
IBM WebSphere Application Server, Version 5

Servers

���

Note
Before using this information, be sure to read the general information under “Trademarks and service marks” on page v.

Compilation date: November 13, 2002

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Trademarks and service marks v

Chapter 1. Welcome to Servers. 1

Chapter 2. Configuring application
servers 3
Application servers 3
Creating application servers 4

Configuring application servers for UTF-8
encoding 5

Managing application servers 5
Application server collection 6
Starting servers 10
Running servers as non-root using the console . 10
Detecting and handling problems with run-time
components 11
Stopping servers 11

Transports 11
Configuring transports 12

HTTP transport collection 13
HTTP transport settings 13
Example: Manually editing transport settings in
the server.xml file 14

Custom services 15
Developing custom services 15

Custom service collection 17
Process definition 18
Defining application server processes 18

Process definition settings 19
Java virtual machines (JVMs) 21
Using the JVM 21

Java virtual machine settings 22
Example: Configuring JVM sendRedirect calls to
use context root 24

Preparing to host applications 25
Application servers: Resources for learning 25

Chapter 3. Managing Object Request
Brokers 27
Object Request Brokers 27
Object Request Broker tuning guidelines. 28
Object Request Broker service settings in
administrative console 28

Request timeout 29
Request retries count 29
Request retries delay 29
Connection cache maximum 29
Connection cache minimum 29
ORB tracing 30
Locate request timeout 30
Force tunneling 30
Tunnel agent URL 30
Pass by reference 31

Object Request Broker service settings that can be
added to the administrative console 31
Object Request Broker communications trace . . . 32
Client-side programming tips for the Java Object
Request Broker service. 36
Character codeset conversion support for the Java
Object Request Broker service 38
Object Request Brokers: Resources for learning . . 39

© Copyright IBM Corp. 2002 iii

iv IBM WebSphere Application Server, Version 5: Servers

Trademarks and service marks

The following terms are trademarks of IBM Corporation in the United States, other
countries, or both:
v Everyplace
v iSeries
v IBM
v Redbooks
v ViaVoice
v WebSphere
v zSeries

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product and service names may be trademarks or service marks of
others.

© Copyright IBM Corp. 2002 v

vi IBM WebSphere Application Server, Version 5: Servers

Chapter 1. Welcome to Servers

The product provides application servers and more.

Application servers

Application servers extend the ability of a Web server to handle Web application
requests. An application server enables a server to generate a dynamic, customized
response to a client request.

You can (configure one or more application servers) and enhance the operation of
an application server using:
v (transports)
v (custom services)
v (command-line information) that passes to a server when it starts or initializes
v Settings that (improve the use of the Java virtual machine (JVM))

Application servers use an Object Request Broker (ORB) for RMI/IIOP
communication.

Java Messaging (JMS) servers

The product supports asynchronous messaging based on the Java Messaging
Service (JMS) of a JMS provider that conforms to the JMS specification version
1.0.2 and supports the Application Server Facility (ASF) function defined within
that specification.

For IBM WebSphere Application Server, the JMS functions (of the JMS provider) for
an application server are served by the JMS server within the application server.
For Network Deployment and Enterprise Extensions, the JMS functions (of JMS
providers) within the administration domain are served by one or more JMS
servers. There can be at most one JMS server on each node in the administration
domain, and any application server within the domain can access JMS resources
served by any JMS server on any node in the domain.

Web services servers

The Web services components included with this product version build upon the
Apache Simple Object Access Protocol (SOAP) 2.3-based capabilities delivered with
Version 4.0.x.

New in Network Deployment are the following features:
v A private Universal Description, Discovery and Integration (UDDI) Registry,

implementing Version 2.0 of the UDDI specification
v A Web Services Gateway for providing gateway access to existing Web services

© Copyright IBM Corp. 2002 1

2 IBM WebSphere Application Server, Version 5: Servers

Chapter 2. Configuring application servers

An application server configuration provides settings that control how an
application server provides services for running enterprise applications and their
components.

This section describes how to create and configure application servers, and how to
otherwise handle server configurations.

A WebSphere Application Server administrator can configure one or more
application servers and perform tasks such as the following:

Steps for this task
1. Create application servers.
2. Manage application servers.
3. (Optional) Configure transports.
4. (Optional) Develop custom services.
5. (Optional) Define processes for the application server. As part of defining

processes, you can define process execution statements for starting or
initializing a UNIX process, monitoring policies to track the performance of a
process, process logs to which standard out and standard error streams write,
and name-value pairs for properties.

6. (Optional) Use the Java virtual machine.

After preparing a server, deploy an application or component on the server. See
″Preparing to host applications″ for a sample procedure that you might follow in
configuring the application server run-time and resources.

Application servers
Application servers extend a Web server’s capabilities to handle Web application
requests, typically using Java technology. An application server makes it possible
for a server to generate a dynamic, customized response to a client request.

For example, suppose—
1. A user at a Web browser on the public Internet visits a company Web site. The

user requests to use an application that provides access to data in a database.
2. The user request flows to the Web server.
3. The Web server determines that the request involves an application containing

resources not handled directly by the Web server (such as servlets). It forwards
the request to a WebSphere Application Server product.

4. The WebSphere Application Server product forwards the request to one of its
application servers on which the application is running.

5. The invoked application then processes the user request. For example:
v An application servlet prepares the user request for processing by an

enterprise bean that performs the database access.
v The application produces a dynamic Web page containing the results of the

user query.

© Copyright IBM Corp. 2002 3

6. The application server collaborates with the Web server to return the results to
the user at the Web browser.

The WebSphere Application Server product provides multiple application servers
that can be either separately configured processes or nearly identical clones.

Creating application servers
You can create a new application server using the wsadmin tool or the Create New
Application Server page of the administrative console. The steps below describe
how to use the Create New Application Server page.

Steps for this task
1. Go to the Application Servers page and click New. This brings you to the

Create New Application Server page.
2. Follow the instructions on the Create New Application Server page and define

your application server.
a. Select a node for the application server.
b. Type in a name for the application server. The name must be unique within

the node.
c. Select whether the new server will have unique ports for each HTTP

transport. By default, this option is enabled. If you select this option, you
might need to update the alias list for the virtual host that you plan to use
with this server to contain these new port values. If you deselect this
option, ensure that the default port values do not conflict with other servers
on the same physical machine.

d. Select a template to be used in creating the new server. You can use a
default application server template for your new server or use an existing
application server as a template. The new application server will inherit all
properties of the template server.

e. If you create the new server using an existing application server as a model,
select whether to map applications from the existing server to the new
server. By default, this option is disabled.

3. (Optional) To use multiple language encoding support in the administrative
console, configure an application server with UTF-8 encoding enabled.

Results

The new application server appears in the list of servers on the Application Servers
page.

What to do next

Note that the application server created has many default values specified for it.
An application server has many properties that can be set and creating an
application server on the Create New Application Server page specifies values for
only a few of the important properties. To view all of the properties of your
application server and to customize your application server further, click on the
name of your application server on the Application Servers page and change the
settings for your application server as needed.

4 IBM WebSphere Application Server, Version 5: Servers

Configuring application servers for UTF-8 encoding
To use multiple language encoding support in the administrative console, you
must configure an application server with UTF-8 encoding enabled.

Steps for this task
1. Create an application server or use an existing application server.
2. On the Application Server page, click on the name of the server you want

enabled for UTF-8.
3. On the settings page for the selected application server, click Process

Definition.
4. On the Process Definition page, click Java Virtual Machine.
5. On the Java Virtual Machine page, specify -Dclient.encoding.override=UTF-8

for Generic JVM Arguments and click OK.
6. Click Save on the console taskbar.
7. Restart the application server.

Note that the autoRequestEncoding option does not work with UTF-8 encoding
enabled. The default behavior for WebSphere Application Server is, first, to check if
charset is set on content type header. If it is, then the product uses content type
header for character encoding; if it is not, then the product uses character encoding
set on server using the system property default.client.encoding. If charset is not
present and the system property is not set, then the product uses ISO-8859-1.
Enabling autoRequestEncoding on a Web module changes the default behavior: if
charset it not present on an incoming request header, the product checks the
Accept-Language header of the incoming request and does encoding using the first
language found in that header. If there is no charset on content type header and no
Accept language header, then the product uses character encoding set on server
using the system property default.client.encoding. As with the default behavior, if
charset is not present and the system property is not set, then the product uses
ISO-8859-1.

Managing application servers
To view information about an application server, use the Application Servers page.
For the Network Deployment product, you can also use the Application Servers
page to manage application servers. For the single-server (base) product, you
cannot manage application servers from the administrative console; you must
manage application servers from a console hosted by a Network Deployment
deployment manager, use the wasadmin tool, or use command line tools such as
startServer and stopServer.

Steps for this task
1. Access the Application Servers page. Click Servers > Application Servers in

the console navigation tree.
2. View information about application servers. The Application Servers page lists

application servers in the cell and the nodes holding the application servers.
To view additional information about a particular application server or to
further configure a server, click on the server’s name under Name. This
accesses the settings page for an application server.
To view product information for a server:
a. Ensure that the server is running.
b. Go to the Runtime tab on the settings page for an application server.

Chapter 2. Configuring application servers 5

c. Click Product Information.

The Product Information page displayed lists the WebSphere Application Server
products installed for the server, the version and build levels for the products,
the build dates, and any e-fixes applied to the server.

