PMI

data

at

an

interval

set

by

the

user.

All

data

manipulations

are

done

in

the

Tivoli

Performance

Viewer

client,

which

can

be

run

on

a

separate

machine,

further

reducing

the

impact.

The

Tivoli

Performance

Viewer

graphical

user

interface

includes

the

following:

v

Resource

selection

panel

v

Data

monitoring

panel

v

Menu

bar

v

Toolbar

icons

v

Node

icons

v

Status

bar

1

1
2
3

- Resource Selection Panel
- Counter Selection panel
- Viewing Counter (chart and table views)

3

2

Layout

of

the

console

The

performance

viewer

main

window

consists

of

two

panels:

the

Resource

Selection

panel

and

the

Data

Monitoring

panel.

The

Resource

Selection

panel,

located

on

the

left,

provides

a

view

of

resources

for

which

performance

data

can

be

displayed.

The

Data

Monitoring

panel,

located

on

the

right,

displays

numeric

and

statistical

data

for

the

resources

that

are

highlighted

(selected)

in

the

Resource

Selection

panel.

You

can

adjust

the

width

of

the

Resource

Selection

and

Data

Monitoring

panels

by

dragging

the

split

bar

left

or

right.

You

can

rearrange

the

order

of

the

table

32

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

columns

in

the

Data

Monitoring

panel

by

dragging

the

column

heading

left

or

right.

You

can

also

adjust

the

width

of

the

columns

by

dragging

the

edge

of

the

column

left

or

right.

Resource

selection

panel

The

Resource

Selection

panel

provides

a

hierarchical

(tree)

view

of

resources

and

the

types

of

performance

data

available

for

those

resources.

Use

this

panel

to

select

which

resources

to

monitor

and

to

start

and

stop

data

retrieval

for

those

resources.

The

Resource

Selection

panel

displays

resources

and

associated

resource

categories

in

an

indented

tree

outline.

Clicking

the

plus

(+)

and

minus

(-)

symbols

expands

and

collapses

the

tree

to

reveal

the

categories

for

the

various

resource

instances.

The

resource

tree

can

also

be

navigated

by

using

the

up

and

down

arrow

keys

to

cycle

through

the

branches

and

by

using

the

left

and

right

arrow

keys

to

expand

and

collapse

the

tree

of

resources.

Resource

instances

can

be

expanded

to

reveal

the

instances

they

contain,

if

applicable.

For

example,

when

a

EJB

JAR

instance

is

expanded,

the

enterprise

bean

instances

in

the

EJB

JAR

are

revealed.

The

Data

Monitoring

panel

automatically

displays

the

appropriate

selection

of

counters

for

any

objects

highlighted

in

the

Resource

Selection

panel.

The

first

level

of

the

hierarchy

includes

all

nodes

(machines)

in

the

administrative

domain,

followed

by

all

application

servers

on

the

node.

Below

each

application

server,

all

resource

categories

are

listed.

If

the

enterprise

beans

category

is

expanded,

all

EJB

JAR

instances

in

the

server

are

displayed.

Next,

all

enterprise

bean

instances

appear

below

the

EJB

JAR

in

the

hierarchy.

Then,

a

methods

resource

is

associated

with

each

bean.

Clicking

an

individual

bean

or

EJB

JAR

instance

causes

its

corresponding

counters

to

be

displayed

in

the

Data

Monitoring

panel.

For

enterprise

beans,

the

counters

displayed

depend

on

whether

the

bean

is

an

entity

bean

or

a

session

bean.

For

EJB

JARs,

the

counters

are

aggregate

counters

for

all

enterprise

beans

in

the

EJB

JARs.

See

the

InfoCenter

article

Performance

data

organization

for

more

information.

Data

monitoring

panel

The

Data

Monitoring

panel

enables

the

selection

of

multiple

counters

and

displays

the

resulting

performance

data

for

the

currently

selected

resource.

It

contains

two

panels:

the

Viewing

Counter

panel

above

and

the

Counter

Selection

panel

below.

Counter

selection

panel

The

Counter

Selection

panel

shows

the

counters

available

for

the

resource

performance

category

selection.

Two

factors

determine

the

list

of

available

counters

in

the

Counter

Selection

panel:

v

Only

counters

associated

with

the

resource

that

is

selected

in

the

Resource

Selection

panel

are

displayed.

v

Only

counters

having

impact

cost

ratings

within

or

below

the

instrumentation

or

monitoring

level

that

is

set

for

that

resource

in

the

administrative

domain

are

displayed.

The

first

three

counters

shown

for

each

resource

performance

category

are

selected

by

default.

All

counters

can

be

selected

or

deselected,

and

the

resulting

output,

shown

in

the

top

panel,

automatically

reflects

the

selection.

Chapter

1.

Monitoring

performance

33

The

columns

in

the

Counter

Selection

panel

provide

the

following

information

for

each

counter:

v

Name.

The

names

of

the

counters

that

are

available

for

selection

with

this

resource.

v

Description.

A

brief

description

of

the

function

of

each

counter.

v

Value.

The

value

for

the

counter,

displayed

according

to

the

display

mode

in

effect.

Values

are

actual

values

(not

scaled

values

used

for

the

chart,

if

applicable).

v

Select.

A

check

box

that

indicates

whether

a

counter

is

to

be

reflected

in

the

chart.

To

hide

data,

clear

the

check

box.

The

column

representing

that

counter

is

then

removed

from

the

View

Data

window,

and

the

graphic

display

for

that

counter

is

removed

from

the

View

Chart

window.

v

Scale.

A

value

indicating

whether

data

has

been

scaled

(amplified

or

diminished)

from

its

actual

value

to

fit

on

the

chart.

This

value

is

reflected

only

in

the

View

Chart

window.

The

value

for

the

Scale

column

can

be

set

manually

by

editing

the

value

of

the

Scale

field.

See

Scaling

the

chart

display

manually

for

information

on

manually

setting

the

scale.

Viewing

Counter

panel

When

a

counter

on

the

list

in

the

Counter

Selection

panel

is

selected,

the

statistics

gathered

from

that

counter

are

displayed

in

the

Viewing

Counter

panel

at

the

top

of

the

Data

Monitoring

panel.

The

View

Data

window

shows

the

counter’s

output

in

table

format;

the

View

Chart

window

displays

a

graph

with

time

represented

on

the

x-axis

and

the

performance

value

represented

on

the

y-axis.

One

or

more

performance

counters

can

be

simultaneously

graphed

on

a

single

chart.

The

chart

plots

data

from

n

data

points,

where

n

is

the

current

table

size

(number

of

rows).

Display

of

multiple

resources

and

aggregate

data

When

a

single

resource

is

selected

in

the

Resource

Selection

panel,

the

Data

Monitoring

panel

displays

a

choice

of

a

table

view

or

a

chart

view.

If

multiple

resources

are

selected,

the

Data

Monitoring

panel

displays

a

single

data

sheet

for

viewing

summary

information

for

the

selected

resources.

The

data

sheet

displays

the

tables

for

all

objects

of

similar

type

for

the

selected

resources.

For

example,

if

three

servlet

instances

are

selected,

the

data

sheet

displays

a

table

of

counter

values

for

all

the

servlets.

By

default,

the

display

buffer

size

is

set

to

40

rows,

corresponding

to

the

values

of

the

last

40

data

points

retrieved.

The

performance

viewer

provides

aggregate

data

at

the

module

level.

If

aggregate

data

is

available

for

a

group,

it

is

displayed

in

the

Data

Monitoring

panel.

For

example,

for

each

enterprise

bean

home

interface,

counters

track

the

number

of

active

enterprise

beans

of

that

home.

Each

EJB

JAR

has

an

aggregate

value

that

is

the

sum

of

all

the

enterprise

beans

in

that

EJB

JAR.

The

enterprise

beans

resource

category

(module)

within

the

application

server

has

an

aggregate

value

that

is

the

sum

of

all

enterprise

beans

in

all

EJB

JARs.

Menu

bar

The

menu

bar

contains

the

following

options:

v

File

menu.

Used

to

change

to

current

mode

(from

logging

mode),

to

open

an

existing

log

file,

and

to

exit

from

the

performance

viewer.

The

File

menu

contains

the

following

items:

34

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

–

Refresh.

Queries

the

administrative

server

for

any

newly

started

resources

since

data

retrieval

began

or

for

additional

counters

to

report.

This

operation

is

also

recursive

over

all

components

subordinate

to

the

selected

resources.

Tivoli

Performance

Viewer

refreshes

data

every

10

seconds.

When

changing

the

refresh

rate,

you

must

use

an

integer

greater

than

or

equal

to

1.

–

Current

Activity.

Resumes

the

display

of

real-time

data

in

tables

and

charts.

This

menu

option

is

used

to

stop

viewing

data

from

a

log

file

and

return

to

viewing

real-time

data.

–

Log.

Displays

a

dialog

box

for

specifying

the

name

and

location

of

an

existing

log

file

to

be

replayed.

–

Exit.

Closes

the

performance

viewer.

If

you

made

changes

to

the

instrumentation

levels

of

any

resources

during

the

session,

a

dialog

box

opens

to

ask

whether

you

want

to

save

the

changed

settings

before

closing

the

tool.
v

Logging

menu.

Provides

On

and

Off

options

that

are

used

to

start

and

stop

recording

data

in

a

log

file.

If

you

start

a

new

log

file

and

specify

the

same

file

name,

the

file

is

overwritten.

v

Setting

menu.

Used

to

start

and

stop

the

reporting

of

data,

and

to

clear

and

refresh

data.

The

Setting

menu

contains

the

following

items:

–

Clear

Buffer.

Deletes

the

values

currently

displayed

in

tables

and

charts.

For

example,

after

stopping

a

counter,

you

can

use

this

operation

to

remove

the

remaining

data

from

a

table.

–

Reset

to

Zero.

Resets

cumulative

counters

of

the

selected

performance

group

back

to

zero.

–

View

Data

As.

Specifies

how

counter

values

are

displayed.

You

can

choose

whether

to

display

absolute

values,

changes

in

values,

or

rates

of

change.

How

data

is

displayed

differs

slightly

depending

on

where

you

are

viewing

data.

The

choices

follow:

-

Raw

Value.

Displays

the

absolute

value.

If

the

counter

represents

load

data,

such

as

the

average

number

of

connections

in

a

database

pool,

then

the

Tivoli

Performance

Viewer

displays

the

current

value

followed

by

the

average.

For

example,

18

(avg:5).

-

Change

in

Value.

Displays

the

change

in

the

current

value

from

the

previous

value.

-

Rate

of

Change.

Displays

the

ratio

change/(T1

-

T2),

where

change

is

the

change

in

the

current

value

from

the

previous

value,

T1

is

the

time

when

the

current

value

was

retrieved

and

T2

is

the

time

when

the

previous

value

was

retrieved.
–

Log

Replay.

Includes

Rewind

Stop

Play

Fast

Forward.

Note

that

right-clicking

a

resource

in

the

Resource

Selection

panel

displays

a

menu

that

provides

the

following

options:

Refresh,

Clear

Buffer,

and

Reset

to

Zero.

v

Help

menu.

Provides

information

for

users.

Toolbar

icons

Toolbar

icons

provide

shortcuts

to

frequently

used

commands.

The

toolbar

includes

the

following

icons:

v

Refresh.

Updates

data

and

structures

for

the

selected

resources.

That

is,

it

polls

the

administrative

server

to

retrieve

new

information

about

additional

counters

to

display

or

new

servers

recently

added

to

the

domain.

v

Clear

Buffer.

Deletes

the

values

currently

displayed

in

all

tables

and

charts.

v

Reset

to

Zero.

Resets

the

counters.

Node

icons

Chapter

1.

Monitoring

performance

35

In

the

Resource

Selection

panel,

the

color

of

the

node

icon

indicates

the

current

state

and

availability

of

the

application

server

in

the

domain.

v

Green--The

resource

is

running

and

available.

v

Red--The

resource

is

stopped.

Status

bar

The

status

bar

across

the

bottom

of

the

performance

viewer

window

dynamically

displays

the

current

state

of

the

reporting

values.

The

following

state

information

is

reported

in

the

status

bar:

v

The

current

setting

for

the

refresh

rate

v

The

buffer

size

in

use

in

the

current

Viewing

Counter

panel

v

The

display

mode

in

use

in

the

current

Viewing

Counter

panel

v

The

current

state

of

the

logging

setting

Starting

the

Tivoli

Performance

Viewer

You

can

also

start

the

Tivoli

Performance

Viewer

with

security

enabled.

To

do

this

see

Running

your

monitoring

applications

with

security

enabled.

1.

Start

the

Tivoli

Performance

Viewer.

This

can

be

done

in

two

ways:

a.

Start

performance

monitoring

from

the

command

line.

Go

to

the

product_installation_directory/bin

directory

and

run

the

tperfviewer

script.

You

can

specify

the

host

and

port

in

Windows

NT,

2000,

and

XP

environments

as:

tperfviewer.bat

host_name

port_number

connector_type

or

On

the

AIX

and

other

UNIX

platforms,

use

tperfviewer.sh

host_name

port_number

connector_type

for

example:

tperfviewer.bat

localhost

8879

SOAP

Connector_type

can

be

either

SOAP

or

RMI.

The

port

numbers

for

SOAP/RMI

connector

can

be

configured

in

the

Administrative

Console

under

Servers

>

Application

Servers

>

server_name

>

End

Points.

If

you

are

connecting

to

WebSphere

Application

Server,

use

the

application

server

host

and

connector

port.

If

additional

servers

have

been

created,

then

use

the

appropriate

server

port

for

which

data

is

required.

Tivoli

Performance

Viewer

will

only

display

data

from

one

server

at

a

time

when

connecting

to

WebSphere

Application

Server.

If

you

are

connecting

to

WebSphere

Application

Server

Network

Deployment,

use

the

deployment

manager

host

and

connector

port.

Tivoli

Performance

Viewer

will

display

data

from

all

the

servers

in

the

cell.

Tivoli

Performance

Viewer

cannot

connect

to

an

individual

server

in

WebSphere

Application

Server

Network

Deployment.

8879

is

the

default

SOAP

connector

port

for

WebSphere

Application

Server

Network

Deployment.

8880

is

the

default

SOAP

connector

port

for

WebSphere

Application

Server.

36

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

9809

is

the

default

RMI

connector

port

for

WebSphere

Application

Server

Network

Deployment.

2809

is

the

default

RMI

connector

port

for

WebSphere

Application

Server.

On

iSeries,

you

can

connect

the

Tivoli

Performance

Viewer

to

an

iSeries

instance

from

either

a

Windows,

an

AIX,

or

a

UNIX

client

as

described

above.

To

discover

the

RMI

or

SOAP

port

for

the

iSeries

instance,

start

Qshell

and

enter

the

following

command:

product_installation_directory/bin/dspwasinst

-instance

myInstance

where

v

product_installation_directory

is

your

iSeries

install

directory

v

myInstance

is

the

instance

used

when

you

created

iSeries

instance.
b.

Click

Start

>

Programs

>

IBM

WebSphere

>

Application

Server

v.50

>

Tivoli

Performance

Viewer.

Tivoli

Performance

Viewer

detects

which

package

of

WebSphere

Application

Server

you

are

using

and

connects

using

the

default

SOAP

connector

port.

If

the

connection

fails,

a

dialog

is

displayed

to

provide

new

connection

parameters.

You

can

connect

to

a

remote

host

or

a

different

port

number,

by

using

the

command

line

to

start

the

performance

viewer.
2.

Adjust

the

data

collection

settings.

Refer

to

the

instructions

in

the

topic

Setting

performance

monitoring

levels.

Setting

performance

monitoring

levels

The

monitoring

settings

determine

which

counters

are

enabled.

Changes

made

to

the

settings

from

Tivoli

Performance

Viewer

affect

all

applications

that

use

the

Performance

Monitoring

Infrastructure

(PMI)

data.

To

view

monitoring

settings:

1.

Choose

the

Data

Collection

icon

on

the

Resource

Selection

panel.

This

selection

provides

two

options

on

the

Counter

Selection

panel.

Choose

the

Current

Activity

option

to

view

and

change

monitoring

settings.

Alternatively,

use

File>

Current

Activity

to

view

the

monitoring

settings.

2.

Set

monitoring

levels

by

choosing

one

of

the

following

options:

v

None:

Provides

no

data

collection

v

Standard:

Enables

data

collection

for

all

modules

with

monitoring

level

set

to

high

v

Custom:

Allows

customized

settings

for

each

module

These

options

apply

to

an

entire

application

server.

3.

(Optional)

Fine

tune

the

monitoring

level

settings.

a.

Click

Specify.

This

sets

the

monitoring

level

to

custom.

b.

Select

a

monitoring

level.

For

each

resource,

choose

a

monitoring

level

of

None,

Low,

Medium,

High

or

Maximum.

The

dial

icon

will

change

to

represent

this

level.

Note:

The

instrumentation

level

is

set

recursively

to

all

elements

below

the

selected

resource.

You

can

override

this

by

setting

the

levels

for

children

AFTER

setting

their

parents.
4.

Click

OK.

5.

Click

Apply.

Chapter

1.

Monitoring

performance

37

If

the

instrumentation

level

excludes

a

counter,

that

counter

does

not

appear

in

the

tables

and

charts

of

the

performance

viewer.

For

example,

when

the

instrumentation

level

is

set

to

low,

the

thread

pool

size

is

not

displayed

because

that

counter

requires

a

level

of

high.

Note

that

monitoring

levels

can

also

be

set

through

the

administrative

console.

See

Enabling

performance

monitoring

services

in

the

application

server

through

the

administrative

console

for

more

information.

Setting

monitoring

levels

for

individual

enterprise

bean

methods:

Due

to

performance

overhead,

the

Standard

monitoring

level

does

not

include

monitoring

individual

enterprise

bean

methods.

To

monitor

individual

methods:

1.

Choose

the

Custom

option

for

setting

monitoring

levels.

2.

Set

the

monitoring

level

for

the

methods

category

to

Maximum

by

following

the

procedure

described

in

setting

the

monitoring

level

task.

3.

Click

Apply.

4.

Click

OK.

Individual

methods

display,

and

you

can

set

the

level

for

individual

methods.

Only

methods

called

by

an

application

display.

If

a

remote

method

has

not

been

called

since

the

application

server

started,

it

does

not

appear

in

the

performance

panel.

Viewing

summary

reports

Summary

reports

are

available

for

each

application

server.

Before

viewing

reports,

make

sure

data

counters

are

enabled

and

monitoring

levels

are

set

properly.

See

Setting

performance

monitoring

levels.

The

standard

monitoring

level

will

enable

all

reports

except

the

report

on

EJB

methods.

To

enable

EJB

methods

report,

use

the

custom

monitoring

setting

and

set

the

monitoring

level

to

Max

for

the

Enterprise

Beans

module.

To

view

the

summary

reports:

1.

Click

the

application

server

icon

in

the

navigation

tree.

2.

Click

the

appropriate

column

header

to

sort

the

columns

in

the

report.

Changing

the

refresh

rate

of

data

retrieval

By

default,

the

Tivoli

Performance

Viewer

retrieves

data

every

10

seconds.

To

change

the

rate

at

which

data

is

retrieved:

1.

Click

Setting

>

Set

Refresh

Rate.

2.

Type

a

positive

integer

representing

the

number

of

seconds

in

the

Set

Refresh

Rate

dialog

box.

3.

Click

OK.

38

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

Changing

the

display

buffer

size

To

change

the

size

of

the

buffer

and

the

number

of

rows

displayed:

1.

Click

Setting

>

Set

Buffer

Size.

2.

Type

the

number

of

rows

to

display

in

the

Set

Buffer

Size

dialog

box.

3.

Click

OK.

Viewing

and

modifying

performance

chart

data

The

View

Chart

tab

displays

a

graph

with

time

as

the

x-axis

and

the

performance

value

as

the

y-axis.

1.

Click

a

resource

in

the

Resource

Selection

panel.

The

Resource

Selection

panel,

located

on

the

left

side,

provides

a

hierarchical

(tree)

view

of

resources

and

the

types

of

performance

data

available

for

those

resources.

Use

this

panel

to

select

which

resources

to

monitor

and

to

start

and

stop

data

retrieval

for

those

resources.

See

Tivoli

Performance

Viewer

features

for

information

on

the

Resource

Selection

panel.

2.

Click

the

View

Chart

tab

in

the

Data

Monitoring

panel.

The

Data

Monitoring

panel,

located

on

the

right

side,

enables

the

selection

of

multiple

counters

and

displays

the

resulting

performance

data

for

the

currently

selected

resource.

It

contains

two

panels:

the

Viewing

Counter

panel

above

and

the

Counter

Selection

panel

below.

If

necessary,

you

can

set

the

scaling

factors

by

typing

directly

in

the

scale

field.

See

Scaling

the

performance

data

chart

display

for

more

information.

Scaling

the

performance

data

chart

display

You

can

manually

adjust

the

scale

for

each

counter

so

that

the

graph

allows

meaningful

comparisons

of

different

counters.

Follow

these

steps

to

manually

adjust

the

scale:

1.

Double-click

the

Scale

column

for

the

counter

that

you

want

to

modify.

2.

Type

the

desired

value

in

the

field

for

the

Scale

value.

The

View

Chart

display

immediately

reflects

the

change

in

the

scaling

factor.

The

possible

values

for

the

Scale

field

range

from

0

to

100

and

show

the

following

relationships:

v

A

value

equal

to

1

indicates

that

the

value

is

the

actual

value.

v

A

value

greater

than

1

indicates

that

the

variable

value

is

amplified

by

the

factor

shown.

For

example,

a

scale

setting

of

1.5

means

that

the

variable

is

graphed

as

one

and

one-half

times

its

actual

value.

v

A

value

less

than

1

indicates

that

the

variable

value

is

decreased

by

the

factor

shown.

For

example,

a

scale

setting

of

.5

means

that

the

variable

is

graphed

as

one-half

its

actual

value.

Scaling

only

applies

to

the

graphed

values.

Refreshing

data

The

refresh

operation

is

a

local,

not

global,

operation

that

applies

only

to

selected

resources.

The

refresh

operation

is

recursive;

all

subordinate

or

children

resources

refresh

when

a

selected

resource

refreshes.

To

refresh

data:

1.

Click

one

or

more

resources

in

the

Resource

Selection

panel.

2.

Click

File

>

Refresh.

Alternatively,

click

the

Refresh

icon

or

right-click

the

resource

and

select

Refresh.

Clicking

refresh

with

server

selected

under

the

Chapter

1.

Monitoring

performance

39

viewer

icon

causes

TPV

to

query

the

server

for

new

PMI

and

product

configuration

information.

Clicking

refresh

with

server

selected

under

the

advisor

icon

causes

TPV

to

refresh

the

advice

provided,

but

will

not

refresh

PMI

or

product

configuration

information.

Performance

data

refresh

behavior:

New

performance

data

can

become

available

in

either

of

the

following

situations:

v

An

administrator

uses

the

console

to

change

the

instrumentation

level

for

a

resource

(for

example,

from

medium

to

high).

v

An

administrator

uses

the

console

to

add

a

new

resource

(for

example,

an

enterprise

bean

or

a

servlet)

to

the

run

time.

In

both

cases,

if

the

resource

in

question

is

already

polled

by

the

Tivoli

Performance

Viewer

or

the

parent

of

the

resource

is

being

polled,

the

system

is

automatically

refreshed.

If

more

counters

are

added

for

a

group

that

the

performance

viewer

is

already

polling,

the

performance

viewer

automatically

adds

the

counters

to

the

table

or

chart

views.

If

the

parent

of

the

newly

added

resource

is

polled,

the

new

resource

is

detected

automatically

and

added

to

the

Resource

Selection

tree.

You

can

refresh

the

Resource

Selection

tree,

or

parts

of

it,

by

selecting

the

appropriate

node

and

clicking

the

Refresh

icon,

or

by

right-clicking

a

resource

and

choosing

Refresh.

When

an

application

server

runs,

the

performance

viewer

tree

automatically

updates

the

server

local

structure,

including

its

containers

and

enterprise

beans,

to

reflect

changes

on

the

server.

However,

if

a

stopped

server

starts

after

the

performance

viewer

starts,

a

manual

refresh

operation

is

required

so

that

the

server

structure

accurately

reflects

in

the

Resource

Selection

tree.

Clicking

refresh

with

server

selected

under

the

viewer

icon

causes

TPV

to

query

the

server

for

new

PMI

and

product

configuration

information.

Clicking

refresh

with

server

selected

under

the

advisor

icon

causes

TPV

to

refresh

the

advice

provided,

but

will

not

refresh

PMI

or

product

configuration

information.

Clearing

values

from

tables

and

charts

Selecting

Clear

Values

removes

remaining

data

from

a

table

or

chart.

You

can

then

begin

populating

the

table

or

chart

with

new

data.

To

clear

the

values

currently

displayed:

1.

Click

one

or

more

resources

in

the

Resource

Selection

panel.

2.

Click

Setting

>

Clear

Buffer.

Alternatively,

right-click

the

resource

and

select

Clear

Buffer

Storing

data

to

a

log

file

You

can

save

all

data

reported

by

the

Tivoli

Performance

Viewer

in

a

log

file

and

write

the

data

in

binary

format

(serialized

Java

objects)

or

XML

format.

To

start

recording

data:

1.

Click

Logging

>

On

or

click

the

Logging

icon.

2.

Specify

the

name,

location,

and

format

type

of

the

log

file

in

the

Save

dialog

box.

The

Files

of

type

field

allows

an

extension

of

*.perf

for

binary

files

or

*.xml

for

XML

format.

Note:

The

*.perf

files

may

not

be

compatible

between

fix

levels.

40

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

3.

Click

OK.

To

stop

logging,

click

Logging

>

Off

or

click

the

Logging

icon.

Performance

data

log

file:

An

example

of

the

performance

data

log

file

format

is

below.

Location

By

default,

this

file

is

written

to:

product_installation_root/logs/ra_mmdd_hhmm.xml

where

mmdd=month

and

date,

and

hhmm=hour

and

minute

Usage

Notes

This

read-write

data

file

is

created

by

Tivoli

Performance

Viewer

and

provides

data

collected

by

the

performance

viewer.

The

log

file

is

not

updated,

but

remains

available

for

you

to

replay

the

collected

data.

The

performance

data

log

file

does

not

have

an

effect

on

the

WebSphere

environment.

Example

<?xml

version="1.0"?>

<RALog

version="5.0">

<RAGroupSnapshot

time="1019743202343"

numberGroups="1">

<CpdCollection

name="root/peace/Default

Server/jvmRuntimeModule"

level="7">

<CpdData

name="root/peace/Default

Server/jvmRuntimeModule/jvmRuntimeModule.total/Memory"

id="1">

<CpdLong

value="39385600"

time="1.019743203334E12"/>

</CpdData>

<CpdData

name="root/peace/Default

Server/jvmRuntimeModule/jvmRuntimeModule.freeMemory"

id="2">

<CpdLong

value="4815656"

time="1.019743203334E12"/>

</CpdData>

<CpdData

name="root/peace/Default

Server/jvmRuntimeModule/jvmRuntimeModule.usedMemory"

id="3">

<CpdLong

value="34569944"

time="1.019743203334E12"/>

</CpdData>

</CpdCollection>

</RAGroupSnapshot>

</RALog>

Replaying

a

performance

data

log

file

You

can

replay

both

binary

and

XML

logs

by

using

the

Tivoli

Performance

Viewer.

To

replay

a

log

file,

do

the

following:

1.

Click

Data

Collection

in

the

navigation

tree.

2.

Click

the

Log

radio

button

in

the

Performance

data

from

field.

3.

Click

Browse

to

locate

the

file

that

you

want

to

replay

or

type

the

file

path

name

in

the

Log

field.

4.

Click

Apply.

5.

Play

the

log

by

using

the

Play

icon

or

click

Setting

>

Log

Replay

>

Play.

By

default,

the

data

replays

at

the

same

rate

it

was

collected

or

written

to

the

log.

You

can

choose

Fast

Forward

mode

in

which

the

log

replays

without

simulating

the

refresh

interval.

To

Fast

Forward,

use

the

button

in

the

tool

bar

or

click

Setting

>

Log

Replay

>

FF.

Chapter

1.

Monitoring

performance

41

To

rewind

a

log

file,

click

Setting

>

Log

Replay

>

Rewind

or

use

the

Rewind

icon

in

the

toolbar.

While

replaying

the

log,

you

can

choose

different

groups

to

view

by

selecting

them

in

the

Resource

Selection

pane.

You

can

also

view

the

data

in

either

of

the

views

available

in

the

tabbed

Data

Monitoring

panel.

You

can

stop

and

resume

the

log

at

any

point.

However,

you

cannot

replay

data

in

reverse.

Resetting

counters

to

zero

Some

counters

report

relative

values

based

on

how

much

the

value

has

changed

since

the

counter

was

enabled.

The

Reset

to

Zero

operation

resets

those

counters

so

that

they

will

report

changes

in

values

since

the

reset

operation.

This

operation

will

also

clear

the

buffer

for

the

selected

resources.

See

″Clearing

values

from

tables

and

charts″

in

Related

Links

for

more

information

about

clearing

the

buffer

for

selected

resources.

Counters

based

on

absolute

values

can

not

be

reset

and

will

not

be

affected

by

the

Reset

to

Zero

operation.

To

reset

the

start

time

for

calculating

relative

counters:

1.

Click

one

or

more

resources

in

the

Resource

Selection

panel.

2.

Click

Setting

>

Reset

to

Zero.

Alternatively,

right-click

the

resource

and

click

Reset

to

Zero.

Developing

your

own

monitoring

applications

You

can

use

the

Performance

Monitoring

Infrastructure

(PMI)

interfaces

to

develop

your

own

applications

to

collect

and

display

performance

information.

There

are

three

such

interfaces

-

a

Java

Machine

Extension

(JMX)-based

interface,

a

PMI

client

interface,

and

a

servlet

interface.

All

three

interfaces

return

the

same

underlying

data.

The

JMX

interface

is

accessible

through

the

AdminClient

tool.

The

PMI

client

interface

is

a

Java

interface

that

works

with

Version

3.5.5

and

above.

The

servlet

interface

is

perhaps

the

simplest,

requiring

minimal

programming,

as

the

output

is

XML.

1.

Developing

your

own

monitoring

application

using

Performance

Monitoring

Infrastructure

client

.

2.

Developing

your

own

monitoring

applications

with

PMI

servlet

3.

Compiling

your

monitoring

applications

4.

Running

your

new

monitoring

applications

5.

Accessing

Performance

Monitoring

Infrastructure

data

through

the

Java

Management

Extension

interface.

6.

Developing

Performance

Monitoring

Infrastructure

interfaces

(Version

4.0).

Performance

Monitoring

Infrastructure

client

interface

The

data

provided

by

the

Performance

Monitoring

Infrastructure

(PMI)

client

interface

is

documented

here.

Access

to

the

data

is

provided

in

a

hierarchical

structure.

Descending

from

the

object

are

node

information

objects,

module

information

objects,

CpdCollection

objects

and

CpdData

objects.

Using

Version

5.0,

you

will

get

Stats

and

Statistic

objects.

The

node

and

server

information

objects

42

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

contain

no

performance

data,

only

static

information.

Each

time

a

client

retrieves

performance

data

from

a

server,

the

data

is

returned

in

a

subset

of

this

structure;

the

form

of

the

subset

depends

on

the

data

retrieved.

You

can

update

the

entire

structure

with

new

data,

or

update

only

part

of

the

tree,

as

needed.

The

JMX

statistic

data

model

is

supported,

as

well

as

the

existing

CPD

data

model

from

Version

4.0.

When

you

retrieve

performance

data

using

the

Version

5.0

PMI

client

API,

you

get

the

Stats

object,

which

includes

Statistic

objects

and

optional

sub-Stats

objects.

When

you

use

the

Version

4.0

PMI

client

API

to

collect

performance

data,

you

get

the

CpdCollection

object,

which

includes

the

CpdData

objects

and

optional

sub-CpdCollection

objects.

The

following

are

additional

Performance

Monitoring

Infrastructure

(PMI)

interfaces:

v

BoundaryStatistic

v

BoundedRangeStatistic

v

CountStatistic

v

MBeanStatDescriptor

v

MBeanLevelSpec

v

New

Methods

in

PmiClient

v

RangeStatistic

v

Stats

v

Statistic

v

TimeStatistic

The

following

PMI

interfaces

introduced

in

Version

4.0

are

also

supported:

v

CpdCollection

v

CpdData

v

CpdEventListener

and

CpdEvent

Chapter

1.

Monitoring

performance

43

v

CpdFamily

class

v

CpdValue

–

CpdLong

–

CpdStat

–

CpdLoad
v

PerfDescriptor

v

PmiClient

class

The

CpdLong

maps

to

CountStatistic;

CpdStat

maps

to

Time

Statistic;

CpdCollection

maps

to

Stats;

and

CpdLoad

maps

to

RangeStatistic

and

BoundedRangeStatistic.

Note:

Version

4.0

PmiClient

APIs

are

supported

in

this

version,

however,

there

are

some

changes.

The

data

hierarchy

is

changed

in

some

PMI

modules,

notably

the

enterprise

bean

module

and

HTTP

sessions

module.

If

you

have

an

existing

PmiClient

application,

and

you

want

to

run

it

against

Version

5.0,

you

might

have

to

update

the

PerfDescriptor(s)

based

on

the

new

PMI

data

hierarchy.

Also,

the

getDataName

and

getDataId

methods

in

PmiClient

are

changed

to

be

non-static

methods

in

order

to

support

multiple

WebSphere

Application

Server

versions.

You

might

have

to

update

your

existing

application

which

uses

these

two

methods.

Developing

your

own

monitoring

application

using

Performance

Monitoring

Infrastructure

client

The

following

is

the

programming

model

for

Performance

Monitoring

Infrastructure

(PMI)

client:

1.

Create

an

instance

of

PmiClient.

This

is

used

for

all

subsequent

method

calls.

2.

Call

the

listNodes()

and

listServers(nodeName)

methods

to

find

all

the

nodes

and

servers

in

the

WebSphere

Application

Server

domain.

The

PMI

client

provides

two

sets

of

methods:

one

set

in

Version

5.0

and

the

other

set

inherited

from

Version

4.0.

You

can

only

use

one

set

of

methods.

Do

not

mix

them

together.

3.

Call

listMBeans

and

listStatMembers

to

get

all

the

available

MBeans

and

MBeanStatDescriptors.

4.

Call

the

getStats

method

to

get

the

Stats

object

for

the

PMI

data.

5.

(Optional)

The

client

can

also

call

setStatLevel

or

getStatLevel

to

set

and

get

the

monitoring

level.

Use

the

MBeanLevelSpec

objects

to

set

monitoring

levels.

If

you

prefer

to

use

the

Version

4.0

version

of

the

interface,

the

model

is

essentially

the

same,

but

the

object

types

are

different:

1.

Create

an

instance

of

PmiClient.

2.

Call

the

listNodes()

and

listServers(nodeName)

methods

to

find

all

the

nodes

and

servers

in

the

WebSphere

Application

Server

domain.

3.

Call

listMembers

to

get

all

the

perfDescriptor

objects.

4.

Use

the

PMI

client’s

get

or

gets

method

to

get

CpdCollection

objects.

These

contain

snapshots

of

performance

data

from

the

server.

The

same

structure

is

maintained

and

its

update

method

is

used

to

refresh

the

data.

5.

(Optional)

The

client

can

also

call

setInstrumentationLevel

or

getInstrumentationLevel

to

set

and

get

the

monitoring

level.

Performance

Monitoring

Infrastructure

client

(Version

4.0):

A

Performance

Monitoring

Infrastructure

(PMI)

client

is

an

application

that

receives

PMI

data

from

servers

and

processes

this

data.

44

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

In

Version

4.0,

PmiClient

API

takes

PerfDescriptor(s)

and

returns

PMI

data

as

a

CpdCollection

object.

Each

CpdCollection

could

contain

a

list

of

CpdData,

which

has

a

CpdValue

of

the

following

types:

v

CpdLong

v

CpdStat

v

CpdLoad

Version

4.0

PmiClient

APIs

are

supported

in

this

version,

however,

there

are

some

changes.

The

data

hierarchy

is

changed

in

some

PMI

modules,

notably

the

enterprise

bean

module

and

HTTP

sessions

module.

If

you

have

an

existing

PmiClient

application,

and

you

want

to

run

it

against

Version

5.0,

you

might

have

to

update

the

PerfDescriptor(s)

based

on

the

new

PMI

data

hierarchy.

Also,

the

getDataName

and

getDataId

methods

in

PmiClient

are

changed

to

be

non-static

methods

in

order

to

support

multiple

WebSphere

Application

Server

versions.

You

might

have

to

update

your

existing

application

which

uses

these

two

methods.

Using

Version

5.0

PMI

API

in

Version

3.5.5+

and

Version

4.0.x:

For

Version

3.5.5+,

follow

these

instructions:

1.

Make

configuration

changes.

For

PMI

to

interact

correctly

with

Version

3.5.x

application

servers,

you

must

upgrade

both

the

Version

3.5.x

run

time

environment

and

the

PMI

JAR

files

to

the

levels

specified

below.

In

addition,

you

must

prepend

the

repository.jar,

ejs.jar,

and

ujc.jar

files

from

the

upgraded

Version

3.5.x

run

time

environment

to

the

PMI

client’s

run

time

classpath.

a.

Change

the

Version

3.5.x

run

time

environment.

Ensure

the

Version

3.5

environment

is

Version

3.5.5

or

later.

b.

Change

the

PMI

client’s

run

time

or

development

environment.

Both

the

Version

5.0

PMI

client

and

the

Version

4.02

client

can

work

with

the

Version

3.5.5+

WebSphere

Application

Server.

Copy

the

repository.jar,

ujc.jar

and

ejs.jar

files

from

the

WebSphere_35_installation_root/lib

directory

to

each

machine

from

which

a

PMI

client

is

run.

Prepend

the

Version

3.5.5+

repository.jar,

ujc.jar

and

ejs.jar

files

to

the

PMI

client’s

run

time

classpath.
2.

Copy

the

XML

configuration

files

from

Version

4.0.2+.

a.

Get

the

perf.jar

file

from

Version

4.0.

b.

Append

the

perf.jar

file

to

the

classpath

of

the

Version

5.0

PMI

client.

Note:

Ensure

the

Version

5.0

pmi.jar

file

and

pmiclient.jar

files

come

before

the

Version

4.0

perf.jar

file.
3.

Make

programmatic

changes.

A

new

constructor

for

PmiClient

allows

a

client

to

monitor

Version

3.5.5

or

later

application

servers.

The

new

constructor

takes

three

string

parameters:

hostName,

serverName,

and

version.

public

PmiClient(String

host,

String

port,

String

version)

Using

this

constructor

with

″EPM″

as

the

third

parameter

creates

a

PmiClient

that

can

retrieve

data

from

Version

3.5.5+

application

servers.

PmiClient

pmiClnt

=

new

PmiClient(hostName,

portNumber,

"EPM")

Chapter

1.

Monitoring

performance

45

Use

Version

4.0

PmiClient

API

to

write

your

own

client

application

with

WebSphere

Application

Server

Version

4.0

and

3.5.5+.

See

the

example

code

for

using

Version

4.0

API

in

the

topic

″Example:

Performance

Monitoring

Infrastructure

client

(Version

4.0)″.

To

run

a

Version

5.0

PMI

client

with

a

Version

4.0

server,

the

instructions

are

similar,

except

in

substep

2

of

step

1,

you

need

to

copy

the

repository.jar

and

ujc.jar

files

from

a

WebSphere

Application

Server,

Version

4.0,

installation.

Example:

Performance

Monitoring

Infrastructure

client

(Version

4.0):

The

following

is

a

list

of

example

Performance

Monitoring

Infrastructure

(PMI)

client

code

from

(Version

4.0):

/**

*

This

is

a

sample

code

to

show

how

to

use

PmiClient

to

collect

PMI

data.

*

You

will

need

to

use

adminconsole

to

set

instrumentation

level

(a

level

other

*

than

NONE)

first.

*

*

<p>

*

End-to-end

code

path

in

4.0:

*

PmiTester

->

PmiClient

->

AdminServer

->

appServer

*/

package

com.ibm.websphere.pmi;

import

com.ibm.websphere.pmi.*;

import

com.ibm.websphere.pmi.server.*;

import

com.ibm.websphere.pmi.client.*;

import

com.ibm.ws.pmi.server.*;

import

com.ibm.ws.pmi.perfServer.*;

import

com.ibm.ws.pmi.server.modules.*;

import

com.ibm.ws.pmi.wire.*;

import

java.util.ArrayList;

/**

*

Sample

code

to

use

PmiClient

API

(old

API

in

4.0)

and

get

CpdData/CpdCollection

objects.

*

*/

public

class

PmiTester

implements

PmiConstants

{

/**

a

test

driver:

*

@param

args[0]

-

node

name

*

@param

args[1]

-

port

number,

optional,

default

is

2809

*

@param

args[2]

-

connector

type,

default

is

RMI

*

@param

args[3]

-

verion

(AE,

AEs,

WAS50),

default

is

WAS50

*

*/

public

static

void

main(String[]

args)

{

String

hostName

=

null;

String

portNumber

=

"2809";

String

connectorType

=

"RMI";

String

version

=

"WAS50";

if

(args.length

<

1)

{

System.out.println("Usage:

<host>

[<port>]

[<connectorType>]

[<version>]");

return;

}

if(args.length

>=

1)

hostName

=

args[0];

if(args.length

>=

2)

46

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

portNumber

=

args[1];

if

(args.length

>=3)

connectorType

=

args[2];

if

(args.length

>=4)

version

=

args[3];

try

{

PmiClient

pmiClnt

=

new

PmiClient(hostName,

portNumber,

version,

false,

connectorType);

//

uncomment

it

if

you

want

debug

info

//pmiClnt.setDebug(true);

//

get

all

the

node

PerfDescriptor

in

the

domain

PerfDescriptor[]

nodePds

=

pmiClnt.listNodes();

if(nodePds

==

null)

{

System.out.println("no

nodes");

return;

}

//

get

the

first

node

String

nodeName

=

nodePds[0].getName();

System.out.println("after

listNodes:

"

+

nodeName);

//list

all

the

servers

on

the

node

PerfDescriptor[]

serverPds

=

pmiClnt.listServers(nodePds[0].getName());

if(serverPds

==

null

||

serverPds.length

==

0)

{

System.out.println("NO

app

server

in

node");

return;

}

//

print

out

all

the

servers

on

that

node

for(int

j=0;

j<serverPds.length;

j++)

{

System.out.println("server

"

+

j

+

":

"

+

serverPds[j].getName());

}

for(int

j=0;

j<serverPds.length;

j++)

{

System.out.println("server

"

+

j

+

":

"

+

serverPds[j].getName());

//

Option:

you

can

call

createPerfLevelSpec

and

then

setInstrumentationLevel

to

set

the

level

//

for

each

server

if

you

want.

For

example,

to

set

all

the

modules

to

be

LEVEL_HIGH

for

the

server

j,

//

uncomment

the

following.

//

PerfLevelSpec[]

plds

=

new

PerfLevelSpec[1];

//

plds[0]

=

pmiClnt.createPerfLevelSpec(null,

LEVEL_HIGH);

//

pmiClnt.setInstrumentationLevel(serverPds[j].getNodeName(),

serverPds[j].getServerName(),

plds,

true);

//

First,

list

the

PerfDescriptor

in

the

server

PerfDescriptor[]

myPds

=

pmiClnt.listMembers(serverPds[j]);

//

check

returned

PerfDescriptor

if(myPds

==

null)

{

System.out.println("null

from

listMembers");

continue;

}

//

you

can

add

the

pds

in

which

you

are

interested

to

PerfDescriptorList

PerfDescriptorList

pdList

=

new

PerfDescriptorList();

for(int

i=0;

i<myPds.length;

i++)

{

//

Option

1:

you

can

recursively

call

listMembers

for

each

myPds

//

and

find

the

one

you

are

interested.

You

can

call

listMembers

//

until

individual

data

level

and

after

that

level

you

will

null

from

listMembers.

Chapter

1.

Monitoring

performance

47

//

e.g.,

PerfDescriptor[]

nextPds

=

pmiClnt.listMembers(myPds[i]);

//

Option

2:

you

can

filter

these

pds

before

adding

to

pdList

System.out.println("add

to

pdList:

"

+

myPds[i].getModuleName());

pdList.addDescriptor(myPds[i]);

if(

i

%

2

==

0)

pmiClnt.add(myPds[i]);

}

//

call

gets

method

to

get

the

CpdCollection[]

corresponding

to

pdList

CpdCollection[]

cpdCols

=

pmiClnt.gets(pdList,

true);

if(cpdCols

==

null)

{

//

check

error

if(pmiClnt.getErrorCode()

>0)

System.out.println(pmiClnt.getErrorMessage());

continue;

}

for(int

i=0;

i<cpdCols.length;

i++)

{

//

simple

print

them

//System.out.println(cpdCols[i].toString());

//

Or

call

processCpdCollection

to

get

each

data

processCpdCollection(cpdCols[i],

"");

}

//

Or

call

gets()

method

to

add

the

CpdCollection[]

for

whatever

there

by

calling

pmiClnt.add().

System.out.println("\n\n\n

get

data

using

gets(true)

");

cpdCols

=

pmiClnt.gets(true);

if(cpdCols

==

null)

{

//

check

error

if(pmiClnt.getErrorCode()

>0)

System.out.println(pmiClnt.getErrorMessage());

continue;

}

for(int

i=0;

i<cpdCols.length;

i++)

{

//

simple

print

out

the

whole

collection

System.out.println(cpdCols[i].toString());

//

Option:

refer

processCpdCollection

to

get

each

data

}

}

}

catch(Exception

ex)

{

System.out.println("Exception

calling

CollectorAE");

ex.printStackTrace();

}

}

/**

*

show

the

methods

to

retrieve

individual

data

*/

private

static

void

processCpdCollection(CpdCollection

cpdCol,

String

indent)

{

CpdData[]

dataList

=

cpdCol.dataMembers();

String

myindent

=

indent;

System.out.println("\n"

+

myindent

+

"---

CpdCollection

"

+

cpdCol.getDescriptor().getName()

+

"

---");

myindent

+=

"

";

for(int

i=0;

i<dataList.length;

i++)

{

if

(dataList[i]

==

null)

continue;

48

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

//

if

you

want

to

get

static

info

like

name,

description,

etc

PmiDataInfo

dataInfo

=

dataList[i].getPmiDataInfo();

//

call

getName(),

getDescription()

on

dataInfo;

CpdValue

cpdVal

=

dataList[i].getValue();

if(cpdVal.getType()

==

TYPE_STAT)

{

CpdStat

cpdStat

=

(CpdStat)cpdVal;

double

mean

=

cpdStat.mean();

double

sumSquares

=

cpdStat.sumSquares();

int

count

=

cpdStat.count();

double

total

=

cpdStat.total();

System.out.println(myindent

+

"CpdData

id="

+

dataList[i].getId()

+

"

type=stat

mean="

+

mean);

//

you

can

print

more

values

like

sumSquares,

count,etc

here

}

else

if(cpdVal.getType()

==

TYPE_LOAD)

{

CpdLoad

cpdLoad

=

(CpdLoad)cpdVal;

long

time

=

cpdLoad.getTime();

double

mean

=

cpdLoad.mean();

double

currentLevel

=

cpdLoad.getCurrentLevel();

double

integral

=

cpdLoad.getIntegral();

double

timeWeight

=

cpdLoad.getWeight();

System.out.println(myindent

+

"CpdData

id="

+

dataList[i].getId()

+

"

type=load

mean="

+

mean

+

"

currentLevel="

+

currentLevel);

//

you

can

print

more

values

like

sumSquares,

count,etc

here

}

else

if(cpdVal.getType()

==

TYPE_LONG)

{

CpdValue

cpdLong

=

(CpdValue)cpdVal;

long

value

=

(long)cpdLong.getValue();

System.out.println(myindent

+

"CpdData

id="

+

dataList[i].getId()

+

"

type=long

value="

+

value);

}

else

if(cpdVal.getType()

==

TYPE_DOUBLE)

{

CpdValue

cpdDouble

=

(CpdValue)cpdVal;

double

value

=

cpdDouble.getValue();

System.out.println(myindent

+

"CpdData

id="

+

dataList[i].getId()

+

"

type=double

value="

+

value);

}

else

if(cpdVal.getType()

==

TYPE_INT)

{

CpdValue

cpdInt

=

(CpdValue)cpdVal;

int

value

=

(int)cpdInt.getValue();

System.out.println(myindent

+

"CpdData

id="

+

dataList[i].getId()

+

"

type=int

value="

+

value);

}

}

//

recursively

go

through

the

subcollection

CpdCollection[]

subCols

=

cpdCol.subcollections();

for(int

i=0;

i<subCols.length;

i++)

{

processCpdCollection(subCols[i],

myindent);

}

}

/**

*

show

the

methods

to

navigate

CpdCollection

*/

private

static

void

report(CpdCollection

col)

{

System.out.println("\n\n");

if(col==null)

{

System.out.println("report:

null

CpdCollection");

return;

}

System.out.println("report

-

CpdCollection

");

printPD(col.getDescriptor());

CpdData[]

dataMembers

=

col.dataMembers();

Chapter

1.

Monitoring

performance

49

if(dataMembers

!=

null)

{

System.out.println("report

CpdCollection:

dataMembers

is

"

+

dataMembers.length);

for(int

i=0;

i<dataMembers.length;

i++)

{

CpdData

data

=

dataMembers[i];

printPD(data.getDescriptor());

}

}

CpdCollection[]

subCollections

=

col.subcollections();

if(subCollections

!=

null)

{

for(int

i=0;

i<subCollections.length;

i++)

{

report(subCollections[i]);

}

}

}

private

static

void

printPD(PerfDescriptor

pd)

{

System.out.println(pd.getFullName());

}

}

Example:

Performance

Monitoring

Infrastructure

client

with

new

data

structure:

The

following

is

example

code

using

Performance

Monitoring

Infrastructure

(PMI)

client

with

the

new

data

structure:

import

com.ibm.websphere.pmi.*;

import

com.ibm.websphere.pmi.stat.*;

import

com.ibm.websphere.pmi.client.*;

import

com.ibm.websphere.management.*;

import

com.ibm.websphere.management.exception.*;

import

java.util.*;

import

javax.management.*;

import

java.io.*;

/**

*

Sample

code

to

use

PmiClient

API

(new

JMX-based

API

in

5.0)

and

get

Statistic/Stats

objects.