3. Create an application server. Click New and follow the instructions on the
Create New Application Server page.

4. Monitor the running of application servers.
5. (Optional) Delete an application server.

a. Click Servers > Application Servers in the console navigation tree to access
the Application Servers page.

b. Place a checkmark in the check box beside the server you want deleted.
c. Click Delete.
d. Click OK to confirm the deletion.

Application server collection
Use this page to view information about and manage application servers.

The Application Servers page lists application servers in the cell and the nodes
holding the application servers.

To view this administrative console page, click Servers > Application Servers.

Name
Specifies a logical name for the server. Server names must be unique within a
node.

Node
Specifies the name of the node for the application server.

Status
Indicates whether the application server is started or stopped.

Note that if the status is Unavailable, the node agent is not running in that node
and you must restart the node agent before you can start the server.

Application server settings
Use this page to view or change the settings of an application server instance.

To view this administrative console page, click Servers > Application Servers >
server_name.

The Configuration tab provides editable fields and the Runtime tab provides
read-only information. The Runtime tab is available only when the server is
running.

Name: Specifies a logical name for the server. Server names must be unique
within a node.

Data type String
Default server1

Initial State: Specifies the desired state of the application server when its
containing process (node) starts. The options are Started and Stopped. The default is
Started.

6 IBM WebSphere Application Server, Version 5: Servers

Data type String
Default Started

Application Classloader Policy: Specifies whether to use a single classloader to
load all applications or to use a different classloader for each application.

The options are SINGLE and MULTIPLE. The default is to use a separate
classloader for each application (MULTIPLE).

Data type String
Default MULTIPLE

Application Classloading Mode: Specifies whether the classloader should search
in the parent classloader or in the application classloader first to load a class. The
standard for JDK classloaders and WebSphere classloaders is PARENT_FIRST. By
specifying PARENT_LAST, your application can override classes contained in the
parent classloader, but this action can potentially result in ClassCastException or
LinkageErrors if you have mixed use of overriden classes and non-overriden
classes.

The options are PARENT_FIRST and PARENT_LAST. The default is to search in
the parent classloader before searching in the application classloader to load a
class.

Data type String
Default PARENT_FIRST

Process ID: Specifies a string identifying the process.

Data type String

Cell Name: Specifies the name of the cell for the application server.

Data type String
Default host_nameNetwork

Node Name: Specifies the name of the node for the application server.

Data type String

State: Indicates whether the application server is started or stopped.

Data type String
Default Started

End point collection: Use this page to view and manage communication end
points used by run-time components running within a process. End points provide
host and port specifications for a server.

To view this administrative console page, click Servers > Application Servers >
server_name > End Points.

Chapter 2. Configuring application servers 7

Note that this page displays only when you are working with end points for
application servers.

End Point Name: Specifies the name of an end point. Each name must be unique
within the server.

End point settings: Use this to view and change the configuration for a
communication end point used by run-time components running within a process.
An end point provides host and port specifications for a server.

To view this administrative console page, click Servers > Application Servers >
server_name > End Points > end_point_name.

End Point Name: Specifies the name of the end point. The name must be unique
within the server.

Note that this field displays only when you are defining an end point for an
application server.

Data type String

Host: Specifies the IP address, domain name server (DNS) host name with
domain name suffix, or just the DNS host name, used by a client to request a
resource (such as the naming service, administrative service, or JMS broker).

For example, if the host name is myhost, the fully qualified DNS name can be
myhost.myco.com and the IP address can be 155.123.88.201.

Data type String
Default *

Port: Specifies the port for which the service is configured to accept client
requests. The port value is used in conjunction with the host name.

Data type Integer
Default None

Property collection: Use this page to view and manage arbitrary name-value
pairs of data, where the name is a property key and the value is a string value that
can be used to set internal system configuration properties.

To view this administrative console page, click Servers > Application Servers >
server_name > Custom Properties.

Name: Specifies the name (or key) for the property.

Value: Specifies the value paired with the specified name.

Description: Provides information about the name-value pair.

Property settings: Use this page to configure arbitrary name-value pairs of data,
where the name is a property key and the value is a string value that can be used
to set internal system configuration properties. Defining a new property enables
you to configure a setting beyond that which is available in the administrative
console.

8 IBM WebSphere Application Server, Version 5: Servers

To view this administrative console page, click Servers > Application Servers >
server_name > Custom Properties > property_name.

Name: Specifies the name (or key) for the property.

Data type String

Value: Specifies the value paired with the specified name.

Data type String

Description: Provides information about the name-value pair.

Data type String

Server component collection: Use this page to view information about and
manage server component types such as application servers, messaging servers, or
name servers.

To view this administrative console page, click Servers > Application Servers >
server_name > Server Components.

Type: Specifies the type of internal server.

Server component settings: Use this page to view or configure a server
component instance.

To view this administrative console, click Servers > Application Servers >
server_name > Server Components > server_component_name.

Name: Specifies the name of the component.

Data type String

Initial State: Specifies the desired state of the component when the server process
starts. The options are: Started and Stopped. The default is Started.

Data type String
Default Started

Thread pool settings: Use this page to configure a group of threads that an
application server uses. A thread pool enables components of the server to reuse
threads to eliminate the need to create new threads at run time. Creating new
threads expends time and resources.

To view this administrative console page, click Servers > Manage Application
Servers > server_name > ORB Service > Thread Pool. (You can reach this page
through more than one navigational route.)

Minimum size: Specifies the minimum number of threads to allow in the pool.

Data type Integer
Default 10

Chapter 2. Configuring application servers 9

Maximum size: Specifies the maximum number of threads to allow in the pool.

Data type Integer
Default 50

Thread inactivity timeout: Specifies the number of milliseconds of inactivity that
should elapse before a thread is reclaimed. A value of 0 indicates not to wait and a
negative value (less than 0) means to wait forever.

Data type Integer
Units Milliseconds
Default 3500

Growable thread pool: Specifies whether the number of threads can increase
beyond the maximum size configured for the thread pool.

Data type Boolean
Default Not enabled (false)
Range Valid values are Allow thread allocation beyond maximum

thread size or Not enabled.

Starting servers
Starting a server starts a new server process based on the current server
configuration’s process definition settings.

Starting a server from a command line

To start a server, run the startServer command.

Starting a server for tracing and debugging

To start the server with standard Java debugging enabled:
1. Click Servers > Application Servers from the administrative console navigation

tree. Then, click the application server whose processes you want to trace and
debug, Process Definition, and Java Virtual Machine.

2. On the Java Virtual Machine page, place a checkmark in the check box for the
Debug Mode setting to enable the standard Java debugger. If needed, set
debug arguments. Then, click OK.

3. Save the changes to a configuration file.
4. Stop the server.
5. Start the server again (see above).

Running servers as non-root using the console
By default, WebSphere Application Server servers use a root ID. A server can be
run using a non-root ID if security file system permissions grant all users of a
certain group writable access to main WebSphere Application Server directories
and the user ID and group ID for the server ″run as″ the user and group.

Steps for this task
1. Specify user and group ID values for the Run As User and Run As Group

settings for a server

10 IBM WebSphere Application Server, Version 5: Servers

a. Go to the Process Execution page for the server you want to run as
non-root. Click Servers > Application Servers > server_name > Process
Definition > Process Execution.

b. For Run As User, specify a user name for the process to run as.
c. For Run As Group, specify a group name for the process to run as.

2. Using operating system tools, create a set of users that are all in the group.
3. Using operating system tools, change the permissions of the WebSphere

Application Server installation root (install_root) directory.
a. Change the group owner to the group.
b. Make the following files under the install_root directory writable by the

group:
v Log files
v All files and subdirectories below the tranlog directory
v All files and subdirectories below the config/temp directory

4. From the user ID, run the startServer command to start the server.

Detecting and handling problems with run-time components
You must monitor the status of run-time components to ensure that, once started,
they remain operational as needed.

Steps for this task
1. Regularly examine the status of run-time components.

One way is using the Logging and Tracing page of the administrative console.
Click Troubleshooting > Logs and Trace in the console navigation tree to
access the page.
Another way is to browse messages displayed under Websphere Runtime
Messages in the WebSphere status area at the bottom of the console. The
run-time event messages marked with a red X provide detailed information on
event processing.

2. If an application stops running when it should be operational, examine the
application’s status on an Applications page and try restarting the application.

3. If the run-time components do not restart, re-examine the messages and read
information on problem determination to help you to restart the components.

Stopping servers
Stopping a server stops a server process based on the current server
configuration’s process definition settings.

Stopping a server from a command line

To stop a server, run the stopServer command.

Transports
A transport is the request queue between a WebSphere Application Server plug-in
for Web servers and a Web container in which the Web modules of an application
reside. When a user at a Web browser requests an application, the request is
passed to the Web server, then along the transport to the Web container.

Chapter 2. Configuring application servers 11

Transports define the characteristics of the connections between a Web server and
an application server, across which requests for applications are routed.
Specifically, they define the connection between the Web server plug-in and the
Web container of the application server.

Administering transports is closely related to administering WebSphere Application
Server plug-ins for Web servers. Indeed, without a plug-in configuration, a
transport configuration is of little use.

The internal transport

For applications in a test or development environment (in other words, a
non-production environment), you can use the internal HTTP transport system to
serve servlets without an Web server plug-in. Simply use the internal HTTP
transport port (typically on port 9080).