*/

public

class

PmiClientTest

implements

PmiConstants

{

static

PmiClient

pmiClnt

=

null;

static

String

nodeName

=

null;

static

String

serverName

=

null;

static

String

portNumber

=

null;

static

String

connectorType

=

null;

static

boolean

success

=

true;

/**

*

@param

args[0]

host

*

@param

args[1]

portNumber,

optional,

default

is

2809

*

@param

args[2]

connectorType,

optional,

default

is

RMI

connector

*

@param

args[3]serverName,

optional,

default

is

the

first

server

found

*/

public

static

void

main(String[]

args)

{

try

{

if(args.length

>

1)

{

System.out.println("Parameters:

host

[portNumber]

[connectorType]

[serverName]");

return;

}

50

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

//

parse

arguments

and

create

an

instance

of

PmiClient

nodeName

=

args[0];

if

(args.length

>

1)

portNumber

=

args[1];

if

(args.length

>

2)

connectorType

=

args[2];

//

create

an

PmiClient

object

pmiClnt

=

new

PmiClient(nodeName,

portNumber,

"WAS50",

false,

connectorType);

//

Uncomment

it

if

you

want

to

debug

any

problem

//pmiClnt.setDebug(true);

//

update

nodeName

to

be

the

real

host

name

//

get

all

the

node

PerfDescriptor

in

the

domain

PerfDescriptor[]

nodePds

=

pmiClnt.listNodes();

if(nodePds

==

null)

{

System.out.println("no

nodes");

return;

}

//

get

the

first

node

nodeName

=

nodePds[0].getName();

System.out.println("use

node

"

+

nodeName);

if

(args.length

==

4)

serverName

=

args[3];

else

{

//

find

the

server

you

want

to

get

PMI

data

//

get

all

servers

on

this

node

PerfDescriptor[]

allservers

=

pmiClnt.listServers(nodeName);

if

(allservers

==

null

||

allservers.length

==

0)

{

System.out.println("No

server

is

found

on

node

"

+

nodeName);

System.exit(1);

}

//

get

the

first

server

on

the

list.

You

may

want

to

get

a

different

server

serverName

=

allservers[0].getName();

System.out.println("Choose

server

"

+

serverName);

}

//

get

all

MBeans

ObjectName[]

onames

=

pmiClnt.listMBeans(nodeName,

serverName);

//

Cache

the

MBeans

we

are

interested

ObjectName

perfOName

=

null;

ObjectName

serverOName

=

null;

ObjectName

wlmOName

=

null;

ObjectName

ejbOName

=

null;

ObjectName

jvmOName

=

null;

ArrayList

myObjectNames

=

new

ArrayList(10);

//

get

the

MBeans

we

are

interested

in

if(onames

!=

null)

{

System.out.println("Number

of

MBeans

retrieved=

"

+

onames.length);

AttributeList

al;

ObjectName

on;

for(int

i=0;

i<onames.length;

i++)

{

on

=

onames[i];

String

type

=

on.getKeyProperty("type");

//

make

sure

PerfMBean

is

there.

//

Then

randomly

pick

up

some

MBeans

for

the

test

purpose

if(type

!=

null

&&

type.equals("Server"))

serverOName

=

on;

else

if(type

!=

null

&&

type.equals("Perf"))

perfOName

=

on;

Chapter

1.

Monitoring

performance

51

else

if(type

!=

null

&&

type.equals("WLM"))

{

wlmOName

=

on;

}

else

if(type

!=

null

&&

type.equals("EntityBean"))

{

ejbOName

=

on;

//

add

all

the

EntityBeans

to

myObjectNames

myObjectNames.add(ejbOName);

//

add

to

the

list

}

else

if(type

!=

null

&&

type.equals("JVM"))

{

jvmOName

=

on;

}

}

//

set

monitoring

level

for

SERVER

MBean

testSetLevel(serverOName);

//

get

Stats

objects

testGetStats(myObjectNames);

//

if

you

know

the

ObjectName(s)

testGetStats2(new

ObjectName[]{jvmOName,

ejbOName});

//

assume

you

are

only

interested

in

a

server

data

in

WLM

MBean,

//

then

you

will

need

to

use

StatDescriptor

and

MBeanStatDescriptor

//

Note

that

wlmModule

is

only

available

in

ND

version

StatDescriptor

sd

=

new

StatDescriptor(new

String[]

{"wlmModule.server"});

MBeanStatDescriptor

msd

=

new

MBeanStatDescriptor(wlmOName,

sd);

Stats

wlmStat

=

pmiClnt.getStats(nodeName,

serverName,

msd,

false);

if

(wlmStat

!=

null)

System.out.println("\n\n

WLM

server

data\n\n

+

"

+

wlmStat.toString());

else

System.out.println("\n\n

No

WLM

server

data

is

availalbe.");

//

how

to

find

all

the

MBeanStatDescriptors

testListStatMembers(serverOName);

//

how

to

use

update

method

testUpdate(jvmOName,

false,

true);

}

else

{

System.out.println("No

ObjectNames

returned

from

Query"

);

}

}

catch(Exception

e)

{

new

AdminException(e).printStackTrace();

System.out.println("Exception

=

"

+e);

e.printStackTrace();

success

=

false;

}

if(success)

System.out.println("\n\n

All

tests

are

passed");

else

System.out.println("\n\n

Some

tests

are

failed.

Check

for

the

exceptions");

}

/**

*

construct

an

array

from

the

ArrayList

*/

private

static

MBeanStatDescriptor[]

getMBeanStatDescriptor(ArrayList

msds)

{

if(msds

==

null

||

msds.size()

==

0)

return

null;

52

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

MBeanStatDescriptor[]

ret

=

new

MBeanStatDescriptor[msds.size()];

for(int

i=0;

i<ret.length;

i++)

if(msds.get(i)

instanceof

ObjectName)

ret[i]

=

new

MBeanStatDescriptor((ObjectName)msds.get(i));

else

ret[i]

=

(MBeanStatDescriptor)msds.get(i);

return

ret;

}

/**

*

Sample

code

to

navigate

and

display

the

data

value

from

the

Stats

object.

*/

private

static

void

processStats(Stats

stat)

{

processStats(stat,

"");

}

/**

*

Sample

code

to

navigate

and

display

the

data

value

from

the

Stats

object.

*/

private

static

void

processStats(Stats

stat,

String

indent)

{

if(stat

==

null)

return;

System.out.println("\n\n");

//

get

name

of

the

Stats

String

name

=

stat.getName();

System.out.println(indent

+

"stats

name="

+

name);

//

Uncomment

the

following

lines

to

list

all

the

data

names

/*

String[]

dataNames

=

stat.getStatisticNames();

for

(int

i=0;

i<dataNames.length;

i++)

System.out.println(indent

+

"

"

+

"data

name="

+

dataNames[i]);

System.out.println("\n");

*/

//

list

all

datas

com.ibm.websphere.management.statistics.Statistic[]

allData

=

stat.getStatistics();

//

cast

it

to

be

PMI’s

Statistic

type

so

that

we

can

have

get

more

Statistic[]

dataMembers

=

(Statistic[])allData;

if(dataMembers

!=

null)

{

for(int

i=0;

i<dataMembers.length;

i++)

{

System.out.print(indent

+

"

"

+

"data

name="

+

PmiClient.getNLSValue(dataMembers[i].getName())

+

",

description="

+

PmiClient.getNLSValue(dataMembers[i].getDescription())

+

",

unit="

+

PmiClient.getNLSValue(dataMembers[i].getUnit())

+

",

startTime="

+

dataMembers[i].getStartTime()

+

",

lastSampleTime="

+

dataMembers[i].getLastSampleTime());

if(dataMembers[i].getDataInfo().getType()

==

TYPE_LONG)

{

System.out.println(",

count="

+

((CountStatisticImpl)dataMembers[i]).getCount());

}

else

if(dataMembers[i].getDataInfo().getType()

==

TYPE_STAT)

{

TimeStatisticImpl

data

=

(TimeStatisticImpl)dataMembers[i];

System.out.println(",

count="

+

data.getCount()

+

",

total="

+

data.getTotal()

+

",

mean="

+

data.getMean()

+

",

min="

+

data.getMin()

+

",

max="

+

data.getMax());

}

else

if(dataMembers[i].getDataInfo().getType()

==

TYPE_LOAD)

{

RangeStatisticImpl

data

=

(RangeStatisticImpl)dataMembers[i];

System.out.println(",

current="

+

data.getCurrent()

+

",

lowWaterMark="

+

data.getLowWaterMark()

+

",

highWaterMark="

+

data.getHighWaterMark()

Chapter

1.

Monitoring

performance

53

+

",

integral="

+

data.getIntegral()

+

",

avg="

+

data.getMean());

}

}

}

//

recursively

for

sub-stats

Stats[]

substats

=

(Stats[])stat.getSubStats();

if(substats

==

null

||

substats.length

==

0)

return;

for(int

i=0;

i<substats.length;

i++)

{

processStats(substats[i],

indent

+

"

");

}

}

/**

*

test

set

level

and

verify

using

get

level

*/

private

static

void

testSetLevel(ObjectName

mbean)

{

System.out.println("\n\n

testSetLevel\n\n");

try

{

//

set

instrumentation

level

to

be

high

for

the

mbean

MBeanLevelSpec

spec

=

new

MBeanLevelSpec(mbean,

null,

PmiConstants.LEVEL_HIGH);

pmiClnt.setStatLevel(nodeName,

serverName,

spec,

true);

System.out.println("after

setInstrumentaionLevel

high

on

server

MBean\n\n");

//

get

all

instrumentation

levels

MBeanLevelSpec[]

mlss

=

pmiClnt.getStatLevel(nodeName,

serverName,

mbean,

true);

if(mlss

==

null)

System.out.println("error:

null

from

getInstrumentationLevel");

else

{

for(int

i=0;

i<mlss.length;

i++)

if(mlss[i]

!=

null)

{

//

get

the

ObjectName,

StatDescriptor,

and

level

out

of

MBeanStatDescriptor

int

mylevel

=

mlss[i].getLevel();

ObjectName

myMBean

=

mlss[i].getObjectName();

StatDescriptor

mysd

=

mlss[i].getStatDescriptor();

//

may

be

null

//

Uncomment

it

to

print

all

the

mlss

//System.out.println("mlss

"

+

i

+

":,

"

+

mlss[i].toString());

}

}

}

catch(Exception

ex)

{

new

AdminException(ex).printStackTrace();

ex.printStackTrace();

System.out.println("Exception

in

testLevel");

success

=

false;

}

}

/**

*

Use

listStatMembers

method

*/

private

static

void

testListStatMembers(ObjectName

mbean)

{

System.out.println("\n\ntestListStatMembers

\n");

//

listStatMembers

and

getStats

//

From

server

MBean

until

the

bottom

layer.

try

{

MBeanStatDescriptor[]

msds

=

pmiClnt.listStatMembers(nodeName,

serverName,

mbean);

if(msds

==

null)

return;

System.out.println("

listStatMembers

for

server

MBean,

num

members

(i.e.

top

level

modules)

is

"

+

msds.length);

54

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

for(int

i=0;

i<msds.length;

i++)

{

if(msds[i]

==

null)

continue;

//

get

the

fields

out

of

MBeanStatDescriptor

if

you

need

them

ObjectName

myMBean

=

msds[i].getObjectName();

StatDescriptor

mysd

=

msds[i].getStatDescriptor();

//

may

be

null

//

uncomment

if

you

want

to

print

them

out

//System.out.println(msds[i].toString());

}

for(int

i=0;

i<msds.length;

i++)

{

if(msds[i]

==

null)

continue;

System.out.println("\n\nlistStatMembers

for

msd="

+

msds[i].toString());

MBeanStatDescriptor[]

msds2

=

pmiClnt.listStatMembers(nodeName,

serverName,

msds[i]);

//

you

get

msds2

at

the

second

layer

now

and

the

listStatMembers

can

be

called

recursively

//

until

it

returns

now.

}

}

catch(Exception

ex)

{

new

AdminException(ex).printStackTrace();

ex.printStackTrace();

System.out.println("Exception

in

testListStatMembers");

success

=

false;

}

}

/**

*

Test

getStats

method

*/

private

static

void

testGetStats(ArrayList

mbeans)

{

System.out.println("\n\n

testgetStats\n\n");

try

{

Stats[]

mystats

=

pmiClnt.getStats(nodeName,

serverName,

getMBeanStatDescriptor(mbeans),

true);

//

navigate

each

of

the

Stats

object

and

get/display

the

value

for(int

k=0;

k<mystats.length;

k++)

{

processStats(mystats[k]);

}

}

catch(Exception

ex)

{

new

AdminException(ex).printStackTrace();

ex.printStackTrace();

System.out.println("exception

from

testGetStats");

success

=

false;

}

}

/**

*

Test

getStats

method

*/

private

static

void

testGetStats2(ObjectName[]

mbeans)

{

System.out.println("\n\n

testGetStats2\n\n");

try

{

Stats[]

statsArray

=

pmiClnt.getStats(nodeName,

serverName,

mbeans,

true);

//

You

can

call

toString

to

simply

display

all

the

data

if(statsArray

!=

null)

{

for(int

k=0;

k<statsArray.length;

k++)

System.out.println(statsArray[k].toString());

Chapter

1.

Monitoring

performance

55

}

else

System.out.println("null

stat");

}

catch(Exception

ex)

{

new

AdminException(ex).printStackTrace();

ex.printStackTrace();

System.out.println("exception

from

testGetStats2");

success

=

false;

}

}

/**

*

test

update

method

*/

private

static

void

testUpdate(ObjectName

oName,

boolean

keepOld,

boolean

recursiveUpdate)

{

System.out.println("\n\n

testUpdate\n\n");

try

{

//

set

level

to

be

NONE

MBeanLevelSpec

spec

=

new

MBeanLevelSpec(oName,

null,

PmiConstants.LEVEL_NONE);

pmiClnt.setStatLevel(nodeName,

serverName,

spec,

true);

//

get

data

now

-

one

is

non-recursive

and

the

other

is

recursive

Stats

stats1

=

pmiClnt.getStats(nodeName,

serverName,

oName,

false);

Stats

stats2

=

pmiClnt.getStats(nodeName,

serverName,

oName,

true);

//

set

level

to

be

HIGH

spec

=

new

MBeanLevelSpec(oName,

null,

PmiConstants.LEVEL_HIGH);

pmiClnt.setStatLevel(nodeName,

serverName,

spec,

true);

Stats

stats3

=

pmiClnt.getStats(nodeName,

serverName,

oName,

true);

System.out.println("\n\n

stats3

is");

processStats(stats3);

stats1.update(stats3,

keepOld,

recursiveUpdate);

System.out.println("\n\n

update

stats1");

processStats(stats1);

stats2.update(stats3,

keepOld,

recursiveUpdate);

System.out.println("\n\n

update

stats2");

processStats(stats2);

}

catch(Exception

ex)

{

System.out.println("\n\n

Exception

in

testUpdate");

ex.printStackTrace();

success

=

false;

}

}

}

Developing

your

own

monitoring

applications

with

Performance

Monitoring

Infrastructure

servlet

The

performance

servlet

uses

the

Performance

Monitor

Interface

(PMI)

infrastructure

to

retrieve

the

performance

information

from

WebSphere

Application

Server.

This

is

the

same

infrastructure

used

by

the

Tivoli

Performance

Viewer

and

is

subject

to

the

same

restrictions

on

the

availability

of

data

as

the

performance

viewer.

56

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

The

performance

servlet

.ear

file

perfServletApp.ear

is

located

in

the

install_root

directory.

The

performance

servlet

is

deployed

exactly

as

any

other

servlet.

To

use

it,

follow

these

steps:

1.

Deploy

the

servlet

on

a

single

application

server

instance

within

the

domain.

2.

After

the

servlet

deploys,

you

can

invoke

it

to

retrieve

performance

data

for

the

entire

domain.

Invoke

the

performance

servlet

by

accessing

the

following

default

URL:

http://hostname/wasPerfTool/servlet/perfservlet

The

performance

servlet

provides

performance

data

output

as

an

XML

document,

as

described

by

the

provided

document

type

definition

(DTD).

The

output

structure

provided

is

called

leaves.

The

paths

that

lead

to

the

leaves

provide

the

context

of

the

data.

See

the

topic

″Performance

Monitoring

Infrastructure

(PMI)

servlet″

for

more

information

about

the

PMI

servlet

output.

Performance

Monitoring

Infrastructure

servlet:

The

Performance

Monitoring

Infrastructure

(PMI)

servlet

is

used

for

simple

end-to-end

retrieval

of

performance

data

that

any

tool,

provided

by

either

IBM

or

a

third-party

vendor,

can

handle.

The

PMI

servlet

provides

a

way

to

use

an

HTTP

request

to

query

the

performance

metrics

for

an

entire

WebSphere

Application

Server

administrative

domain.

Because

the

servlet

provides

the

performance

data

through

HTTP,

issues

such

as

firewalls

are

trivial

to

resolve.

The

performance

servlet

provides

the

performance

data

output

as

an

XML

document,

as

described

in

the

provided

document

type

description

(DTD).

In

the

XML

structure,

the

leaves

of

the

structure

provide

the

actual

observations

of

performance

data

and

the

paths

to

the

leaves

that

provide

the

context.

There

are

three

types

of

leaves

or

output

formats

within

the

XML

structure:

v

PerfNumericInfo

v

PerfStatInfo

v

PerfLoadInfo

PerfNumericInfo.When

each

invocation

of

the

performance

servlet

retrieves

the

performance

values

from

Performance

Monitoring

Infrastructure

(PMI),

some

of

the

values

are

raw

counters

that

record

the

number

of

times

a

specific

event

occurs

during

the

lifetime

of

the

server.

If

a

performance

observation

is

of

the

type

PerfNumericInfo,

the

value

represents

the

raw

count

of

the

number

of

times

this

event

has

occurred

since

the

server

started.

This

information

is

important

to

note

because

the

analysis

of

a

single

document

of

data

provided

by

the

performance

servlet

might

not

be

useful

for

determining

the

current

load

on

the

system.

To

determine

the

load

during

a

specific

interval

of

time,

it

might

be

necessary

to

apply

simple

statistical

formulas

to

the

data

in

two

or

more

documents

provided

during

this

interval.

The

PerfNumericInfo

type

has

the

following

attributes:

v

time--Specifies

the

time

when

the

observation

was

collected

(Java

System.currentTimeMillis)

v

uid--Specifies

the

PMI

identifier

for

the

observation

v

val--Specifies

the

raw

counter

value

The

following

document

fragment

represents

the

number

of

loaded

servlets.

The

path

providing

the

context

of

the

observation

is

not

shown.

Chapter

1.

Monitoring

performance

57

<numLoadedServlets>

<PerfNumericData

time="988162913175"

uid="pmi1"

val="132"/>

</numLoadedServlets>

PerfStatInfo.When

each

invocation

of

the

performance

servlet

retrieves

the

performance

values

from

PMI,

some

of

the

values

are

stored

as

statistical

data.

Statistical

data

records

the

number

of

occurrences

of

a

specific

event,

as

the

PerfNumericInfo

type

does.

In

addition,

this

type

has

sum

of

squares,

mean,

and

total

for

each

observation.

This

value

is

relative

to

when

the

server

started.

The

PerfStatInfo

type

has

the

following

attributes:

v

time--Specifies

the

time

the

observation

was

collected

(Java

System.currentTimeMillis)

v

uid--Specifies

the

PMI

identifier

for

this

observation

v

num--Specifies

the

number

of

observations

v

sum_of_squares--Specifies

the

sum

of

the

squares

of

the

observations

v

total--Specifies

the

sum

of

the

observations

v

mean--Specifies

the

mean

(total

number)

for

this

counter

The

following

fragment

represents

the

response

time

of

an

object.

The

path

providing

the

context

of

the

observation

is

not

shown:

<responseTime>

<PerfStatInfo

mean="1211.5"

num="5"

sum_of_squares="3256265.0"

time="9917644193057"

total="2423.0"

uid="pmi13"/>

</responseTime>

PerfLoadInfo.When

each

invocation

of

the

performance

servlet

retrieves

the

performance

values

from

PMI,

some

of

the

values

are

stored

as

a

load.

Loads

record

values

as

a

function

of

time;

they

are

averages.

This

value

is

relative

to

when

the

server

started.

The

PerfLoadInfo

type

has

the

following

attributes:

v

time--Specifies

the

time

when

the

observation

was

collected

(Java

System.currentTimeMillis)

v

uid--Specifies

the

PMI

identifier

for

this

observation

v

currentValue--Specifies

the

current

value

for

this

counter

v

integral--Specifies

the

time-weighted

sum

v

timeSinceCreate--Specifies

the

elapsed

time

in

milliseconds

since

this

data

was

created

in

the

server

v

mean--Specifies

time-weighted

mean

(integral/timeSinceCreate)

for

this

counter

The

following

fragment

represents

the

number

of

concurrent

requests.

The

path

providing

the

context

of

the

observation

is

not

shown:

<poolSize>

<PerfLoadInfo

currentValue="1.0"

integral="534899.0

"

mean="0.9985028962051592"

time="991764193057"

timeSinceCreate="535701.0

"uid="pmi5"</poolSize>

When

the

performance

servlet

is

first

initialized,

it

retrieves

the

list

of

nodes

and

servers

located

within

the

domain

in

which

it

is

deployed.

Because

the

collection

of

this

data

is

expensive,

the

performance

servlet

holds

this

information

as

a

cached

list.

If

a

new

node

is

added

to

the

domain

or

a

new

server

is

started,

the

performance

servlet

does

not

automatically

retrieve

the

information

about

the

58

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

newly

created

element.

To

force

the

servlet

to

refresh

its

configuration,

you

must

add

the

refreshConfig

parameter

to

the

invocation

as

follows:

http://hostname/wasPerfTool/servlet/perfservlet?refreshConfig=true

By

default,

the

performance

servlet

collects

all

of

the

performance

data

across

a

WebSphere

domain.

However,

it

is

possible

to

limit

the

data

returned

by

the

servlet

to

either

a

specific

node,

server,

or

PMI

module.

v

Node.The

servlet

can

limit

the

information

it

provides

to

a

specific

host

by

using

the

node

parameter.

For

example,

to

limit

the

data

collection

to

the

node

rjones,

invoke

the

following

URL:

http://hostname/wasPerfTool/servlet/perfservlet?Node=rjones

v

Server.The

servlet

can

limit

the

information

it

provides

to

a

specific

server

by

using

the

server

parameter.

For

example,

in

order

to

limit

the

data

collection

to

the

TradeApp

server

on

all

nodes,

invoke

the

following

URL:

http://hostname/wasPerfTool/servlet/perfservlet?Server=TradeApp

To

limit

the

data

collection

to

the

TradeApp

server

located

on

the

host

rjones,

invoke

the

following

URL:

http://hostname/wasPerfTool/servlet/perfservlet?Node=rjones&Server=TradeApp

v

Module.The

servlet

can

limit

the

information

it

provides

to

a

specific

PMI

module

by

using

the

module

parameter.

You

can

request

multiple

modules

from

the

following

Web

site:

http://hostname/wasPerfTool/servlet/perfservlet?Module=beanModule+jvmRuntimeModule

For

example,

to

limit

the

data

collection

to

the

beanModule

on

all

servers

and

nodes,

invoke

the

following

URL:

http://hostname/wasPerfTool/servlet/perfservlet?Module=beanModule

To

limit

the

data

collection

to

the

beanModule

on

the

server

TradeApp

on

the

node

rjones,

invoke

the

following

URL:

http://hostname/wasPerfTool/servlet/perfservlet?Node=rjones&Server=TradeApp

&Module=beanModule>

Developing

your

own

monitoring

application

with

the

Java

Management

Extension

interface

WebSphere

Application

Server

allows

you

to

invoke

methods

on

MBeans

through

the

AdminClient

Java

Management

Extension

(JMX)

interface.

You

can

use

AdminClient

API

to

get

Performance

Monitoring

Infrastructure

(PMI)

data

by

using

either

PerfMBean

or

individual

MBeans.

See

information

about

using

individual

MBeans

at

bottom

of

this

article.

Individual

MBeans

provide

the

Stats

attribute

from

which

you

can

get

PMI

data.

The

PerfMBean

provides

extended

methods

for

PMI

administration

and

more

efficient

ways

to

access

PMI

data.

To

set

the

PMI

module

instrumentation

level,

you

must

invoke

methods

on

PerfMBean.

To

query

PMI

data

from

multiple

MBeans,

it

is

faster

to

invoke

the

getStatsArray

method

in

PerfMBean

than

to

get

the

Stats

attribute

from

multiple

individual

MBeans.

PMI

can

be

delivered

in

a

single

JMX

cell

through

PerfMBean,

but

multiple

JMX

calls

have

to

be

made

through

individual

MBeans.

See

the

topic

″Developing

an

administrative

client

program″

for

more

information

on

AdminClient

JMX.

Chapter

1.