For example, to serve a servlet (servlet_path_name) without an HTTP server, use the
URL: http://server_name:port/servlet_path_name

with port being the internal transport port number (typically 9080) and server_name
being localhost if the application server is on the local machine.

For a production environment, do not use the internal transport, as it lacks the
performance available when using a Web server plug-in.

At times, you might be able to configure the internal transport to use a port other
than 9080. The transport configuration is a part of the Web container configuration.
To change the port number, you must adjust your virtual host alias and what you
type into the Web browser.

Configuring transports
You configure transports to specify:
v How to manage a set of connections. For example, to specify the number of

concurrent requests to allow.
v Whether to secure the connections with SSL
v Host and IP information for the transport participants

Steps for this task
1. Create an HTTP transport.

a. Ensure that virtual host aliases include port values for the new transport.
b. Go to the HTTP Transports page and click New.
c. On the settings page for an HTTP transport, specify values such as the

transport’s host name and port number, then click OK.
2. (Optional) Change the configuration for an existing transport.

a. Ensure that virtual host aliases include port values for the transport your
are changing.

b. Go to the HTTP Transports page and click on the transport under Host
whose configuration you want to change.

c. On the settings page for an HTTP transport, which might have the page
title DefaultSSLSettings, change the specified values as needed, then click
OK.

3. Regenerate the WebSphere plug-in for the Web server.

12 IBM WebSphere Application Server, Version 5: Servers

If the Web server is located on a machine remote from the application server, you
might also need to perform special configuration tasks to redirect application
requests from the Web server machine to the application server machine.

HTTP transport collection
Use this page to view or manage HTTP transports. Transports provide request
queues between WebSphere plug-ins for Web servers and Web containers in which
the Web modules of applications reside. When you request an application in a Web
browser, the request is passed to the Web server, then along the transport to the
Web container.

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > HTTP Transports.

Host
Specifies the host IP address to bind for transport. If the application server is on a
local machine, the host name might be localhost.

Port
Specifies the port to bind for transport. The port number can be any port that
currently is not in use on the system. The port number must be unique for each
application server instance on a given machine.

SSL Enabled
Specifies whether to protect connections between the WebSphere plug-in and
application server with Secure Sockets Layer (SSL). The default is not to use SSL.

HTTP transport settings
Use this page to view and configure an HTTP transport. The name of the page
might be that of an SSL setting such as DefaultSSLSettings.

To view this administrative console page, click Servers > Application Servers >
server_name > Web Container > HTTP Transports > host_name.

Host
Specifies the host IP address to bind for transport.

If the application server is on a local machine, the host name might be localhost.

Data type String

Port
Specifies the port to bind for transport. The port number can be any port that
currently is not in use on the system. The port number must be unique for each
application server instance on a given machine.

Data type Integer

SSL Enabled
Specifies whether to protect connections between the WebSphere plug-in and
application server with Secure Sockets Layer (SSL). The default is not to use SSL.

Data type Boolean
Default false

Chapter 2. Configuring application servers 13

SSL
Specifies the Secure Sockets Layer (SSL) settings type for connections between the
WebSphere plug-in and application server. The options include one or more SSL
settings defined in the Security Center; for example, DefaultSSLSettings,
ORBSSLSettings, or LDAPSSLSettings.

Data type String
Default An SSL setting defined in the Security Center

Example: Manually editing transport settings in the server.xml
file

WebSphere Application Server Version 4.x has several transport properties that are
not shown in the settings page for an HTTP transport:

ConnectionIOTimeout
Specifies the maximum number of seconds to wait when trying to read or
write data during a request.

ConnectionKeepAliveTimeout
Specifies the maximum number of seconds to wait for the next request on
a keep alive connection.

MaxKeepAliveConnections
Specifies the maximum number of concurrent keep alive (persistent)
connections across all HTTP transports. The default value is 90% of the
maximum number of threads in the Web container thread pool. This
prevents all of the threads from being held by keep alive connections so
that there are threads available to handle new incoming connect requests.

MaxKeepAliveRequests
Specifies the maximum number of requests which can be processed on a
single keep alive connection.

To specify values for these transport properties, you can edit the <properties>
settings in the server.xml file shown in bold font below. After editing the
server.xml file, restart the server and regenerate the Web server plug-in. As to each
of the new properties, whatever value you specify for a first transport is applied
globally to all other HTTP transports in the cell.
<components xmi:type="applicationserver.webcontainer:WebContainer"

xmi:id="WebContainer_1" enableServletCaching="false">
<stateManagement xmi:id="StateManageable_5" initialState="START"/>
<properties xmi:id="WebContainer_Property_1" name="MaxConnectBacklog"

value="50"/>
<properties xmi:id="WebContainer_Property_2"

name="MaxKeepAliveConnections" value="45"/>
<properties xmi:id="WebContainer_Property_3"

name="MaxKeepAliveRequests" value="100"/>
<properties xmi:id="WebContainer_Property_4"

name="ConnectionIOTimeout" value="5"/>
<properties xmi:id="WebContainer_Property_5"

name="ConnectionKeepAliveTimeout" value="5"/>
<services xmi:type="applicationserver.webcontainer:SessionManager"

xmi:id="SessionManager_1" enable="true" enableUrlRewriting="false"
enableCookies="true" enableSSLTracking="false"
enableProtocolSwitchRewriting="false"
enableSecurityIntegration="false"
sessionPersistenceMode="NONE" allowSerializedSessionAccess="false"
accessSessionOnTimeout="true" maxWaitTime="5">

<defaultCookieSettings xmi:id="Cookie_1" name="JSESSIONID" domain=""
maximumAge="-1" path="/" secure="false"/>

14 IBM WebSphere Application Server, Version 5: Servers

<sessionDatabasePersistence xmi:id="SessionDatabasePersistence_1"
datasourceJNDIName="jdbc/Sessions" userId="db2admin"
password="db2admin" db2RowSize="ROW_SIZE_4KB"
tableSpaceName=""/>

<tuningParams xmi:id="TuningParams_1" usingMultiRowSchema="false"
maxInMemorySessionCount="1000" allowOverflow="true"
invalidationTimeout="30" writeContents="ONLY_UPDATED_ATTRIBUTES"
writeFrequency="TIME_BASED_WRITE" writeInterval="120"
scheduleInvalidation="false">

<invalidationSchedule xmi:id="InvalidationSchedule_1" firstHour="14"
secondHour="2"/>

</tuningParams>
</services>
<threadPool xmi:id="ThreadPool_2" minimumSize="10" maximumSize="50"

inactivityTimeout="3500" isGrowable="false"/>
<transports xmi:type="applicationserver.webcontainer:HTTPTransport"

xmi:id="HTTPTransport_1" sslEnabled="false">
<address xmi:id="EndPoint_1" host="" port="9080"/>

</transports>
<transports xmi:type="applicationserver.webcontainer:HTTPTransport"

xmi:id="HTTPTransport_2" sslEnabled="true"
sslConfig="DefaultSSLSettings">

<address xmi:id="EndPoint_2" host="" port="9443"/>
</transports>
<transports xmi:type="applicationserver.webcontainer:HTTPTransport"

xmi:id="HTTPTransport_3" sslEnabled="false">
<address xmi:id="EndPoint_3" host="" port="9090"/>

</transports>
<transports xmi:type="applicationserver.webcontainer:HTTPTransport"

xmi:id="HTTPTransport_4" sslEnabled="true"
sslConfig="DefaultSSLSettings">

<address xmi:id="EndPoint_4" host="" port="9043"/>
</transports>

</components>

Custom services
A custom service provides the ability to plug into a WebSphere application server
to define a hook point that runs when the server starts and shuts down.

A developer implements a custom service containing a class that implements a
particular interface. The administrator configures the custom service in the
administrative console, identifying the class created by the developer. When an
application server starts, any custom services defined for the application server are
loaded and the server run-time calls their initialize methods.

Developing custom services
To define a hook point to be run when a server starts and shuts down, you
develop a custom service class and then use the administrative console to
configure a custom service instance for an application server. When the application
server starts, the custom service starts and initializes.

Steps for this task
1. Develop a custom service class that implements the ConfigService.html file

described in Javadoc
(../javadoc/ae/com/ibm/websphere/management/configservice
/ConfigService.html).
The properties passed by the application server run-time to the initialize
method can include one for an external file containing configuration
information for the service (retrieved with externalConfigURLKey). In addition,

Chapter 2. Configuring application servers 15

the properties can contain any name-value pairs that are stored for the service,
along with the other system administration configuration data for the service.
The properties are passed to the initialize method of the service as a Properties
object.
There is a shutdown method for the interface as well. Both methods of the
interface declare that they may throw an exception, although no specific
exception subclass is defined. If an exception is thrown, the run-time logs it,
disables the custom service, and proceeds with starting the server.

2. On the Custom Service page of the administrative console, click New. Then, on
the settings page for a custom service instance, create a custom service
configuration for an existing application server, supplying the name of the class
implemented.
If your custom services class requires a configuration file, specify the
fully-qualified path name to that configuration file in the externalConfigURL
field. This file name is passed into your custom service class.

3. Stop the application server and then restart the server.
4. Check the application server to ensure that the initialize method of the custom

service ran as intended. Also ensure that the shutdown method performs as
intended when the server stops.