Monitoring

performance

59

After

the

performance

monitoring

service

is

enabled

and

the

application

server

is

started

or

restarted,

a

PerfMBean

is

located

in

each

application

server

giving

access

to

PMI

data.

To

use

PerfMBean:

1.

Create

an

instance

of

AdminClient.

When

using

AdminClient

API,

you

need

to

first

create

an

instance

of

AdminClient

by

passing

the

host

name,

port

number

and

connector

type.

The

example

code

is:

AdminClient

ac

=

null;

java.util.Properties

props

=

new

java.util.Properties();

props.put(AdminClient.CONNECTOR_TYPE,

connector);

props.put(AdminClient.CONNECTOR_HOST,

host);

props.put(AdminClient.CONNECTOR_PORT,

port);

try

{

ac

=

AdminClientFactory.createAdminClient(props);

}

catch(Exception

ex)

{

failed

=

true;

new

AdminException(ex).printStackTrace();

System.out.println("getAdminClient:

exception");

}

2.

Use

AdminClient

to

query

the

MBean

ObjectNames

Once

you

get

the

AdminClient

instance,

you

can

call

queryNames

to

get

a

list

of

MBean

ObjectNames

depending

on

your

query

string.

To

get

all

the

ObjectNames,

you

can

use

the

following

example

code.

If

you

have

a

specified

query

string,

you

will

get

a

subset

of

ObjectNames.

javax.management.ObjectName

on

=

new

javax.management.ObjectName("WebSphere:*");

Set

objectNameSet=

ac.queryNames(on,

null);

//

you

can

check

properties

like

type,

name,

and

process

to

find

a

specified

ObjectName

After

you

get

all

the

ObjectNames,

you

can

use

the

following

example

code

to

get

all

the

node

names:

HashSet

nodeSet

=

new

HashSet();

for(Iterator

i

=

objectNameSet.iterator();

i.hasNext();

on

=

(ObjectName)i.next())

{

String

type

=

on.getKeyProperty("type");

if(type

!=

null

&&

type.equals("Server"))

{

nodeSet.add(servers[i].getKeyProperty("node"));

}

}

Note,

this

will

only

return

nodes

that

are

started.

To

list

running

servers

on

the

node,

you

can

either

check

the

node

name

and

type

for

all

the

ObjectNames

or

use

the

following

example

code:

StringBuffer

oNameQuery=

new

StringBuffer(41);

oNameQuery.append("WebSphere:*");

oNameQuery.append(",type=").append("Server");

oNameQuery.append(",node=").append(mynode);

oSet=

ac.queryNames(new

ObjectName(oNameQuery.toString()),

null);

Iterator

i

=

objectNameSet.iterator

();

while

(i.hasNext

())

{

on=(objectName)

i.next();

String

process=

on[i].getKeyProperty("process");

serversArrayList.add(process);

}

3.

Get

the

PerfMBean

ObjectName

for

the

application

server

from

which

you

want

to

get

PMI

data.

Use

this

example

code:

for(Iterator

i

=

objectNameSet.iterator();

i.hasNext();

on

=

(ObjectName)i.next())

{

//

First

make

sure

the

node

name

and

server

name

is

what

you

want

//

Second,

check

if

the

type

is

Perf

60

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

String

type

=

on.getKeyProperty("type");

String

node

=

on.getKeyProperty("node");

String

process=

on.getKeyProperty("process");

if

(type.equals("Perf")

&&

node.equals(mynode)

&

&

server.equals(myserver))

{

perfOName

=

on;

}

}

4.

Invoke

operations

on

PerfMBean

through

the

AdminClient.

Once

you

get

the

PerfMBean(s)

in

the

application

server

from

which

you

want

to

get

PMI

data,

you

can

invoke

the

following

operations

on

the

PerfMBean

through

AdminClient

API:

-

setInstrumentationLevel:

set

the

instrmentation

level

params[0]

=

new

MBeanLevelSpec(objectName,

optionalSD,

level);

params[1]

=

new

Boolean(true);

signature=

new

String[]{

"com.ibm.websphere.pmi.stat.MBeanLevelSpec",

"java.lang.Boolean"};

ac.invoke(perfOName,

"setInstrumentationLevel",

params,

signature);

-

getInstrumentationLevel:

get

the

instrumentation

level

Object[]

params

=

new

Object[2];

params[0]

=

new

MBeanStatDescriptor(objectName,

optionalSD);

params[1]

=

new

Boolean(recursive);

String[]

signature=

new

String[]{

"com.ibm.websphere.pmi.stat.MBeanStatDescriptor",

"java.lang.Boolean"};

MBeanLevelSpec[]

mlss

=

(MBeanLevelSpec[])ac.invoke(perfOName,

"getInstrumentationLevel",

params,

signature);

-

getConfigs:

get

PMI

static

config

info

for

all

the

MBeans

configs

=

(PmiModuleConfig[])ac.invoke(perfOName,

"getConfigs",

null,

null);

-

getConfig:

get

PMI

static

config

info

for

a

specific

MBean

ObjectName[]

params

=

{objectName};

String[]

signature=

{

"javax.management.ObjectName"

};

config

=

(PmiModuleConfig)ac.invoke(perfOName,

"getConfig",

params,

signature);

-

getStatsObject:

you

can

use

either

ObjectName

or

MBeanStatDescriptor

Object[]

params

=

new

Object[2];

params[0]

=

objectName;

//

either

ObjectName

or

or

MBeanStatDescriptor

params[1]

=

new

Boolean(recursive);

String[]

signature

=

new

String[]

{

"javax.management.ObjectName",

"java.lang.Boolean"};

Stats

stats

=

(Stats)ac.invoke(perfOName,

"getStatsObject",

params,

signature);

Note:

The

returned

data

only

have

dynamic

information

(value

and

time

stamp).

See

PmiJmxTest.java

for

additional

code

to

link

the

configuration

information

with

the

returned

data.

-

getStatsArray:

you

can

use

either

ObjectName

or

MBeanStatDescriptor

ObjectName[]

onames

=

new

ObjectName[]{objectName1,

objectName2};

Object[]

params

=

new

Object[]{onames,

new

Boolean(true)};

String[]

signature

=

new

String[]{"[Ljavax.management.ObjectName;",

"java.lang.Boolean"};

Stats[]

statsArray

=

(Stats[])ac.invoke(perfOName,

"getStatsArray",

params,

signature);

Note:

The

returned

data

only

have

dynamic

information

(value

and

time

stamp).

See

PmiJmxTest.java

for

additional

code

to

link

the

configuration

information

with

the

returned

data.

-

listStatMembers:

navigate

the

PMI

module

trees

Object[]

params

=

new

Object[]{mName};

String[]

signature=

new

String[]{"javax.management.ObjectName"};

Chapter

1.

Monitoring

performance

61

MBeanStatDescriptor[]

msds

=

(MBeanStatDescriptor[])ac.invoke(perfOName,

"listStatMembers",

params,

signature);

or,

Object[]

params

=

new

Object[]{mbeanSD};

String[]

signature=

new

String[]

{"com.ibm.websphere.pmi.stat.MBeanStatDescriptor"};

MBeanStatDescriptor[]

msds

=

(MBeanStatDescriptor[])ac.invoke

(perfOName,

"listStatMembers",

params,

signature);

v

To

use

an

individual

MBean:

You

need

to

get

the

AdminClient

instance

and

the

ObjectName

for

the

individual

MBean.

Then

you

can

simply

get

the

Stats

attribute

on

the

MBean.

Example:

Administering

Java

Management

Extension-based

interface:

The

following

is

example

code

directly

using

Java

Management

Extension

(JMX)

API.

For

information

on

compiling

your

source

code,

see

″Compiling

your

monitoring

applications.″

package

com.ibm.websphere.pmi;

import

com.ibm.websphere.management.AdminClient;

import

com.ibm.websphere.management.AdminClientFactory;

import

com.ibm.websphere.management.exception.ConnectorException;

import

com.ibm.websphere.management.exception.InvalidAdminClientTypeException;

import

com.ibm.websphere.management.exception.*;

import

java.util.*;

import

javax.management.*;

import

com.ibm.websphere.pmi.*;

import

com.ibm.websphere.pmi.client.*;

import

com.ibm.websphere.pmi.stat.*;

/**

*

Sample

code

to

use

AdminClient

API

directly

to

get

PMI

data

from

PerfMBean

*

and

individual

MBeans

which

support

getStats

method.

*/

public

class

PmiJmxTest

implements

PmiConstants

{

private

AdminClient

ac

=

null;

private

ObjectName

perfOName

=

null;

private

ObjectName

serverOName

=

null;

private

ObjectName

wlmOName

=

null;

private

ObjectName

jvmOName

=

null;

private

ObjectName

orbtpOName

=

null;

private

boolean

failed

=

false;

private

PmiModuleConfig[]

configs

=

null;

/**

*

Creates

a

new

test

object

*

(Need

a

default

constructor

for

the

testing

framework)

*/

public

PmiJmxTest()

{

}

/**

*

@param

args[0]

host

*

@param

args[1]

port,

optional,

default

is

8880

*

@param

args[2]

connectorType,

optional,

default

is

SOAP

connector

*

*/

public

static

void

main(String[]

args)

{

62

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

PmiJmxTest

instance

=

new

PmiJmxTest();

//

parse

arguments

and

create

AdminClient

object

instance.init(args);

//

navigate

all

the

MBean

ObjectNames

and

cache

those

we

are

interested

instance.getObjectNames();

//

set

level,

get

data,

display

data

instance.doTest();

//

test

for

EJB

data

instance.testEJB();

//

how

to

use

JSR77

getStats

method

for

individual

MBean

other

than

PerfMBean

instance.testJSR77Stats();

}

/**

*

parse

args

and

getAdminClient

*/

public

void

init(String[]

args)

{

try

{

String

host

=

null;

String

port

=

"8880";

String

connector

=

"SOAP";

if(args.length

<

1)

{

System.err.println("ERROR:

Usage:

PmiJmxTest

<host>

[<port>]

[<connector>]");

System.exit(2);

}

else

{

host

=

args[0];

if(args.length

>

1)

port

=

args[1];

if(args.length

>

2)

connector

=

args[2];

}

if(host

==

null)

{

host

=

"localhost";

}

if(port

==

null)

{

port

=

"8880";

}

if(connector

==

null)

{

connector

=

AdminClient.CONNECTOR_TYPE_SOAP;

}

System.out.println("host="

+

host

+

"

,

port="

+

port

+

",

connector="

+

connector);

//--

//

Get

the

ac

object

for

the

AppServer

//--

System.out.println("main:

create

the

adminclient");

ac

=

getAdminClient(host,

port,

connector);

}

catch(Exception

ex)

Chapter

1.

Monitoring

performance

63

{

failed

=

true;

new

AdminException(ex).printStackTrace();

ex.printStackTrace();

}

}

/**

*

get

AdminClient

using

the

given

host,

port,

and

connector

*/

public

AdminClient

getAdminClient(String

hostStr,

String

portStr,

String

connector)

{

System.out.println("getAdminClient:

host="

+

hostStr

+

"

,

portStr="

+

portStr);

AdminClient

ac

=

null;

java.util.Properties

props

=

new

java.util.Properties();

props.put(AdminClient.CONNECTOR_TYPE,

connector);

props.put(AdminClient.CONNECTOR_HOST,

hostStr);

props.put(AdminClient.CONNECTOR_PORT,

portStr);

try

{

ac

=

AdminClientFactory.createAdminClient(props);

}

catch(Exception

ex)

{

failed

=

true;

new

AdminException(ex).printStackTrace();

System.out.println("getAdminClient:

exception");

}

return

ac;

}

/**

*

get

all

the

ObjectNames.

*/

public

void

getObjectNames()

{

try

{

//--

//

Get

a

list

of

object

names

//--

javax.management.ObjectName

on

=

new

javax.management.ObjectName("WebSphere:*");

//--

//

get

all

objectnames

for

this

server

//--

Set

objectNameSet=

ac.queryNames(on,

null);

//--

//

get

the

object

names

that

we

care

about:

Perf,

Server,

JVM,

WLM

//

(only

applicable

in

ND)

//--

if(objectNameSet

!=

null)

{

Iterator

i

=

objectNameSet.iterator();

while(i.hasNext())

{

on

=

(ObjectName)i.next();

String

type

=

on.getKeyProperty("type");

//

uncomment

it

if

you

want

to

print

the

ObjectName

for

each

MBean

//

System.out.println("\n\n"

+

on.toString());

//

find

the

MBeans

we

are

interested

if(type

!=

null

&&

type.equals("Perf"))

64

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

{

System.out.println("\nMBean:

perf

="

+

on.toString());

perfOName

=

on;

}

if(type

!=

null

&&

type.equals("Server"))

{

System.out.println("\nMBean:

Server

="

+

on.toString());

serverOName

=

on;

}

if(type

!=

null

&&

type.equals("JVM"))

{

System.out.println("\nMBean:

jvm

="

+

on.toString());

jvmOName

=

on;

}

if(type

!=

null

&&

type.equals("WLMAppServer"))

{

System.out.println("\nmain:

WLM

="

+

on.toString());

wlmOName

=

on;

}

if(type

!=

null

&&

type.equals("ThreadPool"))

{

String

name

=

on.getKeyProperty("name");

if(name.equals("ORB.thread.pool"))

System.out.println("\nMBean:

ORB

ThreadPool

="

+

on.toString());

orbtpOName

=

on;

}

}

}

else

{

System.err.println("main:

ERROR:

no

object

names

found");

System.exit(2);

}

//

You

must

have

Perf

MBean

in

order

to

get

PMI

data.

if(perfOName

==

null)

{

System.err.println("main:

cannot

get

PerfMBean.

Make

sure

PMI

is

enabled");

System.exit(3);

}

}

catch(Exception

ex)

{

failed

=

true;

new

AdminException(ex).printStackTrace();

ex.printStackTrace();

}

}

/**

*

Some

sample

code

to

set

level,

get

data,

and

display

data.

*/

public

void

doTest()

{

try

{

//

first

get

all

the

configs

-

used

to

set

static

info

for

Stats

//

Note:

server

only

returns

the

value

and

time

info.

//

No

description,

unit,

etc

is

returned

with

PMI

data

to

reduce

//

communication

cost.

//

You

have

to

call

setConfig

to

bind

the

static

info

and

Stats

data

later.

configs

=

(PmiModuleConfig[])ac.invoke(perfOName,

"getConfigs",

null,

null);

//

print

out

all

the

PMI

modules

and

matching

mbean

types

for(int

i=0;

i<configs.length;i++>

System.out.println("config:

moduleName="

+

configs[i].getShortName()

Chapter

1.

Monitoring

performance

65

+

",

mbeanType="

+

configs[i].getMbeanType());

//

set

the

instrumentation

level

for

the

server

setInstrumentationLevel(serverOName,

null,

PmiConstants.LEVEL_HIGH);

//

example

to

use

StatDescriptor.

//

Note

WLM

module

is

only

available

in

ND.

StatDescriptor

sd

=

new

StatDescriptor(new

String[]{"wlmModule.server"});

setInstrumentationLevel(wlmOName,

sd,

PmiConstants.LEVEL_HIGH);

//

example

to

getInstrumentationLevel

MBeanLevelSpec[]

mlss

=

getInstrumentationLevel(wlmOName,

sd,

true);

//

you

can

call

getLevel(),

getObjectName(),

getStatDescriptor()

on

mlss[i]

//

get

data

for

the

server

Stats

stats

=

getStatsObject(serverOName,

true);

System.out.println(stats.toString());

//

get

data

for

WLM

server

submodule

stats

=

getStatsObject(wlmOName,

sd,

true)

if(stats

==

null)

System.out.println("Cannot

get

Stats

for

WLM

data");

else

System.out.println(stats.toString());

//

get

data

for

JVM

MBean

stats

=

getStatsObject(jvmOName,

true);

processStats(stats);

//

get

data

for

multiple

MBeans

ObjectName[]

onames

=

new

ObjectName[]{orbtpOName,

jvmOName};

Object[]

params

=

new

Object[]{onames,

new

Boolean(true)};

String[]

signature

=

new

String[]{"[Ljavax.management.ObjectName;",

"java.lang.Boolean"};

Stats[]

statsArray

=

(Stats[])ac.invoke(perfOName,

"getStatsArray",

params,

signature);

//

you

can

call

toString

or

processStats

on

statsArray[i]

if(!failed)

System.out.println("All

tests

passed");

else

System.out.println("Some

tests

failed");

}

catch(Exception

ex)

{

new

AdminException(ex).printStackTrace();

ex.printStackTrace();

}

}

/**

*

Sample

code

to

get

level

*/

protected

MBeanLevelSpec[]

getInstrumentationLevel(ObjectName

on,

StatDescriptor

sd,

boolean

recursive)

{

if(sd

==

null)

return

getInstrumentationLevel(on,

recursive);

System.out.println("\ntest

getInstrumentationLevel\n");

try

{

Object[]

params

=

new

Object[2];

params[0]

=

new

MBeanStatDescriptor(on,

sd);

params[1]

=

new

Boolean(recursive);

String[]

signature=

new

String[]{

"com.ibm.websphere.pmi.stat.MBeanStatDescriptor",

"java.lang.Boolean"};

66

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

MBeanLevelSpec[]

mlss

=

(MBeanLevelSpec[])ac.invoke(perfOName,

"getInstrumentationLevel",

params,

signature);

return

mlss;

}

catch(Exception

e)

{

new

AdminException(e).printStackTrace();

System.out.println("getInstrumentationLevel:

Exception

Thrown");

return

null;

}

}

/**

*

Sample

code

to

get

level

*/

protected

MBeanLevelSpec[]

getInstrumentationLevel(ObjectName

on,

boolean

recursive)

{

if(on

==

null)

return

null;

System.out.println("\ntest

getInstrumentationLevel\n");

try

{

Object[]

params

=

new

Object[]{on,

new

Boolean(recursive)};

String[]

signature=

new

String[]{

"javax.management.ObjectName",

"java.lang.Boolean"};

MBeanLevelSpec[]

mlss

=

(MBeanLevelSpec[])ac.invoke(perfOName,

"getInstrumentationLevel",

params,

signature);

return

mlss;

}

catch(Exception

e)

{

new

AdminException(e).printStackTrace();

failed

=

true;

System.out.println("getInstrumentationLevel:

Exception

Thrown");

return

null;

}

}

/**

*

Sample

code

to

set

level

*/

protected

void

setInstrumentationLevel(ObjectName

on,

StatDescriptor

sd,

int

level)

{

System.out.println("\ntest

setInstrumentationLevel\n");

try

{

Object[]

params

=

new

Object[2];

String[]

signature

=

null;

MBeanLevelSpec[]

mlss

=

null;

params[0]

=

new

MBeanLevelSpec(on,

sd,

level);

params[1]

=

new

Boolean(true);

signature=

new

String[]{

"com.ibm.websphere.pmi.stat.MBeanLevelSpec",

"java.lang.Boolean"};

ac.invoke(perfOName,

"setInstrumentationLevel",

params,

signature);

}

catch(Exception

e)

{

failed

=

true;

new

AdminException(e).printStackTrace();

System.out.println("setInstrumentationLevel:

FAILED:

Exception

Thrown");

}

}

/**

*

Sample

code

to

get

a

Stats

object

*/

Chapter

1.

Monitoring

performance

67

public

Stats

getStatsObject(ObjectName

on,

StatDescriptor

sd,

boolean

recursive)

{

if(sd

==

null)

return

getStatsObject(on,

recursive);

System.out.println("\ntest

getStatsObject\n");

try

{

Object[]

params

=

new

Object[2];

params[0]

=

new

MBeanStatDescriptor(on,

sd);

//

construct

MBeanStatDescriptor

params[1]

=

new

Boolean(recursive);

String[]

signature

=

new

String[]

{

"com.ibm.websphere.pmi.stat.MBeanStatDescriptor",

"java.lang.Boolean"};

Stats

stats

=

(Stats)ac.invoke(perfOName,

"getStatsObject",

params,

signature);

if(stats

==

null)

return

null;

//

find

the

PmiModuleConfig

and

bind

it

with

the

data

String

type

=

on.getKeyProperty("type");

if(type.equals(MBeanTypeList.SERVER_MBEAN))

setServerConfig(stats);

else

stats.setConfig(PmiClient.findConfig(configs,

on));

return

stats;

}

catch(Exception

e)

{

failed

=

true;

new

AdminException(e).printStackTrace();

System.out.println("getStatsObject:

Exception

Thrown");

return

null;

}

}

/**

*

Sample

code

to

get

a

Stats

object

*/

public

Stats

getStatsObject(ObjectName

on,

boolean

recursive)

{

if(on

==

null)

return

null;

System.out.println("\ntest

getStatsObject\n");

try

{

Object[]

params

=

new

Object[]{on,

new

Boolean(recursive)};

String[]

signature

=

new

String[]

{

"javax.management.ObjectName",

"java.lang.Boolean"};

Stats

stats

=

(Stats)ac.invoke(perfOName,

"getStatsObject",

params,

signature);

//

find

the

PmiModuleConfig

and

bind

it

with

the

data

String

type

=

on.getKeyProperty("type");

if(type.equals(MBeanTypeList.SERVER_MBEAN))

setServerConfig(stats);

else

stats.setConfig(PmiClient.findConfig(configs,

on));

return

stats;

}

catch(Exception

e)

{

failed

=

true;

68

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

new

AdminException(e).printStackTrace();

System.out.println("getStatsObject:

Exception

Thrown");

return

null;

}

}

/**

*

Sample

code

to

navigate

and

get

the

data

value

from

the

Stats

object.

*/

private

void

processStats(Stats

stat)

{

processStats(stat,

"");

}

/**

*

Sample

code

to

navigate

and

get

the

data

value

from

the

Stats

and

Statistic

object.

*/

private

void

processStats(Stats

stat,

String

indent)

{

if(stat

==

null)

return;

System.out.println("\n\n");

//

get

name

of

the

Stats

String

name

=

stat.getName();

System.out.println(indent

+

"stats

name="

+

name);

//

list

data

names

String[]

dataNames

=

stat.getStatisticNames();

for(int

i=0;

i<dataNames.length;i++)

System.out.println(indent

+

"

"

+

"data

name="

+

dataNames[i]);

System.out.println("");

//

list

all

datas

com.ibm.websphere.management.statistics.Statistic[]

allData

=

stat.getStatistics();

//

cast

it

to

be

PMI’s

Statistic

type

so

that

we

can

have

get

more

//

Also

show

how

to

do

translation.

Statistic[]

dataMembers

=

(Statistic[])allData;

if(dataMembers

!=

null)

{

for(int

i=0;

i<dataMembers.length;i++)

{

System.out.print(indent

+

"

"

+

"data

name="

+

PmiClient.getNLSValue(dataMembers[i].getName())

+

",

description="

+

PmiClient.getNLSValue(dataMembers[i].getDescription())

+

",

startTime="

+

dataMembers[i].getStartTime()

+

",

lastSampleTime="

+

dataMembers[i].getLastSampleTime());

if(dataMembers[i].getDataInfo().getType()

==

TYPE_LONG)

{

System.out.println(",

count="

+

((CountStatisticImpl)dataMembers[i]).getCount());

}

else

if(dataMembers[i].getDataInfo().getType()

==

TYPE_STAT)

{

TimeStatisticImpl

data

=

(TimeStatisticImpl)dataMembers[i];

System.out.println(",

count="

+

data.getCount()

+

",

total="

+

data.getTotal()

+

",

mean="

+

data.getMean()

+

",

min="

+

data.getMin()

+

",

max="

+

data.getMax());

}

else

if(dataMembers[i].getDataInfo().getType()

==

TYPE_LOAD)

{

RangeStatisticImpl

data

=

(RangeStatisticImpl)dataMembers[i];

System.out.println(",

current="

+

data.getCurrent()

Chapter

1.

Monitoring

performance

69

+

",

integral="

+

data.getIntegral()

+

",

avg="

+

data.getMean()

+

",

lowWaterMark="

+

data.getLowWaterMark()

+

",

highWaterMark="

+

data.getHighWaterMark());

}

}

}

//

recursively

for

sub-stats

Stats[]

substats

=

(Stats[])stat.getSubStats();

if(substats

==

null

||

substats.length

==

0)

return;

for(int

i=0;

i<substats.length;

i++)

{

processStats(substats[i],

indent

+

"

");

}

}

/**

*

The

Stats

object

returned

from

server

does

not

have

static

config

info.

*

You

have

to

set

it

on

client

side.