Usage scenario

As mentioned above, your custom services class must implement the
CustomService interface. In addition, your class must implement the initialize and
shutdown methods. Suppose the name of the class that implements your custom
service is ServerInit, your code would declare this class as shown below. The code
below assumes that your custom services class needs a configuration file. It shows
how to process the input parameter in order to get the configuration file. If your
class does not require a configuration file, the code that processes configProperties
is not needed.
public class ServerInit implements CustomService
{
/**
* The initialize method is called by the application server run-time when the
* server starts. The Properties object passed to this method must contain all
* configuration information necessary for this service to initialize properly.
*
* @param configProperties java.util.Properties
*/

static final java.lang.String externalConfigURLKey =
"com.ibm.websphere.runtime.CustomService.externalConfigURLKey";

static String ConfigFileName="";

public void initialize(java.util.Properties configProperties) throws Exception
{

if (configProperties.getProperty(externalConfigURLKey) != null)
{

ConfigFileName = configProperties.getProperty(externalConfigURLKey);
}

// Implement rest of initialize method
}

/**
* The shutdown method is called by the application server run-time when the
* server begins its shutdown processing.
*
* @param configProperties java.util.Properties
*/

16 IBM WebSphere Application Server, Version 5: Servers

public void shutdown() throws Exception
{

// Implement shutdown method
}

Custom service collection
Use this page to view a list of services available to the application server and to
see whether the services are enabled. A custom service provides the ability to plug
into a WebSphere application server and define code that runs when the server
starts or shuts down.

To view this administrative console page, click Servers > Application Servers >
server_name > Custom Services.

External Configuration URL
Specifies the URL for a custom service configuration file.

If your custom services class requires a configuration file, the value provides a
fully-qualified path name to that configuration file. This file name is passed into
your custom service class.

Classname
Specifies the class name of the service implementation. This class must implement
the Custom Service interface.

Display Name
Specifies the name of the service.

Startup
Specifies whether the server attempts to start and initialize the service when its
containing process (the server) starts. By default, the service is not enabled when
its containing process starts.

Custom service settings
Use this page to configure a service that runs in an application server.

To view this administrative console page, click Servers > Application Servers >
server_name > Custom Services > custom_service_name.

Startup: Specifies whether the server attempts to start and initialize the service
when its containing process (the server) starts. By default, the service is not
enabled when its containing process starts. To enable the service, place a
checkmark in the check box.

Data type Boolean
Default false

External Configuration URL: Specifies the URL for a custom service
configuration file.

If your custom services class requires a configuration file, specify the
fully-qualified path name to that configuration file for the value. This file name is
passed into your custom service class.

Data type String
Units URL

Chapter 2. Configuring application servers 17

Classname: Specifies the class name of the service implementation. This class
must implement the Custom Service interface.

Data type String
Units Java class name

Display Name: Specifies the name of the service.

Data type String

Description: Describes the custom service.

Data type String

Classpath: Specifies the class path used to locate the classes and JAR files for this
service.

Data type String
Units Class path

Process definition
A process definition specifies the run-time characteristics of an application server
process.

A process defintions can include characteristics such as JVM settings, standard in,
error and output paths, and the user ID and password under which a server runs.

Defining application server processes
To enhance the operation of an application server, you can define command-line
information for starting or initializing an application server process. Such settings
define run-time properties such as the program to run, arguments to run the
program, the working directory.

Steps for this task
1. Go to the settings page for a process defintion in the administrative console.

Click Servers > Application Servers in the console navigation tree, click on an
application server name and then Process Definition.

2. On the settings page for a process defintion, specify the name of the executable
to run, any arguments to pass when the process starts running, and the
working directory in which the process will run. Then click OK.

3. (Optional) Specify process execution statements for starting or initializing a
UNIX process.

4. (Optional) Specify monitoring policies to track the performance of a process.
5. (Optional) Specify process logs to which standard out and standard error

streams write. Complete this step if you do not want to use the default file
names.

6. (Optional) Specify name-value pairs for properties needed by the process
definition.

7. Stop the application server and then restart the server.

18 IBM WebSphere Application Server, Version 5: Servers

8. Check the application server to ensure that the process definition runs and
operates as intended.

Process definition settings
Use this page to view or change settings for a process definition, which provides
command-line information for starting or initializing a process.

To view this administrative console page, click Servers > Application Servers >
server_name > Process Definition.

Executable Name
Specifies the executable name of the process.

Data type String

Executable Arguments
Specifies executable commands that run when the process starts.

For example, the executable target program might expect three arguments: arg1
arg2 arg3.

Data type String
Units Java command-line arguments

Working Directory
Specifies the file system directory in which the process will run.

This directory is used to determine the locations of input and output files with
relative path names.

Passivated enterprise beans are placed in the current working directory of the
application server on which the beans are running. Make sure the working
directory is a known directory under the root directory of the WebSphere
Application Server product.

Data type String

Process execution settings
Use this page to view or change command-line information for starting or
initializing a UNIX process.

To view this administrative console page, click Servers > Application Servers >
server_name > Process Definition > Process Execution.

Process Priority: Specifies the operating system priority for the process. Only root
users can change this value.

Data type Integer
Default 1000 for WebSphere Application Server on most

operating systems. On OS/400, the default is 25.

UMASK: Specifies the user mask under which the process runs (the file-mode
permission mask).

Chapter 2. Configuring application servers 19

Data type Integer

Run As User: Specifies the user that the process runs as.

Data type String

Run As Group: Specifies the group that the process is a member of and runs as.

On OS/400, the Run As Group setting is ignored.

Data type String

Run In Process Group: Specifies a specific process group for the process. This
process group is useful for such things as processor partitioning. A system
admininistor can assign a process group to run on, for example, 6 of 12 processors.
The default (0) is not to assign the process to any specific group.

On OS/400, the Run In Process Group setting is ignored.

Data type Integer
Default 0

Process logs settings
Use this page to view or change settings for specifying the files to which standard
out and standard error streams write.

To view this administrative console page, click Servers > Application Servers >
server_name > Process Definition > Process Logs.

Stdout File Name: Specifies the file to which the standard output stream are
directed. The file name can include a symbolic path name defined in the variable
entries.

To direct server output to the administrative console or to the process that
launched the server, either delete the value for this property or specify console.

Data type String
Units File path name

Stderr File Name: Specifies the file to which the standard error stream is directed.
The file name can include a symbolic path name defined in the variable entries.

Data type String
Units File path name

Monitoring policy settings
Use this page to view or change settings that control how the node agent monitors
and restarts a process.

To view this administrative console page, click Servers > Application Servers >
server_name > Process Definition > Monitoring Policy.

20 IBM WebSphere Application Server, Version 5: Servers

Maximum Startup Attempts: Specifies the maximum number of times to attempt
to start the application server before giving up.

Data type Integer

Ping Interval: Specifies the frequency of communication attempts between the
parent process, such as the node agent, and the process it has spawned, such as an
application server. Adjust this value based on your requirements for restarting
failed servers. Decreasing the value detects failures sooner; increasing the value
reduces the frequency of pings, reducing system overhead.

Data type Integer

Ping Timeout: When a parent process is spawning a child process, such as when
a process manager spawns a server, the parent process pings the child process to
see whether the child was spawned successfully. This value specifies the number of
seconds that the parent process should wait (after pinging the child process) before
assuming that the child process failed.

Data type Integer
Units Seconds

Automatic Restart: Specifies whether the process should restart automatically if it
fails. The default is to restart the process automatically.

Data type Boolean
Default true

Node Restart State: Specifies the desired state for the process after the node
completely shuts down and restarts. The options are: STOPPED, RUNNING,
PREVIOUS. The default is STOPPED.

Data type String
Default STOPPED
Range Valid values are STOPPED, RUNNING, or PREVIOUS.

Java virtual machines (JVMs)
The Java virtual machine (JVM) is an interpretive computing engine responsible for
executing the byte codes in a compiled Java program. The JVM translates the Java
byte codes into the native instructions of the host machine. The application server,
being a Java process, requires a JVM in order to run, and to support the Java
applications running on it. JVM settings are part of an application server
configuration.

Using the JVM
As part of configuring an application server, you might define settings that
enhance your system’s use of the Java virtual machine (JVM).

To view and change the JVM configuration for an application server’s process, use
the Java Virtual Machine page of the console or use wsadmin to change the
configuration through scripting.

Chapter 2. Configuring application servers 21

Steps for this task
1. Access the Java Virtual Machine page.

a. Click Servers > Application Servers in the console navigation tree.
b. On the Application Server page, click on the name of the server whose JVM

settings you want to configure.
c. On the settings page for the selected application server, click Process

Definition.
d. On the Process Definition page, click Java Virtual Machine.

2. On the Java Virtual Machine page, specify values for the JVM settings as
needed and click OK.

3. Click Save on the console taskbar.
4. Restart the application server.

Usage scenario

″Configuring application servers for UTF-8 encoding″ provides an example that
involves specifying a value for the Generic JVM Arguments property on the Java
Virtual Machine page to enable UTF-8 encoding on an application server. Enabling
UTF-8 allows multiple language encoding support to be used in the administrative
console.

″Example: Configuring JVM sendRedirect calls to use context root″ provides an
example that involves defining a property for the JVM.

Java virtual machine settings
Use this page to view and change the Java virtual machine (JVM) configuration for
the application server’s process.

To view this administrative console page, click Servers > Application Servers >
server_name > Process Definition > Java Virtual Machine.

Classpath
Specifies the standard class path in which the Java virtual machine code looks for
classes.

Enter each classpath entry into a table row. You do not need to add the colon or
semicolon at the end of each entry.

Data type String
Units Class path

Boot Classpath
Specifies bootstrap classes and resources for JVM code. This option is only
available for JVM instructions that support bootstrap classes and resources. You
can separate multiple paths by a colon (:) or semi-colon (;), depending on
operating system of the node.

Data type String

Verbose Class Loading
Specifies whether to use verbose debug output for class loading. The default is not
to enable verbose class loading.

22 IBM WebSphere Application Server, Version 5: Servers

Data type Boolean
Default false

Verbose Garbage Collection
Specifies whether to use verbose debug output for garbage collection. The default
is not to enable verbose garbage collection.

Data type Boolean
Default false

Verbose JNI
Specifies whether to use verbose debug output for native method invocation. The
default is not to enable verbose Java Native Interface (JNI) activity.

Data type Boolean
Default false

Initial Heap Size
Specifies the initial heap size available to the JVM code, in megabytes. The default
is 64 for OS/400 and zero (0) for all other platforms.

Data type Integer
Default 64 for OS/400, 0 for all other platforms

Maximum Heap Size
Specifies the maximum heap size available to the JVM code, in megabytes. The
default is zero (0) for OS/400 and 256 for all other platforms.

Data type Integer
Default 0 for OS/400, 256 for all other platforms

Run HProf
Specifies whether to use HProf profiler support. To use another profiler, specify the
custom profiler settings using the HProf Arguments setting. The default is not to
enable HProf profiler support.

If you set the Run HProf property to true, then you must specify command-line
profiler arguments as values for the HProf Arguments property.

Data type Boolean
Default false

HProf Arguments
Specifies command-line profiler arguments to pass to the JVM code that starts the
application server process. You can specify arguments when HProf profiler support
is enabled.

HProf arguments are only required if the Run HProf property is set to true.

Data type String

Chapter 2. Configuring application servers 23

Debug Mode
Specifies whether to run the JVM in debug mode. The default is not to enable
debug mode support.

If you set the Debug Mode property to true, then you must specify command-line
debug arguments as values for the Debug Arguments property.

Data type Boolean
Default false

Debug Arguments
Specifies command-line debug arguments to pass to the JVM code that starts the
application server process. You can specify arguments when Debug Mode is
enabled.

Debug arguments are only required if the Debug Mode property is set to true.

Data type String
Units Java command-line arguments

Generic JVM Arguments
Specifies command-line arguments to pass to the Java virtual machine code that
starts the application server process.

Data type String
Units Java command-line arguments

Executable JAR File Name
Specifies a full path name for an executable JAR file that the JVM code uses.

Data type String
Units Path name

Disable JIT
Specifies whether to disable the Just In Time (JIT) compiler option of the JVM code.
The default is not to disable JIT support.

Data type Boolean
Default false

Operating System Name
Specifies JVM settings for a given operating system. When started, the process uses
the JVM settings for the operating system of the node.

Data type String

Example: Configuring JVM sendRedirect calls to use context
root

If the com.ibm.websphere.sendredirect.compatibility property is not set and your
application servlet code has statements such as sendRedirect(″/home.html″), your Web
browser might display messages such as Error 404: No target servlet configured for
uri: /home.html. To instruct the server not to use the Web server’s document root

24 IBM WebSphere Application Server, Version 5: Servers

and to use instead the Web application’s context root for sendRedirect() calls,
configure the JVM by setting the com.ibm.websphere.sendredirect.compatibility
property to a true or false value.

Steps for this task
1. Access the settings page for a property of the JVM.

a. Click Servers > Application Servers in the console navigation tree.
b. On the Application Server page, click on the name of the server whose JVM

settings you want to configure.
c. On the settings page for the selected application server, click Process

Definition.
d. On the Process Definition page, click Java Virtual Machine.
e. On the Java Virtual Machine page, click Custom Properties.
f. On the Properties page, click New.

2. On the settings page for a property, specify a name of
com.ibm.websphere.sendredirect.compatibility and either true or false for
the value, then click OK.

3. Click Save on the console taskbar.
4. Stop the application server and then restart the application server.

Preparing to host applications
The default application server and a set of default resources are available to help
you begin quickly. Suppose you choose instead to configure a new server and set
of resources. Here is what you need to do in order to set up a run-time
environment to support applications.

Steps for this task
1. Create an application server.
2. Create a virtual host.
3. Configure a Web container.
4. Configure an EJB container.
5. Create resources for data access.
6. Create a JDBC provider and data source.
7. Create a URL and URL provider.
8. Create a JMS destination, connection, and provider.
9. Create a JavaMail session.

10. Create resources for session support.
11. Configure a Session Manager.

Application servers: Resources for learning
Use the following links to find relevant supplemental information about
configuring application servers. The information resides on IBM and non-IBM
Internet sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
the IBM WebSphere Application Server product, but is useful all or in part for
understanding the product. When possible, links are provided to technical papers
and Redbooks that supplement the broad coverage of the release documentation
with in-depth examinations of particular product areas.

Chapter 2. Configuring application servers 25

View links to additional information about:
v Programming model and decisions
v Programming instructions and examples
v Programming specifications
v Administration

Programming model and decisions

v Exploiting the Java Virtual Machine
(http://www.develop.com/downloads/DevWPJav.pdf)

Programming instructions and examples

v WebSphere Application Server education
(http://www.ibm.com/software/webservers/learn/)

Programming specifications

v The JavaTM Virtual Machine Specification, Second Edition
(http://java.sun.com/docs/books/vmspec/)

v Sun’s technology forum for the JavaTM Virtual Machine Specification
(http://forum.java.sun.com/forum.jsp?forum=37)

Administration

v IBM WebSphere Administration (http://www.mcgraw-
hill.co.uk/html/0072223154.html)

v Listing of all IBM WebSphere Application Server Redbooks
(http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere)

v IBM WebSphere V4.0 Advanced Edition Handbook
(http://www.redbooks.ibm.com/abstracts/sg246176.html)

v WebSphere 4.0 Installation and Configuration on the IBM iSeries Server
(http://publib-
b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/
7b1a07251256f08b85256b750067aee1?OpenDocument)

v Redbook on Backing up WebSphere Application Server with Tivoli Storage
Management (http://publib-
b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/redp0149.html?Open)

26 IBM WebSphere Application Server, Version 5: Servers

http://www.develop.com/downloads/DevWPJav.pdf
http://www.ibm.com/software/webservers/learn/
http://java.sun.com/docs/books/vmspec/
http://forum.java.sun.com/forum.jsp?forum=37
http://www.mcgraw-hill.co.uk/html/0072223154.html
http://www.mcgraw-hill.co.uk/html/0072223154.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/Portals/WebSphere
http://www.redbooks.ibm.com/abstracts/sg246176.html
http://publib-b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/7b1a07251256f08b85256b750067aee1?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/7b1a07251256f08b85256b750067aee1?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/9445fa5b416f6e32852569ae006bb65f/7b1a07251256f08b85256b750067aee1?OpenDocument
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/redp0149.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/redp0149.html?Open

Chapter 3. Managing Object Request Brokers

Default property values are set when the product is started and the Java Object
Request Broker (ORB) service is initialized. These properties control the run-time
behavior of the ORB and can also affect the behavior of product components that
are tightly integrated with the ORB, such as security. It might be necessary to
modify some ORB settings under certain conditions.

In every request/response exchange, there is a client-side ORB and a server-side
ORB. It is important that the ORB properties be set for both sides as necessary.

After an ORB instance has been established in a process, changes to ORB
properties do not affect the behavior of the running ORB instance. The process
must be stopped and restarted in order for the modified properties to take effect.

The following steps are to be performed only as needed.

Steps for this task
1. (Optional) Adjust timeout settings to improve handling of network failures.

Before making these adjustments, be sure to read ″ORB tuning guidelines.″
2. (Optional) Adjust (thread-pool settings) used by the ORB for handling IIOP

connections.
3. If problems with the ORB arise, determine the problem.

For help in troubleshooting, look at the ORB communications trace.

Object Request Brokers
An Object Request Broker (ORB) manages the interaction between clients and
servers, using the Internet InterORB Protocol (IIOP). It enables clients to make
requests and receive responses from servers in a network-distributed environment.

The ORB provides a framework for clients to locate objects in the network and call
operations on those objects as if the remote objects were located in the same
running process as the client, providing location transparency. The client calls an
operation on a local object, known as a stub. Then the stub forwards the request to
the desired remote object, where the operation is run and the results are returned
to the client.

The client-side ORB is responsible for creating an IIOP request that contains the
operation and any required parameters, and for sending the request on the
network. The server-side ORB receives the IIOP request, locates the target object,
invokes the requested operation, and returns the results to the client. The
client-side ORB demarshals the returned results and passes the result to the stub,
which, in turn, returns to the client application, as if the operation had been run
locally.

This product uses an ORB to manage communication between client applications
and server applications as well as communication among product components.
During product installation, default property values are set when the ORB is
initialized. These properties control the run-time behavior of the ORB and can also

© Copyright IBM Corp. 2002 27

affect the behavior of product components that are tightly integrated with the ORB,
such as security. This product does not support the use of multiple ORB instances.

Object Request Broker tuning guidelines
If Web clients that access Java applications running in the product environment are
consistently experiencing problems with their requests, and the problem cannot be
traced to other sources and addressed through other solutions, consider setting an
Object Request Broker (ORB) time-out value and adjusting it for your environment.
v Web browsers vary in their language for indicating that they have timed out.