*/

public

void

setServerConfig(Stats

stats)

{

if(stats

==

null)

return;

if(stats.getType()

!=

TYPE_SERVER)

return;

PmiModuleConfig

config

=

null;

Stats[]

statList

=

stats.getSubStats();

if(statList

==

null

||

statList.length

==

0)

return;

Stats

oneStat

=

null;

for(int

i=0;

i<statList.length;

i++)

{

oneStat

=

statList[i];

if(oneStat

==

null)

continue;

config

=

PmiClient.findConfig(configs,

oneStat.getName());

if(config

!=

null)

oneStat.setConfig(config);

else

System.out.println("Error:

get

null

config

for

"

+

oneStat.getName());

}

}

/**

*

sample

code

to

show

how

to

get

a

specific

MBeanStatDescriptor

*/

public

MBeanStatDescriptor

getStatDescriptor(ObjectName

oName,

String

name)

{

try

{

Object[]

params

=

new

Object[]{serverOName};

String[]

signature=

new

String[]{"javax.management.ObjectName"};

MBeanStatDescriptor[]

msds

=

(MBeanStatDescriptor[])ac.invoke(perfOName,

"listStatMembers",

params,

signature);

if(msds

==

null)

return

null;

for(int

i=0;

i<msds.length;

i++)

{

if(msds[i].getName().equals(name))

return

msds[i];

}

return

null;

}

catch(Exception

e)

70

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

{

new

AdminException(e).printStackTrace();

System.out.println("listStatMembers:

Exception

Thrown");

return

null;

}

}

/**

*

sample

code

to

show

you

how

to

navigate

MBeanStatDescriptor

via

listStatMembers

*/

public

MBeanStatDescriptor[]

listStatMembers(ObjectName

mName)

{

if(mName

==

null)

return

null;

try

{

Object[]

params

=

new

Object[]{mName};

String[]

signature=

new

String[]{"javax.management.ObjectName"};

MBeanStatDescriptor[]

msds

=

(MBeanStatDescriptor[])ac.invoke(perfOName,

"listStatMembers",

params,

signature);

if(msds

==

null)

return

null;

for(int

i=0;

i<msds.length;

i++)

{

if(msds[i].getName().equals(name))

return

msds[i];

}

return

null;

}

catch(Exception

e)

{

new

AdminException(e).printStackTrace();

System.out.println("listStatMembers:

Exception

Thrown");

return

null;

}

}

/**

*

sample

code

to

show

you

how

to

navigate

MBeanStatDescriptor

via

listStatMembers

*/

public

MBeanStatDescriptor[]

listStatMembers(ObjectName

mName)

{

if(mName

==

null)

return

null;

try

{

Object[]

params

=

new

Object[]{mName};

String[]

signature=

new

String[]{"javax.management.ObjectName"};

MBeanStatDescriptor[]

msds

=

(MBeanStatDescriptor[])ac.invoke(perfOName,

"listStatMembers",

params,

signature);

if(msds

==

null)

return

null;

for(int

i=0;

i<msds.length;

i++)

{

MBeanStatDescriptor[]

msds2

=

listStatMembers(msds[i]);

}

return

null;

}

catch(Exception

e)

{

new

AdminException(e).printStackTrace();

System.out.println("listStatMembers:

Exception

Thrown");

return

null;

Chapter

1.

Monitoring

performance

71

}

}

/**

*

Sample

code

to

get

MBeanStatDescriptors

*/

public

MBeanStatDescriptor[]

listStatMembers(MBeanStatDescriptor

mName)

{

if(mName

==

null)

return

null;

try

{

Object[]

params

=

new

Object[]{mName};

String[]

signature=

new

String[]{"com.ibm.websphere.pmi.stat.MBeanStatDescriptor"};

MBeanStatDescriptor[]

msds

=

(MBeanStatDescriptor[])ac.invoke(perfOName,

"listStatMembers",

params,

signature);

if(msds

==

null)

return

null;

for(int

i=0;

i<msds.length;

i++)

{

MBeanStatDescriptor[]

msds2

=

listStatMembers(msds[i]);

//

you

may

recursively

call

listStatMembers

until

find

the

one

you

want

}

return

msds;

}

catch(Exception

e)

{

new

AdminException(e).printStackTrace();

System.out.println("listStatMembers:

Exception

Thrown");

return

null;

}

}

/**

*

sample

code

to

get

PMI

data

from

beanModule

*/

public

void

testEJB()

{

//

This

is

the

MBeanStatDescriptor

for

Enterprise

EJB

MBeanStatDescriptor

beanMsd

=

getStatDescriptor(serverOName,

PmiConstants.BEAN_MODULE);

if(beanMsd

==

null)

System.out.println("Error:

cannot

find

beanModule");

//

get

the

Stats

for

module

level

only

since

recursive

is

false

Stats

stats

=

getStatsObject(beanMsd.getObjectName(),

beanMsd.getStatDescriptor(),

false);

//

pass

true

if

you

wannt

data

from

individual

beans

//

find

the

avg

method

RT

TimeStatisticImpl

rt

=

(TimeStatisticImpl)stats.getStatistic(EJBStatsImpl.METHOD_RT);

System.out.println("rt

is

"

+

rt.getMean());

try

{

java.lang.Thread.sleep(5000);

}

catch(Exception

ex)

{

ex.printStackTrace();

}

//

get

the

Stats

again

Stats

stats2

=

getStatsObject(beanMsd.getObjectName(),

beanMsd.getStatDescriptor(),

72

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

false);

//

pass

true

if

you

wannt

data

from

individual

beans

//

find

the

avg

method

RT

TimeStatisticImpl

rt2

=

(TimeStatisticImpl)stats2.getStatistic(EJBStatsImpl.METHOD_RT);

System.out.println("rt2

is

"

+

rt2.getMean());

//

calculate

the

difference

between

this

time

and

last

time.

TimeStatisticImpl

deltaRt

=

(TimeStatisticImpl)rt2.delta(rt);

System.out.println("deltaRt

is

"

+

rt.getMean());

}

/**

*

Sample

code

to

show

how

to

call

getStats

on

StatisticProvider

MBean

directly.

*/

public

void

testJSR77Stats()

{

//

first,

find

the

MBean

ObjectName

you

are

interested.

//

Refer

method

getObjectNames

for

sample

code.

//

assume

we

want

to

call

getStats

on

JVM

MBean

to

get

statistics

try

{

com.ibm.websphere.management.statistics.JVMStats

stats

=

(com.ibm.websphere.management.statistics.JVMStats)ac.invoke(jvmOName,

"getStats",

null,

null);

System.out.println("\n

get

data

from

JVM

MBean");

if(stats

==

null)

{

System.out.println("WARNING:

getStats

on

JVM

MBean

returns

null");

}

else

{

//

first,

link

with

the

static

info

if

you

care

((Stats)stats).setConfig(PmiClient.findConfig(configs,

jvmOName));

//

print

out

all

the

data

if

you

want

//System.out.println(stats.toString());

//

navigate

and

get

the

data

in

the

stats

object

processStats((Stats)stats);

//

call

JSR77

methods

on

JVMStats

to

get

the

related

data

com.ibm.websphere.management.statistics.CountStatistic

upTime

=

stats.getUpTime();

com.ibm.websphere.management.statistics.BoundedRangeStatistic

heapSize

=

stats.getHeapSize();

if(upTime

!=

null)

System.out.println("\nJVM

up

time

is

"

+

upTime.getCount());

if(heapSize

!=

null)

System.out.println("\nheapSize

is

"

+

heapSize.getCurrent());

}

}

catch(Exception

ex)

{

ex.printStackTrace();

new

AdminException(ex).printStackTrace();

}

}

}

Chapter

1.

Monitoring

performance

73

Developing

Performance

Monitoring

Infrastructure

interfaces

(Version

4.0)

The

Version

4.0

APIs

are

supported

in

this

release,

however,

some

data

hierarchy

changes

have

occurred

in

the

PMI

modules,

including

the

enterprise

bean

and

HTTP

sessions

modules.

If

you

have

an

existing

PmiClient

application

and

you

want

to

run

it

against

Version

5.0,

you

might

have

to

update

the

PerfDescriptor(s)

based

on

the

new

PMI

data

hierarchy.

The

getDataName

and

getDataId

methods

in

PmiClient

have

also

changed.

They

are

now

non-static

methods

in

order

to

support

multiple

WebSphere

Application

Server

versions.

You

might

have

to

update

your

existing

application

which

uses

these

two

methods.

This

section

discusses

the

use

of

the

Performance

Monitoring

Infrastructure

(PMI)

client

interfaces

in

applications.

The

basic

steps

in

the

programming

model

follow:

1.

Retrieve

an

initial

collection

or

snapshot

of

performance

data

from

the

server.

A

client

uses

the

CpdCollection

interface

to

retrieve

an

initial

collection

or

snapshot

from

the

server.

This

snapshot,

which

is

called

Snapshot

in

this

example,

is

provided

in

a

hierarchical

structure

as

described

in

data

organization

and

hierarchy,

and

contains

the

current

values

of

all

performance

data

collected

by

the

server.

The

snapshot

maintains

the

same

structure

throughout

the

lifetime

of

the

CpdCollection

instance.

2.

Process

and

display

the

data

as

specified.

The

client

processes

and

displays

the

data

as

specified.

Processing

and

display

objects,

for

example,

filters

and

GUIs,

can

register

as

CpdEvent

listeners

to

data

of

interest.

The

listener

works

only

within

the

same

Java

virtual

machine

(JVM).

When

the

client

receives

updated

data,

all

listeners

are

notified.

3.

Display

the

new

CpdCollection

instance

through

the

hierarchy.

When

the

client

receives

new

or

changed

data,

the

client

can

simply

display

the

new

CpdCollection

instance

through

its

hierarchy.

When

it

is

necessary

to

update

the

Snapshot

collection,

the

client

can

use

the

update

method

to

update

Snapshot

with

the

new

data.

Snapshot.update(S1);

//

...later...

Snapshot.update(S2);

Steps

2

and

3

are

repeated

through

the

lifetime

of

the

client.

Compiling

your

monitoring

applications

To

compile

your

Performance

Monitoring

Infrastructure

(PMI)

code,

you

must

have

the

following

JAR

files

in

your

classpath:

v

admin.jar

v

wsexception.jar

v

jmxc.jar

v

pmi.jar

v

pmiclient.jar

v

ras.jar

v

wasjmx.jar

v

j2ee.jar

v

soap.jar

v

soap-sec.jar

v

nls.jar

v

ws-config-common.jar

v

namingclient.jar

74

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

If

your

monitoring

applications

use

APIs

in

other

packages,

also

include

those

packages

on

the

classpath.

Running

your

new

monitoring

applications

1.

Obtain

the

pmi.jar

and

pmiclient.jar

files.

The

pmi.jar

and

pmiclient.jar

files

are

required

for

client

applications

using

PMI

client

APIs.

The

pmi.jar

and

pmiclient.jar

files

are

distributed

with

WebSphere

Application

Server

and

are

also

a

part

of

WebSphere

Java

thin

client

package.

You

can

get

it

from

either

a

WebSphere

Application

Server

installation

or

WebSphere

Java

Thin

Application

Client

installation.

You

also

need

the

other

JAR

files

in

WebSphere

Java

Thin

Application

Client

installation

in

order

to

run

a

PMI

application.

2.

Use

PMI

client

API

to

write

your

own

application.

3.

Compile

the

newly

written

PMI

application

and

place

it

on

the

classpath.

4.

Run

the

application

with

the

following

script:

call

"%~dp0setupCmdLine.bat"

set

WAS_CP=%WAS_HOME%\properties

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\pmi.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\pmiclient.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\ras.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\admin.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\wasjmx.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\j2ee.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\soap.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\soap-sec.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\nls.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\wsexception.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\ws-config-common.jar

set

WAS_CP=%WAS_CP%;%WAS_HOME%\lib\namingclient.jar

%JAVA_HOME%\bin\java

"%CLIENTSOAP%"

"%CLIENTSAS%"

"-Dws.ext.dirs=%WAS_EXT_DIRS%"

%DEBUGOPTS%

-classpath

"%WAS_CP%"

com.ibm.websphere.pmi.PmiClientTest

host

name

[port]

[connectorType]

Performance

Monitoring

Infrastructure

client

package:

Performance

Monitoring

Infrastructure

(PMI)

client

package

provides

a

wrapper

class

PmiClient

to

deliver

PMI

data

to

a

client.

As

shown

in

the

following

figure,

PmiClient

uses

the

AdminClient

API

to

communicate

the

Perf

MBean

in

an

application

server.

Performance

Monitoring

Infrastructure

and

Java

Management

Extensions

The

PmiClient

API

does

not

work

if

the

Java

Management

Extensions

(JMX)

infrastructure

and

Perf

MBean

are

not

running.

If

you

prefer

to

use

the

AdminClient

API

directly

to

retrieve

PMI

data,

you

still

have

a

dependency

on

the

JMX

infrastructure.

When

using

the

PmiClient

API,

you

have

to

pass

the

JMX

connector

protocol

and

port

number

to

instantiate

an

object

of

the

PmiClient.

Once

you

get

a

PmiClient

object,

you

can

call

its

methods

to

list

nodes,

servers

and

MBeans,

set

the

monitoring

level,

and

retrieve

PMI

data.

The

PmiClient

API

creates

an

instance

of

the

AdminClient

API

and

delegates

your

requests

to

the

AdminClient

API.

The

AdminClient

API

uses

the

JMX

connector

to

communicate

with

the

PerfMBean

in

the

corresponding

server

and

then

returns

the

Chapter

1.

Monitoring

performance

75

data

to

the

PmiClient,

which

returns

the

data

to

the

client.

Running

your

monitoring

applications

with

security

enabled:

In

order

to

run

a

Performance

Monitoring

Infrastructure

client

application

with

security

enabled,

you

must

have

%CLIENTSOAP%

and

%CLIENTSAS%

properties

on

your

Java

virtual

machine

command

line.

The

%CLIENTSOAP%

and

%CLIENTSAS%

properties

are

defined

in

the

setupCmdLine.bat

or

setupCmdline.sh

files.

1.

Set

com.ibm.SOAP.securityEnabled

to

True

in

the

soap.client.props

file

for

the

SOAP

connector.

The

soap.client.props

property

file

is

located

in

the

WAS_ROOT/properties

directory.

2.

Set

com.ibm.SOAP.loginUserid

and

com.ibm.SOAP.loginPassword

as

the

user

ID

and

password

for

login.

3.

Set

the

sas.client.props

file

or

type

the

user

ID

and

password

in

the

pop-up

window

if

you

do

not

put

them

in

the

property

file

for

RMI

connector

A

common

mistake

is

leaving

extra

spaces

at

the

end

of

the

lines

in

the

property

file.

Do

not

leave

extra

spaces

at

the

end

of

the

lines,

especially

for

the

user

ID

and

password

lines.

Tivoli

performance

monitoring

and

management

solutions

Tivoli

offers

the

complete

IBM

solution

for

managing

the

extended

WebSphere

environment.

For

precise

viewing

of

performance

metrics,

users

can

start

with

the

Tivoli

Performance

Viewer,

a

complimentary

tool

shipped

with

WebSphere

Application

Server.

Tivoli

also

provides

on-going

production

monitoring

tools

described

below.

For

more

information

about

Tivoli’s

solutions

for

WebSphere

Application

Server,

see

the

InfoCenter

article

Performance:

Resources

for

Learning.

IBM

Tivoli

Monitoring

for

Web

Infrastructure

(ITMf

WI).

Provides

best-practice

monitoring

of

the

key

elements

of

WebSphere

Application

Server.

This

is

the

inside-out

view,

enabling

administrators

to

quickly

address

problems

before

they

impact

end-users.

Using

Tivoli’s

advanced

monitoring

technology

and

predefined

WebSphere

best-practices,

this

tool

quickly

identifies

problems,

notifies

appropriate

personnel,

and

provides

a

solution.

All

monitoring

data

is

displayed

real-time

with

a

health

console

displaying

non-stop

data.

This

same

information

can

be

uploaded

to

a

common

data

warehouse

for

historical

reporting.

IBM

Tivoli

Monitoring

for

Transaction

Performance

(ITMTP).

Provides

a

unique

monitoring

perspective

from

that

of

the

end-user.

This

is

the

outside-in

view

that

verifies

that

end-to-end

components

provide

a

positive

end-user

experience.

ITMTP

76

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

monitors

performance

of

actual

and

synthetic

transactions,

as

well

as

verifying

that

the

content

delivered

meets

predefined

guidelines.

Transaction

performance

includes

total

round

trip

response

time,

network

latency,

back-end

response

time

and

page

render

time.

Additional

granularity

of

transaction

detail

on

the

back-end

is

provided

through

Application

Response

Measurement

instrumentation.

The

ITM

and

ITMTP

function

by

providing

Web

site

performance

monitoring,

alerting

customers

to

end

user

response

time

issues.

The

ability

to

quickly

find

performance

issues

is

key

to

maintaining

a

high

performance

Web

site.

This

WebSphere

Application

Server

release

and

the

new

ITMTP

release

combine

to

provide

a

new

feature

for

analyzing

performance

problems.

Using

Synthetic

Transaction

Investigator

(STI)

from

ITMTP,

you

can

save

key

transactions

and

replay

them

later.

ITMTP

also

collects

the

data

provided

by

PMI

Request

Metrics

through

the

Application

Response

Measurement

(ARM)

interface

and

correlates

this

information

with

the

originating

STI

transaction.

In

the

ITMTP

real-time

browser,

the

STI

information

links

to

the

servlet

and

the

enterprise

bean

response

time

data.

The

details

regarding

the

overall

transaction

response

time

and

response

time

for

individual

WebSphere

Application

Server

components

provide

the

ability

to

quickly

identify

performance

problems.

Tivoli

provides

additional

products

for

monitoring

other

key

elements

of

the

extended

environment.

For

more

information

about

Tivoli’s

solutions

for

WebSphere

Application

Server,

see

the

topic

″Performance:

Resources

for

Learning″.

Third-party

performance

monitoring

and

management

solutions

Several

other

companies

provide

performance

monitoring,

problem

determination

and

management

solutions

that

can

be

used

with

WebSphere

Application

Server.

These

products

use

WebSphere

Application

Server

interfaces,

including

Performance

Monitoring

Infrastructure

(PMI),

Java

Management

Extensions

(JMX),

and

PMI

Request

Metrics

Application

Response

Measurement

(ARM).

See

the

topic

Performance:

Resources

for

learning

for

a

link

to

IBM

business

partners

providing

monitoring

solutions

for

WebSphere

Application

Server.

Measuring

data

requests

(Performance

Monitoring

Infrastructure

Request

Metrics)

Performance

Monitoring

Infrastructure

(PMI)

Request

Metrics

is

a

tool

that

allows

you

to

track

individual

transactions,

recording

the

processing

time

in

each

of

the

major

WebSphere

Application

Server

components.

The

information

tracked

may

either

be

saved

to

log

files

for

later

retrieval

and

analysis,

be

sent

to

ARM

Agents,

or

both.

As

a

transaction

flows

through

the

system,

Request

Metrics

tacks

on

additional

information

so

that

the

log

records

from

each

component

can

be

correlated,

building

up

a

complete

picture

of

that

transaction.

The

result

looks

similar

to

the

following:

Chapter

1.

Monitoring

performance

77

HTTP

request

/trade/scenario

------------------------------>

172

ms

Servlet/trade/scenario

-------------------------------->

130

ms

EJB

TradeEJB.getAccountData

-->

38

ms

JDBC

select

->

7

ms

This

transaction

flow

with

associated

response

times

can

help

users

target

performance

problem

areas

and

debug

resource

constraint

problems.

For

example,

the

flow

can

help

determine

if

a

transaction

is

spending

most

of

its

time

in

the

Web

server

plug-in,

the

Web

container,

the

enterprise

bean

container

or

the

backend

database.

The

response

time

collected

for

each

level

includes

the

time

spent

at

that

level

and

the

time

spent

in

the

lower

levels.

For

example,

the

response

time

for

the

servlet,

which

is

130

milliseconds,

also

includes

38

milliseconds

from

the

EJB

and

JDBC.

Therefore,

92ms

can

be

attributed

to

the

servlet

process.

Request

metrics

tracks

the

response

time

for

a

desired

transaction.

For

example,

tools

can

inject

synthetic

transactions.

Request

Metrics

can

then

track

the

response

time

within

the

WebSphere

environment

for

those

transactions.

A

synthetic

transaction

is

one

that

is

injected

into

the

system

by

administrators

in

order

to

proactively

test

the

performance

of

the

system.

This

information

can

help

administrators

tune

the

performance

of

the

website

and

take

corrective

actions

should

they

be

needed.

Thus,

the

information

provided

by

Request

Metrics

might

be

used

as

an

alert

mechanism

to

detect

when

the

performance

of

particular

request

type

goes

beyond

acceptable

thresholds.

The

filtering

mechanism

within

Request

Metrics

may

be

used

to

focus

on

the

specific

synthetic

transactions

and

can

help

optimize

performance

in

this

scenario.

Three

types

of

filters

are

supported:

v

Originator

IP

filter

v

URI

filter

v

EJB

method

name

filter

When

filtering

is

enabled,

only

requests

matching

the

filter

generate

Request

Metrics

data,

create

log

records,

and/or

call

the

ARM

interfaces.

This

allows

work

to

be

injected

into

a

running

system

(specifically

to

generate

trace

information)

to

evaluate

the

performance

of

specific

types

of

requests

in

the

context

of

normal

load,

ignoring

requests

from

other

sources

that

might

be

hitting

the

system.

Learn

more

about

Request

Metrics

by

reviewing

this

section,

including:

v

Detailed

explanation

about

Request

Metrics

v

Request

Metrics

process

and

filters

v

Types

and

format

of

output

you

will

be

reading

v

Configuring

Request

Metrics

Performance

Monitoring

Infrastructure

Request

Metrics

Typically,

there

are

multiple

processes

across

several

nodes

in

a

distributed

system.

When

a

request

comes

to

a

process,

the

process

may

send

the

request

to

one

or

more

downstream

processes.

Trace

records

may

be

generated

for

each

process

with

associated

elapsed

times

for

that

process.

These

trace

records

may

be

correlated

together

to

build

a

complete

picture

of

the

request

flow

through

the

distributed

system,

similar

to

the

diagram

in

Measuring

data

requests

(Performance

Monitoring

Infrastructure

Request

Metrics).

The

process

hop

response

time

monitored

by

Request

Metrics

can

be

viewed

through

the

Application

Response

Measurement

(ARM)

interface

and

system

logs.

78

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

For

requests

that

originate

from

either

an

HTTP

request

or

the

remote

interface

of

an

enterprise

bean,

Request

Metrics

captures

response

times

for

the

initiating

request

and

any

related

downstream

invocations.

If

the

request

originated

as

an

HTTP

request,

response

times

are

generated

for

web

server

plug-in

(only

available

when

using

web

server

port),

the

web

container,

the

EJB

container,

and

JDBC

calls.

If

the

request

originated

as

a

remote

EJB

call,

response

times

are

generated

for

the

EJB

container

and

JDBC

calls.

Note

that

the

JDBC

response

time

are

only

traced

for

the

WebSphere

5.0

data

source.

No

response

time

will

be

traced

for

WebSphere

4.0

data

source.

When

active,

Request

Metrics

compares

each

incoming

request

to

a

set

of

known

filters.

Three

types

of

filters

are

supported:

v

Originator

IP

filter

v

URI

filter

v

EJB

method

name

filter

When

filtering

is

enabled,

only

requests

matching

the

filter

generate

Request

Metrics

data,

create

log

records,

and/or

call

the

ARM

interfaces.

This

allows

work

to

be

injected

into

a

running

system

(specifically

to

generate

trace

information)

to

evaluate

the

performance

of

specific

types

of

requests

in

the

context

of

normal

load,

ignoring

requests

from

other

sources

that

might

be

hitting

the

system.

If

the

request

matches

any

filter

with

a

trace

level

greater

than

TRACE_NONE,

trace

records

are

generated

for

that

request.

Trace

records

are

generated

and

logged

for

the

Web

Server

plug-in,

servlets

(WebContainer),

remote

enterprise

bean

calls,

and

Java

Database

Connectivity

(JDBC

drivers).

Application

Response

Measurement

Application

Response

Measurement

(ARM)

is

an

Open

Group

standard

composed

of

a

set

of

interfaces

implemented

by

an

ARM

agent

that

provides

information

on

elapsed

time

for

process

hops.

WebSphere

Application

Server

does

not

provide

an

ARM

agent.

Contact

your

ARM

agent

provider

for

information

on

whether

their

ARM

agent

is

supported

with

WebSphere

Application

Server.

One

product

that

uses

ARM

agents

is

described

in

Tivoli

performance

monitoring

and

management

solutions.

See

the

article

Performance:

Resources

for

learning

for

more

information

about

the

ARM

specifications.

Performance

Monitoring

Infrastructure

Request

Metrics

trace

filters

When

Performance

Monitoring

Infrastructure

(PMI)

Request

Metrics

is

active,

trace

filters

control

which

requests

get

traced.

The

data

is

recorded

to

the

system

log

file

or

sent

through

ARM

for

real-time

and

historical

analysis.

Incoming

HTTP

requests

HTTP

requests

arriving

at

the

WebSphere

Application

Server

may

be

filtered

based

on

the

URI

and/or

the

IP

address

of

the

originator

of

the

request.

v

Originator

IP

address

filters

Requests

are

filtered

based

on

a

known

IP

address.

You

can

specify

a

mask

for

an

IP

address

using

the

asterisk

(*).

If

used,

the

asterisk

must

always

be

the

last

character

of

the

mask,

for

example

127.0.0.*,

Chapter

1.

Monitoring

performance

79

127.0.*,

127*.

For

performance

reasons,

the

pattern

matches

character

by

character,

until

either

an

asterisk

is

found

in

the

filter,

a

mismatch

occurs,

or

the

filters

are

found

to

be

an

exact

match.

v

URI

filters.

Requests

are

filtered,

based

on

the

URI

of

the

incoming

HTTP

request.

The

rules

for

pattern

matching

are

the

same

as

for

matching

Originator

IP

address

filters.

v

Filter

combinations.If

both

URI

and

Originator

IP

address

filters

are

active,

then

Request

Metrics

requires

a

match

for

both

filter

types.

If

neither

is

active,

all

requests

are

considered

a

match.

Incoming

enterprise

bean

requests

v

Enterprise

bean

method

name

filters.

Requests

are

filtered

based

on

the

full

name

of

the

enterprise

bean

method.

As

with

IP

address

and

URI

filters,

the

asterisk

(*)

may

be

used

in

the

mask.

If

used,

the

asterisk

must

always

be

the

last

character

of

a

filter

pattern.

Because

the

ability

to

track

the

request

response

times

comes

with

a

cost,

filtering

helps

optimize

performance

when

using

Request

Metrics.

Performance

Monitoring

Infrastructure

Request

Metrics

data

output

The

trace

records

for

Performance

Monitoring

Infrastructure

(PMI)

Request

Metrics

data

are

output

to

two

log

files:

the

web

server

plug-in

log

file

and

the

application

server

log

file.

The

default

directory

for

these

log

files

is

<$WAS_ROOT/logs>

and

default

names

are

SystemOut.log

and

http_plugin.log.

Users

may,

however,

specify

these

log

file

names

and

their

locations.

In

the

WebSphere

Application

Server

log

file

the

trace

record

format

is:

PMRM0003I:

parent:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn

-

current:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn

type=TTT

detail=some_detail_information

elapsed=nnnn

In

the

Web

server

plug-in

log

file

the

trace

record

format

is:

PLUGIN:

parent:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn

-

current:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn

type=TTT

detail=some_detail_information

elapsed=nnnn

bytesIn=nnnn

bytesOut=nnnn

The

trace

record

format

is

composed

of

two

correlators:

a

parent

correlator

and

current

correlator.

The

parent

correlator

represents

the

upstream

request

and

the

current

correlator

represents

the

current

operation.

If

the

parent

and

current

correlators

are

the

same,

then

the

record

represents

an

operation

that

occurred

as

it

entered

WebSphere

Application

Server.

To

correlate

trace

records

for

a

particular

request,

collect

records

with

a

message

ID

of

PMRM0003I

from

the

appropriate

application

server

log

files

and

the

PLUGIN

trace

record

from

the

Web

server

plug-in

log

file.

Records

are

correlated

by

matching

current

correlators

to

parent

correlators.

The

logical

tree

can

be

created

by

connecting

the

current

correlators

of

parent

trace

records

to

the

parent

correlators

of

child

records.

This

tree

shows

the

progression

of

the

request

across

the

server

cluster.

Refer

to

Measuring

data

requests

(Performance

Monitoring

Infrastructure

Request

Metrics)

for

an

example

of

the

transaction

flow.

80

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

The

parent

correlator

is

denoted

by

the

comma

separating

fields

following

the

keyword

″parent:″.

Likewise,

the

current

correlator

is

denoted

by

the

comma

separating

fields

following

″current:″.

The

fields

of

both

parent

and

current

correlators

are

as

follows:

v

ver:

The

version

of

the

correlator.

For

convenience,

it

is

duplicated

in

both

the

parent

and

current

correlators.

v

ip:

The

IP

address

of

the

node

of

the

application

server

that

generated

the

correlator.

v

pid:

The

process

ID

of

the

application

server

that

generated

the

correlator.

v

time:

The

start

time

of

the

application

server

process

that

generated

the

correlator.

v

reqid:

An

ID

assigned

to

the

request

by

Request

Metrics,

unique

to

the

application

server

process.

v

event:

An

event

ID

assigned

to

differentiate

the

actual

trace

events.

Following

the

parent

and

current

correlators,

is

the

metrics

data

for

timed

operation:

v

type:

A

code

representing

the

type

of

operation

being

timed.

Supported

types

include

HTTP,

URI,

EJB

and

JDBC.

v

detail:

Identifies

the

name

of

the

operation

being

timed

(See

the

description

of

Universal

Resource

Identifier

(URI),

HTTP,

Enterprise

bean

and

Java

Database

Connectivity

(JDBC)

below.)

v

elapsed:

The

measured

elapsed

time

in

<units>

for

this

operation,

which

includes

all

sub-operations

called

by

this

operation.

The

unit

of

elapsed

time

is

milliseconds.

v

bytesIn:

The

number

of

bytes

from

the

request

received

by

the

Web

server

plug-in.

v

bytesOut:

The

number

of

bytes

from

the

reply

sent

from

the

Web

server

plug-in

to

the

client.

The

type

and

detail

fields

are

described

as

follows:

v

HTTP:

The

Web

server

plug-in

generates

the

trace

record.

The

detail

is

the

name

of

the

URI

used

to

invoke

the

request.

v

URI:

The

trace

record

was

generated

by

a

Web

component.

The

URI

is

the

name

of

the

URI

used

to

invoke

the

request.

v

EJB:

The

fully

qualified

package

and

method

name

of

the

enterprise

bean.

v

JDBC:

The

values

select,

update,

insert

or

delete

for

prepared

statements.

For

non-prepared

statements,

the

full

statement

can

appear.

Configuring

Request

Metrics

You

can

enable

Request

Metrics

without

enabling

Application

Response

Measurement

(ARM).

To

configure

Request

Metrics,

you

will

need

to

access

the

Configuration

tab

in

the

administrative

console.

To

access

the

Configuration

tab

,

click

Troubleshooting

>

PMI

Request

Metrics

from

the

administrative

console

navigation

tree.

Tasks

included

in

configuring

Request

Metrics:

1.

Enable

Request

Metrics.

2.

Enable

Application

Response

Measurement

(ARM).

3.

Enable

Request

Metrics

filters.

4.

Add

and

remove

Request

Metrics

filters.

Chapter

1.

Monitoring

performance

81

5.

Set

the

trace

level

in

Request

Metrics.

6.

Update

the

Web

server

plug-in

configuration

file.

Enabling

Performance

Monitoring

Infrastructure

Request

Metrics

When

enabled,

Performance

Monitoring

Infrastructure

(PMI)

Request

Metrics

captures

response

times

for

the

initiating

request

and

any

related

downstream

enterprise

bean

invocations

and

Java

Database

Connectivity

(JDBC)

calls.

Then,

Request

Metrics

compares

each

incoming

request

to

a

set

of

known

filters.

1.

Open

the

administrative

console.

2.

Click

Troubleshooting

>

PMI

Request

Metrics

in

the

console

navigation

tree.

3.

Select

the

check

box

in

the

enable

field

under

the

Configuration

tab.

4.

Click

Apply

or

OK.

5.

Click

Save.

Regenerate

the

Web

server

plug-in

configuration

file,

if

logging

time

spent

in

the

Web

server.

Enabling

Application

Response

Measurement

Before

enabling

Application

Response

Measurement

(ARM),

install

an

appropriate

ARM

implementation

on

all

WebSphere

Application

Server

nodes.

Refer

to

the

appropriate

ARM

implementation

documentation.

Verify

with

your

ARM

agent

provider

that

the

ARM

agent

is

supported

with

the

request

metrics

in

WebSphere.

You

can

learn

more

about

ARM

agents

in

the

topic

Performance:

Resources

for

Learning.

Note:

Request

Metrics

in

the

Web

server

plug-in

is

not

integrated

with

ARM

in

WebSphere

Application

Server

Version

5.0.x.

Therefore,

Request

Metrics

in

the

Web

Server

plug-in

ignores

ARM,

if

enabled.

1.

Install

the

appropriate

ARM

implementation

a.

Change

the

startup

command

for

the

application

servers

to

include

the

following:

-Dcom.ibm.websphere.pmi.reqmetrics.ARMIMPL=ARMIMPLNAME

ARM

support

is

dependent

on

Request

Metrics

support.

If

enabled,

and

an

appropriate

ARM

implementation

is

defined

to

the

server

run

times,

then

the

ARM

implementation

is

called

as

requests

enter

WebSphere

Application

Server

processes

and

when

Java

Database

Connectivity

(JDBC)

calls

are

made,

using

EJB

2.0

data

sources.
2.

Open

the

administrative

console.

3.

Click

Troubleshooting

>

PMI

Request

Metrics

in

the

console

navigation

tree.

4.

Select

the

check

box

in

the

enableARM

field.

5.

Click

Apply

or

OK.

6.

Click

Save.

Regenerate

the

Web

server

plug-in

configuration

file.

82

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

Enabling

Performance

Monitoring

Infrastructure

Request

Metrics

filters

Performance

Monitoring

Infrastructure

(PMI)

Request

Metrics

compares

each

incoming

request

to

a

set

of

known

filters,

but

you

need

to

enable

these

filters.

1.

Open

the

administrative

console.

2.

Click

Troubleshooting

>

PMI

Request

Metrics

in

the

administrative

console

navigation

tree.

3.

Click

filters.

4.

Click

filter

type.

5.

Select

the

check

box

in

the

enable

field

under

the

Configuration

tab.

6.

Click

Apply

or

OK.

7.

Click

Save.

You

can

enable

or

disable

a

filter

group.

If

the

group

is

enabled,

you

can

enable

or

disable

individual

filters.

Regenerate

the

Web

server

plug-in

configuration

file,

if

logging

time

spent

in

the

Web

server.

Adding

and

removing

Performance

Monitoring

Infrastructure

Request

Metrics

filters:

To

add

or

remove

Performance

Monitoring

Infrastructure

(PMI)

Request

Metrics

filters:

1.

Open

the

administrative

console.

2.

Click

Problem

Determination

>

PMI

Request

Metrics

in

the

console

navigation

tree.

3.

Click

filters.

4.

Choose

a

filter

type.

a.

Click

on

filterValues.

b.

You

can

edit,

add,

and

delete

a

filter

value.

To

edit,

click

on

a

filter

value

and

change

its

value

and

enablement.

To

add,

click

on

″New″

and

type

in

the

value

and

optionally

check

the

″Enable″

box.

To

delete,

select

a

filter

value

and

click

on

″Delete″.
5.

Click

Apply

or

OK.

6.

Click

Save.

Individual

filters

are

composed

of

an

indicator

and

an

IP

address.

Use

the

indicator

to

determine

whether

the

individual

filter

is

active.

The

IP

address

is

in

the

IPv4

addressing

format.

Regenerate

the

Web

server

plug-in

configuration

file,

if

logging

time

spent

in

the

Web

server.

Setting

the

trace

level

in

Performance

Monitoring

Infrastructure

Request

Metrics

To

set

the

trace

level

to

generate

records:

1.

Open

the

administrative

console.

2.

Click

Troubleshooting

>

PMI

Request

Metrics

in

the

administrative

console

navigation

tree.

3.

Find

traceLevel

in

the

Configuration

tab.

4.

Select

the

desired

trace

level

from

the

drop

down

list

box.

To

set

the

Request

Metrics

trace

level

to

generate

records,

make

sure

the

trace

level

is

set

to

a

value

greater

than

NONE.

Chapter

1.

Monitoring

performance

83

5.

Click

Apply

or

OK.

6.

Click

Save.

Regenerate

the

Web

server

plug-in

configuration

file,

if

logging

time

spent

in

the

Web

server.

Performance

Monitoring

Infrastructure

Request

Metrics

Use

this

page

to

enable

Performance

Monitoring

Infrastructure

(PMI)

Request

Metrics,

enable

Request

Metrics

Application

Response

Measurement

(ARM),

and

set

trace

levels.

To

view

this

administrative

console

page,

click

Troubleshooting

>

PMI

Request

Metrics.

Request

Metrics:

Enables

PMI

Request

Metrics.

When

disabled,

the

Request

Metrics

function

is

disabled.

Application

Response

Measurement

(ARM):

Enables

PMI

Request

Metrics

to

call

an

underlying

ARM

agent.

Before

enabling

ARM,

install

an

appropriate

ARM

implementation

on

all

WebSphere

Application

Server

nodes.

Verify

with

your

ARM

agent

provider

that

Request

Metrics

is

supported

by

the

ARM

agent

implementation.

ARM

support

is

dependent

on

Request

Metrics

support.

Trace

Level:

Specifies

how

much

trace

data

to

accumulate

for

a

given

request.

Including

one

of

the

following:

NONE

-

no

trace;

HOPS

-

only

accumulates

on

major

process

hops;

PERF_DEBUG

-

enables

additional

information

over

hops,

but

is

not

as

performance

intensive

as

DEBUG;

DEBUG

-

full

detailed

trace.

However,

currently

both

PERF_DEBUG

and

DEBUG

provide

the

same

level

of

performance

tracing

as

the

HOPS

level.

PMIRM

Filter

collection:

Use

this

page

to

view

a

list

of

Performance

Monitoring

Infrastructure

(PMI)

Request

Metrics

filters.

To

view

this

administrative

console

page,

click

Troubleshooting

>

PMI

Request

Metrics

>

Filters.

Type:

Specifies

the

type

of

request

metrics

filter.

Enable:

Specifies

whether

this

filter

is

enabled.

Note:

this

has

to

be

enabled

in

order

to

enable

the

filter

values

under

this

filter

type.

PMIRM

Filter

settings:

84

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

Use

this

page

to

specify

filters

that

define

whether

or

not

trace

is

enabled

for

the

request

as

it

moves

through

WebSphere

Application

Server.

To

view

this

administrative

console

page,

click

Troubleshooting

>

PMI

Request

Metrics

>

filters

>

filter_type.

Regenerate

the

web

server

plugin

configuration

file

after

saving

the

changes

if

you

want

to

use

request

metrics

in

web

server

plugin.

Although

the

changes

are

made

under

the

Configuration

tab,

after

the

changes

are

saved,

they

will

take

immediate

effect

in

server

runtime.

This

applies

to

all

the

changes

under

request

metrics.

Type:

Specifies

the

type

of

Request

Metrics

filter.

Enable:

Specifies

whether

this

filter

is

enabled.

filterValues:

Specifies

a

filter’s

value

and

enablement

for

the

filter

type.

filterValues

collection:

Use

this

page

to

specify

the

values

for

client

IP,

URI

or

EJB

Request

Metrics

filters.

To

view

this

administrative

console

page,

click

Troubleshooting

>

PMI

Request

Metrics

>

filters

>

filter_type

>

filterValues.

Value:

Specifies

a

URI

value

or

IP

name

based

on

the

type

of

filter.

For

example,

for

URI

filters,

the

value

might

be

″/servlet/snoop″.

Enable

Filter:

Specifies

whether

a

filter

value

is

enabled.

filterValues

settings:

Use

this

page

to

specify

the

values

for

client

IP,

URI

or

EJB

Request

Metrics

filters.

To

view

this

administrative

console

page,

click

Troubleshooting

>

PMI

Request

Metrics

>

filters

>

filter

>

filterValues

>

filter_value.

Value:

Specifies

a

URI

value

or

IP

name

based

on

the

type

of

filter.

For

example,

for

URI

filters,

the

value

can

be

″/servlet/snoop″.

Enable:

Specifies

whether

this

filter

value

is

enabled.

Chapter

1.

Monitoring

performance

85

Regenerating

the

Web

server

plug-in

configuration

file

After

you

modify

the

Request

Metrics

configuration,

you

must

complete

the

following

steps

to

regenerate

the

Web

server

plug-in

configuration

file.

Regenerating

ensures

that

the

Web

server

plug-in

recognizes

the

changes

you

made

for

the

Request

Metrics

configuration.

If

you

are

making

multiple

changes

to

Request

Metrics,

then

regenerate

the

plug-in

configuration

files

once

you

have

completed

all

changes.

Note:

You

must

complete

this

step

after

you

change

the

request

metrics

configuration.

If

you

do

not,

the

Web

server

plug-in

might

have

different

Request

Metrics

configuration

data

than

the

application

server.

This

difference

in

configuration

data

might

cause

inconsistent

behaviors

for

request

metrics

between

the

Web

server

plug-in

and

the

application

server.

1.

Open

the

administrative

console.

2.

Regenerate

the

Web

server

plug-in

configuration.

Example:

Generating

trace

records

from

Performance

Monitoring

Infrastructure

Request

Metrics

Use

HitCount

enterprise

bean

/hitcount?selection=EJB

where

the

servlet

is

deployed

on

one

machine

-

192.168.0.1,

and

the

enterprise

bean

Increment.jar

file

is

deployed

on

a

second

machine

-

192.168.0.2.

The

web

server

runs

on

192.168.0.1.

In

this

example,

both

machines

are

used

as

clients.

To

illustrate

the

use

of

client

IP

filtering,

one

client

IP

filter

(192.168.0.2)

is

defined

and

enabled.

This

action

allows

tracing

of

requests

originating

from

the

enterprise

bean

machine

through

http://192.168.0.1/hitcount?selection=EJB.

However,

requests

originating

from

the

servlet

machine

are

not

traced

since

the

client

IP

address

is

not

in

the

filter

list.

By

only

creating

a

client

IP

filter,

any

request

from

that

client

IP

address

is

effectively

traced.

This

tool

can

be

effective

for

locating

performance

problems

with

systems

under

load.

If

the

normal

load

is

originating

from

other

IP

addresses,

then

their

requests

are

not

traced.

By

using

the

defined

client

IP

address

to

generate

requests,

you

can

see

performance

bottlenecks

at

the

various

hops

by

comparing

the

trace

records

of

the

loaded

system

to

trace

records

from

a

non-loaded

run.

This

ability

can

help

focus

tuning

efforts

to

the

correct

node

and

process

within

a

complex

deployment

environment.

Make

sure

Request

Metrics

is

enabled

using

the

administrative

console.

Also,

make

sure

the

trace

level

is

set

to

at

least

hops

(writing

request

traces

at

process

boundaries).

Using

the

configuration

listed

above,

send

a

request

through

the

HitCount

servlet

from

the

enterprise

bean

machine

http://192.168.0.1/hitcount?selection=EJB.

In

this

example,

at

least

three

trace

records

are

generated:

v

A

trace

record

for

the

Web

server

plug-in

appears

in

the

plug-in

log

file

on

192.168.0.1.

v

A

trace

record

for

the

servlet

execution

appears

in

the

application

server

log

file

on

192.168.0.1.

v

A

trace

record

for

the

increment

bean

method

invocation

appears

in

the

application

server

log

file

on

192.168.0.2

86

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

The

two

trace

records

appearing

on

192.168.0.1

are

similar

to

the

following:

PLUGIN:

parent:ver=1,ip=192.168.0.1,time=1016556185102,pid=796,reqid=40,event=0

-

current:ver=1,ip=192.168.0.1,time=1016556185102,pid=796,reqid=40,event=1

type=HTTP

detail=/hitcount

elapsed=60

bytesIn=0

bytesOut=2252

PMRM0003I:

parent:ver=1,ip=192.168.0.1,time=1016556185102,pid=796,reqid=40,event=0

-

current:ver=1,ip=192.168.0.1,time=1016556186102,pid=884,reqid=40,event=1

type=URI

detail=/hitcount

elapsed=60

The

trace

record

appearing

on

192.168.0.2

is

similar

to

the

following:

PMRM0003I:

parent:ver=1,ip=192.168.0.1,time=1016556186102,pid=884,reqid=40,event=1

-

current:ver=1,ip=192.168.0.2,time=1016556122505,pid=9321,reqid=40,event=1

type=EJB

detail=com.ibm.defaultapplication.ConcreteIncrement_501bb55e.increment

elapsed=40

Note:

The

detail

for

an

EJB

call

is

close

to

the

class

name

of

the

EJB

but

not

exactly

the

class

name.

Performance:

Resources

for

learning

Use

the

following

links

to

find

relevant

supplemental

information

about

performance.

The

information

resides

on

IBM

and

non-IBM

Internet

sites,

whose

sponsors

control

the

technical

accuracy

of

the

information.

These

links

are

provided

for

convenience.

Often,

the

information

is

not

specific

to

the

IBM

WebSphere

Application

Server

product,

but

is

useful

for

understanding

the

product.

When

possible,

links

are

provided

to

technical

papers

and

Redbooks

that

supplement

the

broad

coverage

of

the

release

documentation

with

in-depth

examinations

of

particular

product

areas.

The

following

sections

are

covered

in

this

reference:

View

links

to

additional

information

about:

v

Performance

Monitoring

Infrastructure

(PMI)

Request

Metrics.

v

Monitoring

performance

with

third-party

tools

v

Tuning

performance

v

Garbage

collection

Performance

Monitoring

Infrastructure

(PMI)

Request

Metrics

v

Systems

Management:

Application

Response

Measurement

(ARM)

The

Open

Group

ARM

specifications.

Monitoring

performance

with

third-party

tools

v

Enterprise

Web

Application

Management

WebSphere

Performance

Management

Business

Partner

Solution

Finder

Find

a

list

of

IBM’s

business

partners

that

offer

performance

monitoring

tools

compliant

with

WebSphere

Application

Server.

Tuning

performance

v

Hints

on

Running

a

high-performance

Web

server

Read

hints

about

running

Apache

on

a

heavily

loaded

Web

server.

The

suggestions

include

how

to

tune

your

kernel

for

the

heavier

TCP/IP

load,

and

hardware

and

software

conflicts

v

Application

tuning

See

WebSphere

Application

Server

Development

Best

Practices

for

Performance

and

Scalability

for

more

information

on

application

tuning.

v

Performance

Analysis

for

Java

Web

sites

v

AIX

documentation

Chapter

1.

Monitoring

performance

87

http://www.opengroup.org/publications/catalog/c807.htm
http://www-3.ibm.com/software/webservers/pw/dhtml/wsperformance/performance_bpsolutions.html
http://www-3.ibm.com/software/webservers/httpservers/doc/v136/misc/perf.html
http://www-1.ibm.com/support/docview.wss?uid=swg27000615
http://www.awprofessional.com/catalog/product.asp?product_id={A801214C-A166-4836-859A-423B246C65E4}
http://publib16.boulder.ibm.com/pseries/en_US/infocenter/base/aix.htm

View

the

entire

AIX

software

documentation

library

for

releases

4.3,

5.1,

and

5.2.

v

WebSphere

Application

Server

Development

Best

Practices

for

Performance

and

Scalability

Describes

development

best

practices

for

Web

applications

with

servlets,

JSP

files,

JDBC

connections,

and

enterprise

applications

with

EJB

components.

v

iSeries

performance

documents

This

Web

site

is

a

directory

to

several

iSeries

performance

documents,

including

WebSphere

Application

Server

for

iSeries

Performance

Considerations,

the

Performance

Trace

Data

Visualizer

(PTDV)

tool

and

Workload

Estimator

tool.

v

IBM

WebSphere

Application

Server

Advanced

Edition

Tuning

Guide

(Version

4.02)

v

Redbook:

WebSphere

Application

Server

V3.5

Handbook

(SG24-6161-00)

v

Redbook:

WebSphere

Application

Server

V3

Performance

Tuning

Guide

(SG24-5657-00)

Garbage

collection

v

IBM

developerWorks

Search

the

IBM

developerWorks

Web

site

for

a

list

of

garbage

collection

documentation,

including

″Understanding

the

IBM

Java

Garbage

Collector″,

a

three-part

series.

To

locate

the

documentation,

search

on

″sensible

garbage

collection″

in

the

developerWorks

search

application.

Review

″Understanding

the

IBM

Java

Garbage

Collector″

for

a

description

of

the

IBM

verbose:gc

output

and

more

information

about

the

IBM

garbage

collector.

v

Tuning

Garbage

Collection

with

the

1.3.1

JavaTM

Virtual

Machine

Learn

more

about

using

garbage

collection

in

a

Solaris

operating

environment.

88

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

http://www-1.ibm.com/support/docview.wss?uid=swg27000615
http://www-1.ibm.com/support/docview.wss?uid=swg27000615
http://www-1.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/product/performanceAE40.html
http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/was/pdf/nav_Tuneguide.pdf
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg246161.pdf
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245657.pdf
http://www.redbooks.ibm.com/pubs/pdfs/redbooks/sg245657.pdf
http://java.sun.com/docs/hotspot/gc/index.html
http://java.sun.com/docs/hotspot/gc/index.html

Chapter

2.

Using

the

Runtime

Performance

Advisor

The

Runtime

Performance

Advisor

provides

advice

to

help

tune

systems

for

optimal

performance

and

is

configured

using

the

WebSphere

Application

Server

administrative

console.

The

Runtime

Performance

Advisor

uses

Performance

Monitoring

Infrastructure

(PMI)

data

to

provide

recommendations

for

performance

tuning.

Running

in

the

JVM

of

the

application

server,

this

advisor

periodically

checks

for

inefficient

settings,

and

issues

recommendations

as

standard

product

warning

messages.

These

recommendations

are

displayed

both

as

warnings

in

the

administrative

console

under

WebSphere

Runtime

Messages

in

the

WebSphere

Status

panel

and

as

text

in

the

application

server

SystemOut.log

file.

Enabling

the

Runtime

Performance

Advisor

has

minimal

system

performance

impact.

1.

Enable

PMI

services

in

WebSphere

Application

Server

through

the

administrative

console,

and

Enable

PMI

services

in

NodeAgent

through

the

administrative

console

if

running

WebSphere

Application

Server

Network

Deployment.

In

order

to

obtain

advice,

you

must

first

enable

the

performance

monitoring

service

through

the

administrative

console

and

restart

the

server.