Usually, the problem is announced as a connection failure or no-path-to-server
message.

v Aim to set an ORB time-out value to less than the time after which a Web client
eventually times out. Because it can be difficult to tell how long Web clients will
wait before timing out, setting an ORB time-out requires some experimentation.
Another difficulty is that the ideal testing environment features some simulated
network failures for testing the proposed setting value.

v Empirical results from limited testing indicate that 30 seconds is a reasonable
starting value. Mainly, you need to ensure that the setting is not too low. To
fine-tune the setting, find a value that is not too low. Then gradually decrease
the setting until reaching the threshhold at which the value becomes too low. Set
the value a little above the threshold.

v When an ORB time-out value is set too low, the symptom is numerous CORBA
’NO_RESPONSE’ exceptions, which occur even for some requests that should
have been valid. If requests that should have been successful (for example, the
server is not down) are being lost or refused, the value is likely to be too low.

Note: Do not adjust an ORB time-out value unless experiencing a problem, because
configuring a value that is inappropriate for the environment can itself create a
problem. If you set the value, experimentation might be needed to find the correct
value for the particular environment. Configuring an incorrect value can produce
results worse than the original problem.

You can adjust time-out intervals for the product’s Java ORB through the following
administrative settings:
v Request timeout, the number of seconds to wait before timing out on most

pending ORB requests if the network fails
v Locate request timeout, the number of seconds to wait before timing out on a

locate-request message

You can also improve performance by setting the com.ibm.CORBA.numJNIReaders
system property through a command-line script. This property specifies the
number of threads to be shared for request handling when the native selector
mechanism is enabled. The default value of this property is 2. Valid settings for
this property range from 0 to 2147483647.

Object Request Broker service settings in administrative console
Use this page to configure the Java Object Request Broker (ORB) service.

To view this administrative console page, click Servers > Application Servers >
serverName > ORB Service.

28 IBM WebSphere Application Server, Version 5: Servers

Request timeout
Specifies the number of seconds to wait before timing out on a request message.

For use in command-line scripting, the full name of this system property is
com.ibm.CORBA.RequestTimeout.

Data type int
Units Seconds
Default 180
Range 0 to 300

Request retries count
Specifies the number of times that the ORB attempts to send a request if a server
fails. Retrying sometimes enables recovery from transient network failures.

For use in command-line scripting, the full name of this system property is
com.ibm.CORBA.requestRetriesCount.

Data type int
Default 1
Range 1 to 10

Request retries delay
Specifies the number of milliseconds between request retries.

For use in command-line scripting, the full name of this system property is
com.ibm.CORBA.requestRetriesDelay.

Data type int
Units Milliseconds
Default 0
Range 0 to 60

Connection cache maximum
Specifies the largest number of connections allowed to occupy the connection cache
for the service.

Data type Integer
Units Connections
Default 240

Connection cache minimum
Specifies the smallest number of connections allowed to occupy the connection
cache for the service.

Data type Integer
Units Connections
Default 100

Chapter 3. Managing Object Request Brokers 29

ORB tracing
Enables the tracing of ORB GIOP messages.

This setting affects two system properties: com.ibm.CORBA.Debug and
com.ibm.CORBA.CommTrace. If you set these properties through command-line
scripting, you must set both to true in order to enable the tracing of GIOP
messages.

Data type Boolean
Default Not enabled (false)

Locate request timeout
Specifies the number of seconds to wait before timing out on a LocateRequest
message.

For use in command-line scripting, the full name of this system property is
com.ibm.CORBA.LocateRequestTimeout.

Data type int
Units Seconds
Default 180
Range 0 to 300

Force tunneling
Controls how the client ORB attempts to use HTTP tunneling.

For direct access, the full name of this property is com.ibm.CORBA.ForceTunnel.

Data type String
Default NEVER
Range Valid values are ALWAYS, NEVER, or WHENREQUIRED.

Additional information about valid values follows:

ALWAYS
Use HTTP tunneling immediately, without trying TCP connections first.

NEVER
Disable HTTP tunneling. If a TCP connection fails, a CORBA system
exception (COMM_FAILURE) is thrown.

WHENREQUIRED
Use HTTP tunneling if TCP connections fail.

Tunnel agent URL
Specifies the URL of the servlet used to support HTTP tunneling.

This must be a properly formed URL, such as
http://w3.mycorp.com:81/servlet/com.ibm.CORBA.services.IIOPTunnelServlet or,
for applets,
http://applethost:port/servlet/com.ibm.CORBA.services.IIOPTunnelServlet.
This field is required if HTTP tunneling is set.

30 IBM WebSphere Application Server, Version 5: Servers

For use in command-line scripting, the full name of this system property is
com.ibm.CORBA.TunnelAgentURL.

Pass by reference
When enabled, this specifies that the ORB is to pass parameters by reference
instead of by value, which bypasses a copy operation. Enable this property with
caution, because unexpected behavior might occur.

For use in command-line scripting, the full name of this system property is
com.ibm.CORBA.iiop.noLocalCopies.

Data type Boolean
Default Not enabled (false)

Object Request Broker service settings that can be added to the
administrative console

Use the Properties page to set and monitor settings associated with the Java Object
Request Broker (ORB) service that do not appear on the main settings page by
default.

To view that administrative console page, click Servers > Application Servers >
serverName > ORB Service > Custom Properties.

To add properties to this page, click New and enter at least a name and value for
the property. Then click Apply. When you are finished entering properties, click
OK.

The page might already include Secure Socket Layer (SSL) properties that were
added during product setup. A list of additional properties associated with the
Java ORB service follows:

com.ibm.CORBA.BootstrapHost
Specifies the DNS host name or IP address of the machine on which initial
server contact for this client resides. This setting is deprecated and will be
removed in a future release. For a command-line or programmatic
alternative, see ″Programming tips for the Java Object Request Broker
service.″

com.ibm.CORBA.BootstrapPort
Specifies the port to which the ORB connects for bootstrapping. In other
words, the port of the machine on which the initial server contact for this
client is listening. The default value is 2809. This setting is deprecated and
will be removed in a future release. For a command-line or programmatic
alternative, see ″Programming tips for the Java Object Request Broker
service.″

com.ibm.CORBA.FragmentSize
Specifies the size of GIOP fragments used by the ORB. If the total size of a
request exceeds the set value, the ORB breaks up and sends multiple
fragments until the entire request is sent. The default value is 1024 bytes.
The valid range is from 64 to the largest value of the Java int type that is
divisible by 8.

com.ibm.CORBA.ListenerPort
Specifies the port on which this server listens for incoming requests. The

Chapter 3. Managing Object Request Brokers 31

setting of this property is valid only for client-side ORBs. The default value
is the next available system-assigned port number. The valid range is 0 to
2147483647.

com.ibm.CORBA.LocalHost
Specifies the host name or IP address of the system on which the server
ORB is running. The setting of this property is valid only for client-side
ORBs. Otherwise, the ORB obtains a value at run time by calling
InetAddress.getLocalHost().getHostAddress().

com.ibm.CORBA.ServerSocketQueueDepth
The property changes the maximum queue length for server incoming
TCP/IP connection requests. If a connection requests arrives when the
queue is full, the connection is refused. The valid range is between 50 and
the maximum Java int value. The default value is 50.

com.ibm.CORBA.ShortExceptionDetails
If set to any value, this specifies that the exception detail message that is
returned whenever the server ORB encounters a CORBA system exception
is to contain a short description of the exception as returned by the
toString() method of java.lang.Throwable. Otherwise, the message contains
the complete stack trace as returned by the printStackTrace() method of
java.lang.Throwable.

If needed for locale support, you can also set and monitor properties for codeset
conversion. For details, see ″Character codeset conversion support for the Java
Object Request Broker service.″

Object Request Broker communications trace
The Object Request Broker (ORB) communications trace, typically referred to as
CommTrace, contains the sequence of General InterORB Protocol (GIOP) messages
sent and received by the ORB during application execution. It might be necessary
to understand the low-level sequence of client-to-server or server-to-server
interactions during problem determination. This article uses trace entries from log
examples to explain the contents of the log and help you understand the
interaction sequence. It focuses only in the GIOP messages and does not discuss in
detail additional trace information that appears when intervening with the
GIOP-message boundaries.

Location

When ORB tracing is enabled, this information is placed in install_root/logs/trace.

Usage notes

v Is this file read-only?
Yes

v Is this file updated by a product component?
This file is updated by the administrative function.

v How and when are the contents of this file used?
You use this file to localize and resolve ORB-related problems.

How to interpret the output

The following sections refer to sample log output found later in this topic.

32 IBM WebSphere Application Server, Version 5: Servers

Identifying information
The start of a GIOP message is identified by a line which contains either
″OUT GOING:″ or ″IN COMING:″ depending on whether the message is
sent or received by the process that is being traced.

Following the identifying line entry is a series of items, formatted for
convenience, with information extracted from the raw message that
identify the endpoints in this particular message interaction. See lines 3-13
in both examples. The formatted items include the following:
v GIOP message type (line 3)
v Date and time that message was recorded (line 4)
v Information useful in uniquely identifying the thread in execution when

the message was recorded, with other thread-specific information (line 5,
broken for publication in the reply example)

v Local and remote TCP/IP ports used for the interaction (lines 6 through
9)

v GIOP version, byte order, whether the message is a fragment, and
message size (lines 10 through 13)

Request ID, response expected and reply status
Following the introductory message information, the request ID is an
integer generated by the ORB. It is used to identify and associate each
request with its corresponding reply. This is necessary because the ORB
can receive requests from multiple clients and must be able to associate
each reply with the corresponding originating request.
v Lines 15-17 in the request example show the request ID, followed by an

indication to the receiving endpoint that a response is expected (CORBA
allows sending of one-way requests for which a response is not
expected.)

v Line 15 in Sample Log Entry - GIOP Reply shows the request ID; line 33
shows the reply status received after completing the previously sent
request.

Object Key
Lines 18-20 in the request example show the object key, the internal
representation used by the ORB during execution to identify and locate the
target object intended to receive the request message. Object keys are not
standardized.

Operation
Line 21 in the request example shows the name of the operation to be
executed by the target object in the receiving endpoint. In this example, the
specific operation requested is named _get_value.

Service context information
The service contexts in the message are also formatted for convenience.
Each GIOP message might contain a sequence of service contexts
sent/received by each endpoint. Service contexts, identified uniquely with
an ID, contain data used in the specific interaction, such as security,
character codeset conversion, and ORB version information. The content of
some of the service contexts is standardized and specified by OMG, while
other service contexts are proprietary and specified by each vendor.
IBM-specific service contexts are identified with IDs that begin with
0x4942.

Lines 22-41 in the request example illustrate typical service context entries.
There are three service contexts in the request message, as shown in line

Chapter 3. Managing Object Request Brokers 33

22. The ID, length of data, and raw data for each service context is printed
next. Lines 23-25 show an IBM-proprietary context, as indicated by the ID
0x49424D12. Lines 26-41 show two standard service contexts, identified by
ID 0x6 (line 26) and 0x1 (line 39).

Lines 16-32 in the Sample Log Entry - GIOP Reply illustrate two service
contexts, one IBM-proprietary (line 17) and one standardized (line 20).

For the definition of the standardized service contexts, see the CORBA
specification. Service context 0x1 (CORBA::IOP::CodeSets) is used to
publish the character codesets supported by the ORB in order to negotiate
and determine the codeset used to transmit character data. Service context
0x6 (CORBA::IOP::SendingContextRunTime) is used by RMI-IIOP to
provide the receiving endpoint with the IOR for the
SendingContextRuntime object. IBM service context 0x49424D12 is used to
publish ORB PartnerVersion information in order to support
release-to-release interoperability between sending and receiving ORBs.

Data offset
Line 42 in the request example shows the offset, relative to the beginning
of the GIOP message, where the remainder body of the request or reply
message is located. This portion of the message is specific to each
operation and varies from operation to operation. Therefore, it is not
formatted, as the specific contents are not known by the ORB. The offset is
printed as an aid to quickly locating the operation-specific data in the raw
GIOP message dump, which follows the data offset.

Raw GIOP message dump
Starting at line 45 in the request example and line 36 in Sample Log Entry
- GIOP Reply, a raw dump of the entire GIOP message is printed in
hexadecimal format. Request messages contain the parameters required by
the given operation and reply messages contain the return values and
content of output parameters as required by the given operation. For
brevity, not all of the raw data has been included in the figures.

Sample Log Entry - GIOP Request
1. OUT GOING:

3. Request Message
4. Date: April 17, 2002 10:00:43 PM CDT
5. Thread Info: P=842115:O=1:CT
6. Local Port: 1243 (0x4DB)
7. Local IP: jdoe.austin.ibm.com/192.168.1.101
8. Remote Port: 1242 (0x4DA)
9. Remote IP: jdoe.austin.ibm.com/192.168.1.101
10. GIOP Version: 1.2
11. Byte order: big endian
12. Fragment to follow: No
13. Message size: 268 (0x10C)
--
15. Request ID: 5
16. Response Flag: WITH_TARGET
17. Target Address: 0
18. Object Key: length = 24 (0x18)

4B4D4249 00000010 BA4D6D34 000E0008
00000000 00000000

21. Operation: _get_value
22. Service Context: length = 3 (0x3)
23. Context ID: 1229081874 (0x49424D12)
24. Context data: length = 8 (0x8)

00000000 13100003
26. Context ID: 6 (0x6)

34 IBM WebSphere Application Server, Version 5: Servers

27. Context data: length = 164 (0xA4)
00000000 00000028 49444C3A 6F6D672E
6F72672F 53656E64 696E6743 6F6E7465
78742F43 6F646542 6173653A 312E3000
00000001 00000000 00000068 00010200
0000000E 3139322E 3136382E 312E3130
310004DC 00000018 4B4D4249 00000010
BA4D6D69 000E0008 00000000 00000000
00000002 00000001 00000018 00000000
00010001 00000001 00010020 00010100
00000000 49424D0A 00000008 00000000
13100003

39. Context ID: 1 (0x1)
40. Context data: length = 12 (0xC)

00000000 00010001 00010100
42. Data Offset: 118

45. 0000: 47494F50 01020000 0000010C 00000005 GIOP............
46. 0010: 03000000 00000000 00000018 4B4D4249KMBI
47. 0020: [remainder of message body deleted for brevity]

Sample Log Entry - GIOP Reply
1. IN COMING:

3. Reply Message
4. Date: April 17, 2002 10:00:47 PM CDT
5. Thread Info: RT=0:P=842115:O=1:com.ibm.rmi.transport.TCPTransportConnection
5a. remoteHost=192.168.1.101 remotePort=1242 localPort=1243
6. Local Port: 1243 (0x4DB)
7. Local IP: jdoe.austin.ibm.com/192.168.1.101
8. Remote Port: 1242 (0x4DA)
9. Remote IP: jdoe.austin.ibm.com/192.168.1.101
10. GIOP Version: 1.2
11. Byte order: big endian
12. Fragment to follow: No
13. Message size: 208 (0xD0)
--
15. Request ID: 5
16. Service Context: length = 2 (0x2)
17. Context ID: 1229081874 (0x49424D12)
18. Context data: length = 8 (0x8)

00000000 13100003
20. Context ID: 6 (0x6)
21. Context data: length = 164 (0xA4)

00000000 00000028 49444C3A 6F6D672E
6F72672F 53656E64 696E6743 6F6E7465
78742F43 6F646542 6173653A 312E3000
00000001 00000000 00000068 00010200
0000000E 3139322E 3136382E 312E3130
310004DA 00000018 4B4D4249 00000010
BA4D6D34 000E0008 00000001 00000000
00000002 00000001 00000018 00000000
00010001 00000001 00010020 00010100
00000000 49424D0A 00000008 00000000
13100003

33. Reply Status: NO_EXCEPTION

36. 0000: 47494F50 01020001 000000D0 00000005 GIOP............
37. 0010: 00000000 00000002 49424D12 00000008IBM.....
38. 0020: [remainder of message body deleted for brevity]

Chapter 3. Managing Object Request Brokers 35

Client-side programming tips for the Java Object Request Broker
service

This article includes programming tips for applications that communicate with the
client-side Object Request Broker (ORB) that is part of the Java ORB service.

Resolution of initial references to services

Client applications can use the properties ORBInitRef and ORBDefaultInitRef to
configure the network location that the Java ORB service uses to find a service
such as naming. Once set, these properties are included in the parameters used to
initialize the ORB, as follows:
org.omg.CORBA.ORB.init(java.lang.String[] args,

java.util.Properties props)

You can set these properties in client code or by command-line argument. It is
possible to specify more than one service location by using multiple ORBInitRef
property settings (one for each service), but only a single value for
ORBDefaultInitRef may be specified. For more information about the two
properties and the order of precedence that the ORB uses to locate services, read
the CORBA/IIOP specification, cited in ″Resources for learning.″

For setting in client code, these properties are
com.ibm.CORBA.ORBInitRef.service_name and com.ibm.CORBA.ORBDefaultInitRef,
respectively. For example, to specify that the naming service (NameService) is
located in sample.server.com at port 2809, set the
com.ibm.CORBA.ORBInitRef.NameService property to
corbaloc::sample.server.com:2809/NameService.

For setting by command-line argument, these properties are -ORBInitRef and
-ORBDefaultInitRef, respectively. To locate the same naming service specified
previously, use the following Java command (split here for publication only):
java program -ORBInitRef

NameService=corbaloc::sample.server.com:2809/NameService

After these properties have been set for services supported by the ORB, J2EE
applications obtain the initial reference to a given service by calling the
resolve_initial_references function on the ORB as defined in the CORBA/IIOP
specification.

Preferred API for obtaining an ORB instance

For J2EE applications, you can use either of the following approaches. However, it
is strongly recommended that you use the JNDI approach to ensure that the same
ORB instance is used throughout the client application; you will avoid the
unintended inconsistencies that might occur when different ORB instances are
used.

JNDI approach: For J2EE applications (including enterprise beans, J2EE clients and
servlets), you can obtain an ORB instance by creating a JNDI InitialContext object
and looking up the ORB under the name java:comp/ORB, as follows:
javax.naming.Context ctx = new javax.naming.InitialContext();
org.omg.CORBA.ORB orb =

(org.omg.CORBA.ORB)javax.rmi.PortableRemoteObject.narrow(ctx.lookup(
"java:comp/ORB"),org.omg.CORBA.ORB.class);

36 IBM WebSphere Application Server, Version 5: Servers

The ORB instance obtained using JNDI is a singleton object, shared by all J2EE
components running in the same Java virtual machine process.