If

running

Network

Deployment,

you

must

enable

PMI

service

on

both

the

server

and

on

the

node

agent

and

restart

the

server

and

node

agent.

The

Runtime

Performance

Advisor

enables

the

appropriate

monitoring

counter

levels

for

all

enabled

advice.

If

there

are

specific

counters

that

are

not

wanted,

disable

the

corresponding

advice

in

the

Runtime

Performance

Advisor

Panel,

and

disable

unwanted

counters.

If

there

are

specific

counters

that

are

not

wanted,

or

when

disabling

the

Runtime

Performance

Advisor,

the

user

may

want

to

disable

the

PMI

Service

or

the

counters

that

RPA

enabled.

2.

Start

the

administrative

console.

3.

Click

Servers

>

Application

Servers

in

the

console

navigation

tree.

4.

Click

server_name

>

Runtime

Performance

Advisor

Configuration.

5.

Click

the

Configuration

tab.

6.

Select

the

Number

of

Processors.

Select

the

appropriate

settings

for

your

system

configuration

to

ensure

accurate

advice.

7.

Select

the

Calculation

Interval.

PMI

data

is

taken

over

an

interval

of

time

and

averaged

to

provide

advice.

The

calculation

interval

specifies

the

length

of

the

time

over

which

data

is

taken

for

this

advice.

Therefore,

details

within

the

advice

messages

appear

as

averages

over

this

interval.

8.

Select

the

Maximum

Warning

Sequence.

The

maximum

warning

sequence

refers

to

the

number

of

consecutive

warnings

issued

before

the

threshold

is

updated.

For

example,

if

the

maximum

warning

sequence

is

set

to

3,

then

the

advisor

only

sends

three

warnings

to

indicate

that

the

prepared

statement

cache

is

overflowing.

After

that,

a

new

alert

is

only

issued

if

the

rate

of

discards

exceeds

the

new

threshold

setting.

9.

Click

Apply.

10.

Click

Save.

11.

Click

the

Runtime

tab.

12.

Click

Restart.

Selecting

Restart

on

the

Runtime

tab

reinitializes

the

Runtime

Performance

Advisor

using

the

last

configuration

information

saved

to

disk.

Note:

This

action

also

resets

the

state

of

the

Runtime

Performance

Advisor.

For

example,

the

current

warning

count

is

reset

to

zero

for

each

message.

©

Copyright

IBM

Corp.

2002,

2003

89

13.

Simulate

a

production

level

load.

If

you

are

using

the

Runtime

Performance

Advisor

in

a

test

environment,

or

doing

any

other

tuning

for

performance,

simulate

a

realistic

production

load

for

your

application.

The

application

should

run

this

load

without

errors.

This

simulation

includes

numbers

of

concurrent

users

typical

of

peak

periods,

and

drives

system

resources,

such

as

CPU

and

memory

to

the

levels

expected

in

production.

The

Runtime

Performance

Advisor

only

provides

advice

when

CPU

utilization

exceeds

a

sufficiently

high

level.

For

a

list

of

IBM

business

partners

providing

tools

to

drive

this

type

of

load,

see

the

article,

Performance:

Resources

for

learning

in

the

sub-section

of

Monitoring

performance

with

third

party

tools.

14.

Select

the

check

box

to

enable

the

Runtime

Performance

Advisor.

Note:

To

achieve

the

best

results

for

performance

tuning,

enable

the

Runtime

Performance

Advisor

when

a

stable

production

level

load

is

being

applied.

15.

Click

OK.

16.

Select

Warnings

in

the

administrative

console

under

the

WebSphere

Runtime

Messages

in

the

WebSphere

Status

panel

or

look

in

the

SystemOut.log

file,

located

in

the

install_root\logs\servername

directory

to

view

tuning

advice.

Some

messages

are

not

issued

immediately.

17.

Update

the

product

configuration

for

improved

performance,

based

on

advice.

Although

the

performance

advisors

attempt

to

distinguish

between

loaded

and

idle

conditions,

misleading

advice

might

be

issued

if

the

advisor

is

enabled

while

the

system

is

ramping

up

or

down.

This

result

is

especially

likely

when

running

short

tests.

Although

the

advice

helps

in

most

configurations,

there

might

be

situations

where

the

advice

hinders

performance.

Due

to

these

conditions,

advice

is

not

guaranteed.

Therefore,

test

the

environment

with

the

updated

configuration

to

ensure

it

functions

and

performs

well.

Over

a

period

of

time

the

advisor

may

issue

differing

advice.

This

is

due

to

load

fluctuations

and

runtime

state.

When

differing

advice

is

received

the

user

should

look

at

all

advice

and

the

time

period

over

which

it

was

issued.

Advice

should

be

taken

during

the

time

that

most

closely

represents

peak

production

load.

Performance

tuning

is

an

iterative

process.

After

applying

advice,

simulate

a

production

load,

update

the

configuration

based

on

the

advice,

and

retest

for

improved

performance.

This

procedure

should

be

continued

until

optimal

performance

is

achieved.

WebSphere

Application

Server

also

allows

you

to

enable

and

disable

advice

in

the

Advice

Configuration

panel.

Some

advice

applies

only

to

certain

configurations,

and

can

only

be

enabled

for

those

configurations.

For

example,

Unbounded

ORB

Service

Thread

Pool

Advice

is

only

relevant

when

the

ORB

Service

thread

pool

is

unbounded,

and

can

only

be

enabled

when

the

ORB

thread

pool

is

unbounded.

For

more

information

on

Advice

configuration,

see

the

article,

Advice

configuration

settings.

Runtime

Performance

Advisor

configuration

settings

Use

this

page

to

specify

settings

for

the

Runtime

Performance

Advisor.

For

more

information

on

how

to

use

the

Runtime

Performance

Advisor,

see

Using

the

Runtime

Performance

Advisor.

90

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

To

view

this

administrative

page,

click

Servers

>

Application

Servers

>

server_name

>

Runtime

Performance

Advisor

Configuration.

Enable

Runtime

Performance

Advisor

Specifies

whether

the

Runtime

Performance

Advisor

will

run

on

server

startup.

The

Runtime

Performance

Advisor

(RPA)

requires

that

the

Performance

Monitoring

Service

be

enabled.

It

does

not

require

that

individual

counters

be

enabled.

When

a

counter

that

is

needed

by

RPA

is

not

enabled,

RPA

will

enable

it

automatically.

When

disabling

the

Runtime

Performance

Advisor

the

user

may

want

to

disable

the

PMI

Service

or

the

counters

that

RPA

enabled.

The

following

counters

may

be

enabled

by

RPA:

v

ThreadPools

(module)

–

Web

Container

(module)

-

Pool

Size

-

Active

Threads
–

Object

Request

Broker

(module)

-

Pool

Size

-

Active

Threads
v

JDBC

Connection

Pools

(module)

–

Pool

Size

–

Percent

used

–

Prepared

Statement

Discards
v

Servlet

Session

Manager

(module)

–

External

Read

Size

–

External

Write

Size

–

External

Read

Time

–

External

Write

Time

–

No

Room

For

New

Session
v

System

Data

(module)

–

CPU

Utilization

–

Free

Memory

Enable

Runtime

Performance

Advisor

Starts

the

Runtime

Performance

Advisor

on

the

current

server.

The

Runtime

Performance

Advisor

(RPA)

requires

that

the

Performance

Monitoring

Service

be

enabled.

It

does

not

require

that

individual

counters

be

enabled.

When

a

counter

that

is

needed

by

RPA

is

not

enabled,

RPA

will

enable

it

automatically.

When

disabling

the

Runtime

Performance

Advisor

the

user

may

want

to

disable

the

PMI

Service

or

the

counters

that

RPA

enabled.

The

following

counters

may

be

enabled

by

RPA:

v

ThreadPools

(module)

–

Web

Container

(module)

-

Pool

Size

-

Active

Threads
–

Object

Request

Broker

(module)

-

Pool

Size

-

Active

Threads
v

JDBC

Connection

Pools

(module)

–

Pool

Size

–

Percent

used

–

Prepared

Statement

Discards
v

Servlet

Session

Manager

(module)

–

External

Read

Size

–

External

Write

Size

–

External

Read

Time

Chapter

2.

Using

the

Runtime

Performance

Advisor

91

–

External

Write

Time

–

No

Room

For

New

Session
v

System

Data

(module)

–

CPU

Utilization

–

Free

Memory

Calculation

Interval

PMI

data

is

taken

over

an

interval

of

time

and

averaged

to

provide

advice.

The

calculation

interval

specifies

the

length

of

the

time

over

which

data

is

taken

for

this

advice.

Details

within

the

advice

messages

will

appear

as

averages

over

this

interval.

Maximum

warning

sequence

The

maximum

warning

sequence

refers

to

the

number

of

consecutive

warnings

issued

before

the

threshold

is

relaxed.

For

example,

if

the

maximum

warning

sequence

is

set

to

3,

then

the

advisor

only

sends

three

warnings

to

indicate

that

the

prepared

statement

cache

is

overflowing.

After

that,

a

new

alert

is

only

issued

if

the

rate

of

discards

exceeds

the

new

threshold

setting.

Number

of

processors

Specifies

the

number

of

processors

on

the

server.

This

setting

is

critical

to

ensure

accurate

advice

for

the

system’s

specific

configuration.

Restart

button

Selecting

Restart

on

the

Runtime

tab

reinitializes

the

Runtime

Performance

Advisor

using

the

last

information

saved

to

disk.

Note

that

this

action

also

resets

the

state

of

the

Runtime

Performance

Advisor.

For

example,

the

current

warning

sequence

is

reset

to

zero

for

each

recommendation/advice.

Advice

configuration

settings

Use

this

page

to

select

the

advice

you

wish

to

enable

or

disable.

To

view

this

administrative

page,

click

Servers

>

Application

Servers

>

server_name

>

Runtime

Performance

Advisor

Configuration

>

Advice

Configuration.

Advice

name

Specifies

the

advice

that

you

can

enable

or

disable.

Advice

applied

to

component

Specifies

the

WebSphere

Application

Server

component

to

which

the

runtime

performance

advice

applies.

Advice

status

Specifies

whether

advice

is

stopped

or

started.

There

are

only

two

values

--

Started

and

Stopped.

Started

means

that

the

advice

runs

if

the

advice

applies.

Stopped

means

that

the

advice

does

not

run.

92

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

Advice

status

Specifies

whether

advice

is

stopped,

started

or

unavailable.

The

advice

status

has

one

of

three

values

--

Started,

Stopped

or

Unavailable.

Started

means

that

the

advice

is

being

applied.

Stopped

means

that

the

advice

is

not

applied.

Unavailable

means

that

the

advice

does

not

apply

to

the

current

configuration

(such

as

Persisted

Session

Size

advice

in

a

configuration

without

persistent

sessions).

Chapter

2.

Using

the

Runtime

Performance

Advisor

93

94

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

Chapter

3.

Using

the

Performance

Advisor

in

Tivoli

Performance

Viewer

The

Performance

Advisor

in

Tivoli

Performance

Viewer

(TPV)

provides

advice

to

help

tune

systems

for

optimal

performance

and

gives

recommendations

on

inefficient

settings

by

using

collected

Performance

Monitoring

Infrastructure

(PMI)

data.

Advice

is

obtained

by

selecting

the

Performance

Advisor

icon

in

TPV.

The

Performance

Advisor

in

TPV

provides

more

extensive

advice

than

the

Runtime

Performance

Advisor.

For

example,

TPV

provides

advice

on

setting

the

dynamic

cache

size,

setting

the

JVM

heap

size

and

using

the

DB2

Performance

Configuration

Wizard.

1.

Enable

PMI

services

in

WebSphere

Application

Server

through

the

administrative

console,

and

Enable

PMI

services

in

NodeAgent

through

the

administrative

console

if

running

WebSphere

Application

Server

Network

Deployment.

In

order

to

obtain

advice,

you

must

first

enable

the

performance

monitoring

service

through

the

administrative

console

and

restart

the

server.

If

running

Network

Deployment,

you

must

enable

PMI

service

on

both

the

server

and

on

the

node

agent

and

restart

the

server

and

node

agent.

2.

Enable

data

collection.

The

monitoring

levels

that

determine

which

data

counters

are

enabled

can

be

set

dynamically,

without

restarting

the

server.

These

monitoring

levels

and

the

data

selected

determine

the

type

of

advice

you

obtain.

The

Performance

Advisor

in

TPV

uses

the

standard

monitoring

level;

however,

the

Performance

Advisor

in

TPV

can

use

a

few

of

the

more

expensive

counters

(to

provide

additional

advice)

and

provide

advice

on

which

counters

can

be

enabled.

This

action

can

be

completed

in

one

of

the

following

ways:

a.

Enable

performance

monitoring

services

through

Tivoli

Performance

Viewer.

b.

Enable

performance

monitoring

services

using

the

command

line.

3.

Start

the

Tivoli

Performance

Viewer.

4.

Simulate

a

production

level

load.

Simulate

a

realistic

production

load

for

your

application,

if

you

are

using

the

Performance

Advisor

in

a

test

environment,

or

doing

any

other

performance

tuning.

The

application

should

run

this

load

without

errors.

This

simulation

includes

numbers

of

concurrent

users

typical

of

peak

periods,

and

drives

system

resources

such

as

CPU

and

memory

to

the

levels

expected

in

production.

The

Performance

Advisor

only

provides

advice

when

CPU

utilization

exceeds

a

sufficiently

high

level.

For

a

list

of

IBM

business

partners

providing

tools

to

drive

this

type

of

load,

see

the

article,

Performance:

Resources

for

learning

in

the

sub-section

of

Monitoring

performance

with

third

party

tools.

5.

Optional:

Store

data

to

a

log

file.

6.

Optional:

Replay

a

performance

data

log

file.

7.

Refresh

data.

Clicking

refresh

with

server

selected

under

the

viewer

icon

causes

TPV

to:

v

Query

the

server

for

new

PMI

and

product

configuration

information.

Click

refresh

with

server

selected

under

the

advisor

icon

causes

TPV

to:

v

Refresh

advice

that

is

provided

in

a

single

instant

in

time.

v

Not

query

the

server

for

new

PMI

and

product

configuration

information.

8.

Tuning

advice

appears

when

the

Advisor

icon

is

chosen

in

the

TPV

Performance

Advisor.

Double-click

an

individual

message

for

details.

Since

©

Copyright

IBM

Corp.

2002,

2003

95

PMI

data

is

taken

over

an

interval

of

time

and

averaged

to

provide

advice,

details

within

the

advice

message

appear

as

averages.

Note:

If

the

Refresh

Rate

is

adjusted,

the

Buffer

Size

should

also

be

adjusted

to

allow

sufficient

data

to

be

collected

for

performing

average

calculations.

Currently

2

minutes

of

data

is

required.

Read

more

about

adjusting

the

Refresh

Rate

or

Buffer

Size

at:

v

Changing

the

refresh

rate

of

data

retrieval.

v

Changing

the

display

buffer

size.

9.

Update

the

product

configuration

for

improved

performance,

based

on

advice.

Since

Tivoli

Performance

Viewer

refreshes

advice

at

a

single

instant

in

time,

take

the

advice

from

the

peak

load

time.

Although

the

performance

advisors

attempt

to

distinguish

between

loaded

and

idle

conditions,

misleading

advice

might

be

issued

if

the

advisor

is

enabled

while

the

system

is

ramping

up

or

down.

This

result

is

especially

likely

when

running

short

tests.

Although

the

advice

helps

in

most

configurations,

there

might

be

situations

where

the

advice

hinders

performance.

Due

to

these

conditions,

advice

is

not

guaranteed.

Therefore,

test

the

environment

with

the

updated

configuration

to

ensure

it

functions

and

performs

well.

Over

a

period

of

time

the

advisor

may

issue

differing

advice.

This

is

due

to

load

fluctuations

and

runtime

state.

When

differing

advice

is

received

the

user

should

look

at

all

advice

and

the

time

period

over

which

it

was

issued.

Advice

should

be

taken

during

the

time

that

most

closely

represents

peak

production

load.

Performance

tuning

is

an

iterative

process.

After

applying

advice,

simulate

a

production

load,

update

the

configuration

based

on

the

advice,

and

retest

for

improved

performance.

This

procedure

should

be

continued

until

optimal

performance

is

achieved.

10.

Clear

values

from

tables

and

charts.

11.

Reset

counters

to

zero.

Performance

Advisor

Report

in

Tivoli

Performance

Viewer

View

recommendations

and

data

from

the

Performance

Advisor

in

Tivoli

Performance

Viewer

by

expanding

the

Performance

Advisor

icon

under

Data

Collection

in

Tivoli

Performance

Viewer

and

selecting

the

server.

For

more

information

on

how

to

use

the

Performance

Advisor

in

Tivoli

Performance

Viewer

effectively,

see

Using

the

Performance

Advisor

in

Tivoli

Performance

Viewer.

Message

Specifies

recommendations

for

performance

tuning.

Double

click

the

message

to

obtain

more

details.

Performance

data

in

lower

panel

Displays

a

summary

of

performance

data

for

the

WebSphere

Application

Server.

Data

here

corresponds

to

the

same

period

that

recommendations

were

provided

for.

However,

recommendations

may

use

a

different

set

of

data

points

during

analysis

than

the

set

displayed

by

the

summary

page.

The

first

table

represents

the

number

of

requests

per

second

and

the

response

time

in

milliseconds

for

both

the

Web

and

EJB

containers.

The

pie

graph

displays

the

CPU

activity

as

percentage

busy

and

idle.

96

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

The

bar

graphs

display

average

thread

activity

for

the

Web

container

and

Object

Request

Broker

(ORB)

thread

pools,

and

average

database

connection

activity

for

connection

pools.

Activity

is

expressed

as

the

number

of

threads/connections

busy

and

idle.

Chapter

3.

Using

the

Performance

Advisor

in

Tivoli

Performance

Viewer

97

98

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

Chapter

4.

Tuning

performance

parameter

index

To

optimize

your

WebSphere

Application

Servers

to

their

fullest

extent,

use

the

Performance

Advisors

in

addition

to

the

suggested

procedures

or

parameters

in

the

tuning

parameter

hot

list

and

the

tuning

performance

parameter

index.

Performance

Advisors

The

Performance

Advisors

use

the

PMI

data

to

suggest

configuration

changes

to

ORB

service

thread

pools,

Web

container

thread

pools,

connection

pool

size,

persisted

session

size

and

time,

prepared

statement

cache

size,

and

session

cache

size.

The

Runtime

Performance

Advisor

runs

in

the

application

server

process,

while

the

other

advisor

runs

in

the

Tivoli

Performance

Viewer

(TPV).

For

more

information,

see

Using

the

Runtime

Performance

Advisor

and

Using

the

Performance

Advisor

in

Tivoli

Performance

Viewer.

Tuning

parameter

hot

list

Review

the

Tuning

parameter

hot

list,

which

is

a

subset

of

the

tuning

parameter

index.

These

hot

parameters

have

an

important

impact

on

performance.

The

tuning

guide

focuses

on

server

tuning.

If

you

want

to

tune

your

applications,

see

Performance:

Resources

for

learning

for

more

information

about

application

tuning.

For

your

convenience,

procedures

for

tuning

parameters

in

other

products,

such

as

DB2,

Web

servers

and

operating

systems

are

included.

Because

these

products

might

change,

consider

these

descriptions

as

suggestions.

Each

WebSphere

Application

Server

process

has

several

parameters

influencing

application

performance.

You

can

use

the

WebSphere

Application

Server

administrative

console

to

configure

and

tune

applications,

Web

containers,

EJB

containers,

application

servers

and

nodes

in

the

administrative

domain.

First,

review

the

Tuning

parameter

hot

list,

which

is

a

subset

of

the

tuning

parameter

index.

These

parameters

have

an

important

impact

on

performance.

Because

these

parameters

are

application

dependent,

the

parameter

settings

for

specific

applications

and

environments

can

vary.

Each

parameter

in

the

tuning

parameter

index

links

to

information

that

explains

the

parameter,

provides

reasons

to

adjust

the

parameter,

how

to

view

or

set

the

parameter,

as

well

as

default

and

recommended

values.

v

Application

servers

The

WebSphere

Application

Server

contains

interrelated

components

that

must

be

harmoniously

tuned

to

support

the

custom

needs

of

your

end-to-end

e-business

application.

v

Java

virtual

machines

The

JVM

offers

several

tuning

parameters

affecting

the

performance

of

WebSphere

Application

Servers

(which

are

primarily

Java

applications),

as

well

as

the

performance

of

your

applications.

v

Applications

©

Copyright

IBM

Corp.

2002,

2003

99

Several

topics

including

Web

modules,

EJB

modules,

client

modules,

Web

services

and

application

services

comprise

the

application

programming

model

and

provide

numerous

services

supporting

deployed

applications.

v

Databases

WebSphere

supports

the

integration

of

several

different

database

systems.

Each

is

tuned

in

its

own

manor.

DB2

tuning

parameters

are

provided

for

your

convenience.

v

Java

messaging

service

Java

messaging

service

(JMS)

can

be

tuned

to

balance

memory

with

the

servicing

of

the

JMS

subscribers.

v

Security

Security

may

have

an

affect

on

performance

depending

on

certain

actions

taken.

v

Hardware

capacity

and

settings

A

few

hardware

factors

should

be

taken

into

consideration

that

will

affect

performance.

v

Operating

systems

This

section

discusses

considerations

for

tuning

the

operating

systems

in

the

server

environment.

v

Web

servers

The

WebSphere

Application

Server

product

provides

plug-ins

for

several

Web

server

brands

and

versions.

Each

Web

server

operating

system

combination

features

specific

tuning

parameters

that

affect

the

application

performance.

Tuning

parameter

hot

list

It

is

recommended

that

you

first

review

the

following

tuning

parameter

hot

list,

which

is

a

subset

of

the

tuning

parameter

index.

These

parameters

are

on

a

hot

list

because

they

have

an

important

impact

on

performance.

Because

they

are

application

dependent,

the

appropriate

parameter

settings

for

specific

applications

and

environments

can

vary.

v

Hardware

and

capacity

settings

v

Java

virtual

machine

heap

size

v

Tune

applications

v

Data

sources

connection

pool

and

prepared

statement

cache

in

Tuning

application

servers

v

Solaris

operating

system

TCP_TIME_WAIT_INTERVAL

v

Pass

by

value/Pass

by

reference

v

IBM

HTTP

Server

access

logs

v

HTTP

keep

alive

connections

v

Transaction

logs

v

Object

Request

Broker

FragmentSize

Performance

troubleshooting

tips

Review

the

symptom

table

for

information

to

help

you

troubleshoot

performance

problems.

Problem

Tuning

parameters

Overall

throughput

and

response

time

are

undesirable.

Processor

speed

AIX:

Memory

allocation

error

AIX

file

descriptors

(ulimit)

Scroll

down

to

this

parameter

from

Operating

Systems.

100

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

ORB:

Response

time

and

throughput

indicate

EJB

requests

with

shorter

execution

times

are

being

denied

adequate

access

to

threads

in

ORB

thread

pool.

AIX

file

descriptors

(ulimit)

Logical

Pool

Distribution

(LPD)

mechanism,

set

using

ORB

custom

properties.

Linux:

Default

maximum

web

container

threads

set

too

high.

For

Linux

distributions

that

are

based

on

the

2.4

and

earlier

kernels,

setting

the

web

container

maximum

thread

size

too

high

will

degrade

performance.

The

maximum

web

container

thread

should

be

set

to

25.

A

higher

web

container

thread

size

will

cause

too

much

contention,

therefore

degrading

performance.

Thread

pool

settings

Solaris

operating

environment:

Too

many

files

open

Solaris

file

descriptors

(ulimit)

Scroll

down

to

this

parameter

from

Operating

Systems.

Solaris

operating

environment:

The

server

stalls

during

peak

periods,

responses

take

minutes,

processor

utilization

remains

high

with

all

activity

in

the

system

processes,

and

netstat

shows

many

sockets

are

open

to

port

80

in

CLOSE_WAIT

or

FIN_WAIT_2

state.

Solaris

tcp_time_wait_interval

and

Solaris

tcp_fin_wait_2_flush_interval

Scroll

down

to

this

parameter

from

Operating

Systems.

Windows

NT

or

Windows

2000:

Netstat

shows

too

many

sockets

are

in

TIME_WAIT.

Windows

NT

or

Windows

2000

TcpTimedWaitDelay

Under

load,

client

requests

do

not

arrive

at

the

Web

server

because

they

time

out

or

are

rejected.

For

IBM

HTTP

Server

on

Windows

NT,

see

ListenBackLog

Windows

NT

or

Windows

2000:

WebSphere

Application

Server

performance

decreased

after

an

application

server

from

another

vendor

was

installed.

Microsoft

Internet

Information

Server

(IIS)

properties

The

Percent

Maxed

metric

from

the

Tivoli

Performance

Viewer

indicates

that

the

Web

container

thread

pool

is

too

large

or

too

small.

Thread

pool

Maximum

size

Netstat

shows

too

many

TIME_WAIT

state

sockets

for

port

9080.

HTTP

transports

MaxKeepAliveConnections

and

HTTP

transports

MaxKeepAliveRequests

Too

much

disk

input

and

output

occurs

due

to

paging.

Maximum

heap

size

The

Percent

Used

metric

for

a

data

source

connection

pool

from

the

Tivoli

Performance

Viewer

indicates

the

pool

size

is

too

large.