CORBA approach: Because thin-client applications do not run in a J2EE container,
they cannot use JNDI interfaces to look up the ORB. In this case, you can obtain an
ORB instance by using CORBA programming interfaces, as follows:
java.util.Properties props = new java.util.Properties();
java.lang.String[] args = new java.lang.String[0];
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args, props);

In contrast to the JNDI approach, the CORBA specification requires that a new
ORB instance be created each time the ORB.init method is called. If necessary to
change the ORB’s default settings, you can add ORB property settings to the
Properties object that is passed in the ORB.init() call.

The use of com.ibm.ejs.oa.EJSORB.getORBinstance(), supported in previous releases
of this product, has been deprecated.

API restrictions with sharing an ORB instance among J2EE application
components

For performance reasons, it often makes sense to share a single ORB instance
among components in a J2EE application. As required by the J2EE Specification,
Version 1.3, all web and EJB containers provide an ORB instance in the JNDI
namespace as java:comp/ORB. Each container can share this instance among
application components but is not required to. For proper isolation between
application components, application code must comply with the following
restrictions:
v Do not call the ORB shutdown method
v Do not call org.omg.CORBA_2_3.ORB methods register_value_factory or

unregister_value_factory

In addition, an ORB instance should not be shared among application components
in different J2EE applications.

Required use of rmic and idlj shipped with the IBM Developer Kit

The Java Runtime Environment (JRE) used by this product includes the tools rmic
and idlj. You use the tools to generate Java language bindings for the
CORBA/IIOP protocol.

During product installation, the tools are installed in the directory
installation_root/java/ibm_bin, where installation_root is the installation directory for
the product. Versions of these tools included with Java development kits in
$JAVA_HOME/bin other than the IBM Developer Kit installed with this product
are incompatible with this product.

When you install this product, the directory installation_root/java/ibm_bin is
included in the $PATH search order to enable use of the rmic and idlj scripts
provided by IBM. Because the scripts are in installation_root/java/ibm_bin instead
of the JRE standard location installation_root/java/bin, it is unlikely that you will
overwrite them when applying maintenance to a JRE not provided by IBM.

In addition to the rmic and idlj tools, the JRE also includes Interface Definition
Language (IDL) files. The files are based on those defined by the Object

Chapter 3. Managing Object Request Brokers 37

Management Group (OMG) and can be used by applications that need an IDL
definition of selected ORB interfaces. The files are placed in the
installation_root/java/ibm_lib directory.

Before using either the rmic or idlj tool, ensure that the
installation_root/java/ibm_bin directory is included in the proper PATH variable
search order in the environment. If your application will use IDL files in the
installation_root/java/ibm_lib directory, also ensure that the directory is included in
the PATH variable.

Character codeset conversion support for the Java Object Request
Broker service

The CORBA/IIOP specification defines a framework for negotiation and
conversion of character codesets used by the Java Object Request Broker (ORB)
service. This product supports the framework and provides the following system
properties for modifying the default settings:

com.ibm.CORBA.ORBCharEncoding
Specifies the name of the native codeset that the ORB is to use for
character data (referred to as NCS-C in the CORBA/IIOP specification). By
default, the ORB uses UTF8. (In contrast, the default value for versions 3.5.x
and 4.0.x of this product was ISO8859_1, also known as Latin-1.) Valid
codeset values for this property are shown in the table that follows this
list; values that are valid only for ORBWCharDefault are indicated.

com.ibm.CORBA.ORBWCharDefault
Specifies the default codeset that the ORB is to use for transmission of
wide character data when no codeset for wide character data is found in
the tagged component in the Interoperable Object Reference (IOR) or in the
GIOP service context. By default, the ORB uses UCS2. The only valid
codeset values for this property are UCS2 or UTF16.

The CORBA codeset negotiation/conversion framework specifies the use of codeset
registry IDs as defined in the Open Software Foundation (OSF) codeset registry.
The ORB translates the Java file.encoding names shown in the following table to
the corresponding OSF registry IDs. These IDs are then used by the ORB in the
IOR Codeset tagged component and GIOP Codeset service context as specified in
the CORBA/IIOP specification.

Java name OSF registry ID Comments

ASCII 0x00010020

ISO8859_1 0x00010001

ISO8859_2 0x00010002

ISO8859_3 0x00010003

ISO8859_4 0x00010004

ISO8859_5 0x00010005

ISO8859_6 0x00010006

ISO8859_7 0x00010007

ISO8859_8 0x00010008

ISO8859_9 0x00010009

ISO8859_15_FDIS 0x0001000F

38 IBM WebSphere Application Server, Version 5: Servers

Java name OSF registry ID Comments

Cp1250 0x100204E2

Cp1251 0x100204E3

Cp1252 0x100204E4

Cp1253 0x100204E5

Cp1254 0x100204E6

Cp1255 0x100204E7

Cp1256 0x100204E8

Cp1257 0x100204E9

Cp943C 0x100203AF

Cp943 0x100203AF

Cp949C 0x100203B5

Cp949 0x100203B5

Cp1363C 0x10020553

Cp1363 0x10020553

Cp950 0x100203B6

Cp1381 0x10020565

Cp1386 0x1002056A

EUC_JP 0x00030010

EUC_KR 0x0004000A

EUC_TW 0x00050010

Cp964 0x100203C4

Cp970 0x100203CA

Cp1383 0x10020567

Cp33722C 0x100283BA

Cp33722 0x100283BA

Cp930 0x100203A2

Cp1047 0x10020417

UCS2 0x00010100 Valid only for ORBWCharDefault

UTF8 0x05010001

UTF16 0x00010109 Valid only for ORBWCharDefault

For more information, read the CORBA/IIOP specification, cited in ″Resources for
learning.″

Object Request Brokers: Resources for learning
Use the following links to find relevant supplemental information about Object
Request Brokers (ORBs). The information resides on IBM and non-IBM Internet
sites, whose sponsors control the technical accuracy of the information.

These links are provided for convenience. Often, the information is not specific to
this product but is useful all or in part for understanding the product. When

Chapter 3. Managing Object Request Brokers 39

possible, links are provided to technical papers and Redbooks that supplement the
broad coverage of the release documentation with in-depth examinations of
particular product areas.

View links to additional information about:
v Planning, business scenarios, and IT architecture
v Administration
v Programming specifications

Planning, business scenarios, and IT architecture

v CORBA FAQ (http://www.omg.org/gettingstarted/corbafaq.htm)
Getting started with object request brokers and CORBA.

Administration

v IANA Character Set Registry (http://www.iana.org/assignments/character-
sets)
This contains a list of all valid character encoding schemes.

v WebSphere Interoperability between Versions 3.5.x and 4.0.x
(http://www7b.boulder.ibm.com/wsdd/library/techarticles
/0202_sundman/sundman.html)
This WebSphere Developer Domain article by Joel Sundman and Matt Kelm
(February 2002, updated May 2002) is not directly related to the Java ORB
service, but it touches upon ORB-related issues.

Programming specifications

v Catalog Of OMG CORBA/IIOP Specifications
(http://www.omg.org/technology/documents/corba_spec_catalog.htm)

40 IBM WebSphere Application Server, Version 5: Servers

http://www.omg.org/gettingstarted/corbafaq.htm
http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0202_sundman/sundman.html
http://www7b.boulder.ibm.com/wsdd/library/techarticles/0202_sundman/sundman.html
http://www.omg.org/technology/documents/corba_spec_catalog.htm

	Contents
	Trademarks and service marks
	Chapter 1. Welcome to Servers
	Chapter 2. Configuring application servers
	Application servers
	Creating application servers
	Configuring application servers for UTF-8 encoding

	Managing application servers
	Application server collection
	Name
	Node
	Status
	Application server settings

	Starting servers
	Running servers as non-root using the console
	Detecting and handling problems with run-time components
	Stopping servers

	Transports
	Configuring transports
	HTTP transport collection
	Host
	Port
	SSL Enabled

	HTTP transport settings
	Host
	Port
	SSL Enabled
	SSL

	Example: Manually editing transport settings in the server.xml file

	Custom services
	Developing custom services
	Custom service collection
	External Configuration URL
	Classname
	Display Name
	Startup
	Custom service settings

	Process definition
	Defining application server processes
	Process definition settings
	Executable Name
	Executable Arguments
	Working Directory
	Process execution settings
	Process logs settings
	Monitoring policy settings

	Java virtual machines (JVMs)
	Using the JVM
	Java virtual machine settings
	Classpath
	Boot Classpath
	Verbose Class Loading
	Verbose Garbage Collection
	Verbose JNI
	Initial Heap Size
	Maximum Heap Size
	Run HProf
	HProf Arguments
	Debug Mode
	Debug Arguments
	Generic JVM Arguments
	Executable JAR File Name
	Disable JIT
	Operating System Name

	Example: Configuring JVM sendRedirect calls to use context root

	Preparing to host applications
	Application servers: Resources for learning

	Chapter 3. Managing Object Request Brokers
	Object Request Brokers
	Object Request Broker tuning guidelines
	Object Request Broker service settings in administrative console
	Request timeout
	Request retries count
	Request retries delay
	Connection cache maximum
	Connection cache minimum
	ORB tracing
	Locate request timeout
	Force tunneling
	Tunnel agent URL
	Pass by reference

	Object Request Broker service settings that can be added to the administrative console
	Object Request Broker communications trace
	Client-side programming tips for the Java Object Request Broker service
	Character codeset conversion support for the Java Object Request Broker service
	Object Request Brokers: Resources for learning