Maximum

connection

pool

and

Minimum

connection

pool

The

Prepared

Statement

Discards

metric

from

the

Tivoli

Performance

Viewer

indicates

that

the

data

source

statement

cache

size

is

too

small.

Statement

cache

size

Too

much

disk

input

and

output

occurs

due

to

DB2

writing

log

records.

DB2

MinCommit

The

Percent

Maxed

metric

from

the

Tivoli

Performance

Viewer

indicates

that

the

Object

Request

Broker

thread

pool

is

too

small.

EJB

method

Invocation

Queuing

Chapter

4.

Tuning

performance

parameter

index

101

The

Java

Virtual

Machine

Profiler

Interface

(JVMPI)

from

the

Tivoli

Performance

Viewer

indicates

over-utilization

of

objects

when

too

much

time

is

spent

in

garbage

collection.

Detecting

over-utilization

of

objects

The

Used

Memory

metric

from

the

Tivoli

Performance

Viewer

shows

memory

leaks

and

the

Java

code

displays

an

Out

of

Memory

exception.

Detecting

memory

leaks

Throughput,

response

time

and

scalability

are

undesirable.

If

the

application

permits,

exploit

the

dynamic

cache

service

Startup

performance

is

poor.

Using

Java

virtual

machine

settings,

set

a

minimum

heap

size

of

at

least

50MB

(-Xms50m).

For

current

information

available

from

IBM

Support

on

known

problems

and

their

resolution,

see

the

following

topics

on

the

IBM

support

page.

v

100%

CPU

usage

v

PMI/performance

tools

IBM

Support

has

documents

that

can

save

you

time

gathering

information

needed

to

resolve

this

problem.

Before

opening

a

PMR,

see

the

IBM

Support

page.

Tuning

hardware

capacity

and

settings

These

parameters

include

considerations

for

selecting

and

configuring

the

hardware

on

which

the

application

servers

can

run.

v

Optimize

disk

speed

–

Description:

Disk

speed

and

configuration

can

have

a

dramatic

effect

on

the

performance

of

application

servers

that

run

applications

that

are

heavily

dependent

on

database

support,

that

use

extensive

messaging,

or

are

processing

workflow.

Using

disk

I/O

subsystems

that

are

optimized

for

performance,

for

example

RAID

array,

are

essential

components

for

optimum

application

server

performance

in

these

environments.

–

How

to

view

or

set:

None

–

Default

value:

None

–

Recommended

value:

Spread

the

disk

processing

across

as

many

disks

as

possible

to

avoid

contention

issues

that

typically

occur

with

1

or

2

disk

systems.

Placing

database

tables

on

disks

that

are

separate

from

the

disks

used

for

the

database

log

files

can

reduce

disk

contention

and

improve

throughput.
v

Increase

processor

speed

and

processor

cache

–

Description:

In

the

absence

of

other

bottlenecks,

increasing

the

processor

speed

often

helps

throughput

and

response

times.

A

processor

with

a

larger

L2

or

L3

cache

can

yield

higher

throughput

even

if

the

processor

speed

is

the

same

as

a

CPU

with

a

smaller

L2

or

L3

cache.

–

How

to

view

or

set:

None

–

Default

value:

None

–

Recommended

value:

None
v

Increase

system

memory

–

Description:

Increase

memory

to

prevent

the

system

from

paging

memory

to

disk,

improving

performance.

Allow

a

minimum

of

256MB

of

memory

for

each

processor.

Adjust

the

available

memory

when

the

system

is

paging

and

processor

utilization

is

low

because

of

the

paging.

102

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCMP9J
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCYQTB
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&tc1=SSCYQTB&q=mustgather

–

How

to

view

or

set:

None

–

Default

value:

None

–

Recommended

value:

512MB

per

application

server
v

Run

network

cards

and

network

switches

at

full

duplex.

–

Description:

Running

at

half

duplex

decreases

performance.

Verify

that

the

network

speed

of

adapters,

cables,

switches,

and

other

devices

can

accommodate

the

required

throughput.

–

How

to

view

or

set:

None

–

Default

value:

None

–

Recommended

value:

Make

sure

that

the

highest

speed

is

in

use

on

10/100/1000

Ethernet

networks.

Tuning

operating

systems

The

following

tuning

parameters

are

specific

to

operating

systems.

Because

these

are

not

WebSphere

Application

Server

products,

be

aware

that

the

products

can

change

and

results

vary.

v

Tuning

Windows

NT

or

Windows

2000

–

TcpTimedWaitDelay

-

Description:

Determines

the

time

that

must

elapse

before

TCP/IP

can

release

a

closed

connection

and

reuse

its

resources.

This

interval

between

closure

and

release

is

known

as

the

TIME_WAIT

state

or

twice

the

maximum

segment

lifetime

(2MSL)

state.

During

this

time,

reopening

the

connection

to

the

client

and

server

cost

less

than

establishing

a

new

connection.

Reducing

the

value

of

this

entry

allows

TCP/IP

to

release

closed

connections

faster,

providing

more

resources

for

new

connections.

Adjust

this

parameter

if

the

running

application

requires

rapid

release,

creation

of

new

connections,

and

there

is

a

low

throughput

due

to

many

connections

sitting

in

TIME_WAIT.

-

How

to

view

or

set:

1.

Using

the

regedit

command,

access

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\

Services\TCPIP\Parameters

and

create

a

new

REG_DWORD

named

TcpTimedWaitDelay.

2.

Set

the

value

to

decimal

30,

which

is

Hex

0x0000001e.

3.

Stop

and

restart

the

system.
-

Default

value:

0xF0

(240

seconds

=

4

minutes)

-

Recommended

value:

The

minimum

value

of

0x1E

(30

seconds)
–

MaxUserPort

-

Description:

Determines

the

highest

port

number

TCP/IP

can

assign

when

an

application

requests

an

available

user

port

from

the

system.

-

How

to

view

or

set:

1.

Using

the

regedit

command,

access

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\

Services\TCPIP\Parameters

and

create

a

new

REG_DWORD

named

MaxUserPort.

2.

Stop

and

restart

the

system.
-

Default

value:

None

-

Recommended

value:

At

least

decimal

32768.

Note:

Use

these

two

parameters

together

when

tuning

WebSphere

Application

Server

on

a

Windows

NT

or

Windows

2000

operating

system.
v

Tuning

AIX

–

AIX

with

DB2

Chapter

4.

Tuning

performance

parameter

index

103

-

Description:

Separating

your

DB2

log

files

from

the

physical

database

files

can

boost

performance.

You

can

also

separate

the

logging

and

the

database

files

from

the

drive

containing

the

Journaled

File

System

(JFS)

service.

AIX

uses

specific

volume

groups

and

file

systems

for

the

JFS

logging.

-

How

to

view

or

set:

Use

the

AIX

filemon

utility

to

view

all

file

system

input

and

output,

and

to

strategically

select

the

file

system

for

the

DB2

logs.

Then,

set

the

DB2

log

location

according

to

DB2

logging.

-

Default

value:

The

default

location

for

the

files

is

\home\<db2_user_name>\sqllib\db2dump.

-

Recommended

value:

Move

the

files

to

a

disk

that

is

separate

from

the

DB2

data

and

that

has

minimum

I/O

activity.
–

AIX

file

descriptors

(ulimit)

-

Description:

Specifies

the

number

of

open

files

permitted.

The

default

setting

is

typically

sufficient

for

most

applications.

If

the

value

set

for

this

parameter

is

too

low,

a

Memory

allocation

error

is

displayed.

-

How

to

view

or

set:

Check

the

UNIX

reference

pages

on

ulimit

for

the

syntax

of

different

shells.

To

set

the

ulimit

to

2000

for

the

KornShell

shell

(ksh),

issue

the

ulimit

-n

2000

command.

Use

the

command

ulimit

-a

to

display

the

current

values

for

all

limitations

on

system

resources.

-

Default

value:

For

AIX

systems,

the

default

setting

is

2000.

-

Recommended

value:

2000
–

Other

AIX

information

There

are

many

other

AIX

operating

system

settings

to

consider

that

are

not

within

the

scope

of

this

document.

Additional

settings

you

can

adjust

follow:

-

Adapter

transmit

and

receive

queue

-

TCP/IP

socket

buffer

-

IP

protocol

mbuf

pool

performance

-

Update

file

descriptors

-

Update

the

scheduler

For

more

information

about

AIX,

see

Performance:

Resources

for

Learning.
v

Tuning

Solaris

–

Solaris

file

descriptors

(ulimit)

-

Description:

Specifies

the

number

of

open

files

permitted.

If

the

value

of

this

parameter

is

too

low,

a

Too

many

files

open

error

displays

in

the

WebSphere

Application

Server

stderr.log.

-

How

to

view

or

set:

Check

the

UNIX

reference

pages

on

ulimit

for

the

syntax

of

different

shells.

For

KornShell

(ksh)

use

the

ulimit

-n

1024

command.

Use

the

ulimit

-a

command

to

display

the

current

values

for

all

limitations

on

system

resources.

-

Default

value:

None

-

Recommended

value:

2000
–

Solaris

TCP_TIME_WAIT_INTERVAL

-

Description:

Notifies

the

TCP/IP

how

long

to

keep

closed

connection

control

blocks.

After

the

applications

complete

the

TCP/IP

connection,

the

control

blocks

are

kept

for

the

specified

time.

When

high

connection

rates

occur,

a

large

backlog

of

the

TCP/IP

connections

accumulate

and

can

slow

server

performance.

The

server

can

stall

during

certain

peak

periods.

If

the

server

stalls,

the

netstat

command

shows

that

many

of

the

sockets

opened

to

the

HTTP

server

are

in

the

CLOSE_WAIT

or

FIN_WAIT_2

state.

Visible

delays

can

occur

for

up

to

four

minutes,

during

which

time

the

server

does

not

send

any

responses,

but

CPU

utilization

stays

high,

with

all

of

the

activity

in

system

processes.

104

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

-

How

to

view

or

set:

Use

the

get

command

to

determine

the

current

interval

and

the

set

command

to

specify

an

interval

of

60

seconds.

For

example:

ndd

-get

/dev/tcp

tcp_time_wait_interval

ndd

-set

/dev/tcp

tcp_time_wait_interval

60000

-

Default

value:

The

Solaris

default

time

wait

interval

is

2400000

milliseconds.

-

Recommended

value:

60000

milliseconds.
–

Solaris

TCP_FIN_WAIT_2_FLUSH_INTERVAL

-

Description:

Specifies

the

timer

interval

prohibiting

a

connection

in

FIN_WAIT_2

to

remain

in

that

state.

When

high

connection

rates

occur,

a

large

backlog

of

TCP/IP

connections

accumulate

and

can

slow

server

performance.

The

server

can

stall

during

peak

periods.

If

the

server

stalls,

using

the

netstat

command

shows

that

many

of

the

sockets

opened

to

the

HTTP

server

are

in

CLOSE_WAIT

or

FIN_WAIT_2

state.

Visible

delays

can

occur

for

up

to

four

minutes,

during

which

time

the

server

does

not

send

any

responses,

but

CPU

utilization

stays

high,

with

all

of

the

activity

in

system

processes.

-

How

to

view

and

set:

You

can

set

the

current

interval

to

67.5

seconds

by

using

the

following

commands:

ndd

-get

/dev/tcp

tcp_fin_wait_2_flush_interval

ndd

-set

/dev/tcp

tcp_fin_wait_2_flush_interval

67500

-

Default

value:

The

Solaris

default

is

675000.

-

Recommended

value:

67500
–

Solaris

TCP_KEEPALIVE_INTERVAL

-

Description:

Specifies

the

timer

interval

prohibiting

an

active

connection

from

staying

in

ESTABLISHED

state

if

one

of

the

peers

never

responds.

-

How

to

view

or

set:

Use

the

following

commands

to

determine

the

current

value

or

to

set

the

value

to

300

seconds:

ndd

-get

/dev/tcp

tcp_keepalive_intervalndd

-set

/dev/tcp

tcp_keepalive_interval

300000

-

Default

value:

7200000

-

Recommended

value:

300000
–

Solaris

kernel

semsys:seminfo_semume

-

Description:

Limits

the

Max

Semaphore

undo

entries

per

process.

Because

this

setting

specifies

a

maximum

value,

the

parameter

does

not

cause

use

of

additional

memory

unless

it

is

needed.

-

How

to

view

or

set:

This

value

is

displayed

as

SEMUME

if

the/usr/sbin/sysdef

command

is

run.

There

can

be

an

entry

in

the

/etc/system

file

for

this

tuning

parameter.

Set

this

parameter

through

the

/etc/system

entry

as

follows:

set

semsys:seminfo_semume

=

1024

-

Default

value:

10

-

Recommended

value:

None
–

Solaris

kernel

semsys:seminfo_semopm

-

Description:

Displays

as

SEMOPM

if

the

/usr/sbin/sysdef

command

is

run.

An

entry

in

the

/etc/system

file

can

exist

for

this

tuning

parameter.

-

How

to

view

or

set:

Set

this

parameter

through

the

/etc/system

entry

as

follows:

semsys:seminfo_semopm

=

200

-

Default

value:

None

-

Recommended

value:

16384
v

Tuning

HP-UX

11i

Chapter

4.

Tuning

performance

parameter

index

105

HP-UX

11i

settings

can

be

modified

to

significantly

improve

WebSphere

Application

Server

performance.

For

additional

information

about

the

HP

performance

tuning

parameters

see

Performance:

Resources

for

learning.

–

Java

virtual

machine

virtual

page

size

-

Description:

Setting

the

Java

virtual

machine

instruction

and

data

page

sizes

to

64MB

improves

performance.

-

How

to

view

or

set:

Use

the

chatr

+pi64M

+pd64M

/opt/WebSphere/AppServer/java/bin/PA_RISC2.0/native_threads/java

command.

The

command

output

provides

the

current

operating

system

characteristics

of

the

process

executable.

-

Default

value:

4MB,

if

not

assigned

-

Recommended

value:

64MB
–

HP-UX

11i

TCP_CONN_REQUEST_MAX

-

Description:

Specifies

the

maximum

number

of

connection

requests

that

the

operating

system

can

queue

when

the

server

does

not

have

any

available

threads.

When

high

connection

rates

occur,

a

large

backlog

of

TCP/IP

connection

requests

build

up

and

client

connections

are

dropped.

Adjust

this

setting

when

clients

start

to

timeout

after

waiting

to

connect.

This

situation

can

be

verified

by

issuing

the

netstat

-p

tcp

command.

Look

for

the

following

value:

connect

requests

dropped

due

to

full

queue

-

How

to

view

or

set:

Set

this

parameter

by

Using

the

ndd

-set

/dev/tcp

tcp_conn_request_max

1024

command.

-

Default

value:

4096

-

Recommended

value:

In

most

cases

the

default

should

suffice.

Consider

adjusting

to

8192

if

the

default

proves

inadequate.
–

HP-UX

11i

kernel

parameter

recommendations

-

Description:

Use

the

following

kernel

parameter

settings

with

DB2

or

ORACLE

for

the

best

performance:

Kernel

parameter

WebSphere

Application

Server

setting

DB2

setting

Oracle

setting

maxuprc

--

512

--

maxfiles

2,048

--

--

maxfiles_lim

2,048

--

--

nkthread

10,000

--

--

max_thread_proc

2,048

--

--

nproc

--

1,028

--

nflocks

--

8,192

--

ninode

--

2,048

--

nfile

--

8,192

--

msgseg

--

32,767

--

msgmnb

--

65,535

--

msgmax

--

65,535

--

msgtql

--

1,024

--

msgmap

--

258

--

msgmni

--

256

--

msgssz

--

16

--

semmni

--

512

70

106

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

semmap

--

514

--

semmns

--

1,024

200

semmnu

--

1,024

--

shmmax

--

966,367,642

1

GB

shmmseg

--

16

10

shmmni

--

300

100

-

How

to

view

or

set:

Use

the

HP-UX

SAM

utility

to

set

the

kernel

parameters.

See

the

documentation

for

your

operating

system

for

directions.

-

Default

value:

None

-

Recommended

value:

See

table
–

HP-UX

11i

kernel

parameter

recommendations

for

WebSphere

MQ

5.3

-

Description:

The

embedded

messaging

uses

WebSphere

MQ

5.3.

The

following

are

WebSphere

MQ

5.3

recommended

kernel

parameter

settings:

Kernel

parameter

Setting

shmmax

536870912

shmseg

1024

shmmni

1024

shmem

1

sema

1

semaem

16384

semvmx

32767

semmns

16384

semmni

1024

(semmni

<

semmns)

semmap

1026

(semmni

+2)

semmnu

2048

semume

256

msgmni

50

msgtql

256

msgmap

258

(msgtql

+2)

msgmax

4096

msgmnb

4096

msgssz

8

msgseg

1024

maxusers

32

max_thread_proc

66

maxfiles

1024

nfile

10000

-

How

to

view

or

set:

Use

the

HP-UX

SAM

utility

to

set

the

kernel

parameters.

See

the

documentation

for

your

operating

system

for

directions.

-

Default

value:

None

-

Recommended

value:

See

table

Chapter

4.

Tuning

performance

parameter

index

107

–

Generational

garbage

collection

nursery

size

-

Description:

WebSphere

Application

Server

5.0

ships

with

the

the

HP

native

JVM,

which

is

based

on

the

Sun

Hotspot

technology.

One

of

its

features

is

the

use

of

generational

garbage

collection

where

the

heap

is

divided

into

new

and

old

generations.

The

appropriate

size

of

the

new

generation

or

nursery

must

be

determined

using

performance

analysis

tools

such

as

Glance.

If

the

nursery

size

is

properly

chosen,

the

overhead

of

garbage

collection

is

reduced

and

throughput

and

response

time

improve.

-

How

to

view

or

set:

Use

the

-Xmn

command

at

the

generic

Java

options,

for

example,

using

-Xmn512m

sets

the

nursery

size

to

512MB.

-

Default

value:

One-third

the

maximum

heap

size.

-

Recommneded

value:

When

several

short-life

objects

are

created,

set

the

value

to

one-half

the

maximum

heap

size.
v

Tuning

Linux

–

SLES8

SP2A

-

sched_yield_scale

tuning

-

Description:

The

Linux

scheduler

is

very

sensitive

to

excessive

context

switching,

so

fixes

have

been

integrated

into

the

SLES8

kernel

distribution

to

introduce

delay

when

a

thread

yields

processing.

This

fix

is

automatically

enabled

in

SLES8

SP3

but

must

be

enable

explicitly

in

SLES8

SP2A

or

above.

-

How

to

view

or

set:

1.

If

you

are

running

any

SLES8

service

pack

below

SP2A,

upgrade

to

SP2A.

2.

Issue

the

command

sysctl

-w

sched_yield_scale=1
-

Default

value:

0

-

Recommended

value:

1
–

RedHat

Advanced

Server

2.1

Kernel

update

-

Description:

Kernel

updates

for

RedHat

Advanced

Server

2.1

have

implemented

changes

effecting

WebSphere

performance,

especially

Memory

to

Memory

HTTP

Session

replication.

-

How

to

view

or

set:

1.

Issue

the

command:

uname

-a

2.

If

you

are

running

any

kernel

prior

to

2.4.9-e.23,

upgrade

at

least

to

this

kernel,

but

preferably

to

the

latest

supported.
-

Default

value:

2.4.9-e.3

-

Recommended

value:

2.4.9-e.23

Tuning

applications

Application

assembly

tools

are

used

to

build

J2EE

components

and

modules

into

J2EE

applications.

Generally,

assembling

consists

of

defining

application

components

and

their

attributes

including

enterprise

beans,

servlets

and

resource

references.

Many

of

these

application

configuration

settings

and

attributes

play

an

important

role

in

the

run-time

performance

of

the

deployed

application.

v

EJB

modules

–

Entity

bean

Bean

Cache

-

Activate

at

and

Bean

Cache

-

Load

at

settings

–

Method

extensions

Isolation

level

and

Access

intent

settings

–

Container

transactions

assembly

settings
v

Web

modules

–

Web

modules

assembly

settings

-

Distributable

-

Reload

interval

-

Reload

enabled
v

Web

components

108

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

–

Load

on

startup

Chapter

4.

Tuning

performance

parameter

index

109

110

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

Notices

References

in

this

publication

to

IBM

products,

programs,

or

services

do

not

imply

that

IBM

intends

to

make

these

available

in

all

countries

in

which

IBM

operates.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

IBM’s

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

of

IBM’s

intellectual

property

rights

may

be

used

instead

of

the

IBM

product,

program,

or

service.

Evaluation

and

verification

of

operation

in

conjunction

with

other

products,

except

those

expressly

designated

by

IBM,

is

the

user’s

responsibility.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

500

Columbus

Avenue

Thornwood,

New

York

10594

USA

©

Copyright

IBM

Corp.

2002,

2003

111

112

IBM

WebSphere

Application

Server

Network

Deployment,

Version

5.1:

Performance

Tuning

and

Monitoring

Trademarks

and

service

marks

The

following

terms

are

trademarks

of

IBM

Corporation

in

the

United

States,

other

countries,

or

both:

v

AIX

v

CICS

v

Cloudscape

v

DB2

v

DFSMS

v

Everyplace

v

iSeries

v

IBM

v

IMS

v

Informix

v

iSeries

v

Language

Environment

v

MQSeries

v

MVS

v

OS/390

v

RACF

v

Redbooks

v

RMF

v

SecureWay

v

SupportPac

v

ViaVoice

v

VisualAge

v

VTAM

v

WebSphere

v

z/OS

v

zSeries

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

©

Copyright

IBM

Corp.

2002,

2003

113

	Contents
	How to send your comments
	Chapter 1. Monitoring performance
	Performance Monitoring Infrastructure
	Performance data organization
	BeanModule data counters
	Data counter definitions

	JDBC connection pool data counters
	Data counter definitions

	J2C connection pool data counters
	Data counter definitions

	Java Virtual Machine data counters
	Data counter definitions

	Object Request Broker data counters
	Data counter definitions

	Session data counters
	Data counter definitions

	Transaction data counters
	Data counter definitions

	ThreadPool data counters
	Data counter definitions

	Web application data counters
	Data counter definitions

	Workload Management data counters
	Data counter definitions

	System data counters
	Data counter definitions

	Dynamic cache data counters
	Data counter definitions

	Web services gateway data counters
	Data counter definitions

	Web services data counters
	Data counter definitions

	Performance data classification
	Enabling performance monitoring services in the application server through the administrative console
	Performance monitoring service settings
	Startup
	Initial specification level
	Specifications

	Enabling performance monitoring services in the NodeAgent through the administrative console
	Enabling performance monitoring services using the command line
	Enabling Java Virtual Machine Profiler Interface data reporting
	Java Virtual Machine Profiler Interface

	Monitoring and analyzing performance data
	Monitoring performance with Tivoli Performance Viewer (formerly Resource Analyzer)
	Tivoli Performance Viewer features
	Starting the Tivoli Performance Viewer
	Setting performance monitoring levels
	Viewing summary reports
	Changing the refresh rate of data retrieval
	Changing the display buffer size
	Viewing and modifying performance chart data
	Scaling the performance data chart display
	Refreshing data
	Clearing values from tables and charts
	Storing data to a log file
	Replaying a performance data log file
	Resetting counters to zero

	Developing your own monitoring applications
	Performance Monitoring Infrastructure client interface
	Developing your own monitoring application using Performance Monitoring Infrastructure client
	Developing your own monitoring applications with Performance Monitoring Infrastructure servlet
	Developing your own monitoring application with the Java Management Extension interface
	Developing Performance Monitoring Infrastructure interfaces (Version 4.0)
	Compiling your monitoring applications
	Running your new monitoring applications

	Tivoli performance monitoring and management solutions
	Third-party performance monitoring and management solutions

	Measuring data requests (Performance Monitoring Infrastructure Request Metrics)
	Performance Monitoring Infrastructure Request Metrics
	Application Response Measurement
	Performance Monitoring Infrastructure Request Metrics trace filters
	Performance Monitoring Infrastructure Request Metrics data output
	Configuring Request Metrics
	Enabling Performance Monitoring Infrastructure Request Metrics
	Enabling Application Response Measurement
	Enabling Performance Monitoring Infrastructure Request Metrics filters
	Setting the trace level in Performance Monitoring Infrastructure Request Metrics
	Performance Monitoring Infrastructure Request Metrics
	Regenerating the Web server plug-in configuration file

	Example: Generating trace records from Performance Monitoring Infrastructure Request Metrics

	Performance: Resources for learning

	Chapter 2. Using the Runtime Performance Advisor
	Runtime Performance Advisor configuration settings
	Enable Runtime Performance Advisor
	Enable Runtime Performance Advisor
	Calculation Interval
	Maximum warning sequence
	Number of processors
	Restart button

	Advice configuration settings
	Advice name
	Advice applied to component
	Advice status
	Advice status

	Chapter 3. Using the Performance Advisor in Tivoli Performance Viewer
	Performance Advisor Report in Tivoli Performance Viewer
	Message
	Performance data in lower panel

	Chapter 4. Tuning performance parameter index
	Tuning parameter hot list
	Performance troubleshooting tips
	Tuning hardware capacity and settings
	Tuning operating systems
	Tuning applications

	Notices
	Trademarks and service marks

